

“Without a doubt, the seminal work on JBuilder. Previous JBuilder books teach Java
using JBuilder. This book teaches JBuilder, its history, how to configure it and how to
get the most out of it. It is filled with insights only a Borland insider would know. An
absolute must for JBuilder developers and those wishing to be JBuilder certified.
JBuilder has a new owner’s manual!”

Ken Sipe
CEO, Code Mentor, Inc.

“Finally a comprehensive book that walks through the great features of JBuilder. Mas-
tering JBuilder targets both the novice and expert. It provides a HOW-TO approach
dividing up features into usable segments. The chapters try to avoid assumptions
while still giving enough details to cover topics in an easy to understand fashion.
Every JBuilder user will want this as a quick reference.”

David Lucas
President and Software Architect,
Lucas Software Engineering, Inc.

“This book has a significant amount of detail, enough to prove that the name is appro-
priate! I was particularly impressed with the chapters on unit testing and team usage ––
the depth was good and gives a very solid foundation from which to work from. When
my team gets a hold of this, it will not only help the newer developers get up to speed,
but the more advanced people can certainly learn a thing or two!”

Angelo Serra
Information Technology Manager, COJUG

“Mastering JBuilder is full of useful information and valuable tips. It starts with giv-
ing you complete instructions on configuring JBuilder then expands to focus on utiliz-
ing the power of JBuilder to accelerate development. I especially enjoyed the chapters
on debugging, EJB development and Web Services. I would recommend this book for
anyone looking to take his or her JBuilder development skills to the level of ‘Master’.”

Jerry Jones
Consultant, Enterprise Developer

Advance Praise for
Mastering JBuilder

Mastering JBuilder®

Mike Rozlog
Geoffrey L. Goetz

Sung Nguyen

Mastering JBuilder®

Publisher: Joe Wikert
Executive Editor: Robert M. Elliott
Assistant Developmental Editor: Emilie Herman
Editorial Manager: Kathryn Malm
Managing Editor: Pamela M. Hanley
Media Development Specialist: Brian Snapp
Text Design & Composition: Wiley Composition Services

This book is printed on acid-free paper. ∞

Copyright © 2003 by Mike Rozlog, Geoffrey L. Goetz, and Sung Nguyen. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-
4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this book and specifically disclaim any implied warranties of mer-
chantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suit-
able for your situation. You should consult with a professional where appropriate. Neither the pub-
lisher nor author shall be liable for any loss of profit or any other commercial damages, including but
not limited to special, incidental, consequential, or other damages.

For general information on our other products and services, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or f
ax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered
trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be used
without written permission. Borland, the Borland logo and JBuilder are trademarks or registered trade-
marks of Borland Software Corporation in the United States and other countries and are used under
license. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Rozlog, Mike, 1968-
Mastering JBuilder / Mike Rozlog, Geoffrey L. Goetz, Sung Nguyen.

p. cm.
Includes index.
ISBN 0-471-26714-7

1. Java (Computer program language) 2. JBuilder. I. Goetz, Geoffrey L., 1970- II. Nguyen, Sung, 1971-
III. Title.
QA76.73.J38 R695 2003
005.13'3--dc21

2002156130

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Mike Rozlog:

I dedicate this book to my wife, Leigh Ann, and Michael Jr. I’m sorry for
all of the nights and weekends I sat in front of the computer working on

the book instead of spending them with you. But, now it is done,
time for a vacation!

Special thanks to Michael Jr., my 2-year old, for understanding daddy
has to work and shutting the door behind him.

Geoffrey L. Goetz:

I dedicate this book to my loving wife, Allyson, for all of her patience,
understanding, and support as I spent many an evening and weekend

working on the book.

Sung Nguyen:

My dedication is to my Grandma, her endless love built the best I can be;
and to my mother and her unconditional supports.

Specially, to my loving wife, Mimi, who makes all things possible by
putting up with me on my book activities. I love you. Now, my nights and

weekends are yours; that’s my commitment to you and our son.

To my little BaoNghiem, who always wants to play with his daddy. And
here he is.

Contents

ix

Foreword xix
Acknowledgments xxi
Introduction xxiii

Part 1 JBuilder as an Integrated Development Environment 1

Chapter 1 Installing JBuilder 3
Installing JBuilder 4
Review the Installation 5
Review the Configuration Files 6
Set the user.home 8
Review the License 8
Set Other Switches 9
Perform Troubleshooting 10
Summary 11

Chapter 2 Customizing the AppBrowser 13
Generic AppBrowser Components 14

Message Pane 16
Configuring the AppBrowser Using IDE Options 17

Browser 17
File Types 22
Web Panel 23
XML Panel 24
Run/Debug Panel 27
Audio Panel 28
UML Panel 30
EJB Designer 31
Generic Setup for IDE Options 31

Configuring the AppBrowser with Editor Options 32
Editor Panel 33
Display Panel 35

Color Panel 36
CodeInsight Panel 36
Template Panel 38
Java Structure Panel 39
Generic Setup for Editor Options 40

Content Tabs 41
Graphics 41
Source 41
Doc 43
Using Multiple AppBrowsers 45

Summary 45

Chapter 3 Controlling Java Configurations 47
Overview of Java Development Kits 48

JDK Definitions 49
Adding a JDK 53
Configuring a JDK 53
JDK Switching 54

Configuring Libraries 54
Summary 57

Chapter 4 Project Properties and Configurations 59
Creating a Simple Project in JBuilder 59

Multiple Source Roots 64
Project Groups 65

Using Nodes 69
Advanced Project Properties Features 69

Paths Panel 69
General Panel 70
Run Panel 70
Build Panel 71
Formatting Panel 73

Generated Tab 74
Imports Tab 75

Class Filter 76
Server Panel 78
Default Project Properties 80
Project Pane Interface 80
Context Menu 80
Project Pane Toolbar 80
Advanced Features 81

Summary 83

Chapter 5 Debugging with JBuilder 85
Debugging Basics 86

Line Breakpoints 89
Debug Toolbar 91

Main Group 91
Control Group 92

x Contents

Code Modification Group 92
Code Type Group 93
Information Group 93

Debug Views 93
Loaded Classes and Static Data View 94
Current Frame 94
Understanding DebugShow 96
Advanced Breakpoints 102

Intermediate Debugging 105
Modifying Code in a Debug Session 105
Multiprocess Debugging 107

Advanced Debugging 113
Remote Debugging 115

Launching 117
Attaching 120

Summary 123

Chapter 6 Using the JBuilder Help System 125
Getting Started 125

Index Pane 128
Find Pane 128
Content Pane 129
Context-Sensitive Help 130
Using the Doc Tab 130

Tip of the Day 130
Advanced Help Features 132

Bookmarks 132
Fonts 133
Copy Buffers 133

Summary 134

Part 2 JBuilder as a Rapid Application Development Tool 135

Chapter 7 Creating Classes 137
Overview of the Object Gallery 138
Object Gallery Tabs 139

General Tab 139
Project Tab 148
Web Tab 148
XML Tab 151
CORBA Tab 152
Build Tab 152
Enterprise Tab 152
Test Tab 153
Web Services Tab 153

Summary 153

Chapter 8 Modifying Classes 155
Creating the First JavaBean 155

Adding Properties 160

Contents xi

Adding Events 165
Adding Property Editors 168
Adding a BeanInfo Class 169
Adding Custom Code 171
Java’s Way of Solving the Problem 172
Setting To-Do’s Inside Code 173
Overriding the equals() Method 173
Overriding the toString() Method 174
Overriding the hashCode() Method 174

Building a Visual JavaBean 175
Using the GUI Designer 176
Creating a Border Component 179
Maximizing the Designer 181
Drag and Drop; Copy, Cut, and Paste 182
Changing XYLayout to GridbagLayout for Deployment 183
Adding a Nonvisual Bean to the Palette 184
Adding the Component to the Visual Component 186
Vetoing an Event 188
Implementing Interfaces 189

Building an Application 190
Summary 192

Part 3 JBuilder and Application Lifecycle Management 193

Chapter 9 Integrated Team Development 195
Team Development Tools 195

Setting Up Your Project with a VCS 196
Manage Revisions of the Source Files 197

Compare|Files Dialog 197
History View 199

CVS Integration 201
Creating CVS Repository 202
Configuring CVS Properties 202
Checking Out a Project from CVS 203
Placing a New Project into CVS 204
CVS Project-Level Commands 205
CVS File-Level Commands 206
Resolving CVS Merge Conflicts 207

Summary 208

Chapter 10 Using Build Systems 209
Build System Basics 209
Using the Compiler 211

Compiler Settings 211
Common Build Settings 213
Managing Resource Files 215
Changing Ant Library 216
Adding Items to Build Menu 217

Archive Builder 218

xii Contents

Using External Build Task 220
Using Project Groups 222
Integrating the JBuilder Build System with Ant Build Files 223

Ant Wizard 223
Ant Build File Properties 224
Ant Options 225
Handling Compilation Errors with Ant 226

Summary 227

Chapter 11 Unit Testing with JUnit 229
JUnit Architecture 229

TestCase 230
TestSuite 230
JUnit Supporting Classes 235
Test Runners 237

JUnit Integration with JBuilder 239
Build a Test Case 239

Step 1 240
Step 2 240
Step 3 240
Step 4 242

Build a TestSuite 244
Using Test Fixtures 245

JDBC Fixture 246
JNDI Fixture 247
Comparison Fixture 250
Custom Fixture 252

Unit Testing J2EE Applications 252
Summary 253

Chapter 12 UML Visualization 255
Visualize Your Codes 256

Customize the UML Diagrams 259
Structure View of UML Diagram 260

Context Menu for Refactoring 260
Summary 262

Part 4 Two-Tier Client/Server Development with JDBC 263

Chapter 13 Building the Database with JDataStore 265
Database Design for JDataStore 266
Launching JDataStore Explorer 267
Creating a New Database 268
Creating a New Database Programmatically 270
Adding Tables to the Database 274
Adding Tables Programmatically 278
Adding Access Control to the Database 286
Adding Access Control to the Database Programmatically 288

Adding Encryption 295
Summary 295

Contents xiii

Chapter 14 DataExpress and DBSwing Applications 297
Evolution of DBSwing Architecture 299
Wizard Building Applications 299

Using Data Modules to Generate Applications 300
Creating a Data Module 300
Data Modeler 301
Generate an Application 302
Master-Detail Relationships 310

Creating a DBSwing application 312
Summary 316

Part 5 Web Development with Servlets,
Java Server Pages, and Struts 317

Chapter 15 Server and Service Configuration 319
Configuring Your Server 320

Configuring Borland Enterprise Server, AppServer Edition 321
Configure General Server Settings 321
Library Settings for Servers 322
Configure Custom Server Settings 323
Reset to Defaults 323

Enterprise Setup 324
Configuring CORBA 324

Setting Up Java IDL as CORBA Compiler 325
Configuring Database Drivers 327

Setting Up the InterClient JDBC Driver 327
Configuring SQLJ 329

Selecting a Server’s Services 330
Configuring the CORBA IDL Compiler 332

Building Server Components 333
Web Applications 333
Web Application Properties 335
EJB Modules 337
EJB Modules from Existing Deployment Descriptors 338
EJB Module Properties 339
Enterprise Archives 341

Deploying the Finished Product 342
Runtime Configurations for Servers 343

Controlling the Server 343
Selecting the Services 344

Deploy Options 344
Enterprise Deployment 344

Summary 345

Chapter 16 Web Enablement with Servlets 347
Objectifying Client Requests and Server Responses 348
Creating a New Standard Servlet 350

Content Types and Response Message Body 352
Request Methods of a Servlet 353

xiv Contents

SHTML and Server-Side Includes 355
URL Mapping 356
Accessing a Request’s Incoming Parameters 357
Modifying a Standard Servlet’s Deployment

Descriptor Properties 358
The Servlet Lifecycle 360

Project Properties and Required Libraries 360
Creating a Filter Servlet 360

Filter Servlet’s Deployment Descriptor Properties 362
Using DataSources 363

Deployment Descriptor 363
Resource Manager Connection Factory References 363

Binding the DataSource to the Server’s Naming Service 364
Tomcat DataSource Binding 365

Adding the JDBC Driver to the Web Container’s Classpath 367
Deploying the Driver in the WEB-INF/lib Directory 367
Making All Required Libraries of

the Project Available on Run 368
Deploy JAR Files to Web Container 368

Summary 369

Chapter 17 Moving from Basic Servlets to Java Server Pages 371
JSP Tags 372

Working with the JspWriter 373
Standard Actions of a Java Server Page 373

Creating a Java Server Page 373
Declare JSP and Components 374
Edit JSP File Details 375
Edit Sample Bean Details 376
Enter Additional Beans 378
Edit Error Page Details 380
Define JSP Configuration 381

Tag Libraries 381
Tag Handlers: Implement the Interface 382
Tag Handlers: Extending the Support Class 383
Tag Library Descriptor: Creation and Validation 385

Create Tag Library Descriptor File for Basic Archives 386
Create Tag Library Descriptor File for Web Applications 386
Edit Tag Library Descriptor 386
Using Compound Code Templates 388
Validate the Tag Library Descriptor 389
Packaging Tag Libraries in Basic Archives 390
Modifying the Web Application’s Deployment Descriptor 390

Tag Library Directive: Accessing Custom Tag Libraries
from the Java Server Page 391

Java Server Page Tag Library Compilation Errors 391
Summary 392

Contents xv

Chapter 18 Developing with Struts 393
Developing in the Struts Framework 394

Configure the Struts Controller for a Web Application 394
Control Access to the Model with the Action Wizard 396

WebApp and Name for Action 396
Configuration Information 397

HTML Form Processing 399
ActionForm Wizard 399

Web Application and Class Information for ActionForm 400
Field Definition for ActionForm 401
Select Additional Options 401

JSP from ActionForm wizard 402
WebApp, JSP, and ActionForm 403
Tag Types for ActionForm Fields in JSP 403
Specify the Options for Creating This Strut’s JSP 404

Creating a Struts 1.1 Library 405
Summary 406

Part 6 Enterprise Development with Enterprise JavaBeans 407

Chapter 19 Developing EJB 1.1 409
New Enterprise JavaBean 1.x 410

Select EJB Module 410
Create a New Enterprise JavaBean Component 411

Class Information 411
Options 412

Set EJB Interface Names 415
Deployment Descriptor Editor 417

General Tab 417
Session 418
Entity 419

Environment 420
EJB Reference 421

EJB Is in a Java Archive Deployed to the Same EJB Container 422
EJB Is in a Different Java Archive Deployed

to a Different EJB Container 422
Resource References 423
Summary 424

Chapter 20 Developing EJB 2.x 425
EJB 2.0 Bean Designer 426

Create EJB 427
Container Managed Persistence Entity Bean 427
Bean Managed Persistence Entity Bean 435
Session Bean 440

Import Enterprise JavaBeans 445
Delete Selected Enterprise JavaBeans 447
Adding Methods and Fields 447

Add and Delete Methods 447

xvi Contents

Add and Delete Fields 448
Add and Delete ejbCreate Methods 449
Add and Delete Finder Methods 449
Add and Delete Relationships 450

View Bean Source 451
Regenerate Interfaces 451
Views 451

New, Delete, or Rename View 452
Move, Copy, or Remove Selection 452
Arrange EJBs 453
Find EJB from Search Menu 453

EJB Test Client 453
Application 453
JUnit 455
Cactus 455

Configure the Project for Cactus 455
EJB Deployment Descriptor 456
DataSources 456

Create Schema from Selection 457
Import Schema from Database 457

Database Schema Provider 458
Add DataSource 458
Working with DataSources 459

Export to SQL DDL 459
Edit DataSource Properties 459
Add Table 460
Refresh from Database 460
Rename or Delete DataSource 460

Working with Tables 460
Create CMP 2.0 Entity Bean 461
Create BMP Entity Bean 461
Add Column 461
Rename and Delete Table 461

Working with Columns 461
Summary 462

Part 7 Distributed Computing with RMI, CORBA
and Web Services 463

Chapter 21 RMI Development with JBuilder 465
Configuring RMI in JBuilder 466
RMI Development Process 467
Building the RMI Application 468
RMI Deployment 475
Summary 477

Chapter 22 CORBA Development with JBuilder 479
Overview of CORBA 479

The IDL Interface 480

Contents xvii

Object Request Broker 480
Common Services 481
CORBA Development Process 482

Building a CORBA Application 484
Define the IDL Interface 484
IDL Compilation 486
Create a Server Application 487
Object Implementation 490
Create a Client Application 493
Run the Applications 496
Building a GUI Client with a CORBA Client Interface 497

Deploying the Application 502
Summary 502

Chapter 23 Web Services Development with JBuilder 505
Web Services Orientation 505

Benefits of Web Services 506
Web Services Architecture 507
Web Services Technologies 507

Universal Description, Discovery, and Integration 508
Web Services Description Language 508
Simple Object Access Protocol 509
Apache eXtensible Interaction System (Axis) 510

Using Web Services with JBuilder 512
Borland Web Services Kit Installation 513
JBuilder Web Services Features 513
Constructing Web Services 514

Consuming Existing Web Services 514
Generating Web Services from a Java Component 524
Generating Web Services from an EJB Component 539

Web Service Packaging 544
Common Structure of a Web Service WAR File 544

Summary 545

Index 547

xviii Contents

I’d like to thank the publisher and authors who are willing to rise to the challenge of
helping people make the most of JBuilder. This is a tremendous task when you con-
sider the pace of change in the Java development arena and the number of new fea-
tures appearing in Jbuilder with every release. JBuilder 8 is the latest incarnation of a
product with over five years of history, and is an invaluable tool for the Java developer,
but it is inevitable that we will continue to improve on it. The great news is that the
majority of the information here will continue to be relevant for future releases of
JBuilder as well.

The development teams here at Borland are always looking to share their enthusi-
asm for what they’ve created. The members of the JBuilder team have slaved to make
things easier for the Java developer, and are eager to spread the word about the prod-
uct. The most common response from audiences that see firsthand how the creators of
JBuilder use their own product is “wow, I didn’t know it could do that!” If we could
package their experience and enthusiasm, we would, but instead we need to find other
ways to distribute that knowledge.

We deliver the best documentation we can with the product but schedules are tight
and there are always additional angles to be covered. Mike, Geoffery, and Sung have
seen the product evolve through early access to the technology and discussions with
Borland engineers. They can give you the extra edge because they know why JBuilder
works the way it does –– and do their best to draw on this background to show you the
most productive ways of working with JBuilder.

It may seem daunting at first, but really the material in this book covers a wide
range of topics that you’ll draw on over time. Some projects will focus on client-side
development, others on the server. Developers creating distributed applications may
work directly with CORBA, or they may rely on EJB to hide the infrastructure and
allow them to focus on business logic and a transaction model. Take things a step at a
time and it will all fall into place.

Foreword

xix

You may be tempted to rush through the early material to get to these powerful
technologies, but some of the real gems are introduced early on. Every Java developer
can benefit from a deep understanding of the basic code editing and browsing tech-
nology in JBuilder, no matter what problem they’re solving. It is part of the true spirit
behind each of Borland’s products: Keep the developer in touch with their code and
give them a toolkit that helps make each and every day that much more productive.

I hope this book gives you deeper insight into a product we’re extremely proud of
here at Borland. With the most popular Java development environment available and
the knowledge of how to put it to work, you’ll have what it takes to put Java to work
for you.

xx Foreword

First of all we would like to thank those people who were involved with this project
from the beginning and helped immensely on getting the book completed. They
include the editors at Wiley Publishing, Inc., Robert Elliott and Emilie Herman. Also,
thanks to Ted Shelton at Borland for proposing the Book to Wiley with us in mind to
help write it.

We would like to thank Borland for producing a world-class product for Java
development.

We sincerely appreciate the efforts of our reviewers, Christopher Judd and Andy
Tran. Under incredibly short timelines, these guys scrutinized every page for accuracy
and completeness and I don’t think Sung, Geoff or myself can thank them enough for
their hard work and dedication.

Each of us strongly feels that the effort set forth to forge this book from our collec-
tive experiences at Borland has only strengthened our friendship. Without the friendly
competitive nature we all share, this book may not have come to fruition. Many a day
and night were spent discussing the finer details of a function or feature found inside
JBuilder. These tireless discussions resulted in a clearer understanding of the tech-
nologies by all, and better explanations throughout the book.

Acknowledgments

xxi

Borland has a long-standing tradition of making award-winning, highly productive
tools that free developers from the tedium of day-to-day development. Java has
evolved into a proven, industry-standard, object-oriented development language that
has been used to build many of the frameworks that companies have come to depend
on. Bring Borland and Java together and you have JBuilder.

From its inception, JBuilder has been a tool designed by Java developers for Java
developers. To this end, JBuilder looks at the various frameworks implemented in
Java, from the language’s point of view. The lessons learned about Java frameworks,
best practices, and design principals were encapsulated in this one tool. Beyond the
major frameworks that are used to build many of today’s mission-critical systems,
JBuilder allows almost any Java technology to be integrated into its environment.
JBuilder exposes these technologies through generic interfaces that include wizards,
templates, frameworks, refactoring, and two-way tools. Learning how to use JBuilder
to accomplish simple tasks is easy enough given JBuilder’s intuitive and easy-to-learn
user interface, but Mastering JBuilder is another matter entirely.

Overview of the Book and Technology

JBuilder can be divided into two major disciplines, the development of Java source
code and the management of Java source code. JBuilder uses various technologies and
frameworks to help developers manage the code they are developing. These technolo-
gies and frameworks include Ant, UML, JUnit, and CVS. JBuilder also helps develop-
ers work with Java technologies and frameworks. One of the strengths of JBuilder lies
in its approach to help developers tame these technologies. Without playing favorites,
JBuilder allows the developer to choose from several different technologies and frame-
works including Swing, JDBC, servlets, Java Server Pages, Struts, EJB, RMI, CORBA,
and Web services.

Introduction

xxiii

Technologies and frameworks used to help manage development include the
following:

■■ Version Control with CVS in Chapter 9

■■ Jakarta Ant in Chapter 10

■■ Extreme programming with JUnit in Chapter 11

■■ Refactoring using The Object Management Group’s UML in Chapter 12

Technologies and frameworks for developers to develop with include the following:

■■ Sun Microsystem’s J2SE in Chapters 7 and 8

■■ Borland’s JDataStore Database in Chapter 13

■■ Sun Microsystem’s J2EE in Chapters 15–20

■■ Jakarta Tomcat in Chapters 15–18

■■ Jakarta Struts in Chapter 18

■■ Borland Enterprise Server AppServer Edition in Chapters 19, 20, 22, and 23

■■ The Object Management Group’s Common Object Request Broker Architecture
in Chapter 22

■■ Jakarta Axis in Chapter 23

How This Book Is Organized

Mastering JBuilder is also divided into these two major disciplines. Parts I, II, and III
define JBuilder as a development tool that helps developers manage their code in
terms of an Integrated Development Environment (IDE), a Rapid Application Devel-
opment (RAD) tool, and finally as an Application Lifecycle Management (ALM) tool.
Parts IV, V, VI, and VII take a look at different types of applications that a Java devel-
oper would create; from traditional two-tier client/server-based applications, to n-tier-
based solutions using servlets, Java Server Pages, and Enterprise JavaBeans (EJB), to
using various distributed technologies such as RMI, CORBA, and Web services.

Chapter 1, Installing JBuilder. This chapter shows you how to install and con-
figure JBuilder on any machine. Details of where the files are loaded, memory
utilizations, and overall configuration of the JBuilder system are covered.

Chapter 2, Customizing the AppBrowser. This chapter reviews the basics of
configuring the AppBrowser, which is the interface to the Java language that can
be customized to best meet the needs of the developers. Special attention is
given to Java Look and Feels and configurations for limited machines.

Chapter 3, Controlling Java Configurations. This chapter focuses on using
multiple JDKs and how JDK switching can be used in a project. Java API man-
agement in the JBuilder environment is also discussed.

Chapter 4, Project Properties and Configurations. This chapter defines pro-
jects, project properties, and their configurations. Also covered is the concept of
configurations that can be used for running, debugging, and optimizing code.

xxiv Introduction

Chapter 5, Debugging with JBuilder. This chapter focuses on the basic, inter-
mediate, and advanced concepts of debugging Java code. This chapter helps
you understand how the interface can be used and interacted with and how to
debug threads, multiple-processes, and even remote debugging using the tools
provided by JBuilder.

Chapter 6, Using the JBuilder Help System. This chapter looks at the
enhanced context-sensitive help, integrated error help in the editor, and even
the tip-of-the-day capabilities that JBuilder now has. The chapter covers how to
get the most out of the JBuilder help system and even how to extend some of its
features.

Chapter 7, Creating Classes. This chapter covers the basic wizards that are
included with JBuilder. These wizards are focused on all points in the develop-
ment process, from creating a simple framework to generating test clients, unit
tests, and to even creating and working with deployment features.

Chapter 8, Modifying Classes. This chapter covers the basics of creating Java
classes that use all of the tools available in JBuilder to make the effort as painless
as possible.

Chapter 9, Integrated Team Development. This chapter covers JBuilder inte-
gration with team development and illustrates the uses of team development
via JBuilder-CVS integration.

Chapter 10, Using the Build Systems. This chapter covers what the JBuilder
build system is and how to best use it. The chapter also introduces the integra-
tion of JBuilder and Ant Builder.

Chapter 11, Unit Testing with JUnit. This chapter covers JBuilder-JUnit inte-
gration, which is best for programmers doing unit test synonymously with their
coding. Chapter 11 guides you through the creation and run unit tests for the
Java component using JUnit framework in the JBuilder.

Chapter 12, UML Visualization. This chapter shows that JBuilder uses UML
structural diagrams to help developers visualize and traverse Java classes and
packages.

Chapter 13, Building the Database with JDataStore. This chapter covers the
product from beginning to end. It shows how to use the graphic tools included
with JBuilder and how to do the exact same tasks using regular programming
techniques.

Chapter 14, DataExpress and DBSwing Applications. This chapter brings
attention to the frameworks included in JBuilder that can help developers
develop great client/server applications without a lot of fuss. The tools included
with JBuilder can literally generate a complete application with no coding that
will allow for manipulation of generic data sources, JDBC or not.

Chapter 15, Server and Service Configuration. JBuilder itself does not provide
the technologies that are compliant with the various specifications that make up
J2EE. To develop solutions within J2EE, an application server will need to be
configured. This chapter goes over the setup and configuration principles
common to all servers.

Introduction xxv

Chapter 16, Web Enablement with Servlets. Developing servlets that will be
packaged in a given Web application’s Web archive is the focus of this chapter.
In addition, basic edits to the Deployment Descriptor specific to servlets is also
discussed.

Chapter 17, Moving from Basic Servlets to Java Server Pages. Expanding on
the servlet technology, JavaServer Pages allow developers to separate presenta-
tion from Java code by using tags within HTML. Developers can also create
their own tags by developing Tag Libraries.

Chapter 18, Developing with Struts. Taking full advantage of the servlet,
JavaServer Page, and Tag Library capabilities outlined in the previous chapters,
the struts framework provides a Model View Controller architecture for devel-
oping dynamic Web applications.

Chapter 19, Developing EJB 1.1. Focusing on version 1.1 of the Enterprise Java
Bean specification, this chapter outlines the steps necessary to develop Enter-
prise Java Beans compliant with the EJB 1.1 specification. In addition, Deploy-
ment Descriptor edits and configuration are discussed for Session Beans and
Entity Beans.

Chapter 20, Developing EJB 2.x. Not only are there new capabilities within the
EJB 2.0 specification, but JBuilder has also introduced a new way of developing
EJBs with the EJB 2.0 Designer. This chapter covers the development of EJBs
using all of the features and capabilities of this designer.

Chapter 21, RMI Development with JBuilder. The chapter discusses how
JBuilder facilitates the development with RMI.

Chapter 22, CORBA Development with JBuilder. The chapter discusses how
JBuilder facilitates the development with CORBA.

Chapter 23, Web Services Development with JBuilder. In this chapter, you
will learn to consume and construct Web services with the Apache Axis toolkit
and Borland Application Server. JBuilder provides wizards to create Web ser-
vices from any Java class and EJB components. Also, the chapter shows the Web
Services Explorer for searching and publishing Web services to a UDDI registry.

Who Should Read This Book

This book teaches you how to use the tools in the best way possible to make develop-
ment of Java programs as easy as possible. You should read this book if you are doing
any of the following:

■■ Developing with Java not using an IDE

■■ Developing with Java using a generic IDE

■■ Developing with Java using JBuilder

■■ Working on an Open Source project and want to understand a great
implementation

xxvi Introduction

Tools You Will Need

This book is based on JBuilder Enterprise version 8. The JBuilder family of products,
however, consists of the following editions that may have some limited practical use:

JBuilder Personal. With this entry-level product offering from Borland, it sup-
ports the basic ideal of what an IDE is, and it allows you to run, compile, and
debug from within a single environment. This product is available from Borland
at no charge and is not for commercial use. It is a great teaching tool, which is
covered in Chapters 1–6.

JBuilder SE. With the SE edition users increase the capability of the Java IDE.
This product allows for a complete RAD environment including refactoring,
JavaDoc tools, team development, and BeansInsight technologies. This edition is
for commercial use, and most of its functionality is covered in Chapters 1–10.

JBuilder Enterprise. With the Enterprise Edition users of this product have the
leading Java IDE in their hands. JBuilder 8 Enterprise is the product that this
book is based on, and it is covered thoroughly throughout its contents. JBuilder
8 Enterprise includes all of the technology in the other editions, plus it adds a
full testing environment, UML visualization, code formatting, HotSwap debug-
ging, J2EE support, Web services, CORBA, database application development,
and deployment to most major application server vendors.

This book covers major portions of J2EE and advanced distributed technologies like
RMI, CORBA, and Web services, so it relies on the latest features of JBuilder 8 Enter-
prise. This level of product will give the most complete set of Java development tools.

JBuilder Enterprise Trial edit ion can be downloaded from Borland at
www. borland.com/products/downloads/download_jbuilder.html and gives a 30-day
free trial. Alternatively, a trial edition can be purchased at http://shop.borland.com
under trial software.

What’s on the Web Site

The companion Web site for this book includes additional product information, the
source code for examples in the book, and updates to both the book and the technol-
ogy. The URL is www.wiley.com/compbooks/rozlog.

Introduction xxvii

PA R T

One

\JBuilder as an
Integrated Development

Environment

When Jbuilder—then called Latte—was first discussed as a new Integrated Devel-
opment Environment (IDE) for Borland, desktop development was coming to an
end, object orientation was finally starting to become mainstream, and development
tools were getting better. Borland’s Delphi product, which is based on the Object
Pascal language, was one of the first Integrated Development Environments to
improve developer productivity. This was due, in large part, to the fact that it was
well conceived and easy to work with. These same principles were needed for a Java
environment.

The first plan was to integrate Java into C++ 4.5.1, an early predecessor to the C++
Builder still in production today. The program allowed the creation of a Java source
file and could run the compiler, but errors and debugging were a challenge because
of limited support. Borland scrapped the integration idea and instead decided to
create an environment based on the Delphi language and interface. Latte, as it was
called, supported the basic Java 1.0 features and used the established Delphi IDE as
a framework to make development simpler and less time-consuming. Because Bor-
land wouldn’t own the Java language the way it did the Pascal language, it was
thought that the underlying programming support could be provided as a language
plug-in to an existing IDE framework. Later, in the product cycle when Borland
tested the name “Latte” around the world, other countries could have been
offended by the name because of translation issues.

Java was progressing quickly, and it was decided that building on top of an existing
framework might really hinder support for the language in the long term. The new
JDK 1.1 included new features, so maybe an underlying framework built in Java would
better support the rapid changes over time. Java could not handle the tasks being
asked of it, though, leading to the creation of Open JBuilder. It used about 20 percent
C++, 50 percent Delphi, and 30 percent Java. “Open” was later dropped from the name
when it was officially released. These percentages continued to favor the Java side as
each new release of JBuilder hit the streets; finally, when JBuilder 3.5 was released, it
was 100 percent Java.

When JBuilder was released, it was a fairly good attempt at a Java IDE. Remember
that an IDE is basically the editor, compiler, and debugger wrapped into one interface.
A base-level IDE requires that an environment be configurable enough that most
developers can create a suitable place to work with all of the known creature features.
Over the life span of JBuilder, these features and their ability to be customized have
grown rather significantly.

Part One shows you how to customize your JBuilder IDE and helps you understand
some of the advanced features of JBuilder:

Installing JBuilder. Chapter 1 shows you how to install and configure JBuilder on
any machine. Details of where the files are loaded, memory utilizations, and overall
configuring of the JBuilder system are covered.

Customizing the AppBrowser. Chapter 2 reviews the basics of configuring the
AppBrowser, which is the interface to the Java language that can be customized to
best meet the needs of the developers. Special attention is given to Java Look and
Feels, as well as configurations for limited machines.

Controlling Java Configurations. Chapter 3 is focused on using multiple JDKs and
how JDK switching can be used in a project. Java API management in the JBuilder
environment is also covered in detail.

Project Properties and Configurations. Chapter 4 defines projects, project proper-
ties, and their configurations. Also covered is the concept of configurations that can
be used for running, debugging, and optimizing code.

Debugging with JBuilder. Chapter 5 focuses on the basics, intermediate, and
advanced concepts of debugging Java code. It will help the reader understand how
the interface can be used and interacted with and how to debug threads, multiple-
processes, and even remote debugging using the tools provided by JBuilder.

Using the JBuilder Help System. Chapter 6 looks at the enhanced context-sensitive
help, integrated error help in the editor, and even the tip-of-the-day capabilities
JBuilder now has. The chapter covers how to get the most out of the JBuilder help
system and even how to extend some of its features.

2 Part One

3

Understanding the installation process, file locations, configuration files, and
advanced settings can help a developer establish a stable and usable environment that
will support the development effort. Borland JBuilder uses the InstallAnywhere instal-
lation program from Zero G to handle the install process; so many typical installation
problems are minimized. The most daunting task removed was installation on multi-
ple platforms. InstallAnywhere provides easy installation on the Mac, Windows,
Linux, and Solaris platforms. Installation can be attempted for unsupported platforms,
but it requires additional work and is not supported in any way by Borland.

The installation process itself is fairly painless, but developers installing the product
should follow up with the following tasks:

1. Install everything first: Web services, Borland Enterprise Server, MobileSet,
OptimizeIT.

2. Review what was installed and where it was installed.

3. Review the configuration files.

4. Set the user.home.

5. Review the licensing procedure.

6. Set additional switches.

7. Perform troubleshooting.

Installing JBuilder

C H A P T E R

1

Installing JBuilder

Because JBuilder is a Java program, it is always recommended that it be installed on a
noncompressed drive with ample free space. JBuilder should be installed and used on
a machine with as much memory as can be afforded. A fast processor is important, but
when using Java-based programs, memory is even more critical. The base machines
that Borland recommends will allow JBuilder to run fairly decently; however, if at all
possible, having a machine with 512MB more memory will really make the product
perform like native development environments. Later in this chapter, we recommend
the proper levels of JVM switches to get the most out of your environment.

The installation process itself is rather painless and will require the standard infor-
mation about what components are to be installed and where the files should be
located. The installation process normally will be started from a CD; the appropriate
executable on Windows or the script on other platforms should be executed to begin
the installer program. The install process will then proceed to load a JVM into memory
and start a step-by-step wizard to complete the process. Once the install process is
complete, the developer will have an opportunity to install additional programs from
the installer, if necessary. Once all programs have been installed, the developer can exit
the installer program.

Make sure to install all programs that may be part of the JBuilder system first before
starting the program because of the licensing procedures that Borland is now using to
register the products, which is covered later in the chapter. Additional features can be
added to the JBuilder environment from the Borland Enterprise Server, Web Services
pack, MobileSet, and OptimizeIT; however, they do not need to be installed for
JBuilder to work. For example, if the developer were not going to be programming
J2ME, the usefulness of JBuilder’s MobileSet would be limited.

JBuilder was designed to be completely extensible, meaning that if a function or fea-
ture was missing inside JBuilder, then any Java developer could add an OpenTool
without having to recreate the entire product. The concept of OpenTools is not new; it
is nothing more than a standardized plug-in for the environment. JBuilder’s imple-
mentation of an OpenTools framework is much more complete and documented than
other OpenTools frameworks. In fact, the JBuilder program itself is only about 3K in
size, with its major responsibility being to understand how to load and run OpenTools,
meaning that everything in JBuilder is an OpenTool. Tools like MobileSet are nothing
more than a set of OpenTools that give new functionality to JBuilder.

Borland uses this framework to introduce new products and features to JBuilder.
Most of these new features can be found at www.borland.com/jbuilder and are avail-
able for free download. Two examples given thus far have been MobileSet and the Web
Services pack OpenTools, each giving distinct functionality. When it came to Web Ser-
vices, Borland wanted to give the users of JBuilder a preview of what features it was
planning to add to the product. The standards that were going to be used were not yet
complete from a specification standpoint, though, so Borland could not add the fea-
tures to JBuilder because it would have been introducing a nonstandard implementa-
tion that could have made JBuilder unstable. Borland still wanted the feedback from

4 Chapter 1

developers to make sure that what was being developed was on target, so it made the
Web Services pack available from the download site to let developers interested in Web
Services to download it and try it out. Once the specifications were completed, the Web
Services pack was then added to the standard build of JBuilder Enterprise. This gives
Borland the best of both worlds, exposing new technologies that might not be ready for
the real world or of interest to only a small portion of developers while still getting
valuable information.

Other programs that may be installed include Borland’s Enterprise Server (J2EE 1.3
compliant server) included in the Enterprise Edition, Together, StarTeam, and Opti-
mizeIt, which is included in the Studio product. Because these are additional technolo-
gies, they may need to be registered with Borland, so installing all of them can save
time in the registration process. Plus, the installer may want to control where licenses
are located on the machine.

Review the Installation

After everything has been installed, understanding file locations and their meanings
helps the developer understand how JBuilder works. Understanding the directory
structure or file extensions will help a JBuilder developer understand what is being
held in each file and where. As the developer becomes more knowledgeable with the
product, this underlying information will become more important. Projects will con-
tinue to get larger and more complex, so having a firm understanding of the environ-
ment will allow the developer to understand how to configure JBuilder to handle these
situations better. Understanding the configuration files that JBuilder uses to load itself
into memory can help developers create advanced configurations for resource-starved
machines or set switches so that the painting mechanism that JBuilder uses works bet-
ter with the underlying hardware and operating system.

Figure 1.1 shows the directories located under the JBuilder directory. This directory
structure will be the same no matter what OS you install JBuilder on. All versions of
JBuilder will follow this directory layout; some older versions of JBuilder may not
include all of the ones listed in Figure 1.1. Most of the directory structure is explained
throughout this book; however, this chapter focuses on the bin and .jbuilder directories
because they have the most to do with installing JBuilder.

The bin directory is where the JBuilder executables are located. Notice that all the
files are either executables or configuration files. The executables .exe on the Windows
OS and a single name with a MOD of 777 on Unix are nothing more than bootstrap pro-
grams that use the configuration file to define what should be run. This type of exe-
cutable is the same that Native Executable supports in the build system, which is fully
covered in Chapter 10. Inside this directory, notice that most executables have a corre-
sponding .config file; this is where program specifics like classpath and memory set-
ting are located. Now, there are three files in this directory to make note of. The first is
config_readme.html, which is nothing more than an HTML page that explains how the
configuration files are defined and what each switch means.

Installing JBuilder 5

Figure 1.1 Directories installed on the Windows OS.

The next file is the jbuilder.config; it is responsible for holding all the settings for
launching JBuilder using the bootstrap program called jbuilder.exe or jbuilderw.exe on
the Windows OS. The only difference between jbuilder.exe and jbuilderw.exe is that if
you call the jbuilder.exe, it will launch from a command or terminal window, and if
jbuilderw.exe is used, it will not spawn a window. This becomes important if you need
to see what JBuilder is loading or doing when executing; this topic is covered later in
this chapter.

Review the Configuration Files

The last file of interest in the bin directory is the jdk.config. It is one of the most impor-
tant files in the directory because it is called by all the other configuration files. It can
be thought of as an include file, which means that jdk.config can be used to make
global settings for all JBuilder executables.

The jdk.config file includes the two following lines:

vmparam -Xminf0.2

vmparam -Xmaxf0.2

The -Xminf0.2 represents the minimum ratio of free memory used in heap after
Garbage Collection (GC), and the -Xmaxf0.2 represents the maximum ratio of free mem-
ory used in heap after GC. The two settings can be found in the documentation for the
Hotspot JVM. They also have long names associated with them. -Xminf also can be
denoted as -XX:MinHeapFreeRatio=<minimum on the command line and -XX:Max-
HeapFreeRatio=<maximum>, respectively. These two settings are bound by the -Xms
and -Xmx VM switches. The -Xms represents the initial memory size (heap) available to
the program’s memory pool. The -Xmx represents the maximum size the memory pool
can get for a given program. This then means that -Xminf and -Xmaxf are percentages
of the values found in the -Xms and -Xmx switches. These two can be worked with,
depending on the amount of memory a given machine has available to it.

6 Chapter 1

The current settings are for 20 percent both min and max. Documentation states that
the max can be as high as 70, but this has not been tested. They are currently set in a
generic form and are good for most machines. Machines with more memory may want
to set these settings higher to get better performance. If performance becomes an issue,
this is one area to keep in mind. You should also keep in mind that these switches are
located in the jdk.config and will be used by all the executables found inside the
jbuilder/bin directory. Setting these switches to optimize JBuilder performance may
have adverse effects on the other programs that use these settings.

The jbuilder.config file also has memory switches defined; they are the -Xms and the
-Xmx switches, and these should be set according to the amount of memory on the par-
ticular machine on which JBuilder will be executing. The defaults are as follows:

vmparam -Xms32m

vmparam -Xmx256m

Reviewing the definitions defined previously, these vmparams represent the base
starting memory pool, which will be started with 32 megabytes and has a maximum of
256 megabytes. Because the machine being used for this book includes 512 megabytes
of memory, the -Xms switch could be set to 128 and the -Xmx switch could be set to 384.
The last character is important when using these switches:

■■ “m” represents megabytes

■■ “k” is used for kilobytes

■■ “g” represents gigabytes

More information on memory management can be found at the following sites:

■■ http://java.sun.com/docs/hotspot/gc/index.html

■■ http://java.sun.com/docs/hotspot/VMOptions.html

■■ http://community.borland.com/article/0,1410,23022,00.html

These are just some of the more useful links. JDK versions noted in the links are still
valid for JDK 1.3.x and beyond. These techniques can be used with all Java programs,
not just JBuilder.

Another set of switches found in the jdk.config file that can be very important to the
way JBuilder performs are these:

vmparam -Dsun.java2d.noddraw

vmparam -Dsun.java2d.d3d=false

On certain hardware, notably machines with ATI graphics cards or machines using
the Windows XP operating system, the preceding switches can be uncommented to fix
the problem. Do not change these settings unless problems are occurring with JBuilder.
A line beginning with “#” is a commented line; removing the “#” will make it uncom-
mented. Normally, the –Dsun.java2d.noddraw is the switch most used with the ATI
graphics card. The –Dsun.java2d.d3d=false switch is the one used for the XP operating
system. Uncomment only one line at a time, then test the configuration by restarting
JBuilder; if the results do not change, recomment the line, uncomment the other line,
and repeat the process.

