

InstallShield

Getting Started with
InstallShield Developer and
Windows Installer Setups

Bob Baker

PUBLISHED BY
InstallShield Press
A Division of InstallShield Software Corporation
900 N. National Parkway
Suite 125
Schaumburg, IL 60173

Copyright 2002 by InstallShield Software Corporation

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the
publisher.

ISBN: 0-9715708-0-9
LCCN: 2002102340

InstallShield Press books are available through InstallShield Software Corporation.
Information about purchasing InstallShield Press books can be obtained at
www.installshield.com, by contacting Sales: TEL (800) 809-5659 or FAX (847) 619-
0788.

The author and publisher have made every effort to verify that the material in this
book is accurate. However, the information in this book is made available as is
without any warranty of any kind, expressed or implied. The sample projects and
source code included on the CD-ROM at the back of the book have a limited
warranty, which is discussed in the End-User License Agreement accompanying the
CD-ROM. The author, InstallShield Press, licensors and related parties will not be
held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Credits:

Project Editor: Lori Erickson

Technical Editors: Art Middlekauff, David Thornley, Richard Aquino, Marwan Tabet,
Kent Foyer, Michael Marino, Martin Markevics, Gomathi Rajesh, Mingbiao Fei

Graphics Artist: Melvin Grefalda

Dedicated to my children:
Bobby, Robin, Rebecca, Stefanie, and Shireen.

The future is yours.

v

Contents
INTRODUCTION ..XI

ACKNOWLEDGEMENTS .. XVII

PART I - THE FUNDAMENTALS.. 1

Chapter 1 - Installation Development..3
Who Is Interested in Software Installation?...4

The End User..4
The LAN Administrator...5
The Setup Developer..5

What Operations Constitute a Typical Installation?..6
Checking the System..8
Checking for Required Applications ...8
Checking Available Disk Space ..9
The User Interface..10
Copying Files ...11
Registering the Application ...12
Making the Application Available...12
Maintaining The Application...13

What Are the Various Types of Installations?...13
The Fresh Install...14
The Maintenance Install...14
The Advertised Install..14
The Administrative Install ...15
The Upgrade Install..15
The Patch Install...16
The Transformed Install...17
The Nested Install ..17

Installation Development Technologies and Tools ...18
Script-Based Installation Programs ...18
Windows Installer-Based Installation Programs ...23

InstallShield Developer..26
Conclusion..28

Chapter 2 - Introducing InstallShield Developer ...29
A Quick Tour ...30

The Opening Screen...30
The InstallShield Today Page ..32
Help View and Best Practices View..37
The Menus..37
The Toolbar..42

The Sample Application...46
Creating a Standard Project Using the Project Wizard..47
Creating a Basic MSI Project Using the Project Wizard...73
Linking to Source Files at Build-Time ..78

vi

Conclusion..81

Chapter 3 - Windows Installer Basics..83
The Design Focus...84
The Windows Installer Package...88

What is a COM Structured Storage File? ..90
The Summary Information Stream ..94
The Windows Installer Database ...94
Compressed and Uncompressed Source Files ...96
The Windows Installer SDK..98

Dissecting the Developer Art Installation Package ...99
The Developer Art Summary Information Stream..100
The Database Tables ..105
The File Copy Tables...119
The Registry Entry Tables ...122
The Installation Procedure Tables ...124
The User Interface Tables ..128
The Desktop Integration Tables...133
The Installation Validation Table ..136

How Does the Windows Installer Perform an Installation? ..138
Running the Windows Installer Engine from the Command Line..138
Running the Windows Installer Engine Programmatically ...141
The Operations of the INSTALL Top-Level Action...142

Extending the Windows Installer Functionality ..154
Custom Action Categories ...155
The Types of Custom Actions ...157

The Other Types of Windows Installer Packages ...159
Merge Modules ..159
Transforms ...160
Patch Packages ...161

Conclusion..161

Chapter 4 - The InstallShield Developer Run-Time Architecture..163
Fresh Install Run-Time Architecture ...164

Fresh Install Using a Standard Project...164
Fresh Install Using a Basic MSI Project..184

Maintenance Install Run-Time Architecture ...189
Maintenance Install Using a Standard Project...190
Maintenance Install Using a Basic MSI Project ..195

Run-Time Architecture for Other Install Modes ...196
Administrative Installations ...197
Application Advertisement ..198
Localized Installations ...201

Run-Time Handling of InstallScript ..207
Installing the InstallScript Engine..207
The Program Block and Event Handlers ...208
InstallScript Custom Actions ...211

Conclusion..215

Chapter 5 - Creating Projects in the IDE..217
Creating a Standard Project in the IDE..218

Organize Your Setup (Step 1)..220
Specify Application Data (Step 2) ...243
Configure the Target System (Step 3) ...251
Advanced Views ..257

vii

Prepare for Distribution (Step 7)..278
Creating a Basic MSI Project in the IDE...293
Conclusion..294

PART II - THE INSTALLSCRIPT LANGUAGE... 295

Chapter 6 - Variables and Data Types...297
Setting up the Programming Environment ..298
Variables...302
Data Types..306

The Built-In Data Types ..306
User-Defined Data Types ..324

Conclusion..331

Chapter 7 - Expressions and Statements ...333
Expressions...334

Arithmetic Expressions..334
Relational and Logical Expressions...339
String Expressions..347
Bitwise Expressions ...351
Expressions Using the SizeOf and Resize Operators ..359

Statements ..361
Selection Statements ..361
Iteration Statements..368
Jump Statements ..376

Conclusion..377

Chapter 8 - Functions ..379
Function Basics ..380
The Built-In Functions ...381

Built-In Function Prototypes and Definitions ...381
Built-in Function Categories..383
The Function Wizard ...386

Event Handler Functions..388
User-Defined Functions ...400

Entry Point User-Defined Functions ...400
Generic User-Defined Functions ...401

Calling Functions in a DLL ...434
User-Defined DLL Functions ..434
Calling Windows APIs ..441
Passing an Array to a DLL Function ...445

Passing Strings to Functions ..448
Conclusion..449

Chapter 9 - Exception Handling and COM ..451
Exception Handling Basics ..452

The try…catch…endcatch Statement ..452
The Err Object..453
Exception Handling Hierarchy ..455
InstallScript Engine Exceptions...459

Creating COM Objects...463
The Windows Installer Automation Interface ...464

The Windows Installer Object Model..464
The Installer Object..466

viii

The StringList Object...475
The Record Object ...477
A Script Example ...480

The Scripting Run-Time Objects ...483
The FileSystemObject Object ..484
The Dictionary Object..523
A Drives Collection Example ..529

The Windows Script Host Objects...533
The Creatable Objects..534
The WshNetwork Object ...538
The WshShell Object ...542

More Objects ..549
Conclusion..550

PART III - GETTING DOWN TO BUSINESS .. 551

Chapter 10 - Common Installation Tasks ...553
Creating File Associations ...554

The "Certified for Windows" Logo Requirements for File Associations ...554
Creating a File Association for the Developer Art Application..555
Adding a MIME Type to the File Association ..564

Defining Registry Entries...567
The Registry and RemoveRegistry Tables ..568
Working with the Registry Table...575
Adding Registry Entries to the Developer Art Project ..581
Removing Registry Entries During an Installation..584

Handling Environment Variables ..587
Environment Variable Overview ...588
The Environment Table Schema..589
Working in the Environment Variables View ...593
Per-Machine vs. Per-User Installations and Environment Variables ..598
Accessing Environment Variables During an Installation ..601

Creating, Modifying, and Reading Initialization Files ..605
The IniFile and RemoveIniFile Tables ..606
Working in the INI File Changes View...609
Reading Initialization Files During an Installation ...615

Searching for Files, Folders, and Registry Entries ..618
How the Basic Search Mechanism Works...619
Basic Searching Examples ...628
Checking for Compliance ..640
Using Event Handlers for Searching ...640

Miscellaneous Operations ..648
Specifying Launch Conditions...648
Creating Empty Folders ...650

Conclusion..652

Chapter 11 - InstallScript Custom Actions ...655
Creating the Project..656

Preventing the User Interface Dialogs From Running ..656
Preventing Project Registration ...658
Defining a Feature and Component ...659
Building the Project ...660

Creating an InstallScript Custom Action...661
Creating the InstallScript Function ..662
Using the Custom Action Wizard..667

ix

Using a Custom Action..676
Testing the Custom Action ..678

An Alternate Way to Create a Custom Action ..679
Getting and Setting Properties ...680

Example of Retrieving a Property Value...682
Example of Setting a Property Value ..684

Accessing Database Tables..686
Example of Reading Values in a Table ...688

Streaming Out Binary Data..693
The OnBegin and OnEnd Event Handlers...698
Using the MsiDoAction Function..700
Conclusion..702

Chapter 12 - User Interface Basics...703
The Basics of Windows Dialogs..704

Defining a Dialog...704
The Dialog Controls...706
Creating Dialog Functionality ...709

Standard Projects vs. Basic MSI Projects..713
The Dialogs View in Standard Projects...714
Compiling Resource Files for a Standard Project ...719
The Dialogs View in Basic MSI Projects ..721

Generating a User Interface for a Standard Project ...724
Understanding the Default User Interface ...724
Modifying the Default User Interface..731
Creating a Custom Dialog Box..738

Generating a User Interface for a Basic MSI Project ..774
Implementing the InstallNTService Dialog...774
Adding Serial Number Input to the CustomerInformation Dialog ...786
Experimenting with Subscription ..792

Conclusion..795

Chapter 13 - Introducing Components..797
Components and the Windows Installer ..798

Some Definitions..798
Keeping Track of Components ..800
The Component’s Composition ...803
Rules for Creating Components...806

The Component Creation Tools...811
Dynamic File Linking ..812
The Component Wizard ...825
Scanning...830

Special Considerations...840
Interfacing with Legacy Applications ...840
Windows File Protection..843
DLL Redirection ..845
Transitive Components ..846
Qualified Components ...847
Companion Files ..848

Conclusion..850

Chapter 14 - Creating Special Components ..851
COM Components ...852

Win32 DLLs vs. COM DLLs ..852
Why Self-Registration is Not Recommended ...862

x

Recreating the ArtWork Component ...866
NT Service Components ..874

The NT Service Environment ..874
Types of NT Services...877
Inside the Service Process..878
The Service Control Manager Database ..880
Installing, Controlling, and Removing an NT Service ..881
Using the Component Wizard to Install and Control an NT Service..882
Interactive Services ..901
Installing an NT Service to a User Account ..903

Font Components ...906
ODBC Components ...910

Overview of ODBC ...910
Creating and Installing ODBC Components ...915
Changes Made to the Operating System for ODBC..919

Merge Modules ..921
Creating a Merge Module ..922
Using a Merge Module ..925

Conclusion..928

APPENDICES.. 929

Appendix A - The CD-ROM ...931
Index ..933

xi

Introduction

InstallShield Developer is the most powerful installation-development tool ever
released by InstallShield Software Corporation. This book provides all the essential
information needed to start using this powerful product. Getting Started with InstallShield
Developer and Windows Installer Setups is focused on the person new to the InstallShield
Developer product and/or new to installation development. Some of the subject
matter, however, will be of interest to experienced setup developers as well. This
book contains a complete explanation of the two types of projects that can be created
using InstallShield Developer.

About the book

This book is divided into three parts. The first part introduces both types of projects
and includes chapters on the Windows Installer technology as well as the run-time

Every attempt has been made to bring the content of this book into sync with
version 7.03 of InstallShield Developer. However, many chapters were completed
prior to the release of this product so there may be some areas that do not exactly
match what you see in InstallShield Developer. The differences should be minor
and will not cause any lessening of the value of the material contained herein.

xii

architecture of InstallShield Developer. It is explained how InstallShield Developer
exploits the Windows Installer technology to create robust installation programs. The
second part of the book provides complete coverage of the InstallScript
programming language. The last part of the book goes into detail with regard to many
of the basic techniques that can be used to create an installation package.

The following paragraphs provide a short description of the contents of the book.

Part I: The Fundamentals

CHAPTER 1 : INSTALLATION DEVELOPMENT

This chapter introduces installation as a technology and discusses the three different
viewpoints that the end user, the LAN administrator, and the end user have with
regard to this technology. The typical types of installations and the types of
operations that these installations carry out are reviewed. Finally there is a short
history of the technologies and tools that have been used to create instalaltions.

CHAPTER 2 : INTRODUCING INSTALLSHIELD
DEVELOPER

This chapter is an introduction to InstallShield Developer. By way of introduction the
Project Wizard is used to create both a Standard project and a Basic MSI project.
These projects install the sample application that is used through out the book.
Through the use of the Project Wizard a number of important issues are raised and
discussed.

CHAPTER 3 : WINDOWS INSTALLER BASICS

Because both types of installation packages created by InstallShield Developer exploit
the Windows Installer technology from Microsoft, this chapter provides a detailed
overview of this technology. After discussing the basics of the Windows Installer
technology a discussion of the database tables that are used in the installation of the
sample application is provided. A discussion is also provided about how the
Windows Installer goes about performing an installation where all the information is
stored in a database. Finally there is a brief discussion of how the Windows Installer
functionality can be extended along with a short description of the other types of
Windows Installer packages that are used in special circumstances.

xiii

CHAPTER 4 : ARCHITECTURE OF INSTALLSHIELD
DEVELOPER

After the discussion in Chapter 3 about how the Windows Installer works this
chapter extends the discussion to how InstallShield Developer uses this technology to
create the two types of projects. The focus in this chapter is on the run-time
architecture of a Standard project but the Basic MSI project is also discussed. An
important section is how the InstallScript engine permits a much greater flexibility in
extending the functionality of the Windows Installer than is available with the
technology itself.

CHAPTER 5 : CREATING PROJECTS IN THE IDE

The focus of this chapter is to create the installation packages for the sample
application but this time not using the Project Wizard. This opens up many more
important issues that need to be discussed relative to the creation of an installation
package. Many areas of the InstallShield Developer Integrated Development
Environment (IDE) are discussed in detail as the installation program for the sample
application is created using a Standard project. The differences between creating a
Standard project and creating a Basic MSI project in the IDE are described and then
the creation of a Basic MSI project is left to the reader as an exercise. Both types of
projects are included on the CD-ROM at the back of the book.

Part II: InstallScript

CHAPTER 6 : VARIABLES & DATA TYPES

This chapter starts the discussion of InstallScript and covers all the data types
available in the language. There are a number of examples that show how to create
and use variables of these data types.

CHAPTER 7 : EXPRESSIONS & STATEMENTS

The discussion of InstallScript is continued in this chapter with a description of how
to create expressions and to use these expressions in statements. Chapters 6 and 7
provide all the basics that are necessary for creating installation programs.

xiv

CHAPTER 8 : FUNCTIONS

This chapter covers the three types of functions in InstallScript, built-in functions,
event handlers, and user-defined functions. The main focus is on the creation of user-
defined functions and it is explained how to create script libraries and how to make
the functions incorporated in a script library available through the Function Wizard.
At the end of the chapter there is a discussion regarding the calling of functions that
are in a dynamic link library.

CHAPTER 9 : EXCEPTION HANDLING & COM

This chapter shows how to extend the functionality of InstallScript through the use
of COM. It is possible to create COM objects in InstallScript as long as the COM
server has a registered ProgID. As part of creating COM objects it is desirable to use
exception handling and the capabilities for exception handling in InstallScript are also
described. The capabilities of the FileSystemObject, Windows Script Host, and the
Windows Installer automation interface are discussed in detail. Reference is also made
to other objects that can be created but no detail is provided on these.

Part III: Getting Down to Business

CHAPTER 10 : COMMON INSTALLATION TASKS

There are many common tasks that all installations need to perform. These include
creating file associations, making and removing registry entries, creating environment
variables, working with initialization files, and searching for installed applications.
InstallShield Developer provides efficient tools for creating the functionality so that
an installation can perform these operations. There are detailed examples for
performing each of these tasks.

CHAPTER 11 : INSTALLSCRIPT CUSTOM ACTIONS

In this chapter it is shown how to use InstallScript to extend the capability of the
Windows Installer through the creation of custom actions. Custom actions can be
used in both Standard projects and Basic MSI projects. The special capabilities of
InstallScript for creating custom actions is explained and demonstrated. Examples are
shown about how to access the database while the installation is running and how to
programmatically create deferred custom actions.

xv

CHAPTER 12 : USER INTERFACE BASICS

One of the major differences between a Standard project and a Basic MSI project is
how the user interface for an installation is created. In this chapter the basics of how
Windows creates and handles dialog boxes is discussed. Then several dialog boxes are
created in a Standard project along with the requisite dialog function written in
InstallScript. The chapter then moves onto the creation of a user interface in a Basic
MSI project showing the differences between it and the implementation of dialogs in
a Standard project.

CHAPTER 13 : INTRODUCING COMPONENTS

The proper creation of components is one of the most important and least under
stood of all the tasks in the creation of an installation package. This chapter discusses
the rules for creating components and why Microsoft has defined the rules the way
they are. Then the different tools in InstallShield Developer for aiding in the creation
of components are described. Finally the chapter goes over some special issues that
concern components such as System File Protection and DLL redirection.

CHAPTER 14 : CREATING SPECIAL COMPONENTS

The tools discussed in Chapter 13 are put to use in the creation of various types of
components such as COM, ODBC, NT services, and fonts. The subject of merge
modules is introduced for creating components that can be redistributed.

Support
InstallShield Software Corporation provides the following Web site for obtaining the
password for the evaluation copy of InstallShield Developer that is on the CD-ROM
at the back of the book.

http:/www.installshield.com/ispress

At this same location you can provide feedback about the book or asks questions. All
input that can help make the next version of this book better are welcome.

Acknowledgements

First, I need to thank Viresh Bhatia, CEO of InstallShield Software Corporation, for
taking the plunge into the InstallShield Press publishing venture. Viresh has provided
me with unstinting support for this project and I am appreciative for the trust that he
has placed in me.

I also need to express my thanks to David Thornley, Mingbiao Fei, and Art
Middlekauff for taking the time to discuss issues related to the design of InstallShield
Developer and the workings of the Windows Installer. When writing a book it is very
valuable to have a sounding board off of which to bounce ideas.

I am indebted to the genius of Melvin Grefalda for the excellent graphics work that
he did on the cover design. Melvin also was able to turn my crude line drawing
sketches into something worthy of being displayed as figures in the book.

Finally, I need to thank the team of reviewers here at InstallShield Software
Corporation for the hard work they put into going over my first draft. This work was
extra on top of their normal duties. Lori Erickson performed the complete editorial
review of the book. Art Middlekauff, David Thornley, Mingbiao Fei, Kent Foyer,
Richard Aquino, Marwan Tabet, Michael Marino, Martin Markevics, and Gomathi
Rajesh performed the technical review. These people form a major component of the
development team for the InstallShield Developer product.

Part I

The
Fundamentals

Installation
Development

The InstallShield Software Corporation has been at the forefront of the software
installation business ever since the release of Microsoft Windows 3.0. InstallShield’s
founders recognized that creating installations for Windows applications was going to
be a challenging task for developers. This vision has been borne out especially since
each new release of the Microsoft Windows operating system is more complex than
the last. Accordingly, for more than a decade, InstallShield has focused on providing
tools for developers that facilitate the process of installation development.

This chapter introduces the subject of software installation and describes at a high
level the past and present tools available to create installation programs or installation
packages. The remainder of this book delves into the basics that all setup developers
need to know. This book can best be described by the phrase “the basics in detail”.

Chapter

1

P A R T I T H E F U N D A M E N T A L S

4

Who Is Interested in Software
Installation?

Three separate groups have an interest in the topic of software installation. These
three groups, which are listed below, have distinctly different perspectives.

� The end user

� The LAN administrator

� The setup developer

The End User
When considering the end user's viewpoint, remember that the installation of an
application is the end user's first experience with the product. A bad installation
experience can create a negative impression about the product in the customer's mind
before they even run the application. The end user's ideal situation is where an
installation happens by itself without the need to do anything except run the
application after it is installed. The reality today is much different. End users face long
and complex installation processes. Many times they are asked to answer questions
during the installation for which they do not know the correct answer. This can result
in frustration if end users have to guess which information should be entered during
the installation process. The result might be an installation that fails to do the job; the
application fails to run properly or it does not run at all.

If an application fails to run after it has been installed, it is usually not the end user's
fault. Most installation failures stem from a conflict between different versions of the
same file that have been installed by two different applications or from an installation
program that was not created correctly and cannot complete successfully. Regardless
of the reason for failure, the end user can easily become an unhappy customer.
Software installation technology continues to move toward making software
installation more transparent to the end user. Whether installation programs will ever
be so transparent that the end user is not even aware that an installation process is
running is unknown at this point. A completely transparent installation can ultimately

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

5

lower technical support costs. A reliable and successful software installation for every
customer removes one possible source of technical support problems and helps to
keep customers happy.

The LAN Administrator
The main concern that LAN Administrators have is how to deploy software to many
desktops in an organization without having to physically go to each desktop and run
the installation program. The more automated this software deployment becomes,
the lower the cost of maintaining numerous desktops in a complex network
environment.

The challenges facing the LAN administrator are:

� Managing software installation from a central location.

� Modifying the installation program so only the necessary features are available
to the end user.

� Permitting the person at the desktop to run the installation even if they do
not have local system account privileges.

� Determining from a central location whether an installation has completed
successfully or if there is a problem.

To provide the functionality that a LAN administrator needs, installation programs
must be created to support central point deployment. Creating installation programs
that facilitate easy deployment in a network environment is possible. This book
provides all the basic information necessary to understand how to create these types
of installations.

The Setup Developer
Many of the challenges faced by the setup developer today are the same as those
faced by anyone who develops software. In many businesses, the person creating the
setup has other responsibilities. Because of this, setup is often left until the very end
of the development cycle, when it is time to ship the product. In some companies,

P A R T I T H E F U N D A M E N T A L S

6

management might not recognize the complexity involved in creating a quality
installation program.

Because most installation programs today are script based, the setup developer faces
the challenge of maintaining scripts that might have been written by someone else.
Since code documentation in the form of comment statements or specifications may
be few and far between, script code becomes more difficult to maintain as time goes
on.

There is a special challenge for setup developers who work in large organizations
where software development takes place in different parts of the country or around
the world. The challenge is to create an installation when all the parts of an
application are shipped to one location where the setup developer is working. Putting
the different pieces of the application together properly, so that the application works
after it is installed, can be problematic.

Now that we have looked at the various viewpoints of the people who have an
interest in software installation, we can discuss what is involved in the creating an
installation program. The rest of this chapter provides a high-level view of installation
development. Specific basic installation development topics are covered in the
remainder of the book.

What Operations Constitute a
Typical Installation?

In its simplest form, an installation does the following three operations in order:

1. Copies files to the target machine.

2. Registers the application with the operating system.

3. Exposes the application to the end user so that they can launch it.

It would be nice if the installation process were this simple, but it usually isn’t. These
three steps may have been adequate for a simple installation on Windows 3.x, but not
on the 32-bit operating systems we use today.

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

7

A more complete list of operations that could compose a typical installation is:

1. Check the operating system to see if it meets the requirements of the
application.

2. Check to see if other required applications are present on the target
machine.

3. Verify that there is enough disk space on the target machine to
accommodate the application files to be copied.

4. Present an interface that allows the end user to indicate the installation
location, select which features should be installed, and provide other
information (a serial number, for example). This user interface needs to
solicit any information from the end user that is necessary for the
installation to complete successfully. In addition, the user interface should
provide feedback to the end user that indicates the installation’s progress.
Finally, the user interface should inform the end user about whether the
installation was successful.

5. Copy files for the application features that the end user has selected for
installation.

6. Make all required registry entries for the copied files to be able to
function as designed.

7. Create the necessary shortcuts so the end user can run the application
from the Start\Programs menu.

8. Provide a capability that allows the end user to maintain or upgrade the
application, or completely remove it from the machine.

This list is significantly longer than the first and it indicates that even a typical
modern-day installation has to address many different issues. The items in the second
list are discussed in more detail in the following sections.

P A R T I T H E F U N D A M E N T A L S

8

Checking the System
When creating an installation program, you may need to make sure that the operating
system environment is adequate for the application to run correctly. This can be as
simple as checking the major version of the operating system on which the
application is being installed. Checking the operating system environment can also
include checking for the service pack level on a Windows NT/2000 machine, as well
as a check of both the major version number and the minor version number. It may
also be necessary to check the build number of the operating system. For example,
you would need to do this if you wanted to distinguish between the first (Gold)
release of Windows 95 and the OSR2.5 release of Windows 95.

This type of operation is performed at the very beginning of an installation. If the
check of the necessary operating system parameters succeeds, the installation moves
on to the next step. However, if the check fails, the installation must be terminated.
The termination process needs to provide a message to the end user detailing what
went wrong and should tell the end user what needs to take place before the
installation can be attempted again.

Checking for Required Applications
It is often the situation that in order to install an application, another file needs to be
on the target system prior to installation. This might not be an application, but maybe
a driver or a service that must be present before an application can be installed. In

Note on terminology:

An application is composed of the application's features. A feature is a part of an
application's total functionality that an end user recognizes and may decide to
install independently. For example, a feature can be a spellchecker or a thesaurus.
An application’s hierarchy of features provides its logical definition. The building
blocks of features are components, which are the atomic units that provide
features with their functionality. A component is a piece of the application or
product to be installed. Components can consist of single files, a group of related
files, registry entries, shortcuts, installation logic, etc.

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

9

other cases, you may want to create an installation for a competitive upgrade of your
product and need to check that the end user has the competing product installed.

Checking for the presence of another application normally requires a search of the
files on the system or a search in the registry for a particular key or value. Searching
for other applications on the target system can be a fairly complex operation,
particularly if you do not know where the other application may have been installed.
If the installation finds that a required application is not present, the installation can
initiate an installation of the required application as a child installation before
proceeding with the main application installation. This is unlike the operating system
check, where there is no option to programmatically update the operating system and
then continue with the installation. In the operating system scenario the end user
needs to update the operating system as a separate operation before the application
can be installed.

In more complex situations, it might be necessary to reboot the target machine after
performing a child installation. A reboot is necessary if it is the only way to start a
driver or service that is required to correctly implement the installation of the main
application. An example of this is where DCOM has to be installed on Windows 95
before the application installation can be successfully completed.

When checking for a competing product in the competitive upgrade scenario, the
installation may find that the end user does not have the competing product installed
on the target system. In this case, the installation needs to check for an identifying file
on the distribution media of the competing product. It would not help customer
relations if the end user had to install the competing product in order to install your
application. Your installation also needs to be able to terminate itself if the end user
could not produce the competing product.

Checking Available Disk Space
A typical function of an installation is to check that there is enough space on the
target machine to hold all the files that will be copied. It would frustrate the end user
if the installation partially completed and then the operating system displayed a
message informing the end user that the disk was full. Files occupy the most space on
a system, but they are not the only things that take up space when an application is
installed. All but the simplest applications make many entries into the Windows
registry, and these entries increase the size of the registry. An installation also creates

P A R T I T H E F U N D A M E N T A L S

10

shortcuts that take space, along with entries that are made in initialization files that
already exist, and new initialization files that are created during the installation.

Calculating the space required to install an application is a complex operation. To do
this calculation properly, the check for available disk space must take into account the
difference in size between the files that are being copied, and files with the same
name and location that are being overwritten. When a situation arises during an
installation where the installation program finds that there is not enough space to
install the application, the installation program needs to offer the end user the
opportunity to choose a different installation location. In fact, wherever there are
roadblocks to completing an installation successfully, a good installation program
should try to find alternatives or let the end user make different decisions.

The User Interface
The user interface leads the end user through the installation process and provides
feedback to the end user regarding the installation’s progress. These two functions are
made up of the following:

� The wizard that asks the end user the questions that need answering before
the installation can be completed.

� The progress dialog that shows the end user how the installation is
progressing, along with the dialogs that show any errors that occur during the
installation.

A good installation program provides default values for all questions. If the end user
does not know how to correctly answer a question, they can accept the default value
and complete the installation successfully.

The Wizard

A typical user interface wizard for an installation provides the end user with a license
agreement dialog, a dialog that collects the user name and company name, and a
dialog that allows the end user to select the application features to be installed. Many
applications, however, require a much more complicated user interface.

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

11

In the dialog that displays the license agreement, the user has to indicate agreement
with the license terms or the installation is terminated. The dialog that asks for the
user name and company name can also require the end user to enter a serial number
or other type of security-related entry. If the end user does not make the correct
entry, the installation is not allowed to continue.

The dialog that presents the available setup types to the end user usually allows the
end user to select from predefined setup types or permits them to customize the
installation by selecting the features that they want installed. One of the predefined
setup type options is the default for the installation.

The Progress Dialog

Feedback to the end user during the installation is generally provided via a progress
bar that is annotated with a description of the current actions. Some installations
display a progress bar that indicates the progress of each individual action and one
that shows the progress for the entire installation process. Part of the feedback
mechanism is to notify the end user of any errors that occur during the installation
that make the installation incomplete. Another part of this feedback mechanism is a
final dialog that informs the end user that the installation process is finished and
whether it was successful.

There are cases where you might want to install an application without presenting any
visible sign to the end user that the installation process is running. This is a silent
installation and it is used primarily in a networked environment where software is
placed on the desktop from a central location. The ability to run an installation silently
is an important consideration in most installation programs.

There are now options between a completely silent installation and an installation that
provides a full user interface. This in-between type of user interface usually involves
only the display of installation progress or notification that the installation is
complete.

Copying Files
The topic of copying files to the target system may seem relatively straightforward.
However, there are several issues that come into play when files are being copied.
One of these is: What rules are used when a file of the same name already exists on

P A R T I T H E F U N D A M E N T A L S

12

the target system? When the installation program is created, the setup developer has
to decide when the installation should overwrite a file on the target system and when
it should not. Another issue arises when a file that the installation is copying to the
target system already exists on the system and is being used by another application
while the installation is in progress.

There are other lesser-known issues surrounding the operation of copying files during
an installation. These issues will be discussed throughout the rest of this book.

Registering the Application
The true complexity of creating an installation program comes from being able to
make the required registry entries so that the application works correctly after
installation. Most modern applications use the Component Object Model (COM) to
create the functionality that the end user sees. COM requires heavy use of the registry,
and all the required registry entries are made during the installation, after the files have
been copied. The registry is also used to enable database connectivity, to provide
information about where certain files are located on the system, to associate file
extensions with an application, and many more things that are required for an
application to be able to work correctly.

The registry is also used to enable the removal of an application, as well as to allow
the application to be upgraded. Much of the discussion in this book revolves around
how the registry is used. Many of these registry related topics will be discussed in
depth in later chapters.

Making the Application Available
This operation allows the end user to easily access and launch the installed
application. It consists primarily of creating shortcuts on the Programs menu or on
the Desktop. In addition, it involves allowing the end user to launch an application,
while in Windows Explorer, by double-clicking on a file with an extension that has
been registered to the application.

With the advent of Windows 2000, a new method for making an application available
was introduced. This new method is called Advertisement. Advertisement is a
mechanism that makes the application appear to be installed when only registry

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

13

entries have been made, but no files have been copied. The application appears to be
installed because there is a shortcut to the application on the Programs menu. When
the end user tries to run the application for the first time from the shortcut, the
application is installed and run.

Maintaining The Application
After an application has been installed and is working correctly, the end user may
want to modify the installed application. There are three types of maintenance
operations that can be performed on an installed application:

� Modify: Allows the end user to add new features not originally installed or
remove features that are no longer wanted.

� Repair: Allows files for installed features to be reinstalled. This is done if it is
suspected that files have been deleted by mistake or have been corrupted.

� Remove: Allows the application to be uninstalled.

All good installation programs provide the capability to perform maintenance
operations for an installed application.

The preceding sections discussed the typical operations that are performed during a
normal application installation. The next section examines the various installation
types. It is important to understand that removing an application is considered just
the reverse of an installation. When we talk about installation, we are also talking
about uninstallation.

What Are the Various Types of
Installations?

This section introduces the various types of installation programs that can be
developed, and describes their characteristics. In the following subsections, eight
different types of installation programs are defined. We will only look at a few of

P A R T I T H E F U N D A M E N T A L S

14

these eight types of installation programs throughout the book. The next section
provides definitions of these different installation programs.

The Fresh Install
This type of installation package is what was discussed in the previous section. This is
where an application is installed for the first time and has not already been installed
on the target system. If the application has been installed previously, it is uninstalled at
the time the fresh install is performed and is used to perform a major upgrade of an
application. This type of fresh install is discussed in The Upgrade Install section.

The Maintenance Install
This type of installation occurs only after a fresh install has been performed. It is
performed using the same installation program that was used to perform the fresh
install. As previously mentioned, a maintenance install allows the end user to change
the feature set of an installed application by adding new features or removing installed
features. The end user also has the option to repair what was previously installed or to
completely remove the application from the system. The important thing to
remember about the maintenance install is that you cannot use this type of install
program to add new features to the installed image that were not defined in the
original installation program.

The Advertised Install
In general, an advertised install is where an application is made available to the
desktop computer from a central location, but is not actually installed until the end
user takes specific action to install the application. It is a pull mechanism where it is
the end user that initiates the installation process. This type of install is part of the
Windows 2000 deployment functionality and requires the use of the Windows
Installer technology to create the installation program. The Windows Installer is a
new service provided by Microsoft that enables the creation of more robust
installation programs. The basics of this new technology are introduced in Chapter 3.

An advertised install is implemented as either a published application or an assigned
application. A published application is available to the end user from the

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

15

Add/Remove Programs applet: Running the installation program from this applet
installs the application. A published application can also be installed when the end
user tries to open a file that is served by the published application.

An application that is assigned displays a shortcut icon on the Programs menu. The
end user forces the installation when they attempt to launch the application for the
first time using this shortcut. There are two types of assignment; assignment to a
specific user and assignment to all users of the machine. When assignment is made to
a particular user, the application is launched when that user tries to run the
application. When assignment is made to all users of the machine, the application is
installed the next time the networked desktop computer is booted.

The important thing to remember about an advertised install is that it is part of the
Windows 2000 deployment mechanism. This mechanism can be implemented only
on a pure Windows 2000 network. Note that this is a pull technology. The central
LAN manager makes an advertised application available to the desktop, but the actual
installation process is initiated from the desktop itself.

The Administrative Install
An administrative install is a means to implement a pull mechanism without requiring
a pure Windows 2000 network. The administrative install is simple in concept. Its
purpose is to define the image of an installation program on a network drive. End
users need to navigate to the network drive location and run the installation from that
location. The only actions that occur when the administrative install is run are
uncompressing any files that were compressed as part of the installation program and
copying these files to the network drive location. No registry entries are made and no
shortcuts are created. Compressed files are uncompressed for the purpose of allowing
a patch operation to upgrade the application.

The Upgrade Install
An upgrade install is used in cases where an application has already been installed on
the target system and a new install is run in order to upgrade the application to a
newer version. This type of install is implemented using two different approaches
depending on the degree of change between the earlier version of the application and
the newer version.

P A R T I T H E F U N D A M E N T A L S

16

If the difference between the earlier application and the newer application is small
enough that there is only a minor version change, simply installing the newer version
of the application over the older version performs the upgrade. The files that have
changed are replaced with their corresponding newer versions. This is the
reinstallation approach to performing an upgrade install.

When the difference between the earlier application and the newer application is
significant enough to require a major version change between the applications, the
approach to upgrading the application changes. In this situation, a two-step process is
wrapped into one installation program. These two steps are:

1. Silently uninstall the older version of the application.

2. Install the newer version of the application.

This is the fresh install approach to performing a major application upgrade. The key
is to find where the earlier version of the application has been installed so it can be
uninstalled before installing the newer version. It is possible to perform the above
steps in the reverse order, but this could lead to problems if your installation has been
created incorrectly.

The Patch Install
The patch install is a special type of install that performs an upgrade of an installed
application. The patch install is useful because it has a smaller upgrade program size
than that afforded by the upgrade install discussed in the previous section. Patching is
a mechanism where only the bits that are different between two application files are
shipped as part of the upgrade, instead of the complete new file.

When the patch is applied to the earlier application file, it is turned into the newer
application file, changing out those bits that are different between the two files. A
patch install can be used regardless of whether there is only a minor version change
between the two applications or there is a major version change.

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

17

The Transformed Install
This type of install is a special operation that can be executed with an install that uses
the Microsoft Windows Installer technology to create the installation program. This
type of install begins with a fresh install program and then, when the installation
program is launched, a transform is applied to the installation program. The effect of
this transform is to modify the program so it is different than what is contained in
original fresh install package. The use of a transform allows the LAN administrator to
take a large installation program and modify it temporarily at install time. For
example, the number of features that are available to the end user can be modified by
the transform. With the transform mechanism, the end user can install only the
features that are necessary for their specific job function.

Note that a transform is simply a representation of the difference between two
different installation programs. When this transform is applied to one installation
program during the install, it changes it into the other installation program. This is
done only in memory so no permanent changes are made to the installation program
that is being launched. Transforms can also be applied to an advertised install so that
only the modified package gets installed when the end user tries to launch the
application.

The Nested Install
To launch one installation program from another, you can use a nested install. A
nested install runs the installation of a third party application as part of an installation
program. This need arises when an installation program checks for other required
applications on the system and does not find them. In this case, the installation
program would run the installation programs for these missing applications as part of
the main installation program. This way, the end user is not requested to install the
required applications separately before being allowed to run the installation for the
main application.

P A R T I T H E F U N D A M E N T A L S

18

Installation Development
Technologies and Tools

As discussed in the previous section, creating an installation program is no simple
task. To create an installation program from start to finish using your favorite
programming language would require significant effort. InstallShield Software
Corporation produces installation development tools that help reduce the
considerable time investment that was required to create an installation program.
InstallShield’s installation development tools make creating installation programs
much easier and handle some installation tasks without any involvement from the
setup developer.

Until Windows 2000 was shipped, installation tools had to support only one
technology. This technology was a script-based approach to performing installations.
With Windows 2000, Microsoft introduced Windows Installer, which is a database-
oriented technology. The development tools that support this new technology are
dramatically different than those used to support the development of script-based
installation programs.

The next two sections take a high-level look at the two approaches to creating
installation programs. At the same time, this section briefly discusses the InstallShield
development tools that have been created to support these installation technologies.
The final section of this chapter describes the InstallShield Developer product, which
combines the flexibility of the script-based approach to creating installation programs
with the capabilities of Microsoft’s Windows Installer installation service.

Script-Based Installation Programs
The creation of the original InstallShield installation development tool was based on a
scripting language that is called InstallScript. Over the years this scripting language has
been enhanced continually until it now supports advanced operations such as creating
COM objects and exception handling. The benefit of InstallScript is that it provides
many built-in functions that perform installation-related operations that would require
considerable effort if the same functionality were created using a standard

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

19

programming language. InstallScript also supports the creation of user-defined
functions when the setup developer wants to add custom functionality.

Versions up through InstallShield3

Through the release of the InstallShield3 product, all of InstallShield’s installation
development tools were command line-based. This means that the script had to be
compiled at the command line, and the files that made up the application were
compressed into a library using a separate utility. At this time, most software was
distributed on floppy disks. The compression utility had to split the application files
into separate libraries that would fit on a floppy disk. Because of the limited space on
a floppy disk there was a continuing search for a better compression algorithm, one
that would minimize the number of floppy disks required for distribution.

InstallShield3 was the first InstallShield product that supported the 32-bit
environment introduced with the release of Windows 95. The transition from 16-bit
systems to 32-bit systems was a complicated time for installation development tools
because there were many different environments that could be targets of an
installation. Windows 3.x still had to be supported, as well as Win32s. (Win32s was a
short-lived attempt by Microsoft to allow programmers to start programming using
the 32-bit Windows APIs but still distribute these applications to Windows 3.x.)

During this same timeframe, it was also necessary to distribute applications to three
other platforms that used different processors. These were the DEC Alpha, MIPS,
and the Power PC. All of these platforms ran a version of Windows NT. Now,
however, you only have to be concerned about the Intel platform running some 32-
bit version of Microsoft Windows. Of course you still have to take into account the
differences between the Windows 9.x and Windows NT operating systems.

When an installation program created with InstallShield3 is run, it needs to place a
number of temporary files on the target system. These temporary files are used to run
the installation, with the most critical file being the scripting engine. The scripting
engine parses the compiled installation script and performs the installation functions
as defined therein. When the installation is complete, these temporary files-including
the scripting engine-are removed from the target system.

During the installation, a log file is created that allows for the proper removal of the
installed application. A special executable is left on the target system and this

P A R T I T H E F U N D A M E N T A L S

20

executable is used to perform the uninstallation. This executable reads the log file to
determine what files need to be deleted and what registry entries need to be removed.
Any operation that is not logged during the installation will not be removed during
the uninstallation. The setup developer can control what is logged and what is not by
making the proper entries in the installation script.

The replacement for the InstallShield3 product was the InstallShield 5.x series of
releases. The release of InstallShield 5.0 did away with the command line-only mode
of operation and provided the setup developer with a user interface.

InstallShield Professional 5.x

The development of the InstallShield3 development tool focused on providing an
installation experience that would be better for the end user. This included the
Windows 95 style of dialogs and defaults that met the Windows 95 Logo
requirements. The design focus for InstallShield 5.x was to provide the setup
developer a friendlier development environment. This included a built-in script
editor, a visual resource editor, a visual registry editor, and a better way to control
media images that were created.

For the first time, an InstallShield installation development tool was given a project
basis similar to what exists in Visual C++ or Visual Basic. This meant that everything
the setup developer entered into the Integrated Development Environment (IDE) of
InstallShield 5.x was stored in an installation project. The build process launched
from the InstallShield 5.x IDE turned the entries in the installation project into a
media image that was then copied to the distribution media.

The main change on the media image from that created by InstallShield3 was that a
new compressed library format was used. This compressed format had a .cab
extension that caused some confusion, since this was not the same file format as a
Microsoft cabinet file even though the same file extension was used.

The scripting engine was slightly modified from what was used with InstallShield3
because of some new functions added to InstallScript. However, the implementation
was essentially the same. Also, a log file was created for performing the uninstallation,
and the executable that read this log file was left on the target system in the same
manner as InstallShield3.

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

21

After the InstallShield 5.x series of releases came InstallShield 6.0. This product
provided a completely new compiler, scripting engine, and objects that became a
means to encapsulate the installation logic for specific technologies.

InstallShield Professional 6.x

The InstallShield 6.0 release introduced a much more robust scripting language that
included new data types, the capability to create COM objects, exception handling,
and additional smaller advances for making script-based programs more robust. A
new scripting model was also introduced. This new scripting model was called the
event-driven model. It was still possible, however, to create scripts that used the older
procedural model. The two types of scripting models are discussed in more detail in
the next section.

The release of InstallShield Professional 6.0 presented a new means for maintaining
an application once it was installed. Prior to this release, the only maintenance that
could be performed on an installed application using a script-based install was to
totally uninstall it. Now it was possible to provide the complete range of maintenance
operations that consist of modifying the original installation of the application,
repairing the installation, and removing the installation. To enable this capability, it is
necessary to leave on the target machine all the files that make up the original
installation. This includes the installation bootstrap executable SETUP.EXE, the log
file that records what was initially installed, the compiled installation script, and the
files that provide the maintenance operation user interface.

InstallScript Execution Models

Until the release of InstallShield Professional 6.0, there was only one script execution
model called the procedural model. This model consists of three distinct blocks of
code that appear in any installation script that is created. This model is still supported
by InstallShield Professional 6.x. The three function blocks are defined as follows:

// The DECLARE BLOCK is where constants are defined,
// global variables declared, functions are prototyped,
// and header files are included as shown in the
// following example.

#define MAX_LENGTH 260 // declare constant

P A R T I T H E F U N D A M E N T A L S

22

STRING szTitle, szMsg; // declare global string variables

prototype DisplayMsg(STRING, STRING); // function prototype

#include "isrt.h" // include a header file

// The PROGRAM BLOCK is where the control of the
// installation is handled. This is like the main()
// function that is the entry point for console
// applications.

program

 // Assign value to global variable
 szTitle = "InstallScript Test";

 // Assign value to global variable
 szMsg = "This is a test message";

 // Call function to display message
 DisplayMsg(szTitle, szMsg);

endprogram

// The FUNCTION BLOCK contains the definition of
// all user-defined functions that are called as
// part of the installation program.

function DisplayMsg(Title, Msg)
begin
 // Call a built-in function to display the message.
 SprintfBox(INFORMATION, Title, Msg);
end;

As you can see by looking at the above code snippet, this looks like a standard
structured programming approach to creating an installation program. And that is
exactly what it is, a standard linear approach.

With the release of InstallShield Professional 6.0, a new event-driven scripting model
was provided, in addition to the procedural model described above. The difference
between the two models is that the new event-driven model has an implicit program

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

23

block in which it calls a predefined set of functions. Some of the functions that are
called are the built-in functions provided by the InstallScript language. Other types of
functions are called event handlers and it is inside these event handlers that you add
InstallScript code in order to create an installation program.

InstallScript defines the available event handlers and all of these event handlers have
function names that begin with the string "On". Event handler names include
OnBegin, OnFirstUIBefore, and OnFirstUIAfter. To program
successfully with the event-driven model, you need to know when each of these event
handlers is called. Only then do you know into which event handler you need to
insert your InstallScript code to perform the actions that are required for the
installation.

When you use the event-driven model, your code might look like a bunch of
individual functions without any entry point. The entry is provided to your script by
the compilation and linking process. In fact it is the design of the linking process that
allows both the procedural and the event-driven model to be used. The event-driven
model is the default when creating a new project in InstallShield Professional 6.x, but
if the script already contains an explicit program block then the linker replaces the
implicit program block with the explicit program block. It is this functionality of the
linker that allows scripts created in InstallShield 5.x, which have an explicit program
block, to also be compiled.

After this short introduction to script-based installations, we can now move on to a
discussion of the new technology for creating installation programs. Microsoft
developed this new technology and shipped it with Windows 2000. By the time you
finish this book, you will have a very clear idea of both ways to create installation
programs.

Windows Installer-Based Installation
Programs

With the Windows Installer, Microsoft has given setup developers a new approach to
generating installation programs. They provide the installation engine and all setup
developers have to do is author the installation package according to the guidelines
specified by Microsoft. The installation engine is part of the operating system on
Windows 2000 and Windows Me, and can be installed on Windows 95, Windows 98,

P A R T I T H E F U N D A M E N T A L S

24

and Windows NT 4.0. The term "installation package" can be used to refer to a
Windows Installer-based installation instead of "installation program". This is because
the Windows Installer technology is a data-driven approach to performing
installations. In this approach, the setup developer has to populate a database that
provides all the information that the Windows Installer engine needs in order to
perform the desired installation.

The development tool that is required to support this new technology has to be quite
different from the type of tool that was developed to create script-based installation
programs. The development tools that InstallShield has created to work with the
Windows Installer technology are authoring tools. They are called authoring tools
because they abstract most of the information that needs to be placed into the
database by prompting for values in an understandable fashion. The responses to
these questions are saved in a project file. During the build process, the information
in the project file is used to make the proper entries into the Windows Installer
database.

This database, along with the files that make up the application, forms the installation
package. When this installation package is passed to the Windows Installer engine, the
engine reads the database and performs the installation. Because of the newness of
this technology, there have been only two major releases of an authoring tool that
supports the Windows Installer concept. After discussing the benefits offered by the
Windows Installer technology these two major releases are briefly described.

Why Use the Windows Installer Technology?

The Windows Installer technology had its roots in the Microsoft Office team where
there was an initiative to solve the problems that users were having with failed
installations and uninstallations. Problems revolving around these two operations
were generating a significant load on the technical support organization. In order to
reduce this expense a new approach was created for performing the total
management of an application’s lifetime on a machine. The Windows Installer was
felt to be of such a significant value that it was made available to all developers of
software by making it part of the Windows 2000 operating system.

An installation created using the Windows Installer technology is able to work with
the new software deployment capabilities that are included with Windows 2000 and
later. These capabilities permit authorized users to be able to install software even if

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

25

they do not have administrative privileges. The Windows Installer also provides a
capability where applications can be created so that they have the ability to repair
themselves.

The Windows Installer supports all the new concepts that are produced by Microsoft
on a continual basis. For instance there is now a 64-bit version of Windows XP
Professional and the unique requirements for installing software to this system are
fully supported by the Windows Installer. This is also true for the new capabilities for
restoring the system to previous states that are available with Windows ME and
Windows XP.

There are many compelling reasons that installations should be created using the
Windows Installer engine for making the changes to the target operating system. Not
the least of these reasons is that in order to obtain the “Certified for Windows” logo
the application has to use the Windows Installer for its installation. Chapter 3
provides more detail into the design of the Windows Installer technology.

InstallShield for Windows Installer

This is the name of the version 1.x of the Windows Installer authoring tool that was
released. This product required a fairly good knowledge of the Windows Installer
technology in order to create installation packages based on this technology. This
product was limited in some areas and was replaced with the version 2.x releases as
described in the next section.

One major feature that was implemented in this product was a built-in visual resource
editor where the setup developer could construct dialog boxes in a similar fashion to
the construction of forms in Visual Basic. Due to the unique approach that the
Windows Installer takes to defining a dialog in the database this feature abstracted the
interface to at least a half dozen tables.

InstallShield Professional – Windows Installer Edition

This is the name of the version 2.x releases of the Windows Installer authoring tool
from InstallShield Software Corporation. In this product, the IDE was changed
significantly from that in the version 1.x releases in order to hide more of the
complexities of the Windows Installer technology. Setup developers who used this
tool could still work in the same mode that they worked with in the earlier releases.

P A R T I T H E F U N D A M E N T A L S

26

Additional enhancements were made to the visual resource editor used to create
dialogs.

This release abstracted more of the data that is added to the Windows Installer
database. It also provided an extensive automation interface so that the project file
can be manipulated programmatically. Other added features included an interface to
source code control systems, MSI validation, and an MSI debugger. However, there
were still some things that could not be accomplished with this tool. Many of these
deficiencies are corrected in the InstallShield Developer version 7.0. This new
product, discussed in the next section, combines the best aspects from script-based
installs with the best parts of Windows Installer-based installs.

InstallShield Developer
InstallShield’s newest installation development tool is InstallShield Developer and it
provides a development environment that allows for both the creation of script-based
installation programs and the creation of pure Windows Installer packages. This latest
product is the upgrade path from both the InstallShield Professional – Standard
Edition version 6.3 and the InstallShield Professional - Windows Installer Edition
version 2.03 products. Even though this is considered an upgrade for InstallShield
Professional – Standard Edition version 6.3, the InstallShield Professional – Standard
Edition product will still be developed and setup developers who now use this
product can continue to count on the product being enhanced and supported.
However, over the long run, the InstallShield Professional – Standard Edition
product will not have the capability that InstallShield Developer has.

The one primary difference between InstallShield Developer and InstallShield
Professional – Standard Edition is that InstallShield Developer uses the Windows
Installer installation engine. The scripting engine that runs the compiled InstallScript
still exists in InstallShield Developer, but it runs on top of the Windows Installer
engine. In this way, you get the flexibility of a scripting environment and the power of
the Windows Installer technology. The reasons for using the Windows Installer as the
underlying install engine were touched on in the section entitled “Why Use the
Windows Installer Technology?”. A detailed discussion of the capabilities of the
Windows Installer is provided in Chapter 3.

C H A P T E R 1 I N S T A L L A T I O N D E V E L O P M E N T W I T H
I N S T A L L S H I E L D

27

Figure 1-1: Conceptual overview of the architecture of InstallShield Developer.

Figure 1-1 provides a nice conceptual overview of InstallShield Developer.
InstallShield Developer contains many features that have been enhanced over what
they were in previous InstallShield products. There are also a number of new features.

P A R T I T H E F U N D A M E N T A L S

28

Some of the significant new features are support for Window XP, support for .NET,
and support for new 64-bit applications. The remainder of the book will discuss
working with InstallShield Developer.

Conclusion
In this chapter, we have seen that creating effective software installation programs is
not a simple task but it is made easier by using the correct installation development
tool. To do the job correctly, setup developers need to have a solid understanding of
the Windows operating system. For a long time there was only one way to create an
installation program and that was through the use of scripting. Even if a development
tool appeared to be only point and click, there was still a script running in the
background when the installation was launched. Script-based installation programs
need to include the engine that executes the script. After the installation is complete,
the engine is normally removed from the target system.

When Windows 2000 shipped, it included a new technology devoted to software
installation. This new technology is called Windows Installer and it is included with
Windows 2000, Windows Me, and Windows XP. The Windows Installer can also be
installed on Windows 95, Windows 98 and Windows NT 4.0. Setup developers
working with this new technology need to author a special database that the Windows
Installer reads. This database contains all the instructions that the Windows Installer
needs to perform the installation. Unlike with script-based installations, the setup
developer does not need to provide an installation engine since this is already part of
the operating system.

Introducing
InstallShield
Developer

This chapter introduces the InstallShield Developer product and its capabilities.
InstallShield Developer is the most powerful installation development tool that has
been released. There are 20 task-based wizards that make difficult installation
development tasks much easier. InstallShield Developer also has many features that
enable Web distribution. You can now use InstallShield Developer to create
installation programs for applications created using the Microsoft’s new 64-bit API.
In addition, InstallShield Developer supports the creation of setup programs that
target Windows XP, as well as setup programs for applications that use the .NET
technology. As mentioned in Chapter 1, InstallShield Developer combines the full
power of InstallScript with the functionality provided by Microsoft's Windows
Installer functionality.

Chapter

2

P A R T I T H E F U N D A M E N T A L S

30

Projects created with earlier versions of InstallShield installation development tools
can be upgraded to InstallShield Developer projects. It is also possible to convert a
Windows Installer -based project to a script-driven project.

A Quick Tour
This quick tour provides an overview of InstallShield Developer’s general layout. In
this section only the basic features of InstallShield Developer’s user interface are
covered. Detailed coverage of the specific product capabilities is provided when we
discuss the various issues related to creating installation programs.

The Opening Screen
When you launch InstallShield Developer from the Programs menu, you see a
Welcome dialog that offers three options (Figure 2-1).

� Open my InstallShield Today page: The default selection displays the
Welcome View of the InstallShield Today page (Figure 2-2).

� Launch the Project Wizard: This option launches the Project Wizard
immediately when you click OK. The use of the Project wizard is covered
later in this chapter.

� View the Product Tutorial: The third option directs you to a Tutorial that
introduces the product. The InstallShield Developer Tutorial shows how to
use the Project Wizard to create a script-based project. It also introduces the
Release Wizard and Component Wizard, and provides an overview of the
Integrated Development Environment (IDE).

If you click the Cancel button, the Welcome View of the InstallShield Today page is
displayed in the IDE. If you do not want this Welcome dialog to be displayed again
when you launch InstallShield Developer, deselect the check box at the bottom of the
Welcome dialog. If you later decide that you want the Welcome dialog displayed, you
need to go to the registry to re-enable it.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

31

Figure 2-1: The InstallShield Developer Welcome dialog.

The Welcome dialog setting in the registry is a per-user setting. If you do not want the
dialog displayed, another user can still have it displayed. To re-enable the dialog:

� Open the registry editor and go to the following key:

HKCU\Software\InstallShield\Developer\7.0\Project Settings

� Under this key, find the 'Project Intro Dialog' value.

� Set the value data for this value name to 1.

After you make this change, the Welcome dialog will be displayed the next time you
launch InstallShield Developer.

P A R T I T H E F U N D A M E N T A L S

32

The InstallShield Today Page
The default selection in the Welcome dialog, the InstallShield Today page is displayed
in the IDE. Figure 2-2 shows the InstallShield Developer IDE without an active
project loaded.

Figure 2-2: The InstallShield Today page.

On the left side of the screen is a vertical panel called the View List. The center of the
screen contains another panel that is a sub-view list and the right hand side of the
screen contains the selected view. This layout of the IDE in Figure 2-2 is similar to
what you see when you have a project loaded. There is an additional vertical panel
called the Viewbar that can be displayed. The Viewbar is an alternative to the View
List. Normally either the View List or the Viewbar is used for navigation purposes
but not both at the same time.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

33

Within the InstallShield Today view, there are four sub-views:

� Welcome: This view provides basic product information, InstallShield news
items, and update information. This view is updated dynamically from time
to time with news about maintenance packs, top KB articles, etc.

� Create a new project: From this view, you can create a Standard (script-
driven) installation project, a Basic MSI (Windows Installer-based) installation
project, or a merge module project. You can also launch one of several
wizards. Working with this view is discussed later in this section.

� Open a project: This view displays all of the projects that you have created.

� InstallShield Services: This view provides a central location from which you
can easily access InstallShield support, training, and product information.

The Create a New Project View

When you want to create a new project you will most likely go to the “Create a new
project” view that is shown in Figure 2-3. The “Create a new project” view provides
the facilities to create a Standard (script-driven) installation project, a Basic MSI
(Windows Installer-based) installation project, or a merge module project. These
project types can also be created from the Files pull down menu or from New button
on the toolbar. You can also take a Visual Basic project and, from it, create an
installation project or you can add the contents of a Visual Basic project to an already
existing installation project. For this to work, you need to have Visual Basic 6.0
installed on your build system.

Finally, from this view you can launch one of several project wizards. The C# .NET
Project Wizard, the Visual Basic 6.0 Wizard, and the Visual Basic .NET Project
Wizard allow you to create installation projects for your applications created in C#
.NET, Visual Basic 6.0, and Visual Basic .NET respectively. These three types of
projects can also be created from the Project pull down menu. For other applications,
the Project Wizard directs you through the process of creating an installation project.
The Project Wizard can also be launched from the Files pull down menu or from the
left most button on the toolbar. The last half of this chapter explains how to use the
Project Wizard to create a project.

P A R T I T H E F U N D A M E N T A L S

34

Figure 2-3: The "Create a new project…" View

When you highlight one of the icons in the Project Type pane, a description of what
double-clicking on this icon will do is displayed in the Description section below the
Project Type pane. To create a blank Standard, Basic MSI, or merge module project
in this view, do the following:

1. Click the icon that corresponds to the project that you want to create:

2. Type the project name and the path you want to use in the Project Name
and Location field, or click Browse to navigate to an existing location.

3. Click Create.

When you right-click anywhere in the Project Type pane, the context menu shown
here will be displayed. The context menu options are described below:

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

35

Create: Launches the type of project or wizard that
is highlighted in the Project Type pane.

Add…: Allows you to add a template to the icons
that are part of the Project Type pane by default.
Templates allow you to customize the starting point
for projects that you want to create.

Remove: Removes any templates you have added to
the Project Type pane. You cannot remove the default icons.

Refresh: Makes visible all templates that have been created in the Templates
folder.

Large Icons: Affects how the various types of projects are displayed in the
Project Type pane. This is the default display type.

Details: Changes how the various types of projects are displayed in the Project
Type pane. This detailed display provides the description beside each of the
project types in the “Open a project” view.

The Open a Project View

The third sub-view is the “Open a project” view (Figure 2-4). . Displayed in this view
are all the projects that you have created. You will navigate to this view when you
want to open an existing project.

When you highlight a project, details about the project are provided in the space
below the Project List pane, including the file name, project type, the date and time of
last modification, and the location. Below the project information is the “Reload the
last project at startup” check box. You select this option to have the last project you
opened loaded when you launch InstallShield Developer.

If there are projects that do not appear in the Project List pane, you can browse for
them using the Browse button. Once you browse to a project, an icon for that project
appears in this pane.

P A R T I T H E F U N D A M E N T A L S

36

Figure 2-4: The Open a project… view.

When you right-click when the mouse pointer is in the Project List pane, the context
menu shown here will be displayed. The context options are described below:

Open: Opens the project that is highlighted in the
Project List pane.

Browse: Allows you to browse to a project file that
is not shown in the Project List pane. After you have
identified a project file from a new location, it
appears in the Project List pane whenever you
launch InstallShield Developer.

Remove: Removes any projects in the Project List pane that you no longer need.

Rename: Renames the project file.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

37

Large Icons: Affects how the various types of projects are displayed in the
Project List pane. This is the default display type.

Details: Changes how the various types of projects are displayed in the Project
List pane. This detailed display provides the location of each of the projects.

Help View and Best Practices View
The Help and Best Practices views can be displayed by clicking in the View List on
the appropriate icon. The Help view provides a number of links to various resources,
including tutorials, the Getting Started Guide, and the online Help. The Best
Practices view gives a description of some of the rules that need to be used to create
components. We will discuss these rules in Chapter 3 and in more detail in Chapter
13.

The Menus
As with most Windows programs, the top of the screen contains the title bar, the
menu bar, and the toolbar. The title bar provides the name of the project that is open
and the project type.

This section briefly examines some of the menu items (Figure 2-5). Most of the menu
items will be discussed in detail as we get to those parts of the book that use them.
However, there are a few menu items we want to look at right now because they
impact how you create projects.

Figure 2-5: The InstallShield Developer default menu bar.

This menu is a dockable menu. Using the drag point for this menu, you can drag the
menu bar around and place it anywhere you want in the IDE. The drag point is the
double bars at the left side of the toolbar. If you double-click on this toolbar, it
becomes a floating toolbar. Double-clicking on it again docks it back in the original
position. In the next few pages, the File, View, Tools, and Help menus are discussed.

P A R T I T H E F U N D A M E N T A L S

38

The File Menu

From the File pull-down menu, you can perform the same types of operations that
are available from the “Create a new project” view and the “Open a project” view.

All of the options on the
File pull-down menu
relate to the handling of
project files, except for
the print commands. The
print options relate only
to the printing of script
files. The first option on
the File pull-down menu
allows you to launch the
Project Wizard and the
second option allows you
to create a new project,
which can be a Standard
project, a Basic MSI
project, or a Merge
Module project.

Using the Open
command, you can open

an existing project. Using this option also allows you to convert many other types of
files to a project file. The Close option closes the current project and displays the
InstallShield Today page.

The View Menu

The options on the View pull-down menu allow you to modify what is shown in the
IDE. When you want to gain more screen area, you can turn off some of the views
that typically comprise the IDE. By default, the View List, Header Bar, Toolbar, and
Status Bar are displayed. Select and deselect various options on this menu to see each
of these items in the IDE.

At the top of the View menu is the Output Window option. The output window is
where feedback is displayed when you perform a build operation. The Output

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

39

Window option allows you to return to the last
output after you have closed the window.

The Watch and Variable options relate to the
MSI Debugger, and are enabled only for Basic
MSI projects. The final option on the View
menu allows you to maximize the Script Editor
or the Dialog Editor to cover the total width of
the IDE. This option is enabled only when the
focus is in the Script Editor or the Dialog
Editor. You will have the opportunity to use
this option when we cover InstallScript and

when we cover how to create the user interface for an installation.

The Tools Menu

On the Tools pull-down menu, we want to look at just the Customize and the
Options commands. When you select the Customize option, the Customize dialog is
displayed (Figure 2-6).

The Customize dialog has two tabs:
Toolbars and Command. This dialog
provides the capability to modify the
menu bar and toolbars that are
available in the IDE. On the Toolbars
tab, there are five built-in toolbars with
the Menu bar and the Standard
toolbars selected. The MSI Debugger
toolbar is applicable when performing
debugging in a Basic MSI Project. The
Layout and Controls toolbars are
applicable when using the Dialog
Editor. The operations related to using
the Dialog Editor are discussed in
Chapter 12.

There are two check boxes to the right of the Toolbars list. When the “Cool look”
check box is deselected, all the buttons on the toolbars appear to be three-

P A R T I T H E F U N D A M E N T A L S

40

dimensional. The “cool look” is to have the buttons with no 3-D effect, the same as
found in the later versions of Microsoft's Internet Explorer. The two buttons to the
right on the Toolbars tab allow you to create new toolbars that will appear in the list.

On the Command tab, you can add commands to any new toolbar you have created.
These commands fall into three categories: those that are already on the Standard
toolbar, extra commands that are by default available only from the pull-down
menus, and the menus themselves.

Figure 2-6: The Customize dialog from the Tools pull down menu.

If you add extra buttons to one of the default toolbars and then decide to start over
or just go back to the default version of the default toolbars, click the Reset button on
the Toolbars tab. If you add one or more new toolbars and want to remove them,
highlight them on the Toolbars tab and click the Delete button. When you highlight
new toolbars that you have created, the Reset button becomes the Delete button.
Only the default toolbars can be reset to their original configuration.

Select Options from the Tools pull-down menu to display the Options dialog (Figure
2-7). At this time the item on this dialog in which we are interested is found on the
File Locations tab. On this tab, you can change the location where your projects will
be built. By default InstallShield Developer sets this location to be in the following
location on Windows 2000:

C:\Documents and Settings\{Logon Name}\My Documents\My Setups\

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

41

The following location is defined by the operating system and the MySetups folder
is created under this location by the InstallShield Developer installation.

%USERPROFILE%\My Documents\

Figure 2-7: The Options dialog from the Tools pull down menu.

Throughout this book, you will be frequently navigating to the project build location.
Because of this, you should bring this location out to the root of drive C: to make it
easier to access. You will be creating all of your projects in the following location:

C:\My Setups\

To change the project location:

P A R T I T H E F U N D A M E N T A L S

42

1. Type C:\My Setups\ in the Project Location field.

2. Click OK.

We will be coming back to the Options dialog a number of times to discuss the
settings that can be defined. We will do this when discussing operations that these
options affect.

On the Help pull-down menu you need to be
particularly aware of three commands. The
second option on this menu is the online Help
for the InstallShield Developer product. The
third option on this menu is the help file for
the Windows Installer. You will probably use
both of these help files to assist you in creating
your installation projects. Finally, the fourth

option on this menu is the Readme file for the product.

The Toolbar
The Standard toolbar is shown in Figure 2-8. Like the menu toolbar discussed above
this toolbar is also dockable. We can also double click on it and make it into a floating
toolbar.

Figure 2-8: The InstallShield Developer standard toolbar.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

43

The icons on the toolbar give you an efficient means to perform common operations
without having to go to the pull-down menus. If you let the mouse pointer rest on
top of an icon, a tooltip is displayed (as long as you did not choose in the Customize
dialog to not display tooltips). Now let’s look at each of the toolbar icons to see what
they do.

Project Wizard: This is another location from which you can launch the Project
Wizard. If you already have a project open, clicking on this icon will first ask if
you want to save any changes in the open project. After you respond to this
dialog, the current project is closed and the Project Wizard is launched. The
accelerator key combination for this action is Ctrl+W.

New: This icon has a drop-down menu
of the three different types of projects
that can be created. When you select a
project type, the New Project dialog

prompts you for a project name and location. The default location is what is set
in the File Locations tab on the Options dialog. The default name of the project
file is "Your Project Name-X.ism" where X is a sequence number that starts at 1.
If you just click on the New icon instead of specifically selecting a project type, a
Standard project is created by default.

The accelerator key combinations for creating new projects are provided as
follows:

Standard Project: Ctrl+N

Basic MSI Project: Ctrl+B

Merge Module Project: Ctrl+E

Open: This icon launches the Open dialog that takes you to the project file
location and allows you to open a project by selecting the desired .ism file. This is
the same Open dialog that is displayed if you choose the Open command from
the File pull-down menu. If you pull down the “Files of type” combo box in the
Open dialog, a list of all the file types that InstallShield Developer can open is
displayed. The accelerator key combination to display the Open dialog is Ctrl+O.

P A R T I T H E F U N D A M E N T A L S

44

Save: Clicking on this icon saves everything in the project, including the project
file and any changes that have been made to InstallScript. InstallScript is saved in
a separate file and is not in the project file. The accelerator key combination to
save your project is Ctrl+S.

Undo: The Undo icon allows you to undo any changes that you made in either
the Dialog Editor or the Script Editor. There is a limit of 50 actions that can be
undone in the Dialog Editor, but there is an unlimited number of actions that can
be undone in the Script Editor. You cannot undo actions anywhere else in a
project. The accelerator key combination for undoing actions is Ctrl+Z.

Redo: The Redo icon reverses the Undo action. This applies only to the Dialog
Editor and Script Editor. The accelerator key combination for redoing actions is
Ctrl+Y.

Viewbar: The Viewbar icon displays an additional vertical bar along the right side
of the IDE. The Viewbar provides a different approach to navigating through all
the various views in which you work in a project. By default, this view is not
active.

Checklist: This icon displays the list of views that serve as a list of the steps that
need to be taken to create an installation program or installation package. On the
View pull-down menu, this same action is called the View List. The View List is
displayed by default.

Previous View: This is a navigation mechanism that allows you to move up the
tree of views in the View List. The accelerator key combination for this action is
Alt+Up Arrow.

Next View: This is a navigation mechanism that allows you to move down the
tree of views in the View List. The accelerator key combination for this action is
Alt+Down Arrow.

Back: Clicking this button returns you to the previous view in your history of
view selections. The accelerator key combination for this action is Alt+Left
Arrow.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

45

Forward: This navigation tool allows you to move forward in your history of
view selections. The accelerator key combination for this action is Alt+Right
Arrow.

Insert InstallScript Function: This icon is enabled only when the focus is in the
Script Editor. It launches the Function Wizard, which facilitates the insertion of
built-in functions into a script. This functionality will be discussed when we go
over the InstallScript language covered in Part II of this book. The accelerator
key combination for this action is Ctrl+I.

Release Wizard: This icon launches a wizard that allows you to define in detail
the attributes that are used to build a release of a project. We will discuss this
wizard in Chapter 5.

Compile: This icon compiles a script file, links it, and then inserts it into the
installation program or installation package. We will learn more about this when
we discuss the InstallScript language. The accelerator key combination for this
action is Ctrl+F7.

Build: This icon allows you to make a build using the default attributes without
using the Release Wizard. It also serves as a means to rebuild a project after you
have made changes and do not want to change any of the previous release
attributes. The accelerator key for this action is F7.

Stop Build: This icon allows you to stop a build while it is running. This can be
handy if you remember something you needed to do before building the
installation program or package. The accelerator key combination for this action
is Ctrl+Break.

Test: This icon runs the user interface of an installation package, but does not
make any changes to the system (for example, it does not copy any files or make
any registry entries). The accelerator key combination for this action is Ctrl+T.

Run: This icon runs the installation program or installation package from the
IDE. The accelerator key combination for this action is Ctrl+F5.

Debug InstallScript: There is a debugger for script-based programs and this
icon runs the installation program in debug mode. The accelerator key for this
action is F8.

P A R T I T H E F U N D A M E N T A L S

46

Windows Explorer: This icon launches Windows Explorer.

DemoShield Designer: This icon launches the InstallShield DemoShield
product if it is installed. If DemoShield is not installed, then it displays a message
box to inform you that there is an evaluation copy of DemoShield on the
InstallShield Developer CD-ROM.

Help View: Clicking on this icon displays the Help view in the IDE, the same as
clicking the Help icon in the View List.

Now that you have learned about the InstallShield Developer IDE, it is time to use
the Project Wizard. In the next section, you will learn how to create both a Standard
project and a Basic MSI project for a small sample application.

The Sample Application
In the remainder of this chapter, you are going to create a Standard installation
program and a Basic MSI installation package. Before you can do this, we need to
look at the composition of the sample application. Figure 2-9 is a diagram of the
features and files that you will use to create the installations.

Figure 2-9: Diagram of the Developer Art sample application.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

47

This simple application is made up of four files. The Main Program feature is made
up of the main executable, a COM DLL, and a Win32 DLL. The file ArtWork.dll is
the COM DLL. The Docs sub-feature is made up of a .htm file. Even though this
application is small it provides a good introduction to the Project Wizard and its
functionality.

Creating a Standard Project
Using the Project Wizard

The procedure here will be to step through the Project Wizard panel by panel,
discussing each panel in turn and why each action is taken. We will then look at the
installation image that is created during the build process. Finally you will install and
run the sample application.

It is assumed that you have already set the project location to the following:

C:\MySetups

In addition, you need to copy the source files for the sample application from the
CD-ROM included with this book. The examples in this chapter have the source files
located in a folder named as follows:

C:\MySetups\Sources\Developer Art

There is an installation program on the CD-ROM that will install all the source files,
sample projects, and source code to your local machine. The best thing is to use this
install program and then to go to the Chapter 02 folder and copy the source files for
the Developer Art application to the location specified above. This way you can
follow on with the book without any difficulty.

Now, go to the toolbar and launch the Project Wizard by clicking its button.
Remember that the Project Wizard can also be launched from the “Create a new
project” view and it can also be launched from the Files pull down menu. Click the
Next button in the Welcome panel to move to the Wizard Project panel (Figure 2-
10). Name this project DeveloperArt_Std so that you can distinguish it from the
Basic MSI project you will create. Take note that in this panel you can also select a

P A R T I T H E F U N D A M E N T A L S

48

previously created project. The difference between the “Open a Recent Project” and
“Open an Existing Project” options is that a recent project is one that was created in
the project location defined in the Options dialog. An existing project is located
somewhere on the system that is not known to InstallShield Developer. That is why
this third option allows you to browse to the project file.

Figure 2-10: The Wizard Project panel in the Project Wizard.

Since you are creating a new project, all you need to do is enter the project name and
click the Next button to get to the Project Type panel (Figure 2-11). For this first
example you are going to create a Standard project. As already stated, this type of
project uses InstallScript to interface with the Windows Installer engine.

The main advantage of a Standard project is that you can create a more robust
installation user interface than is possible with a pure Windows Installer approach.
Other advantages include the use of scripting to perform installation tasks and a
smooth upgrade of projects originally created in InstallShield Professional – Standard

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

49

Edition. Chapter 12 covers the topic of creating a user interface in both a Standard
project and in a Basic MSI project. Chapter 4 discusses some of the details of the run-
time architecture for both types of projects. Chapter 11 covers the subject of
InstallScript custom actions. Custom actions are the only method for extending the
functionality of a Basic MSI project whereas in a Standard project InstallScript can be
used to create the user interface as well as extend the functionality of the Windows
Installer through custom actions.

Figure 2-11: The Project Type panel in the Project Wizard.

Since a Standard project is the default, click Next to move to the Application
Information panel (Figure 2-12). There are three pieces of information that you need
to enter in this dialog: the name of the application, its version number, and the default
installation location for the application. If you put the cursor in one of the edit fields,
a short description of the edit field is displayed at the bottom of the panel. The entries
that you need to enter for this project are shown in Figure 2-12.

P A R T I T H E F U N D A M E N T A L S

50

The entry in the Application Name field can be any descriptive name that uniquely
identifies the application to the end user. The value you enter here sets the value of
the ProductName property. We will discuss the details of properties and their use in
Chapter 3. As you can see in Figure 2-12 the name that is being used for the
application includes the project type. This is because you will be creating both types
of projects and if they both get installed at the same time then you will not have the
problem of mixing the files from one application with the files from the other.

Figure 2-12: The Application Information dialog in the Project Wizard.

The Application Version field specifies the version number of the application as a
string using a specific format. The format for this string is major.minor.build. The
first part is the major version and has a maximum value of 255. The second part is
the minor version and also has a maximum value of 255. The third part is the build
version or the update version and has a maximum value of 65,535. The value entered
for the application version is used to set the value of the ProductVersion property.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

51

The final entry in this dialog is made in the Default Destination Folder field. The
entry made here determines the location where all features comprising the application
will be installed unless you take specific action to have some features go to a different
location. There is an example in Chapter 14 of setting the location of a specific
feature to be different than for the application as a whole. The entry that is made here
sets the initial value of a property named INSTALLDIR. During an installation the
location at which this property points can be changed by using a browse functionality
that is normally found in a custom setup dialog in an installation's user interface. You
might notice some odd formatting in this last field. The string that appears in all
capital letters inside the curly braces is called a directory identifier. This identifier is a
means to refer to the location that is shown in the Default Destination Folder edit
field.

The directory identifier is created from the last part of the path entry we make for the
default location. The next entry in the path string is [ProgramFilesFolder] and this is
an operating system-defined property. This particular property specifies where the
Program Files folder is located on the system that the installation targets. The square
brackets indicate that the value of this property will be substituted in place of the
property and the square brackets. On English systems, this location is usually defined
as follows:

C:\Program Files

Installing to this location by default is a requirement of the "Certified for Windows"
logo. Below is a quote from The Application Specification for Windows 2000 for desktop
applications.

By default, your application must install into an appropriate subdirectory where
the current user’s program files are stored. This folder is represented by the
ProgramFilesFolder property in the Windows Installer-based package.
(The ProgramFilesFolder property is a variable that exposes the path to
the Program Files folder, and the Windows Installer sets that variable
appropriately on all Windows platforms.) On English systems, this folder is often
“C:\Program Files”. However, do NOT hardcode that path, as it is not
universal.

Exception: If you are upgrading a previously installed version of your application,
it is acceptable to default to the directory where that version exists.

P A R T I T H E F U N D A M E N T A L S

52

The location to which the ProgramFilesFolder property points is found in the registry
under the following key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion

Before you move to the next dialog, note that there is no backslash separating the
[ProgramFilesFolder] part of the default path from the name of the company. This is
because all Windows Installer properties that define paths are created with an ending
backslash.

The next dialog in the Project Wizard is the Software Updates dialog. This dialog is
shown in Figure 2-13. The InstallShield Update Service is a Web-based service that
lets you create self-updating applications with minimal developer effort and no start-
up costs. Self-Updating applications allow your end users to easily get updates and
information about your product. You author the update using any InstallShield
authoring tool, and the Update Service does the rest. The Update Service will notify
your end users about the update, download the update from your website and launch
the update installation.

In the normal course of creating software you find the need to fix existing defects,
add new features, and develop new products and services. One challenge you face is
how to deliver these updates to your customers in a timely and efficient manner. It
makes sense to distribute them electronically, but without an end-to-end solution that
automates customer notification and delivery electronic distribution is problematic.
The InstallShield Update Service has been made available to provide such an end-to
end solution.

In general a name inside curly braces inside an edit field specifies something called
a string ID. A string ID is an entry in a string table and this functionality allows us
to easily localize an installation to other languages. An example of string IDs
inside curly braces can be seen in Figure 2-14.

The use of the curly braces to indicate a directory identifier in the Default
Destination Folder edit field shown in Figure 2-12 is an exception to this general
rule.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

53

Figure 2-13: The Software Updates dialog.

The Software Updates dialog allows you to enable your product to receive updates via
the InstallShield Update Service. For this sample application you want to deselect this
option in the Software Updates dialog. The Update Service itself is not discussed in
this book.

Click the Next button to move to the Company Information dialog (Figure 2-14).
There are three entries to be made in this panel. The first entry is the “Company
Name” field and this is the name of the organization that developed the application.
This entry is used to set the value of the Manufacturer property in the installation
program. The second entry is in the “Help Telephone Number” edit field. The entry
here should be the telephone number that the end user can use to reach technical
support for the application. This entry is used to set the ARPHELPTELEPHONE
property and is displayed in the redesigned Add/Remove Programs applet in
Windows 2000 and later.

P A R T I T H E F U N D A M E N T A L S

54

Figure 2-14: The Company Information panel in the Project Wizard.

The final entry is in the “URL for Company or Product Information” field. This
entry is also made available from the redesigned Add/Remove Programs applet. End
users can go directly from the Add/Remove Programs applet to the Web site
indicated in this field. The value entered in this field is used to set the
ARPURLINFOABOUT property.

You should note several things in this dialog. First is that each of these entries has an
associated string ID that is shown inside the curly braces. Also, on the far right of
each field there is a small button with an ellipsis. Clicking on this button takes you to
the string table where you can select a string that may already be available instead of
having to type a new string. If the same string is used multiple locations in a project
you should always enter the string by going to the String Table and using the
appropriate string ID. This permits you to modify a string in one location only and it
will get updated in every location where it is used. This ability to select strings into a
text field is available throughout both types of projects.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

55

Figure 2-15: The Setup Languages panel in the Project Wizard.

Click Next to move to the Setup Languages panel (Figure 2-15). We need to discuss
this panel although you do not need to use it for the installation of the sample
application. One of the things that you can do is create an installation program that
allows the end user to select the languages in which to perform the install. You can
also create a single installation in a language other than English. InstallShield Software
Corporation sells two different language packs where all of the default strings have
been translated into various languages. These language packs consist of the western
European languages and the Asian languages. In this panel, if you try to select a
language that is not available, a dialog appears to inform you that the selected
language is not available. You then have the option to visit the InstallShield Web site
to purchase the necessary language pack.

Since English is selected by default, click Next to move to the Application Features
dialog (Figure 2-16).

P A R T I T H E F U N D A M E N T A L S

56

Figure 2-16: The Application Features dialog in the Project Wizard.

It is in this dialog that you define the logical structure of your application by entering
the display names of the features that describe this structure. To do this you might
want to refer back to Figure 2-9, which shows the structure of the sample application.

This panel provides three default feature names. For this Standard project, delete all
of these default features and start over by using the Add button.

1. Delete the existing features by clicking on the feature and clicking Delete.
You could also delete a feature by right clicking on it and selecting Delete
from the context menu.

2. To add the top-level feature, click on Features and click Add. You can
also add a top-level feature by right clicking on Features and selecting
New from the context menu.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

57

3. Type “Main Program” as the feature’s name. Press Enter or click
elsewhere in the panel to accept the name.

4. Create a sub-feature by clicking on the Main Program feature and clicking
Add, or by right clicking on the Main Program feature and selecting New
from the context menu.

5. Type “Docs” as the sub-feature’s name.

The names of the features that you have entered here are what will be used as display
names in the custom setup dialog. When you create the Basic MSI project, you will
use the rename functionality to rename and reorganize the default feature tree. This
will give you a chance to work in this dialog using two different approaches for
creating features. When you finish the feature tree, it should look like the one in
Figure 2-16.

Directly below the list of features is the Destination Folder combo box that is
enabled whenever a feature is highlighted in the feature tree. By default each feature
has a destination specified as [INSTALLDIR]. Remember that the default value of
the INSTALLDIR property is the value we set in the Application Information panel
(Figure 2-12). The square brackets, as described earlier, are a replacement mechanism
used at installation (run) time. Using [INSTALLDIR] as the feature destination allows
the end user to browse for a different location. The selection of a different location
changes the value of this property at run time.

Click the down arrow in the right side of the Destination Folder combo box and you
will see that you have four possible choices. These choices are shown in Figure 2-17.
There are three directory identifiers that can be used to define the default destination
location for the features. This is another of those places where the curly braces
indicate a directory identifier. The directory identifier {INSTALLSHIELD} is a
directory identifier that points to the parent folder of the INSTALLDIR location.
Both the {DEVELOPER_ART_STANDARD} and the INSTALLDIR identifiers
point at the same location. Because the INSTALLDIR identifier is the typical
directory identifier that is used we do not want to select either the
{DEVELOPER_ART_STANDARD} or the {INSTALLSHIELD} identifiers.
However, either of these directory identifiers defines an acceptable default install
location that meets the criteria defined by the “Certified for Windows” logo
specification.

P A R T I T H E F U N D A M E N T A L S

58

Figure 2-17: The four choices available in the Destination Folder combo box.

The selection that is interesting and about which we need to talk is the "Browse,
create, or modify a directory entry…" option. When you select this option you will
display the Browse for Directory dialog box (Figure 2-18).

You can use this dialog to create a directory entry. A directory entry is an identifier
that points at a location on the target system. During installation run time, the
identifier that you define here becomes a Windows Installer property that identifies a
particular path on the target system. We will cover directory entries in more detail in
Chapter 3. The directory entries that you create using this dialog must be in all upper-
case letters. We will discuss the reason behind this in Chapter 3. The property
INSTALLDIR is the first example of a directory entry. You use the Browse for
Directory dialog to create your own custom directory entries that can be used to
direct different features to different locations during an installation. The ability to
browse to different locations for different features is functionality that is only

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

59

available in a Basic MSI project. Dismiss the Browse for Directory dialog by clicking
Cancel.

Figure 2-18: The Browse for Directory dialog in the Project Wizard.

Click Next to move to the Application Files panel (Figure 2-19). In this panel, you
can add files to your application. You add these files to the features that were defined
in the Application Features panel. At the top of the Application Files panel is a
combo box that lists the features defined in the project. For each feature selected, you
can find the application's source files by either browsing for them using the Add Files
button or dragging them into the Project Wizard from Windows Explorer.

P A R T I T H E F U N D A M E N T A L S

60

Figure 2-19: The Application Files dialog in the Project Wizard.

For this project, you need to add three files to the Main Program feature:
DeveloperArt.exe, ArtWork.dll, and HelpLibrary.dll. You also need to add one file to
the Docs feature: Help.htm. To add these files use the following steps:

1. Make sure that the Main Program feature is selected in the feature combo
box.

2. Click Add Files to display the Open dialog.

3. Browse to the location where the sample project files were saved.

4. Select DeveloperArt.exe, ArtWork.dll, and HelpLibrary.dll and click
Open.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

61

5. Now select the Docs feature in the feature combo box and click the Add
Files button again.

6. Browse to the source file location and select the Help.htm file and click
Open.

After you have added the files to the Main Program and Docs features, the
Application Files panel should look like what is shown in Figure 2-19 when the Main
Program feature is selected in the combo box. Note the yellow key icons beside each
of the files in this figure. When you add files to a feature using the Application Files
dialog, components are automatically created in the background. At the lowest level
of an installation, the Windows Installer engine is what is used to make changes to the
target system. Because of this, even for a script-driven project the installation adds
components and not individual files to the target system. The Project Wizard creates
the necessary components for you. It is important to understand that to install a file
onto the target system, the file has to be associated with a component.

Every component has an attribute called a key path. This key path can be one of four
things:

� The name of a file being installed as part of the component.

� A registry entry that is created when the component is installed.

� The folder into which the files in the component are copied during the
installation.

� In certain circumstances when installing an ODBC data source the key path
of a component can be a reference to this data source.

The Windows Installer writes the key path to the registry at install time as part of the
identification of the component on the target system. When the key path is a file and
this file has a version it defines the version of the component regardless of how many
other files may be installed by the component. In Figure 2-19 the yellow key icon
beside the three files shown indicates that these files are the key paths for their
respective components. We will discuss the creation of components in more detail in
Chapters 3, 5, 13, and 14.

P A R T I T H E F U N D A M E N T A L S

62

The Application Files panel provides additional information about the files. Scroll to
the right to see the following file information: file name, the name of the component
created, the file size, the link path to the source file on the build system, the date and
time the file was last modified, and the file’s installation destination. If you highlight a
file and then click the Properties button, the Properties dialog (Figure 2-20) is
displayed. This dialog gives you a lot of control over the highlighted file. By default a
file will have the same attributes after being installed that it has on the build system.
However, you can change this default behavior by deselecting the “Use system
attributes” check box and then setting the attributes that you want the file to have
after it is installed.

Figure 2-20: The Properties dialog used to modify file properties.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

63

There is another attribute called Vital and it is a special attribute used by the Windows
Installer when it is copying files to the target system. The file system knows nothing
about this attribute and you will not see the letter V beside a file in Windows
Explorer. If the Vital attribute is set, and if the component to which the file belongs is
selected for installation, then the Windows Installer must be able to install this file for
the installation to be completed successfully. If the installer is unable to install the file
for some reason, an error dialog box containing “Retry” and “Cancel” options
appears. Without this file, the installation cannot continue.

An example of a situation that would cause this to happen is when the source file
cannot be located within the source image. It might seem that a file missing from the
installation media is an unlikely example but for large applications this is definitely
possible. If a file that does not have the Vital attribute set is missing from the
installation media, the options presented in the end user dialog are "Abort", "Retry",
and "Ignore". The end user can choose to ignore the missing file and successfully
complete the installation. Other scenarios that could cause a file not to be found are a
dropped network connection or a CD-ROM being ejected from the drive during the
transfer of files.

The other parts of the Properties dialog are used for things such as defining
companion files and setting font titles for files with a .fon extension. Also you can
define a COM server to be self-registered during installation. Self-registration of
COM servers in the world of Windows Installer should be avoided; however, it is still
supported. We will discuss the issues surrounding self-registration, COM servers,
companion files, etc. in Chapters 13 and 14.

On the Properties dialog there is a Permissions button that can be used to secure
individual portions of your application in a locked-down environment. This is an
advanced subject that is not discussed in this book.

Click Cancel to return to the Application Files panel. Now right click on one of the
files displayed in the Application Files dialog and you will get the context menu that
looks like what is shown here. The options that are available on this menu are
described in the following list:

Add…: Selecting this option allows you to browse to a source location and add
files (components) to an existing feature. This is the same functionality as you just
used when you clicked the Add Files button.

P A R T I T H E F U N D A M E N T A L S

64

Copy and Paste: The copy and paste
options allow you to copy a file
(component) from one feature and add it
to another feature. In this fashion you can
share components between features.

Delete: Using this option you can remove
a component from a feature. Once
removed the only way you can retrieve the
component is to add the file again using
either the Add Files button or the Add
option on this menu.

Set Key File and Clear Key File: We have already discussed the business of key
paths and these options allow us to set a file to be the key path for a component
or to clear the file from being the key path for its component.

Properties: Selecting this option provides the same dialog as is shown in Figure
2-20.

Click Next to move to the Create Shortcuts dialog (Figure 2-21). In this panel, you
can define shortcuts in all the usual places such as the Programs Menu and on the
Desktop. You can also create non-standard locations where you want shortcuts to be
created. To do this you need to go to the Shortcuts node at the top of the tree in
Figure 2-21, right click and select the Show Folders option. This option will display a
sub-menu of target system locations that are defined by the operating system. If you
select one of these locations you will get another entry in the Shortcuts tree under
which you can define custom folder names. To create folders under a node in the
Shortcuts tree you right click and select the New Folder option. In this fashion you
can create as deep a folder tree as you need.

For this application, you will create a shortcut on the Programs menu, which is the
standard location to place a shortcut. For the Developer Art application you will need
to create a shortcut to the DeveloperArt.exe file that is installed when the Main
Program feature is installed.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

65

Figure 2-21: The Create Shortcuts panel in the Project Wizard.

You begin the process of creating this shortcut by right clicking on the Programs
Menu node and selecting the New Shortcut option. When you do this the Browse for
Shortcut Target dialog (Figure 2-22) is launched. What you need to do in this dialog is
to browse for the location where the DeveloperArt.exe file is going to be installed on
the target system. You use the “Look in” combo box to find this location. When you
find the target you want for the shortcut select the appropriate file and click Open.

What you are doing here is selecting the target of the shortcut as defined within your
project. You are not actually browsing to the location of the source file on the build
machine. In the case of the Developer Art application the DeveloperArt.exe file is
going to be installed to the location defined by the INSTALLDIR directory identifier.
When you have browsed to the install location for the file that is to be the target of
the shortcut you will see the same information about the file as you saw in the
Application Files dialog shown in Figure 2-19.

P A R T I T H E F U N D A M E N T A L S

66

Figure 2-22: The Browse for Shortcut Target dialog.

To finish creating the shortcut perform the following two steps:

1. After selecting the DeveloperArt.exe file in the Browse for Shortcut
Target dialog enter the string “Developer Art Standard” as the display
name of the shortcut to be created. This is done in the Create Shortcuts
dialog. What you are defining here is the name of the .lnk file that will be
created at the time of installation.

2. Highlight the name of the shortcut just created and then select the
feature to which the target of the shortcut belongs. The feature is selected
by using the Features combo box. In this case the feature that you need
to select is Main Program. You only need to perform this step if the
Project Wizard has not already selected the correct feature. When this
second step is complete you will have what is shown in Figure 2-23.

Note that in Figure 2-23 the Target combo box contains an entry that defines the
target of the shortcut. This will create a standard shortcut and that is the only type of
shortcut that can be created using the Project Wizard. In the IDE you can also create
something called an MSI shortcut. This type of shortcut is new with Windows
Installer and it permits the advertisement of the application. When you advertise an

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

67

application with an MSI shortcut on the Programs Menu the application does not get
installed until the first time you try to run it. Standard shortcuts cannot be advertised.

Figure 2-23: The creation of a standard shortcut.

Now that you have created a shortcut for your application, you are almost finished
creating this installation project. Click Next to move to the Registry Data dialog
(Figure 2-24). The Registry Data dialog allows the incorporation of registry entries
into the project file by importing the contents of a .reg file. The registry entries are
associated with a particular feature and these registry entries are made when that
particular feature is installed. What actually happens when you import a .reg file is the
Project Wizard will create a new component for you that will be used to make the
registry entries at install time.

P A R T I T H E F U N D A M E N T A L S

68

Figure 2-24: The Registry Data panel in the Project Wizard.

Registry files are text files with a special format that have a .reg extension. These files
can be merged with the registry on your system to add entries or they can be used, as
is the case here, to define registry entries to be made during an installation of an
application. REG files can be created using the registry editor or they can be created
programmatically. The contents of a simple registry file are shown in Figure 2-25.

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\InstallShield\Developer]
@=""

[HKEY_CURRENT_USER\Software\InstallShield\Developer\7.0]
@=""

Figure 2-25: The contents of a simple registry file.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

69

[HKEY_CURRENT_USER\Software\InstallShield\Developer\7.0\IDE]
@=""

[HKEY_CURRENT_USER\Software\InstallShield\Developer\7.0\IDE\Workspace
s]
@=""

Figure 2-25: Continued.

For the Developer Art application there is no requirement to import a registry file.

Click Next to move to the Dialogs dialog (Figure 2-26). The Dialogs panel contains a
list of the standard dialogs that can be displayed in the installation’s user interface.
This is the last dialog in which you set any attributes for the installation program.

Figure 2-26: The Dialogs panel in the Project Wizard.

Highlighting a dialog in the list box provides a preview of the dialog to the right of
the dialog list. For this sample application, you do not need to add any dialogs, but

P A R T I T H E F U N D A M E N T A L S

70

you need to remove one from the user interface. The dialog that you want to remove
is the LicenseAgreement dialog. To do this, deselect it the list box.

Now that you have defined the user interface, click Next to move to the Wizard
Summary panel (Figure 2-27) where you can review what you have done in the
Project Wizard. You can scroll through the summary and see the information that
was provided, as well as the setup design of the application. This gives you a chance
to go back and fix things before you build the project. You have the option not to
make a build if you do not want to build your project. You can prevent a build by
deselecting the Build a Release check box at the bottom of this panel. You may want
to do this if you know of things that have to be done in the IDE before it is
worthwhile to spend the time building. In this case, you do not need to do anything
in the IDE at this point. Click Finish to accept the project settings and build your
installation program.

Figure 2-27: The Wizard Summary panel in the Project Wizard.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

71

When you initiate the build of your project, the output window (Figure 2-28) opens at
the bottom of the screen to provide feedback about how the build is progressing.

Figure 2-28: The Output window for the build of the Standard project.

With such a simple application there should be no build errors generated. You should
see a statement at the bottom of the Output window that there were no errors or
warnings as shown in Figure 2-28.

Now, you can install the sample application. You can run the installation from the
IDE by clicking the Run button on the toolbar. We do not want to spend much time
on this now since the user interface is covered in depth in Chapter 12. When you
launch the installation the first dialog that you see is the initialization dialog that
displays a progress bar that provides the status of the initialization activities. Chapter 4
discusses what initialization activities are being performed.

The first dialog that required action from the user is the Welcome dialog that names
the application being installed. When you click Next you move to the Customer
Information dialog that provides you with the opportunity to change the default user
name and the name of the organization. On Windows NT, Windows 2000, or
Windows XP you also have the option of installing the application for just yourself or
for all users of the machine.

The next dialog in the user interface wizard is where you are allowed to change the
default destination for the application. The destination for the application is defined
by the value of the INSTALLDIR property. This property was initialized in the
Application Information dialog shown in Figure 2-12. Moving to the next dialog
brings you to the Setup Type dialog where you can select the type of installation you
want to perform. In this dialog you should select the Custom setup type. When you
click Next you will see the dialog that is shown in Figure 2-29. Note that the names of

P A R T I T H E F U N D A M E N T A L S

72

the features in the feature tree are what you defined when you created the features in
the Project Wizard.

Figure 2-29: The Select Features dialog for the installation of the Developer Art application.

The next dialog in the user interface sequence is the Start Copying Files dialog. The
purpose of this dialog is to display the settings that were selected during the previous
dialogs. Nothing gets displayed in this dialog unless you create InstallScript code to
capture the selections. When you click the Next button this will begin the actual
changes to the system. While these changes are being made a dialog with a progress
bar provides the status of the installation.

Once the installation is complete you should go to the Programs Menu and run the
application to see that it works correctly. You will see on this menu the name of the
shortcut that you entered in the Create Shortcuts dialog of the Project Wizard.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

73

Now you should try to run the installation a second time by clicking the Run button
on the toolbar. After the initialization is complete you will be presented with a
completely different dialog than what you had when you ran the installation for the
first time. This dialog presents you with the opportunity to perform a maintenance
operation on the installed application. In this dialog you want to select the Remove
option so that the Developer Art application will be uninstalled.

Creating a Basic MSI Project
Using the Project Wizard

Running the Project Wizard to create a Basic MSI project is very similar to what you
did to create a Standard project. We will not need to go into detail about those things
that are the same. Instead, we will just define the entries that need to be made in the
Project Wizard. One of the things in this project that you will do using a different
approach is feature creation. This different approach will be discussed in detail.

To begin creating your Basic MSI installation project, launch the Project Wizard and
move to the second panel, the Wizard Project panel, where you name your project
file. For this project you need to use a different name than used for the Standard
project to differentiate between the two. Name this project DeveloperArt_MSI. The
.ism file extension is added automatically. Click Next to move to the Project Type
panel. In the Project Type dialog, select the Basic MSI option.

Move on to the Application Information dialog and in the three edit fields enter the
same type of information that you did when creating the Standard project except that
the name of application is different so as to reflect the project type. These entries are
shown below:

Application Name: Developer Art Basic

Application Version: 1.00.0000 (this is the default)

Default Destination Folder: [ProgramFilesFolder]InstallShield\Developer Art
Basic

P A R T I T H E F U N D A M E N T A L S

74

In the Software Updates dialog deselect the option to enable the sample application
to receive updates. In the Company Information dialog enter the same information
that you did for the Standard project with no changes being necessary. These entries
are shown below:

Company Name: InstallShield Software Corporation

Help Telephone Number: 911

URL for Company or Product Information: http://www.installshield.com

As before, you do not have to take any action in the Setup Languages panel.

Figure 2-30: The default features in the Application Features dialog of the Project Wizard.

Click Next to move to the Application Features panel. Here you can use the
renaming functionality instead of deleting the default features and creating new ones.

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

75

Figure 2-30 shows the Application Features panel as it is first displayed with the
names of the default features.

To specify the feature organization for this project:

1. First, delete the DefaultTemplates feature. Select the feature and click
Delete, or right-click on this feature and select Delete from the context
menu.

2. Rename the DefaultHelpFiles feature to Docs and the DefaultProgram
feature to Main Program. To rename a feature, select it and click Rename,
or right-click on the feature and select Rename from the context menu.
You can also press the F2 to rename the feature.

3. Next, modify the feature tree’s organization to make Docs a sub-feature
of the Main Program feature. To do this, right-click on the Docs feature
and select Move Down from the context menu. This moves the Docs
feature below the Main Program feature. Next, right-click on the Docs
feature and select Move Right from the context menu. When you
complete this set of steps you will have the same feature tree as shown in
Figure 2-17.

Click Next to display the Application Files panel. Add the files to the two features just
like you did for the Standard project. In the Create Shortcuts Panel, add a shortcut to
your project just like you did for the Standard project. The entries here are exactly the
same as for the Standard project except that the name of the shortcut should be
“Developer Art Basic”.

Move on past the Registry Data panel to the Dialogs panel (Figure 2-31). Here you
see the first and only major difference, as far as the Project Wizard is concerned,
between a Standard project and a Basic MSI project. There is a much smaller
selection of default dialogs available. Deselect the LicenseAgreement dialog so that it
will not be part of the user interface for the installation of the sample application.
After the Project Wizard has created the project, it cannot be used to modify the
dialog selection that was set during the initial creation of the project.

You are not limited to only the dialogs listed in the Dialogs panel of the Project
Wizard. For a Standard project, you can create custom dialogs using InstallScript and,
in a Basic MSI project, you need to make use of the Dialogs view and the Dialog

P A R T I T H E F U N D A M E N T A L S

76

Editor to create custom dialogs. We will discuss how to create custom dialogs in both
project types in Chapter 12.

Figure 2-31: The Dialogs panel in the Project Wizard for a Basic MSI project.

Click the Next button and move on to the Wizard Summary panel where you can
review what you did to create the project. When you are satisfied, click Finish to
complete the project and build it into an installation package. At the end of the build
you should have the same output window that you had after the completion of the
Standard project build except the feedback information will be presented in a
different order. The output window should show no errors or warnings.

Now you can run the installation like you did with the Standard installation program.
Run the installation by clicking the Run button on the toolbar. When running the
installation, accept all of the default settings until you get to the Setup Type panel.
You will get a Welcome dialog and a Customer Information dialog just as you did
with the Standard project. You will not get a separate dialog for modifying the

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

77

installation location for the application. In the default user interface for a Basic MSI
project you can only modify the destination location by going to the Custom Setup
dialog. When you move to the Setup Type dialog you need to note that the only
options presented are to perform a complete or a custom setup. The installation
created using the Standard project presented three setup type options.

Select the Custom option on the Setup Type panel and click Next. The Custom Setup
dialog (Figure 2-32) displays a different form of the feature tree, one where the
feature tree is collapsed. Click on the + to expand the tree.

Figure 2-32: The Custom Setup dialog in the Basic MSI user interface.

The names of the features are the display names that you entered in the Project
Wizard. Click Next to move to the last dialog in user interface sequence. The last
dialog before the installation begins to make changes to the system is also different
than what you saw with the Standard project. Here there is no list box that can be
used to display the selections that were made. There is only a dialog that tells you that

P A R T I T H E F U N D A M E N T A L S

78

when you click the Install button the installation will begin. After you complete the
installation, you should run the application to verify that it works correctly. You will
see that the shortcut on the Programs Menu is the same as you entered into the
Create Shortcuts dialog in the Project Wizard.

To uninstall the application, use the same approach as used for installation created
using the Standard project. Run the installation again, and use the maintenance
operation to remove the application. This time you will get a Welcome dialog for the
maintenance operation and when you click Next you will get the Maintenance Type
dialog where you need to select the Remove option.

Linking to Source Files at Build-
Time

Regardless of whether you use the Project Wizard to create your projects or you
create them directly in the IDE you will face the problem of finding the files that
comprise the application. In a real world scenario the files that make up an application
can be located in numerous places, on the build machine, on the network, or some
combination thereof. It would be nice if we could have a way to identify these
locations without having to continually provide the absolute path to each file that we
place in a component. For this purpose InstallShield Developer provides this type of
mechanism through something called path variables.

A path variable is a build-time entity that is used in the project to point to the location
of the source files that make up the application. You can have many different path
variables all pointing at different locations on the build system. An important point to
remember is that path variables have nothing to do with where an application is
installed on the target system, only where the build can find the files that make up the
application.

Normally when you add a file to a component and there is no path variable defined
that points at the location where the file resides on the build system, InstallShield
Developer will display a dialog asking you to define a path variable for that location.
The path variable recommendation dialog is shown in Figure 2-33. This dialog has
three possible options that allow you to select between two or more path variables

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

79

that point at the same location, to create a new path variable for the location in
question, or to specify that the absolute path be used without specifying a path
variable.

Figure 2-33: The Path Variable Recommendation dialog.

The first question you may have in mind is why didn’t I see this dialog when the files
were added to the Main Program and Docs features in the Project Wizard? The
answer is because the source files were located underneath a folder that is pointed at
by a predefined path variable. There is a predefined path variable named
ISProjectFolder that points at the location where the project is located. In the case of
the Developer Art application this predefined variable points at the following
location:

C:\MySetups\

P A R T I T H E F U N D A M E N T A L S

80

Because you placed the source files for the Developer Art application in a folder
underneath this location, by default you are not prompted to supply a path variable. If
you want to see the Path Variable Recommendation dialog all you need to do is move
the source files for the Developer Art application to a location outside of the
MySetups folder and then you will get prompted for a path variable.

You have the option to turn off the prompt to supply a path variable and this can be
done on the Path Variables tab of the Options dialog as shown in Figure 2-34.

Figure 2-34: Settings options for path variables.

As you can see from Figure 2-34 the default is to always recommend a path variable
and if there is a path variable that points at a particular location then use this path
variable automatically. The other two options in this dialog are to never display the

C H A P T E R 2 I N T R O D U C I N G I N S T A L L S H I E L D D E V E L O P E R

81

Path Variable Recommendation dialog or to always display it. The subject of path
variables is covered in more detail in Chapter 5.

Conclusion
In this chapter we have discussed InstallShield Developer and how the Project
Wizard can assist you in quickly creating a base for your installation project. It is
probably evident already that there is a lot to learn here. When we took the quick tour
through the product, we reviewed only those items that are important for configuring
the IDE. This quick tour, however, gives you a sense of where to find things on the
menus and on the toolbar.

You used the Project Wizard to create both types of installation projects: a Standard
project and a Basic MSI project. After creating and building the Standard project, you
installed the sample application and found that using the Project Wizard created a
complete, user-friendly installation program. When you used the Project Wizard to
create the Basic MSI project for the sample application, you saw that the entries made
were in almost all cases the same as what was used for the Standard project. The only
real difference that surfaced in the Project Wizard was the selection of dialogs that
could be used for the installation user interface. Even though you did not have to
work in the IDE to complete the installations for this simple application it will be a
normal thing for more complex applications to have to add additional functionality in
the IDE that could not be added using the Project Wizard.

It may appear on the surface that a Standard project and a Basic MSI project are very
similar. We will find that under the surface there is considerable difference in how
operations are handled during an installation. We will look at these basics in Chapters
3 and 4. The important point to remember is that the Standard project approach uses
InstallScript to manipulate the user interface, but uses the Windows Installer to make
changes to the target system.

Windows Installer
Basics

In the mid-1990s the Office Team at Microsoft decided that they needed to create a
new way to install the Microsoft Office suite. They were receiving too many technical
support calls related to the installation and uninstallation of Office. Up to this time
they had been using another in-house developed installation tool called the Acme
Setup Toolkit.

Soon after the Office team began developing a new approach to creating installation
programs, it was decided that this new technology should be made part of the
operating system so all software vendors could use it. Accordingly the continued
development of this new approach to installation development was taken over by the
Windows NT 5 team. This is the operating system that became Windows 2000.

Darwin was the code name for this new installation technology. Darwin, later named
Windows Installer, became a central piece in the Windows 2000 deployment
mechanism. Windows 2000 introduced an entirely new approach to centralized

Chapter

3

P A R T I T H E F U N D A M E N T A L S

84

control over software installation in a networked environment. This centralized
software deployment is a major part of Microsoft's Zero Administration Windows
(ZAW) initiative, which focuses on reducing the Total Cost of Ownership (TCO) of
the traditional desktop PC for corporate America.

This chapter describes the basics of the Windows Installer technology. Understanding
this technology is important to being able to use InstallShield Developer effectively
because both Standard and Basic MSI projects are founded on this technology. The
Chapter 4 describes how InstallShield Developer builds on this technology to enable
the two different approaches that it supports.

As you work through the other chapters in this book you will probably want to come
back to this chapter and read it again. The content of this chapter will get clearer as
you obtain experience in creating installations. The first thing that we want to do is
take a look at the issues that guided the design of the Windows Installer.

The Design Focus
The long-term goal of the Windows Installer is to allow the creation of installation
packages that require no interaction with the end user and thus take the end user
totally out of the equation. Whether this long-term goal will be achieved is unknown,
but the first steps toward that goal are fairly impressive. The design of the Windows
Installer focused on solving the installation issues of the three major groups that have
a vested interest in software installation- the end user, the LAN administrator, and the
setup developer. In the early releases of the Windows Installer, the needs of the LAN
administrator have received the most attention. However, many of the needs of the
LAN administrator are compatible with the needs of the other two groups.

Let’s take a look at the design objectives that guided the development of the
Windows Installer technology. These are discussed in the following pages.

Be able to install and uninstall software. This may seem obvious, but it is
important to note that software installation has been the source of many
problems. The capability to install and uninstall software had to be robust in the
sense that the target machine would never be left in an unknown state. Many
things can happen during an installation; the user can cancel the installation or an
error might occur during the installation. The approach taken by the Windows

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

85

Installer is to treat an installation as if it were a transaction. The installation
happens in its entirety or not at all. For example, if an end user cancels an
installation when it is in the middle of copying files, the installation has to roll
back the target machine to the state it was in prior to the start of the installation.
This means that files and registry entries that are being replaced by the installation
need to be cached during installation in order to enable this rollback capability.
Because of this, the target machine will always be in a known state.

Be available on all current operating systems. Though this new technology
was developed as part of the Windows 2000 operating system, it was necessary to
make it available for the operating systems that preceded Windows 2000. These
operating systems are Windows 95, Windows 98, and Windows NT 4.0. The
Windows Installer is native on Windows 2000, Windows Me, and Windows XP.
However, installation programs have to be able to install the Windows Installer
engine on those operating systems that do not include it as a native functionality.
Furthermore, with the Windows Installer functionality under constant
enhancement, it is also necessary to be able to upgrade the Windows Installer on
those operating systems where it is a native part.

Be able to control the software installed in a networked environment to
only approved applications. What this means is that the desktop can be locked
down. Generally, administrative or power user privileges are required to install
software on an NT-based operating system. This caused problems because giving
all users these privileges permitted any user to install software, even if that
software might be harmful to the system. If users were not given administrative
privileges, then someone with these privileges had to visit each machine
individually in order to install or update the required software. This made the
corporate network expensive to maintain. The Windows Installer on NT-based
operating systems has now enabled a capability that allows the LAN
administrator to designate, which users can have specified applications. The
designated users do not need to have any special privileges to install approved
applications. The LAN administrator is, in effect, granting certain applications
elevated privileges on the targeted desktop. On Windows 9.x operating systems,
this is not an issue because all users have the equivalent of administrative
privileges.

Allow the LAN administrator to know what the installation of a particular
installation will do to the target machine. In the past, many installation
packages were password protected as well as encrypted. Even installations that

P A R T I T H E F U N D A M E N T A L S

86

were not encrypted or password had compiled scripts that controlled the
installation and these compiled scripts could not be accessed by anyone but the
setup developer who created them. These packages were black boxes as far as the
LAN administrator was concerned. To get away from the black box and allow
the LAN administrator to peer inside required that the Windows Installer be an
open architecture. Having an open architecture for installation packages means
that software vendors cannot use the installation package as the means of
protecting their products from piracy. Software vendors now have to implement
their protection in the application itself and not in the installation. The main
advantage of an open architecture for the LAN administrator is that they can
dynamically configure an installation package to filter the features that are
available to the end user.

Support the new Windows 2000 deployment capabilities. Windows 2000
deployment makes applications available to the desktop through functionality
called advertisement. Advertisement is also supported on Windows 95 and
Windows NT 4.0 as long as Internet Explorer 4.01 with service pack 1 is installed
along with the Windows Desktop Update. Windows 98 and Windows ME are
installed with default support for advertisement. Advertisement makes an
application appear to be installed when only registry entries have been made, but
no files have been copied. When the end user tries to run the application the first
time, the application is installed and then launched. The Windows Installer
needed to be designed to support this type of installation mode. This is also
referred to as just-in-time installation.

Support the concept of resiliency. Resiliency needed to take several forms in
the world of the Windows Installer. The Windows Installer needed to be able to
gracefully recover from problems during an installation, which is referred to as
run-time resource resiliency. It also needed to support the auto-repair of lost
components, which is the repair of an installed application when some of its files
are deleted by accident. The Windows Installer also had to support the
identification of multiple locations for source media. When performing
maintenance operations, it is sometimes necessary to have a source for the
application files and, if the original source is not available, then it needs to search
for other locations. To perform a complete uninstallation of a product the source
does not need to be available because the installation database is cached on the
target machine.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

87

Provide the end user with a consistent installation experience. This
involved having all installations look the same, as if the same company created
them all. One of the advantages of the standards used for creating Windows
applications is that every application has the same functionality positioned in the
same location. For example, most users know that there is an Exit command at
the bottom of the File pull-down menu.

Provide a consistent set of rules for creating installations. Providing a set of
rules ensures that all installations are created in the same fashion. Consistency in
installation creation ensures that installations function in essentially the same
fashion. It is also necessary to be able to run a validation on the installation
package before shipping the software in order to verify that the rules have been
followed.

Be able to manage all shared resources on the target machine. Pre-
Windows Installer installation programs had a limited mechanism to track the
number of applications that required the same file. Usually, these files were
dynamic link libraries (DLLs) that provided generic functionality that many
different applications could use. It was important to not uninstall this shared file
if other applications on the machine still needed it. The Windows Installer needed
to take this functionality much further so that it could know the name of the
client for every shared resource. The definition of shared resources now had to
encompass all changes to the system and not just the files that were shared.
Shared resources now include registry entries and shortcuts, in addition to files.

Support all new operating system features that work to solve problems or
enable new programming environments. Each new release of the Windows
operating system provides new functionality that works toward solving one or
more problems with running applications. Starting with Windows 2000, a new
functionality was added that served to protect the core files that make up the
operating system from being replaced except in approved ways. Also, starting
with Windows 98 SE, a new capability was added that went toward the
elimination of file version conflicts, sometimes called "DLL Hell". The Windows
Installer needed to support these new capabilities. Also, Windows XP introduced
a 64-bit programming environment and the Windows Installer needed to
accommodate this as well. Finally, the Windows Installer had to support the new
.NET programming environment.

P A R T I T H E F U N D A M E N T A L S

88

Enable a capability where applications can participate in the management
of their environment. To do this, the Windows Installer had to expose an
Application Programming Interface (API) so applications could access the
functionality of the Windows Installer. This API would allow applications to
perform feature level install-on-demand, initiate the installation of other
applications, and perform self-repair of its component.

We have now looked at the concepts that drove the design of the Windows Installer
and now we need to look at the make up of a Windows Installer package. Remember
that both types of installations created by InstallShield Developer - Standard projects,
which are script driven, and Basic MSI projects - rest on the Windows Installer.
Therefore, both project types create installation programs that consist of a Windows
Installer package.

The Windows Installer Package
A Windows Installer package is composed of several elements, with the MSI file as
the central element. We call it the MSI file because it has an .msi extension, which
stands for Microsoft Installer. A conceptual diagram of the contents of an MSI file is
shown in Figure 3-1.

The standard elements contained in all MSI files are a set of database tables and a
Summary Information Stream. There are also two optional elements shown in the
diagram, with the first of these being a cabinet file that contains the files of the
application in a compressed format. If the files that make up the application are not
compressed into a cabinet file, they are external to the MSI file. In this case,
information in the database points to where these files are located on the distribution
media. It is also possible to have cabinet files that are external to the MSI file. The
other optional element that is included inside the file as a sub-storage object is a
transform. People who are familiar with COM will recognize that an MSI file is a
COM Structured Storage file. We will discuss what this means in the next section.

A Windows Installer package defines the installation for one and only one product.
You might wonder how one creates an installation for a suite of products such as
Microsoft Office. The answer is that the suite is considered the product and the
various applications that make up the suite are features of the suite. A product is
composed of features. Features are part of the logical structure of an application and

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

89

represent the end user's view of the application’s functionality. Features are composed
of components and components are what provide the features with their
functionality. Components contain the installable parts of an application, which can
be files, folders, registry entries, and shortcuts. A component can be thought of as the
application developer's view of the product. End users never see components.

Figure 3-1: Diagram of the elements of an MSI file.

P A R T I T H E F U N D A M E N T A L S

90

Before we get into more detail about the elements of an MSI file, we need to first
discuss the design of a COM Structured Storage file. It is important to understand the
concepts of this file type since we use terminology that comes from this technology.

What is a COM Structured Storage File?
A COM Structured Storage file, sometimes called a compound file, is a file system
within a file. This type of file contains two distinct types of entities, storages and
streams. A diagram of a sample COM Structured Storage file is shown in Figure 3-2.

We can see in Figure 3-2 that at the top of the file there is a storage called the root
storage. Under the root storage there are either sub-storages or streams. A sub-
storage can have either other sub-storages or streams. It is easy to see the analogy
between a file system and a COM Structured Storage file. The root storage is
analogous to the root directory in a file system. The sub-storages are analogous to the
sub-directories and streams are analogous to files.

The concept of COM Structured Storage files was created as one of the persistence
mechanisms for applications using COM. Persistence is a term used to describe the
saving of data in some permanent fashion, such as in a database or a file. This type of
file allows two different applications to share the same file to store their data. Using
this type of file is how a Microsoft Word document can contain the text of a
document, a graphic object, and an Excel spreadsheet. This file type was originally
called a docfile because Microsoft Word pioneered the use of this type of data storage
in the early days of COM (called OLE in those days). Another benefit of using this
file type is that an application does not have to save the complete file, but only that
part on which it has made changes. One of the disadvantages of a COM Structured
Storage file is that this type of file is bigger than a normal flat file that would contain
the same information all in one format.

The function of a storage object is to keep track of the storages and streams that are
below it. A storage object can contain any number of other storages and streams just
like sub-directories in a file system. A storage object does not contain any data, it
contains streams and the streams contain data. A stream is a container for bytes and it
is the application that created the stream that organizes this stream of bytes. COM
does not organize the stream of bytes. A stream is always viewed as a contiguous byte
array, however the bytes themselves do not have to be contiguous within the COM
Structured Storage file. This further enhances the analogy between a stream and a file.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

91

As with a file, only the application that creates the stream is able to interpret the
contents of the byte array that composes the stream.

Figure 3-2: A COM Structured Storage file.

Each storage and stream object in a COM Structured Storage file must have a name.
In general, these names are not exposed to any user so the names can be anything
that is useful to the file creator. However, just as in a file system, there are certain

P A R T I T H E F U N D A M E N T A L S

92

rules that need to be followed when naming storage or stream objects. Except for the
root storage, the names of storage and stream objects are limited to a maximum
length of 31 characters. The name of the root storage is the name of the COM
Structured Storage file and its naming is defined by the allowable names in the file
system. The other restriction on the naming of storage and stream objects is that
these names cannot start with any character that has an ASCII value of 0x00 to 0x31
inclusive. Also storage and stream object names cannot include a backslash (\), a
forward slash (/), a colon (:), or an exclamation point (!). The names of storage and
stream objects are case sensitive.

In Figure 3-1, we see a stack of rectangles each with a different name. This represents
the tables in the database contained in an MSI file. Each table in the database is a
stream and the name of the stream is the name of the table. Figure 3-1 indicates that
there can optionally be a cabinet file included inside the MSI file. The Windows
Installer supports multiple cabinet file streams in an MSI file. InstallShield Developer,
however, will create only one cabinet file stream when it builds an MSI package.
When a cabinet file is included inside the MSI file, it is included as a stream. The
name of the cabinet file stream must follow the rules for the naming of streams as
discussed above. When a cabinet file is external to the MSI file, it needs to follow the
short file name convention of the file system. The other optional element inside of an
MSI file is a transform sub-storage object. This is the only type of sub-storage object
that is supported in an MSI file. Transforms are briefly discussed at the end of this
chapter.

In both Figure 3-1 and Figure 3-2, there is a stream called the Summary Information
Stream that is stored directly below the root storage object. In an MSI file, the
inclusion of a Summary Information Stream is necessary. For normal COM usage the
creation of a Summary Information Stream in a structured storage file created by an
application is highly recommended but not required. A Summary Information Stream
is an implementation of a COM entity called a property set. A property set is a means
of storing information in such a way that any conforming application can manipulate
the information in the property set.

The Summary Information Stream is the most commonly used property set. To see
this, open Windows Explorer and right-click on an MSI file or a Word document and
select the Properties option. In the Properties dialog, click on the Summary tab to see
the contents of the file’s Summary Information Stream. Figure 3-3 shows the
Summary tab on the Properties dialog for the MSI file generated by the Basic MSI
project that you created in Chapter 2. In the Windows Installer, the Summary

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

93

Information Stream is more than a way for users to view a set of properties in an MSI
file. The values in the Summary Information property set are critical elements in
defining the Windows Installer functionality for any installation package.

Figure 3-3: Windows Explorer properties dialog.

The name of the Summary Information Stream in a COM Structured Storage file is
the string "\005SummaryInformation". This is the name for this stream as defined by
the OLE2 specification. The leading character is one of those that we are not allowed
to use. The character '\005' indicates an element name that is for the exclusive use of
COM and other system code built on it such as OLE Documents. There is another
Summary Information property set defined by Microsoft Office that has a very
similar name thus leading to confusion. The name of this Summary Information

P A R T I T H E F U N D A M E N T A L S

94

stream is "\005DocumentSummaryInformation". The Windows Installer does not
use this type of Summary Information stream. The whole purpose of this second type
of Summary Information property set is to allow users of Microsoft Office to create
custom properties.

Like an MSI file, the InstallShield Developer project file uses structured storage. Now
it is time to take a closer look at the various elements of an MSI file.

The Summary Information Stream
In the previous section, we discussed the function of the Summary Information
Stream in a COM Structured Storage file. In addition to displaying information about
the MSI file in Windows Explorer, the property values are used by the Windows
Installer to install the application defined in the database tables. It is important to
understand that the Summary Information Stream is not considered one of the
database tables. When we talk about the installation database, the Summary
Information Stream is not included. It is a separate entity.

The property set that composes the Summary Information Stream in an MSI file
consists of 17 properties. Four of these properties are required and must have values.
Note that in some cases, the name of the property has no relationship to the use
made of the property’s value. We will look at these properties later in this chapter
when we dissect the MSI package that you created for the Developer Art application
in Chapter 2.

This same property set is used for the Summary Information Stream in the other
types of Windows Installer packages that can be created. However, some of the
properties have different uses depending on the type of package that is created. The
names of the properties are no different than those used in the MSI file. The other
types of Windows Installer files that also contain a Summary Information Stream are
merge modules, transforms, and patch packages. Each of these Windows Installer file
types is discussed at the end of this chapter.

The Windows Installer Database
As discussed, the database tables in the MSI file are all streams in the MSI file.
Currently, there are 84 permanent tables and 7 temporary tables defined in the

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

95

Windows Installer version 2.0 database-schema. The term schema as it is used here
means the design of the database as defined by the table names, column names,
permitted column data, the designated primary keys, and the foreign keys. The
temporary tables in the database are only for implementing the building of the
installation package and are not shipped with the database on the distribution media.

It is in the database tables that you provide the information that the Windows
Installer requires to perform the installation. Very few applications need to use all the
tables in this database. The installations that you will develop in this book use only a
small percentage of the tables defined in the schema.

The design of the Windows Installer database uses the relational model. This means
that the various tables interact with each other through the columns that are
designated as foreign keys. It also means that each table has one or more columns
that are designated as the primary key for the table since a foreign key has to identify a
primary key in the table with which it is interacting. By definition, a primary key must
uniquely define a row in a table. Because of this, duplicate primary keys are not
permitted.

The relational model also requires data integrity. The three types of data integrity that
we are most interested in as setup developers is referential integrity, field-level
integrity, and internal consistency.

Referential integrity: Referential integrity is a state in which all foreign key
values in a database are valid. For a foreign key to be valid, it must contain either
the value NULL, or an existing key value from the primary or unique key
columns referenced by the foreign key. In other words if a foreign key references
the primary key of another table, then that primary key must exist for there to be
referential integrity.

Field-level integrity: Field-level integrity is a state where the values in all fields
are of the proper data type and conform to the domain of values that are valid for
a particular column. In the Windows Installer database there are only three types
of data recognized; strings, integers (two-byte and four-byte), and binary streams.
However, an installation package requires specific integers or strings in certain
columns of a table. The specification for each column of each table is maintained
in the _Validation table. For example, the FileName column of the File table is a
column that takes a string data type, but it specifically stores the name of a file.
Therefore, not only should your entry be a string, but it should also follow the

P A R T I T H E F U N D A M E N T A L S

96

requirements for naming files. Field-level integrity also requires that columns that
are not allowed to be null contain valid values.

Internal consistency: Internal consistency relates to how the data in various
columns interact with each other. It is possible that each individual field in every
table in the database is valid when examined from the perspective of field-level
integrity, but that they are invalid because they cause incorrect behavior of the
database as a whole. For example, the Component table might list several
components that are all valid when evaluated individually from a field-level
integrity perspective. However, evaluating only the Component table would not
catch the error when two components use the same GUID as their component
code. To find these types of errors, you need to evaluate the databases that you
create from an internal consistency perspective.

The Windows Installer permits a lot of flexibility in working with the installation
database. Setup developers can create custom tables and InstallShield Developer does
exactly that in many areas. It is also possible to add temporary rows and columns to
tables in the database at install time. However, to work with the database either at
build time or install time, you need to have knowledge of SQL. There is only one
table where the Windows Installer provides special functions so that the use of SQL
is not necessary. The table where SQL is not needed to get or set values is the
Property table. The Windows Installer has its own special version of the SQL query
language.

Compressed and Uncompressed Source
Files

When you create an installation package, you can have compressed source files,
uncompressed files, or some combination of compressed and uncompressed files. All
uncompressed source files must exist in a single source tree and the root of this tree is
defined in the Directory table in the database. Normally the root of the source tree is
defined by the location of the MSI file on the distribution media.

When source files are compressed, the compressed files must be included in a cabinet
file. A cabinet is a single file, usually with a .cab extension, that stores compressed files
in a file library. The cabinet format is an efficient way to package multiple files

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

97

because compression is performed across file boundaries, which significantly
improves the compression ratio.

InstallShield Developer uses the cabinet file creation tool Makecab.exe to generate
cabinet files for use with the Windows Installer packages that it builds. Makecab.exe
has three key features:

• Storing multiple files in a single cabinet file.

• Performing compression across file boundaries.

• Permitting files to span cabinets. Large files can be split between two or more
cabinet files. There can be no more than 15 files in any one cabinet file that
spans to the next cabinet file. For example, if you have three cabinet files the
first cabinet can have 15 files that span to the second cabinet file and the
second cabinet file can have 15 files that span to the third cabinet file.

Makecab.exe supports three levels of compression: None, MSZIP, and LZX. MSZIP
is the default compression type supported by Microsoft. The LZX compression
method can achieve higher compressions ratios. Using MSZIP compression
generates a cabinet file approximately the same size as a PKZIP-compatible
compression engine. LZX compression requires more time, but LZX
decompression is typically faster. InstallShield Developer supports the MSZIP and
the LZX compression algorithms, but does not create a cabinet file that has
uncompressed files in it.

A cabinet file can be located inside or outside of the MSI file. To conserve disk space,
the installer always removes any cabinets that are embedded in the MSI file before
caching the installation package on the end user's computer. If a cabinet file is not
embedded in the MSI file, then this external cabinet file must be located at the root of
the source tree which is normally the location where the MSI file is located.

The installer extracts files from a cabinet as they are needed by the installation and
installs them in the same order in which they are stored in the cabinet file. The space
requirements for installing a file stored in a cabinet are no different than for installing
an uncompressed file.

The Windows Installer also supports cabinet files created with the Cabarc.exe
creation tool. This tool writes to the Diamond cabinet structure, but it is considered

P A R T I T H E F U N D A M E N T A L S

98

only a basic cabinet creation tool and does not have the capability of the Makecab.exe
tool.

The Windows Installer SDK
Before we examine the Windows Installer package that you created in Chapter 2, you
need to download the Windows Installer SDK. You will use this tool as you go
through this book. To install the Windows Installer SDK, do the following:

1. Go to the following Microsoft URL:

http://www.microsoft.com/msdownload/platformsdk/sdkupdate/

2. Click on the Windows Installer SDK link on the left of the page.

3. Click on the Install this SDK link on the right hand side of the page.

Note that it is necessary to first install the Core Platform SDK before installing the
Windows Installer SDK. The default location of the installation will be under
Program Files in a folder called MsiIntel.SDK. Navigate to this location and expand
the folder.

For now, the only thing that you need to install is the database-editing tool that comes
with the Windows Installer SDK. The name of this database-editing tool is Orca and
the installation package for it is in the Tools folder under the MsiIntel.SDK folder.
Double-click on the package to install Orca. Select the complete installation setup
type.

Orca.exe is a database table editor for creating and editing Windows Installer
packages and merge modules. The tool provides a graphical interface for validation,
highlighting the particular entries where validation errors or warnings occur. You will
use this tool extensively to examine the various aspects of the Windows Installer
technology.

Now it is time to take a close look at the Windows Installer package that you created
with the Project Wizard in Chapter 2. Here we will go into the rudimentary details of
the installation package.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

99

Dissecting the Developer Art
Installation Package

This section examines the three major elements of the Basic MSI installation package
created in Chapter 2; the Summary Information Stream, the MSI database, and the
distribution image. You will become familiar with the Orca database-editing tool as
you use it to look at the package you created.

Figure 3-4: The build location for the Basic MSI installation package for the Developer Art
application.

First, navigate to the location where the installation package was created. This
location is shown in Figure 3-4.

This location under the MySetups folder is the default build tree the Project Wizard
created for you. Everything under the DISK1 folder is part of the distribution image.
If you wanted to distribute this application on a CD-ROM, you would copy
everything under the DISK1 folder to the CD-ROM. Now, however, we are
interested only in the file with the .msi extension. You will learn about some of the
other files in Chapter 4.

P A R T I T H E F U N D A M E N T A L S

100

The Developer Art Summary Information
Stream

To view the values that were placed in the Summary Information Stream property set
for the Developer Art Basic.msi MSI file, go to the DISK1 folder as shown in Figure
3-4 and right-click on the file. Select the Properties option and click on the Summary
tab in the dialog that appears.

Figure 3-5: The Summary Information Stream property values for Developer Art Basic.msi.

Ensure that the advanced view is showing. You should see what is shown in Figure 3-
5. Computers not running the Windows 2000 operating system will display a different
Properties dialog than the one shown in Figure 3-5. The following section covers the
properties shown in Figure 3-5 and discusses what the values means and why they are
there. The names of the four required properties are underlined.

Title: The Title property briefly describes the type of installer package. Microsoft
recommends such phrases as "Installation Database" or "Transform" or "Patch"
for the value of this property. As shown, InstallShield Developer uses the
recommended string from Microsoft. The only purpose that this property serves

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

101

is to inform anyone who is unfamiliar with the .msi extension the purpose of this
file type.

Subject: This summary property identifies to the Windows Explorer the product
that can be installed using the logic and data in the Windows Installer installation
package. This value was set from the Application Name entry you made in the
Application Information panel in the Project Wizard.

Category: The Category property is not part of the Windows Installer Summary
Information Stream property set. That is why the value for this property is blank.

Keywords: Windows Explorer uses this property when someone wants to
perform a keyword search on the system for a special type of file. The default set
of keywords used by InstallShield Developer is shown in Figure 3-5 but it can be
modified to add such things as the name of the application. It is up to the setup
developer what they want for the value of this property. Note that a comma is
used to separate different keywords.

Template: The Template property indicates the platform and language versions
supported by the MSI database. This is one of the four required property values
that need to be set. The syntax of the this property information is:

[platform property][,platform property][,...];[language id][,language id][,...].

The valid values for the platform property are Alpha, Intel, and Intel64. Note that
the Alpha platform is not supported by Windows Installer version 1.1 or later. If
the platform of the target machine does not match one of the platforms
specified, the Windows Installer will not process the installation package. If a
platform is not specified, then this implies that the package is platform-
independent.

Entering 0 in the language ID field of this property, or leaving this field empty,
indicates that the package is language neutral. By default, InstallShield Developer
makes the string "Intel;1033" the value of this property. This means that it will
install only on an Intel-based machine and that the language supported by the
MSI database is English.

Page Count: For an installation package, the Page Count property contains the
minimum installer version required. This is one of the four required property

P A R T I T H E F U N D A M E N T A L S

102

values. For example, to specify that Windows Installer version 1.0 is acceptable;
this property must be set to the integer value of 100. For 64-bit Windows
Installer Packages, this property must be set to the integer 200 since earlier
versions do not support 64-bit Windows. The formula for determining the
correct value for this property is to multiply the major version by 100 and then
add the minor version without the decimal point. Remember that the only type of
numerical value supported by the Windows Installer is either 2-byte or 4-byte
integers.

Word Count: This property is a bit field consisting of three bits. The purpose of
this property is to indicate the type of source file image. This is one of the four
required property values. The possible values for this property are given below:

Value Meaning

0 The source files are uncompressed and long file names are
used.

1 The source files are uncompressed and only short file names
are used.

2 The source files are compressed and long file names are
used.

3 The source files are compressed and only short file names
are used.

4 The source files are in an administrative image and long file
names are used.

5 The source files are in an administrative image and only
short file names are used.

For the Developer Art application the value is set to 0. This means that you are
using an uncompressed set of source files and that this application can be
installed only on a system that supports long file naming. If an installation
package had a combination of compressed and uncompressed files, this value

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

103

would be set to 0 and the File table would mark which files were compressed. By
definition, an administrative image is uncompressed.

Character Count: This property is not used in MSI files so it is Null for the
Developer Art installation package.

Comments: This property conveys the general purpose of the installer database.
By convention, the value for this summary property is set to "This installer
database contains the logic and data required to install <product name>." <product
name> is the name of the product being installed. In general, the value for this
summary property changes only in the product name, nothing else. InstallShield
Developer puts in a default string, which you need to change in the IDE in order
to conform to this convention.

Source: This is not a property that is in the Windows Installer Summary
Information Stream property set.

Author: The value of this property is the name of the company that created the
application that is being installed by the MSI package. This value is set from the
Company Name field of the Company Information panel in the Project Wizard.

Last Saved By: The Windows Installer sets this property to the name of the user
that is logged on to the system during an administrative installation. The installer
never uses this property and a user never needs to modify it. Setup developers
can use this property to track the last person to modify the database. This
property should be left set to Null in a final shipping database. InstallShield
Developer uses the value of the RegisteredOrganization registry entry to set this
property.

Revision Number: This property contains the value of the package code for the
Windows Installer package. This is one of the four required property values. The
package code is a globally unique identifier (GUID) that uniquely distinguishes
this particular package from any others. A GUID is a unique 128-bit number that
is guaranteed to be unique and never duplicated anywhere else in the world. This
is the same type of identifier that COM uses for class IDs and many other
purposes. This identifier is used in the standard registry format, which consists of
a number of sequences of hexadecimal values separated by dashes (-). The final
form of this identifier is to surround the hexadecimal values with curly braces

P A R T I T H E F U N D A M E N T A L S

104

({}). We will see that the GUID is used in many places in the Windows Installer
to make things unique.

Application Name: The name of this property in the Windows Installer
Summary Information Stream is "Creating Application". This property identifies
the application that created the Windows Installer installation package. In general
the value for this summary property is the name of the software used to author
the database.

Date of Creation: The name of this property in the Windows Installer Summary
Information Stream is "Create Time/Date". The value of this property is the date
on which the installation package was created.

Date Last Saved: The name of this property in the Windows Installer Summary
Information Stream is "Last Save Time/Date". This property conveys the last
time the installer database was modified. Each time a user changes an installation,
the value for this summary property is updated to the current system time/date at
the time the installer database was rebuilt.

Last Printed: This property can be set to the date and time during an
administrative installation to record when the administrative image was created.
For non-administrative installations this property is the same as the "Create
Time/Date" property.

These are the Windows Installer Summary Information Stream properties that are
displayed on Windows 2000 in the Windows Explorer properties dialog. There are
two additional properties that are not displayed.

Codepage: This property is the numeric value of the ANSI code page used for
any strings that are stored in the Summary Information Stream. This does not
have to be the same code page for strings in the installation database. The
Codepage property is used to translate the strings in the Summary Information
Stream into Unicode when calling the Unicode API functions. This property
must be set before any string properties are set in the Summary Information
Stream.

Security: This property identifies whether the package should be opened as read-
only. A database-editing tool should not modify a read-only enforced database
and should issue a warning at attempts to modify a read-only recommended

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

105

database. The following values of this property are applicable to Windows
Installer files.

Value Meaning

0 No restriction.

2 Read-only recommended.

4 Read-only enforced.

You can also view some of the Summary Information Stream property values using
Orca by doing the following:

1. Right-click on the Developer Art Basic.msi file and select Edit with Orca,
to open the MSI database in Orca.

2. From the View pull-down menu, select the Summary Information
option. The Summary Information option displays several of the
properties, although not all of the properties that are shown in Figure 3-5.

Next, we will look at the database tables that are required to describe the operations
that are necessary to install the Developer Art application.