Installing JBuilder 7

NOTE Always exit JBuilder when making changes to one of its configuration
files, as JBuilder will rewrite them on exit. Always save the file, exit, and restart
JBuilder for changes to take effect.

Set the user.home

When you start up JBuilder, the first thing that will pop up is a request to enter the
license key. The license key will allow the program to be properly registered, so Bor-
land can refine the product and contact the user if issues arise. Starting with JBuilder 5,
Borland has taken steps to ensure that, at a very minimum, a registration process is fol-
lowed to activate the product.

The location of the license information on a machine can be set manually. This helps
long-term maintenance and ensures that the installer has complete control over the
process. This also allows the installer to have all the needed files in one defined loca-
tion. JBuilder and the tools included with it use license files to validate users; some
tools like JDataStore need to have a license file with a valid key before it will work in a
deployed situation, so knowing the location of these files can eliminate the guesswork
of where they are located. Then, by placing the license files on the classpath, JBuilder
and its tools will be able to find and execute without asking for revalidation. The
switch that should be added to the jbuilder.config file is the following:

vmparam -Duser.home=[location]

The [location] part is important because this is where all the default files will be
located for JBuilder, including the licensing file. The default project file and the inter-
nal configuration files are also held there after the initial install. The [location] could
look like the following:

vmparam -Duser.home=\JBuilder\.jbuilder

This means that all files would be located in the .jbuilder directory under the
JBuilder directory. Once this location has been set, it cannot be moved or changed
unless the JBuilder licensing process is followed again. This is another reason for mak-
ing sure that the directory is where the installer needs it to be, and this is also why it is
better to change the configuration files first before running and then having to reregis-
ter after the directory has been set.

Review the License

JBuilder has a fairly simple licensing process. It can be changed or updated anytime to
show additional programs that have been registered. The Licensing Information pro-
gram has an icon on the Start menu in Windows, or its icon can be found in the JBuilder
shortcut list in Unix. Typing the following line also can start it:

C:\JBuilder8\bin\JBuilderW.exe -license

8 Chapter 1

Figure 1.2 Licensing manager.

This can be done at the operating system command prompt, so make sure to have a
defined JDK in the path. Figure 1.2 shows a license file for a Field Test product, which
explains exactly what the program is supposed to be used for. Licenses come in many
forms; normally the license is found on the CD case that holds the JBuilder product.
License strings can be emailed or loaded from a file, so remember that anytime a license
is changed, a connection to Borland through the Internet will most likely be needed. If
an Internet connection is not available, then other licensing schemes can be used like
email or even postal mail; these options can be discussed with Borland Technical Sup-
port if issues arise. Borland Product License Manager can be used to change or update
licenses of Borland products. It is available in the JBuilder Program menu list.

Set Other Switches

Most Java and VM switches can be used with JBuilder. Another often used switch is
this one:

vmparam -Djava.io.tmpdir=\jbuilder\tmp

This is useful if a lot of IO is going to be done. This also helps JBuilder put in a Java
caching area when it needs to find space. This is normally added to the jbuilder.config
file; however, it could again be added to the jdk.config if the setting was going to be
used by all the executable programs found in bin directory.

Another reported problem is that sometimes developers use multiple versions of a
program. This is especially true when dealing with the Borland Enterprise Server.
There are many ways to solve the problem; one is to change the classpath found inside
the jbuilder.config file and use the addjars command to add any specific jars needed.
This will mean, though, that each JBuilder configuration will have to be modified for
each version of the software being used. In the older editions of JBuilder, before
JBuilder 6 (that is, JBuilder 5 and below), the quickest and easiest way is to create a .bat,
.cmd, or script file that will set all the settings for that particular version. The following
is a script file used to point JBuilder to the latest .jar files to be used when using the Bor-
land Enterprise Server:

Installing JBuilder 9

set path=

set classpath=

set path=c:\JBuilder\jdk1.4\bin;c:\JBuilder\jdk1.4\jre\bin;C:\ Æ

BorlandEnterpriseServer\bin

set classpath=%classpath%;c:\JBuilder\jdk1.4\jre\lib\rt.jar;c:\ Æ

JBuilder\jdk1.4\lib\tools.jar;C:\BorlandEnterpriseServer\lib\ Æ

vbjorb.jar;C:\BorlandEnterpriseServer\lib\vbejb.jar

jbuilderw

This code sets the current path and classpath so that JBuilder uses the latest Borland
Enterprise Server. This is critical when you want to point to one version of the Appli-
cation Server and at another time point to a different version of the VisiBroker technol-
ogy, as it ensures that JBuilder will not get confused.

WARN I NG The preceding technique works only with JBuilder 5 and below.
Starting with JBuilder 6, these limitations were solved using the configuration
files.

Two other switches that can be very helpful when trying to figure out why a prob-
lem is occurring when the JBuilder program loads are these:

-verbose

-info

These switches can be placed on the JBuilder command –line, and they will give
additional information on configuration, classpath, and OpenTools being loaded dur-
ing the load process.

Perform Troubleshooting

Whenever you make changes to any files, be sure to create a backup and exit JBuilder
first. Any changes made while the JBuilder program is open most likely will not be
saved.

When changing memory switches, make sure to test the configuration before begin-
ning real programming. Nothing is more irritating than getting knee-deep in a prob-
lem and having JBuilder just crash or lock up with no warning.

Also keep in mind that custom configurations are probably not supported by Bor-
land. It is good practice to make copies of the standard files so that the system can be
reset to a default setting if problems arise.

10 Chapter 1

Summary

This chapter gave an overview of the process for installing the JBuilder product. It cov-
ered the proper steps to ensure a good install and highlighted some of the areas that
can cause long-term problems with license files. The chapter also covered memory
allocation, switches, and startup parameters to ensure that JBuilder works the best it
can from the install point forward.

The next chapter discusses customizing the AppBrowser, which is JBuilder’s main
interface to the developer.

Installing JBuilder 11

13

The Integrated Development Environment (IDE) includes three standard tools: the edi-
tor, compiler, and debugger. Before Borland invented the IDE, building programs con-
sisted of using an editor for editing code and command-line tools for compiling and
debugging. Once tools like JBuilder became available, they increased developer pro-
ductivity by reducing the edit, run, compile, and debug cycle. Borland is now continu-
ally upgrading and adding new tools and functions by adding tools specifically for
Java with the JBuilder IDE. The AppBrowser applies the concepts of the older IDE and
adds views into the projects. Views can be thought of as different ways of looking at a
project to get new meaning. A project may be looked at from a GUI standpoint, or from
a documentation standpoint, or an object standpoint. The AppBrowser allows all those
views to be shared inside a single interface. Plus, no matter in which view the code is
changed, all the other views will be kept synchronized. Some IDEs use views to repre-
sent –project-level, hierarchical-level, and code-level interactions, which is great but
very limited. The AppBrowser exposes the complete Java language and its features of
object orientation, package development, GUI development, and integrated documen-
tation into one standard interface, thus eliminating the need to use multiple programs
to understand the code or project being worked on.

This chapter outlines the features of the AppBrowser, which is the integration point
for all development using JBuilder. It covers the options based on layouts inside the
AppBrowser and how each one interacts with the other. It provides quick hit lists to
speed the setting up of a generic AppBrowser. It also will provide detailed information
on the editor, the options associated with it, and how to make the most out of those
settings.

Customizing the AppBrowser

C H A P T E R

2

Generic AppBrowser Components

The AppBrowser is really broken into seven major panes:

■■ The Main menu line lists the major features found in the AppBrowser.

■■ The Main toolbar includes a set of icons that handle the most common tasks
inside the AppBrowser with a click of the mouse.

■■ The Project pane, located in the top left-hand corner of the screen, is responsi-
ble for managing the project’s default properties (covered in Chapter 4, “Project
Properties and Configurations”) and the files to be included in the project or
projects.

■■ The third pane is located at the bottom left-hand corner of the screen. Its con-
tents change; depending on the view being used by JBuilder, and it has two
purposes (discussed later in this chapter):

■■ Show the structure of the file being viewed, which could include Java,
XML, JSP(s), or other file types

■■ View a Component Hierarchy pane when in the designer

■■ The Content pane is the integration point to the file being worked on. This
pane also has the ability to work with other views of a file and additional tools
to make it tie together with the rest of the AppBrowser.

■■ The Message pane, like the Structure/Component panes, can have multiple
roles depending on the context occurring in the AppBrowser — for instance, it
can be the view into the integration of JUnit or a testing framework included
with JBuilder (covered in Chapter 11, “Unit Testing with JUnit”), or it could be
the view into the advanced debugger (covered in Chapter 5, “Debugging with
JBuilder”); finally, it could be just a great Message pane to tell the developer
what is going on within the context of the JBuilder IDE.

■■ The Status Bar is a great source of context information, usually generated by
either pointing to an object on the AppBrowser or as a standard message from it.

Figure 2.1 shows a basic AppBrowser with all seven standard panes active. This
raises the following question: Why is the Status Bar currently displaying information?
The mouse pointer at the moment the screen shot was taken was pointing at the Unti-
tled1 object under the Imports folder in the Structure pane, and JBuilder is reporting
that the object being pointed to is a public constructor. This is an example of how the
AppBrowser is completely aware of the Java language as a whole; almost anywhere
the mouse pointer is used inside the AppBrowser, it will return current information on
that subject. Each pane located inside the AppBrowser is configurable; its view can be
toggled from hide to unhide, depending on the developer’s desires.

Table 2.1 shows the hot-key and menu item to use to toggle the hide and unhide set-
tings. This list assumes that this is not a customized AppBrowser and that the Message
pane has been turned on.

14 Chapter 2

Figure 2.1 Basic AppBrowser (all panes showing).

Table 2.1 Show/Hide AppBrowser Basics

ACTION HOT-KEY-COMBINATION MENU COMBINATION

Hide/unhide Project pane Ctrl-Alt-P
Alt-V-P

Hide/unhide Structure/Component pane Ctrl-Alt-S
Alt-V-S

Hide/unhide Content pane Ctrl-Alt-C
Alt-V-C

Hide/unhide Message pane Ctrl-Alt-M
Alt-V-M

Hide/unhide status bar Alt-V scroll to Status Bar menu item

Hide/unhide toolbars Alt-V scroll to Toolbars

Expand content/hide Project and Ctrl-Alt-Z
Structure panes Alt-V scroll to hide all menu items

Customizing the AppBrowser 15

Message Pane
The Message pane is a special pane, one that is unique to JBuilder. It can be turned on
or off by the standard got-key and menu selections or by a Toolbar button. This is the
only pane currently supported with this feature. The Message pane can also float as a
separate window outside the AppBrowser confines, as shown in Figure 2.2. This will
maximize the screen space available for the AppBrowser while allowing the informa-
tion to be seen on a separate window, which is especially helpful in a two-monitor sys-
tem or during the debugging process.

To activate the floating Message pane, the AppBrowser context must be in a state
that returns information, which means that compiling, running, version control, refac-
toring, searching, unit testing, or debugging must be in progress. There is currently not
a hot-key or menu combination to set the Message pane to float; a small icon is located
at the bottom far right-hand side of the Message pane that, when pressed or clicked,
will set the pane afloat. If the Message pane is closed using the “X” window close but-
ton or if the Float icon is pressed, the Message pane will be docked back into the App-
Browser.

The Message pane not only reports on the standard in, out, and err streams, it also
returns valuable information to the developer. In Figure 2.2, the Message pane shows
a running process that appears to be a standard command-line invocation. JBuilder
always displays the command line used to start a process. Copying the command-line
output makes it easy to create scripts or command programs to execute the Java
process. The command line is the exact Java execution line needed to run the program
in question. It includes the Java keyword, classpath settings, and the class to be called.
The complete technique for making that command –line is covered in Chapter 3, “Con-
trolling Java Configurations.”

You can access the Context menu for the Message pane available by either right-
mouse clicking inside the pane or, when the context is inside the Message pane, press-
ing Shift-F10. The Message pane has three options:

■■ Clear All from the pane

■■ Copy All from the pane

■■ Word Wrap setting

Figure 2.2 Floating Message pane.

16 Chapter 2

When viewing standard in, out, and error, the preceding features become especially
important if limited screen space is available. Using the Word Wrap option can make
hard-to-read displays easier by not having to scroll every time a line is displayed.
Another feature about the Message pane is that it allows for the standard out display
to have full interaction between the pane and the keyboard, thus making it easy to
work with programs using standard in as an input device.

The final feature of the Message pane that we cover is the tab named Untitled2 and
“X,” located to the left of the name. This “X” can be used to close the tab at the click of
a button, and it is found on all tabs inside the AppBrowser regardless of their location.
Tabs can be removed or hidden using the Context menu either by right-mouse clicking
on the tab or by having focus on the tab and pressing the Shift-F10 hot-key combina-
tion. The Context menu gives finer granularity of functions, including removal of a sin-
gle tab or all clear messages, plus hiding the Message pane completely.

Configuring the AppBrowser Using IDE Options

The AppBrowser configuration does not directly affect the Java code being produced,
but you will probably increase your productivity because the environment is best
suited to your needs. The first dialog, the IDE Options, can be viewed by selecting the
Tools|IDE Options... menu item. This section covers all of the tabs available from the
IDE Options dialog. Customizing these options can make the generic JBuilder feel like
a tool that has been used for many years.

Browser
In Figure 2.3, the IDE Options dialog shows the general layout of the AppBrowser,
which has been updated to include new features such as error text color, message time-
outs, and additional VCS options. One of the first decisions that the user of JBuilder
must make is what Look and Feel (L&F) will be used with JBuilder. Generally, L&Fs do
not affect the workings of JBuilder; they’re simply skins that can enhance appearance.
Some developers with special needs (such as limited sight) use different L&Fs because
of the way they display the JBuilder interface. The only common one across all versions
is Metal, Look and Feel designed by Sun as part of the Java Foundations Classes (JFC)
that is shipped with the standard JDK. The other L&Fs are as follows:

■■ Windows for the Microsoft Windows operating system

■■ Aqua for the Apple Macintosh systems

These are not included in any other operating system installs of JBuilder. If JBuilder
was loaded onto a Linux box, the only two L&Fs would be CDE/Motif and Metal
because each operating system has an exclusive L&F for the underlying operating sys-
tem. CDE/Motif is included in the current versions of JBuilder for Windows, Solaris,
and Linux because that L&F was completed early on and has always been included

Customizing the AppBrowser 17

with the JDK on these systems. If Sun decided to remove it from the Windows distri-
bution, then it would be available on only the Solaris and Linux operating systems.
Usually the major difference between L&Fs is the appearance of the windowing tech-
nique being used. A windowing technique is the look of the widgets being used (but-
tons and listboxes and the window interface itself), which usually resemble the
underlying operating system’s paint mechanisms. Each L&F can have distinct charac-
teristics that may hinder their use; one such characteristic can be found in the
CDE/Motif L&F. Overall, that particular L&F seems to be rather sluggish, and the
mouse movement is definitely different than in the other L&Fs, making it seem very
“clunky” when using it. Most developers avoid CDE/Motif unless it is the L&F the
developer is most comfortable with.

An example of that “clunky” feeling is found when working with the Main menu.
Instead of scrolling across menus with each one becoming active as the pointer goes
over it, CDE/Motif makes the user click on each menu item to actually select it. Metal
seems to be the most reliable of all the L&Fs currently available, and it is available on
all operating systems supporting a JDK. Each subsequent release of the JDK has seen
major improvements in available L&Fs, such as the one found in JDK 1.4 for Windows,
which is being touted as a major advance in the emulation of Windows.

A feature that finally made it into JBuilder is the ability to adjust the fonts in all of
the other panes; however, it is not as completely user-definable as the Content pane.
The reason for not making it completely definable is that it is believed that once the
font has been changed to affect the major informational elements of the AppBrowser
they will not be moved. Borland has given developers the ability to add or subtract a
point size from the default font being used. This setting affects all menus, tabs, Tree
views, and other displays, but it does offer a solution to the problem. It also can be used
by the visually impaired to enhance the effectiveness of the interface, especially the
Structure/Component panes and menus. Most likely, this setting will have to be
manipulated until the developer finds the look that he or she is seeking.

18 Chapter 2

CUSTOMIZING LOOK AND FEELS

When Look and Feel (L&F) was first introduced with the Swing libraries from Sun, it was
thought that companies would develop unique L&Fs. Currently only two major companies
have specialized support for L&F: Sun and Apple. Apple’s L&F is by far the most detailed
on the market.

Other companies and individuals have created free L&Fs that can be used with
JBuilder, which can be found on the Borland Developer Network
(http://bdn.borland.com). Usually copying a file or two into the jbuilder/lib/ext directory
is all it takes to get these L&Fs installed. Custom L&Fs address common complaints about
how the tabs are shown, and they clean up and enhance the interface display.

The JBuilder IDE in Figure 2.4 is a free L&F that mimics the Aqua Look and Feel from
Apple. It is not as complete as the Aqua L&F, but it handles most things very well, such as
the way tabs are painted on the screen, making it very easy to see what tab is active. This
may not be as easy to notice on other L&Fs, plus it gives a nice new look to the standard
AppBrowser.

Figure 2.3 Browser panel.

Figure 2.4 Custom Look and Feel.

Customizing the AppBrowser 19

The AppBrowser/editor supports keymaps, which emulate the key bindings found
in other popular editors and IDEs. Changing a keymap does not replace the underly-
ing editor; it merely defines a set of key combinations found with the particular editor
and IDE. Currently Brief, Common User Access (CUA), Emacs, Macintosh, Macintosh
Code Warrior, and Visual Studio key bindings are supported. These key bindings sat-
isfy most developers with a standard set of features supported within the editor; how-
ever, some developers miss some of the advanced features that may be found in a
particular editor.

The Emacs editor is one example of a keymap. Currently, the AppBrowser supports
about 90 percent of the overall keymappings — including the fire-ring process — but it
does not support the buffering system found inside the Emacs editor. The buffering
system inside Emacs includes a different paradigm for working with other files, which
could become very confusing for people using the standard AppBrowser interface.

You can customize the keymappings of any feature defined by the keymap. When
using the editor, when an option is changed it will become bold to represent a changed
keymapping. The keymapping editor can also have a key combination assigned to it,
to bring it up at the touch of a few keys. One thing that will become apparent is that the
AppBrowser supports a lot of standard functions, and usually the editor or IDE that
the AppBrowser is trying to emulate is a very small subset of the overall functions
included in the AppBrowser editor. Be sure to check the complete list of functions
before discarding JBuilder; the function could be there but with no keymapping or a
different keymapping altogether.

The Content pane tabs (Figure 2.3) are the one area that has the most effect on the
overall look of the AppBrowser. The tab orientation options include the following:

Horizontal. The tabs appear across the Content pane screen, as shown in
Figure 2.1.

Vertical. The tabs are located to the right of the Content pane, going top to bottom.

Setting the value to Horizontal will most likely take up less space than setting the
value to Vertical, but using Vertical with sorting turned on to alphabetical makes it
very easy to find a file in a large project. Again, it depends on the project and comfort
level of the person using the interface.

The second option is how the tab is supposed to be labeled. The options include the
following:

Name. This represents the complete filename and extension.

Short name. The Short Name includes only the name of the actual file in
question.

Icon and short name. This is the default. It adheres to the Node icon associated
with the Project pane on the tab and attaches the actual name to the tab.

Icon only. Icon only means that the developer understands all the icons used by
the AppBrowser because that would be the only hint that would be given; the
tab would contain only the icon, nothing else.

20 Chapter 2

The third option available to the Content pane tabs is the insertions option, where
new tabs will be inserted on to the Content pane. Choices include the following:

■■ Sort alphabetically

■■ Sort display order

■■ Insert at beginning

■■ Insert to left of tab for active node

■■ Insert to right of tab for active node

■■ Insert at end

Most of these options are self-explanatory, but the others may need some additional
information to make them useful. The Insert to right... or Insert to left... basically states
that whatever tab (file) is currently active, the next tab to be added will be added in the
defined direction next to the active tab, either right or left. The Sort display order cor-
responds directly with the Project pane; this means the files will be in the order of the
project layout.

The fourth and final option is the Layout policy; this represents how the AppBrowser
should handle a number of tabs that occupy more than one row. The options available
to the developer are Multiple rows or Single row with scroll control. If you choose Mul-
tiple rows, keep in mind that each tab row takes up a significant amount of that screen
space. However, using the Single row option can become a problem, depending on
how the sorting of the tabs is done. If an excessively large number of files are open, the
developer may lose track of which are open and where they are located in the list. If
this ever occurs, simply double-click on the file again in the Project pane to bring the
current focus to that file.

The last three options on the first page of the IDE Options dialog deal with report-
ing information back to the developer:

Error text color. As the Message pane displays information about contextual
changes and errors that may be occurring within the tools found inside JBuilder,
the messages will be displayed in this color. Most developers like the RED color
because it normally represents a problem; however, in some cases this color may
need to be changed to either the developer’s likes or because of accessibility rea-
sons, like the possibility of being color-blind or having other sight-related prob-
lems.

Status message timeout. This deals with the text sent to the Status bar; if addi-
tional informational text were being sent to the Status bar, this would control the
length of time it is displayed before clearing the line. This option can be set to
Never, which would mean the line would not be cleared until the next message
was displayed.

VCS integration. This allows the AppBrowser to close any dialogs from the VCS
integration upon successful completion of an operation. The default behavior is
to press the OK button to continue with the VCS dialog when an operation is
completed.

Customizing the AppBrowser 21

For the most part, the AppBrowser wizards interfaces all follow the same multi-
tabbed interface and have four process buttons located at the bottom of the dialog. First
is the Reset button, which returns all of the items back to the values in place when the
dialog was opened. Once the OK button is pressed, the Reset function will initialize a
new list of default values — in other words, it won’t remember any prior setting after
the OK button is pressed. The rest of the buttons either accept the changes when the
OK button is pressed or decline the changes the Cancel button is pressed. Press the
Help button to activate the AppBrowser’s context-sensitive help system and explain
the features of any wizard or dialog. Chapter 6, “Using the JBuilder Help System,” cov-
ers all the major issues associated with the integrated help system.

File Types
The File Types panel is broken into two areas:

File types. Cannot be changed or deleted from JBuilder, and they can be added
only through the OpenTools API.

File Extensions. These are the extensions associated with the file types.

In Figure 2.5, each file type has an associated icon. This is the icon that will be used
inside the Project pane to represent a file. These icons are extremely important, as icons
are defined as the moniker for the tabs for the Content pane.

A question that usually arises is why does the AppBrowser need to support multi-
ple file extensions for the same file. In Figure 2.5, the Archive file is selected on the top
portion of the Dialog pane, and the associated extensions are listed on the bottom. One
thing Java has been rather good at is using different file extensions to represent differ-
ent functionality for the language, but all the types share a common underlying struc-
ture. The rar, war, zip, jar, and ear files are all basic files that implement the LZW
compression algorithm but are used for different purposes within the Java language.
An example of where additional file extensions may be added include .bat/.cmd files
in the Text File type.

Figure 2.5 File Types panel.

22 Chapter 2

Web Panel
The Web panel is responsible for setting how the AppBrowser will deal with Internet
browser-based interactions (see Figure 2.6). This dialog should not be confused with
the Browser panel. The Browser panel is associated only with the AppBrowser, not the
actual Internet browser.

The most important option on this page is the Copy Web Run/Debug/Optimize
launch URL to clipboard. This ensures that the developer will have the actual URL for
starting the Web-based interaction. Much the same way that the Message pane shows
the command line on the first line, which can be copied to start a program, this option
makes sure the operating systems clipboard has the proper URL for pasting into the
developer’s favorite browser.

The next set of options pertains to the fact that the developer might want to use
something other than JBuilder’s built-in Web view pane. Generally, it is preferred that
Web-based applications be tested on all possible browsers before being deployed.
These options give you full control over how that should be accomplished:

■■ The first option, Launch separate process and use Web View, will cover both
options in a single click. The name is a little misleading because JBuilder does
not kick off a separate Internet browser, as might be thought by the title. It will
use the integrated Web view panel inside the AppBrowser and also allow an
Internet browser in a separate process to be viewed. Thus allowing both views
to be verified, keep in mind that the additional process will add a little bit of
time to the overall process, but for quality assurance it is worth it.

■■ The next option, Use the Web View on running process if possible, allows the
AppBrowser to save a little time and memory by recycling the current Web
view process. The underlying Web server must be running for this option to
actually work; if the Web server (Tomcat or Borland Enterprise Server) is not
running, a new process will be started from scratch.

Figure 2.6 Web panel.

Customizing the AppBrowser 23

■■ The final option is Do not use Web View; this will always start the default Web
server and wait for an Internet browser to access it for that machine. This does
save system resources, however; it can be a little more costly on the back-end
time because the AppBrowser is starting a Web server and waiting.

Because the Web view process is compliant up to a certain level with the Web speci-
fications, the default (external) browser may be more advanced, and can show and act
differently.

XML Panel
The XML panel determines how the AppBrowser will interact with XML documents.
First we want to enable the Browser view; this allows an XML file to be viewed inside
the Web view. This is similar to viewing XML in Microsoft Internet Explorer. This is not
the default; however, when it is selected, you will see another tab added under the
Content pane for general viewing of XML documents.

Next, Apply default stylesheet is used to display XML using a Tree view layout. It is
possible to associate a different stylesheet with an XML file, which will be shown later
in the chapter. The final option is Ignore DTD. This will allow the AppBrowser to dis-
play the XML file without the DTD being read without being validated.

The Transform trace option allows output to be generated during the stylesheet
transformations. In Figure 2.7, the trace options can be set for Generation, Elements,
Templates, and Selections. These can also be turned on in the Transform view.

The following example will show how the XML integration works inside the App-
Browser. First either open an existing project or create a new one with the defaults (see
Chapter 4). You can use the default project that JBuilder ships with for this example
because the output will not be saved. To use the default project in the AppBrowser, fol-
low these steps:

Figure 2.7 XML panel.

24 Chapter 2

1. Click the Help| Welcome project (sample) menu item from the Help menu.
Once that has been selected JBuilder will load the project that is loaded when
JBuilder is first installed onto a machine.

2. Set the XML options on the IDE Options dialog; pressing the Tools|IDE
Options menu item and selecting the XML tab panel can accomplish this. Then
select the Enable browser view option and press the OK button to continue.

3. Load an XML-based file, using the File|Open File... menu item, and load the file
category.xml from the /jbuilder/extras/BorlandXML/example/b2b/products/
classes/xsl directory. Once this occurs, the XML file will be loaded into the
AppBrowser; notice that a few new tabs are present under the Content pane:

■■ View tab, enabled by setting the IDE Options dialog, and it will display the
XML as if it were being viewed inside the Microsoft Internet Explorer
browser.

■■ Transform view, which uses the integrated XSLT processor to transform the
documents inside the AppBrowser. Notice that when the Transform view
tab is selected, it reports an error because the default stylesheet is unable to
display the current XML. The AppBrowser’s Content pane using the Trans-
form view can use any stylesheet to show the contents.

Notice in Figure 2.8 that the URL line at the top of the Transform view panel has a
set of hot buttons. The first allows you to use the default stylesheet. The second button
refreshes the display. The third button is used to set the trace options. Once the trace
options have been set, a refresh should be performed to update the display. Keep in
mind that if no errors occur, the Message pane will remain blank. The final button is the
Add stylesheet; this allows the developer to assign a stylesheet (XSL extension) to the
XML file. Press the Add stylesheet button to display the dialog in Figure 2.9.

Press the Add... button to display a standard FileChooser dialog. It should be
located in the same directory in which the category.xml file was found. Then select the
category_html.xsl file, and press the OK button to continue. The file will be listed in the
list box inside the Configure node stylesheets; it is possible to load multiple XSL files
for one XML file. Once the selection has been made, press the OK button to continue.

The XML source is now being displayed in the proper format as the category_
html.xsl prescribes. In Figure 2.10, a new tab was added when a proper XSL was used,
which is the Transform View Source tab. This tab can be pressed and then modified like
any other file inside the AppBrowser. Also notice that the URL line at the top of the
Transform view is a drop-down choice control. This becomes a handy feature if, in the
prior step of loading a valid stylesheet, more than one was loaded. Simply use the drop-
down choice control to pick the stylesheet to be used for the transform process. When
you are ready to close a project, it is not necessary to save the files before continuing.

Customizing the AppBrowser 25

Figure 2.8 AppBrowser Content pane, Transform view.

Figure 2.9 Configure node stylesheet.

26 Chapter 2

Figure 2.10 Transform view with valid stylesheet.

Run/Debug Panel
The next tab located on the Tools|IDE Options... menu item is the Run/Debug panel (see
Figure 2.11). This panel is used by the AppBrowser to set the callback time associated
with each option. Generally, these options do not change very often. Each of these
options can be set differently, depending on what the machine running JBuilder is doing.
Keep in mind that if the intervals are set really short, the CPU for the machine will be
seriously taxed to meet the requirements. If a lot of additional processes are always
occurring on the development machine, like system testing and other CPU-intensive
operations, then setting these intervals to be larger will give a better performance feel.

The Runtime update intervals, which includes the Console output, is set to 100 mil-
liseconds (ms), and the Debugger update intervals include the Console output set at
100 ms and the Process state set at 150 ms. If you notice really sluggish performance
during the debugging phase and the application(s) that are being debugged include a
lot of CPU interaction, you can lengthen both of these options for better performance.

Customizing the AppBrowser 27

Figure 2.11 Run/Debug (defaults).

Audio Panel
Audio feedback was added to help developers hear progress with the development
process. It was also added to help visually impaired developers be more productive
with the use of audio feedback.

The Audio panel (see Figure 2.12) includes two real options:

■■ Enable the Audio feedback in the first place

■■ Actual volume for the playback

The next section of the dialog is the Theme option. Currently JBuilder ships with
only one theme, but it is possible to create additional themes. See the Borland Devel-
opers Network (http://bdn.borland.com) for additional themes created by the
JBuilder community, which can be downloaded and installed.

Adding themes to audio is a simple process:

1. Make sure all recordings are done in 16-bit .wav file format. The length of the
recording is not an issue, but keep in mind that a long recording will have to
play each time the event occurs, which can cause a slowdown in the develop-
ment process.

2. The filenames must correspond exactly to the following names: build_errors.
wav, build_successful.wav, build_warnings.wav, exception.wav, find_failed.wav,
find_in_path.wav, process_stopped.wav, and stopped_at_breakpoint.wav.

3. Once 16-bit recordings for each of the preceding files have been created, create
a new archive — compressed or uncompressed, it does not matter — with the
extension of .audiopak.

28 Chapter 2

Figure 2.12 Audio panel.

4. Place this archive into the /jbuilder/lib/audio directory.

5. Restart JBuilder, and the new theme should be displayed when the drop-down
choice control is activated. The new theme and events should now have your
defined custom sounds.

6. Choose what audio event should have sounds associated with it. These options
can be selected or deselected manually.

A suggested project might include creating a new extension in the File Type panel
with an .audiopak extension; this will allow JBuilder to recognize the file inside the
AppBrowser. Then create a new project with the previously listed files recorded in 16-
bit .wav format; then create an archive with the name of the theme and an extension of
the .audiopak, build the archive, and deploy it.

NOTE Some common Linux JDKs have a problem playing sound that causes
JBuilder to crash. If you experience this, just disable audio feedback.

The last two tabs on the IDE Options dialog are these:

■■ UML panel

■■ EJB designer panel

These features are covered in greater depth in Chapter 12, “UML Visualization,” and
Chapter 20, “Developing EJB 2.x.” The configuration of the features will not be covered
in those chapters. These two panels pertain only to the display of the information, not
the information itself, so explanations of the interface will happen in this section. To
learn how to modify the information being displayed by the interfaces, go to the
appropriate chapter for further details.

Customizing the AppBrowser 29

UML Panel
The UML panel is responsible for the appearance of the UML visualization tools
included in JBuilder. This tool appears in the Content pane area and can be activated
by pressing the UML tab located under the Content pane (see Figure 2.13). This dialog
allows for the customization of the look of the UML being presented. The first four
options are as follows:

Use visibility icons. This uses the icons inside the Project and Structure panes to
show the developer what a diagram represents.

Sort alphabetically. This displays the methods and data members in alphabetical
order.

Group by visibility. This groups like classes members and data members
together.

Display properties separately. This replaces data members with a getter and set-
ter at the bottom of the object diagram representing the Java program. For more
information on setter and getter, refer to Chapter 8, “Modifying Classes.”

The final section of the UML panel allows you to customize each element of the dia-
gram by selecting the Screen element and then setting the associated color — that is all
there is to it. You can revert to the default settings at any time by pressing the Reset all
to default option after customization.

Figure 2.13 UML panel.

30 Chapter 2

EJB Designer
The EJB Designer is responsible for the display of the screen elements (see Figure 2.14).
The only option that is included on this panel that has any bearing on the code is the first
one: Always regenerate interfaces. Because the EJB Designer is a two-way tool, which
means that changes in the code will be noticed in the designer and that the changes in the
designer will change the code. The EJB Designer can always regenerate the interfaces if
new methods are added in the code; this can remove a couple steps in the development
process. Be aware that any customizations that have been completed on the underlying
Home and Remote interfaces will be lost if this option is turned on!

The rest of the options follow the last dialog and pertain to the font use and the col-
ors associated with each screen element. After the font has been chosen, pick a screen
element in the list box and select its color. Press the Reset all to default button at any
time to return the display to the preset JBuilder defaults. Press the OK button to accept
the changes. Not all panels have to be viewed or updated to accept changes.

Generic Setup for IDE Options
Table 2.2 shows the properties and their values for the IDE Options dialog and can be
used as a quick hit sheet. These properties cause the AppBrowser to take on a slightly
different look; it includes different coloring and shading, font sizes for the Main menu,
Project and Structure pane changes, and resized dialogs.

Figure 2.14 EJB Designer.

Customizing the AppBrowser 31

Table 2.2 Generic Settings for IDE Options Dialog

TAB PROPERTY VALUE

Browser Look and Feel Metal

Browser Font adjustment +2

Browser Keymapping CUA

Browser Orientation Horizontal

Browser Label type Icon and short name

Browser Insertions Insert at end

Browser Layout policy Multiple rows

Browser Error text color RED (same as default)

Browser Status message timeout 10 seconds (same as default)

Browser Close CVS dialogs Checked

File Types No changes

Web Copy Web Run/Debug/Optimize Checked
launch URL to clipboard

Web Launch separate process and Selected
use Web View

XML Enable browser view Checked

Run/Debug No changes

Audio Audio feedback enabled Deselected

UML No changes

EJB Designer No changes

Configuring the AppBrowser with Editor Options

Up to this point, the AppBrowser configuration focused on the actual look and the way
it will interact with the developer. Now it is time to switch gears and focus on how the
editor will interact with the developer. There are two major ways to get to the Editor
Options... dialog:

■■ Press the Tools|Editor Options... menu item.

■■ Use the Context menu either by right-mouse clicking in the Content pane or by
pressing the Shift-F10 key combination inside the Content pane and selecting
the Editor Options... menu item.

32 Chapter 2

Figure 2.15 Editor panel.

Editor Panel
The Editor panel (see Figure 2.15) is responsible for setting a major portion of the
options available to the developer. The first option available to the developer is the
Keymap, which is the same option that is available on the IDE Options covered in the
previous section. The next option is the Backup level; this represents the total number of
backups for each file. The top number is 90, and if the number is exceeded that is
defined by the slider bar, the number will start from 0 and increment toward the higher
number. This option becomes very important for the use of the History tab (see Chapter
9, “Integrated Team Development”) and the feature that was added to JBuilder to allow
the developer to Revert to a prior save point. To activate the Revert feature, press the
File|Revert menu item.

These options are located inside the Tree view control and are made up of various
editor guidelines that cover the following:

Line numbering. You can turn the line numbering option on and off to display
numbers inside the Content pane, next to the gutter. Currently the only reason
not to have them enabled is because of limited screen/editing space.

Smart key options. Smart key options are responsible for moving the cursor to
various locations on the current line. Each one of the three suboptions, Smart
Home, Smart End, and Smart Tab, moves the cursor either to the first nonchar-
acter position or to the beginning of the actual line when it comes to the Smart
Home option. The Smart End option will move to the last noncharacter position
or to the actual end of the line if the noncharacter position is passed. The Smart
Tab is responsible for aligning the line under the past line if one exists. This
option has a huge dependency on the formatting features that are now part of
the formatting code functions, which are covered in Chapter 4. Be aware that the
Tab key has become more of a format key then an actual tab; this was one of the

Customizing the AppBrowser 33

major changes when code formatting was added to JBuilder. Changing these
options can have a direct effect on the formatting settings and make the format-
ting function quirky. Remember that the developer using the custom keymap-
ping facilities found inside the AppBrowser can define certain key functionality,
so if the Tab key is supposed to be a Tab key in the real sense, by adding spaces
to a line, these mappings can be redefined to another key. That is what the
keymap functionality is all about.

Indent options. This is responsible for determining how to handle blocking code
inside the editor. The first suboption is the Smart indent; it will try to indent the
current line in the appropriate level and locations. This means that it will intelli-
gently try to understand the indent format and follow it. The next suboption is
the Block indent, which if selected will deselect the Smart indent because the
Block indent is an alternative to the Smart indent. Using the Enter key on a new
line after the “{“, the block-indent will occur, or if the prior line is indented it
will try to follow the pattern. The main difference between the two is that one
tries to follow the pattern and the other uses the Enter key to establish the pat-
tern. The last option is the Smart paste, which will format the lines to the proper
aspect of the previous line’s formatting. As stated previously, most of these
options can be set in a more generic form by using the Formatting features of
JBuilder (see Chapter 4).

Display options. The Display option really has only one purpose. If the developer
wants to see a blinking cursor at the current location, then this option is checked.
If not, then the developer will see a solid caret at the current cursor location.

Save options. The Save options have three suboptions, which do not have any-
thing to do with the actual process of saving the file. The options address the
format of the file being saved:

■■ Strip trailing white space removes blank characters at the end of the line
during the save operation.

■■ Change leading tabs to spaces is responsible for changing the “\t” character
to spaces.

■■ Change leading spaces to tabs converts spaces to “\t” characters.

Search options. The first Search option is if the search dialog should be dis-
played when a search operation fails. By default the option is checked. The other
option is Search word at cursor, which can start a search operation on the word
that the cursor is over at the time of the search.

Brace match options. The Brace match options further customize the editor. The
generate closing brace is the first suboption, and it does exactly what the name
implies. If you start a line with a “{“ brace and hit return, the corresponding
closing brace “}” will be added. Remember, the indentation and formatting will
follow the established rules from the previous options and in the formatting
area of the project. The next two options, Enable brace match highlight and
Highlight opposing brace, dictate only how the editor will highlight curly braces.

34 Chapter 2

The first will always highlight both braces; you must be inside the brace to get
the highlighting on the starting brace, and you must be outside the closing
brace. The second option will highlight only the opposing brace following the
rules just stated; if both options are selected, then the highlight opposing option
will take precedence. When discussing braces, the editor extends the highlight-
ing beyond the standard “{ }”; it also supports the “()” and the “[]” pairs as
well. The final option is the Ignore the neighboring braces; this stops the high-
lighting on empties, which means {}, (), or [] will be ignored when it comes to
the highlighting rules.

Error options. The final set of options relates to how errors in the code will be
displayed and handled. This has always been one of JBuilder’s trademarks —
the ability to tell when a syntax error has occurred. The first time Borland
showed this feature at the JavaOne conference in 1999, it was the first all-Java
JBuilder code named Primetime, and it was a huge hit. This feature is constantly
upgraded in hopes of eliminating the need to do the compile/run/debug loop
that most developers go through each and every day. One of the first advances
was the ability to underline unknown errors; much like what Microsoft Word
did with word processing. Whenever an error is found, it will be underlined
with a red squiggly, thus giving the developer a visual queue of where the code
is wrong. In combination with the underlining feature, the second option can
give spot information on the error at hand and now supports the ability to start
the context-sensitive help to explain the error in its entirety.

As with the debugger, you can utilize the tooltip functionality to point to the
error and give it an integrated button in the form of a magnifying glass that can
be clicked to start the help system. Each option is turned on by default. The last
option, Show in gutter, places an icon in the gutter, much as a Breakpoint icon is
red with a white exclamation mark in the middle and gives another visual clue
that an error is occurring on that line.

Display Panel
The Display panel is responsible for setting the font and size that will be used inside
the editor. The first set of options on the Display panel (see Figure 2.16) deals with the
right margin settings; the first is the Visible right margin option. If this option is
checked, then a thin line will be displayed inside the editor denoting the right margin
setting in the next option. The right margin is where developers are told they are at the
end of the line; this number can be as high as 1024 characters and as few as 0.

The next set of options deals specifically with the font for the editor. When the Dis-
play panel is accessed for the first time, the AppBrowser scans monospaced font sets
available on the machine. Once this scan is completed, the Font family drop-down
choice control will be populated. Selecting the font and size is really a developer
choice, but the Sample area does try to let the developer know exactly how the font and
size chosen will represent in the editor.

Customizing the AppBrowser 35

Figure 2.16 Display panel.

Color Panel
The Color panel, like all the color dialogs, allows for complete customization of the
look of the editor (see Figure 2.17). The first option available on the Color panel is the
Editor color scheme, and JBuilder ships four different sets of options:

■■ Default, or the white background

■■ Classic, a medium blue background reminiscent of the old WordStar days of
Microsoft DOS

■■ Twilight, which uses a black background

■■ Ocean, based on a light cyan green background

As with fonts and sizes, it is difficult to predict what any one developer will want as
a color environment for coding. This is why the AppBrowser has so many customiza-
tion features for the editor. The whole bottom half of the panel is dedicated to the cus-
tomization of the colors used in the editor. This also allows tweaking of any of the
default sets shipped with the product. These options also work with the other options
covered in the section on highlighting curly braces and such; most any screen element
can be customized.

CodeInsight Panel
The CodeInsight panel of the Editor Options dialog (see Figure 2.18) is responsible for
configuring how the AppBrowser will handle three Insight technologies found in
JBuilder:

ClassInsight. Pressing the hot-key combination inside a method ClassInsight
(Ctrl-Alt-H–CUA) will display all the classes accessible in the classpath. This list
can then be scrolled until the proper object is found; when the object is selected,
it will be inserted in the editor.

36 Chapter 2

Figure 2.17 Color panel.

MemberInsight. MemberInsight (Ctrl-space–CUA) continues the process by
showing all the valid methods and data members for that class; again, once the
object is selected, it will be added to the editor.

ParameterInsight. ParameterInsight (Ctrl-Shift-space–CUA) works the same as
ClassInsight and MemberInsight, but it shows the list of valid parameters for
the class and methods. A full example showing how to use the Insight technolo-
gies can be found in Chapter 13.

Figure 2.18 CodeInsight panel.

Customizing the AppBrowser 37

The first set of options enables the Insight technologies and specifies what the delay
for the popups should be. By default, the Insight technology is enabled. Setting the
Delay is developer preference. Most experienced developers do not want the popups
to appear quickly because they feel the popups are in the way. Other developers
choose to set the delay to “as quick as possible” and use the Insight technologies as a
spell-macro-format function. If the developer is using a less-than-adequate machine,
these options can be turned off to speed up the overall performance of the machine.

Advanced options for MemberInsight include the following:

Autocomplete on invocation. Autocomplete on invocation inserts the text as
soon as a match is found with no Enter needing to be pressed and the popup
display never being shown.

Autocomplete while typing. The Autocomplete while typing is much like the
invocation except, as the popup is being displayed, if a match is found, the text
will be inserted and the popup will automatically disappear.

Include classes. The Include classes will allow classes to be included in the Mem-
berInsight popup.

Include deprecated members. The Include deprecated members option will
show the methods that have been deprecated with a line through them; remem-
ber the JavaDoc associated with the Java API set’s deprecation marker.

Show class context. The Show class context puts the classes at the top of the list.

The ParameterInsight advanced options, Include deprecated methods and Show
class context, work as described earlier. The CodeInsight panel also includes a button
for customizing the Display Options. When pressed, it generates a two-panel dialog,
one for MemberInsight and one for ParameterInsight, and both panels display the
options available for customizing their display inside the AppBrowser.

The Show entry types as an icon will attach the icons used in the Structure pane for
additional visual queues inside the MemberInsight popup; the only reason to deselect
this option would be for a limited performance increase. The rest of the options deal
with the display properties and are the same on each subpanel and are fairly self-
explanatory.

Template Panel
The Template panel is responsible for putting static text into the editor (see Figure 2.19).
The static text can be anything the developer desires: comments, Java code, snippets of
code, and so on. The AppBrowser comes with a large list of standard templates, and
the developers are free to add any number of custom ones. The key to templates is
making sure that the code being used by the template is a valid piece of information.

Adding a template is a simple procedure. Press the Add... button, and a quick dia-
log will display a dialog that will ask for a Name and Description of the template.
Pressing the OK button will give you a blank Code area. When naming a template,
remember that the names are case sensitive. When using templates inside the editor by
pressing the Ctrl-J (CUA–Keymap), a context dialog will be displayed showing all the

38 Chapter 2

possible matches to what is being typed. As the developer types more of the template
name, the list will become shorter until a match is found. Once a match is found, the
template will be activated, and the text for the template will be inserted into the editor.
Because all the standard templates are lowercase, adding a template called “mike”
would appear after the main template. If “Mike” were used as the name, it would show
at the top of the list.

When designing templates, you should not only ensure that the code or text being
inserted is correct but also consider where the next input should start because tem-
plates allow for setting the cursor position. The pipe “|” character can be used inside
a template to place the cursor after the text has been inserted. You should use only one
“|” per template; any others will be ignored.

One of the interesting concepts to come from templates is the notion of super tem-
plates. These are small templates used together to create a single template. Chaining
templates together in this manner results in a customized piece of code that follows a
standard format.

An important feature is currently missing from the templates; this feature would
allow templates defined in other versions of JBuilder to be used in the current version
very easily. The templates, though, are just standard text and can be found in the
JBuilder.Home directory in the User.properties files. All templates will use the follow-
ing format: editor.template;templates.1=Mike,Temp,//whatever. Templates can be copied
from the file and placed into the new versions of the User.properties file.

Java Structure Panel
The Java Structure panel defines how the Structure pane will display the Java code
hierarchy (see Figure 2.20). When working with really large files, the Parse delay
option can be set higher to eliminate slowdowns in the editor. This option tells the
AppBrowser how long it should wait before scanning the code and making sure the
Structure pane is in sync with the code.

Figure 2.19 Template panel.

Customizing the AppBrowser 39

Figure 2.20 Java Structure panel.

The Structure order is responsible for how the Java elements will be viewed; when
the Group by visibility option is checked, it will make sure that public, and then pro-
tected, then private is the order of visibility.

Using the Structure order options Separate classes/methods/fields option will sort
the elements into the proper order.

As with the Tools Options dialog, when you are working with the Editor Options, you
do not need to visit all the panels. Once a customization has occurred, pressing the OK
button will accept that customization, and you can continue your work in the editor.

Generic Setup for Editor Options
Table 2.3 shows the properties and their values for the Editor Options dialog and can
be used as a quick hit sheet. The properties cause the AppBrowser’s editor to act a lit-
tle differently, and things like keymapping, fonts, and indenting will be changed.

Table 2.3 Generic Settings for Editor Options... Dialog

PAGE PROPERTY VALUE

Editor Keymap CUA

Editor Backups 20

Editor Smart home Checked

Editor Smart end Checked

Editor Smart tab Checked

Editor Search word at cursor Checked

Display Courier New

Display Font size 20

40 Chapter 2

Content Tabs

A number of tabs are found in the AppBrowser, especially with the Content pane.
These tabs are usually viewed in the context of the file being worked with — in this
chapter; working with XML has altered which tabs are available. The same is true of
the following standard JBuilder tabs:

■■ Graphics

■■ UML (covered in Chapter 12)

■■ EJB (covered in Chapter 20)

■■ Source

■■ Design (covered in Chapter 8)

■■ Bean (covered in Chapter 8)

■■ Doc

■■ History (covered in Chapter 9)

Graphics
One of the newer features available in the AppBrowser is the Image viewer. It allows
images to be viewed and scaled, their background color set, and their files saved in a
Portable Network Graphic (PNG) format. Using the default sample project shipped
with JBuilder, load the splash.gif graphics from that project’s images file.

Once a graphic file has been added to the project, double-clicking on the file node
inside the Project pane will set the file into focus in the Content pane. Notice that in
Figure 2.21 the slider bar is used as the scaling mechanism and that it can be reset to the
original 100 percent if the desired changes do not work. If the file is saved as a PNG file
format, all coding changes need to be made to the underlying code, and the new
graphic will have to be added and the old graphic removed from the project, and all
references updated with the new extension.

Source
The Source tab is the main lifeline to the developer as it is the interface with the editor.
A great many pages in this chapter have been dedicated to the editor and how to con-
figure it. One great feature of how JBuilder is constructed is that each pane area inside
the AppBrowser is a self-contained application. This means that features can be added
for a specific pane that have nothing to do with the AppBrowser interface, but every-
thing to do with the information the pane in question is manipulating. The Editor pane
has had significant upgrades over its history.

Customizing the AppBrowser 41

Figure 2.21 Image viewer.

Using Figure 2.1 as a reference, a new button-enabled Source status bar has been
added. Notice that the filename is displayed above the Source tab and that the key-
board setting is being displayed with Insert turned on. Another section can be present
if the character encoding is different than the default; this option cannot be changed
from this location as it is for informational purposes only. The next section is the line
number and column associated with the cursor position inside the editor. Right beside
the number is a drop-down arrow that will display a Context menu that includes going
to a particular line number and also giving a quick way to set the Show line numbers
option in the editor. If the Go to line option is chosen, a quick dialog will be displayed
with an Edit dialog box to put the number in; once OK is pressed, the cursor will be
moved to that location.

The next section is a fast way to set the keymapping being used inside the editor. In
Figure 2.1 the keymapping is set to CUA; by hitting the drop-down arrow, the devel-
oper can select the preferred keymapping available to the AppBrowser.

The final section is the new Zoom feature, which allows the ability to make the font
size larger by zooming in on the text and to make the font size smaller by zooming out
on the text. It also has an option to reset back to normal. Most of these features are
great, especially when several people are using JBuilder to solve a problem. The ability
to set the keymapping and font size makes a great addition to the Source pane. The
zoom feature is used on a file-by-file basis and is not shared among all files open.

42 Chapter 2

Doc
Originally, the Doc tab allowed you to open a Java source file and view its associated
JavaDoc documentation. This was fairly limited, as the JavaDoc had to be in the class-
path to be displayed.

Now the AppBrowser has an on-the-fly JavaDoc compiler that will scan the Java
source and generate the associated JavaDoc if none can be found. A quick example of
how the Doc tab works follows (see Figure 2.22):

1. Open the WelcomeApp.java file located inside the default Sample project that
ships with JBuilder. The project can be reopened at anytime by pressing the
Help|Welcome project (sample) menu item.

2. Once the WelcomeApp.Java is in focus, place the cursor on the JFrame declara-
tion located on the class definition line.

3. Right-mouse click or press Shift-F10 to active the Context menu and select the
Find definition menu item. This will bring the source code of the JFrame into
the AppBrowser.

NOTE That this did not add the class to the project; it is only being viewed.

4. Click the Doc tab below the Content pane, and the associated JavaDoc will be
displayed for the JFrame.java class.

Figure 2.22 Doc tab.

Customizing the AppBrowser 43

The Doc viewer works the same as any other Internet browser. The links can be used
throughout the interface to move around the documentation. The URL line includes a
toolbar for going back to the home document, moving forward and backward, and
refreshing the page; finally, the URL itself can be used to view additional information
from the Web as a standard integrated Web browser. The pane also includes a full Con-
text menu that gives the general functionality of the toolbar, plus the abilities to print
and zoom in and out.

44 Chapter 2

GETTING THE MOST OUT OF A RESOURCE-STARVED SYSTEM

One of the common questions that arises from the development community is this: If I
don’t have the latest equipment and a ton of memory, can and will JBuilder perform? For
more information on the memory and Garbage Collection algorithm settings, review
Chapter 1, “Installing JBuilder.” The settings you choose can have a real effect on
performance. Table 2.4 shows the settings you should use for resource-starved hardware.

Table 2.4 Settings for the Resource-Starved AppBrowser

DIALOG PAGE PROPERTY VALUE

IDE Options Browser Look and Feel Metal

IDE Options Browser Orientation Horizontal

IDE Options Browser Label Type Icon

IDE Options Browser Insertions Insert at end

IDE Options Browser Layout Policy Single row

IDE Options Browser Close CVS dialogs Unchecked

IDE Options Audio Audio feedback Unselected
enabled

Editor Options Editor All options Turn them off

Editor Options CodeInsight All options Turn them off

Editor Options Java Structure Parse delay 5000

Editor Options Java Structure All options Turn them off

Also the Project and Structure/Component panes can be hidden. Setting all these
options did make a small difference in the performance running JBuilder on a Pentium 3,
with 128 megabytes of memory. The functionality that was sacrificed for the sake of a
few seconds here and there was felt not to be worth the trade-off.

Using Multiple AppBrowsers
Multiple AppBrowsers are especially handy when working with multiple projects (see
Chapter 4). Simply click the Window|New AppBrowser menu item to create a new
AppBrowser.

Recall that a change made in one AppBrowser is made in all AppBrowsers, so if
you’re working on a large project, creating new AppBrowsers can be a real resource
depleter. Multiple AppBrowsers can save a lot of power this way.

Summary

AppBrowser customization continues to evolve as new features and functions are
added to JBuilder. The two major interfaces that allow insight into all of the settings
and options for the AppBrowser are really the IDE Options... and the Editor Options...
dialogs.

Using good system management and working with some of the settings available to
you for the AppBrowser, it is possible to get a great programming interface, no matter
what kind of a machine you are dealing with.

Customizing the AppBrowser 45

47

There seem always to be two truths to Java: The Java platform is always changing, and
the APIs keep expanding and getting larger, which makes it a real headache to keep
track of every single classpath. Since the inception of Java these truths have been self-
evident with more than 30 releases of the Java Development Kit (JDK) alone. That
number includes major patches and does not include the number of companies that
have had to create special versions of a particular JDK for their projects. Thinking back
to the beginning, getting that first poster that outlined the API list of Java 1.0 and 1.1
was great — and the list fit on a 2- x 2-foot poster. Today, not including J2ME or J2EE,
the latest poster for the base Java language that was readable was around 4 x 5 feet; yes,
some current posters are much smaller, but most people need a magnifying glass to
read them. JBuilder recognized the issues from the beginning and took steps to make it
as easy as possible to manage this ever-changing world of Java.

This chapter focuses on the tools provided by JBuilder to work in this type of chaotic
environment. Dealing with multiple JDKs and working with an ever-growing list of
APIs and archive files, this chapter outlines the tools provided by JBuilder to help elim-
inate some of the development headaches.

Controlling Java Configurations

C H A P T E R

3

Overview of Java Development Kits

JBuilder has always been considered a premiere development environment, not
because it was easy to use or bundled some great products, but because it was built to
be dynamic like the Java language. One of the constants about Java was that it was
going to be a language that evolved over time. The base JDK 1.0 was hardly adequate
for doing the simplest tasks in an applet. The language, though, was transforming at a
very rapid rate, and new features were always in the works. This led the JBuilder
development team to design an environment that could adapt to the changes in the
language and exploding API sets. One of the first features to be touted by JBuilder was
its ability to switch JDKs.

The capabilities to switch JDKs included with JBuilder have grown over the life of
JBuilder, but still people are confused by exactly what JDK switching is and how it
works. JBuilder is hosted as an all-Java program on a JDK; this JDK may or may not be
the one that is currently shipping and publicly available from Sun. The reasons for hav-
ing a specific JDK to ship on are rather obvious — you need to have as stable a JVM as
possible, and in many cases that JVM may show problems that need to be fixed to
ensure that the development environment is stable and can handle the job it is being
asked to do. This meant that the JBuilder product has shipped over it lifespan on Bor-
land-specific builds of the JDK that included fixing errors, bugs, and nuances that
could cause the IDE to fail or not work as expected. This part of the JDK deals only
with the running of the JBuilder IDE.

When it comes to general compiling of Java programs, JBuilder uses its own com-
piler and dependency checker. When compiling Java programs, this is one of the main
reasons why JBuilder has always been considered one of the fastest Java compilers on
the market. The dependency checker eliminates files from the compile list so that
JBuilder does not waste time and resources compiling unneeded files; the compiler
was optimized to work with the dependency checker to ensure the fastest compile pos-
sible. The optimized compiler was based on the JDK that was used to run the IDE.

Until recently, the use of the JBuilder default compiler and dependency checker was
mandatory, thus not allowing developers to point to the Java compiler of their choice. In
recent builds, JBuilder has started to allow different compilers to be used to build
projects. More information on the JBuilder build system can be found in Chapter 10,
“Using Build Systems,” and Chapter 4, “Project Properties and Configurations.” This
feature came about from customer requests asking to point the compilation process to a
different compiler because of the use of specialized JDKs for areas of AppServer, Web
servers, and even other specialized JDKs. Using alternative JDKs to compile a project can
have a direct effect on the time needed to compile. Borland certifies only its compiler.

Still, although the JDK switching has not occurred, the actual concept of switching
comes in three areas. The first area is the APIs that are exposed to the JBuilder envi-
ronment with regard to using the Insight technologies. The second concept involves
the running of the program once it has been compiled. The third concept is actually set-
ting the project to use the specific JDK for the compilation process. In essence, the first
two concepts were the definition of JDK switching from Borland. Now JDK switching
includes the concept of using a different Java compiler that has been defined in the
JBuilder environment.

48 Chapter 3

Figure 3.1 Configure JDKs dialog.

JDK Definitions
The first step is to add another JDK to the JBuilder environment by clicking the
Tools|Configure JDKs... menu item. The dialog box that appears can be seen in Figure 3.1.

The Configure JDKs dialog is divided into a few areas. The JDK list on the left-hand
side lists the loaded JDKs in a sorted format. This format is broken into four main areas:

■■ The Project, which assigns a JDK to the project level, meaning that it will be
available in only a certain project and all files associated with the JDK defini-
tion will be kept in the project.

■■ The User Home, which is where all the default properties are held. This
location can be different depending on the operating system being used. See
Chapter 1, “Installing JBuilder,” for configuration details.

■■ The JBuilder, which stores all the JDK definitions in the /jbuilder/lib
directory.

■■ User-defined, which allows the developer to define a location of his or her
choice for holding the JDK properties file.

The JDK properties file is an XML-based file that lists all the needed attributes of a
shipping JDK. In Figure 3.1, the JDK version is 1.4.1-b21 and is being held in the Home
directory. The source of the file is shown in Source 3.1.

Controlling Java Configurations 49

java version 1.4.1-b21.library

<?xml version=”1.0” encoding=”UTF-8”?>

<library>

<!--JBuilder JDK Definition File-->

<fullname>java version 1.4.1-b21</fullname>

<homepath>../../jdk1.4</homepath>

<debug/>

<class>

<path>[../../jdk1.4/demo/jfc/Java2D/Java2Demo.jar]</path>

<path>[../../jdk1.4/demo/plugin/jfc/Java2D/Java2Demo.jar]</path>

<path>[../../jdk1.4/jre/lib/charsets.jar]</path>

<path>[../../jdk1.4/jre/lib/ext/dnsns.jar]</path>

<path>[../../jdk1.4/jre/lib/ext/ldapsec.jar]</path>

<path>[../../jdk1.4/jre/lib/ext/localedata.jar]</path>

<path>[../../jdk1.4/jre/lib/ext/sunjce_provider.jar]</path>

<path>[../../jdk1.4/jre/lib/im/indicim.jar]</path>

<path>[../../jdk1.4/jre/lib/jaws.jar]</path>

<path>[../../jdk1.4/jre/lib/jce.jar]</path>

<path>[../../jdk1.4/jre/lib/jsse.jar]</path>

<path>[../../jdk1.4/jre/lib/rt.jar]</path>

<path>[../../jdk1.4/jre/lib/sunrsasign.jar]</path>

<path>[../../jdk1.4/lib/dt.jar]</path>

<path>[../../jdk1.4/lib/htmlconverter.jar]</path>

<path>[../../jdk1.4/lib/tools.jar]</path>

</class>

<source>

<path>../../jdk1.4/demo/applets/Animator</path>

<path>../../jdk1.4/demo/applets/ArcTest</path>

<path>../../jdk1.4/demo/applets/BarChart</path>

<path>../../jdk1.4/demo/applets/Blink</path>

<path>../../jdk1.4/demo/applets/CardTest</path>

<path>../../jdk1.4/demo/applets/Clock</path>

<path>../../jdk1.4/demo/applets/DitherTest</path>

<path>../../jdk1.4/demo/applets/DrawTest</path>

<path>../../jdk1.4/demo/applets/Fractal</path>

<path>../../jdk1.4/demo/applets/GraphicsTest</path>

<path>../../jdk1.4/demo/applets/GraphLayout</path>

<path>../../jdk1.4/demo/applets/ImageMap</path>

<path>../../jdk1.4/demo/applets/JumpingBox</path>

<path>../../jdk1.4/demo/applets/MoleculeViewer</path>

<path>../../jdk1.4/demo/applets/NervousText</path>

<path>../../jdk1.4/demo/applets/SimpleGraph</path>

<path>../../jdk1.4/demo/applets/SortDemo</path>

<path>../../jdk1.4/demo/applets/SpreadSheet</path>

<path>../../jdk1.4/demo/applets/SymbolTest</path>

<path>../../jdk1.4/demo/applets/TicTacToe</path>

<path>../../jdk1.4/demo/applets/WireFrame</path>

Source 3.1 JDK properties file (XML format)

50 Chapter 3

<path>[../../jdk1.4/demo/jfc/FileChooserDemo/FileChooserDemo. Æ

jar]/src</path>

<path>../../jdk1.4/demo/jfc/FileChooserDemo/src</path>

<path>../../jdk1.4/demo/jfc/Font2DTest/src</path>

<path>../../jdk1.4/demo/jfc/Java2D/src</path>

<path>[../../jdk1.4/demo/jfc/Metalworks/Metalworks.jar]/src</path>

<path>../../jdk1.4/demo/jfc/Metalworks/src</path>

<path>[../../jdk1.4/demo/jfc/Notepad/Notepad.jar]/src</path>

<path>../../jdk1.4/demo/jfc/Notepad/src</path>

<path>[../../jdk1.4/demo/jfc/SampleTree/SampleTree.jar]/src</path>

<path>../../jdk1.4/demo/jfc/SampleTree/src</path>

<path>../../jdk1.4/demo/jfc/Stylepad/src</path>

<path>[../../jdk1.4/demo/jfc/Stylepad/Stylepad.jar]/src</path>

<path>../../jdk1.4/demo/jfc/SwingApplet/src</path>

<path>[../../jdk1.4/demo/jfc/SwingApplet/SwingApplet.jar]/src</path>

<path>../../jdk1.4/demo/jfc/SwingSet2/src</path>

<path>[../../jdk1.4/demo/jfc/SwingSet2/SwingSet2.jar]/src</path>

<path>../../jdk1.4/demo/jfc/TableExample/src</path>

<path>[../../jdk1.4/demo/jfc/TableExample/TableExample. Æ

jar]/src</path>

<path>[../../jdk1.4/demo/jpda/examples.jar]</path>

<path>../../jdk1.4/demo/plugin/applets/Animator</path>

<path>../../jdk1.4/demo/plugin/applets/ArcTest</path>

<path>../../jdk1.4/demo/plugin/applets/BarChart</path>

<path>../../jdk1.4/demo/plugin/applets/Blink</path>

<path>../../jdk1.4/demo/plugin/applets/CardTest</path>

<path>../../jdk1.4/demo/plugin/applets/Clock</path>

<path>../../jdk1.4/demo/plugin/applets/DitherTest</path>

<path>../../jdk1.4/demo/plugin/applets/DrawTest</path>

<path>../../jdk1.4/demo/plugin/applets/Fractal</path>

<path>../../jdk1.4/demo/plugin/applets/GraphicsTest</path>

<path>../../jdk1.4/demo/plugin/applets/GraphLayout</path>

<path>../../jdk1.4/demo/plugin/applets/ImageMap</path>

<path>../../jdk1.4/demo/plugin/applets/JumpingBox</path>

<path>../../jdk1.4/demo/plugin/applets/MoleculeViewer</path>

<path>../../jdk1.4/demo/plugin/applets/NervousText</path>

<path>../../jdk1.4/demo/plugin/applets/SimpleGraph</path>

<path>../../jdk1.4/demo/plugin/applets/SortDemo</path>

<path>../../jdk1.4/demo/plugin/applets/SpreadSheet</path>

<path>../../jdk1.4/demo/plugin/applets/SymbolTest</path>

<path>../../jdk1.4/demo/plugin/applets/TicTacToe</path>

<path>../../jdk1.4/demo/plugin/applets/WireFrame</path>

<path>[../../jdk1.4/demo/plugin/jfc/FileChooserDemo/ Æ

FileChooserDemo.jar]/src</path>

<path>../../jdk1.4/demo/plugin/jfc/FileChooserDemo/src</path>

<path>../../jdk1.4/demo/plugin/jfc/Font2DTest/src</path>

<path>../../jdk1.4/demo/plugin/jfc/Java2D/src</path>

Source 3.1 (continued)

Controlling Java Configurations 51

<path>[../../jdk1.4/demo/plugin/jfc/Metalworks/Metalworks. Æ

jar]/src</path>

<path>../../jdk1.4/demo/plugin/jfc/Metalworks/src</path>

<path>[../../jdk1.4/demo/plugin/jfc/Notepad/Notepad.jar]/src</path>

<path>../../jdk1.4/demo/plugin/jfc/Notepad/src</path>

<path>[../../jdk1.4/demo/plugin/jfc/SampleTree/SampleTree Æ

.jar]/src</path>

<path>../../jdk1.4/demo/plugin/jfc/SampleTree/src</path>

<path>../../jdk1.4/demo/plugin/jfc/Stylepad/src</path>

<path>[../../jdk1.4/demo/plugin/jfc/Stylepad/Stylepad Æ

.jar]/src</path>

<path>../../jdk1.4/demo/plugin/jfc/SwingApplet/src</path>

<path>[../../jdk1.4/demo/plugin/jfc/SwingApplet/SwingApplet Æ

.jar]/src</path>

<path>../../jdk1.4/demo/plugin/jfc/SwingSet2/src</path>

<path>[../../jdk1.4/demo/plugin/jfc/SwingSet2/SwingSet2 Æ

.jar]/src</path>

<path>../../jdk1.4/demo/plugin/jfc/TableExample/src</path>

<path>[../../jdk1.4/demo/plugin/jfc/TableExample/TableExample Æ

.jar]/src</path>

<path>[../../jdk1.4/src.zip]</path>

</source>

<documentation>

<path>[../../doc/jdk13_docs.jar]/java/api</path>

</documentation>

</library>

Source 3.1 (continued)

The XML file in Source 3.1 is located on the machine’s Home directory with a name
of java version 1.4.1-b21.library. The filename is exactly the same as the name in the
JDK settings, except it has an extension of library at the end. After further examination
of the code in Source 3.1, the layout is really simple and is broken into three parts:

Class. Class is responsible for listing the locations of the needed Jar files of the JDK.

Source. Source lists the location of the available source files included with the
JDK; in this example, most of them are our example programs.

Documentation. This is the documentation location included with the JDK. This
file will be found in whatever location you determine when defining a new
JDK — Project, Home, JBuilder, or user-defined. The JDK settings are located on
the right side of the Configure JDK dialog. These represent the attributes found
in the JDK properties file. Changing these values will change the underlying
JDK properties file.

52 Chapter 3

Adding a JDK
Adding a JDK to JBuilder begins with the developer determining if the standard loca-
tions are fine or if a new user-defined location is needed. A user-defined folder would
enable sharing among team members and possibly keep the project more organized,
but it may not be a wise choice for large projects. Multiple projects are usually created
when working on a really large development effort, and some settings may end up lost
or forgotten.

Once you’ve made this decision, press the New... button to open a New JDK dialog
(see Figure 3.2). The wizard dialog is simple:

1. Point to a base JDK using the ... button.

2. Press the OK button on the enhanced FileChooser (Figure 3.5) dialog.

The wizard will do the rest. You can customize the name of the JDK; in this instance,
the jbuilder7 name was added as a visual reminder. The final step is to point to the
location where the JDK properties file will be located; in this case, Project was chosen
because of the limited overall impact of this getting confused with other projects on the
system.

Click the OK button to add all settings automatically. Unless the developer needs to
add Jar files, Source files, or documentation, the process should now be complete.

Configuring a JDK
The last option on the Configure JDKs dialog is the JDK home path. You should always
debug with the –classic option. This option does not pertain to JDK 1.4.x and higher —
only the Java 2 version up to JDK 1.3.0, as used in the example. Java and JBuilder use a
special VM called Hotspot, which can drastically improve performance across the board.
When using the Hotspot VM, however, certain debug information was lost or not avail-
able (such as synchronization and thread information). The –classic option made the
JVM run in a normal mode not utilizing the aggressive optimization of the Hotspot VM,
thus allowing the information in a debug session to be as accurate as possible.

Figure 3.2 New JDK Wizard.

Controlling Java Configurations 53

Normally, the wizard will check to see if a classic JVM is present during the JDK def-
inition phase. If it is, it must be a version earlier than JDK 1.3.1; if it determines that a
problem may exist, it will set the flag automatically. This can be turned on as a default
and then overridden using the VM parameters in the project properties with parame-
ters native, hotspot, green, or server.

JDK Switching
The process that needs to occur after understanding how a JDK is defined is how to
add a new JDK to JBuilder. The last issue with JDKs is using the switching features
found in JBuilder and determining what JDKs the environment supports. JBuilder can
support any JDK in a base-switching mode. What is base-switching mode? Before Java
2 (which was Java 1 with the releases of 1.1.0 through 1.1.8), the JDK did not include a
standard debugger. The old JDKs relied on “sniffing” programs to get the debugging
information from the JVM. Beginning with Java 2 version 1.2, JBuilder supports Java
Platform Debugger Architecture (JPDA) and has standardized on the information
being exposed to the debugger. See Chapter 6, “Using the JBuilder Help Sytem,” for
more information on debugging. This means that switching to a JDK prior to Java 2
version 1.2 will not have debugging support, which really limits the power of JDK
switching. Compiling and running on an earlier JDK should work fine; however, the
no-debug features found in JBuilder will not be available. Switching to versions of the
JDK based on Java 2 and beyond 1.2 should work fine and give a complete JBuilder
user experience.

Configuring Libraries

JBuilder has always addressed classpaths management. The concept behind the class-
path is simple. Like the path used on any operating system, a classpath simply points
to Java archives or directories containing the classes. Problems can arise when there is
an explosion of archives and when locations and archives are dependent on other
archives. In this situation, managing the list can be a huge task.

JBuilder stepped up to the plate with the concept of libraries. Libraries are collec-
tions of archives, classes, documentation, and source code saved with a .library exten-
sion. JBuilder uses the libraries to build the classpaths needed to develop programs
inside the JBuilder environment, and it uses them again to build the classpath to com-
pile, run, and debug projects.

The interface for working with libraries is very similar to the interface for defin-
ing new JDKs. Click the Tools|Configure Libraries... menu item to start the dialog
(Figure 3.3). On the left-hand side is the library list, broken into four subcategories:

■■ Project

■■ User Home

■■ JBuilder

■■ User-defined

54 Chapter 3

Figure 3.3 Configure Libraries dialog.

The category selected dictates where the files with the .library extension will be
located, and the definitions for the categories are the same as with the JDK categories
described earlier this chapter. The .library file looks very similar to the JDK properties
files outlined in Source 3.1.

The Library Settings on the right-hand side of the dialog — the Name and associ-
ated Class, Source, Documentation, Framework, and Required Libraries tabs — out-
line the library file’s contents. The controls to the right of the tab interface allow the
developer to add, edit, and remove files from the list. The lower part of the control
gives the ability to move file order up or down the list. This becomes extremely impor-
tant as certain classes or archives need to be loaded first and others loaded last. This
gives complete control over the order in which the classpath will be constructed.
Unlike the add JDK process, this wizard has no way of figuring out any additional
information about the files that may be associated with them. In other words, it is nec-
essary to point to the Source and Documentation tabs manually.

The next tab, Required Libraries, is responsible for setting up the dependencies
between libraries. The list box interface uses a three-color coding system to tell the
developer the status of the dependency. If the name in the list box is black, then it is a
valid library. If the library is gray, it needs to be updated; this occurs when using a ver-
sion of JBuilder that does not support or include that library. This may mean that the
version of JBuilder needs to be upgraded to the next edition for that particular feature.
If the library is red, then the current library is not valid and should either be removed
or pointed to a proper version of that library.

The Framework tab is associated with Web development and tag libraries. This is
covered in Chapter 15, “Server and Service Configuration.”

The first decision that needs to be made is where is the library file going to be
located. The location is critical for many reasons, especially the exposure to the
JBuilder environment. If a library file is placed in the project setting, it will have expo-
sure only to the Classes and Archives from within that particular project. Using
JBuilder or the Home will give increased exposure to all new projects added. Using the
user-defined option can be a great way of organizing and sharing libraries.

Controlling Java Configurations 55

Figure 3.4 New Library Wizard.

Only a few clicks are needed to add a library to the JBuilder environment. Press the
New... button to display the New Library Wizard dialog (see Figure 3.4). Once the dia-
log has been displayed, the name and location must be filled out. For this example, we
used the name OldCORBA and Project for the location. Using Project will again lower
the exposure to other projects because it is defining a set of archives that are from an
older version of VisiBroker. Pressing the Add... button will display an enhanced ver-
sion of the standard FileChooser.

This FileChooser on the left-hand side includes three favorites:

■■ JBuilder.Home

■■ Project

■■ Samples

Figure 3.5 Enhanced FileChooser.

56 Chapter 3

Figure 3.6 Updated Configure Libraries dialog.

Pressing one of the icons automatically changes the focus of the file list to that direc-
tory. Because none of the three directories has the old CORBA archives, we use the
standard FileChooser features to navigate to the location and choose files. Once you’ve
selected files for the archive, press the OK button to continue.

The new display will show that OldCORBA is not a library and point to the selected
.jar files from the prior step. The Source tab in Figure 3.6 is blank; this is true for the
Documentation, Framework, and Required Libraries tabs. If Source or the other addi-
tional information is available, simply use the Add... button and add the required files.
The Class list can hold other files besides .jar files; it can hold standard Java classes,
EARs, RARs, WARs, Zips, and any other valid archive that Java might support in the
future.

Once the information is complete, press the OK button to finish the task and write
the OldCORBA.library file in the project’s main directory. This library is used by the
project to point to the archives listed in the Classes list box. Each class or archive listed
in the list box can have its order changed at any time by using the Move Up and Move
Down buttons located next to the tab interface. For more information on using
libraries, see Chapter 4.

Summary

This chapter covers the key areas pertaining to Java Development Kits; it explains how
to define, add, and configure them to use them inside the environment. It also covers
the vast world of exploding Java classes and archives and shows how to manage these
files using libraries, which, in turn, makes using the environment simple when work-
ing with projects of all sizes. JBuilder continues to enhance its capabilities in these
areas as it has added the ability to point to custom compilers, dependency, and support
for frameworks.

Controlling Java Configurations 57

59

You can create a simple project inside JBuilder without a lot of special knowledge or
skill. It basically involves following a simple wizard through a couple of steps, and
then the process is complete. The files generated and the properties for each of the files
to be included in the JBuilder project are basically obscured from the developer. In
most cases, ignorance is bliss — for simple projects most developers do not need any
more information than what is presented. If a team of developers is defining large,
complex packages and they build scripts, then the project properties and their under-
standing can be worth their weight in gold.

This chapter takes you through the basic steps to create a project, explains how files
associated with a project (called nodes) are used in projects, and covers the advanced
features of JBuilder project properties management.

Creating a Simple Project in JBuilder

Creating a project in JBuilder begins by clicking the File|New Project... menu item. The
Object Gallery could be used at this time also; that is covered in Chapter 7, ”Creating
Classes.”

The Project wizard, where the basic information will be defined, appears first (see
Figure 4.1). The first option is to name the project; this will be the name associated with
the project from this point forward. This is usually only a single name, or the name
could use the standard Java naming guidelines. Off to the right, notice the Type option;
it is responsible for defining how the actual project file will be defined internally. Two
options are available:

Project Properties and
Configurations

C H A P T E R

4

Figure 4.1 Step 1 of 3 for Create New Project.

■■ JPX, which is an XML file and the standard for JBuilder projects

■■ JPR, which represents the OLD property file format of project files and is based
on standard value/key entries

Unless the developer has something against XML, or if he or she is going to use the
project being created with a really old version of JBuilder, using the JPX format is rec-
ommended. The second option is the Directory, which is where the .jpx or .jpr will be
located. The Directory has nothing to do with the package layout of the files, and it rep-
resents only the top directory for the project. The third option is the Template; this
comes with a standard drop-down choice control and gives the developer the oppor-
tunities to use another project’s properties as a base for this project. This feature is
extremely nice when you are working with a series of projects that are special but are
not used enough to make them the default project properties.

The next option will be available only if a Project group is present; this is covered
later in the chapter. The last option is the Generate project notes file option, which
should be checked if the developer wants to have HTML files included with the proj-
ect that can be used for notes or to explain the project’s purpose. The first is Next;
which will take the wizard to the next step in the process of creating a project. The Fin-
ish key will accept the defaults for all the other project wizard’s screens. The Cancel
button is available; this button does exactly what one would expect — it stops the proj-
ect creation and returns to the AppBrowser. The other two buttons are really not
options; the Back button is disabled because, of course, this is Step 1 of 3, and the Help
button can be pressed at any time to get context-sensitive help on the Project wizard.

Press the Next button to move to Step 2. This panel gives the developer the ability to
set the JDK and the default locations for the files in the project. Notice in Figure 4.2 that
the current file locations are based on the user.home environment variable; learn more
about how and when to use it in Chapter 1. The first option allows you to choose a dif-
ferent JDK if desired; this could include JDK 1.2.1, JDK 1.3.1, or any other JDK defined.

60 Chapter 4

JDK switching is covered in Chapter 3, “Controlling Java Configurations.” The Output
path, Backup path, and Working directory are where files will be placed throughout
the development cycle. The Output path will hold the compiled classes generated by
the compiler; the Backup path will hold a copy of the last saved version of the files.
This works in accordance with the number of backups set in the Editor options. The
Working directory is the base directory where JBuilder will start a project when it is run
inside the environment.

The tabbed interface below these settings controls what is included with a project
and what is not. The first tab is the Source tab; notice in Figure 4.2 that it has two but-
ton controls, for the default locations of Source and Test. By the way, these can be the
same, but in most cases developers like to keep them separated for organizational rea-
sons. Files that are generated from the wizards on the Test tab located in the Object
Gallery (covered in Chapter 7) will be generated in the Test Source directory. It is also
possible to have multiple Source and Test directories included with a project; if the
developer includes more than one directory, it will cause JBuilder to create multiple
source roots for the project. This is not a problem, just something that the developer
needs to understand; this topic is covered in the section on multiple source roots later
in this chapter. The second tab is the Documentation tab, which is responsible for
where the HTML files and files generated by JavaDoc will be located for the project; it
also allows for pointing to additional locations of documentation to be included with
the project. The final tab, Required Libraries, works as it did in Chapter 3, and it allows
you to add defined libraries to the project. This will make those APIs available to the
project by adding the libraries to the classpath, which then can be exposed through the
Insight technologies included with JBuilder. On this tab, there is an additional button
called Add Project... that will allow pointing to a project and adding the libraries
defined in that project to the current project.

Figure 4.2 Step 2 of 3 for Create New Project.

Project Properties and Configurations 61

Figure 4.3 Step 3 of 3 for Create New Project.

The options available at the bottom of the wizard are the same as in the last step
except that the Back button is now enabled. If the Back button is pressed, the wizard
will take the user back to Step 1. Pressing the Next button will take the wizard to the
third and final step of creating a simple project.

The first option is to define the character encoding to be used with this project (see
Figure 4.3). This gives JBuilder the ability to work with other character sets besides
ASCII text and to specify the character set accordingly. The default encoding is what-
ever the operating systems default encoder is set to.

The Automatic source packages option has multiple effects on the projects being
defined. When this option turns on, the default is to show all packages that appear
from the Source directory or the directories defined in the prior step. It will compile all
the .java files located in those packages automatically and will copy them to the
defined Output directory defined. Keep in mind, though, that the last option is how
deep the discovery should search; in the dialog shown in Figure 4.3, it is set to 3, mean-
ing that if you have an exceptionally long package list, it might not be seen by the auto-
discovery feature. Developers may want to lower the number of files listed in the
Project pane, thus making it easier to manage normal use of this feature.

An example at this point may be needed to bring these concepts to light:

1. First, create a new project File|New Project... menu item with all the
default settings. This will mean that the exposed level will be set to 3,
as in Figure 4.3.

2. Next add a class to the project File|New Class... menu item and fill in the
package option with the following package layer: com.wiley.borland.mastering
.jbuilder. Change the class name option to jbunit, and press the OK button.
Now, that package level should represent five layers; however, currently the
project is set to three layers, so is there a problem? No, a package layer is

62 Chapter 4

considered valid only if an actual buildable Java file is located in that package.
In this example it is only at level 1, as can be seen by looking at the second
package under the <Project Source> entry that shows the com.wiley.borland.
mastering.jbuilder as the package line and jbunit.Java under it.

3. Now click on the mastering entry under the <Project Source> entry, and then
click the File|New Class... menu item, select the com.wiley.borland.mastering
package, change the class name option to mastunit, and press the OK button.
Again, because a buildable Java file was added, the project layer exposed is 2.
Looking at the package under the <Project Source> entry, notice that the
com.wiley.borland.mastering is not the package level and under it is now the
jbuilder and jbunit.

4. Now do the same thing for the borland package as explained in the prior step,
change the new file to borunit, and Press the OK button. This time the third
layer should be defined and the second package entry should show
com.wiley.borland with the other package underneath it, just like the prior
examples.

5. The next attempt will change a few things. Click on the wiley package as in the
prior steps, add a New Class for that package called wileyunit, and press the
OK button. This should have added another package-level entry with
com.wiley, which breaks the threshold set and starts a new display. Later in this
chapter, a discussion of filtering will show how to extend this capability even
further.

Class JavaDoc fields options are the base fields to be included if the Generate
Header options is selected when creating a new class for a project. The fields that are
included are basically set; the developer can, however, set up a different set of tags and
key by double-clicking in the table and modifying it. Following is an example of the
output from creating a new class using a modified JavaDoc field for title.

/**

* <p>My Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author not attributable

* @version 1.0

*/

The Include references from Project library class files option will allow the App-
Browser to scan for references inside the libraries defined, which will be used by the
refactoring tools. By default, this option is not checked; however, if the developer is
new to the project or to the libraries, this option should be turned on or checked. This
will then ensure that if a reference is being searched, it will show in the AppBrowser
during a Find Reference process procedure. The last option is the Diagram references
from generated source option; this simply allows references in the UML visualization
to be defined inside the generated code of the project when the UML features are being

Project Properties and Configurations 63

used. For full details on the features included with JBuilder Enterprise on UML, check
out Chapter 12, “UML Visualization.” The following AppBrowser will be produced by
pressing the Finished key; notice that in the top left-hand side is the Project pane,
which includes the sample project just created.

The Project pane that will include the Example1.html file is highlighted in the Proj-
ect pane. When it was double-clicked inside the AppBrowser, it became the active file
in the Content pane. The Untitled1.java was also created in this project. If two or more
files are selected, use either the Shift-click or the Ctrl-click method to open everything
at once. After all the files are selected, right-mouse click on the files to display the Con-
text menu and select the Open menu item. Whichever file is selected last will be the
focus file when the open task is complete. Finally, the <Project Source> entry tells the
developer that Automatic source packages option is turned on; if that entry does not
exist, then the option is turned off.

Multiple Source Roots
In the prior section, the concept of Source Roots was raised; this is where JBuilder looks
when trying to find files for a project. These Source Roots are then part of the compile
chain and will be displayed inside the actual project.

In Figure 4.4, notice that the /src directory was added for the untitled4 project. This
will cause the files from untitled4 to be included in the project.

Now in Figure 4.5, notice that an additional package has been added to the Project
pane, which is untitled4, and all the files included are now part of the project. This now
has an effect on where the files are to be located when adding new files. Now, using
this example, add a new Class by pressing the File|New Class... menu item to start the
New Class wizard.

Figure 4.4 Step 2 of 3 New Project wizard, added Source Root.

64 Chapter 4

Figure 4.5 The New Source Root for the Example 2 project.

Where the file will be added depends on the location of the selected file located
inside the Project pane. Looking at Figure 4.6, notice that the selected package is unti-
tled4, then notice that the new Class wizard screen, located inside the AppBrowser, is
displaying on the Package line both untitled4 and example2 for where the new class
should be located. If the selected package were anything other than the untitled4 pack-
age, then only the example2 package would be displayed as a choice. This means that
when multiple Source Roots are included in a project, the developer needs to be aware
of exactly where the files will be placed or additional rework could be required.