The Database Tables
As you look at the Developer Art Basic.msi file in Orca, note that there are 30
permanent tables and 1 temporary table in the database that contain one or more
rows. You can distinguish permanent from temporary tables by the fact that
temporary tables have a leading underscore (_) as part of their name. In this section,
we will look at each of these tables and see what information is in them and how that
information is used during an installation. To make this investigation easier, we can
group these 31 tables in seven categories. Because this is a relational database, some
tables appear in more than one category. The definitions of these seven categories
follow:

P A R T I T H E F U N D A M E N T A L S

106

Application Design Tables: The tables in this category are used to define the
feature and component structure of the application. Remember that features are
the end user’s view of the application as seen in a custom setup dialog and
components are the developer's view of the application. Components contain the
files that are copied to the target system.

File Copy Tables: These tables define the information that is necessary to move
the required files from the distribution media to the target machine. Considering
that you might have compressed and uncompressed files, as well as files that are
not copied but run from the distribution media, this is not as simple as it may
appear on the surface.

Registry Entry Tables: These tables define the registry entries that are required
during the installation. Most installations make numerous entries for COM,
uninstallation information, product information, and other items. The registry is
considered the replacement for the initialization files that used to be used by
applications.

Installation Procedure Tables: There is a set of tables that is used to control
the operations carried out during an installation. The tables in this category
instruct the Windows Installer when to perform a particular operation.

User Interface Tables: Most installation programs need to provide a user
interface. The user interface leads the person performing the installation through
the steps required to initialize the environment so the installation can be
completed successfully. The tables in this category are used to design the user
interface necessary for a particular product.

Desktop Integration Tables: One of the final things that most installation
programs need to do is to expose the application to the end user. This is normally
done through the creation of shortcuts at various locations in the operating
system shell, file associations, and MIME types. The tables in this category define
this operation.

Installation Validation: The one temporary table mentioned above is used to
perform a validation on the database. It is always a good idea to run a validation
on the installation database before shipping a product. In fact, it is required to
pass Microsoft's validation suite as the first step in meeting the requirements for
obtaining the "Certified for Windows" logo.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

107

We have discussed the definition of the various categories of database tables needed
for the installation of the Developer Art application. We now need to get into the
details of each of these categories. Before we do, however, we need to discuss the
syntax used in the database schema diagrams that are used to discuss the various
categories of tables.

Database Schema and Relationship Diagrams

The syntax that is used to illustrate the schema of the tables in the database and the
relationship between tables is shown in Figure 3-6.

Figure 3-6 depicts that a table will be shown with its name at the top with the names
of the columns that make up the primary key shown in a rectangle at the top. Below
the rectangle that contains the primary key are the remaining columns in the table.
Beside each column name, the type of data that goes into the column is indicated. To
the right of the data type is an indicator of whether a Null entry for the column is
acceptable.

We will not go into a lot of detail about the different data types that appear in the
database schema diagrams. Just remember that, at the lowest level, there are only
three basic data types: strings, integers, and binary streams. You can look at the
Windows Installer help file for definitions of the various data types. You can access
this help file using the InstallShield Developer Help pull-down menu or with the
Windows Installer SDK under the Help folder.

One data type in particular is very common. This is the Identifier data type that is
used in many tables as the primary key for the table. This data type is a text string with
certain restrictions. Identifiers may contain the ASCII characters A-Z (a-z), digits,
underscores (_), or periods (.). However, every identifier must begin with either a
letter or an underscore and it cannot contain any spaces.

The database table shown in Figure 3-6 has two columns designated as foreign keys
into some other table or into the same table. When an underscore is used as part of
the column name, it indicates that the entry in this column is a foreign key. Most of
the time a following underscore indicates a key into another table. When the
underscore is in the middle of the column name, this indicates that this key is a
reference back into the same table. This syntax does not hold 100% of the time but
most of the time it is accurate.

P A R T I T H E F U N D A M E N T A L S

108

Figure 3-6: Approach used to illustrating the database schema.

Below the diagram of the database table in Figure 3-6 is a representation of how the
relationship between tables is shown. Most relationships between tables are a one-to-
many relationship. There are some relationships that are one-to-one but there is never
a many-to-many relationship permitted in a relational database. A many-to-many
relationship is always turned into a one-to-many relationship by the introduction of
an additional table.

Now we are ready to look at the database tables that were used to install the
Developer Art application.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

109

The Application Design Tables

In these tables the design of the application is defined. The four tables in this category
are the Feature, Component, FeatureComponents, and Directory tables. The
relationship between these tables is shown in Figure 3-7.

When you design an application, you begin by defining the functionality that the
application will provide the person who purchases or uses the product. Next, you
group the total functionality of the application into features so that the end user has a
choice of whether they want all the functionality or only part of it. The set of features
that compose the total functionality of an application is the logical structure of the
application. This logical structure of an application can be a hierarchy where features
have sub-features and the sub-features have sub-features and so on. This hierarchy is
the feature tree for the application. The fact that features can have sub-features is
indicated by the one-to-many relationship that the Feature table has with itself.

After defining the logical structure of the application, you then need to create the
physical design that will provide the capability as defined by the feature set. The
physical design consists of files, registry entries, shortcuts, and other items that
comprise what are called components. When the components are created you then
have to decide which components are required to implement the functionality of each
of the features. Often a component will be needed by more than one feature in order
to fulfill its promise of functionality to the end user. In this situation, the components
are shared between features of the application.

A situation where many features can share the same component and many
components can be used by the same feature is a many-to-many relationship, which is
not allowed in a relational database. When a many-to-many relationship appears in
the design of a relational database, you need to add an additional table to turn this
many-to-many relationship between the two tables to a one-to-many relationship with
a third table. This is shown in Figure 3-7 where the relationship between the Feature
table and the Component table is implemented through the FeatureComponents
table. Figure 3-7 shows that both columns in the FeatureComponents table define the
primary key for the table.

P A R T I T H E F U N D A M E N T A L S

110

Figure 3-7: The schema of the application design database tables.

The other table that is part of the Application Design Tables category is the Directory
table. It may seem a little strange that this table is part of this category and not part of
the File Copy category of tables. The reason is that both the Components and the
Feature tables have an association with the Directory table. Files are not copied unless
the Component with which they are associated is installed. Figure 3-7 shows that the
Directory_ column in the Component table is a column that is not allowed to be
Null. In other words, all components must have a defined destination on the target
machine and that location is defined in the Directory table. The purpose of this
reference from the Component table to the Directory table is to enable the copying
of files during the installation process.

If you look at the Feature table, you can see that the Directory_ column in this table
is allowed to be Null. It is certain that the purpose of this reference from the Feature
table to the Directory table is not for copying files. The reason that features can
reference an entry in the Directory table is to enable browsing for the location where
the feature is to be installed. Typically, in small applications, all features reference the
same entry in the Directory table. When the end user browses for an installation

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

111

location for a particular feature, they are actually setting the root location for the
whole application. Browsing is normally a function provided in the custom setup
dialog of an installation's user interface.

Figure 3-7 shows that the Directory table has a one-to-many relationship with itself.
This is because directory structures are trees and as such, folders have sub-folders,
and so on. The Directory table is one of the more complicated tables in the Windows
Installer database. It has to identify both the destination on the target machine and
the source location on the distribution media for the purpose of copying files. We will
discuss more about how the Directory table works when we get into the how the
Windows Installer runs an installation package later in this chapter.

We need to now take a look at what the Project Wizard did with these four tables for
the Developer Art application. Remember that throughout the Project Wizard there
was no explicit reference to components, only features. When you look at these
tables, you can see that the Project Wizard was creating components and giving them
default names. It was also creating these components using the rules defined by
Microsoft for the proper creation of components. The term that is used by
InstallShield Developer for these componentization rules is "Best Practices".

A list of the rules defined by Microsoft for creating components is given below:

1. Every EXE, DLL, and OCX file needs to be in its own component and
this file has to be designated as the key path for the component.

2. Every HLP and CHM file needs to be in its own component. These files
need to be designated as the key path for the component. The associated
CNT and CHI files need to be added to the component that is installing
their associated HLP or CHM file.

3. Never create a component for a file and other resources that is already
available in a merge module. Merge modules are discussed in Chapter 14.

4. Every file that serves as the target of a shortcut needs to be in its own
component. The target of the shortcut needs to be designated as the key
path for the component.

5. Do not install the same resource with two different components. This
means files, registry entries, and shortcuts.

P A R T I T H E F U N D A M E N T A L S

112

The above rules can be considered strong guidelines. If you know what you are
doing, you can sometimes break them. It is best to follow these rules unless there are
overwhelming reasons to break them. At this time, "Best Practices" include only the
first three rules listed. A more detailed discussion of creating components is provided
in Chapter 13.

The best way to take a look at these tables as populated by the Project Wizard is to
open up the Developer Art Basic.msi file using Orca. From Orca, you can view the
database directly and examine the entries in each column of each row. We will only be
going to this level of detail with this particular category of tables. This is because this
particular set of tables is so important to understanding what you are doing when you
create an installation package.

THE FEATURE TABLE

The first table that we will look at is the Feature table. Figure 3-8 shows the rows in
the Feature table as displayed in Orca.

Figure 3-8: The Feature table as created for the Developer Art application.

The following list discusses the entries made by the Project Wizard in each of the
columns of the Feature table. Since many of these entries deal with how the features
are displayed in the custom setup dialog, Figure 3-9 provides a screen capture of this
dialog. This will be very handy to refer to as the entries in the Feature table are
discussed.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

113

Figure 3-9: The custom setup dialog in the Developer Art installation user interface.

Feature: This first column of the Feature table shows the names that were
created by the Project Wizard when you entered the display name for each
feature in the Application Features dialog. Since the first column is the primary
key for the Feature table, these names have to be unique. The Project Wizard
would not have created two identical strings. These entries had to conform to the
rules for the Identifier data type so this is why these names cannot contain spaces.

Feature_Parent: Figure 3-8 shows one entry in this column. This entry defines
that the Docs feature is a sub-feature of the MainProgram feature.

Title: This column contains the names that are displayed in the custom setup
dialog. As shown in Figure 3-9, these names are what you entered in the
Application Features dialog of the Project Wizard.

P A R T I T H E F U N D A M E N T A L S

114

Description: This column contains a description for the feature that will be
displayed in the custom setup dialog. In Figure 3-9 there is a static text field inside
of a group box with the title Feature Description. When an end user highlights a
feature, the description entered in this column is displayed in this static text field.
You need to use the IDE to enter a description for each feature. What you are
seeing in Figure 3-9 is a display of the disk size required by the highlighted
feature. When you enter a description for each of these features it will be
displayed above the text showing the disk size.

Display: The value in this column determines how the feature tree is first
presented when the custom setup dialog is launched. If the value is zero, the
feature is hidden and not displayed. If the value is odd, the feature tree is
expanded when it is first displayed. This is significant only if there are sub-
features under the feature in question. If the value in this column is even, the
feature tree is initially collapsed. Figure 3-9 shows this feature tree expanded, but
when it was initially displayed it was collapsed because the value in this column is
even.

Level: This column defines an install level for a feature. Install levels are used to
implement simple setup types such as Minimal, Typical, and Complete. Every
Windows Installer defines an initial install level by setting the INSTALLLEVEL
property in the Property table to an integer value from 1 to 32,767. Any feature
that has a value in the Level column that is equal to or less than the value defined
by the INSTALLLEVEL property will be installed by default. A value of 0 for
this column disables the feature. The default value of 1 entered in this column is
the minimum value that is possible without disabling the feature. The default
value of the INSTALLLEVEL property is 100.

Directory_: This column is the foreign key into the Directory table that
designates the destination for the feature. The entry in this column for both
features is INSTALLDIR, which is initialized to the default destination folder
defined in the Application Information panel of the Project Wizard. In Figure 3-9
below the tree of features, there is a text field with the label “Install to”. This text
field displays the present location at which the INSTALLDIR property is
pointed. You can change this value by clicking on the Change button and
browsing to another location. Note that this does not affect the location to where
files are copied during installation unless the component destination is also set to
the INSTALLDIR property.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

115

Attributes: The entry in this column specifies the remote execution options that
are available for the feature. This also defines what the default remote execution
option will be, in case the end user does not perform a custom setup. To fully
understand this entry, you need to be aware of something called feature states.
There are four possible states for a feature:

� To be installed to run from the local hard drive.

� To be installed to run from the source media.

� To be advertised so that they are installed on first use.

� To not be installed; that is, the feature will be absent.

The value in this column for both features is 0 and this means that, by default,
these features will be installed to run from the local hard drive. Note that the
custom setup type dialog in a Standard project is slightly different in appearance
and functionality. In particular there is no ability to browse for a specific location
to install the feature. This is accomplished using a separate dialog box.

THE COMPONENT TABLE

In the Project Wizard, when you added files to the two features that you created in
the Application Features panel, the Project Wizard created components for you.
When a file falls into one of the categories defined by the "Best Practices" rules from
Microsoft, the component takes on the name of the file that it contains. This file is
also made the key path of the component. When a file does not fall under the "Best
Practices" rules, such as a text file, the file is placed in a component named
AllOtherFilesX where the X represents some sequential number depending on the
number of these types of components created. Remember that the component name
is the primary key for the Component table and there cannot be duplicate primary
keys in any table.

To look in detail at the entries in the Component table for the Developer Art
installation database, open the Developer Art Basic.msi file in Orca and select the
Component table. The entries for this table are shown in Figure 3-10.

P A R T I T H E F U N D A M E N T A L S

116

Figure 3-10: The Component table as created for the Developer Art application.

The following list explains each of the entries made in this table.

Component: This column is the primary key for the Component table. The
entries in this column are the Identifier data type and they all have to be different.
As described above, the Project Wizard gave the components it created default
names that either come from the name of the key path file in the component or
follow the AllOtherFilesX format.

ComponentId: This is a very important column because components are
registered on the target system through the ComponentId. Here is another
instance where a GUID is used. The first instance was in the Summary
Information Stream where it was used to make the installation package unique
from all other packages. In this case, the GUID is used to make components
unique from one another. The GUIDs here for these components were created
when you ran the Project Wizard and added files to the features. If you recreated
the installation package and added the same files to the same features, a
completely different set of GUIDs would appear in the Component table. We
will spend a lot of time on this subject in Chapter 13 because the subject of
component IDs is so important.

Directory_: This column contains a foreign key into the Directory table just as in
the Feature table. Here, however, this reference into the Directory defines the
location where the files in the component will be copied as long as the
component is installed to the local machine. By default the Project Wizard makes
the value in this column the same as the destination folder for the associated
feature. This may not always be what you want and, in those cases, you need to
make changes in the IDE.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

117

Attributes: This column defines the remote execution options for the
component in a very similar fashion as for features. In fact it is this attribute in
coordination with the same column in the Feature table that defines what options
are available for features in the custom setup dialog. However, this column
defines more than just the remote execution options for the component. We will
see more of this in Chapter 5.

Condition: This column can contain a conditional statement that controls
whether the component is installed. A Null entry in this column is the same as
having a condition that evaluates to TRUE. In the Project Wizard there was no
opportunity to enter a condition statement so if it is necessary to condition the
installation of a component, it has to be done in the IDE.

KeyPath: It is through the value in this column that the Windows Installer
knows that the component was installed on the target system or was installed to
run from source. For the files that come under the "Best Practices" rules, the
entry in this column is the name of the file with the .exe, .dll, .ocx, .hlp, or .chm
extension. For components that do not come under the "Best Practices" rules the
key path can be the name of a file in the component, it can be a registry entry, a
folder, or an ODBC data source name. If this column is left Null, then the key
path by default is the folder into which the component is installed. For the
Developer Art installation database the three components that were created
according to the "Best Practices" rules have the name of the file in this column.
For the other components this column is left Null so that the installation folder
will be the key path that is registered at the time of installation.

THE FEATURECOMPONENTS TABLE

The FeatureComponents table shows which components in the database are
associated with which features (Figure 3-11). For the Developer Art installation this
means there are five rows in this table.

Note that both columns form the primary key so this table cannot be built with a
Null value in either column. Also note that it is impossible to assign the same
component more than once to the same feature because this then would create a
duplicate primary key.

P A R T I T H E F U N D A M E N T A L S

118

Figure 3-11: The FeatureComponents table as created for the Developer Art application.

THE DIRECTORY TABLE

The fourth and final table in the Application Design category is the Directory table
(Figure 3-12).

Figure 3-12: The Directory table as created for the Developer Art application.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

119

This table is one of the more complex tables in the database. We will get into all the
details of this table when we discuss the operation of the Windows Installer later in
this chapter.

The first two columns of this table are identifiers and the Directory_Parent column is
a key back into the Directory column. During an installation, the Windows Installer
assesses the amount of disk space required by the application being installed. During
this operation the Directory table is resolved. What this means is that every entry in
the Directory column of the Directory table is resolved to have an absolute location
on the target machine. Also, every entry in the first column has an absolute location
on the distribution media. In other words every identifier in the Directory column of
the Directory table provides both the source and destination locations required to
perform the file copy operation. How this resolution operation is implemented is
discussed in the section entitled How Does The Windows Installer Perform an Installation?

The File Copy Tables
There are only three tables in this group and one of them we have already covered as
part of the Application Design set of tables. The tables in this category are the File,
Component, and the Media tables. The duplicate table from the previous category is
the Component table. The relationship between these tables is shown in Figure 3-13.

The File table lists all the files in an application and it has a one-to-many relationship
with the Component table, as shown in Figure 3-13. This relationship indicates that
there can be many files in a component, but more than one component cannot install
the same file as defined by the identifier in the first column of the File table. In other
words files can be shared among components. This is in accord with rule number five
for creating components, which says that the same resource cannot be installed with
two different components.

What is interesting about this is that, in the File table, the name of the file is not the
primary key. It is an identifier instead. The name of the file is provided in the
FileName column and this column is not part of the primary key definition. It is
possible to create two different identifiers for the same file name and thus share the
same file name among different components. This is only applicable if two files have
the same name but they are actually different files. As an example, an installation
might have two Readme.txt files with one of them in English and one of them in
German.

P A R T I T H E F U N D A M E N T A L S

120

Figure 3-13: The schema of the file copy database tables.

In Figure 3-13, the Directory table does not appear as a member of this category of
tables. Without the Directory table how does the installation know where to copy the
files listed in the File table? The answer is that the File table connects to the Directory
table through the Component table. A file listed in the File table will be copied to the
destination of the associated component if that component is going to be installed. A
component is installed if the associated feature is to be installed and the condition on
the component evaluates to TRUE.

Figure 3-13 shows that the Media table has no direct relationship with either the File
table or the Component table. The purpose of the Media table is to describe the disk
set that makes up the distribution media for the application. Each disk in the
distribution media has a row in the Media table and the rows have to be in the order
of the disk numbers. When an application is composed of more than one disk, the
file copy mechanism needs to know on which disk each of the files is located. This is
accomplished through the entry in the LastSequence column. In the Media table’s
first row, the value in the LastSequence column is the value from the Sequence
column of the File table for the last file that is being shipped on the first disk. In the
second row of the Media table, the value in the LastSequence column is the value
from the Sequence column of the File table for the last file on the second disk. The
files on the second disk then will include all the files listed in the File table that have

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

121

sequence numbers greater than the LastSequence value in the first row of the Media
table and less than or equal to the LastSequence value in the second row of the Media
table.

Even though there is no database relationship between the Media table and the File
table, there is a functional relationship. When building the distribution image for a
multi-disk application, the values entered into the File table have to be synchronized
with the values that are entered into the Media table.

THE FILE TABLE

The rows created in the File table for the Developer Art application are shown in
Figure 3-14.

Figure 3-14: The File table as created for the Developer Art application.

Figure 3-14 shows that the Project Wizard uses the name of the file as the primary
key. If a file name has spaces in it, the space is replaced with the underscore (_)
character before it is used as the primary key. The second column identifies the
component that will install the file. The values in the Version and Language columns
are extracted from the version resource of the file. When a file does not have a
version resource, these columns are left Null unless you launch the project’s
Properties dialog and add your own version and language that will then be built into
the File table. You can access the Properties dialog from the Application Files panel
in the Project Wizard by right clicking on a file and selecting the Properties option.
This operation was covered in Chapter 2.

The Attributes column is where the attributes for the file are specified. For example,
if a file is to be Read-Only after it is installed, this is where that attribute is specified.
The Project Wizard assigned an attribute of 8192 for all the files in the Developer Art
installation package. This attribute value means that the files are in an uncompressed
format on the distribution media. The final column of the File table shows the

P A R T I T H E F U N D A M E N T A L S

122

sequence in which the files will be copied to the target system. It also identifies on
which disk of the distribution media the file resides, as discussed above.

THE MEDIA TABLE

Because the Developer Art application is so small it requires only one disk to hold it,
there is only one row in the Media table (Figure 3-15).

Figure 3-15: The Media table as created for the Developer Art application.

The entry in the DiskId column for this one and only row is 1. Since there are only
four files that make up this application and the largest value in the Sequence column
of the File table is 4, the value in the LastSequence column of the Media table is also
set as 4. In the DiskPrompt column, the Project Wizard has inserted the number 1.
This column has a Text data type and, as such, this column can be modified to be a
string that matches the text printed on the disk. This text string is used to prompt the
user when this particular disk is required. The Cabinet column is Null because the
files are not compressed into a cabinet file. The VolumeLabel column contains the
text string DISK1. However, this column has no meaning if there is only one disk in
the distribution media. This column is used to verify that when a user has been
prompted to put in the next disk that the correct disk has been inserted.

The Registry Entry Tables
There are seven tables in this category. They are the Registry, Class, Progid, TypeLib,
Feature, Component, and Directory tables. These are not the only tables that make
entries in the registry but they are the only ones that come into play for the Developer
Art installation package. Figure 3-16 shows the schema diagram for this category of
tables.

All the registry entries that are required for the Developer Art application relate to the
fact that the ArtWork.dll file is a COM server. This topic is covered in depth in
Chapter 14, so it is not necessary to look at the COM-related registry entries required

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

123

for this particular file. Note, however, that once again some of the tables from the
Application Design category appear in this category. The Application Design tables
are the core tables of an installation database.

Figure 3-16: The schema of the registry entry database tables.

P A R T I T H E F U N D A M E N T A L S

124

The Installation Procedure Tables
There are eight tables in this group and all of these tables are used to control the
installation process. Six of these tables are called the sequence tables. The other two
tables in this category are the Property and CustomAction tables. The schema
diagram for all of these tables is shown in Figure 3-17.

Figure 3-17: The schema of the installation procedure database tables.

Understanding these tables requires a brief introduction to the how the Windows
Installer implements an installation after the MSI package has been passed to it.

The Windows Installer knows how to implement three types of installations. These
three types of installations are called top-level actions and one of these top-level
actions is implemented depending on what command line arguments are passed to
the Windows Installer engine. There are two sequence tables that come into play for
each of the three top-level actions thus the need for a total of six sequence tables in
the database. As shown in Figure 3-17, each sequence table has three columns with
the names Action, Condition, and Sequence. The following list provides the names of
the three top-level actions and the names of the two sequence tables that come into
play for that top-level action.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

125

INSTALL: This top-level action is called to install or remove components. This
action queries the InstallUISequence table and the InstallExecuteSequence table
for the actions to execute, the condition for action execution, and the place of the
action in the sequence of actions.

ADMIN: This top-level action is called to perform an administrative installation.
This action queries the AdminUISequence table and the AdminExecuteSequence
table for the actions to execute, the condition for action execution, and the place
of the action in the sequence of actions.

ADVERTISE: This top-level action is called to install or remove advertised
components. This action queries the AdvtUISequence table and the
AdvtExecuteSequence table for the actions to execute, the condition for action
execution, and the place of the action in the sequence of actions. For this top-
level action, the Windows Installer does not use the AdvtUISequence table. It is
in the database schema for purposes of symmetry only. Advertising refers to the
installer's ability to provide the launching interfaces of an application without
physically installing the application. The installer does not install the necessary
components until a user or application activates an advertised interface. This
concept is called install-on-demand.

The UI sequence tables allow three types of actions. These are standard actions,
custom actions, and dialogs. In the execute sequence tables, only standard actions and
custom actions are permitted. The Windows Installer executes the actions listed in the
Action column of a sequence table in the order of the sequence number in the
Sequence column. The action is executed if the condition in the Condition column
evaluates to TRUE. A Null entry in the Condition column is considered a TRUE
condition.

Standard actions can be considered the built-in functions provided by the Windows
Installer. Custom actions provide a way for setup developers to extend the
functionality of the Windows Installer. Dialogs are the user interface as defined in the
various tables of the database. Figure 3-18 shows the InstallUISequence table in the
Developer Art installation database. The Project Wizard creates the entries in the
sequence tables based on a default recommended by Microsoft.

P A R T I T H E F U N D A M E N T A L S

126

Figure 3-18: The InstallUISequence table as created for the Developer Art application.

The Property table contains the global variables of the installation package. There are
two major types of properties, private and public. A screen capture of part of the
Property table for the Developer Art installation database is shown in Figure 3-19.

The Property column of this table contains some names that are mixed-case letters
and other names that are in all upper-case letters. The property names that are in
mixed-case letters are called private properties and the properties that have all upper-
case letters are called public properties. One of the major uses of public properties is
that they can have their values set at the command line whereas private properties
cannot. We will discuss more about properties and their uses throughout the book.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

127

Figure 3-19: The Property table as created for the Developer Art application.

Even though Figure 3-19 shows many properties in the Property table, there are only
five properties that are required for each installation database. These required
properties are the ProductCode, ProductLanguage, Manufacturer, ProductVersion,
and ProductName properties. The ProductCode property is a GUID that is created
by the Project Wizard. The ProductLanguage property is defaulted to English, and
the other three properties are set by the entries that were make in the Application
Information and Company Information panels in the Project Wizard.

Finally, the CustomAction table is where all user-defined actions are listed. For the
Developer Art application the Project Wizard inserts three custom actions as shown
in Figure 3-20. The Project Wizard inserts the ISInitAllUsers custom action in order
to make the default a per-machine installation. This is done because on the General
tab in the Options dialog the "Automatically create ISSetAllUsers action" is selected
by default and you did not deselect this before running the Project Wizard in Chapter
2. The other two custom actions are placed in the CustomAction table in case you

P A R T I T H E F U N D A M E N T A L S

128

want to enable the InstallShield Update service. When you ran the Project Wizard in
Chapter 2 you deselected this option so these custom actions are not inserted into the
any of the sequence tables.

Figure 3-20: The CustomAction table as created for the Developer Art application.

The User Interface Tables
Since Chapter 12 is devoted to the creation of the user interface for installation
packages, this section provides just a brief discussion of the schema diagram for the
tables that came into play for the Developer Art installation package. There are other
tables in the database that relate to the creation of a user interface and but they are
not used for the Developer Art installation user interface.

Ten tables were required to define the user interface for the Developer Art
installation. Figure 3-21 shows the schema diagram for these tables. One of the first
impressions that you might have from looking at the diagram in Figure 3-21 is that
the creation of a user interface inside the database is very complicated. It is
complicated, but the Dialog Editor in InstallShield Developer makes it easier by
doing most of the work for you. However, you need a solid understanding of the user
interface tables in order to create new dialogs or modify existing dialogs.

This section introduces the user interface tables shown in Figure 3-21. Most of these
tables are already populated with values prior to running the Project Wizard. These
tables are built in to the templates that are used to create projects generated by the
Project Wizard, as well as new projects created directly in the IDE.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

129

Figure 3-21: The schema of the Developer Art user interface database tables.

P A R T I T H E F U N D A M E N T A L S

130

The following list describes each of the tables shown in Figure 3-21.

ActionText Table: The ActionText table contains text that is displayed in the
progress dialog box, which informs the end user of the installation’s progress.
The text strings that are displayed in the progress dialog can also be written to a
log file if one is created during the installation. The first column of this table is the
name of an action. When the Windows Installer executes the action listed in this
column, the description in the second column is displayed. For this description to
be displayed it is necessary to author some rows in the EventMapping table.

Figure 3-22: The progress dialog for the Developer Art installation.

This will be covered in greater detail in Chapter 12 on creating the user interface.
The third column of this table, if used, can display data messages about the action
that is running. For example data messages can be file names, file sizes, and
directory names. The default user interface that is created by InstallShield

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

131

Developer does not enable the display of data messages for any actions, but it
does show the description associated with each action in this table (Figure 3-22).

Binary Table: The Binary table holds all the graphics used in the user interface.
This table can hold many other items but, by default, the graphics used in the
dialogs provided by InstallShield Developer are always in this table. They are
included in this table as binary streams. When the Windows Installer displays a
dialog that contains a graphic image, it streams this image directly out of the
Binary table into the dialog control that is used to hold the image. No
intermediate file is created.

Control Table: The Control table defines the controls that appear on each dialog
in the user interface. The Windows Installer implements a number of standard
controls that setup developers can place on a dialog. However, not all standard
Microsoft Windows controls are available and custom controls cannot be created
for use with the Windows Installer user interface. A control is created from a
template recorded in the control table. This template is slightly different than
templates used in normal Windows user interface programming in that it contains
the unique name of the dialog box on which the control appears.

ControlCondition Table: The ControlCondition table enables you to specify
special actions to be applied to controls based on the result of a condition
statement. For example, the Next button can be conditioned so that under one
set of circumstances it displays one dialog, but under another set of circumstances
it displays a different dialog.

ControlEvent Table: The ControlEvent table allows you to specify what
happens when the end user interacts with any control within a dialog box. For
example, a click of a push button can be defined to trigger a transition to another
dialog box, to exit a dialog box sequence, or to begin the installation process.

Dialog Table: The Dialog table contains all the dialogs that appear in the user
interface. The process of creating a dialog box in Windows Installer is similar to
the process of creating a dialog box programmatically using a Microsoft Windows
API dialog box template. The Windows Installer stores the dialog box parameters
in the Dialog table. The Dialog table contains an attributes column that is
analogous to Window styles in the Microsoft Windows user interface API.
However, the number of Dialog Style Bits in Windows Installer is a reduced and
specialized set.

P A R T I T H E F U N D A M E N T A L S

132

Error Table: The Error table is used to look up error message formatting
templates when processing errors with an error code set. When a standard action
runs into a problem during an installation, it sends an error number back to the
Windows Installer. The Windows Installer locates the error in the Error table and
displays the error message that is entered in the second column.

EventMapping Table: The EventMapping table lists the controls that subscribe
to some control event and lists the attribute to be changed when the event is
published. The example that was discussed under the topic of the ActionText
table is what this table is used for. The main use of this table is to display
information in the progress dialog and in the custom setup dialog when the end
user highlights a feature name and the description, size, and destination are
displayed in static text controls in the dialog.

RadioButton Table: This table is used to define the radio button controls in all
radio button groups in the user interface. Note that the first column in this table
is the name of a property. It is this property that ties a particular set of radio
buttons together into a group. There are other similar tables for list box, combo
box, and list view controls. These types of controls are not part of the standard
set of dialogs that are available in a project. If these types of controls are required,
they have to be added using the InstallShield Developer Dialog Editor.

TextStyle Table: The TextStyle table defines the different font styles used in
controls that display text. You can define more styles as required. Text can be
defined in different colors, as well as different styles such as bold, italicized, and
underlined.

UIText Table: The UIText table contains the localized versions of some of the
strings used in the user interface. These strings are not part of any other table.
The UIText table is for strings that have no logical place in any other table. A
good example of where these strings are used is in the custom setup dialog where
the permissible install states for a feature can be selected by clicking on the down
arrow on the feature icon.

This has just been a brief introduction into what goes into creating a user interface
and defining it inside the database tables. The next section discusses the tables that
implement the integration of the application with the target machine’s desktop.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

133

The Desktop Integration Tables
Desktop integration is the operation that creates the means for the end user to easily
launch the application that was installed. This has to do with the creation of shortcuts
to the application's executable or executables. The most common locations to place
these shortcuts are on the Start\Programs menu and the desktop. If an application
has more than one shortcut these are commonly grouped together inside a folder that
is placed on the Start\Programs menu. There are four tables that are involved in the
creation of shortcuts during an installation (Figure 3-23).

Figure 3-23: The schema of the Developer Art desktop integration database tables.

There are only two new tables in this group of tables from what we have seen in the
other table groups. The Windows Installer has added a new type of shortcut that
provides a new way to integrate an application with the desktop. The standard
shortcut that has always been around is still available. The standard shortcut can be
edited to use a specific icon and to point to a particular target. The new type of
shortcut, called an MSI shortcut or an advertisable shortcut, is different in that it

P A R T I T H E F U N D A M E N T A L S

134

contains additional information about the application to which it points. This new
information contained in the shortcut is called a Darwin Descriptor List and it has
information about the product, features, and components that compose the product.
This new type of shortcut cannot be edited.

The tables that implement the creation of shortcuts during an installation are
discussed in the following list:

Shortcut Table: The Shortcut table contains the information the installation
requires to create the shortcuts on the target machine. Figure 3-23 shows that
there are foreign keys into the Directory, Component, and the Icon tables. The
link to the Directory table specifies in which folder the shortcut is to be created.
The link to the Component table indicates that the shortcut will be created only if
the component is being installed or removed if the component is being
uninstalled. The link to the Icon table indicates the binary stream that is used to
provide the icon for the shortcut.

The Target column of this table determines whether the Windows Installer
creates an MSI shortcut or a standard shortcut. The entry in this column can be
either a text string that evaluates to the absolute path to the shortcut’s target or it
can be a foreign key into the Feature table. When the entry in the Target column
is a foreign key into the Feature table, an MSI shortcut is created and the target of
this shortcut is the file identified as the key path of the component in the
Component_ column. Figure 3-24 shows on the left the Properties dialog for the
standard shortcut created by the Developer Art installation and on the right what
the shortcut properties would be if you had created an MSI shortcut. Remember
from Chapter 2 that the Project Wizard only creates standard shortcuts.

Looking at Figure 3-24 and comparing the two Properties dialogs that are shown
we can see that there are two major differences between a standard shortcut
shown on the left and an MSI shortcut shown on the right. The first of these
differences is that we can modify the target at which a standard shortcut points
but we cannot do this for an MSI shortcut. The second major difference is that
for a standard shortcut we can change the icon that is used but not for an MSI
shortcut. Also, if we were to compare the sizes of the two types of shortcuts we
would see that the MSI shortcut is larger. This is because only an MSI shortcut
can be advertised and the larger size is a result of the additional information that it
contains in order to support advertisement. Advertisement, however, requires
that a specific version of the shell be installed on the target machine. The versions

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

135

of the shell that come with Windows XP, Windows 2000, and Windows 98
support MSI shortcuts. Earlier operating systems need to have, at a minimum,
Internet Explorer 4.01 with service pack 1 installed in order to support MSI
shortcuts. If the shell does not support MSI shortcuts, the Windows Installer
creates a standard shortcut regardless of how it has been defined in the Shortcut
table.

Figure 3-24: The Developer Art shortcut Properties dialogs in Windows Explorer for both a
standard shortcut (left) and an MSI shortcut (right).

Icon Table: The Icon table is like the Binary table in that it holds files as binary
streams. In this case the binary streams consist of files that are icon files or
resource files that contain icon resources. In Windows Installer the icons used for
shortcuts need to be in separate files because of advertisement. When the icon is
used for a shortcut the icon has to be in a file that has the Portable Executable
(PE) format such as an executable or a dynamic link library. There is one more
rule that needs to be followed for this resource file and that is the extension of
the resource file has to be the same as the extension of the file that is the target of
the shortcut. Remember that when an application is advertised the application is
registered in the registry but no files are copied to the target system. However, for
the advertised application to display a shortcut with an associated icon on the

P A R T I T H E F U N D A M E N T A L S

136

Start\Programs menu there needs to be an icon source copied to the system.
This icon source comes from the Icon table.

The Installation Validation Table
The Validation table is the only temporary table that is left in the database after a
build of the installation package is completed. The purpose of this table is to enable
the running of an internal validation and an internal consistency evaluation (ICE).
This table contains the column names and the allowable column values for all the
tables in the database. Figure 3-25 shows the schema diagram for this table.

Figure 3-25: The schema of the _Validation database table.

When authoring an installation database programmatically, this table makes it
impossible to build the database incorrectly relative to the type and values of data
placed into each column. This validation happens at build time and, if things are not
correct, a build error is generated. The internal consistency evaluation (ICE) occurs
after the build is complete. You have to initiate the internal consistency validation by
using one of the various validation suites created by Microsoft. You can run the
internal consistency evaluation from the InstallShield Developer IDE by accessing
the Validation option from the Build pull-down menu (Figure 3-26).

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

137

Running a successful validation is required for any application to receive the
"Certified for Windows" logo. If you want this logo, but do not determine whether
your application can be validated without error before submission of your application
for testing, then you could lose money if the application gets to VeriTest and it fails to
pass validation. This is the first test that is run on the application and, if it fails, no
further testing is done. Even if you are not interested in obtaining the logo, it is highly
recommended that running one of the validation suites become part of your build
process. Validation can catch many items that cause problems for the end user.

Figure 3-26: The Validation option on the Build pull-down menu.

Internal consistency evaluation is implemented by the creation of internal consistency
evaluators that are stored in an ICE database. An ICE database is stored in an MSI
database that has a .cub extension. An ICE is a custom action that interrogates the
database in order to find incorrect relationships between tables. Microsoft has
provided many ICEs but it is also possible to create a custom CUB (pronounced
cube) database. There are three Microsoft-created CUB files: one for logo purposes,
one that is more complete and contains tests for newer tables, and one for merge
modules. To understand more about these validation routines, see the Windows

P A R T I T H E F U N D A M E N T A L S

138

Installer help file. The topic of creating internal consistency evaluators is outside the
scope of this book.

How Does the Windows Installer
Perform an Installation?

As discussed, the Windows Installer knows how to perform three different types of
installations as defined by the three top-level actions. This section examines the
INSTALL top-level action to see what happens during an installation or
uninstallation. Everything discussed here that relates to the process of the INSTALL
top-level action can be applied to the understanding of the ADMIN and the
ADVERTISE top-level actions.

When Windows Installer performs the INSTALL top-level action, the Windows
Installer first queries the InstallUISequence and the InstallExecuteSequence tables to
determine what actions need to be executed. For the ADMIN top-level action, the
Windows Installer queries the AdminUISequence and AdminExecuteSequence tables
for what actions need to be executed. For the ADVERTISE top-level action, the
Windows Installer queries only the AdvtExecuteSequence table for the actions that
need to be run. The AdvtUISequence table is empty and is only in the database
schema for the purpose of symmetry.

Before the details of the installation process as implemented by the Windows Installer
are discussed, we need to take a look at the mechanisms that can be used to launch an
installation.

Running the Windows Installer Engine
from the Command Line

The Windows Installer engine consists primarily of the msiexec.exe and msi.dll files,
which are installed in the %SystemRoot%\System32 folder. Which of the three top-
level actions the Windows Installer engine executes depends on the switch that is
passed to the engine on the command line. For the three top-level actions the
applicable command lines are shown below:

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

139

INSTALL Top-Level Action:

msiexec /i <path to MSI file> <UI Level switch> PROPERTY=value

ADMIN Top-Level Action:

msiexec /a <path to MSI file> <UI Level switch> PROPERTY=value

ADVERTISE Top-Level Action:

msiexec /j[m|u] <path to MSI file> <UI Level switch>

Note that for the INSTALL, ADMIN, and ADVERTISE top-level actions there is
something called the UI Level switch that can be placed on the command line. Also
note that you can set the value of public properties on the command line for the
INSTALL and ADMIN top-level actions. For the ADVERISE top-level action,
public properties cannot be set on the command line.

The switches used to identify which top-level action the Windows Installer needs to
implement are fairly self-explanatory. The only switch that might be confusing is the
/j for the ADVERTISE top-level action. Here the /j stands for just-in-time and the
optional modifier 'm' stands for advertising to all users of the machine and the 'u'
modifier stands for advertising to the current user only.

In the past, installations have either run with a complete set of dialogs that led the end
user through the installation process or they have run silently where there is no user
interaction possible and no indication that an installation is being run. The Windows
Installer introduced four user interface levels instead of just two The user interface
level used for a particular installation is important to how the Windows Installer
mechanism processes the MSI file. The following list provides a definition of the four
user interface levels.

Full: A full user interface level is where all authored modal and modeless dialogs
are displayed. Built-in modal error message dialogs are also displayed. This is the
default user interface level and no switch is required for running the installation
with this type of user interface level.

An authored dialog is one that is defined in the various database tables that deal
with the user interface. A built-in dialog is one that is displayed by the Windows
Installer from the dialog templates in msi.dll. A modal dialog is one where user

P A R T I T H E F U N D A M E N T A L S

140

interaction is required to close the dialog before the installation can continue. A
modeless dialog is one where the installation process can continue without
requiring the end user to close the dialog.

Reduced: A reduced user interface is one where only authored modeless dialogs
are displayed, such as the progress dialog. Built-in modal error message dialogs
are also displayed. The UI Level switch to implement this user interface level is
/qr. The 'q' stands for quiet and the 'r' stands for reduced.

Basic: A basic user interface level is one where only built-in modeless dialogs are
shown. In general this is the built-in version of the progress dialog that is
authored in the database. The switch for this user interface level is /qb where the
'b' stands for basic.

None: This is a completely silent installation that displays no dialogs. The switch
to obtain this user interface level is /qn.

There is another important command line switch that allows you to create a log file
while the installation is run. On the command line after the path to the MSI package,
you can use the /l switch followed by some modifiers, which will create a log file that
you also have to identify. There are many identifiers that can be used to log various
items during the running of the installation but the one that you will use most of the
time is the one that lets you log everything and have it logged in verbose mode. A
sample command line for implementing this type of logging is as follows:

msiexec /i <path to MSI file> /l*v "C:\Temp\install.log"

This command line generates a verbose log named install.log in the Temp directory
of the C: drive. Creating log files is a useful way to debug installation packages. An
installation logs all operations that the Windows Installer performs up to the very
point of the installation’s failure. Reading the log file is an excellent way to find out
where to start looking for the problem.

The above introduction to running the Windows Installer engine from the command
line is not complete. For a complete description, see the Windows Installer help and
find the first topic in the appendix that is named "Command Line Options". This
topic provides a complete description of all the command line options that can be
used with the Windows Installer.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

141

You can also double-click on an MSI file in Windows Explorer and launch the
installation in that manner. This is possible because the .msi extension is registered to
the following command line.

"%SystemRoot%\System32\msiexec.exe" /i "%1" %*

This is the command for the Open verb under HKEY_CLASSES_ROOT in the
registry.

Running the Windows Installer Engine
Programmatically

You can create programs that will run installations using the Windows Installer
engine. This is how Setup.exe works. The Windows Installer provides a complete set
of API functions that programs can access. All these functions are exported by
msi.dll. There are three particular functions that we want to take a brief look at here.
These are the MsiInstallProduct, the MsiSetInternalUI, and the
MsiEnableLog functions.

UINT MsiInstallProduct(
 LPCTSTR szPackagePath, // path to MSI package
 LPCTSTR szCommandLine // command line for package
);

This function takes two arguments, one being the path to the MSI file and the other
being the command line to be sent to the Windows Installer engine. This command
line does not include any switches. It can be only a set of public properties and the
values to which they are to be set. How then does the Windows Installer know what
type of installation to run? The answer is found in a special public property defined
by the Windows Installer. This public property is named ACTION and it takes as a
value the name of the top-level action to be run. For example, if the command line
argument were initialized to the following string, the Windows Installer would
perform a standard installation in response to the call to the
MsiInstallProduct function.

LPCTSTR szCommandLine = "ACTION=INSTALL";

P A R T I T H E F U N D A M E N T A L S

142

How do you tell the Windows Installer what user interface level to use for the
installation? You make a call to the MsiSetInternalUI function to define the
level you want before calling the MsiInstallProduct function. Finally, how
can you have log file created when the installation is run? Before you call the
MsiInstallProduct function, make a call to the MsiEnableLog function
to define what you want logged during the installation.

The full details of these functions can be found in the Windows Installer help. The
Windows Installer help also describes an automation interface exposed by the
Windows Installer that can be used to do the same operations as described above.
C++ developers would use the API functions just described and Visual Basic
programmers would use the automation interface methods. These functions are
introduced here because it provides some background for the discussion in Chapter 4
about the run-time architecture of InstallShield Developer.

The next section discusses what the Windows Installer does with the MSI package
after it is passed either on the command line or through a call to the
MsiInstallProduct function.

The Operations of the INSTALL Top-Level
Action

We will use the steps shown in Figure 3-27 to walk through the various operations
carried out during a Windows Installer based install. The diagram in Figure 3-27 is
applicable to Windows NT 4.0 and Windows 2000. It can be seen that there are two
processes shown in this figure. On Windows 9x machines there will be only one
process running. The operation on Windows 9x machines differs from that on
Windows NT-based machines.

There is always a client process regardless of the operating system on which the
installation is running. On Windows NT-based machines, there is also a service
process and there must be communication between the client and the service
processes. The Windows Installer runs as an NT service as the second process. The
service process is necessary on NT-based machines because of the security
functionality that is part of these operating systems. Under certain circumstances the
service process manipulates the security to allow elevated privileges. When granted,
elevated privileges means that end users who would not normally be able to install

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

143

software will be able to do so. This is a critical functionality on which the Windows
2000 software deployment mechanism depends.

On NT-based operating systems, the actions that are entered in the
InstallUISequence table are run in the client process and the actions entered in the
InstallExecuteSequence table are run in the service process. This is also applicable to
the other sequence tables for the other top-level actions. On Windows 9x machines,
there is only a client process and the actions in both the InstallUISequence and
InstallExecuteSequence are run in the client process.

On NT-based machines, the client process and the service process communicate with
each other through the values of the public properties. Remember public properties
are those that have names specified in all upper-case letters. The values of private
properties are not shared across the process boundary between the client and the
service process. On Windows 9x machines there is no communication requirement
because there is only one process, so the values of both public and private properties
are available when running the actions in either the InstallUISequence or the
InstallExecuteSequence tables.

The following list discusses each of the numbered items shown in Figure 3-27.

Step 1: The previous two sections discussed how the Windows Installer can be
launched from the command line, launched programmatically, or launched from
Windows Explorer. Regardless of how the installation is launched, the Windows
Installer makes a copy of the MSI file, places it in the Temp directory, and gives it
a unique name. On Windows 2000 the location of this Temp directory is the
following location:

%USERPROFILE%Local Settings\Temp

The Windows Installer sets the value of the DATABASE public property to the
name and location of the MSI file in the Temp directory. This temporary copy of
the MSI file is then loaded into memory in the client process.

Step 2: The Windows Installer checks the user interface level that has been
specified. If the user interface level is Full or Reduced, it begins with a query of
the InstallUISequence table and then proceeds to the InstallExecuteSequence
table. If the user interface level is Basic or None, the Windows Installer skips the
actions in the InstallUISequence table and queries only for the actions in the

P A R T I T H E F U N D A M E N T A L S

144

Figure 3-27: The Windows Installer process for performing an installation on Windows NT
4.0, Windows 2000 and Windows XP.

InstallExecuteSequence table. Remember that the Basic and the None user
interface levels display only built-in dialogs and do not display any of the authored
dialogs defined in the database.

Step 3: If the user interface level is either Basic or None, the client process
performs some initialization operations and then begins running the service

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

145

process. The client process passes to the service process the value of all public
properties that have been set on the command line, as well as the value of the
DATABASE public property. When control is passed to the service process the
database is cached in the following location:

%SystemRoot%\Installer

The DATABASE public property sends the cached name of the MSI database to
the service process.3

Step 4: Many installations should be allowed to run only on certain environments
because the application that is being installed will run only on these
environments. Therefore at the very beginning of an installation, an action called
LaunchConditions is run. The LaunchConditions action queries the
LaunchCondition table for any conditions that need to be checked. You can
author into this table those conditions that have to be met before the installation
can be allowed to continue. If any of the conditions is not met (returns FALSE),
the Windows Installer terminates the installation by first displaying a message box
with a message from the LaunchCondition table. When the end user clicks the
OK button on the message box, the installation ends.

Step 5: After checking the environment, you may then want your installation to
search the target system to see if any required applications are installed. It may
also be the case that the version of the product being installed is a competitive
upgrade that was sold to the end user on the assumption that he or she owned
the competing product. It is then necessary to search for this competing product
before allowing the installation to proceed. There are three actions that are used
to implement the various search mechanisms and there are six tables that these
actions use to perform the search. A successful search sets a property that can be
used in controlling other actions. Conversely, the property is not set if the search
fails.

Step 6: After making all the necessary checks to validate that the installation can
continue, the Windows Installer performs a set of actions that check if the
amount of space on the target system is adequate for the default set of features
that will be installed. This set of actions is called file costing and a number of
important operations are carried out as part of these actions. File costing takes
into account the size difference between the files that are being copied and the
same files that may be on the target system. File costing also calculates the

P A R T I T H E F U N D A M E N T A L S

146

additional space required by the registry, new initialization files created, entries
into existing initialization files, and new shortcuts being added to the system. As
part of file costing, the Windows Installer has to perform three operations. These
three operations are listed and discussed below:

� Evaluate Feature Conditions: The Level attribute specified in the
Feature table has already been discussed earlier in this chapter. The
initial value for the Level attribute can be modified at install time
based on the truth of condition. The conditions for modifying the
Level value for a feature are entered into the Condition table. The
Condition table has three columns, a foreign key into the Feature
table, a new value for the Level attribute for the feature, and a
condition. If a condition in this table evaluates to TRUE then the
Level attribute for the feature will be changed to the value specified
in the Condition table. This mechanism allows a small amount of
control over what features get installed by default on a particular
system. It is only logical that this has to be evaluated as part of the file
costing mechanism.

� Evaluate Component Conditions: As already mentioned, a
condition can be placed on any component. The Component table
has a column for defining these conditions. If the condition evaluates
to TRUE, the size of the component is included as part of the file
costing calculation. Otherwise, the size of the component is not
considered.

� Resolve Directory Table: Each row in the Directory table indicates
a directory path for both the source and the target. When the entries
in the first column of the Directory table are resolved during file
costing, the rows in the Directory table become properties in the in-
memory version of the Property table. As already stated directory
path properties always have an ending backslash. After file costing is
complete, you can query the Property table to access these locations.

The Directory column in the Directory table contains identifiers that get resolved
to absolute locations on both source and target locations. The Directory_Parent
column is a foreign key back into the Directory column of the same table. As
seen in Figure 3-28 the first row in the Directory table does not have an entry in
the Directory_Parent column and only one row with this column having a Null

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

147

value is allowed. This tells the Windows Installer that this row defines the root
target and root source directories. It is required that the TARGETDIR property
be used in the first column of the first row of this table. It is also necessary that
the SourceDir property be used in the DefaultDir column of this same row. The
TARGETDIR property represents the root location of the installation and
normally would get set at the command line. In the implementation by
InstallShield Developer, as you will see, this property is not used. InstallShield
Developer uses the INSTALLDIR property as the root target location for the
installation. The SourceDir property is set by the Windows Installer to be the
path to the MSI file on the source media.

The entry in the DefaultDir column is defined to be a sub-folder under the folder
defined in the Directory_Parent column. The general format of the DefaultDir
column in the Directory table is as follows:

[target location]:[source location]

As shown, there can be different locations for the target and the source if a colon
(:) separates them. You define the target and the source locations using the short
and long file naming conventions with a pipe symbol (|) as a separator between
the two conventions. If either the target location or the source location is
replaced with a period (.), this means that there is no sub-folder defined under the
entry shown in the Directory_Parent column. In Figure 3-28 there are many
entries in the DefaultDir column as follows:

.: PROGRA~1 | program files

P A R T I T H E F U N D A M E N T A L S

148

Figure 3-28: The Directory table from the Developer Art installation database.

This type of entry indicates that there is no sub-folder for the target location but
that there is a sub-folder called "program files" under the source location. When
there is only a period (.) in the DefaultDir column it means neither the target nor
the source location have any sub-folders defined. When there is only one entry
for a sub-folder without a colon (:), this means that the sub-folder name is the
same for both target and source locations.

Let’s first look at how the target paths are resolved and then at how the source
locations are resolved.

The first column of the Directory table contains a number of entries such as
ProgramFilesFolder. These are the names of properties that are defined by the
operating system. When the Windows Installer first launches, it sets the value of
all these properties to their absolute location on the target system. When the
Windows Installer starts to resolve the Directory table for the target locations and

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

149

it finds an entry in the first column that is already defined by a property, it stops
target resolution of the identifier because the identifier already points at an
absolute path on the target system.

However, when the Windows Installer comes across an identifier in the first
column such as INSTALLDIR and it does not find this defined in the Property
table, it has to go further in order to resolve the absolute location to which this
identifier is pointing. As shown in Figure 3-28, the Windows Installer will find
that the INSTALLDIR identifier points at a location defined by the
DEVELOPER_ART_BASIC identifier and that this location has no sub-folder
as indicated by the period (.) in the DefaultDir column. The
DEVELOPER_ART_BASIC identifier is a key into the first column of the
Directory table.

The Windows Installer finds the DEVELOPER_ART_BASIC identifier in the
first column and if it does not know the location to which the
DEVELOPER_ART_BASIC identifier is pointing, it starts to resolve this
location. It finds that the DEVELOPER_ART_BASIC identifier is a location
pointed to by the INSTALLSHIELD identifier with a sub-folder named
"Developer Art Basic". The INSTALLSHIELD identifier is another key into the
first column of the Directory table. Once again the Windows Installer needs to
resolve the location at which the INSTALLSHIELD identifier is pointing. This
identifier is found to point at the location defined by the ProgramFilesFolder
identifier with a sub-folder named "InstallShield". Now all the pieces are in place
to find out where these other identifiers are pointing. On a typical system the
resolution would be as follows:

ProgramFilesFolder: C:\Program Files\
INSTALLSHIELD: C:\Program Files\InstallShield\
DEVELOPER_ART_BASIC: C:\Program Files\InstallShield\
 Developer Art Basic\
INSTALLDIR: C:\Program Files\InstallShield\
 Developer Art Basic\

At the completion of file costing, all the identifiers that do not already have values
in the in-memory version of the Property table are made into properties and the
values of these properties are absolute target locations. These values always have
an ending backslash. In other words, until file costing is complete, the value of
the INSTALLDIR property cannot be accessed because it does not yet exist as a

P A R T I T H E F U N D A M E N T A L S

150

property. After file costing, the value of a property named INSTALLDIR is
accessible.

Next, we will discuss the resolution for defining the source locations on the
distribution media. The resolution process is much the same except now all
identifiers in the Directory column of the Directory table need to be resolved
since these identifiers cannot be set without knowing where the media source is
located. That information is provided by the value of the SourceDir property.
Lets start with the resolution of the ProgramFilesFolder identifier.

For the ProgramFilesFolder identifier, the value in the Directory_Parent column,
TARGETDIR, is a key into the first row of the Directory table. Since the
Windows Installer is now resolving the source locations, the ProgramFilesFolder
identifier points to the following location.

[SourceDir]program files

The square brackets around the SourceDir property name indicate that the
property name and the square brackets are to be replaced with the actual value of
the SourceDir property. There is no backslash between [SourceDir] and
"program files" because the SourceDir property already has an ending backslash.

By taking this process to its logical end, the INSTALLSHIELD identifier
resolves to the following source location:

[SourceDir]program files\InstallShield\

The DEVELOPER_ART_BASIC identifier resolves to the following location:

[SourceDir]program files\InstallShield\Developer Art Basic\

The INSTALLDIR identifier resolves to the same location because there is no
sub-folder shown in the DefaultDir column. Since this column cannot be Null,
the period is necessary.

Step 7: After file costing is complete, the Windows Installer runs the appropriate
user interface based on what type of installation is being run. The types of
installations that can be run when the INSTALL top-level action has been
specified are a fresh install, a maintenance install, a patch install, or resumed
install. The type of install being performed determines the user interface that is

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

151

displayed to the end user. For a fresh install, the user interface guides the end user
through a number of wizard dialogs and asks various questions, such as where
the application should be installed and what type of setup the user wants. The
user interface for the maintenance type of installation asks the end user what type
of maintenance to perform on the already installed application. This can be a
modification of the features presently installed, a repair of the installation, or a
removal of the application from the system. The user interface for the other two
types of installations normally just warn the user what type of install is taking
place and then the Windows Installer runs the installation. Just prior to the
launching of the installation a progress dialog is displayed on the screen and it
stays on the screen through the full installation process.

Step 8: Once the user interface has displayed the progress dialog on the screen,
the installation moves on because the progress dialog is a modeless dialog. This is
where the client process launches the service process on NT-based machines.
Calling the ExecuteAction action in the InstallUISequence table implements the
running of the service process. This action initiates the processing of the
InstallExecuteSequence table by the service process. The ExecuteAction action
sends to the service process the value of all public properties that have been
defined in the client process. It does not have to send the value of those public
properties that are built into the database if they have not changed. This is
because the service process will have access to those values when it opens the
database in its own process space.

On Windows 9x machines, there is no second process so there is no need to
transfer the values of any properties. The processing of the
InstallExecuteSequence table actions is performed in the client process, which
has access to all the properties in the property table as well as the in-memory
version of the property table.

Step 9: Here, the Windows Installer is in the service process and the first thing
that this process needs to do is load the MSI file into memory. It loads the MSI
file from the location as defined by the DATABASE public property. As already
stated under Step 3 this location is where the database is cached. This location is
%SystemRoot%\Installer. When the MSI file is loaded, the service
process queries the InstallExecuteSequence table for the actions that are to be
run.

P A R T I T H E F U N D A M E N T A L S

152

Step 10: This operation is the same as described under item 4. This same check
for the environment is necessary in both the InstallUISequence and
InstallExecuteSequence tables because of the possibility of the end user running a
user interface level of Basic or None. In this case the check defined in the
InstallUISequence table would be skipped.

Step 11: This operation is the same as described under item 5. This same check
for installed applications is necessary in both the InstallUISequence and
InstallExecuteSequence tables because of the possibility of the end user running a
user interface level of Basic or None. In this case the check defined in the
InstallUISequence table would be skipped.

Step 12: The file costing performed in the service process on an NT-based
system makes any corrections to the file costing performed in the client process
based on whether there have been any changes in the default set of features to be
installed. Changes after the original file costing can occur if the end user performs
a custom setup and changes the default set of features to be installed. If the
default list of features does not change, additional file costing is not necessary. If
the installation is run with a Basic or None user interface level, the full file costing
is performed in the service process. Resolution of the Directory table is
performed again but, because the resolution of identifiers such as INSTALLDIR
was done in the client process and now is a member of the in-memory Property
table, the target side of the resolution process is not necessary.

On Windows 9x machines, the file costing is done only once. If the user interface
level is Full or Reduced, the file costing is performed in the InstallUISequence
table. If the user interface level is Basic or None, the file costing is performed in
the InstallExecuteSequence table. This is because the file costing operation can
only be performed once per process. The problem that this presents is that if the
end user makes changes to the selection of features in the custom setup dialog
then the file costing for the application will not be accurate.

Step 13: The InstallIntialize action defines the beginning of those actions that
make actual changes to the target system. Up to this point all actions have been
doing nothing but collecting information. From this point to where the
InstallFinalize action is called, actions that are going to make changes to the
system are not executed. Instead the actions are written into an execution script
that the Windows Installer is creating in a hidden directory. The important item
to remember about this is that if an action is not written into the execution script,

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

153

it will not receive elevated privileges in a Windows 2000 network that is
implementing software deployment from a central point using the Group Policy
Editor (GPE).

In the InstallExecuteSequence table for the Developer Art installation, there are a
large number of actions that occur after the InstallIntialize action and before the
InstallFinalize action. Any action that is to make changes to the system will be
written into the execution script. An action that does not have any data in the
requisite table or tables will not be making changes to the system, so it will not be
written into the execution script.

Step 14: The InstallFinalize action closes out the creation of the execution script
and initiates the running of this script. As each line in the script is executed it is
written into a rollback script that would be used if the end user either cancels the
installation or there is an installation error. The rollback script is used to reverse
any changes that may have been made to the target system and is the key to the
transactional nature of a Windows Installer-based install. The completion of this
action ends the transaction that was started by the InstallIntialize action.

Step 15: After the InstallFinalize action there can be additional actions if you
want to do additional things at this point. These are run at this time and when
these additional actions are executed, the service process returns control to the
client process. Actions placed after the InstallFinalize action should not be
designed for making changes to the system since any such changes cannot be
rolled back in case of a failure of the installation.

Step 16: Once control is returned to the client process, any actions in the
InstallUISequence table placed after the ExecuteAction action are run. You can
consider the ExecuteAction like a function call because, after control returns to
the client process, execution continues with the action following the
ExecuteAction action. When all actions after the ExecuteAction action are
executed, if any, the Windows Installer displays a finish dialog informing the end
user that the installation has completed successfully.

The dialogs displayed at the end of installation, whether it is successful or not,
have to have special sequence numbers in the InstallUISequence table. These
special sequence numbers and their meaning are shown below:

P A R T I T H E F U N D A M E N T A L S

154

Sequence # Description

-1 Informs the end user that the installation has completed
successfully.

-2 Informs the end user that the end user canceled the installation.

-3 Informs the end user that there was a fatal error during the
installation.

If the installation is not successful the database file that was cached in
%SystemRoot%\Installer is deleted. The cached database is only left in this
location if the installation is successful.

This cached file is sometimes referred to as the local package and is used to perform
maintenance operations on the installed applications. In this same location the
Windows Installer also caches the resource files used to supply icons for advertised
shortcuts. The cached resource files will be in a sub-folder that uses the ProductCode
property as the sub-folder name. The ProductCode property is a GUID.

Extending the Windows Installer
Functionality

The Windows Installer provides many standard actions that are sufficient to execute
many installation operations. However, there are situations where you might find that
the standard actions do not perform what needs to be accomplished during a
particular installation. To accommodate the fact that there will never be enough
standard actions to satisfy all needs, the Windows Installer provides a mechanism to
extend its built-in functionality through the use of custom actions. There are
numerous reasons that the creation of a custom action may be necessary, from being
able to validate the input of a serial number to the running of a child third party
installation. This chapter introduces the concept of custom actions. The creation and
use of InstallScript custom actions is discussed in Chapter 11.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

155

Custom Action Categories
There are two major categories of custom actions: immediate custom actions and
deferred custom actions. The deferred category of custom action has four sub-
categories, which are install, rollback, commit, and system context. More specifically,
the system context sub-category is a modifier for the install, rollback, and commit
custom actions. These categories are defined in the following list:

Immediate custom actions: Custom actions are inserted into the sequence
tables just like standard actions. When the Windows Installer encounters an
immediate custom action during its query of one of the sequence tables, it
executes the custom action immediately. Immediate custom actions are used to
query the system, set property values, and add temporary rows to the database
tables. Immediate custom actions are not used to make changes to the system
because they would not receive elevated privileges in the case of a locked down
environment.

Immediate custom actions can be placed almost anywhere in the sequence tables
used by the INSTALL or the ADMIN top-level actions. No custom actions of
any kind can be used in either the AdvtUISequence or AdvtExecuteSequence
tables. There are a few restrictions about where they can be placed depending on
the type of custom action being implemented. Immediate custom actions have
the same privilege level as the user who is signed on to the machine.

Deferred custom actions: A deferred custom action is first written into the
execution script and then, when the execution script is run, the deferred custom
action is run. This means that a deferred custom action can be placed only in
those tables where the execution script is generated. These two tables are the
InstallExecuteSequence and the AdminExecuteSequence tables. In these two
tables, deferred custom actions have to be placed between the InstallIntialize and
the InstallFinalize standard actions. Remember that it is only the actions between
these two standard actions that are written into the execution script.

As mentioned above there are four sub-categories of deferred custom actions.
These sub-categories are defined in the following list.

� Install: An install deferred custom action is one that runs during the
performance of a normal installation or uninstallation. This normal

P A R T I T H E F U N D A M E N T A L S

156

installation can be a fresh install, a maintenance install, a patch install,
or a resumed install. It can also be an administrative installation.
Even if elevated privileges have been granted to the user this sub-
category of deferred custom action will still only run with the same
privilege level as the user signed on to the machine.

� Rollback: A rollback custom action is not executed when the
execution script is run. It is written into the rollback script and
executed only if the rollback script is run. The rollback script is run
only if the user cancels the installation or there is a Windows Installer
error. The importance of rollback custom actions is to undo any
changes that may have been made to the target system by an install
custom action prior to the rollback operation. This type of custom
action will run with the some privilege level as the user signed on to
the machine regardless of whether elevated privileges have been
granted.

� Commit: A commit custom actions runs at the completion of a
successful installation. This makes it the complement of a rollback
custom action, which runs when an installation does not complete
successfully. Commit custom actions are also written into the
rollback script and are executed from that script when the
InstallFinalize action indicates a successful running of the execution
script. It is possible to disable rollback on a system that has limited
space for installing an application and if this is done then any commit
custom actions are also affected. If no rollback script is created
because of disabling rollback, no commit custom actions will be able
to run. This sub-category of custom also runs only with the same
privilege level as the user signed on to the machine.

� System context: The system context sub-category is a modifier for
the previously described sub-categories of deferred custom actions.
Using the system context modifier allows the install, rollback, and
commit custom action sub-categories to have local system account
privileges. In technical terms this means that the modified custom
actions do not impersonate the user signed on to the machine. Local
system account privileges are the same as having administrative
privileges on the local machine. These local system account privileges

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

157

are only available, however, if elevated privileges have been granted
by one of the mechanisms available in a Windows 2000 network or
through the setting of the appropriate per-user and per-machine
policies in the registry. If elevated privileges have not been granted
then the use of the system context modifier has no effect and the
custom actions will still only run with the same privilege level as the
user signed onto the machine.

Lets now look at the types of custom actions that can be created. When we talk about
the types of custom actions we are referring to the implementation details of creating
custom actions.

The Types of Custom Actions
Custom actions can be divided into eight different types. Of these types, five require
some programming expertise and the other three can be created without any
programming. The description of these eight types of custom actions is given below:

Executables: A custom action can launch an executable and this executable can
be installed with the application, be included as a stream in the Binary table, or it
can already exist on the target machine. An executable custom action can be
configured to run synchronously or asynchronously. If the custom action runs
asynchronously then it is possible to specify that the Windows Installer is to wait
at the end of processing the sequence table in which the custom action has been
inserted for the custom action to complete. It is also possible to specify that the
custom action will continue executing even after the installation has completed.

Dynamic Link libraries: A DLL type of custom action runs as a separate thread
in the same process as the Windows Installer, (either the client process or the
service process). The DLL that exports the functionality for the custom action
can only be installed with the application or it can be contained as a stream in the
Binary table. You cannot directly call a function in a DLL that is already on the
target system as a custom action. As with an executable custom action it can run
synchronously or asynchronously, but a DLL custom action cannot continue
after the installation is complete because the process that is running it has
terminated. One of the benefits of a custom action exported from a DLL is that
it has access to the session handle and thus is able to access the database at run
time.

P A R T I T H E F U N D A M E N T A L S

158

InstallScript: InstallScript can be used to implement custom actions. As already
discussed, InstallScript is the scripting language that was developed by
InstallShield Software Corporation. The Windows Installer does not know
anything about InstallScript, so what is running in the background is a DLL that
runs the scripting engine. The only thing that the Windows Installer sees is a DLL
custom action. InstallScript custom actions are covered in Chapter 11.

VBScript: A VBScript custom action can be in a .vbs file, or the script code itself
can be included in either the Property table or in the CustomAction table.
VBScript custom actions implemented in a file can either be installed with the
application or streamed into the Binary table. As with an executable custom
action, a VBScript custom action can run synchronously or asynchronously. The
Windows Installer is the host for script-based custom actions and it is not
necessary to have the Windows Scripting host installed on the target machine.
The only thing that needs to be installed is the system file scrrun.dll.

JScript: A JScript custom action can be either in a .js file or the script code itself
can be included in either the Property table or in the CustomAction table. JScript
custom actions implemented in a file can either be installed with the application
or streamed into the Binary table. As with an executable custom action, a JScript
custom action can run synchronously or asynchronously. The Windows Installer
is the host for script-based custom actions and it is not necessary to have the
Windows Scripting host installed on the target machine. The only thing that
needs to be installed is the system file scrrun.dll.

Formatted Text: A formatted text custom action is used to set a property or an
install directory from a formatted text string. A formatted text string is one that is
processed to resolve embedded property names, table keys, environment variable
references, and other special sub-strings. The embedded property names, table
keys, and environment variable references are surrounded by square brackets ([]).
This type of custom action can be defined only as immediate and it runs only
synchronously.

Error: The error type of custom action displays a specified error message and
returns failure, terminating the installation. The error message to be displayed can
be supplied as a string or as an index into the Error table. The key to using this
type of custom action is to condition it so that it runs only when it should. Once
it runs, the installation must terminate. This type of custom action runs only
synchronously.

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

159

Nested Install: Using a nested install custom action is the only means to enable
a child install that is also defined in an MSI package. The basic mechanism of the
Windows Installer will not allow two different installations to enter the service
process at the same time. The nested install custom action was implemented to
get around this particular functionality. A nested install custom action can run
only synchronously and it cannot be a deferred custom action. A nested install
shares the same user interface level and the same logging settings as the parent
install.

The Other Types of Windows
Installer Packages

The Windows Installer recognizes three additional types of packages. All of these
packages are COM Structured Storage files of one type or another. These packages
are merge modules, transforms, and patch packages. Only the merge module can be
opened with the Orca database-editing tool. Let’s take a brief look at these other
Windows Installer packages.

Merge Modules
It is possible to combine two installer databases by merging them together using one
of the tools that come with the Windows Installer SDK. Merging two databases,
however, has certain problems. You cannot merge two databases if the schemas of
the two databases are different. Even if the schemas of the two databases are the
same, there is the possibility for a row merge conflict. A row merge conflict occurs
when the same table in both databases has a row that has the same primary key but
different data. When there is a row-merge conflict, the merging of the two databases
proceeds, but the conflicts are reported in another table that is created for that
particular purpose.

You can create a special type of database, called a merge module, which gets around
the merging problem described above. A merge module is a simplified form of a
Windows Installer installation package. Merge modules cannot be installed separately
and are only a build-time entity. After a merge module is merged with a main

P A R T I T H E F U N D A M E N T A L S

160

installation database, the merge module is no longer required for the installation to
proceed.

A merge module contains a relational database, summary information stream, and a
cabinet file stored as a stream. This is just like the Windows Installer packages we
have been discussing. Each merge module has a unique identifier that is a GUID.
The GUID that uniquely identifies a merge module is also used to create unique
names for the primary keys in the tables of the relational database. This is done to
avoid the creation of row-merge conflicts that can occur when two databases are
merged.

Merge modules are primarily used to package components that can be shared
between by many different applications. In fact a merge module cannot define a
feature but can define only components. Merge modules provide a great benefit to
teams that work on different parts of an application in different parts of the country
or the world. Merge modules also allow for third parties to create redistributable
components that other software developers can easily include in their applications.
Remember that one of the rules for creating components is not to create a
component for a file that is already available as a merge module.

The best approach is to create merge modules for all components that might be
shared across more than one application. By creating components in merge modules,
there is a much better chance of maintaining the correct component codes for
components. Breaking the rules of component creation can have unexpected and
unpleasant consequences. Chapter 14 covers the creation of a simple merge module.

Transforms
A transform is a Windows Installer file that describes the differences between two
installer databases. A transform can add or replace information in the target database.
A transform can be applied at run time to the installation database and essentially
change the package only in memory. A transform can also be applied at build time,
but using a transform in this mode will permanently change the target database.

A typical use of a build-time use of a transform is to create a localized version of an
upgraded application. This can be accomplished by first creating a transform of the
differences between a base language product and its upgrade. Then this transform is

C H A P T E R 3 W I N D O W S I N S T A L L E R B A S I C S

161

applied to the various language-specific versions of the product in order to obtain
their upgraded versions.

An example of applying a transform at install time is where the LAN administrator
wants to limit the set of features that are available to the person installing an
application. The LAN administrator creates a temporary version of the database that
has only the desired features in it and then creates a transform between this
temporary database file and the original database. When the installation of the
application is run, that transform is applied to modify the database in memory and
the end user has access to only the permitted feature set.

It is important to note that a transform is the difference between two databases. It
does not include the Summary Information Stream and it does not include any
differences between the files that make up two different installation packages.
Transforms cannot be authored. To obtain a transform, you need two different
installation packages, the before and the after. You cannot look directly at a transform
with Orca or any other tool. To see contents of a transform, you need to apply it to a
database and then view one of the temporary tables that are created. This temporary
table is the _TransformView table.

Patch Packages
A patch package can be considered a super-charged transform. This type of file
contains not only the differences between the databases of two or more installation
packages, but also the differences between the files that make up two or more
Windows Installer installation packages. A minimal patch package contains two
transforms, a Summary Information Stream, and a cabinet file. Patch packages are
used to provide the Windows Installer service with a mechanism for implementing
updates and upgrades of installed applications. The installed applications need to have
been originally installed using the Windows Installer.

Conclusion
This chapter has covered a lot of ground about how the Windows Installer works. To
discuss the Windows Installer, we used the Basic MSI project that was used to create
the installation package for the Developer Art application. Understanding how the

P A R T I T H E F U N D A M E N T A L S

162

Windows Installer works is important because even the Standard projects use the
Windows Installer to make the changes to the target system. You will probably find it
valuable to reread this chapter periodically as you work through the examples
presented in the chapters in this book.

The main point of the discussion in this chapter is that the Windows Installer needs
the information required for installing an application described in the tables of a
relational database. The main elements used to describe an application are features
and components. Features are the logical description of the functionality of an
application and components provide the actual functionality. Components are
installed only when the associated feature is selected for installation.

There is a major difference in how the Windows Installer works on Windows
NT/2000 versus how it works on Windows 9x machines. On NT-based machines,
there are two processes that run-the client process and the service process. The job of
the client process is to run the user interface for the installation. The job of the
service process is to make the changes to the target system. The reason that an NT
service is used to make the changes to the target system is because an NT service can
manipulate the security mechanism on NT-based machines. Being able to
impersonate the local system account permits the granting of elevated privileges to
users who normally would not have the privileges to perform an installation.

Custom actions are the means provided to setup developers for extending the built-in
capabilities of the Windows Installer. The approach used by InstallShield Developer
to implement the standard project approach to installation program development is
an extensive use of custom actions. To fully understand the run-time architecture of
InstallShield Developer, covered in the Chapter 4, an understanding of custom
actions is necessary.

The InstallShield
Developer Run-Time

Architecture

The last chapter provided a detailed description of the Windows Installer technology,
which provides the foundation of all InstallShield Developer installations. Chapters 1
and 2 explained that InstallShield Developer can be used to create either a Standard
project or a Basic MSI project. The Standard project uses InstallScript on top of the
Windows Installer database to create one type of installation program. The Basic MSI
project creates an installation that uses the Windows Installer with the ability to use
InstallScript in a limited way. In a Basic MSI project, you use InstallScript only to
extend the built-in Windows Installer functionality.

This chapter looks at how InstallShield Developer runs both installation types. We
look at the run-time functionality for the typical installation types with emphasis on

Chapter

4

P A R T I T H E F U N D A M E N T A L S

164

the differences between the two project types. We begin by discussing the run-time
architecture of Standard project installations created with InstallShield Developer.
This chapter covers only the basics. You are assumed to be running version 7.03 of
InstallShield Developer and that version 2.0 of the Windows Installer engine is
installed on your machine. Later versions of InstallShield Developer will probably
function differently in some areas but the general concepts provided will be the same.
Just like with Chapter 3 you will probably want to reread this chapter after you have
worked through some of the examples in this book. The information in this chapter
is not critical to learning how to use InstallShield Developer but it does provide
background that can be useful when trying to solve problems that arise in the normal
course of creating installations.

Fresh Install Run-Time
Architecture

An important difference between an installation created using a Standard project and
one created using a Basic MSI project is that it is necessary to launch the Standard
project installation using setup.exe. For a Basic MSI project, the only time it is
necessary to run setup.exe is when all the files are compressed inside. There are a
number of other differences, as you will see when we look at how each of the project
types implements an installation. We start our discussion with a look at the approach
used to implement a fresh install with a Standard project.

Fresh Install Using a Standard Project
When you run a fresh install of a Standard project on Windows NT, Windows 2000,
or Windows XP, a minimum of four processes must run in order to implement the
installation program. On Windows 9x machines, three processes must run. There are
three executables that run in the processes that are used to implement an installation.
Setup.exe runs in one of the processes, IDriver.exe runs in another process, and
msiexec.exe runs in one or more processes depending on the operating system and
other factors.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

165

Figure 4-1: Standard project fresh install run-time architecture on Windows NT/2000/XP.

P A R T I T H E F U N D A M E N T A L S

166

The best way to understand how a fresh install is implemented by a Standard project
is to look at a picture and then discuss the elements of the picture in detail. A diagram
of three of the four processes that are created when running a Standard project on
Windows NT, Windows 2000, or Windows XP is shown in Figure 4-1. The one
process that is not shown in Figure 4-1 is only used briefly as part of the initialization
of the installation. This fourth process gets generated when the IDriver.exe process
opens the database and runs the actions inserted in the InstallUISequence table.

It is assumed here that the Standard project has only an English user interface, that it
does not require a reboot in the middle of the installation, and that it is not
implementing a Web-based install. We will discuss the additional architectural
considerations for a multi-lingual installation later in this chapter. Everything starts
with setup.exe, which in turn launches IDriver.exe. IDriver.exe then launches
msiexec.exe in a client process and then IDriver.exe launches msiexec.exe in the
service process. In this overview, we can safely ignore the msiexec.exe client process
because it does not contribute to the actual operations that are being carried out.

The diagram in Figure 4-1 shows that, after execution has moved from process 1 to
process 3, it then moves back again from process 3 to process 2 and finally back to
process 1 before all operations are complete. For any Standard project installation,
setup.exe is the beginning and end of the installation process.

Setup.exe

Setup.exe has many responsibilities in a Standard project installation. Depending on
how the installation package is built, setup.exe can have no files streamed into it, a
few files streamed into it, or all files streamed into it. The only files that are never
streamed into setup.exe are autorun.inf and the SMS Package Definition File (.PDF),
when the build is designed to include them. When a build is designed to compress all
files into setup.exe, it can be password protected. In this case, setup.exe must
compare the password entered by the end user to the correct password before
proceeding with the installation.

SETUP. INI

The initialization file Setup.ini provides setup.exe all the information it requires to
handle a particular installation. In a Standard installation where there are no files
compressed into setup.exe, Setup.ini is included in the media image. If you open the

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

167

Setup.ini file for the Standard project that you created in Chapter 2, you will see what
is shown in Figure 4-2. In Figure 4-2, the contents of Setup.ini have been annotated.

 [Info]
Name=INTL ;Not used
Version=1.00.000 ;Not used
DiskSpace=8000 ;DiskSpace requirement for temporary files in KB

[Startup]
CmdLine= ;Can be used to pass command line parameters to
 ;Setup.exe

SuppressWrongOS=Y ;Suppresses the display of the warning dialog
 ;when trying to install version 1.2 of the
 ;Windows Installer engine on Windows 2000.
 ;Valid values are Y or N.

ScriptDriven=1 ;Defines whether InstallScript is required
 ;to run the installation. The following values
 ;for this keyword are valid
 ; 0 Basic MSI installation
 ; 1 Standard project installation
 ; 2 Basic MSI project using InstallScript
 ; custom actions

ScriptVer=7.1.0.179 ;Version of the InstallScript engine required
 ;for this installation.

Product=Developer Art ;The name of the product being installed
 ;for use in the initialization dialog.

PackageName=Developer Art.msi ;MSI package name for current
 ;installation.

MsiVersion=2.0.2600.0 ;Version of the Windows Installer engine
 ;required for this installation.

EnableLangDlg=N ;Indicates whether to display the language
 ;selection dialog to the end user so that the
 ;language to be used in the user interface can
 ;be selected. Values are either Y or N.

Figure 4-2: Annotated Setup.ini file for the DeveloperArt_Std project.

P A R T I T H E F U N D A M E N T A L S

168

DoMaintenance=Y ;Indicates whether to perform a maintenance
 ;install or to uninstall the product. The
 ;possible values are Y or N and apply only to
 ;Standard projects. This is controlled by the
 ;Enable Maintenance attribute in the Project
 ;Properties view of InstallShield Developer.

SuppressReboot=Y ;Applies to whether the installation of the
 ;Windows Installer engine version 2.0
 ;should wait until after the present installation
 ;is complete. Valid values are Y or N.

[SupportOS] ;This section identifies the list of operating
Win95=1 ;system sections to follow that provide
Win98=1 ;information regarding the OS properties needed
WinME=1 ;to install the Windows
WinNT4=1 ;Installer version included in this installation.
Win2K=1

[Win95] ;The attributes of Windows 95 required for
MajorVer=4 ;installing the Windows Installer version
MinorVer=0 ;included in this installation.
MinorVerMax=1
BuildNo=950
PlatformId=1

[Win98] ;The attributes of Windows 98 required for
MajorVer=4 ;installing the Windows Installer version
MinorVer=10 ;included in this installation.
MinorVerMax=11
BuildNo=1998
PlatformId=1

[WinME] ;The attributes of Windows ME required for
MajorVer=4 ;installing the Windows Installer version
MinorVer=90 ;included in this installation.
MinorVerMax=91
BuildNo=3000
PlatformId=1

Figure 4-2: Continued.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

169

[WinNT4] ;The attributes of Windows NT 4.0 required for
MajorVer=4 ;installing the Windows Installer version
MinorVer=0 ;included in this installation. Note that the
BuildNo=1381 ;version of the service pack number, as defined
MinorVerMax=1 ;by the value of the ServicePack keyword, is the
PlatformId=2 ;decimal equivalent of the service pack level in
ServicePack=1536 ;hexadecimal. The value of 1536 is the decimal
 ;equivalent of 0x600, which means service pack 6.

[Win2K] ;The attributes of Windows 2000 required for
MajorVer=5 ;installing the version of Windows Installer
MinorVer=0 ;included in this installation.
MinorVerMax=1
BuildNo=2195
PlatformId=2

[Languages] ;This section identifies the languages available
count=1 ;in this installation that can be selected
default=409 ;by the end user if the language dialog is
enabled.
key0=409

[Developer Art.msi] ;This section defines the location where
Type=0 ;the MSI package for this installation
Location=Developer Art.msi ;is located. The valid values for the
 ;Type keywords are as follows:
 ; 0 MSI package on distribution media
 ; 1 MSI package inside Setup.exe
 ; 2 MSI in CAB file downloaded from Web
 ; 3 MSI package installed from Web site
 ;The location keyword provides the
 ;URL if this is a Web-based installation,
 ;otherwise just the name of the package.

[Setup.bmp] ;This section defines the name and location for the
Type=0 ;file that will be shown as the splash screen at the
 ;installation’s start. The valid values for
 ;the Type keywords are as follows:
 ; 0 The splash screen is on the source media
 ; 1 The splash screen is inside Setup.exe
 ;When a splash screen is included, the name is
 ;specified here. If there is both a language-
 ;independent and a language-dependent splash screen
 ;specified, the language-dependent file will be
 ;displayed.

Figure 4-2: Continued

P A R T I T H E F U N D A M E N T A L S

170

[instmsiw.exe] ;This section identifies the location of the
Type=0 ;Unicode version of the Windows Installer
Location=instmsiw.exe ;engine. The valid values for the Type
CertKey=MSIEng.isc ;keyword are as follows:
 ; 0 Engine located on source media
 ; 1 Engine located inside setup.exe
 ; 2 Engine located on Web site
 ;If version 2.0 of the Windows Installer
 ;engine is located on the Web site,
 ; the file identified by the CertKey
 ;keyword will be streamed into Setup.exe
 ;so it can be authenticated that
 ;the Windows Installer engine downloaded
 ;from the Web comes from Microsoft.

[instmsia.exe] ;This section identifies the location of the
Type=0 ;ANSI version of the Windows Installer
Location=instmsia.exe ;engine. The valid values for the Type
CertKey=MSIEng.isc ;keyword are as follows:
 ; 0 Engine located on source media
 ; 1 Engine located inside setup.exe
 ; 2 Engine located on Web site
 ;If version 2.0 of the Windows Installer
 ;engine is located on the Web site,
 ;the file identified by the CertKey
 ;keyword will be streamed into Setup.exe
 ;so it can be authenticated that
 ;the Windows Installer engine downloaded
 ;from the Web comes from Microsoft.

[ISScript.msi] ;This section identifies the location of the
Type=0 ;InstallScript engine. The valid values for
Location=isscript.msi ;the Type keyword are as follows:
 ; 0 Engine located on source media
 ; 1 Engine located inside setup.exe
 ; 2 Engine located on Web site

Figure 4-2: Continued.

When a password is used to protect the installation by having all files compressed
inside setup.exe, the password is added to the Setup.ini file. This entry would look like
the following:

[KEY]
Password=1953684598

The entry that is made in Setup.ini for the password is encrypted into a numerical
value. The above example shows how the password “password” is entered into

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

171

Setup.ini. When a password-protected setup.exe is launched, it streams out Setup.ini,
gets the value of the Password keyword, and then immediately deletes the Setup.ini
file. The value held in Setup.ini is decrypted and placed in memory. It is compared
against the value that the end user enters in the password dialog box.

The only keyword that you should manually edit in Setup.ini is the CmdLine
keyword in the [StartUp] section. However, when any file is compressed into
setup.exe, then Setup.ini is also streamed into setup.exe and is no longer available for
post-build modification. The only way to add a value to the CmdLine keyword
when Setup.ini is to be streamed into setup.exe is to manipulate the Setup.ini template
that is used during the build process. The template used by the build process for
creating Setup.ini is found in the following location:

C:\Program Files\InstallShield\Developer\Support\Setup.ini

You can modify this file with the command line that you want to pass to setup.exe.
Then, when the setup is built, the value for the CmdLine keyword will be included
in the Setup.ini file that is streamed into setup.exe.

COMPRESSED MEDIA FILES

The term media files refers to those files that are required for the proper running of
the installation but are not part of the files that make up the application being
installed. Normally these files consist of the Windows Installer engine, the
InstallScript engine installation package, Setup.ini, billboards, splash screen bitmap,
etc. Typically these files all reside in the root location of the installation media.

When any of the files that reside on the root of the media are compressed into
setup.exe, they have to be streamed out to a temporary directory for use during the
installation and they have to be cleaned up after the installation is complete. setup.exe
is responsible for implementing both of these operations. These files typically include
Setup.ini, the MSI database, the InstallScript engine, the Windows Installer engine,
and the splash screen bitmap (if one is included in the installation). The files that are
compressed inside setup.exe are streamed out to a location that is uniquely named for
each installation that is run. The temporary location used is specified by the TMP or
the TEMP environment variable. If neither of these values exists then the temporary
location is the Windows folder on Windows NT, Windows 2000, or Windows XP.
For Windows 9.x machines the current directory is used if neither these two

P A R T I T H E F U N D A M E N T A L S

172

environment variables are defined. Typically on Windows 2000 this temporary
location is as follows, where XXX is a hexadecimal number:

%USERPROFILE%\Local Settings\Temp_isXXX

In addition to the files that are streamed out of setup.exe to this temporary location, a
file named _ISMSIDEL.INI is created in this directory. This file lists all the files
streamed out of setup.exe that have to be deleted after the installation completes.
Note that this temporary location is not the one that is given in the SUPPORTDIR
system variable.

INITIALIZATION

The main work of setup.exe occurs when the initialization dialog is displayed at the
beginning of an installation.

Figure 4-3: Large initialization dialog displayed by Setup.exe

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

173

Two different initialization dialogs are included in setup.exe as resources. There is a
large dialog that is displayed in the center of the screen when no splash screen is
included in the installation (Figure 4-3). The product name displayed in this dialog
comes from the value of the Product keyword in Setup.ini. This dialog is not
displayed if the installation is run silently or if the following entry is made in Setup.ini
under the [Startup] section..

[Startup]
.
.
.
UI=0

A small initialization dialog is displayed in the lower-right corner of the screen when a
splash bitmap is included in the installation. The splash bitmap is displayed in the
center of the screen. This smaller initialization dialog is shown in Figure 4-4.

Figure 4-4: Initialization dialog used when splash screen is displayed.

The splash screen and the initialization dialog shown in Figure 4-4 are not displayed
during a silent installation. The display of the splash screen and small initialization
dialog are not affected by the use of the UI=0 entry in Setup.ini.

The large initialization dialog or the small initialization dialog in conjunction with a
splash screen are displayed when an end user runs an installation for a product that is
already installed. This triggers the maintenance mode. If maintenance mode is
launched from the Add/Remove Programs applet, neither of these initialization

P A R T I T H E F U N D A M E N T A L S

174

dialogs nor the splash screen is displayed. An initialization dialog launched from
IDriver.exe is displayed instead.

During the display of the initialization dialog and/or splash screen, three main
operations are carried out. These operations are the installation, if necessary, of the
Windows Installer engine, the installation of the InstallScript engine, and the
launching of IDriver.exe. The installation of the Windows Installer engine starts when
the setup program compares the version on the target machine to the version that is
included in the installation package. The version included with the installation
package is specified by the value of the MsiVersion keyword in Setup.ini. If the
versions are different or the Windows Installer engine is not already installed on the
target machine, the setup program checks the target operating system and compares it
to the requirements specified in Setup.ini. If the target system meets the requirements,
the Windows Installer engine is installed from the location specified in Setup.ini. If
the target system does not meet the requirements for installing the Windows Installer
engine, the installation terminates with an error dialog.

Except in one special case, the InstallScript engine is always installed. This engine is
installed in such a manner that it cannot be easily uninstalled. The InstallScript engine
is installed using the isscript.msi package in silent mode. This chapter takes a closer
look at the installation of the InstallScript engine installation package at the end of
this chapter. The one exception to always installing the engine is when the
InstallScript engine is to be installed from the Web site. In this scenario, the
InstallScript engine version on the Web site is checked against the version on the
target system and is installed only if it is a later version.

The final operation carried out by setup.exe at the beginning of a Standard project
installation is to launch IDriver.exe in a new process. This is accomplished using
DCOM because IDriver.exe is a COM server. The IDriver process is created through
a call to the CoCreateInstance Windows API. This makes the IDriver process
a client of the Setup.exe process, thus forcing setup.exe to stay active so that the
IDriver.exe process does not prematurely terminate. This second process is where the
functions in InstallScript are executed.

When IDriver.exe is launched and the Install method is called, setup.exe waits
for the installation to complete. When the installation completes, setup.exe has to
clean up the temporary directory where all the files were copied that were compressed
inside. In addition, setup.exe has to remain active to handle a reboot if one occurs as
part of the installation process.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

175

IDriver.exe

All InstallScript code is executed within the IDriver.exe process. It is important to
remember this when you use InstallScript to implement program functionality.
InstallScript is used in a Standard project to implement the user interface and it can
also be used to implement custom actions that are inserted into the
InstallExecuteSequence table of the MSI database.

When IDriver.exe starts, it goes through a number of initialization steps that include
executing the actions that are in the InstallUISequence table of the MSI database.
After initialization is complete, the InstallScript program…endprogram function
is executed. The program…endprogram function is responsible for the user
interface, as well as initiating the actions in the InstallExecuteSequence table. Before
the IDriver.exe process terminates at the end of an installation, it creates the uninstall
log and then passes control back to setup.exe.

INITIALIZATION

In the initialization process, IDriver.exe first checks if the installation has access to
write the uninstall information to the registry. The location to which a Standard
project writes the uninstall information is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
 Uninstall\InstallShield Uninstall Information

If this registry location is not accessible, the installation is aborted unless elevated
privileges have been granted or the installation is being performed for the current user
and not for all users of the machine. As soon as this check is completed successfully,
IDriver.exe sends initialization progress information to the initialization dialog
launched by setup.exe.

The next step in the initialization process is to open the MSI database to verify that a
value for the ProductCode property is available and, at the same time, stream out the
support files that are contained in the Binary table. The ProductCode is an important
entity in the architecture of a Standard project and if it does not exist, the installation
cannot continue. If the ProductCode property has no value, the installation aborts.

If you open up the Standard project MSI file that you created in Chapter 2 with Orca
and go to the Binary table, you will see what is shown in Figure 4-5.

P A R T I T H E F U N D A M E N T A L S

176

Figure 4-5: The Binary table in the Developer Art.msi file

The identifiers used in the first column of the Binary table are not necessarily the
name of the file. The four files in this table are discussed below and referenced by
their identifier in the Binary table.

InstallScript: This identifier indicates that this file is the compiled InstallScript.
The name of this file when it is streamed out is setup.inx.

IsConfig.INI: This identifier indicates an initialization file that enables the
Windows Installer engine to call InstallScript custom actions from the
msiexec.exe service process that is running the actions in the
InstallExecuteSequence table. When streamed out, this file has the same name as
the identifier. How this works is discussed in more detail later in this chapter.

ISScriptBridge.dll: This identifier specifies the DLL through which InstallScript
custom actions are implemented. This particular file in the Binary table is not
streamed out during initialization. The Windows Installer will stream this file out
if it is needed.

String1033.txt: This identifier indicates a string table that can be accessed from
InstallScript. This string table contains all the pre-defined strings used in a
Standard project, as well as all the custom strings that are generated during the
authoring process. An example of a custom string is the description of a product
feature. This file is streamed out using the same name as the identifier.

Three of the four files in the Binary table are support files and they are streamed out
to a temporary folder that is created as part of this operation. The temporary location
used is specified by the TMP or the TEMP environment variable. If neither of these
values exists then the temporary location is the Windows folder on Windows NT,

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

177

Windows 2000, or Windows XP. For Windows 9.x machines the current directory is
used if neither these two environment variables are defined. Typically on Windows
2000 this temporary location is as follows:

%USERPROFILE%\Local Settings\Temp\{ProductCode}

This location is the same as described earlier for streaming out media files that are
compressed in setup.exe except the name of the folder under the Temp directory is
the product code and not a uniquely named folder that changes each time you run the
installation. When the system variables are initialized, this location is used to set the
value of the SUPPORTDIR system variable that can be accessed from InstallScript.

After the support files have been extracted from the Binary table, the initialization
process enables IDriver.exe to receive error messages from the Windows Installer.
This is necessary at this time because the next operation is to execute all the actions in
the InstallUISequence table. The execution of these actions can then pass back to the
initialization dialog any action messages that are produced.

Next in the initialization process, the actions in the InstallUISequence table are
executed. As explained in Chapter 3, a sequence table has three columns, the Action,
Condition, and Sequence columns. The first step in running the actions in the
InstallUISequence table is to perform a SQL query on this table to create a view if all
the rows in the table. The SQL query string to do this looks like the following:

“SELECT * FROM InstallUISequence ORDER BY Sequence”

This SELECT statement obtains all the rows in the InstallUISequence table and the
view that is created will have these rows in ascending order of the sequence number
assigned to each of the actions in the table. The loop that cycles through each row of
the view that is created with the SQL query ignores any action that has a sequence
number equal to or less than 0. It also ignores the ExecuteAction action. All other
actions in the InstallUISequence table are executed using the Windows Installer
function MsiDoAction as long as the condition for the action evaluates to
TRUE. Chapter 3 provides the basis for understanding this process.

Standard Windows Installer actions and non-InstallScript custom actions can be
placed in the InstallUISequence table of a Standard project. You cannot use an
InstallScript custom action or place a dialog that has been defined inside the database
tables, in the InstallUISequence table. As discussed in Chapter 3, a true Windows

P A R T I T H E F U N D A M E N T A L S

178

Installer operation executes all actions and dialogs in the InstallUISequence table until
it encounters the ExecuteAction action, and then it passes control to the service
process. After the service process is completed, the actions following the
ExecuteAction action are executed. In a Standard project, all actions before and after
the ExecuteAction action are executed as part of the IDriver.exe initialization process
before any actions are executed in the InstallExecuteSequence table.

When the actions in the InstallUISequence table are executed, any setup files that
have been included in the installation package are extracted. Setup files include
billboard bitmaps and dynamic link libraries that are needed during the installation.
ISSetupFile is a custom table that holds these setup files, and it is from this table that
these files are streamed. The files are extracted when the ISSetupFilesExtract custom
action is executed. This custom action is inserted in the InstallUISequence table when
setup files are included in the installation. The setup files are extracted to the same
folder as the support files discussed earlier. This is the location that is used to define
the SUPPORTDIR system variable.

The final step in the initialization process is to load the compiled script into memory
and set the values of the system variables. Also in this final initialization step a
connection between the IDriver.exe process and the msiexec.exe process is enabled.
It is necessary to make this connection so that InstallScript custom actions can be run
from the InstallExecuteSequence table.

PROGRAM BLOCK EXECUTION

After all the initialization work is done, IDriver.exe launches the program
block/function. When you create a Standard project, you do not explicitly create the
program block. The program block is added to setup.inx at compile time. The
program block is covered in detail later in this chapter. The program block of code
consists of three separate sections, described below.

Pre-component-move operations: Before the installation makes changes to the
target system, pre-component-move operations display a user interface and
collect information required by the installation. During this phase, the installation
should make no attempt to change the target system.

Component-move operations: This section of the program…endprogram
block launches msiexec.exe in silent mode and initiates the running of the actions

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

179

in the InstallExecuteSequence table. This is covered in the section entitled
Msiexec.exe.

Post-component-move operations: After the target machine has been
modified, the installation process typically performs any necessary cleanup of
temporary files. One of the operations is the reopening of the MSI package and
the rerunning of the file costing actions to reinitialize the Property table. Doing
this ensures that property values are available for any InstallScript calls to the
MsiGetProperty Windows Installer function. Also a dialog must be
displayed to show the result of the installation process. There are three primary
results that can occur: the installation was completed successfully, the installation
was terminated because of an error, or the end user canceled the installation. It is
also possible to display a dialog if the installation is causing a reboot but this is not
a normal practice. If you want to allow the end user to register the product or
some other similar action, this section is where you would incorporate that
functionality into the installation.

The program…endprogram block is used to call functions, which in turn call the
event handlers that you see in the Script Editor and to which you add InstallScript
code to perform the actions that are needed in your installation. All changes to the
target system need to be implemented in the msiexec.exe process, and it is only in this
process that it is possible to roll back the installation. Trying to cancel the installation
after control has been returned to the IDriver.exe process should not be permitted.

UNINSTALLATION LOG

For a Standard project installation, all script-related changes to the system are logged
to a file called Setup.ilg. If you let the Windows Installer make all the changes to the
system, as you should, then the only file that will be logged as having been added to
the target system will be the compiled script setup.inx. The compiled script is copied
to the system in order to support maintenance operations. The registry entries that
are made typically consist of the information required to launch the maintenance
session, the location of the log file and the compiled script, and the entry that is made
by the InstallScript SetInstallationInfo built-in function.

When you let the Windows Installer engine make all the changes to the target system,
there are a total of three registry entries that are logged in Setup.ilg. The first of these
entries is the information provided under the following key. This information is used

P A R T I T H E F U N D A M E N T A L S

180

by the Add/Remove Programs applet. The key shown here is for the Developer Art
installation that was created in Chapter 2.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
 Uninstall\InstallShield_{38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

The GUID that is the last part of the last key is the value of the ProductCode
property. Of course the installation that you created for the Developer Art application
will have a different value for the ProductCode property. With a few differences, the
value names and values written under this key duplicate the values that the Windows
Installer writes in a different location in the registry. One of the values that is written
under this key is the location of the Setup.ilg file. The location where the log file is
placed on the target system can be controlled through the use of the
DISK1TARGET system variable that is available from your script. You can use the
Log File Viewer to look inside the log file. The Log file Viewer is launched from the
Tools shortcut menu found under Start\Programs\InstallShield.

The second registry entry that is always placed in the log file relates to uninstallation
information. For the Developer Art installation, this entry is:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
 Uninstall\InstallShield Uninstall Information\
 {38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

The only value used that is written under this registry key is the text string that is
displayed in the initialization dialog when a maintenance operation is initiated. The
third registry entry that will be created by default is the application information key.
This key identifies the name of the company that produced the software, the name of
the application that is installed, and the software version. This location in the registry
is used to define other keys and values that are necessary for the application to
function properly. For the Developer Art application, this entry is:

HKEY_LOCAL_MACHINE\SOFTWARE\InstallShield Software Corporation\
 Developer Art\1.00.0000

Note that there are no values created under this key. To create values in this location,
you could use the Registry table in the MSI database and define the values under this
key.

There are four system variables that hold values that are written to the log file. You
can use three of these system variables in your script to modify the default values that

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

181

are written to the log file and to the registry. These system variables are discussed in
the following list:

UNINST: This system variable contains the command line required to launch
IDriver.exe to perform an uninstallation of the product. Even though this system
variable is given a default value it is not used. This variable is a hold over from
older versions of the InstallShield Professional product and is only provided for
the purpose of backward compatibility.

UNINSTALLKEY: This system variable contains the name of the registry key
under which all the uninstallation information will be written. For the Developer
Art application the default value of this system variable is as follows:

InstallShield_{38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

UNINSTALL_DISPLAYNAME: This system variable holds the name to be
used in the Add/Remove Programs applet. For the Developer Art application
the default value of this variable is as follows:

Developer Art Standard

UNINSTALL_STRING: This system variable contains the command line
required to launch IDriver.exe to perform an uninstallation of the product. The
default value of this system variable for the Developer Art application is as
follows:

C:\PROGRA~1\COMMON~1\INSTAL~1\Driver\7\INTEL3~1\IDriver.exe
 /M{38CE1E93-AD5C-4F9F-800F-607BCB947CE2}

You do not want to make any modifications to the UNISTALL system variable
because this value is not used. The other three system variables can be modified but
you want to make sure that you do not disable the uninstallation functionality for
your application.

Msiexec.exe

To make changes to the target system, the Windows Installer engine is launched in
silent mode. Chapter 3 explained that the Windows Installer engine runs only the
actions in the InstallExecuteSequence table when there is a silent install. On Windows
NT, 2000, or XP, the actions in the InstallExecuteSequence table are executed by an

P A R T I T H E F U N D A M E N T A L S

182

NT service. This permits the administrator to grant elevated installation privileges in a
managed environment. In this scenario, a person without administrative privileges
can install an application when the system administrator has granted the privilege.

The IDriver.exe process uses the MsiInstallProduct function to launch the
Windows Installer engine in silent mode. The first two actions with positive
sequence numbers in the InstallExecuteSequence table are custom actions that are
used to initialize the environment for calling custom actions implemented using
InstallScript. A dynamic link library called ISScriptBridge.dll exports the targets of
these two custom actions. The first custom action, ISMsiServerStartup, is immediately
followed by the ISStartup custom action. These two custom actions work together
and need to be the first two actions in the InstallExecuteSequence that have positive
sequence numbers.

The ISScriptBridge.dll is streamed into the Binary table at build time and is streamed
out of this table by the Windows Installer when it executes the ISMsiServerStartup
custom action. This ISMsiServerStartup custom action performs a number of
initialization actions. The main purpose of the ISMsiServerStartup custom action is to
enable a connection between the msiexec.exe process and the IDriver.exe process.
Since all InstallScript code runs in the IDriver.exe process, this connection is
necessary whenever any InstallScript custom actions are run. Because of the
importance of this custom action and the ISStartup custom action you must not
make any changes in the location of these custom actions. They need to stay as the
first two custom actions in the InstallExecuteSequence table.

The two-way communication between the msiexec.exe process and the IDriver.exe
process is necessary so that you can call Windows Installer functions from within
your InstallScript custom actions. Remember that the script engine and the script are
running in the IDriver.exe process and the Windows Installer engine, msi.dll, is
loaded in the msiexec.exe process. The Windows Installer engine is what exports the
Windows Installer functions. Since the functions exported by msi.dll require a handle
to the currently running session of the Windows Installer, it is not possible to just
load msi.dll into the IDriver.exe process because there would be no valid handle
available. Therefore, in order to call Windows Installer functions from a script
running in the IDriver.exe process you need to have this two-way communication
between these two processes. A more complete discussion of this mechanism is given
at the end of this chapter.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

183

When the two-way communication between the IDriver and the Msiexec processes is
established, the Windows Installer makes changes to the target system by running the
remaining actions, up to the clean-up custom actions. This is the standard approach,
discussed in detail in Chapter 3. The final custom action that is executed in the
msiexec.exe process is a clean-up custom action. The type of clean up that is
performed depends on what happened with the installation. There are four
possibilities; the installation was successful, the user terminated the installation before
it could finish, there was a Windows Installer error, or the installation was suspended.

In Figure 4-6 you can see that there are four custom actions in the
InstallExecuteSequence table that have negative sequence numbers. Part of the
functionality of the Windows Installer is to execute one of these actions depending
on the outcome of the installation. We have already discussed this mechanism in
Chapter 3 as it relates to the showing of the correct dialog at the end of an
installation. In the Chapter 3 discussion we were talking about the dialogs that have
negative sequence numbers in the InstallUISequence table. The functionality is the
same in the InstallExecuteSequence table and in this table this mechanism is used to
perform the proper clean up.

Figure 4-6: The clean up custom actions in the InstallExecuteSequence table.

It is clear from Figure 4-6 which negative sequence number comes into play for each
of the possible outcomes of the installation. Since clean up is so important you should
not change or remove any of these four custom actions that are associated with the
clean up operations.

This completes the overview of the fresh install run-time architecture of a Standard
project. We have gone into some detail here to provide a basis for understanding the
run-time architecture of other installation modes. Many of the mechanisms already

P A R T I T H E F U N D A M E N T A L S

184

described will apply. The next section discusses how the run-time architecture of a
fresh install of a Basic MSI project differs from what we have just covered.

Fresh Install Using a Basic MSI Project
Unlike with a Standard installation project, you can launch a Basic MSI project two
different ways. You can use the traditional approach and use setup.exe to launch the
installation or you can launch the installation by double-clicking in Windows Explorer
on the .msi file. This second approach will only work if the Windows Installer is
already installed on the target machine. As you saw in the last section, launching a
Standard project installation must begin with running setup.exe.

With a Basic MSI project, there are two scenarios. The first scenario is where there
are InstallScript custom actions that have been implemented. The second scenario is
where there are no InstallScript custom actions incorporated into the MSI database.

Basic MSI Project With InstallScript Custom Actions

There are four processes involved in this particular scenario. The basic operations
that are carried out in these four processes are shown in Figure 4-7.

As with the previous discussion about the run-time architecture for a Standard
project, we are only talking about an installation as normally implemented with a full
user interface from media with no reboot of the system required during the
installation.

SETUP.EXE

There are a few differences in how the Setup.exe process works for a Basic MSI
project fresh install compared to how it works for a Standard project fresh install. The
entire up-front initialization operations are the same for the two installation types.
Any command line options passed to setup.exe with the /v switch are passed on to
msiexec.exe. When this operation is complete, the Setup.exe process terminates
unless it is required to clean up any media files that were compressed inside it. Media
files are compressed and streamed out of setup.exe in the same fashion as described
in the section on Standard project installs.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

185

Figure 4-7: Basic MSI project run-time architecture on Windows NT/2000/XP for a fresh
install using InstallScript custom actions.

MSIEXEC.EXE – CLIENT PROCESS

The operation of msiexec.exe in the client process is the standard Windows Installer
approach, as described in Chapter 3. The standard actions, custom actions, and
dialogs that are inserted in the InstallUISequence table are executed in ascending
order of the positive sequence numbers that were assigned during the installation
package’s build. The first action in the UI sequence table is the ISMsiServerStartup

P A R T I T H E F U N D A M E N T A L S

186

custom action, with a sequence number of 1. This is a custom action that is
implemented in ISScriptBridge.dll and has as its main responsibility the starting of the
IDriver.exe process, the extraction of the InstallScript related files from the Binary
table, and the initiation of a connection with this process. The script-related files that
are streamed in the Binary table are streamed out to a temporary location. This
location is set as the value of the SUPPORTDIR InstallScript system variable. This is
the same location as described for the Standard project install.

As with a Standard project the purpose of making a two-way connection between the
msiexec.exe process and the IDriver.exe process is so that any InstallScript custom
actions can be executed in the IDriver.exe process. The connection is reference
counted so that IDriver.exe does not terminate prematurely when there are other
msiexec.exe processes that still need to run InstallScript custom actions. As already
described for a Standard project this two-way connection allows an InstallScript
custom action to be able to call Windows Installer functions and access the running
database even though they are running in different processes.

Once the two-way connection has been initialized, the Windows Installer processes
all the actions and dialogs in the InstallUISequence table, as described in Chapter 3.
When msiexec.exe reaches the ExecuteAction action, the running of the
InstallExecuteSequence table in the service process begins. When these actions are
completed, control returns to the client msiexec.exe process where any final actions
coming after the ExecuteAction action are executed and a dialog is displayed
indicating that the installation has been completed.

IDRIVER.EXE

The IDriver.exe process for a Basic MSI installation has only a few initialization
operations that is has to carry out before it is ready to start executing InstallScript
custom actions. The first initialization action is to load the compiled script into
memory and to set the values of all the InstallScript system variables. The next and
final thing that it does before it is ready to start executing InstallScript custom actions
is to enable the connection between itself and the msiexec.exe process.

Once the IDriver.exe process completes the initialization, it waits to receive requests
to execute a particular function in the InstallScript code that is loaded into memory.
This process services both the client msiexec.exe process and the service msiexec .exe
process calls to an InstallScript custom action.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

187

MSIEXEC.EXE – SERVICE PROCESS

When the Windows Installer engine is launched in the service process, it has only one
initialization step that has to be performed. The connection with the IDriver.exe
process has to be made so as to make Windows Installer functions available to the
running script. Since the InstallScript-related files have already been extracted from
the Binary table in the msiexec.exe client process, this does not have to be performed
here.

With the initialization operations complete, the msiexec.exe service process runs the
actions in the InstallExecuteSequence table, as described in Chapter 3. At the end of
the execute sequence table, a clean-up custom action runs to shut down the
connection to the IDriver.exe process. Once the shutdown is complete, the control
of the installation returns to the msiexec.exe client process and any actions that follow
the ExecuteAction action are executed. When these are completed, a dialog indicating
the results of the installation is displayed. When the end user clicks the Finish button,
the installation is over.

Basic MSI Project Without InstallScript Custom
Actions

In a Basic MSI project with no InstallScript custom actions, the InstallScript engine is
not included as part of the media files. Setup.ini will indicate that there is no script
involved with the installation when setup.exe is launched. Setup.exe still performs the
same functions described for a Basic MSI project that includes InstallScript custom
actions, with the exception of installing the InstallScript engine. The operations that
are carried out with this scenario are shown in Figure 4-8. The details of how the
Windows Installer implements an installation are discussed in Chapter 3.

P A R T I T H E F U N D A M E N T A L S

188

Figure 4-8: Basic MSI project run-time architecture on Windows NT/2000/XP for a fresh
install with no InstallScript custom actions.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

189

Launching a Basic MSI Project From the MSI File

The architecture of a Basic MSI project allows for the launching of the installation by
directly launching the .msi file in Windows Explorer or from the command prompt
with a command similar to the following:

msiexec /i "Developer Art.msi"

When a Basic MSI project is launched in this fashion, none of the operations carried
out by setup.exe are performed. Such an approach works only if the Windows
Installer engine is already present on the target machine. If InstallScript custom
actions are used, the InstallScript engine must also be already installed. Without using
setup.exe, you cannot password protect your installation. The sole reason that a
custom action is used to launch IDriver.exe when InstallScript custom actions are
being used is to permit the launching of a Basic MSI project as discussed here.

Maintenance Install Run-Time
Architecture

As discussed earlier in the book, when an application is installed for the first time, any
further install actions relative to the application come under the heading of
maintenance. Normally with either a Standard project or a Basic MSI project, there
are three types of possible maintenance operations. These are a Modify operation, a
Repair operation, or a Remove operation. These operations are fully discussed in
Chapter 1.

The end user can initiate a maintenance installation in two different ways. They can
try to run the installation again by running setup.exe or the .msi file if it is a Basic MSI
project, or they can use the recommended method of using the Add/Remove
Programs applet to launch a maintenance installation.

There is a generic issue for both a Standard and a Basic MSI project when the MSI
database and the application files are compressed inside setup.exe. This issue arises
when an application is installed where all files are compressed and then the end user
tries to perform a maintenance operation that requires additional files to be copied to

P A R T I T H E F U N D A M E N T A L S

190

the target machine. Additional files need to be copied when performing a Repair or a
Modify operation that adds a new feature to those that have already been installed.

When an end user tries to run this kind of maintenance operation, an error message is
displayed to tell the end user that the source is not available. This error occurs
because the maintenance operation is looking for the .msi file, which is compressed
inside setup.exe, and is not available. The .msi file is also not available for performing
maintenance operations, which require the copying of files when the initial installation
is performed from a Web site. This potential problem is handled by caching the .msi
file on the target system using the /b switch with setup.exe when the end user runs
the initial installation. This switch takes as its argument the location where the end
user wants the .msi file compressed inside setup.exe to be cached. An example of this
command line is as follows:

setup /b"C:\InstallCache\Developer Art"

When run from the command line like this, the .msi file is copied to the location that
is specified after the /b switch and then the installation is run from that location. This
will then make the registry entry for the source location be the cached location. With
this cached location as the source location, any maintenance operation that needs
source files can get them, and the maintenance operation will not fail. This command
line switch works for both Standard and Basic MSI projects.

Maintenance Install Using a Standard
Project

After an application is installed, the end user can access a maintenance mode by either
running setup.exe again or going to the Add/Remove Programs applet. When re-
running the installation package launches a maintenance operation, the run-time
architecture is as shown in Figure 4-9.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

191

Figure 4-9: Standard project run-time architecture on Windows NT/2000/XP for a
maintenance installation initiated from setup.exe.

P A R T I T H E F U N D A M E N T A L S

192

There are three processes that run in this type of maintenance scenario. Setup.exe
runs just as if this were a fresh install. It displays a password dialog if necessary,
displays a splash screen if one is included, and installs the InstallScript engine. There is
no difference in the function of setup.exe from what was shown for a fresh install of
a Standard project (Figure 4-1).

Setup.exe instantiates the IDriver.exe process and this gets the IDriver.exe process
performing all the required initialization operations. Unlike with setup.exe, there are
some differences in the IDriver.exe process from what was shown in Figure 4-1 for
the fresh install of a Standard project.

The first operation is to obtain the product code from the database and then verify
that the Setup.ilg file exists. We have already discussed the installation information
registry entries made for a Standard project during a fresh install. These registry
entries are covered again below where we talk about initiating a maintenance
operation from the Add/Remove Programs applet. If the Setup.ilg file is missing, the
installation is treated like a fresh install instead of a maintenance operation except, of
course, the operation will be much faster because the files are already installed and do
not have to get copied again. The need for a maintenance operation is verified by
executing the MsiGetProductInfo Windows Installer API function to see that
the application has already been installed.

Once the IDriver.exe process has detected that the application is already installed, it
needs to determine if this is to be a standard maintenance installation where the end
user is offered the three options of Modify, Repair, and Remove, or whether the
project was created so that only an uninstallation is available. This option for Standard
projects is indicated by the DoMaintenance keyword in Setup.ini. If this keyword is
set to Y, the end user is offered the standard maintenance options. If this keyword is
set to N, the end user can only uninstall the application. This entry is created in the
Setup.ini file through the Enable Maintenance property in a Standard project. Chapter
5 covers this project property.

The second difference in how the IDriver.exe process operates for a maintenance
installation is instead of calling the MsiInstallProduct Windows Installer API
function; it calls the MsiConfigureProductEx API function instead. During a
fresh install of a Standard project, the MsiInstallProduct function was called
from within the program…endprogram block. For a maintenance install, this
operation is handled through a direct call by the IDriver.exe process to an event

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

193

handler function. When the DoMaintenance keyword in Setup.ini has a value of Y,
the OnMaintenance event handler is called. However, when the DoMaintenance
keyword has a value of N, the IDriver.exe process calls the OnUninstall event
handler. These event handlers in turn call the MsiConfigureProductEx
function with the appropriate command line. When the Windows Installer in the
msiexec.exe process has performed the requested maintenance changes to the system,
control is returned to the IDriver.exe process. The event handlers are covered in
more detail in Chapter 8.

The completion of the maintenance operation consists of the IDriver.exe process
performing any post-maintenance operations, as well as displaying any dialogs
required by the installation design. IDriver.exe also reads the log file that was created
during the initial application installation and performs any maintenance operations
mandated by this log file. In a Standard project, this normally consists of modifying or
removing the registry information that was written during the initial installation. The
location of the log file is written in the registry at install time. The location of this
entry in the registry is covered below in the discussion about launching a maintenance
operation from the Add/Remove Programs applet.

When you launch a maintenance operation from the Add/Remove Programs applet,
setup.exe is not involved and you have an environment like what is depicted in Figure
4-10.

The Add/Remove Programs applet launches IDriver.exe directly using a /M switch
to indicate that a maintenance operation is being initiated. The location of IDriver.exe
is obtained from the registry and the uninstall information that is written there when
an application is first installed. Using the Developer Art installation program created
in Chapter 2, the uninstallation information key created in the registry is as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
 Uninstall\InstallShield_{691BD8FA-BF60-4A36-8A0D-F02AB035193D}

Under this registry key, there is a value that provides the command line to the
Add/Remove Programs applet for running IDriver.exe in maintenance mode. For
the Developer Art application this value name and value data pair is:

UninstallString=C:\PROGRA~1\COMMON~1\INSTAL~1\Driver\7\INTEL3~1\
 IDriver.exe /M{691BD8FA-BF60-4A36-8A0D-F02AB035193D}

P A R T I T H E F U N D A M E N T A L S

194

Figure 4-10: Standard project run-time architecture on Windows NT/2000/XP for a
maintenance installation initiated from the Add/Remove Programs applet.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

195

Using this command line the Add/Remove Programs applet launches IDriver.exe
and passes to it the ProductCode of the application with the /M switch that has the
ProductCode as its argument.

The IDriver.exe process then performs all the initialization operations, as it would do
if this were a fresh install of a Standard project. Once the initialization is complete,
then just as described above, the Msiexec process is launched using the
MsiConfigureProductEx Windows Installer API.

The Windows Installer performs all the target system modifications. Then, control
returns to the IDriver.exe process, where the final operations are performed and
dialogs are displayed. Part of these final operations consists of reading the Setup.ilg
file created during the initial installation and performing any actions indicated by this
file. The location and name of this file is found under the same uninstall key in the
registry as shown above. A value name value data pair under this key provides the
location of the log file. For the Developer Art application this value is:

LogFile=C:\Program Files\InstallShield Installation Information\
 {691BD8FA-BF60-4A36-8A0D-F02AB035193D}\Setup.ilg

As already discussed earlier, using the DISK1TARGET system variable you can
modify this location for the log file. Remember that all system changes should be
performed in the msiexec.exe process using the standard Windows Installer actions
and InstallScript or native custom actions. The only operations that should be carried
out in the IDriver.exe process during an installation are those related to gathering
information and displaying a user interface. When this process is followed, the
responsibility for modifying the target system rests with the Windows Installer. This
way, you gain all the benefits provided by this technology.

Maintenance Install Using a Basic MSI
Project

A maintenance operation on an application that was initially installed using a Basic
MSI project has the same run-time architecture as described above for the fresh
install of that application. The fresh install run-time architecture for a Basic MSI
project is shown in Figure 4-7 and in Figure 4-8. The reason that a maintenance
operation has the same run-time architecture is because the Windows Installer
handles everything.

P A R T I T H E F U N D A M E N T A L S

196

If the end user launches a maintenance operation by running setup.exe on the original
package, all that happens is that setup.exe performs that same initialization operations
as for a fresh install and then launches the client Msiexec process. The Windows
Installer detects that the application is already installed and performs the appropriate
actions. The same thing is true if the end user launches the maintenance operation
from the Add/Remove Programs applet. The only thing that is different here is that
setup.exe is not involved. When InstallScript custom actions come into play in any
Basic MSI project, an IDriver.exe process is created to handle the calls to these
custom actions. The run-time architecture in this case is the same as shown in Figure
4-7.

Regardless of whether InstallScript custom actions are used in a Basic MSI project,
this installation type does not create a Setup.ilg file nor does it create any special
registry entries other than those that are created by the Windows Installer. When you
are working with a Basic MSI project, the uninstallation log is the registry itself. The
Windows Installer writes many entries to the registry and these entries are located
under many different keys.

There are many other installation modes that are possible when using either a
Standard project or a Basic MSI project. The next section takes a look at a few of
these other installation modes.

Run-Time Architecture for Other
Install Modes

Up to this point we have covered the architecture for running fresh and maintenance
installs using both Standard projects and Basic MSI projects. There are two other top-
level actions recognized by the Windows Installer. This section takes a look at these
two other install modes and relates them to the fresh install and maintenance install
architectures already discussed. We also look at how localized installations are
managed.

We begin this discussion with the two other top-level actions defined by the
Windows Installer.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

197

Administrative Installations
An administrative installation is not an installation in the true sense of the word. An
administrative installation is meant to target a network location to which people on
the network come and run the actual install of the application. During an
administrative installation, no registry entries are made, no shortcuts are created, and
the application cannot be launched. The only thing that takes place during an
administrative installation is that any application source files that are compressed in
cabinet files are uncompressed. The primary reason for uncompressing the source
files for the application is so that the administrative image can be upgraded using a
patch.

Standard Project

For a Standard project an administrative installation can be launched by simply
passing the /a switch on the command line to setup.exe. This command line would
look like the following:

setup /a

Basic MSI project

For a Basic MSI project, the end user can launch an administrative installation in one
of two ways. They can do what was described above for a Standard project and pass
the /a switch to setup.exe or they can pass the /a switch to the Windows Installer
engine. Running the Windows Installer engine at the command line would look like
the following:

msiexec /a <path to .msi file>

With a Basic MSI project, the Windows Installer engine does all the work similar to
what is shown in Figures 4-7 and 4-8. The difference from a fresh install is that it is
the actions in the AdminUISequence and AdminExecuteSequence tables that are
executed instead of the actions in the InstallUISequence and the
InstallExecuteSequence tables.

P A R T I T H E F U N D A M E N T A L S

198

Application Advertisement
When you advertise an application, you are making it available to the end user
without actually placing the source files on his or her machine until they want to use
the application. An advertised application appears in the Add/Remove Programs
applet and also displays a shortcut icon on the Start\Programs menu. When an
application is advertised, all registry entries related to COM and file associations are
made on the target machine so that the only thing that is left to do is copy the
application’s source files and make the non-COM related registry entries. The copying
of files occurs when the end user attempts to run the application from the
Start\Programs menu or tries to open a file where the application executable is
registered as the extension server. Advertisement is a primary component of the
Windows 2000 deployment mechanism. Chapter 3 discusses advertisement in more
detail.

When an application is advertised, the actions in the AdvtExecuteSequence table are
executed. There are no user interface actions implemented during advertisement.
When an advertised application is first launched from the Start\Programs menu, the
Windows Installer runs the installation with a basic user interface level. This means
that only the actions in the InstallExecuteSequence table are executed, but the
Windows Installer engine displays a built-in progress dialog during this operation. At
the end of this operation, the application is launched.

Advertisement consists of two separate operations. First the application is advertised
so it is made available to the end user, but the application is not actually installed.
When the end user attempts to run the application that appears to be installed, the
installation runs, displaying only a small progress dialog. Then the application is
launched and the end user can use it. It is important to understand these two separate
operations that take place when we discuss how advertisement is implemented for
both Standard projects and Basic MSI projects.

Standard Project

You can advertise an uncompressed Standard project on a per-machine basis by
passing to setup.exe the /j switch. When you perform this operation, the run-time
architecture looks very much like what is shown in Figure 4-1 for a fresh install. The
main difference is that the IDriver.exe process runs all the actions that are in the
AdvtUISequence table instead of the actions in the InstallUISequence table. By

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

199

default, the AdvtUISequence table has no actions inserted in it and this is the way it
should remain.

After the script is initialized, the IDriver.exe process calls the undocumented event
handler named __OnAdvertisement instead of running the program
…endprogram block as in a fresh install. The __OnAdvertisement event
handler in turn calls the documented OnAdvertisementBefore and
OnAdvertisementAfter event handlers. These two documented event
handlers are no-ops by default. Between these two event handlers, a function is called
that launches the msiexec.exe process to run the actions in the AdvtExecuteSequence
table. These actions make the registry entries for the application and place the
shortcut on the Start\Programs menu.

When the advertised application is run for the first time, the operation is completely
handled by the Windows Installer and no aspects of the Standard project come into
play. The Windows Installer runs the installation, as described above, with a basic
user interface level so only the actions in the InstallExecuteSequence table are
invoked. In the terms of a Standard project, this constitutes a silent install because the
user interface sequence is not run.

By default, an advertised Standard project application cannot be installed without
specific prior action by the setup developer. The InstallExecuteSequence table of a
Standard project contains the OnCheckSilentInstall custom action that is inserted just
prior to the LaunchConditions standard action. The OnCheckSilentInstall custom
action checks if the application installation has been launched in silent mode without
going through setup.exe. How this can be accomplished at the command line is
discussed in the next section on Basic MSI projects. This scenario also occurs when
an advertised Standard project application is first launched from the Start\Programs
menu.

The OnCheckSilentInstall custom action runs only if the application has not already
been installed. When it runs, it checks if the setup is script driven. If the installation is
identified as script driven, the custom action returns control to the Windows Installer
and the installation proceeds. A Standard project installation is only identified as script
driven if it has been launched using setup.exe. If an advertised application is being
launched from the Start\Programs menu, the OnCheckSilentInstall custom action
sees that the installation is not script driven and calls the OnMsiSilentInstall
event handler.

P A R T I T H E F U N D A M E N T A L S

200

The default implementation of the OnMsiSilentInstall event handler aborts
any attempt to run the installation of an advertised application. If you want your
application to be advertised properly, you need to modify the default implementation
of the OnMsiSilentInstall event handler. The easiest thing that you can do is
to make the OnMsiSilentInstall event handler a no-op by removing all the
code in this function. This will have the effect of allowing an advertised application to
be fully installed.

If you have a Standard project where you do not want to support advertisement, then
it might be a good idea to place a custom action in the AdvtExecuteSequence table to
prevent the user from advertising the application. You could also place some code in
the OnAdvertisementBefore event handler to stop the advertisement of an
application, but this would be effective only if the advertisement was launched using
the /j switch with setup.exe. This would not prevent the end user from advertising
the application directly from the .msi file as described in the next section.

Currently, it is not possible to advertise a compressed Standard project without first
running an Administrative installation to uncompress the files. It is also not possible
to advertise a Standard project for the current user when you start with setup.exe. It is
only possible to advertise a Standard project for all users of the machine unless the
.msi file is run directly, as described in the next section.

Basic MSI Project

You can advertise an uncompressed Basic MSI project by passing the /j switch to
setup.exe, just as with a Standard project. For a Basic MSI project, this switch is
passed on to the Windows Installer so the architecture here looks very similar to that
shown in either Figure 4-7 or Figure 4-8, depending on whether InstallScript custom
actions are used. The only difference is that now the actions in the AdvtUISequence
and the AdvtExecuteSequence tables are run, instead of the actions in the
InstallUISequence and InstallExecuteSequence tables.

You can also advertise a Basic MSI project by passing the appropriate command line
to the Windows Installer engine. An example of such a command line is:

msiexec /j[u|m] <path to .msi file>

Here the optional arguments to the /j switch indicate whether you want to advertise
the application for the current user (u) or you want to advertise the application for all

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

201

users of the machine (m). When you just use the /j switch without any arguments,
you advertise for all users of the machine.

If you take care to make changes to the OnMsiSilentInstall event handler in
a Standard project, you can advertise the .msi file created as part of the Standard
project using the above command line. Just as with a Standard project, you cannot
advertise a compressed Basic MSI project with out first performing an Administrative
install.

Localized Installations
InstallShield Developer has the ability to create installation projects where the end
user can select the language in which the user interface runs. It is also possible to
create installation projects that display the language of the target operating system
when the end user is not provided the opportunity to select the language used in the
installation.

The approach used to make a particular language available for a certain installation is
very different for a Standard project than it is for a Basic MSI project. However, the
mechanism for deciding which language to display in the user interface is the same
for both project types. This is because the multiple language functionality of
InstallShield Developer is handled by setup.exe and this executable is the same for
both Standard and Basic MSI projects.

If you decide at build time to offer a language selection dialog to the end user, the
installation will be run in the language that the end user selects. The only problem that
can arise here is if the target system does not support the selected language. In this
case, the user interface will contain garbage characters. If you choose to have a
language selection dialog and provide only one language, this dialog is not displayed
and the installation is run in the one language that is included in the installation
project. Whether a language selection dialog is to be displayed when more than one
language is available is indicated in Setup.ini, as described earlier in this chapter. In
this instance the following keyword and value will be found under the [Startup]
section.

EnableLangDlg=Y

P A R T I T H E F U N D A M E N T A L S

202

When you include a number of languages in your project but do not want the end
user to select the language for the user interface, simple logic is used to determine the
language to be displayed in the user interface. This logic is based on the system locale
of the target operating system. If one of the included languages is the same as the
system locale language, then this language will be used in the user interface. If there is
no match with an included language and the language of the system locale, the user
interface is displayed using the default language. There is always one language that is
selected as the default language when you build an installation project.

Once a language has been selected for display in the user interface, the mechanism
that is used to run the installation is as described earlier for the fresh or the
maintenance installation. The next section looks at how each of the two projects
makes a language available at run time.

Standard Project

In a Standard project, the user interface is implemented using InstallScript and does
not display any dialogs from the .msi file. This requires the presence of a language
initialization file, a resource dynamic link library, a string table, and a transform.
Chapter 3 discusses the use of transforms. The resource DLL contains all the dialog
templates and the default strings in the appropriate language. The string table contains
any of the custom strings that are to be displayed. Custom strings are displayed in the
installation user interface or are displayed on the desktop after the application is
installed. The strings in the string table can be accessed in the script that is driving the
user interface for a Standard project.

As an example, you can look at a multiple language build for the Developer Art
application. In this build, you should include seven languages: Danish, English,
French, German, Japanese, Spanish, and Swedish. Figure 4-11 shows the Disk1 image
that is created for such an uncompressed build. In this figure, there are seven
initialization files each named using the hexadecimal representation of language ID
for each of the seven languages that have been included in this build. The strings in
these initialization files are used to display error messages and strings in the
initialization dialogs that are launched at the beginning of an installation. These are
the strings that might be needed before the installation’s user interface is displayed.
The strings from only one of these initialization files are used, and the particular one
that is used is based on the language chosen by the end user in the language selection
dialog.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

203

In Figure 4-11 you also see seven transforms each named using the language ID for
the language that is represented. The transforms contain the strings that are displayed
by the Windows Installer while changes are made to the target system. In addition, it
makes changes to the shortcuts that are to be installed so the correct language is used
on the desktop for the shortcut. The tables that are modified by the transform are the
ActionText, Error, Property, Shortcut, and UIText tables

Figure 4-11 shows only the language initialization files and the language transforms,
but not the resource DLLs or the string tables. The resource DLLs and the string
tables for each of the included languages are streamed into the Binary table at build
time. The one exception is that the English resource DLL is installed along with the
InstallScript engine and is not included in the Binary table.

When the end user launches the installation from setup.exe, the first thing that is
done after the end user selects the language to be used is for setup.exe to apply the
transform for the selected language to the database.

Figure 4-11: The Disk1 folder for a Standard multiple language installation project.

P A R T I T H E F U N D A M E N T A L S

204

Following this IDriver.exe opens the .msi file and the files are extracted from the
Binary table. For our example there are a number of files that have been streamed
into the Binary table. The Binary table for this example, as seen using the Orca
database editing utility, is shown in Figure 4-12. Figure 4-12 shows that there are
seven text files and six resource DLLs. The text files are the string tables and the one
that is streamed out into a temporary directory is the one that corresponds to the
language selected by the end user. The name of the text file is not changed during the
extraction process. As shown, part of the file naming is the decimal language ID for
the contained language.

Almost the same thing occurs with the resource DLLs. The resource DLLs also have
the language ID of the supported language as part of the file name. The only resource
DLL that is not in the Binary table is the one for English. This particular resource file
is installed when the InstallScript engine is installed. This is discussed at the end of
this chapter. When the end user selects a language other than English the resource file
is streamed out of the Binary table and the name is changed to eliminate the language
ID. The name of the resource DLL after it is streamed out of the Binary table is
always _ISRES.DLL.

Figure 4-12: The Binary table for a Standard multiple language installation project.

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

205

As already explained for a fresh install of a Standard project, the files in the Binary
table are streamed out to a temporary location. This temporary location is the one
defined by the SUPPORTDIR system variable. On Windows 2000 this location
typically has the following format:

%USERPROFILE%\Local Settings\Temp\{ProductCode}

Two other files are streamed out of the Binary table: setup.inx (called InstallScript in
the Binary table) and IsConfig.INI. These files are streamed out to the same
temporary location as the other files in the Binary table.

During a fresh install, the language transform is cached on the target system in a
location that has the following format:

%SystemRoot%\Installer\{ProductCode}

The caching of this transform is required to make it available for maintenance
operations. You do not want to perform an installation in one language and a
maintenance operation in another language. The maintenance of a multiple language
project is just as described in Figures 4-9 and 4-10, with the exception that the
IDriver.exe process applies a language transform.

When you perform a multi-language install, the uninstall string that is written to the
registry includes an additional command line argument. This additional command line
argument is the language ID of the language used to perform the installation. If you
install this example using German as the user interface language, the uninstall string
written to the registry would have the following format:

UninstallString=C:\PROGRA~1\COMMON~1\INSTAL~1\Driver\7\INTEL3~1\
 IDriver.exe /M{ECA8C838-2A61-4956-83AF-4F3346C904C0} /l1031

The additional argument is a "/l" followed by the language ID of the language used
to perform the installation. In this example, the language ID is 1031, which indicates
that German was used to perform the initial installation.

The only difference when the end user is not provided a dialog from which to select
the language to be used is that the language used is selected by the logic described
above. Otherwise, there is no difference in how a language is displayed in the user
interface.

P A R T I T H E F U N D A M E N T A L S

206

Basic MSI Project

The main difference between a multi-language Standard project and a multi-language
Basic MSI project that does not include any InstallScript custom actions is that, for a
Basic MSI project, there is no resource DLL (_ISRES.DLL) and no string table text
file required. This is because this type of project does not display any user interface
that is not defined in the database tables.

For a Basic MSI project, there are still transforms for each included language that are
part of the media image as shown in Figure 4-11. The content of these transforms
includes the five tables described above for a Standard project and all the tables
required to define the user interface in the database tables. For the Developer Art
installation these additional tables are the Control, Dialog, and RadioButton tables.
Depending on the user interface created for an installation there could be additional
tables involved with a language transform.

When you have a Basic MSI project that uses InstallScript custom actions, you have
the same situation as with a Standard project. There is a resource DLL and a string
table text file for each language included in the build. These files are streamed into the
Binary table and the appropriate files are streamed out from the Binary table when
the end user selects the language to be displayed in the user interface. A resource
DLL is required so an external dialog can be called from an InstallScript custom
action.

With a multi-language Basic MSI project, the installation must be run using setup.exe.
If an end user ran this type of project by just running the .msi file, the transform
would not be applied and there would be no user interface for the installation. The
architecture of a Basic MSI project with and without InstallScript custom actions is
shown in Figures 4-7 and 4-8. The only thing that happens is that the command line
that setup.exe uses to launch the msiexec.exe process includes the TRANSFORMS
public property with the name of the transform to be applied. For this example, if
you select German as the user interface language, the command line would look as
follows:

TRANSFORMS=1031.mst

For maintenance operations, the Windows Installer automatically applies the cached
transform so the language used is the same as what was used for the initial
installation. If an end user accesses maintenance mode by running setup.exe again, a

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

207

language selection dialog is presented, but the selection here affects only the language
used in the initialization dialog. Once the maintenance operation begins, the end user
will see the language that was used in the initial installation. Running the maintenance
mode from the Add/Remove Programs applet avoids the language selection dialog
because setup.exe is not involved.

Run-Time Handling of
InstallScript

InstallScript plays a major role in running a Standard project and can also be used
quite heavily in a Basic MSI package if many custom actions are required. Since
InstallScript plays such an important role in running an installation, it is worth a little
time to understand more about how InstallScript is handled. This discussion starts
with an overview of the installation on the target system of the InstallScript engine.

Installing the InstallScript Engine
Every Standard project installs the InstallScript engine on the target machine and
every Basic MSI project installs the InstallScript engine if the project uses any
InstallScript custom actions. The installation of the InstallScript engine is performed
using a Basic MSI project that has been modified so that there is no registration
performed of the product code. This means that the InstallScript engine can be
installed over and over again without ever initiating a maintenance mode operation.
In fact, except for the installation of the engine from a Web site, there is no
mechanism to check if the engine has already been installed. The engine is always
installed from the source media. The file versioning rules of the Windows Installer
prevent an older version of the InstallScript engine from replacing a newer version
that may already be on the target machine.

The InstallScript engine installation package is named isscript.msi and its installation is
always run silently. The InstallScript engine consists of six files named IDriver.exe,
iUser7.dll, iscript7.dll, objps7.dll, _ISRES1033.DLL, and ISRT.DLL. Six components
are used to install these six files and these components have NULL component codes

P A R T I T H E F U N D A M E N T A L S

208

so the Windows Installer does not know about these files after they have been
installed. These files are installed to the following location:

C:\Program Files\Common Files\InstallShield\Driver\7\Intel 32

The first four of these files are COM servers and need to be registered. The
isscript.msi installation package contains a special custom action that is used to make
the registry entries. The built-in functionality of the Windows Installer is not used to
create the COM registry entries.

The InstallScript engine cannot be uninstalled from the Add/Remove Programs
applet since the Property table has set the ARPSYSTEMCOMPONENT property to
a value of 1. When this property is set in an installation package it will prevent the
product from being listed in the Add/Remove Programs applet. The only method for
uninstalling the InstallScript engine is to do it manually.

The purpose of the files _ISRES1033.DLL and ISRT.DLL is discussed below:

_ISRES1033.DLL: This file is an English resource DLL that is used to provide
the dialog template for all built-in dialogs available to a Standard project. This
DLL contains all the built-in text and error messages that can be displayed during
an installation. The number 1033 is the language ID for English.

ISRT.DLL: This file is a DLL that implements the built-in functions that are
available in InstallScript.

After setup.exe installs the isscript.msi package it copies the above two files over to
the location specified by the SUPPORTDIR system variable. During the copy of the
file _ISRES1033.DLL the name is changed to _ISRES.DLL. As already discussed
there is a different functionality if the installation package or program contains more
than English and the end user selects a language other than English for the user
interface of the installation. In the case of a multi-language install package where the
end user selects a language other than English the resource DLL for the selected
language is streamed out of the Binary table to the temporary location.

The Program Block and Event Handlers
The program block has already been discussed when covering the implementation
of a fresh install with a Standard project. It is now time to take a look at the program

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

209

block to better understand what actions are included (Figure 4-13). The information
provided in Figure 4-13 is for background purposes only and you should not be
creating your own version of the program…endprogram block. One reason is
that this could change in later versions of the product. Also, if you were to create your
own program…endprogram block and start placing additional functions in
between the event handlers shown in this figure you would not have the advantage of
all the exception handling that is incorporated in these event handlers. Remember
that the program block is only used for the fresh install of a Standard project.

///
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2000, InstallShield Software Corporation
// II SS (c) 1990-1996, InstallShield Corporation
// IIIIIII SSSSSS All Rights Reserved.
//
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
// Comments: This is the default program block.
//
///
#include "ifx.h"
#include "EventsConv.rul"

//Default program/endprogram block
program

 Enable(DIALOGCACHE);

 //Initialize PC Restore variables
 bIfxPCHOn = TRUE;
 bIfxPCHInitialized = FALSE;
 nIfxPCHType = REPAIR;

 ISWIPCRestoreBefore();

 ISWIOnInitInstall();

 ISWIOnCCPSearch();
 ISWIOnAppSearch();

Figure 4-13: The program block as used in all Standard projects where no explicit program block
is defined.

P A R T I T H E F U N D A M E N T A L S

210

 ISWIOnFirstUIBefore();

 ISWIOnMoveData();

 ISWIOnFirstUIAfter();

 ISWIOnExitInstall();

 ISWIPCRestoreAfter();

endprogram

Figure 4-13: Continued.

In the following list each of the functions that are called in the default
program…endprogram block are briefly discussed.

ISWIPCRestoreBefore: This function handles the setting of a restore point on
Windows ME and Windows XP. Restore points are created to allow end-users a
choice of previous system states. Each restore point contains the necessary
information needed to restore the system to the chosen state. Restore points are
created before changes are made to the system in a System Restore compliant
installation program.

ISWIOnInitInstall: This function initializes default installation settings. It sets
the exit and help handler functions and then it calls the OnBegin event handler.
By default the OnBegin event handler is a no-op. When you add code to this
event handler in your script, the linking process replaces the default
implementation.

ISWIOnCCPSearch: This function calls the OnCCPSearch event handler. By
default, the OnCCPSearch event handler is a no-op. When you add code to
this event handler in your script, the linking process replaces the default
implementation.

ISWIOnAppSearch: This function calls the OnAppSearch event handler. By
default, the OnAppSearch event handler is a no-op. When you add code to
this event handler in your script, the linking process replaces the default
implementation.

ISWIOnFirstUIBefore: This function calls the OnFirstUIBefore event
handler. This event handler runs the user interface for the installation. When you

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

211

add code to this event handler, the modified code is linked instead of the default
implementation.

ISWIOnMoveData: This function calls the ComponentTransferData
function. Its purpose is to copy files to the system and perform any other changes
that have been defined such a making registry entries and creating shortcuts.
There is no event handler directly called by this function but the call to the
ComponentTransferData function brings into play all the before and after
data transfer event handlers. These event handlers are discussed in Chapter 8.

ISWIOnFirstUIAfter: This function calls the OnFirstUIAfter event
handler. This event handler runs the user interface after the installation is
complete. When you add code to this event handler, the modified code is linked
instead of the default implementation.

ISWIOnExitInstall: This function calls the OnEnd event handler. By default,
the OnEnd event handler is a no-op. When you add code to this event handler in
your script, the linking process replaces the default implementation.

ISWIPCRestoreAfter: This function marks the end of the end of the changes to
the system and sets another restore point.

All the above functions perform exception handling on errors that occur and are not
handled by some other means. A complete discussion of the documented event
handlers that can be used by setup developers is held in Chapter 8.

This discussion is only applicable to the implementation of fresh installs using a
Standard project. All other install operations have the applicable event handlers called
directly by IDriver.exe. The program…endprogram block does not come into
play with these other types of install operations.

InstallScript Custom Actions
This section examines the mechanism for running InstallScript custom actions. The
mechanism requires the implementation of cross-process communication because the
InstallScript engine is running in the IDriver.exe process and the custom actions are
called in the msiexec.exe process. It is necessary to get the call made to an
InstallScript function from the msiexec.exe process over to the IDriver.exe process so

P A R T I T H E F U N D A M E N T A L S

212

the function can be executed, and then pass the results of the function call back to the
msiexec.exe process.

Figure 4-14 diagrams the flow of communication that enables the calling of
InstallScript functions as custom actions. We will take a close look at this process,
starting with the call to the custom action by the Windows Installer.

Figure 4-14: The calling of an InstallScript custom action.

For purposes of discussion, we will assume that you have an InstallScript custom
action and the name of the InstallScript function that implements this custom action
is InstallNTServiceMsg. We will also assume that this custom action makes a
call to one of the Windows Installer database functions. You do all the appropriate
things in order to export this function, define a custom action named Message where
the InstallNTServiceMsg function is the target, and then insert this custom

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

213

action into one of the sequence tables. We are not discussing here how to create an
InstallScript custom action. Chapter 11 provides a full discussion of how to create
InstallScript custom actions. When you build the project, entries are made in the
appropriate sequence table, in the CustomAction table, and in the Binary table.

The first thing to recognize is that the Windows Installer does not know anything
about InstallScript or the scripting engine. As far as the Windows Installer is
concerned, a custom action needs to be implemented using an executable, a DLL, or
implemented using VBScript or JScript. As far as the Windows Installer is concerned,
an InstallScript custom action is just a custom action implemented in a DLL and the
name of this DLL is ISScriptBridge.dll. You can see this if you look at the
CustomAction table where an InstallScript custom action is defined.

Figure 4-15: The CustomAction table showing the definition of an InstallScript custom action.

Figure 4-15 shows the CustomAction table where the Message custom action is
defined. The Type column shows that this is a DLL that is streamed into the Binary
table. The Source column shows that the name of the DLL is ISScriptBridge.dll and
the Target column shows that the function that is to be called is named f1. You might
wonder how an InstallScript function named InstallNTServiceMsg became a
function named f1. ISScriptBridge.dll has no way of knowing the names of all the
possible InstallScript custom action functions that you might create. Therefore, there
is a mapping mechanism employed to match up the functions exported from
ISScriptBridge.dll and the InstallScript functions that are created by setup developers.
ISScriptBridge.dll exports 1000 functions named f1 through f1000 which means that
there is a limit in any one project of 1000 InstallScript functions that are the targets of
a custom action. Actually there are two versions of ISScriptBridge.dll where if you do
not have more than 50 InstallScript custom actions then the small version is used and

P A R T I T H E F U N D A M E N T A L S

214

if you have more than 50 InstallScript custom actions then the version that allows
1000 custom actions is used. This is a space saving measure.

When an InstallScript custom action is defined, the build process also defines an
initialization file named IsConfig.INI that is streamed into the Binary table along with
ISScriptBridge.dll. For the example in this discussion, the IsConfig.INI file has the
entries as shown in Figure 4-16.

 [f1]
Function=InstallNTServiceMsg
[0]
0=0

Figure 4-16: The contents of a typical IsConfig.INI file.

When the Windows Installer calls the f1 function in ISScriptBridge.dll, the first thing
that is done is to read the IsConfig.INI file to determine the actual name of the
InstallScript function that is the real target of the custom action. The name of the
function is then passed to the InstallScript engine that is loaded in the IDriver.exe
process. The iscript7.dll executes the InstallScript function by accessing it in the
compiled script that is always named setup.inx.

When the call to the Windows Installer database function is reached in the
InstallScript code the connection that has been enabled between the IDriver.exe
process and the msiexec.exe process is used to send the function call to msi.dll that is
open in the msiexec.exe process. It is in the msiexec.exe process that msi.dll is loaded
and it is the msiexec.exe process where the installation database is open. To access the
running database, function calls have to be performed from within the msiexec.exe
process. You can see this mechanism in Figure 4-14.

The results of the Windows Installer function call are returned back to the
InstallScript engine in the IDriver.exe process. When the InstallScript function is
finished executing, it returns back to the function in ISScriptBridge.dll where
everything started. The function in ISScriptBridge.dll then returns a value to the
Windows Installer and, based on this return value, the Windows Installer either
executes the next action in the sequence table or it terminates the installation.

An important capability that InstallScript custom actions have that no other type of
custom actions have is the ability to access the running database even from deferred

C H A P T E R 4 T H E I N S T A L L S H I E L D D E V E L O P E R R U N - T I M E
A R C H I T E C T U R E

215

mode. In Chapter 11 we will see more about what this special capability means and
how it can save you extra work.

Conclusion
This chapter’s main focus was how InstallShield Developer makes use of the
Windows Installer engine to make changes to the installation target. The fundamental
differences between a Standard project and a Basic MSI project were shown to be in
how the user interface for an installation is implemented. The differences between
running a Standard project and a Basic MSI project were discussed. Depending on
the type of installation that is being run, any where from two to four processes are
created.

The end of the chapter provided a detailed discussion of how InstallShield Developer
enables InstallScript to be used for custom actions. You also learned how an
InstallScript custom action, which is actually executed in a different process, can
access the running database.

Creating Projects in
the IDE

This chapter introduces the InstallShield Developer IDE. To help you learn the
different views and functionality, you will recreate in the IDE a Standard project
installation package for the Developer Art application. The creation of a Basic MSI
project is left as an exercise. Completed projects for both project types can be found
on the CD-ROM that is included with this book. As you work through these
projects, you will see the primary differences between a Standard project and a Basic
MSI project. This chapter will also acquaint you with a few of the task-oriented
wizards that make setup creation easier. One of these wizards is the Release Wizard
that gives you a lot of control over how you build a setup project. This chapter also
looks at the Setup Best Practices Wizard and the Convert Source Paths Wizard. This
book will look at the many other wizards, as you use them to perform specific tasks.

Chapter

5

P A R T I T H E F U N D A M E N T A L S

218

Creating a Standard Project in
the IDE

Before you create a Standard project, you need to copy the source files for the
Developer Art application from the CD-ROM to the following location:

C:\MySetups\Sources\Developer Art

If InstallShield Developer is not loaded you need to do that before going any further.
Now make sure that the project location is set to C:\MySetups. To do this:

1. Select Options from the Tools pull-down menu.

2. Click on the File Locations tab.

3. Type C:\Setups in the Project Location field:

Setting up this location ensures that the projects on the CD-ROM will build correctly
with no modification. After copying any projects from the CD-ROM to your hard
drive, you need to remove the Read-only attribute from the copied files and folders.
This is not necessary if you have run the installation program for the sample files.

Now do the following to create a new Standard project in the IDE without using the
Project Wizard:

1. Navigate to the InstallShield Today view and click on Create a new
project in the sub-view tree.

2. To create a Standard project without using the Project Wizard go to the
Project Type pane and select the Standard Project icon.

3. Before clicking Create, enter the name of the project in the Project Name
and Location field. The name used in the book is DeveloperArt_IDEStd
to distinguish it from the project that you created using the Project
Wizard.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

219

4. Click Create to create a Standard project (Figure 5-1).

In the View List on the left side of the screen in Figure 5-1, numbers identify the
steps involved in creating an installation program. Each step has one or more views
under it that provide access to the location in the IDE where data required to
complete the step can be entered. Following this step-by-step process allows you to
build the project in a logical sequence of operations. At the bottom of the view list,
after step 7, is the Advanced Views item. The views listed under Advanced Views
provide most of the functionality available in steps 1 through 7. It also provides some
functionality that is not available in the previous steps. This chapter discusses all of
the advanced views.

Figure 5-1: The initial view of a Standard project created in the IDE.

When you first open a new project in the IDE, the focus is placed on step 1 in the
view list. This is where you begin authoring the installation program for the

P A R T I T H E F U N D A M E N T A L S

220

Developer Art application. This project will have the same structure as the one
created in Chapter 2 (Figure 5-2).

Figure 5-2: The design of the Developer Art application.

The Developer Art application has one top-level feature named Main Program and
one sub-feature named Docs. The files installed by the Main Program feature are
DeveloperArt.exe and ArtWork.dll. The files installed by the Docs sub-feature are
HelpLibrary.dll and Help.htm. The file ArtWork.dll is a COM server but the other
DLL HelpLibrary.dll is a standard Win32 DLL.

The creation of the installation program addresses only those areas in the View List
that are required for the Developer Art application. The other areas of the View List
are covered in later chapters as needed.

Organize Your Setup (Step 1)
Under Step 1, there are three required sets of operations. You need to input some
general information such as the company name, application name, and setup

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

221

language. You will also define the feature tree for the Developer Art application and
determine which Setup Types the installation will offer end users. Start by clicking the
General Information node under the Organize Your Setup view.

The General Information View

Clicking on the General Information icon displays the General Information view
(Figure 5-3).

Figure 5-3: The sub-views for the General Information view under Step 1.

There are four sub-views where you need to enter data: Project Properties, Summary
Information Stream, Add/Remove Programs, and Product Properties. We will look
at the String Tables sub-view but you will not have to use it for this project.

PROJECT PROPERTIES

In this sub-view, there are four project properties that can be set or left as the default.
For this project, the default values are acceptable. However, it is a good idea to get
into the habit of entering values for some of these properties (Figure 5-4).

P A R T I T H E F U N D A M E N T A L S

222

Figure 5-4: Project properties for the Developer Art installation project.

As the developer of this setup project, enter your name in the Setup Author Name
field. In the Authoring Comments field, you should enter a string that allows anyone
working on this project to know why it was created. The Setup Languages property
provides the same functionality as the Project Wizard panel with the same name.
Choosing more than one language for your project to support permits you to create
installations that give the end user a choice of languages in which to run the
installation.

When you click in the edit field for the Setup Languages property, a list of languages
is displayed at the bottom the screen (Figure 5-5). This list of languages is more
complete than the one provided in the Project Wizard. There are two check boxes
that allow you to filter this list of languages so it is easier to handle. You can decide to
show only the languages that have been selected for the project, or those languages
that have been installed from language packs along with the languages that were
added manually. Many of the languages that are shown in the complete list of
languages are not available as language packs. In order to include these languages in
the installation project, you need to provide them. If you select both check boxes,
only the languages that have been selected for the project are displayed.

The Developer Art installation project requires only the default language, which is
English. The face icon with the red arrow identifies the default language. Deselecting
the default language is not permitted. If you add additional languages by selecting
them in the language list, the names of these languages are listed in the Setup
Languages properties field. To change the project’s default language, you need to go
to the String Tables view, which is covered later in this section. To remove selected

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

223

languages from the Setup Languages property field, deselect the languages in the
language list.

Figure 5-5: The panel for selecting the setup languages to be used in the installation project.

The Enable Maintenance property is set to Yes by default. As discussed in Chapter 2,
when you run an installation after the product has already been installed, youb will
initiate a maintenance operation. The maintenance operation allows the end user to
change the feature selection, repair the original installation, or remove the application
completely. For Standard projects, setting the Enable Maintenance property to No
dictates that a second running of an installation performs only a removal of the
installed application. With this property set to No, a second running of a Standard
installation, after the initialization, displays the Confirm Uninstall dialog (Figure 5-6).
This property sets a flag in the Setup.Ini file that is created when you build a release
for the application. Setup.exe uses this flag to either run a standard maintenance
operation or to perform the uninstallation of the installed product.

P A R T I T H E F U N D A M E N T A L S

224

Figure 5-6: The Confirm Uninstall dialog box when maintenance is not enabled.

SUMMARY INFORMATION STREAM

The Summary Information Stream sub-view contains eight of the properties that
make up this stream. The Summary Information Stream was discussed in detail in
Chapter 3. The value for each of these properties for the Developer Art installation
program is shown in Figure 5-7. Notice that the Subject and Comments properties
have an associated string ID. The string ID is the identifier in curly braces ({}). These
links to a String Table through a string ID allows for the localization of the Summary
Information Stream. As discussed in Chapter 3, one of the properties in the Summary
Information Stream is the Codepage property, which is used to translate the strings in
this stream so they appear properly in Windows Explorer.

Figure 5-7: The Summary Information Stream view for the Developer Art application.

The Title property is a string and the one that is used here is the one that is
recommended by Microsoft. This property identifies the type of file to anyone that

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

225

examines it in Windows Explorer. The Subject property provides the name of the
application that is being installed. The Author property identifies the name of the
company that created the installation database. The Keywords property is used to
provide advanced searching for the file in Windows Explorer.

The next property in Figure 5-7 is the Package Code property, which is not the actual
name of the property in the Summary Information Stream. The actual property name
in the Summary Information Stream is Revision. The string "Package Code" identifies
the use that is made of the Revision property. The value used for this property is a
GUID. This value is used to uniquely identify the present installation package.
Clicking in this property field provides the opportunity to generate a different value
via the Generate GUID button near the bottom of the IDE.

The Template Summary property is used to identify the platforms and languages that
the installation package supports. By default, Intel is provided as the supported
platform and English as the supported language. The number 1033 is the language
ID for English.

The Comments property is used to describe the general purpose of the Windows
Installer database. For this project, change the default string to what is recommended
by Microsoft. The complete string is as follows:

"This installer database contains the logic and data required to install Developer Art."

The final property is the Schema property. This is not the name of the property in the
Summary Information Stream. The name of the property is Page Count. The name
Schema indicates the use that is made of this property. The value you need to input
here, in integer form, is the minimum Windows Installer version that is required to
run the installation. The default value of 200 represents that version 2.0 of the
Windows Installer is what is required for the Developer Art installation. Of course,
since the Developer Art application is simple and does not need any of the new
functionality offered by version 2.0 of the Windows Installer it could just as easily be
installed with an earlier version.

ADD/REMOVE PROGRAMS

In Windows 2000 and Windows XP, there is a completely redesigned Add/Remove
Programs applet, which provides a significant amount of information to the end user
about applications that have been installed on their system. Prior to Windows 2000,

P A R T I T H E F U N D A M E N T A L S

226

the only information available to the end user in this applet was one string. This string
was used to identify applications on the system and was used for no other purpose,
except to uninstall the identified application.

To understand where the properties will be used we need to look at the
Add/Remove Program applet on Windows 2000 (Figure 5-8). The size of the
application is displayed along with the frequency of use. There is a Change button
and a Remove button that let the end user modify the features installed on the system
for the application or directly remove the application.

Figure 5-8: The Add/Remove Programs applet dialog.

Clicking on the support information link displays the Support Info dialog shown in
Figure 5-9. The Support Info dialog provides information about the product,
including the company that created it, the version number, a URL to the support site
for the product, and a product ID. The Support Information URL is an actual link

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

227

and an end user can get to your support Web site directly from the Support Info
dialog by clicking on this link.

A Repair button allows the end user to run a reinstallation to repair the application if
it is not running correctly. It is the information shown in Figures 5-8 and 5-9 that is
generated using the values of the properties that are entered in the Add/Remove
Programs sub-view.

Figure 5-9: The Support Info dialog of the Add/Remove Programs applet.

There are 12 Add/Remove Programs-related properties that you can set as necessary
(Figure 5-10). The first property is to identify any special icon that you want to display
beside your applications name in the Add/Remove Programs applet. If you click in
this field, a button to the right with an ellipsis allows you to browse for a file and then
select the icon from that file that you want to use. For the Developer Art application,
browse to the DeveloperArt.exe file and select the icon with the index 0. To see a
bigger selection of icons, you could browse to the SHELL32.DLL file under the
%SystemRoot%\System32 folder. On Windows 2000, this file offers 106 different
icons.

P A R T I T H E F U N D A M E N T A L S

228

The next three properties allow you to disable the three buttons that appear in either
the Add/Remove programs applet dialog or the Support Info dialog. Note that when
the Change and/or Remove buttons are disabled, they are still visible in the dialog,
but they are not functional. Setting the Disable Repair Button property hides this
button on the dialog. The remaining eight properties are described by the property
names.

Figure 5-10: The properties for the Add/Remove Programs sub-view.

Notice the identifiers inside the curly braces. These are string IDs that tie these strings
into the string tables. For the Read Me property, the property value is NULL because
there is no readme file for the Developer Art application. For the Comments
property, type an appropriate string such as "The Developer Art application is an
example product for learning about the use of InstallShield Developer." For the
remainder of the properties, you can leave the default values.

PRODUCT PROPERTIES

The most important properties in the General Information view are those in the
Product Properties sub-view (Figure 5-11).

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

229

Figure 5-11: The properties in the Product Properties sub-view.

The Product Name property is used to set the ProductName property in the Property
table and it is also used to name the MSI file that is created when the project is built.
The ProductName property is one of the required properties in the MSI database.
For this project, use the string "Developer Art Standard" as the value for this
property. Leave the default value for the Product Version property. The value here is
used to set the ProductVersion property in the Property table and it is also one of the
required properties.

The Application Type property is not used in the MSI database. This information
resides in the project file for your information only. Clicking in the field for this
property displays an editable combo box with four choices: Standard Windows
Application, Internet Application, Database Application, and Client-Server
Application. For the Developer Art application, select Standard Windows
Application.

The next two properties, the Product Code and Upgrade Code, are GUIDs. Default
values are generated when the project is created. Depending on the project, you
might want to change these codes. One way to get a new GUID is to click in the field
and then click on the Generate GUID button near the bottom of the IDE. Clicking
this button generates another unique GUID created at the time the button is clicked.
However, sometimes you might want to use a specific GUID and then you have to
copy and paste it from another location, such as another project file.

The Product Code property is used to set the ProductCode property in the Property
table of the database. This is one of the properties in the Property table that must be
set. The ProductCode property is the principal identification of an application or
product. There are many rules about when the ProductCode property has to be

P A R T I T H E F U N D A M E N T A L S

230

changed and when it can be left the same. Changing the ProductCode property
becomes an issue when performing upgrades of a product.

The Upgrade Code property is used to set the UpgradeCode property in the Property
table. This is not a required property, but it is recommended that this property be set;
otherwise, you cannot perform major upgrades using the mechanisms provided by
the Windows Installer. The UpgradeCode property is used to represent a related set
of products. This property is used in the Upgrade table to search for related versions
of the product that are already installed on the target system.

The Install Condition property allows you to define any checks that need to be made
of the installation environment. Click in the field for this property to display a small
ellipsis button at the right of the field. Clicking this button displays the Product
Condition Builder dialog (Figure 5-12). In this dialog, you can add any conditions that
you want checked when the installation starts.

Figure 5-12: The Product Condition Builder dialog box.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

231

A condition as entered here consists of the condition itself and a message that will be
displayed by the Windows Installer if the condition does not evaluate to TRUE.
When you create conditions here, you are making entries that will be rows in the
LaunchCondition table. Part of this dialog contains a condition builder capability that
allows you to choose properties and operators from a drop-down combo box to
build a condition. You can also type directly in the condition field without using the
condition builder.

The final property that you need to define is the default for the root install location
for the application. The name of this property is INSTALLDIR. As discussed in
Chapter 3, INSTALLDIR is an identifier in the Directory table that is made into a
path property during file costing. By default, all features and components have
INSTALLDIR as the destination. For this project, set the company name to
InstallShield and the application name to Developer Art Standard (Figure 5-11).

STRING TABLES

String tables enable the easy localization of the installation program's user interface.
For the Developer Art application, only English is selected as the setup language so
only an English (United States) string table appears. Click on the English (United
States) node to view the associated string table (Figure 5-13).

A string table has four columns. The first column is the identifier by which a
particular string will always be associated and the second column is the string itself.
The third column allows you to make comments if there is something special about
the string itself. The fourth column is the date when the string was created or was last
changed. In the string table shown in Figure 5-13, the entries in the string table are
sorted with the string created last displayed at the top. You can sort the string table by
clicking on the header for any of the columns. Sorting by the Modified column is a
good way to separate the default strings and the custom strings into different groups.

As shown in Figure 5-13, only two custom strings have been entered at this point.
These custom string IDs have the generic format ID_STRINGX where X is a
sequence number that is incremented for each new string we add to the project. You
can export string tables in total or by selected rows. You can also import string tables.

P A R T I T H E F U N D A M E N T A L S

232

Figure 5-13: The English (United States) string table for the Developer Art application.

You have now entered the properties that make up the General Information sub-
view of the project. The second part of Step 1 is to define the features that describe
the logical structure of the application.

The Features View

There are only two features in the application, one top-level feature and one sub-
feature under that (Figure 5-2). Figure 5-14 shows a view of the default feature that is
part of any project created directly in the IDE. The name of this default feature is
DefaultFeature.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

233

Figure 5-14: The Features view and default feature tree under Step 1.

The first thing that you want to do is rename the default feature to MainProgram and
then add the sub-feature to this feature. You can rename the default feature by right-
clicking and selecting Rename from the context menu.

Figure 5-15: The Features view showing the feature tree for the Developer Art application.

You can add a sub-feature by right clicking on the top-level feature and selecting the
New option. Name this sub-feature Docs. Right-click on a feature to display the
context menu. The options allow you to configure the structure of the feature tree, in
addition to adding, renaming, and deleting features. After you have created the feature

P A R T I T H E F U N D A M E N T A L S

234

tree for the Developer Art application, you should see something like what is shown
in Figure 5-15.

To the right of the feature tree, there is a panel where you can set certain attributes
for the feature that is highlighted in the feature tree. These attributes are important in
the creation of a robust installation program. Many of these attributes are used to
populate the Feature table when you build the project.

The rest of the feature attributes are used only in Standard projects and define certain
aspects of the programming approach used with these project types. After we discuss
these attributes, you will make a few changes in them for each of the features.

Display Name: The display name defines the string that is used in the custom
setup dialog in the installation user interface to show the name of the feature. The
default value for this property is the name of the default feature, which is
DefaultFeature. This property is not changed if you rename the feature in the
feature tree. The Display Name property is used to populate the Title column of
the Feature table. This column is allowed to be NULL and if it is NULL, then no
feature name is displayed in the custom setup dialog.

Description: The value of this property is used to display a description of the
selected feature in the custom setup dialog. When the end user highlights a
feature in the custom setup dialog, the string entered here explains the feature’s
purpose. The value here is used to populate the Description column of the
Feature table. This value is allowed to be NULL.

Remote Installation: As discussed in Chapter 3, the Feature table contains an
Attributes column that is used to set the feature’s default state. The Remote
Installation property is used to set part of the attribute value for the feature. The
Attributes column for a feature is made up of a number of applicable bit-flags.
This property is just one aspect of a feature's state that is entered into the
Attributes column. The values for this property are Favor Local, Favor Source,
and Favor Parent. The Favor Local option means that the default action will be
to install the components of the feature to the local hard drive. The Favor Source
option means that the components of the feature will be installed to run from the
source media. In other words, these components will not be copied to the local
hard drive. The Favor Parent option is applicable only for sub-features and it
means that, by default, the sub-feature will be installed using the same state as the
parent feature. The Remote Installation property is also available for components.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

235

In fact, what the component does and what the feature’s default state is depend
on the settings for the components and this setting for the feature.

Figure 5-16: The options for specifying a feature’s Destination property.

Destination: This is the default destination for the feature and it is a foreign key
into the Directory table. The default value for this is [INSTALLDIR], but it can
be any key into the Directory table. However, it should be a key to a Directory
table identifier that does not have a fixed location on the target system.
Otherwise, the end user will not be able to browse to a different location for
installing the feature.

If you click in the Destination field, a drop-down combo box displays the five
possible selections (Figure 5-16). The default destination for the product,
[INSTALLDIR], was set under the Product Properties section of the General
Information view. The Choose Folder dialog in the installation user interface
points to this location. The location for this project is:

{DEVELOPER_ART_STANDARD}[ProgramFilesFolder]InstallShield\
 Developer Art Standard

Inside the curly braces, there is an identifier that points to a row in the Directory
table. Up to this point we have seen that string IDs are held inside curly braces.
This is a new use of the curly brace. Consistency might indicate that the
INSTALLDIR identifier should be shown inside curly braces, but the use of the
square brackets is a holdover from earlier InstallShield products to be consistent
with its previous use. The DEVELOPER_ART_STANDARD identifier points

P A R T I T H E F U N D A M E N T A L S

236

to the same location that INSTALLDIR points to. The INSTALLSHIELD
identifier points at a location that is one level higher than that which is pointed to
by the INSTALLDIR or by the DEVELOPER_ART_STANDARD identifiers.

There is also what looks like a blank line in the drop-down combo (Figure 5-16)
and this allows you to set the destination for a feature to NULL. This is allowed
because the Directory_ column in the Feature table can be NULL. Select the
“Browse, create, or modify a directory entry” option from the drop-down combo
box to launch the Browse for Directory dialog (Figure 5-17).

This dialog was first discussed in Chapter 2 when you launched it from the
Application Features panel of the Project Wizard. This dialog allows you to create
new identifiers for different locations.

Figure 5-17: The Browse for Directory dialog to define a new feature destination.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

237

These identifiers, just like INSTALLDIR, are converted into properties during
file costing and the resolution of the Directory table. This was discussed in
Chapter 3. For your introduction to creating projects directly in the IDE, use the
default value of [INSTALLDIR]. There is an example in Chapter 14 of how to
create your own directory identifier for a feature.

Install Level: The value of this property is used to populate the Level column of
the Feature table. The use of the Level value in the Feature table was discussed in
Chapter 3 as the means by which setup types can be defined. This number can be
any integer from 1 to 32,767. This number is compared to the value of the
INSTALLLEVEL property in the Property table. The INSTALLLEVEL
property defines the initial install level for the package as a whole. If the Level
value for the feature is equal to or less than the INSTALLLEVEL value, the
feature is installed by default; otherwise, the feature will not be installed. If this
value were set to zero, the feature would be hidden from the end user and not
installed. For a Standard project, this value is not used unless there are no defined
setup types.

Display: This property allows you to set how the initial display of the feature tree
appears in the custom setup type dialog in the installation user interface. Click in
the property’s field to access a drop-down combo box that presents three
options: Not Visible, Visible and Expanded, and Visible and Collapsed. Not
Visible indicates that the feature will be hidden and the end user cannot interact
with it in the custom setup dialog. A hidden feature will be installed or not
installed based on how its Level value compares with the value of the
INSTALLEVEL property. The Visible and Expanded option displays the
expanded feature tree in the custom setup dialog. This is pertinent only when the
feature has sub-features. The default option, Visible and Collapsed, means that
the feature tree is initially shown collapsed. In order to see the sub-features, the
end user needs to expand the tree.

Advertised: The value of this property goes into setting the Attributes column of
the Feature table, just as was done with the Remote Installation property
discussed above. Advertising a feature in a Basic MSI project allows that feature
to be installed on demand. This property is not used for a Standard project.

Required: This property defines whether a feature is required or not. A required
feature cannot be deselected. To set the value, click in the field and select Yes or

P A R T I T H E F U N D A M E N T A L S

238

No from the drop-down menu. This is another of those properties that helps to
set the final value for the Attributes column in the Feature table.

Release Flags: Up to this point, every feature property relates to how a feature
appears in the custom setup type dialog of the installation user interface. The
Release Flags property, however, has nothing to do with anything that goes into
the Feature table. A release flag is a build-time mechanism that allows you to
create different builds from the same project. You can use release flags to filter
out different features for different builds. This can come in handy if you want to
generate an evaluation build, a light version build, a full version build, etc. for
your application.

Condition: The Condition property allows you to define a condition for a
feature. If the condition evaluates to TRUE, the Level value in the Feature table
will be changed to a new value as specified as part of the condition.

Figure 5-18: The Feature Condition Builder dialog.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

239

Click in the field for this property to display an ellipsis. Click on this button to
display the Feature Condition Builder dialog (Figure 5-18).

This dialog is similar to the dialog that is displayed to create an install condition as
part of the Product Properties under the General Information view. The
difference here is that you can specify a level to which the Level value property
for the feature will be set if the condition evaluates to TRUE. Any conditions that
you define here are entered into the Condition table of the database. These
conditions are evaluated during the file costing operation.

Comments: This property is used to provide comments in the project file that
are important to understanding the feature. These comments are saved only in
the project file, and do not affect the installation program created from the
project file.

FTP Location & HTTP Location: These two properties were created as part
of the InstallShield Professional 5.0 functionality and the original purpose of
these properties was to allow for the update of features using a download-on-
demand capability via the Web. This is no longer the planned use of these
properties since newer and better capabilities have been developed for dynamic
updating. Presently these properties are used by setup developers to store strings
that provide information that can be accessed at run time by calling a certain
function in InstallScript. For a Standard project, these have to continue to be
supported because of the migration of installation programs created by
InstallShield Professional products. When creating projects in InstallShield
Developer and not upgrading from an earlier project, you should not use these
properties.

Miscellaneous: This property is where you place any string data that you want to
retrieve at run time. You can retrieve this data using the FeatureGetData
InstallScript function. This property should be used to store data that you want to
retrieve at run time in place of using either the FTP Location or the HTTP
Location properties for this purpose.

Required Features: This property is to allow you to tie features together. If the
end user selects a particular feature, the installation will automatically install any
other features that are necessary for the selected feature to function properly.
This is something that is very difficult to do in a Basic MSI project. Click in the

P A R T I T H E F U N D A M E N T A L S

240

Required Features field to display the ellipsis button. Click on this button to
display the Required Features dialog box (Figure 5-19).

The Required Features dialog displays a tree of all of the features defined in the
project. The feature from which this dialog was launched is selected and all the
other features are deselected. You can select the other features that need to be
installed when the selected feature is installed. There is no mechanism in the IDE
that you can use to create an exclusive relationship between two features, where a
feature is deselected when the end user selects another feature.

Figure 5-19: The Required Features dialog box.

OnInstalling: This property identifies a function that is to be called before
installing the feature. This type of function has to be prototyped in a special
fashion. When you click in the field, a drop-down combo box provides a list of all
the functions that have the correct prototype. You can select the function that

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

241

you want called. For functions to be available in the combo box they need to first
have been declared in your script.

OnInstalled: This property identifies a function that is to be called after installing
the feature. This type of function has to be prototyped in a special fashion. When
you click in the field, a drop-down combo box provides a list of all the functions
that have the correct prototype. You can select the function that you want called.
For functions to be available in the combo box they need to first have been
declared in your script.

OnUninstalling: This property identifies a function that is to be called before
uninstalling the feature. This type of function has to be prototyped in a special
fashion. When you click in the field, a drop-down combo box provides a list of all
the functions that have the correct prototype. You can select the function that
you want called. For functions to be available in the combo box they need to first
have been declared in your script.

OnUninstalled: This property identifies a function that is to be called after
uninstalling the feature. This type of function has to be prototyped in a special
fashion. When you click in the field, a drop-down combo box provides a list of all
the functions that have the correct prototype. You can select the function that
you want called. For functions to be available in the combo box they need to first
have been declared in your script.

Now that you have learned about the properties that can be set for a feature in a
Standard project, you can set a few of these properties for the Developer Art
application. You need to change only two of the properties for each of the features in
the project: the Display Name and the Description properties. The values for each of
these properties are as follows:

MainProgram Feature

Display Name: Main Program

Description: This feature installs the main executable for the Developer Art
application.

P A R T I T H E F U N D A M E N T A L S

242

Docs Feature

Display Name: Docs

Description: This feature installs the help files for the Developer Art
application.

For the time being, you do not have to change any of the other properties. However,
you should take the opportunity to come back to these properties later and
experiment with them.

The Setup Types View

Figure 5-20: The Setup Types view for the Developer Art application.

The last view under Step 1 is the Setup Types view where you can indicate the setup
types that you want your application to offer the end user. The Setup Types view

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

243

provides three default setup types (Figure 5-20). A setup type provides for the
installation of specified features when the end user selects the setup type in the
installation user interface. The dialog that presents the setup types to the end user is
usually called the SetupType dialog.

The Setup Types view displays a screen that is divided into four panels. In the upper-
left panel is a list of three default setup types that were generated when the project
was created. Right-click in this panel to display a context menu that provides options
to Add, Rename, Remove, Move Up, and Move Down. Using this functionality you
can create your own setup types and rearrange them.

The upper-right panel contains the property sheet where you can create or modify the
properties for each of the setup types. There are only two properties for any setup
type, Display Name and Description. Each of these properties is tied to a string ID in
the string table. This allows you to easily localize the installation user interface.

In the lower-left panel, you can set the features to be installed for each of the setup
types that have been defined in the Setup Types panel. For each of the three default
setup types for the Developer Art application both features are selected by default.
You can leave this default selection for this project. The lower-right panel provides
help for the two properties that are associated with each of the setup types.

This completes our discussion of the three views that compose Step 1 of project
creation. For the remainder of the steps, we need to discuss a few of the associated
views. Most of the views are not required for the Developer Art application because it
is a simple project.

Specify Application Data (Step 2)
Three views compose this step in the project creation process. For the Developer Art
project, however, you need to use only the Files view. The other views, Merge
Modules and Dependencies, are discussed in Chapters 13 and 14. When we discuss
the Files view, you will also learn about the Setup Best Practices Wizard. To be able
to do this, you need to make sure that you are enforcing best practices when you
create components. Do this by selecting Options from the Tools drop-down menu.
This launches the Options dialog. On the General tab of this dialog, ensure that the
Enforce Setup Best Practices check box is selected.

P A R T I T H E F U N D A M E N T A L S

244

The Files View

Next, click on the Files icon in the View List to display the Files view (Figure 5-21).
As with the Setup Types view, the Files view is divided into four panels. Above these
four panels is a drop-down menu that lists all the features in the project. The upper-
left panel provides a view of the file system on the build machine, the machine on
which you are creating the project. You can browse through the file system in this
panel just as in Windows Explorer. The upper-right panel contains a list of all the files
in the folder that is selected in the upper-left panel.

The lower-left panel is where you describe destinations on the target computer where
you want to copy files. In this panel, you can define the tree of folders that will be
affected by the installation. By default, the folder tree is displayed as defined by the
default value of the INSTALLDIR property.

Figure 5-21: The Files view for the Developer Art application.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

245

The lower-right panel provides a list of the files that are going to be copied as part of
the installation. In Figure 5-21, there are no files because none have been designated
yet.

For the Developer Art application, you need to copy all files to the location pointed
at by INSTALLDIR. Before you drag and drop any files, select the feature that will
install these files from the drop-down combo box at the top of the view.

Figure 5-22: The Developer Art application files as seen in the Files view.

To copy the Developer Art application files:

1. Select the MainProgram feature from the feature drop-down menu.

2. In the upper-left panel, browse to the source file location for the
Developer Art application.

P A R T I T H E F U N D A M E N T A L S

246

3. From the upper right panel, drag and drop the DeveloperArt.exe,
ArtWork.dll, and HelpLibrary.dll files into the INSTALLDIR location in
the lower-left panel.

4. Select the Docs feature from the feature drop-down menu.

5. From the upper right panel, drag and drop the Help.htm file into the
INSTALLDIR location in the lower-left panel.

When you finish copying the Developer Art application files to the INSTALLDIR
location, the Files view should look similar to what is shown in Figure 5-22.

There is a lot of hidden functionality in the lower-left panel of the Files view. If you
right-click on the Destination Computer string the context menu appears as seen in
Figure 5-23. There are a number of options available from this context menu, many
of which are disabled at this time.

Figure 5-23: The files location context menu.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

247

By default, only the locations on the target computer are displayed in the lower-left
panel under the Destination Computer. To see the components that were created
when you dragged and dropped the files into the INSTALLDIR location, right-click
on Destination Computer and select Show Components. Expand the tree under
INSTALLDIR to see a list of components in the lower-left panel.

Select the Show Predefined Folder option to
see a sub-menu, shown on the next page,
which lists all the predefined folders that are
available from the operating system. Note that
the [ProgramFilesFolder] option is checked
and disabled on this sub-menu. This is because
this folder is already in use as part of the
definition of INSTALLDIR. You can use this
functionality to create destinations for new
components. You can create a new destination
and drag and drop files into this location. New
components will be created. If you choose one
of these predefined folders, it will appear under
the Destination Computer location in the
lower-left panel. When you do this, a default
component is created, AllOtherFilesX where
the X stands for some sequence number.

The New Folder option allows you to add
folders, under the predefined folders or directly
under the Destination Computer location. For
every folder added, another default component
is created. In most cases, you will delete these
components since you probably will not be
using them. For folders that you name, you can
directly delete them or delete the components
that are under them. To delete a predefined
folder, delete the components and folders that
are under it. You cannot delete the entire tree

under a predefined folder directly. You can, however, delete an entire tree of folders
that you have defined by right clicking and selecting Delete or press the Delete key on
the keyboard.

P A R T I T H E F U N D A M E N T A L S

248

One of things that you need to do for the Developer Art project is delete any
unnecessary components that have been created. Ensure that the Show Components
option is active and expand the list of components under the INSTALLDIR folder
(Figure 5-24). In the lower-left panel, select the INSTALLDIR folder to see a list of
all the files that are going to be installed with the Developer Art installation in the
lower-right panel.

In the lower-left panel, select each component in order to verify what files will be
installed by that component alone. This is done to find any components that do not
contain any files. The component that does not contain files is named
DefaultComponent. Because you do not want any unnecessary components in your
project, right-click on this component and select Delete.

Figure 5-24: The file list for the Developer Art installation.

In the lower right panel right-click on a file to display the context menu. These
options were discussed in Chapter 2 when we covered the Application Files panel of
the Project Wizard. For the Developer Art project, right-click on the Help.htm file
and select Set Key File to set it as the key path of its component, the AllOtherFiles
component. A yellow key icon appears next to this file to indicate that it is the key
path for the component that will be installing it

We now want to get acquainted with the Setup Best Practices wizard before we move
on to Step 3.

The Setup Best Practices Wizard

At the beginning of this chapter, you ensured that the Enforce Setup Best Practices
option was selected on the Options dialog. Because this option is set, the Setup Best

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

249

Practices wizard will appear if one of the rules for creating components is broken
while you create your project.

Figure 5-25: The Welcome dialog for the Setup Best Practices wizard.

These rules were discussed in Chapter 3 and it is the first three of these rules that are
addressed by the Setup Best Practices wizard. These three rules are:

1. Every .exe, .dll, and .ocx file needs to be in its own component and this
file has to be designated as the key path for the component.

2. Every .hlp and .chm file needs to be in its own component. These files
need to be designated as the key path for the component. The associated
.cnt and .chi files need to be added to the component that is installing
their associated .hlp or .chm file.

P A R T I T H E F U N D A M E N T A L S

250

3. Never create a component for a file and other resource that is already
available in a merge module. A brief description of merge modules is
provided in Chapter 14.

The way to launch the Setup Best Practices wizard is to break one of the above rules.
You can do this very easily from the Files view by dragging and dropping the
HelpLibrary.dll file into the component that contains the ArtWork.dll file. Since we
are not supposed to have two DLLs in the same component, the Setup Best Practices
wizard appears (Figure 5-25).

In the Welcome panel, you can select the “Please don't warn me of Setup Best
Practices Conflicts” check box and click Next to move to the next panel in the
wizard. Or you can just click Next to go to the next panel. The difference in the two
actions is that the first action deselects the Enforce Setup Best Practices option on
the Options dialog.

Figure 5-26: The Setup Best Practices Compliance dialog.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

251

This means that future setup best practices conflicts will not launch this wizard.
Regardless of what action you take in the Welcome panel, the Setup Best Practices
Compliance panel appears when you click Next (Figure 5-26).

The Setup Best Practices Compliance panel displays the file or files that are causing
the setup best practices conflict. In this case, it shows that there is already a file with a
.dll, .exe, or .ocx extension in the component. It states that trying to add
HelpLibrary.dll to this component is breaking the rule that says that there cannot be
more than one of these types of files in the same component.

You can select the indicated file and remove it so that the rules are not broken or you
can click Finish or Cancel and proceed to break the rule. As stated in Chapter 3, these
rules are no more than strong guidelines and if you know what you are doing, you can
decide to break them.

You have now completed all the operations that are required as part of Step 2 in the
View List. In Step 3, you can define the shortcut that is needed for the Developer Art
application.

Configure the Target System (Step 3)
Under Step 3 the only action that you need to take is to create a shortcut for the
Developer Art application. The Registry, INI File Changes, and Environment
Variables views are covered in Chapter 10. The ODBC Resources view is discussed
in Chapter 14.

To create a shortcut, go to the Shortcuts/Folders view (Figure 5-27). In this view, by
default, you can see all the shortcuts and folders that have been created in the entire
project. You can filter what is shown in this view by making a different selection in
the View Filter drop-down combo box at the top of this view. For our purposes you
can leave the default filter selection so that you can see all the shortcuts and folders in
the project.

For the Developer Art application, you need to create one shortcut on the Programs
Menu. Because there is only one shortcut, you do not need to create a folder for this
single shortcut. Creating a folder for a single shortcut is strongly discouraged by the
"Certified for Windows" logo specification. To create a shortcut, right-click on
Programs Menu in the sub-view list and select New Shortcut from the context menu.

P A R T I T H E F U N D A M E N T A L S

252

Figure 5-27: The Shortcuts/Folders view.

When you do this you will get the Browse for shortcut Target dialog just as you did in
Chapter 2. After you have selected DeveloperArt.exe as the target of the shortcut,
enter the name of the shortcut as shown in Figure 5-28. The name shown in Figure
5-28 is Developer Art Standard. This entry for the name of the shortcut also sets the
default value for the name that will be used on the Start\Programs menu.

The shortcut has a number of properties that we need discuss. Figure 5-28 shows the
Shortcut properties as changed for the Developer Art application.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

253

Figure 5-28: The property panel for the Developer Art application shortcut.

The following properties are available for shortcuts.

Display Name: The name used for this property is what will be displayed on the
Programs Menu. When you create a shortcut, this property is given the same
value that you used to define the shortcut. There is no need to make any changes
for this property from the name that was used to create the shortcut. InstallShield
Developer provides a string that contains both a short file name as well as the
name that was entered. The value of this property is used to populate the Name
column in the Shortcut table.

The data required for the Name column is of the Filename type. What you enter
here is the file name of the shortcut that will be created by the Windows Installer
at run time. Because the string "Developer Art Standard" contains more than
eight characters and it contains spaces, the value entered into the Name column
of the Shortcut table has to contain both the short file name as well as the long
file name. The two file names are separated by the pipe symbol (|). If a name of
eight or less characters and without any spaces were entered, then the value for
this property would consist of just the single string that was entered.

P A R T I T H E F U N D A M E N T A L S

254

Description: This property contains a string that you want either displayed in
Windows Explorer when the end user clicks on the shortcut, or displayed as a
tool tip on the Programs Menu when the end user places the mouse pointer over
the shortcut. Showing the description of a shortcut as a tool tip on the Programs
Menu is available on Windows 2000, but not on any earlier operating system. For
the Developer Art application, use the following string value:

"This shortcut launches the Developer Art application."

Advertised: This property is not directly used to populate the shortcut table. It
only defines whether you want a shortcut created that can be advertised. If you
choose the default value of Yes, then the component identified in the last
property has to have a key path that is a file in the component. The file that is
being used as the key path for the component will be displayed in the value field
of the Target property. If you select No for this property then you would need to
define a path to the file or folder in the value field of the Target property that will
serve as the target of the shortcut to be created. As you remember form Chapter
2 the default shortcut that is created is one that cannot be advertised. For this
example you should select Yes for this property so that the shortcut can be
advertised.

Target: The value for this property is used to populate the Target column of the
Shortcut table. If the Advertised property is set to Yes then the value that will be
placed in the Target column of the shortcut table will be a foreign key to the
Feature table. The row in the Feature table that is identified by this foreign key is
the feature that contains the component installing the target of the shortcut. If
the Advertised property is set to No then the value for this property is a
formatted text string that evaluates to an absolute path to a file or a folder that
will be launched by the shortcut. Note that since you have selected to make this
shortcut advertisable you cannot edit this property.

Component: In this property, you define the component that will install this
shortcut. Click in the field to display an ellipsis button. Clicking this button
displays the Browse for a Component dialog, which lists of all the components
either by feature or all components without regard to feature association (Figure
5-29).

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

255

Figure 5-29: The Browse for a Component dialog.

The selection you make here has an impact on the value of other properties for
the shortcut, as already discussed. You should identify the component before we
enter any of the other property values. The selection of component here is used
to populate the Component_ column of the Shortcut table.

Features: This property identifies all the features that install the component that
contains the target of the shortcut. This is a read-only property.

Icon File: This property identifies the file that will be used to provide the
shortcut’s icon. Click in this field to display the ellipsis button that allows you to
browse to a file. When you select a file, the Change Icon dialog displays the icons
available in the file. You can select the icon to use and click OK. The index for
the icon is placed as the value of the Icon Index property. During the build
process InstallShield Developer extracts the indicated icon and places it into a
resource file that is then streamed into the Icon table. In the Shortcut table, an
entry is made in the Icon_ column and this entry is a foreign key into the Icon
table. By default the first icon in the file used as the target of the shortcut is
selected. You can change this default by either selecting another icon in this same
file or browsing to another file and selecting an icon to be used.

P A R T I T H E F U N D A M E N T A L S

256

Icon Index: The value of this property is used to extract the icon from the file
identified in the Icon File property. Normally this value is populated when you
browse to the file that is designated to provide the icon for the shortcut. The first
icon in a file always has an index of 0. This value is not used to populate the
IconIndex column of the Shortcut table. The value used to populate the
IconIndex column of the Shortcut table depends on the index of the icon after it
has been placed into the resource file that is streamed into the Icon table.

Run: The value of this property specifies how the application is to be launched
when the shortcut is activated. The possible values for this property are Normal
Window, Maximized Window, or Minimized Window. The value selected for this
property is used to populate the ShowCmd column of the Shortcut table. The
value that is placed in the ShowCmd column is the integer 1 for normal window,
3 for a maximized window, or 7 for a minimized window.

Arguments: This property specifies any arguments that need to be passed to the
file that is the shortcut’s target. For the Developer Art application there are no
arguments that need to be passed, so leave this value NULL. Any value defined
for this property is used to populate the Arguments column of the Shortcut table.

Working Directory: This property defines the location in which the shortcut
starts. The value that is placed here is usually the location where the application
should default for the Save as and the Open dialogs that are launched from the
File drop-down menu of an application. This value needs to be an identifier into
the Directory table. The identifier needs to resolve to an absolute location on the
target machine. Click in the field for this property to display the drop-down menu
that provides a selection of the available identifiers. You can also choose to create
a new identifier by selecting the “Browse, create, or modify a directory entry”
option. This launches the Browse for Directory dialog as discussed in Chapter 2.
The entry made here is used to populate the WkDir column of the Shortcut table.

Hot Key: The hot key for a shortcut is a mechanism provided by Windows that
launches a shortcut through a combination of keyboard keys. It is recommended
that installations do not set a hot key for any shortcuts that are being created by
the installation. Doing this can conflict with hot keys that are already enabled on
the target machine. The setting of hot keys for shortcuts should be left to the end
user after the application has been installed.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

257

Key Name: The value of this property is the identifier that is used as the primary
key in the Shortcut table. You can edit this value if you need to access the
Shortcut table at run-time using a custom action. By default the identifier placed
in this property uses the form NewShortcutX where X is a sequence number. If
you plan to create your own value for this property it must follow the rules laid
down by Microsoft for the identifier data type and you cannot use this same value
for two different shortcuts because of the uniqueness requirements of a primary
key.

Comments: Use the Comments property to provide information about the
shortcut’s purpose for anyone working on this project. These comments are
saved in the project file and are not used in the MSI database.

You have done what is necessary to create the shortcut for the Developer Art
application. The operations that can be performed under Step 4, Step 5, and Step 6
are not required for completing the installation program for the Developer Art
application. Before we move on to discussing the creation of a build we need to take
a tour of the views under Advanced Views at the bottom of the View List.

Advanced Views
The views under the Advanced Views list, Figure 5-30, provide functionality that is
not available anywhere else in the IDE. Some of these views provide duplicate
functionality that is presented in a different format. We will discuss some of these
views in detail and some will only be introduced.

Path Variables

Click on Path Variables to display the Path Variables view, which allows you to define
path variables (Figure 5-31). Path variables are used to locate the source files for the
application when performing a build. In other words, a path variable is a build-time
functionality only and has nothing to do with locating files during the running of an
installation. You saw in Chapter 3 that the Directory table is used to provide the
source and destination locations for copying files during the running of the
installation program. Chapter 2 provided an introduction to the subject of path
variables.

P A R T I T H E F U N D A M E N T A L S

258

Figure 5-30: Advanced Views list of views in the IDE.

The value of a path variable is that it makes it very easy to relocate or redefine the
structure of the source files for an application. If you define the location for the
source files with absolute paths and wanted to change the location of some or all the
files on the build machine, you would have to re-link each of these files by going to
each component in the project, deleting the present link, and re-adding the files to
create a new link. If you use path variables, all you have to do is go to the Path
Variables view and change the location to which the path variables point. The one
thing that you cannot do is, after using a particular path variable to link to files,
change the name of the path variable. If you do this, you have to re-add all the files
that used the path variable’s original name.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

259

Figure 5-31: The editing panel for creating or modifying path variables.

There are five columns in which the parameters of a path variable are displayed
(Figure 5-31). The Type column defines the type of path variable that is being
displayed in the row. There are four types of path variables: Predefined, Standard,
Environment, and Registry. Predefined path variables are set by InstallShield
Developer and cannot be modified. You cannot create your own Predefined path
variables. Note that the Predefined path variables point to common locations on the
build system such as the folder where Windows is installed and where InstallShield
Developer is installed. Of particular interest is the path variable named
ISProjectFolder and it points to the location you specify in the Options dialog for
where projects are to be created. Also the ISProjectDataFolder path variable points at
the root location for all the builds created for this particular project.

If you want to create a Standard type of path variable, click in a new row of the Name
column. A new Standard path variable is created with a default name. The Current
Value column shows that this value is presently undefined. As an experiment, type
into the Defined Value column the location where the Developer Art application
source files can be found. Once you have done this you will see that the value in the
Current Value column has the same value as you just entered. Give the path variable a
better name, such as StdSources instead of NewCustomPathVariable1.

When you create a new path variable when adding files to a component, you are
creating a Standard path variable. A Standard type of path variable always shows the
same values in the Defined Value column and in the Current Value column. As seen
in Figure 5-31, the Predefined path variables have a value in the Current Value

P A R T I T H E F U N D A M E N T A L S

260

column and nothing in the Defined Value column. The Current Value column is a
read-only column.

If you want to create an Environment type of path variable, click in a new row of the
Type column and select Environment from the drop-down menu. A new path
variable is created with a default name. The Current Value column shows that this
value is presently undefined. As an experiment, type into the Defined Value column
the name of an environment variable such as TEMP. Give the path variable a better
name, such as EnvSources instead of NewCustomPathVariable1.

You can also experiment to see how the Registry type of path variable works. You
can reference either the default value of a registry key or the data for a registry value
for the location at which this type of path variable can point. To experiment with this,
there is a key in the registry that was created when you installed InstallShield
Developer. This key is:

HKEY_LOCAL_MACHINE\SOFTWARE\InstallShield\Developer\7.0

Under this key there is a value name that has as its data the installation location for
InstallShield Developer. The value name and value data are:

Install Location=C:\Program Files\InstallShield\Developer\

To create a Registry type of path variable, click in a new row of the Type column and
select Registry from the drop-down menu.

Enter the following in the Defined Value column:

HKEY_LOCAL_MACHINE\SOFTWARE\InstallShield\Developer\7.0\Install
 Location

When you make this entry in the Defined Value column, the Current Value column
displays the value data of the Install Location value name as follows:

C:\Program Files\InstallShield\Developer\

You should also provide a better name for the path variable, such as RegSources.

When you have made these entries for both the Environment and Registry types of
path variables, the Path Variables view should look similar to what is shown in Figure
5-32.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

261

Figure 5-32: The Path Variables view with Standard, Environment, and Registry types.

For the Environment type of path variable, the environment variable has to already
exist when InstallShield Developer is launched or it will not be recognized. If you
launch InstallShield Developer and then create the environment variable, you have to
reboot InstallShield Developer before the environment variable is recognized. If you
use an environment variable that is defined for both the current user as well as the
system, then the value used for the path variable will be the value defined for the
current user. If there is an environment variable defined only for the system then the
value of this variable will be used for the value of the path variable.

If Install Location were a sub-key and not a value name then the value
shown in the Current Value column would be the default value for the key. If
however, there were both a sub-key named Install Location and a value
name called Install Location under the following registry key then the data
for the value name would be used instead of the default data value for the key.

HKEY_LOCAL_MACHINE\SOFTWARE\InstallShield\Developer\7.0

This situation is shown in Figure 5-33. If you make the following entry into the
Defined Value column as before, the data value for the value name Install
Location will take precedence to the default data value for the Install
Location key.

HKEY_LOCAL_MACHINE\SOFTWARE\InstallShield\Developer\7.0\Install
 Location

P A R T I T H E F U N D A M E N T A L S

262

Figure 5-33: The registry where there is both a value and a key with the same name.

The last column to be discussed is the Test Value column. This column provides a
hard-coded path as a backup location to the location that is defined in the Current
Value column. This is to provide the capability to still build a project if the primary
location for the application's source files is unavailable. This could happen if the
primary location for accessing the source files during a build is a network location that
for one reason or another is not available when a build has to be made.

You can remove these example path variables by right clicking and selecting the
delete option.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

263

Figure 5-34: The Search Results and Recommendations dialog in the Convert Source Paths
Wizard.

If you have used absolute paths in your project to link to source files in your
components, you can scan the project and change these links to path variables. You
can do this by running the Convert Source Paths Wizard from the Convert Source
Paths option on the Project drop-down menu. When the Convert Source Paths
Wizard is launched, the first panel prompts you to search by clicking on the Search
button. When the search is complete, the wizard displays the Search Results and
Recommendations dialog showing all the absolute paths that were found along with
recommendations for the path variables (Figure 5-34).

The Search Results and Recommendations panel provides the option of accepting the
recommended path variable names or renaming them to something different. You

P A R T I T H E F U N D A M E N T A L S

264

can also decide not to create path variables for certain locations. When you have
made any changes to the path variable names, click Apply to convert the absolute
paths to path variables. If you perform a search that does not find any absolute paths
being used to link files, then the final panel of the wizard appears. Dismiss the panel
by clicking Finish.

Property Manager

As discussed in Chapter 3, one of the important tables in the database in the MSI file
is the Property table. The Property Manager view provides you with the facility to
create custom properties or to modify the values of existing properties (Figure 5-35).
There are three columns in this view: Name, Value, and Comments. The Comments
column is only for internal project use and entries in this column are not built into the
MSI database.

Figure 5-35: The Property Manager view.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

265

Right click in the Property Manager view to see the context menu. The options
provided are New Property, New Localizable Property, Make Localizable, Clear
Property, Delete Property, and Delete Property & String Entry. When you choose
New Property, a new property is created with a default name and a default value of 0.
You can left-click twice in the Name column and change the name of the property
and can left-click twice in the Value column and enter the value that you want for this
property. To delete a property and its value, position the mouse pointer over the row
that you want to delete. Right click and select Delete Property from the context
menu.

Figure 5-36: The Select String dialog for the Property Manager.

If you want to create a property that has a link into the string table, right click and
select New Localizable Property. This creates a default property name and a default
value string that is identified by a default string ID that is shown inside curly braces
({}). Left click twice in the Name column and change the name of the property. In

P A R T I T H E F U N D A M E N T A L S

266

the Value column, when you left-click twice, the ellipsis button appears. Clicking this
button launches the Select String dialog (Figure 5-36).

In this dialog, you can rename the default string ID and you can enter the value that
you want for the property. You can also right-click and add a new entry in the string
table or delete an existing string table entry. To select an existing string and bring it
into the Property Manager, left click in the appropriate row and click OK. This will
then bring in the selected string value and string ID into the Value column of the
Property Manager. To delete the property from the Property Manager, right click on
the row to be deleted and select Delete Property. To delete both the property from
the Property Manager and the entry in the string table, right-click on the row and
select Delete Property & String Entry.

Setup Design

Figure 5-37: The Setup Design view for the Developer Art application.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

267

The Setup Design view provides a different way to look at the structure of your setup
project. The Files view shows the components that compose your project listed
according to the destination to which they will be copied during the installation. In
the Setup Design view, you can see your components according to the features with
which they are associated.

Click on the Setup Design view in the View List and expand the tree under each of
the features in the sub-view list to see what is shown in Figure 5-37.

If you right-click on Setup Design in the sub-view list the context menu provides an
option to add a new feature to the setup. If you right click on a feature, the context
menu that is shown here appears.

From this context menu you can
also create new features as sub-
features of the feature from
which you launched the context
menu. You can also create new
components under this feature.
Choosing the New Component
option or the Component
Wizard option can create new
components. The Component
Wizard option is used to create
special types of components,
which are discussed in Chapter
14. You can also delete features,

rename them, and adjust their relationship with other features such as making sub-
features into top-level features.

Deleting a feature does not delete any of the associated components. The
components remain in the project, but they are not built into the database if they are
not associated with a feature. They can be considered a pool of components ready for
use when you want to associate them with a feature. To associate a component with a
feature, select Insert Components from the context menu. When you do this, the
Insert Components dialog appears (Figure 5-38). This dialog lists all of the
components defined in the project file that have not already been associated with the
selected feature.

P A R T I T H E F U N D A M E N T A L S

268

When you select a feature in the Setup Design view, the feature’s properties panel is
displayed. This is the same properties panel that is displayed in the Features view. You
can set all of a feature’s properties in this view just as well as in the Features view. If
you select a component, you will see a different properties panel that displays the
properties and their values that are pertinent to the selected component. We will
briefly discuss these properties below when we talk about the Components view.

Figure 5-38: The Insert Components dialog for the Docs feature.

Custom Actions

You use this view to create the custom actions that you want to have in your project.
Since you have not created any custom actions this view is not very interesting. In
Chapter 4 you saw that there are a number of built-in custom actions that
InstallShield Developer brings into play whenever a project uses InstallScript. This of
course is the case with a Standard project or a Basic MSI project that uses

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

269

InstallScript custom actions. These built-in custom actions do not appear in the
Custom Actions view since you are not supposed to edit them. However, they can be
seen in the Direct Editor view. Custom actions are discussed in Chapter 3. Chapter
11 provides a complete discussion on the creation of InstallScript custom actions.

Sequences

The Sequences view is where you can control the sequence of operations that occur
during an installation (Figure 5-39). In Chapter 3, we learned that an installation is
made up of actions that are placed in sequence tables in order to define when the
actions are to be executed. In the Sequences view, you can see the order of actions
and you can add, remove, and reorder the actions in the sequence tables of the
database.

Figure 5-39: The Sequences view for the Developer Art application.

P A R T I T H E F U N D A M E N T A L S

270

The Sequences view contains the Sequences node. Under the Sequences node there
are three folders named Installation, Advertisement, and Administration. These three
folders correspond to the three top-level actions that were discussed in Chapter 3.
Under each of these folders there is a User Interface and an Execute node. Under
each node is a list of the standard actions and custom actions that are in the
respective user interface and execute sequence tables. These actions are displayed in
the order of their sequence numbers from lowest to highest.

Expand the list of actions under either the User Interface or Execute headings to see
the default list of actions for a Standard project. Right-click on any of these actions to
display a context menu that gives you the ability to insert new actions, remove
actions, and change the location of the actions in the sequence table.

Components

Figure 5-40: The Components view for the Developer Art application.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

271

The Setup Design view shows your project’s features and the associated components.
In the Components view, Figure 5-40, you see all of the components in the project
whether they are associated with a feature or not.

In Components view, right-click on the top-level heading to display a context menu
that allows two approaches to creating new components. Note, however, that when
you create components in this view, they will not be associated with a feature. To
associate a component created in this view with a feature, you need to go to the Setup
Design view and insert the component under the appropriate feature. When you right
click on a specific component you get a context menu that allows you to delete it
from the project, rename it, or export the component to another project. If you want
your project to look the same as the one on the CD-ROM at the back of the book
you can rename each of the components in your project as shown in Figure 5-40.

COMPONENT PROPERTIES

As already mentioned, each component has a set of modifiable properties. When you
create a project, these properties receive default values but it may be necessary to
change many of these default values for a real world project.

Figure 5-41: The DeveloperArt.exe component property panel.

P A R T I T H E F U N D A M E N T A L S

272

This section briefly discusses these properties. We will return to these properties in
Chapters 13 and 14 to discuss some of them in more detail.

The property panel for the DeveloperArt.exe component is shown in Figure 5-41.
Each of these properties is discussed briefly below:

Destination: This property of a component defines where the files in the
component will be copied during the installation. This is a required property and
it is used to populate the Directory_ column of the Component table. The value
for this property can be selected from the drop-down editable combo box that
appears when you left click in the field. You can edit this filed so as to provide
hard coded folder names under an existing Directory table identifier.

Destination Permissions: When you click in the value field for this property
you will get an ellipsis button that will launch the Permissions dialog. You use this
dialog to author the LockPermissions table. The entries in this table are used to
secure individual portions of your application in a locked-down environment.
The security concerns related to Windows NT, Windows 2000, or Windows XP
are beyond the scope of this book.

Component Code: Whenever you create a new component, InstallShield
Developer generates a GUID that is used as the value for this property. This
value is used to populate the ComponentId column in the Component table and
is how the Windows Installer distinguishes one component from another. This is
a very important value and there will be many times that you do not want to use
the value that InstallShield Developer gives us. There are a number of guidelines
from Microsoft about the use of component codes and when they should be
changed if you are upgrading the component. The importance of this property is
discussed in Chapter 13.

Shared: Legacy applications and applications that use the Windows Installer for
their installation use different methods for keeping track of the number of
applications that have installed the same file. This property links the two
approaches. To be on the safe side the value of this property is set to Yes by
default. This is what you should do for the Developer Art application. The value
for this property is used as one of the bit-flags that make up the value placed in
the Attributes column of the Component table.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

273

Permanent: If you want a component to be installed but never uninstalled, set
this property to Yes. In the case of the Developer Art application you do not
want to make any of the components permanent. The value for this property is
used as one of the bit-flags that make up the value placed in the Attributes
column of the Component table.

Condition: There may be times when you want a component to be installed only
under certain conditions. When that is the case, you enter a condition statement
as the value of this property. When it evaluates to TRUE, the component is
installed and when it evaluates to FALSE, the component is not installed. A
NULL value for this property is the same as a condition that is always TRUE.
The value of this property is used to populate the Condition column of the
Component table.

Remote Installation: This property is similar to the same property for features.
When you left-click in the value field for this property, a drop-down menu
provides three possible selections: Favor Local, Favor Source, and Optional.
Select the Favor Local option if the component needs to be copied to the local
hard drive in order for it to run. Select the Favor Source option if the component
will not be copied to the target machine, but instead will be left on the
distribution media and run from there. Select Optional if the component will
either be copied to the local hard drive or left on the distribution media
depending on the selection of the associated feature's install state. A feature's
install state has a default value that can be changed in the custom setup dialog
normally presented in the user interface of an installation program. The value for
this property is used as one of the bit-flags that make up the value placed in the
Attributes column of the Component table.

COM Extract at Build: When you have a COM component, you can opt to
have the associated registry values extracted from the component every time the
project is built. These COM registry values are not saved permanently in the
project file and using this approach is appropriate when the COM server is still
under development and the registration values may change. When a COM server
is not undergoing changes, it is more efficient to extract the COM registration
information into the project file so that the build process can proceed much
faster. In this case you would use the Component Wizard to create this
component. This wizard is discussed in Chapters 13 and 14. It should be noted
that, although the ArtWork.dll component is a COM server, you do not have to
take any special action to have the Extract at Build property set to Yes. When we

P A R T I T H E F U N D A M E N T A L S

274

added ArtWork.dll to the Main Program feature, InstallShield Developer
recognized that this file was a COM server and automatically set this property to
Yes. This is a build-time property only.

.NET Scan at Build: Using this property you indicate whether this component
is to be scanned for .NET dependencies or properties at build time. The three
possibilities that are presented in the drop-down combo box are to perform no
scanning, to scan for both dependencies and properties, or to scan only for
properties. The installation of .NET components is not covered in this book.

.NET Application File: This property is only used when the component is
scanned for .NET dependencies. This property sets the value of the File
Application property for a .NET assembly. The installation of .NET components
is not covered in this book.

.NET Installer Class: This property is relevant only if the component contains
a specific derived class. The installation of .NET components is not covered in
this book.

.NET COM Interop: Setting this property to Yes allows a COM object to call a

.NET assembly. The installation of .NET components is not covered in this
book.

REG File to Merge at Build: Using this property you can identify the name of
a .reg file that you want imported every time you make a build. This is valuable if
you have registry entries for a component that are constantly changing and you
do not want to have these registry values permanently included in your project
file.

Languages: This particular property has only build-time use and has nothing to
do with populating any column in the Component table. If you want to associate
a component with one or more specific languages, left-click in the field to display
a list of languages from which you can choose the languages with which to
associate the component. When you build the project into an installation program
using the Release Wizard, you can filter out components based on their language
association. This filtering is discussed when we cover the Release Wizard and it is
part of the SKU management functionality available in InstallShield Developer.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

275

Reevaluate Condition: When you place a condition on a component under
normal circumstances, it is evaluated only during the initial installation. If the end
user subsequently performs a maintenance operation on the installed application,
the condition is not reevaluated even if the evaluation of the condition has
changed its result. If you want to have a condition reevaluated every time a
maintenance operation is performed on the installed application, you need to set
the value of this property to Yes. The value for this property is used as one of the
bit-flags that make up the value placed in the Attributes column of the
Component table.

Never Overwrite: If a component is already registered on the target machine
and this property has been set to Yes, the component will not be installed even if
it is a later version of the component. The value for this property is used as one
of the bit-flags that make up the value placed in the Attributes column of the
Component table.

64-bit Component: If the component is a 64-bit component, set this property to
Yes so it is properly registered. The value for this property is used as one of the
bit-flags that make up the value placed in the Attributes column of the
Component table.

Source Location: This property is used to create a distribution image where
there are different files that for one reason or another have the same name. In a
situation like this, two different files with the same name cannot exist in the same
folder on the distribution image. Here you have the capability to name different
folders for each of the files that have the same name so that on the distribution
media they will not conflict with each other. The entry made here has an impact
on the how the Directory table is constructed.

Comments: Just as with features and shortcuts, the Comments property is used
to enter information into the project file for your use in remembering any
specifics about the component that are important. This information is not placed
in the database.

Operating Systems: If a component is specific to any particular set of operating
systems, you need to identify that set of operating systems in this property. Do
this by left clicking in the field for this property and then clicking the ellipsis
button. This launches the Operating Systems dialog, from which you choose the
operating systems. If the component is not specific to any operating system, leave

P A R T I T H E F U N D A M E N T A L S

276

the default value as OS Independent. This property is here to enabling migration
from earlier projects created by the InstallShield Professional. This same
functionality can be accomplished by creating the correct condition in the
Condition property.

COMPONENT SUB-VIEWS

Under each of the components shown in Figure 5-40 is a tree of sub-views in which
you can manipulate component data, including indicating what files should be
installed by the component and the registry entries that should be created when the
component gets installed. The fully expanded tree of sub-views for the
DeveloperArt.exe component is shown in Figure 5-41. Here we discuss only the
Files, Shortcuts, and the Application Paths sub-views. The other sub-views will be
discussed at the appropriate time in Chapters 13 and 14.

Click on the Files sub-view to see a list of all the files that are contained in the
component. When you right click in the Files panel, a context menu appears (Figure
5-42). From this context menu, you can add files, remove files, set a file as the key
path, and perform other component-related operations.

Figure 5-42: The Files sub-view for the DeveloperArt.exe component.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

277

We will discuss the Dynamic File Linking option in Chapter 13. The important thing
to note is that you can do everything here that you can do in the Files view, so if
working here makes more sense to you, then this is where you can construct your
installation program.

We now move to the Shortcuts sub-view, which allows you to create shortcuts on a
component-by-component basis. When you click on the Shortcuts sub-view for the
DeveloperArt component, you see the same set of properties that we worked with in
the Shortcuts/Folders view.

Finally we will look at the Application Paths sub-view for the DeveloperArt
component (Figure 5-43). This view allows you to easily create one of the standard
entries in the registry that all installations should be making. This entry makes an entry
under the App Paths key in the registry, which is located as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
 App Paths

Figure 5-43: The Application Paths sub-view for the DeveloperArt.exe component.

Under this key there are sub-keys that are the names of the main executables for the
applications that have been installed on the system. These sub-keys normally have
two values, the Default and the Path values. The data for the Default value is the
absolute path to the executable. This allows you to launch the application from the
Run dialog accessed from the Start Menu. In the Run dialog all you have to do is type

P A R T I T H E F U N D A M E N T A L S

278

in the name of the executable. The more important value is the Path value that has as
its data a semi-colon delimited-list of locations where the executable can find the
DLLs it needs in order to function correctly.

In the Application Paths sub-view, left click in the File column to select an executable
from a drop-down menu. In the Application Path column, another drop-down menu
allows you to select the first location for the Path value. If you want to add additional
locations to the Path value, you can manually type them in to the Application Path
column. For the Developer Art application, select the only executable that is in the
component. For the value in the Application Path column, select the [INSTALLDIR]
property name.

The last view in the Advanced Views list is the Direct Editor view. This view
provides the facility to edit the tables in the database in a fashion similar to that
provided by the Orca database-editing tool. This is something that is used in
advanced situations and we will discuss its use in the chapters that comprise Part III
of this book.

We are now ready to go back to Step 7 and learn about the Release Wizard.

Prepare for Distribution (Step 7)
Under Step 7, we are interested only in the Releases view (Figure 5-44). This is where
you will launch the Release Wizard. For this project, you are going to take the basic
route through the Release Wizard and we will cover only those features that are
required to build the installation program for the Developer Art application.

In Chapter 2 when you used the Project Wizard to make a build, it was using the
default selections that are set in the Release Wizard. Having created an installation
project directly in the IDE, you could build with the default values by clicking the
Build button on the toolbar or selecting the Build option from the Build drop-down
menu. What we want to do, however, is use the Release Wizard to create the build for
the Developer Art application. Since this is only an introduction to the Release
Wizard, here we will discuss only those items that are required to create the
distribution image for the Developer Art application.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

279

Figure 5-44: The Releases view.

You can launch the Release Wizard from the toolbar, from the Build drop-down
menu, or by right clicking on the Releases icon in the sub-view list. When you right-
click on the Releases icon, a context menu appears with two options: New Product
Configuration and Release Wizard. To build the Developer Art project, launch the
Release Wizard using one of the above methods. After the Welcome panel appears,
click Next to go to the Product Configuration dialog (Figure 5-45).

When you build a project, you are creating a hierarchy of folders where the product
configuration is at the top of the hierarchy. Different product configurations define
different products that can be built from the same project file. Different products
need to have different ProductCode properties and different package code values.
Examples of builds that can be made from the same project file would be the
installation program for the English version of a product and the installation program
for the German version of the same product.

P A R T I T H E F U N D A M E N T A L S

280

Figure 5-45: The Product Configuration panel in the Release Wizard.

The Product Configuration panel (Figure 5-45) provides a default name for the
product configuration. For this project, there is no compelling reason to change it, so
you can leave the default name. If this were not the first time that you were running
the Release Wizard, you could select a product configuration that had already been
created.

To select an already created configuration, select the Existing Product Configuration
option and then select the product configuration that you want to rebuild from the
drop-down menu. Click Next to go to the Specify a Release panel (Figure 5-46).

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

281

Figure 5-46: The Specify a Release panel in the Release Wizard.

When you specify a release name, it is added to the hierarchy that was started with the
product configuration. There is a different set of properties that define a release than
the set that defines a product configuration. Just as with product configuration, you
can accept the default name. Click Next to move to the next panel.

The Filtering Settings panel allows you to filter features based on Release Flags that
you have defined and to filter components based on the language of the component
(Figure 5-47). As discussed earlier in this chapter, one of the properties that can be set
for a feature is Release Flags. If you had identified a string as the release flag for a
feature, you could then identify the release flag in the Release Flags field of the
Filtering Settings panel. The build would then bring in only those features that had
that particular release flag assigned or did not have any release flag specified (release
flag independent).

P A R T I T H E F U N D A M E N T A L S

282

Figure 5-47: The Filtering Settings panel in the Release Wizard.

You can also filter application data based on a language or languages. This filtering is
performed on the Languages property for components. This was discussed earlier in
this chapter. If you select the check box just inside the group box below the Release
Flags field, the list box of languages is enabled. You can then select the languages on
which the filtering of components will be applied. This filtering will bring into the
build those components that have defined the selected languages and will also bring
in those components that are designated as language independent.

Being able to filter on features and on components provides a low level of what is
called SKU (pronounced skew) management. The acronym SKU stands for Stock
Keeping Unit and it refers to the ability to create various offshoots of a product.
Filtering alone is not enough to create the various offshoots of a product and that is
where the product configuration comes in. Of course with a small application like
Developer Art, there are no concerns about filtering.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

283

The next dialog in the Release Wizard is the Setup Languages panel(Figure 5-48). You
use this dialog to create the functionality that allows the end user to select a language
in which to run the installation user interface. You do not need to do anything on this
panel because you are creating an English-language user interface for the Developer
Art installation.

Figure 5-48: The Setup Languages panel in the Release Wizard.

The next dialog in the wizard is the Media Type panel. This panel is used to define
the type and size of media that is to be used for distribution of the application (Figure
5-49). The Media Type drop-down menu offers a number of different media sizes.
Selecting the correct media size is important since it determines how disk splitting is
done. Disk splitting is where the distribution image is created in sizes that will fit on
disks of the selected size. The default size is termed Network Image and this image is
considered to be unlimited in size. This type of image is placed on a network drive so
that it can be installed from that location to the desktop in a networked environment.
For special media sizes there is a Custom option where you can define the size of the

P A R T I T H E F U N D A M E N T A L S

284

disks that you want created. All of the examples in this book will use the default
Network Image media type because the sample applications are so small.

Figure 5-49: The Media Type panel in the Release Wizard.

After the Media Type panel comes the Release Configuration panel (Figure 5-50). In
this panel, you can select to compress all the application files, leave the application
files uncompressed, or have a mixture of compressed and uncompressed files. As
discussed in Chapter 3, application files are compressed into Microsoft cabinet files
that can either be embedded inside the MSI file or can be external to the MSI file.

For the Developer Art application, leave the default selection, which is to have all the
application files uncompressed. If you were to choose to compress all the application
files then you would get a single setup.exe file that contains all files including the MSI
file as long as the media type selected in the previous dialog is a Network Image. For
any other media types the cabinet files would be separate from setup.exe.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

285

Figure 5-50: The Release Configuration panel in the Release Wizard.

The next dialog in the Release Wizard as we are using it to build the Developer Art
installation program is the Setup Launcher panel (Figure 5-51). The purpose of this
dialog is to allow you to control whether setup.exe is included as part of the
installation package or not. This panel contains a disabled “Create installation
launcher (Setup.exe)” check box. Since this is a Standard project it is required to have
setup.exe as was discussed in Chapter 4, so this check box cannot be deselected.

In the drop-down combo box in the Setup Launcher dialog you can choose which of
the Windows Installer engines you want included in you installation. You can select to
have the Windows 9.x engine and the Windows NT/2000/XP engine, just one or the
other of the engines, or neither Windows Installer engine. This option lets you
choose the media image that is the smallest depending on the systems that you are
going to target with your installation.

P A R T I T H E F U N D A M E N T A L S

286

Figure 5-51: The Setup Launcher panel in the Release Wizard.

When setup.exe discovers that there is an earlier version of the Windows Installer
engine on the target machine it will display a warning message box if it is not able to
update the engine on the target system. This is a situation that occurs if you try to
install version 1.2 of the Windows Installer engine on Windows 2000. Version 1.2 of
the Windows Installer engine is not compatible with Windows 2000. If you do not
want this warning message box displayed, you can suppress it by selecting the check
box directly below the drop-down combo box. This is checked by default.

In the Version group box you can select to have either version 1.2 of the Windows
Installer engine installed on the target system or to have version 2.0 installed. You
should note that version 2.0 of the Windows Installer engine can only be installed on
Windows NT 4.0 if Service Pack 6 has already been installed. When installing the
Windows Installer engine, a reboot is required before the installation can be run. With
version 2.0 of the Windows Installer engine it is possible to install it without the need
for a reboot prior to running the installation. You can implement this reboot

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

287

functionality by making sure the check box at the bottom of the Version group box is
selected. With this option selected the reboot is delayed until after the completion of
the installation of the application. For the Developer Art application, you can leave all
selections as their defaults.

The next dialog in the Release Wizard is the Windows Installer Location panel
(Figure 5-52).

Figure 5-52: The Windows Installer Location panel in the Release Wizard.

This panel presents three choices for defining where the Windows Installer engine is
to be found. The default location is for the engine to be directly on disk one of the
distribution media and this is what is required for the Developer Art installation.
There is also the “Extract engine from Setup.exe” option. If this option is selected,
the Windows Installer engines will be compressed inside setup.exe during the build
and the engine that needs to be installed will be extracted from setup.exe and then
installed at run time. The top most option on this panel is selected if you do not want

P A R T I T H E F U N D A M E N T A L S

288

to include the Windows Installer on the distribution media. The engine is hosted on
the indicated Web site and the installation program can always be sure to install the
latest engine if it is required.

The next dialog in the Release Wizard is the InstallScript Engine panel (Figure 5-53).
This panel is very similar in purpose to the Windows Installer Location panel.

Figure 5-53: The InstallScript Engine panel in the Release Wizard.

In this dialog, you select the location from where the InstallScript engine is to be
installed on the target system. The default is to include it on disk one of the
distribution media and to install it from there. This is the selection you should use for
the Developer Art project. The other two options on this dialog are to have it
compressed inside setup.exe and extract it from that location before installing it or to
install it directly from the indicated URL.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

289

The dialog that follows the InstallScript Engine dialog, not shown, concerns the
setting of .NET Framework options. Since the Developer Art application does not
use .NET you want to leave the default selections in this dialog and move onto the
next dialog.

After the .NET Framework dialog is the Advanced Settings panel (Figure 5-54). This
panel allows you to specify some final settings before the build process is executed.
At the top of this dialog is the Release Settings group box where you can select these
settings. The Location field allows you to browse to a new location where you might
want this particular build created. This overrides the standard location that is set in
the File Locations tab of the Options dialog.

Figure 5-54: The Advanced Settings panel in the Release Wizard.

The default build location for this Standard project is defined by the path variable
<ISProjectDataFolder> and it specifies the following path:

P A R T I T H E F U N D A M E N T A L S

290

C:\MySetups\DeveloperArt_IDEStd\

You can click the button to right of the Location field and browse to a different
location for this particular release. Making a change for a particular release does not
affect the location that will be used for any other release.

Under the Location field there are five options that we need to discuss.

Use long file names: By default long file names are used to copy files to
locations on the target machine. In Chapter 3 we learned that the Word Count
property in the Summary Information Stream indicates to the Windows Installer
engine whether files should be referred to with their long name or their short
name. The only time that you would need to use short file names is when the
target machine for some reason does not support long file names. When you
deselect this option, the correct entry for the Word Count property is made in the
Summary Information Stream.

Use path variable test values: This is where the test value for a path variable is
used in place of the normal location at which a path variable points. This is a
mechanism that is useful when there are two locations where the source files for
an application can be found. For example you may have your normal location for
your source files on a network server and a backup location on the hard drive of
the build machine. If for some reason the network connection is down and you
still need to make a build, you can select this option and obtain the source files
from the local hard drive.

Generate Package Definition File: Selecting this option creates a PDF file that
is used for deploying applications using SMS. This file is created in the root of the
installation image.

Optimize size: With this option selected, the compression algorithm that will be
used is the LZX compression supported by the MAKECAB.EXE utility. This
provides a higher compression but the build time is longer. If files are not being
compressed, selecting this option has no effect.

Generate Autorun.inf: When you select this option, an AUTORUN.INF file
will be created at the root of the installation image. This file allows for the
automatic running of an installation on a CD-ROM as soon as the CD is inserted
into the drive.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

291

At the bottom of the Advanced Settings dialog there is another group box labeled
Patch Optimization (Optional). This is important if you are performing a build that
will be used to create an upgrade patch. Patching is not discussed in this book.

The final dialog in the Release Wizard is the Summary panel (Figure 5-55). This panel
allows you to review all the selections that were made throughout the wizard. If you
need to make any changes, you can go back and make them. When you are satisfied
with the selections, click Build to launch the build process.

Figure 5-55:The Summary panel in the Release Wizard.

The Developer Art project build should complete with zero errors and zero warnings.
The progress of the build process is displayed at the bottom of the screen in the Build
output window. When the build is finished and you select the Releases view, you
should see something like what is shown in Figure 5-56.

P A R T I T H E F U N D A M E N T A L S

292

If you click on the Product Configuration 1 sub-view in the sub-view list you will see
a list of the properties that define a product configuration. If you click on the Release
1 sub-view you will see another longer set of properties that go into defining a release
of a particular product configuration.

If you expand the tree under the Release 1 sub-view you will see that we have access
to a text log file that captures the build output that was displayed in the output
window. There is also a report that provides a summary of the make up of the
installation program that was built. This summary includes names of the files in the
build and the number of features in the application.

Figure 5-56: The Releases view after the completion of the build.

This has been a brief introduction to the Release Wizard. There are many more
features in this wizard that are not within the scope of this book.

C H A P T E R 5 C R E A T I N G P R O J E C T S I N T H E I D E

293

The final proof of any build is actually installing the application and seeing that it
works. Do this by clicking the Run button on the toolbar. You will see that the
sequence of dialogs in the user interface is different than it was for the installation
created by the Project Wizard.

You are now ready to do the exercise for the creation of a Basic MSI installation
package in the IDE. The discussion that we had relative to the creation of the
Standard project applies almost in total to the creation of the Basic MSI installation
project.

Creating a Basic MSI Project in
the IDE

Creating a Basic MSI installation package for the Developer Art is left as an exercise.
It is recommended that the approach used to create this project is to use the
Advanced Views to define the project structure and create the shortcut. What you
have done in the first part of this chapter should provide plenty of information about
what you need to do to create this project.

It is suggested that the name of the project be DeveloperArt_IDEMSI.ism to
distinguish it from the Standard project. When creating this project, note the
differences in the property sets for features and components, as well as the slight
differences in the Release Wizard between the building of the Standard installation
program and the Basic MSI installation package.

When working in the Setup Design view, you should take the opportunity to provide
component names that are not the names of the files in the component. When you
are working in the Setup Design or the Components view and you are creating the
component that is to install ArtWork.dll, remember to set the Extract at Build
property to Yes. A completed Basic MSI project is available on the included CD-
ROM at the back of the book.

As with the Standard project, you should run the installation and make sure that the
application runs correctly. You should also watch the user interface carefully to note
any differences between the Standard project approach and the Basic MSI approach.

P A R T I T H E F U N D A M E N T A L S

294

Conclusion
In this chapter, you have seen a direct relationship between the InstallShield
Developer IDE and the installation program that is being authored. In addition, you
learned that working in the IDE provides a lot more capability than is available in the
Project Wizard.

Creating a Standard project and creating a Basic MSI project in the IDE are very
similar operations. There are only a few differences in the properties that need to be
set for features and components. These additional properties for a Standard project
make it very easy to upgrade from earlier projects created by InstallShield Professional
– Standard Edition.

InstallShield Developer has the robust capability to create many different installation
packages from one project file. This ability enables what is called SKU management
(product configuration) making for an efficient control of the various flavors of a
product.

You will use the projects that you created in this chapter in the chapters of Part III.
You will be adding functionality to these particular projects as you work through the
examples that are provided.

Part II

The
InstallScript

Language

Variables and Data
Types

InstallScript is a complete programming language that facilitates installation program
creation. A program created with InstallScript appears similar to a program created
using the C language. InstallScript is not the C language though it does have to be
compiled and linked before it can be run. The fact that it has to be compiled makes it
much like the Java language, which is compiled into byte code that is then interpreted
by a virtual machine. InstallScript is compiled, but it requires the InstallScript engine
for the compiled script to be executed.

Chapter 4 discusses the InstallShield Developer run–time architecture. This and
subsequent chapters in Part II discuss InstallScript as a programming language. The
only way to learn a programming language is to use it, so let’s begin.

Chapter

6

P A R T I I I N S T A L L S C R I P T

298

Setting up the Programming
Environment

To learn a programming language, you need to be able to write code and you need a
feedback mechanism to verify that your programs are working correctly. In this
section, you will create a project whose only purpose is to run InstallScript programs.

First, launch InstallShield Developer. In the InstallShield Today view, go to the
Create a new project sub-view and create a new Standard project under
C:\MySetups called "Learning InstallScript". To configure this project:

1. Go to Project Properties under the General Information view and make
entries for the Setup Author Name and the Authoring Comments
properties.

2. In the Summary Information Stream sub-view, make entries for the
Subject and Comments properties. Skip the Add/Remove Programs sub-
view since this project will not install an application.

3. In the Product Properties view, make an entry for the Product Name
property. In is not necessary to modify any of the other properties for
this sub-view since this project will not install any files.

4. In the Sequences view, under Advanced Views, go to the Installation
folder. Expand the tree for the User Interface table and remove all the
actions except the ISVerifyScriptingRuntime custom action. To remove
the actions, right click on each action and select Remove. The result
should be as shown in Figure 6-1.

5. Click the Build button on the toolbar to create a build using default
selections. There will be one warning that there are no files included in
the build. You can ignore this warning.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

299

Figure 6-1: The User Interface sequence view after removing all but one of the actions.

When learning to program with a new language, you need an efficient means to
display the output from sample programs. InstallShield Developer provides a
Windows message box that can be used to display program output. While practicing
with InstallScript, you do not want to contend with any type of user interface other
than the message box, which displays your program output.

To implement the basic scripting framework to learn the InstallScript language, go to
the InstallScript view and click on the file Setup.Rul. This displays the Script Editor.
Replace the default code with the code that is shown in Figure 6-2. All InstallScript
code shown in this book as figures can be found on the CD-ROM at the back of the
book. The code for each figure is in a separate .rul file and name of the file is the
name of the figure.

P A R T I I I N S T A L L S C R I P T

300

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script is for learning how to
// program the InstallScript language as
// discussed in the book Getting Started with
// InstallShield Developer and Windows
// Installer Setups.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

program

 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Learning InstallScript");

endprogram

Figure 6-2: Setup.rul to be used as the starting point for learning InstallScript.

InstallScript provides two message box-style functions that could display feedback for
sample programs. These are the SprintfBox and the MessageBox functions.
This exercise uses the SprintfBox function because it makes it easier to display
the values of numbers and other data types. The SprintfBox function is a
wrapper around the wsprintf C library function and the MessageBox
Windows API. Since this project has already been built, you do not have to rebuild it.
Every time that you change InstallScript code, all you have to do is compile it and the
new compiled script will be streamed into the Binary table of the database. After you
have typed in the code shown in Figure 6-2, compile it. If there are no warnings or
errors, run the installation package by clicking the Run button on the toolbar. A
message box should appear with the string "Learning InstallScript.”

When you run the sample program, an initialization dialog appeares prior to the
message box. To simplify the learning environment, you can eliminate this
initialization dialog so that all you see is the message box. Do this by making a change
in the Setup.ini file that is part of the media image and is located at the root of this
image. The location of this file under C:\MySetups is shown in Figure 6-3.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

301

Figure 6-3: The root location for the Learning InstallScript media image.

Open the Setup.ini file and add another line to the [Startup] section. As shown
below, add the line UI=0 at the end of the section. This is a supported option that
you can use to help you learn how to program with InstallScript. Note that you
should not build the project again because that would delete this file and replace it
with the default Setup.ini. If you compile your script only, then you do not have to
modify the Setup.ini file again.

[Startup]
CmdLine=
SuppressWrongOS=Y
ScriptDriven=1
ScriptVer=4.0.0.110
Product=Learning InstallScript
PackageName=Learning InstallScript.msi
MsiVersion=1.20.1827.0
EnableLangDlg=N
DoMaintenance=Y
UI=0

In Chapter 4 there is a complete discussion of all the entries in the Setup.ini file. After
making this change in Setup.ini, rerun the project by clicking the Run button on the
toolbar. Verify that the initialization dialog does not appear.

Before you move on, you can make some changes to the Script Editor functionality
to make it easier to use. In the Script Editor, right click and select Properties. In the
Window Properties dialog, make the following changes:

P A R T I I I N S T A L L S C R I P T

302

� Color/Font tab: Select Left Margin from the Items list box. From the
Color drop-down menu, select a color to display the left margin

� Misc tab: Make sure that the “Confine caret to text” option is selelcted. This
forces the caret in the Script Editor to fall back to the end of the present line
if you click to the right of the end of the line. This prevents you from
inadvertently typing where you do not want to type.

Variables
A variable is a symbolic name that represents a particular location in the computer's
memory. In InstallScript, a variable name has to be declared before it can be used,
unlike what can be done in a language like VBScript. The general form of a variable
declaration is as follows:

DataType VariableList;

In this general form DataType needs to be a valid data type as defined by the
InstallScript language and VariableList is one or more valid variable names.
Commas separate multiple variable names and the line must end with a semi-colon.
The DataType tells the compiler how to interpret the information at the memory
location to which the variable name points.

A variable name can be constructed from uppercase and lowercase letters, digits, and
the underscore character (_). The first character of a variable name must be a letter or
the underscore character. Digits cannot be used as the first character of a variable
name. A variable name can be any length, but only the first 62 characters are
significant. If there are two variable names each made up of one hundred characters,
the first 62 characters of each variable name has to be unique. If not, the compiler
assumes that you are declaring the same variable twice and it generates a compiler
error.

Variable names are case sensitive and creating good variable names is one way to
create self-documenting code. Variable names should have mnemonic significance so
the variable name indicates both the purpose and the data type of the variable.
Common among Windows programmers is the Hungarian notation method of
variable naming. This system became widely used inside Microsoft. It came to be

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

303

known as Hungarian notation because the prefixes make the variable names look a
bit as though they are written in a language other than English and because the
inventor, Dr. Charles Simonyi, is originally from Hungary.

In Hungarian Notation, a variable name begins with one or more lowercase letters
that indicate the variable’s data type, followed by a name made up of mixed-case
letters that indicate the variable’s use. In InstallScript the use of Hungarian notation is
limited to identifying the data types that are supported by the language. You can
create your own conventions to be used when you write InstallScript code. Table 6-1
shows one such convention that can be used.

Table 6-1: Hungarian Notation Convention for InstallScript

Prefix Data Type Example

sz STRING szLastName – a zero terminated string that
represents the last name of a person.

b BOOL bFound - a Boolean that shows the success of a
search.

c CHAR cLower – a character that holds a lower case letter.

h HWND hDlgItem – a handle to a control on a dialog box.

i INT iIndex – an integer being used as an index.

l LONG lCount – a long integer being used to hold the value
of a counting operation.

p POINTER pArray – a pointer to an array.

obj OBJECT objFSO – a FileSystemObject created by using the
CreateObject function in InstallScript.

The examples in Table 6-1 give you an idea of how you can create your own
convention for naming variables. The important thing about any convention that you

P A R T I I I N S T A L L S C R I P T

304

create is that it needs to make sense to someone else that reads your code. The
InstallScript Help Library uses Hungarian Notation for the descriptions of built-in
functions and examples. A complete discussion of this notation style can be found in
many introductory Windows programming books. Also the MSDN Library contains
a reprint of the original monograph written by Dr. Charles Simonyi describing the
Hungarian notation identifier naming convention.

You can declare variables in three different locations: inside functions, in the
definition of function parameters, and outside all functions. In InstallScript, the code
between the program and the endprogram keywords does not define a function
even though it operates as a main function. Therefore, you cannot define variables
inside this code block.

Variables that are defined inside of a function are local variables, variables that are
defined in a function definition are the formal parameters to the function, and
variables that are declared outside all functions are global variables. Local variables
and formal parameters are accessible only inside the function where they are declared
and global variables are accessible from anywhere in the program. Chapter 8 discusses
functions in more detail.

As an experiment, declare two string variables and two integer variables, assign them
values, and then display them in a message box. The InstallScript code for doing this
is shown in Figure 6-4.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script is for learning how to
// program the InstallScript language as
// discussed in the book Getting Started with
// InstallShield Developer and Windows
// Installer Setups.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

Figure 6-4: Setup.rul for the variable declaration exercise.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

305

STRING szStr1, szSTR2;
INT iNum1, iNUM2;

program
 szStr1 = "String1";
 szSTR2 = "String2";
 iNum1 = 100;
 iNUM2 = 1000;

 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "szStr1 = %s\nszSTR2 = %s\niNum1 = %d\niNUM2 = %d",
 szStr1, szSTR2, iNum1, iNUM2);

endprogram

Figure 6-4: Continued.

After you type this code in the Script Editor, compile it, but do not build it. Then run
the installation program to see the output (Figure 6-5). Note that the code sample in
Figure 6-4 declared the variables above the program keyword, but set their values
between the program and the endprogram keywords. Study the input to the
SprintfBox function to make sure that you understand it. The first argument to
this function is a combination of Windows MessageBox styles that defines that the
message box should have one OK button and that the icon displayed in the message
box should be the information icon, a lower case i.

Figure 6-5: The output message box for the variable declaration exercise.

The second argument to this function is the string constant that you declared before
the program block that is displayed in the message box’s title bar. The third
argument is a formatting string that is used to display the output in the message box.

P A R T I I I N S T A L L S C R I P T

306

The %s specification prints out the corresponding argument as a string and the %d
specification prints out the corresponding argument as an integer. The last arguments
are the variables for which you want to print their values. Each argument here has an
associated type specification that defines how the value of the argument is to be
displayed. There is a %s specification for each of the string variables and a %d
specification for each of the integer variables. The variable arguments in the input to
the SprintfBox function are passed in the same order as the output specifications
in the format string.

Data Types
In InstallScript, as in most programming languages, there are built–in data types and
user-defined data types.

The Built-In Data Types
In InstallScript there are four basic data types. One of these data types has a number
of aliases. InstallScript supports only numbers, strings, variants, and objects. These
four basic data types are defined below and then discussed in detail in separate sub-
sections. In this book, the convention for declaring a variable as a particular data type
is to specify the data type using all uppercase letters.

NUMBER: In InstallScript, numbers are implemented as a four-byte signed
integer. This means that, within InstallScript, a variable of type NUMBER can
represent values from –2,147,483,648 to 2,147,483,647. All variables that are
declared as type NUMBER are initialized to 0.

STRING: A variable of type STRING is an array of characters. When
InstallShield Developer is hosted on Windows NT or Windows 2000, a STRING
variable is handled as a Unicode array of characters, which means that each
character is two bytes in size. When installed on Windows 9.x machines, strings
are handled as multi-byte characters. Any variable declared as type STRING is
initialized to a null string ("").

Variables of the STRING data type on Windows NT and Windows 2000 are
handled as a BSTR. A BSTR is a length-prefixed string. The length is stored as an

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

307

integer at the memory location preceding the data in the string. A BSTR is null
terminated after the last counted character, but may also contain null characters
embedded within the string. The string length is determined by the character
count, not the first null character.

VARIANT: Visual Basic and VBScript programmers are familiar with this data
type. VBScript has only one data type called a Variant. As in VBScript, a
VARIANT is a special kind of data type in InstallScript that can contain different
kinds of information, depending on how it is used. At its simplest, a VARIANT
can contain either numeric or string information. A VARIANT behaves as a
number when it is used in a numeric context and as a string when used in a string
context. That is, if you are working with data that looks like numbers,
InstallScript assumes that it is numbers and does what is most appropriate for
numbers. Similarly, if the data can only be string data, InstallScript treats it as
string data. Variables declared as type VARIANT are initialized as empty.

OBJECT: This data type is an IDispatch interface pointer and is used to access
COM objects from InstallScript. (Chapter 9 discusses COM and InstallScript.)
Variables declared as type OBJECT are initialized as empty.

There are no floating-point data types, which means that InstallScript supports only
integer math.

The NUMBER Data Type

There are a number of aliases for the NUMBER data type. It is important to not use
the NUMBER data type when declaring a variable but to use the aliases that describe
how the program uses the variable. Currently, all the aliases for the NUMBER data
type mean that the variable is a four-byte signed integer, but this may not be the case
in the future. For example, a CHAR, which now is still a four-byte integer, might
mean one byte in a future InstallScript language enhancement.

The aliases for the NUMBER data type are listed below:

BOOL: Used to represent the TRUE or FALSE condition.

CHAR: Used to represent a single character. Since a single character can be
represented by one byte it is the lower byte of the four-byte number that is used
to represent the character. There is one situation where a CHAR data type is only

P A R T I I I N S T A L L S C R I P T

308

one byte in length and that is when this data type is used in a structure. Structures
are discussed in the section on user-defined data types.

HWND: Used to declare variables that are used to hold handles to windows or
any handle returned by the Windows operating system.

INT: Used to declare a variable that will hold a four-byte signed integer.

LIST: Used to declare a pointer to an InstallScript internal implementation of a
linked list.

LONG: Used to declare a variable that will hold a four-byte signed integer.

LPSTR: Used to declare a variable that will hold a pointer to a null-terminated
string.

POINTER: Used to declare a variable that will hold a generic pointer.

PSZ: Used to declare a variable that will hold a pointer to a null-terminated
string.

SHORT: Used to declare a variable that will hold a four-byte signed integer.
There is one situation where a SHORT data type is only two bytes in length and
that is when this data type is used in a structure. Structures are discussed in the
section on user-defined data types.

The following sections provide sample scripts to help you understand how to use the
data types.

BOOL

A variable that is declared as a BOOL data type has a value of TRUE or FALSE.
When a BOOL data type is FALSE it has a value of 0. When it has a value of TRUE
it can have any value other than 0. The following program shows the usage of this
data type. The program calculates the greatest common divisor between two integers.

In this program, the variable bFinished is used to control the looping done in the
while loop. This variable is initially set to FALSE. As soon as the variable iSmall
becomes zero, the bFinished variable is set to TRUE and the looping stops. After

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

309

the looping stops, the original values and their greatest common divisor are displayed
in the feedback message box.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program calculates the greatest
// common divisor between two integers.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

BOOL bFinished;
INT iLarge, iSmall, iRemainder;
INT iLargeOrig, iSmallOrig;

program

 bFinished = FALSE; // Initialize BOOL data type to FALSE
 iLarge = 1517;
 iSmall = 369;
 iLargeOrig = iLarge; // Save the original value
 iSmallOrig = iSmall; // Save the original value

 // Loop until bFinished is set to TRUE
 while(!bFinished)
 iRemainder = iLarge % iSmall;
 iLarge = iSmall;
 iSmall = iRemainder;

 // Check to see if looping should be stopped
 if(iSmall = 0)then
 bFinished = TRUE;
 endif;
 endwhile;

 // Print out the input and the GCD
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The greatest common divisor of %d and %d is %d",
 iLargeOrig, iSmallOrig, iLarge);

endprogram

Figure 6-6: Setup.rul for calculating the greatest common divisor of two integers.

P A R T I I I N S T A L L S C R I P T

310

CHAR

Although a variable declared as type CHAR can represent any number that can be
represented by a four-byte signed integer, this type of variable should be used only to
represent individual characters. A string is an array of characters, but it is not the same
as an array of type CHAR. Since a CHAR in InstallScript is a signed four-byte integer,
an array of type CHAR in InstallScript is an array of integers. The following program
shows the use of the CHAR data type.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program displays the value of
// an ANSI character code and the character.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

CHAR cANSIChar;

program

 cANSIChar = 190; // Set the CHAR variable to a displayable
 // ANSI character code.

 // Print out both the ANSI character code
 // and the character that it represents.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The ANSI code %d represents the %c character",
 cANSIChar, cANSIChar);

 cANSIChar = 'Z'; // Set the CHAR variable to a character value

 // Print out both the character and the
 // ANSI character code that it represents.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The character %c has the ANSI character code %d",
 cANSIChar, cANSIChar);

endprogram

Figure 6-7: Setup.rul for displaying character values and ANSI character codes.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

311

This program first sets a variable of type CHAR to one of the displayable ANSI
character codes and then prints out the variable as a character and as an integer. The
second part of the program reverses this operation by setting the variable to an ANSI
character and printing out the ANSI code and the character.

HWND

Declaring a variable of the HWND type indicates that it is being used as the handle to
a window. It is also currently used for other handles because there are no aliases that
are more specific to the other handle types. The following program captures the
window handle for InstallShield Developer and displays it in hexadecimal format.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program displays the value of the
// window handle for InstallShield Developer.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

HWND hwndISDev;

program

 // Get the window handle to InstallShield Developer
 // using a built-in function from InstallScript.
 hwndISDev = FindWindow("InstallShieldIDE",
 "Learning InstallScript - InstallShield Developer 7.0" +
 " [Standard Project]");

 // Print out the hex value for the Window handle
 // for InstallShield Developer.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The InstallShield Developer window handle is %#.8x",
 hwndISDev);

endprogram

Figure 6-8: Setup.rul for obtaining the handle to the InstallShield Developer window.

P A R T I I I N S T A L L S C R I P T

312

The above program uses FindWindow, which is one of the built-in InstallScript
functions. For the first argument, this function requires the name of the class to
which the InstallShield Developer main window belongs or a null string. The second
argument is the title of the window for which the function is trying to get the handle.
This title is displayed in the title bar of the main InstallShield Developer window. If
you have access to Visual Studio, you can use the Spy++ tool to obtain the class
name for the main InstallShield Developer window. You can also get the value of the
window handle to verify what the above program returns as its value.

Note the format string used to print out the value of the window handle. This format
takes into account that the window handle is usually displayed has a hexadecimal
number and that this number is a four-byte unsigned number. The format string used
identifies that the output value is in hexadecimal form and the number is eight digits
wide with zeros used to pad the value to the left.

INTEGER

The integer data types consist of the INT, LONG, and SHORT aliases. In a normal
program these types can all be used interchangeably. Inside of a structure, however,
an INT and a LONG are the same four-byte signed integers, but a SHORT is a two-
byte signed integer. In a 32-bit operating system environment, there is no difference
between an integer and a long integer so in InstallScript you can use the INT and
LONG data types interchangeably. Note that you should use the SHORT data type
only where you want to specify a two-byte integer.

In InstallScript, the fact that integers are signed is important only in the context of the
script. When integer values are passed to functions they are implicitly type cast into
the integer type that the receiving function requires. In the program that is listed in
Figure 6-9, variables are defined as type LONG and these variables are assigned
values at the very size limit of what a four-byte value can hold. This program then
displays these values as signed integers and as unsigned integers.

As this program demonstrates, even if InstallScript treats a number as a four-byte
signed integer, when it is passed to a function that expects an unsigned integer, the
function uses it as an unsigned integer. The output from this program is shown in
Figure 6-10.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

313

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program prints out the value of the
// various large integers both as signed
// and unsigned values.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

LONG iLarge1, iLarge2, iLarge3;

program

 // Create two large integer values
 iLarge1 = 2147483648;
 iLarge2 = 2147483647;

 // Add the two large values together
 iLarge3 = iLarge1 + iLarge2;

 // Display the large values as both signed and
 // unsigned values using the SprintfBox function.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "iLarge1 as a signed integer: %d\n\n" +
 "iLarge1 as an unsigned integer: %u\n\n" +
 "iLarge2 as a signed integer: %d\n\n" +
 "iLarge2 as an unsigned integer: %u\n\n" +
 "iLarge3 as a signed integer: %d\n\n" +
 "iLarge3 as an unsigned integer: %u",
 iLarge1, iLarge1, iLarge2, iLarge2,
 iLarge3, iLarge3);

endprogram

Figure 6-9: Setup.rul for showing the handling of large integer values in InstallScript.

To completely understand the results of this program (Figure 6-10) you might want
to independently investigate how a computer handles negative numbers. This
involves the designation of the highest order bit as the sign bit and the use of twos
complement to enable the subtraction of two numbers.

P A R T I I I N S T A L L S C R I P T

314

Figure 6-10: The output from the program in Figure 6-9.

InstallScript’s use of signed integers is a concern only when your code contains math.

POINTER

There are three explicit pointer data types in InstallScript: PSZ, LPSTR, and
POINTER. Though the LIST data type is also a pointer, it is a special case that is
covered separately. In the following program, Figure 6-11, you create and manipulate
pointers to strings and integers.

This program shows the use of the address of operator (&) and the dereference
operator (*). It shows that a pointer to a string can be incremented to point to parts
of the string. Pointers are also used to manipulate variables of the INT data type. The
dereference operator is used to obtain the value stored at the memory address defined
by a POINTER variable. The dereference operator can be used only with variables
that have the basic NUMBER data type. You can have pointers to pointers, but to
dereference a pointer, you have to do it one level of indirection at a time. The value of
pointers is for passing these values to functions exported by DLLs. Pointers are not
used inside InstallScript except in special situations.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

315

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program displays the value of strings
// and integers that are defined through the use
// of pointers.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

STRING sString;
INT iValue1, iValue2, iValue3;
LPSTR pStr;
POINTER pNum1, pNum2, pNum3, ppNum;

program

 sString = "abcdefghi";

 // Get a pointer to the string
 pStr = &sString;

 // Print out different parts of the string by
 // incrementing the string pointer
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "%9s\n\n%9s\n\n%9s\n\n%9s\n\n%9s\n\n%9s\n\n%9s\n\n%9s\n\n%9s",
 pStr, pStr+1, pStr+2, pStr+3, pStr+4,
 pStr+5, pStr+6, pStr+7, pStr+8);

 iValue1 = 100;

 // Set the value of the pointer using the
 // the address of operator &
 pNum1 = &iValue1;

 // Using the dereference operator * to
 // add 100 to the value of iValue1
 iValue2 = *pNum1 + 100;

 // Set the value of the pointer using the
 // the address of operator &
 pNum2 = &iValue2;

Figure 6-11: Setup.rul that demonstrates the handing of the pointer data types.

P A R T I I I N S T A L L S C R I P T

316

 // Get a pointer to the pointer to iValue2
 ppNum = &pNum2;

 // Dereference the pointer to the pointer to iValue2
 // We cannot double dereference a pointer to a pointer
 // in one statement, has to be done one level at a time.
 pNum3 = *ppNum;

 // Set the value of iValue3 by adding 100
 // to the value of iValue2.
 iValue3 = *pNum3 + 100;

 // Print out the value of the integer data types
 // and the value of the pointer data types.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "iValue1 = %d\n\npNum1 = %p\n\niValue2 = %d\n\n" +
 "pNum2 = %p\n\nppNum = %p\n\npNum3 = %p\n\niValue3 = %d",
 iValue1, pNum1, iValue2, pNum2, ppNum, pNum3, iValue3);

endprogram

Figure 6-11: Continued.

LIST

A LIST is a doubly linked list that can hold numerical values or string values. A
variable that is declared as type LIST is actually a pointer to a doubly linked list.
InstallScript has implemented many functions to allow you to easily work with the
LIST data type. The LIST data type and the STRING data type are the only data
types that have a set of functions specifically designed to work with variables declared
as these types.

There are three basic types of operations that you can perform on a variable of type
LIST: creation, querying, and destruction of the list; adding, modifying, and removing
values; and traversing the list. To sort a list or perform a binary search of a list, you
have to create your own InstallScript functions to perform these types of
sophisticated operations.

Below is an example, Figure 6-12, of using a LIST data type to reverse the digits in a
number. This example demonstrates some of the functions that used to manipulate
the LIST data type.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

317

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program uses a string list to reverse
// the digits in a number and then displays
// the revised number.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

LIST lstStr; // Define a LIST variable
INT iType, iLastDigit, iNum, iReturn;
STRING svBuf, szNum;

program

 // Create a pointer to a string list
 lstStr = ListCreate(STRINGLIST);

 // Define the number to be reversed.
 iNum = 1234567890;

 // Starting with the last digit extract the digit,
 // convert it into a string, and add it as an
 // element to the string list.
 while(iNum != 0)
 iLastDigit = iNum % 10;
 Sprintf(svBuf, "%d", iLastDigit);
 ListAddString(lstStr, svBuf, AFTER);
 iNum = iNum/10;
 endwhile;

 // Set the pointer to the first element in the list
 iReturn = ListSetIndex(lstStr, LISTFIRST);

 // Loop through the list, extract the value from
 // the element, and concatenate it to the output variable.
 while(iReturn != END_OF_LIST)
 ListCurrentString(lstStr, svBuf);
 szNum = szNum + svBuf;
 iReturn = ListSetIndex(lstStr, LISTNEXT);
 endwhile;

Figure 6-12: Setup.rul for demonstrating the use of the LIST data type.

P A R T I I I N S T A L L S C R I P T

318

 // Destroy the list now that it is no longer needed.
 ListDestroy(lstStr);

 // Display the reversed number as a string
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Reversed number = %s", szNum);

endprogram

Figure 6-12: Continued.

This program could have done something similar using a NUMBERLIST instead of
a STRINGLIST, but the above example demonstrates the basic approach that is
needed to work with the LIST data type. To find the description of all the built-in
functions that are available for working with the LIST data type, see the InstallScript
Language Reference. The Language Reference contains a List Processing Functions
topic that lists the list-related functions and links to their descriptions. To access the
Language Reference, place your cursor in the Script Editor and press F1.

The first thing that the above program did was declare a variable of the LIST data
type and then use the ListCreate function to create a list that would hold strings.
It then extracted each digit from the back of the number, turned it into a string using
the Sprintf built-in function and then placed it into the list. Finally the program
traversed the list to extract the string elements to build the number in reversed form.
Before displaying the results, the program destroyed the list using the ListDestroy
built-in function. You should always do this to release memory that is no longer
required.

The STRING Data Type

There are no aliases for the STRING data type so a string variable is always declared
as type STRING. InstallScript provides a number of functions to manipulate
STRING variables. You can find descriptions of these functions in the InstallScript
Language Reference. The string function descriptions are found in the String
Functions topic. The first example program using strings demonstrates a method for
reversing the characters in a string (Figure 6-13).

The technique used in this example swaps the characters in the string with using a
temporary variable. This technique uses the exclusive OR bitwise operator. This
operator is discussed in Chapter 7.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

319

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program reverses the letters in a string.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

STRING szStr;
INT i, j, iLen;

program

 szStr = "This is a string";

 // Get the length of the string to be reversed.
 iLen = StrLength(szStr);

 i = 0; // Set i to point to first string
 j = iLen - 1; // Set j to point at last character

 // Work from both ends of the string to
 // swap the characters without using a
 // temporary variable to perform the swap.
 while(i < j)
 szStr[i] = szStr[i] ^ szStr[j];
 szStr[j] = szStr[j] ^ szStr[i];
 szStr[i] = szStr[i] ^ szStr[j];

 i++; // Increment i index
 j--; // Decrement j index
 endwhile;

 // Print the value of the reversed string.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Reversed string = %s", szStr);

endprogram

Figure 6-13: Setup.rul demonstrating reversing letters in a string.

This program creates a STRING variable without specifying a size. When an initial
size is not specified, the string automatically takes on the size required for the string

P A R T I I I N S T A L L S C R I P T

320

that is assigned as its value. Strings can be declared with a minimum size by putting
the size of the string in square brackets. To specify a variable of type STRING with a
minimum size, use the following format:

STRING szString[20];

This declaration creates a variable that will have a minimum size of 20 bytes. If you
want to assign a string that is longer than 20 bytes, this is not a problem because
strings in InstallScript are auto-sized. Unless there is a good reason to set a minimum
size for a string variable, it is best to allow the InstallScript auto-sizing to size the
string to whatever is necessary.

After giving the variable a value, the program uses the StrLength function to get the
length of the string in bytes. It then loops through half the length of the string
swapping the characters at each end with each other. The approach used for
swapping the characters uses a technique that does not require the use of a temporary
variable. Note that there is an increment and decrement operator used to adjust the
values of the two indices. The postfix version of the increment and decrement
operators is supported but the prefix version is not supported.

The next example shows one approach to performing a case-sensitive comparison of
two strings (Figure 6-14). The function StrCompare, one of the built-in InstallScript
functions, does a comparison that is not case sensitive.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program performs a case sensitive
// comparison of two strings.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

STRING szStr1, szStr2, szResult;
INT iLen1, iLen2, i;

Figure 6-14: Setup.rul demonstrates the case sensitive comparison between two strings.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

321

program
 i = 0;
 szStr1 = "THIS IS A STRING";
 szStr2 = "This is a string";

 // Get the length of each string
 iLen1 = StrLengthChars(szStr1);
 iLen2 = StrLengthChars(szStr2);

 // Check for the first character that is different
 // between the two strings. Since an uppercase letter
 // has a lower ANSI value a string of all uppercase
 // letters will be considered to be less than the same
 // string that is all lowercase letters.
 while(szStr1[i] != '\0' && szStr2[i] != '\0')
 if(szStr1[i] < szStr2[i]) then
 szResult = "String one is less than string two";
 goto DisplayResult; // Jump to label to print result
 elseif(szStr1[i] > szStr2[i]) then
 szResult = "String one is greater than string two";
 goto DisplayResult; // Jump to label to print result
 endif;
 i++;
 endwhile;

 // If all characters are the same up to the end of the
 // shortest string then the length of the two strings
 // determines the which string is greater than the other
 // whether they are equal.
 if(iLen1 = iLen2) then
 szResult = "String one and string two are equal";
 elseif(iLen1 < iLen2) then
 szResult = "String one is less than string two";
 elseif(iLen1 > iLen2) then
 szResult = "String one is greater than string two";
 endif;

DisplayResult:
 // Print the results of the string comparison.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION, "%s", szResult);

endprogram

Figure 6-14: Continued.

Figures 6-13 and 6-14 show some of the different ways that you can work with
strings. Mainly, these programs show that you can look at the individual characters
that make up a string. The example in Figure 6-14 used the StrLengthChars function

P A R T I I I N S T A L L S C R I P T

322

instead of the StrLength function. In this example, the result is the same because it
does not use a multi-byte character string.

The VARIANT Data Type

The VARIANT data type can hold a string value or an integer value. A variable of
type VARIANT can be used to convert a number to a string or a string to a number.
This is demonstrated in the code listed in Figure 6-15.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program demonstrates the usage
// of the VARIANT data type.
//
///
#include "ifx.h"

#define CAPTION "Feedback"

VARIANT vValue1, vValue2;
INT iValue1, iValue2;
STRING szValue1, szValue2;

program

 vValue1 = "12345"; // A VARIANT set as a string
 vValue2 = 67890; // A VARIANT set as a string
 iValue1 = vValue1; // Convert string to an integer
 szValue1 = vValue2; // Convert integer to a string

 iValue1 = iValue1 + 67890; // Addition
 szValue1 = "12345" + szValue1; // Concatenation
 iValue2 = vValue1 + 67890; // Addition
 szValue2 = "12345" + vValue2; // Concatenation

 // Print the results of the data manipulation.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "iValue1 = %d\n\nszValue1 = %s" +
 "iValue2 = %d\n\nszValue2 = %s",
 iValue1, szValue1, iValue2, szValue2);
endprogram

Figure 6-15: Setup.rul showing the use of the VARIANT data type.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

323

The above program shows the use of a VARIANT data type to convert between
string and integer data types. It also shows that a variable of type VARIANT in an
expression will be treated appropriately according to the context in which it is being
used. This technique for converting between strings and numbers using a VARIANT
data type is used in a number of the examples shown in this book. Using a
VARIANT in this fashion does away with the need for calling the StrToNum and
NumToStr InstallScript functions. However, there is probably a performance
penalty for using a VARIANT data type in this fashion.

The OBJECT Data Type

A variable of type OBJECT in InstallScript is used to access automation objects that
are available on the target system. We will discuss COM in more detail in Chapter 9,
but the program in Figure 6-16 shows a small application using this data type.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program demonstrates the usage
// of the OBJECT data type.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

OBJECT objWI, objStrList;
INT iCompCnt;
program

 try
 // Create a Windows installer object.
 set objWI = CreateObject("WindowsInstaller.Installer");

 // Create a string list object that holds all the
 // components on the build system.
 set objStrList = objWI.Components;

Figure 6-16: Setup.rul demonstrating the use of the OBJECT data type.

P A R T I I I N S T A L L S C R I P T

324

 // Capture the number of components on the build system.
 iCompCnt = objStrList.Count;

 // Print the number of components.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The number of components on this machine is %d", iCompCnt);

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown when creating a Windows Installer object");
 endcatch;

 // Free the memory taken by the objects.
 set objStrList = NOTHING;
 set objWI = NOTHING;

endprogram

Figure 6-16: Continued.

It is not important to completely understand this program at this time. This program
uses the automation interface for the Windows Installer to query the build system and
get a value of how many Windows Installer components are installed.

User-Defined Data Types
In InstallScript you can define two data types that do not fall under the built-in data
type definition. These two data types are arrays and structures.

The Array

The array data type allows you to create a collection of a specific built-in data type.
The array can be considered a possible replacement of the LIST built-in data type.
Working with an array does not require a set of functions to manipulate it. All you
need is the index, which provides fast random access that a LIST does not provide.
Just as with the STRING data type, an array can be declared with a specific size or it
can be declared with a zero size. An array is declared of a particular built-in data type
as shown in the following example.

INT iArray1(), iArray2(10);

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

325

This example declares one array of integers that has an initial size of zero and another
array of integers that has an initial size of ten. Just like strings, an array has zero-based
indexing, (that is, the first element in an array has an index of 0). Unlike strings, an
array is not automatically sized to accommodate the number of values we want it to
hold. An array has to be specifically sized for the number of elements it is going to
hold. For this reason InstallScript has two special operators for this purpose:
SizeOf and Resize.

The SizeOf operator returns the present size of an array and the Resize operator
allows you to change the size of an array at run time. However, if an array is initially
declared as a specific size, it cannot be resized to a smaller size than originally
declared. For the most efficient use of memory you should declare all arrays as having
zero size and then resize them according to the need of the run-time environment.

The following program shows the declaration and use of an array to hold the first
twenty Fibonacci numbers (Figure 6-17). Fibonacci numbers is a sequence of
numbers where except for the first two numbers in the sequence each number is
equal to the sum of the previous two numbers. The first two numbers are defined to
be 0 and 1 respectively. Fibonacci numbers have many applications in the field of
mathematics and in the study of computer algorithms. They are also one of the
standard ways to show the manipulation of arrays.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program demonstrates how to use the
// array data type to store the values of
// the first 20 Fibonacci numbers.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT iFibonacci(); // Integer array of zero size
INT i, iNumFibonacci;
STRING szDisplay;
VARIANT vFibonacci;

Figure 6-17: Setup.rul for demonstrating the array data type.

P A R T I I I N S T A L L S C R I P T

326

program

 iNumFibonacci = 20;

 // Size the array to what is required.
 Resize(iFibonacci, iNumFibonacci);

 // Set the first two Fibonacci numbers
 iFibonacci(0) = 0;
 iFibonacci(1) = 1;

 // Use a VARIANT to convert a number to a string
 // and use this string to create an output display.
 vFibonacci = iFibonacci(0);
 szDisplay = vFibonacci;
 vFibonacci = iFibonacci(1);
 szDisplay = szDisplay + ", " + vFibonacci;

 // Calculate the remaining members of the
 // array of Fibonacci numbers.
 for i=2 to iNumFibonacci-1
 iFibonacci(i) = iFibonacci(i-1) + iFibonacci(i-2);

 // Add each new number to the output string.
 vFibonacci = iFibonacci(i);
 szDisplay = szDisplay + ", " + vFibonacci;
 endfor;

 // Print the Fibonacci numbers in the array.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The first %d Fibonacci numbers: \n%s",
 iNumFibonacci, szDisplay);
endprogram

Figure 6-17: Continued.

This program initially declares an integer array of zero size by using a set of empty
parentheses. It then resizes this array to that specified by the variable
iNumFibonacci. As is required with the calculation of Fibonacci numbers, the
first two elements in the array are defined. In order to display all the numbers that are
calculated, the program creates a STRING variable and uses a VARIANT to convert
the elements in the array to a string. As each of the Fibonacci numbers is calculated in
the loop, the program adds each new number to this display string. Finally the
program displays the values of the Fibonacci numbers in a single message box.

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

327

The Structure Data Type

While the array data type allows you to create a collection of values of the same data
type, a structure allows you to create a collection of different data types. This is a very
powerful mechanism for collecting one-unit variables that are logically related but not
all of the same data type. A good example of logically related variables that are not of
the same data type is the values that make up a row in one of the database tables in an
.msi file.

The program in Figure 6-18 shows the declaration of a structure to hold a person's
name and birthday. The declaration needs to explicitly declare any string members
with a specific size. In the structure, a variable of type CHAR is only one byte and a
variable of type SHORT is only two bytes. This is demonstrated when the program
takes the size of this structure. To define a structure you need to use the typedef
statement and then declare a variable of this type. To access the members of the
structure, use the structure member reference operator, which is a period (.).

The structure defined in this program defines three members of type STRING (two
of which have 25 bytes and one that has 10 bytes), one member of type CHAR, and
two members of type SHORT. Inside a structure, a CHAR member takes up one
byte and a SHORT member takes up two bytes. Therefore, any variable declared of
type BIRTHDAY will take up 65 bytes in memory. Using the SizeOf operator and
displaying its return value confirms this. Note the use of the VARIANT type variable
to convert numbers to strings to make the date display easier.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program demonstrates how to use the
// structure data type to store a person’s
// birth date.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

Figure 6-18: Setup.rul demonstrating the use of the structure data type.

P A R T I I I N S T A L L S C R I P T

328

// Define a structure that holds
// information on a person’s birthday.
typedef BIRTHDAY
begin
 STRING szLastName[25];
 STRING szFirstName[25];
 CHAR cMiddleInitial;
 STRING szMonth[10];
 SHORT iDay;
 SHORT iYear;
end;

// Declare a variable of type BIRTHDAY.
BIRTHDAY MyBirthday;
VARIANT vDay, vYear;
STRING szDate;
INT iSize;

program

 // Assign values to the members of MyBirthday
 // using the structure member reference operator.
 MyBirthday.szLastName = "Baker";
 MyBirthday.szFirstName = "Robert";
 MyBirthday.cMiddleInitial = 'S';
 MyBirthday.szMonth = "August";
 MyBirthday.iDay = 4;
 MyBirthday.iYear = 1939;
 // Create a display for the birthday date.
 vDay = MyBirthday.iDay;
 vYear = MyBirthday.iYear;
 szDate = MyBirthday.szMonth + " " + vDay + ", " + vYear;

 // Get size of the structure.
 iSize = SizeOf(MyBirthday);

 // Print the structure members and structure size.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Name: %s %c. %s\n\nDate: %s\n\nSize of structure: %d",
 MyBirthday.szFirstName, MyBirthday.cMiddleInitial,
 MyBirthday.szLastName, szDate, iSize);

endprogram

Figure 6-18: Continued.

There is another means to access the members of a structure. This approach is
demonstrated in the following program (Figure 6-19). This program uses the

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

329

structure pointer operator instead of the structure member reference operator. The
program demonstrates that you can use a structure as a member of another structure.
Here a structure holds a person's name and another structure holds a date.
Combining these two structures in another structure is used to create the
BIRTHDAY structure.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This program demonstrates how to use a
// pointer to a structure data type to store
a person's birthdate.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

// Define a structure to hold a date.
typedef BIRTHDATE
begin
 STRING szMonth[10];
 SHORT iDay;
 SHORT iYear;
end;
// Define a structure to hold a name.
typedef NAME
begin
 STRING szLastName[25];
 STRING szFirstName[25];
 CHAR cMiddleInitial;
end;

// Define a structure that holds
// information on a person’s birthday.
typedef BIRTHDAY
begin
 NAME MyName;
 BIRTHDATE MyBirthDate;
end;

Figure 6-19: Setup.rul that demonstrates structure pointers.

P A R T I I I N S T A L L S C R I P T

330

// Declare a variable of type BIRTHDAY.
BIRTHDAY MyBirthday;
BIRTHDAY POINTER pMyBirthday;
VARIANT vDay, vYear;
STRING szDate;
INT iSize;

program

 // Get pointer to the MyBirthday structure.
 pMyBirthday = &MyBirthday;

 // Assign values to the members of MyBirthday
 // using the dot operator.
 pMyBirthday->MyName.szLastName = "Baker";
 pMyBirthday->MyName.szFirstName = "Robert";
 pMyBirthday->MyName.cMiddleInitial = 'S';
 pMyBirthday->MyBirthDate.szMonth = "August";
 pMyBirthday->MyBirthDate.iDay = 4;
 pMyBirthday->MyBirthDate.iYear = 1939;

 // Create a display for the birthday date.
 vDay = pMyBirthday->MyBirthDate.iDay;
 vYear = pMyBirthday->MyBirthDate.iYear;
 szDate = pMyBirthday->MyBirthDate.szMonth + " " +
 vDay + ", " + vYear;

 // Get size of the structure.
 iSize = SizeOf(MyBirthday);
 // Display the structure members and structure size.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Name: %s %c. %s\n\nDate: %s\n\nSize of structure: %d",
 pMyBirthday->MyName.szFirstName,
 pMyBirthday->MyName.cMiddleInitial,
 pMyBirthday->MyName.szLastName, szDate, iSize);

endprogram

Figure 6-19: Continued.

The program shown in Figure 6-19 shows two important techniques. These are the
fact that a structure can have other structures as its members and that we can use
pointers to structures to access the members of a structure. The structure pointer
operator is the combination of the dash and the right angle bracket without any
spaces between (->). You declare a pointer to a structure by using the typedef name
of the structure and the generic POINTER data type name as shown in Figure 6-19.
You assign a value to this pointer by using the address of operator (&).

C H A P T E R 6 V A R I A B L E S A N D D A T A T Y P E S

331

Conclusion
Most of this chapter discussed the built-in data types and the user-defined data types.
There are four built-in data types: NUMBER, STRING, VARIANT, and OBJECT.
The NUMBER data type has several aliases that you should use instead of declaring
all number variables as NUMBER. The other three data types have no aliases. The
discussions of these data types demonstrates that the VARIANT data type can be
used to convert from number to string or from string to number without having to
call one of the built-in InstallScript functions.

The end of the chapter demonstrated the use arrays to create collections of values of
the same built-in data type. It also showed how to use a structure to create a
collection of related data even if this data consisted of variables with different data
types. This discussion covered how to access the members of a structure using either
the structure member reference operator (.) or the structure member reference
pointer operator (->). You also saw that a structure could have other structures as
members.

Expressions and
Statements

In InstallScript, you declare variables using the data types discussed in Chapter 6 and
combine them to create expressions. Chapter 6 provided a number of code examples
that demonstrated the use of the data types. As required, these code examples used
expressions. This chapter goes further to discuss the various operators that are used
to create expressions. An expression is a valid combination of operators, variables,
and constants.

A statement is any part of code that can be executed. The statements covered in this
chapter are those built-in statements that allow you to control the flow of a program’s
execution. These statements can be divided into three categories, statements that are
used to select something, statements that are used to repeatedly execute the same
lines of code, and statements that allow you to jump to somewhere else in the code.

Chapter

7

P A R T I I I N S T A L L S C R I P T

334

Expressions
The discussion of expressions revolves around the operators that are available for
each of the data types discussed in the last chapter. Operators can be broken down
into five categories:

Arithmetic: In InstallScript, an expression of this type is used to manipulate
integer numbers. Remember that InstallScript does not support floating-point
math.

Relational and Logical: Relational and logical expressions are those that
evaluate to either TRUE or FALSE.

String: A string expression is one that is primarily related to concatenation,
searching for a sub-string, or an expression that accesses a string table entry.

Bitwise: Bitwise expressions are focused on testing, setting, or shifting the bits in
a variable.

SizeOf/Resize: Expressions that use these two operators relate to manipulating
arrays.

Arithmetic Expressions
In InstallScript there are seven operators that can be used in arithmetic expressions.

Table 7-1: Arithmetic Operators

Operator Action Description

* Multiplication x * y multiplies the values of x and y.

/ Division x/y divides the value of x by y.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

335

Table 7-1: Arithmetic Operators (Continued)

Operator Action Description

% Modulus x % y returns the remainder of the
division of x by y.

+ Addition x + y returns the sum of x and y.

- Subtraction
and unary
minus

x - y returns the difference between
x and y.

-x negates the value of x.

++ Increment x++ increments the value of x by 1.

-- Decrement x-- decrements the value of x by 1.

Because InstallScript deals with signed integers, a mathematical operation that
produces a value larger than 2 GB means that the sign of the result changes to
negative. This happens because, with signed integers, the highest order bit is the sign
bit. When it is set, the number is evaluated as negative.

Figure 7-1 provides the code for a simple program that displays the results of various
arithmetic expressions. This program does not declare enough variables to hold the
results of each expression. Instead the expressions are used as the arguments to the
SprintfBox function. In this example, the expression is evaluated as it is passed to
the function. The expressions used in this program show the results for all the
arithmetic operators except the increment and the decrement operators.

The increment and decrement operators cannot be used in a normal expression. They
can be used in postfix position to increment or decrement a variable where the
variable and the increment or decrement operator form the complete expression.
Refer to Figure 6-13 in Chapter 6 to see how increment and decrement operators are
used. In this example, the operators are used to traverse through the characters of a
string in order to reverse the characters in the string. This is the only way to use the
increment and decrement operators.

P A R T I I I N S T A L L S C R I P T

336

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script is demonstrates the results
// of various arithmetic expressions.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT a, b, c, d, e;

program

 // Assign values to the variables.
 a = 100;
 b = 2;
 c = 25;
 d = 3;
 e = 2000000000;

 // Print out the results of various arithmetic expressions.
 // Save space by placing the actual expression in the
 // SprintfBox function as the argument to be printed.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "b - a = %d\n" +
 "b * c = %d\n" +
 "-b * c = %d\n" +
 "a/c = %d\n" +
 "a %% c = %d\n" +
 "b/d = %d\n" +
 "b %% d = %d\n" +
 "a + b * c = %d\n" +
 "a * b + c * d = %d\n" +
 "a/b + c/d = %d\n" +
 "b * e = %d",
 b-a, b*c, -b*c, a/c, a%c, b/d, b%d, a+b*c,
 a*b+c*d, a/b+c/d, b*e);

endprogram

Figure 7-1: Setup.rul that demonstrates the results from various arithmetic expressions.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

337

The program in Figure 7-1 shows what happens when the variables a, b, c, d, and e
are combined in various ways. The output of the program in Figure 7-1 is shown in
Figure 7-2.

Figure 7-2: The output from the program in Figure 7-1.

The expressions that deserve additional attention are discussed below:

-b * c: This expression demonstrates the impact of using the minus sign in a
unary fashion. In this expression, the minus sign reverses the sign of the variable
b before the multiplication takes place. The unary minus operator has a higher
precedence than multiplication.

a % c: This expression returns the remainder of the division between the
variable a and the variable c. The fact that the result returned from this
expression is 0 means that the value of c divided evenly into the value of a. It is a
common technique to set c to 2 and evaluate whether a is even or odd.

b/d: This expression shows that integer division truncates the result to the
smallest whole value. In this case the result is zero because the value of the
variable d is larger than the value of the variable b.