Project Groups
One of the newer features of JBuilder is the ability to support multiple projects from
within a single project file called project groups. Most of the functionality can be
accomplished using multiple AppBrowsers and the multiple projects’ support found
in the existing JBuilder AppBrowser. That approach, though, causes projects to be han-
dled in a certain sequence and build order. Having the ability to create a project group,
each project can still live independent of the group, but when a project is included in a
group, it is handled together, which means tasks can be assigned to the group, such as
build, clean, compile, and other functions that can be defined using the build system.
Another great use for this functionality is having a project that includes a project for
server-side processing and having the other client-side projects included in one large
group. This gives the ability to run all the projects without having to change from proj-
ect to project.

Project Properties and Configurations 65

Figure 4.6 Adding a new Class with multiple Source Roots.

To create a Project group, the developer must use the Object Gallery at this time; for
full details on how to use all the features of the Object Gallery, check out Chapter 7.
Click the File|New... to start the Object Gallery, then click on the Project tab, followed
by the Project group icon, and finally click the OK button. This will start the Project
Group wizard (see Figure 4.7).

Figure 4.7 Project Group Wizard, Step 1.

66 Chapter 4

The Project Group wizard is very simple; the first page is where the Project Group
file will be held. Notice in Figure 4.7 that a new file type has been added for JBuilder to
understand. The .jpgr file stands for JBuilder Project GRoup. Once this location has
been defined, click the Next button to continue. At this point, your options are the Fin-
ish, Cancel, and Help buttons. Finish will create a basic empty Project group file that
will allow for adding projects later. The Cancel button can be pressed any time through-
out the wizard and can stop the creation of the Project group. Help can be used to get
context-sensitive help at any time.

The second step in the wizard allows for adding projects to the group, which can be
done by clicking the Add... button (see Figure 4.8). The Add Recursively... button will
start at the top of the project location and scan all the lower directories for .jpx or .jpr
files to be added to the group. Once the files have been added, click the Finish button
to continue.

Notice in Figure 4.9 that the PGExam1.jpgr is at the top of the Project pane; then
notice that both example1 and untitled3 are included in the project. The example1 proj-
ect is in bold to represent the active project. To switch projects, either double-click on
the other .jpr/.jpx file (in this case, it would be the untitled3) or use the drop-down
choice control on the top line of the Project pane. This will show the available individ-
ual projects under the PGExam1.jpgr line in bold. Click the item indented under the
top group, and it will become the active project. When the active project is changed, the
bold highlighting will change as a visual queue to the developer.

Now that a project group has been defined, we can add projects or change the proj-
ects associated with the group. This can be done in two ways. The fastest way to add a
project to an existing group is to right-mouse click on the PGExam1.jpgr and click the
Add Project... menu item. This will bring up the FileChooser dialog and allow the
developer to add another project file. The second method allows you to add one or
more projects. It begins in the same manner, by right-mouse clicking on the
PGExam1.jpgr file. Now, however, click the Properties menu item. It can also be
accomplished by clicking the Project|Project Group properties... menu item. This will
spawn a new Project Group dialog.

The first page of the project properties looks very much like Figure 4.8 and works
the same way. The second page is the Menu Items page, and it is responsible for man-
aging the tasks that will be available to the context-sensitive menu items and the tool-
bar options. This is covered in more detail in Chapter 10, “Using Build Systems.” The
interface is rather simple; just use the Add... button to add tasks, which will be shown
in a Selection List dialog. Click the OK button when you are finished to set the group
properties. Keep in mind that each project that is included in the group has its own
project properties. This means that all the advanced features (covered later in this
chapter) can be modified for each project, but if a single project in the group is modi-
fied, it will be modified outside of the group.

Project Properties and Configurations 67

Figure 4.8 Project Group Wizard, Step 2.

Figure 4.9 An active Project group.

68 Chapter 4

Using Nodes

Files located inside the Project pane are referred to as nodes. Nodes can be many types;
ironically a node can be a file node, but it also can be an archive node or a project node
or even a folder node. Each one of these nodes is associated with the File Types found
in the IDE Options dialog and can have special properties associated with each type.

Figure 4.9 shows multiple File Types (nodes) included in the project: .java nodes, an
HTML node, and project nodes. Each of these nodes has a distinct property set associ-
ated with it. To work with each of the node’s properties, simply right-mouse click on
the node and select the Properties menu item to activate the accompanying dialog.

Each file type has special attributes that can be set to tell the build system how it
should handle each node. For instance, the HTML node has the Resource panel that
allows the developer to set the copy attribute, if this file should be copied to the output
directory or if it is not supposed to be copied. It also allows for setting the attribute
project wide. The node properties of the Java file can set RMI or JNI settings; if either
of these two options is modified, the next build cycle will start the associated compil-
ers to handle the task. The Java file also has the Resource panel included with its prop-
erties and works the same way as described previously. The final example of an
Archive node’s properties shows that it has four panels to modify or customize to the
developers liking and each of the settings. This has a direct effect on how the compiler
works with the associated files for the archive. For more information on the archive
project, check out Chapter 10.

The key concept to keep in mind is that every node that appears in the Project pane
can have additional properties that can affect the way that node is handled throughout
its development process. Learning and understanding these properties is a small
investment in the overall development time, and in the end doing so can save a lot of
headaches.

Advanced Project Properties Features

Now that we have a basic understanding of how to create projects and project groups,
we can look at how the properties included with a project can change a project’s behav-
ior over its development process. The interface to interact with these properties is han-
dled through a wizard-based process. The Project Properties dialog can be accessed via
many different paths; the first is the Project|Project Properties... menu item. The sec-
ond way of accessing it is from the Project pane; right-mouse click on the
project.jpr/jpx file, and select the Properties menu item. This will display the last tab
visited; if the Paths pane is not active, click the Paths tab.

Paths Panel
The interface for the Paths panel should look very similar to the interface displayed in
Figure 4.2 (used as a reference) during the creating of a project. This is where you
change the JDK if desired and define multiple Source Roots for the project.

Project Properties and Configurations 69

General Panel
This panel, like the Paths panel, should be the same interface that was explained in Fig-
ure 4.3 (used as a reference). It also works the same way as what was explained in that
section. The key areas to look for in the panel are the automatic source packages and
the nuances that are associated with working with that option.

Run Panel
This panel, shown in Figure 4.10, is responsible for listing the available Runtime con-
figurations. These configurations allow you to set different switches pertaining to
building and running a Java program inside a project. The Run panel has six options in
the form of buttons to control these configurations. The New... button will spawn a dia-
log that will allow for adding a configuration. The Copy... button will make a copy
of the selected configuration in the list box. The Edit... button will allow any of the
parameters on the selected configuration to be changed. The Remove... button will
do exactly that: remove the selected configuration. The last two buttons control the
order of the configuration in the list box. This order relates to the order on the Run /
Debug / Optimize toolbar button drop-downs; also on the toolbar drop-down list is an
option for bringing up this dialog. The other way to show this interface is to use the
Run|Configurations... menu item.

These configurations become extremely important when working with projects that
contain AppServer-specific code, Java applications, and Web server-specific code or
have specific switches or debug parameters that must be set to execute a program
properly. When adding a new configuration using the Add... button, the first option is
the name associated with the configuration. The second option is the build target,
which can be selected from the drop-down list (covered in Chapter 10). The next area
of the dialog is the Tab panels that include the following:

Figure 4.10 Run panel, Project Properties.

70 Chapter 4

Run. This tab sets the parameters for the type of Java file to be executed. This
will be explained further in the Type option discussion.

Debug. This tab allows for the advanced debug configuration to be set; it is also
where remote debugging can be turned on and its parameters set. Debugging is
covered in Chapter 5, “Debugging with JBuilder.”

Optimize. This tab allows parameters needed for the OptimizeIT product to be
set. The OptimizeIT product is outside the scope of this book.

The real horsepower comes from the Run tab; notice in Figure 4.11 that the Type
option has a number of choices:

Application. When this option is selected, the rest of the panel will show options
pertaining to that type of Java program. In the case of Application, it will allow
VM parameters and Application parameters to be set.

Applet. When this option is selected, the rest of the panel will show the options
pertaining to Applet programs. The Applet options include the main class to be
executed, the HTML associated with the class, VM parameters that might be
needed, display properties, and finally the Applet parameters.

Server. When this option is selected, the rest of the panel will show the options
pertaining to the Web or Application Server associated with that configuration.
This basically gives the same interface as in Figure 4.18 later in this chapter. The
options are covered completely in Chapter 15, “Server and Service Configuration.”

Test. When this option is selected, the rest of the panel will show the options per-
taining to the Testing integration based on JUnit. The options available include
the class to test, packages where the test classes can be found, an area of VM
parameters, and finally the type of Test Runner to be used.

OpenTools. When this option is selected, the rest of the panel will show the
options pertaining to working with the OpenTools interface. The options
include the new tools output path, the tools .jar file location, VM and JBuilder
parameters for running the tool, and the options for where it should be located
and if it should overwrite what is in JBuilder loaded classes.

Once the Type and options associated with that type are selected, pressing the OK
button to continue will write the configuration. From that point forward, it will be
available to the JBuilder interface.

Build Panel
The Build panel (see Figure 4.12) is responsible for setting up how the AppBrowser will
handle the build process. Many options are available from this interface, which directly
affects how the JBuilder compiler will handle the underlying build process. Almost all
aspects of the build process can be exposed or modified through this interface. The
Build panel is covered in Chapter 10. For more information on the interface, proceed to
that chapter.

Project Properties and Configurations 71

Figure 4.11 Runtime Configuration Properties dialog.

Figure 4.12 Build panel, Project Properties.

72 Chapter 4

Formatting Panel
One of the most requested JBuilder features is Java beautification. This allows the
developer to set a few properties and run a wizard to generate reformatted code. Not
until the extreme programming movement did JBuilder address this issue. The first
attempt at simple formatting came in the form of common event handling; this feature
has been part of the AppBrowser since JBuilder 2’s introduction for supporting anony-
mous adaptors, which is still available today on the Generated tab. JBuilder is making
huge strides in the area of formatting, almost to the point that there may be too many
options. Point in case: Currently there are 54 checkbox options and 2 radio button
options; this represents a factorial of 54 options that could be multiplied by 2. The
number of total formatting options currently available to the JBuilder developer is
2.308436973392413e + 71, which is the base number generated from the 54 factorial.
Needless to say, the AppBrowser now supports Java beautifications in a major way.

JBuilder tried to add many features that were requested over the years and actually
came up with a nice interface to test the formatting before accepting the changes, thus
eliminating a lot of guesswork. This interface will be put to the test as the developer
tries different options for different kinds of code. In Figure 4.13, the formatting options
available to the developer are listed on the tabs, which include Basic, Blocks, Spaces,
Blank Lines, Wrapping, Generated, and Imports. Using the advanced AppBrowser
interface, the developer can play what-if games until he or she is satisfied with the
results in the preview window. It is also recommended that the dialog be expanded to
accommodate the full lines so that all changes can be noticed or viewed.

The first tab, Basic, is tasked with the most basic of settings; these pertain to general
indentation rules. Keep in mind that these work in accordance with the Tools|Editor
Options... dialog. How it preserves end-of-line characters and tabs and how the tabs
and spaces are formatted can be overridden by the project properties. The second tab
is Blocks; it is responsible for how the code will be arranged when logical blocks of
code are defined, such as classes, try...catch, ifs, and many others. The third tab is the
Spaces tab; it is responsible for how and when a space or spacing is to affect the code,
and with 14 specific options available, most developers should be satisfied. The fourth
tab is the Blank Lines tab; it is responsible for where to put the blank lines, but it also
gives the flexibility to set the number of lines for each of the seven options in the Tab
pane. The fifth tab is the Wrapping options, which gives seven options, two of which
can have specific columns to determine where the wrapping functions should start; it
also gives the ability to match the existing code. The sixth tab is the Generated tab; it
has the same interface and functionality as mentioned previously, and it outlines how
to work with events.

Project Properties and Configurations 73

Figure 4.13 Formatting panel — Basic, Project Properties.

Generated Tab

Besides handling how the AppBrowser will generate event code, two other major
options are available on the screen (shown in Figure 4.14). The first is Visibility of
instance variables; this will set the access level — private, package, protected, and pub-
lic. This means that when an instance variable gets added to the code using one of the
two-way tool designers like the GUI, it will be added using that visibility. The last
option deals with using the Beans.instantiate method. Look at the following two pieces
of code:

JButton jButton2; //Instance variable

jButton2 = (JButton) Beans.instantiate(getClass().getClassLoader(),

JButton.class.getName()); //actual creation of bean

jButton2.setText(“jButton2”); //setting property

This code uses the Beans.instantiate option, so it will create jButton2 using the cur-
rent class loader and loading a serialized instance of the bean. This option is normally
used when an exact copy of a bean is to be created; using a previously serialized ver-
sion of the bean does this. It is recommended that Beans.instantiate should be used
only when the preceding is necessary because of the overhead associated with instan-
tiating a serialized bean.

JButton jButton2 = new JButton(); //Instance variable and creation

JButton2.setText(“jButton1”); //setting property

74 Chapter 4

Figure 4.14 Generated panel — Events, Visibility, and Beans.

This second code example is the standard code that JBuilder would generate. It is
much simpler to read, and the creation of the object occurs when the class gets loaded,
not when it gets initialized.

Imports Tab

The final tab is the Imports tab, which has two subpanels: Thresholds and Sort Order.
The first panel lets the developer set the threshold of the import statements. Keep in
mind that the threshold is the same one that was defined in the previous section on
automatic source packages in this chapter. This means that a valid Java class must
be in the package before it represents a level. Looking at the standard interface if
the option is set to 1, notice that the import for java.math.* is changed to java.math.
BigInteger. This happened because the threshold was exceeded, and thus a fully qual-
ified import was generated. The developer can also set it so that all of the imports are
fully qualified by simply checking the Always import classes option. The second panel
is the Sort Order, which allows the developer to define the sequence of the imports. If
the developer likes javax package to come before java package, this is where he or she
sets these options.

Now that the formatting options are set, how do you use them? Formatting settings
can be used on a package, Java file, block of code, and even just a simple line of code.
To format a package in a project, simply select the project in the Project pane and right-
mouse click (this will display the Context menu and then select the Format Package
menu item). For a Java file, clicking the Edit|Format All menu item will do the trick; if
you want to format a block of code or a single line, select the line and press the Tab key.

Project Properties and Configurations 75

There is some controversy over the Tab key functionality because the AppBrowser
uses the Tab key as a format key instead of a simple Tab key and the F2 key is now the
Tab key. Many developers are not happy with this keyboard configuration issue. This
is easily fixed by using the keymapping features in the AppBrowser (see Section 2,
“JBuilder as a Rapid Application Development Tool”). First click the File|IDE
Options... menu item, then click the Customize button beside the keymap option. Then
scroll to the indent section where Format-code and indent are defined, and switch the
two options. Now the Tab key is a tab and the F2 key is the format; either way, the job
still gets done.

Another formatting quirk to keep in mind is that even though the Imports tab is
located on the Formatting tab, this option is not activated by using the tab (default) for-
matting key. It is actually activated by pressing the Edit|Optimize Imports menu item
or by pressing the Ctrl-I (CUA keymap). If the developer highlights the imports and
presses the Tab key, nothing will happen.

Class Filter
The next tab on the Project Properties dialog is the Class Filters tab, which is responsi-
ble for limiting the classes displayed during certain operations. In Figure 4.15, the Class
Filters panel is a very simple interface. It focuses on two major areas: first, where to fil-
ter, and second, what to filter. The “where” filter is divided into three distinct locations:

■■ Find classes dialog, which is responsible for limiting the classes shown in the
Select Package/Class dialog. This dialog has the same interface as the Class Fil-
ters dialog explained in Chapter 8, “Modifying Classes.”

■■ The second filter option, the Unit test stack trace, which is responsible for limit-
ing the classes displayed when using the built-in unit testing facilities.This
option has already been defined.

■■ The third location,the UML diagram, which is responsible for limiting the
classes displayed by the UML visualization. This ability can be extremely
important and a real time-saver, especially on very large projects or projects
that make use of particular classes throughout a project. An example of this
may be the Swing classes if a lot of GUI code is present. The “what” is just a list
of classes that should be filtered. It should be noted that the class filters are for
all the files located in a project.

Open the Welcome project that ships with JBuilder by clicking the Help|Welcome
project (Sample) menu item. Then right-mouse click the Welcome.jpx located in the
Project pane, and select the Properties... menu item. Click the Class Filter tab; it should
show the Find Classes dialog on the drop-down list box. Click the Add... button to dis-
play the Select Package/Class dialog, and select the java.lang package, as displayed in
Figure 4.16.

76 Chapter 4

Figure 4.15 Class Filters panel, Project Properties.

Click the OK button to return to the Class Filters panel with the java.lang added to
the list. Press the OK button on the dialog, which will return the focus back to the proj-
ect; double-click on the WelcomeFrame.java file located inside the Project pane, then
hit the Ctrl- - (minus) key combination. This will display the Find Classes dialog, so in
the Edit box start typing in the java.lang.String line. Notice that when the input char-
acter gets to the “l”, the display goes blank because the filtering is on all of the lang
package, thus eliminating it from the list. If the java.lang package needs to be viewed,
click the Browse tab at the top of the dialog and drill down into the java.lang package;
all the classes will be displayed.

Figure 4.16 Select Package/Class dialog.

Project Properties and Configurations 77

The Unit testing stack trace option found on the drop-down list in the Class Filters
tab has already been defined, and if the unit testing is being used inside JBuilder, then
this functionality has already been used. The developer can simply add or remove
classes from this dialog using the same technique as described previously and see what
the changes might be. Most developers will not make a change to this area unless they
are focusing on the JUnit framework or they believe that the JUnit framework is
responsible for errors in the testing environment.

The UML diagram item from the drop-down is responsible for decreasing the num-
ber of classes displayed while using the UML Visualization. For more detailed infor-
mation on the UML Visualization and its options, check out Chapter 12 for full details.
Using the same project as described previously, rebuild the project by clicking the Proj-
ect|Rebuild Project “Welcome.jpx” menu item. Then double-click on the Welcome-
Frame.java file located inside the Project pane, and then select the UML tab under the
Content pane. Notice that all the java definitions are displayed in the diagram-making
note of the javax.swing packages. Now, go into the Project Properties dialog, this time
using the Project|Project Properties... menu item that takes the developer to the same
location as using the Context menu. Click on the Class Filters tab, select the UML dia-
log item from the drop-down list box, and press the Add... button. Using the same tech-
nique, you can then select the javax.swing package. Click the OK button to finish the
dialog, and then press the OK button on the Project Properties dialog. To see the
changes, the developer can rebuild the project following the same steps, then click the
UML tab again to see the changes.

In Figure 4.17, the javax.swing packages are no longer displayed, which is a huge
time-saver. Using the filter processes reduces the amount of time to display available
classes, as it eliminates classes that may be considered redundant. Something like the
java.lang package may be considered by some developers as too basic, with no need to
display it. Using the filtering on the stack traces when unit testing can really save time
by not having to review all the things that the JUnit framework is loading and unload-
ing, when generally it has nothing to do with the actual problem in the code. The same
can be said for the UML filter; sometimes when really large projects are being dis-
played, seeing all the packages can be overwhelming and take away the conceptual
effect of what the diagram is trying to convey. Simply eliminating some of the classes
being displayed may help the developer grasp the overall structure more quickly.

Server Panel
The Server panel is responsible for defining what Application Server JBuilder will
work with. There are many options on this panel (see Figure 4.18), and each can affect
how and what JBuilder generates as far as server code is considered. For a full expla-
nation of the options and features of this dialog, go to Chapter 15.

78 Chapter 4

Figure 4.17 UML Visualization with filtered javax.swing package.

Figure 4.18 Server panel, Project Properties.

Project Properties and Configurations 79

Default Project Properties
With all of the project properties that can be set, it would be nice if JBuilder gave the
option to save a set of properties that represented the normal set that a developer
would want to use most of the time — a base set, in other words. That is where Default
Project Properties comes in. Click the Project|Default Project Properties... menu item
to use the same interface defined throughout this chapter and set up a default. That
way, anytime a new project is created, the project would inherit the default settings.
Then the developer has to be concerned only about the specific properties dealing with
that project, which really simplifies the work of setting up a new project. When all the
properties are set, click the OK button, and the default will be saved.

Project Pane Interface
The Project pane itself is a very diverse interface; it has the ability to accomplish all
kinds of tasks dealing with a project. Most of the features can be found on the Context
menu, which was described as it pertained to the Node and Project properties inter-
face. Keep in mind, though, that much more is possible with the Context menu.

Another great feature of the Project pane is the quick search. This helps you find files
quickly in the Project pane. Click anywhere inside the Project pane, and then start typ-
ing a word of a file located inside the project; the focus will automatically change as
more of the word is typed.

Context Menu
One of the interesting things about the Context menu is that its features and capabili-
ties are dictated by the “context,” location, or the selection of the items inside a Project
pane. Most of the time the Context pane will deal with the general features of a project
like adding files and packages, removing files and packages, opening files in a new
AppBrowser, and closing a project. It can also deal with Build or Run subsystems. If a
.java node is selected, most likely it can be built, compiled, cleaned, run, debugged,
and tested. Most files can be deleted, renamed, or even removed from the project defi-
nition. When the file is deleted, it is gone; when it is removed, it is removed from the
project file list.

Additional features — like exposing Web Services or source code management
(SCM) — may be made available through the Context menu. Again, most of the fea-
tures located on the Context menu are available elsewhere in the AppBrowser envi-
ronment; it is mostly a convenience to the developer to organize and categorize the
features in one location.

Project Pane Toolbar
Above the Project pane is a toolbar, and the icons on it are responsible for closing a
project, adding files or packages, removing files or packages, refreshing the Project
pane’s display, and choosing the project interface.

80 Chapter 4

Figure 4.19 Add Files or Packages to project.

Often developers want to add files or packages to a project. One of the quickest
ways to do this is to click the Add files/packages icon (second from the left) on the
Project pane toolbar (see Figure 4.19).

The interface is divided into three tabs:

Explorer tab. Allows for general hunt functions pertaining to a specific file.

Packages tab. Looks like the Browser interface on the Class Filters interface.

Classes tab. Add specific classes.

Once the file, package, or class has been found, select it, and hit the OK button to
continue. The interface also has a Favorites section along the left-hand side; you can
add to this list by right-mouse clicking inside it and selecting the Add Favorite menu
option. Whatever file, package, or class is selected will be added to the area, which can
be managed by using the Manage Favorites menu item by right-mouse clicking inside
the area. This makes it very convenient to go to a particular location for files.

For removing files, select a file and hit the Remove from Project icon (third from the
left). A confirmation dialog will be displayed to confirm a removal. Once the process
has been approved, the file will be removed from the project file list. If the developer
wants to delete or permanently erase a file from the file system, use the Delete opera-
tion found on either the Context menu or the File menu.

The Refresh icon (fourth from the left) will update the Project pane. This button is
extremely important when using the Automatic Source packages options covered at
the beginning of this chapter.

Advanced Features
The Project pane includes advanced features to make JBuilder project management a
breeze: organization folders, specialized pointer directories, and build filters, just to
name a few of the features that can save time.

Project Properties and Configurations 81

The first advanced feature is the Folders option, available on the Context menu
inside a project. Folders are meant to help organize code visually inside a project, even
though they have nothing to do with the files or their locations. They can be nested for
better organization.

To create a folder, right-mouse click in the Project pane and select the New Folder
menu item, name the Folder, and press the OK button; a Folder node will be added to
the Project pane. Next, select the Folder; at this point a nesting operation can be done,
or files and packages can be added. If a nested folder is wanted, simply add New
Folder, name it, and press the OK button. If files and packages are to be added, click the
Add files/packages menu item, select the files to be added to the Folder, and press OK.
Notice that when a file is moved to a folder, it is removed from the general project files
and placed inside the folder — hence, the organization features. This used to be a large
feature inside JBuilder, but because the package handling has been improved so much
over the years, this feature is not as important. It is used a lot of times on very large
projects where certain developers may be responsible for specific packages or files and
folders can be organized to reflect work responsibilities.

The Directories view option is a newer feature that allows JBuilder to point to a
directory that may contain specific files important to a particular project. As a devel-
oper, you always have a set of files with code developed over the years that you are
particularly proud of and use all the time. Some developers create a directory where
they keep these files; now, with the Directories view feature, simply create a New
Directory view menu item from the Context menu, and choose the directory to be
added to the project. When the OK button is hit, the directory will be listed; open it,
and all the files located in that directory can be seen by simply double-clicking on a file
and copying or reviewing its contents.

One of the newer features to be added to JBuilder is the concept of build filters. These
options are available on all packages located in the Project pane. Currently four options
are available. The first is the Exclude packages and subpackages option, which will
completely remove all the files from the build process. The opposite is the Include pack-
ages and subpackages option, which will add all the buildable files back into the build
process. The other two options, Exclude package and Include package, are part of the
interactions with the Automatic source package. Click on a package, and the developer
can either Exclude it from the build package or Include it in the build package.

Note that all files are marked as build enabled by default. If the Automatic source
package is being used, this can be managed in a generic sense; these additional menu
options give finite control over the process.

82 Chapter 4

Summary

This chapter has covered a lot of material pertaining specifically to projects in JBuilder.
As JBuilder continues to evolve and mature, the project properties will most likely
evolve with it. This growth will most likely be seen in the areas of project groups, build
tasks, increased ANT integration, VCS control, and server support, just to name a few.
As the Java platform and underlying language continue to evolve, so will the properties
needed to support them. An example of this pertains to server properties for AppServer,
which were not even on the radar when JBuilder 4 was being created. Yet, by JBuilder 6,
they started to be added, and they have been increasing with each release of JBuilder
ever since. The end result of having an extensible tool like JBuilder is that it can morph
right along with the technology because it is made up of the same technology.

Project Properties and Configurations 83

85

Early Java developers relied on C++ sniffer programs that would interrogate the JVM
and report back the results through some type of proprietary brokering technique. With
the introduction of JDK 1.2.2 that all changed — the base Java language finally included
the needed architecture and hooks to enable a whole new world of debugging.

Java Platform Debugger Architecture (JDPA) (see Figure 5.1) allows for all Java pro-
grams based on JDK 1.2.2 or higher to be debugged. The architecture is made up of
three different parts, each part representing a logical separation between the need for
information and how to return that information to an interface that can relate back to a
human interface. The first of the three parts is JDI (Java Debug Interface), which is the
actual programming interface used by JBuilder and other debugging tools. The JDWP
(Java Debug Wire Protocol), like any wire protocol, defines the structure of the mes-
sages being passed between the program being debugged and the human interface
being used to interpret the results. Then finally, you have the JVMDI (Java Virtual
Machine Debug Interface), which defines a native interface to the Java virtual machine.
These three pieces fit together to give a comprehensive solution to debugging that
includes single-process, multiprocess, and, of course, remote debugging.

JBuilder employs the tools and interfaces supplied by the Java platform to ensure
that the debugging interface is exposed in the most productive way possible. The
JBuilder product has extensive visualization and information presentation during the
debugging process, and we believe that one of the best parts about the debugger is that
it is natural. This is important because to use any tool effectively you must feel that it
is a natural extension of the task at hand. This task may be debugging a very simple
single-process program or the most complex multitier program that calls JSPs, EJBs,
CORBA servers, and even JNI processes, all in one consistent logical presentation.

Debugging with JBuilder

C H A P T E R

5

Figure 5.1 JPDA architecture.

What can you expect to understand after reading and using the examples in this
chapter? Well, first are the basics of using the debugger — including start, pause, and
break and how the interface relates this information back to you. This is followed by
discussions of control, watches, inspections, properties, and even cut/copy/paste
operations and multiprocess sessions in a debug session. We conclude our discussion
with advanced topics like threading, deadlocks, and remote debugging. This chapter
will also make use of a single project with many different examples to highlight
JBuilder’s debugging capabilities.

Debugging Basics

One of the first things you need to understand about the JBuilder debugger is its inter-
face. JBuilder adds more insight into the program with the debug window. This window
is located during debugging in the Message pane location, and the pane is divided into
logical parts depending on the function or operation you are trying to complete.

The first program to get started with the debugger will be SimpleDebug; it will
show the very basics. Create a new Project using the File|New Projects menu item, and
call the project TheDebugger. Then add a new class using the File|New Class menu
item, and make the package state com.wiley.mastering.jbuilder.debugexamples and
the class name equal SimpleDebug. Remember to click the Generate Main method
and then click the OK button to finish. For an example of the New Class dialog, see
Figure 5.11 later in this chapter.

package com.wiley.mastering.jbuilder.debugexamples;

/**

Java D
ebug Interface

JD
I

MESSAGES

Java D
ebug W

ire Protocol
JD

W
P

Java Virtual M
achine D

ebug Interface
JVM

D
I

Java Virtual M
achine

JVM

MESSAGES

Command-line
interface

JBuilder
IDE

86 Chapter 5

* <p>Title: Debug Examples</p>

* <p>Description: This will be used for the Debugging Chapter</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael J. Rozlog

* @version 1.0

*/

public class SimpleDebug {

public SimpleDebug() {

}

public static void main(String[] args) {

SimpleDebug simpleDebug = new SimpleDebug();

System.out.println(“Welcome to JBuilder Debugging!”);

}

}

Once the OK button was pressed, JBuilder should have generated a skeleton pro-
gram to add the two lines inside the main method, as shown in the preceding code.
Once the program is completed, save and rebuild the project.

It is now time to review the build properties for the project; this can be accomplished
by right-mouse clicking on the The Debugger.jpx file in the Project pane. Then select
the Build tab, as shown in Figure 5.2.

You should note a few things in Figure 5.2. First, the compiler being used is respon-
sible for compiling each file located in the project. Moreover, if this value is changed
midstream throughout the project, then certain files could be missed or recompiled
without the developer’s knowledge. Please review Chapter 10, “Using Build Systems,”
for full details on the idiosyncrasies of this option. If files are missed during the com-
pile process, either no or old debug information may be present during the debug
process. The second option is the most important as it pertains to the debug process;
the Debug options include four options:

■■ Source, line, and variable information

■■ Source and line information only

■■ Source information only

■■ None

Source, line, and variable information is the most complete debugging option. It can
be set, and the information will be held inside the .class file. Source and line informa-
tion gives only limited exposure to what is happening inside a class. Giving any infor-
mation to the debugger is the Source only, and it will include just basic information
about the code itself. The None option is just that; it does not generate any additional
information in the .class file.

Debugging with JBuilder 87

Figure 5.2 Project Properties, Build/Java for debugging.

Notice in Figure 5.3 that almost everything about the class is found in the file. In Fig-
ure 5.3 the empty boxes represent special characters that normally would not be dis-
played. The sixth line of the display is where things start to get interesting — that line
defines all of the tables used for the debugging information and finishes with the name
of the source file.

In Figure 5.4, no extra code is included — not even the “this” object is loaded into
the file. Also, notice the size of the file compared to the SimpleDebug.class with ALL
debug information included. This is a very small class, and it could make a significant
difference if the class was exceptionally large.

Figure 5.3 SimpleDebug.class with full debug Information.

88 Chapter 5

Figure 5.4 SimpleDebug.class with no debug Information.

TI P For the fastest execution and smallest .class files, compile the final pass
with Debug options set to None.

For certain features it makes a difference what Target VM is used. If any advanced
features like the Smart Swap feature were going to be used, they would have to be set
to Java 2 SDK, 1.4 or later. The final option to be aware of on this page is the Obfuscate,
which will “cloud” the information in the .class file by renaming variables and meth-
ods (name mangling) to make it harder to be decompiled.

NOTE Using JBuilder’s Obfuscate is no guarantee that individuals will not be
able to decompile the code that has been obfuscated. For better protection, use
a commercial Obfuscator.

The developer should understand that setting the debug options lower than the
source, line, and variable can significantly reduce the ability to see what is going on
during a debug session (more on this a little later in the chapter). It is also a reminder
that, if either the Debug options or Obfuscator is adjusted, a Save All and a Rebuild
must occur before any changes in the .class files will occur.

Line Breakpoints
Now it is time to set a simple line breakpoint in the program. This can be accomplished
in a number of ways:

■■ Place the cursor on the line where the breakpoint should be set, then click the
F5 key.

■■ Right-mouse click on the line, and select the Toggle breakpoint menu item.

■■ Click once in the light gray area called the gutter along the left margin of the
Content pane.

Debugging with JBuilder 89

Keep in mind that other types of breakpoints exist in JBuilder; they are covered
throughout the chapter. Set a breakpoint on the System.out.println (“Welcome to
JBuilder Debugging!”) line. Try all the ways listed previously to toggle the breakpoint.
If you have not changed the underlying editor configuration, you should see the line
become highlighted with a red hue, and a red circle should be located in the gutter.
Simply repeating the set operation can toggle off the breakpoint; the same is true for
turning it back on again.

By this point in the book, you have probably noticed that JBuilder can accomplish
the same task or tasks in many ways. This is true for how to start a debugging session
in JBuilder as well. First you must understand that JBuilder has the ability to debug a
single file in a project, a whole project, or multiple projects. Once your breakpoint is
set, you can start debugging the project by the following ways:

■■ Right-mouse click on the SimpleDebug.Java file in the Project pane, and select
the Debug using defaults menu item.

■■ Define a Runtime configuration for debugging; remember to define the main
class. For more information on creating a Runtime configuration, review
Chapter 4, “Project Properties and Configurations.”

Once a Runtime configuration has been defined, the following ways are possible to
start a debug session:

■■ Click the Debug icon on the Main toolbar, or use the drop-down listbox to
select the appropriate configuration.

■■ Click the Run|Debug Project menu item on the Main menu.

■■ Hold down and press the Shift-F9 keys to activate the debugger on the default
debug configuration.

All these techniques will actually start a debugging session. You will notice that the
Message pane area that is at the bottom of the screen is replaced with the look shown
in Figure 5.5.

The debugging window is a very dynamic interface. The window helps to represent
the concept of debug sessions and Debug views. The debug session, which the inter-
face supports as a tab at the bottom of the pane, is shown in Figure 5.5. The concept of
a session also extends itself to support multiprocess and distributed debugging in one
consistent interface just with multiple tabs. Notice the options included on the Java
command line of the debug session:

-Xdebug. Enables debugging support in the VM; it is a required parameter.

-Xnoagent. Disables support for the oldjdb communications; it is required on
Classic VM.

-Djava.compiler=None. Disables the JIT compiler; it is a required parameter on
Classic VM.

-Xrunjdwp:transport=dt_socket,address=Yoda:4619,susupend=y. Loads debug
libraries, form of communication and address; it is a required parameter.

90 Chapter 5

Figure 5.5 Debugging session.

Debug Toolbar
The toolbar icons in Figure 5.6 give you the power to take control of the debug session
and are divided into five distinct groups.

Main Group

Three buttons control the debugger:

■■ Stop debug session

■■ Resume debug session

■■ Pause debug session

The first group includes the red box that allows you to stop the execution and reset
the program. The green arrow allows you to start another session or to continue a
paused session. Because we mentioned a paused session, you can press the double ver-
tical lines to do just that — pause the execution of a program. The following are the
hot-keys associated with the main group:

F9. Allows the developer to start or resume a debug session.

Ctrl-F12. Allows the developer to stop or reset the program during a debug session.

Debugging with JBuilder 91

These hot-keys will be used often when debugging large and complex threading
programs. If a program seems to hang or if a breakpoint cannot be determined by
pressing the Pause button or if the Pause button is pressed, the current executing is
loaded. The class does not have to be part of the project and is most likely going to be
a class that is located somewhere inside the classpath, which is usually some obscure
class deep in the Java language. If the loaded class is unknown, clicking the Reset pro-
gram will stop the debug session and return control back to JBuilder.

Control Group

This group of four buttons controls how the debugger will move throughout the debug
process:

■■ Toggle Smart Step

■■ Step Over

■■ Step Into

■■ Step Out

The next section of icons, called the control group, goes from the right in Figure 5.6.
It includes the execution stepping tasks. The Toggle Smart Step is essential on large
projects because it allows you to control what classes you are going to step into or skip
during the debug process. This is covered in depth later in the chapter. The next icon is
the Step Over task; it is the most common debug task because it simply executes the
line it is on. Keep in mind that it does not matter if the line is calling a method or is just
an assignment statement; the Step Over task will do just that — it will not trace into a
method. The next icon is the Step Into task, which does allow you to Step Into a
method. The hot-keys for the methods of the group are as follows:

F8. Allows a Step Over operation to occur.

F7. Allows a Step Into operation to occur.

Then finally is the Step Out icon, which allows you to revert to the calling method
from which you step into. This is really handy, especially when you step into a method
that is going to iterate 5 million times, walk through the iteration once, see the infor-
mation you came to see, and then press the Step Out icon, and you are back to the
method that called it.

Code Modification Group

This group of two buttons is responsible for controlling modification to the code dur-
ing a debug session:

■■ Smart Swap

■■ Set Execution Point

92 Chapter 5

Code Type Group

This one button allows for the defining of the source code to be viewed when debug-
ging a mixed-language environment like Java and JSPs:

■■ Smart Source

Both the Code Modification and Code Type groups are covered in the next section of
the chapter. These items all have to do with the ability for JDK 1.4.1 and above to mod-
ify code while in the debugging process without having to start, recompile, and re-
debug; more on this follows later in this chapter.

Information Group

This group of three buttons is about setting stops in the code, reviewing information,
and going to the current active thread location.

■■ Add Breakpoints

■■ Add Watch

■■ Show Current Frame

The Information group is the final set of icons in the Debug session toolbar shown in
Figure 5.6. Going from the right, it includes the Add Breakpoint icon, which has a
drop-down button, and it allows you to set all the available breakpoints. The next icon
is the Add Watch task, which allows you to name your watch and give it a complete
description. This helps when you have a lot of watches, and with some of the coding
standards today, you may need a description to figure out where you are. The last icon
represents the Show Current Frame option; it simply means to take the developer to
the currently running thread of execution, which is the current frame.

TI P The fastest way to see all of the program variables and threads is to press
the Show Current Frame icon.

Debug Views
The second concept presents Debug views; this is where the debugging window
changes, depending on the view enabled by the right-side vertical icons, as defined in
Figure 5.7.

Figure 5.6 Debug toolbar.

Debugging with JBuilder 93

Figure 5.7 Debug views.

The Debug views give in-depth information during a debugging session. In Figure
5.7, each icon represents a view that you can activate at any time by clicking on it.
When the developer is running the first debug session, he or she will not notice the
gold/yellow lock. The program is being debugged with the Hotspot compiler, and it
does not provide the synchronization information back to the JDI. This is explained in
detail later in this chapter.

During the first debugging session of the SimpleDebug.java program, there is not
much to show because the program does not really do anything. It would be good to
note that in Figure 5.8 the debugger starts in the Console view and prints out the Java
command line.

TI P The Java command line found in the Message pane or the Debug pane
can be used on a command line or inside a command script.

Loaded Classes and Static Data View
This is one of the Debug views available; it shows all the classes that have been loaded
in the current frame. Clicking on the Debug view tab for Loaded classes will show all
the packages that have been loaded, and a tree expander is beside each package. This
lets the developer drill down into each package to see exactly what classes have been
loaded. Using this SimpleDebug program, you will notice that one available package
is the com; it can be drilled into our class, and then our class can be expanded, which
shows Object, thus giving an object hierarchy. It is also possible to set watches and
copy values in this interface. If a data item is of interest, simply right-mouse click to
display the Context menu for the options available on the particular objects.

Current Frame
Now click on the Show Current Frame icon on the Debug toolbar. This will change the
current view to show all available threads, but, more importantly, it will show the main
thread and all object values for the current scope. Figure 5.8 shows exactly what is
happening with the program.

Console View; allows for interaction between System.in. and System.out.

Debug views

Thread View; allows for thread viewing a manipulation

Synchronization monitors; allows to inspect thread synchronizations

Watch View; allows for convenient viewing of all watch items

Loaded classes and static data; allows for viewing loaded classes and data

Breakpoint view; allows for viewing and setting breakpoint properties

Disable trace classes; allows to turn-on/turn-off tracing into Java classes

94 Chapter 5

Figure 5.8 Current frame.

If you review the program SimpleDebug.java, you will notice that it extends java.
langObject (inherently defined by default), it has a static void main(String args) line, it
creates itself, and finally it prints out a single line to the console.

If you look at the view provided by the thread icon, you will notice that it has a main
thread, which is seen on the left. On the right, we notice that we have two items located
inside the view: One item represents the args variable, which is a string array, and the other
is the SimpleDebug object. If you click on the tree expander in view, it will disappear
because it has no arguments. If you click the table extender on the SimpleDebug object, it
will show you the actual class inside it, which has a tree expander. If you extend it, this will
show you java.lang.Object, which is the base for all objects. Even with this simple program
you can get a lot of information about how it is constructed and what is going on inside it.

The next thing to do is to continue execution of the program. This can be done by
clicking the green arrow or by pressing the F9 key. Again, either way will cause the pro-
gram to execute to the end — we have not set any other breakpoints, and the program
needs no interaction from us, so it just finishes up. You will also notice that all of the
Debug views disappear except for the Console view, which is displayed at the top of
the Debug view. You will notice that because it completed, the System.out line has been
executed and “Welcome to JBuilder!” is displayed.

NOTE The Console view tab icon changes as messages are written to the
console. Green means that messages have been written to the console, red
means that errors/exceptions have been written to the console, and Black
means that nothing is being written to the console.

Debugging with JBuilder 95

Inside the Debug or Message panes, a few options can be set. The first is Clear All,
which will remove all text located inside the view. The Copy All option will copy
everything inside the pane and put its contents onto the system clipboard (keep in
mind that certain sections of the pane can be highlighted and copied using the Ctrl-C
hot-key combination). The final feature of the pane is to set Word Wrap; this will refor-
mat the pane with wrapping text. Other things to remember about the tabs include the
ability to hide or remove the debug window. This can be done by clicking the Hide
Message Pane icon on the Main toolbar or right-mouse clicking on the Debug session
tab. This will show a set of options: remove Message view, clear Message view, remove
all tabs, hide Message view, copy content. If you click either remove items it will ask
you to terminate the debug process. In this case, we only want to hide the Debug view,
so click that option and it will disappear. Clicking the icon in the lower left-hand cor-
ner of the pane will float the Message/Debug pane; for more information please
review Chapter 2, “Customizing the App/Browser.”

Congratulations! Your first successful debug session is now complete. Before mov-
ing on, try setting and unsetting breakpoints and starting and stopping the debug
process using all of the techniques discussed in this section. If you want to start the ses-
sion over, you can again click the green arrow or press Shift-F9.

Understanding DebugShow
The next example should give you more confidence when it comes to understanding
the interface that is included with JBuilder for debugging. After completing this exam-
ple, developers should feel very comfortable about the debug interface. The program
DebugShow was developed to show most of the basic features of the JBuilder debug-
ger. This program was originally written with the first cut of Primetime, and it was
used at JavaOne™ in 1999.