P A R T I I I N S T A L L S C R I P T

338

a * b + c * d: This expression shows that there is a precedence to
arithmetic operations. The result of this expression shows that multiplication is
performed first, and then addition. Multiplication has a higher precedence than
addition. Multiplication and division have higher precedence than addition and
subtraction.

b * e: This expression demonstrates the impact of creating a number larger
than 2 GB. Because InstallScript uses signed integers, you should ensure that
results of all expressions are within the 2 GB boundary.

The increment and decrement operators can be used only as shown below:

i++; // This is a valid expression.
j--; // This is also a valid expression.

The postfix form of the increment and decrement operators shown above are the
only valid forms. The prefix version of these operators is not valid. The only valid use
of the increment and decrement operators in InstallScript is in the looping through a
series of expressions and incrementing or decrementing an index during this looping.

When creating arithmetic expressions you should be aware of the precedence of the
various operators. A summary of the precedence of the arithmetic operators is shown
below from highest to lowest.

Highest -(unary minus)

 *, /, %

Lowest +, -

Since the increment and decrement operators in InstallScript cannot be used with any
other operators, this chapter does not discuss their precedence. When you are not
sure about how the precedence rules will be used to evaluate a certain expression, you
can use parentheses to force the required precedence. Parentheses have the highest
precedence of all operators. For example, if you want to change the normal
precedence of the following expression so the addition happens before multiplication,
you could use parentheses as shown below:

x = a * b + c * d; // Multiplication first, then addition
x = a * (b + c) * d; // Addition before multiplication

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

339

Relational and Logical Expressions
Because relational and logical operators work together this section covers both. A
relational operator evaluates the relationship between two expressions. A relational
operator is a binary operator because it requires two expressions. Logical operators
are used to connect relational expressions together.

The result of a relational expression is either TRUE or FALSE. As in the C language,
FALSE is zero and TRUE is non-zero. In the evaluation of a relational expression, if
the result is TRUE then the result has a value of 1. Table 7-2 describes the relational
operators supported by InstallScript. Table 7-3 describes the supported logical
operators.

Table 7-2: The Relational Operators

Operator Action Description

> Greater than x > y returns TRUE if expression x is
greater than expression y; otherwise, it
returns FALSE.

>= Greater than or
equal

x >= y returns TRUE if expression x is
equal to or greater than expression y;
otherwise, it returns FALSE.

< Less than x < y returns TRUE if expression x is
less than expression y; otherwise, it returns
FALSE.

<= Less than or
equal

x <= y returns TRUE if expression x is
equal to or less than expression y;
otherwise, it returns FALSE.

= Equal x = y returns TRUE if expression x is
equal to expression y; otherwise, it returns
FALSE.

P A R T I I I N S T A L L S C R I P T

340

Table 7-2: The Relational Operators (Continued)

Operator Action Description

!= Not equal x != y returns TRUE if expression x is
not equal to expression y; otherwise, it
returns FALSE.

The first relational operator is the Equal operator. Note that this is exactly the same
as the assignment operator. This means that the equal sign (=) is overloaded. In some
circumstances, it assigns a value to a variable and other times it compares the equality
of two expressions and returns TRUE or FALSE depending on the outcome of the
comparison. The rule for this is that wherever InstallScript expects a relational
expression, it treats the equal sign as a relational operator. This means that you cannot
assign a value to variable and, at the same time, check to see if the expression of
which this variable is a part is equal to some other value.

The following example examines a typical assignment statement that is used in C
programming and to see what happens in InstallScript. Figure 7-3 shows the code for
this simple program that attempts to use a single line of code to set three variables to
the same value.

When you declare an integer variable, the variable is automatically initialized to zero.
The approach used by the InstallScript engine to evaluate the assignment statements
shown in the Figure 7-3 code is as follows:

a = (b = (c = 0));

First the relational expression (c = 0) is evaluated and found to be TRUE so this
relational expression is set to TRUE which is the same as 1. Then the relational
expression (b = 1) is evaluated. Since b was initialized to 0, this expression returns
FALSE, which is 0. Finally the variable a is assigned the value of 0 because the
expression (b = 1) evaluated to FALSE. The same process can be followed to see
that for the statement

d = e = f = 1;

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

341

the variable d is assigned the value of 1.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the results
// of mixing arithmetic and relational operators.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT a, b, c;
INT d, e, f;

program

 // Typical operations in C language.
 a = b = c = 0;
 d = e = f = 1;

 // Print the results of the assignment statements.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "a = %d, b = %d, c = %d\n\nd = %d, e = %d, f = %d",
 a, b, c, d, e, f);

endprogram

Figure 7-3: Setup.rul to demonstrate the mixture of assignment and equality operators.

When arithmetic expressions are combined with relational expressions, it results in a
value of TRUE or FALSE. Since the arithmetic operators have a higher precedence
than the relational operators, the evaluation of the arithmetic expressions occurs
before the evaluation of any relational operators. This is demonstrated in the next
program (Figure 7-4). This program contains a statement that checks to see if the
remainder of the value of a variable divided by 2 is zero or not. If the result is equal to
zero, the value of the variable is an even number and if it is not equal to 0, the value
of the variable is an odd number.

P A R T I I I N S T A L L S C R I P T

342

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the
// combination of an arithmetic expression
// and a relational expression.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT iVal;
BOOL bIsEven;

program

 iVal = 5;

 // Check to see if the remainder of
 // iVal when divided by 2 is 0.
 bIsEven = iVal % 2 = 0;

 // Check if iVal is an even or odd number.
 if(bIsEven) then
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "iVal is an even number");
 else
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "iVal is an odd number");
 endif;

endprogram

Figure 7-4: Setup.rul demonstrating the combination of an arithmetic and relational expression.

In the program shown in Figure 7-4, the output displayed in the message box is the
string "iVal is an odd number". If you use any type of relational expression in a
statement, the result of that statement is either TRUE or FALSE.

The next paragraphs discuss the logical operators that allow you to combine relational
expressions into more complex statements and conditions. The logical operators are
shown in Table 7-3.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

343

Table 7-3: The Logical Operators

Operator Action Discussion

&& AND x && y evaluates to TRUE if both
expressions x and y are TRUE; otherwise,
it evaluates to FALSE.

|| OR x || y evaluates to TRUE if either or
both expression x or expression y are
TRUE; otherwise, it evaluates to FALSE.

! NOT !x evaluates to TRUE if expression x is
FALSE and evaluates to FALSE if
expression x is TRUE.

One of things that to notice about the logical operators shown in Table 7-3 is that
there is no exclusive OR operator. You can create an XOR capability by using the
built-in logical operators. The code for this is provided in Figure 7-5.

This program uses the bTrueArg and bFalseArg variables to represent the
evaluation of some relational expression. It then uses these variables to create all
possible scenarios for the XOR truth table. Using parentheses, the program performs
an inclusive OR on the variables and also performs a logical AND on them as well. It
then negates the result from the logical AND and performs another logical AND on
the results of the operations inside the parentheses.

This construct may look confusing when you first look at it but if you work through
it by hand you can see why it produces the exclusive OR of two expressions that have
a Boolean result. If you find the need to have an exclusive OR capability to use in
your if, while, or repeat statements you can create a function that has just one
line of code that returns a Boolean result after passing two expressions as arguments.
The one line of code would be a return statement with the logical statement shown in
the following program example.

P A R T I I I N S T A L L S C R I P T

344

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates how to create
// an exclusive OR evaluation using a combination
// of the built-in logical operators.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

BOOL bTrueArg, bFalseArg;
BOOL bResult1, bResult2, bResult3, bResult4;

program

 bTrueArg = TRUE;
 bFalseArg = FALSE;

 // Create the XOR truth table.
 bResult1 = (bTrueArg || bFalseArg) && !(bTrueArg && bFalseArg);
 bResult2 = (bTrueArg || bTrueArg) && !(bTrueArg && bTrueArg);
 bResult3 = (bFalseArg || bTrueArg) && !(bFalseArg && bTrueArg);
 bResult4 = (bFalseArg || bFalseArg) && !(bFalseArg && bFalseArg);

 // Display the XOR truth table.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The XOR Truth Table\n\n %d %d %d\n\n" +
 " %d %d %d\n\n" +
 " %d %d %d\n\n" +
 " %d %d %d",
 bTrueArg, bFalseArg, bResult1,
 bTrueArg, bTrueArg, bResult2,
 bFalseArg, bTrueArg, bResult3,
 bFalseArg, bFalseArg, bResult4);

endprogram

Figure 7-5: Setup.rul demonstrating the creation of an XOR functionality.

The result is the exclusive OR. As shown in Figure 7-6, a TRUE is returned as long as
one of the variables is TRUE but not both of the variables are TRUE.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

345

Figure 7-6: The result of the program in Figure 7-5 showing the XOR truth table display.

As with arithmetic expressions, there is precedence to the relational and logical
operators. This precedence is shown below from highest to lowest.

Highest !

 >, >=, <, <=

 =, !=

 &&

Lowest ||

As with arithmetic expressions, you can control the natural order in which relational
and logical expressions are evaluated (Figure 7-7). The program in Figure 7-7 adds
parentheses around the expression to the left of the OR operator for the value of
bResult2. Adding these parentheses changes the result for the total expression
from FALSE to TRUE.

P A R T I I I N S T A L L S C R I P T

346

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates how to create a compound
// relational and logical expression.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
INT a, b, c, d;
BOOL bResult1, bResult2;
STRING szResult1, szResult2;

program

 a = 2;
 b = 3;
 c = 4;
 d = 5;

 szResult1 = "FALSE";
 szResult2 = "FALSE";

 // Compound relational and logical expressions.
 bResult1 = !(a - b = c - d) && (a + b > c + d) ||
 (a * b = c * d);
 bResult2 = !((a - b = c - d) && (a + b > c + d)) ||
 (a * b = c * d);

 if(bResult1) then
 szResult1 = "TRUE";
 endif;

 if(bResult2) then
 szResult2 = "TRUE";
 endif;

 // Display the results of the compound
 // relational and logical expressions.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "bResult1 = %s\nbResult2 = %s", szResult1, szResult2);

endprogram

Figure 7-7: Setup.rul showing the use of compound relational and logical expressions.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

347

String Expressions
In InstallScript, you can use strings to display information and to define both source
paths and destination paths. A string is an array of characters and, as in the C
language, you can use many functions to manipulate strings. Because of the
importance of strings in defining paths, InstallScript has an additional set of functions
that are used to manipulate strings that are used as paths. This section looks primarily
at the operators that work with strings. String-related functions are covered in
Chapter 8.

Table 7-4 describes the four special operators that help you work with strings more
efficiently.

Table 7-4: The String Operators

Operator Action Description

+ Concatenate This operator concatenates two strings.

^ Append to path This adds a string to a path and, if there is
no ending backslash, adds the backslash
between the two strings or removes extra
backslashes to maintain a valid path
format.

% Find string This searches for one string in another
string and returns TRUE if it is found or
return FALSE otherwise. This operator is
case insensitive.

@ String table ID This operator in front of a string ID in the
string table will bring into the script the
value pointed at by the string ID.

The concatenation operator is an overloaded plus (+) sign and it allows you to add
two strings together. The use of this operator has been demonstrated in some of the
previous programs. The "append to path" operator is another concatenation operator

P A R T I I I N S T A L L S C R I P T

348

but it works with strings that are representing locations on a file system. This operator
automatically includes the backslash if it is required.

The "find string" operator is used to verify that a sub-string exists in another string.
The only information received from this operator is a return value of TRUE or
FALSE, depending on whether the sub-string exists. To find the location of the sub-
string in the string you can use the StrFind built-in function.

The final operator allows you to extract a string value from the string table by
combining the string ID and the (@) symbol. In InstallScript, a string ID is identified
by the @ symbol in front of the string ID. At run time, the InstallScript engine
replaces this identifier with the string value from the string table.

InstallShield Developer makes it easy for you to add strings to your script by
providing a Select String dialog (Figure 7-9). To use the dialog:

1. When your cursor is in the Script Editor, select Insert from the
InstallScript drop-down menu.

2. From the sub-menu, select String Table Entry.

3. In the dialog, select the string ID you want to insert in the script.

4. Click OK. The string ID is inserted into the script at the location of your
cursor and the @ symbol is placed directly in front of the string ID.

Figure 7-8 shows a program that demonstrates each of the string operators.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of the
// string operators.
//
///
#include "ifx.h"

#define CAPTION "Feedback"

Figure 7-8: Setup.rul that demonstrates the usage of the string operators.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

349

#define PATH1 "C:\\Program Files\\InstallShield\\"
#define PATH2 "C:\\Program Files\\InstallShield"
STRING szFirst, szLast;
STRING szPath1, szPath2;
STRING szProductName, szResult, szFormat, szStrTable;
BOOL bFound;

program

 szFirst = "Developer";
 szLast = "Art";

 // Use concatenation operator to create product name.
 szProductName = szFirst + " " + szLast;
 // Use the append path operator to create a path string
 // and note how the back slash is added if it is not
 // already present in the string.
 szPath1 = PATH1 ^ szProductName;
 szPath2 = PATH2 ^ szProductName;

 // Use the find string operator to verify that the
 // string Art is in szProductName.
 bFound = szProductName % szLast;

 // Use the result of the find operation to set
 // the display string. Note the use of the
 // escape character for showing a double quote
 // in a string.
 if(bFound) then
 szResult = "Substring \"%s\" was found\n\n";
 else
 szResult = "Substring \"%s\" was not found\n\n";
 endif;

 // Get value of a string ID
 szStrTable = @ID_STRING1;

 // Create the format string and then use it in the call
 // to the SprintfBox function.
 szFormat = "Product Name = %s\n\n" + "Path1 = %s\n\n" +
 "Path2 = %s\n\n" + szResult +
 "String table value = %s";

 // Display the results of the string operators.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 szFormat, szProductName, szPath1, szPath2, szLast,
 szStrTable);
endprogram

Figure 7-8: Continued.

P A R T I I I N S T A L L S C R I P T

350

The above program creates the string variable szProductName with a space
between the first and last word by placing a space inside double quotes and including
it by using the concatenation operator. It then creates two path-related string variables
by appending the szProductName string variable to the PATH1 and PATH2
string constants defined by the #define statements. The append-to-path operator
takes the szProductName string variable and appends it to both of the path string
constants. The result is the same because the append-to-path operator recognizes if it
needs to add the backslash or not.

By using the find string operator, the program verifies that the sub-string "Art" is in
the string variable szProductName. This sets the bFound variable to TRUE.
Using an if statement, the program then creates the appropriate string to display
the results of this find operation. Finally, the string ID operator is used to display the
value of the string ID ID_STRING1.

Figure 7-9: The Select String dialog for use with the Script Editor.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

351

Next, the program creates a format string that will be used to display the results of all
the string operations. This format string is used in the call to the SprintfBox function
instead of entering the required format directly in the function call. In creating the
format string, the program uses several escape characters that are used to display the
string correctly. In strings, escape sequences allow you to display special characters
that would otherwise mean something different when the string is being displayed.
The escape sequences that InstallScript supports are shown in Table 7-5.

Table 7-5: The Escape Sequences

Code Description

\n This inserts a carriage return and a line feed.

\r This inserts a carriage return and a line feed. This produces the
same result as the \n code.

\t This inserts a horizontal tab into a string.

\' This inserts a single quote in a string.

\" This inserts a double quote in a string.

\\ This inserts a backslash in a string.

\ooo This inserts the ANSI character represented by the octal
number ooo.

In the program shown in Figure 7-8, the \n code is used to display the output on
different lines in the message box. The \" code is used to insert double quotes around
the string value of the szLast variable.

Bitwise Expressions
The ability to perform bitwise operations comes from the C language, which was
originally created to replace assembly language for developing systems applications.

P A R T I I I N S T A L L S C R I P T

352

Accordingly, the C language was designed to provide programmers access to the
computer's memory. Since C++ is the language in which InstallScript was developed,
you can gain this access to the computer's memory in your InstallScript programs.
There are six bitwise operators that you can use to create bitwise expressions (Table
7-6).

Table 7-6: The Bitwise Operators

Operator Action Description

& AND x & y compares the corresponding bits
in x and y. The result at each position
will be 1 if both bits are 1, and 0
otherwise.

| OR x | y compares the corresponding bits
in x and y. The result at each position
will be 1 if either or both bits are 1, and 0
otherwise.

^ Exclusive OR
(XOR)

x ^ y compares the corresponding bits
in x and y. The result at each position
will be 1 if either but not both bits are 1,
and 0 otherwise.

~ One's
complement
(NOT)

~x creates the one's complement of x,
which means that all bits are reversed.
This is the same thing as negating the
value of x.

>> Shift right x >> n shifts the bits in x n locations
to the right.

<< Shift left x << n shifts the bits in x n locations
to the left.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

353

In Chapter 6, the program in Figure 6-13 used the exclusive OR bitwise operator to
swap characters without having to use a temporary variable. An interesting attribute
of the exclusive OR bitwise operator is that any variable that is XOR'd with itself is
set to zero.

The AND bitwise operator and the OR bitwise operator have a very important
functionality. The AND bitwise operator can be used to create a masking operation.
This is because any bit that is 0 in either operand is set to 0 in the result. An AND
bitwise operation preserves only the bits where the mask has a 1 value. The OR
bitwise operator can be used to combine separate attributes into one value. This is
what is done when the value to be placed in THE Attributes column of the
Component table is generated. The program in Figure 7-10 shows the use of the
AND and the OR bitwise operators to evaluate and modify the value in the
Attributes column of the Component table. The program in Figure 7-10 uses an
integer array to hold all possible attributes for the Component table. Note that the
program uses hexadecimal notation to set the attributes’ values. String arrays hold the
attributes’ descriptions. The iAttributeValue integer variable holds the
attributes that are set in the Component table. To check to see which of the first three
attributes is set the program uses an if statement. Because these attributes are
exclusive, only one of them can be set at a time. The program loops through the
remainder of the attributes to evaluate which have been set. The attribute value serves
as a mask and when the program bitwise ANDs this attribute with the
iAttributeValue variable, a non-zero result occurs if the attribute has been set
and a zero value if the attribute has not been set.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the bitwise AND and OR operators.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

Figure 7-10: Setup.rul for demonstrating the use of the AND and OR bitwise operators.

P A R T I I I N S T A L L S C R I P T

354

INT iAttributes(10), i, j, iSize, iAttributeValue;
STRING szAttribDesc(10), szDescription, szTitle;
program
 // Set up attribute arrays with one array to hold the
 // bit-flag and the other array to hold the description.
 // The value of the attributes taken from the Windows
 // Installer help file for the Component table.
 iAttributes(0) = 0x0000;
 iAttributes(1) = 0x0001;
 iAttributes(2) = 0x0002;
 iAttributes(3) = 0x0004;
 iAttributes(4) = 0x0008;
 iAttributes(5) = 0x0010;
 iAttributes(6) = 0x0020;
 iAttributes(7) = 0x0040;
 iAttributes(8) = 0x0080;
 iAttributes(9) = 0x0100;

 // Array of strings to hold attribute description.
 szAttribDesc(0) = "Local Only";
 szAttribDesc(1) = "Source Only";
 szAttribDesc(2) = "Optional";
 szAttribDesc(3) = "Registry Key Path";
 szAttribDesc(4) = "Shared DLL Reference Count";
 szAttribDesc(5) = "Permanent";
 szAttribDesc(6) = "ODBC Data Source";
 szAttribDesc(7) = "Transitive";
 szAttribDesc(8) = "Never Overwrite";
 szAttribDesc(9) = "64-bit Component";
 // Set size of the array
 iSize = SizeOf(iAttributes);

 // Set title in message box.
 szTitle = "Present Attributes";

 // Set the present value of the attribute.
 iAttributeValue = 8;

 // Display the attribute for both the present
 // and the revised attribute setting.
 for j=0 to 1
 // Evaluate the present attribute value.
 // The first three attributes are exclusive
 // so a special check must be performed.
 if(iAttributeValue & iAttributes(1)) then
 szDescription = szAttribDesc(1);
 elseif(iAttributeValue & iAttributes(2)) then
 szDescription = szAttribDesc(2);

Figure 7-10: Continued.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

355

 else
 szDescription = szAttribDesc(0);
 endif;

 // Check the remaining attributes
 for i=3 to iSize-1
 if(iAttributeValue & iAttributes(i)) then
 szDescription = szDescription + ", " +
 szAttribDesc(i);
 endif;
 endfor;

 // Display the results of the string operators
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "%s\n\n%s", szTitle, szDescription);

 // Modify the present attribute value to include
 // the permanent and transitive bit-flags.
 iAttributeValue = iAttributeValue |
 iAttributes(5) | iAttributes(7);

 szTitle = "Revised Attributes";
 endfor;

endprogram

Figure 7-10: Continued.

For each attribute that is set, the program creates a string that includes the attribute’s
description. This description string is then displayed in the first message box. The
program then adds some additional attributes to the iAttributeValue variable
and runs this through the check of attributes to create a new display string. The new
attributes are incorporated by using the bitwise OR operator to add them to the
iAttributeValue variable.

The next program uses the one's complement (~) bitwise operator to demonstrate
how a computer handles negative numbers (Figure 7-11). Negative numbers are
represented by the two's complement of a number. The two's complement of a
number is created by first taking the one's complement and adding 1 to that result.
Subtraction is handled by first taking the two's complement of the number being
subtracted and then adding it as shown in the following expression.

a – b = a +(-b);

P A R T I I I N S T A L L S C R I P T

356

The program in Figure 7-11 uses the two's complement to negate a number.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the bitwise one's complement operator.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT a, b, c, d, e, f;

program

 // Show that the two's complement creates
 // the negative of a number.
 a = 10000;
 b = ~a + 1; // Two's complement of a.
 // Use the two's complement to subtract two numbers.
 c = 1024;
 d = 512;
 e = ~d + 1; // The two's complement of d.
 f = c + e; // This is the same as c - d.

 // Display the results of the bitwise manipulation.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "a = %d\tTwo's complement of a = %d\n\n" +
 "The value of c - d = %d", a, b, f);

endprogram

Figure 7-11: Setup.rul that uses the one's complement bitwise operator to perform subtraction.

Before we end this section on bitwise expressions, we need to discuss the bit-shift
operators. When you right-shift the bits in a number by n locations, it effectively
divides the number by the nth power of 2 (2n). If the number is negative, the sign bit
will be maintained, 1's are shifted into the left end of the number, and bits are shifted
off the right end of the number. If the number is positive, then right-shifting bits
moves 0's in on the left. If shifting bits to the right moves off any 1's on the right,

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

357

they are lost forever and cannot be regained by shifting the bits back to the left. When
bits are shifted to the left, 0's are shifted into the right side of the number. The effect
of left-shifting n bits is to multiply the number by the nth power of 2 (2n).

You can use the shift bitwise operators and the concept of a mask shown in Figure 7-
10 to pack characters into an integer variable. This is demonstrated in another
program (Figure 7-12). This program creates an array of four characters that are
packed into an integer. For each character, the program left-shifts the characters in
the iPacked variable by eight bits. After the shift, the program uses the OR bitwise
operator to add the next character to the variable. When the program finishes, the
value for the iPacked integer variable is 7778797a in hexadecimal format. Each
pair of hexadecimal digits represents the ANSI value of the four characters that were
packed into the integer.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the bitwise operators to pack characters
// into an integer and then unpack them.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
#define NBITS 8

INT iMask, iPacked, iSize, i, j;
CHAR cChars(4), cUnpackedChars(4); //Arrays of 4 characters each.
STRING szDisplay;

program

 // Set character array
 cChars(0) = 'w';
 cChars(1) = 'x';
 cChars(2) = 'y';
 cChars(3) = 'z';

Figure 7-12: Setup.rul that uses the shift bitwise operators to pack characters in an integer.

P A R T I I I N S T A L L S C R I P T

358

 //Get array size
 iSize = SizeOf(cChars);
 // Set iPacked to first character to be stored
 iPacked = cChars(0);

 // Pack the other characters into iPacked
 iPacked = (iPacked << NBITS) | cChars(1);
 iPacked = (iPacked << NBITS) | cChars(2);
 iPacked = (iPacked << NBITS) | cChars(3);

 // Set j index
 j = 0;

 // Unpack iPacked and place characters into a display string.
 for i=iSize-1 downto 0
 // Set mask
 iMask = 0xFF;
 iMask = iMask << (i * NBITS);
 // Place the unpacked characters into an array.
 // Unpack from left to right.
 cUnpackedChars(j) = (iPacked & iMask) >> (i * NBITS);
 j++;
 endfor;

 // Display the results of the bitwise manipulation.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "iPacked = %#0.8x\n\n" +
 "The unpacked characters\n%c, %c, %c, %c",
 iPacked, cUnpackedChars(0), cUnpackedChars(1),
 cUnpackedChars(2), cUnpackedChars(3));

endprogram

Figure 7-12: Continued.

After the program finishes packing the characters, it unpacks them by using a mask
that has all 1's in the first eight bits of the mask and 0's for all other bits. The program
left-shifts the mask to mask each of the characters and, using the AND bitwise
operator, extracts each character in order from left to right and places them in a new
character array. It then displays the unpacked characters.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

359

Expressions Using the SizeOf and Resize
Operators

Some of the programs in this chapter use the SizeOf operator to find an array’s size
and then use the result to index a loop through all array elements. The SizeOf
operator has the following prototype:

NUMBER SizeOf(<variable-name>);

You can use this operator to find the number of elements in an array, and the
number of bytes in a structure or a string. The SizeOf operator cannot be used to
obtain the number of bytes in an array element unless you first assign the array
element to another variable. It is recommended that the string function StrLength be
used to find the number of bytes in a string. However, if a string has embedded null
characters, you should use the SizeOf operator if you want to find the total number
of bytes including the null characters. The SizeOf operator is not a compile-time
operator like it is in the C language and it cannot be used to get the size of a data type.
You must first declare a variable of the data type and then get the size of the variable.
For the VARIANT data type the variable has to reference a structure or an array,
otherwise trying to get the size results in an exception.

The Resize operator is used to reset the size of strings and arrays. Note, however, that
it is not possible to resize a string to a size smaller than it was originally declared. For
example, if you declare a string consisting of 10 characters, you cannot resize it to a
string that can hold only 5 characters. For full flexibility with the string and array
sizing, you should always declare the variables without specifying a size. This way, you
can resize up or down as needed. The Resize operator has the following prototype:

NUMBER Resize(variable-name, size);

Figure 7-13 shows a simple program that uses the SizeOf and Resize operators to
manipulate various variable types.

P A R T I I I N S T A L L S C R I P T

360

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the SizeOf and Resize operators.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT iSize1, iSize2, iValue, i;
STRING szDisplay, szAlphabet, szArray(10), szElement;
VARIANT vArg;

program
 iValue = 10000;
 szAlphabet = "abcdefghijklmnopqrstuvwxyz";
 szDisplay = "This is a string";

 // Get size of an integer in bytes.
 iSize1 = SizeOf(iValue);

 // Set the values for the array elements.
 for i=0 to 9
 vArg = i + 1;
 szArray(i) = szDisplay + " " + vArg;
 endfor;

 // Calculate the bytes contained in the array.
 for i=0 to 9
 szElement = szArray(i);
 iSize2 = iSize2 + SizeOf(szElement);
 endfor;

 // Resize the szAlphabet string.
 Resize(szAlphabet, 13);

 // Display the results.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Integer size = %d bytes\nString array size = %d bytes" +
 "\nAlphabet = %s",
 iSize1, iSize2, szAlphabet);
endprogram

Figure 7-13: Setup.rul that uses the SizeOf and Resize operators.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

361

This program sets an integer variable to some value and then uses the SizeOf
operator to obtain the size of the integer data type. It then loops through the
elements of a string array, setting each element to a different string value. Next, the
program loops through this array again, obtains the size (in bytes) of each element in
the array, and sums these values to get the total number of bytes used by the string
array. Finally, the program uses the Resize operator to change the size of the
szAlphabet string variable that has been set to the complete letters in the
alphabet. The program displays the resized string, truncated according to the size
used in the Resize operator.

Statements
There are three types of statements in InstallScript: statements that select which line
of code to execute based on a condition, statements that loop through a number of
lines of code, and statements that jump to another part of a program. Chapter 9
introduces a special statement that is used to implement exception handling.

The selection statements consist of the if and switch statements. The statements
used for looping are while, for, and repeat. The goto, return, exit, and
abort statements are used to jump from one location to another. In the true sense,
expressions are also statements. An expression statement is simply a valid expression
that is terminated with a semi-colon. These types of statements are discussed in the
last section. The statements discussed in this section are typically categorized as flow
of control statements.

Selection Statements
The two selection statements supported in InstallScript are the if…endif and the
switch…endswitch statements. In the following discussion, square brackets ([])
are used to indicate optional items.

if…endif

The general format of the simple if statement is as follows:

if[(]expression[)] then

P A R T I I I N S T A L L S C R I P T

362

 statement(s);
[else]
 [statement(s);]
endif;

In the above, expression must evaluate to a value that is of the NUMBER data type.
You can use a variable declared as type BOOL because it is an alias for the
NUMBER data type. The parentheses around expression are optional, as is the use of
the else statement. The if statement evaluates expression and, if its value is non-
zero, the statements that immediately follow the if statement are executed. If
expression evaluates to zero, the statements that immediately follow the else
statement are executed. If there is no else statement, program execution begins
with the first statement following the endif statement.

The statements that are the targets of either the if or the else statements can
themselves be if statements. This means that, for more complex selection scenarios,
you can nest if statements inside each other. The format for a nested set of if
statements is as follows:

if[(]expression[)] then
 if[(]expression[)] then
 statement(s);
 [else] // Belongs to inside if statement
 [statement(s);]
 endif;

 statement(s);
[else] // Belongs to outside if statement
 if[(]expression[)] then
 statement(s);
 [else] // Belongs to inside if statement
 [statement(s);]
 endif; // Belongs to inside if statement

 [statement(s);]
endif; // Belongs to outside if statement

There is no language limit to the levels of nested if statements that you can use.
However, too many levels would make the code hard to read, understand, and debug.
You can use the elseif construct to eliminate the need for multiple levels of if
statements. The format of this construct is as follows:

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

363

if[(]expression1[)] then
 statement(s);
elseif[(]expression2[)] then
 statement(s);
[else]
 [statement(s);]
endif;

You can use any number of elseif statements, but if your program contains many
elseif statements, you might use the switch statement instead. If expression1 for
the if statement is non-zero, the statements immediately following it are executed. If
expression1 evaluates to zero, then expression2 is evaluated and, if it is non-zero, the
statements immediately following it are executed. If both expression1 and expression2
evaluate to zero, the statements immediately following the else statement are
executed.

There is a special form of the if statement that combines with the goto statement.
The format of this construct is as follows:

if[(]expression[)] goto label;

This statement is used to specify a jump to another location in your program
identified by a label. When expression evaluates to non-zero, program execution moves
to the first statement following the label. If expression evaluates to zero, program
execution continues with the statement that immediately follows the if statement.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the if statement in a program that calculates
// the date following a give date.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

Figure 7-14: Setup.rul that demonstrates the use of the if statement.

P A R T I I I N S T A L L S C R I P T

364

// Declare a data structure.
typedef ADATE
begin
 INT month;
 INT day;
 INT year;
end;

ADATE Today, Tomorrow;
INT iDaysPerMonth(12);
STRING szMonthName(12);

program

 // Set the name of month array.
 szMonthName(0) = "January";
 szMonthName(1) = "February";
 szMonthName(2) = "March";
 szMonthName(3) = "April";
 szMonthName(4) = "May";
 szMonthName(5) = "June";
 szMonthName(6) = "July";
 szMonthName(7) = "August";
 szMonthName(8) = "September";
 szMonthName(9) = "October";
 szMonthName(10) = "November";
 szMonthName(11) = "December";

 // Set the days per month array.
 iDaysPerMonth(0) = 31;
 iDaysPerMonth(2) = 31;
 iDaysPerMonth(3) = 30;
 iDaysPerMonth(4) = 31;
 iDaysPerMonth(5) = 30;
 iDaysPerMonth(6) = 31;
 iDaysPerMonth(7) = 31;
 iDaysPerMonth(8) = 30;
 iDaysPerMonth(9) = 31;
 iDaysPerMonth(10) = 30;
 iDaysPerMonth(11) = 31;

 // Define today's date.
 Today.month = 2;
 Today.day = 28;
 Today.year = 2001;

Figure 7-14: Continued.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

365

 // Check if the present year is a leap year and set
 // the days in February accordingly.
 if((!(Today.year % 4) && (Today.year % 100)) ||
 !(Today.year % 400)) then
 iDaysPerMonth(1) = 29;
 else
 iDaysPerMonth(1) = 28;
 endif;

 if(Today.day < iDaysPerMonth(Today.month-1)) then
 Tomorrow.day = Today.day + 1;
 Tomorrow.month = Today.month;
 Tomorrow.year = Today.year;
 elseif(Today.month = 12) then // Check for end of year.
 Tomorrow.day = 1;
 Tomorrow.month = 1;
 Tomorrow.year = Today.year + 1;
 else // This is the end of the month
 Tomorrow.day = 1;
 Tomorrow.month = Today.month + 1;
 Tomorrow.year = Today.year;
 endif;

 // Display today's and tomorrow's dates.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Today's Date is:\t%s %d, %d\n\n" +
 "Tomorrow's Date is:\t%s %d, %d",
 szMonthName(Today.month-1), Today.day, Today.year,
 szMonthName(Tomorrow.month-1), Tomorrow.day,
 Tomorrow.year);
endprogram

Figure 7-14: Continued.

The program in Figure 7-14 demonstrates the use of the if statement. This program
calculates the date that follows a specified date. This program sets values for the two
arrays and then defines the date on which the calculation will be based. The first if
statement checks the year to see if it is a leap year and sets the number of days in
February accordingly. The if…elseif statement calculates to determine date that
follows the date defined as today's date. The program then displays both today's date
and the date that follows. It uses the month to index into the szMonthName array
to display the month’s name, rather than the number.

P A R T I I I N S T A L L S C R I P T

366

switch…endswitch

As has already been stated, the switch statement is a built-in multiple-branch
selection statement that serves as a replacement for the if…endif statement. The
general format for the switch statement is as follows:

switch(expression)
 case value1 [,value2, value3,…]:
 statement(s);
 case value4 [,value5, value6,…]:
 statement(s);
 case value7 [,value8, value9,…]:
 statement(s);
 [default:]
 [statement(s);]
endswitch;

The value of expression in the switch statement can evaluate to any of the built-in
data types including STRING and VARIANT. The value of expression is compared
against values defined by the case statements and, when a match is found, the
associated statements are executed. If no match is found for the value defined by any
of the case statements, the statements after the default statement are executed.
The default statement is optional. Since the statements that are the target of a
case statement can be any valid InstallScript statement, you can nest the switch
statement inside another switch statement.

The C language implementation of the switch statement provides a fall-through
capability if a break statement is not used between case statements. A fall-through
capability allows for the execution of the same code for multiple case statements. In
InstallScript, the break statement is built into the language’s implementation so fall-
through functionality is implemented by allowing a list of values to be associated with
a case statement. The list of values uses a comma (,) as a delimiter.

Figure 7-15 shows a small program that demonstrates the use of the switch
statement to encode the characters of a string. In particular this program shows the
use of the fall through functionality by listing the values for a particular case
statement separated by commas.

In this simple program, the first case statement catches all the vowels (either
lowercase or uppercase) and adds 127 to the character code. It also catches the

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

367

common punctuation by another case statement and passes these characters on
without any change. The consonants are caught by the default statement and
modified as shown. This could have been done using an if…elseif statement
with conditions that would check for the vowels, consonants, and punctuation.
However, the switch statement is easier to write and understand in this example.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the switch statement in a program that encodes
// the characters of a string.
//
///
#include "ifx.h"

#define CAPTION "Feedback"

STRING szOriginal, szEncoded;
INT iLen, i;

program

 szOriginal = "This is a secret message.";
 iLen = SizeOf(szOriginal);
 Resize(szEncoded, iLen); // Set to same size as szOriginal

 while(szOriginal[i] != '\0') // Stop at end of string
 switch (szOriginal[i])
 // For all vowels change to the equivalent
 // extended ANSI character.
 case 'a', 'A', 'e', 'E', 'i', 'I', 'o', 'O', 'u', 'U':
 szEncoded[i] = szOriginal[i] + 127;
 // All spaces are changed to the left curly brace.
 case ' ':
 szEncoded[i] = 123;
 // Pass all punctuation without change.
 case '.', '?', ',', '-':
 szEncoded[i] = szOriginal[i];
 // All consonants have 33 subtracted from the ANSI code.
 default:
 szEncoded[i] = szOriginal[i] - 33;
 endswitch;

Figure 7-15: Setup.rul demonstrating the use of the switch statement.

P A R T I I I N S T A L L S C R I P T

368

 i++;
 endwhile;

 // Display original and encoded strings.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Original: %s\n\nEncoded: %s",
 szOriginal, szEncoded);

endprogram

Figure 7-15: Continued.

Iteration Statements
This section discusses the looping statements that allow you to iterate through a set of
statements a number of times. The statements in InstallScript that support looping
are for…endfor, while…endwhile, and repeat…until. This section’s
discussion begins with the for statement.

for…endfor

The for statement is used primarily to loop through a set of statements a certain
number of times. It is possible to create an infinite loop using a for statement and to
break out of a for loop using an if statement and a goto statement. The general
format of the for statement is as follows:

for index-initialization to | downto exp1 [step exp2]
 statement(s);
endfor;

The index-initialization expression is used to set the starting value of the index that will
be incremented or decremented during a for statement. The index of a for loop
can be any expression that evaluates to an integer value. The to keyword indicates
that the loop index will be incremented until it is greater than the value of expr1. At
this point, the loop terminates. The downto keyword means that the value of the
loop index will be decremented until it is less than the value of expr1 and then the
loop terminates. If the initial value of the loop index is greater than expr1 when
incrementing, or less than expr1 when decrementing, the loop will not execute any
statements but will jump to the first statement following the endfor statement.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

369

The default increment or decrement step size is 1, but can be changed with he step
keyword. The example above uses the step keyword to define exp2, which evaluates
to an integer value to increment or decrement the loop index. If exp2 evaluates to
zero, the program creates an infinite loop that will not stop until it encounters the
goto statement. However, you cannot define a label inside a for loop and then
jump into the loop.

Figure 7-16 shows a program that uses the for statement to perform a selection sort
of an array.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the for statement in a program that implements
// the selection sort algorithm to sort an array.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

STRING szOriginal, szEncoded;
INT iArray(20), iTemp, iSize, min, i, j, iVal;

program

 iVal = -1;

 // Get size of array.
 iSize = SizeOf(iArray);

 // Create array to be sorted.
 for i=0 to iSize-1
 iArray(i) = i * i * iVal;
 iVal = iVal * -1;
 endfor;

Figure 7-16: Setup.rul demonstrating the for statement and the selection sort of an array.

P A R T I I I N S T A L L S C R I P T

370

 // Display original array values.
 for i=0 to iSize-1
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Original Array\n\nThe Value of Element %d is %d",
 i, iArray(i));
 endfor;

 // Perform the selection sort of the array.
 for i=0 to iSize-2
 min = i;
 // Find the minimum value in the remaining elements
 // that have not already been sorted.
 for j=i+1 to iSize-1
 if(iArray(j) < iArray(min)) then
 min = j;
 endif;
 endfor;
 // Swap first non-sorted element with the minimum
 // value found in the search.
 iTemp = iArray(min);
 iArray(min) = iArray(i);
 iArray(i) = iTemp;
 endfor;

 // Display sorted array values.
 for i=0 to iSize-1
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Sorted Array\n\nThe Value of Element %d is %d",
 i, iArray(i));
 endfor;

endprogram

Figure 7-16: Continued.

This program first creates an array that is not initially sorted and then cycles through
the array and displays the values to verify that it is not sorted. The implementation of
the selection sort algorithm uses nested for loops. The outer loop performs the sort
and the inner loop finds the minimum value in the remaining part of the array that is
not yet sorted. After the sorting is complete, the program cycles through the array to
display it in sorted order. In this case, the program displays the values one at a time
because the SprintfBox function limits the number of arguments that can be passed.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

371

while…endwhile

The while statement is useful because it does not require you to specify the number
of iterations. You can create a condition that determines the number of iterations,
which can be zero or more. You can also end the execution of a while statement
using a goto statement to jump outside of the loop structure. This approach
requires a condition to execute the goto statement at the appropriate time. The
general format of the while…endwhile statement is as follows:

while [(] condition [)]
 statement(s);
endwhile;

The parentheses around condition are optional but using them makes the program
more readable. It is allowed, with one exception, to include any valid statement inside
the while loop including another while loop. You cannot define a label that is the
target of a goto statement inside a while loop.

In Figure 7-17 is an example that shows the use of the while statement to calculate
a specified number of prime numbers.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the while statement in a program that implements
// the calculation of prime numbers.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT iPrimes(), iTest, iNumPrimes, i, j;
BOOL bIsPrime, bIsRootLimit;
STRING szDisplay;
VARIANT vArg;

Figure 7-17: Setup.rul demonstrating the while statement and the calculation of prime numbers.

P A R T I I I N S T A L L S C R I P T

372

program

 // Set the number of primes to be calculated.
 iNumPrimes = 20;

 // Resize array to hold the desired number of prime numbers.
 Resize(iPrimes, iNumPrimes);

 // Set the first two prime numbers so
 // the program does not have to calculate them.
 iPrimes(0) = 2;
 iPrimes(1) = 3;

 // Initialize the array index
 // and the first number to test.
 i = 2;
 iTest = 5;

 // Use a variant to initialize the string
 // that will be used to display the prime numbers.
 vArg = iPrimes(0);
 szDisplay = vArg;
 vArg = iPrimes(1);
 szDisplay = szDisplay + ", " + vArg;

 // Calculate the prime numbers.
 while(i < iNumPrimes)
 bIsRootLimit = TRUE;
 bIsPrime = TRUE;
 j = 1;

 // Make sure that we do not test past the
 // prime number that is the square root of
 // the number being tested.
 // Also test the number to see if it is divisible
 // by a previously discovered prime number.
 while(bIsPrime && bIsRootLimit)

 // Test to make sure that we have not past
 // the square root of the number being tested.
 if((iTest/iPrimes(j)) < iPrimes(j)) then
 bIsRootLimit = FALSE;
 endif;

Figure 7-17: Continued.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

373

 // Test to make sure that the test number
 // is not evenly divisible by a prime number.
 if(!(iTest % iPrimes(j))) then
 bIsPrime = FALSE;
 endif;

 j++; // Increment the internal loop index.
 endwhile;

 // If the test number is prime then add it to the array
 // and add it to the display string then increment
 // the outer loop index.
 if(bIsPrime) then
 iPrimes(i) = iTest;
 vArg = iPrimes(i);
 szDisplay = szDisplay + ", " + vArg;
 i++;
 endif;

 // Set the test number to the next odd number.
 iTest = iTest + 2;
 endwhile;

 // Display prime numbers.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The first %d prime numbers:\n\n%s", iNumPrimes, szDisplay);

endprogram

Figure 7-17: Continued.

This program creates an array for a specified number of prime numbers. To make the
program more efficient, the program sets the first two prime numbers. To make
testing as efficient as possible, the program checks only odd numbers. This is
because, other than the number two, an even number cannot be prime. The program
makes use of the fact that any non-prime number can be expressed as some multiple
of prime factors. Because of this property, the program only has to see if the test
numbers are evenly divisible by the prime numbers already calculated. It has to check
the test number only up to a value that is less than or equal to the square root of the
number that is being tested. When the test discovers that a value is a prime number, it
adds the value to the array of prime numbers. It uses a variable of type VARIANT to
convert the number to a string so it can be concatenated it to the variable
szDisplay that is used to display the prime numbers calculated.

P A R T I I I N S T A L L S C R I P T

374

repeat…until

The repeat statement differs from the while statement in two respects. First, it
checks the condition at the end of the loop. Therefore, the statements in the loop will
be executed at least once. Second, the condition required to stop the iteration is the
opposite of the condition for the while loop. The condition of the while loop
needs to evaluate to FALSE in order for the iteration to stop. The condition for the
repeat statement needs to evaluate to TRUE to stop the iteration.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// the repeat statement in a program that
// implements the conversion of a decimal number
// to another base.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

STRING szDigits(16), szDisplay;
INT iConverted(), i, iNumber, iBase, iSize, iDisplay;

program

 // Initialize the digit array.
 szDigits(0) = "0"; szDigits(1) = "1"; szDigits(2) = "2";
 szDigits(3) = "3"; szDigits(4) = "4"; szDigits(5) = "5";
 szDigits(6) = "6"; szDigits(7) = "7"; szDigits(8) = "8";
 szDigits(9) = "9"; szDigits(10) = "A"; szDigits(11) = "B";
 szDigits(12) = "C"; szDigits(13) = "D"; szDigits(14) = "E";
 szDigits(15) = "F";
 iNumber = 128362; // Number to be converted.
 iDisplay = iNumber; // Save number for display purposes.
 iBase = 16; // New base for number.
 i = 0;

Figure 7-18: Setup.rul demonstrating the repeat statement for converting a number to another base.

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

375

 // Convert number to the desired base.
 repeat
 Resize(iConverted, i+1);
 iConverted(i) = iNumber % iBase;
 i++;
 iNumber = iNumber/iBase;
 until(iNumber = 0);

 // Initialize the display variable
 iSize = SizeOf(iConverted);
 szDisplay = szDigits(iConverted(iSize-1));

 // Create the display variable
 for i=iSize-2 downto 0
 szDisplay = szDisplay + szDigits(iConverted(i));
 endfor;

 // Display the converted number.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The number %d in base %d is %s",
 iDisplay, iBase, szDisplay);

endprogram

Figure 7-18: Continued.

The program in Figure 7-18 shows the use of the repeat statement to convert a
decimal number into another specified base.

This program uses the repeat statement because of the possibility of specifying the
number to be converted as 0. This would not have worked with while statement
since the condition would have had to be specified as iNumber != 0 and the
loop would not have executed even once. Note that the program uses a space-saving
technique of placing more than one statement of code on the same line.

The basic approach to converting a decimal number to another base is to first take
the modulus of the number by the new base and store this value in an array. The
program then sets a new value for the number to be converted by dividing it by the
base. Since it is unknown how large an array is required to store the digits for the
converted number, the program resizes the iConverted array each time it enters
the loop. This prevents having to guess an arbitrary initial size for the array. The
program continues this process until the value of the number to be converted is
reduced to zero.

P A R T I I I N S T A L L S C R I P T

376

Jump Statements
As defined for InstallScript, jump statements move program execution from one part
of the program to another or they terminate the installation program in some way.
This section first discusses the statement that allows you to move execution from one
point in the code to another.

goto

Though the goto statement does not have a good reputation in the programming
world, it serves several important purposes in InstallScript. The format of this
statement is as follows:

goto Label;

Label:

Label is a valid identifier that is terminated with a colon (:). When the goto
statement is executed, program execution jumps to the first valid statement following
Label and continues from that point. Label can be placed after or before the
goto statement. When placing Label before the goto statement, you need to be
careful not to create an infinite loop. As mentioned earlier, a goto statement is the
only way to break out of a loop prior to the loop’s normal termination. Another more
important use of the goto statement is to enable the implementation of a user
interface wizard in a Standard project. The subject of creating a user interface is
covered in Chapter 12

One final thing with regard to the goto statement and that is you cannot place a
label immediately prior to the end statement of a function or the endprogram
statement in an explicit program block. The way to bypass this restriction is to place
an empty statement just after the label. An empty statement consists of a single semi-
colon (;) without any other code.

return

The return statement terminates a function’s execution and optionally returns a
value from the function. The general format of the return function is as follows:

C H A P T E R 7 E X P R E S S I O N S A N D S T A T E M E N T S

377

return [(] value [)];

You can return a value of any of the supported data types in InstallScript. You can
also terminate a function’s execution by using the return statement without
specifying a return value if the function has been declared as having a VOID return
type. Functions are discussed in Chapter 8.

exit and abort

Both the exit and abort statements are used to terminate an installation. The
difference is that the exit statement is used to terminate an installation under
normal circumstances. This usually means that the installation has been completed
successfully. The abort statement is used for an abnormal termination, such as
when the end user cancels the installation while it is running or there is an installation
error that prevents the installation from completing successfully.

Conclusion
This chapter has covered some of the main building blocks for creating InstallScript
programs. Expressions, if terminated with a semi-colon, are also statements and these
are expression statements. As in most programming languages there are many
different types of expressions. These expression types include arithmetic expressions,
logical and relational expressions, bitwise expressions, and string expressions.

There are also three different types of statement constructs in InstallScript. These are
statements that allow you to make decisions and then select a specific operation to
execute, statements that allow you to loop through a set of statements some number
of times, and statements that allow you to either jump to different parts of the
program or to jump out of the program altogether.

Functions

When you write real-world applications, all the code that you write is contained in
functions. Functions are the building blocks of installation programs. The function
provides the mechanism for producing programs that are easy to write, read,
understand, debug, maintain, and modify.

Using functions allows you to decompose a complex problem into small manageable,
understandable pieces. InstallScript uses four different categories of functions: built-in
functions, event handler functions, user-defined functions, and dynamic link library
functions. Each of these categories of functions is different and requires different
programming approaches.

Our discussion of functions begins with some basic concepts that are applicable to all
functions.

Chapter

8

P A R T I I I N S T A L L S C R I P T

380

Function Basics
Any function in InstallScript can call any other function. When a function is called, it
is being invoked. When a function invokes a function, it normally passes information
to the invoked function and the invoked function returns information to the invoking
function. It is possible, however, to have an invoked function that does not require
any information to be passed to it and might not need to return information to the
invoking function. All combinations of information in both directions are possible.

When a function passes information to another function, it passes arguments to the
receiving function. The function that is invoked receives the information in its formal
parameters. InstallScript needs to know the name of any function that is going to be
called in a script and it also needs to know the data types of the arguments that will be
passed to the function. Describing this information is called prototyping a function.
The prototype format for each of the InstallScript-supported function categories
differs depending on the function category.

When you use the built-in functions, you do not have to prototype them because the
prototyping is handled in the ifx.h header file that you include at the top of your
script. This header file is included by default when you create a project. Note that the
standard approach to prototyping your own functions or those that are used from
dynamic link libraries should be done in your own header files. You include these
header files as part of your script.

When passing arguments to a function, you can either pass the value of the argument
to the function or pass a reference to the argument value. When you pass an
argument by value, the argument is copied into the formal parameter of the invoked
function. Changes made by the function on the argument value do not affect the
value of the argument in the invoking function. When you pass an argument by
reference to a function, the address of the argument is copied into the formal
parameter of the invoked function. The value of the argument is accessed by the
invoked function using the address that was passed. In this case, any changes made by
the invoked function on this parameter are also seen in the value of the argument in
the invoking function.

By default, all arguments passed to functions are passed by value unless the prototype
is modified to force passing by reference. There are two keywords in InstallScript that
are used to indicate the method by which arguments are being passed to a function.

C H A P T E R 8 F U N C T I O N S

381

These keywords are BYVAL and BYREF. Use of the BYVAL keyword is not required
but it does make your code more understandable.

In functions, you can declare variables of any of the supported data types. When you
declare a variable in a function, this variable is a local variable. All formal parameters
defined in a function's prototype are local variables. A local variable declared inside a
function is not accessible from any code outside the function. The only variables that
can be seen by all functions are those that are declared in the declaration block that
precedes the program…endprogram block.

In InstallScript a function can call itself. Such a function is recursive. Recursion is the
process of defining something in terms of itself. The use of recursion can be difficult
to debug because it is hard to trace the flow of the code. Recursion is in many areas,
however, used to perform sophisticated sorting operations. You can use recursion in
InstallScript when you create user-defined functions.

The Built-In Functions
Built-in functions are those functions that have been defined in the InstallScript
engine. Currently, there are 288 built-in functions that you can use to create your
installation programs. You do not have to prototype the built-in functions because
that is handled by the header file ifx.h. One of the header files included by ifx.h
is the header file isrt.h which includes a number of header files that prototype the
built-in functions.

Built-In Function Prototypes and
Definitions

Chapter 4 covered the location of all the InstallScript header files, but as a reminder
these header files are in various folders under the following location:

C:\Program Files\InstallShield\Developer\Script\isrt\Include

P A R T I I I N S T A L L S C R I P T

382

As an example of how to prototype a function, examine the prototype of the
CopyFile function that is located in the Files.h header file. The prototype of
this function is as follows:

external prototype CopyFile(BYVAL STRING, BYVAL STRING);

The external keyword indicates that the definition of this function is found in a script
library. The script library that contains the implementation of this function is found in
the following location:

C:\Program Files\InstallShield\Developer\Script\isrt\lib\Isrt.obl

The prototype keyword is always required, as is the name of the function being
defined. If the function has any formal parameters, you need to declare their data
types, but you do not need to provide the names of the formal parameters. In the
above example, each of the arguments that are passed to the CopyFile function
must be of the STRING data type. The BYVAL keyword indicates that the
arguments are to be passed by value.

The names of the formal parameters are specified when the function is defined. The
definition of the CopyFile function is as follows:

// ---------- CopyFile ---------- //
function CopyFile(szSrcFile, szTargetFile)
begin
 if (!PthIsAbsPath(szSrcFile)) then
 szSrcFile = SRCDIR ^ szSrcFile;
 endif;

 if (!PthIsAbsPath(szTargetFile)) then
 szTargetFile = TARGETDIR ^ szTargetFile;
 endif;

return ISRT._FileCopy(__hContext, szSrcFile, szTargetFile,
COMP_NORMAL);

end;

The main things to note about the definition of the CopyFile function are the
function keyword and the use of the begin and end keywords. The function keyword
tells the compiler that you are defining a function. The begin and end keywords
define the beginning and the end of the code that defines the function. In this
example, the CopyFile function does not declare any local variables. If you needed
local variables, then these variables would be declared between the line of code that

C H A P T E R 8 F U N C T I O N S

383

contains the function keyword and the begin statement. Details of prototyping script
functions will be covered in the section on user-defined functions.

Because functions that are defined directly in the script are linked last, you can
override a built-in function’s definition with your own implementation as long as the
number and type of the formal parameters is the same. If you want to use the same
name as a built-in function but want to have a different number and/or types of
formal parameters, then you have to go into the header file where the built-in
function is prototyped and comment out the applicable line of code.

Built-in Function Categories
The built-in functions in InstallScript are sub-divided into 22 categories. A number of
functions appear in more than one category. This chapter does not spend much time
on built-in functions because they are fully documented in the online Language
Reference that comes with InstallShield Developer. A brief description of the built-in
function categories follows:

Batch File: The functions in this category are a holdover from the time when
modifying AUTOEXEC.BAT during an installation was a common task. These
functions come in the easy (EZ) version or the advanced version sub-categories.
The EZ version of the batch file functions assumes that it is the
AUTOEXEC.BAT that is being modified and these functions open the file,
make the requested change, and then close the file. The advanced functions are
much more powerful and can be used to specify a batch file other than
AUTOEXEC.BAT, if that is necessary. However, with the advanced functions,
you have to specifically open and close files as separate operations.

Built-in Dialog Box: The15 functions in this category display simple dialogs.
These dialogs include message boxes, a welcome dialog, or dialogs that perform
standard operations during an installation. These particular dialogs are now
created using InstallScript, but used to be coded into the InstallScript engine.

Configuration File: The functions in this category are similar to the Batch File
functions. Here the default configuration file is CONFIG.SYS. There are two
sub-categories: the easy (EZ) versions of the functions and the advanced
functions. The advanced functions provide more robust capability.

P A R T I I I N S T A L L S C R I P T

384

Custom Dialog Box: The 29 functions in this category allow you to create
custom dialogs using InstallScript. Chapter 12 covers user interface creation.

Extensibility: The functions in this category allow you to extend the
functionality of InstallScript by calling functions defined in dynamic link libraries.
These functions also allow you to launch other processes.

Feature: The 27 functions in this category deal with the movement of files
during the installation. These functions are only used in Standard projects. These
functions permit the creation of a "script-created feature set" as well as those
features that are part of the distribution media. Script-created features are those
that are created at run time, rather than at build time. It is not possible to control
the order in which features are installed using these functions. The Windows
Installer controls this functionality.

File and Folder: These 27 functions deal with the creation, modification, and
deletion of files and folders. You can also search for files and folders and
compare one file with another.

Information: The functions in this category help you to query the target system
to access the values of the target system parameters including the available hard
drive space and the type of processor.

Initialization: These functions pertain to creating and modifying initialization
files, as well as accessing information that is contained in these files. An
initialization file does not have to have an .ini extension. It simply needs to have
the structure of an initialization file, which is made up of sections and keyword-
value pairs.

List: One of the data types that is discussed in Chapter 6 was the LIST data type.
The functions in this category are used to create and work with variables of the
LIST data type.

Long File Name: The functions in this category are used to convert between
short file and long file name formats. If a function cannot handle long file names,
you could use one of these functions to convert the long file name to a short file
name.

C H A P T E R 8 F U N C T I O N S

385

Miscellaneous: This is a catchall category for functions that do not fit anywhere
else.

Object: This pair of functions is used to work with the COM functionality in
InstallScript. These functions create a COM object or validate a COM object that
has been created.

Path Buffer: These functions provide an easy way to work with strings that
represent an absolute path location or a semi-colon-delimited list of absolute path
locations. They handle the intricacies of manipulating a path.

Registry: One of the most important changes an installation program makes to
the target system is the creation of registry entries. These 21 functions provide the
capability to add, modify, and remove entries in the registry.

Sd Dialog Box: There are 43 functions in this category. Of these, 38 provide
dialog boxes for use in a user interface for a Standard project. The other five
functions deal with the creation of InstallScript-based dialog boxes of your own
design. These dialogs are not used in a Basic MSI project.

Shared and Locked Files: This group of functions is used to handle files that
are shared between applications. Some of these functions are used to handle files
that might be in use when your application is installed.

Shell: The functions in this category are used to integrate an application with the
operating system. This includes the creation of shortcuts and folders in which
shortcuts are to be created.

String: This group of functions is used to manipulate strings. You can search
strings for sub-strings, get the length of a string, and change the case of the letters
in a string. There are also special functions to deal with strings that are used to
define a path.

Uninstallation: This group of functions is used to implement those actions that
are required for a maintenance operation. Most of these functions will be used
only when creating a Standard project.

P A R T I I I N S T A L L S C R I P T

386

User Interface: This group of functions is used to modify the user interface that
is run during an installation. This ranges from setting the color of user interface
elements to customizing the text shown in error messages.

Version Checking: The functions in this category work with files to find their
versions. They also overwrite files based on the version of the two files.

The function categories are based on the task to be performed. These same categories
are used in the online Language Reference, as well as in the Function Wizard. The
Function Wizard, which is discussed in the next section, is used to correctly insert a
built-in function into a script.

The Function Wizard
InstallShield Developer has a tool that provides ready access to all the built-in
functions.

Figure 8-1: The first panel in the Function Wizard.

C H A P T E R 8 F U N C T I O N S

387

This tool is the Function Wizard and it allows you to insert a built-in function into
your script with all of the proper arguments specified. The Function Wizard provides
a description of the purpose of a function and a description of each of the function’s
arguments. In the wizard, the functions are divided into the same categories that were
discussed in the last section. With your cursor in the Script Editor where you want to
insert the function call, launch the Function Wizard from the InstallScript drop-down
menu. From this menu, select the Insert sub-menu and then the InstallScript
Function option. This option launches the Function Wizard (Figure 8-1).

The first panel displays two list boxes, one providing a list of the function categories
and one providing a list of the functions in the selected category. Figure 8-1 shows
that the File and folder category has been selected and the CopyFile function
within that category will be inserted into the script. Below the list boxes is the
prototype of the selected function and a short description of the function’s purpose.

Click Next to move to the second panel (Figure 8-2).

Figure 8-2: The second panel in the Function Wizard.

P A R T I I I N S T A L L S C R I P T

388

The second panel provides the capability to edit the names of the arguments that are
to be passed to the selected function. By default, the fields contain the function’s
formal parameter names. When you put the cursor in one of the edit fields, a
description of the argument appears in the panel. After you have defined the
function’s arguments, click Finish to insert the function call into your script (Figure 8-
3). Using the Function Wizard saves time and minimizes mistakes.

Figure 8-3: The insertion of the CopyFile function into the script using the Function Wizard.

Event Handler Functions
The event-drives model was described in Chapter 4. Event handler functions are
functions that respond to events that are called from normal program flow logic,
generated by Windows Installer engine messages, or generated by some action of the
end user. It is important to understand the event-driven model so you will know

C H A P T E R 8 F U N C T I O N S

389

where you should place your code. All code that runs is either entered into one of the
event handlers or called as a function from one of the event handlers. It is possible to
bypass the event-driven model and create your own program block, but then you
would have to do all of the work.

InstallScript divides the event handler functions into five major categories. These
categories are described in the following list:

Before Move Data: The event handlers in this category implement actions that
are preliminary to making changes to the target system. Changes to the system
can mean performing a fresh install or a maintenance install. These actions
include running a user interface to collect information, querying the target system
for the required environment, and initializing required parameters.

Move Data: After the end user has completed running the installation’s user
interface, there are a number of event handlers that are called to perform
operations before, after, and during the transfer of information to the target
computer and/or the removal of data from the machine. By default none of
these event handlers perform any operations. You need to add code to these
event handlers if you need any operations carried out during a fresh install or a
maintenance install.

Feature: The feature event handlers are a special type of the Move Data
category. For each feature, you can specify special operations that you want to
take place when that feature is being installed or uninstalled. These operations can
be defined to take place before and/or after the feature is installed or uninstalled.
When you define a feature event handler, the prototype of this function and an
empty definition are provided in a separate .rul file called
featureevents.rul and this file is included at the end of Setup.rul using
the #include preprocessor directive.

After Move Data: The purpose of these event handlers is to provide the
capability to have a user interface after the installation has finished making
changes to the system. By default, an ending dialog informs the user that the
installation has been completed. You could add a further user interface that
would prompt the user to register the product. One of the event handlers in this
category is to allow you to perform a clean up on anything that was added to the
system for the purposes of performing the installation.

P A R T I I I N S T A L L S C R I P T

390

Miscellaneous: There are quite a few event handlers in this category that are for
the purpose of handling errors and other situations that are out of the ordinary.
The event handlers that are used for other types of installations other than the
fresh install and the maintenance install are included in this category.

The important thing to remember about the event handler functions is that you do
not have to prototype them. They are prototyped in the header file ifx.h. When
you create a new Standard project using the Project Wizard, the
OnFirstUIBefore and OnMaintUIBefore event handlers are inserted in
Setup.rul. When you create a Standard project directly in the IDE, the
OnFirstUIBefore and the OnFirstUIAfter event handlers are inserted in
Setup.rul.

When you want to add the default script code for another event handler, first select
the category of event handler. Do this at the top of the Script Editor where there are
two drop-down combo boxes. The combo box on the left provides a list of the event
handler categories, as well as a tree of the features defined in the project (Figure 8-4).

Figure 8-4: The event handler category selection menu for the Developer Art project.

When you select the event handler category from the menu, select the event handler
that you want to add to your script from the drop-down combo box on the right
(Figure 8-5).

In the combo box showing the applicable event handler functions for a certain
category, the function names that appear in bold text have already been added to the
script. Figure 8-5 shows that only the OnFirstUIBefore event handler function has
been added to the script. The list of event handler functions is really a list of the type

C H A P T E R 8 F U N C T I O N S

391

of operations that can be implemented more than it is a true list of the event handler
function names.

Figure 8-5: The event handler function selection menu for the Developer Art project.

When you select an event function to add to your script, the Script Editor inserts the
default implementation of the function. The default implementation of all the event
handler function is defined in the file Events.rul located in the following folder:

C:\Program Files\InstallShield\Developer\Support\0409

The Script Editor copies the default implementation from the Events.rul file to
the script. Table 8-1 shows which event handler functions are associated with which
categories. All the event handler functions are applicable to Standard setup projects.
Only the OnBegin and OnEnd event handlers are supported in a Basic MSI
project.

Table 8-1: Event Handler Categories and Functions

Category Function Description

Before Move Data OnBegin This event handler is the first one
called. The default
implementation is a no-op.
OnBegin and OnEnd are the
only two event handlers that are
also supported for a Basic MSI
installation.

P A R T I I I N S T A L L S C R I P T

392

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

Before Move Data OnCCPSearch This event handler verifies that,
in a competitive upgrade
scenario, the end user meets
the criteria for the upgrade. The
default implementation is a no-
op.

 OnAppSearch This event handler searches for
required applications on the
target system. It can also be
used for searching for previous
versions of the application
being installed. The default
implementation is a no-op.

 OnFirstUIBefore This event handler is used to
define the user interface to be
displayed during a fresh install
of the application.

 OnMaintUIBefore This event handler is used to
define the user interface to be
displayed during a maintenance
install of the application.

Move Data OnGeneratingMSIScript This event handler provides a
chance to implement
operations prior to the creation
of the execution script. This
event handler is executed by an
immediate custom action
located in the execute sequence
table. The default
implementation is a no-op.

C H A P T E R 8 F U N C T I O N S

393

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

Move Data OnMoving This event handler performs
operations prior to making any
other changes to the target
system. This event handler is
executed by a deferred custom
action. The default
implementation is a no-op.

 OnInstallFilesActionBefore This event handler performs
operations prior to copying
files to the target system. This
event handler is executed by a
deferred custom action. The
default implementation is a no-
op.

 OnInstallFilesActionAfter This event handler performs
operations right after the
copying of files to the target
system. This event handler is
executed by a deferred custom
action. The default
implementation is a no-op.

 OnMoved This event handler performs
operations after making
changes to the target system.
This event handler is executed
by a deferred custom action.
The default implementation is a
no-op.

P A R T I I I N S T A L L S C R I P T

394

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

Move Data OnGeneratedMSIScript This event handler provides a
chance to implement
operations prior to the running
of the execution script. This
event handler is executed by an
immediate custom action
located in the execute sequence
table. The default
implementation is a no-op.

Features FeatureName_Installing This event handler performs
operations prior to installing a
feature with the name
FeatureName. This event
handler is executed by a
deferred custom action. The
default implementation is a no-
op. The actual functionality is
to run all these functions at the
same time prior to the
installation of features. The
Windows Installer controls the
order of feature installation.

 FeatureName_Installed This event handler performs
operations after installing a
feature with the name
FeatureName. This event
handler is executed by a
deferred custom action. The
default implementation is a no-
op. the operation here is the
same as described above.

C H A P T E R 8 F U N C T I O N S

395

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

Features FeatureName_UnInstalling This event handler performs
operations prior to uninstalling
a feature with the name
FeatureName. This event
handler is executed by a
deferred custom action. The
default implementation is a no-
op.

 FeatureName_UnInstalled This event handler performs
operations after uninstalling a
feature with the name
FeatureName. This event
handler is executed by a
deferred custom action. The
default implementation is a no-
op.

After Move Data OnFirstUIAfter This event handler displays a
user interface after the
completion of a fresh install. It
needs to be recognized that
once you have entered this
function it is not possible to
rollback an installation because
the service process has finished
its actions and the rollback
script has been deleted.

 OnMaintUIAfter This event handler displays a
user interface after the
completion of a maintenance
operation. Rollback here is also
impossible.

P A R T I I I N S T A L L S C R I P T

396

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

After Move Data OnEnd This is the last event handler
that is called if the installation
was not aborted. The OnEnd
and the OnBegin event
handlers are the only two
events that are supported for
both Standard and Basic MSI
installations. The default
implementation is a no-op.

Miscellaneous OnAbort This event handler performs
operations in the case where
the installation has been
aborted. The default
implementation is a no-op.

 OnCanceling This event handler performs
operations when the end user
has canceled the installation.
This event handler asks for
confirmation and then calls the
abort statement.

 OnComponentError This event is called when an
error occurs in launching the
Windows Installer to run the
actions in the execute sequence
table.

 OnException This event handler is called
when an exception is raised
inside a procedure-based script
that includes an explicit
program/ endprogram block.

C H A P T E R 8 F U N C T I O N S

397

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

Miscellaneous OnHelp This event handler is used to
respond to the user pressing
the F1 key or the calling of the
Do(HELP) function. The
default implementation is a no-
op.

 OnUninstall This event handler is triggered
when the Enable Maintenance
property in General
Information has been set to
No. This happens when a user
tries to run setup.exe again
after a fresh install has already
been performed or the
Add/Remove programs applet
is used to uninstall the
application. This is similar to
the approach used for
uninstalling legacy applications
when maintenance was not an
option.

 OnPatchUIBefore This event handler displays the
user interface at the beginning
of a patch install for a locally
installed application.

 OnPatchUIAfter This event handler displays the
user interface at the
completion of a patch install
for a locally installed
application.

P A R T I I I N S T A L L S C R I P T

398

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

Miscellaneous OnAdminPatchUIBefore This event handler displays the
user interface at the beginning
of a patch install for an
administrative install of an
application. This user interface
by default consists of just a
Welcome dialog.

 OnAdminPatchUIAfter This event handler displays the
user interface at the
completion of a patch install
for an administrative install of
an application.

 OnAdminInstallUIBefore This event handler displays the
user interface at the beginning
of an administrative install.

 OnAdminInstallUIAfter This event handler displays the
user interface at the
completion of an
administrative install.

 OnAdvertisementBefore This event handler is used to
perform required operations
prior to the running of an
advertised install. The default
implementation is a no-op.

 OnAdvertisementAfter This event handler is used to
perform required operations
after the completion of an
advertised install. The default
implementation is a no-op.

C H A P T E R 8 F U N C T I O N S

399

Table 8-1: Event Handler Categories and Functions (Continued)

Category Function Description

Miscellaneous OnMsiSilentInstall This event handler is triggered
when the end user tries to
launch a silent install directly
using the Windows Installer
engine and not setup.exe.

 OnError This event handler is triggered
when the Windows Installer
sends an error message to the
external user interface.

 OnWarning This event handler is triggered
when the Windows Installer
sends a warning message to the
external user interface.

 OnFilesInUse This event handler is triggered
when the Windows Installer
sends a message to the external
user interface about the install
trying to overwrite a file in use.

 OnOutOfDiskSpace This event handler is triggered
when the Windows Installer
sends a message to the external
user interface about there not
being enough disk space.

The information shown in Table 8-1 is only a brief summary of some of what was
discussed in Chapter 4. Chapter 4 provides details about how InstallShield Developer
implements both Standard and Basic MSI projects.

P A R T I I I N S T A L L S C R I P T

400

User-Defined Functions
There are two types of user-defined functions that you can create. This applies to
both Standard and Basic MSI projects. One type of user-defined function allows the
function to be called by the Windows Installer engine. These types of functions are
used as the targets of custom actions and they have a very strict prototype format that
must be followed. This strict prototyping format makes these particular functions
available as entry points in to the script. As discussed in Chapter 3, a custom action is
the mechanism that can be used to extend the functionality of the Windows Installer.
For a Standard project, you can use script-based custom actions only in the Execute
sequence table. The other type of user-defined function is used to provide
functionality that is called from event handler functions or called by the custom
actions that you create. These types of user-defined functions do not have the
restrictions discussed for the entry point functions. As in previous chapters, the use of
square brackets when discussing prototypes denotes that the enclosed keyword is
optional.

Entry Point User-Defined Functions
The prototype of an entry point functions is as follows:

export prototype function-name(NUMBER);

This prototype uses the export keyword, which identifies this function as one that will
be called from outside the running script. The prototype keyword is also required but
the name of the function is up to you. This type of function can be passed only one
argument, which has to be of the NUMBER data type. The argument that gets
passed is the handle to the running installation session. No return type is shown
because this type of function needs to return a value of type NUMBER, which is the
default return type for an InstallScript function. The definition of this type of
function is as follows:

function function-name(hMSI)
// Place declaration of local variables here.
begin
// Place implementation code here.
end;

C H A P T E R 8 F U N C T I O N S

401

This example uses the function keyword to identify this block of code as a
function. The function name used here has to be the same as used in the prototype
statement. Here, in place of the data type of the formal parameter, the above example
specifies the name of the formal parameter. In this case hMSI is used to indicate that
the function is passing a handle to the install session.

You will create script custom actions in Chapter 11 where you will set up an
environment for working with custom actions. Our present environment for learning
InstallScript is not a good one for working with custom actions.

Generic User-Defined Functions
The format for prototyping a generic user-defined function is as follows:

[external] prototype [return-type]
 function-name([parameter-data-type-list], […])

The external keyword is used to identify a function that is defined in a script
library. Once again the prototype keyword is required and the return type for the
function follows this keyword. The return type can be any of the InstallScript data
types plus the designation of no return type if you use the VOID keyword. If you do
not specify a return type, the default return type is of the NUMBER data type. The
name of the function can be anything as long as it follows the rules for creating
variable names. A generic user-defined function can have any number of formal
parameters and it can specify that the number of arguments to be passed to it is
undetermined at compile time. Using an ellipsis specifies that the number of
arguments to be passed will be determined at run time. The designation that some of
the arguments to be passed to a function will be determined at run time needs to be
the last specification of formal parameters.

The definition of a generic user-defined function takes the following format:

function [return-type] function-name([parameter-name-list])
// Place declaration of local variables here.
begin
// Place implementation code here.
end;

P A R T I I I N S T A L L S C R I P T

402

When you prototype a function as having an unknown number of arguments the
name of the formal parameter in the function declaration has to be the name of an
array. You access the values being passed inside the function by getting the values
contained in the array. When you pass arguments to a function, make sure that the
data type of the argument passed agrees with the data type specified in the function’s
prototype.

Basic Example

The best approach to understanding the creation and use of generic user-defined
functions is to look at some examples. The first example in Figure 8-6 shows the use
of the ellipsis to send an unknown number of arguments to a function and have this
function add them and return the result, as part of a string, back to the calling
function.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// a generic user-defined function for adding
// an array of numbers and returning a string
// describing the result of the calculation.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

// Prototype a function that will take an unknown
// number of arguments and return a string.
prototype STRING SumNumbers(...);

program

 // Display the result from the call to the SumNumbers function.
 SprintfBox (MB_OK | MB_ICONINFORMATION , CAPTION , "%s",
 SumNumbers(1,2,3,4,5,6,7,8,9,10));

endprogram

Figure 8-6: User-defined function that sums an unknown number of values and returns a string.

C H A P T E R 8 F U N C T I O N S

403

///
// Function: SumNumbers
//
// Purpose: This function sums the numbers that are sent to it
// and returns a string describing the result of the
// calculation.
///
function STRING SumNumbers(iNums)
INT i, iSize, iSum;
STRING szReturn;
begin

 // Get the number of arguments passed.
 iSize = SizeOf(iNums);

 // Initialize iSum to 0.
 iSum = 0;

 // Loop through the array to add up the numbers.
 for i=0 to iSize-1
 iSum = iSum + iNums(i);
 endfor;

 // Create the string to be returned by the function.
 Sprintf(szReturn, "The sum of the numbers is %d", iSum);

 return (szReturn);
end;

Figure 8-6: Continued.

The program in Figure 8-6 demonstrates the use of the ellipsis and it also shows that
a user-defined function can return a string value. Since the number of values passed
to the SumNumbers function is known only at run time, the program has to
determine the size of the array holding these values before it can loop through the
values and add them. In the SumNumbers function, note the use of the Sprintf
built-in function to create the return value for the function. Also note that the
SumNumbers function is called directly in the call to the SprintfBox function.
The program does not have to create a string variable to receive the return from the
function and then pass the variable to the SprintfBox function.

P A R T I I I N S T A L L S C R I P T

404

Using Recursion

Recursion is sometimes useful in creating a user-defined function. The typical
example used by most programming texts to demonstrate recursion is the calculation
of the factorial of an integer. This is demonstrated in Figure 8-7.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the use of
// a generic user-defined function for using
// recursion to calculate the factorial of a number.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

// Function to calculate the factorial of an integer.
prototype factorial(INT);

INT iValue, iNum;

program

 // Set the number for which the factorial is calculated.
 iNum = 10;

 // Call the function to calculate the factorial.
 iValue = factorial(iNum);

 // Display the result of the factorial.
 SprintfBox (MB_OK | MB_ICONINFORMATION, CAPTION,
 "The factorial of %d is %d", iNum, iValue);

endprogram

Figure 8-7: Using recursion to calculate the factorial of a number.

C H A P T E R 8 F U N C T I O N S

405

///
// Function: factorial
//
// Purpose: This function calculates the factorial
// of a number using recursion.
///
function factorial(iNumber)
INT iResult;
begin

 // Check for the trigger to stop the recursive calls.
 if(iNumber = 1) then
 return 1;
 endif;

 // Recursively call factorial until iNumber-1 = 1
 iResult = iNumber * factorial(iNumber-1);

 return (iResult);

end;

Figure 8-7: Continued.

Using recursion is not recommended unless it is the only way to implement a certain
algorithm. The important thing to remember in implementing a recursive function is
to have a statement where the recursive call is prevented. If you do not have such a
statement, recursion will run until there is a stack overflow. Recursion places a new
copy of the local variables on the stack for each call to the function. When recursion
stops, the program starts to pop these values off of the stack until it returns back to
the first recursive call and then the function returns the value to the original caller. In
the program in Figure 8-7, the statement that stops the recursion is the if statement
that checks for when iNumber = 1.

Passing Arguments by Reference

The first example showed the return of a string value from a function through the
return statement. Since a function can only return one value using the return
statement, this presents a problem if you want to return more than one value. The
solution is to pass one or more arguments by reference. This gives you the ability to
return more than one value from a function. These values do not have to be the same
data type. The example shown in Figure 8-8 shows how to return a value through an

P A R T I I I N S T A L L S C R I P T

406

argument that is passed by reference. This is a function-based implementation of the
program given in Figure 6-13 that reverses the characters in a string.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This demonstrates the use of
// a generic user-defined function and the passing
// of an argument by reference.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

// Function to reverse the characters in a string.
prototype ReverseChars(BYVAL STRING, BYREF STRING);

STRING szOrigStr, svRevStr;

program

 // Set the string to be reversed.
 szOrigStr = "These are the times that try men's souls.";

 // Call the function to reverse the string characters.
 ReverseChars(szOrigStr, svRevStr);

 // Print the result of the ReverseChars function.
 SprintfBox (MB_OK | MB_ICONINFORMATION , CAPTION ,
 "Original string: %s\n\nReversed string: %s",
 szOrigStr, svRevStr);

endprogram

///
// Function: ReverseChars
//
// Purpose: This function reverses the characters in a string.
///
function ReverseChars(szOriginal, svReversed)
INT i, j, iLen;
begin

Figure 8-8: Returning values from a function through an argument passed by reference.

C H A P T E R 8 F U N C T I O N S

407

 // Get the length of the string to be reversed.
 iLen = StrLength(szOriginal);

 i = 0; // Set i to point to first string
 j = iLen - 1; // Set j to point at last character

 // Work from both ends of the string to
 // swap the characters without using a
 // temporary variable to perform the swap.
 while(i < j)
 szOriginal[i] = szOriginal[i] ^ szOriginal[j];
 szOriginal[j] = szOriginal[j] ^ szOriginal[i];
 szOriginal[i] = szOriginal[i] ^ szOriginal[j];

 i++; // Increment i index
 j--; // Decrement j index
 endwhile;

 svReversed = szOriginal;

end;

Figure 8-8: Continued.

The key to returning a value through an argument is in the prototype of the function
and the use of the BYREF keyword. This indicates that you are passing a pointer to
the argument so that when the program works on what this pointer points at, it
changes the value of the argument in the calling function. Note the name of the
variable that returns the result of the function’s operation uses the notation sv
instead of sz. This type of notation appears in the online Language Reference
whenever the argument to a built-in function returns a value. This book uses this
notation for consistency.

The ReverseChars function performs the operation on the szOriginal
formal parameter and, when the operation is finished, sets the svReversed formal
parameter equal to szOriginal. The program block displays the value of both
the arguments that were passed to the ReverseChars function. As shown in this
display, reversing the characters of the szOrigStr argument in the function does
not affect the value of this variable in the program block.

P A R T I I I N S T A L L S C R I P T

408

Creating a Script Library

In this section, you will learn to create a script library containing a few functions. You
will then use these functions in an example program.

WRITING AND TESTING THE CODE

First, you need to create a new script file called Sort.rul.

1. Navigate to the InstallScript view.

2. Right-click on the Files node and select the New Script File. This creates
a new script file with a default name.

3. Rename the file to Sort.rul.

Figure 8-9: The initial test setup for creating a script library of sorting routines.

C H A P T E R 8 F U N C T I O N S

409

At the bottom of Setup.rul, use the #include preprocessor directive to include
Sort.rul. This is to test your functions before you create the script library. In the
InstallScript view, your initial setup for this activity should look like what is shown in
Figure 8-9.

Note in this figure that Sort.rul is included at the bottom of Setup.rul. Also note that,
at this time, there are no functions listed in the functions list to the left of the Script
Editor. You will create all of your sorting functions in Sort.rul and then call them in
the program block to verify that they work correctly before creating the script
library. You will create four sorting routines, one that uses the selection sort
algorithm, one that uses the shellsort algorithm, one that uses the quicksort algorithm,
and one that uses quicksort for sorting a list.

Next, look at is the program block that you will first use to test the sorting
functions (Figure 8-10). This will also be used to test the functions from the script
library. Most of the code shown in Figure 8-10 is devoted to the creation of arrays
and lists to use for testing, and several functions for displaying the contents of an
array or a list. There are, however, a few interesting points that need to be made about
this code. The first is the prototype statements used for the sorting functions that will
be compiled into a script library. When you use the sorting functions from the script
library, you will add the external keyword to the prototype statement and place
them into a header file, which you will name Sort.h.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script tests the functions to be
// built into a script library of sorting functions.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
// Prototypes of private functions.
prototype STRING CreateArrayDisplay(BYVAL VARIANT);
prototype STRING CreateListDisplay(BYVAL LIST);

Figure 8-10: The program block used to test the sorting functions.

P A R T I I I N S T A L L S C R I P T

410

// Keep the external keyword commented out until using the
// the functions from the script library. When the library
// is used then these prototypes will be placed in a
// header file called sort.h and then included here.
/*external*/ prototype VOID SelectionSort(BYREF VARIANT);
/*external*/ prototype VOID ShellSort(BYREF VARIANT);
/*external*/ prototype VOID QuickSort(BYREF VARIANT, BYVAL INT,
 BYVAL INT);
/*external*/ prototype VOID ListQSort(BYVAL LIST);

INT i, iVal, iSizeInt, iSizeStr, iArray(20), iValue;
STRING strArray(10), strValue;
LIST iList, strList;

program

 iSizeInt = SizeOf(iArray);
 iSizeStr = SizeOf(strArray);

 // Create lists for testing the list sorting function.
 iList = ListCreate(NUMBERLIST);
 strList = ListCreate(STRINGLIST);

 // Create an integer array to be sorted.
 iVal = -1;
 for i=0 to iSizeInt-1
 iArray(i) = i * i * iVal;
 iVal = iVal * -1;
 endfor;

 // Create a number list that has the same
 // values as the integer array.
 for i=0 to iSizeInt-1
 iValue = iArray(i);
 ListAddItem(iList, iValue, AFTER);
 endfor;

 // Display original integer array values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Original Integer Array\n\n%s",
 CreateArrayDisplay(iArray));

 //SelectionSort(iArray);
 //ShellSort(iArray);
 //QuickSort(iArray, 0, iSizeInt-1);

Figure 8-10: Continued.

C H A P T E R 8 F U N C T I O N S

411

 // Display sorted integer array values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Sorted Integer Array\n\n%s",
 CreateArrayDisplay(iArray));

 // Create a string array to be sorted.
 strArray(0) = "Feature"; strArray(1) = "Component";
 strArray(2) = "Icon"; strArray(3) = "Shortcut";
 strArray(4) = "Registry"; strArray(5) = "Class";
 strArray(6) = "TypeLib"; strArray(7) = "File";
 strArray(8) = "AppId"; strArray(9) = "TextStyle";

 // Create a string list that has the same
 // values as the string array.
 for i=0 to iSizeStr-1
 strValue = strArray(i);
 ListAddString(strList, strValue, AFTER);
 endfor;

 // Display original array values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Original String Array\n\n%s",
 CreateArrayDisplay(strArray));

 //SelectionSort(strArray);
 //ShellSort(strArray);
 //QuickSort(strArray, 0, iSizeStr-1);

 // Display sorted string array values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Sorted String Array\n\n%s",
 CreateArrayDisplay(strArray));

 // Display original number list values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Original Number List\n\n%s",
 CreateListDisplay(iList));

 ListQSort(iList);
 // Display sorted number list values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Sorted Number List\n\n%s",
 CreateListDisplay(iList));

 // Display original string list values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Original String List\n\n%s",
 CreateListDisplay(strList));

Figure 8-10: Continued.

P A R T I I I N S T A L L S C R I P T

412

 ListQSort(strList);

 // Display sorted string list values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Sorted String List\n\n%s",
 CreateListDisplay(strList));

endprogram

///
// Function: CreateArrayDisplay
//
// Purpose: This function creates a display string
// for the values in an array.
///
function STRING CreateArrayDisplay(Array)
INT i, iSize;
STRING szDisplay;
begin

 iSize = SizeOf(Array);

 for i=0 to iSize-1
 szDisplay = szDisplay + Array(i) + ", ";
 endfor;

 return (szDisplay);
end;

///
// Function: CreateListDisplay
//
// Purpose: This function creates a display string
// for the values in a list.
///
function STRING CreateListDisplay(List)
INT i, iSize, iType, iValue;
STRING szDisplay, strValue;
VARIANT Value;
begin

 iSize = ListCount(List);
 iType = ListGetType(List);

 ListSetIndex(List, LISTFIRST);

Figure 8-10: Continued.

C H A P T E R 8 F U N C T I O N S

413

 if(iType = NUMBERLIST) then
 for i=0 to iSize-1
 ListCurrentItem(List, iValue);
 Value = iValue;
 szDisplay = szDisplay + Value + ", ";
 ListSetIndex(List, LISTNEXT);
 endfor;
 else
 for i=0 to iSize-1
 ListCurrentString(List, strValue);
 Value = strValue;
 szDisplay = szDisplay + Value + ", ";
 ListSetIndex(List, LISTNEXT);
 endfor;
 endif;

 return (szDisplay);
end;

#include "Sort.rul"

Figure 8-10: Continued.

The second item of interest is the creation of several lists, one a number list and one a
string list. The code uses some of the built-in functions that you need to use when
manipulating a variable of the LIST data type. When you pass an array to one of the
sorting functions, you need to pass it using the BYREF keyword. When you pass the
list to the sorting function, you need to pass it using only the BYVAL keyword. This
is because the list data type is a pointer to a linked list and the sorting function makes
changes to list elements and not to the pointer itself. The most important item with
regard to lists is that an array is much easier to manipulate than a list and an array
should be used instead of a list whenever possible.

The code for the sorting functions is shown in Figure 8-11. This is the code that you
will compile, after a few changes, into a script library named Sort.obl. There are some
important points to discuss regarding the code shown in Figure 8-11. The first thing
to note is that the file ifx.h is included, but is commented out while you are in the
testing mode. You will need to uncomment this #include statement when you
build the script library. There are also prototype statements that are commented out
while in testing mode. These prototype statements are the ones that are directly
before the definition of the sorting functions. These prototype statements use the
export keyword, which is necessary to make these functions available to other
programs when they have been compiled into a script library.

P A R T I I I N S T A L L S C R I P T

414

///
//
// File Name: Sort.rul
//
// Description: Code for the sorting script library
//
// Comments: This script demonstrates the creation
// of a script library of sorting functions.
//
///

// Keep this #include preprocessor statement commented out
// while testing the functions, then uncomment it when
// building the library file.
//#include "ifx.h"

// Prototypes of private functions.
prototype VARIANT GetMinArrayValue(BYVAL VARIANT);
prototype VOID Swap(BYREF VARIANT, BYVAL INT, BYVAL INT);
prototype VOID SetSentinel(BYVAL VARIANT, BYREF VARIANT);
prototype VOID RemoveSentinel(BYVAL VARIANT, BYREF VARIANT);
prototype INT ListToArray(BYVAL LIST, BYREF VARIANT, BYVAL INT);
prototype INT ArrayToList(BYVAL VARIANT, BYVAL LIST, BYVAL INT);

// Keep this prototype commented out while testing
// and uncomment it when building the library file.
//export prototype VOID SelectionSort(BYREF VARIANT);

///
// Function: SelectionSort
//
// Purpose: This function sorts an array
// using the selection sort algorithm.
///
function VOID SelectionSort(Array)
INT i, j, min, iSize;
VARIANT Temp;
begin

 iSize = SizeOf(Array);

 // Perform the selection sort of the array.
 for i=0 to iSize-2
 min = i;
 // Find the minimum value in the remaining elements
 // that have not already been sorted.

Figure 8-11: The sorting functions that will be compiled into a script library.

C H A P T E R 8 F U N C T I O N S

415

 for j=i+1 to iSize-1
 if(Array(j) < Array(min)) then
 min = j;
 endif;
 endfor;
 // Swap first non sorted element with the minimum
 // value found in the search.
 Swap(Array, min, i);
 endfor;

end;

// Keep this prototype commented out while testing
// and uncomment it when building the library file.
//export prototype VOID ShellSort(BYREF VARIANT);

///
// Function: ShellSort
//
// Purpose: This function sorts an array
// using the shellsort algorithm.
///
function VOID ShellSort(Array)
INT i, j, k, iIndex, min, iSize;
VARIANT Temp, TempArray();
BOOL bCompare;
begin

 // Get size of array to sort.
 iSize = SizeOf(Array);

 // Create a temporary array with
 // a sentinel that has a value equal to
 // the minimum value in the array to be sorted.
 SetSentinel(Array, TempArray);

 // Calculate the starting value
 // for the k index.
 iIndex = 1;
 while(TRUE)
 iIndex = 3*iIndex+1;
 if(iIndex <= iSize)then
 k = iIndex;
 else
 goto EndLoop;
 endif;
 endwhile;

Figure 8-11: Continued.

P A R T I I I N S T A L L S C R I P T

416

EndLoop:

 // Loop through the values of k
 // starting with the highest to the lowest.
 while(k > 0)
 i = k + 1;
 while(i <= iSize)
 Temp = TempArray(i);
 j = i;
 // Set the condition for the
 // inner while loop.
 if(j > k) then
 bCompare = FALSE;
 if(TempArray(j-k) > Temp) then
 bCompare = TRUE;
 endif;
 endif;
 while(j > k && bCompare)
 TempArray(j) = TempArray(j-k);
 j = j - k;
 // Set the condition for the
 // inner while loop.
 if(j > k) then
 bCompare = FALSE;
 if(TempArray(j-k) > Temp) then
 bCompare = TRUE;
 endif;
 endif;
 endwhile;
 TempArray(j) = Temp;
 i = i + k;
 endwhile;
 k = k/3; // Redefine the value of k.
 endwhile;

 // Convert the sorted temporary array
 // back to the array to be returned
 // to the calling routine.
 RemoveSentinel(TempArray, Array);

end;

// Keep this prototype commented out while testing
// and uncomment it when building the library file.
//export prototype VOID QuickSort(BYREF VARIANT, INT, INT);

Figure 8-11: Continued.

C H A P T E R 8 F U N C T I O N S

417

///
// Function: QuickSort
//
// Purpose: This function sorts an array
// using the quicksort algorithm.
///
function VOID QuickSort(Array, iLower, iUpper)
INT i, j;
VARIANT Partition;
begin

 if(iLower >= iUpper) then
 return;
 endif;

 // Divide the array into two parts
 Partition = Array((iLower + iUpper)/2);

 i = iLower;
 j = iUpper;

 // Place lower values to the left and
 // higher values to the right.
 while(i <= j)
 while(i < iUpper && Array(i) < Partition)
 i++;
 endwhile;

 while(j > iLower && Array(j) > Partition)
 j--;
 endwhile;

 if(i <= j) then
 Swap(Array, i, j);
 i++;
 j--;
 endif;
 endwhile;

 // Sort each half of the array recursively.
 if(iLower < j) then
 QuickSort(Array, iLower, j);
 endif;

 if(i < iUpper) then
 QuickSort(Array, i, iUpper);
 endif;
end;

Figure 8-11: Continued.

P A R T I I I N S T A L L S C R I P T

418

// Keep this prototype commented out while testing
// and uncomment it when building the library file.
//export prototype VOID ListQSort(BYVAL LIST);

///
// Function: ListQSort
//
// Purpose: This function sorts a list
// using the quicksort algorithm.
///
function VOID ListQSort(List)
INT iType, iReturn, iSize;
VARIANT Array();
begin

 iSize = ListCount(List);
 iType = ListGetType(List);

 iReturn = ListToArray(List, Array, iType);

 if(iReturn < 0) then
 return;
 endif;

 QuickSort(Array, 0, iSize-1);

 iReturn = ArrayToList(Array, List, iType);

end;

///
// Function: GetMinArrayValue
//
// Purpose: This function returns the minimum
// value in an array.
///
function VARIANT GetMinArrayValue(Array)
INT i, iSize;
VARIANT min;
begin

 // Get size of array
 iSize = SizeOf(Array);

 // Initialize min value of array.
 min = Array(0);

Figure 8-11: Continued.

C H A P T E R 8 F U N C T I O N S

419

 // Find if any values in the array are
 // smaller than the initial value.
 for i=1 to iSize-1
 if(Array(i) < min) then
 min = Array(i);
 endif;
 endfor;

 return (min);
end;

///
// Function: Swap
//
// Purpose: This function swaps two values in an array.
///
function VOID Swap(Array, i, j)
VARIANT Temp;
begin

 Temp = Array(i);
 Array(i) = Array(j);
 Array(j) = Temp;
end;

///
// Function: SetSentinel
//
// Purpose: This function adds a sentinel value to an array.
///
function VOID SetSentinel(Array, TempArray)
INT iSize, i;
begin

 // Get size of array to sort.
 iSize = SizeOf(Array);

 // Create a temporary array that will
 // contain a sentinel value.
 Resize(TempArray, iSize+1);

 // Initialize the temporary array.
 for i=1 to iSize
 TempArray(i) = Array(i-1);
 endfor;

Figure 8-11: Continued.

P A R T I I I N S T A L L S C R I P T

420

 // Set the sentinel value in the temporary array
 // to be equal to the minimum value in the array
 // to be sorted.
 TempArray(0) = GetMinArrayValue(Array);

end;

///
// Function: RemoveSentinel
//
// Purpose: This function adds a sentinel value to an array.
///
function VOID RemoveSentinel(TempArray, Array)
INT iSize, i;
begin

 // Get original array size.
 iSize = SizeOf(Array);

 for i=0 to iSize-1
 Array(i) = TempArray(i+1);
 endfor;

end;

///
// Function: ListToArray
//
// Purpose: This function converts a list to an array.
///
function INT ListToArray(List, Array, iType)
INT iSize, i, iValue;
STRING strValue;
begin

 iSize = ListCount(List);
 if(iSize <= 0) then
 return -1;
 endif;

 // Set array to the same size as the list.
 Resize(Array, iSize);

 ListSetIndex(List, LISTFIRST);

Figure 8-11: Continued.

C H A P T E R 8 F U N C T I O N S

421

 if(iType = NUMBERLIST) then
 for i=0 to iSize-1
 ListCurrentItem(List, iValue);
 Array(i) = iValue;
 ListSetIndex(List, LISTNEXT);
 endfor;
 elseif(iType = STRINGLIST) then
 for i=0 to iSize-1
 ListCurrentString(List, strValue);
 Array(i) = strValue;
 ListSetIndex(List, LISTNEXT);
 endfor;
 else
 return -1;
 endif;

 return 0;

end;

///
// Function: ArrayToList
//
// Purpose: This function converts an array to a list.
///
function INT ArrayToList(Array, List, iType)
INT iSize, i, iValue;
STRING strValue;
begin

 iSize = SizeOf(Array);
 if(iSize <= 0) then
 return -1;
 endif;

 // Make the first element in the
 // list the current element.
 ListSetIndex(List, LISTFIRST);

 if(iType = NUMBERLIST) then
 for i=0 to iSize-1
 iValue = Array(i);
 ListSetCurrentItem(List, iValue);
 ListSetIndex(List, LISTNEXT);
 endfor;
 elseif(iType = STRINGLIST) then

Figure 8-11: Continued.

P A R T I I I N S T A L L S C R I P T

422

 for i=0 to iSize-1
 strValue = Array(i);
 ListSetCurrentString(List, strValue);
 ListSetIndex(List, LISTNEXT);
 endfor;
 else
 return -1;
 endif;

 return 0;

end;

Figure 8-11: Continued.

This code creates a number of private functions that are not exported when you
compile the script library. These private functions support the exported functions in
performing the sorting activity. One of these private functions is Swap, which is used
to swap two values in an array. Note that the temporary local variable is of type
VARIANT. Using a variable of type VARIANT permits the swapping of either
integer or string values. In order to send an array to a function, the formal parameter
needs to be declared as type VARIANT. Many sorting algorithms use a sentinel value
to avoid a constant check to prevent a loop statement from overrunning the bounds
of an array. In the implementation of the shell sort algorithm, the ShellSort
function uses a sentinel value. There are three private functions devoted to the
creation and removal of a sentinel value from the array to be sorted.

In the implementation of the sorting function for a list, the program cheats a bit.
Working with lists requires using the list built-in functions. To perform a swap of two
elements in a list requires a minimum of eight function calls. This does not count the
number of function calls that are required just to perform a comparison between two
elements. In the implementation provided for sorting a list using the quicksort
algorithm, this program first coverts a list into an array, performs the sort on the
array, and then converts the array back into a list. The cost to convert a list into an
array is linear with the size of the list and going in the other direction is also linear.
This is not a high price to pay in order to efficiently sort a list.

COMPILING THE SCRIPT LIBRARY

You need to create a script library from the command line. There are a number of
steps that you need to follow in order to create a sorting script library file and use it to

C H A P T E R 8 F U N C T I O N S

423

perform the sorting of arrays and lists. These steps are identified below and then
discussed in more detail.

1. Add the location of Compile.exe to the PATH environmental variable so
you can compile in any location.

2. Modify Sort.rul to be properly set up for compiling it into a script library.

3. Create a command-line file for identifying the location of the header files
required for compiling Sort.rul.

4. Compile Sort.rul from the command line to create Sort.obl, which is the
script library.

5. Create Sort.h to contain the correct exported function prototypes that
you will use in Setup.rul.

6. Copy Sort.obl and Sort.h to a permanent location where your script
libraries will be kept.

7. Define the location of the script library and header file in the Compile
Folders.ini file.

8. Modify the Setup.rul file to test the sorting functions from the script
library.

To accomplish Step 1, you need to add the following location to the path
environment variable for the current user.

C:\Program Files\InstallShield\Developer\System

As an example, you can edit the environment variables on Windows 2000 by doing
the following:

1. Access the System Properties dialog from the System applet in the
Control Panel or launch it by right clicking on the My Computer icon on
the desktop and selecting Properties.

2. In the System Properties dialog click on the Advanced tab and then click
the Environmental Variables button.

P A R T I I I N S T A L L S C R I P T

424

3. Edit the path environment variable for the current user. You could add
this path to the system variables instead of to the current users
environment variables if you wanted to make this location available for all
users of the machine. Making this change allows you to compile a script
from the command line from any location.

Next, you need to make some simple changes to Sort.rul. You need to remove the
comments from the include statement for the header file ifx.h and from the
prototype statements placed directly before the definitions of the four sorting
functions. The following statements in Sort.rul should now be uncommented.

#include "ifx.h"
export prototype VOID SelectionSort(BYREF VARIANT);
export prototype VOID ShellSort(BYREF VARIANT);
export prototype VOID QuickSort(BYREF VARIANT, INT, INT);
export prototype VOID ListQSort(BYVAL LIST);

The use of the export keyword indicates that these four functions are going to be
accessed from outside the script library. The other functions in Sort.rul are available
only inside the script library and you will not be able to call them from Setup.rul.

One of the compiler options is to put all command line options inside of a text file so
you do not have to type them in on the command line. This option permits a much
shorter command line. Figure 8-12 shows what you should put in this text file.

"Sort.rul"
"/IC:\Program Files\InstallShield\Developer\Script\Ifx\Include"
"/IC:\Program Files\InstallShield\Developer\Script\iswi\Include"
"/IC:\Program Files\InstallShield\Developer\Script\isrt\Include"
"/IC:\Program Files\InstallShield\Developer\Script\Include"
"/L"

Figure 8-12: The commandline.txt file for defining the compiler options.

You can name this text file anything, such as commandline.txt. Place this file in the
same location as Sort.rul. Sort.rul is located in the following folder:

C:\MySetups\Learning InstallScript

The first line in commandline.txt is the name of the file that you are going to compile
and this is followed by the four locations where the necessary header files are located.
The /I switch indicates that the following path is the location of a folder that holds

C H A P T E R 8 F U N C T I O N S

425

one or more header files that are needed for the compilation. It is important that the
specification of these four locations for finding header files be in the order shown
above, otherwise compilation errors will result. The final line in commandline.txt is
the switch that tells the compiler that you want to create a script library. Note that
each item on the command line needs to be on a separate line in commandline.txt
and that each item including the switch needs to be inside double quotes.

Before compiling Sort.rul, make sure that you have saved your changes. You also
need to make the current directory the location where Sort.rul is located. Now that
you have created commandline.txt, the command line to compile is as follows:

compile @commandline.txt

The result of running this command line should the same as shown in Figure 8-13.
Note that when you run the compiler from the command line, the version of the
compiler is part of the display (Figure 8-13). The version shown here indicates that
this is the same compiler that ships with InstallShield Professional version 6.30.
Because the compilers are the same, the InstallScript language information provided
in this book is also applicable to InstallShield Professional – Standard Edition.

Figure 8-13: The command prompt for creating the sort.obl script library.

P A R T I I I N S T A L L S C R I P T

426

The next step is to create a header file that will be used in Setup.rul to let the compiler
and linker know that the definition of the sorting functions is found in a library file.
Name this header file Sort.h. The contents of this file are shown in Figure 8-14.

///
//
// File Name: Sort.h
//
// Description: Header file for the sorting script library
//
// Comments: This script demonstrates the creation
// of a script library of sorting functions.
//
///

external prototype VOID SelectionSort(BYREF VARIANT);
external prototype VOID ShellSort(BYREF VARIANT);
external prototype VOID QuickSort(BYREF VARIANT, BYVAL INT,
 BYVAL INT);
external prototype VOID ListQSort(BYVAL LIST);

Figure 8-14: The sort.h header file for the script library example.

The next thing that you need to do is create a permanent location for the library file
and the header file. A good location is under the folder where all your projects are
being created. A suggested folder structure is as shown in Figure 8-15.

Figure 8-15: The folder structure for storing our script libraries and associated header files.

You need to copy Sort.obl to C:\MySetups\MyFuncs\Lib and Sort.h to
C:\MySetups\MyFuncs\Include. Before you can easily use the new script
library in Setup.rul, you need to identify the location where your library and header

C H A P T E R 8 F U N C T I O N S

427

files are located in some global fashion. Do this by editing the Compile
Folders.ini file, located in the following location:

C:\Program Files\InstallShield\Developer\Support

There are two sections in this initialization file. The first section identifies the location
of header files and the second section names the script libraries that are to be scanned
during the linking process. After you edit this file, it should look like what is shown in
Figure 8-16. When you make entries in the Compile Folders.ini file you are creating
header file and library locations that will be used for all projects. For the location of
libraries you can also identify project specific locations. The creation of project
specific locations for script libraries can be defined by making entries in the
ISLinkerLibrary table in the Direct Editor. The entries in this table would be the same
as you are making in the Compile Folders.ini file.

[Folders]
Folder0=<ISProductFolder>\Script\ISWi\Include
Folder1=<ISProductFolder>\Script\ISRT\Include
Folder2=<ISProductFolder>\Script\IFX\Include
Folder3=<ISProductFolder>\Script\Include
Folder4=<ISProjectFolder>\MyFuncs\Include

[Libraries]
Libraries1=<ISProjectFolder>\MyFuncs\Lib\Sort.obl

Figure 8-16: The Compile Folders.ini file to include the sorting library location information.

What you have added to this file is the line that locates Folder4 and the line that
locates Libraries1. Because you placed your script library and associated header
file in the same location where your projects are being built, you can use the
predefined path variable <ISProjectFolder> to locate the Include and
Lib folders.

All you need to do now is make some minor changes to Setup.rul before testing that
the sorting script library works as designed. You need to remove the include
statement that added the Sort.rul file to Setup.rul. This statement is at the end of
Setup.rul. You also need to remove the prototypes for the sorting functions in the
script library since the correct prototypes are now in Sort.h header file. The last thing
that you need to do is add Sort.h using the following statement:

#include "sort.h"

P A R T I I I N S T A L L S C R I P T

428

The top of your Setup.rul file should now look like what is shown in Figure 8-17.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script tests the functions to be
// built into a script library of sorting functions.
//
///

#include "ifx.h"
#include "sort.h"

#define CAPTION "Feedback"

// Prototypes of private functions.
prototype STRING CreateArrayDisplay(BYVAL VARIANT);
prototype STRING CreateListDisplay(BYVAL LIST);

INT i, iVal, iSizeInt, iSizeStr, iArray(20), iValue;
STRING strArray(10), strValue;
LIST iList, strList;

program

Figure 8-17: The revised setup.rul file so as to use the sorting functions from the script library.

You can now compile Setup.rul and test that your sorting functions still work
correctly. You now have a script library that you can use in any installation program
where you need to sort arrays or lists.

Adding the Sorting Functions to the Function Wizard

The key to adding a function to the Function Wizard is the file Funcwiz.ini that is
found in the same location as the Compile Folders.ini file. The Funcwiz.ini file is
composed of three major areas. The first area is a section that defines all the function
categories that appear in the Function Wizard. The second area is where, for each
category, there is a definition of the functions that are provided in that category.
There is one section in the initialization file for each category that is defined in the
first section. The third major area is a description of each function defined in the
Function Wizard. It is this description that allows the Function Wizard to insert a call
to the function in your script.

C H A P T E R 8 F U N C T I O N S

429

Before you can use the Function Wizard to add a sorting function to your script, you
need to add the functions to Funcwiz.ini. The Function Wizard does not display the
list of categories in alphabetical order unless the entries under the first section are
made in alphabetical order. However, the list of functions for any category is sorted
alphabetically. All you have to do is add your functions at the end of the appropriate
sections and they will appear in the Function Wizard in sorted order.

To add your functions to Funcwiz.ini:

1. Give your sorting functions a category of Sorting by adding this name
to the [FuncWiz - Category] section in the Funcwiz.ini file.

2. At the end of the [FuncWiz - Category - All] section, add
the names of your functions.

3. Create a new category section where your sorting functions will also be
listed. Name this new section [FuncWiz - Category -
Sorting].

4. Add four sections at the end of Funcwiz.ini to provide the information
the Function Wizard needs to insert these functions into the script. A
complete new version of Funcwiz.ini is available on the CD-ROM.

Figure 8-18 shows the changes described above.

[FuncWiz - Category]
Item1=All
Item2=Batch file
...
...
...

Item20=Sorting
Item21=String
Item22=Version checking
Item23=Uninstallation
Item24=User interface
...

Figure 8-18: The changes that need to be made to the Funcwiz.ini file to add the sorting functions.

P A R T I I I N S T A L L S C R I P T

430

 [FuncWiz - Category - All]
Item1=AddFolderIcon
Item2=AddProfString
...
...
Item287=ListQSort
Item288=SelectionSort
Item289=QuickSort
Item290=ShellSort

...
...

[FuncWiz - Category - Sorting]
Item1=SelectionSort
Item2=ShellSort
Item3=QuickSort
Item4=ListQSort

...
...

[ListQSort]
SampleLine=ListQSort(List)
Description=Sorts a list using the quicksort algorithm.
Param1Name=List
Param1Desc=The name of the list that is to be sorted.
 [SelectionSort]
SampleLine=SelectionSort(Array)
Description=Sorts an array using the selection sort algorithm.
Param1Name=Array
Param1Desc=The name of the array that is to be sorted.
[ShellSort]
SampleLine=ShellSort(Array)
Description=Sorts an array using the shellsort algorithm.
Param1Name=Array
Param1Desc=The name of the array that is to be sorted.

[QuickSort]
SampleLine=QuickSort(Array, iLower, iUpper)
Description=Sorts an array using the quicksort algorithm.
Param1Name=Array
Param1Desc=The name of the array that is to be sorted.
Param2Name=iLower
Param2Desc=The name of the lower bound for the array to be sorted.
Param3Name=iUpper
Param3Desc=The name of the upper bound for the array to be sorted.

Figure 8-18: Continued.

C H A P T E R 8 F U N C T I O N S

431

The Funcwiz.ini file handles combo boxes that provide a selection of constants in
certain function descriptions. There are two types of combo boxes-- one that cannot
be edited and one that can. You can specify a combo box by one the following
keyword/value pairs.

Param1Type=Combo
Param1Type=EdCombo

The Param1Type keyword indicates that the Function Wizard has to create a
combo box for the first parameter of the function. The combo box provides a
selection of arguments to pass to the function. The number indicates which function
parameter is to use a combo box. The value Combo means that the end user cannot
add values to what is offered by the combo box. The EdCombo means that the end
user can add values in addition to what is provided by the combo box.

Values are defined in Funcwiz.ini by the use of the Param1Val1=value
keyword-value pair. For example the SprintfBox function provides three possible
values in the combo box for the first argument to the function. These values are
defined as follows:

Param1Type=Combo
Param1Val1=INFORMATION
Param1Val2=SEVERE
Param1Val3=WARNING

This set of keyword-value pairs tells the Function Wizard that there are only three
choices provided for the first argument of the SprintfBox function. However, you
can use any of the valid message box styles in this location. You could change this
combo box to allow additional arguments to be added and displayed in the Function
Wizard. After you have inserted the function call into the script, you can change any
of the parameters.

Arrays of Structures

InstallScript does not currently allow you to use structures to create a linked list, but
you can create an array of structures. The secret to doing this is to use the capability
to return a value from a function and, in this fashion, create new memory that you
can then assign to an element in an array. The best way to understand this is to look
at the example shown in Figure 8-19.

P A R T I I I N S T A L L S C R I P T

432

The program in Figure 8-19 contains a function that creates a structure to hold the
values that populate a row in the ListBox table based on the arguments passed to the
function. This structure is returned to the calling program as a variable of type
OBJECT.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script tests the creation of
// an array of structures.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

prototype OBJECT CreateListBoxRow(BYVAL STRING, BYVAL INT,
 BYVAL STRING, BYVAL STRING);
// Define a structure that will hold
// a row from the ListBox table.
typedef LBROW
begin
 STRING strProperty[73];
 INT iOrder;
 STRING strValue[65];
 STRING strText[65];
end;

INT i;
STRING szValue, szText;
OBJECT objListBoxRow(10), obj;
VARIANT Value;

program

 // Create 10 rows for the ListBox table
 // place those rows in an array.
 for i=0 to 9
 Value = i+1;
 szValue = Value;
 szText = "This is row " + Value;

Figure 8-19: An example showing the creation of an array of structures.

C H A P T E R 8 F U N C T I O N S

433

 set obj = CreateListBoxRow("LISTBOXPROPERTY",
 i+1, szValue, szText);
 objListBoxRow(i) = obj;
 endfor;

 // Loop through the array and display
 // the values in each row in the array.
 for i=0 to 9
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "ListBox Row %d\n\n%s %d %s %s",
 i+1, objListBoxRow(i).strProperty,
 objListBoxRow(i).iOrder,
 objListBoxRow(i).strValue,
 objListBoxRow(i).strText);
 endfor;

endprogram

///
// Function: CreateListBoxRow
//
// Purpose: This creates a structure that contains the values
// needed to populate the ListBox table.
///
function OBJECT CreateListBoxRow(strProperty, iOrder,
 strValue, strText)
LBROW lbRow;
begin

 lbRow.strProperty = strProperty;
 lbRow.iOrder = iOrder;
 lbRow.strValue = strValue;
 lbRow.strText = strText;

 // Return an object that is a row
 // in the ListBox table.
 return lbRow;

end;

Figure 8-19: Continued.

In the calling program, the object returned by the CreateListBoxRow function
is added as an element in an array of type OBJECT. The last part of the calling
program uses the structure member operator to display the values in the structure and
to display these values to verify that it has created an array of structures. The reason
that this approach works is that a structure in InstallScript is a COM object. There is

P A R T I I I N S T A L L S C R I P T

434

an external reference counting mechanism that keeps each structure alive in memory.
Even though you cannot create a true linked list, the ability to create an array of
structures can be very useful.

Calling Functions in a DLL
When you call a function in a DLL, the DLL needs to be loaded into memory before
the call can succeed. Also you need to know the exact name of the function you are
going to call in the DLL. This means that the function needs to be C callable. This
means that there is no decoration on the exported name of the function.

There are two main categories of DLL functions that you can call from InstallScript.
There are functions in DLLs that you create and functions in Windows DLLs.
Functions in Windows DLLs are Windows APIs and it is these functions that are
used to create all Windows programs.

User-Defined DLL Functions
There is a special format for prototyping functions that you are going to call from a
DLL that you create. This format is shown as follows. Note that the square brackets
mean that the item is optional:

prototype [calling-convention] [return-type]
 DLL-name.function-name([parameter-data-type-list]);

For the calling convention specification there are two keywords that are available.:
stdcall and cdecl. The default calling convention is the stdcall calling
convention. This calling convention is the calling convention used by all Win32 API
functions. The cdecl calling convention is the default calling convention used by C
and C++ programs. The main difference between the two calling conventions is that,
when stdcall is used, it is the responsibility of the called function to clean up the
stack. When the cdecl convention is used, the caller of the function has to clean up
the stack. There is another difference that is related to name decoration but this is not
important since you will create your DLLs with no name decoration. The return type
is just as it is for user-defined functions. The name of the DLL and the name of the
exported function are delimited by a period. The name of the function has to be

C H A P T E R 8 F U N C T I O N S

435

exactly as it is exported by the DLL in the export table. The easiest way to ensure that
you know the name of the exported function is to use a module definition file when
you compile your DLL.

As an example of calling a function in a DLL, you will create a DLL that validates a
serial number that is entered by the user. The script for this example uses an SD
dialog that has an edit field for entering a serial number. Look at the code for the
DLL function that you are going to call from your script (Figure 8-20). The DLL
code that is shown in Figure 8-20 is just for the body of the ValidateSerialNo
function and the module definition file that forces the exported name of the function
to be what you want it to be. In the DLL function you pass the serial number that is
entered by the end user, as well as the acceptable values for the first two parts of the
serial number.

//
// SerialNumber.cpp: Defines the entry point for the DLL application.
//

#include "stdafx.h"

BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 return TRUE;
}

//
// A function that validates the entry of a serial number
// made during an application’s installation.
//
STDAPI ValidateSerialNo(LPSTR SerialNumber, LPCSTR Product,
 LPCSTR Version, DWORD SeqStart,
DWORD SeqInc)
{
 TCHAR delimiters[] = " -";
 TCHAR *tokens[4];
 DWORD SeqNo;
 int i=0;

Figure 8-20: The code for the ValidateSerialNo DLL function.

P A R T I I I N S T A L L S C R I P T

436

 // Obtain all the tokens in a serial number
 // and assign them to an array.
 tokens[i] = _tcstok(SerialNumber, delimiters);
 while(tokens[i]!=NULL && i<3)
 {
 i++;
 tokens[i] = _tcstok(NULL, delimiters);
 };

 // Make sure that only the correct number of tokens was used.
 if((tokens[i]!=NULL && i>=3) || tokens[i]==NULL && i<3)
 return -1;

 // Make sure that the sequence number contained only numbers.
 if((SeqNo = atol(tokens[2])) == 0)
 return -2;

 // Check for a valid product code.
 if(_tcsicmp(tokens[0], Product) != 0)
 return -3;

 // Check for a valid verion number.
 if(_tcsicmp(tokens[1], Version) != 0)
 return -4;

 // Validate that the sequence number is large enough.
 if(SeqNo < SeqStart)
 return -5;

 // Validate that the sequence number is in a valid sequence.
 if(((SeqNo - SeqStart) % SeqInc) != 0)
 return -6;

 // Return success if we get this far.
 return 0;
}

;
; SerialNumber.def
;
; Module definition file for the SerialNumber.dll
;
LIBRARY "SERIALNUMBER"

DESCRIPTION "DLL for validating a serial number"

EXPORTS
 ValidateSerialNo PRIVATE

Figure 8-20: Continued.

C H A P T E R 8 F U N C T I O N S

437

The DLL tokenizes the entered serial number so that each separate part can be
validated separately. As constructed the ValidateSerialNo function is set up to
check a serial number that has three parts. The first part is the product identifier, the
second part is the version number, and the third part is a sequence number that is
different for each user.

The validation for the first two parts is a simple comparison between what the user
enters and the values that the script passes to the DLL. The validation of the
sequence number ensures that the sequence number is a whole multiple of a specified
increment plus a specified starting number. The program checks this by subtracting
the starting number from the sequence number and then checking if the modulus of
this number by the increment is zero. If it is, then the sequence number that was
entered is valid.

Now that you have looked at the DLL function code, you need to look at the script
that will call this function (Figure 8-21).

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script tests the use of
// functions in a dynamic link library.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
#define MAX_TRYS 3

prototype stdcall LONG SerialNumber.ValidateSerialNo(BYVAL STRING,
 BYVAL STRING, BYVAL STRING, BYVAL LONG, BYVAL LONG);

STRING szTitle, szMsg, svName, svCompany, svSerial;
STRING szProduct, szVersion, szDLLName;
INT iReturn, iTryCnt;
LONG lValidate, lStart, lIncrement;

program

Figure 8-21: Setup.rul that demonstrates the calling of a function in a DLL.

P A R T I I I N S T A L L S C R I P T

438

 // Set the location of the DLL.
 szDLLName = SUPPORTDIR ^ "SerialNumber.dll";
 UseDLL(szDLLName);

 // Initialize the arguments to be used in the
 // SD dialog and the function call to the DLL.
 szTitle = "Customer Information";
 szMsg = "Please enter the requested information.";
 szProduct = "ABCDEF";
 szVersion = "0750";
 lStart = 1000000519;
 lIncrement = 519;
 iTryCnt = 1;

RegisterUser:

 // Null the serial number every time we
 // enter the SdRegisterUserEx dialog box.
 svSerial = "";

 // Only let a certain number of attempts at
 // entering a serial number.
 if(iTryCnt > MAX_TRYS) then
 MessageBox("Too many attempts.\n" +
 "The installation will now terminate.", SEVERE);
 abort;
 endif;

 // Display the SdRegisterUserEx dialog box.
 iReturn = SdRegisterUserEx(szTitle, szMsg, svName,
 svCompany, svSerial);
 // If the user clicks the Back button
 // then come back into the dialog.
 if(iReturn = BACK) goto RegisterUser;

 // When the Next button is clicked validate the
 // serial number that was entered.
 if(iReturn = NEXT) then
 lValidate = ValidateSerialNo(svSerial, szProduct,
 szVersion, lStart, lIncrement);
 endif;

 // Display the result as returned from the DLL function.
 switch(lValidate)
 case 0:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Validation was successful");

Figure 8-21: Continued.

C H A P T E R 8 F U N C T I O N S

439

 case -1:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Bad serial number was entered");
 iTryCnt++;
 goto RegisterUser;
 case -2:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Sequence number is not a number.");
 iTryCnt++;
 goto RegisterUser;
 case -3:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Product entry not valid.");
 iTryCnt++;
 goto RegisterUser;
 case -4:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Version entry not valid.");
 iTryCnt++;
 goto RegisterUser;
 case -5:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Sequence number too small.");
 iTryCnt++;
 goto RegisterUser;
 case -6:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Invalid sequence number.");
 iTryCnt++;
 goto RegisterUser;
 default:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Unknown validation error");
 iTryCnt++;
 goto RegisterUser;
 endswitch;

 // Free the DLL from memory.
 UnUseDLL("SerialNumber.dll");

endprogram

Figure 8-21: Continued.

The code shown in Figure 8-21 gives the end user three attempts to enter the correct
serial number and then aborts the installation. Note that in the prototype for the DLL
function, all arguments are passed by value because no values are returned through
the arguments. The only return is through the return statement in the DLL. The

P A R T I I I N S T A L L S C R I P T

440

value that is returned to the calling script identifies what was wrong with the input
made by the end user.

To use a DLL that you create, you need to specifically load it into memory. When
you are finished with it, you need to free the memory. You load a DLL into memory
by using the UseDLL function and free the memory by using the UnUseDLL
function. For the UseDLL function, you need to provide the complete path to the
DLL. This brings up the question of how and where to copy the DLL to the target
system so that it can be used during the installation but removed when the installation
is complete.

First, you need to place the SerialNumber.dll file in a central location so all
projects can easily get to it. Such a location is as follows:

C:\MySetups\Setup Files

Figure 8-22: The Setup Files/Billboards view and the insertion of a DLL into the setup.

C H A P T E R 8 F U N C T I O N S

441

To include SerialNumber.dll in the installation program as shown in Figure 8-22 do
the following:

1. Navigate to the Setup Files/Billboards view and click on the Language
Independent node. It is in the Setup Files/Billboards view that you
include those files that are needed just for the installation.

2. Right-click in the Files pane and select Insert Files.

3. Browse to where the file SerialNumber.dll is located and click
Open. This inserts the file into the installation project. This file will be
copied to a location defined by the SUPPORTDIR system variable when
the installation is run.

In Setup.rul, you need to create a STRING variable that holds the path to
SerailNumber.dll during the installation. This line of code is formed from the
concatenation of SUPPORTDIR and the name of the DLL as follows:

szDLLName = SUPPORTDIR ^ "SerialNumber.dll";

This statement uses the special path concatenation operator that inserts the backslash
into the string if it is needed.

Calling Windows APIs
There is very little difference between using a Windows API function and a user-
defined function in a DLL. You have to prototype a Windows API function, but you
do not have to load the Windows DLL into memory because it was loaded when
Windows booted. The trick to calling a Windows API function is to know which
DLL exports what function. The best way to find out which Windows DLL to use in
the prototype is to go to the MSDN library and look up the function that is going to
be used. This tells which DLL exports the function. The format for prototyping a
Windows API function is as follows:

prototype [calling-convention] [return-type]
 KERNEL32|USER32|GDI32.API-name([parameter-data-type-list]);

The calling convention can be used in the prototype but it is not necessary for a
Windows API function since the default calling convention is what is used by Win32

P A R T I I I N S T A L L S C R I P T

442

APIs. If you do not specify a return type, the default expected by InstallScript is an
integer return type.

In the above prototype format there are the names of three Windows DLLs, one of
which you need to use. There are other Windows DLLs but these are the ones that
export the more commonly used functions.

The example shown in Figure 8-23 demonstrates how calling a Windows API works.
This example uses a Windows API function to get the system time and then uses
another function to convert the system time to local time.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script tests the calling of
// Windows API functions.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

// Prototype the two Windows APIs to be used in the program.
prototype stdcall VOID KERNEL32.GetSystemTime(POINTER);
prototype stdcall BOOL KERNEL32.SystemTimeToTzSpecificLocalTime
 (POINTER, POINTER, POINTER);

// Define a structure for obtaining
// the system time.
typedef _SYSTEMTIME
begin
 SHORT iYear;
 SHORT iMonth;
 SHORT iDayOfWeek;
 SHORT iDay;
 SHORT iHour;
 SHORT iMinute;
 SHORT iSecond;
 SHORT iMilliseconds;
end;

Figure 8-23: Setup.rul that shows the calling of several Windows API functions.

C H A P T E R 8 F U N C T I O N S

443

_SYSTEMTIME SystemTime, LocalTime;
_SYSTEMTIME POINTER pSystemTime, pLocalTime;
VARIANT Day, Year, Hour, Minute, Second;
STRING szDisplay, szMonth(12), szDayOfWeek(7);
BOOL bSuccess;

program
 // Initialize an array of month names.
 szMonth(0) = "January"; szMonth(1) = "February";
 szMonth(2) = "March"; szMonth(3) = "April";
 szMonth(4) = "May"; szMonth(5) = "June";
 szMonth(6) = "July"; szMonth(7) = "August";
 szMonth(8) = "September"; szMonth(9) = "October";
 szMonth(10) = "November"; szMonth(11) = "December";

 // Initialize an array of day of week names.
 szDayOfWeek(0) = "Sunday"; szDayOfWeek(1) = "Monday";
 szDayOfWeek(2) = "Tuesday"; szDayOfWeek(3) = "Wednesday";
 szDayOfWeek(4) = "Thursday"; szDayOfWeek(5) = "Friday";
 szDayOfWeek(6) = "Saturday";

 // Get pointers to the two _SYSTEMTIME structures.
 pSystemTime = &SystemTime;
 pLocalTime = &LocalTime;

 // Call the Windows API to get the system time.
 GetSystemTime(pSystemTime);

 // Convert the system time to a display string.
 szDisplay = "System Time\n\nDate:\t";
 Year = pSystemTime->iYear;
 Day = pSystemTime->iDay;
 szDisplay = szDisplay + szDayOfWeek(pSystemTime->iDayOfWeek) +
 ", " + szMonth(pSystemTime->iMonth-1) + " " + Day +
 ", " + Year + "\nTime:\t";

 Minute = pSystemTime->iMinute;
 Second = pSystemTime->iSecond;
 if(pSystemTime->iHour > 12) then
 Hour = pSystemTime->iHour - 12;
 szDisplay = szDisplay + Hour + ":" + Minute + ":"
 + Second + " PM";
 else
 Hour = pSystemTime->iHour;
 szDisplay = szDisplay + Hour + ":" + Minute + ":"
 + Second + " AM";
 endif;

Figure 8-23: Continued.

P A R T I I I N S T A L L S C R I P T

444

 // Display the system time.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION, "%s", szDisplay);

 // Call the Windows API to convert from
 // system time to local time.
 bSuccess = SystemTimeToTzSpecificLocalTime(NULL,
 pSystemTime, pLocalTime);
 // Check to see if the conversion from
 // system time to local time succeeded
 // before converting the local time
 // to a display string.
 if(bSuccess) then
 szDisplay = "Local Time\n\nDate:\t";
 Year = pLocalTime->iYear;
 Day = pLocalTime->iDay;
 szDisplay = szDisplay +
 szDayOfWeek(pLocalTime->iDayOfWeek) +
 ", " + szMonth(pLocalTime->iMonth-1) + " " + Day +
 ", " + Year + "\nTime:\t";

 Minute = pLocalTime->iMinute;
 Second = pLocalTime->iSecond;

 if(pLocalTime->iHour > 12) then
 Hour = pLocalTime->iHour - 12;
 szDisplay = szDisplay + Hour + ":" + Minute + ":"
 + Second + " PM";
 else
 Hour = pLocalTime->iHour;
 szDisplay = szDisplay + Hour + ":" + Minute + ":"
 + Second + " AM";
 endif;

 // Display the local time.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION, "%s",
 szDisplay);
 else

 // Display that there was a conversion error.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Unable to convert from system time to local time.");
 endif;

endprogram

Figure 8-23: Continued.

In this example, the GetSystemTime windows API function retrieves the system
time. The argument to this function is a pointer to a SYSTEMTIME structure, which

C H A P T E R 8 F U N C T I O N S

445

is populated by the function. System time is in Coordinated Universal Time (UTC).
This means that system time is the same as Greenwich Mean Time. To get the local
time you need to perform a conversion from UTC to local time. The program
converts the system time using the SystemTimeToTzSpecificLocalTime
function.

First, the example program gets the system time and then converts values into a
display string. It then converts this time to local time and displays it again. For the
conversion process, the program passes as an argument the system time structure that
was populated by the call to the GetSystemTime function and a pointer to an
empty structure that is populated with the local time. Both structures are a
SYSTEMTIME structure.

As a final note there are a number of Windows API functions prototyped in a header
file called WinApi.h. This file is located in the same location as Isrt.h, but Isrt.h does
not include WinApi.h. To make use of these prototypes for many of the common
Windows API functions, all you have to do is include WinApi.h at the top of your
script.

Passing an Array to a DLL Function
The key to understanding how to pass an array to a DLL function is the fact that, in
InstallScript, an array is handled as a variable of type VARIANT. In C/C++, a
VARIANT is a structure that is a container for a very large union that carries many
different data types. One of these data types is something called a SAFEARRAY,
which is another structure. One of the members in a SAFEARRAY structure is the
array itself. All the other members in the SAFEARRAY structure serve to keep track
of the dimensions and bounds of the array. To get a pointer to an array that you can
then pass to a DLL function means that you start with a VARIANT structure and get
a pointer to the SAFEARRAY structure and then use this pointer to get to the array.
This process is shown in Figure 8-24.

Don't worry if this looks confusing the first time you read through it. Just spend the
time to study it and you will get the idea. This is a perfect example of why it is
important to understand how the InstallScript engine works.

P A R T I I I N S T A L L S C R I P T

446

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates how to pass
// an array to a DLL function.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
prototype stdcall BOOL PSAPI.EnumProcesses(BYVAL POINTER,
 BYVAL LONG, BYREF LONG);

// Duplicate the C/C++ definition
// of the SAFEARRAY structure.
typedef cSAFEARRAY
begin
 SHORT cDims;
 SHORT fFeatures;
 LONG cbElements;
 LONG cLocks;
 POINTER pvData;
 /* ignore the SAFEARRAYBOUND element */
end;

// Duplicate the C/C++ definition
// of the VARIANT structure.
typedef cVARIANT
begin
 SHORT vt;
 SHORT wReserved1;
 SHORT wReserved2;
 SHORT wReserved3;
 POINTER pData;
end;

INT i, iSize;
STRING szDisplay;
HWND ProcHandle;
VARIANT Value;
BOOL bReturn;
LONG idProcesses(1024), cb, cbNeeded;
cVARIANT POINTER pVariant;
cSAFEARRAY POINTER pArray;

Figure 8-24: Setup.rul that shows how to pass an array to a DLL function.

C H A P T E R 8 F U N C T I O N S

447

program

 // Get a pointer to the array
 // which is actually a pointer
 // a cVARIANT structure.
 pVariant = &idProcesses;

 // Since the data in the cVARIANT structure
 // is a structure of type cSAFEARRAY we get
 // a pointer to the cSAFEARRAY structure.
 pArray = pVariant->pData;
 // Get the size in bytes of the
 // array that will be passed.
 cb = SizeOf(idProcesses) * 4;

 // Using the pointer to the cSAFEARRAY structure
 // we can actually get a pointer to the array itself.
 bReturn = EnumProcesses(pArray->pvData, cb, cbNeeded);

 // Check to see if the function succeeded
 // and resize the array to that which
 // just contains the number of process IDs
 // returned from the function.
 if(bReturn) then
 Resize(idProcesses, cbNeeded/4);
 else
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Function did not succeed.");
 abort;
 endif;

 // Create a display string for the process IDs.
 for i=0 to SizeOf(idProcesses)-1
 Value = idProcesses(i);
 szDisplay = szDisplay + Value + ", ";
 endfor;

 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Process IDs\n\n%s", szDisplay);

endprogram

Figure 8-24: Continued.

This example uses the EnumProcesses Windows API function because it
requires the passing of an array into which the function will insert the IDs of all the
processes running on the system. This function is in the psapi.dll, which is also loaded
into memory when Windows boots. This function takes three arguments: a pointer to

P A R T I I I N S T A L L S C R I P T

448

an array, the size of the array, and an argument that will hold the number of bytes that
are returned in the array.

Since the program has to dig into the VARIANT and SAFEARRAY structures to get
to the array pointer it passes to the DLL function, it needs to duplicate (where
necessary) both the VARIANT and SAFEARRRAY structures in the script.

Getting the pointer to the array is a three-step process:

1. Declare a pointer to the cVARIANT structure and then assign it a value
equal to the pointer to the array declared.

2. Declare a pointer to the cSAFEARRAY structure and set its value to the
value in the cVARIANT structure that points at the SAFEARRAY
structure in the VARIANT structure.

3. Take this pointer and use it to access the array that is an element of the
SAFEARRAY structure.

The best way to understand this is to study the code in Figure 8-24.

Passing Strings to Functions
As discussed in Chapter 6, strings in InstallScript are auto-sized to hold the text.
When you add more text to a string variable, it is auto-sized again. When you pass a
string by reference to a user-defined function, the string is auto-sized to the length
required. You can define a size for a string when you declare it and, if a greater size is
required, it is auto-sized upward. When passed to a user-defined function, the
declared size is carried over to the function.

The situation is different when you pass a string to a DLL function. Here strings are
not auto-sized by the DLL function, so you need to define a size for a string that is
passed to a DLL function by reference. A string being passed by value is in essence a
constant and must already have a size since it will have been assigned a value before it
is passed. InstallScript sizes a string being passed by reference to a DLL function to
1024 bytes. If you size it higher, it will be passed with the larger size value but it will
never be passed with a size smaller than 1024 bytes.

C H A P T E R 8 F U N C T I O N S

449

When passing strings to a Windows API function, you should ensure that the correct
function name is used. Most Windows API functions that are passed strings have two
versions, one the ANSI version and one the Unicode version. To indicate which one
is which, the ANSI versions of functions have an 'A' appended to the function name
and the Unicode versions have a 'W' appended to the function name. When
InstallScript passes a string to a DLL function, it converts the string to an ASNI
string. This means that, from InstallScript, you can call only the ANSI versions of
Windows API functions. Later versions of InstallShield Developer will have the
capability to pass either ANSI or Unicode strings to a Windows API. When this
change is made you will have access to those Windows APIs that only accept
Unicode strings.

Conclusion
There are four categories of functions covered in this chapter. The built-in functions
are those that are directly supported by InstallScript without requiring prototyping.
The built-in functions can be easily inserted into your scripts using the Function
Wizard. The on-line Language Reference provides a complete description of how to
use each of the built-in functions. If you want help on a function that is in your script,
place the cursor on the function name and press F1. This launches the help for that
function.

For the event-handler functions, this chapter discusses the various function categories
and discusses each of the supported event-handler functions briefly. The details of
how the event-driven architecture works is discussed in detail in Chapter 4. The main
focus of this chapter is the creation of user-defined functions. Here you learned about
the two types of user-defined functions, entry-point functions and generic functions.
The discussion of entry-point functions is covered in Chapter 11, which covers the
subject of InstallScript custom actions.

For generic user-defined functions, this chapter provides examples of how to create
useful functionality. You also saw how to create your own script libraries and how to
insert your script library functions into the Function Wizard. You created a small
library of sorting functions, added them to a script library, and then made these
functions available through the Function Wizard.

P A R T I I I N S T A L L S C R I P T

450

Finally, this chapter looked at the creation and use of functions in a dynamic link
library. You saw how to prototype these functions and to use functions in DLLs that
you create or Windows API functions. You also worked through an example of how
to pass an array to a DLL function. This required a basic understanding of both the
VARIANT and SAFEARRAY structures.

Exception Handling
and COM

This chapter covers two related concepts: exception handling and the use of COM.
These capabilities in InstallScript give you significant power for creating powerful and
robust installation programs. Exception handling allows you to mange run-time
errors in a fashion that does not leave the end user with a failed installation and no
knowledge of what happened. With exception handling, your installation program
can invoke a special error handling function or group of statements that are called
when an error occurs. It is even possible, depending on the error, to programmatically
handle the error without having to terminate the installation.

Being able to access COM objects from your script provides a way to extend the
built-in functionality of InstallScript. There are a number of important COM objects
that are available on the Windows operating system and you can access these COM
objects from your script. This chapter examines three of the most important objects
that you can create. We begin our discussion with a look at exception handling since it
is important to use exception handling when creating COM objects in InstallScript.

Chapter

9

P A R T I I I N S T A L L S C R I P T

452

Exception Handling Basics
An exception is something abnormal that occurs in a program. Exception handling is
the mechanism that allows two functions to communicate with each other when
something abnormal happens. One function calls another function and the called
function detects an error and, not knowing how to handle the error, throws an
exception so that the calling function can decide how to handle the error. The
traditional approach to handling an error has been for the called function to return an
error code to the calling function. Then, based on a check of the returned value by
the calling function, some action is taken. The concept of exception handling
discussed in this chapter is the modern approach to handling an error when it occurs
in a program.

It is strongly recommended that you use the exception handling capabilities that are
described in this section when you create installation programs. If you do not include
exception handling in your programs, the program will terminate when an exception
occurs without providing information for the end user. This is not an acceptable
approach to creating installation programs. With proper implementation of the
exception handling capabilities in InstallScript, many errors can be fixed or at least the
program can be implemented to fail gracefully when it encounters an exception.

In InstallScript the exception handling functionality revolves around the
try…catch…endcatch statement and the Err object. Any script code for which
you want to monitor an exception must be executed from within a try block. If an
exception occurs in the code, the statements placed in the catch block are
executed. Code that throws exceptions outside of a try block are not handled using
InstallScript’s exception handling mechanism.

The try…catch…endcatch Statement
The general format of the try…catch…endcatch statement is as follows:

try // try block
 // Code that is to be monitored for exceptions.
catch // catch block
 // Code that is designed to handle any exception
 // generated in the try block.
endcatch;

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

453

In the try block an exception normally is thrown when you call a function that
detects an error. To ensure backward compatibility, InstallScript’s built-in functions
do not throw exceptions. Because of this, the function that detects an error must be a
user-defined function. Built-in functions use the traditional approach and return error
codes to the caller of the function. Once an exception is thrown, no further
statements in the try block are executed and program execution jumps to the first
statement in the catch block.

The try…catch…endcatch statement can be nested inside another
try…catch…endcatch statement. The general format of nesting is as follows:

try // Outer try block
 // Outer code that is to be monitored for exceptions.
 try // Inner try block
 // Code that is to be monitored for exceptions.
 catch // Inner catch block
 // Code that is designed to handle any exception
 // generated in the try block.
 endcatch;
catch // Outer catch block
 // Code that is designed to handle any exception
 // generated in the outer try block.
 try // Inner try block
 // Code that is to be monitored for exceptions.
 catch // Inner catch block
 // Code that is designed to handle any exception
 // generated in the inner try block.
 endcatch; // Inner endcatch
endcatch; // Outer endcatch

To understand how to throw an exception you need to understand the Err object and
its properties and methods.

The Err Object
InstallScript instantiates a built-in object called the Err object. This object has global
scope and it has six properties and two methods. You do not have to create an
instance of this object because it is created when the InstallScript engine starts. You
can use the Err object to capture exceptions that are thrown by the InstallScript

P A R T I I I N S T A L L S C R I P T

454

engine or to capture exceptions that you throw in your user-defined functions. In
InstallScript, to retrieve the value of one of the properties, use the following format:

Variable = Err.property-name

When you want to use one of the two methods, the format is as follows:

Err.method-name[(arguments)]

The properties of the Err object are described below:

Number: This is a read/write property that returns or sets a numeric value
specifying an error. This is the Err object's default property.

Description: This is a read/write property that returns or sets a descriptive string
that is associated with a particular error. The Description property is a short
description of an error that alerts the user about an error that cannot be handled
by the installation program.

Source: This is a read/write property that returns or sets the name of the object
or application that originally generated the error. The Source property should
specify a string expression that is usually the class name or programmatic ID of
the object that caused the error. Like the Description property, this information is
provided when the installation program is not able to handle the error.

HelpFile: This is read/write property that returns or sets a fully qualified path to
a help file. If this property has a value, it is automatically called when the user
clicks the Help button or presses the F1 key when in the error message dialog
box. The help file can be either a .hlp or a .chm file.

HelpContext: This is a read/write property that returns or sets a context ID for
a topic in the help file that is specified in the HelpFile property. If just the
HelpFile property is set, the help file is displayed but the end user needs to search
for the help topic applicable to the error. If the HelpContext property is set, the
help file opens to the relevant help topic for the error.

LastDllError: This is a read-only property that holds the return value of the
Win32 API function GetLastError. You cannot just use the
GetLastError function to get the error that occurred from calling a DLL
function because the InstallScript engine continually calls DLL functions and

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

455

result would not be accurate. Using the LastDllError property is the correct
method to get the value of the error code returned from a DLL function call.

The Err object has two methods. One of these methods is used to throw an
exception and the other method is used to clear the last error that was thrown. These
two methods are discussed in the following list.

Raise: The Raise method is used to generate a run-time exception. This method
takes up to five arguments in the following format:

Err.Raise[(number, source, description, helpfile, helpcontext)];

All of these arguments are optional and they are the same as the first five
properties described above. You can set the properties first and then call the
Raise method without any arguments or you can define the value of the
properties when you provide them as the arguments of this method. When you
are not specifying any arguments, you do not have to include the parentheses
with a call to the Raise method. However, when arguments are defined, the
parentheses are required.

Clear: The Clear method takes no arguments. The purpose of this method is to
clear the value of all properties and it is used between calls to the Raise method.

There is normally a chain of function calls where one function calls another function
and that function calls another function. How exceptions are handled in this type of
hierarchy is discussed in the next section.

Exception Handling Hierarchy
In normal circumstances an exception that is generated in a function cannot be
handled correctly by the function itself. The function that called the function
normally has the responsibility to handle the exception. If it cannot handle the
exception, it can pass the exception up the chain of function calls if it is not already at
the top of the hierarchy. Figure 9-1 provides a diagram of the normal hierarchy of
functions and how exceptions are passed up the chain of function calls.

P A R T I I I N S T A L L S C R I P T

456

Figure 9-1: A typical hierarchy of function calls.

In this figure, the main program calls func1 and func1 calls func2. If func2
generates an exception, the exception can be thrown back up to the top of the
hierarchy if that is what is necessary. If func1 can handle the exception then it
should do so and not throw the exception any higher in the chain of function calls.

The example program shown in Figure 9-2 demonstrates how the hierarchy of
thrown exceptions works. This program shows the exact situation as outlined in
Figure 9-1. An exception is generated at the bottom of the calling chain of functions
and the exception is raised back up to the top of the calling chain. In a real world
installation, the program would handle the exception at the most appropriate location
and thus provide the user with a seemingly faultless install experience.

The contrived code shown in Figure 9-2 has a chain of calls from the main program
down through three functions. In the last function, called function3, the
program attempts to access an array with a negative array index, which generates an
exception. Program execution jumps immediately to the catch block where a
message box is displayed and then the Raise method is executed.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

457

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the
// hierarchy of raising an exception.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

prototype function1(INT, INT);
prototype function2(INT, INT);
prototype function3(INT, INT);

INT a, b, i;

program

 a = 1;
 b = 2;

 for i=0 to 1
 try
 function1(a, b);
 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The main program can handle the error.\n" +
 "Error number: %d\nError description: %s",
 Err.Number, Err.Description);

 a = 2;
 b = 1;

 endcatch;
 endfor;

endprogram

// function1
function function1(j, k)
begin

Figure 9-2: Setup.rul showing the hierarchy of thrown exceptions.

P A R T I I I N S T A L L S C R I P T

458

 try
 function2(j, k);
 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "function1 cannot handle the error.");
 Err.Raise;
 endcatch;

end;

// function2
function function2(j, k)
begin

 try
 function3(j, k);
 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "function2 cannot handle the error.");
 Err.Raise;
 endcatch;

end;

// function3
function function3(j, k)
INT iArray(10), iVal;
begin

 try
 // Generate an exception by accessing an
 // array using a negative array index.
 iVal = iArray(j-k);
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The second try works now.");
 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "function3 cannot handle the error.");
 Err.Raise;
 endcatch;

end;

Figure 9-2: Continued.

Raising the exception returns control to the catch block in function2, which in
turn raises the error again to the catch block of function1. Finally the
exception is raised to the top of the calling hierarchy in the catch block of the main
program. Here the two values that originally caused the negative array index are

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

459

reversed and the program attempts to make the function calls. The second time the
array index is positive, so no exception is thrown in function3. Now the
SprintfBox function call that occurs right after the array access is executed and
the success message is displayed.

From this example it is evident that the InstallScript engine raises some exceptions.
The next section looks at these exceptions.

InstallScript Engine Exceptions
The InstallScript engine throws seven different exceptions (Table 9-1). In Table 9-1
the number in parentheses shown in the Error Code column is the decimal version of
the error code.

Table 9-1: The InstallScript Engine Exceptions

Error Code Error Description

0x80040701

(-2147219711)

This error code indicates a division by zero.

0x80040702

(-2147219710)

This error code indicates that an attempt to load a
DLL into memory failed. A DLL is loaded into
memory from a script through the use of the UseDLL
function. This can occur when either the DLL that is
the target of the UseDLL function cannot be found
or the DLLs on which the DLL being loaded depend
cannot be found.

0x80040703

(-2147219709)

This error occurs when the function that is being
called from a DLL cannot be found in the DLL's
export table. This can occur when the exported name
of the function is not known. It is always best to use a
module definition file to force the exported function
name to be undecorated. An example of a module
definition file is shown in Chapter 8.

P A R T I I I N S T A L L S C R I P T

460

Table 9-1: The InstallScript Engine Exceptions (Continued)

Error Code Error Description

0x80040704

(-2147219708)

This error occurs when a call into a DLL function
results in a bad stack. This type of error can occur
when a DLL function as prototyped in the script is not
the same as the prototype of the function in the DLL.
See Chapter 8 about the stdcall and cdecl keywords.

0x80040705

(-2147219707)

This error occurs when a string is accessed outside of
its boundaries with one exception. Because of some
backward compatibility issues, no string--regardless
how short--will have an exception thrown unless a
program tries to access location 300 or greater. An
attempt to use a negative index triggers this exception.

0x80040706

(-2147219706)

This exception is thrown when a program tries to use
an invalid object. Because of this, you should always
check the objects that you create using the
IsObject built-in function before attempting to use
the object.

0x80040707

(-2147219705)

This exception is thrown when a DLL function that
you are using crashes. This can happen when the DLL
function causes a memory fault.

In Figure 9-3 is shown an example of code that demonstrates several of the
InstallScript engine exceptions. This code example uses a switch statement to catch
the error and to display a description of the error.

This code example loops through the four statements that it is using to generate the
InstallScript engine exceptions. To generate the other exceptions, you would need to
create a DLL that you could try and call in various ways. As an example you could
create a DLL that has a decorated name for an exported function but still try to call
the function using the undecorated name.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

461

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates several
// of the InstallScript engine exceptions.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT iArray(10), iVal1, iVal2, iVal3, i;
STRING szString[10], szVersion;
CHAR cChr;
OBJECT objInstaller;

program

 iVal2 = 10;
 iVal3 = 0;

 for i=0 to 3

 try

 switch(i)
 case 0:
 // This generates error 0x80040701.
 iVal1 = iVal2/iVal3;
 case 1:
 // This generates error 0x80040705.
 cChr = szString[-1];
 case 2:
 // This generates error 0x80040706.
 set objInstaller =
 CreateObject("WindowInstaller.Installer");
 szVersion = objInstaller.Version;
 case 3:
 // This generates an unknown error.
 iVal1 = iArray(-1);
 endswitch;

 catch

Figure 9-3: Setup.rul that demonstrates some of the InstallScript engine exceptions.

P A R T I I I N S T A L L S C R I P T

462

 switch(Err.Number ^ 0x80040000)
 case 0x701:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "There was a division by zero.");
 case 0x702:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "DLL failed to load.");
 case 0x703:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "DLL function cannot be found.");
 case 0x704:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Bad DLL function prototype.");
 case 0x705:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "String accessed outside bounds.");
 case 0x706:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Tried to use an invalid object.");
 case 0x707:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "DLL function crashed.");
 default:
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Unknown error was thrown\n\n" +
 "Error number: %x\n" +
 "Error description: %s",
 Err.Number ^ 0x80040000,
 Err.Description);
 endswitch;
 endcatch;
 endfor;

 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "The error test is complete.");

endprogram

Figure 9-3: Continued.

In this chapter’s section on COM, you will have the opportunity to use InstallScript’s
exception handling capability. As already mentioned the built-in functions do not
throw exceptions. This is because of the need to maintain backward compatibility
with scripts created prior to the release of InstallShield Professional – Standard
Edition version 6.0. If necessary, however, you could provide wrappers around the
built-in functions that threw exceptions based on the return value received from the
built-in function.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

463

Creating COM Objects
The InstallScript engine is considered an ActiveX or Automation client through the
use of the OBJECT data type discussed in Chapter 6. InstallScript allows you to
access any of the functionality that an ActiveX object exposes through the IDispatch
interface. An ActiveX object is an instance of a class that can expose three types of
members: methods, properties, and events. An ActiveX object is a COM object. A
brief description of these three types of members is provided in the following list:

Methods: Methods are actions that an ActiveX object can perform. You can
think of methods as functions that you can call from InstallScript to perform
activities required during an installation.

Properties: Properties can also be thought of as functions, but these functions
retrieve information about the state of an object that you have created. You can
access a property to create another object, which will also expose methods,
properties, and events.

Events: An event is an action that is recognized by an ActiveX object and which
you write code to handle. You can think of events as methods that you write and
which the ActiveX calls in response to an event such as a mouse click.

An application that exposes its functionality such that other applications can access it
by creating objects is called an ActiveX component. This chapter looks at three of the
applications that provide significant functionality for use during an installation
program. These three ActiveX components are the Windows Installer, the Scripting
run time, and the Windows Scripting Host.

In InstallScript, you will use the CreateObject function to create the main object
for each of these three ActiveX components. The argument to this function is the
COM ProgId that has been registered in the registry. A typical statement that is used
in InstallScript to create an ActiveX object is as follows:

set object = CreateObject("WindowsInstaller.Installer");

Then, using the methods and properties, you will create additional objects and
perform actions that are required as part of an installation program. Each application
that exposes its functionality through one or more objects has an object model. This

P A R T I I I N S T A L L S C R I P T

464

object model is a pictorial means to show which objects are created from other
objects. We will look at each of the object models for the three ActiveX components
discussed in this chapter.

The Windows Installer
Automation Interface

There are a number of objects that are exposed by the Windows Installer automation
interface. Many of these objects can be used at build time and many can be used at
run time. With InstallScript, the primary point of interest is the run-time use of
Windows Installer objects. However you can use VBScript or JScript to manipulate
the .msi file at build time. This manipulation would be performed in a post-build
operation after InstallShield Developer had performed the build.

It is interesting to note that the InstallShield Developer project file is nothing more
than an .msi file in disguise. Therefore you can use the Windows Installer automation
interface to manipulate this project file. You could use this automation interface to
perform operations on the project file prior to making the build. However,
InstallShield Developer has its own automation interface for the project file and it
provides functionality that the Windows Installer automation interface does not
provide. Therefore you should actually use the InstallShield Developer automation
interface for performing pre-build manipulation of the project file.

There are two areas of interest regarding the run-time use of the objects exposed by
the Windows Installer engine. You can query the target system about the products
and components that have already been installed or you can work with the database
that is used for the installation that is in progress. This section discusses how to use
Windows Installer objects to query the target system. Chapter 11 discusses how to
work with the database that is active during an installation.

The Windows Installer Object Model
The hierarchy of the objects in the Windows Installer object model is shown in
Figure 9-4.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

465

Figure 9-4: The Windows Installer object model.

P A R T I I I N S T A L L S C R I P T

466

As shown in Figure 9-4, the top-level object is the Installer object and all other
objects are created from that object, with one exception. The Windows Installer
engine, at the start of an installation, automatically creates the Session object. This
particular object is only available to VBScript and JScript custom actions. You cannot
access the Session object from InstallScript because it is not creatable. You can only
implement COM objects in InstallScript that can be created using the function
CreateObject.

Chapter 4 provides a detailed discussion of how the InstallScript engine and the
Windows Installer engine run in different processes. Chapter 4 also goes into detail
about how these two processes communicate with each other across the process
boundary. When the Windows Installer is running InstallScript code it sees this code
as being contained in a DLL.

It is outside the scope of this book to go into detail about all the methods and
properties of all the objects shown in Figure 9-4. These properties and methods are
documented in the Windows Installer help file that is available from the Help drop-
down menu in InstallShield Developer.

However, this section does provide an overview of these objects and then works with
several examples so you can understand the basics of using the Windows Installer
automation interface. You will then work more with these objects in Chapter 11,
which covers how to use InstallScript to create custom actions.

The Installer Object
The Installer object is the top-level object and you have to create this object before
you can create any of the other objects. Create an Installer object by using the
following statement in your script:

set objInstaller = CreateObject("WindowsInstaller.Installer");

There are 22 properties and 24 methods exposed by an Installer object. Of the 22
properties, 8 are used to create other objects and 14 are used to query the target
system for information about installed products. Of the 24 methods, 7 are used to
create other objects and 17 are used to perform actions relative to the target system.
In general the properties and methods used to create other objects are covered

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

467

separately from the properties and methods that are used to interface with the target
system.

Table 9-2 shows the properties and their descriptions that are used to query the target
system for information. None of these properties are used to create other objects in
the Windows Installer object hierarchy. This chapter covers the specific properties
that are used to create other objects in the section that discusses that specific object.

Table 9-2: Installer Object Properties Used to Query Target System

Property Description

ComponentPath This is a read-only property that returns the key
path to the specified component. If the key path is
the name of a file in the component, the full path
to the file is returned. If the key path is a registry
entry, the registry entry is returned. If the key path
is a folder, the full path to the folder is returned.

Environment This is a read/write property that can be used to set
the value of an environment variable or retrieve the
value of an environment variable. If this property is
used to set an environment variable, it does not
persist beyond the end of the installation. To
permanently set an environment variable, you need
to use the Environment table.

FeatureParent This property is read only and it returns the parent
feature for a specified feature. If there is no parent
feature, the value of this property is a NULL string.

FeatureState This is a read-only property that returns the state of
an installed feature. Feature install states can be
Absent, Advertised, Run Locally, or Run From
Source.

P A R T I I I N S T A L L S C R I P T

468

Table 9-2: Installer Object Properties Used to Query Target System
(Continued)

Property Description

FeatureUsageCount This is a read-only property that returns the
number of times that a product feature has been
used. This value could be used to determine if a
feature that is not used very much should be
uninstalled during an upgrade.

FeatureUsageDate This is a read-only property that returns the last
date the specified product feature was used. The
date is returned in the MS-DOS date format.

FileAttributes This is a read-only property that returns the
attributes of a file in a combined fashion. To get
the individual attributes, you need to evaluate the
number that is returned using a mask and some
bitwise operations.

PatchInfo This is a read-only property that returns the name
of the locally cached package for a specified patch.
This lets you know to what product a patch is
applied whenever you perform a maintenance
operation.

PatchTransforms This is a read-only property that returns a semi-
colon delimited list of the transforms that are
included in the specified locally cached patch
package.

ProductInfo This is a read-only property that returns a specified
attribute for an installed product. Many of these
attributes for a product are the values of properties
that were set in the installation database.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

469

Table 9-2: Installer Object Properties Used to Query Target System
(Continued)

Property Description

ProductState This is a read-only property that returns the install
state of a specified product.

QualifierDescription This is a read-only property that returns the
description of the specified qualified component.
See Chapter 13 for a discussion of qualified
components.

UILevel This is a read/write property that specifies the type
of user interface to be used when opening and
processing subsequent packages within the current
process space.

Version This is a read-only property that returns the string
representation of the current version of the
Windows Installer. The string is returned in the
following form:

major.minor.build.update

In general you would access the values of the above properties from one of the event
handlers in a Standard project or from a custom action in a Basic MSI project.

After looking at the available methods for making changes to or querying the target
system, you will work through an example script that uses some of these properties
and methods. Table 9-3 provides an overview of the Installer object methods that are
used for other purposes than to create objects.

P A R T I I I N S T A L L S C R I P T

470

Table 9-3: Installer Methods Not Used to Create Objects

Method Description

AddSource This method is used to add an additional network
source location for a product. This method
supports source resiliency for an installed product.
Source resiliency is a means used by the Windows
Installer to identify a number of different locations
where the source files for an application can be
found.

ApplyPatch This method applies a patch to each installed
product to which the patch is applicable.

ClearSourceList This method removes all of the network locations
in the registry that indicates valid network sources
for installed products. This method affects the
source resiliency of an installed application.

CollectUserInfo This method is run from an installed application
and only the first time the application is used after
installation. This method invokes a user interface
that asks the user for basic information. The
purpose of this method is to facilitate the
implementation of an application-side security
mechanism.

ConfigureFeature This method is used to alter the installed state of a
product feature. The possibilities are to have the
feature advertised, installed locally, uninstalled,
installed to run from source, or installed to its
default location.

ConfigureProduct This method is used to alter the installed state of a
product. The possibilities are to have the product
advertised, installed locally, uninstalled, installed to
run from source, or installed to its default location.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

471

Table 9-3: Installer Methods Not Used to Create Objects (Continued)

Method Description

EnableLog This method enables logging for any installations
that are launched in the process that calls this
method.

FileSize This method returns the size of a specified file.
This method uses the normal Win32 APIs to
obtain the file size.

FileVersion This method returns the version string or language
string of a specified file. The format for versions is
a string in "#.#.#.#" format. For a language, the
value is the decimal language ID.

ForceSourceListResolution This method forces the Windows Installer to
search the source list for a valid product source the
next time a source is needed. An example of this is
when the Windows Installer performs an
installation or a reinstallation, or when it needs the
path for a component set to run from source.

InstallProduct This method initiates the installation of a product.
Depending on the command line used, this
method can also be used to uninstall a product.

ProvideComponent This method combines the functionality of the
UseFeature, ConfigureFeature, and
ComponentPath methods. It is used to perform
any required installation of a component.

ProvideQualifiedComponent This method returns the full path of the qualified
component and performs any necessary
installation.

P A R T I I I N S T A L L S C R I P T

472

Table 9-3: Installer Methods Not Used to Create Objects (Continued)

Method Description

RegistryValue This method reads information about a specified
registry key or value.

ReinstallFeature This method reinstalls features or corrects
problems with installed features

ReinstallProduct This method reinstalls a product or corrects
installation problems in an installed product.

UseFeature This method increments the usage count for a
particular feature and returns the installation state
for that feature.

The main purpose of most of the methods shown in Table 9-3 is to provide
applications with self-repair capability. A few of them, however, can be used to
implement functionality from an installation program. Some of these methods can be
used during the application upgrade process. At this point, we will look at an example
script that uses some of the properties and one or two of the methods described
above. This example introduces the use of COM in InstallScript.

The first example demonstrates the use of several of the Installer object properties.
The code for this example is shown in Figure 9-5. This example obtains information
about the InstallShield Developer product from the information that is written to the
registry.

The first thing to note about this program is that many of the properties exposed by
the Installer object deal with products that are already installed. Because of this, the
program needs to pass the value of the ProductCode property when accessing these
properties. Also note that the program has to explicitly declare the values of the codes
returned from some of the Installer object properties. Unfortunately the Windows
Installer help does not document many of the values of these codes. These properties
are designed for use in Visual Basic where these constants are available by referencing
the Microsoft Windows Installer Object Library (a type library embedded as a

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

473

resource in msi.dll). The best way to obtain the value of these constants is to open a
project in Visual Basic and reference this object library. After opening a project in
Visual Basic, you can go to the Object Browser and find the value of all constants for
the Windows Installer library.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates several
// of the Installer object properties.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

// Product code for InstallShield Developer
#define PRODUCTCODE "{0F031DEC-3150-4503-9744-9431264BBA48}"
// Return constants used by the ProductState property
#define msiInstallStateBadConfig -6
#define msiInstallStateInvalidArg -2
#define msiInstallStateUnknown -1
#define msiInstallStateAdvertised 1
#define msiInstallStateAbsent 2
#define msiInstallStateDefault 5

INT iReturn;
STRING szInstalledState, szProductName;
STRING szInstallDate, szManufacturer;
OBJECT objInstaller;

program

 try
 // Create an Installer object.
 set objInstaller =
 CreateObject("WindowsInstaller.Installer");

 // Obtain the install state of InstallShield Developer.
 iReturn = objInstaller.ProductState(PRODUCTCODE);

Figure 9-5: Setup.rul that demonstrates several Installer object properties.

P A R T I I I N S T A L L S C R I P T

474

 // Display the install state of InstallShield Developer.
 switch(iReturn)
 case msiInstallStateBadConfig:
 szInstalledState =
 "The configuration data is corrupt.";
 case msiInstallStateInvalidArg:
 szInstalledState =
 "An invalid parameter was passed to the function.";
 case msiInstallStateUnknown:
 szInstalledState =
 "The product is neither advertised nor installed.";
 case msiInstallStateAdvertised:
 szInstalledState =
 "The product is advertised but not installed.";
 case msiInstallStateAbsent:
 szInstalledState =
 "The product is installed for a different user.";
 case msiInstallStateDefault:
 szInstalledState =
 "The product is installed for the current user.";
 default:
 szInstalledState = "Unknown installed state.";
 endswitch;

 szProductName = objInstaller.ProductInfo
 (PRODUCTCODE, "InstalledProductName");
 szInstallDate = objInstaller.ProductInfo
 (PRODUCTCODE, "InstallDate");
 szManufacturer = objInstaller.ProductInfo
 (PRODUCTCODE, "Publisher");

 // Display the product information.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Product code: %s\nProduct name: %s\n" +
 "Manufacturer: %s\nInstalled state: %s\n" +
 "Install date: %s",
 PRODUCTCODE, szProductName, szManufacturer,
 szInstalledState, szInstallDate);
 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 set objInstaller = NOTHING;

endprogram

Figure 9-5: Continued.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

475

The program shown in Figure 9-5 uses two Installer object properties,
ProductState and ProductInfo. It accesses these properties by first creating
an Installer object and then calling these properties to return the desired values. Note
that every time that you create an object you must use the set keyword. This
program uses the properties exposed by the Windows Installer to query the system
for information about products installed using the Windows Installer. In general,
using the automation interface properties and methods from InstallScript is limited to
gathering information about the system.

The Windows Installer object model in Figure 9-4 shows the five objects that can be
created from the Installer object. InstallScript can only really effectively use the
StringList and the Record objects. The SummaryInfo and Database objects are used
for authoring a database. The Session object is not available to an InstallScript
program because it is created by and available only to the Windows Installer process
that runs an installation. The Session object, as already mentioned, is only accessible
to VBScript and JScript custom actions.

The following sections take a closer look at the StringList and Record objects since
they are the only objects, other than the Installer object, that have any use to an
InstallScript program or custom action. You will then work through another
InstallScript example that uses these objects.

The StringList Object
A StringList object defines a collection of strings that identify various entities. There
are seven different StringList objects that can be created using an Installer object
property. These properties are discussed in Table 9-4.

Table 9-4: Installer Properties Used to Create StringList Objects

Property Description

Installer.ComponentClients This read-only property returns a StringList
object that enumerates the set of clients for the
specified component. The client of a component
is a product and this product is defined by the
value of its ProductCode property.

P A R T I I I N S T A L L S C R I P T

476

Table 9-4: Installer Properties Used to Create StringList Objects
(Continued)

Property Description

Installer.ComponentQualifiers This read-only property returns a StringList
object enumerating the set of registered
qualifiers for a specified component. This has to
do with qualified components or an array of
components.

Installer.Components This read-only property returns a StringList
object that enumerates all the installed
components for all installed products.

Installer.Features This read-only property returns a StringList
object that enumerates all the features for a
specified product. This property returns the list
of features in any order and not necessarily the
order in which the features were installed.

Installer.Patches This read-only property returns a StringList
object that enumerates all the patches applied to
a specified product.

Installer.Products This read-only property returns a StringList
object that enumerates all the products that have
been installed for the current user or for the
machine. This property returns the list of
products in any order and not necessarily the
order in which the products were installed.

Installer.RelatedProducts This read-only property returns a StringList
object that enumerates the set of all installed
products associated with a specified
UpgradeCode.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

477

After you create one of the StringList objects (Table 9-4), you have to do something
with it. The primary use for a StringList object is to iterate through it looking for any
needed information. Two properties are available to enable traversing a StringList
object (Table 9-5). These properties allow you to find out how many strings are in a
StringList object and an index that allows you to access each of these strings.

Table 9-5: The StringList Object Properties

Property Description

Count This read-only property returns the number of items in a
StringList Object. The usage of this property is as follows:
iItems = objStringList.Count;

Item This read-only property returns a value in the StringList
object. The usage of this property is normally inside a loop
and is as follows:
szString = objStringList.Item(i);

Looping proceeds iItems number of times in order to
access all values that are enumerated by the StringList
object. The index i for Item is 0 based.

The concept of a StringList object is quite simple. Accessing the contents of a
StringList object is similar to accessing the contents of an array using a numerical
index. There are no methods that are available to work with a StringList object.

The Record Object
For the Record object, there are three Installer object methods and one property that
will create a record. One of these methods creates an empty record, but the other two
methods and one property return values in the fields of records of defined sizes. The
Installer object methods and properties that create record objects are described in
Table 9-6.

P A R T I I I N S T A L L S C R I P T

478

The Record object is a container object for holding and transferring a variable
number of values. Fields within the record are numerically indexed and can contain
strings, integers, objects, and Null values. Fields beyond the allocated record size are
treated as having permanently Null values. Field number 0 is reserved so the actual
values of interest are contained in fields that start with and index of 1.

Table 9-6: Methods or Properties for Creating Record Objects

Method/Property Description

Installer.CreateRecord

(Method)

This method returns a new Record object that has
the specified number of fields. With Record
objects, the indexing of fields is 1-based because
there is a 0-index field that is used for special
purposes and this field is not part of the field
count.

Installer.FileHash

(Method)

This method takes the path to a file and returns a
128-bit hash of that file. The file hash information
is returned as a Record object. The entire 128-bit
file hash is returned as four 32-bit integer data
property fields. A file hash is used by the Windows
Installer to determine whether a non-versioned file
should be overwritten during an installation.

Installer.GetShortcutTarget

(Property)

This property examines a specified shortcut and
returns in a Record object with three fields
containing the product code, the feature name,
and the component code.

Installer.LastErrorRecord

(Method)

This method returns a Record object that contains
the error parameters for the most recent error
generated by particular methods.

To work with the records created using the above methods, there are both properties
and methods that are exposed by the Record object. There are five properties and
four methods. The five properties of a Record object are discussed in Table 9-7 and

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

479

the four methods are discussed in Table 9-8. Remember that the main purpose of the
Record object is to hold and/or transfer data.

Table 9-7: The Record Object Properties

Property Description

DataSize This read-only property returns the size of the data for the
designated field. If the data is a stream, the stream length in
bytes is returned. If the data is a string, the string length
without the terminating Null is returned. If the data is an
integer, the value 4 is returned. If the data is Null, 0 is
returned.

FieldCount This read-only property returns the number of fields in the
record. Trying to read fields beyond this count returns a
Null value. Trying to write to fields beyond this count fails.

IntegerData This read/write property transfers 32-bit integer data into
or out of a specified field within the record.

IsNull This read-only property returns True if the indicated field
is Null, and False if the field contains data.

StringData This read/write property transfers string data into or out
of a specified field within the record. If an integer or object
has been stored, its string value is returned.

In Table 9-7 you can see that all five of the Record properties can be used to retrieve
values from a Record object but only tow of these properties can set the value of a
field in a record. Only integer or string data can be set using a property. Setting the
other types of data that a record can contain requires the use of methods.

P A R T I I I N S T A L L S C R I P T

480

Table 9-8: The Record Object Methods

Method Description

ClearData This clears the data in all fields by setting them to Null.
Any objects stored in the fields are released.

FormatText This method formats fields according to the template in
field 0.

ReadStream This method reads a specified number of bytes from a
record field holding stream data.

SetStream This method copies the content of the specified file into
the designated record field as stream data.

A Script Example
This section provides a final example of using the Automation Interface to the
Windows Installer. This example works primarily with the StringList object and the
Record object.

As with the previous example, this example works with various aspects of the
InstallShield Developer installation. The code for this example is shown in Figure 9-6.
In this example, the program first examines the number and names of the features
that compose InstallShield Developer. Secondly, the program creates a file hash for
the Funcwiz.ini file. File hashing is a means to determine if non-versioned files are
different.

To get the features for InstallShield Developer, you use the Features property of the
Installer object. This gives a StringList object that contains the names of all the
features for the ProductCode that was passed as its argument. The program then gets
the number of features in the StringList object, using the Count property, so that it
can loop through this list and create a display string to use in the call to the
SprintfBox function. To loop through the StringList of feature names, the

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

481

program uses the Index property of this object, passing this property the index of the
string that it wants to retrieve.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the
// StringList and Record objects.
//
///
#include "ifx.h"

#define CAPTION "Feedback"

// Product code for InstallShield Developer
#define PRODUCTCODE "{F91CEC68-2512-410B-93DC-4AA79F1EF7B7}"

INT i, iCnt;
LONG dwData(4);
STRING szFeature, szDisplay;
OBJECT objInstaller, objRecord, objStringList;

program
 try
 // Create an Installer object.
 set objInstaller =
 CreateObject("WindowsInstaller.Installer");

 // Create a StringList object that contains the names of
 // all the features for InstallShield Developer
 set objStringList = objInstaller.Features(PRODUCTCODE);

 // Get the number of features.
 iCnt = objStringList.Count;

 // Loop through all the features and add them to
 // a display variable.
 for i=0 to iCnt-1
 szFeature = objStringList.Item(i);
 if(i != iCnt-1) then
 szDisplay = szDisplay + szFeature + ", ";
 else
 szDisplay = szDisplay + szFeature;
 endif;
 endfor;

Figure 9-6: Setup.rul file that demonstrates the StringList and Record objects.

P A R T I I I N S T A L L S C R I P T

482

 // Display the number and names of the features
 // in the InstallShield Developer product.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "InstallShield Developer Features\n\n" +
 "Number of features = %d\n%s",
 iCnt, szDisplay);

 // Create a record object that holds a file hash
 // for the Funcwiz.ini file.
 set objRecord = objInstaller.FileHash("C:\\Program Files" +
 "\\InstallShield\\Developer\\Support\\Funcwiz.ini", 0);

 // Extract the value in each field of the
 // file hash record.
 dwData(0) = objRecord.IntegerData(1);
 dwData(1) = objRecord.IntegerData(2);
 dwData(2) = objRecord.IntegerData(3);
 dwData(3) = objRecord.IntegerData(4);

 // Display the values of the file hash.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Field 1: %lu\nField 2: %lu\nField 3: %lu\nField 4: %lu",
 dwData(0), dwData(1), dwData(2), dwData(3));

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 set objRecord = NOTHING;
 set objStringList = NOTHING;
 set objInstaller = NOTHING;

endprogram

Figure 9-6: Continued.

The value of the ProductCode property for InstallShield Developer used in the above
example might be different than what is in the version of InstallShield Developer you
are using. Before running this example you should open up the .msi file for
InstallShield Developer using Orca and get the value of the ProductCode property
from the Property table

To create the Record object that contains the hash value for the Funcwiz.ini file, the
program uses the FileHash method of the Installer object. Once you have this object,
you can access each of the fields in the record using the IntegerData property of the
Record object. The program sets the four elements of an array to the value of the

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

483

four fields in the record and then displays these values as unsigned long values. As in
the previous program, you can then set all the objects that were created to
NOTHING, which is the same as setting them to NULL.

The Scripting Run-Time Objects

Figure 9-7: The Scripting Run-Time object model.

P A R T I I I N S T A L L S C R I P T

484

The objects available from the Scripting Run-Time Library provide many methods
and properties that provide access to the Windows file-system. The Scripting Run-
Time Library is available in the file scrrun.dll (a system file). The main object covered
in this chapter is the FileSystemObject object, but we will also discuss the Dictionary
object. The Dictionary object is a way to create an associative array in InstallScript.
The object model for the scripting run-time functionality found in the scrrun.dll file is
shown in Figure 9-7.

As shown in Figure 9-7, the FileSystemObject object provides a number of objects
that deal with drives, folders, and files. The Dictionary object is just an object by itself
with no hierarchy of objects to be created. This chapter provides a brief overview of
these objects, so you should consult the full documentation from the Microsoft Web
site for additional information. To get the full documentation of version 5.6 of the
Windows Script Host, do the following:

1. Access the MSDN Web site.

2. Click on the Downloads link.

Search for the string "Windows Script Host". This documentation is appropriate for
the material in this section and in the next section.

The FileSystemObject Object
The FileSystemObject object provides a means to access the file system of the target
system. Unlike with the Windows Installer automation interface, all the objects,
methods, and properties are available from InstallScript. To create a
FileSystemObject object, use a line of code such as follows:

set fso = CreateObject("Scripting.FileSystemObject");

In the FileSystemObject object, there are four objects and three collections. This
discussion refers to collections as objects because they have properties and methods.
Table 9-9 discusses the creation of each of the nine objects that are available from the
FileSystemObject object. The discussion in Table 9-9 assumes that you have already
created a FileSystemObject object with the name fso.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

485

Table 9-9: The Creation of the FileSystemObject Objects

Object Description

Drives

(Collection)

A Drives collection is created using the Drives property of the
FileSystemObject object. This is implemented in InstallScript
in the following manner.

 set dc = fso.Drives;

This collection object does not have a numerical index that can
be used to traverse it. In InstallScript this presents a special
problem since the language does not have a For Each…Next
construct. We will look at an example of how to handle this
problem for a Drives collection later in this chapter.

Drive A Drive object identifies a drive in a specified path. This object
is created using the GetDrive method of the FileSystemObject
object. A Drive object is created in InstallScript using a
statement similar to the following:

 set d = fso.GetDrive(drivespec);

The drivespec argument can be a drive letter "C", a drive letter
with a colon appended "C:", a drive letter with a colon and
path separator "C:\", or a network share specification
"\\computer\share".

A Drive object can also be created using the Item property of
the Drives collection.

Files

(Collection)

A Files collection is created using the Files property of the
Folder object This is implemented in InstallScript in the
following manner.

 set folder = fso.GetFolder(folderspec);
 set files = folder.Files;

In InstallScript it is not possible to traverse a Files collection.
The only thing that you can do is check to see if a certain file
exists in the collection.

P A R T I I I N S T A L L S C R I P T

486

Table 9-9: The Creation of the FileSystemObject Objects (Continued)

Object Description

File A File object identifies a file for which you want to get the
attributes. This object is created using the GetFile method of
the FileSystemObject object. A File object is created in
InstallScript using a statement similar to the following:

 set file = fso.GetFile(filespec);

The filespec argument can be an absolute or a relative path to a
file.

A File object can also be created using the Item property of the
Files collection.

Folders

(Collection)

A Folders collection is created using the SubFolders property
of the Folder object This is implemented in InstallScript in the
following manner.

 set folder = fso.GetFolder(folderspec);
 set folders = folder.SubFolders;

In InstallScript it is not possible to traverse a Folders
collection. The only thing that you can do is to check to see if a
certain folder exists in the collection.

Folder A Folder object identifies a folder for which you want to get
the attributes. This object can be created using the GetFolder
method of the FileSystemObject object. A Folder object using
this method is created in InstallScript using a statement similar
to the following:

 set folder = fso.GetFolder(folderspec);

The folderspec argument can be an absolute or a relative path to
a folder.

A Folder object can be created by other methods and
properties, as shown in Figure 9-7.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

487

Table 9-9: The Creation of the FileSystemObject Objects (Continued)

Object Description

TextStream A TextStream object identifies a text file to which you want
sequential access. This object can be created using the
CreateTextFile method of the FileSystemObject object or the
Folder object. A TextStream object using this method is
created in InstallScript using a statement similar to the
following:

 set textfile =
 fso.CreateTextFile(filename, overwrite, unicode);

The filename argument identifies the name to create. It can
specify a path. If a path is not specified, the file is created in the
current directory. The overwrite argument is optional and it
specifies whether an existing file can be overwritten. To permit
a file to be overwritten, set this argument to TRUE. The
default is FALSE. The unicode argument defines whether an
ASCII or a Unicode text file is to be created. To have a
Unicode file created, set this argument to TRUE. The default
is FALSE.

Additionally a TextStream object can be created using the
OpenTextFile method of the FileSystemObject or the
OpenAsTextStream method of the File object.

So far we have seen how to create a FileSystemObject and then how to use this
object to create all the other objects in the object model hierarchy. The next section
looks at the other methods that are exposed by the FileSystemObject object directly.

FileSystemObject Object Methods

The FileSystemObject object exposes only one property and that is the property
already discussed in Table 9-9 for creating a Drives collection. Table 9-10 shows the
methods of the FileSystemObject object that are not used to create other objects.

P A R T I I I N S T A L L S C R I P T

488

Table 9-10: The Methods of the FileSystemObject Object

Method Description

BuildPath This method appends a name to a path. Building path
names for files and folders is a very common
operation in any installation program. A call to this
method in InstallScript might look like this:

 newpath = fso.BuildPath(path, name);

The path argument is either an absolute or relative path
that either exists or does not exist. The name argument
is the name of a folder or a file. A path separator is
inserted if necessary. This performs much the same
functionality that the path concatenate operator (^)
does in InstallScript. The path buffer functions in
InstallScript also server the purpose of building paths.

CopyFile This method copies one or more files from one
location to another. A call to this method in
InstallScript might look like this:

 fso.CopyFile(source, destination,
 [overwrite]);

The source argument specifies the file or files to be
copied. This string can include wildcard characters.
The destination argument specifies the location where
the files are to be copied. If this destination is the
name of a file, it will be overwritten depending on the
overwrite argument. If the destination is a folder, it
must terminate with a path separator. The overwrite
argument is optional and, by default, is set to TRUE.
The functionality of this method is somewhere
between the CopyFile and the XCopyFile
functions found in InstallScript.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

489

Table 9-10: The Methods of the FileSystemObject Object (Continued)

Method Description

CopyFolder This method copies one or more folders and their
contents from one location to another. A call to this
method in InstallScript might look like this:

 fso.CopyFolder(source, destination,
 [overwrite]);

The source argument specifies the folder or folders to
be copied. This string can include wildcard characters.
The destination argument specifies the location where
the folders are to be copied. If the destination is a
folder terminated with a path separator, it is assumed
that this folder exists. The overwrite argument is
optional and, by default, is set to TRUE. This
argument determines whether folders are to be
overwritten if they already exist. In InstallScript you
can use the XCopyFile function to perform the
same operation.

DeleteFile This method deletes one or more files. A call to this
method in InstallScript might look like this:

 fso.DeleteFile(filespec, [force]);

The filespec argument names the file to be deleted. This
argument can include wildcard characters in the last
component of the path. The optional force argument
allows for the deletion of a read-only file if this
argument is set to TRUE. The default for this
argument is FALSE. You can delete files using the
DeleteFile function in InstallScript. However,
this method is more powerful than the DeleteFile
function in InstallScript because it can remove read-
only files.

P A R T I I I N S T A L L S C R I P T

490

Table 9-10: The Methods of the FileSystemObject Object (Continued)

Method Description

DeleteFolder This method deletes one or more folders and their
contents. A call to this method in InstallScript might
look like this:

 fso.DeleteFolder(folderspec, [force]);

The folderspec argument names the folders to be deleted.
This argument can include wildcard characters in the
last component of the path. The optional force
argument allows for the deletion of a read-only file if
this argument is set to TRUE. The default for this
argument is FALSE. This method is similar to the
DeleteDir function in InstallScript. There are
differences in functionality, so which should be used
depends on the desired action. For example the
DeleteDir function cannot delete a read-only
folder but the DeleteFolder method can. Also,
you can use wild cards in the folderspec argument in the
call to the DeleteFolder method but you need to
specify an absolute path to the folder to be deleted in
the DeleteDir function.

DriveExists This method returns TRUE if the specified drive exists
and FALSE if it does not exist. A call to this method
in InstallScript might look like this:

 bReturn = fso.DriveExists(drivespec);

The drivespec argument specifies the drive letter or the
full UNC path to a shared drive. The return value of
TRUE for a drive with removable media does not
indicate that there is media in the drive. You need to
use the IsReady property of the Drive object to
determine this. The DriveExists method is similar to
InstallScript’s ExistsDisk function.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

491

Table 9-10: The Methods of the FileSystemObject Object (Continued)

Method Description

FileExists This method returns TRUE if the specified file exists
and FALSE if it does not exist. A call to this method
in InstallScript might look like:

 bReturn = fso.FileExists(filespec);

The filespec argument specifies the absolute or relative
path to the file whose existence is being determined. If
only the file name is specified, only the current
directory is searched In InstallScript you can perform
the same operation using the Is function. The
FileExists method can take both a relative path
and an absolute path to the file being checked. The Is
function can only take an absolute path to the file.

FolderExists This method returns TRUE if the specified folder
exists and FALSE if it does not exist. A call to this
method in InstallScript might look like:

 bReturn = fso.FolderExists(folderspec);

The folderspec argument specifies the absolute or relative
path to the folder whose existence is being
determined. If only the folder name is specified, only
the current directory is searched. This method is
similar to InstallScript’s ExistsDir function.

GetAbsolutePathName This method returns the complete and unambiguous
path specification for the input location. A call to this
method in InstallScript might look like:

 szPath = fso.GetAbsolutePathName(pathspec);

The pathspec argument can be any partial path
specification that is related to the current directory.
The return value is the absolute path to this location.
There is no similar function in InstallScript.

P A R T I I I N S T A L L S C R I P T

492

Table 9-10: The Methods of the FileSystemObject Object (Continued)

Method Description

GetBaseName This method returns the last element in a path minus
any file extension if the last element is a file. A call to
this method in InstallScript might look like:
szBase = fso.GetBaseName(pathspec);

The pathspec argument defines the string that identifies
a folder or file location. This location does not have to
exist because this method only treats this as a string in
the form of a path. There is no similar function in
InstallScript.

GetDriveName This method returns the drive letter element in a path
specification string. A call to this method in
InstallScript might look like:
szDrive = fso.GetDriveName(pathspec);

The pathspec argument defines the string that identifies
a folder or file location. This location does not have to
exist because this method only treats this as a string in
the form of a path. This method is similar to
InstallScript’s GetDisk function. Both this method
and the GetDisk function work with standard paths
as well as with UNC path names.

GetExtensionName This method returns the extension name of the last
element in a path specification string. A call to this
method in InstallScript might look like:
szExt = fso.GetExtensionName(pathspec);

The pathspec argument defines the string that identifies
a folder or file location. This location does not have to
exist because this method only treats this as a string in
the form of a path. There is no similar function in
InstallScript.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

493

Table 9-10: The Methods of the FileSystemObject Object (Continued)

Method Description

GetFileName This method returns the last element in a path
including any file extension if the last element is a file.
A call to this method in InstallScript might look like:
szFile = fso.GetFileName(pathspec);

The pathspec argument defines the string that identifies
a folder or file location. This location does not have to
exist because this method only treats this as a string in
the form of a path. There is no similar function in
InstallScript.

GetFileVersion This method returns the version number of the
specified file. A call to this method in InstallScript
might look like:
szVersion = fso.GetFileVersion(pathspec);

The pathspec argument defines the location of the file
for which you want to retrieve the version. This
method is similar to InstallScript’s
VerGetFileVersion function. The main
difference is that this method can accept both an
absolute path as well as a relative path to the file whose
version is being retrieved.

GetParentFolderName This method returns the parent of the last component
in a specified path. A call to this method in
InstallScript might look like:
szParent = fso.GetParentFolderName(pathspec);

The pathspec argument defines the string that identifies
a folder or file location. This location does not have to
exist because this method only treats this as a string in
the form of a path. There is no similar function in
InstallScript.

P A R T I I I N S T A L L S C R I P T

494

Table 9-10: The Methods of the FileSystemObject Object (Continued)

Method Description

GetTempName This method returns a randomly generated temporary
file or folder name that can be used for performing
operations that require a temporary file or folder. A
call to this method in InstallScript might look like:
szTemp = fso.GetTempName();

There is no similar function in InstallScript.

MoveFile This method moves one or more files from one
location to another. A call to this method in
InstallScript might look like:
fso.MoveFile(source, destination);

The source argument is the absolute or relative path to
the file or files that are to be moved. The destination
argument is the absolute or relative specification of the
location to where the files are to be moved. There is
no comparable function in InstallScript.

MoveFolder This method moves one or more folders from one
location to another. A call to this method in
InstallScript might look like:
fso.MoveFolder(source, destination);

The source argument is the absolute or relative path to
the folder or folders that are to be moved. The
destination argument is the absolute or relative
specification of the location to where the folders are to
be moved. There is no comparable function in
InstallScript.

The example shown in Figure 9-8 uses some of the methods described in Table 9-10
to manipulate and gather information from the target system.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

495

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates several of the
// methods exposed by the FileSystemObject object
//
///

#include "ifx.h"

#define CAPTION "Feedback"
#define PATHSPEC "C:\\WINNT\\system32\\dllcache"

STRING szNewPath, szFileName, szParentFolder;
STRING szAbsolutePath, szFileVersion, szTemp;
BOOL bExists;
OBJECT fso;

program

 // Set the current directory to the location
 // specified by the PATHSPEC constant.
 ChangeDirectory(PATHSPEC);

 try
 // Create a FileSystemObject object.
 set fso = CreateObject("Scripting.FileSystemObject");

 // Add a file name to the PATHSPEC location.
 szNewPath = fso.BuildPath(PATHSPEC, "Shell32.dll");

 // Check to see if the new path exists.
 bExists = fso.FileExists(szNewPath);

 // If the file exists, get information
 // about this file and its location.
 if(bExists) then

 szFileName = fso.GetFileName(szNewPath);

 // This is why we needed to set the current directory.
 szAbsolutePath = fso.GetAbsolutePathName(szFileName);
 szParentFolder = fso.GetParentFolderName(szAbsolutePath);
 szFileVersion = fso.GetFileVersion(szAbsolutePath);
 szTemp = fso.GetTempName();

Figure 9-8: Setup.rul that shows several of the methods exposed by the FileSystemObject object.

P A R T I I I N S T A L L S C R I P T

496

 // Display the information that was retrieved.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "File name: %s\nAbsolute path: %s\n" +
 "Parent Folder: %s\nFile version: %s\n" +
 "Temp folder: %s", szFileName,
 szAbsolutePath, szParentFolder,
 szFileVersion, szTemp);
 else
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Path does not exist.");
 endif;

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

endprogram

Figure 9-8: Continued.

First, the program uses the CurrentDirectory InstallScript function to set the
current directory to the value defined by the PATHSPEC constant. This is necessary
because the example uses a method that relates to finding the absolute path of an
element that is in the current directory. After creating the FileSystemObject object,
the program adds a file name to the path defined by the PATHSPEC constant. It
then verifies that the file exists. If it exists, the program executes several of the
methods that allow you to retrieve information from the file system. In this chapter,
none of the program examples make changes to the target system. This is discussed
when we cover custom actions in Chapter 11.

Drive Object Properties

The Drive object does not expose any methods but it does provide a number of
valuable properties (Table 9-11). A Drive object can be created in InstallScript using
the following statements:

set fso = CreateObject("Scripting.FileSystemObject");
szDriveName = fso.GetDriveName(PATHSPEC);
set do = fso.GetDrive(szDriveName);

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

497

Table 9-11: Drive Object Properties

Property Description

AvailableSpace This read-only property returns the amount of space
available to a user on the specified drive or network
share. The available space returned by this property
may be less than the total free space if the computer
operating system supports quotas. The available space
is returned as a string, giving the space in bytes. To get
the available space in megabytes, use an InstallScript
statement similar to the following:
Value = do.AvailableSpace;
iAvailSpace = Value/(1024*1024);

In these statements the variable Value is declared as
type VARIANT. This works only if the available space
is less than 4 GB.

DriveLetter This read-only property returns the drive letter of a
physical local drive or a network share. To get the
drive letter, use an InstallScript statement similar to the
following:
szDriveLetter = do.DriveLetter;

The drive letter returned by this property does not
include the colon (:). If Drive object identifies a
network share that does not map to a drive letter then
the return will be a NULL string.

DriveType This read-only property returns a value indicating the
type of a specified drive. To get the drive type, use an
InstallScript statement similar to the following
statement:
iType = do.DriveType;

When you get the number that indicates the drive type,
you can set a string variable to a proper display value
for the drive type.

P A R T I I I N S T A L L S C R I P T

498

Table 9-11: Drive Object Properties (Continued)

Property Description

FileSystem This read-only property returns the type of file system
in use for the specified drive. To get the file system,
use an InstallScript statement similar to the following
statement:
szFileSystem = do.FileSystem;

The possible values returned by this property are FAT,
NTFS, and CDFS.

FreeSpace This read-only property returns the amount of free
space available to a user on the specified drive or
network share. The available space that is returned by
this property may be more than the total available
space if the computer operating system supports
quotas. The free space is returned as a string, giving
the space in bytes. To get the free space in megabytes,
use an InstallScript statement similar to the following:
Value = do.FreeSpace;
iFreeSpace = Value/(1024*1024);

In these statements the variable Value is declared as
type VARIANT. This works only if the free space is
less than 4 GB.

IsReady This read-only property returns TRUE if the specified
drive is ready and FALSE if the drive is not ready. To
see if a drive is ready, use an InstallScript statement
similar to the following:
bReady = do.IsReady;

When the drive is for removable media, the value of
bReady is TRUE only if the drive contains media.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

499

Table 9-11: Drive Object Properties (Continued)

Property Description

Path This read-only property returns the path for a specified
drive. To get the drive path, use an InstallScript
statement similar to the following:
szPath = do.Path;

Except for network share situations, this is not very
useful. It returns the drive letter with the colon (:).

SerialNumber This read-only property returns the serial number used
to uniquely identify a disk volume. To get the volume
serial number, you would use an InstallScript
statement similar to the following:
iSerialNumber = do.SerialNumber;

The value returned is the same value that appears in
the Command Prompt when you execute the Dir
command.

ShareName This read-only property returns the network share
name for a specified drive. To get the network share
name, use an InstallScript statement similar to the
following:
szShareName = do.ShareName;

If the Drive object does not refer to a network drive,
this property returns a NULL string.

TotalSize This read-only property returns the total space in bytes
of a drive or network share. This is not very useful in
InstallScript since it cannot represent a number greater
than 4 GB.

P A R T I I I N S T A L L S C R I P T

500

Table 9-11: Drive Object Properties (Continued)

Property Description

VolumeName This read/write property returns or sets the volume
name of a drive. To get the volume name, use an
InstallScript statement similar to the following:
szVolumeName = do.VolumeName;

Trying to set a volume name without having sufficient
privileges generates an exception.

This next program uses some of the Drive object properties (Figure 9-9). The key to
this program is to first create a FileSystemObject object and then use this object to
obtain the drive name from a path using the GetDriveName method. Then, the
program passes this drive name to the GetDrive method of the FileSystemObject
object and creates a Drive object. From there, the program uses the various Drive
object properties to retrieve information about the drive.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates several of the
// properties exposed by the Drive object
//
///
#include "ifx.h"

#define CAPTION "Feedback"
#define PATHSPEC "C:\\WINNT\\system32\\dllcache"

INT iType, iSerialNumber;
BOOL bReady;
STRING szDriveName, szDriveType;
STRING szFileSystem, szReady;
VARIANT Value;
OBJECT fso, do;

Figure 9-9: Setup.rul showing the use of some Drive object properties.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

501

program

 try
 // Create a FileSystemObject object.
 set fso = CreateObject("Scripting.FileSystemObject");
 szDriveName = fso.GetDriveName(PATHSPEC);

 // Create a Drive object.
 set do = fso.GetDrive(szDriveName);

 // Get the drive type and convert
 // it to a display string.
 iType = do.DriveType;
 switch(iType)
 case 0:
 szDriveType = "Unknown type";
 case 1:
 szDriveType = "Removable drive";
 case 2:
 szDriveType = "Fixed drive";
 case 3:
 szDriveType = "Network drive";
 case 4:
 szDriveType = "CD-ROM drive";
 case 5:
 szDriveType = "RAM Disk";
 endswitch;

 // Get the type of file system.
 szFileSystem = do.FileSystem;

 // Check to see if the drive is ready
 // and then retrieve the serial number.
 if(do.IsReady) then
 iSerialNumber = do.SerialNumber;
 endif;

 // Check to see if the drive is ready
 // and then create a display string.
 if(do.IsReady) then
 szReady = "The drive is ready for use.";
 else
 szReady = "The drive is not ready for use.";
 endif;

Figure 9-9: Continued.

P A R T I I I N S T A L L S C R I P T

502

 // Display the information about the drive.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Drive Name: %s\nDrive Type: %s\nFile System: %s\n" +
 "Serial Number: %lu\nStatus: %s",
 szDriveName, szDriveType, szFileSystem,
 iSerialNumber, szReady);

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 // Set the objects to NULL
 set fso = NOTHING;
 set do = NOTHING;

endprogram

Figure 9-9: Continued.

Folder and File Object Properties and Methods

The Folder and File objects expose the same properties and methods. These
properties and methods allow you to work with individual folders and files. The 12
properties for the Folder object and the 11 properties for the File object are described
in Table 9-12. The properties and methods discussed here are those that do not create
other objects.

A Folder object and File object can be created in InstallScript as follows:

set fso = CreateObject("Scripting.FileSystemObject");
szFolderName = "C:\\NewFolder";
set fldr = fso.CreateFolder(szFolderName);
szFileSpec = "C:\\WINNT\\system32\\dllcache\\Shell32.dll"
set f = fso.GetFile(szFileSpec);

Using the GetFolder or the GetSpecialFolder methods of the
FileSystemObject object can also create a Folder object.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

503

Table 9-12: Folder and File Object Properties

Property Description

Attributes This property sets or returns the attributes of files or
folders. Depending on the attribute, this property is
either read/write or read-only. For a list of the
attributes, see the example program in Figure 9-10. To
get the attribute of a file or folder, you would use an
InstallScript statement similar to the following type:
iAttrib = fldr.Attributes;

To set an attribute, for example to make a folder
hidden, use an InstallScript statement as follows:
fldr.Attributes = 2;

There are nine attributes that can be retrieved and five
attributes that can be set. A full description of all the
attribute values can be found in the help file for the
FileSystemObject found on the MSDN Web site.

DateCreated This read-only property returns the date and time that
the specified file or folder was created. To retrieve the
data and time that a folder or file was created, use the
following InstallScript statement:
szDateTime = fldr.DateCreated;

The property’s value is returned as a string.

DateLastAccessed This read-only property returns the date and time that
the specified file or folder was last accessed. To
retrieve the data and time that a folder or file was last
accessed, use an InstallScript statement similar to the:
szDateTime = fldr.DateLastAccessed;

The property’s value is returned as a string.

P A R T I I I N S T A L L S C R I P T

504

Table 9-12: Folder and File Object Properties (Continued)

Property Description

DateLastModified This read-only property returns the date and time that
the specified file or folder was last modified. To
retrieve the data and time that a folder or file was last
modified, use an InstallScript statement similar to the
following:
szDateTime = fldr.DateLastModified;

The property’s value is returned as a string.

Drive This read-only property returns the drive letter of the
drive on which the specified file or folder resides. To
retrieve the drive on which a folder or file resides, use
an InstallScript statement similar to the following:
szDrive = fldr.Drive;

The property’s value is returned as a string that
contains the drive letter with a colon (:).

IsRootFolder

(Folder object only)

This read-only property returns TRUE if the specified
folder is a root folder and FALSE if the specified
folder is not a root folder. To find out if a folder is a
root folder, use an InstallScript statement similar to
the following:
bRootFolder = fldr.IsRootFolder;

Name This read/write property sets or returns the name of a
specified file or folder. To retrieve the name of a
folder, use an InstallScript statement similar to the
following:
szFolderName = fldr.Name;

To set the name of a folder, use an InstallScript
statement similar to the following:
fldr.Name = szFolderName;

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

505

Table 9-12: Folder and File Object Properties (Continued)

Property Description

Name This read/write property sets or returns the name of a
specified file or folder. To retrieve the name of a
folder, use an InstallScript statement similar to the
following:
szFolderName = fldr.Name;

This property does not return the complete path, only
the name of the folder or file. To set the name of a
folder, use an InstallScript statement similar to the
following:
fldr.Name = szFolderName;

If you try to set the name of a folder that is protected
by the operating system, an exception occurs.

Path This read-only property returns the path for a
specified file or folder. To retrieve the path of a folder,
use an InstallScript statement similar to the following:
szPath = fldr.Path;

For drive letters, the root drive is not included. This
means that the path for the C drive is C: and not C:\.

ShortName This read-only property returns the short name used
by programs that require the 8.3 folder and file
naming convention. To retrieve the short name of a
folder, use an InstallScript statement similar to the
following:
szShortName = fldr.ShortName;

This short name does not include the complete path
of the folder or file.

P A R T I I I N S T A L L S C R I P T

506

Table 9-12: Folder and File Object Properties (Continued)

Property Description

ShortPath This read-only property returns the short path name
used by programs that require the 8.3 folder and file
naming convention. To retrieve the short path name
of a folder, use an InstallScript statement similar to the
following:
szShortPath = fldr.ShortPath;

Size This read-only property returns the size in bytes for a
folder or file. For folders, this property returns the size
of all files and subfolders contained in the folder. To
retrieve the size of a folder, use an InstallScript
statement similar to the following:
iSize = fldr.Size;

When using this property, remember that the
InstallScript NUMBER data type is limited in the size
that it can represent.

Type This read-only property returns information about the
type of a file or folder. To retrieve the type of a folder,
use an InstallScript statement similar to the following:
szType = fldr.Type;

For folders, the type that is returned by this property
is the string "File Folder". For files, the type returned
is based on the description associated with the
registered extension.

There are three methods exposed by the Folder and File objects and these are
discussed in Table 9-13. All three methods apply to both types of objects. These
methods are used to perform the most common kind of manipulation on folders and
files; copy, move, and delete.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

507

Table 9-13: Folder and File Object Methods

Method Description

Copy This method copies a specified file or folder from one
location to another. To copy a folder, use an InstallScript
statement similar to the following:
fldr.Copy(destination, [overwrite]);

The destination argument specifies the location where the
folder or file is to be copied. This argument needs to
include the name of the folder or file to be set in the new
location. The destination argument can be a relative or
absolute path. If it is a relative path, it is relative to the
current directory. The overwrite argument is optional and is
used to allow the replacement of an existing folder or file.
The default for this argument is TRUE.

This method performs the same action as the CopyFile
or CopyFolder methods of the FileSystemObject
object except here you can only copy one folder or file.
The FileSystemObject object methods can copy multiple
folders and files.

Delete This method deletes the specified folder or file. To delete a
folder, use an InstallScript statement similar to the
following:
fldr.Delete(force);

The force argument is optional and allows you to specify
that read-only files or folders should be deleted. The
default for this argument is FALSE.

This method performs the same action as the
DeleteFile or DeleteFolder methods of the
FileSystemObject object except here you can only delete
one folder or file. The FileSystemObject object methods
can use wild cards to delete multiple folders and files.

P A R T I I I N S T A L L S C R I P T

508

Table 9-13: Folder and File Object Methods (Continued)

Method Description

Move This method moves a specified file or folder from one
location to another. To move a folder, use an InstallScript
statement similar to the following:
fldr.Move(destination);

The destination argument specifies the location where the
folder or file is to be moved. This argument needs to
include the name of the folder or file to be set in the new
location. The destination argument can be a relative or
absolute path. If it is a relative path, it is relative to the
current directory. It should be noted that you cannot use
wild cards as part of the destination argument.

This method performs the same action as the CopyFile
or CopyFolder methods of the FileSystemObject
object except here you can only copy one folder or file.
The FileSystemObject object methods can copy multiple
folders and files.

It is important to realize the difference in the three methods described in Table 9-13
and the similar methods described in Table 9-10 for the FileSystemObject object. The
methods described in Table 9-13 deal with only one folder or file, whereas the
methods described for copying deleting and moving folders and files in Table 9-10
can handle multiple folders and files. There are several functions in InstallScript that
are similar to the methods just described. However, they are more closely similar to
the methods exposed by the FileSystemObject object because they can handle
multiple folders or files.

The example shown in Figure 9-10 uses some of the properties and methods that are
discussed in Table 9-13. Since the value for the ProductCode property that is used in
this example may be different from the one that is installed on your system you will
need to check this by using Orca to open up the .msi file for InstallShield Developer.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

509

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates several of the
// properties and methods exposed by the
// Folder and File objects.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
#define TEMPSPEC "C:\\Temp"
#define FOLDERSPEC "C:\\WINNT\\Installer"
#define PRODUCTCODE "{0F031DEC-3150-4503-9744-9431264BBA48}"
#define ICONFILE "ARPPRODUCTICON.exe"

INT i, iAttribute(9), iAttributeValue, iAttrib;
STRING szFolderName, szFileSpec, szDateTime, szDisplay;
STRING szDrive, szType, szAttribDesc(9), szAttribDisplay;
OBJECT fso, fldr, f, tempfldr;

program

 // Initialize the attributes array.
 iAttribute(0) = 0x00000000; iAttribute(1) = 0x00000001;
 iAttribute(2) = 0x00000002; iAttribute(3) = 0x00000004;
 iAttribute(4) = 0x00000008; iAttribute(5) = 0x00000010;
 iAttribute(6) = 0x00000020; iAttribute(7) = 0x00000040;
 iAttribute(8) = 0x00000080;

 // Initialize the attribute description array.
 szAttribDesc(0) = "No attributes are set";
 szAttribDesc(1) = "Read-only attribute is set";
 szAttribDesc(2) = "Hidden attribute is set";
 szAttribDesc(3) = "System attribute is set";
 szAttribDesc(4) = "Disk drive volume label is defined";
 szAttribDesc(5) = "The item is a folder";
 szAttribDesc(6) = "Archive attribute is set";
 szAttribDesc(7) = "The item is a shortcut";
 szAttribDesc(8) = "The item is compressed";

Figure 9-10: Setup.rul that demonstrates properties and methods of the Folder and File objects.

P A R T I I I N S T A L L S C R I P T

510

 try
 // Create a FileSystemObject object.
 set fso = CreateObject("Scripting.FileSystemObject");

 // Create a Folder object for an existing folder.
 set fldr = fso.GetFolder(FOLDERSPEC);

 // Determine the attributes for the Folder object.
 iAttributeValue = fldr.Attributes;
 for i=0 to 8
 iAttrib = iAttributeValue & iAttribute(i);
 if(iAttrib) then
 szAttribDisplay = szAttribDisplay +
 szAttribDesc(i) + "\n";
 endif;
 endfor;

 // Display the folder attribute information.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Folder Attributes\n\n%s", szAttribDisplay);

 // Create a Folder object for a uniquely named folder
 // that is to be created every time.
 set tempfldr = fso.CreateFolder(TEMPSPEC ^
 fso.GetTempName());

 // Display some of the folder properties.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Temporary Folder Properties\n\nDate created: %s\n" +
 "Folder path: %s\nFolder type: %s",
 tempfldr.DateCreated, tempfldr.Path,
 tempfldr.Type);

 // Create File object.
 set f = fso.GetFile(FOLDERSPEC ^ PRODUCTCODE ^ ICONFILE);

 // Determine the attributes for the File object.
 szAttribDisplay = "";
 iAttributeValue = f.Attributes;
 for i=0 to 8
 iAttrib = iAttributeValue & iAttribute(i);
 if(iAttrib) then
 szAttribDisplay = szAttribDisplay +
 szAttribDesc(i) + "\n";
 endif;
 endfor;

Figure 9-10: Continued.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

511

 // Display the file attribute information.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "File Attributes\n\n%s", szAttribDisplay);

 // Copy the file to the temporary folder.
 f.Copy(tempfldr.Path ^ ICONFILE, TRUE);

 // Check to see if file copy was successful.
 if(fso.FileExists(tempfldr.Path ^ ICONFILE)) then
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "File copy successful.");
 else
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "File copy unsuccessful.");
 endif;

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 set f = NOTHING;
 set tempfldr = NOTHING;
 set fldr = NOTHING;
 set fso = NOTHING;

endprogram

Figure 9-10: Continued.

This example program works with some of the folders and a file that are created
when InstallShield Developer is installed. The program creates two arrays for working
with the attributes of a folder or a file. The first array is an integer array that holds the
individual values for each of the nine attributes that can be returned by the Attributes
property. The second array holds the strings that describe the attributes. The attribute
value that is returned from the Attributes property is a combined set of values that
have been OR'd together. The program uses the familiar bitwise AND operator to
take apart this value to see what attributes it consists of.

The example also creates a uniquely named folder under the Temp folder on drive C.
It does this by using the GetTempName method of the FileSystemObject object
and concatenating this unique folder name with the Temp folder location. Every time
that this example is run, a new folder is created under the Temp folder. The program
uses this temporary folder as the destination for copying the icon file that is added

P A R T I I I N S T A L L S C R I P T

512

under the Installer folder in the Windows directory. The program also accesses a few
of the properties of this temporary folder and displays them in a message box.

Up to now you have learned how to create folders but to access only existing files.
The next section discusses how to create text files.

TextStream Object Properties and Methods

This section examines how to create text files using the properties and methods
available from the TextStream object.

A TextStream object can be created in InstallScript as follows:

set fso = CreateObject("Scripting.FileSystemObject");
set tso = fso.CreateTextFile("C:\\Temp\\Error.log");

When you create a text file, the folder in which it is to be created must already exist. If
it does not, you need to create a Folder object and create the folder before creating
the text file. You can also create text files using InstallScript built-in functions and you
can also create binary files, something that the FileSystemObject object cannot do.

The TextStream object has four properties and nine methods that are discussed in
Table 9-14 and Table 9-15. There are no InstallScript functions that duplicate the
functionality provided by the properties described in Table 9-14.

Table 9-14: The TextStream Object Properties

Property Description

AtEndOfLine This read-only property returns TRUE if the file
pointer is positioned immediately before the end-of-
line marker; otherwise, it returns FALSE. To find out
if the program is at the end of a line, use an
InstallScript statement similar to the following:
bEnd = tso.AtEndOfLine;

The file has to be opened for reading only; otherwise,
an exception is thrown when using this property.
There is no similar functionality in InstallScript.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

513

Table 9-14: The TextStream Object Properties

AtEndOfStream This read-only property returns TRUE if the file
pointer is positioned immediately before the end-of-
file marker; otherwise, it returns FALSE. To find out
if the program is at the end of a file, use an
InstallScript statement similar to the following:
bEnd = tso.AtEndOfStream;

The file has to be opened for reading only; otherwise,
an exception is thrown when using this property.
There is no similar functionality in InstallScript.

Column This read-only property returns the column number
of the current character position in a text file. To find
out the column of the current character, use an
InstallScript statement similar to the following:
iCol = tso.Column;

The file can be opened for reading, writing, or
appending when using this property. There is no
similar functionality in InstallScript.

Line This read-only property returns the current line
number in a text file. To find out the current line
number, use an InstallScript statement similar to the
following:
iLine = tso.Line;

The file can be opened for reading, writing, or
appending when using this property. There is no
similar functionality in InstallScript.

Table 9-15 describes the methods that are exposed by the TextStream object. Of the
nine methods available with the TextStream object there are five InstallScript
functions that perform that same or similar actions.

P A R T I I I N S T A L L S C R I P T

514

Table 9-15: The TextStream Object Methods

Method Description

Close This method closes an open text file object. To close an
open text file object, use an InstallScript statement similar
to the following:
tso.Close();

You should always close these objects when no longer
reading or writing to the file. This method is the same as
InstallScript’s CloseFile function.

Read This method reads a specified number of characters from
a text file and returns the resulting string. To read
characters from a text file object, use an InstallScript
statement similar to the following:
szChars = tso.Read(numchars);

The numchars argument is a value that specifies the
number of characters to be read. This method is the
similar to InstallShield’s ReadBytes function.

ReadAll This method reads an entire text file and returns the
resulting string. To read an entire text file object, use an
InstallScript statement similar to the following:
szChars = tso.ReadAll();

There is no similar function in InstallScript.

ReadLine This method reads an entire line from a text file and
returns the resulting string. The line returned does not
include the newline character. To read an entire line from
a text file object, use an InstallScript statement similar to
the following :
szChars = tso.ReadLine();

The first line in a text file is line number 1. This method
is the same as InstallScript’s GetLine function.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

515

Table 9-15: The TextStream Object Methods (Continued)

Method Description

Skip This method skips a specified number of characters
when reading a text file. To skip characters when reading
a text file object, use an InstallScript statement similar to
the following:
tso.Skip(numchars);

The numchars argument specifies the number of
characters to skip. The characters that are skipped are
discarded but this does not mean that they have been
removed form the text file that you are reading. This
method is similar to InstallScript’s SeekBytes
function.

SkipLine This method skips a line when reading a text file. To skip
a line when reading a text file object, use an InstallScript
statement similar to the following:
tso.SkipLine();

To skip multiple lines in a text file you would need to call
this method multiple times inside a loop. There is no
similar function in InstallScript.

Write This method writes a string to a text file. The line that is
written is not terminated with the newline character. To
write a string to a text file object, use an InstallScript
statement similar to the following:
tso.Write(string);

The string argument specifies the string that is to be
written to the text file. This method is good for writing to
a text file one continuous stream of characters. The
resulting file would appear to contain just one line of text.
There is no similar function in InstallScript.

P A R T I I I N S T A L L S C R I P T

516

Table 9-15: The TextStream Object Methods (Continued)

Method Description

WriteBlankLines This method writes a specified number of newline
characters to a text file. To write a blank line to a text file
object, use an InstallScript statement similar to the
following:
tso.WriteBlankLines(numlines);

The numlines argument specifies the number of newline
characters that are to be written to the text file. There is
no similar function in InstallScript. Blank lines can be
written to a text file using the WriteLine InstallScript
function if you just pass the string "\r\n". this sequence
is a carriage return followed by a new line.

WriteLine This method writes a string to a text file. The line that is
written is terminated with the newline character. To write
a string to a text file object, use an InstallScript statement
similar to the following:
tso.WriteLine(string);

The string argument specifies the string that is to be
written to the text file. If the string argument is omitted
then only a new line character is written to the file. This
method is the same as InstallScript’s WriteLine
function.

The sample program, shown in Figure 9-11, uses some of the methods for working
with a text file that are described in Table 9-15. First, the program creates a number
of objects. After creating a FileSystemObject, it creates a Folder object that has a
unique name. Before the program can create the text file in a unique location, it must
create the unique folder. If you try to create a text file in a nonexistent location, an
exception occurs. The program creates a uniquely named folder under the Temp
directory on drive C.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

517

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates several of the
// methods exposed by the TextStream object.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
#define TEMPSPEC "C:\\Temp"

INT i, iCol, iLine;
STRING szFileName, szFolder, szErrorStr, szErrorDisplay;
VARIANT Value;
OBJECT fso, tso, fldr;

program

 try
 // Create a FileSystemObject object.
 set fso = CreateObject("Scripting.FileSystemObject");

 // Create Folder object.
 set fldr = fso.CreateFolder(TEMPSPEC ^ fso.GetTempName());
 szFolder = fldr.Path;
 szFileName = szFolder ^ "Error.log";

 // Create a TextStream object.
 set tso = fso.CreateTextFile(szFileName);

 // Add lines to the text file.
 for i=0 to 9
 Value = i + 1;
 szErrorStr = "Error Number " + Value;
 tso.WriteLine(szErrorStr);
 endfor;

 // Close the text file and
 // reopen for reading.
 tso.Close();
 set tso = NOTHING;
 set tso = fso.OpenTextFile(szFileName, 1);

Figure 9-11: Setup.rul showing how to work with a text file.

P A R T I I I N S T A L L S C R I P T

518

 // Read every even numbered line.
 for i=0 to 9
 if(!((i+1)%2)) then
 szErrorDisplay = szErrorDisplay +
 tso.ReadLine() + "\n";
 else
 tso.SkipLine();
 endif;
 endfor;

 // Display the error log contents.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Error Log Lines\n\n%s", szErrorDisplay);

 // Close the text file.
 tso.Close();

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 // Set the objects to NULL.
 set tso = NOTHING;
 set fldr = NOTHING;
 set fso = NOTHING;

endprogram

Figure 9-11: Continued.

Once you have defined the absolute path for the text file, you can create this file.
When you create this file, it is opened for writing so you can immediately add lines to
it. The program adds 10 lines to this file inside of a loop. Once the file is complete,
the program reads back the even-numbered lines from this file. To do this, the file
must be closed and reopened for reading. Since you use the same OBJECT variable
when you open the file for reading, you should destroy the original object before you
reopen the file so the program does not consume memory unnecessarily.

The Collection Objects

You can think of a collection as an array of objects. There are three collection objects
that can be created from the FileSystemObject: the Drives, Folders, and Files

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

519

collections. The Files and Drives collections expose only two properties and the
Folders collection exposes the same two properties and one method.

To create a Drives collection in InstallScript, use code similar to the following.

set fso = CreateObject("Scripting.FileSystemObject");
set dc = fso.Drives;

To create a Folders collection in InstallScript, use code similar to the following:

set fso = CreateObject("Scripting.FileSystemObject");
szWinDir = fso.GetSpecialFolder(0);
set fldr = fso.GetFolder(szWinDir ^ "Installer");
set fldrc = fldr.SubFolders;

This code gets the name of an existing folder and then it creates the Folders
collection by getting all the subfolders under this existing folder. To create a Files
collection, use code similar to the following:

set fso = CreateObject("Scripting.FileSystemObject");
szWinDir = fso.GetSpecialFolder(0);
set fldr = fso.GetFolder(szWinDir ^ "Installer");
set fc = fldr.Files;

This code snippet gets an existing folder but, this time, gets all the files that exist
under this folder.

Table 9-16 discusses the properties that are applicable to the collection objects, as well
as the one method that is applicable to the Folders collection.

Table 9-16: The Collection Object Properties and Methods

Property/Method Description

Count

(Property that is
applicable to all
collection objects)

This read-only property returns the number of items in a
collection object. To obtain the number of items in a
collection, use an InstallScript statement similar to the
following:
iCnt = fldrsc.Count;

This same property is available with the Dictionary
object.

P A R T I I I N S T A L L S C R I P T

520

Table 9-16: The Collection Object Properties and Methods (Continued)

Item

(Property that is
applicable to all
collection objects)

This read-only property returns an item in a collection
based on a specified key. To obtain an item in a
collection, use an InstallScript statement similar to the
following:
szItem = fldrsc.Item(key);

This same property is available with the Dictionary
object, but with this object the property is read/write.

Add

(Method that is
applicable only to a
Folders collection)

This method adds a new folder to a Folders collection.
To add a new folder to a Folders collection, use an
InstallScript statement similar to the following:
fldrsc.Add(foldername);

The foldername argument is the name of the folder to be
added to the collection. This argument is not the absolute
path of the new folder.

Because InstallScript does not provide a For…Each Next statement, traversing
collections is difficult. This is because the Drives, Folders, and Files collections do not
have numerical indexing, so a for loop does not work to move through the
members of a collection. To access the member of a collection, you have to know the
value of the collection member.

It is possible to extend the functionality of InstallScript with a DLL and to create the
capability to perform the equivalent of a For…Each Next statement. To create a
DLL that can perform this type of action requires knowledge of COM programming
using Microsoft's Active Template Library.

Figure 9-12 shows how to access the items in a collection when you know the item
that you are looking for. This example is extended in the section dealing with the
Drives collection object to look at how to traverse a Drives collection for the target
machine.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

521

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates how to work
// with Drives, Folders, and Files collections.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
#define PRODUCTCODE "{0F031DEC-3150-4503-9744-9431264BBA48}"
#define ICONFILENAME "ARPPRODUCTICON.exe"

VARIANT Alphabet(26);
OBJECT fso, fldr, fldrc, f, fc, dc, d, subfldr;

program

 // Initialize a VARIANT array with the letters of the alphabet.
 Alphabet(0) = "A"; Alphabet(1) = "B"; Alphabet(2) = "C";
 Alphabet(3) = "D"; Alphabet(4) = "E"; Alphabet(5) = "F";
 Alphabet(6) = "G"; Alphabet(7) = "H"; Alphabet(8) = "I";
 Alphabet(9) = "J"; Alphabet(10) = "K"; Alphabet(11) = "L";
 Alphabet(12) = "M"; Alphabet(13) = "N"; Alphabet(14) = "O";
 Alphabet(15) = "P"; Alphabet(16) = "Q"; Alphabet(17) = "R";
 Alphabet(18) = "S"; Alphabet(19) = "T"; Alphabet(20) = "U";
 Alphabet(21) = "V"; Alphabet(22) = "W"; Alphabet(23) = "X";
 Alphabet(24) = "Y"; Alphabet(25) = "Z";

 try
 // Create a FileSystemObject object.
 set fso = CreateObject("Scripting.FileSystemObject");

 // Create a Drives collection.
 set dc = fso.Drives;

 // Returns the Drive object for the C drive.
 set d = dc.Item(Alphabet(2));

 // Create a Folder object for the Installer folder.
 set fldr = fso.GetFolder(fso.GetSpecialFolder(0) ^
 "Installer");

Figure 9-12: Setup.rul demonstrating how to access items in a collection.

P A R T I I I N S T A L L S C R I P T

522

 // Create a Folders collection of all subfolders.
 set fldrc = fldr.SubFolders;

 // Returns the folder object for InstallShield Developer.
 set subfldr = fldrc.Item(PRODUCTCODE);

 // Create a Files collection.
 set fc = subfldr.Files;

 // Return File object for the icon file
 // used by InstallShield Developer.
 set f = fc.Item(ICONFILENAME);

 // Display the error log contents.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Drive: %s\nFolder: %s\nFile: %s",
 d.Path, subfldr.Path, f.Path);

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 // Set the objects to NULL.
 set fldr = NOTHING;
 set subfldr = NOTHING;
 set fldrc = NOTHING;
 set fc = NOTHING;
 set dc = NOTHING;
 set d = NOTHING;
 set f = NOTHING;
 set fso = NOTHING;

endprogram

Figure 9-12: Continued.

First, this program sets up a VARIANT array that holds the letters of the alphabet.
The program uses the array elements to query the Drives object to return the object
for a particular drive letter. As with all the other examples in this section, the example
first creates a FileSystemObject. Using this object, you can directly create a Drives
collection and then, using the Item property, return a Drive object. If you wanted to,
you could return just the path to the drive, instead of returning the drive object. You
could do this as follows:

szPath = d.Item(Alphabet(2));

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

523

Using a statement like this does not return the object itself but just the path to the
Drive object referenced by the Item property. A statement such as this returns the
path for a Folder or a File object, but not the object itself.

To create a Folders collection, you must first create a Folder object and then use the
SubFolders property. After obtaining a Folder object from the Folders collection, you
get a Files collection for the files that exist under that folder. From the Files
collection, you retrieve a File object for the icon file used by InstallShield Developer.
Finally, you can display the absolute path for the Drive, Folder, and File objects using
the Path property that is common to all of these objects.

This example allows you to work with a collection because you knew the element that
you were after. If, however, you did not know in advance the elements in a collection,
you would not be able to use it. Trying to access a nonexistent element generates an
exception. This provides some capability in searching for a file or a folder to see if it
exists in a collection. If it does exist, the program gets the object for the folder or file.
Otherwise, the program dumps into the catch block where you can take whatever
action is necessary due to the absence of what you are looking for.

The Dictionary Object
A Dictionary object is an associative array where each entry is made up of a key and
an item. Items can be any form of data and are stored in the array. Each item is
associated with a unique key. The key is used to retrieve an individual item and is
either an integer or a string. A Dictionary object is implemented using a hash table. The
use of a hash table provides fast and consistent access time to the items in a
dictionary, regardless of how large it is.

To create a Dictionary object in InstallScript, use a statement similar to the following:

dicto = CreateObject("Scripting.Dictionary");

A Dictionary object exposes four properties and six methods. The properties for the
Dictionary object are discussed in Table 9-17. The InstallScript language does not
contain a construct or data type similar to what you can get with the Dictionary
object.

P A R T I I I N S T A L L S C R I P T

524

Table 9-17: Dictionary Object Properties

Property Description

CompareMode This read/write property sets or returns the
comparison mode for comparing string keys. To get
the comparison mode, use an InstallScript statement
similar to the following:
iMode = dicto.CompareMode;

To set the comparison mode in InstallScript, use a
statement similar to the following:
dicto.CompareMode = 1;

This statement indicates that the comparison should
be case insensitive when adding new values to a
Dictionary object. The default is case sensitive and this
is a comparison mode of 0, which is the default. If you
try to change the comparison mode of a dictionary
object that already contains data you will generate an
error.

Count This read-only property returns the number of
elements in a Dictionary object. This is the same
property that is available with all collection objects. To
get the number of elements in this type of object, use
an InstallScript statement similar to the following:
iCnt = dicto.Count;

Unlike with the collection objects discussed earlier,
you can traverse a Dictionary object using a for loop.
This is possible when you use the Items method
and the Keys method to convert the Dictionary
object into two separate arrays. Once you have the
arrays then you can use a numerical index on these
arrays and traverse the array up to an index that is one
less than the value of the Count property.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

525

Table 9-17: Dictionary Object Properties (Continued)

Property Description

Item This read/write property retrieves or sets the value of
an item in a Dictionary object. To set the value of an
element in this type of object, use an InstallScript
statement similar to the following:
dicto.Item(key) = newitem;

The key argument is the key that is associated with the
item being set. If the key argument does not exist, a
new element is added to the Dictionary object. If
newitem is not set then an item that is empty is created
in the Dictionary object.

To get the value of an element in this type of object,
use an InstallScript statement similar to the following:
Value = dicto.Item(key);

If key does not exist when trying to retrieve an item
then a new key is created with an empty item.

Key This write-only property is used to change an existing
key to a different key. To set a new key for an existing
key in InstallScript, use a statement similar to the
following:
dicto.Key(key) = newkey;

The key argument is the key value that is being
changed and the newkey argument is the value that is to
be used for the changed key. If the value of the key
argument is not found, a new entry in the Dictionary
object is made where the item is left empty.

Table 9-18 describes the methods that are available from a dictionary object. These
methods are used to add key and item pairs to the Dictionary object as well as to
remove these pairs from the object.

P A R T I I I N S T A L L S C R I P T

526

Table 9-18: Dictionary Object Methods

Method Description

Add This method adds a key and item pair. To add a new
entry in InstallScript, use a statement similar to the
following:
dicto.Add(key, item);

The key argument identifies the key to be used and the
item argument identifies the item value.

Exists This method returns TRUE if a specified key exists;
otherwise, it returns FALSE. To check if a key exists
in InstallScript, use a statement similar to the
following:
bExists = dicto.Exists(key);

The key argument specifies the key value for which
you are checking the existence.

Items This method returns an array that contains all the
items in the Dictionary object. To obtain an array of
items in InstallScript, use a statement similar to the
following:
Array = dicto.Items();

This makes it possible to use a numeric index to
traverse the elements in a Dictionary object.

Keys This method returns an array that contains all the keys
in the Dictionary object. To obtain an array of keys in
InstallScript, use a statement similar to the following:
Array = dicto.Keys();

This makes it possible to use a numeric index to
traverse the elements in a Dictionary object.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

527

Table 9-18: Dictionary Object Methods (Continued)

Method Description

Remove This method removes a key and item pair from the
Dictionary object. To remove a key and item pair in
InstallScript, use a statement similar to the following:
dicto.Remove(key);

The key argument is the value that identifies the pair
that is to be removed from the object.

RemoveAll This method removes all key and item pairs from the
Dictionary object. To remove all the key and item
pairs in InstallScript, use a statement similar to the
following:
dicto.RemoveAll();

Figure 9-13 demonstrates the use of the Dictionary object. This program is a rework
of the program in Figure 9-10. In place of the two arrays that were used in the
program in Figure 9-10, a Dictionary object is used to hold the attribute codes and
descriptions.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This demonstrates the
// use of the Dictionary object.
//
///

#include "ifx.h"

#define CAPTION "Feedback"
#define FOLDERSPEC "C:\\WINNT\\Installer"
INT i, iKeys(), iAttributeValue, iCnt;

Figure 9-13: Setup.rul demonstrating the use of the Dictionary object.

P A R T I I I N S T A L L S C R I P T

528

STRING szAttribDisplay;
OBJECT fso, fldr, dicto;

program

 try
 // Create a FileSystemObject object.
 set fso = CreateObject("Scripting.FileSystemObject");

 // Create a Dictionary object.
 set dicto = CreateObject("Scripting.Dictionary");

 // Initialize the Dictionary object.
 dicto.Add(0x00000000, "No attributes are set");
 dicto.Add(0x00000001, "Read-only attribute is set");
 dicto.Add(0x00000002, "Hidden attribute is set");
 dicto.Add(0x00000004, "System attribute is set");
 dicto.Add(0x00000008, "Disk drive volume label is defined");
 dicto.Add(0x00000010, "The item is a folder");
 dicto.Add(0x00000020, "Archive attribute is set");
 dicto.Add(0x00000040, "The item is a shortcut");
 dicto.Add(0x00000080, "The item is compressed");

 // Get size of Dictionary object
 // and size arrays accordingly.
 iCnt = dicto.Count;
 Resize(iKeys, iCnt);

 // Create a Folder object for an existing folder.
 set fldr = fso.GetFolder(FOLDERSPEC);

 // Determine the attributes for the Folder object.
 iAttributeValue = fldr.Attributes;
 iKeys = dicto.Keys();

 for i=0 to iCnt-1
 if(iAttributeValue & iKeys(i)) then
 szAttribDisplay = szAttribDisplay +
 dicto.Item(iKeys(i)) + "\n";
 endif;
 endfor;

 // Display the folder attribute information.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Folder Attributes\n\n%s", szAttribDisplay);

Figure 9-13: Continued.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

529

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 set fldr = NOTHING;
 set dicto = NOTHING;
 set fso = NOTHING;

endprogram

Figure 9-13: Continued.

This program still uses an array to be able to iterate the Dictionary object. It uses the
Keys method to convert the key values into the iKeys array, and then uses the value
of the array element to obtain the item from the Dictionary object.

A Drives Collection Example
The final example for the FileSystemObject object demonstrates a method for
iterating through a Drives collection. Because InstallScript does not have a
For…Each Next construct, you have to use another means to traverse this
collection. This method takes advantage of the fact that whenever you try to access a
drive letter that does not exist in the collection an exception is thrown. If you place
the try…catch…endcatch statement inside a loop, you can continue to test
each letter of the alphabet for inclusion in the Drives collection. When an exception is
thrown, the program catches it in the catch block. You can then increment a loop
counter and try to access the next letter in the alphabet.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script is a composite example of using
// a number of different properties and methods
// that are exposed by the Drivers collection.
//
///

#include "ifx.h"

Figure 9-14: Setup.rul showing how to iterate through a Drives collection in InstallScript.

P A R T I I I N S T A L L S C R I P T

530

#define CAPTION "Feedback"
#define TEMPPATH "C:\\Temp"

INT i, iCnt, iFound, iType;
STRING szKeys(), szDisplay, szFolder;
VARIANT Alphabet(26);
OBJECT fso, dc, d, dicto, typedict, fldr, tso;

program

 // Initialize a VARIANT array with the letters of the alphabet.
 Alphabet(0) = "A"; Alphabet(1) = "B"; Alphabet(2) = "C";
 Alphabet(3) = "D"; Alphabet(4) = "E"; Alphabet(5) = "F";
 Alphabet(6) = "G"; Alphabet(7) = "H"; Alphabet(8) = "I";
 Alphabet(9) = "J"; Alphabet(10) = "K"; Alphabet(11) = "L";
 Alphabet(12) = "M"; Alphabet(13) = "N"; Alphabet(14) = "O";
 Alphabet(15) = "P"; Alphabet(16) = "Q"; Alphabet(17) = "R";
 Alphabet(18) = "S"; Alphabet(19) = "T"; Alphabet(20) = "U";
 Alphabet(21) = "V"; Alphabet(22) = "W"; Alphabet(23) = "X";
 Alphabet(24) = "Y"; Alphabet(25) = "Z";

 try
 // Create a FileSystemObject object.
 set fso = CreateObject("Scripting.FileSystemObject");

 // Create a Dictionary object to hold the
 // drive types and descriptions.
 set typedict = CreateObject("Scripting.Dictionary");

 typedict.Add(0, "Unknown drive type");
 typedict.Add(1, "Removable drive type");
 typedict.Add(2, "Fixed drive type");
 typedict.Add(3, "Network drive type");
 typedict.Add(4, "CD-ROM drive type");
 typedict.Add(5, "RAM disk drive type");

 // Create a Drives collection.
 set dc = fso.Drives;

 // Get the number of drives in the collection.
 iCnt = dc.Count;
 Resize(szKeys, iCnt);

 // Create a Dictionary object to hold the drives
 // and descriptions that are on the target machine.
 set dicto = CreateObject("Scripting.Dictionary");

Figure 9-14: Continued.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

531

 // Create the Error.log file.
 szFolder = TEMPPATH ^ fso.GetTempName;
 set fldr = fso.CreateFolder(szFolder);
 set tso = fldr.CreateTextFile("Install.log");

 iFound = 0;
 i = 0;

 while(iFound < iCnt)
 try
 // Returns the Drive object in the collection.
 set d = dc.Item(Alphabet(i));

 // Add the existing drive to the Dictionary object.
 dicto.Add(d.Path, typedict.Item(d.DriveType));

 // Write a line to the log file.
 tso.WriteLine("Success: There is a drive " +
 Alphabet(i) + " and it is a " +
 typedict.Item(d.DriveType));

 // Increment the indices.
 iFound++;
 i++;

 catch
 // Write an error line to the log file.
 tso.WriteLine("Error: There is no drive " +
 Alphabet(i));
 i++;
 endcatch;

 endwhile;

 // Write a final line to the log file and close the file.
 tso.WriteLine("All drives have been found");
 tso.Close();

 szKeys = dicto.Keys();
 for i=0 to iCnt-1
 szDisplay = szDisplay + szKeys(i) + "\t" +
 dicto.Item(szKeys(i)) + "\n";
 endfor;

 // Display the drives and types.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Drives and Types\n\n%s", szDisplay);

Figure 9-14: Continued.

P A R T I I I N S T A L L S C R I P T

532

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 // Set the objects to NULL.
 set dc = NOTHING;
 set d = NOTHING;
 set dicto = NOTHING;
 set typedict = NOTHING;
 set tso = NOTHING;
 set fso = NOTHING;

endprogram

Figure 9-14: Continued.

There are several important points that you need to note. First, the array that holds
the letters of the alphabet is of type VARIANT. This is necessary because an
exception is thrown if, for example, the array is typed as STRING.

The second important point is that you need to nest one try…catch…endcatch
statement inside another. The nested statement is inside the while loop and the
outside try…catch…endcatch statement is where you create the objects that
you use in the example. As you find the drives in the Drives collection, the drive letter
plus the drive type is added to a Dictionary object. With the Dictionary object, you
can use the standard approach for traversing an array by converting the keys in the
Dictionary object into an array. You can then use the elements in the array to access
the items in the Dictionary object.

The final point to note is that the program uses a TextStream object to write a log of
all the actions that are performed in this example. This shows an approach that you
can use to create a log of all actions performed during an installation. Creating such a
log file can be valuable when a customer has a problem installing your product.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

533

The Windows Script Host
Objects

Figure 9-15: The Windows Script Host object model.

P A R T I I I N S T A L L S C R I P T

534

The Windows Script Host is an application that allows scripts to be run on 32-bit
Windows platforms (Figure 9-15). It can be considered the replacement for the old
MS-DOS batch file. The Windows Script Host provides a number of useful objects
for performing operations during an installation. The root object in the hierarchy
shown in Figure 9-15 is the WScript object. This object is not creatable, but it is
always available to scripts. Since you cannot create it, you do not have access to this
object from InstallScript. However, all the other objects shown in Figure 9-15 are
creatable and therefore can be created in InstallScript using the CreateObject
function.

A complete coverage of the objects that compose the Windows Script Host is outside
the scope of this book. This chapter provides an introduction to this technology and
the possibilities that are provided for use in your installation programs.

The Creatable Objects
This section provides an overview of the creatable objects that you can access from
InstallScript. Then, it takes a closer look at some of these objects.

There are 13 Windows Script Host objects that you can create in InstallScript (Table
9-19).

Table 9-19: Windows Script Host Creatable Objects

Object Description

WshArguments This object is a collection of the arguments that are
passed to a script. This object has no use when using
InstallScript. Its only value is when running VBScript or
JScript files from the command line.

WshNamed Accessing the Named property of the WshArguments
object creates this object. This object is a collection of all
arguments sent to a script that have names. This object
has no use when using InstallScript. Its only value is
when running VBScript or JScript files from the
command line.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

535

Table 9-19: Windows Script Host Creatable Objects (Continued)

Object Description

WshUnnamed Accessing the Unnamed property of the WshArguments
object creates this object. This object is a collection of all
arguments sent to a script that do not have names. This
object has no use when using InstallScript. Its only value
is when running VBScript or JScript files from the
command line.

WshContoller The sole purpose of this object is to provide access to the
CreateScript method that is used to create a script
process on a remote machine. You can instantiate this
object using an InstallScript statement similar to the
following:
set cntrlo = CreateObject("WScript.Controller");

This object has only one method and no properties.

WshRemote This object allows you to remotely administer computer
systems on a computer network. Through this object
interface, you can manipulate other programs or scripts.
You can instantiate this object using an InstallScript
statement similar to the following:
set remscript = CreateScript(script, [server]);

The script argument identifies either a VBScript or JScript
file that is to be run remotely. The server argument
identifies the remote server on which the script is to be
run. This argument is optional.

WshRemoteError This object provides access to the error information
available when a remote script terminates as a result of a
script error. The remote script is one that is created with
the WshRemote object. Accessing the Error property of
the WshRemote object creates this object.

P A R T I I I N S T A L L S C R I P T

536

Table 9-19: Windows Script Host Creatable Objects (Continued)

Object Description

WshNetwork The object provides access to the shared resources on the
network to which the target computer is connected. You
can instantiate this object using an InstallScript statement
similar to the following:
set network = CreateObject("WScript.Network");

You would create a WshNetwork object when you want
to connect to network shares and network printers,
disconnect from network shares and network printers,
map or remove network shares, or access information
about a user on the network.

WshShell This object provides access to the Windows shell. You
can instantiate this object using an InstallScript statement
similar to the following:
set shell = CreateObject("WScript.Shell");

The properties and methods of this object allow you to
work with the system folders, shortcuts, registry, and
environment variables.

WshShortcut This object allows you to create a shortcut
programmatically. You can instantiate this object using an
InstallScript statement similar to the following:
set shortcut = shell.CreateShortcut(path);

The path argument is the absolute path to the shortcut
(.lnk) file that is to be created.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

537

Table 9-19: Windows Script Host Creatable Objects (Continued)

Object Description

WshUrlShortcut This object allows you to programmatically create a
shortcut that references an Internet location. You can
instantiate this object using an InstallScript statement
similar to the following:
set shortcut = shell.CreateShortcut(path);

The path argument is the absolute path to the shortcut
(.url) file that is to be created.

WshEnvironment This object is a collection that contains all the
environment variables on the target machine. You can
instantiate this object using an InstallScript statement
similar to the following:
set envc= shell.Environment([strType]);

The strType argument identifies the location from where
the environment variable is to be read.

WshSpecialFolders This object is a collection that defines the location of all
the system-defined folders. You can use this object using
an InstallScript statement similar to the following:
szFolder= shell.SpecialFolders(folder);

The folder argument is the name of the special folder for
which you want the location.

WshScriptExec This object provides information about a script that is
run using the Exec method. You can use this object
using an InstallScript statement similar to the following:
set exec = shell.Exec(command);

The command argument specifies the name of the script
along with the arguments of the script being executed.

P A R T I I I N S T A L L S C R I P T

538

The objects available with the Windows Script Host provide a lot of functionality that
can be used during an installation. The two most frequently used objects are the
WshNetwork and the WshShell objects. The next two sections take a brief look at
these two objects along with a few examples of using these objects in InstallScript.

The WshNetwork Object
The WshNetwork object exposes three properties and seven methods. This object is
generally used to work with computers that are attached to a network, but it will work
with a computer that is not connected. A WshNetwork object is created in the
following way:

set network = CreateObject("WScript.Network");

The three properties exposed by this object are described in Table 9-20.

Table 9-20: WshNetwork Object Properties

Property Description

ComputerName This read-only property returns the name of the
computer system as a string. To access this property in
InstallScript, use a statement similar to the following:
szComputerName = network.ComputerName;

UserDomain This read-only property returns the name of the user
domain as a string. To access this property in
InstallScript, use a statement similar to the following:
szUserDomain = network.UserDomain;

UserName This read-only property returns the user name of the
person signed on to the computer as a string. To
access this property in InstallScript, use a statement
similar to the following:
szUserName = network.UserName;

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

539

There are eight methods that are exposed by the WshNetwork object. These
methods are described in Table 9-21.

Table 9-21: WshNetwork Object Methods

Method Description

AddPrinterConnection This method adds a network printer to an MS-
DOS printer port, such as LPT1. You cannot
use this method to add a remote Windows-
based printer connection.

AddWindowsPrinterConnection This method is similar to using the Printer
option on Control Panel to add a printer
connection. Unlike the AddPrinterConnection
method, this method allows you to create a
printer connection without directing it to a
specific port, such as LPT1. To use this
method in InstallScript, use a statement similar
to the following:
network.AddWindowsPrinterConnection(
 strPrinterPath, strDriverName,
 [strPort]);

The last two arguments are ignored on
Windows NT/2000/XP. The last argument is
optional.

EnumNetworkDrives This method returns a collection that is an
array that associates pairs of items, network
drive local names and their associated UNC
names. An even-numbered item in the
collection represents the local name of a
logical drive and an odd-numbered item
represents the associated UNC share name.
To use this method in InstallScript, use a
statement similar to the following:
set netdrives = network.
 EnumNetworkDrives;

P A R T I I I N S T A L L S C R I P T

540

Table 9-21: WshNetwork Object Methods (Continued)

Method Description

EnumPrinterConnections This method returns a collection that is an
array that associates pairs of items, network
printer local names, and their associated UNC
names. An even-numbered item in the
collection represents a printer port and an
odd-numbered item represents the networked
printer UNC name. To use this method in
InstallScript, use a statement similar to the
following:
set printers = network.
 EnumPrinterConnections;

MapNetworkDrive This method adds a shared network drive to
the target computer system.

RemoveNetworkDrive This method removes a shared network drive
from the target computer system.

RemovePrinterConnection This method removes a shared network
printer connection from the target computer
system.

SetDefaultPrinter This method assigns a remote printer the role
of default printer on the target system.

Figure 9-15 provides an example program that uses the properties and one method
from the WshNetwork object. This simple example enumerates the printer
connections that are available on the target machine. It also retrieves the values of the
properties, which define the name of the computer, the name of the user signed on to
the system, and domain of the logged on user. Looping through the collection of
printer connections is easy since this collection does have a numeric index. This is
better than what you experienced with the collections that are available with the
FileSystemObject object.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

541

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates some of the
// properties and methods of the WshNetwork object.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT i, iCnt;
STRING szComputerName, szUserName, szUserDomain, szDisplay;
OBJECT network, printers;

program

 try

 // Create a WshNetwork object.
 set network = CreateObject("WScript.Network");

 // Retrieve the properties of the WshNetwork object.
 szComputerName = network.ComputerName;
 szUserName = network.UserName;
 szUserDomain = network.UserDomain;

 // Enumerate the printers on the target system.
 set printers = network.EnumPrinterConnections;
 iCnt = printers.Count;

 // Loop through the printers collection and get
 // the port and printer names that were enumerated.
 for i=0 to iCnt-1 step 2
 szDisplay = szDisplay + "Port " + printers.Item(i) +
 " = " + printers.Item(i+1) + "\n";
 endfor;

Figure 9-15: Setup.rul for demonstrating the WshNetwork object properties and methods.

P A R T I I I N S T A L L S C R I P T

542

 // Display the network information.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Computer name: %s\nUser name: %s\nUser domain: %s\n" +
 "%s", szComputerName, szUserName,
 szUserDomain, szDisplay);

 catch
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 // Set the object to NULL.
 set network = NOTHING;

endprogram

Figure 9-15: Continued.

It is best to run this example on Windows NT or Windows 2000, or the properties
may return an empty string for one or more of these properties. When enumerating
the printer connections, the Count property will always be an even number since for
each printer there are two values in the array that is returned. The array of connected
printers is based on the printer drivers that have been installed. If the printer is
connected locally then the port will be the same for all printers that are connected.
This port is usually LPT1.

The WshShell Object
As previously mentioned, the WshShell object provides a powerful set of properties
and methods that can be used to access all the facilities of the Windows shell. This
includes being able to create shortcuts, create and retrieve registry entries, obtain the
values of environment variables, and get the paths to special folders in Windows.

In InstallScript, a WshShell object is created with a statement similar to the following:

set shell = CreateObject("WScript.Shell");

This object has three properties and ten methods. Some of these properties and
methods create other objects. This section does not extensively detail the properties
and methods of these other objects. The properties of the WshShell object are
discussed in Table 9-22.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

543

Table 9-22: WshShell Object Properties

Property Description

CurrentDirectory This read/write property retrieves or sets the current
directory. To retrieve the value of the current directory in
InstallScript, use a statement similar to the following:
szPath = shell.CurrentDirectory;

To set the value of the current directory in InstallScript,
use a statement similar to the following:
shell.CurrentDirectory = szPath;

This property is similar to the ChangeDirectory
function in InstallScript, except this function cannot be
used to return the present location of the current directory.

Environment This property returns the WshEnvironment object, which
is a collection of all the environment variables on the target
system. To retrieve the value of the PATH environment
variable in InstallScript, use statements similar to the
following:
set environment = shell.Environment;
szEnvironment = environment.Item("PATH");

This property provides a similar functionality as the
GetEnvVar function in InstallScript.

SpecialFolders This property returns a WshSpecialFolders object, which is
a collection of special folder locations. These special
folders are set by the operating system. To retrieve the
value of the Desktop special folder location in
InstallScript, use statements similar to the following:
set specfldrs = shell.SpecialFolders;
szDesktopPath = specfldrs.Item("Desktop");

There is no similar function in InstallScript.

P A R T I I I N S T A L L S C R I P T

544

The 10 methods of the WshShell object are discussed in Table 9-23.

Table 9-23: WshShell Object Methods

Method Description

AppActivate This method activates an application window by
moving the focus to the application. The
application needs to be running before this
method can be used. To make Notepad the top
window in InstallScript, use a statement similar to
the following:
bSuccess = shell.AppActivate("Notepad");

Notepad would have to already be launched and
not be minimized in order to see anything happen.
This method does not change whether a window
is minimized or maximized. There is no similar
function in InstallScript.

CreateShortcut This method creates a new WshShortcut or
WshUrlShortcut object. To create a shortcut to an
Internet location on the desktop in InstallScript,
use statements similar to the following:
set specfldrs = shell.SpecialFolders;
szDesktopPath = specfldrs.Item("Desktop");
set shortcut = shell.CreateShortcut
 (szDesktopPath ^ "InstallShield.url");
shortcut.TargetPath =
 "http://www.installshield.com";
shortcut.Save;

This code creates a shortcut on the desktop that
launches the InstallShield Web site. This method is
similar to what can be accomplished in the
AddFolderIcon function in InstallScript.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

545

Table 9-23: WshShell Object Methods (Continued)

Method Description

ExpandEnvironmentStrings This method returns an environment variable's
expanded value. To expand the value of the
COMPSPEC environment variable into its full
value in InstallScript, use statements similar to the
following:
set environment = shell.Environment;
szPath = shell.ExpandEnvironmentStrings
 (environment.Item("COMSPEC"));

In InstallScript the GetEnvVar function
expands the environment string before it returns
the value.

LogEvent This method adds an event entry to the
application log file on Windows NT/2000 and to
the WSH.log file on Windows 9x. To log an error
event in InstallScript, use a statement similar to the
following:
shell.LogEvent(1, "Error message.");

There is no similar function in InstallScript.

Popup This method displays text in a message box that
can have a different number of buttons and icons
displayed.

RegDelete This method deletes a key or one of its values
from the registry. This method performs the same
actions that the RegDBDeleteKey and
RegDBDeleteValue functions do in
InstallScript.

P A R T I I I N S T A L L S C R I P T

546

Table 9-23: WshShell Object Methods (Continued)

Method Description

RegRead This method returns the value of a key or value-
name from the registry. This method is similar to
the RegDBGetKeyValueEx function in
InstallScript.

RegWrite This method creates a new key, adds another
value-name to an existing key, or changes the
value of an existing value-name. This method is
similar to the RegDBCreateKeyEx and
RegDBSetKeyValueEx functions in
InstallScript.

Run This method runs a program in a new process
based on the command line that is passed as an
argument. This method is similar to the
InstallScript functions LaunchApp and
LaunchAppAndWait.

SendKeys This method sends one or more keystrokes to the
active window as if they had been typed from the
keyboard. There is no similar function in
InstallScript.

Figure 9-16 provides an example program that uses some of the properties and
methods of the WshShell object. In this program, a few of the properties and
methods used have not been discussed in the previous two tables. Refer to the
Windows Script Host documentation for the complete details of what is being done
in this example.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

547

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates some of the
// properties and methods of the WshShell object.
//
///

#include "ifx.h"

#define CAPTION "Feedback"

INT iButton;
BOOL bSuccess;
STRING szComSpecPath, szEnvironment, szDesktopPath;
STRING szCurDir, szText, szTitle;
OBJECT shell, specfldrs, environment, shortcut;
program

 try
 // Create a WshShell object.
 set shell = CreateObject("WScript.Shell");

 // Create a WshSpecialFolders object using
 // the SpecialFolders property.
 set specfldrs = shell.SpecialFolders;

 // Create a WshEnvironment object using
 // the Environment property.
 set environment = shell.Environment("SYSTEM");

 // Get the expanded absolute path to CMD.EXE.
 szComSpecPath = shell.ExpandEnvironmentStrings
 (environment.Item("COMSPEC"));

 // Get the location of the current directory.
 szCurDir = shell.CurrentDirectory;

 // Get the path to the Desktop folder location.
 szDesktopPath = specfldrs.Item("Desktop");

 // Print out the display of values.
 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "COMSPEC: %s\nCurrent directory: %s\nDesktop: %s",
 szComSpecPath, szCurDir, szDesktopPath);

Figure 9-16: Setup.rul demonstrating the properties and methods of the WshShell object.

P A R T I I I N S T A L L S C R I P T

548

 // Create message box strings.
 szText = "Do you want to create a shortcut on the " +
 "desktop for the InstallShield Web site?";
 szTitle = "Create URL Shortcut";

 // Display the Yes/No message box.
 iButton = shell.Popup(szText, 0, szTitle, 4 + 32);

 // Create a shortcut on the desktop if the
 // Yes button is clicked.
 if(iButton = 6) then
 set shortcut = shell.CreateShortcut(szDesktopPath ^
 "InstallShield.url");
 shortcut.TargetPath = "http://www.installshield.com";
 shortcut.Save;
 endif;

 // Log the fact that the program completed successfully.
 shell.LogEvent(0, "The program worked successfully.");
 catch
 // Log that the program did not complete successfully.
 shell.LogEvent(1, "The program had error.");

 SprintfBox(MB_OK | MB_ICONINFORMATION, CAPTION,
 "Exception thrown.");
 endcatch;

 // Set the objects to NULL.
 set shell = NOTHING;
 set specfldrs = NOTHING;
 set environment = NOTHING;
 set shortcut = NOTHING;

endprogram

Figure 9-16: Continued.

The first part of this program retrieves the values of several properties and then
displays the results. It then uses the Popup method to display a message box with
Yes/No buttons that asks the end user if they want to create a shortcut on the
desktop. If the end user clicks Yes, the program creates an Internet shortcut that
launches the InstallShield Web site. After creating a WshUrlShortcut object by
passing the shortcut name with an .url extension, the program uses the TargetPath
property to point the shortcut at the InstallShield Web site. Before the shortcut
actually is created, you have to use the Save method.

C H A P T E R 9 E X C E P T I O N H A N D L I N G & C O M

549

Finally, the example uses a method of the WshShell object that allows you to write to
the Application Event Log on Windows NT/2000. The LogEvent method, when
run on Windows 9x, will write to the Wsh.log file that is found in the Windows
directory. To view the messages that are written to the Application Event Log, go to
the Event Viewer and indicate that you want to look at the events logged for
applications. The events that are logged using this method appear with WSH as the
source. If you right click on the event and select Properties, a dialog appears with the
message that was written to the Event Log.

More Objects
This chapter has covered three objects that can be accessed from InstallScript. These
are not the only objects that are useful in the development of an installation program.
In this section, you will learn about three additional objects. You will need to access
the MSDN Library to obtain the documentation for these objects.

The first object is the WebBrowser control that provides the capability for browsing,
document viewing, and data downloading in your installation programs. To create a
browser object in InstallScript, use a statement similar to the following:

set ieo = CreateObject("InternetExplorer.Application");

In addition to the FileSystemObject and Wscript objects, the Shell object can be used
to access files, folders, shortcuts, and printers. The Shell object is created in
InstallScript using a statement similar to the following:

set shell = CreateObject(Shell.Application");

Access the MSDN Library for documentation on how to use the Shell object. Finally
there is an object that can be used to provide database access from InstallScript. This
is the object that provides access to the properties and methods of the Active Data
Object (ADO). To create a connection object from which all other objects are
generated in InstallScript, use a statement similar to the following:

set dbconnection = CreateObject("ADODB.Connection");

This completes the discussion of how to access COM from InstallScript and the
importance of using the exception handling mechanism that is provided.

P A R T I I I N S T A L L S C R I P T

550

Conclusion
This chapter has provided two major ways to enhance your installation programs.
The first was the discussion of how to implement exception handling in InstallScript.
Exception handling is important because it enables you to keep a program from
failing unnecessarily or, in the worst case, allows for a graceful way to terminate an
installation program.

The second way to enhance your installation programs is to use COM to extend
InstallScript’s built-in functionality. With COM, you need to make use of the
exception handling mechanism described above. Many exceptions are thrown when
trying to access the automation interface provided by some object. The COM objects
that you have access to are those that you can create using InstallScript’s
CreateObject function. You are not able to access objects that are available in
the environment without first creating a DLL that implements the equivalent of the
GetObject method that is available in Visual Basic. This chapter also examined
the capabilities of three automation interfaces that can be important in installation
program creation. These interfaces are those exposed by the Windows Installer
engine, the Scripting Run-time, and the Windows Script Host. There are additional
interfaces that might be of value. These are the interfaces exposed by the Browser
control, the Windows shell, and the interface exposed by the Active Data Object.

It is important to realize that this chapter does not provide all the details necessary to
use these automation interfaces to their fullest capabilities. You should obtain the
documentation on each one of them in order to learn the details required to make full
use of these capabilities.

Part III

Getting Down
to Business

Common Installation
Tasks

So far in this book, you have created both a Standard and a Basic MSI project for the
Developer Art application. These were very basic projects with nothing added other
than a shortcut on the Start\Programs menu. This chapter discusses how to build in
additional functionality in an installation project. When you add this functionality to
an installation project, you do it via components. Changes to the target system are
made if the associated component is installed.

This chapter examines how to create file associations, create initialization files, create
empty folders, and work with environment variables. You will also learn about setting
launch conditions, as well as performing searches of the target system for installed
applications and particular registry entries.

Chapter

10

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

554

Creating File Associations
A file association is where a particular file extension is associated with an extension
server. A file association is also known as a file type. An extension server is normally
an executable that can open a file with a certain file extension. Creating file
associations is an important part of the "Certified for Windows" logo requirements as
specified in the Application Specification for Microsoft Windows 2000 for desktop applications.
This specification can be down loaded from the following MSDN Web site:

http://msdn.microsoft.com/certification/appspec.asp

This section shows how to create the simplest form of a file association for the
Developer Art application. The Developer Art application saves files with an .idv
extension. Also, even though it is not a requirement of the "Certified for Windows"
logo, we will also look at the creation of a MIME type. A MIME (Multipurpose
Internet Mail Extension) type defines the server that is used to open a file that is an
email attachment.

Since there is no difference in how a file type is created between a Standard project
and a Basic MSI project, this chapter uses the Standard project you created in Chapter
5 in its discussions of this subject. First we will look at a summary of the requirements
for creating file associations as defined in the Application Specification for Microsoft
Windows 2000 for desktop applications.

The "Certified for Windows" Logo
Requirements for File Associations

The general requirement is that all non-hidden files that are either created during the
installation outside the application's directory or created by the application as part of
its normal function need to have an associated file type, an identifying icon, a
description, and an associated action that is implemented when you double click on
the file in Windows Explorer. In particular the files that need to be provided with a
file association are as follows:

� Non-hidden files created during the installation outside of the main install
directory of the application.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

555

� Non-hidden implementation and data files that reside outside of the main
install directory of the application.

� Non-hidden files that are user created and are native to the application.

If a file association has already been registered by another application, it is acceptable
to let the previous registration stand or you can choose to take over the file
association for your application. Microsoft now recommends that file extensions be
four or five characters long to avoid the conflict of two different applications
registering a file association for the same extension.

For every file association that you register in your installation program, you need to
do the following:

� Provide an icon for each file that is registered so that none of these files uses
the default Windows icon in Windows Explorer.

� Provide a good description of the file that will appear in Windows Explorer
instead of the default description that consists of the extension followed by
the word "File".

� Ensure that there is an appropriate action associated with the file so when an
end user double clicks on the file in Windows Explorer, the application is
loaded and the file is opened unless the file is designated as the "NoOpen"
type in the registry.

The NoOpen designation is used for files that you do not want end users to open.
When the end user double clicks a file marked as NoOpen, the operating system
automatically provides a message informing the user that the file should not be
opened. Note that if an action is later associated with a NoOpen file type, the
NoOpen designation is ignored and the operating system attempts to open the file.

Creating a File Association for the
Developer Art Application

A file association needs to reference the particular file that will serve as the extension
server. This means that the file association should be defined as part of the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

556

component that installs the extension server. In the Developer Art application, this
component is DeveloperArt and this component installs the DeveloperArt.exe file,
which is the key path for its component. It is in this component that you will create
the file association.

Figure 10-1: The File Types icon under the DeveloperArt component.

For this example and all examples in this chapter, you will use the
DeveloperArt_IDEStd project. To define a file association for the Developer Art
application, perform the following five steps:

1. Open the DeveloperArt_IDEStd project and go to the DeveloperArt
component under Setup Design in Advanced Views. Click the File Types
icon under Advanced Settings (Figure 10-1) and in the File Types panel,
right-click on the Extensions icon and select New Extension.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

557

2. In the edit field that is created, enter the extension for which you are
creating the file association Do not type a period. In this example, type
“idv” without quotes. Beneath this extension, the Open canonical verb is
provided by default.

File associations use verbs as shorthand for actions that are invoked by
the Windows shell. A canonical verb is one that can be used with any
language and the operating system will generate a properly localized
display string. In most cases a file association has a preferred action when
an end user double-clicks on a file in Windows Explorer. The verb that is
linked to this preferred action is called the primary verb. Since the Open
verb is the most common primary verb, it is provided by default when
you create an extension.

3. When you have entered the .idv extension without the period, you need
to fill in the progID property for this extension. You can use a simple
format for creating the ProgID and this consists of the extension
followed by the word "file.” This approach would give a ProgID equal to
"idvfile" and this is the approach used for text files and the .txt extension.

Figure 10-2: The File Types view for the .idv extension with the ProgID specified.

However, the proper approach is to use a format where the ProgID
consists of the name of the application followed by the application
element to be opened, which is followed by the version number of the
application to be used. In our example you would get a ProgID equal to
"DeveloperArt.Document.1" and this is what you want to use. Note that

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

558

the three parts of this ProgID are delimited by periods. The entries you
make here for the extension are used to populate the Extension and
ProgId tables in the database. When you enter this string into the ProgID
property for the extension you get something that looks like what is
shown in Figure 10-2.

4. Ignore the MIME Type property and click the Open verb to enter the
properties for the Open command. All the entries that you make here
relate to the context menu that appears when an end user right-clicks on
a registered file name in Windows Explorer. The values that you enter
here populate the Verb table in the database.

The Command Sequence property specifies the position that the Open
verb will have on the context menu. This property is optional, but to
ensure that the Open verb appears at the top of the context menu, give it
a sequence of 0. This forces this command to appear at the top of the
context menu in bold.

Figure 10-3: The property values for the Open verb for the DeveloperArt component.

The Display Name property contains the name that appears on the
context menu. If you leave this property NULL, the command is
displayed on the context menu. Type the string “Open with Developer
Art” in this field.

The Argument field is a placeholder for the file that will be passed to the
extension server, which in this case is the file DeveloperArt.exe. For the
Open verb the argument is normally "%1". For this example, type “%1”

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

559

with the quotes. Surround the %1 placeholder with quotes because of the
possibility that the file the extension will launch has a long path name.

After making the above entries for the Open verb, you will see
something like what is shown in Figure 10-3. Note that InstallShield
Developer has inserted default string IDs for the Display Name and the
Argument property values. This is to facilitate the localization of the
installation program.

5. The last thing that you need to do to complete the entries required to
define a file association is to enter the properties for the ProgID that you
created earlier. Click on the ProgID that you created to display the
property sheet. All the properties that you are interested in here relate to
the display of the file in Windows Explorer. The entries that you make
here populate a row in the ProgId table. Because the extension server is
not a COM server, you can leave the COM Class property empty.

The Description property indicates what is displayed in Windows
Explorer beside a file with the registered extension. If you leave this
property NULL, Windows Explorer shows a description of "IDV File,"
which is not very informative. Type “Developer Art File” without
quotes.

The Icon File property identifies a file from which an icon can be
extracted and which will be used to identify any file that has an .idv
extension. You can browse to any file and extract an icon for the Icon
File property. For this example you should browse to the
SHELL32.DLL file in the system folder. This file is a source for many
interesting icons.

The Icon Index property designates the specific icon that is to be
extracted from the icon file specified in the previous property. Type or
select 41 for this property.

When you finish making these entries, you will see what is shown in Figure 10-4. If
you wanted to designate a file as being NoOpen then you would delete the Open
verb under the extension name and then you would use the Registry table to enter a
value name of NoOpen under the ProgId. You would then give this value name a
string as its data that would be displayed in a message box when someone double

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

560

clicked on the file in Windows Explorer. Normally this string would state that this
type of file should not be opened.

Figure 10-4: The ProgID properties for the DeveloperArt component file association.

The next thing that you have to do is to see what happens with the installation of the
Developer Art application now that you have created a file association. To test the
creation of a file association, do the following::

1. Build the project by clicking the Build button on the Toolbar.

2. Install the Developer Art application.

3. Run the Developer Art application.

4. Create and save an .idv file.

5. Examine the created file in Windows Explorer and right-click on it to
display the context menu.

When you examine the file that you created with the Developer Art application in
Windows Explorer, you should see something like what is shown in Figure 10-5.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

561

Figure 10-5: The ArtDocument.idv file in Windows Explorer.

When you right-click on this file in Windows Explorer, a context menu is displayed
(Figure 10-6). The context menu has the string “Open with Developer Art” at the
top. This string appears in bold because it is the first item on the context menu. This
is a result of setting the Command Sequence property for the Open verb to 0.

Figure 10-6: The right-click context menu for the ArtDocument.idv file.

To provide this functionality, the installation writes to three different locations in the
registry. All three locations are under the HKEY_CLASSES_ROOT (HKCR) key.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

562

The first sub-key under HKCR is the extension key where the name of the key is the
extension that is being registered (Figure 10-7).

The default value for this key is the ProgID that is associated with the extension.
There are two sub-keys under this key that are created, but in this application, these
keys have no meaning since you are not allowing the creation of a new document
from the context menu in Windows Explorer. When you access a file with the .idv
extension, this is the first key that the shell searches for. When it finds this key, it
reads the value of the ProgID and then searches for a key under HKCR that has the
ProgID as its name.

Figure 10-7: The extension key for the Developer Art file association.

The structure of the ProgID key under HKCR is shown in Figure 10-8. When the
shell finds this key, it reads the default value for the Shell\Open\command key,
which consists of the command line for opening the file with the extension server.

Figure 10-8: The ProgID registry key for the Developer Art file association.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

563

Note that there is a value name command under the Shell\Open\command key and
it has as its data what appears to be a string of garbage characters. These garbage
characters make up what is termed a Darwin Descriptor. This entry in the registry is
used to install an advertised application through the activation of a file that uses this
application as an extension server. The Darwin Descriptor is discussed a little more in
Chapter 13.

The third location to which your installation writes to the registry has to do with
making the application available in the Open With dialog by which the end user can
choose what program they want to use to open a specific file. The key for enabling
this functionality is in the following location in the registry:

HKEY_CLASSES_ROOT\Applications

Figure 10-9: The Applications key for the Developer Art file association.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

564

Under this key is written a key that has the name of the extension server and under
this key is the same Shell\Open\command key structure that appears under the
ProgID key discussed above. For the Developer Art file association, this entry in the
registry is shown in Figure 10-9.

You have worked through the creation of a simple file association and have seen how
it works. You now need to see what is necessary to extend this work so that if your
file is attached to an email, a recipient can open the file with the correct application.

Adding a MIME Type to the File
Association

The MIME (Multipurpose Internet Mail Extensions) standard was created to allow
users to be able to manipulate files that are not natively supported by email
applications or Web browsers. MIME works very much like file associations, as
described above, but it uses something called a content type. A content type consists
of a major type and a sub-type that are separated by a forward slash. When
InstallShield Developer asks for a MIME type, it is asking for a content type. As an
example the content type for a text file is text/plain. You have a fair amount of
flexibility in the selection of a content type (MIME type) to use for your applications.

To create a MIME type in your project, perform the following four steps:

1. Go to where you defined the idv extension under the File Types node.
Right-click on the idv file type and select New MIME Type. This creates
a new MIME type with a default name.

2. Type the following for the MIME Type name:

application/x-devart

The major content type is application, which means that it is a non-
standard file format. The content sub-type is a unique name that is
specific to the Developer Art application.

3. After entering the new MIME type, click the idv extension to display its
property grid. From the MIME Type property drop-down menu, select
the application/x-devart MIME type.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

565

4. Click on the application/x-devart MIME type you just created to display
the property grid. Because DeveloperArt.exe is not a COM server, you
do not have to enter anything for the Class ID property. The value of the
Class ID property is used to populate a row in the MIME table.

When you are finished adding the MIME type to your project, you will see what is
shown in Figure 10-10.

Figure 10-10: The MIME type for the .idv extension in the Developer Art application.

To test the inclusion of a MIME type in your application, build the project and install
the Developer Art application. When you run the installation, two new entries are
made in the registry in order to support the new MIME type. The first added entry is
a new value that is written against the extension key under
HKEY_CLASSES_ROOT (Figure 10-11).

Figure 10-11: The Content Type entry in the registry for the Developer Art MIME type.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

566

Note that there is now a value name called Content Type and it has a value data entry
equal to the MIME type that you created in your project. The second entry that is
made in the registry is the addition of your MIME type to the MIME database. This
MIME database is located under the following key:

HKEY_CLASSES_ROOT\MIME\Database\<Content Type>

The entry under this key made by the installation of the Developer Art application is
shown in Figure 10-12.

Figure 10-12: The entry in the MIME database in the registry.

The final test that you need to run is to attach your .idv file to an email and send it to
yourself. You should see the attached file with the correct icon beside it. Double-click
on the attached file and select the “Open it” option on the “Opening mail
Attachment” dialog. The Developer Art application should open this attached file. If

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

567

you use Microsoft Outlook as your mail client, you should see something like what is
shown in Figure 10-13.

Figure 10-13: The .idv file as an attachment in an email.

Defining Registry Entries
A major part of an application installation involves making entries in the registry. This
was demonstrated in the last section when you created a file association and a MIME
type for the file type that is created by the Developer Art application. You are also
creating registry entries when you install a COM server such as the ArtWork
component. To make these particular registry entries, a number of special tables are
used. None of these entries are defined in the Registry table.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

568

The Registry table is used to make registry entries of a generic nature. Chapter 5
discussed one of the registry entries that is created by an entry in the Registry table.
This particular registry entry is the key that is written under the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
 CurrentVersion\App Paths

Because of this key’s importance, there is a special Application Paths icon under each
component's Advanced Settings in either a Standard project or a Basic MSI project
where this particular registry entry is defined. The information entered here is built
into the Registry table.

This section discusses the definition of registry entries in the Registry table. Since the
approach used is the same for both a Standard project and a Basic MSI project, you
can use the Standard project that you used in the last section to define a file
association for the Developer Art application. In this discussion, you will not use any
of the built-in registry functions available in InstallScript because we want to stay
away from the programmatic approach to working with the registry. The danger of
using the registry functions is that, in a managed environment, these entries might not
be created during the installation. Accordingly, it is better to define the required
registry entries by creating rows in the Registry table.

To work with the Registry table in InstallShield Developer, it is important to
understand the various columns that make up this table. You also need to know
about the special functionality provided by the RemoveRegistry table. This is the
subject of the next section.

The Registry and RemoveRegistry Tables
The Registry table is used to define keys and values that are created during an
installation. You can also define special functionality that is applicable to registry keys
during an uninstallation. The RemoveRegistry table is used to define registry keys and
values that are to be removed during an installation. For both tables, the actions
specified are associated with a particular component and these actions are executed
only if the associated component is selected for installation or uninstallation. Making
entries in the Registry table is fully supported in InstallShield Developer's IDE
through context menus and drag and drop functionality. To add rows to the
RemoveRegistry table, you need to use the Direct Editor, which is found under
Advanced Views.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

569

The Registry Table Schema

There are six columns in the Registry table. The format of these columns is described
in Table 10-1.

Table 10-1: The Registry Table Schema

Column Name Description

Registry This column serves as the table’s primary key. This is a
string that adheres to the requirements of the Identifier
data type. This entry needs to be unique for each row in
the table.

Root This column contains numerical values that identify the
predefined root key for the key and/or value that is to be
created. The valid values are described in Table 10-2.

Key This column defines the key that is written to the registry.
This is a string that adheres to the requirements of the
RegPath data type. This string consists of the key hierarchy
from just below the root key to the key that is to be
created or under which values are to be written. For
example, the entry in this column for the creation of the
App Paths entry is as follows:
SOFTWARE\Microsoft\Windows\CurrentVersion\
 App Paths\DeveloperArt.exe

Name In this column, you define the value name that is to be
created under the registry key specified in the previous
column. This column uses the Formatted data type. If this
field is NULL, the value in the next column is written as
the data for the default name. Using the string in this
column, you can control what happens to a key during
installation and uninstallation as long as the Value column
is NULL. The special formatting characters are described
in Table 10-3.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

570

Table 10-1: The Registry Table Schema (Continued)

Column Name Description

Value The string that is placed in this column must also conform
to the Formatted text requirements. This is the data that is
associated with either the string placed in the Name
column or the default value for a key. The special
formatting strings used in this column are described in
Table 10-4.

Component_ The value in this column is a foreign key into the first
column of the Component table. This ties any registry
changes defined in a row of the Registry table to whether
the associated component is installed or uninstalled.

If you look at the Registry table in the Direct Editor you will see that there is a
column that is not described in Table 10-1. The name of this column is ISAttributes
and the purpose of this column is to manage how the registry entries are displayed in
the IDE. This column is not included in the .msi file when you run a build.

An understanding of what goes into the Registry table is important so you will know
what the context menu in the IDE is doing for you when you define registry entries
to be created when a component is installed. Because of this we look at the possible
special characters for the Root, Name, and Value columns of the Registry table. The
Windows Installer performs certain actions based on what special characters are used
in these columns.

In the Root column of the Registry table there are specific integer values that are
meaningful. The possible values in this column are described in Table 10-2. Most of
the values shown in Table 10-2 are used in other tables when it is necessary to identify
the root registry key. Of particular interest is the –1 value, which has a special
meaning only to installations run on Windows 2000 and Windows XP. In the IDE
you will make use of this special new functionality by adding keys and values to the
HKEY_USER_SELECTABLE root key. Of course there is no such key actually in
the registry, only in the IDE.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

571

Table 10-2: Valid Values for the Root Column

Value Meaning

-1 If the installation is being performed for the current user,
the key and/or values are created under
HKEY_CURRENT_USER.

If the Installation is being performed for all users of the
machine, the key and/or values are created under
HKEY_LOCAL_MACHINE.

0 The keys and/or values are created under
HKEY_CLASSES_ROOT.

1 The keys and/or values are created under
HKEY_CURRENT_USER.

2 The keys and/or values are created under
HKEY_LOCAL_MACHINE.

3 The keys and/or values are created under HKEY_USERS.

You can control certain aspects of how a branch in the registry is treated during
installation and uninstallation by applying certain formatting characters in the Name
field for a leaf key of the branch. The formatting characters are shown in Table 10-3.

Table 10-3: Formatting Characters for the Name Field

Character Meaning

+ This symbol, used as the value name, creates a registry key
when the associated component is installed. This key will
not be uninstalled as long as there are no other values
associated with this key.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

572

Table 10-3: Formatting Characters for the Name Field (Continued)

Character Meaning

- This symbol used as the value name removes a key and all
its sub-keys and values when the associated component is
uninstalled. It does not matter if the key already existed
before the installation was run.

* This symbol used as the value name creates a key when the
associated component is installed and removes the key
when the associated component is uninstalled.

In the Value column of the Registry table there are a number of special strings used
depending on the storage format of the data being created. The special strings used in
this column of the Registry table are described in Table 10-4.

Table 10-4: Formatting Characters for the Value Field

Storage Format Special String Description

REG_BINARY To create a registry value with this storage format the value
in the Value column needs to be prefixed with #x.

REG_EXPAND_SZ To create a registry value with this storage format the value
in the Value column needs to be prefixed with #%.

REG_DWORD To create a registry value with this storage format the value
in the Value column needs to be prefixed with #.

REG_MULTI_SZ To create a NULL-delimited list of strings, place a tilde
inside square brackets between each string such as with
"a[~]b[~]c.". This will replace any values already in the
registry for the key identified in the Key column.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

573

The NULL terminator ([~]) used to create the REG_MULTI_SZ storage type is also
used to identify whether an entry in the Value column of the Registry table is to be
added to what is already in the registry. If the NULL terminator is prefixed to the
string in the Value column then the string is appended to what is already in the
registry. If the NULL terminator is appended to the string in the Value column then
the string is added at the beginning of what is already in the registry. In either case if
the string being added to the registry is already present then the string in the registry
will be removed. If the NULL terminator is placed at both the beginning and the end
of the string in the Value column then any existing value in the registry will be
replaced.

If there are no special strings used in defining the entry in the Value column of the
Registry table, the Windows Installer interprets the value to be written to the registry
as the REG_SZ storage format.

The RemoveRegistry Table Schema

There are five columns in the RemoveRegistry table. There is no Value column in this
table because the sole purpose of this table is to remove keys, sub-keys, and values
during the installation of an associated component. The schema of the
RemoveRegistry table is described in Table 10-5.

To generate entries in the RemoveRegistry table, use the Direct Editor view under
Advanced Views in the InstallShield Developer IDE. Using the Direct Editor is
similar to using Orca. Orca is the database-editing utility that comes with the
Windows Installer SDK.

Table 10-5: The RemoveRegistry Table Schema

Column Name Description

RemoveRegistry This column serves as the primary key for this table. This
is a string that adheres to the requirements of the
Identifier data type. This entry needs to be unique for
each row in the table.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

574

Table 10-5: The RemoveRegistry Table Schema

Column Name Description

Root This column contains numerical values that identify the
predefined root key for the key and/or value that is to be
removed. The permissible values are the same as
described in Table 10-2 for the Registry table.

Key The value specified here defines the registry key under
which the value defined in the next column is to be
removed during an installation. If the next column
contains a minus sign (-), this key and all its values and
sub-keys are removed during an installation. The value in
this column needs to conform to the RegPath data type
requirements.

Name This column defines the value name that is to be
removed from the registry key specified in the previous
column. This column uses the Formatted data type. If
you place a minus sign (-) in this column instead of an
existing value name, the key specified in the previous
column, with all its sub-keys and values, is removed
during an installation of the associated component.

Component_ The value in this column is a foreign key into the first
column of the Component table. This ties any registry
changes defined in a row of the RemoveRegistry table to
the installation of the associated component.

Note that the use of the minus sign is required in Name column so that a registry key
with all its values and sub-keys will actually get removed during an installation.
Without the minus sign only the named value will get removed.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

575

Working with the Registry Table
This section allows you to experiment with the functionality in the IDE that is
available for defining rows in the Registry table. When you define registry entries that
need to be made during an installation, you define these registry entries relative to a
particular component. There are two separate locations in the IDE where you can
define registry entries. There is a global view under Step 3 where you can see all the
registry entries that are being made by all components or you can filter the view so
only the registry entries being made by a single component are visible. You can also
go to the Setup Design view under Advanced Views and see the registry entries that
have been defined for an individual component.

Both the Setup Design under Advanced Views and the Registry view under Step 3
have the same functionality. The top two panels show the registry on the build
machine and the bottom two panels show the registry entries that are defined in the
project. For this chapter, use the global location for defining and viewing registry
entries. However, under each component in the Setup Design view, there is an icon
called Registry Data. You can do the same operations here as you can in the global
location under Step 3.