Using the TheDebugger project defined in the last example, a new class needs to be
added. Clicking the File|New Class menu item can do this. In the New Class dialog,
the package name should read:

package com.wiley.mastering.jbuilder.debugexamples

The Class name should be DebugShow, and the Generate main method option should
have been set and that the base class is still Java.lang.Object. When this is completed,
click the OK button. The wizard will generate the skeleton program in Source 5.1.

package com.wiley.mastering.jbuilder.debugexamples;

/**

* <p>Title: Debug Examples</p>

* <p>Description: This will be used for the Debugging Chapter</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael J. Rozlog

Source 5.1 DebugShow.java.

96 Chapter 5

* @version 1.0

*/

import java.awt.*;

public class DebugShow {

private String aName;

private String aLastName;

public int starter = 1;

protected boolean maybe = false;

public transient static int nonKeeper = 0;

public volatile int reallybad = 0;

public String[] array = new String[10];

java.util.Vector vector = new java.util.Vector(10);

public DebugShow() {

}

public static void main(String[] args) {

int i;

DebugShow debugShow1 = new DebugShow();

for (i = 0;i < 10; i++){

debugShow1.array[i] = “Mike “ + i;

}

for (i = 0; i < 10; i++){

debugShow1.vector.add(debugShow1.array);

}

debugShow1.setAName(“Michael”);

System.out.println(debugShow1.getAName());

debugShow1.setALastName(“Rozlog”);

System.out.println(debugShow1.getALastName());

debugShow1.starter = 1;

debugShow1.maybe = true;

System.out.println(debugShow1.toString());

System.out.println(“Thomas”);

try {

System.out.println(“Please hit return, to Exit program”);

System.in.read();

} catch (Exception e){

System.err.println(e.toString());

}

System.out.println(“Program Finished”);

System.exit(0);

}

public void setAName(String newAName) {

aName = newAName;

Source 5.1 (continued)

Debugging with JBuilder 97

nonKeeper++;

System.out.println(“Nonkeeper is “ + nonKeeper);

}

public String getAName() {

return aName;

}

public void setALastName(String newALastName) {

aLastName = newALastName;

}

public String getALastName() {

return aLastName;

}

}

Source 5.1 (continued)

Using the code defined in Source 5.1, modify the skeleton program that was gener-
ated to look like it for the following example. Once these modifications have been com-
pleted, take a look at the code, and notice that the instance variable section at the top of
the code defines a couple of different types of variables and objects. Some of these
objects are static or transient, an array and a vector have been defined, and a couple of
properties have been created. For more information on properties, review Chapter 8,
“Modifying Classes.” The first time through this program, set the breakpoint on the
first statement of the main method (line 27 if line numbers are being used), which is
represented by the following statement:

int i;

Right-mouse click on the DebugShow.java file located in the Project pane and pro-
ceed with the debug. Notice that the program does not stop and that in the Debug pane
the program is asking Press Return to Exit the program. Looking at the Debug pane,
notice that the line that had the breakpoint set is now green and that the red circle in
the gutter area has an “x” through it. Line breakpoints can be set only on executing
lines of code, meaning the comments and declarations will not stop the debugger —
because the line above is a declaration, it is marked as an invalid line. The debugger
uses this visual queue: Each valid line that could have a breakpoint set has a blue dot
in the gray gutter on the left-hand side of the Content pane. Clicking once in the Debug
pane and pressing the Return key will cause the program to print the final message
and return control to the editor.

The second time through the program, set a line breakpoint on the next line:

DebugShow debugShow1 = new DebugShow();

98 Chapter 5

Restart the debugger on the DebugShow.java file; this time the debugger will stop.
Then click the Show Current Frame icon on the Debug pane toolbar. Notice in the Data
view (the left side) at this time that the only thing defined is the args variable found
inside the main method. Stepping over the line using the F8 key will cause the current
frame to change. The execution point should be on the next line, and DebugShow1
should be under the args Data view. Expanding the table expander will show all the
fields defined during the creation of the DebugShow1 object. At this time, reset the exe-
cution of the program by hitting the Ctrl-F12 key combination.

This time restart the debugger on the DebugShow.Java file, instead of stepping over
the object creation, Step Into the statement. This can be accomplished by pressing the
F7 key; the first time the key is pressed, notice that the execution of the program goes
to the default constructor. Also notice that the Data view is now showing only ‘this’;
when the ‘this’ is expanded, it represents the items available to the ‘this’ object when
programming. It is also important to realize that even though the debugger is display-
ing all the instance variables, they are not yet assigned. The debug info included in the
.class file has the variable table included. Hitting F7 again will move the execution
point to the first int called starter, and hitting the F7 again will assign the int associated
with starter to a number 1. Hitting the F7 key again will set the maybe variable to
‘false,’ and this will be displayed in the Data view. Now, right-mouse click in the Data
view on the maybe variable, and select the Change value menu item (see Figure 5.9).

When the Change Value dialog is displayed, it gives a good amount of information.
First, it gives the type of expression being viewed; in this case it is of type Boolean. It
also gives its current value, which is currently set to ‘false’. Change the value to ‘true’
without the single quotes. When changing the value, the print inside the edit area will
not be bold, but once the value is a valid type such as ‘true’, the font will become bold.
The Change Value dialog works with almost any type; however, it follows the same
rules as the type defines. Once complete, press the OK button to continue. An example
of this would be a variable that was represented by type char, whose value would have
to include the single quotes around it like ‘C’. If the variable was of type String, it
would need double quotes surrounding it, like “Hello World”.

WARN I NG Trying to change a value inside the Change Value dialog can be
very frustrating if you forget to use the Java language code rules for values. For
example, string values must be in double quotes “ “, and characters must be in
single-quotes ‘ ‘. If a value is entered into the dialog that does not adhere to
the proper syntax, JBuilder will not accept the value.

The value for the maybe variable should not be changed to ‘true’ and the execution
point is now setting on the reallybad variable. It appears that the line above reallybad
was skipped, or so it seems — it was created when the object was created because it is
a static variable, and statics are the first to be created when an object is created. This can
be viewed by expanding the item under the ‘this’ object for DebugShow; notice that
nonKeeper is on the same level as the java.lang.Object item. Pressing the F7 key three
more times will finish the assignment statements and return the execution point to the
closing bracket of the default constructor.

Debugging with JBuilder 99

Figure 5.9 Change Value dialog.

Figure 5.10 shows all the things that have been discussed; it also shows the execu-
tion point as the closing bracket of the default constructor. Anytime during a debug-
ging session the execution point becomes unknown, using the Run|Show Execution
Point menu item will do the trick. A blinking cursor should be in the first column of the
line where the program is stopped. Hitting the F7 key again will then return the exe-
cution point to where this whole exercise started on the DebugShow creation line. F7
must be pressed again to move to the next statement because the debugger has stepped
through the underlying methods. After following these steps, the result is the same as
the second time debugging the program with the execution ready to start the for-loop
(more on that follows later in the chapter). Pressing Ctrl-F12 will reset the program to
be debugged again.

Figure 5.10 Debugging using the Step Into method.

100 Chapter 5

It is possible for the debugger to either eliminate or add classes to debug into; this
can be accomplished by clicking the Run|View Classes with Tracing Disabled menu
item or the Classes with Tracing disabled tab.

In Figure 5.11 the java.* line is selected, and the option to Step into Class/Package
has been enabled. Once this is complete, restart the debugging process as before on the
DebugShow.Java file. This time, pressing F7 twice will load an additional file Object;
this example shows a greater depth than the prior example of how objects are created
and the steps that need to be performed to get work done. Hitting F7 again will exit
from the Object class and put the execution point back to the int starter line; press the
F8 key until the execution point is located on the Vector line.

java.util.Vector vector = new java.util.Vector(10);

The next couple steps will outline the process of creating a simple Vector with an
initial size of 10. These steps will highlight just how many things have to occur to com-
plete this process. Hit the F7 key the first time, and notice that the ClassLoader class is
loaded. Hit the F8 key to step over the current line; this will take the execution to the
security method for the objects being created. Then hit the Step Out icon on the debug
session toolbar, which is the seventh icon from the left. This can also be accomplished
by clicking the Run|Stop Out menu item. This will return the execution point back to
the DebugShow’s Vector line. At this time, the Smart Step option should be turned on
to eliminate extra stepping in classes that most likely does not need to occur. The addi-
tional stepping that can be eliminated includes Constructors and Symbolic methods,
and the Smart Step will remain on until it is clicked again or the debug session is com-
pleted. The only way to turn the Smart Stepping on or off is to click the fourth icon
from the left on the Debug session toolbar, then hold the mouse pointer over the icon
to display its current status. Now hit F7 again; this time the Vector class is finally
loaded, and at this point the developer can either continue stepping through the code
or again press the Step Out icon to return to the Vector line in DebugShow. The Step
Out icon allows the developer to finish the execution of the current process and return
the execution point back to the calling process. Hitting F7 once more will actually step
past the Vector creation line, and the execution point should now be at the end of the
default constructor. Hitting the Ctrl-F12 key combination will reset the program to be
debugged again.

The first thing to reset is the Class/Package Trace settings. Using the same technique
described previously, deselect the Step into Class/Package on the java.* line, as shown
in Figure 5.11. This will eliminate going into objects like ClassLoader, Object, and Vec-
tor, have a lot of step in the debugging process, and allow for the focus to be on the
code created by the developer.

Leaving the breakpoint in the same location as the previous examples, start the
debugging process on the DebugShow.java file. Once the execution has been stopped
on the DebugShow line, set the cursor to the second start of the second for-loop, then
click the Run|Run to Cursor menu item. This will continue the execution past the first
for-loop process. Now press the View Current Frame icon on the Debug session tool-
bar. Because the first for-loop focused on filling the array, look at the array in the Data
view portion of the debug window.

Debugging with JBuilder 101

Figure 5.11 Classes with Tracing Disabled dialog.

Expand the array; it will show values of “Mike 0” through “Mike 9”, each with its
own expansion icon. In the Data view, all data items can have their values changed.
Using the same technique as before, right-mouse click on the “Mike 3” array item, and
select the Change Value menu item. This will display a dialog like the one shown in
Figure 5.9. Following the rules for a String, make it look like “Mike 99” and then press
the OK button to continue. The value will now be set to the changed value. The next
process to highlight is the ability to copy and paste inside an array or vector. Select the
“Mike 0” array item, then right-mouse click and select the Copy menu item. Then click
on the “Mike 9” array item, and again right-mouse click and click the Paste menu item.
This operation should have copied the value so that both the first and the last array
locations show “Mike 0” for values.

WARN I NG Remember to be very careful when using the Cut, Copy, and
Paste features; changing values and locations can be very problematic.

It is also possible at this time to Create Array Component Watch simply by selecting
one of the array items and right-mouse clicking the item and selecting that menu item.
When creating watches of any type, JBuilder will always ask for a name in a popup
dialog.

A meaningful name to use for this type of watch would be something like Array X,
with X as the value selected to watch. Once a watch has been named and OK has been
pressed, it will be added to the watch list. This list can be viewed anytime by changing
the Debug view by clicking the appropriate tab along the left side of the screen. Refer
to Figure 5.7 for details on what each tab represents. For this example, the tab with the
Glasses icon should be chosen. From the Watch view, any listed watches can be
changed following the same procedures as outlined here. Returning to the Data view
is as easy as clicking the Show Current Frame icon again.

Advanced Breakpoints
One of the really nice features of breakpoints is the ability to set them on properties.
Looking at Figure 5.10, notice that two variables are listed, aLastName and aName,

102 Chapter 5

and both have black icons beside them, which represent properties. Setting a break-
point on the aName property is very simple. Select the item in the Data view, then
right-mouse click and select the Create field watch menu item. Now the JBuilder
debugger gives finer control over the breakpoint than just setting it on the property.
Change to the Breakpoint view by clicking the Breakpoint tab along the left-hand side
of the Debug pane; this will show a list of all set breakpoints. Use Figure 5.7 for a ref-
erence on tab functionality.

Once in the Breakpoint view, the property breakpoint can be selected. Then right-
mouse clicking on the item will display the Context menu. Notice that in Figure 5.12
the ability to set the Break on Read or Break on Write option is available. For this exam-
ple, remove the check beside the Break on Read because the program should stop
when the properties setter is being called. For more information on properties, review
Chapter 8.

At this point, setting additional breakpoints of different types can be accomplished.
First, notice in Figure 5.12 that two additional breakpoints have been defined. The first
is always defined, which is to stop on all uncaught exceptions; the second one is the
breakpoint that was set at the beginning of the examples showing DebugShow. The
next breakpoint to define is the Method breakpoint; this can be accomplished by click-
ing the Add Breakpoint icon on the Debug session toolbar. It is the eleventh icon from
the left and has a drop-down selection associated with it. Select the Add Method Break-
point menu item.

Figure 5.12 Breakpoint viewer.

Debugging with JBuilder 103

Figure 5.13 Add Method Breakpoint dialog.

In Figure 5.13, the dialog needs some information to be completed. The first piece of
needed information is the Class name, which in this case should be the DebugShow
class, which can be found using the ... button and the class finder interface. Once the
class has been defined, clicking the ... button on the Method name will display all avail-
able methods for that class. If any arguments are needed for the method, they must be
defined or JBuilder will ignore the entry. Once these have been completed, clicking the
OK button to continue will return you to the Breakpoint view.

Adding a class breakpoint is just as simple. Click the Add Breakpoint icon again,
and click the Add Class Breakpoint menu item, using Figure 5.13 for reference. The
only difference between breakpoint dialogs is the limited information they need to
break on. For method, it needs class, method, and parameters; for object, it needs class
name.

For this example, setting the class name to something that normally would not be set
will highlight the power of this type of breakpoint. Using the ... button to find the
java.lang.String class will be fine; when execution is resumed, it will highlight just how
many times the String class gets called in a normal operation. When this is complete,
click the OK button to return to the Breakpoint view.

Pay attention to a couple things about the Breakpoint view interface. At any time the
developer has complete control over the breakpoints defined, they can be deleted or
disabled, and using the Context menu inside the Breakpoint view will allow global
operation for doing those things. Also property, class, and method breakpoint proper-
ties can be changed midstream, meaning that the debugger does not need to be
stopped and restarted for the changes to take effect. Each breakpoint has the ability to
stop the execution of the program or just to log the occurrence of a point being reached
inside the program. It is also possible to set conditions associated with a breakpoint or
a number of passes before the break actually occurs.

Now it is time to continue the debugging process we started a while back. First click
the Show Current Frame icon to return to the Data view, then click the Resume icon on
the Debug session toolbar, the second icon from the left. The first thing that should be
apparent is that the String class gets loaded and is hit right away; using the Resume
button many times will return you to the String class. As stated previously, normally

104 Chapter 5

that would be a bad example of setting a breakpoint on a class. Click on the Breakpoint
view tab, then select the Class breakpoint and right-mouse click and remove the break-
point. Then return to the View Current Frame tab and press the Resume icon. Each
time one of the breakpoint values is achieved, the program will stop execution; at that
time you can use the data, breakpoint, and classes with Tracing Disabled views to
interact with the program. Try to set property breakpoints on the readers, writers, or
both. Also, try setting counts inside the breakpoints properties, working with the cut,
copy, and paste features with different types of objects to see how the debugger acts.
All these things are possible using DebugShow as a test bed for debugging.

Intermediate Debugging

Learning and understanding the JBuilder debugger can be difficult at first. There are so
many places to get and interact with information that some developers feel that too
much information is given at the same time. The DebugShow program is a great starter
program; many things could be added to the program to test different aspects of the
debugger. The preceding examples should have given you an overview of the debug-
ger’s interface and the information that is being returned from JVM to the developer.
Now the focus can change from the “what” to the “how,” focusing on debug session
modifications and multiprocess debugging.

Modifying Code in a Debug Session
The next area to cover is a new feature available in Java that lets the developer change
the code while in a debug session. JBuilder has exposed its functionality by adding
Smart Swap, Set Execution Point, and Smart Source toolbar icons and menu items.
These features are available only on JDK 1.4.1 and higher because of the additional
information being stored in the class files that are generated by the compiler.

This example will use the DebugShow from the prior section; however, the type of
Target VM needs to be changed in the project properties. Right-mouse click on the
TheDebugger.jpx node inside the Project pane and click the Project Properties menu
item to display its dialog. Click on the Build tab. Change the Target VM to the Java 2
SDK v 1.4 and later option, then click the OK button to continue. Next, save the project;
then perform a Clean operation by again right-mouse clicking on the TheDebugger.jpx
node and selecting Clean. This will remove all generated classes from prior builds and
then rebuild the project.

Remove all breakpoints by using the Run|View Breakpoints menu item, then right-
mouse click inside the dialog and click the Remove All menu item. Only the exception
breakpoint should be left. Click the Close button to return to the AppBrowser. Now, set
a breakpoint on the aLastName = newALastName; line inside the setALastName
method, and then start the debugger on the DebugShow.java file. Once the breakpoint
is hit, add the following code under the assignment statement:

nonKeeper++;

System.out.println(“A Last name Nonkeeper is “ + nonKeeper);

Debugging with JBuilder 105

Changing any of the files associated with a debug session, the Smart Swap option
activates Set Execution Point. If no changes have been made to the debug properties
associated with a Runtime configuration, clicking the Smart Swap icon, eighth from
the left on the Debug session toolbar, will compile and update the modified classes in
the session. Once this has been completed, most likely the execution point will need to
be reset. Clicking on the ninth icon from the left on the Debug session toolbar will dis-
play a list of possible execution points. For this example set it to line associated by call-
ing the setALastName method.

Notice in the Data view that the stack becomes invalid; this will be true until the first
step is taken after the compile is completed. During this time, using the fly over evalu-
ation or the Evaluate/Modify will return unknown results. Use the F8 key to sStep
oOver the System.out.println(debugShow1.getALastName()); method to
update the stack with the appropriate information. Now, use the Evaluate/Modify dia-
log (see Figure 5.14) to change the value of the method just completed. Either right-
mouse click on the variable in the Code view and click the Evaluate/Modify menu
item, or use the Run|Evaluate/Modify menu item and type in the needed information.

Using Figure 5.14 as a guide, add the expression debugShow1.setALastName(“geoff”),
then click the Evaluate button. This will call that method midstream, and the results will
be void because the method does not return a value. These evaluations and modification
are not done inside a sandbox — these are live changes. This means that the variable non-
Keeper has been incremented by 1 and that the output is sent to the console; this work can
be checked in the Console view. One really great feature of the Evaluate/Modify dialog is
that CodeInsight is fully implemented in the edit box, which means that pressing the Ctrl-
H key combination will display the available objects just as with the editor operations.
Now change the edit box to read debugShow1.nonKeeper, and hit the Evaluate button
again. This will return some value. Now, in the New Value edit box, make it read 99, and
hit the Modify button; the Result pane will reflect the changes. It is now possible to use the
drop-down choice control and reselect the debugShow1.setALastName(“geoff”) method
and hit the Evaluate button. The console will be updated with another “geoff” and the
value of 100.

Figure 5.14 Evaluate/Modify dialog.

106 Chapter 5

Multiprocess Debugging
From the beginning, JBuilder has had a strong multiprocess debugging solution. In the
later versions of JBuilder, Borland and the JDK have made several changes to enhance
the ability to debug these types of programs. The following programs will define a
server and client based on socket communications to highlight the abilities of JBuilder.
The server program is called Dserver; it is responsible for returning information to a
client. Both of the programs have additional println() methods to give extra informa-
tion back to the developer. This ensures that the developer understands which process
is responsible for which output.

Using the TheDebugger project used in all the examples in this chapter, add two
new classes to the project following the steps in the previous examples. The first class
should be located in the same package as all the other programs and should have the
name DServer.

package com.wiley.mastering.jbuilder.debugexamples;

import java.io.*;

import java.net.*;

import java.util.*;

import java.text.DateFormat;

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author not attributable

* @version 1.0

*/

public class DServer {

ServerSocket serverSocket = null;

Socket socket = null;

InputStreamReader inputStreamReader = null;

BufferedReader bufferedReader = null;

OutputStreamWriter outputStreamWriter = null;

BufferedWriter bufferedWriter = null;

public DServer() {

}

public static void main(String[] args) {

DServer DServer1 = new DServer();

Source 5.2 DServer code. (continued)

Debugging with JBuilder 107

System.out.println(“Getting Connection”);

DServer1.getConnection();

System.out.println(“Connection established”);

System.out.println(“Reading Request”);

DServer1.getRequest();

DServer1.doClose();

System.out.println(“ServerSocket Closed.”);

}

public void getConnection(){

try {

serverSocket = new ServerSocket(10001);

socket = serverSocket.accept();

} catch (IOException ex) {

ex.printStackTrace();

}

}

public void getRequest(){

String closeString = “”;

try {

inputStreamReader = new

InputStreamReader(socket.getInputStream());

bufferedReader = new BufferedReader(inputStreamReader);

outputStreamWriter = new

OutputStreamWriter(socket.getOutputStream());

bufferedWriter = new BufferedWriter(outputStreamWriter);

while (!closeString.equals(“Close”)) {

closeString = bufferedReader.readLine();

Date checkdate = new Date();

Calendar calendar = new GregorianCalendar();

calendar.setTime(checkdate);

//Ctrl-alt-space to bring up class insight

DateFormat dateFormat =

DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.SHORT);

if (closeString.equals(“Date”)) {

bufferedWriter.write(dateFormat.format(checkdate));

System.out.println(“Date was sent”);

}

if (closeString.equals(“Time”)) {

bufferedWriter.write(“Current Time: “ +

calendar.get(Calendar.HOUR) +

“:” + calendar.get(Calendar.MINUTE) + “ “ +

Source 5.2 (continued)

108 Chapter 5

calendar.get(Calendar.AM_PM));

System.out.println(“Time was sent”);

}

bufferedWriter.newLine();

bufferedWriter.flush();

}

} catch (IOException ex) {

ex.printStackTrace();

}

}

public void doClose(){

try {

socket.close();

} catch (IOException ex) {

ex.printStackTrace();

}

}

}

Source 5.2 (continued)

The client program, called DClient, is responsible for making the connection to the
socket on the server and then requesting information from the server. The second class
to be added should also have the same package and have the class name DClient.

package com.wiley.mastering.jbuilder.debugexamples;

import java.io.*;

import java.net.*;

import java.text.*;

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author not attributable

* @version 1.0

*/

public class DClient {

InetAddress inetAddress = null;

Socket socket = null;

InputStreamReader inputStreamReader = null;

BufferedReader bufferedReader = null;

Source 5.3 DClient code. (continued)

Debugging with JBuilder 109

OutputStreamWriter outputStreamWriter = null;

BufferedWriter bufferedWriter = null;

public DClient() {

}

public static void main(String[] args) {

DClient DClient1 = new DClient();

System.out.println(“Get Connection”);

DClient1.getClientConnection();

DClient1.serverInteraction();

DClient1.doClose();

System.out.println(“Client socket is closed”);

}

public void getClientConnection(){

try {

inetAddress = InetAddress.getByName(“127.0.0.1”);

socket = new Socket(inetAddress, 10001);

} catch (IOException ex) {

ex.printStackTrace();

}

}

public void serverInteraction(){

String commandString = “”;

try {

inputStreamReader = new

InputStreamReader(socket.getInputStream());

bufferedReader = new BufferedReader(inputStreamReader);

outputStreamWriter = new

OutputStreamWriter(socket.getOutputStream());

bufferedWriter = new BufferedWriter(outputStreamWriter);

BufferedReader screenReader = new BufferedReader(new

InputStreamReader(System.in));

System.out.println(“Input: Date, Time, end as commands”);

while (!commandString.equals(“end”)) {

commandString = screenReader.readLine();

System.out.println(“command accepted”);

bufferedWriter.write(commandString);

bufferedWriter.newLine();

bufferedWriter.flush();

System.out.println(bufferedReader.readLine());

}

bufferedWriter.write(“Close”);

Source 5.3 (continued)

110 Chapter 5

bufferedWriter.newLine();

bufferedWriter.flush();

} catch (IOException ex) {

ex.printStackTrace();

}

}

public void doClose(){

try {

socket.close();

} catch (IOException ex) {

ex.printStackTrace();

}

}

}

Source 5.3 (continued)

The older style of multiprocess debugging had the developer setting breakpoints in
both the client and the server. This could become troublesome, especially if remote
debugging was being used. This example, though, is on the same machine. Remote
debugging is discussed in the section on advanced debugging later in this chapter. For
this example, both the client and the server are located on the same machine.

In the DServer program, set a breakpoint in two places, the first System
.out.println(“Date was sent”); line located inside the getRequest method
and the second breakpoint in the doClose method on the socket.close(); line.

In the DClient program, set a breakpoint in two places as well, the first on the line
bufferedWriter.flush(); inside the serverInteraction method and the second
breakpoint in the doClose method on the socket.close(); line.

Now start the debugger on the DServer node, using the technique discussed in the
previous examples. The console window should display Getting connection. Then
start the debugger on the DClient node the same way; it should display a command
list. Click inside the Debug pane, type Date, and press the Return key. The console
should update with a response stating that the command was accepted, and the debug-
ger should stop the execution on the flush() line. Hitting the Resume icon on the Debug
session toolbar should change the focus to DServer. The execution at this point should
have stopped again and should be waiting for the next debug process. Because this is
his or her first time into the DServer program, a developer may need quick information
on what the data values are, so the debugger makes it incredibly easy to check vari-
ables by just using the keyboard and mouse over the code.

When a program is in suspend mode, moving the cursor over objects, variables, and
expressions can return valuable information to the developer. In Figure 5.15, the mouse
pointer was placed over the closeString in the if-statement; after a second the value will
be displayed in the tool tip area. This value will remain on screen until the mouse is
moved. The second feature is the ExpressionInsight technology; Ctrl-right-mouse

Debugging with JBuilder 111

clicking on an Object or Variable can activate the Context Data view. This view works
exactly like the Data view inside the Debug/Message pane; the only difference is that
it shows the item only in context. The Context view will disappear as soon as a mouse-
click occurs outside the Context view.

From this point, when the Resume key is hit on the DServer program, the debug
context does not change back to the DClient because DClient is waiting for a command
to be entered. If the DServer continued executing and went to the DClient and hit a
breakpoint, then the context would have been changed. On the DClient program,
notice that the Date has been returned to the program and placed on the Systeml.out
stream. Click inside the Debug/Message pane, and type the “end” command. Hitting
Return again will take the execution to the flush method. Hit the Resume key again,
and the execution will now go to the DClient’s doClose method because no breakpoint
was hit on the DServer. Hitting the Resume key will end the DClient program; how-
ever, the DServer program does not. The control was sent back to the client for execu-
tion, putting the DServer into a pseudo-suspend mode. Clicking on the DServer tab in
the debug session and looking at the Stop and Resume icons on the Debug toolbar will
not give any indication of whether the program is paused or running. The only visible
indication the developer has is to look at the other Debug toolbar icons and notice
whether they are still active. At this point, hitting the Resume toolbar icon will finish
the program.

Figure 5.15 Tooltip and ExpressionInsight.

112 Chapter 5

The newer multiprocess debugging method uses cross-process breakpoints; these
are discussed in the next section. Using the older style of multiprocess debugging
has a few areas that can put a snag into the process; however, it gives the greatest
amount of control over when and where a program should break. The cross-process
breakpoints allow only for breaking on a method of a specific class, not a specific line
or line number.

Advanced Debugging

In the prior examples, different aspects of debugging have been covered. Today most
developers feel that programs dealing with threads and distributed processes are
advanced areas of debugging. The first program is going to deal with a deadlock situ-
ation that occurs when two threads are blocking each other and will show how the
debugger’s synchronization monitor can deal with it. The second set of examples will
explore remote debugging using JBuilder.

Using the same project that has been used throughout the chapter, add a New Class
to the project in the same package as used before and call it DeadLock. This program
does a classic blocking code routine; it will become a deadlock situation with thread 1
and thread 2 blocking each other.

package com.wiley.mastering.jbuilder.debugexamples;

/**

* <p>Title: Debug Examples</p>

* <p>Description: This will be used for the Debugging Chapter</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael J. Rozlog

* @version 1.0

*/

public class DeadLock {

public static void main(String args[]) {

final String one = “One”;

final String two = “Two”;

final String three = “Three”;

synchronized (three) {

synchronized (one) {

new Thread() {

public void run() {

synchronized(two) {

synchronized(one) {

System.out.println(“Got one!”);

}

Debugging with JBuilder 113

}

}

}.start();

try {

Thread.sleep(500);

}

catch (Exception ex) {

}

synchronized (two) {

System.out.println(“Got two!”);

}

}

}

}

}

Trying to debug this program using JDK 1.4.x and above will be challenging because
the default debugger included with that JDK uses the HotSpot JIT compiler. The syn-
chronization information is lost when using the JIT compiler. Normally you would be
able to set a switch that would put the Java VM back into interpreted mode; however, in
the current JVM edition from Sun, it does not include this feature. This means that, for
this example, the target JDK is going to have to be switched from JDK 1.4.1 to JDK 1.3.1.

You must have JDK 1.2.x or 1.3.x to see the synchronization monitors. For informa-
tion on how to load a new JDK, review Chapter 3, “Controlling Java Configurations.”
Once a compatible JDK has been configured, continue with the example. The changes
needed are easy to make; right-mouse click on the TheDebugger.jpx, click on the Prop-
erties menu item, click on the Paths tab, select JDK 1.2 or JDK 1.3, and then click on the
Build tab. Here change the Target VM to Java 2 SDK v 1.2 or later, then hit the OK but-
ton to continue. It is a good practice that anytime the JDK is switched, debug informa-
tion level is changed, obfuscation settings are changed, or any operation that would
change the byte-code to save all on the source files. Then a Clean operation should also
occur to remove all generated and compiled code. Finally rebuild the project after these
steps. Make sure that the classic switch is set on the Runtime configuration or the
option is selected in the JDK configuration. Both subjects are covered in their entirety
in Chapters 3 and 4.

Start the debugger on the DeadLock node. When the program starts, notice that
nothing happens because a thread deadlock has already occurred. Hit the Pause icon
on the Debug session toolbar to stop the program so that the developer can see what is
going on.

In Figure 5.16, clicking on the Thread Synchronization monitor that is the Lock View
tab shows two threads that are blocked. Red denotes that, at this point, the developer
understands that he or she has a deadlock situation and can go back to the code and
make the appropriate changes to rectify the problem.

114 Chapter 5

Figure 5.16 Thread Synchronization monitor.

Remote Debugging
Remote debugging is not much different from regular debugging. The debugging
interface used in Java uses JPDA and communicates using either socket or shared
memory, so the only real difference is the fact that one process is on another machine.
Basically all features available in the regular local debugger are available to you in a
remote debugging situation, including JDK 1.4.1’s ability to do Smart Swapping.

The one option that might cause confusion is the -Xrunjdwp: option. It has a number
of options that can be set depending on the desired effect. The most confusing option is
the dt_shmem, which is available only on the Windows operating system. This transport
uses the shared memory primitives to communicate from the VM to the debugger; this
can be used only when both the debug application and the VM are on the same machine.

WARN I NG Remote Smart Swap inside the EJB container would have to be
supported by the container. Depending on how the class is replaced in the JVM,
the registered class loader that is responsible for loading the class may or may
not be aware that the class it loaded has been swapped out. The deployed .jar
file will most likely not be affected at all because this is strictly an IDE-to-JVM
communication channel, which means that the JVM knows about only the
classes loaded, not the compiled class in the EJB archive. Certain application
server providers could offer an enhanced communication layer to handle this.

Debugging with JBuilder 115

Remote debugging offers a few choices on just how the debugging should occur.
They include launching and debugging on a remote machine, debugging an existing
process on a remote machine, and debugging local code in a separate process. The
additional breakpoint option is the cross-process breakpoint.

Before remote debugging can occur, both the debug client and debug remote must
have at least JDK 1.2 or greater. They do not have to be the same JDK version numbers
on both client and remote; however, only shared features will be available. This means
that if remote Smart Swap functionality is needed, both the remote and client debug
machines would need to have JDK 1.4.1 or above.

NOTE As mentioned a few times in this chapter, JDK 1.4.1 and above change a
few capabilities and switch requirements when it comes to debugging. The debug
switches Xnoagent and –Djava.compiler=NONE are obsolete. –Xnoagent was
intended for backward compatibility with the sun.tools.debug agent and was
included in the classic VM JDK 1.2 through JDK 1.4. The –Djava.compiler=NONE
was used to disable the JIT compiler on classic VMs. These switches are needed if
using JDKs under 1.4.

No matter how you use remote debugging, make sure that both the server classes
and the client debugger source files are the same. Inconsistencies between .class files
and their sources can have unpredictable results when debugging remotely.

Concentrating on only the client debugger, it must have the source files loaded into
a project. The project then needs to have a Runtime configuration created for handling
the debugging request, no matter if the debug style is to launch a process or to attach
to an existing process. For more information on creating Runtime configurations,
review Chapter 4. Loading the TheDebugger.jpx example project from this chapter will
give us all the files we need. As stated earlier in the chapter, remote debugging is not
much different from local debugging; for these examples, if you do not have two
machines to work with, they can be done on a single machine.

In TheDebugger project, look at the project properties by right-mouse clicking on
TheDebugger.jpx and selecting the Properties menu item. Then click on the Paths tab
to make sure the JDK is set to 1.4.x or greater. Then click on the Build tab and verify that
the Target VM is set accordingly; these two settings normally should match. Now click
on the Run tab, and click the New button to display the Runtime Configuration Prop-
erties dialog (see Figure 5.17). Then click on the internal Debug tab.

The first setting that you want to concentrate on is the Build target; this should be set
to None because the actual .class code in a normal remote debugging situation is on a
remote machine and there is no need to waste a compile execution. The next set of
options deals with the Smart Swap and Smart Step setting covered in the Modifying
Code in a Debug Session section of this chapter. The final area to concentrate on is the
Remote settings area of the dialog. Again, no matter which type of remote debugging
will occur, the first setting is the most important. Enable remote debugging should be
selected. The rest of the options will be covered, depending on the type of debugging
attempted, and we will refer back to this dialog.

116 Chapter 5

Figure 5.17 Runtime Configuration Properties dialog.

Launching

JBuilder ships additional software to make launching and debugging remote processes
very easy. The software is located in the /jbuilder/remote directory; it includes three
files: DebugServer, DebugServer.bat, and DebugServer.jar. The DebugServer and
DebugServer.bat are essentially the same scripting files; the one without an extension
is for Unix, and the one with the .bat extension is for Windows. When the program
DebugServer script is run, it will produce a window (see Figure 5.18) with a menu for
exiting and looking at the About window. It is recommended that this entire directory
be placed on the remote debugging machine. Only the script and the .jar file are
needed, but this approach keeps the files together and organized. The files can be run
from any directory including the one that holds the .class files. The DebugServer(.bat)
script takes four parameters:

Debugserver.jar_dir. This is the location of the debugserver.jar file on the remote
machine.

Jdk_home_dir. This is the location of the JDK that will be used on the remote
machine.

-port. This is an optional parameter, which defaults to 18699. The port range can

Debugging with JBuilder 117

be from 1024 to 65535. Make sure to remember the number because the debug
client will need to use it.

-timeout. This is the number of milliseconds to wait while trying to connect to
the remote computer. The default value is 60000 milliseconds.

Making the assumption that the complete /remote directory and its contents were
copied to the remote machine and leaving the default parameters, the command line
should look something like this on the remote machine:

DebugServer c:/remote c:/jbuilder/jdk1.4

The drive letter may need to be changed for your machine requirements, and the
actual JDK does not need to be the one included with Jbuilder. It can be the standard
downloaded JDK from Sun. Entering this command will display the DebugServer win-
dow (see Figure 5.18).

Figure 5.18 JBuilder Remote Debug Server window.

With the debug server running on the remote machine, it is time to create a directory
on the remote machine called myclasses. Then copy the TheDebugger class files to the
remote directory on the remote machine called c:/myclasses. Once the class files are
copied, the directory structure should look like the following: /myclasses/com/wiley
/mastering/jbuilder/debugexamples. This is where the five example files should be
located.

On the client debug machine running JBuilder, start the TheDebugger project in
JBuilder and display that project’s properties. Then click on the Run tab, and hit the
Add button to create a new Runtime configuration. When the Runtime Configuration
properties dialog is displayed, name the configuration Launch and set the Build target
to None. Now, focusing on the Remote settings, make sure to check the Enable remote
debugging setting and then follow these settings for this example:

Launch. This will instruct JBuilder to launch a new debug process on the remote
machine. If the process is running on the remote machine, JBuilder will create a
new one by default. If you wanted to attach to that running process, proceed to
the next section on Attaching.

Host name. This is the actual IP address or network name of the remote machine.
For the examples in this book, the address for the remote machine will be
192.168.1.140.

118 Chapter 5

Port number. This is the port used when running the DebugServer script;
because the default was used, it is 18699.

Remote classpath. This is the path where the .class files are located on the remote
machine. The remote classpath applies only to this debug session, so this will
not affect any other classpaths set on the machine. For this example, this should
be set to c:/myclasses.

Remote working directory. This is the working directory on the remote machine.
Remember that this option is not recognized on JDK 1.2 and will throw error
messages to the command window of the DebugServer on the remote machine.
For this example, this should be set to c:/myclasses.

Transport. This can be dt_socket or dt_shmem. Usually it will be dt_socket; the
only time to use dt_shmem is when doing remote debugging on a local process
on a Windows-only machine. Even then, this option is not required. For this
example, this should be set to dt_socket.

Address. This is the port associated with the socket for the transport. When
launching a process, this option will not be available.

Once the parameters have been set on the Debug tab of the new Runtime configura-
tion, press the OK button to continue. Then press the OK button on the Project Proper-
ties dialog to continue. Because JBuilder has the project loaded, set a breakpoint inside
the DebugShow.java program, then right-mouse click on the DebugShow and select
the Debug with Launch configuration. If you can see the router that connects the
machines, you will notice a flurry of activity establishing the connection. Other than
that little flurry of activity, no visible changes to the JBuilder debugger are noticeable.
The remote machine’s output will be captured inside JBuilder, so no evidence of a
debug session occurring will be visible on the remote machine.

After working with the debugger, you will notice no changes in how it works; how-
ever, because JBuilder does not report or log any activity on the remote machine. Peo-
ple seem to feel that the debugging process is not remote. To test this after working
with the remote debugger, change the Runtime configuration properties to the wrong
machine name or change the IP address; it should return an exception reporting a time-
out. This will, at least, establish that a connection was being made to the machine.

Finally, if you want to try this technique with the DServer and DClient, make sure to
change the IP address on the DClient.java to the remote machine’s IP address for proper
communication. For this example using the machine listed, it would look like this:

inetAddress = InetAddress.getByName(“192.168.1.140”);

After the proper address is added, kick off the debugger or run the DClient pro-
gram — it does not matter which you do. Make sure that the breakpoints are set on the
DServer in JBuilder so that it will stop. Once this is complete, the DebugServer pro-
gram on the remote machine can be stopped, and that will end the communication
between the two computers.

Debugging with JBuilder 119

JBuilder makes it very easy to launch a process that needs to be debugged; just set a
couple of properties and use the debugger as normal — that is it. In the next section,
the discussion turns to attaching to an already running process.

Attaching

Now that you understand the launch process, you’ll see that attaching is not much dif-
ferent. It comes down to making sure that the remote machine’s code is started prop-
erly with the right parameters. For this example, we will be using TheDebugger.jpx for
the source of the example. Remember that the .class and source need to be at the same
level to eliminate unknown debugging errors.

The fastest way to establish the proper startup script is to use the JBuilder launch
features. Run JBuilder, bring up the TheDebugger.jpx, select the DebugShow.java pro-
gram, and run it with no special Runtime configurations. The console window will dis-
play the command used to start the DebugShow program; simply copy it from the
console window and place it in a script/.bat file on the remote machine. The command
should look something like the following:

c:\jbuilder8\jdk1.4\bin\javaw -classpath

“C:\JBuilder8\.jbuilder8\jbproject\TheDebugger\classes;c:\jbuilder8\jdk1

.4\demo\jfc\Java2D\Java2Demo.jar;c:\jbuilder8\jdk1.4\demo\plugin\jfc\Jav

a2D\Java2Demo.jar;c:\jbuilder8\jdk1.4\jre\lib\charsets.jar;c:\jbuilder8\

jdk1.4\jre\lib\ext\dnsns.jar;c:\jbuilder8\jdk1.4\jre\lib\ext\ldapsec.jar

;c:\jbuilder8\jdk1.4\jre\lib\ext\localedata.jar;c:\jbuilder8\jdk1.4\jre\

lib\ext\sunjce_provider.jar;c:\jbuilder8\jdk1.4\jre\lib\im\indicim.jar;c

:\jbuilder8\jdk1.4\jre\lib\jaws.jar;c:\jbuilder8\jdk1.4\jre\lib\jce.jar;

c:\jbuilder8\jdk1.4\jre\lib\jsse.jar;c:\jbuilder8\jdk1.4\jre\lib\rt.jar;

c:\jbuilder8\jdk1.4\jre\lib\sunrsasign.jar;c:\jbuilder8\jdk1.4\lib\dt.ja

r;c:\jbuilder8\jdk1.4\lib\htmlconverter.jar;c:\jbuilder8\jdk1.4\lib\tool

s.jar” com.wiley.mastering.jbuilder.debugexamples.DebugShow

As stated previously, copy this into a script/.bat file on the remote machine. For this
example, because you already copied the classes directory from the client debug
machine and placed them in the myclasses directory on the remote machine, this is
where to locate the script/.bat file. It should be called debug1.bat (Windows).

Once the preceding line is copied into a file, some small modifications are needed to
give it the ability to debug. The first change is to remove the “w” from the javaw com-
mand; then add the following parameters between the Java and the –classpath option:

Classpath. Don’t forget to add the directory in which the .classes are located to
your classpath.

-Xdebug. This enables debugging in the JVM. This option is required.

-Xnoagent. This is used with classic VMs JDK 1.2 through JDK 1.3. It allowed
backward compatibility between JPDA and the old Sun debugger. These options
are ignored on JDK 1.4 and above.

-Djava.compiler=NONE. This is used with classic VMs JDK 1.2 through JDK 1.3.

120 Chapter 5

It told the classic VM to disable the JIT compiler in the VM. This option is
ignored on JDK 1.4 and above.

-xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=y. This should
look very similar to the options exposed in the JBuilder Debug tab. The same
rules apply, and each of the subitems should be separated with a comma. The
suboptions are as follows:

■■ dt_socket or dt_shmem. These options represent the message transport
used by the VM and the debugger. This option is required. The only time to
use dt_shmem is on a local process on a Windows machine.

■■ server. This is an optional parameter; if it is set to ‘y’, it will listen for the
debugger application to attach. If it is set to ‘y’ and no address is attached, it
will display the port it is listening to so that it can be used by the debugger
client application.

■■ address. This suboption applies to the server. If the server = y, then listen
for a connection at this address. If the server = n, then attempt to attach to
the debugger application at this address.

■■ suspend. This option allows the process to be stopped when the debug
process is started. Setting the suspend = n will allow the application to con-
tinue to run; if no breakpoints are present, the program will execute to the
end. If set to server = y, the process will stop and wait for the debugger
application to attach.

With the options added to the script/.bat file, it should look like the following:

c:\jbuilder8\jdk1.4\bin\java -Xdebug -Xnoagent -Djava.compiler=NONE

-xrunjdwp:transport=dt_socket,server=y,address=3999,suspend=y -classpath

c:\myclasses;”C:\JBuilder8\.jbuilder8\jbproject\TheDebugger\classes;c:\j

builder8\jdk1.4\demo\jfc\Java2D\Java2Demo.jar;c:\jbuilder8\jdk1.4\demo\p

lugin\jfc\Java2D\Java2Demo.jar;c:\jbuilder8\jdk1.4\jre\lib\charsets.jar;

c:\jbuilder8\jdk1.4\jre\lib\ext\dnsns.jar;c:\jbuilder8\jdk1.4\jre\lib\ex

t\ldapsec.jar;c:\jbuilder8\jdk1.4\jre\lib\ext\localedata.jar;c:\jbuilder

8\jdk1.4\jre\lib\ext\sunjce_provider.jar;c:\jbuilder8\jdk1.4\jre\lib\im\

indicim.jar;c:\jbuilder8\jdk1.4\jre\lib\jaws.jar;c:\jbuilder8\jdk1.4\jre

\lib\jce.jar;c:\jbuilder8\jdk1.4\jre\lib\jsse.jar;c:\jbuilder8\jjk1.4\jr

e\lib\rt.jar;c:\jbuilder8\jdk1.4\jre\lib\sunrsasign.jar;c:\jbuilder8\jdk

1.4\lib\dt.jar;c:\jbuilder8\jdk1.4\lib\htmlconverter.jar;c:\jbuilder8\jd

k1.4\lib\tools.jar”

com.wiley.mastering.jbuilder.debugexamples.DebugShow

The bold areas are the changes to the command. Save the script/.bat file, and
because the suspend option is set to ‘y’, this script/.bat file can be executed on the
remote machine. When executed, the whole command will be displayed, and the pro-
gram will wait for the JBuilder debugger to make contact.

Now in JBuilder, bring up the project properties for the TheDebugger project, and
click the Run tab. Then click the New button to create a new Runtime configuration.

Debugging with JBuilder 121

When the Runtime Configuration Properties dialog is displayed, click the Debug tab,
then change the name to Attach and set the Build Target to None. Next check the
Enable remote debugging option, and notice that most of the options become grayed
out because they are not used in this type of remote debugging. The options left should
have the following values:

Host name. This is the network name or IP address of the remote machine. For
this example, it is 192.168.1.140.

Type. This is the type of communications being used; for this example, it should
be set to dt_socket. This should always match the script/.bat file transport.

Address. This is the address that the communication will use. For this example, it
should be set at 3999. This should always match the script/.bat file address.

Press the OK button when the changes are complete, then press the OK button again
to close the project properties. Because the remote machine is still waiting for the
debugger to contact, make the node that is being debugged active in JBuilder. Then
press the Run|Step Over or the Run|Step Into menu item. This will display a Choose
Runtime Configuration dialog (see Figure 5.19). Then select the Attach item inside the
listbox, and press the OK button to continue.

This will place the cursor at the top of the node; from here breakpoints can be set and
executed. Notice that the Debug Windows tab has a partial host and address displayed
on it, showing that a connection is made. This time all System.out streams will be dis-
played on the remote machine and not in the client debugger console. The debugger
works the same as it would if it were a local node being debugged. The remote
machine’s command window should not be closed until the client debugger has
detached from the machine. If a Ctrl-Break key combination is executed on the remote
machine, it could have undesired results like throwing exceptions and killing Win-
dows. The best way to detach is to hit the Stop button on the Debug toolbar.

TI P When using JDK 1.2 and 1.3, always use the Java.exe from the \bin
directory because this will allow the debug library to be loaded. Do not use the
one located inside the \jre\bin.

Figure 5.19 Choose Runtime Configuration dialog.

122 Chapter 5

The ability to attach to an existing, executing application works the same when
doing client/server remote debugging. Change the debug(.bat) script file on the
remote machine so that the class being called is the DServer instead of the DebugShow,
then follow the same steps as previously outlined to start the remote session. Then in
JBuilder, using the Attach debug configuration, right-mouse click on the DServer and
start the debug process. You will notice on the remote machine that it will be waiting
for a connection. From here breakpoints can be set and the DClient process can be run
or debugged locally until completion.

The final feature to discuss when it comes to remote debugging is the cross-process
breakpoint option. Starting the server as described previously and then setting a break-
point in the DClient program, start the DClient in debug mode. When the breakpoint
is hit in the DClient, click the Run|Add Breakpoint|Add Cross-process breakpoint
menu item. The Cross-Process Breakpoint dialog looks similar to the normal Add
Method Breakpoint dialog (see Figure 5.13) and works the same way. Find the class; in
this case, it would be com.wiley.mastering.jbuilder.debugexamples.Dserver. Press the
OK button, then select the method to break on; when the (...) button is pressed, choose
the method. If any parameters are needed, they will be filled in. Then hit the OK but-
ton. Now, go to the DServer program and set the breakpoint at the same location.
When that breakpoint gets hit, make sure to do a Step Into to proceed; if the Step Over
is used, it will skip the method breakpoint.

As you can see, the difference between attaching to a debug session or launching a
debug session is minimal, and the results are the same. Launching a process is very
convenient if access to a machine is limited; attaching is nice because you can attach,
detach, and then reattach to the same debug session, making it very flexible. The best
part is that there is nothing else to learn when it comes to remote debugging.

Summary

Understanding the basic debugging interface, getting a debug test bed to try new
things safely, and understanding how to work with multiple processes, threads, and
remote debugging should give confidence to the developer when he or she faces the
daunting task of answering the questions: Why doesn’t it work on my machine, and
why did it not work today?

As you can see, the debugging capability found in JBuilder is rather extensive.
Because the JBuilder team tries always to adhere to the open standards of Java, further
advances may come slowly. This includes the ability to hot-fix during a debugging ses-
sion, which would allow the developer to change code during a debug session without
restarting the session from scratch to see the code changes. Although this could have
been accomplished long ago, the JBuilder team decided to wait until it became a stan-
dard of the debugging architecture. The first production version in the JDK has fea-
tures missing, such as the ability to add method or inner classes. As soon as the JVM
supports those features, JBuilder will implement them.

Debugging with JBuilder 123

125

The JBuilder help system is rich with features and capabilities that make looking for
the answer as easy as possible without having to leave the environment. This chapter
covers the finer details and features available in the help system; it focuses on how to
use the interface and get the results you are looking for using the search features; it also
discusses the concepts behind tip-of-the-day and advanced features hidden in the
properties files. Most developers have used a help system before in an integrated
development environment, so the expectation of what the system should be able to do
is well defined. In the beginning, the JBuilder help program needed a little help; it did
not cover a lot of areas, it was spotty, and it would cause JBuilder to disappear without
notice. Times have changed and so has the JBuilder help program. It now supports a
fairly complete reference to what is JBuilder and how to use JBuilder, and it provides
much better context-sensitive help.

The first thing to make clear before we start is the use of the words “tabs” and
“panes.” Tabs happen on both sides of the explorer interface; make sure to use the
inserted figures to see exactly what is being talked about as a guide. It can get confusing
when both major areas have the same capabilities.

Getting Started

The JBuilder help interface can be started by clicking the Help|Help Topics menu item. This
will start the help system with a standard Explorer-style interface. The base help system,
shown in Figure 6.1, has a simple “Explorer” interface, with the topic window broken into

Using the JBuilder Help System

C H A P T E R

6

two areas: the toolbar and the interface used to display a Tree view of book sets. Book sets
are based on the concept that a book defines each area of help and that each book is broken
into chapters. The chapters are broken into topics, and each topic is assigned a topic id. This
is what the help system used to find a specific topic in the book set. The toolbar has the basic
Home, Back, and Forward options, which work like a basic Internet browser interface. The
Home button will always return to the introduction of the JBuilder help system.

The navigation system is based on an index of topics viewed. Each time a topic is
viewed, the topic id gets placed into a list, which then allows the developer to move
either forward or backward in that list. The Back button is responsible for moving the
current index to the previous topic id if one exists; likewise, the Forward button
advances the current topic id one, again if the item is available in the list. The next two
toolbar buttons are the Print and Find in Page functions, which are used in the context
of the current help topic. The Print function will print the complete topic; at this time,
the range cannot be set or limited. Another thing to keep in mind is that the print set-
ting from the main JBuilder program does not extend to the help system.

TI P PDF versions of the documentation are available on the product CD.
Using a PDF viewer will give a finer set of controls when printing the
documentation.

Figure 6.1 Base-level help.

126 Chapter 6

The Find on Page tool will display a simple dialog that will allow simple text or a
phrase to be entered. When the Find Next button is pressed, it will try to find that exact
text or phrase in the current topic. If the text is found, it will move the focus to that first
occurrence. This dialog will remain active until the Done button has been pressed. A
nice feature that the Find on Page function has is the ability to move from topic to topic
and still keep active the same search by pressing the F3 function key. The Find on Page
dialog also retains a list of text or phrases searched for in that session; the search list is
cleared when JBuilder is restarted.

The next three toolbar buttons are used to synchronize the table of contents, to move to
the Previous topic, or to move to the Next topic located inside a book set. This may seem
confusing because the Home, Back, and Forward buttons were explained, but remember
that those buttons are based on the visited topic index list. These next three buttons are
focused on the book sets and the location inside them. The Synchronize button will do one
of two things; it will either move the current focus in the book set to the current chapter of
the topic being displayed, or it will move the focus to the next available book or chapter
that has topics associated with it. This depends on where the focus is located in the book
set. This will all happen in the book set display on the right-hand side of the explorer
interface. The Previous topic button will then move the book set focus to either the prior
chapter or the first chapter in an earlier book. The same can be said for the Next topic but-
ton; it will move the focus forward to the next chapter or book set.

This explanation may sound confusing, but following the upcoming example will
highlight the use the buttons to locate almost any book, chapter, or topic and will help
clear up the concepts:

1. Open JBuilder help by selecting the Help|Help Topics menu item.

2. Under Contents window, double-click on JBuilder Fundamentals book. (It
should be the book on top.)

3. Start randomly clicking on chapters and topics; this should be done four or five
times.

4. Click the Back button once; it should take you back to the prior topic that was
clicked on.

5. Click the Back button again, and it should take you back to its prior topic.

6. Click the Forward button; it should take you to the topic just viewed.

7. Click the Forward button again, and it should take you to the location where
you were before you clicked the first back button.

8. Notice that only the topic changes; the book set, chapters, and topics remain at
the same focus level.

9. Click the Home button; this will move the focus topic to Introducing JBuilder.

10. Click the Synchronize topics button; this will move the book set focus to the
JBuilder Fundamentals book and then to the Introduction chapter.

11. Click the Next topic button; this will move the book focus and the topic focus
to the JBuilder documentation set chapter.

12. Click the Next topic button again and it will move the book focus and chapter
focus to the Additional Resources chapter.

Using the JBuilder Help System 127

13. Pressing the Previous topic will move the book focus back one chapter to the
JBuilder documentation set.

14. Click on the Using the AppBrowser chapter (Chapter 4) a few times below the
current focus on the right-hand side.

15. Click the Synchronize topics button; it will fully expand that chapter and all the
items below it.

Index Pane
The Index pane allows keyword searches. Once the Index tab has been clicked, enter the
name of the topic to be searched, and the focus will move as each character is being typed.
The input box also has the paste feature enabled, which will allow the pasted word to be
searched. If no word is present, start deleting characters until a match is found. The gen-
eral idea behind the Index pane is to find the top-level topics and that the sublevel topics
that are displayed are related to the top-level topic. This can be frustrating when doing a
search on a specific topic that may be considered a sublevel topic. As stated previously, the
sublevel topics are included in the top-level topic, but typing in a sublevel topic will not
always return the top-level topic in the search. If a topic has multiple listings, hitting the
Enter key on the topic will split the Index pane and break the topics into subtopics.

The next example shows how to limit search items using the Index pane.

1. Open the JBuilder’s help system by clicking the Help|Help Topics menu item.

2. Click the Index tab.

3. Type “J2SE” in the edit box and hit Return; notice that two subtopics are
returned in the lower split pane.

4. Click on either of the subtopics to display the topic.

5. Clear the edit box, type in “ORB class”, and hit Return. Two subtopics are
returned. The ORB class has a number of sublevel topics. If you try to type in
the exact sublevel topic name in the edit box, the topics will not be found. If
you use the mouse to navigate to a sublevel topic, the location of the topic
display is not changed. This is there only to give additional information to
the searcher.

Find Pane
The Find tab located next to the Index tab gives the most functionality when trying to
find specific topics. First, the edit boxes found on the Find tab act just like the edit box
found on the Index tab. As words are starting to be typed in, the topic index will start
to try to match the word or phrase. When the Enter key is pressed on the edit box, a
topic list will be returned. This list can have a very large number of returns, especially
if a generic term is used, such as the word “Java.”

The Find pane does include Boolean search capabilities; these include both (AND) and
(OR). By using the “+” key for (AND) and the “,” for the (OR) operator, topic searches can
be limited to some degree. White space does not have any effect on the overall search, so

128 Chapter 6

typing in a line like “Java,CORBA” or “Java, CORBA” is functionally the same, and the
results have no differences. When the topic is selected in the found topics pane, when it is
displayed, the topic will show all the search words in a highlighted format.

Following is an advanced search example showing how to limit the number
of returned hits. It focuses on using the Boolean search capabilities built in to the envi-
ronment. Open the JBuilder’s help system and click the Help|Help Topics menu item.

1. Click the Find tab.

2. Type “Java” in the edit box, and hit Return; the search will return 4648 topics.

3. Clear the edit box and type “Jakarta” in the edit box. Hitting Return will return
7 topics.

4. Adding a “,” and the word “Java” will return 4648 topics because this is the OR
operator and because Java is found that many times.

5. Changing the “,” to a “+”, which is the AND operator, will return 7 topics
because each of the 7 topics that are Jakarta-specific also include the keyword
Java.

Content Pane
As stated previously, the Content pane is responsible for displaying book sets. These
book sets consist of a set of HTML pages, images, and other resources needed to dis-
play the help contents; these are packaged into a standard .jar file. These book sets are
located in the /jbuilder/doc directory and can be unjarred using the standard jar tool
included with the JDK. Once a doc .jar file is unjarred it can then be viewed in a stan-
dard HTML browser.

NOTE None of the advanced JBuilder help system tools will be available once
the doc files have been unjarred and are displayed in an HTML browser.

In the Content pane, double-clicking on a book will open it; this will then display all
the chapters found inside. By clicking on the Table Expansion icon, this will list a series
of topics included in the chapter. Using the Content pane, the developer searching for
information needs to know not only the book in which the information may be located,
but also what the exact topic is named. One feature that is available to the Content pane
is the type-in feature; this feature allows the developer to start typing in the name of
the topic to search, and it is based on the first character typed. This is the same feature
that is found in the AppBrowser Project, Structure, and Component panes covered in
Chapter 5, “Debugging with JBuilder.” This feature, though, is limited in the help sys-
tem; it will search only on the open books, chapters, or topics. It does not expand them or
try to drill down to the contents below the open area.

Matching capabilities are also limited; if the focus is located on an item that has the
same name as an item that is open, the focus will not change until three characters have
been typed. Then the focus will go to the third character typed, which is the first char-
acter in the new search. If a character is typed and the focus changes, the next charac-
ter typed is the first character in a new search. If multiple words with the same starting

Using the JBuilder Help System 129

character are in the list, use the first character of the word again and again to move
through the list of words starting with that character. This feature is intended only to
make it easier to navigate book sets without a mouse, and it is very limited from that
perspective. The character buffer is also rather limited; if the help system is trying to
display a topic, any characters typed into the buffer will be lost until the topic has been
displayed and the help system starts accepting keystrokes again. For more advanced
topic search, use the Index or Find tabs, which are explained later in the chapter.

Context-Sensitive Help
Context-sensitive help is supported in some designers, Project panes, Structure panes,
Component panes, Object Inspectors, and Editors. Press the F1 key to activate the con-
text help system. By default it is a simple modal dialog, which can cause problems
when trying to do tutorials and keep things alive. The JBuilder help system can be run
in a separate VM. Starting the JBuilder help system can be done by pressing the
Help|Help Topics menu item; once the help system is started, press the Options|More
menu item, and the VM parameter can be set in the More dialog.

If the Use simple dialog for context sensitive display option is unchecked, the modal
dialog will not be displayed, and all topics will be forced to the standard help system.
The help system needs to be closed, and JBuilder needs to be restarted before the
option will take effect.

Using the Doc Tab
The Doc tab is found on the Content pane. For more information on the AppBrowser,
review Chapter 2, “Customizing the AppBrowser.” The Doc tab displays the associated
JavaDoc for Java class files. It also shows the JavaDoc for files that do not include doc-
umentation with a JavaDoc parser to parse the code on the fly.

Tip of the Day

The tip-of-the-day (TOD) feature is normally displayed during the startup process for
JBuilder. This can be stopped, if desired, just by deselecting the Show after launching
option on the TOD dialog. TOD can also be displayed at any time by pressing the
Help|Tip of the Day menu item. In Figure 6.2, it is possible to read all of the tips by
using the Next Tip button or the Previous Tip button.

It is possible to add topics to the tip-of-the-day (TOD) feature. The TOD texts are
found in the /jbuilder/doc/jb_ui.jar file. This is a simple .jar (Java Archive) file; it can
be manipulated by using the standard jar tools that are included with the Java JDK.
Also, most of the ZIP utilities can read .jar files types, which gives advanced tools for
manipulating a .jar’s contents. The following steps outline how to add new tips to
JBuilder.

130 Chapter 6

Figure 6.2 Tip of the Day dialog.

To add custom tips of the day, follow these steps:

1. Close JBuilder.

2. Create a directory structure /ui/tips.

3. Create a text file called NewAdd.txt.

4. The first line should read: Custom Tooltip.

5. The second line should read: This is a new tip added to the JBuilder Tip of the
Day feature.

6. Save the file.

7. Make a copy of the jb_ui.jar file found in the /jbuilder/docs directory for safe
keeping.

8. Add the NewAdd.txt file with the complete path name included. The jar com-
mand should look like the following: jar uf \jbuilder\doc\jb_ui.jar ui.

The preceding command will add all the files located inside the un/tips direc-
tory, plus it will add the directories to the archive file.

Figure 6.3 Custom tip of the day.

Using the JBuilder Help System 131

132 Chapter 6

If multiple tips are defined for a specific feature, add a number to the file naming.
Examples of this would be file1.txt, file2.txt, and so on. Once the new tips have been
added to the jb_ui.jar file, it can then be distributed to other users of JBuilder, thus
giving a common way to share hints and tips that are self-discovered.

Advanced Help Features

The JBuilder help system has advanced features that may not make it into the normal
material or daily use but that can be helpful if you know about them. Some of these
include file viewing, display options, bookmarks, and copy buffers.

The JBuilder help system can also be used as a simple file viewer. The viewer has the
ability to work with JSP, ASP, XML, XSL, and DTD, and it is fully JavaScript enabled.
To view one of these types of files, simply click the File|Open menu item inside the
JBuilder Help system. This can be used when trying to look at a file very quickly with-
out changing the focus from the help system.

Another advanced feature is the ability to change the font in the help viewer; this
feature is called zooming. Three types of zoom are possible: Out, In, and Normal. Out
can be accomplished by pressing the Options|Zoom Out menu item or by pressing the
Ctrl-D key combination, which will increase the font size. The In operation can be
accomplished by clicking the Options|Zoom In menu item or by pressing Ctrl-U,
which will decrease the font. The final option is to set the font back to Normal; this can
be done by clicking the Options|Normal menu item only.

Bookmarks
The JBuilder help system also has the ability to set bookmarks. Once a topic of interest
is found, the fastest way to always find that piece of information is to set a bookmark.
The default number of bookmarks that JBuilder can display is 25. It is possible, though,
to increase this number by modifying the help.properties file located in the
jbuilder.home or user.home directory. For more information on jbuilder.home and
user.home files, review Chapter 4, “Project Properties and Configurations.” With the
maxMenuBookmarks=25 property, changing the value of the number changes the
number of items that can be displayed on the Bookmarks menu.

TI P Always exit JBuilder when working with JBuilder property files. JBuilder
may overwrite or rewrite property files on exit. This means that changes most
likely will not be saved.

To control bookmarks inside the JBuilder help system, a bookmark first needs to be
added. Once the first bookmark is present, the help system will allow full manipula-
tion of bookmarks. In Figure 6.4, the bookmark editor allows you to organize current
bookmarks as well as remove one or remove all. This dialog will also give the ability to
go to the actual bookmark from this interface. If the number of bookmarks is large, this
dialog is the best way of navigating to a particular bookmark.

Fonts
Besides setting the maxMenuBookmarks property inside the help.properties file, it is also
possible to set the fonts. The property DefaultFont.1=Western European\:dialog-plain-14
will set the help display font to dialog, with a setting of plain and a font size of 14. Now
when the help system starts, this font will be the default. Use the Options|Font menu
item to initially set the property; it then can be manipulated through that dialog or
through the property file. The new font will be used not only in the help system, but also
in the Doc viewer located in the Content pane in the AppBrowser.

Copy Buffers
The help system has many hidden features, one of which is the ability to copy text and
place it on the system’s clipboard, which can be used later in other programs. The copy
feature can be activated by selecting the area that is to be copied and pressing the Ctrl-C
key combination. This can be done anywhere inside the interface, including the book
view, Content pane, and status bar. In Figure 6.1, notice the Status Bar, which states
something like: “jar:file:...”. This area will contain whatever is being displayed in the
Content pane. This is especially important when viewing HTML content that would be
better interacted with in a standard Internet browser. Simply highlight the area
intended to be copied, and use the Ctrl-C combination to paste the contents into a
favorite browser and continue surfing.

The menu system found in JBuilder’s help system mimics the base functionality
covered in this chapter. It is always recommended that if a menu item is present for
configuration that it be used instead of working with the underlying Help.properties
file. If a menu item is not present for a particular setting, manipulating the property file
is completely acceptable.

Figure 6.4 Bookmark Editor dialog.

Using the JBuilder Help System 133

Summary

The help system found in JBuilder is really an integral part of the total development
package. It has become a reliable tool that can be expanded and customized to meet the
developer’s needs. The content has continued to be updated and made available
throughout the JBuilder environment. In the areas of context-sensitive help, JavaDoc,
and standard help files, it truly is only a click away.

134 Chapter 6

PA R T

Two

JBuilder as a Rapid
Application

Development Tool

Understanding the basics of the JBuilder IDE is great, but what really starts to add
productivity is using the development tools to their full extent. JBuilder has always
been focused on getting the tools in the hands of developers and letting them decide
how best to utilize them. Taking pages from the early Delphi days and the tools it
provided to its developers that made them productive, JBuilder tried and succeeded
in enhancing the developer interaction by making tedious tasks simple.

Many things developers now expect from an IDE were once considered to be
revolutionary, including the following:

■■ Wizards, which could generate code or provide a framework as a good
starting point.

■■ GUI designers, which allow drag-and-drop functionality of completely
assembled components to be connected together to make a graphic interface.
The concept of GUI designers has been extended over the years by adding
drag-and-drop component development to database, distributed applica-
tions, and Web services.

■■ Two-way tools, which allow developers to make changes in code and have
them reflected in a GUI designer and, likewise, make changes in a GUI
designer and have the underlying code be changed and kept synchronized.

JBuilder continues to add developer support to make the development cycle as
short as possible. This effort falls under the umbrella of Rapid Application Develop-
ment (RAD). JBuilder has taken the concept of two-way tools beyond the humble
beginnings of supporting only GUI development; it now supports a two-way
approach for working with databases and especially EJBs. New integrated wizards
that allow for interaction throughout the application lifecycle have shortened Java pro-
jects considerably, especially when BeansExpress can be used. Today, new tools, such
as refactoring, are being added with unit testing and UML visualization to make devel-
opers as productive as possible.

Part Two shows you how to use all the built-in tools included in the JBuilder IDE
and helps you understand the best way to use them:

Creating Classes. Chapter 7 covers the basic wizards included with JBuilder and
exposed through the Object Gallery. These wizards are focused on all points in the
development process, from creating a simple framework to generating test clients,
unit tests, and even creating and working with deployment features.

Modifying Classes. Chapter 8 covers the basics of creating Java classes that use all
the tools available in JBuilder to make the effort as painless as possible.

136 Part Two

137

Now it is time to start using JBuilder to get some work done programming Java. Up to
this point, we’ve focused on defining the JBuilder user interface and the base tools for
getting work done. Those included JBuilder, its configuration, projects and their lay-
outs, understanding debugging, and understanding the help system. By now you
should have a fairly good understanding of that part of JBuilder. Now you are going to
explore how JBuilder can shorten the Java development cycle by exposing the Java lan-
guage through this great tool. The JBuilder programming environment has a plethora
of shortcuts, tools, and wizards to help make you more productive. JBuilder makes it
convenient by placing a majority of wizards in one place, the Object Gallery, which
contains most of the common tasks in creating a Java programming environment.
Understanding how to use the Object Gallery can save time throughout the Java devel-
opment lifecycle, especially when starting new development projects.

This chapter focuses on using and understanding what the Object Gallery is and
what it can do for you. The Object Gallery tabs cover the organized wizards that
JBuilder includes; give special attention to classes, applications, frameworks, and
applets; and point you to the chapter that covers those wizards.

Creating Classes

C H A P T E R

7

Overview of the Object Gallery

The Object Gallery has a unique interface, found by using the File|New menu item
from the main menu in JBuilder or pressing Ctrl-N on the keyboard. Figure 7.1 shows
an object gallery.

The window that appears has a tabbed interface. The tabs are used to organize the
wizards into logical tasks that the developer will interact with. All of the Object Gallery
wizards are based on the open interface that JBuilder is built on, called OpenTools.
Using OpenTools means that users of JBuilder can add custom wizards to the Object
Gallery at any time. Most of the wizards that are found in the Object Gallery are based
on a multiple-step process in which the developer selects options and presses a Finish
button, and JBuilder produces the output from the selection criteria.

NOTE Wizards are not designed from a two-way tool perspective; they are
usually single-pass processes that will generate code. A two-way tool allows
the developer to make changes to either the code or the graphic representation
and have all changes be kept in sync with each programming interface. Borland
is known for letting developers use the two-way tool paradigm for developing
programs; it actually holds the patent for the process. In early GUI development
environments, this allowed the developer to make a change in the GUI designer
while maintaining the underlying code. This technique is still one of the unique
features of the JBuilder IDE.

On occasion, wizards become more than just simple code generators. This was the
case with JBuilder’s EJB wizards. Since JBuilder 3.5, the EJB wizard was a single-sheet
interface that allowed programmers to select either SessionBean or EntityBean and
press Finish. The resulting code was basic and did nothing to help the developer gen-
erate good EJBs.

The EJB wizard became more intelligent and faster, but the output was still very sta-
tic. If you needed to make a change in the underlying code, you had to generate the
code again, which usually resulted in a loss of code. With JBuilder 6 and the J2EE 1.3
specification, JBuilder introduced a brand new way of using the base wizards in a two-
way tool manner. This allows J2EE developers to graphically design the business back
end using a point-and-click method and to change to code or the model at any time
while keeping everything synchronized. For more information on the EJB develop-
ment, please refer to Parts Five and Six of the book.

Even though most of the wizards in the Object Gallery generate static code, they are
still very valuable to the developer. They can save a lot of time and help establish stan-
dards that eliminate common coding mistakes that otherwise add to a project’s life
span. Some wizards have extra intelligence to make sure that the developer using them
is in the proper place. For example, the Object Gallery wizard checks to see if a project
is open, and if a project was not found, the Application wizard would call the New
Project wizard first. This ensures that a project is created before any code can be
defined in the JBuilder environment.

138 Chapter 7

Figure 7.1 Base Object Gallery.

Object Gallery Tabs

Currently the Object Gallery is divided into nine tabs in JBuilder Enterprise: General,
Project, Web, XML, CORBA, Build, Enterprise, Test, and Web Services. As stated ear-
lier, each tab defines a process that a developer may want to use in a development life-
cycle. The Object Gallery tabs are shown in Figure 7.1.

The Object Gallery will most likely be the first place that developers notice a dis-
tinction between JBuilder editions:

■■ JBuilder Personal is Borland’s free IDE, which can be downloaded from the
Borland Web site. The Personal edition includes only the General tab, with
Application and Class wizards included.

■■ The SE includes the rest except for the Enterprise, Test, and Web Services tabs.

■■ JBuilder Enterprise includes all nine tabs listed.

■■ JBuilder MobileSet includes all of the additional wizards for doing J2ME.
JBuilder MobileSet is outside the scope of this book.

General Tab
Until now in this book, all examples have been created using the File|New Class menu
item. The same outcome could have been achieved using the Object Gallery’s General
Tab and selecting the Class wizard. The Class wizard is one of the most basic of all wiz-
ards inside JBuilder.

Generic information is defined in the single-page dialog. The wizard allows the setting
of the basic information needed when developing a new class in Java (see Figure 7.2). The
Class wizard needs three basic inputs for the class. They include things like Package loca-
tion, Class name, and Base class that the new class will extend. The next set of options,
selectable by checkboxes, is the class’s characteristics. The options include Public, Gener-
ate a main method, Generate header comments, Generate default constructor, Override

Creating Classes 139

140 Chapter 7

superclass constructors, and Override abstract methods. The basic output from this wiz-
ard with the options of Public, Generate header comments, and Generate default con-
structor would look like the following:

package unknown;

/**

* <p>Title: NewClass</p>

* <p>Description: Example new class</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael Rozlog

* @version 1.0

*/

public class NewClass {

public NewClass() {

}

}

Source 7.1 Generated new class.

Not much output was produced from the wizard; however, the work that JBuilder has
completed should not go unrecognized. The wizard allowed for the definition of the
package, class Name, and base class plus a set of options. This information — coupled
with the information defined in the project properties — produces this simple class file
in the proper directory location following the information from the package and the Pro-
jects properties (refer to Chapter 4, “Project Properties and Configurations”). Try to
imagine creating a new class by hand with a package name of com.borland.util.dis-
play.memmanager.opensource.unknown.NewClass. This would be a nightmare!

Understanding this simple wizard that creates a new class is important when learn-
ing JBuilder. It is used as the base wizard for many of the other wizards included in
JBuilder. JBuilder works the same way: Something that looks incredibly simple may be
used throughout the environment many times over in many unexpected ways, so this
base knowledge is always important.

The next wizard found in all editions of JBuilder is the Application wizard. This is a
multistep wizard that defines a complete GUI application. The wizard is one of the
quickest ways to have success with JBuilder the first time out. The code that is gener-
ated will produce a running application that includes the About box.

The first step of the Application wizard is easy; it requires only three options to be
completed. They include the Package, Class name, and Generate header comments.
The framework used in this wizard first sets up an application class it will be respon-
sible for, called a GUI frame. The class name in Step 1 of the wizard represents the
application name; that is why the default name is Application1.

The second step of the Application wizard is for defining the GUI frame class.
Figure 7.3 shows the options available in this step. The options include class name, title
of the frame, and a set of additional features to add to the application.

Figure 7.2 New Class wizard.

The final step of the wizard was new starting with JBuilder 7. The Application wiz-
ard was modified to work in the Runtime configuration process and to select a base
Runtime configuration from other projects of the same type. For more information on
Runtime configurations, refer to Chapter 4.

The steps to follow to produce a Java application using JBuilder are these:

1. Create a new project.

2. Open the Object Gallery, select the Application Wizard, and press OK to
continue.

3. Leave defaults for values in the Application Wizard Step 1 of 3, and click the
Next button.

4. Leave defaults and select all available options for the Application Wizard Step
2 of 3, and click the Next button.

5. Leave the defaults, and click the Finish button.

Figure 7.3 Application wizard Step 2 of 3.

Creating Classes 141

142 Chapter 7

When the Finish button is clicked, JBuilder will generate a complete application fol-
lowing the preceding descriptions and should produce two files. The first file pro-
duced is the application class; it has a name Application1.Java, and the code looks like
the following:

package unknown;

import javax.swing.UIManager;

import java.awt.*;

/**

* <p>Title: Application1</p>

* <p>Description: An Example Application</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael Rozlog

* @version 1.0

*/

public class Application1 {

private boolean packFrame = false;

//Construct the application

public Application1() {

MainFrame frame = new MainFrame();

//Validate frames that have preset sizes

//Pack frames that have useful preferred size info, e.g. from their

layout

if (packFrame) {

frame.pack();

}

else {

frame.validate();

}

//Center the window

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

Dimension frameSize = frame.getSize();

if (frameSize.height > screenSize.height) {

frameSize.height = screenSize.height;

}

if (frameSize.width > screenSize.width) {

frameSize.width = screenSize.width;

}

frame.setLocation((screenSize.width - frameSize.width) / 2,

(screenSize.height - frameSize.height) / 2);

frame.setVisible(true);

Source 7.2 Application 1

Creating Classes 143

}

//Main method

public static void main(String[] args) {

try {

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

}

catch(Exception e) {

e.printStackTrace();

}

new Application1();

}

}

Source 7.2 (continued)

This code shows that Application1.java is the main class. A visual clue to this fact is
apparent in the Structure pane, where the icon to the left of the Application1() method
has a yellow center surrounded by a border, and as per the UML specification, that icon
represents a main class. JBuilder is always trying to reinforce standards throughout the
interface, and this is just one example. This means that the class can be executed by
either right-mouse clicking on the node in the Project pane and choosing Run or by
pressing the Run toolbar item. Clicking the Run icon on the toolbar will work only if the
Application1 class is defined as the default Runtime configuration. Refer to Chapter 4
for more information on Runtime configurations. The code also includes the standard
technique for centering a window on a screen in Java and sets the Look and Feel for the
Java program. The generated code uses the default system properties for this program.

Figure 7.4 Running the generated application.

The Frame class that was generated and defined on the second page of the wizard
with all options chosen generated the following code:

144 Chapter 7

package unknown;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/**

* <p>Title: MainFrame</p>

* <p>Description: Example Frame class</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael Rozlog

* @version 1.0

*/

public class MainFrame extends JFrame {

private JPanel contentPane;

private JMenuBar jMenuBar1 = new JMenuBar();

private JMenu jMenuFile = new JMenu();

private JMenuItem jMenuFileExit = new JMenuItem();

private JMenu jMenuHelp = new JMenu();

private JMenuItem jMenuHelpAbout = new JMenuItem();

private JToolBar jToolBar = new JToolBar();

private JButton jButton1 = new JButton();

private JButton jButton2 = new JButton();

private JButton jButton3 = new JButton();

private ImageIcon image1;

private ImageIcon image2;

private ImageIcon image3;

private JLabel statusBar = new JLabel();

private BorderLayout borderLayout1 = new BorderLayout();

//Construct the frame

public MainFrame() {

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

//Component initialization

private void jbInit() throws Exception {

image1 = new

ImageIcon(unknown.MainFrame.class.getResource(“openFile.gif”));

image2 = new

ImageIcon(unknown.MainFrame.class.getResource(“closeFile.gif”));

Source 7.3 Generated Frame1.java.

Creating Classes 145

image3 = new

ImageIcon(unknown.MainFrame.class.getResource(“help.gif”));

//setIconImage(Toolkit.getDefaultToolkit().createImage(MainFrame.class.g

etResource(“[Your Icon]”)));

contentPane = (JPanel) this.getContentPane();

contentPane.setLayout(borderLayout1);

this.setSize(new Dimension(400, 300));

this.setTitle(“The is an Example Application”);

statusBar.setText(“ “);

jMenuFile.setText(“File”);

jMenuFileExit.setText(“Exit”);

jMenuFileExit.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

jMenuFileExit_actionPerformed(e);

}

});

jMenuHelp.setText(“Help”);

jMenuHelpAbout.setText(“About”);

jMenuHelpAbout.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

jMenuHelpAbout_actionPerformed(e);

}

});

jButton1.setIcon(image1);

jButton1.setToolTipText(“Open File”);

jButton2.setIcon(image2);

jButton2.setToolTipText(“Close File”);

jButton3.setIcon(image3);

jButton3.setToolTipText(“Help”);

jToolBar.add(jButton1);

jToolBar.add(jButton2);

jToolBar.add(jButton3);

jMenuFile.add(jMenuFileExit);

jMenuHelp.add(jMenuHelpAbout);

jMenuBar1.add(jMenuFile);

jMenuBar1.add(jMenuHelp);

this.setJMenuBar(jMenuBar1);

contentPane.add(jToolBar, BorderLayout.NORTH);

contentPane.add(statusBar, BorderLayout.SOUTH);

}

//File | Exit action performed

public void jMenuFileExit_actionPerformed(ActionEvent e) {

System.exit(0);

}

//Help | About action performed

public void jMenuHelpAbout_actionPerformed(ActionEvent e) {

MainFrame_AboutBox dlg = new MainFrame_AboutBox(this);

Source 7.3 (continued)

146 Chapter 7

NO PROPRIETARY CODE GENERATED

JBuilder does not use any proprietary markers or nonstandard Java when developing with
components or generating code. Other Java IDEs use special tags or compiler markers
that could not be moved or modified because the IDE needed to keep track of them to
keep the views synchronized. JBuilder, on the other hand, uses a standard method to
place all of the GUI code; that way when you change a piece of code in that method, the
designer knows to update. Vice versa, when the GUI changes, it will update the code as
well. This inconsistency between IDEs is due to a limitation in the JavaBean specification,
which does not require GUI code to be located in a certain place or initialization area.
This means technically that you could spread your GUI code throughout your class and
the Java compiler has to assemble everything. This makes it incredibly hard for IDEs to
handle; thus there are different ways to solve the problem.

Dimension dlgSize = dlg.getPreferredSize();

Dimension frmSize = getSize();

Point loc = getLocation();

dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x,

(frmSize.height - dlgSize.height) / 2 + loc.y);

dlg.setModal(true);

dlg.pack();

dlg.show();

}

//Overridden so we can exit when window is closed

protected void processWindowEvent(WindowEvent e) {

super.processWindowEvent(e);

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

jMenuFileExit_actionPerformed(null);

}

}

}

Source 7.3 (continued)

This code generates a complete example (see Figure 7.5). After the instance declara-
tions, you will see that the constructor for the class includes a try block that includes a
method call to jbInit(). This private method is the key to all GUI applications in
JBuilder. The GUI designer found inside JBuilder specifically hunts for this method
when defining the GUI screen.

Seeing the jbInit() method in a class also tells you that a developer has used the GUI
designer inside JBuilder. If you click the Design tab under the Content pane, it will
change to a GUI designer.

Reviewing the code located in the jbInit() method shows all the components that are
part of the GUI interface. Clicking the Design tab under the Content pane will give you
a sneak peak at the GUI designer found in JBuilder (more on this in Chapter 8,
“Modifying Classes”). In Figure 7.5, notice that the Structure pane has been changed to
a component tree. An Object inspector has been added to the right side of the screen
that allows for changing the properties and events of JavaBean components. Remem-
ber that all changes made in this view are made in the code at the same time; this is
what gives JBuilder its two-way tool ability.

This simple example has a few coding tricks to make note of. It shows how to use
icons in a GUI application and menus and how to work with dialogs, which are nice to
know when designing GUI applications. This first application generated by JBuilder
had no additional code provided by the developer to make it work. This application
could be used by any developer to get a project to the prototype stage very quickly, and
it shows that generated code can be good, useful code.

The Interface wizard works exactly like the Class wizard. It is a single-page wizard
that allows the setting of the package, interface name, and base interface. Once the crite-
ria have been selected and the Finish button is clicked, JBuilder will produce a standard
interface file. This wizard is found only in the SE and Enterprise editions.

The JavaBean wizard is covered in detail in Chapter 13, “Building the Database with
JDataStore.” This wizard is also available only in the SE and Enterprise editions.

Figure 7.5 The GUI designer.

Creating Classes 147

Figure 7.6 Project tab.

The Dialog, Frame, and Panel wizards are all single-page wizards that allow for cre-
ating simple classes of those types. The Dialog wizard will produce a standard dialog
with a panel included; the GUI designer is used to customize the dialog. Source 7.3
gives an example of the proper way to call a dialog and the method public void
jMenuHelpAbout_actionPerformed(ActionEvent e). The Frame and Panel wizards
generate standard empty frames and panels that the GUI designers can manipulate
and customize.

The final two wizards on this tab, Data Module and Data Module Application, are
covered in Chapter 13 and Chapter 14, “DataExpress and DBSwing Applications.”
These two are found only in the Enterprise Edition of JBuilder.

Project Tab
The Project tab (see Figure 7.6) includes all the necessary wizards for setting up pro-
jects to use from within JBuilder. The complete Project wizard and its associated prop-
erties were covered in their entirety in Chapter 4.

Web Tab
The Web tab (see Figure 7.7) is found in all JBuilder editions; however, the Applet wiz-
ard is the only one enabled in all editions. The remaining wizards are covered in Part
Five, “Web Development with Servlets, JavaServer Pages, and Struts.”

The one wizard that will not be covered beyond this point is the Applet wizard. This
is a multipage wizard for creating and running applets. In Figure 7.8 and Figure 7.9,
notice that only two pages of the Applet wizard are displayed — these two pages in
particular are the pages that produce the output from the wizard. The first page deals
with the standard information JBuilder needs to create a class file.

Figure 7.7 Web tab.

148 Chapter 7

Figure 7.8 Applet wizard, Step 1 of 4.

The second page allows for parameters to be defined for the HTM file that will be
generated, and the final page (Figure 7.9) is used for setting up a Runtime configura-
tion, as covered previously. When the Finish button is clicked, the output includes two
files, one of which is a base-level HTML page that includes the <applet> tag. The other
is the applet class based on the java.applet.Applet or javax.swing.JApplet.

Just with the information exposed here, the first area of contention is exposed. This
is a classic dilemma of supporting the older Applet base class or the new JApplet class.
The first thing to remember is that if you are going to use the JApplet class, most likely
you will need to have the latest Java/JDK plug-in installed on the executing machine.
This also means that at deployment time, if the executing computer does not have the
JDK plug-in, the applet will not run. The user of that system will have to download the
appropriate files from Sun before they can proceed. This is only one issue when it
comes to dealing with applets; there are many more. There are just too many problems
with applets to list in this text; many books, articles, and Web sites have been devel-
oped over the years to outline all the issues and give suggestions about how to get
around the major ones.

Figure 7.9 Applet wizard, Step 3 of 4.

Creating Classes 149

150 Chapter 7

In this case, we recommend reading the JBuilder documentation (“Working with
Applets”). It covers most of the basic information and has additional pointers from
various people who have put in major time and effort trying to get applets to work in
their environment.