Click on the Registry view under step 3 in your Standard project for the Developer
Art application to the global Registry view (Figure 10-14). Figure 10-14 shows the
view when the View All Entries (read-only) option is selected. All the registry entries
that are being created by entries in the Registry table are shown. At this time, the only
registry entry that should be seen is the values written under the App Paths registry
key. This registry value was defined in Chapter 5. The Developer Art application does
not require any other registry entries to be created from the Registry table. To see
how to use the functionality in the IDE, you need to create some arbitrary keys and
values.

There are a number of ways to define registry entries in your project. One method is
to drag and drop registry keys from the registry on the build machine into the project.
To do this, navigate in the upper-left panel to the key that you want to incorporate
into your project. Drag that key from the upper-left panel that shows the registry keys
on the build machine to the lower-left panel that displays the registry entries defined
in the project. You can also drag value names and their data from the upper-right
panel down to a particular key in the lower-left panel. Additionally, you can drag value
names and their data down to the lower-right panel and these will be associated with

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

576

the key that is highlighted in the lower-left panel. Drag and drop works only when a
particular component is selected. When the View All Entries option is selected, the
view is in a read-only mode and you cannot create any registry entries.

Figure 10-14: The global registry view in the Developer Art project.

You can add registry entries to your project by importing a .reg file. To import a .reg
file follow the two steps listed below:

1. Right-click on any registry key and select Import REG File. This launches
the Import REG File Wizard.

2. Follow the wizard panel instructions. You will name the .reg file to
import and indicate how conflicts should be handled if there are already
values defined in the project that are also defined in the .reg file.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

577

Except for the drag and drop functionality, all the means to define registry entries in
your project come from the context menu when you right click on a key in the lower-
left panel or when you right click any where in the lower-right panel. The context
menu when you right click on a key in the lower-left panel is shown in Figure 10-15.

Figure 10-15: The context menu for creating registry entries in the Destination computer's Registry
view panel.

The various options on the context menu are discussed in the following list. The
operations on this menu that are key specific are valid only in the lower-left panel of
the Registry view. Those operations that can apply to both keys and values can also
be accessed from the context menu in the lower-right panel

New: This option has a sub-menu that allows you to create a new key under the
highlighted key highlighted. You can also create one of five types of data for a
key. Selecting the Multi-String Value option launches a dialog box that permits
you to create a REG_MULTI_SZ string. This dialog will give you the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

578

opportunity to place the NULL-terminator in front or at the end of the value you
are defining.

Copy & Paste: You can copy and paste keys with their values and data from one
place to another in the lower-left panel. You cannot copy and paste individual
values and their data.

Delete & Rename: With these two options, you can delete entries that you have
defined and you can rename values and keys. The renaming functionality is not
case sensitive, so you change the case of a letter to rename an item.

Import REG File: This option launches the Import REG File Wizard, which
allows you to choose a .reg file to import into your project.

Export All & Export Selected Branch: After performing all the work to define
the registry entries you want generated when a component is installed, you can
capture that information for later use by exporting it to a REG file. You can elect
to export everything or just part of the information by selecting only a branch of
the registry hierarchy.

Find… & Find Next…: These options provide a search mechanism for finding
a keys, values, or data in the registry entries that have been created in your project.

Install only (+): For a leaf key, when the key does not have any value assigned,
you can have the key created during an installation but can prevent the key and all
its ancestors from being removed when the associated component is uninstalled.
This option cannot be used on non-leaf keys or where the leaf key has any other
value assigned to it. Another means to create registry entries that do not get
uninstalled is to create a component that will create these entries and mark the
component as permanent so that it will never get uninstalled.

Uninstall entire key (-): This is the opposite of the previous option and it can
be used on key in a branch. Here the key and its values are not created during an
installation, but if the designated key already exists on the target system, it is
uninstalled when the associated component is uninstalled.

Install if absent, Uninstall if present (*): This is almost like standard
functionality where the registry entries are made when the associated component
is installed and removed when the associated component is uninstalled. The

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

579

difference here is that the registry entries that are uninstalled do not need to have
been created when the component was installed. If the subject registry entries
already exist on the target system prior to the component’s installation, they are
removed when the associated component is uninstalled.

Automatic: This is the standard operation where only the registry entries that are
associated with a component are removed when the component is uninstalled. If
the registry entries already exist prior to an installation, the registry entries will not
be removed when the associated component is uninstalled. This is the safe
approach where a component does not remove anything that it does not place on
the system. However, if a registry entry is overwritten during an installation this
entry will be removed when the associated component is uninstalled. The old
value of the registry is not replaced.

MSI Value: The first column of the Registry table is the primary key for the table
(Table 10-1). Under normal operation, the InstallShield Developer build process
generates a unique value for this column. To access this table during an
installation using a custom action, you need to know the primary key for the row
that you want to access. Using this option you can replace the unique name
generated by InstallShield Developer with a unique name of your own. This
allows you to code your custom action in advance by using the primary key.

Permissions: This option launches the Permissions dialog that you can use to set
permissions for a registry entry. The settings that you set with this dialog are used
to populate the LockPermissions table. The subject of setting permissions is out
side the scope of this book.

Figure 10-16 shows the context menu that is launched when you right click in the
lower-right panel of the Registry view. This menu is used to work with the value
names and value data under the key that is selected in the lower-left panel.

The top five options on the context menu have the same functionality as the similarly
named options on the New sub-menu shown in Figure 10-15. When you select to
create a particular type of value in the lower-right panel, a default name is provided
for this value, which you can rename. To rename a value you can select the Rename
option on the context menu, you can slowly click twice on the value name, or you can
hit the F2 function key.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

580

Figure 10-16: The value names and value data context menu.

Once you give a name to the value, you then need to provide data for this value. Do
this by right clicking on the value name and selecting Modify. This launches a dialog
where you enter the data for the value. You can also launch this dialog by double
clicking on the value name. When you create a DWORD value you get default data
equal to 0. When you create either a String value or a Binary value the data value is
initially set to NULL.

When you choose to create a Default value, the data field is automatically set to the
string "(value not set)". However, when the Windows Installer creates the registry key
the Default value will be NULL, not "(value not set)". This is a bug so it is better not
to create a Default value in your project unless you intend to set the data for this
value to something specific.

At the bottom of the context menu shown in Figure 10-16 are two options that are
used to either set a registry entry as the key path for a component or to remove a
registry entry from being the key path for a component. As discussed in Chapter 3, it
is possible to identify a registry entry as the key path for a component.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

581

Adding Registry Entries to the Developer
Art Project

One of the standard registry entries that are made for an application consists of some
basic information including the company name, product name, and product version.
Usually values that are important for the product that is installed are written as values
for the version key. In the following example, you will do something similar for the
Developer Art installation. When you create these registry entries, you will use the
formatted data type to capture the name and values that you want to write to the
registry. The formatted data type means that you can enclose the name of a property
in square brackets and the string will be replaced at installation time with the value of
the property.

Figure 10-17: Registry entries for the Developer Art application.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

582

This example writes all of the values to HKEY_LOCAL_MACHINE. For the
example, you will associate these registry entries with the DeveloperArt component.
This is shown in Figure 10-17.

As shown in Figure 10-17, three different private properties are used to create the
three keys: Manufacturer, ProductName, and ProductVersion. These properties are
enclosed in square brackets and thus the actual value of the property is used to create
the name of the registry key. Table 10-1 explained that the Key column of the
Registry table has a data type of RegPath. This data type accepts formatted strings for
creating parts of the total registry branch.

In Figure 10-17 shows three value names with data under the ProductVersion key.
The value names are strings for the installation location and values of the
ProductCode and UpgradeCode properties. For the Install Location value name, the
data is the value of the INSTALLDIR public property.

Figure 10-18: Registry entries created by the project input shown in Figure 10-17.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

583

After you make these entries for the DeveloperArt component, you need to build the
project and install the application to verify that the entries in the registry have been
made properly. The registry entries that are created are shown in Figure 10-18.

Before moving on to a look at the RemoveRegistry table, you can experiment a little
with some of the special functionality provided by the Windows Installer. First, see
how you can prevent registry keys from being uninstalled when the Developer Art
application is uninstalled. To do this:

1. Add an arbitrary key under the product version key.

2. Right-click on this key and select “Install only (+)” (Figure 10-19). Figure
10-19 shows a registry key named Key under the product version key.
This key has a plus sign (+) on it, indicating that it will be installed, but
not uninstalled. To test this, build the project, run the installation, and
then uninstall the application. When you look in the registry, you see that
all the keys are still there but the value names and value data associated
with the product version key have been removed. This demonstrates that
you can prevent only keys from being uninstalled, but not the associated
values and data.

Figure 10-19: Preventing keys from being uninstalled.

Now that there are some registry entries on the system, you can see what the
“Uninstall entire key (-)” option does. Right-click on the product name key and select
the “Uninstall entire key (-)” option. For this example, you will remove an entire
branch. To do this, go to the top of the branch you want to remove, right-click, and

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

584

select “Uninstall entire key (-)”. You do not have to reverse the “Install only (+)”on
the leaf node because the “Uninstall entire key (-)” option takes precedence. When
you select this option on the product name key, you will see something like what is
shown in Figure 10-20.

Figure 10-20: Forcing the removal of a branch in the registry.

To test this, build the project, install the application, and uninstall the application.
After uninstalling the application, go into the registry to see that this entire branch has
been removed.

Removing Registry Entries During an
Installation

The previous section dealt with the Registry table. The IDE has a number of options
that make it easy to properly populate this table. The IDE does not provide context
menu functionality for the RemoveRegistry table. To populate the RemoveRegistry
table, you need to use the Direct Editor view under Advanced Views. The Direct
Editor contains a list of all the tables represented in the project file. Scroll to the table
you want to edit and make entries according to the Windows Installer help for the
table.

In order to run an example of the RemoveRegistry table, you need to create some
keys and values in the registry before you run the installation. The best way to do this
is to use a REG file to add these keys. The CD-ROM contains a REG file named

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

585

DEVART.REG under the Chapter 11\Sources\Developer Art folder. The contents
of this file are shown in Figure 10-21.

Figure 10-21: The .reg file for adding entries to the registry.

You need to add the necessary information to the RemoveRegistry table so the
registry keys and values defined in the .reg file (Figure 10-21) are removed during an
installation. To do this, remove the branch that consists of all keys and values starting
with the key named "Removal Test".

Figure 10-22: The Direct Editor view showing the entries in the RemoveRegistry table.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

586

Refer to Figure 10-21 and Table 10-2 to define one row in the RemoveRegistry table
using the Direct Editor view. The entries that you need to make in the
RemoveRegistry table using the Direct Editor view are shown in figure 10-22.

Click on the first row in the RemoveRegistry table. A default primary key is provided
for the first column. Leave the default value in this column. Since you are concerned
with removing keys and values under the HKEY_LOCAL_MACHINE root, type 2
in the second column (Root).

Define the location of the key that you want removed during an installation in the
Key column. This value begins with the SOFTWARE key and ends with the name of
the key that is to be removed. Note that a back slash is not required at the beginning
nor at the end of the value placed in the Key column.

In the Name column, place a minus sign to signify that you want all sub-keys and
values removed. If you want to remove only values, you would place the value name
in this column. In this case, a separate row is required for each value that you want
removed.

Figure 10-23: After merging DevArt.reg but before installing Developer Art.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

587

In the last column, select the component that needs to be installed before the desired
removal takes place. The Direct Editor provides a drop-down menu that lists the
project’s components.

Before testing this functionality, you first need to merge the DEVART.REG file with
the registry. To do this, right click on the .reg file and select Merge. After this .reg file
has been merged, but before the Developer Art application is installed, the registry
appears similar to what is shown in Figure 10-23.

After making the entries in the RemoveRegistry table and building the project, install
the Developer Art application. After the installation is complete, look at the registry
to see that the registry entries shown in Figure 10-23 have been removed.

Handling Environment Variables
An installation often has to perform tasks related to environment variables, including
setting environment variables during the installation. Using custom actions, you can
also retrieve the value of an environment variable, and set environment variables that
exist only while the installation is running.

When defining environment variables that are to be created during an installation, the
definition needs to be associated with a component. The defined environment
variable is created only if the associated component is installed. When you define an
environment variable, you are making entries in the Environment table. Using this
table you can create new environment variables, append new values to existing
environment variable values, and remove environment variables. The InstallShield
Developer IDE contains an Environment Variables view, which allows you to author
rows in the Environment table without using the Direct Editor view. The
Environment Variables view is under Step 3 and is the same for both Standard and
Basic MSI projects.

The first thing that we want to do is take a brief look at how environment variables
are handled, with particular emphasis on Windows 2000.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

588

Environment Variable Overview
There are two types of environment variables on Windows NT/2000/XP, user
environment variables and system environment variables. User specific environment
variables can be different for each user. System variables are the same regardless of
what user is signed on to the machine. Only users that are members of the
Administrator's group can add new system environment variables or change the
values for existing variables.

On Windows 2000, system environment variables are stored in the registry at the
following location:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
 Session Manager\Environment

User environment variables are stored in the registry at the following location:

HKEY_CURRENT_USER\Environment

When an application is launched on Windows 2000, a new process is created and in
this new process a block of memory is allocated where the values of the currently
defined environment variables are stored. New environment variables that get set
while this application is running are not added to this environment block and as such
the application does not know anything about them until it is shutdown and re-
launched.

The loading of environment variables into an applications memory space is
performed in the following order:

� System environment variables are set first.

� User environment variables are set next and if there is any conflict with the
system variables the user variables will override the value of the system
environment variable.

� Environment variables that are defined in Autoexec.bat are set last. These
variables do not override any of the system or user environment variables.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

589

There is one exception to the above rules and that is the PATH environment
variable. The values for this environment variable are cumulative the paths defined in
all three locations are appended to each other.

When working with InstallShield Developer, it is important to remember that each
process has its own set of environment variables stored in the environment block.
You saw in Chapter 4 that there are a number of processes running during any
installation. If one of these processes sets an environment variable the other
processes will not see it and not have access to it.

Now it is time to get into some detail about working with environment variables in
InstallShield Developer. To help you better understand the Environment Variables
view, the next section examines the Environment table schema.

The Environment Table Schema
The Environment table contains four columns (Table 10-6). To view the
Environment table, go to the Direct Editor. Note the use of prefixes in the Name
column to control how environment variables are created or removed.

Table 10-6: The Environment Table Schema

Column Name Description

Environment This is the primary key for the table and it needs to
conform to the Identifier data type. The value in this
column must be unique for each row in the table.

Name This column contains the name of the environment variable
that is to be manipulated during the installation. How the
environment variable is treated during an installation or an
uninstallation depends on the prefix that is used on this
name. This name is not case sensitive. When the only
difference between two names is the case of the letters
used, they are considered the same environment variable.
Table 10-7 describes the valid prefixes and the functions
they serve.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

590

Table 10-6: The Environment Table Schema (Continued)

Column Name Description

Value This column contains the value that is to be assigned to
environment variable specified in the Name column. The
string that is placed in this column needs to conform to the
Formatted data type specification.

When a value is to be appended to an existing value, use
the tilde inside square brackets [~], which, as discussed
earlier, represents the NULL character. You also use the
NULL character to prefix a value to an existing value. To
append a value to an existing value, enter the following in
the Value column, [~];NewValue. Note that the semi-colon
delimiter is included as part of this string. To prefix a value
to an existing value, reverse the position of the NULL
character and the delimiter, as follows: NewValue;[~].

Component_ The value in this column is a foreign key into the first
column of the Component table. This defines the
component that needs to be installed before the
environment variable defined in this row is created,
modified, or removed.

The string in the Name column must contain one or more prefixes. The environment
variables are written or removed depending on the characters that prefix the name of
the environment variable being manipulated. The valid prefixes and their meaning are
discussed in Table 10-7.

Table 10-7: Valid Prefix Characters for the name Column

Prefix Meaning

!- This prefix is used to remove an environment variable
during an installation or an uninstallation.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

591

Table 10-7: Valid Prefix Characters for the name Column (Continued)

Prefix Meaning

- Remove the environment variable when the component is
uninstalled. This removes only an environment variable
that is created during the installation and does not remove
one that already exists at installation. If you prefix or
append a value to an existing value, then only the value
added during the installation is removed when the
associated component is uninstalled.

! Remove the environment variable during an installation.
The Windows Installer removes an environment variable
during an installation only if the actual name and value of
the existing environment variable matches the entries in
the Name and Value fields of the Environment table. To
remove an environment variable during an installation,
regardless of its value, you would use this prefix with the
name of the environment variable and leave the Value
column empty.

* This prefix is used with Windows NT and Windows 2000
to specify that the environment variable being set is a
System environment variable and not a User environment
variable. If no asterisk is present, the Windows Installer
writes the variable to the user's environment. On Windows
95, 98, and Me, the asterisk is ignored and the
environment variable is written to AUTOEXEC.BAT. On
Windows 95, 98, and Me, the environment variable does
not become available until the next system start.

+- This prefix creates the environment variable during an
installation if it does not already exist and removes the
environment variable created during the installation when
the associated component is uninstalled.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

592

Table 10-7: Valid Prefix Characters for the name Column
(Continued)

Prefix Meaning

=- The environment variable is set on installation and
removed on uninstallation. If the environment variable
exists at the time of the installation and you prefix or
append a new value to the value that already exists, then
only the new values are removed when the associated
component is uninstalled. If you replace the existing
value with the new value, then, when the associated
component is uninstalled, the existing environment
variable is totally removed. This prefix is InstallShield
Developer’s default implementation.

= Create the environment variable if it does not exist. Set
the value of the environment variable regardless of
whether the environment variable already exists or has
to be created during the installation. If the environment
variable already exists you can replace it with a different
value or you can prefix or append a value to the current
value.

+ Create the environment variable if it does not exist and
then set its value during an installation. If the
environment variable already exists at installation, no
changes are made to the value and you cannot prefix or
append a value to the existing value.

The WriteEnvironmentStrings and the RemoveEnvironmentStrings standard actions
process the rows in the Environment table. If these actions are not present in the
InstallExecuteSequence table, then any environment variables defined in the
Environment table will not be written, modified, or removed from the target system.
Even after these actions run, the environment variables are not available to the
installation process. However, a new process will have access to these new
environment variables.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

593

The next section looks at how the InstallShield Developer IDE manipulates the
entries in the Environment table to implement the desired functionality.

Working in the Environment Variables
View

Since both a Standard project and a Basic MSI project present the same IDE
functionality, we will use the Standard project that you have been using in this chapter
to discuss the Environment Variables view. To get started do the following:

1. Click on the Environment Variables view under Step 3 to see the sub-
view tree that has no environment variables defined.

2. Right-click on the root icon of this tree and select Add Environment
Variable to create an environment variable.

3. Name the variable EnvVar.

4. Click on this environment variable to display its property grid (Figure 10-
24).

Figure 10-24: The property panel for an environment variable.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

594

Figure 10-24 shows the six properties that determine the environment variable’s
functionality. By default, a new environment variable has the functionality that is
defined by the =- prefix. This prefix creates and sets the environment variable during
an installation and removes it when the associated component is uninstalled. The
environment variable properties are discussed in the following list.

Component: Contains the name of the component that is associated with the
environment variable that you want to manipulate during the application’s
installation and uninstallation. Click in the property field to display a drop-down
menu that lists all of the project’s components.

Value: Contains value for the environment variable that is to be set. If you are
appending this value or prefixing it, you do not have to enter the delimiter and
the NULL character. These are added as needed, based on the choices you make
for the other properties.

On Install: This property specifies how you want the environment variable
manipulated during an installation. The drop-down menu provides three choices
for the property’s value.

� Set: Places the equal sign (=) as part of the prefix in the name
column.

� Create: Places the plus sign (+) as part of the prefix in the Name
column.

� Remove: Places the exclamation mark (!) as part of the prefix to the
value in the Name column.

Placement: Specifies whether to completely replace an existing value or to prefix
or append the string in the Value field to an existing value. The drop-down menu
provides the Replace, Append, and Prefix options for this property. If you select
either Append or Prefix, and the environment variable does not already exist, the
string in the Value field is made the value of the environment variable.

� Replace: This will cause any value already associated with the
environment variable to be completely replaced.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

595

� Append: This will cause the value to be appended to any existing
value for the environment variable. If the environment variable does
not already exist then this will set the value of the environment
variable.

� Prefix: This will cause the value to be inserted at the beginning of
any existing value for the environment variable. If the environment
variable does not already exist then this will set the value of the
environment variable.

On Uninstall: Specifies what to do with the environment variable when the
associated component is uninstalled. The drop-down menu provides two options
as follows:

� Remove: The minus sign (-) becomes part of the prefix to the value
in the Name field.

� Leave: The prefix consists of only one character and that is the
character that specifies what is to happen during an installation.

Type: Specifies for Windows NT/2000/XP where the environment variable is
to be created. There are two possibilities as shown below:

� User: The user environment space makes an environment available
to only the user that has performed the installation.

� System: The System environment space is available to all users. The
end user must have administrative privileges in order to run an
installation that creates or removes environment variables in the
system environment space.

As discussed in Table 10-6, the Value column of the Environment table takes a
Formatted text string as a value. This means that you can use property names inside
square brackets to provide values for an environment variable. A simple example is to
add the install location of the Developer Art application to the PATH environment
variable.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

596

5. Rename the EnvVar environment variable shown in Figure 10-24 to
PATH. The component associated with the creation of this environment
variable can remain the DeveloperArt component.

6. In the Value property, enter the INSTALLDIR property inside square
brackets.

7. In the Placement property, select the Append option and leave all the
other properties with their default values.

The final configuration for creating this environment variable is shown in Figure 10-
25.

Figure 10-25: Adding a location to the PATH environment variable.

Note that you do not have to supply a delimiter or the NULL character in order for
this Append operation to work correctly. This is handled by the Environment
Variables view in the InstallShield Developer IDE. After you build the project and

Note that you need to use either the Append or the Prefix options for the
Placement property when working with the PATH environment variable. If you
were to completely replace this value it could damage your system.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

597

install the application, you can go into the system dialog that displays the environment
variables and see that the user PATH environment variable has the install location of
the Developer Art appended to it. On a Windows 9x machine, you have to reboot
the machine to see the change in the value of the PATH environment variable. This
is because on Windows 9.x it is the Autoexec.bat file that is used to set environment
variables. These variables get loaded into memory when the system boots and all
applications have access to this memory.

When you uninstall the application, you see that only the value of the INSTALLDIR
property has been removed from the value of the PATH environment variable.
Experimenting with this functionality can provide a better understanding of the
Windows Installer's capability for manipulating environment variables.

The Windows Installer help contains the following warning:

"Each row can contain only one value. For example, the entry
Value;Value;[~] is more than one value and should not be used because
it causes unpredictable results. The entry Value;[~] is just one value."

You can handle this situation by creating more than one entry for the same
environment variable in the sub-view under the Environment Variables view. The
creation of an environment variable name here translates into one row in the
Environment table. Enter separate values for each of the instances of the same
environment variable and make sure that to select either Append or Prefix for the
Placement property. When the installation is run, semi-colons delimit all the
individual values, and they form the value string for the environment variable.

On Windows NT, Windows 2000, and Windows XP, the end user usually has the
opportunity to select to run the installation for all users of the machine or just for
themselves. The next section discusses how this affects setting environment variables.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

598

Per-Machine vs. Per-User Installations and
Environment Variables

Environment variables that are generated during an installation need to be written to
the System environment space so they are available to all users of the machine. An
application that is installed just for the current user should write the environment
variables to the User environment space. The issue is how to accomplish this when
environment variables are tied to a component and there is no way to condition the
writing of these variables to different environment spaces depending on installation
type.

Figure 10-26: Special components in the Developer Art project for creating environment variables.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

599

The answer is to create two special components whose only function is to create the
environment variables in the appropriate environment space. You then condition
each of the components so only one of them will be installed.

To implement a simple example of this approach, do the following:

1. First, create two special components under the Main_Program feature in
the Setup Design view. Name these two components Per_User and
Per_Machine, as shown in Figure 10-26.

2. Set the condition for each of these components As shown below:

Per_User component: (Not ALLUSERS) And Privileged

Per_Machine component: ALLUSERS And Privileged

The key to the properly implementing this approach is the condition that you
place on these two special components. The ALLUSERS property
determines where the configuration information for an application is stored.
When the ALLUSERS property has a value, the configuration information is
stored in the "All Users" profile. When the ALLUSERS property does not
exist, the configuration information is stored in the user's personal profile.
The Privileged property is set if an install is performed with elevated
privileges or the user has administrative privileges.

3. In the Environmental Variables view, create an EnvVar environment
variable twice as shown in Figure 10-27.

4. For the instance that is associated with the Per_User component, set the
Type property to User.

5. For the instance associated with the Per_Machine component, set the
Type property to System.

6. For each instance you give the same string as the value of the Value
property. In this example, use the string "Value1". Leave the default
values for all of the other properties for each instance of the environment
variable.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

600

Figure 10-27: Defining the environment variable for the two special components.

To test, build the project and run the installation.

1. The first time through the installation, leave the default selection in the
Customer Information dialog, which is to install the application for all
users of the machine.

2. When the installation is complete, check to verify that the environment
variable was written to the System environment space.

3. Uninstall and run the other option in the Customer Information dialog to
see that the environment variable has now been written to the User
environment space.

You now know how to set the value of environment variables using the
Environment table. To complete our discussion of environment variables, the next
section looks at how to access environment variables during the installation.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

601

Accessing Environment Variables During
an Installation

Obtaining the value of an environment variable that has been set prior to running an
installation requires some InstallScript programming. For a Standard project, you can
incorporate this programming in one of the event handlers if you want to obtain the
value in the user interface sequence. You can use custom actions in both sequences of
a Basic MSI project or in the execute sequence table of a Standard project. Remember
that it is possible for different processes to have different environment variables.

InstallScript has a built-in function that allows you to obtain the value of an
environment variable. A typical call to this function is as follows:

iResult = GetEnvVar("SYSTEMROOT", svValue);

The value of the SYSTEMROOT environment variable is returned by this function in
the svValue argument. This function returns the value of the environment variable
as it is set in the current process's environment block. Remember that environment
variables defined for the user replace the value for the system when there is a conflict.
A typical example of this is the TEMP environment variable, which has different
values in the System and in the User environment space. Also remember that the
PATH environment variable is cumulative, the value defined for the System and the
value for the User are concatenated using the semi-colon delimiter.

More functionality is available if you use the Environment property available from the
Windows Script Host. Chapter 9 covered this during the discussion about creating
COM objects in InstallScript. Figure 10-28 shows some code for the OnBegin event
handler where you use COM and the Windows Script Host object to get both values
of the TEMP environment variable, as well as set the value of an environment
variable that will exist only as long as the client process is alive.

The code shown in Figure 10-28 is available on the CD-ROM at the back of the
book. You can copy the code out of the file named Figure 10-28.rul and paste it into
Setup.rul replacing the code that is already there.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

602

///
//
// FUNCTION: OnBegin
//
// EVENT: Begin event is always sent as the first event
// during installation.
//
///
function OnBegin()
STRING szUserValue, szSystemValue, szProcessValue1, szProcessValue2;
OBJECT objShell, objSystemEnv, objUserEnv, objProcessEnv;
begin

 try
 // Create a Windows Script Host shell object.
 set objShell = CreateObject("WScript.Shell");

 // Create a collection of the environment variables
 // in the User environment space.
 set objUserEnv = objShell.Environment("User");

 // Create a collection of the environment variables
 // in the System environment space.
 set objSystemEnv = objShell.Environment("System");

 // Create a collection of the environment variables
 // in the Process environment space.
 set objProcessEnv = objShell.Environment("Process");

 // Get the value of the TEMP environment variable as
 // define in the User environment space. Need to expand
 // the environment string into an actual path value.
 szUserValue =
 objShell.ExpandEnvironmentStrings(objUserEnv("TEMP"));

 // Get the value of the TEMP environment variable as
 // define in the System environment space. Need to expand
 // the environment string into an actual path value.
 szSystemValue =
 objShell.ExpandEnvironmentStrings(objSystemEnv("TEMP"));

 // Display the value of both TEMP environment variables.
 SprintfBox(MB_OK, "Feedback",
 "TEMP value in the User space: %s\n\n" +
 "TEMP value in the System space: %s", szUserValue,
 szSystemValue);

Figure 10-28: Accessing environment variables during an installation.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

603

 // Get the value of the PATH environment variable in the
 // Process environment space before changing it.
 szProcessValue1 = objProcessEnv("PATH");

 // Set the PATH environment variable with a temporary value.
 objProcessEnv("PATH") = "C:\\MySetups";

 // Get the value of the PATH environment variable in the
 // Process environment space.
 szProcessValue2 = objProcessEnv("PATH");

 // Display the value of both PATH environment variables.
 SprintfBox(MB_OK, "Feedback",
 "PATH value before change: %s\n\n" +
 "PATH value after change: %s", szProcessValue1,
 szProcessValue2);
 catch
 SprintfBox(MB_OK, "Feedback", "Exception was thrown.");
 endcatch;

end;
///
//
// FUNCTION: OnEnd
//
// EVENT: End event is the last event. It is not sent if the
// installation has been aborted. In this case the
// Abort event is sent
//
///
function OnEnd()
STRING szProcessValue;
OBJECT objShell, objProcessEnv;
Begin

 try
 // Create a Windows Script Host shell object.
 set objShell = CreateObject("WScript.Shell");

 // Create a collection of the environment variables
 // in the Process environment space.
 set objProcessEnv = objShell.Environment("Process");

 // Get the value of the PATH environment variable in the
 // Process environment space.
 szProcessValue = objProcessEnv("PATH");

Figure 10-28: Continued.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

604

 // Display the value of the PATH environment variable.
 SprintfBox(MB_OK, "Feedback", "PATH value: %s",
 szProcessValue);

 catch
 SprintfBox(MB_OK, "Feedback", "Exception was thrown.");
 endcatch;
end;

Figure 10-28: Continued.

The code shown in Figure 10-28 is placed in the OnBegin and OnEnd event
handlers. In this way this same code can be easily used in a Basic MSI project, in
addition to the Standard project you are using for this example.

The first thing that this code does is to create a Windows Host Script shell object. It
also creates three environment collection objects, one each for the User, System, and
Process environment variables. Using the User collection, the example code sets a
variable to the value of the TEMP environment variable and then, using the System
collection, sets another variable to the value of the TEMP environment variable.
When these two string variables are displayed, you see that the values are different.
The code then uses the ExpandEnvironmentStrings method of the shell object to
convert the paths to absolute paths for the target machine. If this method was not
used, the paths for the TEMP environment variable would include the
%SystemRoot% and %USERPROFILE% strings instead of the actual folder
names.

The code in Figure 10-28 demonstrates that if you set the value of an existing
environment variable, the value is valid only in the present process and the new value
does not exist after the process is shut down. This demonstration consists of setting
the PATH environment variable to a new value and then displaying the value of the
environment variable before and after it is set in the installation. You also get and
display the value of the PATH environment variable in the OnEnd event handler.
You see that the value as seen from the OnEnd event handler is the value to which
the variable was changed: C:\MySetups. After the installation has completed, you
can go and see that the change made to the PATH environment variable was not
permanent.

The next section discusses how to work with initialization files during an installation.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

605

Creating, Modifying, and Reading
Initialization Files

The creation of initialization files and entries is another common operation that is
implemented during an installation. Initialization files tend to contain information that
is of interest only to the application itself and is less global in nature than entries made
in the registry or environment variables set during an installation.

As with the creation of registry entries and the creation of environment variables,
there is a special table in the Windows Installer database schema that is devoted to
defining the entries to be made in initialization files. InstallShield Developer provides
the INI File Changes view to assist with authoring this table. The INI File Changes
view is available under Step 3 in the View List.

Click on the INI File Changes icon to see the INI File Changes view (Figure 10-29).

Figure 10-29: The sub-view tree of the INI File changes view.

In this sub-view tree you define the file names, sections, and keywords that are to be
manipulated during the installation. To do this:

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

606

1. Right-click on the INI Files icon and select Add INI File.

2. Once you have defined a file name, right-click on the new INI file and
select Add Section.

3. After defining a section, right-click on the section and select Add
Keyword to define a keyword against which you will create a value.

4. Click on the file name, the section name, or the keyword to see the
properties that you need to complete for each one.

Before we cover the required properties, we will look at the associated tables that are
being authored.

The IniFile and RemoveIniFile Tables
To create or modify an initialization file during an installation, you need to author the
IniFile table. You should use this table to create your initialization file entries instead
of trying to programmatically create them using InstallScript code. Using the IniFile
table and the RemoveIniFile table takes full advantage of the capabilities for
performing an installation using elevated privileges. The schema of the IniFile table is
described in Table 10-8.

Table 10-8: The IniFile and RemoveIniFile Table Schemas

Column Name Description

IniFile or
RemoveIniFile

This column is the primary key for the table and it needs
to conform to the requirements of the Identifier data type.

FileName This specifies the name of the INI file that is to be created
or modified.

DirProperty This column contains the name of a property that resolves
to an absolute path to the folder in which the INI file is to
be created or found. This column can be NULL and, if
that is the case, the Windows Installer will look for or
create the INI file in the Windows folder (%Windows%).

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

607

Table 10-8: The IniFile and RemoveIniFile Table Schemas

Column Name Description

Section This column specifies the name of the section. This name
needs to conform to the requirements of the Formatted
data type. This means that you can use property names
inside square brackets as part of the name being specified.

Key This column specifies the name of the key inside the
section specified in the previous column. This name
needs to conform to the requirements of the Formatted
data type.

Value This column specifies the name of the value to be written
against the key specified in the previous column. This
name needs to conform to the requirements of the
Formatted data type.

Action This column contains an integer value that specifies the
type of operation that is to be taken on the INI file.
There are five possible types of operations, as defined in
Table 10-9.

The purpose of the IniFile table is to define INI files that are to be created and values
that are to be added to an NI file when the associated component is installed. The
purpose of the RemoveIniFile table is to define INI file entries that art to be deleted
during an installation. The WriteIniValues standard action reads the IniFile table and
performs the specified operations. The RemoveIniValues standard action reads the
RemoveIniFile table and performs the specified deletions from the specified INI files.
This standard action also removes any values that were created during the installation
of a component when that component is uninstalled.

In the Action column, the type of operation that is to be taken on the INI file is
specified by an integer value. The description of these values is provided in Table 10-
9.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

608

Table 10-9: Valid Values for the Action Column

Value Meaning

0 Specifies that the indicated INI file value will be created
or updated. This replaces the value of a key if the key
already exists in the INI file. This value is valid only for
the IniFile table.

1 Specifies that the indicated INI file value will be created
only if the key does not already exist. If the key already
exists, the current value is not replaced. This value is valid
only for the IniFile table.

2 Specifies that the indicated key and its value will be
removed from the INI file when the associated
component is installed. This value is valid only for the
RemoveIniFile table.

3 Specifies that the indicated INI file value will be created
or appended to the current value if the key already exists.
When appending to an existing value, the delimiter used
is the comma (,). This value is valid only for the IniFile
table.

4 Specifies that the indicated value will be removed from
the INI file when the associated component is installed.
This will remove the key only if the specified value is the
only value for the key. This value is valid only for the
RemoveIniFile table.

When you work in the INI File Changes view, you are creating rows in either the
IniFile table or the RemoveIniFile table depending on the action you select for each
keyword. You will see how this view works by creating an example in the next
section.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

609

Working in the INI File Changes View
In this section, you will work through a small example to get the feel for what can be
done to create or modify INI files during an installation. The Developer Art
application does not use an initialization file, so you have to create one for this
example.

Before you get into an example lets first look at the properties that need to be set for
both the initialization file and the keywords that you want to place in the file. The
properties associated with the name of an initialization file are discussed in the
following list.

Display Name: This property is used to populate the FileName column of
either the IniFile or the RemoveIniFile tables. This property is populated when
you first create the name of the INI file. If the file meets the 8.3 file-naming
convention, this property displays only the name of the file. If the file name is
more than eight characters and/or contains spaces, the display name will contain
both the short file name and the long file name separated by a vertical bar. The
name used for the INI file is associated with a default sting ID so it can be
localized if necessary.

Component: This property contains the name of the associated component. If
this component is installed, the indicated operations are performed on the
initialization file. The value in this field is used to populate the component_
column of the IniFile and the RemoveIniFile tables. When you click in this field
an ellipsis button displayed. This ellipsis button launches a dialog from which you
can pick the component with which you want to associate the initialization file.

Target: The value for this property defines the folder where the initialization file
is to be created or found. The entry for this property needs to be a property name
inside square brackets and this property must resolve to an absolute location on
the target machine. This value is used to populate the DirProperty column of the
IniFile and RemoveIniFile tables. The default value for this property is
[INSTALLDIR]. You can click in this field to get a drop-down combo box that
provides a selection of the operating system defined locations. You can select the
“Browse, create, or modify a directory entry” option to define a directory-related
property name. This option was discussed in Chapter 2 and the resolution of the
Directory table was discussed in Chapter 3. When this property is set to NULL

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

610

the Windows Installer will use the %Windows% folder as the location for the
initialization file.

The only property for a section name is the name of the section itself. The only
purpose of having a property for the section name is to allow you to have access to
the string table so that this name can be localized. There are three properties for a
keyword as shown Figure 10-30.

Figure 10-30: The property set for a keyword.

Each of these properties is discussed in the following list.

Display Name: This property is used to populate the Key column of the IniFile
and the RemoveIniFile tables. This property is populated when you first create
the name of the keyword. The name used for the keyword is associated with a
default sting ID so that it can be localized if needed. You do not need to do
anything with this property.

Action: This property provides a drop-down menu that provides a selection of
the values that can be placed in the Action column of the IniFile or the
RemoveIniFile table. The selections available in this menu are as follows:

� Replace Old Value: This option replaces an existing keyword and
its value with the value that you place in the Data Value property.
This option places a 0 in the Action column of the IniFile table.

� Do Not Overwrite: This option prevents an existing keyword and
its value from being replaced with the value that you place in the

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

611

Data Value property. This option places a 1 in the Action column of
the IniFile table.

� Remove Whole Value: This option removes an existing keyword
and its value during an installation. This option places a 2 in the
Action column of the RemoveIniFile table.

� Append Tag: This option creates the keyword if it does not exist or
appends to the value if the keyword does exist. This option places a 3
in the Action column of the IniFile table.

� Remove Tag: This option removes the value from the keyword
during an installation. This option places a 4 in the Action column of
the RemoveIniFile table.

Data Value: The entry in this property is used to populate the Value column of
the IniFile or the RemoveIniFile table. This property takes a formatted text string,
which means that you can use property names in square brackets to write the
information that you want as the data for keyword.

In this example, you will create an initialization file during an installation that is not
removed when the application is uninstalled. This way, you can experiment with
some of the modes of working with existing files. To generate a situation where an
initialization file is created during an installation, but not removed during an
uninstallation you can create a special component with a NULL value for the
Component Code property. In this fashion the Windows Installer will not know
about this component and it will not get uninstalled.

1. Create this component under the MainProgram feature as shown in
Figure 10-31 and name this component INI_Component.

2. Remove the default GUID from the Component Code property. This
makes this component invisible to the Windows Installer, so the
associated INI file will not be uninstalled.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

612

Figure 10-31: Special component for creating a permanent initialization file.

3. Click on the INI File Changes view and define an initialization file by
right clicking on the INI Files node and selecting the Add INI File
option. Name this INI file DevArtSettings.ini as shown in Figure 10-32.

4. Select this INI file to display the property panel and then select the
INI_Component for the value in the Component field. Also delete the
value in the Target property. With this value NULL, the Windows
Installer assumes that the initialization file is to be located in the
Windows folder.

Figure 10-32: The properties panel for the name of the initialization file to be
manipulated.

5. Add two sections in the INI file and under each of these sections add
three keywords as shown in Figure 10-32. When you click on one of the
section names, you see that there is only one property, called Display
Name. This property is the name of the section and it is associated with a
string ID that allows you to localize this name if necessary. The value of

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

613

this property is used to populate the Section column of the IniFile and
RemoveIniFile tables. You do not need to do anything with this
property.

6. For each keyword you need to set the value of the Action and the Data
Value properties. The entries that you should make are shown in Table
10-10

Table 10-10: Keyword Actions and Values

Keyword Action Data Value

ComputerName Replace Old
Value

[ComputerName]

InstallDate Append Tag [Date]

InstallTime Append Tag [Time]

InstallLocation Replace Old
Value

[INSTALLDIR]

Organization Replace Old
Value

[COMPANYNAME]

User Replace Old
Value

[USERNAME]

With this set of actions and values, you will be able to build a list of the dates and
times that you installed the Developer Art application. Before testing this example
you might want to comment out the OnBegin and the OnEnd event handlers in
your project to avoid all the message boxes that are displayed showing the value of
different environment variables. All you need to do is then build the project and
install it.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

614

After the installation is complete, look in the Windows folder to find the initialization
file that was created. When you open this file, you should see entries that are similar
to those that are shown in Figure 10-33.

Figure 10-33: The initial contents of the DevArtSettings.ini file after the first installation.

To see the impact on this initialization file of a second installation, you need to
uninstall the Developer Art application and notice that the DevArtSettings.ini file is
not removed. Then reinstall the application and look at the contents of this
initialization file. You should see something that looks like what is shown in Figure
10-34. You now have appended the date and time of the second installation to the
values for the first installation.

Figure 10-34: The impact of a second install of the Developer Art application.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

615

Reading Initialization Files During an
Installation

One of the methods to access the values of an existing initialization file is by writing
InstallScript code. InstallScript provides a number of built-in functions that work with
initialization files. Three of these functions are used to read values in an initialization.
These three functions are GetProfInt, GetProfString, and
GetProfStringList. These functions use the Windows API private profile
functions.

In this section you will create some functionality to read the values from a section in
an initialization file and print the keyword and values to a text file. You will create this
functionality in the OnBegin event handler. This way you can use the same code in
a Basic MSI project to perform the same operation without having to make any
changes. This example uses the GetProfStringList function to get a list of all the
functions that are in the [FuncWiz - Category - All] section of the
Funcwiz.ini file. You created a modified version of this file in Chapter 8 and you need
to copy this file to the Windows folder before beginning this example.

The code to access the Funcwiz.ini file in the Windows folder and to print out the
keywords and values under the [FuncWiz - Category - All] section is
shown in Figure 10-35.

///
//
// FUNCTION: OnBegin
//
// EVENT: Begin event is always sent as the first event
// during installation.
//
///
function OnBegin()
OBJECT fso, file, tempfldr, dictionary;
LIST Key, Value;
STRING szFileName, szKey, szValue, szLine, szKeys();
INT i, iCnt, iReturn;
VARIANT DictItem;
begin

Figure 10-35: InstallScript code for accessing an initialization file and printing the values.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

616

 // Set the name of the text file to be created.
 szFileName = "FuncWiz Functions.txt";

 // Create the two lists that will hold the
 // keyword and value pairs.
 Key = ListCreate(STRINGLIST);
 Value = ListCreate(STRINGLIST);

 // Read the keywords and values for the
 // "FuncWiz - Category - All" section in the Funcwiz.ini file.
 // Since the file is in the Windows folder you do not need to
 // include a path as part of the first argument.
 GetProfStringList("Funcwiz.ini",
 "FuncWiz - Category - All", Key, Value);

 try
 // Create a dictionary object hold the keyword/value pairs.
 set dictionary = CreateObject("Scripting.Dictionary");

 // Initialize the two lists for traversing.
 iReturn = ListSetIndex(Key, LISTFIRST);
 ListSetIndex(Value, LISTFIRST);

 // Loop through the two lists and place their values
 // into the dictionary object.
 while(iReturn != END_OF_LIST)
 ListCurrentString(Key, szKey);
 ListCurrentString(Value, szValue);

 // Values are added to dictionary object
 // using the Add method.
 dictionary.Add(szKey, szValue);

 iReturn = ListSetIndex(Key, LISTNEXT);
 ListSetIndex(Value, LISTNEXT);
 endwhile;

 // Destroy the two lists now that you
 // do not need them any longer.
 ListDestroy(Key);
 ListDestroy(Value);
 Catch

 SprintfBox(MB_OK, "Feedback",
 "Exception when accessing the dictionary object");
 endcatch;

Figure 10-35: Continued.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

617

 try
 // Create a FileSystemObject that you will use to
 // generate the text file to which you will write
 // the keywords and values from the initialization file.
 set fso = CreateObject("Scripting.FileSystemObject");

 // Get the location of the temp folder.
 set tempfldr = fso.GetSpecialFolder(2);

 // Create the absolute path to the text file
 // that you will use for writing and then
 // create the text file.
 szFileName = tempfldr ^ szFileName;
 set file = fso.CreateTextFile(szFileName, TRUE);

 // Get the number of elements in the
 // dictionary object and set the szKeys
 // array to be that size.
 iCnt = dictionary.Count;
 Resize(szKeys, iCnt);
 szKeys = dictionary.Keys();
 // Loop through the dictionary object and
 // write the keywords and the values to the
 // text file with the values delimited by a tab.
 for i=0 to iCnt-1
 DictItem = szKeys(i);
 szLine = szKeys(i) + "\t" + dictionary.Item(DictItem);
 file.WriteLine(szLine);
 endfor;

 // Close the text file.
 file.Close();

 catch
 SprintfBox(MB_OK, "Feedback",
 "Exception when accessing the FileSystemObject object");
 endcatch;

end;

Figure 10-35: Continued.

In this code example, the main process is to access the initialization file from the
Windows folder and to use the GetProfStringList InstallScript function to
create two lists, one for the keywords and one for the values. The code takes the
contents of these two lists and creates a dictionary object out of the values in the lists.
It then destroys the lists because it no longer needs them. Because it is an associative

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

618

array, a dictionary object is ideal for holding the contents of the keywords and their
values.

Once you have the dictionary object, you get the count of the elements in this object
and then loop through the object to write each keyword/value pair to a text file.
When finished writing the lines to the text file, the example closes the file. The
contents of one section of the Funcwiz.ini file are captured and written to a text file.
During an installation you probably will not need to write the values in an
initialization file to another text file but this example shows how to access an
initialization file. One of the things that could be done is to read an initialization file
and set a property to one of the values in this file. If it were a public property then the
value would be available in both the UI sequence and the installation sequence.

The next topic explains how to search for existing files, folders, and registry entries.

Searching for Files, Folders, and
Registry Entries

One of the most common operations that you need to implement in an installation is
to search for entities that may already be installed on the target machine. Most often
you search for a file that will indicate that a certain application is already installed.
However, you may also want to search for the existence of a folder, a registry entry,
and/or an entry in an initialization file.

There are many reasons that you may want to search the target system prior to
running your installation. It is possible that your application needs to have another
application already installed or you might want to find the install location of an earlier
version of your application so you can install an upgrade to the same location.
Another slightly different reason for searching the target machine for the existence of
a particular file is to see if the machine is in compliance with the installation
requirements for the purchased software. Compliance checking is done, for example,
when you sell a competitive upgrade at a lower price with the stipulation that the end
user must own the competing product.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

619

The Windows Installer provides several standard actions and tables that are used to
implement searches of the target system. Searching the target system can be
implemented in InstallScript, but you are encouraged to use the built-in Windows
Installer functionality.

This section emphasizes how to manipulate the Windows Installer capabilities for
performing searches. At the end of this section, you will take a look at the
InstallScript event handlers that can be used in a Standard project to perform script-
based searches.

The first subject is the mechanism that is used by the Windows Installer to implement
the searching for files, folders, registry, and initialization file entries.

How the Basic Search Mechanism Works
One of the standard actions in both the InstallUISequence table and the
InstallExecuteSequence table is the AppSearch action. To search for a file or folder,
this action reads a number of tables which you need to author if you want a search
performed. The six tables that are involved in performing searches are the
AppSearch, Signature, CompLocator, RegLocator, IniLocator, and DrLocator tables.
The schema of these six tables is shown in Figure 10-36.

Not all of the tables shown in Figure 10-36 are used to implement any particular
search. The AppSearch action reads the AppSearch table and then starts the search
process. If the search process is successful, the name of the property in the first
column of the AppSearch table is set to the results of the search. The property can
then be used in a condition or it can be queried for its value, which then can be used
as required. If the search is unsuccessful, the property has a NULL value.

The search logic that is used is outlined in Figure 10-37. This diagram shows that the
locator tables are read in a specific order. This means that you have to be careful in
how you author these tables to make sure you are getting the desired search results.

As shown in the diagram in Figure 10-37, there are two branches to this logic. If the
signature is identified in the Signature table, the search is for a file. Otherwise, the
search is for a folder, initialization file entry, or a registry entry. The locator tables
provide a starting point for performing the search. When the search for a particular
signature in the AppSearch table is successful, the associated property is set to the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

620

results of the search. If the search is not successful, the property keeps its original
value, which in most cases is NULL.

Figure 10-36: The schema of the tables used to implement searches of a target system.

There is a System Search view under Step 5 in InstallShield Developer that provides
an easy approach to defining a search. In this chapter you will use the Direct Editor
under Advanced Views and make entries directly in the affected tables. This will
acquaint you with the details of how searching is accomplished. Using this approach
you have to know the proper entries to make in each column of the six tables that are
shown in Figure 10-36. The following sections examine each of these tables.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

621

Figure 10-37: The basic search logic implement by the Windows Installer.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

622

The AppSearch Table

The AppSearch table is the starting point for all searches that you want to capture the
results as the value of a property. This table’s two columns are described in Table 10-
11.

Table 10-11: The AppSearch Table Schema

Column Name Description

Property This is the name of the property that will be set to the
results of the search for the signature identified in the
next column. This property can be initialized in the
Property table or from the command line. If the search is
successful, the initial value is overridden. Normally this
property is a public property so that its value can be
passed to the process running the actions in the
InstallExecuteSequence table.

Signature_ This value is a unique identifier that is a foreign key into
the first column of the other five tables that are used by
the Windows Installer to implement searching.

Even though the AppSearch table starts the search process there can be other
searches initiated as part of the process of searching for the signature in this table.
The results of these other searches are not saved as the value of a property unless the
associated signature is also entered into the AppSearch table. You will see an example
of this later in this chapter.

The Signature Table

The purpose of the Signature table is to identify all the attributes of a file for which
you want to search. If you do not want to search for a file, leave this table empty. The
nine columns in the Signature table are described in Table 10-12.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

623

Table 10-12: The Signature Table Schema

Column Name Description

Signature This value is the primary key and identifies a particular file
signature for which a search is to be conducted.

FileName The name of the file for which a search is to be conducted.

MinVersion The minimum version of the file for which the search is
being conducted.

MaxVersion The maximum version of the file for which the search is
being conducted.

MinSize The minimum size of the file for which the search is being
conducted.

MaxSize The maximum size of the file for which the search is being
conducted.

MinDate The minimum creation date of the file for which the
search is being conducted. This date needs to be provided
in the MS-DOS format as follows:

Bits 0–4: Day of the month

Bits 5-8: Month where January is 1

Bits 9-15: Year offset from 1980

MaxDate The maximum creation date of the file for which the
search is being conducted. This date needs to be provided
in the MS-DOS format.

Languages A delimited list of the languages supported by the file for
which the search is being conducted.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

624

Normally a file search requires that only the first two columns be populated. The
remaining columns are necessary only if the search has to distinguish between
numbers of files with the same name.

The CompLocator Table

The CompLocator table is the first of what the locator tables to be accessed during the
search process. The purpose of this table is to define the starting location of a search
in terms of a component’s configuration data. The three columns in the
CompLocator table are described in Table 10-13.

Table 10-13: the CompLocator Table Schema

Column Name Description

Signature_ The primary key for this table and a foreign key into the
Signature table if the search is being conducted for a file. It
is through this value that a search is how the link is made
with the property defined in the AppSearch table.

ComponentId The GUID that identifies component in the registry.

Type An integer value that defines whether the key path for the
component is a file name or a folder. If a value of 0 is used
in this column, the key path is a folder. If a value of 1 is
used, the key path is a file name. If this column is NULL,
the value is defaulted to 1.

When a component is installed, its component ID is written to the registry with a
value name of the product code GUID. The value data for this value name is the key
path for the component. There can be four different types of key paths: a file name,
the folder in which the component is installed, a registry entry, and a reference to an
ODBC data source name associated with the component. The two types of key paths
that you are interested in here are the file name key path and the folder key path.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

625

The RegLocator Table

You can use the RegLocator table to focus your search for a file or a folder and you
can also use it to obtain a raw value from the registry that has nothing to do with the
location of a file or a folder. This third possibility relieves you of having to write code
in order to extract values from the registry. The five columns in the RegLocator table
are described in Table 10-14.

Table 10-14: The RegLocator Table Schema

Column Name Description

Signature_ The primary key for this table and a foreign key into the
Signature table if the search is being conducted for a file.

Root The integer value placed in this column indicates the root
key under which the branch in the next column exists. The
acceptable values are the same as shown in Table 10-2
except that the –1 value is not used here.

Key This is the branch in the registry under the root defined in
the previous column. This value cannot have a leading or
an ending backslash (\).

Name This column contains the value name that has the data
value that you want to use. If this column is NULL, it is
assumed that it is the default value that is to be used.

Type The value in this column determines if it is a file, folder or
a raw registry value for which you are searching. The
permissible values are as follows:

Value = 0: The search is for a folder.

Value = 1: The search is for a file.

Value = 2: The search is for a raw registry value.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

626

One of the most helpful keys in the registry that you can use in a search process is the
App Paths key. This is the key to which you write when you create an application
path. If you are targeting a 64-bit operating system and you want to search the 64-bit
registry instead of the 32-bit registry, you would add 16 to the acceptable values for
the Type column shown in Table 10-14.

The IniLocator Table

The operation of the IniLocator table is much like the RegLocator table. You can use
the IniLocator table to focus your search for a file or a folder and you can also use it
to obtain a raw value from an initialization file that has nothing to do with the
location of a file or a folder. This third possibility relieves you of having to write code
in order to extract values from an initialization file. The six columns in the IniLocator
table are described in Table 10-15.

Table 10-15: The IniLocator Table Schema

Column Name Description

Signature_ The primary key for this table and a foreign key into the
Signature table if the search is being conducted for a file.

FileName The name of the initialization file that the search process
will access.

Section The name of the section in the initialization file that
contains the keyword of interest.

Key The name of the keyword in the section defined in the
previous column.

Field The value field to be extracted from the keyword. This is
applicable if the value has more than one value delimited
by commas. Field numbers start with 1. If the value in this
field is NULL or 0 then the complete value is retrieved.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

627

Table 10-15: The IniLocator Table Schema (Continued)

Column Name Description

Type The value in this column determines if it is a file, folder or a
raw keyword value for which you are searching. The
permissible values are as follows:

Value = 0: The search is for a folder.

Value = 1: The search is for a file.

Value = 2: The search is for a raw keyword value.

Note that there is no column here for defining the location of the initialization file
that you are using in the search. This is because the initialization file can only be in the
Windows folder.

The DrLocator Table

The DrLocator table is where you explicitly define the directory location on the target
machine that you want to search. In this table you can reference the other locator
tables as part of the definition of a search location. The four columns of the
DrLocator table are described in Table 10-16.

Table 10-16: The DrLocator Table Schema

Column Name Description

Signature_ Part of the primary key for this table and a foreign key into
the Signature table if the search is being conducted for a
file.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

628

Table 10-16: The DrLocator Table Schema (Continued)

Column Name Description

Parent Part of the primary key for this table and a foreign key into
the locator tables including this table and into the Signature
table. This key is the signature of the parent of the file or
directory that is defined by the signature in the previous
column.

Path The value in this column is that path on the target system
where the search is to be conducted. This can be a relative
path under the path defined by the signature in the Parent
column or it can be an absolute path. You can use
properties inside square brackets to define this path value.

Depth In this column you place the depth of the search below the
path defined in the previous column. A value of 0 means
that you will search only the directory defined in the
previous column.

If you leave both the Parent and the Path columns NULL for a particular signature
you will search all the fixed drives of the target system for a file or folder. The fact
that the Parent column holds the signature of an entry in one of the locator tables or
into the Signature table allows you to perform searches, the results of which can be
used in additional searches.

The next section provides some examples of how this searching works.

Basic Searching Examples
In the examples in this section, you will use the same Standard project you have been
using in the first part of this chapter. Everything you do here works the same in a
Basic MSI project. Before beginning these examples, you need to create a facility to
display the results of the search. You do this by creating a small function that displays

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

629

the value of the property defined in the AppSearch table. The code for this function
is shown in Figure 10-38.

prototype SearchFeedback();

///
//
// FUNCTION: SearchFeedback
//
// PURPOSE: The purpose of this function is to report the
// results of a search of the target system.
//
///
function SearchFeedback()
STRING szPropValue;
INT iBufSize;
begin

 szPropValue = "";
 iBufSize = 0;

 MsiGetProperty(ISMSI_HANDLE, "SEARCH", szPropValue, iBufSize);

 iBufSize++;
 Resize(szPropValue, iBufSize);

 MsiGetProperty(ISMSI_HANDLE, "SEARCH", szPropValue, iBufSize);

 SprintfBox(MB_OK, "Feedback", "The search results are:\n%s",
 szPropValue);

end;

Figure 10-38: The SearchFeedback function for displaying search results.

You can place the code anywhere in Setup.rul, but you will call it from inside the
OnFirstUIBefore event handler. You can place the call to this function as the
first executable statement inside this event handler. In the code shown in Figure 10-
38, you should note that you will be using a public property named SEARCH to
capture the results of the searches. To make the entries in the various tables, you will
use the Direct Editor. Using the Direct Editor is just like using the Orca database
editing utility.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

630

Searching for a File

When defining a search for a file, you first need to discern if you can narrow the
search or whether you need to scan the entire target system. First, assume that the file
location is unknown, so you have to search the entire target system.

SEARCHING ALL FIXED DRIVES

Here you will search for the main executable of InstallShield Developer. The name of
this file is isdev.exe and it is located in the root installation location for InstallShield
Developer (though, for this example, you are assuming its location is unknown).
Implementing a complete search of all fixed drives requires that you make one entry
in each of the AppSearch, Signature, and DrLocator tables. These entries are shown
in Table 10-17.

Table 10-17: Searching All Fixed Drives for a File

AppSearch Table Entries

Column Name Value

Property SEARCH

Signature_ Sig1

Signature Table Entries

Column Name Value

Signature Sig1

Filename isdev.exe

Remaining columns NULL

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

631

Table 10-17: Searching All Fixed Drives for a File (Continued)

DrLocator Table Entries

Column Name Value

Signature_ Sig1

Parent NULL

Path NULL

Depth 5

The only comment that needs to be made about this example is the value used for the
Depth column in the DrLocator table. Since you do not know where the file is, you
do not know how deep it is in any particular directory tree. If you left the depth at 0,
only the root drives would be searched. Indicate a depth of 5 to be on the safe side.
The first file that is found with the name of isdev.exe stops the search process and
then the value of the SEARCH property is displayed in a message box.

SPECIFYING THE SEARCH PATH FOR A FILE

In this example, you will use the RegLocator table to provide a location to search for
the isdev.exe file. In this example you have to create one row in each of the
AppSearch, Signature, and RegLocator tables. The entries for this example are shown
in Table 10-18.

Table 10-18: Specifying the Search Path for a File

AppSearch Table Entries

Column Name Value

Property SEARCH

Signature_ Sig1

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

632

Table 10-18: Specifying the Search Path for a File (Continued)

Signature Table Entries

Column Name Value

Signature Sig1

Filename isdev.exe

Remaining columns NULL

RegLocator Table Entries

Column Name Value

Signature_ Sig1

Root 2

Key SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\isdev.exe

Name Path

Type 0

The only thing that you did differently in this example than when you were searching
for the file on all fixed drives is to narrow the search using the RegLocator table
instead of using the DrLocator table. You are able to pinpoint the location to search
for the isdev.exe file by locating the value for the Path registry value for this file. As
discussed earlier in this book, the Path registry value is the path where this file is
installed.

The process that was followed for this search was first for the AppSearch action to
note that the signature value is in the Signature table so that this makes it a search for
a file. Secondly the AppSearch action checks each of the locator tables to see in which

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

633

the signature is also available and then uses the information in the locator table to
narrow the search.

SEARCHING FOR A FILE IN A SPECIFIC LOCATION

In this example, you search for a file in a specific location and you also include a
search for the location as part of the search process. You need to enter a row in each
of the AppSearch, Signature, RegLocator, and DrLocator tables. The required values
are shown in Table 10-19.

In this example, you reference a second signature that does not appear in the
AppSearch or the signature tables. The Sig2 signature is defined in the RegLocator
table and then used in the Parent column of the DrLocator table. Also in the
DrLocator table you set the Depth column to 0 so that only the folder defined by the
Sig2 signature will be searched.

Table 10-19: Searching a Specific Location for a File

AppSearch Table Entries

Column Name Value

Property SEARCH

Signature_ Sig1

Signature Table Entries

Column Name Value

Signature Sig1

Filename isdev.exe

Remaining columns NULL

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

634

Table 10-19: Searching a Specific Location for a File (Continued)

RegLocator Table Entries

Column Name Value

Signature_ Sig2

Root 2

Key SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\isdev.exe

Name Path

Type 0

DrLocator Table Entries

Column Name Value

Signature_ Sig1

Parent Sig2

Path NULL

Depth 0

Note, in this example, that you have performed two searches, one for the folder
where you want to find the file and another to see if the file is in that folder. This
shows the flexibility of the searching mechanism implemented by Windows Installer.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

635

Searching for a Folder

Here you will look at two examples of how to search for a folder. One of these
examples searches for a file and then gets the folder in which that file resides. The
other example uses an initialization file to retrieve the location of a particular folder.

GETTING THE FOLDER IN WHICH A FILE EXISTS

One of the files that is installed by InstallShield Developer is a merge module that is
created by Microsoft. The name of this file is ATL.MSM and it is buried several layers
deep under the installation root directory of InstallShield Developer. In this example,
you are going to search for the file ATL.MSM and return in the SEARCH property
the folder in which this file is located. To make this search work, you need to create
two rows in the DrLocator table, as well as have one row each in the AppSearch,
Signature, and RegLocator tables. The values that you want to enter in these four
tables are shown in Table 10-20.

The complexity of this example comes in the use of three different signatures and the
use of the Parent column in the DrLocator table to initiate searches that are not listed
in the AppSearch table. What you are doing in the DrLocator table is to search for
the folder that you want to find by specifying the signature of the file in the Signature
table as the parent of the folder that you want to find. This forces the search
mechanism to perform a search for this file, which it does by trying to resolve the
second row in the DrLocator table. The second row specifies that the parent of the
signature Sig2 is the signature Sig3. The signature Sig3 is then found to be defined in
the RegLocator table, which retrieves the root install location for InstallShield
Developer. The search then continues to search for the ATL.MSM file to a depth of
3 under the root location. When the file is found it can then set the SEARCH
property to be the folder in which ATL.MSM is located.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

636

Table 10-20: Searching for the Folder in Which a File is Located

AppSearch Table Entries

Column Name Value

Property SEARCH

Signature_ Sig1

Signature Table Entries

Column Name Value

Signature Sig2

Filename ATL.MSM

Remaining columns NULL

DrLocator Table Entries

Column Name Value

Signature_ (Row 1) Sig1

Parent (Row 1) Sig2

Path (Row 1) NULL

Depth (Row 1) NULL

Signature_ (Row 2) Sig2

Parent (Row 2) Sig3

Path (Row 2) NULL

Depth (Row 2) 3

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

637

Table 10-20: Searching for the Folder in Which a File is Located
(Continued)

RegLocator Table Entries

Column Name Value

Signature_ Sig3

Root 2

Key SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\isdev.exe

Name Path

Type 0

GETTING A FOLDER FROM AN INI FILE

In one of the examples you ran when looking at the manipulation of initialization
files, you created an initialization file named DevArtSettings.ini in the Windows
folder. Since the component to which this operation is associated has no component
ID, the initialization file was not removed when you uninstalled the Developer Art
application. Now you can use this fact to search for a value in an initialization file.

The first thing that you need to do is open this initialization file and change the value
for the InstallLocation keyword to something that exists on the system. For this
example, you can use the installation location for InstallShield Developer. Modify the
DevArtSettings.ini file accordingly. You now have to add one row each in the
AppSearch and the IniLocator tables. The values that you need to use are shown in
Table 10-21.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

638

Table 10-21: Searching for a folder identified in an .ini file.

AppSearch Table Entries

Column Name Value

Property SEARCH

Signature_ Sig1

IniLocator Table Entries

Column Name Value

Signature_ Sig1

Filename DevArtSettings.ini

Section BasicSettings

Key InstallLocation

Field 0

Type 0

Essentially, this example verifies that the location retrieved from the initialization file
exists on the target system. If it exists, the property is set to this value and if it does
not exist, the property is not set. This search has nothing at all to do with whether the
value exists in the initialization file itself.

Retrieving Raw Values

Here you will follow an example that retrieves the version of Internet Explorer that is
installed on the target machine. You do this by retrieving this value from the registry.
When you retrieve a raw value all you are getting is the value in either the registry or
the initialization file. As long as there is a value to retrieve, the property in the
AppSearch table is set to this value. This is different from retrieving a file or a folder

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

639

location from the registry or an initialization. In this case, the file or folder has to exist
on the target machine before the property is set.

To run this example, you need to create one row in each of the AppSearch and the
RegLocator tables. The entries in these two tables are shown in Table 10-22.

Table 10-22: Searching for a raw registry value.

AppSearch Table Entries

Column Name Value

Property SEARCH

Signature_ Sig1

RegLocator Table Entries

Column Name Value

Signature_ Sig1

Root 2

Key SOFTWARE\Microsoft\Internet Explorer

Name Version

Type 2

This example looks like the one you did to extract a location from an initialization file.
The only main difference is that you used a value of 2 in the Type column to specify
that you want to get the value of the registry value name provided in the name
column.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

640

Checking for Compliance
Compliance checking uses the same search mechanism to determine if a user is in
compliance with an application’s installation requirements. To implement compliance
checking, the AppSearch table is not required. You will use the Signature,
CompLocator, RegLocator, IniLocator, and DrLocator tables. In place of the
AppSearch table, you use the CCPSearch table. The acronym CCP stands for
Compliance Checking Program.

The CCPSearch table is a table with one column. In this column you place the
signatures for the files, folders, and/or values for which you want to search. You can
place as many signatures in this table as are required to verify that the user is in
compliance. As soon as one of the signatures is found to exist on the target system,
the compliance checking terminates and the property CCP_Success is set to 1. The
fact that there is a built-in property that gets set when the search is successful is the
reason that there is no Property column in the CCPSearch table.

The CCPSearch and the RMCCPSearch actions read the CCPSearch table and
perform the necessary compliance check. The CCPSearch action checks the fixed
drives on the target system. If this action is unsuccessful in verifying compliance, the
RMCCPSearch action can be used to check for any of the signatures listed in the
CCPSearch table on removable media. The RMCCPSearch action will check the
media in the drive that is defined by the CCP_DRIVE property. This property
normally has to be set from the user interface or from a custom action.

The final mechanism is to use the CCP_Success property in a condition that if it is set
to 1 will allow the installation to proceed. If the CCP_Success property is not set then
the installation is terminated as not being in compliance with the requirements for
installing the software.

Using Event Handlers for Searching
There are two event handlers that are called during the fresh install of a Standard
project named OnCCPSearch and OnAppSearch. As discussed in Chapter 4
these functions are called in the following order:

OnCCPSearch();
OnAppSearch();

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

641

OnFirstUIBefore();

These event handlers are not called during a maintenance installation or any other
type of installation. The default implementation for the OnCCPSearch and
OnAppSearch event handlers is a no-op. You could create your own functions
and call these functions from inside the OnFirstUIBefore or the
OnMaintUIBefore event handlers.

InstallScript provides a number of built-in functions that can be used to perform
searches of the target system. The following sections look at implementing some of
the same types of searches you performed using the database tables. It was stated
earlier that it is best to use the Windows Installer approach to searching; however you
can use legacy code that is already available and working.

What you do in this section is applicable only to Standard projects. You will use the
same Standard project you have using in this chapter. You will also use the
SearchFeedback function you created to indicate if the search is successful.

Searching for a File

InstallScript provides the FindFile and the FindAllFiles functions that can be used to
search for a file. It also provides a number of functions for accessing folders and
drives on the target system.

SEARCHING ALL FIXED DRIVES

Searching for a file on all fixed drives can be accomplished as shown in Figure 10-39.
You would do this if you had no idea where the file may be located.

///
//
// FUNCTION: OnAppSearch
//
// EVENT: The OnAppSearch event is called prior to calling the
// OnFirstUIBefore event.
//
///
function OnAppSearch()
STRING szDir, szFileName, svResult;

Figure 10-39: Using InstallScript to search for a file on all fixed drives.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

642

INT iReturn, iListReturn;
LIST FixedDrives;
begin

 // Define the file for which to search.
 szFileName = "isdev.exe";

 // Create a list that will hold all
 // fixed drives on the target system.
 FixedDrives = ListCreate(STRINGLIST);

 // Get the list of fixed drives on the target machine.
 GetValidDrivesList(FixedDrives, FIXED_DRIVE, -1);

 // Set the list index to the first item in the list.
 iListReturn = ListSetIndex(FixedDrives, LISTFIRST);

 // Loop through all items in the list of fixed drives.
 while(iListReturn != END_OF_LIST)
 // Get the name of the current fixed drive.
 ListCurrentString(FixedDrives, szDir);

 // Concatenate the root directory specifier
 // to the drive letter.
 szDir = szDir + ":\\";

 // Perform a search for the current fixed drive in the list.
 iReturn = FindAllFiles(szDir, szFileName, svResult, RESET);

 // If the search is successful then set the SEARCH
 // property to the absolute path of the file
 // and then terminate the search process.
 if(iReturn = 0) then
 MsiSetProperty(ISMSI_HANDLE, "SEARCH", svResult);
 // Jump to the end after the property has been set.
 goto Finish;
 endif;

 // As long as the search has not been successful
 // increment the list index to point at the next
 // fixed drive letter.
 iListReturn = ListSetIndex(FixedDrives, LISTNEXT);

 endwhile;

Finish:
;
end;

Figure 10-39: Continued.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

643

The code shown in Figure 10-38 performs the same search as you performed using
the AppSearch action and the related tables in the database. The code first obtains a
list that contains all the fixed drives on the target system. It then loops through this
list and searches for the defined file. As soon as the search is successful, the code exits
the loop after setting the SEARCH property to the search results.

Though this is exactly the same functionality produced with the Windows Installer,
you are better off not using InstallScript unless you already have a significant
investment already made in legacy code. The main benefit of using the built-in
functionality provided by the Windows Installer is that the search that it provides is
significantly faster than the search implemented in InstallScript code.

SPECIFYING THE SEARCH PATH FOR A FILE

This example narrows the search path by looking in the registry for the search’s
starting point. It also limits the search to this one location instead of searching all of
the child folders as well. The code for this search process is shown in Figure 10-40.

///
//
// FUNCTION: OnAppSearch
//
// EVENT: The OnAppSearch event is called prior to calling the
// OnFirstUIBefore event.
//
///
function OnAppSearch()
STRING svResult, szFileName, svValue, szName, szKey;
INT iReturn, nvSize, nvType;
begin

 // Define the file for which to search.
 szFileName = "isdev.exe";

 // Define the key for which you want the value.
 szKey = "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\" +
 "App Paths\\isdev.exe";
 // Define the value name for
 // which you want the data.
 szName = "Path";
 // Set the root key under which you will work.
 RegDBSetDefaultRoot(HKEY_LOCAL_MACHINE);

Figure 10-40: Searching a specific location for the existence of a file.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

644

 // Get the value data of the value name you want to use
 // as the starting point of our search.
 RegDBGetKeyValueEx(szKey, szName, nvType, svValue, nvSize);

 // Perform a search for the file in the one location.
 iReturn = FindFile(svValue, szFileName, svResult);

 // If the search is successful then set the SEARCH
 // property to the absolute path of the file.
 if(iReturn = 0) then
 svResult = svValue ^ svResult;
 MsiSetProperty(ISMSI_HANDLE, "SEARCH", svResult);
 endif;

end;

Figure 10-40: Continued.

To follow this example, type the code into the Script Editor or copy it from the CD-
ROM at the back of the book. The example performs a search for a file in a specific
location using the FindFile InstallScript function. It first uses the InstallScript
registry functions to obtain the search location. This location is defined by the Path
registry value name just as when you used the RegLocator table. If the file is found,
you need to concatenate the file name and the search path before setting the value of
the SEARCH property. If you wanted to search all folders below the starting point,
you would have had to use the FindAllFiles function.

Windows Installer simplifies the creation of a file signature that includes such things
as version, size, and creation date. To implement a check against more than just the
file name, you can use InstallScript, but the coding is more complicated. You need to
make multiple calls to the GetFileInfo InstallScript function and compare the
results against a predetermined list of values that you could keep in an array.

Searching for a Folder

In this section you will perform the same operations as you did when using the
Windows Installer functionality. First, you will obtain the folder in which a certain file
exists and then you will obtain a path from an initialization file and search to make
sure that it exists on the target system.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

645

GETTING THE FOLDER IN WHICH A FILE EXISTS

This example searches for the file ATL.MSM and then gets the folder in which this
file is located (Figure 10-41).

///
//
// FUNCTION: OnAppSearch
//
// EVENT: The OnAppSearch event is called prior to calling the
// OnFirstUIBefore event.
//
///
function OnAppSearch()
STRING svResult, szFileName, svValue, szName, szKey, svReturnString;
INT iReturn, nvSize, nvType;
begin

 // Define the file for which to search.
 szFileName = "ATL.MSM";

 // Define the key for which you want the value.
 szKey = "SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\" +
 "App Paths\\isdev.exe";
 // Define the value name for
 // which you want the data.
 szName = "Path";

 // Set the root key under which you will work.
 RegDBSetDefaultRoot(HKEY_LOCAL_MACHINE);

 // Get the value data of the value name you want to use
 // as the starting point of our search.
 RegDBGetKeyValueEx(szKey, szName, nvType, svValue, nvSize);

 // Perform a search for the file BELOW the specified location.
 iReturn = FindAllFiles(svValue, szFileName, svResult, RESET);

 // If the file search is successful then set the SEARCH
 // property to the absolute path of the file but not
 // including the file name.
 if(iReturn = 0) then
 ParsePath(svReturnString, svResult, PATH);
 MsiSetProperty(ISMSI_HANDLE, "SEARCH", svReturnString);
 endif;

end;

Figure 10-41: Getting the folder in which a file is located.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

646

This example is a simple extension of the last example where you searched for a file
in a specific location. Here you use the FindAllFiles function and then strip off the
file name before you set the value of the SEARCH property.

GETTING A FOLDER FROM AN INI FILE

This example uses an InstallScript function to obtain the value of InstallLocation
keyword in the DevArtSettings.ini file and then checks to see if this folder exists on
the target system. If it exists, the code then sets the value of the SEARCH property to
this value. The code for this is shown in Figure 10-42.

///
//
// FUNCTION: OnAppSearch
//
// EVENT: The OnAppSearch event is called prior to calling the
// OnFirstUIBefore event.
//
///
function OnAppSearch()
STRING svResult, szFileName, szSectionName, szKeyName;
INT iReturn;
begin

 // Set the parameters for accessing the INI file.
 szFileName = "DevArtSettings.ini";
 szSectionName = "BasicSettings";
 szKeyName = "InstallLocation";

 // Get the value of the InstallLocation keyword.
 GetProfString(szFileName, szSectionName, szKeyName, svResult);

 // Verify that the folder exists.
 iReturn = ExistsDir(svResult);

 // If the folder exists then set the SEARCH
 // property to the value obtained from the INI file.
 if(iReturn = 0) then
 MsiSetProperty(ISMSI_HANDLE, "SEARCH", svResult);
 endif;

end;

Figure 10-42: Verifying that a folder in an initialization file exists on the target system.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

647

In this example you obtain the value of the InstallLocation keyword from the
initialization file and then check for its existence. You do not need to pass the
absolute path of the initialization file to the GetProfString function since the
DevArtSettings.ini file is located in the Windows folder.

Retrieving Raw Values

The final example in this section demonstrates how to retrieve the value from the
registry and, if this value exists, how to set the SEARCH property to this value. The
code for this operation is shown in Figure 10-43.

///
//
// FUNCTION: OnAppSearch
//
// EVENT: The OnAppSearch event is called prior to calling the
// OnFirstUIBefore event.
//
///
function OnAppSearch()
STRING svValue, szName, szKey;
INT iReturn, nvSize, nvType;
begin

 // Set the registry parameters.
 szKey = "SOFTWARE\\Microsoft\\Internet Explorer";
 szName = "Version";

 // Set the root registry key to be used.
 RegDBSetDefaultRoot(HKEY_LOCAL_MACHINE);

 // Get the value data for the Version value name.
 iReturn = RegDBGetKeyValueEx(szKey, szName, nvType,
 svValue, nvSize);

 // If the registry value exists then set the SEARCH
 // property to this value.
 if(iReturn = 0) then
 MsiSetProperty(ISMSI_HANDLE, "SEARCH", svValue);
 endif;

end;

Figure 10-43: Obtaining the raw value form the registry and if it exists setting a property.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

648

We have now completed the discussion on searching the target system during an
installation. Even though you have spent some time performing searching using
InstallScript code, it is recommended that you use the Windows Installer functionality
unless there is something that cannot be accomplished with it.

Miscellaneous Operations
Before you end this chapter you need to take a brief look at two minor operations
that you will have need of at one time or another. The first operation is the creation
of a launch condition and the second operation is how to create empty folders during
an installation.

Specifying Launch Conditions
A launch condition is a logical statement that can prevent the end user from installing
your application if the system attributes are not adequate to properly run the
application. Though you could create a check for the operating system attributes in
the OnBegin event handler, it is best to use the functionality provided by the
Windows Installer.

The Windows Installer, using the LaunchConditions standard action and the
LaunchCondition table, implements launch conditions. The LaunchCondition action
reads the conditions in the LaunchConditions table and terminates the installation if
any of the conditions returns FALSE.

The LaunchConditions table has two columns. The first column contains the
condition and the second column contains a message that is displayed if the condition
is FALSE. Both columns require values. To populate the LaunchConditions table,
use the Product Properties sub-view in the General Information view. The Install
Condition property in the Product Properties sub-view allows you to define your
launch conditions.

Click the ellipsis in the Install Condition property field to launch the Product
Condition Builder dialog (Figure 10-44).

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

649

Figure 10-44: The Product Condition Builder dialog box for creating launch conditions.

Click in the Condition field of the dialog to enable the drop-down menus at the
bottom of the dialog. You can use these menus to select the properties and operators
with which to create a condition statement. You can combine condition statements
with logical operators such as AND and OR.

As an example, you can create a launch condition that checks to see if the target
operating system is Windows 2000 with service pack 1 installed. To do this, you can
combine these two conditions using the AND logical operator, or place them in
separate rows to have specific messages for each part of the condition. For this
example, the two conditions that you enter in the Product Condition Builder dialog
are shown in Table 10-23.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

650

Table 10-23: Example of Install Conditions

Condition Message

VersionNT = 500 This application requires that Windows 2000 be
installed before installing this application.

ServicePackLevel = 1 This application cannot run unless service pack 1 is
installed.

Both VersionNT and ServicePackLevel are properties that the Windows Installer sets
when an installation package is launched. The first condition checks to see if the
operating system is version 5.0. Version 5.0 is the version of Windows 2000. The
Windows Installer help contains an appendix topic that provides all the valid values
for operating system properties, Operating System Property Values. The second condition
checks if service pack 1 is installed. There is a separate message for each of these
conditions so that the user can receive more detailed feedback about what may be
wrong if the installation terminates.

Creating Empty Folders
You might want your installation to create an empty folder so the application has a
default location for creating application-generated files. The best approach to creating
an empty folder is to have the main component in the application create this empty
folder. Because components are the basic installation units, you need to associate the
action of creating an empty folder with a component. You can do this by using the
CreateFolder table and the Directory table in the Direct Editor. The CreateFolder
table has two columns that tie a location defined in the Directory table to a
component in the Component table.

As a simple example, you can see how to create a folder named "DevArt Data" and
have this folder created under the Application Data folder defined by the operating
system. The first entry you need to make is in the Directory table. The Directory table
entry is shown in Figure 10-45.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

651

Figure 10-45: The Directory table in the Direct Editor with the Empty_Folder entry.

The Directory table shown in Figure 10-45 contains an entry that defines the location
specified by the Empty_Folder identifier. The Directory column entry is the name of
the identifier that you have created for this particular location. The Directory_Parent
column contains the identifier for the path to the Application Data folder that is
defined by the operating system. When you click in this second column, a drop-down
menu lists all the identifiers in the Directory table. Select the identifier that you want
to use. Finally, in the DefaultDir column, enter the name of the empty folder that you
want created under the Application Data folder. Since the folder you want to create
has a space in the name and is longer than eight characters you need to place both the
full name and the short name of this folder in to the third column. Separate the two
naming conventions with a vertical bar.

The next thing that you have to do is tie the entry in the Directory table to the
DeveloperArt component using the CreateFolder table. In the CreateFolder table, the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

652

entries for both columns are available from drop-down menus. The entry required
for this example is shown in Figure 10-46.

Figure 10-46: The CreateFolder table in the Direct Editor to connect the DeveloperArt
component to the Directory table entry.

To test this example, build your project and install the Developer Art application.
You will see that an empty folder named "DevArt Data" is created.

An easier method for creating an empty folder is to create a special component that
has as its only function the creation of this folder. This can be done in the Files view
under Step 2. For every folder that you create in this view InstallShield Developer
creates a component that, when installed, will create that folder.

Conclusion
This chapter discusses a number of the tasks that need to be carried out when an
installation package is created. You have seen that there are many tables that write to
the registry. However, you have also seen you need to use the Registry table to create
application-related entries.

InstallShield Developer’s many views make it easier for you to define the operations
that your installation package needs to perform. There are views that permit you to
create file associations and MIME types, make entries in initialization files, and to
create environment variables. However, there is no built-in functionality in Windows
Installer to read environment variables during an installation. To do this, you need to
write code and to place that code in a custom action or in the user interface script
used by a Standard project.

C H A P T E R 1 0 C O M M O N I N S T A L L A T I O N T A S K S

653

You learned that there is a very robust search mechanism implemented by the
Windows Installer and this mechanism is fairly fast even when performing a search
for a file on a fixed drive. The search mechanism can be used to search for files,
folders, initialization file entries, and registry entries. As part of this searching process,
you can also retrieve raw values from initialization files and from the registry.

This chapter also discusses how you could use InstallScript to implement searching.
There are a number of InstallScript functions that are very useful in this regard.
However, searching using InstallScript functions is significantly slower than using the
built-in Windows Installer functionality. It is recommended that you use the
Windows Installer to perform all searches, except in those special cases where
InstallScript can perform the task more efficiently.

Finally, this chapter looked at how to create conditions that can be used to analyze
the operating system at the beginning of an installation to make ensure that all the
requirements are present for the application to run correctly. Also, in the last section,
learned how to define a folder that is created during the installation.

InstallScript Custom
Actions

To this point, all example InstallScript programs have been inside an explicit
program…endprogram block. This works for Standard projects where you want
to perform operations in the user interface sequence. However, if you want to use
InstallScript in the execute sequence of a Standard project or in both the user
interface sequence and execute sequence of a Basic MSI project, you need to create
InstallScript functionality inside of a custom action. If you want to make changes to
the target system using InstallScript, you need to use deferred custom actions.

This chapter introduces the techniques that you need in order to create InstallScript
custom actions. The techniques discussed here are used in several locations later in
the book to perform installation operations. The material discussed in Chapters 3 and
4 provides a foundation for what is covered in this chapter.

Chapter

11

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

656

Creating the Project
The first thing that you need to do is create a new project to practice with custom
actions. The Standard project that you have been using is not adequate for this
purpose. In this case you will create a Basic MSI project so you can use custom
actions in both the user interface and the execute sequence tables.

As with the Standard project that was used in the previous chapters on InstallScript,
you do not want to wade through a bunch of user interface dialogs every time that
you run an example. Also, since this time you will be running the execute sequence
table actions as well as the user interface sequence actions, you do not want to
contend with having to perform an uninstallation every time you run an example.
Accordingly, you will make a few changes to the Basic MSI project after creating it so
you can use it to practice with InstallScript custom actions.

When you create this Basic MSI project give it the name of "Learning ISScript
Custom Actions". This is the name of the project on the CD-ROM at the back of the
book. After you have created this project start with the General Information views
under Step 1 and enter the requested information. Then you will need to customize
this project to make it appropriate for working with custom actions but not having to
contend with a user interface or having to uninstall every time you run a test.

Preventing the User Interface Dialogs
From Running

Click the Sequences view in Step 5 where you can make some very simple changes to
avoid having a user interface displayed. For this project, you want to prevent the user
interface dialogs from running. A good way to do this is to modify the condition for
these dialogs so that the condition evaluates to FALSE and thus prevents the dialogs
from being displayed. An easy way to modify the conditions on these dialogs is to use
a non-existent property. When the condition is evaluated, it evaluates to FALSE. You
can use a public property such as CONDITION as this non-existent property. For
the SetupInitialization and the SetupProgress dialogs, this property will constitute the
complete condition. For the SetupInitialization this condition will look like what is
shown in Figure 11-1.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

657

Figure 11-1: Conditioning the SetupInitialization dialog so that it is not displayed.

The condition placed on the SetupProgress dialog will be exactly the same as shown
for the SetupInitialization dialog as shown in Figure 11-1. The condition placed on
the InstallWelcome dialog is a modification of the default condition. You need to
AND the CONDITION property to the condition that is already defined. The result
of this is shown in Figure 11-2.

You do not need to condition the final dialogs that are displayed when an installation
is complete or has been terminated for some reason. This is so there is some visual
evidence that the process is completed successfully or that there was an error. These
final dialogs are the ones at the top of the user interface sequence and they have the
negative sequence numbers of –1, -2, and –3.

You do not need to worry about any of the other dialogs that appear in the User
Interface sequence because, after this project is installed, the Windows Installer will
not recognize that anything has been installed. Because of this, the only user interface
wizard that would ever run is the fresh install wizard that begins with the
InstallWelcome dialog. Now anytime that you want to run the installation package so
it shows the user interface, all you have to do is give a value to the CONDITION
property. You do this in the Property Manager under Advanced Views. You can, of
course, set the value of the CONDITION property on the command line as well if
and not have to rebuild the project. As discussed in Chapter 4 you can insert the
command line that you want passed to the Windows Installer in Setup.ini.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

658

Figure 11-2: The condition on the InstallWelcome dialog.

After you build the project, as a final touch to the user interface modifications, you
can eliminate the initialization dialog launched by Setup.exe by adding the
keyword/value entry UI=0 to the end of the [Startup] section in the Setup.ini
file just as you did for the "Learning InstallScript" project. This was explained in detail
in Chapter 6.

Preventing Project Registration
Next, you want to prevent the Windows Installer from registering this example
project every time that you test your custom actions. To do this, use the same
CONDITION property to prevent certain actions from being executed. The actions
that you want to keep from running are the RegisterUser, RegisterProduct,
PublishFeatures, and PublishProduct actions. These actions are in the Execute
sequence and the condition on the RegisterUser action should look like what is

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

659

shown in Figure 11-3. The condition for the other three actions will be exactly the
same as shown in Figure 11-3.

Figure 11-3: The condition on the RegisterUser action in the execute sequence.

Defining a Feature and Component
You have to define one feature and one component for this project or a Windows
Installer error occurs when the installation is run. You do not want to leave any
artifacts on the target machine with regard to the registration of a component even if
it does not have a file in it. Although you could do what you did earlier and place a
condition on the ProcessComponents action in the Execute sequence, there is a
slightly more instructive way to ensure this. You need to delete the Component Code
property of the component so it is NULL. A component that does not have a
component ID is not registered on the target system.

To create one feature and one component, do the following:

1. Go to Advanced Views and click on the Setup Design view.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

660

2. Right click on the Setup Design node and select the New Feature option.
Name this feature Feature.

3. Right click on the feature and select the New Component option. Name
this component Component.

4. Delete the GUID provided for the Component’s Component Code
property. This should look like what is shown in Figure 11-4.

Figure 11-4: The Feature/Component tree in the Learning ISScript Custom Actions project.

Because you are not including a file in this component, you can now run the custom
action examples that you are going to create and not leave any trace of this project on
your machine. You can run each example without having to uninstall between the
examples.

Building the Project
The last thing you need to do is to build this project. Do this by clicking the Build
button on the toolbar. After the build completes, a warning appears in the Output
Window stating that there are no files in the project. This warning will not appear

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

661

again because you will be reinserting your compiled and linked scripts into the Binary
table just as you did in the previous chapters on InstallScript. After the build is
complete remember to make the entry in the Setup.ini file as you did in Chapter 6.

Now the project will show almost no user interface. The project will display the finish
dialogs and another dialog that appears on the screen for a short time. This dialog is
the built-in initialization dialog that is displayed by the Windows Installer engine. You
could eliminate this dialog, but that requires you to run the installation silently.
However, running the installation in silent mode does not run any custom action that
is placed in the user interface sequence.

Now that the project setup is complete, you can create your first InstallScript custom
action.

Creating an InstallScript Custom
Action

To create a custom action using InstallScript, follow a three-step process.

1. Create the InstallScript function that will be executed as the target of the
custom action. You will not be able to compile this InstallScript code
until you complete Step 2.

2. Create a custom action that targets the exported function in the
InstallScript code. Compile the InstallScript code.

3. Insert the custom action into a sequence table or attach it to a button on
a dialog box.

The implementation details of these steps are covered in the following three sections.
By the time you are finished you will have worked through the Custom Action
Wizard to create an InstallScript custom action.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

662

Creating the InstallScript Function
The first operation is to create an InstallScript function that will be the target of a
custom action. To create the initial template for this function, do the following:

1. Go to the InstallScript view under Step 5.

2. Right click on the Files icon and select the New Script File option from
the context menu (Figure 11-5).

3. Click on the Setup.rul file in order to display the contents of the template
in the Script Editor.

Figure 11-5: Creating a new Setup.rul file for use with custom actions.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

663

The name of the new script file is Setup.rul and it contains a template for creating a
custom action. The template file, as created by InstallShield Developer, is shown in
Figure 11-6.

///
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2001,
// II SS InstallShield Software Corporation
// IIIIIII SSSSSS All rights reserved.
//
//
// This template script provides the code necessary to build an
// entry-point function to be called in an InstallScript
// custom action.
//
// File Name: Setup.rul
//
// Description: InstallShield script
//
///

// Include Isrt.h for built-in InstallScript function prototypes.
#include "isrt.h"

// Include Iswi.h for Windows Installer API function prototypes and
// constants, and to declare code for the OnBegin and OnEnd events.
#include "iswi.h"

 // The keyword export identifies MyFunction as an entry-point
 // function. The argument it accepts must be a handle to the
 // Installer database.
 export prototype MyFunction(HWND);

 // To Do: Declare global variables, define constants, and
 // prototype user-defined and DLL functions here.
// To Do: Create a custom action for this entry-point function:
// 1. Right-click on "Custom Actions" in the Sequences/Actions view.
// 2. Select "Custom Action Wizard" from the context menu.
// 3. Proceed through the wizard and give the custom action a
// unique name.
// 4. Select "Run InstallScript code" for the custom action type,
// and in the next panel select "MyFunction" (or the new name of
// the entry-point function) for the source.
// 5. Click Next, accepting the default selections until the wizard
// creates the custom action.

Figure 11-6: Template Setup.rul for creating InstallScript custom actions.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

664

//
// Once you have made a custom action, you must execute it in your
// setup by inserting it into a sequence or making it the result
// of a dialog's control event.

///
//
// Function: MyFunction
//
// Purpose: This function will be called by the script engine when
// Windows(TM) Installer executes your custom action
// (see the "To Do," above).
//
///
function MyFunction(hMSI)
 // To Do: Declare local variables.
begin

 // To Do: Write script that will be executed when MyFunction
 // is called.

end;

// To Do: Handle initialization code before the sequence
// (User Interface or Execute) starts.
// This will be called only once in an installation.
// function OnBegin
// begin
// end;

// To Do: Write clean-up code when the sequence
// (User Interface or Execute) ends.
// This will be called only once in an installation.
// function OnEnd
// begin
// end;

Figure 11-6: Continued.

At the top of this file, there are included the two header files isrt.h and iswi.h.
These two header files include many other header files and these header files
prototype both the built-in InstallScript functions and the Windows Installer
functions that can be used in InstallScript custom actions.

The code shown in Figure 11-6 provides the prototype for a function that is called
MyFunction. The prototype for this function is the format that you need to follow
for any function that is to be used as the target of a custom action. As discussed in

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

665

Chapter 4, the call to an InstallScript custom action from the Windows Installer
passes through ISScriptBridge.dll, which in turn calls the exported function in the
compiled script. This exported function can have only one argument passed to it and
that argument is the handle to the current Windows Installer session. This handle is
required as an argument by many of the Windows Installer functions that are
exported by msi.dll. The handle to an Windows Installer session is an integer value.

Not all functions have to be prototyped in this fashion, only those that are to be the
target of a custom action. There are many other functions that serve as helper
functions. These helper functions are called by the functions that are the targets of
custom actions to perform operations such as sorting.

Next in the template file is a skeleton definition for the MyFunction function.
Finally there are two functions that are commented out. These functions are the only
two event handler functions that are supported for use in a Basic MSI project. These
two event handlers are the OnBegin and the OnEnd functions. The default
implementation of these two functions is a no-op. In other words, these functions do
nothing unless you define something for them to do inside your script. The
OnBegin function is called at the beginning and is used to perform any initialization
actions required for the installation program. The OnEnd function is used to perform
any necessary cleanup. These event handler functions are discussed later in this
chapter.

The first custom action you will create displays a message box. As part of creating this
custom action you will clean up the template Setup.rul file so that it is more
manageable. The operations that you want to perform are listed as follows:

1. Delete the comment statements in the template script file as they pertain
to instructions for creating an InstallScript custom action. Figure 11-7
shows what you want to have this file look like.

2. Rename the target function from MyFunction to
ISScriptCustomAction and this will be the name of the function
used throughout this chapter for all examples.

3. Delete the commented-out event handler function definitions.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

666

4. Inside the ISScriptCustomAction function insert a call to the
SprintfBox function to display a message box. You insert a call to
this built-in function just as you did in the previous InstallScript chapters.

5. Add the definition of a constant that will be used as the caption for the
message box to be displayed.

This creates the basic script file as shown in Figure 11-7. This script is much simpler
and it makes an excellent starting point for our investigation of InstallScript custom
actions. You can make lie easier by copying the script from the file on the CD-ROM.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the creation
// of a simple custom action that displays
// a message box.
//
///

#include "isrt.h"
#include "iswi.h"

#define CAPTION "Feedback"

export prototype ISScriptCustomAction(HWND);

///
// Function: ISScriptCustomAction
//
// Purpose: This function is the target of an InstallScript
// custom action.
///
function ISScriptCustomAction(hMSI)
STRING szFormat;
begin

 szFormat = "Performing an InstallScript custom action...";

 SprintfBox(INFORMATION, CAPTION, szFormat);

end;

Figure 11-7: The basic custom action script.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

667

You cannot compile this script until you have created a custom action that uses this
function as its target. This is discussed in the next section.

Using the Custom Action Wizard
Now that you have your script in place for implementing a custom action, you need
to create the custom action that will target this script function. To launch the Custom
Action Wizard custom action, do the following:

1. Go to the Custom Actions view under Step 5.

2. Right click on the Custom Actions node and select the Custom Action
Wizard option as shown in Figure 11-8. This launches the Custom
Action Wizard.

Figure 11-8: The context menu for launching the Custom Action Wizard.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

668

Note that there are nine other options on the context menu shown in Figure 11-8.
These other options are used to create custom actions without the use of the Custom
Action Wizard. We will discuss these options later in this chapter. Having first used
the Custom Action Wizard to create a custom action will make the functionality of
these other options much clearer.

When you launch the Custom Action Wizard you will get the wizard Welcome dialog
as shown in Figure 11-9.

Figure 11-9: The Welcome dialog of the Custom Action Wizard.

Since there are no operations to be carried out in the Welcome dialog click Next to
move to the Basic Information dialog. In the Basic Information dialog, you need to
enter a name for the custom action that you are creating. This name is used to
populate the first column of the CustomAction table.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

669

Type ISScriptCustomAction in the Name field and optionally type a comment in the
Comment field (Figure 11-10). The name of the custom action is how you will insert
it into a sequence table. The comment can be used to document the purposes of the
custom action and is maintained only in the project file. It is not used in the MSI
package.

Figure 11-10: The entries to be made in the Basic Information panel.

Click Next to display the Action Type panel (Figure 11-11). Select Run InstallScript
Code from the Type drop-down combo box. This is the default option. Chapter 3
discusses the custom actions listed in this combo box. Because you selected Run
InstallScript Code, the Location drop-down combo box is disabled. This is because
ISScriptBridge.dll, which is streamed into the Binary table, manages the running of
InstallScript custom actions.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

670

Figure 11-11: The Action Type panel of the Custom Action Wizard.

Click Next to move to the Action Parameters panel (Figure 11-12). In the Action
Parameters panel, only the Source drop-down menu is enabled. The Source drop-
down menu lists all the InstallScript functions that use the export keyword in their
prototype. The export keyword tells the wizard which functions are intended to be
targets of custom actions. In this example, there is only one function that is
prototyped with this keyword, so there is only one function in this menu.

The Source combo box and the Target edit field correspond to two columns in the
CustomAction table that have the same names. The Target edit field is disabled
because, as discussed in Chapter 4, InstallShield Developer controls the actual name
that is used in this column of the CustomAction table. Most likely the name of the
function used for this example is f1. The IsConfig.ini file handles the translation
between this name and the name you used in your script.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

671

Figure 11-12: The Action Parameters dialog of the Custom Action Wizard.

Click Next to move to the Additional Options dialog (Figure 11-13). This is where
you make the selections that define your custom action. The first part of this dialog
determines how the Windows Installer is to handle return values from the custom
action. The first check box is disabled and this indicates that InstallScript custom
actions must run synchronously. Other types of custom actions can run
asynchronously as well as synchronously. The second check box with the label
“Ignore custom action return code” specifies how the Windows Installer should treat
the return values from a custom action. If this check box is deselected and a custom
action returns a failure return code, Windows Installer terminates the installation. If
you select this check box, it does not matter what the custom action returns. The
Windows Installer will continue with the installation. For this example, leave this
check box deselected.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

672

Figure 11-13: The Additional Options panel of the Custom Action Wizard.

The value in the In-Script Execution field indicates where the custom action will run.
Use the default value, “Immediate execution”. For in-script execution, this option
allows the most flexibility in where you can place your custom action. We will look at
the use of deferred custom action later in this chapter. All of the options available for
this field are described in the following list.

Immediate execution: Windows Installer runs this type of custom action as
soon as it is encountered in the Sequence table. This type of custom action can,
with some exceptions, be placed at any location in either the user interface or the
execute sequence tables. This is also the only type of custom action that can be
attached to a button on an authored dialog.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

673

Deferred execution: When Windows Installer encounters this type of custom
action, it writes it into the execution script and then, only when the execution
script is run will the custom action be executed. This means that a deferred
custom action can be placed only in the execute sequence table and only between
the InstallIntialize and the InstallFinalize actions.

Rollback execution: This is a deferred execution custom action that runs only
during a rollback of the installation. Otherwise, it is handled like the deferred
execution custom action.

Commit execution: This is a deferred execution custom action that runs only at
the end of a successful installation. Otherwise, it is handled like the deferred
execution custom action.

Deferred execution in System context: This is a deferred execution custom
action that runs with local system privileges in a managed environment. Normally
a custom action will have the same privilege level as the user performing the
installation.

The Execution Scheduling section of the Additional Options panel indicates when a
custom action will be executed based on the sequence tables into which is inserted or
the process used to run the custom action. For this beginning custom action, accept
the default value, “Always execute.”

The four options are described in the following list:

Always execute: The custom action may run twice if present in both Sequence
tables. On Windows 9x machines, the custom action runs only once if the
installation is run with a full or a reduced user interface, even if the custom action
is inserted into both Sequence tables. On Windows NT/2000 machines, a
custom action runs twice if placed in both sequence tables. As long as the
sequence table is run, the custom action runs if it has been inserted into that table.
The user interface level used does not impact this.

Execute only once: The custom action executes once if present in both
sequence tables. The custom action is not run in the execute sequence if the user
interface sequence has run. It does not matter whether the custom action has
been inserted into the user interface sequence or not. The operation on Windows
NT/2000 and Windows 9x machines is the same.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

674

Execute only once per process: The custom action on a Windows NT/2000
machine operates just the same as if it had been identified as “Always execute.”
This has an impact on Windows 9x machines because there is only one process
on these machines. On a Windows 9x machine, this custom action runs in the
execute sequence table only if the user interface table has not been run.

Always execute at least once on the client: This custom action does not run
on a Windows NT/2000 machine. On a Windows 9x machine, this custom
action is just the reverse of the “Execute only once per process” type of custom
action. Here the custom action runs only in the execute Sequence table if the user
interface table has been run.

Figure 11-14: The Summary panel of the Custom Action Wizard.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

675

Click Next to display the Summary panel (Figure 11-14). This panel shows all the
options that you have selected in the Custom Action Wizard. You have the
opportunity to go back and make any changes that are necessary. Then click Finish
on the Summary panel to create the custom action that will call the
ISScriptCustomAction function. Now, you need to rebuild the tables by
selecting Build Tables Only from the Build drop-down menu on the Toolbar. This
ensures that the entry made in the Setup.ini file is not destroyed.

Figure 11-15: The Custom Actions list.

After the build is complete, note that there is more than one custom action in the list
of custom actions (Figure 11-15). In Figure 11-15 you see the custom action that you
just created and you see two other custom actions listed as well. These other two
custom actions are always there and have to do with the InstallShield Update service.
By default InstallShield Update services are enabled unless you specifically go to the
Options dialog and disable them.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

676

There are a number of additional custom actions that are added to the project the
first time you create an InstallScript custom action. These custom actions do not
show up in the Custom Actions view. You can only see them in the Direct Editor by
going to the CustomAction table. You can, however, see them in the Sequences view
where they have been inserted into the user interface and the execute sequence tables.

Using a Custom Action
In a Basic MSI project, you can insert an InstallScript custom in either the user
interface sequence table or the execute sequence table. You can also attach an
InstallScript custom action to a button in an authored dialog through the use of the
DoAction control event.

In a Standard project you can use an InstallScript custom action custom only in the
execute sequence table. The reason for this is discussed in Chapter 4. Because this
example uses a Basic MSI project, this chapter covers the possible places that you can
use an InstallScript custom action.

The InstallScript custom action that you have just created is an immediate custom
action so you can test this by placing it in the user interface sequence. Place the
custom action directly after the LaunchConditions action in the InstallUISequence
table. To do this:

1. Expand the User Interface node under the Installation folder in the
Sequences view.

2. Right-click on the LaunchConditions action and select Insert This
displays the Insert Action dialog (Figure 11-16).

3. Select the ISScriptCustomAction from the list of custom actions and
click OK.

The default for the Insert Action dialog is to display the custom actions that are
available and not already inserted into the selected sequence table. You could have
added a condition to this custom action by entering it into the Condition edit field but
it is not required for this example. The comment that appears in the Comment edit
field is the one you entered when you created the custom action in the Custom
Action Wizard.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

677

Figure 11-16: The Insert Action dialog.

When you insert a custom action in a sequence table as described above, it is inserted
after the action or dialog that was selected when the Insert Action dialog was
launched. The sequence number that the custom action is given is half way between
the sequence numbers of the actions that come directly before and directly after. In
this example, the sequence number will be 75 because the LaunchConditions
standard action has a sequence number of 50 and the SetupInitialization dialog has a
sequence number of 100.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

678

Testing the Custom Action
To test this example, you need to build and run the program. To do this:

1. Build this initial example by selecting Build Tables Only from the Build
drop-down menu on the Toolbar.

2. You can test that your custom action displays the message box by
clicking the Run button on the Toolbar. When you run the installation
program, a message box appears (Figure 11-17).

Figure 11-17: The message box displayed by the ISScriptCustomAction custom action.

3. Click OK on the message box. The installation continues to the end and
displays the SetupCompleteSuccess dialog

4. Click Finish to remove this dialog from the screen.

The application is not registered on the system so you can continue to run tests
without having to bother with an uninstallation between each test. The next section
discusses how to create an InstallScript custom action without using the Custom
Action Wizard.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

679

An Alternate Way to Create a
Custom Action

When you launched the Custom Action Wizard you saw that there were a number of
other options on this context menu as shown in Figure 11-8. If you had decided to
create the InstallScript custom action by selecting the first option on this context
menu, you would have been presented with a property sheet where you would have
to set all the parameters for the custom action. You can see what this property sheet
looks like by going back to the Custom Actions view and clicking on the
ISScriptCustomAction. You should see what is shown in Figure 11-17.

Figure 11-17: The property sheet for the ISScriptCustomAction.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

680

As you can see in Figure 11-17 the property sheet for a custom action provides a
location where you can do everything. You can create the custom action, set its
options, and even place it into a sequence table. After using the Custom Action
Wizard a few times you will probably want to use this approach since it is faster and
you can see everything about the custom action in one glance.

Getting and Setting Properties
One of the most common operations that you need to carry out during an installation
is to set the value of a property in the Property table and to retrieve the value of a
property in the Property table. Chapter 3 explained that the properties in the Property
table serve as the global variables used by the Windows Installer. Because properties
are so important, the Property table is the only table where the Windows Installer
offers two functions that set and get properties. As we will see later in this chapter,
access to any other table requires the use of SQL.

The Windows Installer functions that are used to get and set properties in the
Property table are MsiGetProperty and MsiSetProperty. The prototype
for the MsiGetProperty function is shown below:

UINT MsiGetProperty{
 MSIHANDLE hInstall, // handle to installer session
 LPCTSTR szName, // name of property
 LPTSTR szValueBuf, // buffer for returned property value
 DWORD *pchValueBuf // character count buffer
};

The prototype for the MsiSetProperty function is shown below:

UINT MsiSetProperty{
 MSIHANDLE hInstall, // handle to installer session
 LPCTSTR szName, // name of property
 LPTSTR szValue // property value
};

Both of these functions take a handle to the installer session, as is the case with most
of the database functions that are used in custom actions. Both of these functions
require the name of the property whose value is either being retrieved or set. The
name of a property is case sensitive.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

681

When you use the MsiGetProperty function to retrieve a property’s value, you
need to know the size of the string buffer that will be used to hold the value of the
property. This can be a problem because the value of a property can be unlimited in
size. In order for this to work properly, you should call the MsiGetProperty
twice, first with a zero length string for the buffer. When you do this, the last
argument returns the length of the buffer required to hold the value of the property,
not including the null terminator. You can then increment the size of the buffer by
one and call the MsiGetProperty function a second time. The second time you
call this function, it returns the value of the property.

In addition to setting the value of a property, you can also remove a property from
the Property table using the MsiSetProperty function. To remove a property,
pass the name of an existing property to the MsiSetProperty function and give
it a NULL value.

One of the unique and valuable aspects of using InstallScript to implement custom
actions is that you have access to the database in both immediate mode and deferred
mode. This is not the case with any other type of custom action. For a non-
InstallScript custom action, extra effort is required to make property values available
to a deferred custom action. Deferred custom actions not created using InstallScript
can only access properties that have been written into the Windows Installer
execution script. To do this requires the creation of another custom action, which
forces the property value or values to be written into the installation script. Retrieving
the value of these property values can be extra effort depending on whether the value
of more than one property needs to be obtained in deferred mode. Since this book
only covers InstallScript custom actions this subject is not covered. The reasons why
an InstallScript custom action can access the running database even in deferred mode
is covered in Chapter 4.

Another benefit of using InstallScript to implement custom actions is that two
InstallScript custom actions can communicate with each other through the use of
global variables. Other types of custom actions need to use the Property table to
communicate with each other. This means that the non-InstallScript custom actions
need to use the MsiGetProperty and MsiSetProperty functions to pass
values between themselves.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

682

Example of Retrieving a Property Value
This simple example retrieves and displays the value of the DATABASE property
(Figure 11-19).

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the creation
// of a simple custom action that retrieves and
// displays the value of a property.
//
///
#include "isrt.h"
#include "iswi.h"

#define CAPTION "Feedback"

export prototype ISScriptCustomAction(HWND);
///
// Function: ISScriptCustomAction
//
// Purpose: This function is the target of an InstallScript
// custom action that gets and displays the value
// of the DATABASE property.
///
function ISScriptCustomAction(hMSI)
STRING svPropertyValue;
LONG nvBufferSize;
begin

 // Set buffer to a NULL string and buffer size to zero.
 svPropertyValue = "";
 nvBufferSize = 0;

 // Make first call to get the actual buffer size
 // required for the DATABASE property.
 MsiGetProperty(hMSI, "DATABASE", svPropertyValue, nvBufferSize);

 // Increment size to account for NULL terminator
 // and then resize the string buffer.
 nvBufferSize++;
 Resize(svPropertyValue, nvBufferSize);

Figure 11-19: Setup.rul for a custom action that retrieves a value from the Property table.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

683

 // Make second call to get the actual value
 // of the DATABASE property.
 MsiGetProperty(hMSI, "DATABASE", svPropertyValue, nvBufferSize);

 // Display the value of the DATABASE property.
 SprintfBox(MB_OK, CAPTION, "DATABASE property = %s",
 svPropertyValue);

end;

Figure 11-19: Continued.

This example makes two calls to the MsiGetProperty Windows Installer API.
The first call determines the size of the string buffer required to hold the value of the
DATABASE public property and the second call retrieves the value of this property.
Between the two calls, the program increments the required size of the string buffer
to account for the NULL terminator and then sets the size of the string buffer. The
final action is to display the value that is retrieved from the Property table.

Note that you do not need to make these two calls to the MsiGetProperty
function if you are certain that a property value is not more than 1024 characters in
length. As discussed in Chapter 8, this is the default size provided to any string passed
to a DLL function. This is for backward compatibility with older scripts. However, it
is best to get into the habit of making the two calls as shown in the above example.

You do not have to make any changes in your project since it already contains a
custom action that targets the ISScriptCustomAction InstallScript function.
Since the ISScriptCustomAction custom action is already inserted in the
InstallUISequence table, you do not have to do anything with regard to its location.
All you have to do is change the code, compile it, and then run the installation to see
it work. You can either type in this code or you can copy it from the CD-ROM at the
back of the book.

Note that the example in Figure 11-19 uses the hMSI session handle that is passed to
the InstallScript function. You can also use an InstallScript system constant that
contains the handle to the Windows Installer session. The name of this InstallScript
system constant is ISMSI_HANDLE. This system constant is useful if you want to
access the session handle in a function where it is not passed as one of the arguments.
An example of this is in the OnBegin and the OnEnd event handlers, which are the
only two event handlers supported in a Basic MSI project. These two event handlers
are discussed later in this chapter.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

684

Example of Setting a Property Value
When you first set up the Learning ISScript Custom Actions project, you placed a
condition on a number of standard actions and on the InstallWelcome dialog in the
InstallUISequence table. This eliminated the user interface and prevented the
application from being registered so uninstallation is not required to test a custom
action. The condition that you applied was a property named CONDITION that
does not have a value.

In this example, you will check to see if the CONDITION property has a value and,
if it does, this property is removed from the Property table (Figure 11-20). If the
CONDITION property does not have a value, you will give it a value.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the creation
// of a simple custom action that
// sets the value of a property.
//
///

#include "isrt.h"
#include "iswi.h"

#define CAPTION "Feedback"

export prototype ISScriptCustomAction(HWND);

///
// Function: ISScriptCustomAction
//
// Purpose: This function is the target of an InstallScript
// custom action that sets the value of the
// CONDITION property if it does not already exist
// and removes it if it exists.
///
function ISScriptCustomAction(hMSI)
STRING svPropertyValue;

Figure 11-20: Setup.rul showing the setting and removal of a value for a property.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

685

LONG nvBufferSize;
begin

 // Set buffer to a NULL string and buffer size to zero.
 svPropertyValue = "";
 nvBufferSize = 0;

 // Make first call to get the actual buffer size
 // required for the DATABASE property.
 MsiGetProperty(ISMSI_HANDLE, "DATABASE", svPropertyValue,
 nvBufferSize);

 // Check to see if the property already exists
 // by seeing if the buffer size is greater than zero.
 if(nvBufferSize > 0) then
 // Remove the CONDITION property if it exists.
 svPropertyValue = "";
 MsiSetProperty(ISMSI_HANDLE, "CONDITION", svPropertyValue);
 else
 // Set the value of the CONDITION property
 // if it does not exist.
 svPropertyValue = "1";
 MsiSetProperty(ISMSI_HANDLE, "CONDITION", svPropertyValue);
 endif;

end;

Figure 11-20: Continued.

The first thing that you do in this example is to check if the property exists by
determining if the size of the required string buffer is greater than zero. If the
required size is zero, you know that the property does not exist. Based on the
assessment of the existence of the property, the example code then gives the property
a value of "1" or sets its value to NULL, which removes it from the Property table.

Once again you do not have to do anything with the custom action itself. All you
need to do is change the code and compile it. If you want to test this custom action
for the scenario when the CONDITION property already exists, you need to enter
this property and give it a value by using the Property Manager. After adding the
CONDITION property to the Property table, build the project using the Build
Tables Only option on the Build drop-down menu. The use of the Property Manager
is discussed in Chapter 5.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

686

Accessing Database Tables
The last section discussed how to get and set properties in the Property table. In
order to do this for any other table in the MSI database, you need to use SQL and
create views of the table. Then you work with the records in the view that you have
created. You will be working with the SELECT SQL statement in this chapter.

During the running of an installation, you can access the database. Because the
database is read-only, you can make only temporary changes and these changes are
never persisted. When you work with the tables in the MSI database, there are a
number of standard operations that you need to carry out in any custom action that
you create. These steps are discussed in the following list.

1. The first operation that you need to do is to obtain a handle to the active
database. The active database is the one being used for the current
installation. To obtain the handle to the active database, call the
MsiGetActiveDatabase function. This function takes only one
argument and that is the handle to the Windows Installer session.

2. The next operation that is necessary is the creation of a view object. This
is where you use the SQL query statement that will create the desired
view. A view object is created using the MsiDatabaseOpenView
function. This function takes the handle to the active database and the
SQL query statement and returns in another argument the handle to the
view object.

3. In order to fetch records from the view object, you need to execute the
view. Execute the view object by calling the MsiViewExecute
function. This function takes a handle to the view object as an argument
and an optional argument that this chapter will not be using.

4. After performing the above three operations, you can fetch records from
the view and read the individual fields that make up these records. A
record in a view is obtained by calling the MsiViewFetch function.
You pass a handle to the view object to this function and get back in
another argument a handle to the fetched record.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

687

5. A field in a record can be one of three data types: an integer, a string, or a
binary stream. You can directly read a field if it is an integer or a string. If
it is a binary stream, however, you have to handle this data type
differently. For now, you will work only with fields that are integers or
strings. To read a field that contains an integer value, use the
MsiRecordGetInteger function and to read a record field that
contains a string, use the MsiRecordGetString function. Each of
these functions takes a handle to the record and the number of the field
for which the value is being retrieved. For an integer value, the return
value of the MsiRecordGetInteger function is the value in the
record field. When retrieving the value of a string, you have to pass a
buffer to receive the value of the string field and you also have to pass a
size of the buffer. When getting the value of a string field in a record, you
will want to use the same approach as used when getting the value of a
property and that is we will want to call the MsiRecordGetString
function twice. Call it the first time to get the true size of the buffer
needed and then call it the second time with the correctly sized buffer.

When you want to only retrieve records from a table, you do not need to perform the
alternate steps 4 and 5 below. The alternate steps 4 and 5 shown below are required
only when adding temporary rows to a database table:

4. Once you have created a view object, you need to create a record object
with the correct number of fields in it for the table to which you want to
add it. To create a record object, use the MsiCreateRecord function. The
only argument that this function takes is the number of the data fields to
be contained in the record. This function returns a handle to a record
object with the requested number of fields. To set a record field to an
integer or string value, use either the MsiRecordSetInteger or
MsiRecordSetString functions. Both of these functions take as
arguments the handle to the record object, the field number to receive
the value, and the value to be inserted into the field. You can also insert a
file into a record field as a binary stream using the
MsiRecordSetStream function. In this function, instead of
providing a value as a third argument, you provide the path to the file
that is to be streamed into the record field.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

688

5. Once you have created the record that you want to add to a particular
table, you need to use the MsiViewModify function to add this
record to the view. This function takes as arguments the handle to the
view, an indicator of the modify mode, and the handle to the record
being added to the view. When you are working with a running database
during an installation, there is only one modify-mode that can be used
and that is defined by the MSIMODIFY_INSERT_TEMPORARY
constant.

The best way to understand the required operations is to take a look at an example of
reading all the values from a table.

Example of Reading Values in a Table
Now that you are reading the values from an entire table, you need a better method
than a message box to display these values. Accordingly, this example creates an
approach to printing to a text file the rows in a database table as long as the table has
all columns containing string values. The InstallScript function for printing to a text
file uses the FileSystemObject object that is discussed in detail in Chapter 9. The code
for this complete example is provided in Figure 11-21.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates how
// to work with tables and to print out
// the value in the fields of each row
// in the table.
//
///

#include "isrt.h"
#include "iswi.h"

#define CAPTION "Feedback"
#define ForAppending 8 // Required for OpenTextFile method.
#define TemporaryFolder 2 // Required for GetSpecialFolder method.

Figure 11-21: Setup.rul for writing the rows of a table to a text file.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

689

// Prototype of a function that is the target of a custom action.
export prototype ISScriptCustomAction(HWND);

// Prototype of a private function.
prototype INT PrintRecord(BYVAL INT, BYVAL INT, BYVAL STRING,
 BYVAL INT);
///
// Function: ISScriptCustomAction
//
// Purpose: This function is the target of an InstallScript
// custom action that prints the columns in a
// specified table in the database.
///
function ISScriptCustomAction(hMSI)
STRING szTableName, szQuery, szFileName, szColNames(3);
INT i, nFields;
LONG hDatabase, hView, hRecord;
OBJECT fso, fldr, txtfile;
begin

 // Set the table name and the number
 // and name of the columns.
 szTableName = "ActionText";
 nFields = 3;
 szColNames(0) = "Action";
 szColNames(1) = "Description";
 szColNames(2) = "Template";

 // Define the query to be used to create the view.
 szQuery = "SELECT * FROM " + szTableName;

 // Get the handle to the active database.
 hDatabase = MsiGetActiveDatabase(hMSI);

 // Check for success of getting the database handle.
 if(hDatabase = 0) then
 SprintfBox(MB_OK, "Error", "Unable to get handle to " +
 "active database.");
 return ERROR_INSTALL_FAILURE;
 endif;

 // Open a view using the SQL query statement.
 if(MsiDatabaseOpenView(hDatabase, szQuery, hView)
 != ERROR_SUCCESS) then
 SprintfBox(MB_OK, "Error", "Unable to " +
 "open the view for the %s table.", szTableName);
 return ERROR_INSTALL_FAILURE;
 endif;

Figure 11-21: Continued.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

690

 // Execute the view just opened.
 if(MsiViewExecute(hView, 0) != ERROR_SUCCESS) then
 SprintfBox(MB_OK, "Error", "Unable to execute " +
 "the view for the %s table.", szTableName);
 return ERROR_INSTALL_FAILURE;
 endif;

 // Create the text file name and location.
 // The location is the Temp folder.
 szFileName = szTableName + ".txt";
 try
 set fso = CreateObject("Scripting.FileSystemObject");
 set fldr = fso.GetSpecialFolder(TemporaryFolder);
 szFileName = fldr ^ szFileName;
 set txtfile = fso.CreateTextFile(szFileName, TRUE);
 catch
 return ERROR_INSTALL_FAILURE;
 endcatch;

 txtfile.WriteLine("This file contains the rows in the " +
 szTableName + " table.");

 // Write a carriage return and line feed.
 txtfile.WriteLine;

 // Write the column names into the text file.
 for i=0 to nFields-1
 txtfile.Write(szColNames(i));

 if(i < nFields) then
 txtfile.Write("\t");
 endif;
 endfor;

 // Write a carriage return and line feed
 // and close the text file.
 txtfile.WriteLine;
 txtfile.Close;

 // Fetch each record and print it out to the text file.
 while(MsiViewFetch(hView, hRecord) = ERROR_SUCCESS)
 PrintRecord(hRecord, hView, szFileName, nFields);
 endwhile;

 //Close all handles
 MsiCloseHandle(hRecord);
 MsiCloseHandle(hView);
 MsiCloseHandle(hDatabase);

Figure 11-21: Continued.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

691

 return ERROR_SUCCESS;
end;

///
// Function: PrintRecord
//
// Purpose: This function prints to a text file the values
// of all fields in a specified record.
///
function INT PrintRecord(hRecord, hView, szFileName, nFields)
INT i, nBufSize, nValue;
STRING szValue;
OBJECT fso, tso;
begin
 try
 // Create a FileSystemObject object and open the
 // text file that is passed to the function.
 set fso = CreateObject("Scripting.FileSystemObject");
 set tso = fso.OpenTextFile(szFileName, ForAppending, FALSE);
 catch
 return ERROR_INSTALL_FAILURE;
 endcatch;

 // Loop through the fields of the record and
 // write them into the text file.
 for i=1 to nFields
 nBufSize = 0;
 szValue = "";
 MsiRecordGetString(hRecord, i, szValue, nBufSize);
 nBufSize++;
 Resize(szValue, nBufSize);
 MsiRecordGetString(hRecord, i, szValue, nBufSize);
 tso.Write(szValue);

 // Add a tab delimiter between fields.
 if(i < nFields) then
 tso.Write("\t");
 endif;
 endfor;

 // Write a carriage return
 // and then close the file.
 tso.WriteLine;
 tso.Close;

 // Destroy the FileSystemObject object.
 set fso = NOTHING;
end;

Figure 11-21: Continued.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

692

This example shows how to access the tables in a running database and also gives a
generic approach to printing values from a custom action. This example accesses the
ActionText table and prints out the values in each of the three columns that make up
this table. A tab delimiter separates the values in each column.

In the function that is the target of the custom action, the program defines the table
for which you want to create a view and creates an array that holds the column names
for this table. The program then defines your SQL query that does a SELECT on all
columns of the specified table. Following this, the program gets the handle to the
active database, opens a view, and executes the view.

In the example’s custom action function, you create the text file to which you will
write all the rows of the ActionText table. Part of the text file creation is to write an
initial line in the file telling which table is being written and you also write the column
names to this text file. A tab delimiter also separates the column names. The program
then closes this file and reopens it for each row that is written to it by the
PrintRecord function.

Finally, the program loops through and fetches each record in the view, and passes
the record handle to the PrintRecord function. This private function then opens
the text file, writes the values of each column to the file, and closes the file. The
looping continues until the MsiViewFetch Windows Installer function returns that
there are no more records. Then the custom action returns and the installation
process ends.

You do not have to do anything to get this custom action to run except compile the
InstallScript code. The custom action that you have already created still targets the
function that is used in this example. As an experiment, you can re-run the Custom
Action Wizard on the ISScriptCustomAction custom action and change it to a
deferred type. You can also use the property sheet for the custom action to change it
to a deferred custom action. You can then place this redefined custom action in the
InstallExecuteSequence table directly after the InstallIntialize action and select Build
Tables Only from the Build drop-down menu on the Toolbar. When you run the
installation in this configuration, the text file is created again just as it was when the
custom action is run in immediate mode. This would not be possible with any other
type of custom action. Only an InstallScript custom action has access to the database
in deferred mode.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

693

In this section you saw how to work with integer or string data in a table column. The
next section takes a close look at how to work with binary data in a database column.

Streaming Out Binary Data
There are several tables in an MSI database that have a column that holds data of the
binary data type. Binary data is a file that has been streamed into the appropriate field
of a table. The table of most interest for us at this time is the Binary table. The Binary
table holds a number of files that pertain to running InstallScript custom actions, as
discussed in Chapter 4. Also in the Binary table are all the bitmaps and icons used in
the user interface of a Basic MSI project.

An operation that is commonly handled in a custom action is the streaming out of the
Binary table a file that was streamed in at build time. To perform this type of
operation, you need to do a few new things in your script. The complete code for
streaming out binary data is shown in Figure 11-22.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates how
// to stream out binary data from the
// Binary table.
///
#include "isrt.h"
#include "iswi.h"
#include "winapi.h"

#define CAPTION "Feedback"
#define TemporaryFolder 2 // Required for GetSpecialFolder method.
#define CREATE_ALWAYS 2 // Required for the CreateFileA function.
// Prototype of a function that is the target of a custom action.
export prototype ISScriptCustomAction(HWND);

// Windows function prototypes
prototype KERNEL32.WriteFile(BYVAL LONG, BYVAL BINARY, BYVAL LONG,
 BYREF LONG, BYVAL LONG);

Figure 11-22: Setup.rul demonstrating how to stream out a file from the Binary table.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

694

///
// Function: ISScriptCustomAction
//
// Purpose: This function is the target of an InstallScript
// custom action that streams out a file from
// the Binary table.
///
function ISScriptCustomAction(hMSI)
STRING szTableName, szBinaryKey, szQuery;
STRING szFileName, bStream;
LONG hDatabase, hView, hRecord, hFile;
INT nBufSize, nWritten, nAttr;
OBJECT fso, fldr;
begin

 // Set the table name and the number
 // and name of the columns.
 szTableName = "Binary";
 szBinaryKey = "NewBinary5";
 szFileName = "Welcome.bmp";

 // Define the query to be used to create the view.
 szQuery = "SELECT * FROM " + szTableName + " WHERE Name='" +
 szBinaryKey + "'";

 // Get the handle to the active database.
 hDatabase = MsiGetActiveDatabase(hMSI);

 // Check for success of getting the database handle.
 if(hDatabase = 0) then
 SprintfBox(MB_OK, "Error", "Unable to get handle to " +
 "active database.");
 return ERROR_INSTALL_FAILURE;
 endif;

 // Open a view using the SQL query statement.
 if(MsiDatabaseOpenView(hDatabase, szQuery, hView)
 != ERROR_SUCCESS) then
 SprintfBox(MB_OK, "Error", "Unable to " +
 "open the view for the %s table.", szTableName);
 return ERROR_INSTALL_FAILURE;
 endif;

 // Execute the view just opened.
 if(MsiViewExecute(hView, 0) != ERROR_SUCCESS) then
 SprintfBox(MB_OK, "Error", "Unable to execute " +
 "the view for the %s table.", szTableName);

Figure 11-22: Continued.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

695

 return ERROR_INSTALL_FAILURE;
 endif;

 // Fetch the record from the view just executed.
 if(MsiViewFetch(hView, hRecord) != ERROR_SUCCESS) then
 SprintfBox(MB_OK, "Error", "Unable to fetch the record " +
 "from the view for the %s table.", szTableName);
 return ERROR_INSTALL_FAILURE;
 endif;

 // Define file to receive the binary stream.
 set fso = CreateObject("Scripting.FileSystemObject");
 set fldr = fso.GetSpecialFolder(TemporaryFolder);
 szFileName = fldr ^ szFileName;

 hFile = CreateFileA(szFileName, GENERIC_WRITE, 0, 0,
 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);

 nBufSize = 1023;
 nAttr = 0;
 // Continue to read the binary data
 // until nothing is left.
 while (nBufSize > 0)
 // Read the stream into a buffer, 1023 bytes at a time
 // with one byte for the null terminator.
 MsiRecordReadStream(hRecord, 2, bStream, nBufSize);

 if(nBufSize > 0)then
 //Write the buffer to a file.
 WriteFile(hFile, bStream, nBufSize, nWritten, nAttr);
 endif;
 endwhile;

 // Destroy the FileSystemObject object
 // and the folder object.
 set fldr = NOTHING;
 set fso = NOTHING;

 //Close all handles
 CloseHandle(hFile);
 MsiCloseHandle(hRecord);
 MsiViewClose(hView);
 MsiCloseHandle(hView);
 MsiCloseHandle(hDatabase);

 return ERROR_SUCCESS;
end;

Figure 11-22: Continued.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

696

To write binary data to a file, you need to use two Windows APIs that are not part of
the normal functions available in InstallScript. These two functions are the
CreateFile and the WriteFile functions. For the CreateFile function,
you need to call the ANSI version, thus the call will be to the CreateFileA
function. The prototype of this function is provided in the winapi.h header file that
you need to add at the top of your script. For a full description of the CreateFile
function, refer to the MSDN library.

The WriteFile function needs to be explicitly prototyped at the top of your
script. This function is exported by KERNEL32.DLL so you need to use the DLL
name as part of the prototyped. Note that the second argument has a data type
specified as BINARY. The use of this special designation prevents the InstallScript
engine from converting the STRING data type that is passed to the multi-byte
character set. Instead, the string that is passed is kept in its raw form, which is just a
stream of bytes. A full description of the WriteFile function appears in the
MSDN library.

The particular binary data that you are going to stream out of the Binary table is the
bitmap that is used in the InstallWelcome dialog and a few others. The key to this
particular binary data is "NewBinary5". To retrieve just this row from the Binary
table, your SQL query statement needs to be more complex. You need to include the
WHERE clause and specify that the Name column of the Binary table be equal to
"NewBinary5". The name column of the Binary table is the primary key for this table
and it is a string data type. In your query string, you need to surround the variable
holding the name of the "NewBinary5" key with single quotes. Thus we have a SQL
query constructed as follows in your script.

szQuery = "SELECT * FROM " + szTableName + " WHERE Name='" +
 szBinaryKey + "'";

Notice that there are single quotes inside the double quotes on either side of the
szBinaryKey variable name.

This example performs the same database access operations as the previous example,
but here you do not have to fetch more than one record so there is no looping
involved. Either the record is in the Binary table or it is not. If the record is not
present, the program terminates the installation by returning the
ERROR_INSTALL_FAILURE constant to the Windows Installer.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

697

The program uses the FileSystemObject object to create the absolute path to the file
that will be used to contain the binary data streamed out of the Binary table. The
name used for the file to be created is Welcome.bmp. To create this file, you need to
use the CreateFileA function since the FileSystemObject can create only text
files.

Finally, the program uses the MsiRecordReadStream Windows Installer
function to stream out the binary data and the WriteFile Windows API function
to write this data into the Welcome.bmp file. The MsiRecordReadStream function
operates in such a way that it returns in one of its arguments the number of bytes that
it has streamed out of the record. The approach that you need to take in streaming
out data is to choose some size that you will stream out and then loop through the
MsiRecordReadStream function until it returns a zero as the number of bytes
that have been read. When this occurs, you know that all the binary data has been
extracted. This works because the MsiRecordReadStream function picks up
after each call where it left off with the previous call.

The size that you use for streaming out the binary data is the default size of a string
when it is passed to a DLL function. This size is 1024 bytes and you pass 1023 bytes
as the size of the buffer to the MsiRecordReadStream function since you need
to reserve one byte for the null terminator. During the looping process, you call the
WriteFile function as long as the returned size is greater than zero. Once the
returned value is zero bytes, the program is finished so it closes the file and closes all
the handles that were created to access the database. The program returns
ERROR_SUCCESS to the Windows Installer to indicate that the custom action was
successful and that the installation can continue.

As shown in the code in Figure 11-22, the Welcome.bmp file is created in the
temporary folder defined by the operating system. You can go there after the custom
action and the installation are complete to find this file. When you open this file in
Microsoft Paint, the bitmap that is used as the background for the InstallWelcome
dialog is displayed.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

698

The OnBegin and OnEnd Event
Handlers

As discussed in Chapter 4, the OnBegin event handler is called as part of the
initialization process and the OnEnd event handler is called as part of the
uninitialization process. The OnBegin event handler is called only once. It is called
in the InstallUISequence table when there is a Full or Reduced user interface level
being used for the installation and it gets called in the InstallExecuteSequence table
when a Basic or None user interface level is being used. The same is the case for the
OnEnd event handler. It is also only called once at the end of an installation.

The default implementation of the OnBegin and OnEnd event handlers is a no-op
and, as such, they perform no actions. You would use these event handlers to
perform your own initialization and uninitialization operations necessary for your
installation program. During the linking process, the code you write replaces the
default implementation. There are no arguments passed to the OnBegin and
OnEnd event handlers so if you need to do something with the active database, you
need to obtain the handle to the active session by using the ISMSI_HANDLE
system constant.

As an experiment, you can add a message box to the OnBegin and the OnEnd
event handlers and see where in the installation process these message boxes are
displayed. As part of this experiment, remove the ISScriptCustomAction custom
action from where it is inserted in the sequence tables and delete it totally from the
project.

To delete a custom action:

1. Go to the Custom Actions view under Step 5.

2. Expand the Custom Actions tree.

3. Right-click on the custom action to be deleted, and select Delete.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

699

For the best effect, you should also go to the Property Manager and set a value for
the CONDITION property. This allows you to run a full installation with the full
user interface. The code for this experiment is shown in Figure 11-23.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates the
// OnBegin and the OnEnd event handlers.
//
///

#include "isrt.h"
#include "iswi.h"

#define CAPTION "Feedback"

function OnBegin
begin

 SprintfBox(MB_OK, CAPTION, "Executing the OnBegin " +
 "event handler");

end;

function OnEnd
begin

 SprintfBox(MB_OK, CAPTION, "Executing the OnEnd " +
 "event handler");

end;

Figure 11-23: Setup.rul for demonstrating the OnBegin and the OnEnd event handlers.

To build this example, select Build Tables Only from the Build drop-down menu on
the Toolbar. When you run this example, the message box in the OnBegin event
handler is displayed before any other internal dialog is displayed in the
InstallUISequence table. Also note that the message box in the OnEnd event handler
is displayed in the InstallExecuteSequence table before control is returned to the
InstallUISequence table.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

700

This experiment demonstrates that if you need to perform additional operations in
the InstallUISequence after changes have been made to the target system, you cannot
use InstallScript custom actions. This is because, as part of the process of executing
the OnEnd event handler, the ISMsiServerStartup custom action initiates the shut
down of the InstallScript engine running in the IDriver.exe process.

Using the MsiDoAction Function
The MsiDoAction Windows Installer function is what the Windows Installer uses
to execute the actions and/or dialogs that it encounters in the sequence tables. You
can also use this function inside a custom action to run actions and/or dialogs
without these actions or dialogs being inserted into a sequence table. An action that is
run in this fashion has to be one of the defined standard actions or a custom action
that is defined in the CustomAction table. To display a dialog using this function, the
dialog must be defined in the Dialog table. However, a dialog cannot be displayed in
the execute sequence table, only in the user interface sequence table.

To understand this better, you can implement a simple example where, with your
ISScriptCustomAction custom action running in immediate mode, you create a
deferred custom action that gets written into the installation script generated by the
Windows Installer. You do not have to place this custom action into the
InstallExecuteSequence table, but do have to define it in the CustomAction table.
The code for this example is shown in Figure 11-24.

///
//
// File Name: Setup.rul
//
// Description: Learning the InstallScript language
//
// Comments: This script demonstrates how
// to use the MsiDoAction Windows Installer
// function.
//
///

#include "isrt.h"
#include "iswi.h"

Figure 11-24: Setup.rul for demonstrating the use of the MsiDoAction function.

C H A P T E R 1 1 I N S T A L L S C R I P T C U S T O M A C T I O N S

701

#define CAPTION "Feedback"

// Prototype of functions that are the targets of a custom action.
export prototype ISScriptCustomAction(HWND);
export prototype CreateDeferredCustomAction(HWND);

///
// Function: ISScriptCustomAction
//
// Purpose: This function is the target of an InstallScript
// custom action that creates a deferred custom action.
///
function ISScriptCustomAction(hMSI)
begin

 SprintfBox(MB_OK, CAPTION, "Executing MsiDoAction");

 MsiDoAction(hMSI, "CreateDeferredCustomAction");

 return ERROR_SUCCESS;
end;

///
// Function: CreateDeferredCustomAction
//
// Purpose: This function is the target of an InstallScript
// deferred custom action that displays a message box.
///
function CreateDeferredCustomAction(hMSI)
begin

 SprintfBox(MB_OK, CAPTION, "Running a deferred custom action " +
 "that was created by a call to the MsiDoAction function.");

 return ERROR_SUCCESS;
end;

Figure 11-24: Continued.

This example is just for demonstration purposes and all that these two custom
actions do is to display message boxes. The ISScriptCustomAction custom action is
an immediate type and is the custom action that you have been running throughout
this chapter. The new custom action that you create in this example and that targets
the CreateDeferredCustomAction function is the deferred type. You create
this custom action using the Custom Action Wizard, but you do not insert this
custom action into the InstallExecuteSequence table. You can use the name of the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

702

function as the name of the custom action, just as you did with the
ISScriptCustomAction custom action.

Before you build your project, you need to insert the ISScriptCustomAction custom
action in the InstallExecuteSequence table after the InstallInitialize action. This is
where the Windows Installer starts to create the installation script. If the
ISScriptCustomAction custom action is placed before the InstallInitialize action, a
Windows Installer run-time error occurs. Build your project by selecting Build Tables
Only from the Build drop-down menu.

When you run the installation, a message box from the immediate custom action
informs you that the program is about to run the MsiDoAction function. The
program then runs the MsiDoAction function and this writes your deferred
custom action into the installation script. When the Windows Installer executes the
installation script, a message box informs you that a deferred custom action is
running.

Conclusion
This chapter introduced the creation of custom actions using InstallScript. The
discussions used a Basic MSI project but a Standard project can use InstallScript
custom actions in the execute sequence table. You learned that InstallScript has some
distinct advantages over other approaches to creating custom actions. One of the
major advantages of InstallScript is that you can share data between two or more
custom actions through the use of global variables. This is not possible with other
types of custom actions. Other types of custom actions need to use the Property table
in order to share data. Another advantage of InstallScript is that it has access to the
database even in deferred mode. This is something that no other type of custom
action can do.

User Interface
Basics

Chapter 10 covered a number of common tasks that you perform to create
installation projects. One of the interesting things about all these tasks is that there is
no difference between how you implement them in a Standard project or a Basic MSI
project. Now we come to the subject that defines the real difference between
Standard and Basic MSI projects. This difference is how the user interface is displayed
during an installation is implemented.

In a Standard project, the user interface is created programmatically in a somewhat
similar fashion as is done in a Windows application. With a Basic MSI project, you
describe the user interface by adding rows to a number of tables in the database and
the Windows Installer is responsible for turning this information into the user
interface. Regardless of how you define the user interface for an installation, the
Windows operating system carries out the same operations behind the scenes to

Chapter

12

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

704

display the various dialogs. To be able to work with the user interface, particularly in a
Standard project, you need to understand what the Windows operating system is
doing when it displays a dialog on the screen. Because of this, this chapter begins with
a short review of the Windows mechanism for handling a dialog window.

The Basics of Windows Dialogs
The first thing to understand is that a dialog box is a window and is handled in a
similar fashion as any other window in an application. A dialog is used to interact with
the end user in order to solicit input and provide feedback. This interaction is done
through the use of controls, which are windows that are children of the dialog
window.

There are two types of dialogs, modal and modeless. A modal dialog is one that takes
the focus and does not release this focus until the dialog is dismissed. This means
that, until the end user responds to the dialog in some way and dismisses it, nothing
else can happen in the process that launched the dialog. A modeless dialog has the
opposite functionality. When a modeless dialog is displayed, it is possible for other
actions to take place in the same process. This is why the normal user interface
sequence for an installation is comprised of modal dialogs, but the dialog that displays
the progress of the installation is a modeless dialog.

Defining a Dialog
A dialog is different than a normal window in that you have to describe the dialog in a
way that tells Windows what the dialog should look like. A dialog box and the
controls that compose the functionality of the dialog box are described in templates.
A template is a specification that defines the height, width, style, and the controls that
make up a dialog box. A dialog box template is binary data. Windows either loads this
binary data into memory from a resource or it is created directly in memory by the
application. A dialog resource can be contained in a separate file or it can be part of
another executable file. Regardless of how the template is created, one has to be
supplied by the application for Windows to be able to display the dialog.

The standard approach to defining a dialog is to create a resource that is either
contained in an application's executable file or is in a special resource dynamic link

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

705

library. A resource starts out as a script that is contained in a file that has a .rc
extension. Though it is possible to create a resource script using a text editor, it is
better to use a resource editor or a dialog editor to perform this activity. A dialog
editor will create this resource script for you based on how you construct the dialog.
The resource script is then compiled into an object file that has a .res extension.
Finally the resource object file is incorporated into an executable or a dynamic link
library during the linking process.

A dialog is defined inside a resource script using the DIALOG or the DIALOGEX
statements. Following one of these statements are other statements that define the
features found in the dialog box. These particular statements are option statements.
Option statements specify the style, caption, and font that are to be used when the
dialog box is displayed. Finally, after the option statements comes a block of script
that is called the resource definition body. It is in the resource definition body that the
controls to be included on the dialog as child windows are defined. The general form
of a dialog definition in a resource script file is as follows:

<Dialog name or dialog ID> DIALOGEX x, y, width, height
STYLE <Style parameters OR'd together>
CAPTION "<Caption of dialog>"
FONT
<Other option statements as required>
BEGIN

 <Control resource statements and associated parameters>

END

In the above general form for defining a dialog, note that you can use either a string
to name a dialog or you can identify the dialog with an ID that is a 16-bit integer
number. After the unique identification of the dialog comes the DIALOGEX (or
DIALOG) statement followed by the location of the upper-left corner of the dialog
when it is displayed, and then the height and width of the dialog.

Following the DIALOGEX statement come the option statements. The ones that
are shown are those that are typically used for dialogs created for an installation’s user
interface. No option statements are required. If no option statements are defined,
default values are used. Below the option statements comes the script block where
the controls to be included on the dialog are defined. This block of script is bounded

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

706

by the BEGIN…END keywords. It is also acceptable to use curly braces in place of
these keywords to delimit this block of script.

The Dialog Controls
There are a number of controls that are typically used on a dialog box. The controls
that are useful in creating a installation’s user interface are described in the following
list.

Push button: A push button is a rectangle containing text. The text indicates
what action is to be taken when the user clicks the button. A push button can be
either a standard button or a default button. A standard push button is typically
used to start an operation. It receives the keyboard focus when the user clicks it.
A default push button, on the other hand, is typically used to indicate the most
common or default choice. It is a button that the user can select by simply
pressing the ENTER key when a dialog box is first displayed. There is also a push
button that is called an owner-drawn button. This type of button is created by the
application and has no predefined appearance or usage. Its purpose is to provide
a button whose appearance and behavior is defined by the application alone.

Check box: A check box consists of a square box and a text label that indicates a
choice the user can make by selecting the button. Check boxes are usually
displayed in a group to permit the user to choose from a set of related, but
independent options. A set of check boxes provides a non-exclusive set of choices.

A check box can be one of four styles: standard, automatic, three-state, and
automatic three-state. Each style can assume two check states: selected with a
check mark shown inside the box or cleared where there is no check mark inside
the box. In addition, a three-state check box can assume an indeterminate state
where there is a grayed box inside the check box. Repeatedly clicking a standard
or automatic check box toggles it from selected to cleared and back again.
Repeatedly clicking a three-state check box toggles it from selected to cleared to
indeterminate and back again. With a standard style check box, the application
has to handle setting and unsetting the check mark. When the style is automatic,
the check box itself handles the setting or unsetting of the check mark.

Group box: A group box is a rectangle that surrounds a set of controls such as
check boxes or radio buttons. A group box contains a text label in the upper-left

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

707

corner that describes the general purpose of the controls that it surrounds. The
sole purpose of a group box is to organize controls related by a common
purpose.

Radio button: A radio button consists of a round button and a text label. The
text indicates a choice the user can make by selecting the button. An application
typically uses radio buttons in a group box to permit the user to choose from a
set of related options. A group of radio buttons provides the user with an exclusive
set of choices.

Combo box: There are three types of combo boxes: a simple combo box, a
drop-down combo box, and a drop-down list box. All combo boxes consist of
two fields. There is a list field and a selection field. The list field displays the
options that are available for the user to select and the selection field displays the
current selection. With the simple combo box, the list is always displayed. With
the other two types of combo boxes, the user has to click on an icon to the right
of the combo box to display the list. For the simple and the drop-down combo
boxes, the selection field is an edit field that allows the user to type in their own
values. The selection field for the drop-down list is a static text field where it is
not possible to type in a value that is not already in the list.

List box: There are two types of list boxes, single selection and multiple
selection. A single selection list box allows the user to select only one item from
the list box. The multiple selection list box allows the user to select more than
one item from the control. You can define list boxes to have multiple columns
and to have the items in the list box sorted.

List view: A list view control displays a collection of items, each of which
consists of an icon and a label. It is also possible to have additional columns to
the right of the icon and label that are used to display information about items in
the control. A good example of the use of a list view control is the Windows
control panel. A list view control can display its contents in four different ways,
which are called views. These four ways are described in the following list.

� Icon view: In this type of view each item is a 32 x 32 icon with a
label below it. The items can be dragged to other locations in the
control.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

708

� Small icon view: In this type of view each item is shown with a 16 x
16 icon with the label displayed to the right of the icon. The items
can be dragged to other locations in the control.

� List view: In this type of view each item appears as a small icon with
the label to the right. The items cannot be dragged to any other
location in the view.

� Report view: In this type of view each item appears as a small icon
with the label to the right in the first column. Additional information
is arranged in columns to the right of the first column.

Edit control: This type of control is used to display text to the user and to allow
the user to add or modify text. There are two types of edit controls, those that
can handle only a single line of text and those that can handle multiple lines of
text.

Static controls: Static controls come in three different forms. These are simple
graphics controls, static image controls, and static text controls. A simple static
graphics control displays a frame or a filled rectangle. If you decrease the height
of a filled rectangle to 0, it becomes a line. A rectangle can be filled with white,
gray, or black. A static image control is used to display bitmaps, icons, or
enhanced metafiles.

The most common of all static controls is the text static control. This type of
control is used for labels and instructions to the user. A text static control can
display text as aligned left, aligned center, or aligned right. If a text static control is
not large enough to hold all the text to be displayed, Windows cuts off the text at
the end of the string that does not fit.

Progress bar: This type of control is used to indicate the progress of a lengthy
operation such as one that occurs during an installation. This control consists of a
rectangle that is gradually filled from left to right using the system highlight color.
It is also possible to display text inside the progress control. The bar that is used
to display the progress can be continuous or it can be displayed as blocks of
color.

Tree control: A tree control is used to display a hierarchical list of items. Each
item in a tree control consists of a label and an optional bitmapped image. Each

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

709

item can have a list of sub-items associated with it. When the user clicks an item,
the associated list of sub-items can be expanded or collapsed.

Every control is identified by a 16-bit integer so that a dialog can tell which control
the user is activating. Behind each dialog there is a function that responds to the
actions that the user takes in the dialog. How a dialog function works is the topic of
the next section.

Creating Dialog Functionality
As mentioned earlier all of a dialog box’s functionality is contained in an associated
function. Windows creates the dialog based on the dialog template that is defined.
The dialog function and Windows send messages back and forth to implement the
functionality of the dialog box. Figure 12-1 shows the communication between an
application, its dialog function, and Windows. This figure shows the communication
for a modal dialog box. This chapter focuses on modal dialog boxes because they are
the most common type of dialog used in an installation.

Understanding the function that is called to create the dialogs in an installation is
important only for obtaining a deeper understanding of what is going on behind the
scenes. The Windows DialogBox macro or the DialogBoxParam function is
used to create modal dialogs from a dialog template in a resource file. The Windows
DialogBoxIndirect macro and the DialogBoxIndirectParam
function are used to create modal dialogs from templates that have been created in
memory.

The Windows CreateDialog macro and the CreateDialogParam function
can also be used to create modeless dialogs from a dialog template in a resource file.
The CreateDialogIndirect macro is used to create modeless dialogs from
templates that have been created in memory. The same is true for the
CreateDialogIndirectParam function. You can create a modal dialog using
one of the macros or functions that are normally used to create a modeless dialog. To
do this, wrap a call to the CreateDialogIndirectParam function in another
function. The first thing that this wrapper function does is to disable the parent
window. After the call to the CreateDialogIndirectParam function, a
message loop is set up. This is similar to what a Standard project does to implement
the script-based dialogs that are used for the user interface. In a Basic MSI project,
the user interface is described completely in the database. Because of this, Windows

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

710

Installer uses one of the indirect functions to create the dialogs by first creating the
template in memory then passing a pointer to the dialog template’s location in
memory.

Figure 12-1: Communication between Windows and a dialog function for a modal dialog.

The message passing mechanism shown in Figure 12-1 is the same that is used in any
Windows application. Windows displays the user interface of an application, but the
code behind the user interface is implemented in special callback functions in the
application. These callback functions are not called from within the application but
directly by Windows. Note that there are no arrows showing any communication
between the application itself and the dialog function that is implemented as part of
the application code.

It is instructive to look at some pseudo code that demonstrates how a Windows
application might implement a dialog function (Figure 12-2). You will do something
similar when you implement a custom dialog in a Standard project.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

711

// Call the DialogBox macro from the application.
DialogBox(hModule, "MyDialog", hwnd, DlgFunc);

// Definition of the function behind the MyDialog dialog.
BOOL CALLBACK DlgFunc(HWND hDlg, UINT iMsg,
 WPARAM wParam, LPARAM lParam)
{
 switch(iMsg)
 {
 case WM_INITDIALOG:

 Perform initialization operations.
 return TRUE;

 case WM_COMMAND:
 // Get the ID of the control that was activated.
 switch(LOWORD(wParam)
 {
 case ID_BUTTON1:

 Perform operations consistent with the user
 clicking the button with the control ID of
 ID_BUTTON1.

 return TRUE;

 case ID_BUTTON2:

 Perform operations consistent with the user
 clicking the button with the control ID of
 ID_BUTTON2.

 return TRUE;
 case ID_LISTBOX:

 Perform operations consistent with the user
 clicking the button with the control ID of
 ID_LISTBOX.

 return TRUE;
 .
 .
 .
 } // End inner switch
 } // End outer switch

 return TRUE;
}

Figure 12-2: A sample dialog function showing the handling of messages.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

712

The first line of code in Figure 12-2 calls the DialogBox macro that is used to
create the dialog. The first argument passed to this macro is a handle to the file that
contains the resource describing the dialog. The second argument is the name of the
dialog that is to be displayed. The third argument is a handle to the window that is the
parent of the dialog that is going to be created. The fourth and final argument is the
name of the dialog function that implements the dialog’s functionality.

The remainder of the code in Figure 12-2 provides a look at what a dialog function
will contain. When Windows calls the dialog function, it passes as the first argument a
handle to the dialog that is being created. The second argument is an unsigned integer
that indicates the message that is being sent to the function. The final two arguments
hold the details of the message that must be interpreted in order to respond
appropriately to the action the user took. Though there are other messages that might
be sent to a dialog, the most common messages are defined by the
WM_INITDIALOG and the WM_COMMAND message constants.

As is shown in Figure 12-1, the first message sent to a dialog function is the
WM_INITDIALOG message where you can perform initialization operations if
required. The dialog is not displayed on the screen until after the dialog function
returns from performing the initialization operations.

After the dialog is displayed on the screen, Windows sends the WM_COMMAND
message to the dialog function for any control that is activated by the user. Along
with the WM_COMMAND message, the wParam and the lParam arguments hold
information about what the user did in the dialog box. Both the wParam and the
lParam arguments are unsigned integers. The wParam argument contains two
pieces of information, one piece contained in the lower 16-bits and the other
contained in the upper 16-bits of the argument. The lParam argument holds a
handle to the control that was activated by the user.

Since the wParam argument contains two pieces of information, you have to extract
the two pieces by using the LOWORD and the HIWORD macros. In the pseudo code
shown in Figure 12-2 the statement LOWORD(wParam) is used as the argument to
the inner switch statement. This extracts the ID of the control that was activated by
the user. If you needed to see what the user did to the control, you could insert a
statement inside the case statement for the activated control that retrieved the upper
16-bit portion of the wParam argument. This statement would look something like
this:

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

713

notMsg = HIWORD(wParam);

The information contained in the upper 16 bits of the wParam argument is the
notification message. Every control has one or more notification messages that Windows
can send to the dialog function. Notification messages are defined by constants just
the same as with the WM_COMMAND message constant. A message constant can be
identified by the fact that it contains an "N" in the constant name. For example if the
user double-clicks on a list box control item, Windows sends the LBN_DBLCLK
notification message. You could then insert something similar to the following C
language statement in your code where the control ID was equal to ID_LISTBOX
as seen in Figure 12-2.

if(HIWORD(wParam) == LBN_DBLCLK)
 // Perform necessary operations.

This section has been a brief review of how Windows handles dialog boxes. This
provides the background to understand how to create custom dialogs in a Standard
project. The information in this section also provides an understanding of how the
Windows Installer creates dialogs out of entries in a database. The next section
discusses how a Standard project and a Basic MSI project differ in their approach to
creating, modifying, and displaying dialog boxes.

Standard Projects vs. Basic MSI
Projects

In a Standard project, you display dialog boxes by calling built-in InstallScript
functions or InstallScript functions that you create for your custom dialogs. In a Basic
MSI project, you can display dialogs by either placing the dialog name in a sequence
table or making the dialog the target of a control event. Dialogs in a Basic MSI
project are described in a number of tables in the MSI database.

This section examines the mechanics of working with dialogs in both Standard and
Basic MSI projects.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

714

The Dialogs View in Standard Projects
To modify and/or create dialog resources in a Standard project, use the Dialogs view
under Step 4 in the View List. This view provides a complete list of all the dialogs that
are part of a Standard project. The dialogs in this view that have names that start with
"Sd" are dialogs that have the dialog function created using InstallScript. These
dialogs are script dialogs.

The dialog names that do not start with "Sd" are termed built-in dialogs. Built-in dialogs
also have their dialog functions implemented in InstallScript. The reason that you see
these dialogs are called built-in because in the early days of InstallShield these
particular dialogs actually were part of the scripting engine and could not be modified
by the setup developer. Now these dialogs can be modified just as the Sd dialogs can
be modified.

Regardless of where the dialog function is implemented, the dialog templates for both
Sd dialogs and built-in dialogs are contained in a resource-only dynamic link library
named _isres.dll. One of these files is available for each language that is installed using
an InstallShield language pack. The English copy of this file is found in the following
folder:

C:\Program Files\InstallShield\Developer\Redist\0409\i386_isres.dll

If you have access to Microsoft Visual C++ you can actually open up the _isres.dll
resource file for any language and view the dialogs. The folders under the Redist
folder are each named using the hexadecimal representation of the language ID for
the language of the _isres.dll resource file that is installed there. At build time the
name of the resource file is modified to include the decimal representation the
resource language’s language ID. For example when an English-only project is built,
there is one copy of the resource file and its name is _ISRES1033.DLL.

The Dialogs view for a Standard project is shown in Figure 12-3. This view provides
a number of options for working with dialogs in a Standard project. The most
important of these options is the Dialog Editor. The Dialog Editor is a visual
resource editor similar to what you get in Visual Basic.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

715

Figure 12-3: Standard project Dialogs view.

Click on the name of a dialog to display a representation of it in the right panel. Along
with the picture of the dialog is a short description of the dialog’s purpose and a link
to the help topic for the dialog function.

The dialog functions that are used in InstallScript are different than what was
described in the previous section. The previous section discussed how a dialog
function would be created in a Windows application. The dialog functions created in
InstallScript normally have arguments that allow you to customize some of the text
that is displayed on the dialog, as well as to retrieve information from the user.
However, the actual internal operation of a script dialog function is very much like
what was discussed in the last section.

At the top of the list of dialogs shown in Figure 12-3 there is an All Dialogs folder
icon. Right-click on this icon to display the context menu that is shown in Figure 12-
4.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

716

Figure 12-4: The All Dialogs context menu.

Each of the context menu options is discussed in the following list.

New Dialog: This option displays the New Dialog dialog (Figure 12-5). This
dialog displays the Dialog Gallery, which offers a selection of exported dialogs
along with a Blank Dialog and a template for a basic dialog.

Figure 12-5: The New Dialog dialog showing the Dialog Gallery.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

717

You can use an exported dialog or a blank dialog as the starting point for creating
a custom dialog. However, you will normally want to use the
NewScriptBasedDialog.isd file as your starting point. Because you have not
exported any dialogs, only the Blank Dialog and the NewScriptBasedDialog
appear in the Dialog Gallery. When you create a new dialog using the
NewScriptBasedDialog, the appropriate rows are added to the Dialog table and
other associated tables in the project file. You can view these entries by using the
Direct Editor. This option from the Dialog Gallery provides a dialog that has the
bitmap, branding, and the three buttons that are found on most dialogs. If you
select Blank Dialog, one entry is made in the Dialog table and one entry is made
in the Control table. The entry in the control table is a hidden text static control
that is used to display dialog branding.

Import Dialog: This option allows you to browse to a dialog file and import it
into your project. A dialog file is created when you export a dialog to a file with
an .isd extension. A dialog file is a special InstallShield Developer file format that
describes the components of a dialog that can be imported into a project for use
in the Dialog Editor.

Import Dialogs from Resource Dlls: This option allows you to browse to a
resource-only dynamic link library and import the contents of this DLL into your
project.

Export Dialogs to Resource Script: A resource script is a text file with an .rc
extension. You can use a resource script to create a resource-only dynamic link
library. This option creates a resource script only for those dialogs that have been
imported or dialogs that you are creating. This option cannot be used to create a
resource script for any of the built-in or script dialogs that are part of a Standard
project unless you first use the Edit option on the dialogs context menu.

Export All Dialogs to Dialog Files: This exports dialogs to an InstallShield
Developer dialog file that has an .isd extension. This option is useful only for
exporting dialogs that you have imported or are creating from a blank dialog. This
option cannot be used to export to dialog files the built-in and script dialogs that
are part of a Standard project unless you first use the Edit option on the dialogs
context menu.

Right-click on a dialog to display the context menu for working with individual
dialogs (Figure 12-6).

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

718

Figure 12-6: The context menu for individual dialogs in a Standard project.

Each of the options on the individual dialog context menu is discussed in the
following list.

Edit Select this option to convert one of the built-in or script dialogs into a
template that you can edit in the Dialog Editor. This option extracts the
definition of the dialog from the _isres.dll resource file and places this definition
into the tables in the project file that are concerned with the user interface. When
the project is built, a new resource-only dynamic link library is created with the
name _ISUser<language id>.DLL. To provide the functionality for the dialog, you
need to add a new dialog function in InstallScript.

Delete: This option deletes any new dialogs that have been created. This option
cannot be used to remove one of the dialogs that is included by default with a
Standard project.

Rename: This option renames any new dialogs that have been created. This
option cannot be used to rename the dialogs that are included by default with a
Standard project.

Revert Dialog to Default: Use this option to revert back to the original default
dialog definition that comes with a Standard project. The action of this option is
to remove from the Direct Editor view all entries that have been made for this
dialog when you selected the Edit command and any changes that were made
subsequent to the Edit action.

Export to Dialog File: When you have edited one of the default dialogs or
created a new dialog, you can export that dialog to an .isd file. This makes the
dialog available to any other project that wants to use it.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

719

Export to Project File: With this option you can export a dialog directly to
another project. This option can only be used on dialogs that you have converted
for editing purposes or new dialogs that you have created.

Now that we have discussed the facilities available in the Dialogs view, we need to
look at how the compilation of a resource file is accomplished.

Compiling Resource Files for a Standard
Project

When you create a new dialog or edit one of the default dialogs in a Standard project,
you are creating entries in the user interface related tables that are turned into a
resource-only dynamic link library at build time. The user interface related tables are
the Dialog, Control, ISLocalDialog, ISLocalControl, RadioButton, ListView,
Property, ListBox, TextStyle, Icon, Binary, and Checkbox tables. The name of the
DLL that is created is _ISUser<language id>.DLL and this file is streamed into the
Binary table of the database. When the installation is run, this file is streamed out to
the SUPPORTDIR location and the absolute path for this file is provided by the
ISUSER system variable. Just as is done with the _isres.dll resource DLL, the name
of the file is streamed into the Binary table with the name modified using the decimal
representation of the language ID. For the English projects discussed in this book,
the name of the file as streamed into the Binary table is _ISUser1033.dll.
When the file is streamed out to the temporary location during the installation, the
name of the DLL does not include the language ID.

The process of creating a resource dynamic link library consists of three steps:

1. Create a resource script file from the information that is in the project file
tables, visible in the Direct Editor view. A resource script file is a text file
that has an .rc file extension. This file is created in the root folder of the
build location of the associated project. For example, the location for this
file for the Standard project that you used in Chapter 10 is as follows:

C:\MySetups\DeveloperArt_IDEStd

2. After the resource script file is created it has to be turned into a resource
object file. This step is implemented through the uses of the resource

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

720

compiler RC.EXE. The resource compiler creates a file with a .res file
extension. This object file is created in the same folder as shown in Step
1. The resource compiler is shipped with InstallShield Developer and is
located in the following folder:

 C:\Program Files\InstallShield\Developer\Script\Resource

3. The final step is to create the resource-only dynamic link library from the

object file created in Step 2. This operation is carried out by the linker
utility LINK.EXE. This utility is also shipped with InstallShield
Developer and is located in the same folder as the resource compiler.
The resource dynamic link library is created in the same folder on the
build machine as both the resource script file and resource object file.

Figure 12-7: The Resource property sheet of the Options dialog.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

721

Though InstallShield Developer ships the resource compiler and linker utility that
also ships with Microsoft Visual C++, you can use a different resource compiler
and/or linker utility. However, it is strongly recommended that you use the Microsoft
resource compiler. Modification of the resource compiler can be performed in the
Options dialog launched from the Tools pull down menu. This dialog is shown in
Figure 12-7.

In the top half of the Resource tab (Figure 12-7), you can define the location on the
build machine of the resource compiler. You can also specify the command line
options to be used when the resource script is compiled into the resource object file.
In the bottom half of the tab, you can specify the location of the linker utility and the
command line options to be used.

The default command line options tell the linker to create a resource-only DLL that
has no other libraries linked in, and that the target machine will be an Intel compatible
platform. The final argument specifies the name of the DLL that is to be created.

The Dialogs View in Basic MSI Projects
The Dialogs view in a Basic MSI project (Figure 12-8) lists dialogs that differ
considerably from what is shown in Figure 12-3. A Basic MSI project does not deal
with resource scripts and resource DLLs. The only thing that you have to do is to
make entries in a database that will be used by the Windows Installer to dynamically
create dialog templates in memory so they can be displayed. Creating simple dialogs in
a Basic MSI project is faster than in a Standard project. The drawback is that there is
much less flexibility in the dialogs you can create in a Basic MSI project.

In the DeveloperArt_IDEMSI.ism project file right click on the All Dialogs folder
icon at the top of the list of dialogs to display the same context menu as shown in
Figure 12-4. The purpose and functionality of each of the items on the context menu
is the same. Click a dialog name in the list to see a description of the major attributes
of the dialog in the right panel. Links in the description panel allow you to move to
the two nodes that appear under each of the dialogs in the list.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

722

Figure 12-8: The Dialogs view in a Basic MSI project.

Right-click on a dialog in the list to display the individual dialog context menu for
Basic MSI dialogs (Figure 12-9). The first two options on this context menu allow
you to delete or rename a dialog in the list. The bottom two options are the same as
the options on the Standard dialog context menu (Figure 12-6). You can export the
selected dialog to a dialog file with an .isd extension and/or export the dialog into
another project.

Under each dialog in the list there is a Behavior node and a language node. Click on
the language node, in this case English (United States) to open the Dialog Editor
where you can modify the layout of existing Basic MSI dialogs. Click on the Behavior
node to open an editor where you can define the functionality of the dialog’s controls.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

723

Figure 12-9: The context menu for individual dialogs in a Basic MSI project.

There are three elements to defining the functionality of a control on a dialog in a
Basic MSI project. These consist of Control Events, Subscriptions, and Control
Conditions.

Control Events: A control event is used to define the action taken when the user
interacts with a control on a dialog. There is a predefined set of control events
that are recognized by the Windows Installer and not all control events are usable
with every one of the types of recognized controls. This is one of the limitations
in a Basic MSI project with regard to developing a user interface. In a Standard
project, you have the full flexibility that the InstallScript language offers.

Subscriptions: A subscription is when one control can respond to the action
taken by another control. Normally this is a matter of the subscribing control
changing the value of one of its attributes in response to the control event issued
from another control. This particular functionality in Windows Installer is very
limited and is used primarily to display progress messages and data in the progress
dialog.

Control Conditions: A control condition is used to modify the behavior or
appearance of a control based on the truth of a condition associated with the
control. Based on a condition’s value, a control can be hidden, shown, disabled,
enabled, or made the default control on the dialog. The default control is the one
that responds to the user pressing the Return key.

You will work with these behavior items later in this chapter. The next section
provides some hands-on experience with working with the user interface in both
types of projects. It begins with the user interface in a Standard project.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

724

Generating a User Interface for a
Standard Project

This section first discusses the use of the predefined built-in and script dialogs. It then
takes a look at one of these predefined dialogs and examines the InstallScript dialog
function. Finally, it walks through an example of creating a simple custom dialog
along with its InstallScript dialog function.

The basis for discussing the user interface in a Standard project is the Developer Art
project first created in Chapter 5 and modified in the examples of Chapter 10. The
name of this project is DeveloperArt_IDEStd.ism.

Understanding the Default User Interface
To display a Standard project’s user interface, you need to call the InstallScript dialog
functions from the OnFirstUIBefore and OnFirstUIAfter control events
when performing a fresh installation of the application. When performing a
maintenance installation, call the InstallScript dialog functions from the
OnMaintUIBefore and OnMaintUIAfter control events. Normally all the
dialogs except for the dialog announcing the end of the installation process are called
from the OnFirstUIBefore and OnMaintUIBefore event handlers.

When you create a Standard project without using the Project Wizard, a default
version of the OnFirstUIBefore event handler is provided (Figure 12-10).
Looking at the default version of this event handler provides a good example of the
correct approach to developing a user interface using the predefined dialogs. This
event handler has been reformatted for presentation purposes.

Immediately after the begin statement is a set of statements that are commented out
by default. Because these lines of code are commented out, the installation runs only
with a wizard user interface. There is no background window created for the
installation on which the user interface dialogs are displayed.

The SetTitle function is used to manipulate the title displayed in the background
window for an installation. If a background window is not enabled then this function

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

725

has no effect. The SetTitle function can be used to set the title in the title bar of
the background and it can also be used to set the size and color of the title that is
displayed in the upper left hand corner of the background window. The Enable
function is a multi-purpose function that is used to enable many things in an
installation. With regard to the user interface in a Standard project this function is
used to define the background window as being a normal window or a maximized
window. It is also used to define that there is to be a background window used for
the installation. Finally, the SetColor function is used to define the color that is
used to fill the background window. Optionally you can modify the default font style
using the SetFont function. You can also use this function to define a different
font typeface for the text of the background title.

///
//
// FUNCTION: OnFirstUIBefore
//
// EVENT: FirstUIBefore event is sent when installation is run
// for the first time on given machine. In the handler
// installation usually displays UI allowing end user
// to specify installation parameters. After this
// function returns, ComponentTransferData is called
// to perform file transfer.
//
///
function OnFirstUIBefore()
 NUMBER nResult, nSetupType, nvSize, nUser;
 STRING szTitle, szMsg, szQuestion, svName, svCompany, szFile;
 STRING szLicenseFile;
 LIST list, listStartCopy;
 BOOL bCustom;
begin

 // TO DO: if you want to enable background, window title,
 // and caption bar title
 // SetTitle(@PRODUCT_NAME, 24, WHITE);
 // SetTitle(@PRODUCT_NAME, 0, BACKGROUNDCAPTION);
 // Enable(FULLWINDOWMODE);
 // Enable(BACKGROUND);
 // SetColor(BACKGROUND,RGB (0, 128, 128));

 SHELL_OBJECT_FOLDER = @PRODUCT_NAME;

 nSetupType = TYPICAL;

Figure 12-10: The default implementation of the OnFirstUIBefore event handler.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

726

Dlg_SdWelcome:

 szTitle = "";
 szMsg = "";
 nResult = SdWelcome(szTitle, szMsg);
 if (nResult = BACK) goto Dlg_SdWelcome;

 szTitle = "";
 svName = "";
 svCompany = "";

Dlg_SdCustomerInformation:

 nResult = SdCustomerInformation(szTitle, svName,
 svCompany, nUser);
 if (nResult = BACK) goto Dlg_SdWelcome;

Dlg_SetupType:

 szTitle = "";
 szMsg = "";
 nResult = SetupType(szTitle, szMsg, "", nSetupType, 0);

 if (nResult = BACK) then
 goto Dlg_SdCustomerInformation;
 else
 nSetupType = nResult;
 if (nSetupType != CUSTOM) then
 nvSize = 0;
 FeatureCompareSizeRequired(MEDIA, INSTALLDIR, nvSize);
 if (nvSize != 0) then
 MessageBox(szSdStr_NotEnoughSpace, WARNING);
 goto Dlg_SetupType;
 endif;
 bCustom = FALSE;
 goto Dlg_SdStartCopy;
 else
 bCustom = TRUE;
 endif;
 endif;

Dlg_SdAskDestPath:

 nResult = SdAskDestPath(szTitle, szMsg, INSTALLDIR, 0);
 if (nResult = BACK) goto Dlg_SetupType;

Figure 12-10: Continued.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

727

Dlg_SdFeatureTree:
 szTitle = "";
 szMsg = "";
 if (nSetupType = CUSTOM) then
 nResult = SdFeatureTree(szTitle, szMsg, INSTALLDIR, "", 2);
 if (nResult = BACK) goto Dlg_SdAskDestPath;
 endif;
Dlg_SdStartCopy:
 szTitle = "";
 szMsg = "";
 listStartCopy = ListCreate(STRINGLIST);
 // The following is an example of how to add a
 // string(svName) to a list(listStartCopy).
 // eg. ListAddString(listStartCopy,svName,AFTER);
 nResult = SdStartCopy(szTitle, szMsg, listStartCopy);

 ListDestroy(listStartCopy);

 if (nResult = BACK) then
 if (!bCustom) then
 goto Dlg_SetupType;
 else
 goto Dlg_SdFeatureTree;
 endif;
 endif;

 // setup default status
 Enable(STATUSEX);

 return 0;
end;

Figure 12-10: Continued.

If you remove the comment characters from in front of the following lines of code, a
full screen window with a green color background is displayed.

 SetTitle(@PRODUCT_NAME, 24, WHITE);
 SetTitle(@PRODUCT_NAME, 0, BACKGROUNDCAPTION);
 Enable(FULLWINDOWMODE);
 Enable(BACKGROUND);
 SetColor(BACKGROUND,RGB (0, 128, 128));

If you build the project and run the installation, a user interface, as shown in Figure
12-11, appears. The background window has a title bar and the name of the product
is shown in the title bar. The name of the product is also shown on the background

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

728

window in a white font. Because you have not changed the font face, Arial is used by
default.

Figure 12-11: The user interface with a full-screen background.

If you want to have a background window without a title bar, leave the following line
of code commented out as shown.

 // Enable(FULLWINDOWMODE);

By default the title that is displayed comes from the value of the PRODUCT_NAME
string table ID. This string table entry is created at build time and is not visible in the
string table under the General Information view. If you want to display a different
title, you could create a string table entry and then reference that in place of the
PRODUCT_NAME entry. The @ character is required in front of the string table ID
in order to get the value of the string ID at run time. If you do not like the Arial
typeface, you can change it using the SetFont built-in function.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

729

The next line of code sets the value of the SHELL_OBJECT_FOLDER system
variable to the value of the PRODUCT_NAME string ID. This system variable is not
used by the default code in the OnFirstUIBefore event handler and it can be
safely removed. The next line of code sets the default value for the setup type and is
used in the SetupType dialog function to present a default choice to the end user.

The next section of the code implements the dialog sequence that is presented to the
end user during the installation. The end user must be able to move forward and back
through the set of dialogs that compose the information collection part of the user
interface. To enable this functionality, your code will use the goto statement. Prior
to the call to any InstallScript dialog functions, you need to place a label to which you
can jump using a goto statement. Chapter 7 discusses the standalone goto
statement and the special if statement that includes the goto as part of the
statement. The flow of dialogs defined in the code (Figure 12-10) is represented in
Figure 12-12.

Each of the dialog functions that are called in the default user interface has a number
of arguments that are passed. In the default implementation many of these arguments
are NULL strings, which causes the default values for those arguments to be used.
For example, in the SdCustomerInformation dialog function, a NULL string
passed for the szTitle parameter causes this function to display the default string
"Customer Information" in the title bar. When NULL strings are passed for
svName and svCompany parameters of the SdCustomerInformation
dialog function, the values that are initially displayed to the end user are values that are
found in the target machine’s registry.

After the call to the SetupType dialog function (Figure 12-10), a comparison is
made between the space required for installing the application and that available space
on the target drive. This check is made explicitly if the setup type selected is not a
custom setup. A check on space is also made when performing a custom setup, but
this check is built into the SdFeatureTree dialog function. If a custom setup is
selected and there is not enough space, the SdFeatureTree dialog function
displays a warning message box. When the end user clicks OK on the message box,
the feature selection dialog is still displayed.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

730

Figure 12-12: The default logic of the user interface for a Standard project created in the IDE.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

731

The final dialog displayed before starting to make changes to the target system is
displayed by the SdStartCopy dialog function. This dialog is used to display a list
of all the selections that the end user made. This allows the end user to go back and
change any of their selections. By default this dialog is empty since there is no code to
add information to the LIST variable that is used to populate this dialog. If the end
user reviews the selections and decides to go back and change something, the dialog
that is launched when the Back button is clicked depends on whether a custom setup
type was selected or not. If a custom setup was selected, the execution jumps to the
Dlg_SdFeatureTree: label. Otherwise, execution of the code jumps to the
Dlg_SetupType: label.

The final function call in the code is made to the Enable function, passing it the
STATUSEX constant. This displays a progress dialog that shows the installation’s
progress. The STATUSEX constant forces the display of a progress dialog that is the
same size as the dialogs used in the rest of the user interface. Using a different
constant displays a smaller progress dialog.

Everything discussed here can be used to understand the default user interface that is
implemented in the OnFirstUIAfter, OnMaintUIBefore, and
OnMaintUIAfter event handlers. Now that you understand the default user
interface for a fresh installation, we can take a look at an example of how to change it
to suit your needs. A complete description of all available functions is found in the
InstallScript Language Reference in the InstallShield Developer online help.

Modifying the Default User Interface
To get some experience working with the InstallScript dialog functions, you can
modify the default user interface that is provided in the OnFirstUIBefore event
handler. The changes that you will make in this example will change the flow of the
dialogs that are displayed. This example will also add some additional functionality to
the user interface so that the user is required to enter a valid serial number before they
can continue. This serial number validation will be performed by a DLL that was
used in Chapter 8.

The flow of the user interface as you are changing it in this example is shown in
Figure 12-13.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

732

Figure 12-13: Modified user interface logic for the Standard project Developer Art application.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

733

The example that we discuss here has you make the three changes to the default user
interface as listed below:

1. Move the SdAskDestPath dialog before the SetupType dialog so, even if
the end user does not want to perform a custom installation, they can still
change the installation location.

2. The SdCustomerInformation dialog is to be changed out with
the SdCustomerInformationEx dialog, which forces the end user
to enter a serial number in order to proceed with the installation. You will
use the DLL that you created in Chapter 8 to perform serial number
validation.

3. Collect information about the options selected by the end user so the
selections can be displayed in the SdStartCopy dialog.

The code to implement the changes listed above is provided in Figure 12-14. In this
revised version of the OnFirstUIBefore event handler, you will borrow code from the
serial number validation example in Chapter 8.

Other than rewriting and compiling the code shown in Figure 12-14, you need to add
the SerialNumber.dll file to the Language Independent setup files in our project. Do
this in the Setup Files/Billboards view under Step 5 in the View List.

#define MAX_TRYS 3
prototype stdcall LONG SerialNumber.ValidateSerialNo(BYVAL STRING,
 BYVAL STRING, BYVAL STRING, BYVAL LONG, BYVAL LONG);
///
//
// FUNCTION: OnFirstUIBefore
//
// EVENT: FirstUIBefore event is sent when installation is run
// for the first time on given machine. In the handler
// installation usually displays UI allowing end user
// to specify installation parameters. After this
// function returns, ComponentTransferData is called
// to perform file transfer.
//
///
function OnFirstUIBefore()
 NUMBER nResult, nSetupType, nvSize, nUser;

Figure 12-14: The revised OnFirstUIBefore event handler.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

734

 LONG lStart, lIncrement, lValidate;
 INT iTryCnt;
 STRING szTitle, szMsg, szQuestion, svName, svCompany, szFile;
 STRING szLicenseFile, svSerial, szSetupType;
 STRING szProduct, szVersion, szDLLName;
 LIST list, listStartCopy;
 BOOL bCustom;
begin

 // Enable the background window.
 SetTitle(@PRODUCT_NAME, 24, WHITE);
 SetTitle(@PRODUCT_NAME, 0, BACKGROUNDCAPTION);
 Enable(FULLWINDOWMODE);
 Enable(BACKGROUND);
 SetColor(BACKGROUND, RGB (0, 128, 128));

 // Set the location of the DLL used
 // for validating the serial number.
 szDLLName = SUPPORTDIR ^ "SerialNumber.dll";
 UseDLL(szDLLName);

 // Initialize the arguments to be used in the
 // SdCustomerInformationEx function and the call to the DLL.
 szProduct = "ABCDEF";
 szVersion = "0750";
 lStart = 1000000519;
 lIncrement = 519;
 iTryCnt = 1;
 // Set the default setup type.
 nSetupType = TYPICAL;

Dlg_SdWelcome:

 szTitle = "";
 szMsg = "";
 nResult = SdWelcome(szTitle, szMsg);
 if (nResult = BACK) goto Dlg_SdWelcome;

 szTitle = "";
 svName = "";
 svCompany = "";

Dlg_SdCustomerInformation:

 // Null the serial number for every try.
 svSerial = "";

Figure 12-14: Continued.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

735

 // Let a certain number of attempts at entering a serial number.
 if(iTryCnt > MAX_TRYS) then
 MessageBox("Too many attempts.\n" +
 "The installation will now terminate.", SEVERE);
 abort;
 endif;

 nResult = SdCustomerInformationEx(szTitle, svName,
 svCompany, svSerial, nUser);
 if (nResult = BACK) goto Dlg_SdWelcome;

 // When the Next button is clicked validate the
 // serial number that was entered.
 if(nResult = NEXT) then
 lValidate = ValidateSerialNo(svSerial, szProduct,
 szVersion, lStart, lIncrement);
 if(lValidate < 0) then
 iTryCnt++;
 goto Dlg_SdCustomerInformation;
 endif;
 endif;

Dlg_SdAskDestPath:
 nResult = SdAskDestPath(szTitle, szMsg, INSTALLDIR, 0);
 if (nResult = BACK) goto Dlg_SdCustomerInformation;

Dlg_SetupType:
 szTitle = "";
 szMsg = "";
 nResult = SetupType(szTitle, szMsg, "", nSetupType, 0);
 if (nResult = BACK) then
 goto Dlg_SdAskDestPath;
 else
 nSetupType = nResult;
 if (nSetupType != CUSTOM) then
 nvSize = 0;
 FeatureCompareSizeRequired(MEDIA, INSTALLDIR, nvSize);
 if (nvSize != 0) then
 MessageBox(szSdStr_NotEnoughSpace, WARNING);
 goto Dlg_SdAskDestPath;
 endif;
 bCustom = FALSE;
 goto Dlg_SdStartCopy;
 else
 bCustom = TRUE;
 endif;
 endif;

Figure 12-14: Continued.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

736

Dlg_SdFeatureTree:

 szTitle = "";
 szMsg = "";

 if (nSetupType = CUSTOM) then
 nResult = SdFeatureTree(szTitle, szMsg, INSTALLDIR, "", 2);
 if (nResult = BACK) goto Dlg_SetupType;
 endif;

Dlg_SdStartCopy:

 szTitle = "";
 szMsg = "";

 // Add the selection information to the list
 // so that it can be displayed in the SdStartCopy dialog.
 listStartCopy = ListCreate(STRINGLIST);
 ListAddString(listStartCopy,
 "User Name: " + svName, AFTER);
 ListAddString(listStartCopy, " ", AFTER);
 ListAddString(listStartCopy,
 "Company Name: " + svCompany, AFTER);
 ListAddString(listStartCopy, " ", AFTER);
 ListAddString(listStartCopy,
 "Serial Number: " + svSerial, AFTER);
 ListAddString(listStartCopy, " ", AFTER);
 ListAddString(listStartCopy, "Install Location:", AFTER);
 ListAddString(listStartCopy, " " + INSTALLDIR, AFTER);

 if(nSetupType = CUSTOM) then
 szSetupType = "Custom setup type selected.";
 elseif(nSetupType = TYPICAL) then
 szSetupType = "Typical setup type selected.";
 elseif(nSetupType = COMPACT) then
 szSetupType = "Compact setup type selected";
 endif;

 ListAddString(listStartCopy, " ", AFTER);
 ListAddString(listStartCopy, szSetupType, AFTER);

 nResult = SdStartCopy(szTitle, szMsg, listStartCopy);

 ListDestroy(listStartCopy);

Figure 12-14: Continued.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

737

 if (nResult = BACK) then
 if (!bCustom) then
 goto Dlg_SetupType;
 else
 goto Dlg_SdFeatureTree;
 endif;
 endif;

 // setup default status
 Enable(STATUSEX);

 // Free the DLL from memory.
 UnUseDLL("SerialNumber.dll");

 return 0;
end;

Figure 12-14: Continued.

The first thing you do to create the script shown in Figure 12-14 is to cut the call to
the SdAskDestPath function, including the Dlg_SdAskDestPath: label,
and paste it back into the script just before the Dlg_SetupType: label. Fix the
response to the end user clicking the Back button for the SdAskDestPath,
SetupType, and SdFeatureTree dialogs. The response to clicking the Back
button has to recognize the new forward flow of the user interface.

The next step is to replace the call to the SdCustomerInformation function
with a call to the SdCustomerInformationEx function. This requires you to
declare a new STRING variable to hold the serial number entry. Along with this call
to SdCustomerInformationEx, you need to add some code to be able to use the
ValidateSerialNo function exported from SerialNumber.dll. The serial
number validation is performed when the code detects that the Next button is
clicked. If the entry does not validate, the user is placed back into the
SdCustomerInformationEx dialog with a NULL value for the serial number. A count
is kept of the number of tries. After three tries, a message box is displayed and the
installation aborts.

The final change that is made to the original script is to collect information about the
various selections that have been made in the installation. This information is then
placed into a string list, which is displayed in the SdStartCopy dialog. In this
example, the user name, company name, serial number, installation location, and
setup type are collected.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

738

Creating a Custom Dialog Box
This section introduces how to create a custom dialog box in a Standard project.
Because there are many issues involved in creating dialogs, this section covers only
the basics. The first thing that you will do is to create a dialog template with a dialog
function that provides some basic functionality. You will create your own dialog
template even though there is a template provided by InstallShield Developer.
Creating this template on your own will teach a lot of the basics of creating custom
dialogs using InstallScript. You will then use this template to create a more robust
dialog that can be used in an installation.

Creating the BasicDialog Dialog

Figure 12-15: The design of the BasicDialog dialog.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

739

Creating a simple template dialog provides a foundation for working with custom
dialogs without getting into too much detail. Our BasicDialog dialog will have the
three standard buttons, Next, Back, and Cancel, as well as a banner bitmap and some
static graphics controls so it looks like the other dialogs. You will also have a dialog
and sub-title that you can customize when you call the dialog function. When
finished, this template dialog will look like what is shown in Figure 12-15.

To create the BasicDialog dialog, you will perform the following series of steps.

1. Set up an environment in which to create your custom dialogs.

2. Use the Dialog Editor to create the resource-only dynamic link library
that contains the dialog template.

3. After the dialog template is defined, create the dialog function that will
run the dialog.

4. Test the dialog template by calling the dialog function from within the
OnFirstUIBefore function.

These steps are discussed in the following sections.

SETTING UP THE CUSTOM DIALOG ENVIRONMENT

To set up an efficient environment, you need to create a directory structure under
C:\MySetups and collect bitmaps and icons that can be used in the created dialog.
The directory structure is shown in Figure 12-16. To create this environment perform
the following steps:

1. Create a folder named Dialogs under the MySetups folder.

2. Under the Dialogs folder, create a folder named Custom
Dialogs. Also create another folder called Graphics.

3. Under the Custom Dialogs folder, create folders for the dialog
functions’ source code. These folders are named Include, Lib, and
Src respectively.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

740

4. Under the Graphics folder create folders to hold bitmaps and icons.
These folders are named Bitmaps and Icons respectively.

Figure 12-16: Custom dialog directory structure.

The Include folder under Custom Dialogs is where you will place the header
files that contain the dialog function prototypes and the definition of the constants
that you will use in the dialog functions. The Lib folder is where you can place the
script library that will contain all the dialog functions for all the custom dialogs that
you want to create. The Src folder is where you will place the InstallScript .rul files
that contain the definition of the dialog functions. Directly under the Dialogs
folder you will place any dialogs that you export from your projects into .isd files.

The examples in this book use only one bitmap. This bitmap is in a file named
IsDialogBanner.ibd in the following location:

C:\Program Files\InstallShield\Developer\Redist\Language Independent
 \OS Independent

You need to copy this file over to the Graphics\Bitmaps folder and change the
extension to .bmp. A copy of this bitmap can also be found on the CD-ROM at the
back of the book. Once the directory structure is complete and the
IsDialogBanner.bmp file has been created, you can move on to step 2 in the process.
Eventually, you will copy the contents of the Dialogs folder to the following
location:

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

741

%USERPROFILE%\My Documents\MySetups\Dialogs

It is in this location that the Dialog Gallery in InstallShield Developer looks for any
exported dialogs so that you can use them as the starting point for any new custom
dialog.

CREATING THE DIALOG TEMPLATE

To begin the creation of the dialog template do the following:

1. Go to the Dialogs view under Step 4. Right-click on the All Dialogs icon
in this view and select New Dialog.

2. Name the new dialog that is created "BasicDialog."

3. Click on the English (United States) icon under the BasicDialog you have
just created to launch the Dialog Editor (Figure 12-17). You now have a
blank form on which you can place the controls that make up the
BasicDialog dialog.

The Dialog Editor contains two new toolbars. The toolbar just above the blank form
is the Controls toolbar that gives a selection of controls that you can place on your
dialog. Place your cursor over any of the controls on this toolbar to see a tooltip that
displays the type of control represented by the button.

To place one of these controls on a dialog box form do the follwoing:

1. Click the desired control.

2. Move the cursor to the form.

3. Hold down the left mouse button and draw the control onto the form.

The controls that can be placed on a dialog were discussed earlier in this chapter. The
toolbar just above the Controls toolbar is the Layout toolbar. When two or more
controls are selected on a dialog form, the buttons on this toolbar can be used to
organize the selected controls. Place the mouse cursor on top of any button to see a
tooltip that displays the button’s purpose.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

742

Figure 12-17: The Dialog Editor showing a blank dialog form.

On the right of the Dialog Editor is a property sheet that contains a field for the
names of the properties and a field for the property values. Every control that you
place on the dialog form has a row in this property sheet. Before placing controls on
the dialog form, you should set the properties for the dialog. For this example, you
can leave the default values for all the properties, with the exception of the Caption
property.

The Caption property contains a string that appears in the dialog’s title bar. To make
this dialog look like all the other InstallShield Developer dialogs, use "InstallShield
Wizard" here. When you enter this string, you need to assign it a unique string ID. A
unique string ID allows you to localize this dialog and it avoids a potential conflict
with other strings IDs in any project to which you might import this dialog.

For example, suppose you create your BasicDialog dialog and accept the default
string IDs provided by InstallShield Developer. Now assume that you export this

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

743

dialog for use in other projects. Now, if one of the default string IDs for a string in
this dialog is ID_STRING35 and this same string ID is being used to identify a string
being used as the description of a feature you will get a conflict. This conflict, if not
resolved, can cause one of the strings to be used in the dialog as well as for the
description of the feature.

When you import the dialog into this project, you are presented with two choices, use
the string as assigned to this non-unique sting ID as defined in the project or use the
string as defined in the dialog file. You can avoid a conflict situation by using unique
string IDs for all strings in the dialogs that you create.

Figure 12-18: The String Table dialog as launched from the Dialog Editor.

To enter the caption to be used in your BasicDialog dialog do the following:

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

744

1. Click in the value field for the Caption property then click the ellipsis
button on the right side of the field. This launches the String Table
dialog, which provides the ability to create a new string and assign it to a
unique string ID (Figure 12-18).

2. Click the Add button to launch the String Entry dialog (Figure 12-19).
Then type what is shown in Figure 12-19 in the ID and Text fields. Click
OK to add the string to the String Table and return to the String Table
dialog.

Figure 12-19: The String Entry dialog.

3. Find the BASIC_DIALOG_CAPTION string ID, highlight it, and then
click Select. This selects the string for the Caption property value.

You will use this operation for all the strings that you generate for the BasicDialog
dialog. Note in Figure 12-19 the format used for creating the unique string ID. You
will use this same format for all the other string IDs that you create. The first part of
the string ID will be BASIC_DIALOG_ and the last part will be the name of the
property or the name of the control on which you are placing the text.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

745

Now click in the value field of the Other Windows Styles property and then click the
ellipsis button to launch the Other Window Styles dialog (Figure 12-20). This dialog
provides the option to add or remove Windows styles from the resource that will be
created for the dialog box when you build the project.

Figure 12-20: The Other Windows Styles dialog box for a dialog resource.

Using the Other Windows Styles dialog box allows you to add additional styles and to
remove styles from a dialog box resource. For the BasicDialog dialog, you do not
need to change any of the default styles that are selected. The default styles define that
this dialog will be a modal, popup window, and that the resource header will contain
the FONT statement that specifies the font to be used to write all text in the dialog.
By default all dialog box resources that are created in the Dialog Editor have the
WS_CAPTION and WS_SYSMENU styles. This means that all of your dialogs will
have a title bar and that there will also be a system menu.

This chapter discusses how to add controls to the dialog, according to the type of
control being added. We will first discuss how to add simple graphic static controls,
and then how to add text static controls, and push button controls. First, you will add
a bitmap and two rectangles using the Line control from the Controls toolbar.

You need to reserve the identifiers of 1, 2, 7, 9, 12, 50, 51, and 52 for use with the
other controls that you will place on the dialog. The control identifiers 1, 2, and 12 are
used for the Next, Cancel, and Back buttons respectively. The control identifiers 7, 9,
and 52 are used for special purposes and the control identifiers 50 and 51 are used for

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

746

the two text static controls that are placed on the banner bitmap and serve as the
dialog title and sub-title respectively. If you add a control and the default identifier is
one of these reserved numbers, you need to change it to something else. Table 12-1
shows those properties that you need to set in the Dialog Editor. The other
properties for these simple graphic static controls are left as the default values with
the exception of the Control Identifier property.

There are two properties that are used to set the position of the control in the dialog
box: Top and Left. The Left property is the distance to the left side of the control
from the left edge of the dialog box. The Top property is measured from the top of
the dialog box, which is coincident with the bottom edge of the title bar of the dialog
box.

Table 12-1: Simple Graphic Static Control Property Values

Control Type Property Value

Bitmap Name BannerBitmap

 File Name <DialogBitmaps>\IsDialogBanner.bmp

 Height 44

 Left 0

 Other Windows
Styles

None

 Top 0

 Width 374

Line Name BitmapLine

 Height 2

 Left 0

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

747

Table 12-1: Simple Graphic Static Control Property Values (Continued)

Control Type Property Value

Line Other Windows
Styles

SS_ETCHEDHORZ and
WS_GROUP

 Top 44

 Width 374

Line Name BrandingLine

 Height 2

 Left 48

 Other Windows
Styles

SS_ETCHEDHORZ and
WS_GROUP

 Top 227

 Width 325

As shown in Table 12-1, a path variable is used to identify the folder in which the
dialog bitmaps are stored. When you browse to the location for the bitmap file, the
Path Variable dialog appears. Enter the path variable for this location. The control
names are intuitive, indicating the purpose of the control. This becomes important
when you are trying to distinguish a number of controls of the same type, which have
different purposes. The BitmapLine control is used to give a three-dimensional
appearance to the banner bitmap at the top of the dialog. The BrandingLine control
is used to brand the dialog, along with the word InstallShield that is added
automatically to the resource file when the project is built.

Next, you will add two text static controls to your dialog box. These are the controls
used for the dialog’s title and sub-title. The text in these two controls is displayed on
top of the banner bitmap. You can configure what goes into these two text fields or

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

748

have default strings displayed. The dialog function sets the text in these two controls
if you want something different than the default string that you provide when you
create the control. The values of the properties that you need to set are shown in
Table 12-2. For the other properties, leave the default value making sure that the
Enabled property is set to True.

Table 12-2: Text Static Control Property Values

Control Type Property Value

Text Area Name Title

 Control Identifier 50

 Height 12

 Left 12

 Other Windows
Styles

None

 Text Basic Dialog

 Top 4

 Transparent True

 Width 248

Text Area Name SubTitle

 Control Identifier 51

 Height 24

 Left 19

 Other Windows
Styles

None

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

749

Table 12-2: Text Static Control Property Values (Continued)

Control Type Property Value

Text Area Text Please enter your information.

 Top 19

 Transparent True

 Width 240

As mentioned, the control IDs for the two text static controls need to be 50 and 51,
respectively. The value that you entered for the Text property is the default string that
is displayed in the text control, unless the dialog function inserts a different string.
Because these text controls are being displayed on top of a bitmap, you need to set
the value of the Transparent property to True. This allows the color of the bitmap to
show through the text control.

The last three controls that you need to add to the dialog are the Next, Back, and
Cancel buttons. The values you need to enter for the non-default properties for these
three controls are shown in Table 12-3.

Table 12-3: Push Button Control Property Values

Control Type Property Value

Push Button Name Next

 Control Identifier 1

 Default True

 Height 17

 Left 242

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

750

Table 12-3: Push Button Control Property Values (Continued)

Control Type Property Value

 Other Windows
Styles

None

 Tab Index 0

 Text &Next >

 Top 239

 Width 57

Push Button Name Back

 Control Identifier 12

 Height 17

 Left 187

 Other Windows
Styles

None

 Tab Index 1

 Text < &Back

 Top 239

 Width 57

Push Button Name Cancel

 Control Identifier 2

 Cancel True

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

751

Table 12-3: Push Button Control Property Values (Continued)

Control Type Property Value

 Height 17

 Left 307

 Other Windows
Styles

None

 Tab Index 2

 Text Cancel

 Top 239

 Width 57

As indicated in Table 12-3, you need to provide a value to the Control Identifier
property of 1 for the Next button, 12 for the Back button, and 2 for the Cancel
button. The control identifiers for the Next and Back button are used as the return
values from the dialog function when the user clicks one of these buttons.

For the Next button, set the Default property to True, which makes this button the
control that responds when the end user presses the Enter key. For the Cancel
button, set the Cancel property to True so the system Close button performs the
same operation as assigned to the Cancel button.

For this BasicDialog dialog, set the Tab Stop property to 0, 1, and 2 for the Next,
Back, and Cancel buttons respectively. This allows the end user to tab between the
buttons in order.

Before you can use this dialog, you have to create a dialog function. Before you create
the dialog function, however, you can build the project and review what is created.
After the build completes, go to the following location to see what was created. You
now have a custom dialog in your project.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

752

C:\MySetups\DeveloperArt_IDEStd

In this location, you will see three new files with the names _ISUser1033.RC,
_ISUser1033.RES, and _ISUser1033.DLL. If you open the .rc file in Notepad, you
should see what is shown in Figure 12-21.

Figure 12-21: The resource file for the BasicDialog dialog as created during the build.

The file _ISUser1033.DLL is streamed into the Binary table during the build and,
when the installation is run, it is streamed out with the name _ISUser.dll. It is this file
that the dialog function accesses in order to display the dialog on the screen. The
creation of the dialog function is the next topic.

CREATING THE DIALOG FUNCTION

This task is to create an InstallScript function with the same name as the name of the
dialog box that you can call from within Setup.rul. The function name does not need
to be the same as the dialog name, but it is a good practice to follow to avoid

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

753

confusion. The parameters to the dialog function need to be variables that are used
for passing information to the dialog or variables that are used to retrieve information
from the dialog.

We are going to keep things simple with this first dialog function. The dialog function
displays the dialog template and to responds appropriately to the end user clicking on
any of the three buttons on the dialog. The BasicDialog function that runs the dialog
template that you have just created is shown in Figure 12-22.

///
//
// File Name: BasicDialog.rul
//
// Description: InstallScript file for a basic custom dialog
// that can be used as a template.
//
// Comments: This script demonstrates the creation
// of an InstallScript custom dialog.
//
///

// Include Windows API prototypes that are not normally used.
#include "winapi.h"

// Defines for commonly used controls
#define CUST_BUTTON_NEXT 1
#define CUST_BUTTON_CANCEL 2
#define CUST_BUTTON_BACK 12
#define CUST_TEXT_TITLE 50
#define CUST_TEXT_SUBTITLE 51

prototype INT BasicDialog(BYVAL STRING, BYVAL STRING);
///
// Function: BasicDialog
//
// Purpose: This function provides the skeleton that can be
// used to create dialog functions for more complex
// dialogs.
///
function INT BasicDialog(szTitle, szSubTitle)
STRING szDlg;
INT nId;
HWND hwndDlg, hwndTitle, hwndSubTitle;
BOOL bDone;
begin

Figure 12-22: The Dialog function for the BasicDialog dialog.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

754

 // Define the name for the dialog to be used
 // in the custom dialog functions.
 szDlg = "BasicDialog";

 // Check the global variable to see if InstallScript
 // has already been initialized for custom dialogs.
 // Initialize the environment if not already initialized.
 if(!bSdInit) then
 SdInit();
 endif;

 // Define the dialog using the string name that is
 // used to identify it in the resource file.
 if(EzDefineDialog(szDlg, ISUSER, szDlg, 0) < 0) then
 MessageBox("Error defining dialog box", INFORMATION);
 abort;
 endif;

 // Initialize the message loop control variable.
 bDone = FALSE;

 // Loop in the dialog until the user takes action
 // to close the dialog by clicking on a button.
 while(!bDone)

 // Display the dialog and retrieve messages
 // based on the users interaction with the dialog.
 nId = WaitOnDialog(szDlg);

 switch(nId)

 // The first message sent before the dialog
 // is displayed. This is where we can
 // initialize controls in the dialog.
 case DLG_INIT:
 hwndDlg = CmdGetHwndDlg(szDlg);
 // Set the custom title of the dialog.
 if(szTitle != "") then
 hwndTitle = GetDlgItem(hwndDlg, CUST_TEXT_TITLE);
 SetWindowText(hwndTitle, szTitle);
 endif;

 // Set the custom sub-title of the dialog.
 if(szSubTitle != "") then
 hwndSubTitle = GetDlgItem(hwndDlg,
 CUST_TEXT_SUBTITLE);
 SetWindowText(hwndSubTitle, szSubTitle);
 endif;

Figure 12-22: Continued.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

755

 // The code in this case statement responds to
 // the end user clicking the Next button.
 case CUST_BUTTON_NEXT:
 nId = CUST_BUTTON_NEXT;
 bDone = TRUE;

 // The code in this case statement responds to
 // the end user clicking the Cancel button or the
 // Close button.
 case CUST_BUTTON_CANCEL:
 Do(EXIT);

 // The code in this case statement responds to
 // the end user clicking the Back button.
 case CUST_BUTTON_BACK:
 nId = CUST_BUTTON_BACK;
 bDone = TRUE;

 endswitch;

 endwhile;

 // Close the dialog.
 EndDialog(szDlg);

 // Release memory used by the dialog.
 ReleaseDialog(szDlg);

 // Return the control ID of
 // the control that was clicked.
 return nId;

end;

Figure 12-22: Continued.

As shown in the code (Figure 12-22), the first thing you do is to define five constants
that you can use in all custom dialogs that you create. You could use the constants
that are used for the built-in script dialogs but for this example we are creating our
own constants. Following the definition of the constants, the BasicDialog function is
prototyped. This function takes two strings as arguments with the first argument
being the dialog title and the second argument being the dialog sub-title.

The first operation is to initialize a string variable to the name of the dialog that this
function is creating. You will use this string variable in any function that requires a
reference to the dialog. The second operation is to check if the environment has
already been initialized to run a script dialog box. Initialization consists of two

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

756

operations, the loading of strings from the string resources in _ISUser.dll and
_isres.dll and the setting of the check boxes to have the Windows 95 style. If you
create _ISUser.dll with the Dialog Editor in InstallShield Developer, there will be no
string resource since that is not one of the available options. Once initialization is
performed, it does not have to be done again for any other script dialog box function.
The bSdInit global variable is used to indicate whether initialization has occurred
or not.

After making sure that the environment is initialized, the code calls the
EzDefineDialog function, which is a wrapper around the DefineDialog
built-in function with some of the arguments defined. The main purpose of this
function is to load the dialog template into memory. The reference to this location is
held in the szDlg variable. You pass to the EzDefineDialog function the
name of the dialog, the name and location of the resource-only DLL in which the
dialog template is defined, and the identifier of the particular dialog template.

When you create dialog boxes using the Dialog Editor in InstallShield Developer, the
identifier of the dialog template is the name you give to the dialog. If you use this
name to set the value of the szDlg variable, you can use this variable as the
argument passed for the szDialogName and szDialogID parameters to the
EzDefineDialog function as is done in the code shown in Figure 12-21. The
EzDefineDialog function does not actually display the dialog on the screen.
That is the purpose of the WaitOnDialog function.

The next part of the dialog function is the message loop. This is where the code
enters a while loop waiting for the end user to take action in the dialog. This loop
continues until the bDone variable is set to TRUE. During this time, the
WaitOnDialog function receives messages from Windows and passes them to
your dialog function. Except for the first return value from the WaitOnDialog
function, the values are the control IDs with which the end user has interacted. The
first return value is equal to the DLG_INIT constant and this gives you the
opportunity to initialize controls in the dialog before the dialog is displayed.

In the BasicDialog function, you set the strings to be shown in the Title and
SubTitle text static controls. This is necessary only if the values passed to the
BasicDialog function for these two string parameters are not NULL. If you pass
custom strings to the BasicDialog function, you first obtain a handle to the control
and then use the SetWindowText Windows API to set the string displayed in the

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

757

text static control to be the string passed to the function. To use the Windows API,
you need to include the WINAPI.H header file at the top of your script. If there are
no strings passed to the BasicDialog function, then you do nothing and the
default strings you entered as the value of the Text property are displayed. After your
code has handled the DLG_INIT message, the WaitOnDialog function calls the
ShowWindow Windows API to display the dialog.

After the dialog is displayed, the code handles the actions that the end user performs
in the dialog box. If the dialog has edit controls or check boxes, your code needs to
capture any actions that indicate input from the user. When the end user clicks one of
the three standard buttons, the message loop needs to take action to dismiss the
dialog. If the Cancel button is clicked, action needs be taken to terminate the
installation. To do this in the BasicDialog function, make a call to the Do InstallScript
function with the EXIT argument. This calls the standard exit message box if no
EXIT handler is defined in your installation script.

After the while loop is finished, you destroy the dialog window and free the memory
that was used by the dialog. First calling the EndDialog function and then calling the
ReleaseDialog function accomplishes this.

The dialog function we have just looked at provides the bare essentials of how to
create this type of function. In the next section, you will learn how to test this custom
dialog.

TESTING THE BASICDIALOG DIALOG

The first thing that you should do is to place the statements that define the constants
that you are using in a header file. You should also create another header file to hold
the dialog function prototype. You can continue to add definitions and prototypes to
these files as you create more custom dialogs. You can also have a third header file
that includes both of the other files and the winapi.h header file. Good names for
these three files are MyCustDlgDefs.h, MyCustDlgFuncs.h, and MyCustDlg.h. The
content of these three header files is shown in Figure 12-23.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

758

///
//
// File Name: MyCustDlgDefs.h
//
// Description: Header file for the custom InstallScript
// dialog function defines.
//
// Comments: This script demonstrates the creation
// of a custom dialog.
//
///

// Defines for commonly used controls
#define CUST_BUTTON_NEXT 1
#define CUST_BUTTON_CANCEL 2
#define CUST_BUTTON_BACK 12
#define CUST_TEXT_TITLE 50
#define CUST_TEXT_SUBTITLE 51

///
//
// File Name: MyCustDlgFuncs.h
//
// Description: Header file for the custom InstallScript
// dialog function prototypes.
//
// Comments: This script demonstrates the creation
// of a custom dialog.
//
///

prototype INT BasicDialog(BYVAL STRING, BYVAL STRING);
///
//
// File Name: CustDlg.h
//
// Description: Header file for the custom InstallScript dialogs.
//
// Comments: This script demonstrates the creation
// of a custom dialog.
//
///

#include "winapi.h"
#include "MyCustDlgDefs.h"
#include "MyCustDlgFuncs.h"

Figure 12-23: Custom dialog header files.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

759

You can place these header files in the folder that you created at the beginning of this
example. This location is as follows:

C:\MySetups\Dialogs\Custom Dialogs\Include

You should also create a separate .rul file for the body of the BasicDialog function.
Call this file BasicDialog.rul. Place this file in the following folder:

C:\MySetups\Dialogs\Custom Dialogs\Src

So that the InstallShield compiler will be able to find the locations you have created
for the include files and the .rul files, you need to modify the Compile Folders.ini file
found in the following location:

C:\Program Files\InstallShield\Developer\Support

[Folders]
Folder0=<ISProductFolder>\Script\ISWi\Include
Folder1=<ISProductFolder>\Script\ISRT\Include
Folder2=<ISProductFolder>\Script\IFX\Include
Folder3=<ISProductFolder>\Script\Include
Folder4=C:\MySetups\Dialogs\Custom Dialogs\Include
Folder5=C:\MySetups\Dialogs\Custom Dialogs\Src

[Libraries]

Figure 12-24: The Compile Folders.ini file with modifications for custom dialogs.

You made modifications to this file in Chapter 8 when you created a script library.
The changes required for this file are to add entries for Folder4 and Folder5 as shown
in Figure 12-24.

To use your custom dialog in an installation, you need to include the MyCustDlg.h
header file right after the include statement for the ifx.h header file. This will look as
follows:

// Include header files ///
#include "ifx.h"

// Include the custom dialog header file
#include "MyCustDlg.h"

At the bottom of the Setup.rul file, include the BasicDialog.rul file. This looks like the
following:

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

760

#include "BasicDialog.rul"

You do not have to qualify the file name since you have identified the location of this
file in the Compile Folders.ini file. Now you need to insert a call to the dialog
function in the OnFirstUIBefore event handler. A good place to insert this
dialog is between the CustomerInformation dialog and the SetupType dialog.

Dlg_SdWelcome:
 szTitle = "";
 szMsg = "";
 nResult = SdWelcome(szTitle, szMsg);
 if (nResult = BACK) goto Dlg_SdWelcome;

 szTitle = "";
 svName = "";
 svCompany = "";

Dlg_SdCustomerInformation:
 nResult = SdCustomerInformation(szTitle, svName,
 svCompany, nUser);
 if (nResult = BACK) goto Dlg_SdWelcome;
Dlg_BasicDialog:
 szTitle = "Basic Dialog Test";
 szMsg = "Click on any button to see what happens";
 nResult = BasicDialog(szTitle, szMsg);
 if(nResult = BACK) goto Dlg_SdCustomerInformation;

Dlg_SetupType:
 szTitle = "";
 szMsg = "";
 nResult = SetupType(szTitle, szMsg, "", nSetupType, 0);
 if (nResult = BACK) then goto Dlg_BasicDialog;
 else
 nSetupType = nResult;
 if (nSetupType != CUSTOM) then
 nvSize = 0;
 FeatureCompareSizeRequired(MEDIA, INSTALLDIR, nvSize);
 if (nvSize != 0) then
 MessageBox(szSdStr_NotEnoughSpace, WARNING);
 goto Dlg_SetupType;
 endif;
 bCustom = FALSE;
 goto Dlg_SdStartCopy;
 else
 bCustom = TRUE;
 endif;
 endif;

Figure 12-25: Inserting the BasicDialog dialog into the user interface sequence.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

761

The section of code in the OnFirstUIBefore event handler to do this is shown
in Figure 12-25. To insert the BasicDialog dialog do the following:

1. Define a new label called Dlg_BasicDialog. After this label, define
values for the szTitle and the szSubTitle parameters to the
BasicDialog function.

2. When you call the BasicDialog function, check to see if the return
value is equal to the BACK system constant. The value of this system
constant is 12, which is what the BasicDialog function returns when
the Back button is pressed.

3. Have the SetupType dialog jump back to the BasicDialog dialog when
the Back button is pressed.

With the changes discussed in this section, you can build the project and run the
installation. You should see that the BasicDialog dialog appears between the
CustomerInformation dialog and the SetupType dialog. You should also test that you
can move back and forth through the user interface using the Next and Back buttons.

Creating a Dialog From a Template

You can now use the BasicDialog dialog to create a dialog that has controls on it and
with which the end user can interact by entering information. The dialog that you are
going to create is one that might be used if you want to install an NT service to a user
account. When you are finished, the dialog will look like what is shown in Figure 12-
26.

We will not go into the same amount of detail as we did when discussing the creation
of the BasicDialog dialog. Here are the steps required to create the dialog resource.

1. If the BasicDialog is still in the project, export it to a dialog file. Then you
can rename it to InstallNTService. Otherwise you can import the
BasicDialog dialog and rename it. After the dialog is named, go to the
Dialog Editor and add one check box control, two edit controls, and two
text static controls that are used as labels for the two edit controls. Next,
provide unique names for the new controls that you have added. The
sizes used for the controls can be the same as those for similar controls

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

762

on other dialogs. To get the size of the controls on another dialog, right-
click on the dialog and select Edit. Similar controls on different dialogs
are sized the same to present a consistent look to the end user. You also
want to make sure that none of the controls has an ID that is equal to the
reserved numbers discussed in the last section.

Figure 12-26: The InstallNTService dialog.

2. For the check box control, set the Sunken property to True. For the two
edit controls, set the Enabled property to False so they are disabled until
the user selects the check box. Set the Sunken property on the edit
controls to True.

3. Set all the strings in the new and the old controls to unique string IDs. A
possible format for the string IDs is to make the first part of the ID
NTSERVICE_DIALOG_ and the last part of the ID the name of the
control. You need to change even the string IDs that you inherited from
the BasicDialog dialog to avoid string ID conflicts.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

763

To create this new dialog, follow the steps listed above. These steps will create a
dialog template, but the real work is in creating the dialog function. For this, you can
use the BasicDialog function as the starting point.

1. Open the file BasicDialog.rul and resave it as InstallNTService.rul.

2. Change the name of the function to InstallNTService.

3. Set the value of the szDlg variable to the name of the dialog, which is
the same as the name of the dialog function.

4. Follow the code example (Figure 12-27).

Before adding code to his function, you have to decide how this dialog is to work.
For this example, the dialog’s check box will be deselected, the edit controls disabled,
and the Next button enabled. When the end user selects the check box, your code
should enable the two edit fields and disable the Next button so the user cannot
continue with NULL values for the Domain\User Name and Password edit fields.
The Next button will be disabled until both edit fields contain values other than
spaces. Also, if the user deselects the check box, the edit fields will be disabled again
and any text that might be in them will be removed.

The strings that are entered into the two edit fields must be returned from the dialog
function. This means that you need to change the function’s prototype to have two
additional string parameters that are typed as BYREF STRING. You need to add a
few constants to the MyCustDlgDefs.h header file to identify the control IDs of the
new controls in this dialog. Just as with string IDs, you should create unique constant
names for the controls in a custom dialog. A format similar to the one used for string
IDs would be good.

The source code for the dialog function that runs the InstallNTService dialog is
shown in Figure 12-27. This code implements the functionality as described above.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

764

///
//
// File Name: InstallNTService.rul
//
// Description: InstallScript file for a basic custom dialog
// that can be used as a template.
//
// Comments: This script demonstrates the creation
// of an InstallScript custom dialog.
//
///

// prototypes of private functions
prototype INT RemoveSpaces(BYREF STRING);

///
// Function: InstallNTService
//
// Purpose: This function provides the functionality
// behind the BasicDialog dialog.
///
function INT InstallNTService(szTitle, szSubTitle, svUser,
 svPassword)
STRING szDlg;
INT nId;
HWND hwndDlg, hwndTitle, hwndSubTitle;
HWND hwndUserEdit, hwndPasswordEdit, hwndNext;
BOOL bDone;
Begin

 // Define the name for the dialog to be used
 // in the custom dialog functions.
 szDlg = "InstallNTService";

 // Check the global variable to see if InstallScript
 // has already been initialized for custom dialogs.
 // Initialize the environment if not already initialized.
 if(!bSdInit) then
 SdInit();
 endif;

 // Define the dialog using the string name that is
 // used to identify it in the resource file.
 if(EzDefineDialog(szDlg, ISUSER, szDlg, 0) < 0) then
 MessageBox("Error defining dialog box", INFORMATION);
 abort;
 endif;

Figure 12-27: The source code for the InstallNTService custom dialog box.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

765

 // Initialize the message loop control variable.
 bDone = FALSE;

 // Loop in the dialog until the user takes action
 // to close the dialog by clicking on a button.
 while(!bDone)

 // Display the dialog and retrieve messages
 // based on the users interaction with the dialog.
 nId = WaitOnDialog(szDlg);

 switch(nId)

 // The first message sent before the dialog
 // is displayed. This is where we can
 // initialize controls in the dialog.
 case DLG_INIT:

 // Get handles to the controls in the dialog.
 hwndDlg = CmdGetHwndDlg(szDlg);
 hwndUserEdit = GetDlgItem(hwndDlg,
 INSTALLNTSERVICE_USEREDIT);
 hwndPasswordEdit = GetDlgItem(hwndDlg,
 INSTALLNTSERVICE_PASSWORDEDIT);
 hwndNext = GetDlgItem(hwndDlg, CUST_BUTTON_NEXT);

 // NULL the strings for the two edit controls
 // to make sure that values are not persisted.
 SetWindowText(hwndUserEdit, "");
 SetWindowText(hwndPasswordEdit, "");

 // Set the custom title of the dialog.
 if(szTitle != "") then
 hwndTitle = GetDlgItem(hwndDlg, CUST_TEXT_TITLE);
 SetWindowText(hwndTitle, szTitle);
 endif;

 // Set the custom sub-title of the dialog.
 if(szSubTitle != "") then
 hwndSubTitle = GetDlgItem(hwndDlg,
 CUST_TEXT_SUBTITLE);
 SetWindowText(hwndSubTitle, szSubTitle);
 endif;

Figure 12-27: Continued.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

766

 // Respond to the check box state being changed.
 case INSTALLNTSERVICE_USERCHECKBOX:

 // If the check box is checked enable the edit
 // controls and disable the next button. If the
 // checkbox is unchecked then disable the
 // edit controls and enable the next button.
 if(CtrlGetState(szDlg, nId) = BUTTON_CHECKED) then
 EnableWindow(hwndUserEdit, TRUE);
 EnableWindow(hwndPasswordEdit, TRUE);
 EnableWindow(hwndNext, FALSE);
 elseif(CtrlGetState(szDlg, nId) =
 BUTTON_UNCHECKED) then
 EnableWindow(hwndUserEdit, FALSE);
 EnableWindow(hwndPasswordEdit, FALSE);
 EnableWindow(hwndNext, TRUE);
 SetWindowText(hwndUserEdit, "");
 SetWindowText(hwndPasswordEdit, "");
 else
 MessageBox("Unable to determine check box state",
 INFORMATION);
 endif;

 // Respond to changes in the user edit control
 case INSTALLNTSERVICE_USEREDIT:

 // If the notification is that there has been a
 // change in the user edit control then get the text
 // and remove any leading and trailing spaces.
 if(CtrlGetSubCommand(szDlg) = EDITBOX_CHANGE) then
 CtrlGetText(szDlg, INSTALLNTSERVICE_USEREDIT,
 svUser);
 RemoveSpaces(svUser);
 RemoveSpaces(svPassword);

 // If after removing leading and trailing spaces
 // and both the user and the password values are
 // not NULL then enable the next button.
 if(svUser != "" && svPassword != "") then
 EnableWindow(hwndNext, TRUE);
 endif;
 endif;

 // Respond to changes in the password edit control
 case INSTALLNTSERVICE_PASSWORDEDIT:

Figure 12-27: Continued.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

767

 // If the notification is that there has been a
 // change in the password edit control then get the
 // text and remove any leading and trailing spaces.
 if(CtrlGetSubCommand(szDlg) = EDITBOX_CHANGE) then
 CtrlGetText(szDlg,
 INSTALLNTSERVICE_PASSWORDEDIT, svPassword);
 RemoveSpaces(svUser);
 RemoveSpaces(svPassword);

 // If after removing leading and trailing spaces
 // and both the user and the password values are
 // not NULL then enable the next button.
 if(svUser != "" && svPassword != "") then
 EnableWindow(hwndNext, TRUE);
 endif;
 endif;

 // The code in this case statement responds to
 // the end user clicking the Next button.
 case CUST_BUTTON_NEXT:

 // Capture the values in the two edit controls.
 CtrlGetText(szDlg, INSTALLNTSERVICE_USEREDIT,
 svUser);
 CtrlGetText(szDlg, INSTALLNTSERVICE_PASSWORDEDIT,
 svPassword);
 RemoveSpaces(svUser);
 RemoveSpaces(svPassword);
 nId = CUST_BUTTON_NEXT;
 bDone = TRUE;

 // The code in this case statement responds to
 // the end user clicking the Cancel button or the
 // Close button.
 case CUST_BUTTON_CANCEL:

 Do(EXIT);

 // The code in this case statement responds to
 // the end user clicking the Back button.
 case CUST_BUTTON_BACK:

 nId = CUST_BUTTON_BACK;
 bDone = TRUE;

Figure 12-27: Continued.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

768

 // The code in this case statement responds to
 // an error that is found in the WaitOnDialog function.
 case DLG_ERR:
 SdError(-1, "InstallNTService");
 nId = -1;
 bDone = TRUE;

 default:

 endswitch;

 endwhile;

 // Close the dialog.
 EndDialog(szDlg);

 // Release memory used by the dialog.
 ReleaseDialog(szDlg);

 // Return the control ID of
 // the control that was clicked.
 return nId;

end;

///
// Function: RemoveSpaces
//
// Purpose: This function removes the leading and trailing spaces
// in a string and returns the modified string.
///
function INT RemoveSpaces(svStr)
STRING svTemp;
INT i, iLen;
BOOL bDone;
begin
 // Get the length of the passed string.
 iLen = StrLengthChars(svStr);
 // If the string is NULL return.
 if (iLen = 0) then
 return ISERR_SUCCESS;
 endif;

 // Initialize the index.
 i = 0;

Figure 12-27: Continued.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

769

 // Remove the leading spaces.
 while ((i < iLen) && (!bDone))
 if ((svStr[i] = '\t') || (svStr[i] = 32)) then
 i = i + 1;
 else
 bDone = TRUE;
 endif;
 endwhile;

 // Get the length of the modified string without
 // the leading spaces.
 iLen = StrSub(svStr, svStr, i, iLen-i);

 // Remove the trailing spaces
 while ((iLen > 0) && (!bDone))
 if ((svStr[iLen-1] = '\t') || (svStr[iLen-1] = 32)) then
 iLen = iLen - 1;
 else
 bDone = TRUE;
 endif;
 endwhile;

 // Add a NULL terminator.
 svStr[iLen] = 0;

 return ISERR_SUCCESS;
end;

Figure 12-27: Continued.

In the InstallNTService dialog function, some code is added to the
DLG_INIT case statement to get the handles to the two edit controls and to the
Next button control. The function uses these handles to enable and disable these
controls. The function also contains two statements that null out the string values for
the two edit fields so these values do not persist when we reenter the dialog box after
jumping back to the previous dialog and to prevent values being passed to the
function. Case statements are added for the check box control and the two edit
controls.

Under the case statement for the check box control, the CtrlGetState
InstallScript function determines if the check box is selected or deselected.
Depending on whether the end user has selected the check box, the function enables
or disables the user name and password edit controls and the Next button. The
Windows API EnableWindow enables and disables these controls. The ifx.h
header file includes the header file that prototypes this Windows API. For the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

770

scenario where the user starts to enter values in the two edit controls and then
deselects the check box, the function nulls the values entered into the user name and
password edit controls. Under the case statement for the Next button, the function
captures the values entered into the user name and password edit controls using the
InstallScript CtrlGetText function. The values that are entered for user name
and password are passed back to the calling function, which in most cases will be the
OnFirstUIBefore event handler. Note that a private function called
RemoveSpaces was added to the InstallNTService.rul file. This function removes
leading and trailing spaces so the user cannot just type in spaces and continue with
the installation.

You can test this new dialog in the same fashion you used to test the BasicDialog
dialog. Make sure that you export this dialog because you will use it when we discuss
the user interface in a Basic MSI project.

We have now covered the basics of creating custom dialogs in a Standard project.
Before we move on to a discussion of creating the user interface in a Basic MSI
project, we need to discuss one extension to the basics of custom dialogs in Standard
projects. This extension is how to handle a custom dialog when using a response file
to perform a silent installation.

Handling Silent Installations

One of the approaches to performing a silent installation is to have the script read a
file, called a response file, that contains the default values to be used as input to the
dialogs in the user interface. The trick is to prevent the dialogs from being displayed.
To do this, each of the dialog functions needs to recognize that a silent install is
running and read the default input from the response file and then return from the
dialog function before the lines of code that create and display the dialogs are
executed.

To generate a response file, you have to add code to the dialog functions. The code to
generate the response file is added at the end of the dialog function. The code to
implement silent installs for the InstallNTService dialog is shown in Figure 12-28.
The code shown in this figure is what is placed at the beginning and at the end of the
InstallNTService dialog function.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

771

///
// Function: InstallNTService
//
// Purpose: This function provides the functionality
// behind the BasicDialog dialog.
///
function INT InstallNTService(szTitle, szSubTitle, svUser,
 svPassword)
STRING szDlg, svDataKey, svVal;
INT nId, nvInstallNTService, nvVal;
HWND hwndDlg, hwndTitle, hwndSubTitle;
HWND hwndUserEdit, hwndPasswordEdit, hwndNext;
BOOL bDone;
begin

 // Define the name for the dialog to be used
 // in the custom dialog functions.
 szDlg = "InstallNTService";

 // Read the data produced by this dialog when
 // the response file was created.
 if(MODE=SILENTMODE) then
 SdMakeName(svDataKey, szDlg, "", nvInstallNTService);
 SilentReadData(svDataKey, "Result", DATA_NUMBER, svVal, nId);

 if((nId != BACK) && (nId != CANCEL)) then
 SilentReadData(svDataKey, "szUser", DATA_STRING,
 svUser, nvVal);
 SilentReadData(svDataKey, "szPassword", DATA_STRING,
 svPassword, nvVal);
 endif;

 // Return before displaying the dialog.
 return nId;
 endif;

 .
 .
 .
 .
 // Insert dialog function code from Figure 12-27 here.
 .
 .
 .
 .
 // Close the dialog.
 EndDialog(szDlg);

Figure 12-28: The code for implementing silent installs using a response file.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

772

 // Release memory used by the dialog.
 ReleaseDialog(szDlg);

 // Record the data produced by this dialog in a response file.
 if(MODE=RECORDMODE) then
 SdMakeName(svDataKey, szDlg, "", nvInstallNTService);
 SilentWriteData(svDataKey, "Result", DATA_NUMBER, "", nId);
 SilentWriteData(svDataKey, "szUser", DATA_STRING, svUser, 0);
 SilentWriteData(svDataKey, "szPassword", DATA_STRING,
 svPassword, 0);
 endif;

 // Return the control ID of
 // the control that was clicked.
 return nId;
end;

Figure 12-28: Continued.

There are three InstallScript functions that implement support for silent installations:
SdMakeName, SilentWriteData, and SilentReadData. The
SdMakeName function is used to generate part of the section name that is written
to the response file for each dialog in the user interface sequence. The
SilentWriteData function is used to write the values into the response file that
are to be part of the default install when it is run in silent mode. This function also
takes the name created by the SdMakeName function and completes the section
name by using the value of the ProductCode for the application being installed as the
first part of the section name in the response file. The SilentReadData function
is used at the beginning of the dialog function to read the response file. After the data
for the dialog is read, the code exits the dialog function before the
EzDefineDialog or the WaitOnDialog functions are called.

If you add the code shown in Figure 12-28 to the InstallNTService dialog function
and run the installation in record mode, it generates a response file that is created in
the %WINDOWS% folder. If you accept all of the defaults in the user interface for
the Developer Art application, a response file shown in Figure 12-29 is generated.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

773

[{D375D664-6EF0-4495-9762-68AB33CC3D83}-DlgOrder]
Dlg0={D375D664-6EF0-4495-9762-68AB33CC3D83}-SdWelcome-0
Count=6
Dlg1={D375D664-6EF0-4495-9762-68AB33CC3D83}-SdCustomerInfo-0
Dlg2={D375D664-6EF0-4495-9762-68AB33CC3D83}-InstallNTService-0
Dlg3={D375D664-6EF0-4495-9762-68AB33CC3D83}-SetupType-0
Dlg4={D375D664-6EF0-4495-9762-68AB33CC3D83}-SdStartCopy-0
Dlg5={D375D664-6EF0-4495-9762-68AB33CC3D83}-SdFinish-0
[{D375D664-6EF0-4495-9762-68AB33CC3D83}-SdWelcome-0]
Result=1
[{D375D664-6EF0-4495-9762-68AB33CC3D83}-SdCustomerInfo-0]
szName=Bob Baker
szCompany=InstallShield
Result=1
[{D375D664-6EF0-4495-9762-68AB33CC3D83}-SprintfBox-0]
Result=6
[{D375D664-6EF0-4495-9762-68AB33CC3D83}-SdFinish-0]
Result=1
bOpt1=0
bOpt2=0
[{D375D664-6EF0-4495-9762-68AB33CC3D83}-InstallNTService-0]
Result=1
szUser=' '
szPassword=' '
[{D375D664-6EF0-4495-9762-68AB33CC3D83}-SetupType-0]
Result=301
[{D375D664-6EF0-4495-9762-68AB33CC3D83}-SdStartCopy-0]
Result=1

Figure 12-29: The response file for the Developer Art application.

This completes the discussion about creating custom dialogs in a Standard project.
This did not cover all the issues that might be faced, but it provides a good basis in
how to approach the subject. Further help can be obtained by looking at the source
code for all the dialogs that are part of a new Standard project. The .rul files for these
dialogs can be found in the following locations:

C:\Program Files\InstallShield\Developer\Script\isrt\src

and

C:\Program Files\InstallShield\Developer\Script\iswi\src

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

774

Generating a User Interface for a
Basic MSI Project

In this section, you will use the DeveloperArt_IDEMSI.ism project file to explore
how the user interface is created in a Basic MSI project. The operation of the Dialog
Editor in a Basic MSI project is the same as in the Standard project. The only
difference is that when you place a control that requires end user interaction, other
than push buttons, there is a public property name that has to be entered as part of
the control attributes. You are going to import the InstallNTService.isd file, add the
property names for the appropriate controls, and insert the dialog into the user
interface that is displayed during a fresh installation.

As discussed, dialog creation in a Basic MSI project does not require a resource DLL
or the development of a dialog function. Everything that you create in the Dialog
Editor is entered into database tables and, during the installation, the Windows
Installer is responsible for reading the database tables and generating the correct
dialogs. The main focus here is to discuss how to develop the same functionality in a
Basic MSI project that you created using a dialog function in a Standard project.

Implementing the InstallNTService Dialog
Load the DeveloperArt_IDEMSI project and go to the Dialogs view and import the
InstallNTService dialog. During the import process, the Resolve Conflict dialog
appears (Figure 12-30). The source of this conflict is in the Binary table where, in a
Basic MSI project, all the bitmaps and icons displayed in the dialogs are contained as
entries. When you created the InstallNTService dialog in the Standard project, the
banner bitmap used at the top of the dialog was streamed into the Binary table using
the identifier NewBinary1. When you create a Basic MSI project, there is already a
row in the Binary table that uses the NewBinary1 identifier so you need to rename the
identifier for the imported dialog.

To rename the identifier, select the Rename radio button in the Resolve Conflict
dialog and then click Edit. This displays a dialog where you can enter a unique name
for the binary stream that is being imported.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

775

Figure 12-30: Conflict resolution when importing a dialog file.

When the import process is complete, you need to make changes to some of the
attributes for some of the controls. The changes you need to make are discussed in
the following list.

Dialog Caption: In a Standard project, the caption of the dialogs displays the
string "InstallShield Wizard". In a Basic MSI project, the caption includes the
name of the product in addition to the "InstallShield Wizard" string. To make
this dialog look the same, you have to modify the caption so it includes the name
of the product being installed. The modification is made using the String Table
dialog and the new string to be entered is "[ProductName] - InstallShield
Wizard". When the installation is run, the value of the ProductName property is
substituted for the property name inside the square brackets.

BannerBitmap: For the bitmap control, set the Stretch to Fit property’s value to
True. If you do not do this, the bitmap will not be sized to the same size as the
dialog at screen resolutions different than the build machine.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

776

Title Text Control: As you saw in the Standard project, the Title text static
control had a control identifier of 50, so when it was created in the dialog
function it was displayed in bold text. In a Basic MSI project, you need to
specifically set the text style to be used when the text is displayed. Do this by
selecting TahomaBold8 in the Text Style property’s value column. The title text
will appear in bold.

UserCheckBox Control: For the check box control, you need to define the
name of a public property that is set to a value when the control is selected by the
end user. You also have to define the value to which the property is set. In the
Property property, enter the name of a property in all uppercase letters. In this
example, you can use USERACCOUNT as the property. To define the value to
which it gets set, go to the Value property and enter the value. For this example,
use 1 as the value. This property can be used in conditions. Finally you need to
set the Sunken property to False. Because of the way Windows Installer
implements the check box control when the Sunken property is set to True, both
the check box and the label are sunken. This makes for an unattractive control.

UserEdit Control: To retrieve the text that a user enters into an edit control, you
need to assign to the control the name of a public property. For this control, use
ACCOUNT as the property. To assign a property to an edit control, go to the
Property property and enter the name of the property.

PasswordEdit Control: For this edit control, you also need to enter the name of
a property in the Property value field. For this edit control, use PASSWORD as
the property.

BrandingLine Control: In a Basic MSI project, the dialog box branding is
added during the build process. Accordingly you need to remove this control
from the imported InstallNTService dialog. To remove a control, select the
control and press the Delete keyboard button.

Next, Back, and Cancel Push Button Controls: In a Basic MSI project, the
size and location of these push buttons are different than in a Standard project.
So that this dialog looks the same, you need to make the following changes in the
size and location of the buttons.

� Width property: The width of all buttons is 66.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

777

� Top property: The top of all buttons should be 243.

� Left property: Back – 164, Next – 230, Cancel – 301

Final Modification: After you have made the changes described above, go to
the Property Manager under Advanced Views and remove the
USERACCOUNT, ACCOUNT, and PASSWORD properties. Otherwise, they
will be built into the Property table and the dialog will have the check box
checked and values in the two edit controls when the dialog is displayed.

Figure 12-31: The InstallNTService dialog as implemented in a Basic MSI project.

When you make the above changes, you will create a dialog that looks like what is
shown in Figure 12-31.

Now that you have created a dialog for use in a Basic MSI project, you need to do
something with it. The first thing that you need to do is insert it into the user interface
sequence so that when an end user performs a fresh installation, the dialog appears

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

778

after the CustomerInformation dialog and before the SetupType dialog. This involves
the use of control events. Control events can be considered messages that a dialog
sends to the Windows Installer, specifying that a certain action take place.

We begin by looking at the default sequence of dialogs that are displayed when an
end user runs a fresh installation. You can examine this sequence by going to the
Sequences view under Step 5 and expanding the User Interface tree under the
Installation folder. Move down the list of actions and dialogs until you get to the
InstallWelcome dialog entry in the InstallUISequence table. Expand the tree under
this dialog to see what is shown in Figure 12-32.

Figure 12-32: The default sequence of dialogs for the fresh install of a Basic MSI project.

To review how this works, the Windows Installer executes in order of sequence
number all actions and dialogs that have a condition that evaluates to TRUE. During
a fresh installation, the Windows Installer reaches the InstallWelcome dialog, finds
that the condition evaluates to TRUE, and displays the dialog. Since the

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

779

InstallWelcome dialog is a modal dialog, nothing more can happen in the installation
until the end user dismisses the dialog. The user can click the Cancel button, which
terminates the installation, or they can click the Next button, which displays the
LicenseAgreement dialog.

The Next button launches the LicenseAgreement dialog because there is a control
event called NewDialog assigned to the button. The argument to this control event is
the name of the new dialog that is to be displayed when the control event is fired. In
order to implement a wizard sequence in which the end user can move back and
forth, the Back button on the LicenseAgreement dialog fires the NewDialog control
event that has the InstallWelcome dialog as its argument. This is the same scenario
for all the dialogs in the wizard sequence until the final dialog is reached. The button
on the ReadyToInstall dialog fires a control event named EndDialog with the Return
argument. This control event destroys the dialog that is currently being displayed and
returns control back to the Windows Installer so the process can continue executing
the actions and dialogs in the sequence table.

To insert the InstallNTService dialog between the CustomerInformation and
SetupType dialogs, you need to redirect the NewDialog control events attached to the
Next and Back buttons on the affected dialogs. Starting with the InstallNTService
dialog, go to the Behavior icon under the dialog in the Dialogs view. This displays a
list of the controls that make up the dialog (Figure 12-33).

1. Select the Next button from the list of controls and click in the Event
column.

2. Select the NewDialog control event from the drop-down menu.

3. In the Argument column, select from the list of dialogs the SetupType
dialog.

4. In the Condition column, enter the number 1, which serves to make the
condition always TRUE.

5. In similar fashion for the Back button, assign a NewDialog control event
that points at the CustomerInformation dialog.

6. For the Cancel button, you need to select a different control event. You
do not want to dismiss the current dialog, but display a confirmation

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

780

dialog that is a child of the current dialog. To do this, select the
SpawnDialog control event and make its argument the CancelSetup
dialog.

Figure 12-33: Specifying the behavior of controls in the Dialogs view.

You now have the InstallNTService dialog configured properly, but there is no dialog
yet that will display it.

To insert this dialog into the wizard sequence:

1. Go to the CustomerInformation dialog and change the argument for the
NewDialog control event attached to the Next button to be the
InstallNTService dialog.

2. For the SetupType dialog, change the argument for the NewDialog event
for the Back button to be the InstallNTService dialog. Once this

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

781

operation is complete, you have inserted the InstallNTService dialog into
the wizard sequence that is displayed during a fresh installation.

You can build the project and verify that everything works as expected by running the
installation using the Test button in the toolbar.

What you have accomplished so far is to just insert the dialog into the sequence of
dialogs. This does not implement the same functionality that was created in the
Standard project using the dialog function. The first thing that you need to do is to
enable and disable the UserEdit and PasswordEdit edit controls when the end user
selects or deselects the check box control. To implement this functionality:

1. Go to the Conditions tab under the Behavior icon for the
InstallNTService dialog box. Select the UserEdit control and enter two
control conditions as shown in Figure 12-34.

Figure 12-34: Setting control conditions for the UserEdit control.

2. As the condition, use the USERACCOUNT property, which is tied to
the UserCheckBox control. Disable the UserEdit control when the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

782

USERACCOUNT property does not have a value and we enable the
UserEdit control when the USERACCOUNT property does have a
value. The USERACCOUNT property has a value of 1 when the
UserCheckBox control is selected and it has no value when the
UserCheckBox control is not selected.

3. Select the PasswordEdit control and make the same two entries under
the Conditions tab as shown in Figure 12-34.

You can build the project to verify that when the end user selects the check box in
the dialog, the edit controls are enabled. When the end user deselects the check box,
the edit controls are disabled again.

Now you will implement some functionality to prevent the end user from continuing
with installation when the check box is selected, but both edit controls do not have
entries. It might seem that you could just do what you did for the edit controls and
place some control conditions on the Next button. You could disable the Next
button when the user selects the check box control and enable it again when the user
has entered values in both of the edit controls. The problem, however, is that the
Windows Installer implementation of the edit control is such that changes made in
the control are not recognized. Because of this, even though the end user typed
values into both the UserEdit control and the PasswordEdit control, there would be
no message sent to force the revaluation of the control conditions that you placed on
the Next button.

You could ask the end user to click in the first edit control in which values were
entered, or deselect and select again the check box control, or go back to the previous
dialog and come forward again. Any one of these actions would force the
reevaluation of the control conditions and enable the Next button. However, this is
not very intuitive for the user and definitely non-Windows. The best approach to take
is to place a condition on the NewDialog control event assigned to the Next button
and to display a message box telling the user that both edit controls need to have
values before they can continue with the installation.

The condition that you place on the NewDialog control event for the Next button
needs to verify that if the check box is selected, both edit fields have values entered. If
the check box is not selected it does not matter whether values were entered into the
edit controls. The following condition does this.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

783

Not USERACCOUNT Or (USERACCOUNT And ACCOUNT And PASSWORD)

If you leave it at this, the end user will not know what the problem is when they click
the Next button and nothing happens because they have not filled in both edit
controls. To display a message box to the end user instructing them to fill in both edit
controls, you can use one of two methods. You could create a new dialog in the
Dialog Editor with a message in it. This dialog would be launched by a SpawnDialog
control event attached to the Next button. With less work, you can create a simple
custom action that you can attach to the Next button using the DoAction control
event. Based on the appropriate condition, it will be executed when the end user tries
to continue the installation without filling both edit fields. This is the approach that
you will use in this example.

First, create an InstallScript custom action that will display a message. So this message
can be localized if required, identify this message with a string ID in the string table.
The code for this custom action is shown in Figure 12-35.

///
//
// IIIIIII SSSSSS
// II SS InstallShield (R)
// II SSSSSS (c) 1996-2001,
// II SS InstallShield Software Corporation
// IIIIIII SSSSSS All rights reserved.
//
//
//
// File Name: Setup.rul
//
// Description: InstallShield script for defining custom
// actions in a Basic MSI project.
//
///

// Include files for custom actions.
#include "isrt.h"
#include "iswi.h"

// Prototypes for functions that are targets of custom actions.
export prototype InstallNTServiceMsg(HWND);

Figure 12-35: Setup.rul for the message custom action used in the InstallNTService dialog.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

784

///
//
// Function: InstallNTServiceMsg
//
// Purpose: This function displays a message informing
// the end user that both edit controls need
// to be filled in if an NT service is to be
// installed to a user account.
//
///
function InstallNTServiceMsg(hMSI)
begin

 MessageBox(@NTSERVICE_DIALOG_WARNINGMSG, INFORMATION);

end;

Figure 12-35: Continued.

For this custom action to work, you need to go to the String Table Editor under the
General Information view and enter an appropriate message with a string ID
NTSERVICE_DIALOG_WARNINGMSG. Using the @ symbol in front of the string
ID in InstallScript substitutes the value of the referenced string ID. After creating the
code for the custom action, create the custom action as discussed in Chapter 10. The
name used for the custom action in this example is InstallNTServiceMsg.

Once the custom action is created, you need to attach it to the Next button using the
DoAction control event. The argument to this control event is the name of the
custom action that you want executed. Next, you need to place a condition on the
DoAction control event that is the complement of the condition that placed on the
NewDialog control event. The following condition will do this.

USERACCOUNT And ((ACCOUNT Xor PASSWORD) Or (Not ACCOUNT And
 Not PASSWORD))

This condition causes the execution of the custom action if the UserCheckBox
control is selected and neither of the edit controls has a value entered, or only one of
the edit controls has a value entered.

There is one last scenario that you need to handle. This is where the user starts to
enter values into one or both of the edit controls and then decides to deselect the
UserCheckBox control. In this case, if you do nothing, one or both of the
ACCOUNT and PASSWORD properties will have values. What you want is to allow

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

785

these properties to have values only when the NT service is to be installed to a
particular user’s account. Otherwise, these properties need to be NULL. To
implement this functionality, add two more control events to the Next button. These
two control events are the SetProperty control event. This name does not appear in
the list of control events in the Dialog Editor because this control event is
implemented in a special fashion. To use this control event to set the value of a
property, place the name of the property inside square brackets in the Event column
and place the value to which you want to set the property into the Argument column.

Figure 12-36: The final set of control events for the Next button in the InstallNTService dialog.

To set the value of a property to NULL, place a pair of curly braces ({}) into the
Argument column. Therefore, to set the value of the ACCOUNT property and the
PASSWORD property to NULL, you need to place these two properties inside
square brackets in the Event column for the Next button and place a pair of curly
braces in the Argument column. You want to set the value of these two properties to

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

786

NULL only if the UserCheckBox control is not selected. The condition for this is as
follows:

Not USERACCOUNT

The control events for the Next button in the InstallNTService dialog box should
now look like what is shown in Figure 12-36.

When the Windows Installer performs the control events for a control, it executes all
of the events as long as the condition evaluates to TRUE. However, it executes the
control events in the order they are entered into the Event column. To reposition
control events, right-click on the event that you want to move and select Move Up or
Move Down.

You have now implemented in a Basic MSI project the InstallNTService dialog with
the same functionality as created in the Standard project. Since there are a number of
changes you made to the dialog that was created in the Standard project, you can
export this dialog to a dialog file. In order to preserve the dialog that you created in
the Standard project, name this exported file InstallNTService_MSI.isd.

Adding Serial Number Input to the
CustomerInformation Dialog

In a Standard project there are two CustomerInformation dialogs, one without a
control for entering serial numbers and one with such a control. In a Basic MSI
project there is only one CustomerInformation dialog and it has a control for the user
name, the company name, and serial number input. By default, the control for the
serial number is not visible. In this section, you will enable the input of a serial
number in the CustomerInformation dialog and then implement the Windows
Installer mechanism for dealing with serial numbers.

First, we need to discuss the built-in functionality in Windows Installer for working
with serial numbers. This mechanism is not very robust and is useful only for
stopping the installation when the end user is not knowledgeable about how the
Windows Installer works. The basic philosophy of Microsoft and the designers of the
Windows Installer technology is that security needs to reside with the application
itself and not in the installation. The MaskedEdit control in Windows Installer is used

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

787

for serial number input. A MaskedEdit control is an edit control that contains a mask
that defines the separate edit windows into which the user types the serial number. In
addition to the MaskedEdit control, the Windows Installer functionality for serial
numbers is implemented by three properties, one control event, and one standard
action. The properties are PIDTemplate, PIDKEY, and ProductID.
ValidateProductID is the name of both the control event and the standard action.

First, this section looks at the MaskedEdit control to see how several of the
properties come into play. The mask is used to define how a MaskedEdit control is
displayed at run time (Figure 12-37).

Figure 12-37: Specifying the mask for a MaskedEdit control.

The mask for a MaskedEdit control is defined by the PIDTemplate property. The
mask that this property defines consists of three distinct sections, two of which are
optional. With reference to Figure 12-37, the required section of a mask is that which
is bounded by the angle brackets. Inside the angle brackets, you specify various input
format characters that determine the type of input that is allowed. What is inside the
angle brackets determines the visible part of the mask, and whatever the user enters
here becomes the value of the PIDKEY property. Outside the angle brackets you can
optionally specify numbers or letters that are treated as literal constants or specify the
@ symbol which the Windows Installer will replace with a randomized digit.

When the user enters values into the MaskedEdit control, the value of the PIDKEY
property is set. After the serial number input, the installation then executes either the
ValidateProductID control event or standard action to compare the value of the
PIDKEY property against the input format specification. If the input is validated, the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

788

ValidateProductID control event or standard action sets a value for the ProductID
property that is equal to the value entered by the end user plus the characters or
random numbers defined outside the angle brackets.

There are a number of characters that you can use to create the input format
specification. These characters and their meanings are described in Table 12-4.

Table 12-4: MaskedEdit Control Format Specification Characters

Character Meaning

Indicates that only a digit can be entered at its location.

% Alternate character for specifying that only a digit can be input
at that location.

_ Indicates that an alphanumeric character can be entered at its
location.

^ Alternate character for specifying that an alphanumeric
character can be entered at its location.

? Alternate character for specifying that an alphanumeric
character can be entered at its location.

' Alternate character for specifying that an alphanumeric
character can be entered at its location.

- Used to define the separation between one edit window and
another. For any particular edit window, you can use only one
of the formatting characters described in the previous rows of
this table. This character must separate different characters
This creates a separate edit window.

Now that you know how the Windows Installer works when it comes to serial
number, you can implement this capability in the CustomerInformation dialog. The
first thing that you have to do is make some changes in the dialog so the serial

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

789

number MaskedEdit control becomes visible. When you do this, you will also be
removing certain entries that are applicable only to a project that has been upgraded
from InstallShield Express.

The changes that you need to make affect only two controls. The changes you need
to make are described in the following steps:

1. For the SerialLabel Text control, set the Visible property to True. In
addition, go to the Behavior Editor and delete the Show control
condition.

2. For the SerialNumber MaskedEdit control set the Visible property to
True, set the Mask property to [PIDTemplate], and modify the value of
the Property property to be PIDKEY. In addition, go to the Behavior
Editor and delete the Show control condition and go to the Property
Manager under Advanced Views and delete the PIDKEY property so
that it does not have an initial value.

3. Define the PIDTemplate property so it conforms to the serial number
format that you want to use. You can use the same format used in
Chapter 8 where there are three fields. The first field contains six letters
that define the product, the second contains four digits that define the
version of the product, and the third contains ten digits that represent a
sequence number that makes each serial number unique. A possible value
for the PIDTemplate property would then be as follows:

12345<??????-####-##########>@@@@@

In the Property Manager, there is already a default value for the PIDTemplate
property so all you have to do is change the default value to what is shown
above. When you make this change, build the project, and run the
installation, you should see a CustomerInformation dialog that looks like
what is shown in Figure 12-38.

In Figure 12-38 the serial number input control does not have a three-dimensional
look. This is because, for a MaskedEdit control, setting the Sunken property to True
generates an unattractive control so it is customary to leave the Sunken property set
as False.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

790

Figure 12-38: The modified CustomerInformation dialog to include serial number input.

Now that you have an operating control that can receive serial number input, you
need to do something so the user cannot continue past the CustomerInformation
dialog unless the serial number is entered. This functionality is implemented through
the appropriate use of control events attached to the Next button. You need to go to
the Dialog Editor and then to the Behavior icon and make the following changes to
the control event for the Next button.

1. Delete the EndDialog control event because it is not required. This is a
valid control event only for a project that is upgraded from InstallShield
Express.

2. Change the condition for the NewDialog control event to be the
ProductID property.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

791

3. Add ValidateProductID as a new control event with 0 as the argument
and 1 as the condition. This particular control event does not require an
argument, but the Argument column of the ControlEvent table cannot
be NULL, so enter 0 for this value. After adding this control event, you
need to move it so it is executed before the NewDialog control event.
This is because you need to create a value for the ProductID property
before running the NewDialog control event since it is being used as the
condition.

4. In the Property Manager under Advanced Views, delete the ProductID
property. This prevents this property from being persisted in the
database. If this property is persisted in the database, it must have a value
equal to the string "none". If it is persisted, then when you set it using the
ValidateProductID control event, the value that is eventually written to
the registry will still be the persisted value of "none".

Figure 12-39: The control events for the Next button in the CustomerInformation dialog.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

792

When you make the above changes to the control events for the Next button, you
will see what is shown in Figure 12-39.

When you build and run the installation, and click the Next button without entering a
serial number, an error message box appears with Error 1701 because you entered the
wrong key. When you click OK on this message box, the installation returns to the
CustomerInformation dialog where you have another chance to enter a serial
number. As long as you enter any characters in the first edit window and any series of
numbers in the second and third edit windows of the MaskedEdit control, the serial
number will be validated and the installation can continue.

This is not very good security for an installation, but this is all that the Windows
Installer offers as built-in functionality. You can use a custom action to validate the
serial number input. Then you can more strictly evaluate the validity of the entered
value. This is only a little better because a knowledgeable user could easily go into the
database using Orca and remove the serial number check. It is because of the open
architecture of the Windows Installer technology that Microsoft takes the position
that security is the responsibility of the application and not the installation.
Accordingly, Microsoft has included certain API functions that allow applications to
validate the serial numbers that have been written to the registry. A discussion of
these functions is beyond the scope of this book. These functions are fully described
in the Windows Installer help file.

Before moving to the next section, you should export the CustomerInformation
dialog so that it can be used in other projects. When you export it, you should use a
unique file name so that it is clear that it is not the default implementation of this
dialog. A file name of CustomerInformationEx_MSI.isd would be a good name to
use.

Experimenting with Subscription
Subscription is a functionality that is used to display messages in a progress dialog to
inform the user what is happening at a particular point in the installation. To see
subscription in action, you will perform a small experiment where you will place a text
static control on the SetupProgress dialog and then display certain data in this control
while the installation is running.

To perform this experiment, do the following in the Dialog Editor.

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

793

1. In the SetupProgress dialog, add a text static control below the progress
bar and name this control ActionData.

2. Under the Behavior icon for the SetupProgress dialog, click on the
Subscriptions tab at the bottom screen and select the ActionData control.
In the Event column, choose the ActionData event from the drop-down
menu. In the Attribute column, select the Text attribute from the drop-
down menu.

Build the project and run the full installation to see text on the SetupProgress dialog
as various actions are executed. Because the Developer Art application is so small,
you probably cannot read anything because it flashes by so fast.

Figure 12-40: The ActionText table is seen from the Direct Editor.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

794

The information displayed in the ActionData text control comes from the third
column of the ActionText table. Go to the Direct Editor view under Advanced
Views and click on the ActionText table to see what is shown in Figure 12-40.

The first column of the ActionText table has the names of standard actions. The
second column is entitled Description and this column has a description of the type
of action being carried out by the action listed in the first column. The third column,
entitled Template, includes some text as well as numbers inside square brackets.
These numbers represent certain data messages that are published by the action listed
in the first column.

A text static control that subscribes to the ActionText event will display the string in
the second column of the ActionText table when the action listed in the first column
is executed. If you look closely at the design of the SetupProgress dialog, you will see
that there is already a text static control that subscribes to the ActionText control
event. When a text static control subscribes to the ActionData event, as you just did,
the text in the third column is displayed and the numbers inside are filled in with data
according to how the action is designed.

Figure 12-41: The Windows Installer help topic for the InstallFiles standard action.

As an example, the InstallFiles action has the following string in the Template
column:

File: [1], Directory: [9], Size: [6]

C H A P T E R 1 2 U S E R I N T E R F A C E B A S I C S

795

Look at the help topic for the InstallFiles action in the Windows Installer help file to
see what is shown in Figure 12-41.

Figure 12-41 shows a table called ActionData messages. In this table, field [1] gets
filled in with the name of the file being copied, field [6] gets filled in with the size in
bytes of the file being copied, and field [9] gets filled in with the folder into which
the file is being copied. You do not have to display all the data that any action
publishes. You can limit the data that is displayed by editing the Template column of
the ActionText table. You can also edit the text in the Description column of this
table.

Conclusion
This chapter discussed the similarities and differences between how the user interface
is implemented in a Standard project versus how it is implemented in a Basic MSI
project. It began with a brief overview of how the Windows operating system handles
dialogs and then showed that, under the surface, the same actions take place
regardless of the project type.

In a Standard project, you define a dialog in a resource-only dynamic link library and
then provide an InstallScript function that runs the dialog by responding to messages
when the user interacts with the dialog. With a Basic MSI project, you define a dialog
in the Windows Installer database tables. The Windows Installer is responsible for
reading the database and creating a dialog template in memory. Messages in a
Standard project are control events in a Basic MSI project.

In a Standard project, you can use the full range of Windows functionality to define
and implement dialogs. The Windows Installer limits you to the controls and
messages that are built into the technology. Some controls are not fully functional, as
they are in a Standard project. A Standard project provides all the power of Windows
programming, but requires a little more effort than what is required in a Basic MSI
project.

Introducing
Components

Components were introduced in Chapter 2 and discussed in more detail in Chapter 5.
This chapter provides a comprehensive look at components. Components are both
the most important part of creating an installation and the most misunderstood part
of that installation. It is important to know how various types of components are
created, as well as how they are handled by the Windows Installer technology.
Microsoft has defined a number of rules for component creation. Understanding the
reasons behind these rules can provide insight that will help in the creation of
installation packages that are free of problems.

This chapter begins with a detailed look at Microsoft’s component rules and then it
provides some examples of what can happen when these rules are not followed. After
discussing these rules and the ramifications of breaking them, you will create different

Chapter

13

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

798

types of components, in this chapter and the next, using the tools that are available in
InstallShield Developer.

Components and the Windows
Installer

 The subject of how the Windows Installer handles components is important
because, regardless of the project type you use to create an installation, the Windows
Installer handles the actual modifications to the target system. When the Windows
Installer makes changes to a system, it does so by adding components or removing
components from the system. The Windows Installer treats a component as an
indivisible entity so it is all or nothing when a component is added to a system during
an installation. Before discussing the way in which the Windows Installer handles
components, we need to look at a few definitions.

Some Definitions
The Windows Installer keeps track of all components that are installed. It does this by
using the registry. You will be looking at the registry a lot to see what the Windows
Installer is doing there. To understand what you are seeing, you need to first define a
few of the information types that the Windows Installer writes to the registry. These
definitions are listed below:

Packed GUID: The definition of a packed GUID is the most important one to
understand because it will allow you to look in the registry and understand what is
happening when the Windows Installer registers a component. The standard
presentation of a GUID that you see in your projects is the one that requires 38
characters. A packed GUID is a representation that requires only 32 characters
and the order of the characters is modified to enhance registry searches.

There are two actions that you need to take to convert a standard GUID into a
Packed GUID.

� First, reorder the hexadecimal characters as shown in the following
diagram.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

799

The first group of eight and the first two groups of four hexadecimal
characters are written in reverse order. Starting with third group of
hexadecimal characters, every two characters are switched.

� After you have reordered the hexadecimal characters in the GUID,
remove the curly braces at the end of the GUID and also remove the
separating dashes, thus creating a Packed GUID.

As an example, look at the component code for the DeveloperArt component as
it exists in the DeveloperArt_IDEMSI.ism project on the included CD-ROM
and note how the Packed GUID differs from the component itself.

{45858C51-669F-4ACB-8310-26102F56F3F3} – standard format

15C85854F966BCA438016201F2653F3F – packed format

Compressed GUID: A compressed GUID is another representation that the
Windows Installer uses to further reduce the space in the registry to write a
GUID. A Compressed GUID requires only 23 characters and is used primarily to
construct a Darwin Descriptor (see description below). The following is an example
of a Compressed GUID:

10!!!gxsf(Ng]qF`H{Ls

An understanding of this format is important so you know what you are looking
at when you see a jumble of characters like this in the registry. The particular
Compressed GUID shown above is part of a Darwin Descriptor that was written
to the registry when Microsoft Office 2000 was installed.

Darwin Descriptor: A Darwin Descriptor is a combination of the product code
GUID, a feature name, and a component code GUID. There are four different
representations used by a Darwin Descriptor depending on the number of

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

800

features and components that a product contains. The most common
representation is as follows:

{compressed product code}{feature name}>{compressed component ID}

In the above representation, the curly braces are there only as separators and they
do not appear in the actual Darwin Descriptor. An actual Darwin Descriptor
from the registry is as follows:

10!!!gxsf(Ng]qF`H{LsOfficeWebComponents>QLw$@8Dmf(y~S~pL"F`

Darwin Descriptors can be combined into a list in the registry by using the
NULL character as a separator. When more than one Darwin Descriptor is used
as the data for a value name in the registry, it is called a Darwin Descriptor List.
The word Darwin is the code name that was used by Microsoft at the inception
of the Windows Installer technology.

Keeping Track of Components
When the Windows Installer installs a component, it keeps track of where it was
installed and which product installed it. The concept of the Packed GUID is
important for gaining an understanding of how the Windows Installer registers a
component when the component is installed either locally or run from source. If you
look in the registry in the following location, you can start to see how components are
registered.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
 Installer\UserData\

In this location, the UserData key has a number of sub-keys (Figure 13-1). Directly
under the UserData key are keys that are named using the security identifier (SID) for
each user who has an account on the machine. This applies to machines running
Windows NT 4.0, Windows 2000, or Windows XP. Under each key that is named
using the value of a user's SID, there are three keys named Components, Patches, and
Products respectively. In this discussion it is the Components key that is important.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

801

Figure 13-1: The registry location where the Windows Installer registers components.

The SID S-1-5-18 goes by the name LocalSystem and is a special account, which
has all the access that an administrator has. When you are signed on to the target
machine as the administrator, the components of products that you install are
registered under this key. Expand the tree under the Components key and you will
see a long list of keys that have numbers as their names. Each key represents a
component that has been installed on the target machine. The name of the key is the
Packed GUID representation of the component code. The value or values that are
written against each of these component keys is a value name that is the Packed
GUID representation of the product code of the product that installed the
component. The value data that is written against the value name is the key path of
the component.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

802

While browsing through the list of registered components on my machine, I was able
to find an entry that illustrates several important points about the registration of
components. This component is shown in Figure 13-2.

Figure 13-2: Example of a component installed by more than one product.

The values written against the component shown in Figure 13-2 tell us that three
different products installed this same component. Every time that one of the
products that installed this component is uninstalled, the value that represents that
product is removed from the registry until all products are uninstalled. When all
products are uninstalled, the Windows Installer removes the component from the
system. This is the mechanism used by the Windows Installer to reference count
components. Reference counting is used to prevent the uninstallation of one product
from disabling another product that is still on the machine. Reference counting is
critical for any component that is shared between products or between features of the
same product.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

803

Figure 13-2 also tells us that this component will never be removed from the system
because one or more of the products that installed it have made this component
permanent. A component is made permanent by writing into the one of the values a
dummy product code that consists of all zeros. Since there will not be a product that
has such a product code, there will never be a product that can remove this last value
from the registry. This means that the Windows Installer will never remove the
component from the system.

The value data for the component shown in Figure 13-2 indicates that the key path
for this component is a registry entry. The 01 at the beginning means that the registry
entry is written under HKEY_CURRENT_USER and that the key path is the value
name UserData written against the Common registry key. There are a number of
different character combinations that are used to indicate different types of key paths
for a component. It is important to understand that this registry entry identifies the
component’s key path.

Regardless of whether the end user performs a per-machine or a per-user installation,
components are always reference counted in this particular location under
HKEY_LOCAL_MACHINE. This is why any installation using the Windows
Installer requires that the end user have administrative privileges or that the LAN
administrator has granted elevated privileges. There are other component related keys
in the registry but they are used to handle qualified components, not to perform
reference counting. qualified components are discussed briefly at the end of this
chapter.

The Component’s Composition
A component can be composed of anything that you want to add to the target
system. A component can also contain the logic for controlling items already on the
target system, such as an NT service. A component contains resources, which might
be files, shortcuts, registry entries, and any other items that can be added to a
machine.

Because a component is installed as one unit and removed as one unit, it is important
that the resources you place in a component are related to each other. A component
is identified by the component code that is assigned. Two components that have the
same component code are considered the same entity even if they contain different
resources. The Windows Installer handles the situation just described in two different

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

804

fashions depending on whether the key path for the component is a versioned file or
not. If the key path is a versioned file, the version of the file defines the version of the
component. In this case, a component that is already on the system will not be
updated with new resources unless the modified component that is being installed has
a key path file with a greater version. If the component has a key path that is not a
versioned file or is a folder or registry entry, the modified component modifies the
target system with any new resources and uses the file versioning rules to decide
whether to replace files already on the system. The file versioning rules are discussed
in detail in the Windows Installer help.

The previous paragraph covered one of the basic premises underlying the concept of
components: Two components using the same component code are considered two
instances of the same thing and, as such, they need to contain exactly the same
resources. The corollary to this basic premise is that no two components with
different component codes can be used to install the same resource. If this happens
for two components, then uninstalling one of the components removes the shared
resource, disabling the remaining component. This happens because, with two
different component codes, each component is assumed to be unique and the
registration mechanism has two entries in the registry for the two different
component codes. Each component shows that only one product installed it. When
one of them is removed from the system, the shared resource is also removed.

Creating components that do not conform with how the Windows Installer handles
components can result in situations that range from not being able to completely
uninstall an application to disabling applications that are already on the system. The
next section looks at how each of these situations could arise.

Leaving Resources Behind During Uninstallation

For this discussion, we will assume that there are two products, where the first
product installs the original version of the component and the second product installs
a newer version of the same component where resources have been added. The first
product is installed and then the second product with the modified component is
installed. At this stage, the component has a reference count of two in the registry, as
described in the Keeping Track of Components section. The second product is
uninstalled and the only thing that happens is that the reference count is decremented
by one. When the first product is uninstalled, the cached installation database for this
product does not have knowledge of the new resources that the modified component

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

805

added to the system. The resources that were added by the installation of the
modified component are left behind when the first product is uninstalled.

A similar situation arises when the modification of an existing component consists of
removing resources instead of adding them. In this scenario, the order in which the
two products are uninstalled is reversed. Here the first product is uninstalled first and
then the second product. Once again, resources are left on the system.

Disabling Installed Applications

This section presents two completely different scenarios, both of which result in
disabling an installed application. In the first scenario, a component is modified by
adding a new file that is incompatible with the installed product’s requirements.
Another product installs this component and the reference count is incremented to
two. Since the new file has a later version than the file in the original version of the
component, the file that on the system is overwritten. The product that requires the
original version of the file is disabled because it cannot use the new version of the file.

In the second scenario, there are two different components with two different
component codes. The two different components install the same resource. The two
products that contain these components are installed and each of these components
gets a reference count of one. One of these components is removed when the
product that installed it is uninstalled. The reference count is decremented to zero and
the shared resource is removed, thus disabling the other product that is still installed
and needs the resource.

Determining When to Change the Component Code

It is okay to keep the same component code when revising an existing component
when testing shows that the revised component is completely backward compatible
with all previous versions of the component. This might be possible for the simplest
of components, but it can be argued that true backward compatibility is nonexistent
and that any change to a component requires that a new component code be
assigned.

If you agree with the supposition that true backward compatibility does not exist, you
have to do some additional work when revising a component, in addition to changing
its component code. You have to change the name of every resource that is being

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

806

installed by the new component so that it does not conflict with the resources
installed by the previous component. This is necessary to avoid overwriting the
resources installed by the previous component. These required changes include the
following:

Files: Change the name of the files in the component or change the name of the
folder into which the file is to be installed.

Registry Entries: Change the name of the key under which values and data are
written.

Shortcuts: Change the name of the shortcut.

For every resource, you need to ensure that both components can exist on the same
system without one component overwriting any of the resources installed by the
other component.

The best way to understand the impact of ignoring the basic requirements for
constructing a component is to run experiments with two different products that
install the same components. There are two such projects on the included CD-ROM
that install two different versions of the same simple application. The names of these
two projects are Editor10.ism and Editor20.ism. You can add resources to one
version of the component and see what happens when both products are installed.

Rules for Creating Components
You do not need to create a component for every file in your application. Having one
component for every file would be unmanageable for an application the installation
package creation process. In addition, it would bloat the registry after the application
is installed because of how the Windows Installer registers components. Microsoft
provides a few rules that can help you determine how many components you need to
create. These rules cover only a subset of all the files that typically make up an
application. You need to determine the component granularity you need to use to
create your installation.

This section reviews the guidelines that Microsoft has defined for creating
components. After discussing the Microsoft guidelines, this chapter provides some
guidelines for the remaining files that are typically part of an application.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

807

� Never create a component that is already available in a merge module. You
should include the merge module in your project instead and make sure that
none of the resources in the merge modules are added to any other
component that you create in your project. Merge modules are introduced
later in this chapter.

� Create a separate component for each .exe, .dll, and .ocx file in your
application. In each component, designate these files as the key path for the
component. These particular types of files are modified more frequently
because they implement the main functionality of an application. It is much
easier to distribute a new version of a component if it contains only one of
these files than if it contained many.

� Create a separate component for each .hlp and .chm help file. These files
need to be designated as the key path for the component. The associated .cnt
or .chi file needs to be added to the component. This allows an easier
distribution of modified components because one help file is involved in the
creation of each component.

� Create a separate component for each file that is the target of a shortcut and
make this file the key path of the component. In most cases, this rule is
covered by the fact that you need to place every .exe in its own component.

� Any resources, such as registry entries, associated with a particular file should
be placed in the same component that contains the file. Since the files in a
component can only be placed in a single folder, files that need to go into
different folders have to be placed in different components. It is acceptable,
however, to have the files in more than one component installed to the same
folder.

The above rules provide direction for only a subset of all the files that normally make
up an application. For the remaining files of an application, you need to make some
decisions before you can know how to place these files into components. The first
decision that needs to be made is to assess whether there are any resources that might
be acceptable now to ship in the same component but are likely to be shipped
separately in the future. If you can make that determination, you should ship these
resources in separate components now and not wait until later.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

808

If you want the Windows Installer to be able to check the health of a file, then this file
needs to be the key path for the component and every file that you feel is important
in this respect needs to be in its own component. This tends to generate a large
number of components and, for a large application, can slow down performance. A
large number of components is also harder to manage at build time and will bloat the
target system’s registry at installation. In contrast, you can place the remaining
application files in just enough components to match the number of folders into
which files need to be copied. This is easier to manage at build time and possibly
increases performance when it comes to searching for components. It does not,
however, provide a robust self-repair capability that is one of the features of the
Windows Installer.

Now that we have looked at the general rules for creating components, we need to
look at the guidelines that define specific actions required when creating components.
InstallShield Developer handles some of these rules when you author a component,
but you are responsible for compliance with other rules. These rules are discussed in
the following list:

� Depending on the type of key path that is defined for a component, there
need to be reciprocal relationships between the Component, File, and
Registry tables. The Windows Installer uses the key path defined in the
Component table to detect the presence of the component on the target
system during an installation. The key path is normally a foreign key into the
File or Registry table and both tables have a reference back to the
Component table.

� A component that installs font files needs to have as its destination, the
location defined by the FontsFolder path property. The Windows Installer
sets the value of this property to the absolute path of the target system Fonts
folder. When a font component is created, an entry must be made in the
Font table. The Component Wizard in InstallShield Developer makes the
proper entries when you use it to create a font component. One thing that is
necessary to do for a font component that is not handled by the Component
Wizard is to make the font component permanent. Fonts are not reference
counted so unless you make a font component permanent it will get
uninstalled when the component is uninstalled. This may be what you want if
the font is proprietary to your company.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

809

� There should never be two different components created that have the same
component code. Since the component code is not part of the primary key,
InstallShield Developer builds the Component table into the database with
the duplicate component code. No warning is issued.

� A component that has a destination set to the SystemFolder property should
be defined as a permanent component by setting the Permanent property to
Yes for the component in the Setup Design view.

� A component that uses an empty folder as the key path for the component
needs to have the empty folder defined in the CreateFolder table.

� To enable advertisement, any component that installs the extension server for
an extension listed in the Extension table or is referenced by an advertisable
shortcut listed in the Shortcut table must have a component code.

� A dynamic link library that is called using the load-time linking method must
be placed in a component associated with the feature that installs the DLL’s
client.

� If a component contains a file that is on the System File Protection list, that
file must be the key path for the component. This means that there needs to
be a separate component for every file included in the installation that
appears on the System File Protection list. This rule is not automatically
covered by the other rule about .exe, .dll, and .ocx files since there are many
more files with different extensions that appear on the System File Protection
list. Also, a file that is on the System File Protection list needs to be marked
as permanent and needs to be installed locally and it cannot be installed to
run from source.

� Every component that is defined in an installation must be associated with a
feature. InstallShield Developer handles this requirement for you.

� There cannot be two components that install the same named file to the
same folder. This points out that the name of a file resource consists of the
absolute path of the file plus the name of the file and its extension. As long as
two files with the same name are installed to two different locations, there is
no danger of overwriting a resource of one component with the resource of
another component.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

810

� A component that installs a COM server or an extension server should not
use the Registry table to make the necessary entries in the registry at
installation time. Instead, the Class, Extension, ProgId, Verb, and MIME
tables should be used. This is necessary to support advertisement because the
entries in the Registry table are not written until the associated component is
installed. The entries listed in the Class, Extension, ProgId, Verb, and MIME
tables are written at the time the application is advertised. InstallShield
Developer handles this in a correct manner.

� A component that is defined to run from source should not be compressed
into a cabinet file.

� Any component that installs to a user's profile must have a key path that is a
registry entry written to HKEY_CURRENT_USER.

� Any component that installs a standard shortcut must have a key path that
that is a registry entry written to HKEY_CURRENT_USER.

� Any component that creates registry entries of the REG_MULTI_SZ,
REG_BINARY, REG_EXPAND_SZ, or REG_DWORD needs to be
conditioned so that it will not be installed on Windows 95. The Windows 95
registry does not support these types of entries. It supports only the
REG_SZ type.

� A component should not use a companion file as the key path. Companion
files are discussed at the end of this chapter.

� A component must not include both per-machine and per-user data. For
example, this means that a component should not write registry entries to
both HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER. If it is
not known until installation time whether it will be a per-machine or a per-
user type of install, all registry entries need to be defined under the
HKEY_USER_SELECTABLE key in InstallShield Developer.

� A component should not install an application file, .ini file, or a shortcut file
into a per-user only folder unless the package is designed specifically to
perform only a per-user installation. The predefined per-user-only folders are:
AppDataFolder, FavoritesFolder, NetHoodFolder, PersonalFolder,

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

811

PrintHoodFolder, RecentFolder, SendToFolder, MyPicturesFolder, and
LocalAppDataFolder.

� If a component installs a non-advertised shortcut, the shortcut’s target must
be installed by the same component. This rule is to avoid having a
component that installs the shortcut or the component that installs the
shortcut’s target from getting into different states.

� A component that has a NULL component code must not be defined as
being a permanent component.

� Do not specify a component to be run-from-source if this component is
installing an NT service. The Windows Installer does not support this type of
installation and any NT service that runs with the privilege level of the local
system must be run from the local hard drive.

Now that you know the rules that you should follow when creating components, we
can discuss the component creation tools available in InstallShield Developer. After
that, you will be able to create some components.

The Component Creation Tools
So far in this book, we have discussed how components are automatically created
when you add files to a feature in the Features view. You have also created
components in the Setup Design view under Advanced Views. Each of these
approaches is acceptable for creating a few components that install one or several files
that do not require any special treatment beyond that discussed in Chapter 10.

However, applications usually need to define components that contain many files, the
number of which fluctuate dramatically during the development process. There are
also a number of special components that need to be created and that have unique
properties such as an NT service component or an ODBC component. This section
introduces the InstallShield Developer tools available for creating special types of
components.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

812

Dynamic File Linking
Most applications have at least a few components that install a lot of files, such as
graphics files or templates. The number and types of these files can change
dramatically from build to build, so it can require a substantial effort to keep the files
up-to-date that have been linked into this type of component. To solve this problem,
InstallShield Developer provides the capability to link to a folder, called a dynamic
link, and to use wild cards to specify which files in the folder should be included in
the component. When you link to individual files, you are creating a static link. It is a
time-consuming manual operation to remove links to files that no longer exist in the
component and to add static links to new files, particularly if this needs to be done
before every build.

Dynamic File Linking Basics

You can initiate dynamic file linking for a component by doing the following:

1. Go to either the Setup Design view or the Components view under
Advanced Views.

Figure 13-3: Context menu for initiating dynamic file linking.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

813

2. Click on the Files icon under the name of the component where you
want to implement dynamic file linking.

3. Right-click in the panel to the right of the screen that lists the
component’s files and select Dynamic File Linking from the context
menu (Figure 13-3). The Modify Dynamic Links dialog is displayed
(Figure 13-4).

Using the Modify Dynamic Links dialog, you can create new links, modify links, and
delete links. If no links exist, only the New Link button is enabled. If one or more
links already exist in the component and you click on one of those links, all three
buttons are enabled.

Figure 13-4: The Modify Dynamic Links dialog showing one dynamic link.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

814

There are four columns of information in the Modify Dynamic Links dialog. This
information displays, in the first column, the name of the path variable that points at
the folder to which the link has been created. The other three columns show the
options that were selected when the dynamic file link was created.

To create a dynamic link do the following:

1. Click the New Link button to display the Dynamic File Link Settings
dialog (Figure 13-5).

2. In the Dynamic File Link Settings dialog, browse to the folder where the
files to be included in the component are located.

Figure 13-5: The Dynamic File Link Settings dialog.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

815

3. Select the options that you want. The impact of selecting one or more of
the options in the Dynamic File Link Settings dialog is discussed in the
next section.