We have included the output from the wizard here to highlight some of the interest-
ing programming techniques found in the source:

package untitled7;

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import javax.swing.*;

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: Borland Software</p>

* @author Michael Rozlog

* @version 1.0

*/

public class Applet1 extends JApplet {

private boolean isStandalone = false;

//Get a parameter value

public String getParameter(String key, String def) {

return isStandalone ? System.getProperty(key, def) :

(getParameter(key) != null ? getParameter(key) : def);

}

//Construct the applet

public Applet1() {

}

//Initialize the applet

public void init() {

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

//Component initialization

private void jbInit() throws Exception {

this.setSize(new Dimension(400,300));

}

//Get Applet information

public String getAppletInfo() {

return “Applet Information”;

Source 7.4 Generated Applet1 code.

Creating Classes 151

}

//Get parameter info

public String[][] getParameterInfo() {

return null;

}

//static initializer for setting look & feel

static {

try {

//UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

//UIManager.setLookAndFeel(UIManager.getCrossPlatformLookAndFeelClassNam

e());

}

catch(Exception e) {

}

}

}

Source 7.4 (continued)

The only real difference between the java.applet.Applet and the javax.swing.JApplet
is a static initializer used for setting the swing Look and Feel. The other interesting area
of code is the use of the Ternary (set of three) operator or conditional Boolean operator as
defined by Sun, found in the public String getParameter(String key, String def method.

A Ternary operator is one that will produce a value. It is set up as follows:
boolean-expression ? value-0 : value-1
If the boolean-expression is true, then value-0 will be set; if the boolean-expression is

false, then value-1 will be set. The question may be raised as to why use a Ternary expres-
sion. The answer is fewer keystrokes than if-else block, and the execution should be faster.
A word of caution, though, when using a lot of Ternary operators: They can become very
difficult to read after a while. This is a perfect example of saving space but making the
code more complicated than it really needs to be. It uses a nested Ternary expression, and
the value-1 is another Ternary operator, which again will produce either a value-0 or a
value-1, which again will satisfy the return value for the calling Ternary expression.

XML Tab
The XML tab (Figure 7.10) is found only in the JBuilder Enterprise edition.

Figure 7.10 XML tab in the Enterprise edition only.

Figure 7.11 CORBA tab in the Enterprise edition only.

CORBA Tab
The CORBA tab (see Figure 7.11) is found only in the JBuilder Enterprise edition and is
covered in Chapter 22, “CORBA Development with JBuilder.”

Build Tab
The Build tab (see Figure 7.12) is found only in the JBuilder SE and Enterprise editions
and is covered in Chapter 10, “Using Build Systems.”

Enterprise Tab
The Enterprise tab (see Figure 7.13) is included only in the Enterprise edition and is
covered in Part Six, “Enterprise Development with Enterprise JavaBeans.”

Figure 7.12 Build tab in the SE and Enterprise editions only.

Figure 7.13 Enterprise tab in the Enterprise edition only.

152 Chapter 7

Figure 7.14 Test tab in the Enterprise edition only.

Figure 7.15 Web Services tab in the Enterprise edition only.

Test Tab
The Test tab (see Figure 7.14) is included only in the Enterprise edition and is covered
in Chapter 11, “Unit Testing with JUnit.”

Web Services Tab
The Web Services tab (see Figure 7.15) is found only in the JBuilder Enterprise edition
and is covered in Chapter 23, “Web Services Development with JBuilder.”

Summary

The Object Gallery is full of useful wizards that eliminate a lot of tedious tasks and, we
hope, lower the amount of simple errors in setting up projects. Most of the wizards
defined are very simple in nature, but they open the door to the power of JBuilder.

Creating Classes 153

155

Understanding the complete JBuilder environment can be a daunting task. Learning
about all the shortcuts, wizards, editor options, and plug-ins can be time-consuming;
then add the number of new features added to JBuilder with each new release and a
very fast release schedule, and you have a lot of time needed to master the tool. This
chapter relieves the pain of using an ever-expanding tool by exposing all the panes,
tools, wizards, and shortcuts available to the JBuilder developer.

One of the first features that JBuilder brought to the Java development community
was its ability to develop JavaBeans to the 1.1 specification. One of the interesting his-
torical items is that JBuilder was actually redesigned to take advantage of that specifi-
cation and that the prior internal version was killed. The example that is used
throughout this chapter covers creating a couple of JavaBeans; the first is a basic busi-
ness bean, and the second adds a GUI to expose the underlying functionality of the
first bean. JavaBeans can be either GUI based or non–GUI based; the important part is
that each JavaBean component can be manipulated during the construction phase in a
Java IDE that supports JavaBeans. This chapter focuses on creating a set of beans and
exposing their functionality through the JBuilder IDE. The example goes over a major
portion of the JBuilder environment and shows how to manage all its capabilities.

Creating the First JavaBean

The first step is to create a new JBuilder project and name it: basebean. For this exam-
ple, the basebean will be the non-GUI business logic bean. This can be accomplished by

Modifying Classes

C H A P T E R

8

either clicking the File|New Project menu item or by bringing up the Object gallery
and selecting the Project tab and either double-clicking the Project icon or just selecting
the Project icon and then clicking the OK button.

The next step is to create a JavaBean by clicking the File|New menu item, selecting
the JavaBean icon, and clicking the OK button. This will display a single-page dialog
(see Figure 8.1) that will help define the JavaBean.

Notice that the package was defined by name in the project definition phase (for ref-
erence, projects creation was covered in Chapter 4, “Project Properties and Configura-
tions”). This is the first opportunity to change this, or you can change it later using
JBuilder’s refactoring features. The next option is to name the class (for this example,
name it MyBaseBean), followed by choosing what base class will be used for this Java-
Bean; this should be java.lang.Object. Keep in mind that the base class must not be
final; an example of this would be trying to extend a class like java.lang.String. JBuilder
will warn the developer of such mistakes and not allow them to continue.

Figure 8.1 JavaBean wizard.

156 Chapter 8

WHERE DID JAVABEANS COME FROM?

JavaBeans are developed using a standard framework for creating components that Sun
released with its JDK 1.1. These components are everywhere in the Java platform; GUI
components, JFC (Swing), and JSP all are making use of them. The original intent was to
have these components developed by a specialized group of developers who would
release these components to the Java community to be used by the standard developer.
This followed the successful pattern started with the ActiveX community for Microsoft.
One of the main requirements for JavaBeans stated that most of the functionality would
be exposed through Java IDEs. A JavaBean is rather simple to construct, and no “extra”
knowledge is needed to create them. This has been a huge advantage for Java because
this makes the technology available to everybody, not just a select group of gurus, as in
the Microsoft ActiveX community. One of the nice features about JBuilder is that it will
step through the process of creating JavaBeans and has additional tools to determine
whether a class is really a JavaBean.

The wizard remembers the last six beans used as the base class. The most commonly
used ones include the java.lang.Object and javax.swing.Panel. You can also search the
entire library collection of objects that could be used as the base class for a JavaBean by
using the (...) button; the class filter will be display.

When the class filter is displayed, it will show the Object as highlighted because this
was the object selected in the JavaBean wizard. This tool has a lot of intelligence
included, and it will become the developer’s favorite tool as he or she learns its fea-
tures. If the developer needs to find a class like BoxLayout but does not know where
the package is located, select the Search tab, and in the Search for: edit box start typing
the word “box”, without the quotes, and the class filter will display all classes with the
same name in the listbox. The Class filter tool will search all the defined libraries (see
Chapter 2, “Customizing the AppBrowser”) in the project and return a list of matching
classes to the search criteria.

TI P The class filter can be displayed anytime in the editor by pressing the
Control-minus key combination for fast file viewing.

For the example, erase the “box” and replace it with “object”, then select the
java.lang.Object from the list and click the OK button to continue. The next option on
the JavaBean wizard is a checkbox for “Allow only JavaBeans,” which will tell JBuilder
to warn the developer if he or she tries to add any classes to the class that do not adhere
to the JavaBean specification. This option can be left blank for our example.

Figure 8.2 Find Classes.

The next block of options adds characteristics to the class that will be generated. Notice
the options selected for the developer. The Public, Generate default constructor, and Gen-
erate header comments options are checked, and the first two are required for JavaBeans.
The last option adds the JavaDoc header to the file. The Generate main method and Gen-
erate sample property are not needed for this example so leave them blank. You may recall
that, in Chapter 7, “Creating Classes,” when the new Class wizard was discussed, it shared
some of the same options. Click the OK button to continue. The output from the code gen-
erator may seem a little light, but it does adhere to all of the JavaBean specifications:

Modifying Classes 157

package basebean;

/**

* <p>Title: MyBaseBean</p>

* <p>Description: A generic business bean</p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: Borland</p>

* @author Michael Rozlog

* @version 1.0

*/

public class MyBaseBean {

public MyBaseBean() {

}

}

A JavaBean requires a public class with a public constructor, which the generated
class definitely has. It supports the concept of properties, methods, and events. Proper-
ties represent attributes of the JavaBean that has accessor methods for getting and setting
the values. Standard Java methods are used to manipulate the JavaBean component and
work with the accessor methods. Finally, the events are a way for JavaBeans to send and
receive notification to one another. Notice that none of the characteristics of a JavaBean
is outside the Java programming language, which makes understanding JavaBeans a
logical extension to understanding how to work with Java.

package example;

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: Borland</p>

* @author Michael Rozlog

* @version 1.0

*/

public class MyBaseBean {

private String sample = “Sample”;

public MyBaseBean() {

}

public String getSample() {

return sample;

}

public void setSample(String sample) {

this.sample = sample;

}

}

158 Chapter 8

If in the last example the Generate sample property option had been checked, then
an instance variable and two methods would have been added. The first would have
been a getter, and the second would have been a setter, which would make the instance
variable a property by the JavaBean specification.

How can you tell if the Java class created is a JavaBean? JBuilder SE and Enterprise
offer a tool called BeanInsight that allows you to check any class for JavaBean charac-
teristics. This can be helpful when you are trying to understand why a class behaves a
certain way when you think it should work another. A quick example explains one of
the questions people always ask about: Why does JBuilder include BoxLayout2 instead
of using the standard javax.swing.BoxLayout class? The answer is that BoxLayout is
not a JavaBean. Using BeanInsight will show exactly where javax.swing.BoxLayout is
lacking. Click the Tools|BeanInsight menu item to start the tool.

By using the (...) button in the tool, the class filter (see Figure 8.3) will be displayed.
Using the Search tab in the interface and then typing boxlayout, then selecting the
javax.swing.BoxLayout and clicking OK will add that class to the BeanInsight tool;
then click the Examine Bean button. The output from the examination can be found in
Figure 8.4; as you can see, it reports that javax.swing.BoxLayout is not a JavaBean. To
understand why it is not a bean, click the View Details button.

Notice that javax.swing.BoxLayout is not a JavaBean because of the lack of a param-
eterless default constructor. All information for the bean can be reviewed through this
interface; additional information on the BeanInfo, Properties, Events Sets, Property
Editors, Customizer, and Attributes can be obtained on the tabs. This would be the rea-
son for JBuilder to include its own class for doing box layout called BoxLayout2; its
only purpose is to inherit the original javax.swing.BoxLayout and add a parameterless
constructor in the new class, thus allowing it to be used in the JBuilder IDE correctly.

Figure 8.3 BeanInsight interface.

Modifying Classes 159

Figure 8.4 BeanInsight Details dialog.

Adding Properties
The JavaBean specification has been reviewed, and some JBuilder tools have been
exposed. Now it is time to define the rest of the JavaBeans that will be covered in this
example. Adding properties is easy in the JBuilder environment. This example uses
BeansExpress (see Figure 8.5) to help define and simplify the JavaBean building
process. BeansExpress was one of the first specialized designers added to JBuilder 1.0.
It made creating and manipulating JavaBeans very simple and very accessible, and it
cuts the amount of typing the developer has to do to create JavaBeans. Clicking on the
Bean tab under the Content pane will start the BeansExpress designer.

BeansExpress can be used with any Java class. This helps when you want to add
properties or an event to a class. Almost any class can be a JavaBean if it follows the sim-
ple rules, public class, and public parameterless constructor and uses the JavaBean
design patterns of properties, methods, and events. Interestingly enough, BeansExpress
was developed using those concepts for the interface and follows that same pattern.

In Figure 8.5, the General tab for BeansExpress is always selected when first started.
The first decision that needs to be made is whether the JavaBean will support persis-
tence. Java serialization comes free with Java and is the fastest and easiest way to sup-
port persistence; it ensures the “write once, run anywhere” paradigm. In some cases,
however, this persistence mechanism has far too many limitations to be reliable. There
are also various other methods of persistence from other file formats that use some of
the newer APIs found in the JDK for persistence to XML as examples. This example
does not use serialization, so nothing needs to be done on the first page. Again, if you
wanted to use it, just click the checkbox, and the readObject() and writeObject() meth-
ods would be added to the JavaBean.

160 Chapter 8

Figure 8.5 BeansExpress interface.

MyBaseBean will have three properties associated with it. Table 8.1 outlines the
types of attributes the bean includes.

Table 8.1. MyBaseBean Properties

NAME TYPE GETTER SETTER BINDING EVENT

aName String Yes Yes None NameChange

aZip String Yes Yes Bound None

aAmount int Constrained None

aText String Yes Yes None None

aValue int Yes No None None

Modifying Classes 161

Clicking on the Properties tab will move the designer to the next step. The main
Properties page is defined by the class in focus. Two buttons are located on the page:
Add Property and Remove Property. The Add Property button will produce an inter-
face (see Figure 8.6); this interface has additional advanced capabilities that are
explained later in the chapter.

The top portion of the New Properties dialog (Figure 8.6) is where the important
information for the attribute will be captured. The first data point is the name of the
property; the second data point refers to the type of data, either primitive or object.
Using the (...) will produce the class filter tool (shown in Figure 8.2), making it very
easy to find the class that is being included.

The next set of checkboxes refers to add getters and setters; these checkboxes can be
selected to add the accessor methods for the property. The main way a property gets
exposed to a Java IDE like JBuilder is by using introspection of the JavaBean and
returning all attributes that have getters and setters. This does not mean that all attri-
butes of a class need both methods; actually, sometimes it is better to have only a get-
ter for a particular attribute, which would make that attribute read-only. Likewise, if
only a setter method is present for that particular attribute, then it would be write-only.
Later in the chapter, other methods of exposing properties are discussed.

The final area of discussion is binding; this refers to the property’s sending out noti-
fication in the form of events that its value has changed. You have three possible settings
for binding:

None. This means that no events are fired when a value is changed.

Bound. This refers to a generic event being fired, the PropertyChangeListener.
This allows general objects to listen for that change event and act accordingly.

Constrained. This shares the same characteristics of a bound property, but it also
has the ability to be vetoed. This means that other objects can reject the change
in value and make the component revert to another value.

Figure 8.6 New Property dialog.

162 Chapter 8

The New Property dialog is very simple to use because the first attribute to make
into a property will be aName. Type that name into the Property name field. The type
of aName is a String, and as it states in the MyBaseBean property table, it has both a
getter and a setter. Because everything has been filled in, you can just press Return, and
the dialog is ready for the next attribute. Each time you add an attribute to the dialog
box in the Structure pane, a private variable for the attribute is added and a getter and
setter method for that attribute is added. This produces a JavaBean property, as
defined in the JavaBean specification:

private String aName;

public String getAName() {

return aName;

}

public void setAName(String aName) {

this.aName = aName;

}

The aZip property has the same default except that it is a bound property. Click the
drop-down listbox and select the bound item. Because a change was made with the
mouse or the focus is away from the name field, clicking the Apply button is necessary
to add the attribute. The code generator did more than just add the private attribute
and its accesssor methods, it also added a PropertyChangeSupport object and the Add
and Remove PropertyChangeListener methods:

private String aZip;

transient private PropertyChangeSupport propertyChangeListeners =

new

PropertyChangeSupport(this);

public void setAZip(String aZip) {

String oldAZip = this.aZip;

this.aZip = aZip;

propertyChangeListeners.firePropertyChange(“aZip”, oldAZip, aZip);

}

public String getAZip() {

return aZip;

}

public synchronized void

removePropertyChangeListener(PropertyChangeListener l) {

propertyChangeListeners.removePropertyChangeListener(l);

}

public synchronized void

addPropertyChangeListener(PropertyChangeListener l) {

propertyChangeListeners.addPropertyChangeListener(l);

}

Modifying Classes 163

The first noticeable point of the code is that the PropertyChangeSupport object is
marked as transient. This is done so that if the class had defined to be persisted with
Serialization, this object would not get serialized. The other interesting part about the
code is that both the add and remove methods are synchronized to ensure that the
object references do not get lost with multiple referencing hitting them. The last point
to be made about the code added is the actual setAZip() method. Notice the statement
for saving the old value. Then the next expression changes the value, and, because this
property is bound, it sends a generic message stating that it has been changed by send-
ing the name of the property and its old and new values.

The next property in the MyBaseBean property table is the aAmount; it is of type int,
and it is a constrained property. The binding listbox needs to be set to constrained.
Click the Apply button to add the attribute. Like the aZip property, because aAmount
is constrained, extra code is generated to support the veto ability of the property:

private int aAmount;

transient private VetoableChangeSupport vetoableChangeListeners =

new

VetoableChangeSupport(this);

public void setAAmount(int aAmount) throws

java.beans.PropertyVetoException {

int oldAAmount = this.aAmount;

vetoableChangeListeners.fireVetoableChange

(“aAmount”, new Integer(oldAAmount), new Integer(aAmount));

this.aAmount = aAmount;

propertyChangeListeners.firePropertyChange

(“aAmount”, new Integer(oldAAmount), new Integer(aAmount));

}

public int getAAmount() {

return aAmount;

}

public synchronized void

removeVetoableChangeListener(VetoableChangeListener l) {

vetoableChangeListeners.removeVetoableChangeListener(l);

}

public synchronized void

addVetoableChangeListener(VetoableChangeListener l) {

vetoableChangeListeners.addVetoableChangeListener(l);

}

Like the aZip bound property, the aAmount attribute uses the same code setup. The
VetoChangeSupport is marked as transient for the same reasons, and the add and
remove methods are both synchronized the same way. The interesting area is located in
the actual setAAmount() method. First the method throws a PropertyVetoException, and
then the old value is kept. The method fires the VetoableChange event, which includes
the name of the property and the old and new values for the change. This allows any
object that is listening for the event to accept or veto the change. Once that method has

164 Chapter 8

completed, the new value is set and the actual fire PropertyChange method is called to
notify all listing objects that the object has changed.

Both the PropertyChangeSupport and the VetoChangeSupport objects are generic in
nature, allowing each object to be used with multiple objects. When a VetoableChange
event occurs, the listening program throws the PropertyVetoException, which is then
caught by the method. A property can be vetoed, and the logic for setting another value
has to be accepted. The coding structure allows for only two passes; that is why it is
important to add the logic for reverting to the prior value.

The final two attributes, aValue and aText, have no special meaning at this time.
They can be added by following the MyBaseBean table and setting the appropriate
options; the aText property is discussed later in the chapter. The aValue property is just
an example of a read-only property; it also has a special purpose, which is discussed
later in the chapter. Once these two attributes have been added, click the OK button to
continue. It is always wise to save your work periodically, so it is also not a bad idea
to save the project at this time.

Adding Events
Using BeansExpress to add the attributes to MyBaseBean saved a lot of typing and
added a lot of functionality with a few checkboxes. Events are just as easy to add. One
of the properties that we added was aName. This property had nothing special associ-
ated with it, but whenever the name is changed, it would be nice to fire an event that
states that the name has been changed. Events in the JavaBeans specification are bro-
ken down into two basic objects and one interface. The first object is the Event source,
which is responsible for firing the event. The second type of object is called the event
object; these objects get fired from the event source. Then the event listeners — the
interface portion of the event chain — handle the event through its implementation.
Event listeners have to register with the event sources through the event objects, which
allow for the completed circle of communication.

Using the BeansExpress interface, click on the Events tab to display a list of generic
events that can either be fired or listened for by the bean (see Figure 8.7). The events
that are listed are from the Abstract Windows Toolkit (AWT) event model and the
Swing event model. None of the events currently has anything to do with the aName
property. You now have two options. The first option is the Import event set, which,
once imported, will be added to the available event list and then its options can be
checked to be either fired or listened for from the class. The other option is to create a
custom event, which will give the ability to define a new type of event set. Click the
Add new event button to display the dialog, as shown in Figure 8.7.

The first option is to name the new event set; this should be changed to NameChange.
The new event object and listener will be added with the new name. The next is the
actual events that will be included in the event set. For this example, you will fire only
one event — the nameChanged event. Others could be added by simply clicking the
Add new event button. For every event added, a fire method will be created for that
event; this gives the developer the option to create a whole set of events under one
common event type. Once this has been completed, clicking the OK button will return
to the events page.

Modifying Classes 165

Figure 8.7 New Event Set dialog.

Two new files have been added to the Project pane, the NameChangeEvent and the
NameChangeListener. Notice also that the event list shows the new NameChange
events for both firing and listening. Click the NameChange under the fire list; a fire-
NameChange method will be added to the Structure pane for MyBaseBean.

transient private Vector nameChangeListeners;

public synchronized void removeNameChangeListener(NameChangeListener l)

{

if (nameChangeListeners != null && nameChangeListeners.contains(l))

{

Vector v = (Vector) nameChangeListeners.clone();

v.removeElement(l);

nameChangeListeners = v;

}

}

public synchronized void addNameChangeListener(NameChangeListener l) {

Vector v = nameChangeListeners == null ? new Vector(2) : (Vector)

nameChangeListeners.clone();

if (!v.contains(l)) {

v.addElement(l);

nameChangeListeners = v;

}

}

166 Chapter 8

protected void fireNameChanged(NameChangeEvent e) {

if (nameChangeListeners != null) {

Vector listeners = nameChangeListeners;

int count = listeners.size();

for (int i = 0; i < count; i++) {

((NameChangeListener) listeners.elementAt(i)).nameChanged(e);

}

}

}

Again, the vector that holds the NameChangeListeners objects is marked as tran-
sient because the state should not be kept between instantiations and the add and
remove method are still synchronized. The interesting part of the code comes with the
fireNameChange(NameChangeEvent e) method, which is responsible for notifying
each resisted listener that the value has changed. Notice in Figure 8.8 that the new
NameChange event has been added to the list of possible events to either fire or listen
for. Saving a rebuilding at this stage is always recommended, although the time to
recreate the project to this point would be insignificant.

Figure 8.8 JBuilder and Events panel.

Modifying Classes 167

Adding Property Editors
Often, properties can have defined values or can be represented by other objects that
have a full set of attributes associated with them. The JavaBean specification outlines
property editors, which are specialized classes that the Java IDEs can use to help set
properties. Some of the common property editors that most people have been exposed
to while using a Java IDE like JBuilder include border, color, and font properties. Each
is packaged with specialized editors from Sun. The BeansExpress interface gives a very
easy way to add customized property editors to your JavaBean. The property aZip
could have a set of Zip codes returned, making it very easy for the developer to choose
the proper Zip code, thereby eliminating typing and bad information.

To add a property editor in BeansExpress, simply click the Property Editor tab. This
will display all the registered property editors for this project. As with the Events tab,
two options are available, Create Custom Editor or Import Property Editor. Click the
Create Custom Editor option to show the dialog (see Figure 8.9).

The first task is to name the new Property Editor ZipList. The second task is to select
the type of editor it will become. The choices include the following:

■■ String List, a set of string values that get selected

■■ String tag list, a value pair with both values being type String

■■ Integer tag list, which includes a display String, int value, and Java initialization
string

■■ Custom Editor Component, which includes the name of the class and whether
the editor will paint itself

For this editor, use a String List and add five strings to the list by clicking the Add
Entry button. Double-clicking on each line and editing the value can accomplish cus-
tomization of the String values. Click the OK button to complete this task.

Figure 8.9 New Property Editor dialog.

168 Chapter 8

Adding a BeanInfo Class
JavaBeans use introspection and reflection to obtain information about JavaBean
classes and whether the specification design patterns were adhered to when creating a
JavaBean. This technique works well. Additional properties and resources need to be
added to the JavaBean, though. A JavaBean is meant to be used in the Java IDE, and the
BeanInfo class was created to hold resources like images to be used on a component
pallet, attributes for overriding exposure of properties, and the ability to assign prop-
erty editors to a particular property. All these things need to be included with a Java-
Bean and are held in the BeanInfo class. Click the BeanInfo tab in the BeansExpress
interface to start the designer (see Figure 8.10).

Figure 8.10 BeanInfo interface.

The following steps need to be taken:

1. Add icons.

2. Set property editors.

3. Limit exposure of properties.

The first thing to take care of is to add icons to the project source to be added to the
interface. Starting with JBuilder 8 and JDK 1.4.x, the drag-and-drop has finally been
enabled so that it is now possible to drag a file from a file explorer and drop it into the
JBuilder editor. Currently this adds it only for viewing purposes; it does not add it to
the project. This can be done using the Add file to project button at the top of the Proj-
ect pane. The most successful way to handle this task is to copy the images to your
source directory first, then add them to the project using the Add file button. Use any
16 x 16 and 32 x 32 icons that are available. If no icons are associated with the BeanInfo
class, JBuilder will assign a generic icon; however, JBuilder will also throw an excep-
tion explaining that a resource is missing in the GUI designer. This exception will not
cause the component not to work; it is more for information purposes. Once the files have

Modifying Classes 169

been added to your project, right-mouse click on the files and verify the properties for
this node type (see Figure 8.11), and it should be set to copy.

Setting the property to copy will make sure that the images are copied into the out-
put directory and can be built in a proper fashion during that process. For more infor-
mation on the build process, refer to Chapter 10, “Using Build Systems.” Once this is
complete, click the OK button to continue.

Once the images have been copied and the properties set, it is time to associate them
with the BeanInfo. Clicking in the (...) beside the icon edit box will allow you to assign
the images. You can use color images for both color and mono icons.

Next, the property editor needs to be set for the aZip property. This can be done by
double-clicking in the editor cell on the aZip row and adding the ZipList name; make
sure to press Return to save the value.

The last attribute that needs to be set in the BeanInfo class is to turn off exposure of
the aText property. There are times when properties are part of the class; however, they
are not to be exposed to the Java IDEs. This gives the developer the ultimate control
over the exposure level. To un-expose the property, simply deselect the aText and AText
properties.

Once the resources, assignments, and exposures have been set, the final task is to
generate the BeanInfo. Before the button is clicked, another option is available to you,
to Expose superclass BeanInfo. If a lot of properties from the underlying class would be
useful to the developer, and if they will not interfere with the understanding of the
component, this option can be selected. For our object, leave it unselected. Click the
Generate BeanInfo button, and the JBuilder code generators will create the BeanInfo class.

Figure 8.11 Properites for Selected Nodes dialog.

170 Chapter 8

The lower half of the Add Properties dialog in Figure 8.6 exposes a single location for
setting BeanInfo data. This lower part of the dialog can be used to set exposure levels,
define new labels for properties, and point the property to the custom property editor.
This can save time and help the developer expose these options early in the develop-
ment process.

WARN I NG Sometimes BeansExpress can be too smart for its own good.
Sometimes when the BeanInfo or properties need to be changed, JBuilder will
not allow changes to occur, no matter how the developer tries to fix the
problem. If this occurs, simply exit JBuilder and go to the source directory and
delete the {bean name}.jpx and {bean name}.jpx~ files and restart JBuilder.
These files are used by BeansExpress so that it remembers where it was if you
come back to a session at a later time.

Now is a good time to save and rebuild the code. This should take only a few names
and button clicks, as BeansExpress should have generated everything up to this point.

Adding Custom Code
A few lines of custom code are needed to make the JavaBean complete. The first task
is to add a fireNameChange event when the name gets changed. Because the
NameChange event is a custom event set, the extra line needs to be added to the source
code. Click the source tab, and then click on the setName(String aName) method to
take the focus to that method. Add a line after the aName value is set. Then using
ClassInsight (Ctrl-H), start typing in the word fire, select the fireChangeName method,
and press Return. This will put the cursor inside the first open parentheses; notice that
ParameterInsight tells the developer that the method is expecting NameChangeEvent.
Because a NameChangeEvent is not lying around, create a new NameChangeEvent
(again, when the ParameterInsight appears, it will ask for a source). Because the object
is changing the name in this bean, use the this keyword and finish the line. It should
appear like this:

fireNameChanged(new NameChangeEvent(this));

You should also check to see whether the base level object methods should be over-
ridden. These methods include toString(), hashcode(), equals(), and sometimes clone().
Good coding practices state that whenever you create a new object, these three meth-
ods should be overridden. In general practice, most new objects can be made without
overriding these methods without a problem. For insight into the problem, press the
Ctrl-minus key combination; this will start the Class filter. Click on the Search tab and
enter the object in the edit box, then select the java.lang.Object and click OK to con-
tinue. This will load the java.lang.Object source into JBuilder. Click the Doc tab, and
review the Hashcode() and Equals() methods documentation on the subject. Various
articles have been written on the subject of just how to write the best methods for hash-
code() and equals(), which is outside the scope of this book.

Modifying Classes 171

Java’s Way of Solving the Problem
Currently it depends on the situation you are trying to solve; however, looking at the
JDK for answers can be a great place to start. One object that always has to follow the
rules set in the Java documentation would be the java.lang.String class. Keep in mind
that the String class is marked as final, but the equals() and hashcode() methods give
some great examples.

This code actually counts the value of the string to make sure another string matches it:

public boolean equals(Object anObject) {

if (this == anObject) {

return true;

}

if (anObject instanceof String) {

String anotherString = (String)anObject;

int n = count;

if (n == anotherString.count) {

char v1[] = value;

char v2[] = anotherString.value;

int i = offset;

int j = anotherString.offset;

while (n-- != 0) {

if (v1[i++] != v2[j++])

return false;

}

return true;

}

}

return false;

}

The hashcode method creates value of the string: public int hashCode() {

int h = hash;

if (h == 0) {

int off = offset;

char val[] = value;

int len = count;

for (int i = 0; i < len; i++) {

h = 31*h + val[off++];

}

hash = h;

}

return h;

}

Both examples ensure that each object will adhere to the stated rules for overriding
these methods when creating a new object.

This example uses simple techniques to get around the technical issues associated
with creating a new object in Java. Because the JavaBean will not be used often and
most likely will not be searched in large hashtables, these techniques will not cause
major problems. If, however, the object would be used in those types of systems that

172 Chapter 8

have huge hashtables, then the methods might have to be rewritten to maintain the
speed of the search.

JBuilder wizards can be used to override these methods. Make sure the current class
in focus inside JBuilder is the MyBaseBean, then click the Wizards|Override Methods
menu item; this will display the object’s methods that can be overridden.

Notice that the inherited classes show only the java.lang.Object because MyBaseBean
extends only objects. If other objects were present, they would be presented in a separate
tree node. You can also select the class from the drop-down listbox located inside the
dialog; keep in mind that it is read only and cannot be modified. Select the
equals(Object), hashCode(), and toString() methods by holding down the Shift key while
using the mouse to select. Click the OK button, and you will notice that three new meth-
ods were added to the Structure pane. The To Do tree-node icon located in the Structure
pane should also be added. If expanded, the tree should show all three new methods.

Figure 8.12 Override Method Wizard dialog.

Setting To-Do’s Inside Code
Any time you want to leave a note, message, or reminder about a piece of code, you
can leave a simple to-do JavaDoc tag. This can be done almost anywhere in the code by
typing todo and pressing Crtl-J. The JavaDoc to-do tag will be placed at the cursor
position; then type the message or task that needs to be completed, and it is done. The
to-do will be added to the To-Do tree-node; selecting the to-do in the Structure pane
will automatically put the focus on the line of the to-do.

Overriding the equals() Method
Clicking on the top to-do from the list will put the focus at the equals() method. It
should show a return method like this:

return super.equals(parm1);

Modifying Classes 173

This method should not be used because our method’s super class is Object, which
means the methods will return false if they do not have the same memory addresses in
the JVM. A better implementation of the method would be:

return this.getClass().equals(parm1.getClass())

This method will, at least, compare the two classes on the same level. Once this code
has been added, you can remove the to-do line above the method.

Overriding the toString() Method
You cannot count on the toString() method being overridden automatically, so this
should be done in all newly created classes. Most of the time, garbage is returned with
the toString() method because the base java.lang.Object will use the following method
to return a string value:

return getClass().getName() + “@” + Integer.toHexString(hashCode());

Notice that this code returns the class’s name and its hashcode in Hex, which is use-
ful. For MyBaseBean, its toString() method will support full toString characteristics.
Click on the first to-do line in the Structure pane, and move the focus to the toString()
method. Because this class is very limited, it will be easy to support all values; how-
ever, if this class was large and had a lot of attributes and properties, a dip into the
reflection and introspection APIs might be in order to make the job more generic.
Using the following code will do the trick for our example:

String text1 = this.getAName() + “, “;

String text2 = this.getAZip() + “, “;

String text3 = String.valueOf(this.getAAmount()) + “, “;

String text4 = String.valueOf(this.getAValue()) + “, “;

String text5 = this.getAText()+”. “;

return getClass().getName() + “: “ + text1 + text2 + text3+ text4 +

text5;

When this method is called, it will return a string value that might represent some-
thing useful. Remove the to-do line above the return to finish the method.

Overriding the hashCode() Method
The final override is of the hashCode() method. Click the last to-do line in the Structure
pane to begin this process. One of the main reasons for adding the aValue property was
to use it as the hashCode for the object. Once the hashCode has been set for the object, it
should not be changed. One of the simplest ways to solve the hashCode rules, as stated
previously, is to return the same number; some people use zero (0), and others use
another standard number like 7777. In most cases, this will not cause a problem because
the object is made in limited quantities, thus eliminating the possibility of performance
problems or lost hashCode keys. Keep in mind, though, that a true hashCode should be

174 Chapter 8

equally distributed across the integer’s number range, as is the case with the code above
used in the java.lang.String class. For this example, we will use the following code:

this.aValue = 7777;

return aValue;

Once this is complete, remove the to-do tag and do a Save all to the project. Finally,
MyBaseBean is complete; it has all the base elements of a standard JavaBean. MyBase-
Bean has exposed attributes that have been made into properties, both read-write and
read-only, plus we added a property that has the getter and setter but is not exposed
through the use of the BeanInfo class. This bean has exposed a generic property editor
that surfaces a string list for the Zip codes. The JavaBean also exposes a few standard
events, which include the standard bound and constrained properties. It also imple-
ments a custom event set for when the name is changed.

It is time to rebuild the code and make sure that it does not have any errors or base
typing problems. About 10 lines of custom code should be added; everything else was
generated by either the BeansExpress designer or JBuilder itself. JBuilder scans for syn-
tax errors before compiling and notifies the developer of problems. This allows the
developer to make the simple changes without compiling the code, which lowers the
overall time spent getting code ready to test. Normally, a test unit would be created at
this time to run some very basic tests on the bean to ensure that all of the code created
was correct. See Chapter 11, “Unit Testing with JUnit,” for more information on adding
this later in the project lifecycle.

Another process that would most likely be done is an archive build process. Chapter 10
gives the details of this process — again, this can be done at a later time. Once the rebuild
has been successfully completed by clicking the Project|Rebuild MyBaseBean.java menu
item or by clicking the drop-down build task button on the toolbar, it is time to move to
the next part of the example, which is adding a visual interface to the MyBaseBean.

Building a Visual JavaBean

Now that we have created the first bean, it is time to create a visual JavaBean that will
expose MyBaseBean’s functionality so that it can be used in an application. After creat-
ing a new project called visualbean, the next step is to create a new JavaBean. This can
be accomplished by clicking the File|New menu item that will display the Object
Gallery. Select the JavaBean icon, and press the OK button to continue. This will gener-
ate the New JavaBean dialog (see Figure 8.1 for reference), which we used in the first
part of the example.

This time name the JavaBean MyVisualBean, and make sure that its base class is
javax.swing.JPanel. This can be accomplished by clicking the drop-down listbox on the
base class or by using the (...) button to start the Class Filter dialog and typing in JPanel
(see Figure 8.2 for eference).

Next, check the Allow only JavaBeans checkbox to ensure that only JavaBeans are
added to the class. This way, attempts to add non-JavaBean classes will result in a warn-
ing. Again, because the desired output from this is a JavaBean, leave the Public, Generate

Modifying Classes 175

default constructor, and Generate header comments with checks. The Generate main
method and Generate sample property do not need to be selected because this bean is
not meant to run stand-alone. It will not need a main method, and the BeansExpress
designer can be used to create new properties if needed. Press the OK button to
continue.

Differences between this class and the first one created include the default construc-
tor, a jbInit() method, which is covered in detail in Chapter 7. Also, this class extends
from JPanel, which is found in the javax.swing package. Notice also that imports have
been added to handle these concepts.

Using the GUI Designer
To activate JBuilder’s GUI designer, click the Design tab under the Content pane.
While the designer is being activated, you will see a message stating that it is loading.
Lazy-loading — the concept of not loading tools until they are needed — is another
advanced feature of JBuilder. As a result, JBuilder loads faster and has a smaller mem-
ory footprint to manage.

Once the GUI designer has been loaded (see Figure 8.13), the interface completely
changes from the coding interface. The only thing that has stayed in place is the Proj-
ect pane; the Structure pane and coding Content pane have all been replaced. The
Structure pane has been replaced with a component tree, and the coding Content pane
has been replaced with a component palette, a design space, and an Object Inspector.

The component palette contains more than 100 predeveloped JavaBeans that are
both visual and nonvisual. These JavaBean components come from many sources,
including Sun’s JFC (Java Foundation Classes and AWT) and Borland (DataExpress,
DBSwing, InternetBeans, XML, EJB, and CORBA) components. The component palette
is completely configurable, as is demonstrated later in this section.

The Object Inspector allows quick changing of property values and firing events
from the interface. It uses the reflection and introspection APIs to display all the Java-
Bean properties and events, as well as the BeanInfo class (if it is present). The designer
works with the component tree, component palette, and the Object Inspector.

When creating a JavaBean that extends a JPanel, the developer will be presented
with a standard panel that has a layout manager of BorderLayout. This does not mean
that BorderLayout is the default layout manager for JPanel; it just means that JBuilder
normally sets the base visual component to BorderLayout, if possible. The completed
interface can be seen in Figure 8.14.

The first component added to the GUI designer is another JPanel. This can be placed
a number of ways. First, click the Swing Containers tab on the component palette, and
then click the JPanel icon, which is the first icon on the particular tab. This may not be
obvious the first time using the components; place the mouse pointer over the icon
images, and the fly-by help will display the full class name in a few seconds. Once the
JPanel has been selected, it can be placed either onto the designer where a visual repre-
sentation of the panel is shown or on the component tree under the “this” image. If the
JPanel is dropped onto the visual representation inside the designer, make sure it is
dropped (clicked) in the approximate area of where the panel is supposed to be located.
Because this panel is supposed to be located in the South constraint of the BorderLayout,

176 Chapter 8

Figure 8.13 JBuilder’s GUI designer.

it should be dropped (clicked) near the bottom of the visual representation of the panel.
If the panel is dropped (clicked) in the proper location, the Object Inspector constraints
for the dropped panel should show South. If the panel was dropped (clicked) inside the
component tree, it most likely will have the constraint of North. This can be changed by
clicking on the constraints property in the Object Inspector and selecting South. Once
this has been done, the visual representation of the panel will be moved to the lower
part of the panel.

Now that the panel is in the proper location, it needs to have its Border property set.
This can be set by using the drop-down list and selecting the RaisedBevel property. The
layout manager then needs to be set for this component, as shown in Figure 8.15.

Figure 8.14 GUI interface for MyVisualBean.

Modifying Classes 177

Figure 8.15 Default layout manager.

In Figure 8.15, the expanded tree-node for the jPanel1 shows FlowLayout inside < >
symbols. This represents the default layout manager for this JavaBean. The default lay-
out does not allow you to change layout properties. This will be shown in the next cou-
ple of steps.

This jPanel1 needs to have a different layout manger — GridLayout. This can be
accomplished by changing the layout property for the jPanel1 component. Once it has
been set to GridLayout, you’ll notice that the image under jPanel1 has changed (see
Figure 8.16).

Figure 8.16 Standard layout and properties.

Again, notice that no < > are present, which means that it is either a true instance vari-
able or the layout manager for this component has changed. Figure 8.16 also shows that
one gridLayout property is set for the jPanel1. It can be selected, and its properties can be
set in the Object Inspector. Currently, the rows property is set to 1, but this needs to be
changed to 2. When changing a value inside the Object Inspector, it is a best practice to
press Return after making a change; this ensures that the new value has been accepted.
The reason behind this is that properties can be constrained like aAmount in MyBase-
Bean and that a value change can be vetoed.

Once the jPanel1’s gridLayout manager row’s property has been set to 2, it is time to
add the next two components. Click the JPanel again on the component palette, then click
on the jPanel1 located inside the component tree. This will place a jPanel2 under the
jPanel1 component. Next, click on the JPanel component again on the component palette,
and click on the jPanel1 component located inside the component tree. This should add
another panel under jPanel1, which is represented by jPanel3. Clicking on jPanel3 to make
sure it is selected, click the border property for that component. Using the drop-down list,
select the LoweredBevel, and then change its layout manager to gridLayout. Once grid-
Layout has been selected, expand the jPanel3 tree control and set its rows property to 2
and press Return.

178 Chapter 8

After that has been set, add labels to the jPanel3. Select the Swing tab on the compo-
nent palette, then the JLabel component (the fifth component from the right). Then
click on the jPanel3 inside the component tree to drop the JLabel, then repeat the
process again so that two JLabels are on top of one another. Figure 8.14 gives an exam-
ple of how the layout should look. Once the labels have been placed inside the jPanel3,
it is time to label each one of them. This can be done by selecting each label and setting
its text property to “aText:” for the top and “Status:” for the bottom label.

NOTE The order of the component can be changed with the drag-and-drop
features inside the designer or by changing the order of the code located in the
jbInit() method. If drag-and-drop is used, make sure to hold down the mouse
when selecting the component and then drag it to the desired location inside
the container. Do not go outside to the parent container; the component will be
placed there if the mouse is released. If the code order is changed, it will be
reflected in the tab order because the tab order is set by the creation order.

jLabel1 should be set to “aText:” and jLabel2 should be set to “Status:” for this exam-
ple. The next step is to add three JButtons to jPanel2. Again, following the same steps
described previously, click the JButton icon on the component palette, and click on the
jPanel2 located inside the component tree. This should be done three times. Then,
using the drag-and-drop technique discussed previously, put the jButtons in order of
1,2,3. Again, another way of completing the task would be to drop the jButtons in order
on the actual jPanel2 visual representation. Once the jButtons are in order, change the
text properties to show “Get Value” for jButton1, “Set Value” for jButton2, and “Status”
for jButton3. Using the component tree is useful when a lot of nested containers are
used. This gives absolute control to the developer, thus allowing the properties to be
changed after the components have been dropped. The last thing that needs to be set
on jPanel2 is its border property, which should be set to etched from the drop-down list.

The next step in developing a GUI for MyBaseBean — the top portion of the
layout — is the most important. Click the Swing Containers tab, select a JPanel from
the component palette, and then click in the center of the visual representation. It
should set the new panels constraints to Center.