4. Click OK to close the Dynamic File Link Settings dialog and display the
Path Variable Recommendation dialog.

5. Select or enter the path variable to be used to represent the dynamically
linked folder and click OK to close the Path Variable Recommendation
dialog.

6. In the Modify Dynamic Links dialog, complete the dynamic file linking
operation by clicking OK or click the Apply button to create a dynamic
link to another folder for the same component.

As an experiment you can open the DeveloperArt_IDEMSI.ism project and add a
temporary feature and component. For the component, create a dynamic link to the
folder where the source files are kept for the Developer Art application. When you
create this dynamic link, you will see something like what is shown in Figure 13-6.

Figure 13-6: A dynamic file link to the Developer Art source folder.

There are several interesting things to note in the Component Files view (Figure 13-
6). If you right click on one of the files in the list, you will see that you cannot select a
dynamically linked file as a key path for the component. This is because the
component sees only the folder and the files that are in the folder are added to the
project only at build time. The files in the folder can change over time and a file could
be removed from the folder between builds. If you want to designate a file as the key
path for the component, then that particular file needs to be statically linked. In

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

816

addition, if the file resides in the folder at which the dynamic link points, it needs to
be specifically excluded from the dynamic link using the exclude option in the
Dynamic File Link Settings dialog.

Another thing to note in the Component Files view (Figure 13-6) is that dynamic file
linking does not recognize the best practices rules that were discussed in Chapter 5.
When the appropriate option is selected, InstallShield Developer enforces these basic
rules. Dynamic file linking is used to include files from a folder, so the dynamic link
itself contains no intelligence about the file extension. Because of this, it is not
possible to enforce best practices rules for files included using dynamic file linking.

To make dynamic file linking work efficiently, you need to create a specific directory
structure on your build machine that matches the directory structure of your
application after it is installed. The directory structure should match all the way down
to the leaf folders in the directory tree. Where dynamic file linking is applicable, you
can create links to these folders on the build machine and, before each build, you can
populate each folder with the latest files to be included in the application. This
process can be more efficient with the dynamic linking options discussed in the next
section.

Dynamic File Linking Options

The Dynamic File Link Settings dialog (Figure 13-5) offers a number of options. The
“Include subfolders” option allows you to include any subfolders that may be under
the folder identified in the “Source folder” edit field. The “Self-Register all files”
option allows you to have all the dynamically linked files self-registered. The subject
of self-registration is covered in the COM Components section in Chapter 14.

The “Include all files” and “Include/Exclude…” radio button group allows you to
either include all files in the source folder, the default, or to include and/or exclude
files based on file specifications that can use wild cards if necessary. Multiple
specifications are separated using a comma delimiter. There is also a method that can
be used to maintain the consistency of component codes and file identifiers used
from build to build.

INCLUDING/EXCLUDING FILES

To include or exclude specific file types from your component, select the
“Include/exclude files based on the following wild cards” option and enter the

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

817

specifications for files that you want to include and/or exclude from the component.
If you select the second radio button and enter nothing in either of the edit fields at
the bottom of the Dynamic File Link Settings dialog, the component will include all
the files in the source folder.

One of the most common uses for excluding files from the dynamic link is to identify
a file that should always be used as the component’s key path. When you do this, you
can add the excluded file statically and then set it as the key file. As an exercise, go to
the component shown in Figure 13-6 and make the ArtWork.dll file the component’s
key file. To do this:

1. Right-click in the Files list panel and select Add.

2. Browse to the location where the ArtWork.dll file is located and add this
file to the component.

3. The Path Variables Recommendation dialog appears. Make your
selections in the dialog and click OK. The following dialog appears
(Figure 13-7).

Figure 13-7: The file replacement dialog.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

818

4. Click Yes to statically add the ArtWork.dll file to the component instead
of adding it dynamically. Note that the icon beside this file has changed
and that you can now set it as the component’s key path.

5. Set this file as the key path by right-clicking on the file and selecting Set
Key File. A yellow key icon appears beside this file, indicating it as the
component’s key path.

By performing the actions described in the previous procedure, you have
implemented changes in the dynamic file link specification. To view what happened
to this specification, go back to the Modify Dynamic Links dialog, select the dynamic
link and click Modify. You should see what is shown in Figure 13-8.

Figure 13-8: The modified dynamic link specification.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

819

The ArtWork.dll file name appears in the Exclude files edit field and the
“Include/exclude…” radio button is selected. Deciding on the file or files to be
included/excluded prior to setting the dynamic link would be the proper approach to
follow. Also, one of the first actions that you should take after you create a
component is to statically link the file that is to be the component’s key path and set it
as the key path.

INCLUDING SUBFOLDERS

When you select the “Include subfolders” check box in the Dynamic File Link
Settings dialog, you enable the creation of additional components that contain the
files that exist in the subfolders. These additional components are created only at
build time and, as such, are not visible in either the Setup Design or Components
views. However, the files that are contained in these subfolders and therefore
included in the additional components are displayed in the Files list panel.

To understand how including subfolders works, do the following example:

1. Create a subfolder named SubFolder under the folder where the
Developer Art source files are stored.

2. Copy into this subfolder the all the Developer Art source files so you
now have a parent folder and a subfolder that contain the same files.

3. Go to the component that is shown in Figure 13-6, except now it has the
ArtWork.dll file as the key path for the component.

4. Modify the dynamic link specification for this component to include
subfolders. The result of these actions is shown in Figure 13-9.

You can see in Figure 13-9 that there are no new components shown on the left of
the screen but that there are more files displayed in the Files list panel. The new files
now include the subfolder as part of the file name. When subfolders are added to the
dynamic file link specification, there is a default limit of 500 files from all subfolders
that can be shown in the Files list. This is to avoid the situation where the subfolders
that are part of the dynamic file link contain thousands of files. Modifying the data for
the FileItemsCount value under the following registry key changes the number
of files that can appear in the Files list.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

820

HKEY_CURRENT_USER\Software\InstallShield\Developer\7.0\
 Project Settings

Figure 13-9: The dynamic link that now includes subfolders.

You need to think of the component where the dynamic link was first created as the
parent folder. All components that are created because you selected the “Include
subfolders” check box will inherit all the properties of the parent component, except
the destination property and the key path property. The destination property for each
of the child components is created from the destination property for the parent
component. Appending the path to the subfolder on the build machine modifies the
destination for the parent component. This modified path becomes the value of the
destination property for the child component.

For the example shown in Figure 13-9, the component used to create the dynamic
file link has a destination defined by the INSTALLDIR property. The folder into
which the files in the subfolder will be installed on the target system will be the value
of the INSTALLDIR property with a subfolder under this location named
SubFolder. The default for this location will be the following if the end user does not
change the destination during the installation.

C:\Program Files\InstallShield\Developer Art\SubFolder

The key path for each of the components that is generated from a subfolder on the
build machine is the first file in an alphabetically ordered list of the files in the
component. The key path for the components that are dynamically created at build
time from subfolders cannot be modified inside the project file. Only post-processing

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

821

the Windows Installer database after it is created can do this. When you build the
project with the temporary feature and component as shown in Figure 13-9, four
warnings appear to indicate that different components are installing the same four
files to the same location. To eliminate these warnings, go to the Destination property
for the temporary component shown in Figure 13-9 and add a subfolder name under
the [INSTALLDIR] property. For example, modify the Destination property as
follows:

[INSTALLDIR]\SubFolder

When you make this modification, the files in the parent component will be installed
to a folder named SubFolder under the root install location for the product. The
files in the component created from the subfolder named SubFolder on the build
machine will be installed to a folder under the root install location of
SubFolder\SubFolder. After modifying the Destination property, the build
will not generate any errors. The media image for this build looks like the default
installation directory structure (Figure 13-10).

Figure 13-10: The media directory structure for components created using dynamic linking.

In this section we have been using terms such as parent component and child
component. Note that this is only a build-time construct. In the Windows Installer

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

822

world, there is no such thing as a subcomponent. All components are on the same
level and it is only features that can have a hierarchy.

MAINTAINING CONSISTENCY BETWEEN BUILDS

When subfolders are included in the dynamic file linking settings, each subfolder
defines a separate component, as discussed in the previous section. Each time the
project is built, the components generated from the subfolders are recreated and this
generates new component codes and other identifiers as necessary to link the various
tables together. The dynamically generated component codes and other identifiers are
all GUIDs, with most of the identifiers a modified version of a GUID. You can see
this by opening up the DeveloperArt_IDEMSI.ism file created in the last section.
This file can be opened up using Orca and Figure 13-11 shows a portion of the
Component table for this build.

The highlighted row in Figure 13-11 is the dynamically created component. The
component identifier in the first column is created from the component code in the
second column. The component identifier modifies the component code by
removing the dashes and the curly braces and adding an underscore character in
front. All other identifiers are also GUIDs that are modified in the same fashion. An
immediate example of this is the entry in the Directory_ column where there is a
foreign key into the Directory table created from a modified GUID generated during
the build. Browse through this database using Orca to see all the locations where
dynamically created entries are entered into tables.

Figure 13-11: The Component table for a build that contains a dynamically created component.

There will be situations when you want to know the value of these dynamically
created identifiers. You can use this information for performing post processing on

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

823

the database after a build or you might want to have a custom action that can access
one of these components during the installation. To do this, you need to have some
method for preventing these component codes and identifiers changing from one
build to another. You can do this using the Previous Package property under Step 7
in the Releases view.

The Releases view displays a tree of all the product configurations and releases that
have been generated for a particular project. One of the properties that can be set for
a release is the Previous Package property. The documented purpose of this property
is to allow the optimization of patch packages. However, identifying a Windows
Installer package in this property also serves the purpose of forcing each build to use
the same component codes and other identifiers that were generated for the
dynamically created components in the referenced package.

To experiment with this, follow the steps listed below:

1. Build the project that contains the components using dynamic file linking
and are also using subfolders to create dynamic components.

2. After each build, open the Windows Installer database in Orca and verify
that the component code and other GUID based identifiers change each
time.

3. Copy the DeveloperArt_IDEMSI.ism file to a location that is not in the
path of the build. A good location would be a folder directly under the
MySetups folder. You need to do this because every complete build
deletes the complete build directory structure and recreates it.

4. Identify the file that you just copied as the value for the Previous Package
to be used for the release. You do this in the Releases view as shown in
Figure 13-12.

5. Run several more builds and, after each build, open the Windows
Installer package using Orca. Note that the component code and
identifiers no longer change from one build to the next.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

824

Figure 13-12: Specifying a base MSI package in the Releases view.

InstallShield Developer adds a custom table named ISDFLInfo to the Windows
Installer database whenever there are dynamically created components. The
information in this table enables the build process to use a previous package as the
basis for maintaining the same component code and identifiers for each dynamically
created component. Whenever your project adds new subfolders so that new
dynamic components are created, you need to copy the first build of the Windows
Installer package to the location where the previous packages are being stored. This
way, you maintain consistency of the component codes and identifiers from one build
to the next.

Creating components that use dynamic file linking is a great efficiency booster.
However, because there is no real control over components that are created at build
time, dynamic file linking is valid only for creating components that copy many files
to the target system and when these files do not need associated registry entries,
shortcuts, or environment variables,. When creating components that have all of

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

825

these other requirements, these components must be created statically so each
component’s associated data can be added into the project. InstallShield Developer
provides a tool called the Component Wizard to assist you in creating components.

The Component Wizard
You can access the Component Wizard from the Setup Design view, the
Components view, or the Files view. The components created with this wizard are
added to the project file and can be edited as necessary. In the Setup Design view,
you can launch the Component Wizard by right clicking on a feature in the Setup
Design tree and selecting Component Wizard. In the Components view, you can
right-click on the Components tree icon and select Component Wizard.

Figure 13-13: The Component Wizard Welcome panel.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

826

Even though the same Component Wizard is launched from any of these views, the
results are a little different. In the Setup Design view, the Component Wizard creates
a component that is associated with a specific feature. If you want to associate the
component with other features, you have to go to each of the other features, right
click on the feature, and select the Insert Components option to add the component
to the selected feature. In the Components view, the Component Wizard creates a
component that is added to the project file but is not associated with any feature.
When a component is not associated with a feature, it will not be built into the
Windows Installer database. To associate a component created in the Components
view, you need to switch to the Setup Design view and use the Insert Components
option to add the component to one or more of the features.

When the Component Wizard is launched, an initial panel provides you two different
approaches that can be used to create components (Figure 13-13).

In the Welcome panel, you can select to create components automatically using the
Best Practices rules or to create individual components of special types. We will
discuss each of the special types in Chapter 14. This section discusses what happens
when you want to automatically create components using the Best Practices rules.

In the first part of this chapter, we looked at many rules for creating components.
The Best Practices rules as defined in InstallShield Developer are a small but
important subset of all the rules. The Best Practices rules are repeated here in the
following list:

� No component should be created to install a file if that file can be installed by
a component already contained in a merge module.

� Every .exe, .dll, .ocx, .hlp, and .chm file needs to be in its own component.

� Each of the file types listed in the second rule needs to be set as the key path
for its component.

The process that the Component Wizard follows to create a set of components is to
first ask for the destination to be used for all the components that will be created. The
input of the destination folder is done in the Destination panel (Figure 13-14).

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

827

Figure 13-14: The Best Practices-Destination panel in the Component Wizard.

You specify a destination by either selecting one of the predefined locations or
creating a new location. However, you can change this location later. What you enter
here is used to create the component but, because all the components generated by
the Component Wizard are available in the project file, you can go to the Setup
Design or Components view and define a different destination for any component.

The Files panel is used to select the files and/or folders that contain the files to be
placed in the components that are created (Figure 13-15).

The purpose of the files panel is simply to collect all the files that you want the
Component Wizard to analyze and then divide them up into appropriate
components. You can add individual files or you can add entire folders. If you add a
folder, all the files in that folder and all the files and subfolders will be analyzed. You
can add folders and then you can select those files you do not want and remove

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

828

them. When you select a folder that has subfolders, the name of the subfolder will be
appended to the destination that was selected for all the components.

Figure 13-15: The Best Practices-Files panel in the Component Wizard.

The analysis process starts as soon as you click the Next button in the Files panel.
The first thing that it does is to verify that an available merge module cannot be used
to install any of the files. Merge modules are discussed briefly in Chapter 14 but a
merge module is a way to encapsulate one or more components so that they can be
redistributed.

The locations in which the Component Wizard will look for merge modules are
defined in on the File Locations tab of the Options dialog. In the Merge Module
Locations edit field is a comma-delimited list of folder locations where merge
modules reside on the build system. You can add additional locations to this list by
browsing to those locations. By default, three locations are predefined:

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

829

� The location where the Microsoft merge modules that ship with InstallShield
Developer are installed. This location, by default, is as follows:

C:\Program Files\InstallShield\Developer\Modules\i386

� The location where the merge modules, created by InstallShield Software
Corporation, are installed. This location, by default, is as follows:

C:\Program Files\InstallShield\Developer\Objects

� The location, on the build machine, where the custom merge modules
created by the setup developer are stored. This location is typically set to the
following:

%USERPROFILE%\My Documents\MySetups\MergeModules

If merge modules are placed on the build system in locations that are not specified in
the Options dialog, the Component Wizard does not know anything about them.
The Component Wizard does not create a component for any file that should be
incorporated into the project using an existing merge module.

Once the Component Wizard has ascertained what files need to come from merge
modules, it groups the remaining files according to extension and places them in
separate components according to the Best Practices rules. The files that do not have
the extensions defined in the rules are lumped into one component. The components
created for individual files are given a name the same as the name of the file including
the extension.

Part of the analysis of the files that the Component Wizard performs is to determine
which files are COM servers. Those files that are COM servers have the COM
registration information extracted and placed in the proper database tables. For COM
servers that are executable files, the Component Wizard looks for the
OLESelfRegister string in the version resource. If it is there, COM information is
extracted.

When the analysis is complete and the components have been created, the
Component Wizard displays the Summary panel (Figure 13-16). This informs you of
the results of the component creation and also shows any files that need to be
installed using merge modules.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

830

Figure 13-16: The Summary panel in the Component Wizard.

Using the Best Practices option in the Component Wizard is a very efficient approach
to creating components in an automatic fashion. Since COM is a widely used
programming approach, the fact that COM information is extracted as part of the
automatic creation of components is a major help in getting a large project up and
running.

The next section discusses another way to efficiently create components by scanning
applications or by scanning Visual Basic project files.

Scanning
Another handy functionality in InstallShield Developer is the ability to determine
what dependencies files might have, so all the needed files can be added to a project.
Finding dependent files is implemented in InstallShield Developer through three

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

831

different methods of scanning that are available in the Dependencies view under Step
2 in the View List (Figure 13-17). The Static Scanning wizard scans the files already
added to a project for any dependencies they may require. This wizard scans all .exe,
.dll, .ocx, .sys, .com, .drv, .scr, and .cpl files in a project and allows any detected
dependencies to be added to the project. The new files added to a project are added
to the same feature as the file that depends upon them, thereby ensuring they are
installed when needed.

Figure 13-17: The Dependencies view.

The Dynamic Scanning wizard is used to add an executable's dependency files to a
project. This wizard scans a running executable for all DLL and OCX dependency
files and automatically adds them to the project. The wizard can scan for an
executable that is already a part of the project, or it can add a new executable to the
project prior to starting the scanning process. Dynamic scanning requires you to run
the application that you are dynamically scanning. In order to obtain good results, you
need to be able to exercise all possible options in this application. This may be easy to

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

832

do when the application is not too large, but might present problems for a complex
application.

The Visual Basic Wizard is used to import Visual Basic projects into a setup project.
The wizard scans the setup project to determine any file dependencies and displays
the results of the scan, showing the files that can be added to the setup. The option is
then provided for adding the Visual Basic project and its dependencies to the setup
project. To scan and import a Visual Basic project, Visual Basic 6.0 must be installed
on the build machine. You can launch the Visual Basic Wizard from the Project
drop-down menu, in addition to launching it from the Dependencies view. You can
also use a Visual Basic project to create a new setup project in addition to just adding
components to an existing project.

The wizards used to perform the three types of scanning operations are very similar
in their look and feel. Therefore you will experiment with only the Visual Basic
Wizard. Before you do this, we need to discuss how to control the file filtering during
a scanning operation.

Filtering Files in Dependency Scanners

Functionality common to all three dependency scanner wizards is the option to filter
the files that are added to a project. This can be helpful to prevent certain files from
being added to projects and then having to remove them. Two initialization files that
are named userscan.ini and iswiscan.ini are used to manage file filtering. These two
files are found in the following location:

C:\Program Files\InstallShield\Developer\Support

The iswiscan.ini file contains a list of common system files that can be found on all
machines running the Windows operating system. These files are always filtered
during a scanning operation. The top part of this file is shown in Figure 13-18.

; iswiscan.ini
;
; Files to filter out of static and dynamic dependency scan

[Filter]
6to4svc.dll=1
aaaamon.dll=1

Figure 13-18: The format of the Isiwscan.ini file

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

833

access.cpl=1
Accessibility.dll=1
acctres.dll=1
acledit.dll=1
aclui.dll=1
acsetupc.dll=1
acsmib.dll=1
acssnap.dll=1
activeds.dll=1
activeds.tlb=1
actxprxy.dll=1
admin.dll=1

Figure 13-18: Continued

This file should never be modified. If you need to override one or more of the files
listed in this file, you should use the userscan.ini file. The userscan.ini file contains two
sections (Figure 13-19).

; userscan.ini
;
; Files to filter/not filter out of static and dynamic scan

; To filter additional files, add one line for each file under
; the [Filter] section.
; For example: (Note: the following line is a sample. When you
; add a line, the semi-colon should not be included)
; MFC42.DLL=1
[Filter]

; To disable the filtering of a specific file listed in iswiscan.ini,
; add a line under [Do Not Filter] section.
; For example: (Note: the following line is a sample. When you add a
; line, the semi-colon should not be included)
; WININET.DLL=1
[Do Not Filter]

Figure 13-19: The format of the Userscan.ini file.

The userscan.ini file is where you can define your own custom list of files to be
filtered. The files that you want to have filtered whenever you perform a scanning
operation are placed under the [Filter] section of this file. To override the
filtering that is controlled by the iswiscan.ini file, you need to enter the names of the
common system files that you do not want filtered under the [Do Not Filter]
section. This approach works for all but a small subset of the files listed in

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

834

iswiscan.ini. The following list of files will always be filtered regardless of entering
them under the [Do Not Filter] section of the userscan.ini file.

� Kernel32.dll

� Ntdll.dll

� User32.dll

� GDI32.dll

� Advapi32.dll

� Shell32.dll

� Ole32.dll

Scanning a Visual Basic Project

This example uses the DeveloperArt_IDEMSI project. The first thing that you need
to do is make sure that the temporary feature and component that were added to this
project when you were experimenting with dynamic file linking are deleted. On the
included CD-ROM there is a small Visual Basic application that you can use to
experiment with the Visual Basic Wizard. This Visual Basic application is named
GUID Generator and can be used to create GUIDs and also to turn a normal GUID
into a packed GUID, as defined at the beginning of this chapter.

With the DeveloperArt_IDEMSI project open, launch the Visual Basic Wizard. Click
Next to move past the Welcome panel. The Specify Visual Basic Project File panel
appears (Figure 13-20). This dialog allows you to browse to either a .vbp file or a vbg
file. You should browse and find the GUIDGenerator.vbp file using the Visual Basic
Project edit field. Below this edit field are three options. Normally you will want to
select to rebuild the project before the wizard does the scanning to make sure the
latest evaluation is performed of the setup project files. For this example, this option
does not need to be selected because there is no possibility that any of the Developer
Art files are duplicated in the GUIDGenerator application.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

835

Figure 13-20: The Specify Visual Basic Project panel.

The Filter files option is selected by default and this causes the wizard to look in the
userscan.ini file to see if there are any entries in this file plus it uses the iswiscan.ini file
to filter the common system files.

The last option allows you to identify a dependency file created by the Visual Basic
Package and Deployment wizard. Creating a dependency file is one of the options
that can be selected when using the Visual Basic Package and Deployment wizard. A
dependency file is a text file that has an initialization file structure and part of the
information in this file is a list of the dependent files.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

836

Figure 13-21: The Scanned Dependencies panel in the Visual Basic Wizard.

Click Next to begin the scanning process. When the scanning process ends, the
Scanned Dependencies dialog is displayed (Figure 13-21). Click the Select All button
to add all of the dependencies to the project.

Now click Next to move to the Scan Results dialog (Figure 13-22). This panel shows
the scan results and what will be added to the project when you click the Next button.
This panel gives you the option of returning to the previous panel and changing the
selection that was made there.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

837

Figure 13-22: The Scan Results panel in the Visual Basic Wizard.

Click the Next button to add the dependencies to the project. The wizard displays
the Finish panel after the operation is complete.

You can go to the Setup Design view to see that the scanning process has added a
new feature called ScannedProject1 and under this new feature are three components
for the dependencies that did not already exist in merge modules. The expanded tree
under the new feature is shown in Figure 13-23.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

838

Figure 13-23: The new feature added by scanning the Visual Basic project.

There are also five merge modules that are providing components to this feature. All
five of these merge modules come from Microsoft and are shipped with InstallShield
Developer.

The two components named ISUtil and IsmAuto are components that install files
that were originally installed by InstallShield Developer. Since both of these
components are COM components, this presents an interesting problem. If you leave
these components in the Developer Art installation, it will disable InstallShield
Developer when you install it and then uninstall the Developer Art application. This
happens because the installation of Developer Art installs these same files to a
different location using a different component code than was used in the installation
package for InstallShield Developer. Because they are COM components, the entries
in the registry would overwrite the entries created when InstallShield Developer was
installed.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

839

You could make these components permanent but that would just clutter the target
machine. The best solution is to remove these two components from the project.
This means that the Developer Art application works only as long as InstallShield
Developer is installed on the same machine. You could, of course, create a similar
functionality as provided by the automation interface exposed by InstallShield
Developer but that is too much work for an example like this.

Figure 13-24: Creating two shortcuts inside a folder for the Developer Art application.

Next, you should rename the ScannedProject1 feature to something like
GUID_Generator. You may want to also add a better display name for the new
feature. You should also add a shortcut to the executable in the GUIDGenerator
component and then place both shortcuts in the project in a folder that will be
created at installation time. This would look like what is shown in Figure 13-24.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

840

The same operations that you just performed in the Basic MSI project can be
performed in the same fashion in the Standard project for the Developer Art
application. Both projects can be found on the included CD-ROM.

To finish this chapter we will discuss a few items of importance to the creation of
components

Special Considerations
There are a number of topics related to the subject of creating and using components.
This section discusses these related topics so that you are aware of their existence and
their relevance to the installations you create. The first of these related issues is how
to maintain a proper reference count of shared components when these components
are installed both by applications using the Windows Installer and applications using
installation technologies that predate the Windows Installer.

Interfacing with Legacy Applications
At the beginning of this chapter, we discussed how the Windows Installer keeps a
count of how many applications have installed a particular component. Prior to the
Windows Installer, counting shared files was done differently. Reference counting
was done on a file basis and a count of the number of applications installing the same
file to the same location was kept under a registry key named SharedDLLs. The full
path of this key is as follows:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\
 SharedDLLs

Figure 13-25 shows these values that are written under the SharedDLLs key. The
value names that are written under the SharedDLLs key are the absolute paths of files
that are potentially shared between more than one application. The value data for
each file that is registered is a numerical value indicating the number of applications
that have installed that same file. In Figure 13-25, you can see that the file
MSADDNDR.DLL has been installed by three different applications and thus has a
reference count of 3.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

841

Figure 13-25: Example of the values that get written under the SharedDLLs key.

The mechanism that all install programs were supposed to use would ensure that,
during an installation, shared files would get an entry under the SharedDLLs key. If
that file were already identified, then the only action would be to increment the
reference count for the file. During an uninstallation, the reference count on a shared
file that is being removed would be decremented and only if the reference count were
0 would the file be deleted from the system.

The Windows Installer will increment the reference count under the SharedDLLs key
when it installs a file that is already listed under the SharedDLLs key. When the
Windows Installer is about to remove a component from the system, it checks to see
if the file that is being removed is listed under the SharedDLLs key. If it is, the
reference count is decremented and only if the reference count is 0 will the
component be removed from the system. This ensures that shared files installed by
legacy applications versus those same files that are installed by the Windows Installer
maintain a link relative to the reference counting mechanism.

The problem is that, by default, the Windows Installer will not create an entry under
the SharedDLLs key if it does not exist at the time the installation is performed. The
exception to this is that if a component is installed to the System32 folder on
Windows NT, Windows 2000, or Windows XP, an entry is made under the
SharedDLLs key if it does not exist before the installation is run. For any component
not installed to the System32 folder, it is necessary to set a particular property so that
an entry is created under the SharedDLLs key if it does not already exist. The name
of this component property in InstallShield Developer is Shared. Because of the
importance of this property, InstallShield Developer sets the value of this property to
Yes for any new component that is created.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

842

There does not appear to be any downside to always having the Shared property set
to Yes and there are two scenarios where it is critical that it is set to Yes. The first
scenario is where you have a Windows Installer-based application and you have an
application installed using an older technology. Both of these installations install the
same file to the same location. The following steps show why having the Shared
property set to Yes is critical.

1. An application is installed using the Windows Installer and the Shared
property is set to No. There is no entry for the file under the
SharedDLLs key so one is not created and only the reference counting
mechanism for Windows Installer components is in force.

2. Another application is installed using a different technology (legacy
application) and, being a good installation, creates entries under the
SharedDLLs key for the shared files that make up the application. These
shared files all have a reference count of 1. The legacy application
installation knows nothing about the reference count created by the
Windows Installer based application.

3. The legacy application is now uninstalled and, seeing that the reference
count for the shared files is decremented to 0, all the shared files are
removed from the system.

4. An attempt is made to run the application that was installed using the
Windows Installer and it fails because some of the files that it needs have
been removed from the system when the legacy application was
uninstalled.

The second scenario where setting the Shared property to Yes is where you have
different components (different component codes) that install the same file to the
same location. This type of scenario is possible in a large corporation that is making
an effort to move to Windows 2000 and is repackaging all their applications to use
the Windows Installer. In a large corporation, development activities might be
underway all over the country and possibly all over the world. Because of this, it
would be easy to create two different components that install the same file to the
same location. With the reference counting mechanism used by the Windows
Installer, each component would get a reference count of 1 when it is installed. If
these components were installed on the same system, then the removal of one of
these components would remove the file. Since this file was installed by two different

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

843

components, then the component that is left on the system is crippled and the
application that depends on this file is also crippled.

The next two sections talk about some of the changes that have been made in the
new operating systems to solve the problem of DLL Hell.

Windows File Protection
DLL Hell is a term used by Windows developers to refer to the problems that arise
when different versions of the same DLL are required by two different applications.
One manifestation of DLL Hell is where applications install the version that they
need of certain system files without regard to what this might do to the stability of the
operating system or to other applications that might be using a different version of
these same system files.

With the advent of Windows 2000, a new operating system feature was introduced
and is continued as part of Windows ME and Windows XP. This new feature
involves a protection scheme for preventing the unauthorized replacement of files
that are considered critical to the proper operation of the system. This new
functionality is called Windows File Protection (WFP) and it involves keeping a list of
files that only Microsoft-approved methods are able to update. The term System File
Protection (SFP) means the same thing as WFP, but it is what this protection
mechanism was called when it was first conceived.

Windows File Protection uses two mechanisms to prevent the unauthorized
replacement of system files. The first mechanism runs as a background process and it
monitors any changes that are made in folders where protected files are installed.
When the background process receives a notification about a change in a protected
folder, it first finds which file was changed. If the file that was changed is on the
protected file list, it compares the file signature of the file in the folder with the
signature listed in a catalog file. If the signatures do not match, the background
process replaces the file with the correct one. In most cases, this replacement is
performed out of a cache of files that is kept in the following location:

C:\WINNT\system32\dllcache

If the modified file is not available from the dllcache location, the background
process requests access to the original installation media. This can either be a CD-

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

844

ROM or a network location. If it is a network location that is available then the
replacement happens without any notification to the user.

Each version of the operating systems that have implemented Windows File
Protection has a different number of files on the protection list. The included CD-
ROM contains a utility that will create a text file showing the details of the file
protection list for Windows 2000. This utility may work on Windows ME or
Windows XP, but it has not been tested on these operating systems. If you double-
click on WFPList.exe, a text file is created that organizes the list of protected files for
the current system as shown in Figure 13-26.

You are running on Windows 2000 Professional
The version number is 5.0 and the build number is 2195
The service pack level is 1.0

There are a total of 61 directories with a total of 2452
protected files.

The following is a list of the 19 protected file extensions

.axe .axl .axs .axv .cat .cpl .cpx .dll .drv .exe .fon
.icm .inf .ocx .rsp .sys .tlb .tsk .ttf

The following is a list of the protected files relative to the
directories in which they are installed.

c:\program files\common files\microsoft shared\dao\
 dao360.dll

c:\program files\common files\microsoft shared\msinfo\
 ieinfo5.ocx
 msinfo32.dll
 msinfo32.exe

c:\program files\common files\microsoft shared\speechengines\tts\
 msttssyn.dll
 wttss22.dll

 …
 …
 …

Figure 13-26: Partial output from the WFPList.exe utility.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

845

The output shown in Figure 13-26 is only a very small part of the file produced by the
WFPList.exe utility. On Windows 2000 Professional, there are 2452 protected files
installed into 61 different folders. The protected files have 19 different file extensions.

The subject of Windows File Protection is much bigger than what has been discussed
here. This discussion is only meant to introduce the subject and to get you interested
in learning more by going to the Platform SDK documentation.

We now move on to introduce another new feature of the latest operating systems.

DLL Redirection
In the early days of the PC, resources such as hard drive space and RAM were fairly
expensive. The design of Windows revolved around the concept of being able to
share code between applications in the form of dynamic link libraries. Up until the
advent of Windows 98 Second Edition, a dynamic link library would be loaded into
global memory once and all applications that used the services of that DLL would
have the address range of the DLL mapped to its address space. In this fashion the
demand on memory resources was minimized.

This functionality, however, has some undesirable side effects in that when an
application loaded a shared DLL all other applications that used that same DLL had
to use the version that was in memory. This might be the version that the application
needed or it might not. Sometimes having to use another application’s version of a
shared DLL caused the application to fail. With Windows 98 SE and later operating
systems, this requirement to share the code that is in global memory has changed.

Now it is possible with these newer operating systems to have more than one version
of the same DLL in global memory at the same time. With memory as inexpensive as
it is, this is feasible without degrading machine performance. For all operating
systems starting with Windows 98 SE, you can privatize your DLLs and have your
own version loaded when your application is launched instead of having to use the
version of the DLL that is in the shared location on the machine.

What we are talking about here is forcing the operating system to load a private copy
of a DLL instead of loading the version that is in the shared location. This is called
DLL redirection or in the Windows Installer world this is called component isolation.
The two terms mean the same thing.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

846

When you install an application that has DLLs that are shared with other applications,
you still need to copy these DLLs to the shared location on the target machine. You
also want to make a copy of these shared DLLs in the same location as the executable
or other DLLs that are clients of the shared DLLs. Now you have to force the
operating system to load the private copy of the DLL instead of the copy that is in
the shared location. This is accomplished by including a zero-byte file that has the
same name as the client of the DLL with the addition of a .local extension. For
example, if the client executable has the name MyApp.exe, then the zero-byte file will
have the name MyApp.exe.local. The presence of this file forces the operating system
to load the local copy of the DLL instead of the one that is in the shared location.

The presence of the .local file even overrides any absolute paths that are used for
loading the DLL. This is applicable to both Win32 DLLs where the LoadLibrary
function may have an absolute path as well as the absolute path written to the registry
when a COM server is registered. The Windows Installer makes it easy to create the
.local file.

To have the Windows Installer make a copy of the shared DLL in the same location
as the client and to also create the .local file, you need to make entries in the
IsolatedComponent table. The IsolateComponents action reads this table and sets up
a duplicate file operation in order to copy the shared DLL to the private location. The
same action also creates the .local file in the private location.

You can author the IsolatedComponent table in the Direct Editor view. This table
has only two columns where you place the name of the shared DLL component in
the first column and the name of the client component in the second column. For the
component that is installing the shared DLL that is going to be privatized, it is
important to set the Shared property to Yes. This ensures that a privatized DLL is not
uninstalled when it should not be.

Transitive Components
A transitive component is one that has the condition on it reevaluated during a
maintenance installation. Unless the Reevaluate Condition property is set to Yes, the
condition on a component is evaluated only when it is first installed. If the changes to
the environment change the results of the condition statement, the component will
still be enabled because the condition is not reevaluated for every environmental
change. Setting the Reevaluate Condition property to Yes forces the Windows

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

847

Installer to reevaluate the condition on the component during every maintenance
operation.

A typical use for transitive components is to prepare a product to gracefully reinstall
during an upgrade from Windows 98 to Windows 2000. The setup developer
specifies those components that need to be swapped out during a system upgrade by
setting the Reevaluate Condition property to Yes. When the end user later upgrades
the system from Windows 98 to Windows 2000, the product has to be reinstalled.
Upon this reinstall, the installer removes the Windows 98 components and installs the
Windows 2000 components. This prevents requiring the end user to reinstall the
entire product.

Qualified Components
A qualified component is a method of creating an array of components. Qualified
components are primarily used to group components with parallel functionality into
categories. Qualified components are created in the same way as ordinary
components. Every component must have a unique component ID GUID and
component identifier specified in the Component table. In addition, qualified
components are associated with a category GUID and a text-string qualifier in the
PublishComponent table. The category GUID and the qualifier, which just points to
the ordinary component in the Component table, reference qualified components.

The Orca database-editing tool provides an example of how qualified components
are used. In Orca there are three components that perform different levels of
database validation. These components have a parallel functionality and are grouped
together under a single category GUID in the PublishComponent table. Each row in
this table assigns a different qualifier string that acts like an index into the array of
components. There is also a different text string associated with each of the
components that are part of the array.

The category GUID, qualifier, and text string are entered into the registry during
installation for each component that gets installed. Applications can then retrieve this
information from the registry and use the text string to populate controls in the
applications user interface. In Orca the text strings for the three components that are
part of the array are used to populate the drop-down menu in the dialog that is
launched when you select the Tools\Validate option.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

848

You should open the Orca.msi file using Orca and first look at the
PublishComponent table. Then launch the Validation Output dialog from the
Tools\Validate menu item. You will see that Orca queries the registry to see which
components in the array of components were installed and then offers the available
options to the user.

Companion Files
Many files that are installed do not contain a version resource. In this case, the file
versioning rules of the Windows Installer use a comparison between the created and
modified dates to decide if a file already on the system should be replaced.

One way to provide a different functionality for a non-versioned file is to tie its
installation to the version of a parent file that does have a version. When you do this,
the non-versioned file becomes a companion of the versioned file.

The installation state of a companion file depends not on its own file versioning
information, but on the versioning of its companion parent. To specify a companion
file, the primary key of the companion parent in the File table must be authored into
the Version column of the record for the companion. In other words, you set the
Version column in the File table to be equal to the primary key in the file table of the
file that does have a version.

To define a companion file, go to the file you want to be a companion in the setup
project, right-click on the file name, and select the Properties option. As an example,
Figure 13-27 shows how to set the file FirstSound.wav as the companion to the
Sounds.exe file in the InstallSoundsServices component. This is a component that
you will create in Chapter 14 when we discuss NT services.

For the FirstSound.wav file, you need to first deselect the “Use system attributes”
option and then enter the name of the primary key being used in the File table for the
Sounds.exe file. The key is shown in the Files view for the component. Primary keys
are case sensitive, so you need to enter the name of the key exactly as shown in the
Files view.

C H A P T E R 1 3 I N T R O D U C I N G C O M P O N E N T S

849

Figure 13-27: Defining a companion file using the file Properties dialog.

Companion files can be files that have a version but that you do not want to have
used during the file copy. Also, a companion file does not have to be in the same
component as the parent file. However, you cannot make a file that is the key path
for a component the companion of another file.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

850

Conclusion
This chapter provided you with an introduction to components. Understanding
components is at the heart of creating installation packages that work well with the
Windows Installer technology. This chapter began with a discussion of how the
Windows Installer registers a component and how it uses the component code. This
was followed by a discussion that presented the rules that should be followed for the
creation of components.

Then the tools that are part of the functionality of InstallShield Developer were
introduced, starting with dynamic file linking and the scanning mechanisms that are
available. Following this, the Component Wizard was introduced showing that there
are two modes of operation.

The end of the chapter presented a number of special topics that introduced certain
technical concepts that are important to understand in conjunction with the
installation of components. Each of the topics presented are worthy of further study
because of their importance.

Creating Special
Components

In the last chapter we took a look at the basics of component creation. In this chapter
we will discuss the creation of four special types of components. We will look at using
the Component Wizard to create components that install COM servers, NT services,
and fonts. We will then examine the use of the ODBC Resources view to create
components that install ODBC drivers, translators, and data source names. At the
end of this chapter we will take a brief look at merge modules and you will create a
simple merge module for the ArtWork component.

Chapter

14

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

852

COM Components
COM servers require a heavy use of the registry. The creation of a COM component
revolves around the acquisition of the correct registry keys and values required by a
particular COM server for it to function correctly. As an example, you will use the
Component Wizard to create another version of the ArtWork component, which
installs the COM server ArtWork.dll. You will have to remove the present version of
the ArtWork component from the DeveloperArt_IDEMSI project.

Before you do this, however, there are a number of issues related to installing COM
servers that we need to discuss. This book covers only in-process servers. We begin our
discussion of COM issues with a short description of the differences between a
normal Win32 DLL and a COM DLL. This discussion is very basic and is meant to
provide a sense of what is happening with both types of DLLs. When working with
COM, it is important to be able to put it into perspective relative to Win32 DLLs.
This discussion will also make it easier to understand the concepts of DLL
Redirection (isolated components) and side-by-side component sharing. DLL
Redirection is discussed at the end of Chapter 13.

Win32 DLLs vs. COM DLLs
As background for the upcoming discussions concerning the COM component
creation, it is appropriate to delve into the differences between a standard (Win32)
DLL and a COM DLL. We use the term Win32 to indicate programming that uses
the Windows 32-bit API and that is compiled to run only on 32-bit Windows
operating systems. Dynamic link libraries have been around since the inception of the
Windows operating system. DLLs were created in order to be able to share code
between applications and this was important in the days when computer resources
such as RAM and hard drive space were expensive. Even though computer resources
are no longer as expensive, the modular approach to creating applications is still the
way programming is performed.

Exporting Functions From a DLL

In a typical application, the main executable of the application is termed the client.
The various DLLs that make up the rest of the application's functionality are termed
the servers since they provide functionality that the executable needs. This

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

853

functionality is provided in the form of functions that the executable can call.
However, for an executable to use a function that has been defined inside of a DLL
the DLL needs to export the names of the functions so that the executable can get
the address in memory of where the code for the function begins. Functions that are
exported from a DLL are listed in a special part of the header to the DLL file. The
name of this special part of the DLL's file header is the Export Table.

There is a utility that comes with Microsoft Visual C++ that can be used to display
the names of the exported functions in a dynamic link library. This utility is
DUMPBIN.EXE and can be found in the Bin folder under where Visual C++ is
installed. If you use this utility to display the exported functions from the two DLLs
that are part of the Developer Art application, you will see what is shown in Figure
14-1.

Microsoft (R) COFF Binary File Dumper Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file ArtWork.dll

File Type: DLL

 Section contains the following exports for ArtWork.DLL

 0 characteristics
 3BA77B35 time date stamp Tue Sep 18 12:49:57 2001
 0.00 version
 1 ordinal base
 4 number of functions
 4 number of names

 ordinal hint RVA name

 1 0 0000105B DllCanUnloadNow
 2 1 00001067 DllGetClassObject
 3 2 00001081 DllRegisterServer
 4 3 00001091 DllUnregisterServer

Figure 14-1: The export tables for the ArtWork.dll and HelpLibrary.dll files.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

854

 Summary

 1000 .data
 1000 .rdata
 1000 .reloc
 2000 .rsrc
 1000 .text

Microsoft (R) COFF Binary File Dumper Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file helplibrary.dll

File Type: DLL

 Section contains the following exports for HelpLibrary.dll

 0 characteristics
 3BA77663 time date stamp Tue Sep 18 12:29:23 2001
 0.00 version
 1 ordinal base
 1 number of functions
 1 number of names

 ordinal hint RVA name

 1 0 00001010 _LaunchHelp@4

 Summary

 4000 .data
 1000 .rdata
 1000 .reloc
 4000 .text

Figure 14-1: Continued.

ArtWork.dll is a COM DLL and HelpLibrary.dll is a Win32 DLL. You can see from
Figure 14-1 that both of these DLLs export the names of functions that can be called
by clients. However, there is a big difference in the purpose of the functions exported
from a COM DLL than those exported by a Win32 DLL.

In HelpLibrary.dll, there is only one function that is exported and the exported name
of this function is _LaunchHelp@4. There are four functions that are exported by

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

855

the COM DLL ArtWork.dll and none of these functions directly expose the
functionality contained in the DLL. The purpose of these exported functions is to
enable the services of the COM DLL to be accessed when the client of these services
needs to call on them. How the services of both a Win32 DLL and a COM DLL are
accessed is discussed in the following two sections. This is important information
because it makes it clearer why certain actions are taken during an installation.

Accessing The Functions In a Win32 Dll

There are two methods for accessing the functions that are exported by a Win32
DLL. There is load-time dynamic linking and there is run-time dynamic linking. The
type of dynamic linking used by the Developer Art.exe application is load-time
dynamic linking. We will discuss load-time dynamic linking first, and then we will
look at run-time dynamic linking.

When the function in a DLL is called explicitly, this forces the DLL to be loaded into
memory when the client of the DLL is loaded into memory. Developer Art.exe
explicitly calls a function name LaunchHelp and, when it is compiled, it links to
the import library of the HelpLibrary.dll. The name of the explicitly called function is
entered in to another special location of the file header for Developer Art.exe. The
name of this special location is the Import Table and the data in this table can also be
viewed by using the DUMPBIN.EXE utility. The very first part of the Import Table
for the Developer Art.exe file is shown in Figure 14-2.

Microsoft (R) COFF Binary File Dumper Version 6.00.8447
Copyright (C) Microsoft Corp 1992-1998. All rights reserved.

Dump of file DeveloperArt.exe

File Type: EXECUTABLE IMAGE

 Section contains the following imports:

 HelpLibrary.dll
 403000 Import Address Table
 403C44 Import Name Table
 0 time date stamp
 0 Index of first forwarder reference
 0 _LaunchHelp@4

Figure 14-2: The first part of the Import Table in Developer Art.exe.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

856

The name of the function in the source code that is exported by HelpLibrary.dll is
LaunchHelp, but the Visual C++ compiler decorated the exported name of this
function to be _LaunchHelp@4. The compiler performs name decoration of
exported functions when the client executable explicitly calls the DLL function,
which is the case with Developer Art.exe and the function exported by
HelpLibrary.dll. You can see this decorated function name in both the Export table
of HelpLibrary.dll shown in Figure 14-1 and in the Import table of Developer Art.exe
shown in Figure 14-2.

Because Developer Art.exe explicitly calls the function exported by HelpLibrary.dll, it
needs to be able to load this DLL into memory whenever you launch the application.
If the HelpLibrary.dll is not available when you launch the application, then you will
receive an error message and the application will not load. When you launch a
program that uses load-time dynamic linking, the operating system looks in the
Import table to find the names of the DLLs that are required. After obtaining the
names of the required DLLs, the operating system looks in order in the following
locations to find these DLLs. The operating system searches the following locations
in the sequence that they are presented in the following list.

� The folder from where the application was launched.

� The current directory.

� The Windows system folder.

� The Windows 16-bit system folder.

� The Windows folder

� The folders specified by the PATH environment variable.

The last location is important because this is what the App Paths key in the registry
modifies for each individual application. In Chapter 5, you added a value to the
Application Path property for the DeveloperArt component. The Paths value is
appended to the PATH environment variable when the application is launched.

When an application uses run-time dynamic linking, there is no Import table entry for
the DLL that will be accessed. Instead, the client of the DLL loads the DLL into
memory using the LoadLibrary Windows API. A pointer is then obtained to the

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

857

exported functions that need to be accessed by using the GetProcAddress
Windows API. If the LoadLibrary API is passed just the name of the DLL
without qualifying its location, the Windows operating system searches for the DLL
in the same locations and sequence as listed above. The GetProcAddress API
uses the name of the exported function as an argument in order to return the address
in memory of the function. This means that the DLL needs to be created in such a
way that the compiler does not decorate the name of the exported function, so that
the name of the exported function is known in advance. Using the LoadLibrary
API to load a DLL into memory and then getting the address of an exported
function using the GetProcAddress API is how the Windows Installer accesses
a function in a DLL that is used as a custom action.

Accessing The Services In a Com Dll

There are four functions, as shown in Figure 14-1, that are exported from the COM
server ArtWork.dll. None of these functions exposes the functionality of the COM
server, but only allows that functionality to be accessed. This section discusses briefly
what happens when a client wants to access the services of a COM server. Then you
will learn what has to be accomplished during an installation so that accessing these
services is possible when the application is launched. There is one point of
terminology that we need to clarify and that is when we talk about the services that
are provided by a COM server, we usually talk about calling methods (not functions)
and getting or setting properties.

The names of the methods in ArtWork.dll that are used to draw the various
geometrical shapes are named CreateCircle, CreateRectangle, and other
similarly named methods. These methods are exposed to the client, in this case
Developer Art.exe, through an interface. An interface to a COM server is a table of
pointers to the methods that are implemented by the COM server. The job of the
client is to get a pointer to this interface so that it can avail itself of the methods that
are implemented by the COM server. A pointer to an interface is actually a pointer to
a pointer to the table that holds the pointers to the methods implemented by the
COM server. To call a method in a COM server, the client essentially gets a pointer to
the interface, dereferences that pointer so that it now has a pointer to the table of the
exposed methods, and then uses that table pointer to point to the method that it
wants to call. The next section discusses how a client finds the location of the COM
server and then gets the interface pointer that it needs in order to call the required
methods. The process of obtaining the interface pointer to a COM server relies on

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

858

being able to access functions in the COM library, which is part of all 32-bit Windows
operating systems. The COM library is implemented by OLE32.DLL found in the
Windows system folder.

The steps of the process used to create a COM object in memory and then to access
a pointer to its interface are shown in the following list:

1. The client initializes the COM library by calling either the
OleInitialize or the CoInitialize functions exposed by
OLE32.DLL.

2. The client begins the process of creating the COM object by calling the
CoCreateInstance function. This function in turn calls the
CoGetClassObject COM library function.

3. Two of the arguments that are passed to the CoGetClassObject
function are the GUID that represents the Class ID for the COM server
and the type of execution context in which the COM server is to run.
When a COM server is implemented as a DLL, the execution context
will be called InProcServer32 and registered as such in the registry. Using
this Class ID and the execution context, the CoGetClassObject
function searches the registry to obtain the name and location of the
DLL that implements the COM interface that the client requires. When
the DLL is found from the registry, the CoGetClassObject
function loads the DLL into memory using a function similar to the
LoadLibrary function discussed previously. When the DLL is loaded into
memory, the address of the DllGetClassObject function is
obtained and a call is made to this function.

4. The DllGetClassObject function creates a class factory. A class
factory is a COM object that exposes methods through a special interface
defined by the COM library. The DllGetClassObject function
also returns a pointer to the class factory back to the
CoCreateInstance function. The CoCreateInstance
function then uses this pointer to call the CreateInstance method
that is implemented in the class factory interface.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

859

5. The CreateInstance method creates an instance of the COM
object that implements the methods that the client needs to call. When
the CreateInstance method is finished creating the COM object, it
provides a pointer to the interface of this component object to the client.
The class factory COM object is then destroyed because it is not needed
anymore.

6. When the end user is finished with the application and closes it, the client
calls either the CoUninitialize or the OleUninitialize
functions in the COM library. Part of the process of shutting down will
be for these functions to call another function that is exported from the
COM DLL. The name of this exported function is
DllCanUnloadNow and it lets the COM library know if there are any
other clients using the services of the COM DLL. If no other client is
using it, the COM DLL is unloaded from memory; otherwise, it is left in
memory.

The above discussion provides a basic knowledge of how the mechanism used with
COM DLLs differs from the mechanism used with Win32 DLLs.

When a COM server is implemented in an executable, the client runs in one process
and the COM server runs in a different process. The mechanism for implementing
COM is slightly different in this scenario because it requires communication across
process boundaries. No exported functions are called because an executable does not
export functions like a DLL does. However, a COM server implemented as an
executable is still found by the client by calling the same COM library functions. The
COM server still sends across the process boundary a pointer to the interface that
implements the methods required by the client.

If you go to Figure 14-1, you will see that there are two functions,
DllRegisterServer and DllUnregisterServer, exported from
ArtWork.dll that we have not discussed yet. The purpose of these two functions is
the topic of the next section.

Self-Registration Of a COM Server

The last section explained that, when a COM DLL is to be loaded into memory, the
location is found by the COM library function CoGetClassObject. This

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

860

function looks in the registry using the Class ID and execution context of the COM
object to be instantiated to find this location. What the registry looks like for the
ArtWork.dll is shown in Figure 14-3.

Figure 14-3: The registration for the ArtWork.dll COM server.

The default value for the InprocServer32 registry key is the absolute path to
ArtWork.dll COM server. The InprocServer32 registry key is a sub-key of a key that
is named using the Class ID for the component object that the client needs to
instantiate. This is the information in the registry that is used to load this DLL into
memory. This information is added to the registry when the DLL is installed. The
registry entries for a particular COM server are defined in the
DllRegisterServer function that is exported by a COM server.

An executable can load the COM DLL into memory using the LoadLibrary
Windows API and then call the DllRegisterServer function. The

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

861

DllRegisterServer function writes all necessary entries into the registry.
When these entries are made to the registry during an installation, it is the installation
program that loads the DLL into memory and calls the DllRegisterServer
function. The term self-registration refers to the fact that a COM DLL or a COM
EXE contains the code that makes the registry entries that clients need in order to
access the services implemented by the COM server. The
DllUnregisterServer function is called when an application is being
uninstalled in order to remove the registry entries that were created during the
installation.

Because an executable does not export any functions, there needs to be another
approach to telling it to create the required registry entries. The approach that is used
is to pass a command line argument to the executable that tells it not to run in its
normal mode, but to create only the necessary registry entries. The switch that is used
to tell the executable to create the registry entries is /regserver and the switch that is
used to tell the executable to remove the registry entries is /unregserver.

Until the advent of the Windows Installer technology, self-registration was the only
method that could be used to make the necessary COM-related registry entries during
an installation. There were often problems with self-registration because, in real-world
applications, there were many DLLs that loaded other DLLs, creating a chain of
dependency. It then became necessary to register the dependent DLLs in the correct
order. With the Windows Installer, the database approach provides a more robust
means for registering COM servers.

With the Windows Installer, it is not necessary to use a COM servers’ self-registration
capabilities during an installation because all the required registry entries are placed in
database tables. Using the values in the database tables, the Windows Installer takes
these values and writes them to the registry. It is not necessary to load a DLL into
memory and then execute the DllRegisterServer function. The real work
comes when the installation package is built and the COM registration information is
extracted from the COM servers in order to populate the database tables. It is now
the build process that needs the self-registration functionality and not the installation
process. The extraction of COM information by InstallShield Developer is made
possible because of the implementation by DLLs of the DllRegisterServer
and DllUnregisterServer functions. For executables, the same thing is true.
It is just a matter of capturing the information that the COM servers write to the

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

862

registry when the build is made and then placing that information into the database
tables.

Just because the Windows Installer has a better approach to registering COM servers
does not mean that self-registration is not supported. The Windows Installer database
schema contains a table named SelfReg and the standard actions SelfRegModules and
SelfUnRegModules. By adding rows to the SelfReg table, the two standard actions
register the DLLs that are identified in the table during installation and unregister
them during uninstallation. There are two problems with the implementation of self-
registration by the Windows Installer. The Windows Installer is able to self-register
DLLs, but it cannot self-register executables. Also, Windows Installer requires custom
actions in order to control the order of DLL registration.

InstallShield Developer has implemented a more robust mechanism for self-
registration. This mechanism allows for the self-registration of executables and allows
you to control the order of self-registration of COM servers. When you right-click on
a file in a component and display the Properties dialog, the dialog contains a Self
Register option. When you select the Self Register option, the name of the file is
placed in a custom table named ISSelfReg. This table can be accessed using the Direct
Editor view and the order of registration can be controlled through entries in the
Order column. There is also a CmdLine column in the ISSelfReg table where you can
add special command line options for self-registering executables. By default, an
executable that appears in the ISSelfReg table is passed the /regserver switch during
installation and the /unregserver switch during uninstallation.

There are a number of reasons why you should not self-register your COM servers
and these are discussed in the next section. The only reason that you may need to
self-register a COM server is if there are registry entries that are made as part of self-
registration that are not related to COM.

Why Self-Registration is Not
Recommended

We have just spent some time discussing the concept of self-registration and how
COM servers implement it. Now we need to understand why Microsoft does not
recommend using self-registration. The best way to characterize the difference
between self-registration and the approach used by the Windows Installer is that self-

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

863

registration is a black box and placing the registry entries into the database tables
identifies specifically what registry entries are to be made. Self-registration is a black
box in that all the Windows Installer knows is to call the DllRegisterServer
function during an installation and to call the DllUnregisterServer function
during an uninstallation. It does not know anything about what registry entries are
created or removed.

There are a number of reasons that the black box approach to registering COM
servers is undesirable. The following are the most important reasons.

� One of the important features of the Windows Installer is to be able to treat
an installation as a transaction. With the transaction approach it is possible to
rollback any changes if an installation is aborted for any reason before it is
finished. A safe rollback becomes problematic when self-registration comes
into the picture because the Windows Installer does not know if any of the
registry entries created during the self-registration of a component are used
by any other components when it is time to rollback any changes. All the
Windows Installer can do during the rollback is call the
DllUnregisterServer function. This has the potential to disable
components installed by other features or applications.

� Advertisement is another major feature of the Windows Installer technology
where an application is not installed until it is needed. Installation of an
advertised application can be initiated by the activation of a COM server in
an advertised component. This is because when an application is advertised,
the values in the Class, TypeLib, and ProgId tables are written to the registry.
If the COM server uses self-registration, these registry entries are not made
when advertising an application and thus the advertisement functionality is
broken with respect to the self-registered component.

� Chapter 10 explained that it is possible to define registry entries that can be
made under either the HKEY_LOCAL_MACHINE root registry key or the
HKEY_CURRENT_USER registry key depending on whether the end user
selects to perform a per-machine or a per-user installation. This is not
supported when a component uses self-registration because the
DllRegisterServer function does not support the concept of having
a per-user registry key for COM class registration.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

864

� If multiple users are using an application on the same computer that has self-
registered modules, each user must install the application the first time they
run it. This is because the Windows Installer cannot determine that the
proper HKEY_CURRENT_USER registry keys exist.

� If an application is being installed from an administrative image on a network
drive, the DllRegisterServer function can be denied access to
network resources such as type libraries if a component is both specified as
run-from-source and is listed in the SelfReg table. In this event, the
component can fail to register properly and thus the application is disabled in
whole or in part.

� As mentioned in the previous section, sometimes there is a chain of
dependencies between DLLs that need to be registered. If registration does
not take place in the proper order, it is not possible to register some or all of
the DLLs. This is because it is necessary to load a DLL into memory before
it the to call to the DllRegisterServer function can be made. When
the database tables are used, the problem of dependencies is avoided because
it is not necessary to load any of the DLLs into memory. The required
registry entries are written to the registry out of the database tables.

Sharing COM Components

Chapter 3 stated that components are a shareable entity. This is true, except in cases
where you try to share a COM component between two different features of the
same application. There is a problem with the schema of the Class table that prevents
you from sharing COM components between features. For this discussion, it is
assumed that you do not want to self-register the COM component because of the
reasons stated in the previous section.

Because the source of the problem is with the Class table, we need to look at its
schema. Repeated here is the schema of the registry tables that was first shown in
Chapter 3 (Figure 14-4).

The schema of the Class table is shown in the lower left. From this diagram, you can
see that there are only four columns in the Class table that are not allowed to be
NULL. These are the CLSID, Context, Component_ and the Feature_ columns. For

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

865

any COM component, the first three of these columns form the primary key for the
table.

Figure 14-4: The schema of the registry related tables.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

866

If you try to assign a COM component to two different features, you would need to
enter the same values for the first three columns. Only the entry for the Feature_
column would be different. The problem arises because, in a relational database, you
are not allowed to have duplicate primary keys and this occurs because the name of
the feature is not part of the primary key.

The solution to this problem is to create your application structure so that there is
one top-level feature and that feature is set as required. In other words, you have the
top-level feature where the end user cannot deselect it in the custom setup dialog.
You then assign your COM component to that feature to ensure that it is always
installed. The COM component’s functionality is available to any other feature that
needs it. The only time that this COM component will be removed from the system
is when the entire application is uninstalled.

The next section looks at how the Component Wizard creates a COM component.

Recreating the ArtWork Component
In this section, you will use the DeveloperArt_IDEMSI project to see how to use the
Component Wizard to create an individual COM component. To start off open the
DeveloperArt_IDEMSI project and delete the ArtWork component. You delete a
component from a project by right clicking on the component in the Setup Design
view and selecting the Delete from project option.

To launch the Component Wizard go to the Setup Design view, right-click on the
MainProgram feature and select Component Wizard option at the bottom of the
context menu. After the Welcome panel of the Component Wizard is displayed,
select the “Let me select a type…” option and click Next to display the Component
Type panel (Figure 14-5).

The Component Wizard can also be launched form the components view under
Advanced Views. It can also be launched from the loser left panel in the Files view
under Step 2.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

867

Figure 14-5: The Component Type panel in the Component Wizard.

In Component Type dialog, make sure that the COM Server component type is
selected and enter the name of the component that you want to create. In this case,
use the name ArtWork as shown in Figure 14-5. Click Next to display the Destination
panel (Figure 14-6).

The Destination panel is where you select the destination where the component is to
be installed. The dialog contains the familiar drop-down menu of predefined
locations. In the case of the ArtWork component, leave the destination as
[INSTALLDIR] and click Next. This will display the COM Server-Destination dialog
as shown in Figure 14-6.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

868

Figure 14-6: The COM Server-Destination panel in the Component Wizard.

The COM Server File dialog is where you identify the file that is the COM server
(Figure 14-7). In this panel, you can browse for files with the extensions .exe, .dll,
.ocx, or .tlb. A file with an .ocx extension is just a COM DLL that has a specified
number of interfaces that it has to support. A file with a .tlb extension is a type library
and this file contains information about the objects that a COM server exposes. Type
libraries can be separate files with a .tlb extension or they can be resources contained
inside the COM server itself. This is the case with the ArtWork.dll COM server.

In the COM Server File panel, you can select to have the Component Wizard extract
the COM information automatically or you can elect to enter the COM registration
information manually. The default is to have the information from the identified
COM server extracted automatically. If the COM server is an executable, the second
option is enabled and it is where you can specify that the COM server will run as an
NT service. For this example, you will use the manual approach for entering the

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

869

COM registration information so you should deselect the “Extract registration
information” check box and click Next.

Figure 14-7: The COM Server File panel in the Component Wizard.

The Classes panel is next (Figure 14-8). You need to enter exactly what is shown in
Figure 14-8 for the ArtWork component to be registered correctly. To create the
ProgID, click the Add button and then press the F2 function key. This allows you to
modify the default name of the ProgID.

Enter the GUID shown into the ClassId edit field and the string shown in the
Version-Independent ProgID edit field. The GUID uniquely defines the COM class
implemented by ArtWork.dll and the ProgID is another method for referring to the
class that is implemented by the COM server. The third part of the ProgID is the
version number that refers to the class implemented by a particular version of the
COM server. The Version-Independent ProgID is way to have a constant reference
to the latest version of the class.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

870

Figure 14-8: The Classes panel in the Component Wizard.

After making the entries shown in Figure 14-8, click Next to move to the Context
Types panel (Figure 14-9). This is where you can define whether the COM server will
run in the same process as the client or whether it will run in a separate process. Since
the COM server is a DLL and it is a 32-bit DLL, select the InprocServer32 context
type. If the COM server were a 32-bit executable then you would select the
LocalServer32 as the context type. There are also InprocServer and LocalServer
context options that can be selected but those would only be appropriate for 16-bit
COM servers.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

871

Figure 14-9: The Context Types dialog in the Component Wizard.

Click Next to move to the Type Library panel (Figure 14-10).

For the Type Library panel, you need to make the entries shown in Figure 14-10. The
Type Library Description edit field is where you place the readable name to describe
the type library. This is not a required field but it is important if the type library is
going to be referenced by an application such as Visual Basic. The Type Library
GUID edit field is necessary and the value entered here has to be as shown in Figure
14-10.

The Language edit field is also a required value. In this field, enter the language ID of
the language supported by the type library. If the type library is language independent,
type the value 0 in this field. The final field in this panel is the version of the type
library. This is not a required field, but it is good to place the version number here.
This version number consists of two 1-byte numbers separated by a period. For the
ArtWork.dll COM server, enter the value 1.0.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

872

Figure 14-10: The Type Library dialog in the Component Wizard.

Click Next to move to the Summary panel. After reviewing your selections in the
Summary panel, click Finish to create the ArtWork component under the
MainProgram feature.

Until now, every time you built this project, the COM registration has been extracted
during the build and placed in the various database tables. The COM registration
information has never been saved in the project file itself. Performing the extraction
of COM information during the build is the proper way to do it if the COM server is
still under development, but to extract COM information at build time slows the
build process. By running the Component Wizard in the previous example, you have
placed the COM information in the project file. If you go to the ArtWork component
in the Setup Design view, you should see something like what is shown in Figure 14-
11.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

873

Figure 14-11: The COM Registration view for the ArtWork component.

In Figure 14-11 you can now see icons for the COM Classes, ProgIDs and Type
Libraries. Except for the InprocServer32 entry under the Class GUID, each of the
icons shown in Figure 14-11 has an associated property page where you are able to
modify what was entered into the Component Wizard or enter values that were not
part of the input requested by the Component Wizard. One thing that you should do
is to enter a string for the Description property for the Class GUID and the two
ProgIDs. You can use the same string for all three descriptions. A valid description
for the Class GUID is shown in Figure 14-12.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

874

Figure 14-12: The property page for the Class GUID.

Now all you have to do is build the project and run the installation. When you run the
application you will see that it runs and performs its drawing functions. This tells you
that the ArtWork.dll COM server was registered correctly.

 The next section discusses how to create components that install NT services.

NT Service Components
An NT service is a background task that runs on an NT/2000/XP platform. The
code for this background task is housed in an executable (.EXE) and this executable
can contain more than one NT service. All services that are contained in a single
executable run as separate threads in the executable’s process space. The term NT
service can refer to a hardware driver service, a file system driver service, and a
Win32-based service. This section addresses the subject of Win32-based services.

The NT Service Environment
There are five separate entities that come into play when you run an NT service.
These are the service itself, the Service Control Manager (SCM), the Service Control
Manager database, a service control program (SCP), and optionally a client application
that is connected to the NT service. Figure 14-13 diagrams these five entities and
their relationship.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

875

Figure 14-13: The interaction of an NT service and its environment.

In Figure 14-13, the arrows indicate the lines of communication between the service
process and the surrounding environment. All control communication with the
service is through the Service Control Manager. The other communication between
the service and the environment relates to information that is passed to and from the
service, relative to the work that the service is doing or the information that the
service is sending to either the event log or the performance-monitoring facility.
Below is a definition of each of these components shown in Figure 14-13.

The NT service: As stated, an NT service runs in a background process.
Typically this process is a console application and does not have any interaction
with the user. However, it is possible to allow an NT service to interact with the
desktop. The structure of an NT service process is different than the normal
console application because it is controlled by something called the Service
Control Manager that is found on NT/2000 operating systems. The NT service
and the Service Control Manager communicate with each other with the Service
Control Manager sending control commands to the service and the service telling
the Service Control Manager about its status.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

876

The Service Control Manager (SCM): The SCM is an operating system
component that is installed when either Windows NT or Windows 2000 is
installed. The SCM is launched when the operating system is booted and is not
shut down until the operating system is shut down. It is through this OS
component that an NT service is told to start, stop, pause, or continue.

The Service Control Manager Database: The SCM maintains a database of all
installed services. The persistent form of this database is a portion of the registry.
There is also a version of this database that is held in memory that tracks the
status of running services. When an NT service is installed, entries are made in
this database.

Service Control Programs (SCP): A Service Control Program is a utility
application, normally with a user interface, that permits a user to control the
operation of an NT service. The normal control operations are start, stop, pause,
and continue. The SCP that most people are familiar with is the Services applet in
the Control Panel.

Event log and event viewer: Since most NT services run without any visual
communication with the outside world, there needs to be a method for a service
to report its status and/or errors that may occur. This method involves writing to
the event log and using an event viewer to view what is in the event log. All
services need to write to the event log to report any significant event that has
occurred during its operation.

Performance counter DLL and performance monitor: For any real-world
service, there needs to be a way for an administrator to see how the service is
performing. Knowing the performance statistics for a service allows the
administrator to tune the service for more efficient operation. Capturing the
performance data of an NT service is the function of a performance counter
DLL and looking at this performance data is the function of a performance
monitor.

The client/administrative applications: A client application is the application
for which the service is performing work. A client application can also perform
the duties of a service control program. An administrative application is used to
help configure and tune an NT service and most major services come with their
own administrative application. Typically these administrative applications are

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

877

delivered as either a control panel applet or a Microsoft Management Console
snap-in.

Now that the various components that come into play when running an NT service
have been defined, we will take a closer look at each one of these in the following
sections. Before that, we will take a look at the different types of services that can be
created. It is important to know the type of service that is being installed so that the
correct entries can be made in the Service Control Manager database.

Types of NT Services
Services fall into two major groups, those that are considered device drivers and those
that are considered Win32-based services. This section provides a little more detail
about the various types of NT services:

Kernel mode drivers: This is a 32-bit modular component that runs in kernel
mode and, as such, has unrestricted access to the operating system and essentially
can do what it wants. These drivers form the interface between the hardware and
the rest of the operating system. Kernel mode drivers are normally installed into
the %SystemRoot%\system32\drivers folder and they would have a .sys
extension. The driver is entered into the SCM database just as is done for Win32
services.

File system drivers: On NT/2000/XP systems there does not have to be a
resident file system. File systems are provided through installation and registration
of file system drivers. Just as with kernel mode drivers, file system drivers are also
installed to the %SystemRoot%\system32\drivers folder and registered in the
SCM database. File system drivers then register themselves with the operating
system’s I/O Manager. More than one file system driver can be active at a time.
When a volume is mounted or a remote name is being resolved, the I/O
Manager calls all the registered file system drivers in turn until one of them
recognizes the volume structure or remote name.

Win32 services that do not share a process: This type of service runs in user
mode and does not have anything to do with the proper functioning of the
operating system itself. In particular this type of service is the only service that is
contained in the service executable. This means that there are only two threads
running in the service process.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

878

Win32 services that do share a process: This type of service runs in user mode
and does not have anything to do with the proper functioning of the operating
system itself. In particular this service executable there is potentially more than
one service running. This means that there are more than two threads running in
the service process when all services are started.

Win32 services that interact with the desktop: This type of service runs in
user mode and does not have anything to do with the proper functioning of the
operating system itself. A Win32 service that interacts with the desktop means
that the service can display a user interface and permit interaction with the user. If
there is more than one service in the same executable, then all services in the
executable have to be set to interact with the desktop.

It is interesting to note that even though both kernel mode drivers and file system
drivers run in kernel mode, they are treated as NT services from user mode.

Inside the Service Process
An NT service is implemented inside an executable and there can be any number of
services implemented in a single executable. Each NT service that is implemented
runs in a separate thread of the service process that is created by the executable when
it is launched. As shown in Figure 14-14, there is a minimum of two threads running
even for an executable that houses only one service.

The first thread in a service process is always the one that contains the entry point for
the service executable and is the thread that communicates with the Service Control
Manager. The first thread in a process is always thread 0. Each service runs in a
thread numbered from 1 on up. Thread 0 contains a handler function for each service
thread that is used to pass control requests between the Service Control Manager and
the service thread.

The possible control requests that can be sent by the Service Control Manager to a
service via its handler function are Stop, Start, Pause, Continue, and Interrogate. The
service responds directly to the Service Control Manager with regard to its present
state. The types of states that a service can be in are Stopped, Running, Paused,
Getting Ready to Stop, Getting Ready to Start, Getting Ready to Pause, and Getting
Ready to Continue. If the service is part of a client/server application, the client
communicates directly with the service without going through the handler function.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

879

Figure 14-14: The basic mechanism of running an NT service.

An executable that houses an NT service cannot just be launched in order to start the
service. On Windows NT, Windows 2000, and Windows XP, it is necessary to tell
the operating system that a particular executable needs to be treated as an NT service.
This is the topic of the next section.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

880

The Service Control Manager Database
Windows NT-based operating systems recognize an executable as containing an NT
service only if the service is registered in the Service Control Manager database. This
database is a section of the registry that is located under the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

Under this registry key, there is a sub-key for each installed NT service and the name
of the key is the name of the service. The values that are written against this sub-key
provide the data that is required to find, start, configure, and stop the service. There
can be sub-keys under each service key and these can be used to hold values that are
private to the service itself.

The Service Control Manager database is always backed up by the operating system.
If a boot of the system is successful, a copy of the current database is copied to a
registry key that has the following format:

HKEY_LOCAL_MACHINE\SYSTEM\ControlSetXXX\Services\

In the above key, the string XXX represents a numerical value of the last known
good configuration and this value is stored in the following registry key and named
value:

HKEY_LOCAL_MACHINE\SYSTEM\Select\LastKnownGood

If any changes made to the active system configuration cause a failure, at the next
boot, the system restores the Service Control Manager database using the copy
specified by the LastKnownGood registry value.

It should be clear now that the real work of installing, controlling, and removing an
NT service revolves around the manipulation of the Service Control Manager
database.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

881

Installing, Controlling, and Removing an
NT Service

To install an NT service, the Windows API CreateService is used. This
function takes a number of arguments and these arguments are used to write the
values against the service sub-key. The Windows Installer database contains a Service
Install table that holds the values for the arguments to the CreateService
Windows API. The Windows Installer standard action InstallServices reads the rows
in the ServiceInstall table and then passes these values to the CreateService
API.

Once a service is installed, there are a number of actions that can be taken to control
it. The standard control requests, as listed earlier, are Start, Stop Pause, Continue, and
Interrogate. The two control requests that we are interested in as far as installation
programs are concerned are the Start and Stop requests. To start a service, the
StartService Windows API is used. The StartServices standard action in the
Windows Installer reads the values in the ServiceControl table and then passes these
values to the StartService API to start a service that has been installed.

An NT service is stopped by using the ControlService Windows API and
passing it a control code that specifies stop. In the Windows Installer, the
StopServices standard action reads the ServiceControl table and passes the values in
this table to the ControlService API.

Using the DeleteService Windows API uninstalls an NT service. This API
does not take action to delete the file itself, but only removes the entries in the Service
Control Manager database for the specified service. The Windows Installer
DeleteServices standard action reads the values in the ServiceControl table and passes
these values on to the DeleteService API.

You should notice that in the cases of starting, stopping, and deleting a service, the
required information is contained in the ServiceControl table. The Event column in
this table informs the standard actions that read this table whether there is any action
to take. For example, if there is only one row in the ServiceControl table and the
Event column indicates that a service is to be started then only the StartServices
standard action performs any operation. The other standard actions that read this
table see this one row as a no-op.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

882

Using the Component Wizard to Install
and Control an NT Service

As we work through the various dialogs of the Component Wizard to create the
components for installing and controlling an NT service, further details of NT
services will be discussed. This is necessary so you will know why the Component
Wizard requires certain information. Once again the DeveloperArt_IDEMSI project
will be used for this example, but the same operations can be performed in the
DeveloperArt_IDEStd project.

Figure 14-15: Naming the component for installing an NT service.

The included CD-ROM contains an executable Sounds.exe that houses two NT
services. You will use this executable for this example. These two services play .wav
files in sequence and the two services communicate with each other so that they

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

883

alternate in playing the two sounds. Any two wave files will work as long as they are
named FirstSound.wav and SecondSound.wav. The .wav files that are on the CD-
ROM are the logon and logoff sounds used by Windows 2000. You need to have a
sound card to be able to hear these sounds.

Open the DeveloperArt_IDEMSI project, go to the Setup Design view and create a
new top-level feature named SoundsService. All components that you create in this
example will be placed under this SoundsService feature. Then right click on the
SoundsService feature and select the Component Wizard option. In the Welcome
panel, select the “Let me select a type…” option and click Next.

The first component that you will create is one that will install the two services. Then
you will create two more components that will provide the logic for how you want to
handle the NT services after they are installed, but before the installation is complete.

In the Component Type panel (Figure 14-15) create a component named
InstallSoundsServices. Type InstallSoundsServices in the Component Name field and
select Install NT Service in the Component Types selection box. After the
component name, all of the information collected by the Component Wizard is used
to populate the ServiceInstall table. Click Next to move to the NT Service Executable
panel.

The entries to be made in the NT Service Executable dialog are shown in Figure 14-
16. First, browse for the file Sounds.exe. You must name the two services that are
housed inside Sounds.exe. Click the Add button to add and name the services, as
shown in Figure 14-16. You can use the F2 function key to edit the default name for
the service. The names of the services provided in this panel are used to register the
services in the Service Control Manager database and these names are also used by
the Service Control Manager to open the service. The names of a service need to be
what are used inside the service. These names cannot be longer than 256 characters.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

884

Figure 14-16: The entries for the NT Service Executable panel.

In the Service Type Information panel (Figure 14-17), you define the service type and
the display name for each of the services that were defined in the NT Service
Executable panel. For each service being installed you want to give it a display name
that will be used in the Windows NT Services Control Panel applet or in the Services
Microsoft Management Console snap-in found in Windows 2000 and Windows XP.
This display name is also limited to 256 characters. Click Next to move to the Service
Type Information dialog. This dialog is shown in Figure 14-17.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

885

Figure 14-17: Entering the information that describes the services being installed.

To provide a display name for each of the services being installed, select the service
from the drop-down NT Service menu and then enter a display name for the service
in the Display Name field. For each service you also have to identify the service type,
which you do by selecting one of the radio buttons in the Service Type selection box.
Since you are installing an executable that contains more than one service, you must
select the “Shares a process with others” option. Both services must have this option
selected.

Leave the Arguments edit field empty because neither service takes any arguments. If
you refer to Figure 14-14, you will see that there is a main function and that each
service has a ServiceMain function. The main function takes no arguments, but
each ServiceMain function can take arguments. However, in this case, there are
no arguments that need to be passed. There is no way for you to know what
arguments need to be passed to any particular service unless the service’s developer
tells you. Click Next to get to the Service Start Type Information dialog.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

886

Figure 14-18: Entering the start type information for an NT service.

The Service Start Type Information dialog is shown in Figure 14-18. In the Service
Start Type Information panel, you indicate the start type information for each of the
services being installed. The meaning of each Start Type option is described in the
following list:

Automatically when the system starts up: This option is applicable to Win32
services that need to be running before the user is presented with the logon
dialog box. This ensures that all services that the user requires are running by the
time the logon process is complete.

On demand through the Service Control Manager: With this option, a
service is not started until an administrator starts it from the Services Control
Panel applet or the Microsoft Management Console snap-in. Services with this
start type can also be started if another service depends on it or if an application
specifically starts it with a call to the StartService API.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

887

By the operating system loader: This start type is applicable only to device
drivers that are required in order for the operating system to boot.

By calling the IoInitSystem function: This option is also for device drivers and
file system drivers that need to be loaded for proper system operation. These
drivers are loaded prior to those services that have the automatic start type.

Not started: This type disables a service so that it cannot be started by the
system. Any service that depends on a disabled service will not be able to start.
Disabling a service is a method for uncovering the source of system problems.

For this example, select the “Automatically when the system starts…” option for
both services. Do this by selecting each service being installed from the NT Service
drop-down menu and setting the start type. Click Next to move to the Service Load
Order panel (Figure 14-19).

Figure 14-19: The Service Load Order panel in the Component Wizard.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

888

The Service Load Order panel is used to specify any types of load ordering or
dependencies required by the services being installed. For the services in this example,
you do not have to enter any values in this panel.

We should discuss, however, the meaning of the two types of entries that can be
made. The first topic is the purpose of a load-ordering group. A load-ordering group
is a mechanism for grouping services together so that they are all loaded before
services that do not belong to a group. System services are divided into groups and
when the system boots it works through these predefined load-ordering groups to
load the system services in the correct order. A list of the predefined load-ordering
groups that are defined by the system can be found under the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\GroupOrderList

The order shown for these load-ordering groups is not the order in which the
members of these groups are loaded. The actual order in which these groups are
loaded is defined by another registry key. This registry key is as follows:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder

There are three possibilities with load-ordering groups: you can identify your service
to be part of one of the predefined groups, create a new group for your service, or
not have it be part of a load-ordering group. It is probably not a good idea to assign a
Win32 service to one of the predefined load-ordering groups because these groups
are used to load operating system services. You could create a new group name. This
would have the effect of loading your services after the services assigned to any of the
predefined groups, but before any of the services that are not part of a group. Finally
you could use the approach that most, if not all, Win32 services use and not specify a
group. For example, the Windows Installer executable houses an NT service and it is
not assigned to a group.

The next order of discussion with regard to the Service Load Order dialog is the
specification of dependencies for a service. A dependency can be another service or it
can be a load-ordering group. A dependency can also be a combination of services
and load ordering groups. In the Service Load Order panel, you would add your
dependencies using a comma delimiter and also place a plus sign (+) in front of any
name that is a load-ordering group. The following rules are used when a service is
identified to have dependencies:

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

889

� A service that depends on other services is not started until the Service
Control Manager has started all the dependent services.

� If a service is defined to be of the “start on demand” type, then when action
is taken to start the service, all dependent services are started first if they are
not already started.

� A service with a load-ordering group dependency does not start until at least
one of the services in the dependent load-ordering group has been started.

The next panel in the wizard is the Error Control panel (Figure 14-20). In this panel,
you define for each of the services being installed the type of error handling that
needs to occur if the service fails to start when the system is starting.

Figure 14-20: Specifying how to handle errors if the NT services do not start.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

890

The Error Control panel presents three possible options for error control and these
are discussed in the following list:

Log the error and continue starting the remaining services: The Service
Control Manager logs the error in the event log and continues trying to start all
the other services. The service that had the error is not started.

Log the error, display a message box, and continue starting the remaining
services: The Service Control Manager logs the error in the event log and also
notifies the user with a message box about the error. When the error message is
dismissed, the Service Control Manager continues to start the remaining services.
The service that had the error is not started.

Log the error and, if possible, restart the system with the last known good
configuration: Here the Service Control Manager logs the error in the event log
and then initiates a restart of the system using the last known good configuration
in order to get the system started without interference from the service that does
not start. If the error occurs when the last known good configuration is being
used, the restart of the system fails.

If you are installing a Win32 service, there are only two Error Control options that are
relevant for error handling. The two choices are “Log the error and continue starting
the remaining services” and “Log the error, display a message box, and continue
starting the remaining services.” It would be a very severe reaction to the failure of a
Win32 service to start to mandate that the system be rebooted. The last Error
Control option in the radio button group is appropriate only for device drivers that
fail to start.

If you selected in the Service Start Type Information panel (Figure 14-18) to have the
service automatically started when the system is started, then either of the first two
error control options is acceptable. However, if you selected to have the service
started on demand, you do not want to use the error control option where the Service
Control Manager displays a message box. If the system is unattended, everything will
stop until someone clicks the OK button on the message box. When using “start on
demand” for a Win32 service, the only valid Error Control option is the first one.

Before you move on to the final input dialog for installing an NT service, we need to
discuss one more aspect of error control. There is a special functionality provided by
the Windows Installer that allows you to identify a service as being vital to the

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

891

installation of an application. A service that is designated as being vital terminates the
installation if the service cannot be installed for some reason. This option cannot be
selected in the Component Wizard, but has to be added by using the Direct Editor
view. To identify a service as being vital, go to the ServiceInstall table in the Direct
Editor and add the value 0x08000 to the value in the ErrorControl column.

In the Error Control panel, select the “Log the error, display a message box, and
continue starting the remaining services” option and click Next to display the Service
Logon panel (Figure 14-21).

There are two subjects worthy of discussion in this panel, interacting with the desktop
and installing an NT service to a user account. Both of these topics are covered in the
next two sections.

Figure 14-21: The Service Logon panel in the Component Wizard.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

892

You do not have anything that you need to do in this panel since neither service
needs to interact with the desktop, nor are you not going to install them to anything
other than the local user account. Click Next to move to the Summary panel. Review
in this dialog the actions that you have taken in the Component Wizard and then
click Finish to create the component that will install the two services.

After the InstallSoundsServices component is created, go to this component in the
Setup Design view and add the two .wav files to the component as shown in Figure
14-22.

Figure 14-22: Adding the .wav files to the InstallSoundsServices component.

Next, open the Advanced Settings under the InstallSoundsServices component and
click on the InstallNTServices icon. If you then click on the name of one of the
services being installed by this component you will see a property page on the right of
the screen where all the entries made in the Component Wizard are shown (Figure
14-23). You can modify or add items to any of these properties.

One of the properties that you want to enter a value for is in the Description field.
This entry cannot be made in the Component Wizard. You can enter the same
description for both services. This description will be shown beside the display name
of the service in the Services Control Panel applet in Windows NT or in the Services
Microsoft Management Console snap-in in Windows 2000.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

893

Figure 14-23: The property page for the PlayFirstSoundService service.

To finish creating the functionality for these services, you need to define how these
services are to be treated after they are installed. If you did nothing, these services
would not start until the next time you booted the system. What you need to do is use
the Component Wizard to create two new components, one for each of the two
services that are being installed, that define what to do with services as soon as they
are installed.

You need to keep in mind that these two components will have nothing to do with
the functioning of the services after the installation is complete. They will have some
purpose during the uninstallation of the component that installed the services. This
means that these two service control components need to be in the same feature used
to install the NT services.

You start this process with the Component Wizard to create the two control
components under the SoundsService feature as shown in Figure 14-24.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

894

Figure 14-24: Creating a component to control an NT service.

After naming the control component for the PlayFirstSoundService service as shown
in Figure 14-24, click Next to move to the Specify Service panel (Figure 14-25).

In the Specify Service panel, you can choose to control a service that is already on the
target system or control one of the services that is being installed with the present
installation. You want to control one of the services that are being installed with the
present installation. Select the first name in the list box.

If you were performing an upgrade of a service that is running on the target system,
you would want to stop that service from running so you could install the new
executable. In this scenario you would then want to select the first radio button on
the Specify Service dialog and name the service that you wanted to control. You
would then create another component that controlled the service that would run
from the upgraded executable.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

895

Figure 14-25: Specifying the service to be controlled during the installation.

In the next two dialogs in the Component Wizard, you will define what events are to
be sent to the service via the Service Control Manager during installation and during
uninstallation.

The Installation Events dialog (Figure 14-26) controls how you want the service
started during the installation. For this example, make the entries as shown in Figure
14-26. In the Installation Events panel, you want to have the service started and, since
none of the services being installed takes any argument, the Arguments edit field can
be left blank. In the case of an upgrade, this is where you would select to stop and
delete the service that was being upgraded. You would also make sure that you
deselected the option to start the service. There is also the option to have no event
occur during an installation.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

896

Figure 14-26: Specifying the events to occur during the installation of an NT service.

Click Next to move to the Uninstallation events dialog. In the Uninstallation Events
dialog, you indicate what to do with the service when the application is being
uninstalled.

Here you want to specify that the service be stopped and deleted when the
application is uninstalled. Make sure that you deselect the “Start the service” option;
otherwise, you will have an application that cannot be uninstalled without some
special work on the cached package.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

897

Figure 14-27: Specifying the events to occur during the uninstallation of an NT service.

The final input dialog for controlling a service is the Wait Type dialog (Figure 14-28).
In this panel, you need to specify whether the Windows Installer is to wait until the
events selected in the previous two dialogs are to complete before continuing or that
the event has been started but not necessarily completed.

If it is critical to the completion of the installation or uninstallation that the event
complete successfully, you would have the installation wait for the event to complete;
otherwise, you can have the installation or uninstallation wait until each event has
started but not completed to continue the operation.

For this example, make the selections shown in Figure 14-28. During the installation,
it does not matter if the service starts, so you can select the second radio button in the
Installation section. However, during an uninstallation, you probably want to wait
until the Stop and Delete events have completed, otherwise an error in either of these

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

898

events could leave the machine in an unknown state if you decide to continue the
uninstallation after you get the error message box.

Figure 14-28: Specifying the wait type for events to be performed during installation and
uninstallation.

You need to perform the same operations as just discussed for the second service.
When you are finished, you should have what is shown in Figure 14-29.

When you have finished creating the second component for controlling the second
service you will have three components under the SoundsService feature. For either
of the components used to control the services, expand the tree under the Advanced
Settings and click on the Control NT Services icon. Then click on one of the event
names shown in the Control NT Services tree and you will see a property page that
shown all the selections that were made when running the Component Wizard. You
can edit these properties in this property page. The first event name (NewEvent1)

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

899

refers to the operation of installation and the second event name refers to the
operation of uninstallation.

Figure 14-29: The property page for the Control NT Service icon under Advanced Settings.

You have used the Component Wizard to create three components to install and
control the services contained in one executable. A better approach in this particular
instance would have been to create the component that installs the two services and,
within that component, enter the control logic under Advanced Settings. With this
method, you have one component instead of three and it is easier to manage. After
all, the components that are used for service control contain logic that is used only
during the installation and uninstallation operations. These components have nothing
to do with the functioning of the application after it is installed.

The same operations that you have carried out in a Basic MSI project can be
performed in the same manner in a Standard project. The Standard project that is on
the included CD_ROM has all the control logic placed in the same component that is

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

900

installing the NT services. To test this example, build the project and install the
Developer Art application. You should hear the sounds generated by the NT services
when they play the .wav files.

When the NT services are installed entries are made in the registry under the
following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

There will be two sub-keys under this key one for each of the services that you have
installed. The value data written against these keys tell the Service Control Manager
how to treat the services. The entries that are made for the PlayFirstSoundService
service are shown in Figure 14-30.

Figure 14-30: The data written to the registry for the PlayFirstSoundService service.

When you get tired of hearing the sounds that are played by the installed services, you
can go to the Services Control Panel applet on Windows NT 4.0 or to the Services
snap-in in the Microsoft Management Console in Windows 2000 and pause or stop
the service. The Services snap-in is shown in figure 14-31.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

901

Figure 14-31: The Windows 2000 Services snap-in showing the context menu for services.

There are a few final subjects to discuss with regard to the installation of NT services.
The first of these subjects is the interaction of an NT service with the desktop.

Interactive Services
This subject of a service interacting with the desktop is an interesting one. The first
thing that you need to know about this subject is that a service should not be written
so that it has to interact directly with the user. The whole purpose of having a client is
so that the service can stay in the background and let the client provide the interaction
with the user.

Understanding how a service interacts with the desktop brings into focus some little-
known facts about how the Windows operating system works. There are two entities
that are involved: the window station and the desktop. A window station is a secure
object that contains a clipboard, a set of global atoms, and a group of desktop objects.
The interactive window station assigned to the logon session of the interactive user
also contains the keyboard, mouse, and display device. The interactive window station
is visible to the user and can receive input from the user. All other window stations
are non-interactive, which means that they cannot be made visible to the user, and
cannot receive user input.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

902

A desktop is a secure object contained within a window station. A desktop has a
logical display surface and contains windows, menus, and hooks. A window station
can have multiple desktops. Only the desktops of the interactive window station can
be visible and receive user input. On the interactive window station, only one desktop
at a time is active. This active desktop, also known as the input desktop, is the one
that is currently visible to the user and that receives user input. There are typically
three desktops that you see in any session on an NT based operating system. These
are shown in the following list:

� The desktop that you see when you logon to the system or when you hit the
Ctrl-Alt-Delete keys to see the NT task manager.

� The desktop that you see when running the shell.

� The desktop you see when a screen saver is running.

The system automatically creates the interactive window station. When an interactive
user logs on, the system associates the interactive window station with the user's
logon session. The system also creates the default input desktop for the interactive
window station. When a non-interactive process such as a service application
attempts to connect and no window station exists for the process' logon session, the
system attempts to create a window station and desktop for the session. The name of
the created window station is based on the logon session identifier, and the desktop is
named "Default."

For a non-interactive service application to interact with the user, it must open the
user's window station ("WinSta0") and desktop ("Default"). By default, only the
logged-on user and service applications running in the LocalSystem account are
granted access to the user's window station and desktop. This means that services
running in other accounts must either impersonate the user when opening the
interactive window station and desktop, or have access granted to those accounts by
the user.

The above is the reason that for a service to interact with the desktop it needs to run
in the local system account. Also, when a service shares a process with one or more
other services, all services in the process must be allowed to interact with the desktop.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

903

Installing an NT Service to a User
Account

Most NT services are installed to run under the local system account. However, it is
possible to install an NT service so that it runs only under a particular user's account.
One of the main reasons that an NT service might be installed to run under a
particular user's account is so that the service has access to network resources.

When you were creating the component that installs the example services, you saw in
the Service Logon panel (Figure 14-21) a disabled “This account” option. The fact
that this option was disabled is a holdover from the requirement that a service that
shares a process with another service cannot be installed to a user account. With
Windows 2000 and later, this is no longer a restriction and it is possible to install an
NT service to a user account even if it does share a process with other services.

It does not matter that this radio button is disabled or enabled because you do not
want to enter a name and password here even if the service is to be installed to a user
account. If you enter a user name here and a password, the password will be placed in
the Windows Installer database making it available to anyone who wants to open the
database using Orca. The only real approach to installing a service to a user account is
to permit the entry of the user name and password when the installation is run. This
can be accomplished by using a custom dialog box where this information can be
entered.

In Chapter 12 you created a custom dialog named InstallNTService that performs
this function. For easy reference, this dialog is shown here in Figure 14-32.

When you created this dialog in the Basic MSI project, you were required to assign
the name of a public property to both edit controls. The name of the property for the
Domain\User Name field is ACCOUNT and the name of the property for the
Password field is PASSWORD. When values are entered into these two fields, the
properties take on the values that are entered. The trick then is to use these properties
at run time to install the NT service to the user account that was entered.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

904

Figure 14-32: The InstallNTService custom dialog created in Chapter 12.

To make use of the property values that are entered at run time so that the NT
service is installed to the user account, you need to add the name of these properties
inside square brackets to the User Name and Password attributes for the service. This
is shown in Figure 14-33, assuming that the PlayFirstSoundService service is to be
installed to a user account. If the PlayFirstSoundService is not installed to a user
account, the two strings [ACCOUNT] and [PASSWORD] are evaluated by the
Windows Installer as NULL entries in these two fields.

To create the same functionality in a Standard project, you would still add the two
property names inside square brackets as shown in Figure 14-33. You would have to
add some code to your installation script in order to set the value of the ACCOUNT
and PASSWORD properties.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

905

Figure 14-33: Setting up an NT service to be installed to a user account.

The revised code for the InstallNTService dialog that sets the values of the two
properties is as follows:

Dlg_InstallNTService:
 szTitle = "";
 szMsg = "";
 nResult = InstallNTService(szTitle, szMsg, svUser, svPassword);
 if(nResult = BACK) goto Dlg_SdCustomerInformation;

 if(svUser !="" && svPassword != "") then
 MsiSetProperty(ISMSI_HANDLE, "ACCOUNT", svUser);
 MsiSetProperty(ISMSI_HANDLE, "PASSWORD", svPassword);
 endif;

All that is being done new here is to check if any values were entered in the
InstallNTService dialog. If so, these values are used to set the values of the
ACCOUNT and PASSWORD properties.

There are two important things that you need to know about installing an NT service
to a user account. First, it still takes a person with administrative privileges on the
local machine to perform the installation. Second, the user for whom the NT service
is being installed needs to have the "Log on as service" user rights for the installation
to be valid.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

906

Font Components
The last type of component that can be created by the Component Wizard is a font
component. Using the Component Wizard allows you to select font files that are
already installed on the build machine or font files that are not installed on the build
machine, but are available from some location. The purpose of the Component
Wizard is to author the Font table correctly. The Font table has only two columns
with the first column being a foreign key into the File table. The second column of
the Font table is where the title of the font is placed, but only if there is no embedded
title in the font file. True type fonts have an embedded font title, thus they should not
have a value placed in the second column of the font table. Font files with a .fon
extension are not true type fonts and do not have an embedded font title, so the font
title used needs to be added explicitly to the Font table. For true type fonts, the
Windows Installer reads the font title from the embedded name and makes the
appropriate registry entry.

If a font component for a .fon font file is created from a font that is already installed,
then the Component Wizard, using the title for the .fon file that is found in the
registry, adds the font title automatically to the Font table. If a font component is
created for a .fon font file that is not installed, then you have to specifically add the
title that is to be used during the installation. Adding a title for a .fon font file can be
accomplished in one of three different ways. It can be added through the Component
Wizard, it can be added in the Properties dialog for the font file after the component
is created, and it can be added by going to the Font table in the Direct Editor view.

By default, any font component created by the Component Wizard has a destination
set as the fonts folder in the Windows directory. Fonts can be installed to other
folders, but it is highly recommended to install fonts to the Fonts folder. When a font
is installed, a registry entry under the following key is created.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Fonts

The names written under this key are the font titles and the data values are the names
of the font files.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

907

Figure 14-34: The selection of the Fonts component type in the Component Wizard.

There is no specific example for installing a font with the Developer Art application
because it does not require any particular font files. However, it is instructive to look
at the Component Wizard when the Fonts component type is selected (Figure 14-34).

Note that when the Fonts component type is selected, the Component Name field is
disabled. This is because the Component Wizard creates a separate component for
each font file that is selected. The Component Wizard provides default component
names that use the name of the font file.

The next panel in the Component Wizard provides a selection of all the installed
fonts to be found on the build machine. Below the list of installed fonts is an option
that allows you to browse to other locations for fonts to include in the installation
package. These other locations are where the font files that are not installed reside. If
the option at the bottom of the Add Installed Fonts panel is selected, then the next

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

908

panel that is displayed in the Component Wizard is the Add New Fonts panel (Figure
14-35).

Figure 14-35: Adding font components for fonts that are not installed on the build machine.

Regardless of the type of font file that is added using the Add New Fonts panel, the
Font Title column always displays the string [Title read from file]. However, if the
extension used by the font file is .fon, you need to click once on this string and enter
a font title that will be entered into the second column of the Font table. If you do
not enter a title string for font files with a .fon extension, the Windows Installer
displays an error during the installation stating that it cannot register the font file. A
valid entry into the Font Title column of the Add New Fonts dialog is shown in
Figure 14-36.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

909

Figure 14-36: Adding a font title string for a .fon file not installed on the build machine.

The final panel of the Component Wizard provides a list of the components and font
files that are being created.

One of the important things to remember is that a font component that is being
installed to the Fonts folder should be made a permanent component. There is no
reference counting mechanism for fonts except for the reference counting done for
the component that installs them. This is doubly important on your build machine
where you will be installing and uninstalling your application as you develop the
installation package. If you have components that are installing fonts that are installed
on the build machine, then you will find them missing the first time you test the
install and then uninstall if the components have not been made permanent.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

910

ODBC Components
Open Database Connectivity (ODBC) is an application programming interface (API)
for database access. ODBC provides a single set of functions that can be used by
developers to access data in various Data Base Management Systems (DBMS) that
support SQL. To create components that install drivers, translators, and/or create
data source names, it is important to understand how ODBC works. After the
ODBC overview, you will add some more components to the Developer Art
application that install a simple front end to a Microsoft Access database. This front
end uses ODBC to access the tables in the Access database.

Overview of ODBC
The complete ODBC environment consists of five elements: the ODBC
Administrator, the database application, the ODBC Driver Manager, the ODBC
Driver, and the data source. The relationship of these five elements is shown in
Figure 14-37. Each of these elements is discussed in the next sections.

ODBC Administrator

The ODBC Administrator is accessed through the Control Panel and is used to add,
configure, and delete data sources from a system. It can also be used to view what
drivers are installed on the local system. When you add or delete a data source from
your system using the ODBC Administrator, it does not mean that you are actually
installing a database file or uninstalling it from the system. Normally you use the
ODBC Administrator to associate a name with a particular database. What this does
is create entries in the registry. Depending on the ODBC drivers that are installed,
you may also be able to create an empty database file that contains no tables. This is
possible in the case of Microsoft Access.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

911

Figure 14-37: The ODBC environment and the key players.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

912

The Application

The application element of the ODBC picture is the front end that is used to provide
access to the database file in which the data is stored. It is in the application that the
ODBC API function calls are made. Depending on how the application is written, it
may offer the user a selection of databases with which they can connect. In the simple
example that you will perform here, the application is tied to a particular database and
it is the installation’s responsibility to make sure that both the database file is installed
and the proper registry entries are made so that the application can connect to the
database.

The Driver Manager

The Driver Manager is responsible for managing the communication between the
application and the specific ODBC driver that is used as the interface with the data
provider. When an application tries to make a connection with a database, the Driver
Manager loads the correct driver based on a search of the registry for the specified
data source name. The Driver Manager is also responsible for unloading a driver that
is no longer needed. The Driver Manager is considered the core of ODBC and it is
installed using the Microsoft Data Access Components (MDAC). InstallShield
Developer provides a merge module for installing MDAC.

The Drivers

Drivers are the elements of ODBC that process requests sent from the application
via the Driver Manager. If necessary, a driver modifies a request from an application
into a form that is understood by the data source. Drivers can make use of translation
DLLs that provide a generic mechanism that allows the driver to translate data from
one character set to another.

The Data Source

The final element of the ODBC environment is the actual data with which a
connection is being made. A data source can be a file such as created by Microsoft
Access or it can be a database on a server such as created by Microsoft SQL Server.
Data sources can be local to everyone who uses the machine or they can be available
only on a user-by-user basis. Data sources that are installed so that all users of the
machine can have access are registered under the following registry key:

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

913

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC

It is necessary to have administrative or elevated privileges in order to install a data
source for all users of the machine. These types of data sources are called system data
sources.

Data sources that are installed only for a particular user are registered under the
following registry key. This type of data source is called a user data source.

HKEY_CURRENT_USER\SOFTWARE\ODBC

Many ODBC drivers have setup DLLs that are used to properly install the driver on
the target system. Translator DLLs also sometimes have a special setup DLL that is
used to make the proper registry entries.

The focus of this section is how to create Windows Installer components that install
ODBC drivers, ODBC translators, and ODBC data source names. A data source
name is an entry in the registry that associates a name to an actual database that may
be on the system somewhere.

The Windows Installer and ODBC

In the Windows Installer database schema, there are five tables devoted to the
installation of ODBC drivers, translators, and data source names. Figure 14-38 shows
the schema of these file tables and the two interfacing tables. The schema here uses
the same format as described in Chapter 3.

There are also three standard actions placed in the InstallExecuteSequence table that
have the task of reading the tables shown in Figure 14-39 and performing the actions
that are required to install or remove the drivers, translators, and data source names
identified in the ODBC related tables. These actions are SetODBCFolders,
RemoveODBC, and InstallODBC. The only one of these actions that its purpose is
not clear from the name is the SetODBCFolders action. The SetODBCFolders
action checks to see if any of the drivers being installed on the target system already
exist and if so it sets the installation folder for the new driver to be the same as for the
existing driver.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

914

Figure 14-38: The ODBC database tables and their relationship.

When the installation of ODBC is implemented by the Windows Installer actions, the
Windows Installer takes the information in the tables shown in Figure 14-38 and
sends this information to the installer DLL that is part of the Driver Manager

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

915

functionality. ODBC drivers, translators, or data source names cannot be installed
unless the Driver Manager is installed in advance.

The next section looks at how you can use InstallShield Developer to create the
installation for a simple database application that uses ODBC to connect to an
Access data source.

Creating and Installing ODBC
Components

For this example, you will use the Basic MSI project created for the Developer Art
application. You will need to create components for the Microsoft Access driver, the
associated translator, and you will need to create a new data source name (DSN) that
gets created under HKEY_LOCAL_MACHINE. You will then add another
shortcut to the executable that accesses the data in the Access database.

The additional functionality that you will be adding to the Developer Art application
in this example is a very limited capability to access a particular Microsoft Access
database through an application that uses ODBC to make the connection. On the
included CD-ROM are both the .mdb file and the front-end application that provides
access to one of the tables in the database. The .mdb file contains only the tables
because the forms and other data have been removed by splitting the original
database file.

Open the Basic MSI Developer Art project and create a new top-level feature under
which you can place all the new components that are related to the running of the
database application. After you create the new top-level feature, create two new
components by right clicking on the feature and selecting the New Component
option. As shown in Figure 14-39 the names of these two components are
DatabaseApp and Database.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

916

Figure 14-39: The components required to install the database application.

In the Files view for the DatabaseApp component, add the Expenses.exe file and
make it the key path for the component. Also, for this component create a shortcut
and add it to the folder where the other two shortcuts are. This is all you need to do
for this component.

In the Files view for the Database component, add the Expenses.mdb file. You do
not have to make this file the key path, but there is no problem if you do. Since this
component is something that will most likely be updated by the user, set the
Permanent property to Yes. This means that it cannot be removed when the
application is uninstalled. Another thing that you want to do is to change the
Destination property to a globally shared location and assign this location to an
identifier named DATABASEDIR. The global location for applications that is used
in the projects on the CD-ROM is as follows:

[CommonAppDataFolder]InstallShield\Shared Database

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

917

Figure 14-40: Creating the DATABASEDIR directory identifier.

This identifier is the one that is used in the DatabaseFolder dialog that is included in
all default Basic MSI projects. In a Standard project the SdAskDestPath or
AskDestPath dialogs would be used. To create this path identifier, select “Browse,
create, or modify a directory entry…” from the drop-down menu in the Destination
field. When you have created this directory identifier, the Browse for Directory dialog
will look as shown in Figure 14-40. The identifier does not appear in the Destination
field. Instead, the default location to which the directory identifier has been set
appears in the Destination field.

By default, the DatabaseFolder dialog is not used in any of the user interface
sequences so you have to add it to the InstallWelcome wizard sequence. You should
place it after the InstallNTService dialog and before the SetupType dialog. As
discussed in Chapter 12, you add a dialog into a wizard sequence by setting the targets

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

918

of the NewDialog control events for the Next and Back buttons in a Basic MSI
project. For a Standard project, you need to add code to the OnFirstUIBefore event
handler in order to use the SdAskDestPath or AskDestPath dialogs to browse for the
location to install a database file.

You can now create the final three components for the driver, translator, and DSN.
Do this by using the ODBC Resources view under Step3 in the View List. In the
ODBC Resources view you will see all the drivers, translators, and data source names
that are installed on the build machine. You cannot create components for drivers
and translators that are not already installed on the build machine. For drivers you can
modify the values of attributes and you can add new attributes. For translators you
can only modify the value of the attributes but translators only have three attributes
so you cannot add any new ones.

For this example, select the Microsoft Access Driver (*.mdb) driver entry in the
ODBC Resources panel and the MS Code Page Translator entry. Right click on the
Microsoft Access Driver (*.mdb) driver in the ODBC Resources panel and select the
New DNS option. Name this new data source Expenses, as shown in Figure 14-41.
With the Expenses DSN still selected, go to the Properties panel just below the
ODBC Resources panel and name the DSN component ExpensesDSN.

You can accept the remaining default attribute values, but you need to create an
additional attribute. The name of this attribute is DBQ and you want to give it a value
equal to the location where the Expenses.mdb database file is going to be installed.
Since you are allowing the end user to choose where to install this database file, enter
the following value:

[DATABASEDIR]Expenses.mdb

You should take a look at the driver, translator, and data source components that
were created. Note that all of these components have the Permanent property set to
Yes. Also, the destination for each of these components has been set to the
[SystemFolder] directory identifier. For each of these three components in the Setup
Design view, you can go to the Advanced Settings tree to see that a new icon has
been added there called ODBC Resources. The process of creating an ODBC
component added this new icon. You can go to these icons and make changes to the
attributes if you do not want to work in the ODBC Resources view under Step 3.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

919

Figure 14-41: Creating the Expenses data source name.

Build the project and install this latest version of the Developer Art application. You
will see that you now have a third shortcut and, when you click on it, a database
editing form is launched that allows you to view and edit a table in the Expenses
database.

Changes Made to the Operating System
for ODBC

To the subject of ODBC, we should look at the changes that are made to the target
system when ODBC components are installed. First, you need to look at the
following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\ODBC

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

920

Under this key there are two sub-keys as shown in Figure 14-42. The ODBC.INI key
is where the data source names are registered for all users of the machine.

Figure 14-42: The ODBC registry keys under HKEY_LOCAL_MACHINE.

There is a similar key under the following key where data source names for individual
users are created:

HKEY_CURRENT_USER\Software\ODBC

The second sub-key is named ODBCINST.INI and this is where all the drivers are
registered. Drivers are only registered under HKEY_LOCAL_MACHINE.

There is a final point that needs to be made about the changes to the system when
ODBC components are installed. Most of the ODBC drivers that are created and
shipped by Microsoft are part of the Windows File Protection (WFP) list. The WFP

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

921

is discussed at the end of Chapter 13 but it is a mechanism on Windows 2000,
Windows ME, and Windows XP where critical system files cannot be replaced by
installation programs. Testing this particular installation on Windows 2000 will make
all the registry entries but it will not copy either the driver or the translator files to the
System32 folder.

We can now move on a see how to create components in a way so that they can
easily be shared between applications.

Merge Modules
Merge modules provide a standard method by which setup developers can deliver
shared Windows Installer components and setup logic to multiple applications. Merge
modules are used to deliver shared code, files, resources, registry entries, and setup
logic to applications as a single compound file.

A merge module is similar in structure to a simplified Windows Installer .msi file
except that it has an .msm extension. However, a merge module cannot be installed
alone. It must be merged into an installation package using a merge tool. InstallShield
Developer provides the functionality to both create and use merge modules.

When a merge module is merged into an .msi file for an application, all the
information and resources required to install the component contained in the merge
module are incorporated into the application's .msi file. The merge module is then no
longer required to install the components and the merge module does not need to be
shipped as part of the media image. Because all the information needed to install
components is delivered as a single file, the use of merge modules can eliminate many
instances of version conflicts, missing registry entries, and improperly installed files.

In the next section, we will work through a simple example of creating and using a
merge module in the Developer Art application. Using the Basic MSI project for the
Developer Art application, you will create a merge module for the ArtWork.dll file
and then use the merge module in place of the component that was created for this
file in Chapter 5. There is no difference in how merge modules are created and used
in a Basic MSI project and in a Standard project.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

922

Creating a Merge Module
Merge modules are created using the Merge Module Project icon in the “Create a new
project…” sub-view under the InstallShield Today view. Merge module projects have
the same extension (.ism) as used for both the Basic MSI and Standard projects. You
can also create a new merge module project by using the New option on the File
drop-down menu.

For this example, use either of the approaches mentioned above to create a merge
module project called ARTWORK.ISM.

Figure 14-43: The General Information sub-views in a merge module project.

When you create the merge module project, you will see an IDE that is fairly similar
to the one in which you have been working since Chapter 5. The main differences
you will notice are that there is no Features view or Setup Design view. These two
views are missing because you do not define features in a merge module, only
components. The Merge Modules, Dependencies, Setup Files, and InstallScript views
are also missing and there is no view that is concerned with the sequences of actions.

You start off with this merge module project by making entries in the sub-views
found under the General Information view just the same as you did back in Chapter
5. The sub-views in a merge module project, however, are different than they are in a
main installation project, as shown in Figure 14-43.

The sub-views under the General Information view are described along with a
discussion of the various fields in which you need to make entries.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

923

Project Properties: The fields for this sub-view are exactly the same as for a
main installation project. You can enter any values that you want here. Leave the
default language selection.

Summary Information Stream: The fields for this sub-view take the same
information as for a main installation project with one exception and that is the
Subject property. The Subject property provides a name for the merge module,
but this name is not used in the main installation project. The string that is
entered for the value of the Subject property is used to identify the merge module
in the list of merge modules that is viewable in a main installation project. A good
entry for the merge module you are creating is "ArtWork Module for Creating
Geometric Shapes". You will see this string again when you include the merge
module in the main installation project for the Developer Art application.

Merge Module Properties: This sub-view contains a set of properties that you
have not seen before. The Product Name property is used to identify the name of
the merge module file that will be created. A good name for this property is
ArtWork as shown in Figure 14-44. This name cannot contain any spaces
because this value is used to create part of the primary key in the
ModuleSignature table in the merge module database. The Product Version
property is the version of the merge module and is used to populate the
ModuleSignature table in the merge module database. For this example, you do
not have to change the value of this or any of the other properties shown in
Figure 14-44.

Figure 14-44: The Merge Module Properties sub-view for the ArtWork merge module.

Module Dependencies and Module Exclusions: In the Module
Dependencies sub-view, you can identify other merge modules that are required

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

924

for the merge module being created to work properly. In the Module Exclusions
sub-view, you can do the opposite. Here you identify any merge modules with
which the current merge module cannot work. For this example, you do not have
to do anything with either of these two sub-views.

String Tables: In a merge module, by default, there are no predefined string IDs
and strings. This is because by default merge modules do not have a user
interface, though this is possible. Only special merge modules have a user
interface and then only because the merge module is distributing components
that need special setup when they are installed. For this example, you do not need
to do anything in the String Tables sub-view.

After filling in the General Information for the merge module project as just
described there is only one additional activity that needs to be performed. That is to
create the component that is to be delivered by the merge module. Do this using the
Components view under Advanced Views. Go to the components view, right-click
on the Components icon in the middle tree and select the Component Wizard
option, as shown in Figure 14-45.

From here on, the creation of the component is exactly the same as we have already
discussed except here you can let the Component Wizard extract the COM
information for you instead of entering it in manually.

After you have created the component, build the merge module. Click the Build
button on the toolbar in the merge module project to create the default build. Part of
the default build process is to copy the merge module after it has been created to a
central location where it can be accessed by any project that needs it. This location is
as follows:

%USERPROFILE%\My Documents\MySetups\MergeModules

When the merge module is placed in this location, it appears in the merge module
view of the main installation project where it can be selected.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

925

Figure 14-45: Accessing the Component Wizard in a merge module project.

Using a Merge Module
To use your merge module in a project, do the following:

1. Open your main installation project for the Developer Art application.

2. Delete the original ArtWork component from the project.

3. Go to the Merge Modules view (Figure 14-46). Find the name of the
merge module as entered in the Product Name property of the Summary
Information Stream sub-view in the merge module project. Select this
merge module and make sure that in the upper-right panel, the
MainProgram feature is selected.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

926

Figure 14-46: The Merge Modules view showing the newly created merge module.

Now there is one last operation to perform before you can build you main project.
You need to make sure that the file in the ArtWork merge module goes to the same
location as all the other files in the Developer Art application. If everything were left
as it is at this point, the ArtWork.dll file would be installed to the root of any drive
that had the largest amount of free space.

To make the necessary modification to the merge module, right-click on the name of
the merge module in the Merge Modules view and select the Properties option. The
Merge Modules Properties dialog is displayed (Figure 14-47). In the Destination drop-
down menu, select the [INSTALLDIR] entry.

C H A P T E R 1 4 C R E A T I N G S P E C I A L C O M P O N E N T S

927

Figure 14-47: The Merge Module Properties dialog.

Build the main project and test the installation. When you test the application after
the installation, you will see that it works just the same as in always did.

The general rule for creating merge modules is that you want to place your
components into merge modules if they are going to be shared between applications
of the same company or between applications of more than one company. If the
component is one of a kind and will never be shared between applications, then the
component should be created in the main installation project and not placed in a
merge module. You need to remember that COM components have global
properties and any COM server that is to be shared across applications needs to be
placed into a global location. This is because the location of the file that implements
the COM server is part of the information that is placed in the registry.

P A R T I I I G E T T I N G D O W N T O B U S I N E S S

928

In general, the rule is that if a component is to be shared across applications of the
same company, then the shared location for these components would be under the
Common Files folder: An example of a company wide shared location is as follows:

C:\Program Files\Common Files\InstallShield\Shared

If a component is to be shared across applications of more than one company, then
the install folder for these components should be the System32 folder. This location
is as follows:

C:\WINNT\system32

Keep in mind the discussion about how components are reference counted by the
Windows Installer, as well as the rules for creating components where two different
components should never share any resources, which includes the name, and install
location for files. These subjects are covered in Chapter 13.

Conclusion
In this chapter you extended your knowledge of components by getting into the
details of how to create special types of components. In the discussion of COM
components you saw the difference between a standard DLL and a COM DLL. You
also worked through the creation of components that install an executable that
contains two NT services. Many of the details of how NT services work are covered
as part of the discussion of how to create installations for them. The final type of
component that can be created with the Component Wizard was the Font
component.

Finally at the end of the chapter you worked through a live example of installing an
ODBC application where the correct creation of the data source name was necessary
to make the application work. The chapter ended with a very brief discussion on
creating merge modules in which components can be shared between many different
applications.

The main point that was stressed in both Chapters 13 and 14 is that the proper
creation of components is important to getting an installation to work correctly under
all circumstances.

Appendices

The CD-ROM

The main content of the CD-ROM at the back of the book is the example projects
and InstallScript code explained in the book. The example applications that are used
to demonstrate various installation creation techniques were created with Microsoft
Visual C++ version 6.0 and Visual Basic version 6.0. You can copy these example
projects and source code directly from the CD-ROM but then you will have to
remember to remove the Read-only attribute. There is an installation program that
allows you to install all the examples and source code to a destination of your own
choosing.

All the InstallScript source code that can be compiled and run is contained on the
CD-ROM using the figure number as the name of the .rul file. You can take this code
and copy and paste it into the InstallShield Developer Script Editor and run the
example after first compiling.

Also included on the CD-ROM is an evaluation copy of version 7.03 of InstallShield
Developer. This is a time locked copy that will stop working after a period of time.
This is to just get you going but you should obtain a purchased copy of the product

Appendix

A

A P P E N D I C E S

932

for any long-term work with the material in the book. To be able to install this
evaluation copy you will have to go to the following Web site and enter your contact
information. After entering your contact information a password will be e-mailed to
you and you will use this password to unlock the evaluation copy.

http://www.installshield.com/ispress

There is also one or two white papers included on the CD-ROM that have to do with
subject matter that is not covered in the book.

Index

A

abort statement, 377
ActionText table, 130
Active Data Object, 549
ADMIN top-level action, 125, 138, 139, 155
AdminExecuteSequence table, 125
Administrative install, 15, 197
AdminUISequence table, 125
ADVERTISE top-level action, 125, 138, 139
Advertisement, 14–15, 198–201

Basic MSI project, 200–201
Standard project, 198–200

AdvtExecuteSequence table, 125, 138
AdvtUISequence table, 125, 138
Application Design tables

Component table, 115–17
definition, 106
Directory table, 118–19
Feature table, 112–15
FeatureComponents table, 117–18
schema, 109–19

AppSearch table
schema, 622

Array data type, 324–26

B

Basic MSI project, 88
custom dialogs, 774–86
Dialogs view, 721–23
serial number input, 786–92
subscription in user interface, 792–95
user interface, 774–95

Best Practices view, 37
Best Practices Wizard, 248–51
Binary table, 131

C

Cabinet files, 96–98
cdecl keyword, 434, 460
Certified for Windows logo, 51

file association requirements, 554–55
Child installs, 17
COM. See Component Object Model
COM Structured Storage, 90–94
Companion files, 848–49
Compliance checking

using tables, 640
CompLocator table

schema, 624
Component Object Model, 12

compared to Win32 DLLs, 852–62
components, 852–74

Component table, 115–17, 650
Component Wizard

Best Practices operation, 825–30
COM components, 866–74
control NT service components, 893–99
font components, 906–9
install NT service components, 882–93
NT service components, 882–900

Components
COM, 852–74
COM vs Win32, 852–62
companion files, 848–49
Component Wizard and COM, 866–74
creating ODBC components, 915–19
creation rules, 111–12, 806–11
defining registry entries, 581–84, 567–87
distribution, 159–60
dynamic file linking, 812–25
environment variables, 587–604
File Types, 555–64
font, 906–9
initialization files, 605–18
interfacing with legacy applications, 840–43
isolated, 845–46
key path, 61
make up, 803–6
NT service control, 893–99
NT service install, 882–93
NT services, 874–905
ODBC, 910–21

I N D E X

934

qualified, 847–48
reference counting, 800–803
removing registry entries, 584–87
scanning, 830–40
self-registration of COM, 862–66
sharing COM components, 864–66
transitive, 846–47
Windows File Protection, 843–45

Components view, 270–78
Compressed GUID, 799
Control table, 131
ControlCondition table, 131
ControlEvent table, 131
Create a New Project view, 33–35
CreateFolder table, 650
Custom Action Wizard, 676
Custom actions, 125, 155, 157, 154–59, 162

accessing database tables, 688–93
accessing the Binary table, 693–97
categories, 155–57
creating InstallScript, 661–78
creating without Custom Action Wizard,

679–80
Custom Action Wizard, 667–76
getting property values, 682–83
InstallScript function prototype, 400–401
InstallScript run-time architecture, 211–15
placing in sequence table, 676–77
procedure for working with database tables,

686–88
setting property values, 684–85
types, 157–59
using MsiDoAction function, 700–702

Custom Actions view, 268–69
Custom dialogs

basic dialog template for Standard project,
741–52

Basic MSI project, 774–86
dialog function for basic dialog template,

752–57
silent install in Standard project, 770–73
Standard projects, 738–73
using dialog templates in STandard project,

761–70
Custom setup dialog, 71

D

Darwin, 83, 134
Darwin Descriptor, 799, 800

Database
relational model, 96
SQL, 96
validation, 137

DATABASE property, 143, 145, 151
Database schema diagrams, 107–8
Database tables

ActionText table, 130–31
Application Design tables - schema, 109–19
Binary table, 131
Component table, 115–17
Control table, 131
ControlCondition table, 131
ControlEvent table, 131
Dialog table, 131
Directory table, 118–19
Error table, 132
EventMapping table, 132
Feature table, 112–15
FeatureComponents table, 117–18
File table, 121–22
Icon table, 135–36
Media table, 122
RadioButton table, 132
Shortcut table, 134–35
table categories, 105–7
TextStyle table, 132
UIText table, 132

Desktop Integration tables
definition, 106
Icon table, 135–36
schema, 133–36
Shortcut table, 134–35

Developer Art sample application
description, 46–47, 220

Dialog table, 131
Dialogs

basics, 704–13
compiling resource files, 719–21
controls, 706–9
defining, 704–6
functions, 709–13

Dialogs view
Basic MSI project, 721–23
compiling resource files, 719–21
Standard project, 714–19

Dictionary object, 523–32
Direct Editor, 650

RemoveRegistry table, 584–87
Directory identifier

I N D E X

935

curly braces, 52
Directory table, 118–19, 650

resolving, 146–50
DLL functions

calling a function in a user-defined DLL,
434–41

calling a function in a Windows DLL, 441–
45

passing arrays to DLL functions, 445–48
DLL redirection, 845–46
DrLocator table

schema, 627–28
Dynamic file linking, 812–25

creating, 812–16
options, 816–25

E

Empty folders
creating, 650–52

Environment table
schema, 589–93

Environment variables, 587–604
accessing during install, 601–4
overview, 588–89
per-machine, 598–600
per-user, 598–600

Environment Variables view, 593–97
Error table, 132
EventMapping table, 132
Exception handling

Err object, 453–55
hierarchy, 455–59
InstallScript engine exceptions, 459–62
try statement, 452–53

exit statement, 377

F

Feature, 8
Feature table, 112–15
FeatureComponents table, 117–18
Features view, 232–42
File associations, 554–67

Certified for Windows logo requirements,
554–55

File Types for components, 555–64
MIME types, 564–67

File Copy tables
definition, 106
File table, 121–22

Media table, 122
schema, 119–22

File menu, 38
File table, 121–22
Files

compressed, 96–98
copying, 11–12
costing, 9–10
properties, 62–63
Vital property, 63

Files view, 244–48
FileSystemObject object, 484–523
Fonts, 906–9
for statement, 368–70
Fresh install, 14
Fresh install run-time architecture, 164–89

Basic MSI project, 184–89
Basic MSI project with InstallScript custom

actions, 184–87
Basic MSI project without InstallScript

custom actions, 187–88
program block execution, 178–79
Standard project, 164–84
uninstall log, 179–81

G

General Information view, 221–32
Add/Remove Programs, 225–28
Product Properties, 228–31
Project Properties, 221–24
String Tables, 231–32
Summary Information Stream, 224–25

goto statement, 376

H

Help view, 37
Hungarian Notation, 303, 304

I

Icon table, 135–36
IDE. See Integrated Development

Environment. See Integrated Development
Environment

if statement, 361–65
INI File Changes view, 609–14
IniFile table

schema, 606–8
IniLocator table

I N D E X

936

schema, 626–27
Initialization files, 605–18

accessing during install, 615–18
creating and modifying, 609–14

Install location, 51
INSTALL top-level action, 125, 138, 139, 141,

142, 150, 155
Installation Procedure tables

definition, 106
schema, 124–28

Installation Validation table
definition, 106
schema, 136–38

INSTALLDIR property, 51, 57, 58, 65, 71,
114, 147, 149, 150, 152, 231, 235, 236, 237,
244, 245, 246, 247, 248, 278, 582, 596, 597,
609, 613, 726, 727, 735, 736, 760, 820, 821,
867, 926

InstallExecuteSequence table, 125, 143, 144,
151, 152, 153

InstallScript
accessing database tables, 688–93
accessing the Binary table, 693–97
adding functions to the Function Wizard,

428–31
arithmetic expressions, 338
arrays of structures, 431–34
bitwise expressions, 351–58
built-in data types, 306–24
built-in function categories, 383–86
calling functions in a user-defined DLL

function, 434–41
calling functions in a Windows DLL, 441–

45
creating custom action, 661–78
creating custom actions programmatically,

700–702
custom action target function, 662–67
Custom Action Wizard, 667–76
dialog function, 752–57
Dictionary object, 523–32
engine exceptions, 459–62
Err object, 453–55
event handler function categories, 389–90
event handler functions, 390–99
exception handling, 452–62
exception handling hierarchy, 455–59
execution model, 21–23
FileSystemObject object, 484–523
function basics, 380–81

function prototypes - built in functions, 381–
83

Function Wizard, 386–88
getting property values, 682–83
iteration statements, 368–75
jump statements, 376–77
OnBegin and OnEnd event handlers, 698–

700
passing an array to a DLL function, 445–48
passing arguments by reference, 405–7
passing strings to functions, 448–49
prototyping custom action functions, 400–

401
prototyping generic functions, 401–2
recursion, 404–5
relational and logical expressions, 339–46
script libraries, 408–28
selection statements, 361–68
setting property values, 684–85
SizeOf and Resize operators, 359–61
string expressions, 347–51
user defined data types, 324–30
variable naming, 302–6
Windows Installer automation interface,

464–83
WSH objects, 533–49

InstallScript run-time architecture, 207–15
custom actions, 211–15
installing the InstallScript engine, 207–8
program block and event handlers, 208–11

InstallShield Developer
Best Practives view, 37
Help view, 37
InstallShield Today page, 37
introduction, 26–28
New Project view, 33–35
Open a Project view, 35–37
opening page, 30–31

InstallShield Professional, 20–21
InstallShield Software Corporation, 3
InstallShield3, 19
InstallUISequence table, 125, 126, 143, 151,

152, 153
Integrated Development Environment, 20, 30

Basic MSI project, 293
Standard project, 218–93

Internet Explorer object, 549

K

I N D E X

937

Key path, 61, 64

L

Launch conditions, 8
specifying, 648–50

LaunchConditions table, 648
Localized install run-time architecture, 201–7

Basic MSI project, 206–7
Standard project, 202–5

M

Maintenance install run-time architecture,
189–96
Basic MSI project, 195–96
Standard project, 190–95

Maintenance operations, 13, 14
Media table, 122
Menus

File menu, 38
Tools menu, 39–42
View menu, 38–39

Merge module project, 922–25
Merge modules, 159–60, 159–60
Merge Modules view, 925–28
Microsoft Office, 83
MIME types. See File associations
MSI file, 88–90

N

NT services, 874–905
control component - Component Wizard,

893–99
controlling, 881
how they work, 874–79
installation component - Component Wizard,

882–93
installing, 881
interactive, 901–2
SCM database, 880
user account installation, 903–5

NUMBER data type, 307–18

O

OBJECT data type, 323–24
ODBC. See Open Database Connectivity
ODBC Resources view, 915–19
Open a Project view, 35–37

Open Database Connectivity, 910–21
overview, 910–15

Options dialog
File Locations, 40–42

Orca, 98, 99, 105, 112, 115, 159, 161

P

Packed GUID, 798, 799, 800, 801
Patch packages, 161
Patching, 16
Path variables, 78–81
Path Variables view, 257–64
Project location

setting, 40–42
Project Wizard

Application Features dialog, 55–59
Application Files dialog, 59–64
application information, 50
Basic MSI project, 73–77
Company Information dialog, 54
Create Shortcuts dialog, 64–67
creating new project, 48
Dialogs dialog, 69–70
feature destination, 57–59
opening a project, 48
project type, 49
Registry Data dialog, 67–69
Setup Languages dialog, 55
Software Updates dialog, 52–53
Wizard Summary dialog, 70

Property Manager view, 264–66
Property table, 96, 114, 126, 127, 146, 149,

152, 158

Q

Qualified components, 847–48

R

RadioButton table, 132
Registry, 12

creating registry entries, 567–87
REG file, 68–69
Registry table, 569–73
RemoveRegistry table, 573–74
removing registry entries, 584–87

Registry Entry tables
definition, 106
schema, 122–23

I N D E X

938

Registry table
schema, 569–73

Registry view, 575–80
defining registry entries, 584

RegLocator table
schema, 625–26

Release Wizard, 279–91
Releases

build location, 99
build output window, 71

RemoveIniFile table
schemaa, 606–8

RemoveRegistry table
schema, 573–74

return statement, 376–77

S

Scanning for dependencies, 830–40
filtering files, 832–34
Visual Basic projects, 834–40

Script libraries
adding functions to the Function Wizard,

428–31
creating, 408–28

Searaching target system
for files using InstallScript

specified location, 643–44
Searching for

applications, 10–11
Searching target system, 618–48

AppSearch table, 622
CompLocator table, 624
DrLocator table, 627–28
for files using InstallScript, 641–44

all fixed drives, 641–43
for files using tables, 630–34

all fixed drives, 630–31
specified location, 633–34
specified path, 631–33

for folders using InstallScript, 644–47
of existing file, 645–46
specified in INI file, 646–47

for folders using tables, 635–38
of existing file, 635–37
specified in INI file, 637–38

for registry value using InstallScript, 647–48
for registry value using tables, 638–39
IniLocator table, 626–27
overview, 619–28
RegLocator table, 625–26

Signature table, 622–24
Sequences view, 269–70
Setup Design view, 266–68
Setup Types view, 242–43
Setup.ini file, 166–71
SFP. See Windows File Protection
Shell object, 549
Shortcut table, 134–35
Shortcuts, 12, 251–57

creating in Project Wizard, 64–67
MSI, 66
standard, 66

Signature table
schema, 622–24

SQL, 96, 680, 686, 689, 692, 694, 696
Standard actions, 125
Standard project, 88

Advanced Views, 257–78
basic dialog template, 741–52
Configure the Target System, 251–57
custom dialogs, 738–73
default user interface, 724–31
dialog function for basic dialog template,

752–57
Dialogs view, 714–19

compiling resource files, 719–21
modifying user interface, 731–37
Organize Your Setup, 220–43
Prepare for Distribution, 278–93
silent install for custom dialogs, 770–73
Specify Application Data, 243–51
using dialog templates, 761–70

stdcall, 437, 442, 446
stdcall keyword, 434, 460, 733
STRING data type, 318–22
String ID

curly braces, 52
usage, 54

Structure data type, 327–30
Subscription, 132, 792–95
Summary Information Stream, 92–94

Application Name property, 104
Author property, 103
Category property, 101
Character Count property, 103
Codepage property, 104
Comments property, 103
Date Last Saved property, 104
Date of Creation property, 104
Developer Art application, 100–105

I N D E X

939

Keywords property, 101
Last Printed property, 104
Last Saved By property, 103
Page Count property, 101–2
Revision Number property, 103–4
Security property, 104–5
Source property, 103
Subject property, 101
Template property, 101
Title property, 100–101
Word Count property, 102–3

switch statement, 366–68
System File Protection. See Windows File

Protection

T

TCO. See Total Cost of Ownership
TextStyle table, 132
Toolbars

customize, 39–40
Standard, 42–46

Tools menu, 39–42
Top-level actions, 124–25, 138, 139, 143, 155
Total Cost of Ownership, 84
Transforms, 17, 160–61
Transitive components, 846–47
try statement, 452–53

U

until statement, 374–75
Upgrades, 16
User interface

Basic MSI project, 774–95
custom dialogs in Standard project, 738–73
default for Standard project, 724–31
dialog basics, 704–13
modifying default STandard project, 731–37
serial number input in Basic MSI project,

786–92
subscription in Basic MSI project, 792–95

User Interface, 10–11
User Interface tables

ActionText table, 130–31

Binary table, 131
Control table, 131
ControlCondition table, 131
ControlEvent table, 131
definition, 106
Dialog table, 131
Error table, 132
EventMapping table, 132
RadioButton table, 132
schema, 128–32
TextStyle table, 132
UIText table, 132

V

VARIANT data type, 322–23
View menu, 38–39

W

WFP. See Windows File Protection
while statement, 371–73
Windows 2000, 18
Windows 95, 8, 9, 19, 20, 23, 28
Windows 9x, 8
Windows File Protection, 843–45
Windows Installer

automation interface, 464–83
command line, 138–41
database, 94–96
design concepts, 88
Directory table resolution, 146–50
MSI file, 88–90
run-time architecture, 138–54
SDK, 98
Summary Information Stream, 94
user interface levels, 139–40

Windows Installer authoring tools, 23–28
Windows Script Host objects, 533–49

Z

ZAW. See Zero Administration Windows
Zero Administration Windows, 84

InstallShield Press

End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening the
software packet(s) included with this book ("Book"). This is a license agreement
("Agreement") between you and InstallShield Press ("ISPRESS"). ISPRESS is a division of
InstallShield Software Corporation. By opening the accompanying software packet(s), you
acknowledge that you have read and accept the following terms and conditions. If you do not
agree and do not want to be bound by such terms and conditions, promptly return the Book
and the unopened software packet(s) to the place you obtained them for a full refund.

1. License Grant. ISPRESS grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the "Software") solely for your own
personal or business purposes on a single computer (whether a standard computer or a workstation
component of a multi-user network). The Software is in use on a computer when it is loaded into
temporary memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other storage
device). IS PRESS reserves all rights not expressly granted herein.

2. Ownership. ISPRESS is the owner of all right, title, and interest, including copyright, in and
to the compilation of the Software recorded on the disk(s) or CD-ROM ("Software Media"). Copyright
to the individual programs recorded on the Software Media is owned by the author or other authorized
copyright owner of each program. Ownership of the Software and all proprietary rights relating thereto
remain with ISPRESS and its licensers.

3. Restrictions On Use and Transfer.

a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii)
transfer the Software to a single hard disk, provided that you keep the original for backup
or archival purposes. You may not (i) rent or lease the Software, (ii) copy or reproduce
the Software through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create derivative works
based on the Software.

b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer must include the most recent
update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in Appendix E "What's on the CD-ROM" of this

Book. These limitations are also contained in the individual license agreements recorded on the
Software Media. These limitations may include a requirement that after using the program for a
specified period of time, the user must pay a registration fee or discontinue use. By opening the
Software packet(s), you will be agreeing to abide by the licenses and restrictions for these individual
programs that are detailed in Appendix E and on the Software Media. None of the material on this
Software Media or listed in this Book may ever be redistributed, in original or modified form, for
commercial purposes.

5. Limited Warranty.

a) ISPRESS warrants that the Software and Software Media are free from defects in
materials and workmanship under normal use for a period of sixty (60) days from the
date of purchase of this Book. If ISPRESS receives notification within the warranty
period of defects in materials or workmanship, ISPRESS will replace the defective
Software Media.

b) ISPRESS, LICENSORS, THE AUTHOR AND RELATED PARTIES
DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED
THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
ISPRESS DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

c) This limited warranty gives you specific legal rights, and you may have other rights
that vary from jurisdiction to jurisdiction.

6. Remedies.

a) ISPRESS’s, licensor’s, author’s and related parties’ entire liability and your exclusive
remedy for defects in materials and workmanship shall be limited to replacement of the
Software Media, which may be returned to ISPRESS with a copy of your receipt at the
following address: InstallShield Press, Attn.: Getting Started with InstallShield Developer and
Windows Installer Setups, InstallShield Software Corp, 900 N. National Parkway, Ste. 125,
Schaumburg, IL 60173, or call 1-847-466-4000.Please allow three to four weeks for
de1ivery. This Limited Warranty is void if failure of the Software Media has resulted
from accident, abuse, or misapplication. Any replacement Software Media will be
warranted for the remainder of the original warranty period or thirty (30) days, whichever
is longer.

b) In no event shall ISPRESS, licensorthe author, or related parties be liable for any
damages whatsoever (including without limitation damages for loss of business profits,
business interruption, loss of business information, or any other pecuniary loss) arising

from the use of or inability to use the Book or the Software, even if ISPRESS has been
advised of the possibility of such damages.

c) Because some jurisdictions do not allow the exclusion or limitation of liability for
consequential or incidental damages, the above limitation or exclusion may not apply to
you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software by the
U.S. Government is subject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause of DFARS 252.227-7013, and in subparagraphs (a) through (d) of the
Commercial Computer- Restricted Rights clause at FAR 52.227-19, and in similar clauses in the NASA
FAR supplement, when applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes and
supersedes all prior agreements, oral or written, between them and may not be modified or amended
except in a writing signed by both parties hereto that specifically refers to this Agreement. This
Agreement shall take precedence over any other documents that may be in conflict herewith. If any one
or more provisions contained in this Agreement are held by any court or tribunal to be invalid, illegal, or
otherwise unenforceable, each and every other provision shall remain in full force and effect.