Creating a Border Component
Setting the border for jPanel4 is a different process than the process we used to before;
we will create a custom border. Click the (...) on the border property for jPanel4. This
will display a custom property editor for creating borders (Figure 8.17).

This custom property editor is broken into five major parts. The first part is how the
objects are going to be created. If an instance of a border exists in the class, it can be
reused for another component, or an instance variable can be created for the border
that will be created when the interface is finished, or everything can be done with sta-
tic instances. The second part of the property editor is focused on type and location.
The third major part is focused on the border style and the options associated with the
style. The fourth part is focused on labeling and using inner borders. The final part is
focused on previewing the properties selected in the editor, which allows you to play
“what-ifs” for the components.

Modifying Classes 179

A JPanel4 border begins with the creation of an instance variable. You then use the
Etched type, with no changes to the insets. The Bevel Style and Options will be the
default, and the Title property should be set to “VisualBean:”. Once all the properties
for the border have been set, click on the preview area to see the example of the border
to be created. You can change the properties of the border until it looks the way you
want it to, rather than manipulate code to get it right. When you are satisfied, click the
OK button to continue.

Once the custom border has been added, it is time to set the layout manager for
jPanel4. Set jPanel4’s layout manager to XYLayout; this will allow absolute positioning
using x/y coordinates from the top left position. The XYLayout is a custom layout
manager provided by JBuilder to help developers control the placement of compo-
nents inside a component container. This can also be done using the Null layout pro-
vided by Sun’s JFC libraries, but the XYLayout manager is portable across multiple
systems, which means it will show more true positioning on Solaris, Linux, and Mac
than what Null will.

WARN I NG GUI interfaces should never be deployed with either the
XYLayout or the Null layout managers. These are for designing only and will
most likely give unwanted results when deployed. These managers have no
concepts of expanding or contracting the components as the window’s
properties change, as is found in other layout managers.

Figure 8.17 Custom property editor for creating borders.

180 Chapter 8

Maximizing the Designer
The first step in making the most of the designer is to drop a JLabel on jPanel4. Click
the JLabel on the Swing tab located on the component palette. Once the component has
been dropped, use the mouse to click and hold on the jLabel3, then press the Ctrl key
and drag the mouse. Notice that another copy of the JLabel has been created. This pro-
cedure can be used with multiple components by using the Shift key to select multiple
components and on the last component holding down the mouse key and pressing Ctrl
and dragging every component selected. You should have two JLabels on the jPanel4.
For multiple components, hold the Shift key and then select the component from the
palette — in this case, a JLabel. Notice that the component on the palette will have a
different outline. Then just click inside the jPanel4 three more times, and notice that
two more jLabels have been added. This should be a total of five JLabels added to the
jPanel4.

Next, add three JTextFields to the jPanel4; this again can be done as discussed in the
prior examples. The next operation is the placement of the items like the representation
found in Figure 8.18. This can be done using the simple drag-and-drop; however,
because JBuilder is using either XYLayout or Null layout managers, JBuilder has
added a few extra abilities to the designer.

You can use the multiselect options inside the designer. Ways to do this include
using the Shift key and mouse clicking on each component, or holding down the Shift
key and clicking the desired components in the component tree, or using the lasso
command, which can be accomplished by holding down the Shift key and dragging
the mouse around the desired components. Each technique has it advantages; your
choice depends on the layout and what you are trying to accomplish.

Once you have a component or multiple components selected, you can use the fine
adjustment feature by pressing the Ctrl-Arrow key combination. This will move the
component(s) in the direction of the arrow key by one pixel. If the Ctrl-Shift–Arrow
key combination is pressed, the component(s) will be moved eight pixels in the direc-
tion of the Arrow key pushed.

You can use the right-mouse click menu or Context menu (see Figure 8.18) to do gen-
eral placement procedures such as left, center, right, top, or bottom, or to make the
components the same size. Keep in mind that when it comes to size, the first compo-
nent picked will be the standard for all other components. The Context menu can be
displayed anytime and anywhere now by using the Shift-F10 key combination.

It is now time to change jLabel3’s text property to read “Name:”, jLabel4 to read
“Zip:”, and jLabel5 to read “Amount:”. Drag jLabel3 to the desired location from the
top, then drag jLabel5 to the desired location along the bottom. Using the adjustments
capabilities discussed previously, hold down the Shift key and select jLabel4 and jLa-
bel3 again. Display the Context menu by either right-mouse clicking or pressing the
Shift-F10 key combination and choosing the Align Right menu item. This will make the
three jLabels align to the “:” characters. Deselect the jLabels by clicking on any object
except one of them; you will notice that the gray nubs will disappear. Then select jLa-
bel3, jLabel4, and jLabel5 in that order and use the Context menu to select Even Space
Vertical. This will put equal space between the components.

Modifying Classes 181

Figure 8.18 Context menu.

Next move jTextField1 to the desired location from the “Name:” label and create a
desired size for that component. It should be larger than the default size. Hold the Shift
key, select the jTextField2 and jTextField3 components, and then use the Context menu
(right-mouse) to select the Align Left menu item. Display the context menu again, and
select Same Size Horizontal. This should produce three JTextFields that are aligned to
the left and are of the same size.

Next, click on the “Name:” label, hold down the Shift key, and select the jTextField1
component. Then display the Context menu and select Align Bottom. Select the “Zip:”
label, and select the jTextField2 by again holding down the Shift key; then display the
Context menu and Align Bottom. Follow the same procedure for the “Amount:” and
jTextField3 components, and set its alignment to bottom.

Deselect the components by clicking another component; then multiselect the
JTextFields and remove the string from the text property inside the object inspector.
Double-clicking on the right side of the text property and hitting the Delete key then
Return can accomplish this. When selecting multiple components, the Object Inspector
will show all common properties that are shared between them. If one value is changed
when in multiselect mode, all of the components will be changed. The interface should
resemble the one in Figure 8.14.

The last two JLabels can be dragged to the top right-hand corner. Change jLabel6’s
text property to read hashCode and jLabel7’s to be a “-”. Use the fine adjustments and
the Context menu to set the alignment.

Drag and Drop; Copy, Cut, and Paste
The GUI designer in JBuilder has many of the features found in an editor. It is possible
to copy, cut, and paste components. This feature is also available from the component
tree, and it allows components to be copied and cut from the designer and pasted in the

182 Chapter 8

component tree. This is handy if you are moving components from one GUI container
to another. The same can be done with drag-and-drop, but in this case the functional-
ity is relative to the area that started the operation. If a drag operation is started in the
component tree, then it has to be dropped in the component tree. The same is true for
the visual representation. Another cool feature is that if you make a mistake, the
undo/redo features are enabled in the designer.

Changing XYLayout to GridbagLayout for Deployment
A feature that most developers are not aware of is the fact that JBuilder can switch
between one layout manager and another and back again. This is incredibly important
when it comes to using XYLayout or null layout managers. In the preceding example,
so far jPanel4’s layout manager has been either XYLayout or null, but these two layout
managers should not be used in production. They will not scale or display information
on multiple platforms consistently. jpanel4 should be set to GridbagLayout for deploy-
ment; to do this, select the jPanel4 inside the component tree and set its layout manager
to GridbagLayout. You should not see any major changes in the layout; if you look at
the source, you will notice that all the GUI objects located inside the jbInit() method
now have full constraints added to them. Going back to the designer, everything again
should look the same.

This GUI is now ready to ship, but what if you need to make a change to jPanel4 in
the future? Simply go to its layout manager and set it to XYLayout or null and make the
changes; then when the changes are complete, set the layout back to GridbagLayout —
no fuss or headaches in using that method. GridbagLayout is considered to be a very
challenging layout manger, and it has a lot of options that can be set. JBuilder exposes
all of the features in two ways: When the layout is set to GridbagLayout, the context-
sensitive menu that can be viewed by right-mouse clicking on any component inside
that controls the container will show that the options are Show Grid, Constraints,
Remove Padding, Fill Horizontal, Fill Vertical, Remove Fill, and finally Weight Hori-
zontal, Weight Vertical, and Remove Weights. All these options can be used on indi-
vidual controls; the menu item to take note of is the Constraints item, which will
display all the control’s constraints in a nice logical dialog (see Figure 8.19).

This dialog will stay displayed on top until the OK or Cancel button is pressed. This
allows the developer to click on other controls in the GUI designer and set their con-
straints without having to restart the dialog on every control. The last item to discuss
is the GUI designer itself; when a control is selected, that control will have a set of mul-
ticolored nubs that go around its perimeter. The blue nubs manipulate the fill for the
particular grid in which the control resides, and the black nubs manipulate the con-
trol’s actual size. The combination of both the Context menu and Constraints dialog
give most GUI developers the control they need to make even the slightest of modifi-
cations to the control. Switching layout managers has fewer issues to worry about.
Change the layout back to XYLayout or null, and change the GUI to meet the require-
ments, then reset the layout back to GridbagLayout. No need to worry about fills, size,
or multiple constraints; just make it look right and change the layout manager to the
shipping GridBagLayout.

Modifying Classes 183

Figure 8.19 GridBagConstraints dialog.

Adding a Nonvisual Bean to the Palette
Now that the GUI has been created, it is time to save all and wire the visual to the non-
visual bean. The first step in hooking these two beans together is getting the first bean
onto the component palette so that it can be dragged from the component tree. Right-
mouse click on the component palette, and click the Properties menu item to customize
the menu, or you can choose the Tools|Configure Palette (see Figure 8.20) from the
main menu. The Palette Properties dialog allows complete configuration of the com-
ponent palette. You can do the following:

■■ Change the tab order

■■ Change the components on each tab

■■ Add tabs and components to a tab

On the Pages tab, select Other item. You will see a blank component palette if no
components have been added that particular page.

Next, select the Add Components tab (see Figure 8.20). This allows you to set the
properties to add components to the Other tab. The first thing that needs to be selected
is the library where MyBaseBean is located. Because this has not been created, click the
Select Libraries button (see Figure 8.20).

Click the New button to display a new library dialog (see Figure 8.21). Chapter 2
covers all the properties associated with creating libraries.

184 Chapter 8

Figure 8.20 Palette Properties dialog.

For this example, name the library OurBeans, and set the location to be JBuilder.
This will give all JBuilder projects the ability to find these beans when JBuilder is
started. Click the Add button to display the Select one or more directories dialog (see
Figure 8.22). This should be set to the classes directory for basebean. Click the OK but-
ton on the dialog to return to the New Library dialog; click the OK button again to
return to the Select a different Library dialog. Click the OK button to continue setting
up the new components on the palette. The series of OK button clicks has returned the
focus back to the Palette Properties dialog; now select the JavaBeans Only radio button,
then click the Add from Selected Library button.

Figure 8.21 Selecting a library.

Modifying Classes 185

Figure 8.22 Creating a new library.

The dialog in Figure 8.23 will be displayed; it allows for the selection of the beans to
add. Because the bean created in the first part of the example was found in basebean,
expand the tree-node and select the MyBaseBean. Click the OK button to continue. A
Results dialog will be displayed, stating that the bean was added to the Other page of
the component palette. Press its OK button to continue, and then press the OK button
on the Palette Properties dialog to finish the process.

Figure 8.23 Select the bean to add.

Adding the Component to the Visual Component
Now that the component has been added to the component palette, it is as easy as
clicking the component and clicking inside the component tree. Once the component
has been added to the tree, notice that the Object Inspector shows all the exposed prop-
erties and has all the property editors loaded (see Figure 8.24); it also has all the
exposed events for the class.

186 Chapter 8

Figure 8.24 All things working properties and events.

Once the properties for the bean can be set, set the AAmount property to 100. Then
set the AName property to your name, and set the AZip property to String 5. Next it is
time to add the events to the visual designer. Click the Event tab located under the
Object Inspector, then double-click on the nameChanged empty area to the right of the
label. This will generate the appropriate method. Add the following code:

jLabel2.setText(“Status: Name has been changed!”);

Go back to the designer by clicking the Design tab under the coding Content page.
Select the myBaseBean1 from the component tree, and click Events tab again under the
Object Inspector, this time double-clicking on the propertyChange area to generate the
event and add the following code:

jLabel2.setText(“Status: “ + e.getPropertyName() +

“: value changed from “ +

e.getOldValue() + “ to “ + e.getNewValue() + “.”);

This code is rather simple because the property change object includes the name of
the object changing and the old and new values, and this method returns that infor-
mation. Remember that because multiple objects can use the property change object,
the code to report the action needs to work this way.

Again, go back to the designer, click the myBaseBean1, double-click the
vetoableChange event, and add the following code:

jLabel1.setText(“Status: “ + e.getPropertyName() +

“ value not changed “ +

e.getNewValue() + “ > 300”);

}

This code reports whether a veto has occurred with an Amount property. Now is a
great time to save all on this project.

The buttons now need to be implemented; double-click on the Get Value button.
This should generate an event method, and the following code should be added:

jTextField1.setText(myBaseBean1.getAName());

jTextField2.setText(myBaseBean1.getAZip());

jTextField3.setText(String.valueOf(myBaseBean1.getAAmount()));

jLabel1.setText(myBaseBean1.getAText());

jLabel7.setText(String.valueOf(myBaseBean1.getAValue()));

Modifying Classes 187

This looks fairly normal as far as a method goes, but it has a few extra lines and it
may need to be called in other places later. JBuilder offers a great refactoring ability to
generate a method from this block of code. Refactoring can be completed by selecting
all the lines shown, then bringing up the Context menu either by right-mouse clicking
or pressing Shift-F10, then selecting the Extract Method (Ctrl-Shift-e) menu item. A
quick dialog will be displayed showing the lines that are supposed to be included in
the method; it also asks for a name for the new method, which should be getValue. This
results in another quick status dialog stating that refactoring is occurring, and then the
new code should be generated.

The next button to implement is the Set Value button. Double-click on the button,
generate the event, and add the following code:

myBaseBean1.setAName(jTextField1.getText());

myBaseBean1.setAZip(jTextField2.getText());

These two lines work great, then you add the next line:

myBaseBean1.setAAmount(new

Integer(jTextField3.getText()).intValue());

Suddenly, JBuilder throws a fit about the preceding line. In the designer, swiggly
lines appear under the setAAmount. If you place your cursor on the lines, it will report
an unreported exception (see Figure 8.25).

Click the “?” mark located inside the blue box to activate the JBuilder help system.
This is going to give only the technical reason for why it is reporting the problem, not
the solution. Because it states an unreported exception, JBuilder has a refactoring tool
for Surround with Try/Catch (Ctrl-Shift-c). Select the line, right-mouse click, and exe-
cute the Surround with Try/Catch operation. That has appeared to solve the problem;
notice the code generated by the operation:

try {

myBaseBean1.setAAmount(new

Integer(jTextField3.getText()).intValue());

}

catch (NumberFormatException ex) {

}

catch (PropertyVetoException ex) {

}

Then add the rest of the code:

myBaseBean1.setAText(“Hello from the bean”);

Vetoing an Event
JBuilder does a considerable amount of work to make sure that it can test for a veto
property change on aAmount. The current code would not stop any value from being

188 Chapter 8

set because the underlying base MyBaseBean does not listen for a VetoChange event,
nor does MyVisualBean. The following will show how to add the support needed for a
veto event.

Figure 8.25 Advanced code checking.

Implementing Interfaces
JBuilder allows any interface to be added to a class, and all the interface’s methods will
be added to that class. Because the example in this chapter uses VetoChangeSupport, it
needs to implement the VetoableChangeListener. This can be done by clicking the Wiz-
ards|Implement Interface menu item and selecting the java.beans.VetoableChangeLis-
tener, then clicking OK to continue (see Figure 8.26).

The VetoableChange method will now be added to the class. It is also reported in the
to-do section of the Structure pane. The code that should be added to the method
should look like the following:

int aValue = new Integer(evt.getNewValue().toString()).intValue();

if ((aValue) > 300) {

throw new PropertyVetoException(“Value must be less then 300”, evt);

}

This code takes the passed-in object evt and gets a value for the property. It then
checks to see whether that is a valid property;. If it is, everything continues as normal;
if not, a PropertyVetoException is thrown with a description and the object itself.

Figure 8.26 Override Method wizard.

Modifying Classes 189

Next, you need to change the Try/Catch block that was added when the exception
was not being reported in the prior section. Replace the Try/Catch block with the
following code:

try {

int temp = new Integer(jTextField3.getText()).intValue();

vetoableChange(new PropertyChangeEvent(myBaseBean1, “aAmount”,

new Integer(myBaseBean1.getAAmount()), new

Integer(temp)));

myBaseBean1.setAAmount(temp);

}

catch (PropertyVetoException ex) {

jTextField3.setText(String.valueOf(myBaseBean1.getAAmount()));

ex.printStackTrace();

}

The first thing the Try/Catch attempts to complete is getting the new value from
the jTextField3. It then calls the vetoableChange method to create a new Property-
ChangeEvent with the actual bean and new and old amounts. It then tries to set the
value to new value, but if the value is not within the allowed range, an exception will
be thrown in the VetoableChange method and will be propagated back to the calling
method, thus resulting in a Catch situation. When the catch is implemented, it sets the
value back to the original value and prints the exception to standard out.

Finally, double-click the Status button and generate the event. The following code
should be added:

System.out.println(myBaseBean1.toString());

This will allow the developer to return a completed value for the object at any time
and not interfere with the interface because the code will be sent to the standard out.

It is now time to save this project and do a rebuild. Type Project|Rebuild MyVisual-
Bean.java, or click the Build task icon on the main tool bar. Once a clean rebuild is gener-
ated, the final step of the example can be started. Keep in mind that a few steps were not
taken in Part 2 of the example. No BeanInfo class or archive was generated to hold all the
classes. These two things can be done later. Also, a unit test was not generated for this
class. This can be generated after the example is complete. See Part Four of the book to
review how to apply the Application Lifecycle Management (ALM) to this example.

Building an Application

The final part to this example is to create an application that can hold our new visual
JavaBean. This can be accomplished by creating a new JBuilder project and naming it
theapplication. You can use the Object Gallery to generate a standard application. Click

190 Chapter 8

on File|New, select the Application icon, click the OK button, and then click the Finish
button on the Application wizard to accept the defaults. This will generate a standard
JBuilder application. Next click the Design tab under the code Context pane to go to the
GUI designer.

We now need to add a component to the palette. Adding the needed classes to the
library created in the last example is the best way to accomplish this task. Click on the
Tools|Configure Libraries menu item, and select ourbeans in the left-hand listbox.
Notice that only the basebean package is included. Next, click the Add button. This
will display a dialog for One or More Directories; review Figure 8.22 and add the
classes directory of the visualbean package.

Once this has been selected, click the OK button to go back to the Configure
Libraries dialog, then click the OK button to continue. Click the Tools|Configure
Palette from the main menu to display its dialog for review (Figure 8.22), then click the
Other page and the Add Components tab. Click the Select Library button, and choose
the ourbeans item under the JBuilder tree-node. Press the OK button to continue.

Click the JavaBeans only radio button, and then press the Add from Selected Library
button. Open the tree-node for visualbean, select the MyVisualBean, and click the OK
button; a dialog will be displayed explaining that the bean has been added to the com-
ponent palette. Press the OK button to return to the Add Components tab, then click
the OK button to continue.

Click on the Other tab (on the component palette), and select the second icon that
looks like a square, circle, and triangle. Click on the designer to display the full visual
bean that we created in the last step.

Because the business logic was written for the basebean and the visualbean pack-
ages, no new code needs to be added. Save the project and run. You can test the inter-
face, as shown in Figure 8.27. Again, this is the same interface that we created in the
second part of this example.

You can try all of the business logic implemented by this series of JavaBeans. To test
the interfaces, click the Get Value button and then start changing values. Try changing
names, amounts, Zips, and get statuses.

Figure 8.27 Final application running.

Modifying Classes 191

Summary

This example shows how to create a nonvisual bean and extend it with a visual repre-
sentation. Once the business logic has been coded, adding the functionality is very sim-
ple. Using the JBuilder designers, like the BeansExpress interface and the GUI builder,
can decrease the typing and time it takes to make classes.

192 Chapter 8

PA R T

Three

JBuilder and Application
Lifecycle Management

Part Three focuses on the application lifecycle management aspects of JBuilder.
When JBuilder first hit the streets, its vision was to be the best Java IDE plus the Bor-
land heritage in developing RAD tools for almost 20 years. More than just a Java edi-
tor, compiler, and debugger wrapped into one interface, JBuilder starts its new life
with deep integration of its developer-centric environment with enterprise software
development lifecycle tools, which are team development, advanced build systems,
unit testing, and UML visualization.

We will discuss the application lifecycle aspects in the following chapters:

Integrated Team Development. Chapter 9 covers JBuilder integration with team
development and illustrates the uses of team development via JBuilder-CVS
integration.

Using Build Systems. In Chapter 10, you will learn what the JBuilder build sys-
tem is and how to best use it; second, the chapter will introduce the integration of
JBuilder and Ant Builder.

Unit Testing with JUnit. JBuilder-JUnit integration is best for programmers doing
unit test synchronously with their coding. Chapter 11 will guide you through the
steps of creation and run unit tests for the Java component using the JUnit frame-
work in the JBuilder.

UML Visualization. Chapter 12 shows that JBuilder uses UML structural
diagrams to help developers visualize and traverse Java classes and packages.

195

JBuilder is built on a team development concept, one that allows multiple developers
working with the project in their JBuilder’s workspace, synchronizing that project, and
committing the project into a selected version control system. Integration with version
control is essential for integrated software development. Version control utilities help
multiple developers to work simultaneously and make changes to common resources
without interfering with other developers’ work. Developers can stay in sync with each
other without leaving the JBuilder environment. JBuilder supports numerous market-
leading version control tools, including the open source Concurrent Versions System
(CVS), Borland TeamSource, Rational ClearCase, Microsoft Visual SourceSafe, and
StartTeam through open-tool plug-ins. This chapter demonstrates how JBuilder sup-
ports integrated team development and how to best use it. We begin with a discussion
of the tools available for team development and how to set up your project, followed by
an example that uses Borland’s CVS integration tool. CVS is used by millions of devel-
opers worldwide because of its flexible, extensible, and collaborative characteristics.
And CVS is the selected version control tool that the JBuilder team uses.

Team Development Tools

Team development is a client/server-based application that enables developers to
archive and manage changes for software projects in a common central location. This
location is usually called a repository. The server-side implementation for team devel-
opment typically uses a distributed client/server approach to support thousands of
concurrent accesses across organizations. The server repository process keeps track of

Integrated Team Development

C H A P T E R

9

all changes made to archived files; it also creates and maintains a historical database
for the evolution of the software development lifecycle.

Meanwhile, client-side team development provides an interface for developers to
perform version control tasks easily. For example, developers can obtain an older ver-
sion of a particular file, view changes from the log file, and update the file as needed.
There are also utilities for team development admin personnel to manage the changes
to the contents of the repository. There are different tools supporting team develop-
ment; we can name a few that JBuilder supports out of the box. They are Concurrent
Versions System (CVS), Borland TeamSource, Rational ClearCase, Microsoft Visual
SourceSafe, and StartTeam. In this session, we discuss team development in general as
a version control system (VCS). In a later section, we take a look into how JBuilder inte-
grates with Concurrent Versions System (CVS) in particular.

Setting Up Your Project with a VCS
JBuilder provides two ways to connect a project to a VCS:

Pulling a project from the VCS. Select File|New|Projects, and choose Pull Proj-
ect from a VCS; the steps are for creating a local workspace for a project that is
located in the Version Control System. JBuilder will display a dialog with appro-
priate information depending on your VCS. When you select a project from the
VCS, JBuilder will pull the entire project to your project space and automatically
open the project file (.jpx) in JBuilder. If a JBuilder project file does not exist,
JBuilder will create a new project file.

Connecting the existing workspace to the VCS. Open a JBuilder project, and
select Team|Select Project VCS. Then choose your target VCS.

Note that a repository must be set up and configured before you can use JBuilder’s
VCS operations. When the repository is configured, JBuilder then enables the Team
menu items for the VCS operations. Table 9.1 lists common version control commands
and terminologies.

Table 9.1 Version Control Commands

FILE FUNCTION

Update Retrieve changes from the VCS repository and merge them
to the open workspace with local changes.

Commit Incorporate changes from the open workspace to the VCS
repository.

Status Show current status of the file in the VCS repository.

Add Add new source files to the VCS repository.

196 Chapter 9

Table 9.1 (Continued)

FILE FUNCTION

Remove Delete source files from the VCS repository.

CVS watches Order CVS to send notifications when there is action taken
on a file.

Refresh Refresh current status of the selected file.

Diff Show the differences between two files. Usually, one file is
the one that you are working on and the other file is the
newest one in the VCS repository.

Checkout Get a file in the VCS repository and make it available to the
workspace.

Check-in Save a file from the workspace into the VCS repository.

Revert Update the workspace with the latest repository version of
the file.

Repository Store modules and revision records of source files.

Workspace Serve as the local working area where files are changed,
edited, and saved before being committed or updated to
the VCS repository.

History Show information on actions taken on the file.

Merge Incorporate and combine changes from the VCS repository
with changes in the workspace. If there is conflict, the
changes will be preserved, flagged, and reconciled either by
the user or automatically.

Version Label (or Tag) Mark references to the entire project.

Manage Revisions of the Source Files
JBuilder provides two different approaches to compare files: File|Compare Files and
the History view. This is how JBuilder can manage changes and revisions out of the
box without using a VCS.

Compare|Files Dialog

Using File|Compare Files, you can view two files side by side in the Source view or in the
Diff view in the Compare Files dialog box. Using the Source view (see Figure 9.1), you can
edit the source files in both sides by adding, cutting and pasting, and deleting texts.

Integrated Team Development 197

Figure 9.1 Source view.

The Diff view highlights the different texts between the two files by merging the two
files in one and shows the differences in color. In this view (see Figure 9.2), you can
undo the selected changes.

Figure 9.2 Diff view.

198 Chapter 9

History View

The History pane displays historical changes for any file in the project. Also, the
History pane provides diff, merge, and revert functions to any revision of the file.
When the file is opened in the Content pane, the Content pane shows the History page
with four tabs:

Contents tab. This page lists all accessible versions of the open file. You can sort
the list by clicking on a heading of version type, revision number, label, date, or
author, as shown in Figure 9.3. You can also access functions including refresh
revision information, revert selected revision to previous revision, and synchro-
nize scrolling for both sides of the Source view.

Info tab. Similar to the Content tab, this page shows the revision information of
the open file with additional full-text view of labels and comments for any
selected version. You can sort the list by clicking on a heading of version type,
revision number, label, date, author, or comment. You can also choose Refresh
Revision Info and Revert To Previous Revision here.

Diff tab. This page shows the differences between two selected versions of the
open file (see Figure 9.4). Similar to the other two pages, you can sort the files
shown in the revision lists by version type, revision number, or date. In addition
to the Refresh Revision Info and Synchronize Scrolling, you can also enable
“Undo selected changes” and the Smart Diff function. By default, each different
block shows the diff deletion in red, indicated by the minus sign, and shows the
diff addition in yellow, indicated by the plus sign.

Figure 9.3 Content Page view.

Integrated Team Development 199

TI P Smart Diff can help you filter out format-related changes in diff blocks
where code format is changed, such as changes in the location and number of
blank lines, the amount of indentation, or the use of spaces. When your cursor
is in the Source view pane of the Diff page, press Shift-F10 to open a Context
menu with options to enable or disable Smart Diff and navigate to previous and
next diff blocks.

Merge Conflicts tab. This page is active only when there are merge conflicts in
the VCS. In the current release of JBuilder, the merge conflicts function is sup-
ported by integration to Concurrent Versioning System (CVS) or Visual Source-
Safe (VSS) only. When there is a merge conflict in the VCS, the Merge Conflicts
page shows the local workspace source with the repository source side by side.
You can view and merge the conflicting blocks of codes, which are highlighted.
In Figure 9.5, the Merge page shows the highlighted blocks of conflicting codes.
By checking the radio button, you choose which block of code that you want to
preserve either in the local workspace or in the repository.

Figure 9.4 Diff tab in History page.

200 Chapter 9

Figure 9.5 Merge Conflict view.

The Preview pane displays a current snapshot of the file if the merges occur.

CVS Integration

In this section, we explore JBuilder’s integration to CVS. JBuilder automatically installs
the latest version of CVS in <JBuilder Home Dir>/bin. You can verify the CVS instal-
lation by having your path include <JBuilder Home Dir>/bin and typing “cvs” at the
command prompt. You should see the following CVS usage message:

C:/Borland/JBuilder8/bin/cvs

Usage: cvs [cvs-options] command [command-options-and-arguments]

where cvs-options are -q, -n, etc.

(specify --help-options for a list of options)

where command is add, admin, etc.

(specify --help-commands for a list of commands

or --help-synonyms for a list of command synonyms)

where command-options-and-arguments depend on the specific command

(specify -H followed by a command name for command-specific help)

Specify --help to receive this message

The Concurrent Versions System (CVS) is a tool for version control.

For CVS updates and additional information, see

the CVS home page at http://www.cvshome.org/ or

Pascal Molli’s CVS site at http://www.loria.fr/~molli/cvs-index.html

Integrated Team Development 201

Creating CVS Repository
After selecting CVS as a version control system, you need to create a local CVS
repository — unless you already have a CVS server set up. To create a new local CVS
repository, select Team|Create Repository. Note that the local CVS repository is
designed for a solo developer; it cannot be used by a multideveloper team.

The repository directory can be an empty directory, or you can enter a new one.
Later, the repository can contain as many modules as you like.

Configuring CVS Properties
In the Team menu, the CVS Properties dialog box is used to configure the CVS reposi-
tory and CVS properties, shown in Figure 9.6. You will see CVSROOT many times as
you use CVS. The CVSROOT environment variable contains a string format text indi-
cating where the local/remote repository is located. Here are two samples of the CVS-
ROOT path:

■■ Local CVS repository: CVSROOT=:local:C:\demos\cvs

■■ Remote CVS repository:
CVSROOT=:pserver:anoncvs@cvs.apache.org:/home/cvspublic

The CVSROOT path indicates that the CVS client will connect to the remote CVS at
cvs.apache.org under “anoncvs” user. Note that server and repository path informa-
tion can be retrieved from your local CVS administrator.

202 Chapter 9

INSTALLING CVS

CVS is an open-source network-based version control system available on many
platforms (www.cvshome.org). It manages historical changes of collections of files in its
repository, stored as modules with any given names. After checkout, files can be modified
and edited using JBuilder and committed back into the repository. Files can be compared
against their revisions. Also, new files can be added or old files can be removed from the
repository, or they can be merged with the committed changes of other CVS users. To
install CVS from sources, download the cvs-1.11.tar.gz file from ftp://ftp.cvshome.org/pub/
cvs-1.11/cvs-1.11.tar.gz. You can check to see whether there is a newer version of CVS at
ftp.cvshome.org/pub. After downloading the file, unpack the tar file either using the
command line or using your favorite ZIP tool. Here are some sample commands to build
and install the new CVS.

C:\utilities\tar -xzvf cvs-1.11.tar.gz
C:\utilities\cd cvs-1.11
C:\utilities\configure
C:\utilities\make
C:\utilities\make install
Visit www.cvshome.org for more detailed installation instructions.

Figure 9.6 CVS properties dialog.

Checking Out a Project from CVS
The integration to CVS from JBuilder makes it easy to pull an existing project from CVS
into JBuilder’s workspace via a three-step wizard. Upon completion, your JBuilder
project is configured for CVS operations with CVS commands from the Team menu
and from the Context menu in the Project pane:

1. Point the target directory to a new directory or an empty one that will be used
to hold your CVS module.

2. Select the CVS connection type and logon information to connect to the CVS
server. You can choose from three different CVS connection types. Local con-
nection indicates that you will connect to a local CVS repository, which can be
local on your workstation or on a mapped location. PServer connection indi-
cates that you will connect to a remote server with password-protection enabled.
Most open-source projects allow developers to connect anonymously, or with-
out passwords. For example, you can connect to apache.org and download
many Apache open-source projects. Ext connection indicates that you will con-
nect to a secure remote CVS server (SSH). If there is a port required for the CVS
connection, you can specify the port in this step. The CVS pserver default port
is typically set to 2401.

Depending on what CVS connection you selected earlier, you need to provide
appropriate log-on information to connect to the CVS server.

3. Enter a repository path. If the path is valid, you can use the drop-down list to
view a list of available modules in the repository. Then select a module to check
out to your JBuilder workspace. If there are different branches for the module,
you can select the branch you want to work on. There are Scan buttons for the
module name and branches. The Scan button will display the selected reposi-
tory for a list of available modules or branches of the selected module.

Integrated Team Development 203

There are two additional options in this final step. You can check the Autosave Files
Before CVS Operations option to have your files saved before any part of CVS opera-
tion is performed. We recommend that you check this option, so that you will always
have your files updated. In order to show all CVS operations in the JBuilder Message
pane, you can check the Show Console Messages option. Sometime you will want to
refresh your CVS command-line syntax and see what commands JBuilder calls against
the CVS repository. This is a great learning tool if this is your first time using CVS.

Upon completing the steps, JBuilder will check out the selected module and make it
available in your workspace.

Placing a New Project into CVS
When you have existing projects in JBuilder and have not configured the project under
any version control system, JBuilder provides a wizard to assist in placing projects into
CVS. When the checking process is complete, the wizard will check the project again
and make it available immediately in the JBuilder workspace:

1. Enter the CVS connection type with appropriate login information and module
location. See Figure 9.7.

2. Enter descriptions for your new CVS module.

3. Include or exclude any project directories or files before checking the CVS
repository. See Figure 9.8.

Click the Finish button. JBuilder will check in the selected items and check them out
again to make them available in your workspace.

Figure 9.7 Input CVS Module properties.

204 Chapter 9

Figure 9.8 Choose directories and files to place into CVS.

CVS Project-Level Commands
You can access the project-level CVS command by right-mouse clicking on the project
for a Context menu or via Team menu items:

Update Project. A CVS update command will be performed on the project. Your
JBuilder workspace will be updated with changes that have been made to the
repository.

Status Browser. This is a very informative GUI that shows the status of files in
the version control. Within the Status browser, you can select a file and view the
differences in many ways, using Workspace Source, Repository Source, Work-
space Diff, Repository Diff, and Complete Diff.

Commit Browser. The Commit Browser command shows a drop-down list of
actions that can be taken on each file. Within the Commit Browser, you can
select a file and view the differences in many ways, using Workspace Source,
Repository Source, Workspace Diff, Repository Diff, and Complete Diff.

Add Version Label. Labeling is recommended as one of the best practices when
using CVS. When adding a new version label, JBuilder will apply the version
label to the current version of every file that resides in the repository.

Sync Project Settings. This includes Pull Latest project from the CVS repository
and Post current project to the CVS repository. When pulling the latest project,
the workspace will reflect the current status of the repository. When posting the
current project, the repository will reflect the current status of the project in the
workspace.

Figure 9.9 shows typical project-level CVS commands.

Integrated Team Development 205

Figure 9.9 CVS project-level commands.

CVS File-Level Commands
CVS file-level commands are accessible from the Team menu or from the right-click
operation on Project pane’s Context menu. They include the following:

Update. After checking out a CVS project, part of our job is to modify files on
CVS. Making the changes to your local workspace does not update the remote
repository until you explicitly ask CVS to commit your changes. When you are
sure that your modifications work properly and you are ready to commit your
changes to the repository, you need first to update your files by activating the
“Update” command on the files. This update command is equivalent to the
actual CVS command line:

cvs update -d -l -P filename

Commit. When selecting the Commit command, you will be prompted to enter a
comment describing the new changes. JBuilder then checks whether the file has
been updated. If the file has not been “CVS updated,” the Commit operation will
fail, and JBuilder will display an error message indicating that the CVS commit
fails because the file had a conflict and has not been updated. This Commit com-
mand is equivalent to the actual CVS command line:

cvs commit -m

Status. This command shows the current status of the selected file and detects
whether changes have been made in the local workspace or in the remote repos-
itory. If there is any conflict between the local copy and the remote copy, the
command will prompt you with a conflict alert message.

Add. This command is used to add a new file to the CVS repository. If you do
Status command on a new file, JBuilder will prompt you that the file is not in the
CVS repository. “Add” is used to activate the CVS Add command on a selected

206 Chapter 9

file. You will be asked to enter a comment regarding the new file. Behind the
scenes, JBuilder will issue a CVS Add and a CVS Commit command to perma-
nently add the file to the repository.

Remove. This command involves a two-stage process. First it deletes the file
from your local workspace, and you need to execute the CVS Remove com-
mand. The file will be permanently removed from both your local workspace
and the CVS repository.

Advance CVS. JBuilder-CVS integration supports four file access notification
commands: CVS watch, CVS remove watch, CVS edit, and CVS unedit. Using
these CVS watch functions, you can be notified when changes have been made
to files that you have set the watch on. After setting up CVS watch for a file, you
can use Status Browser GUI to view the status.

Figure 9.10 shows file-level CVS commands.

Resolving CVS Merge Conflicts
CVS and JBuilder integration issues an alert message when you update the file status
and there is the possibility of merge conflict. It is recommended that you update the file
before committing the changes. By doing so, you ask JBuilder to alert you if merge con-
flicts occur.

CVS will not allow you to commit the changes until all possible conflicts are
resolved. Understand this CVS restriction; JBuilder provides a GUI for merge conflict
resolution, as shown in Figure 9.5, so that you can scan the entire file for all conflicts.
You can resolve the conflict manually or automatically by selecting a merge conflict
block and applying updates to the file that is still in a local workspace. When you are
confident about the changes, you can then commit your changes.

Figure 9.10 CVS file-level commands.

Integrated Team Development 207

Summary

This chapter highlights the version control system integration in JBuilder and how it is
necessary in a team development environment. VCS-JBuilder integration is helpful to
assist you in your daily VCS operations. The benefit is that not only can each developer
work independently of the others within JBuilder’s environment, but the project can be
synchronized across the team with all changes and historical activities recorded in the
repository. The team development also plays a critical role in JBuilder’s vision of an
Application Lifecycle Management environment.

208 Chapter 9

209

JBuilder has improved its build system over the years. Since version 7, the JBuilder
build system has been based on Ant technology. Ant is an advanced Java-based build
tool developed and maintained by the Jakarta Project (http://jakarta.apache.org/ant).
Ant makes the JBuilder build system more flexible, and it is robust in building complex
Java projects.

This chapter covers the basics of JBuilder build systems and the use of the JBuilder
compiler, JBuilder archive builder, and JBuilder-Ant integration.

Build System Basics

Developers have high expectations of what an integrated development environment
should provide for its build utilities. We need a well-defined build process for projects
of tens of thousands — sometimes hundreds of thousands — of code lines, with hun-
dreds of components and libraries. The build systems should work across platforms
and should be able to work with the existing build environment without forcing the
existing environment to change.

JBuilder operates on similar build concepts as Ant: build tasks, build targets, and
different build phases. The build systems are based on build components in JBuilder
OpenTools API. Build process is actually more than just a terminology; it is a JBuilder
OpenTool component named BuildProcess. The BuildProcess owns a whole build
request, which can be used to schedule an orderly execution of a series of individual
build targets. It is a multithreaded process that usually works as a background thread.

Using Build Systems

C H A P T E R

10

JBuilder uses a listener approach to monitor the build process states: initiation,
progress, and completion. The BuildProcess then recursively updates its table with
new registered Builders and its children. During the initiation phase, JBuilder instanti-
ates its BuildProcess for a project.

The Build process is responsible for instantiating build tasks and build targets. Build
target is a collection of one or many build tasks. Each build target can have dependen-
cies with other build targets. For example, when building an Enterprise Archive (EAR)
target, the EAR target itself should have a Web Archive (WAR) target. All dependencies
will be built before executing the main target. Each build task belongs to a BuildTarget.
Each BuildTarget can have more than one BuildTask. When the build is executed, its
process runs in the background of JBuilder IDE.

There are six phases in the JBuilder build system:

Clean. .class files, JARs, WARs, EARs, and built output are removed.

Pre-compile. Any tasks that need to be done before compiling are completed. For
example, Interface Definition Language (IDL) files need to be compiled into the
Java stub/skeleton before building the whole project.

Compile. Java bytecode .class files are generated from source files.

Post-compile. Tasks, such as generating IIOP-compliant stubs and skeletons from
Java interface classes, are completed after compiling.

Package. Files defined by BuildTarget are generated.

Deploy. Deployable archives are distributed to other places, such as an FTP or
application server.

These six phases have no dependencies on each other, making JBuilder even more
flexible. This allows each phase to be executed independently, and each phase can be
configured with an external build task. JBuilder offers two default processes: Make and
Rebuild. The Make process includes pre-compiling, compiling, post-compiling, pack-
aging, and deployment; and the processes are executed sequentially. The Rebuild
process includes cleaning and the Make process. Both processes are illustrated in Fig-
ure 10.1.

TI P To rebuild portions of your project, select one or more packages or
classes in the Project pane. Then right-mouse click and choose Make or Rebuild
from the Context menu.

Figure 10.1 Make and Rebuild commands.

210 Chapter 10

Using the Compiler

JBuilder tools for building applications are more effective than using Java 2 SDK tools.
JBuilder uses an advanced compiler called Borland Make for Java (bmj). The bmj sup-
ports all Java language compilation requirements. The bmj implements smart depen-
dencies checking technique, which allows the compiling cycle to be faster and more
efficient. The dependencies checker recognizes changes in source files so that the bmj will
recompile only the necessary files. In Java, it is possible that one or more of the classes
that the source produces depends on members in other classes that have changed.
JBuilder is able to detect this situation to determine whether that change would not affect
others. This capability is unique to JBuilder; it avoids recompiling files unnecessarily.

JBuilder also provides the option to change compilers. You can configure the
JBuilder build system to use javac (Java2 SDK tool) as the main compiler. If you want
to take advantage of JBuilder features, such as smart dependencies checking and refac-
toring, then you should use Borland Make for Java.

This session discusses compiler settings, project build settings, resource files and
Ant libraries management, and Build menu configuration.

Compiler Settings
JBuilder does not limit developers to working with one Java compiler. Compiler options
for an open project can be configured on the Java tab of the Build page of Project Prop-
erties (Project|Project Properties), as shown in Figure 10.2. You can also right-mouse
click the project file in the Project pane and choose Properties. Note that files in the
project will be affected by the changes to the options. This also applies to files refer-
enced by the project files.

Figure 10.2 Java compiler options.

Using Build Systems 211

JBuilder selects Borland Make as the default compiler. It provides settings for Syn-
chronize output dir, Obfuscate, and Exclude class. If you select javac as the compiler
for your project, these settings will not be enabled. When compiling with Borland
Make (bmj), the project enables dependencies checking and refactoring features. If you
want to use the host JDK compiler shipped with JBuilder, located in the <JBuilder
Dir>/jdk1.4 directory, then select javac when compiling the project. If you want to use
the compiler specified on the Project|Project Properties - Path tab, then select Project
javac when compiling the project. Note that when you do not compile the project with
bmj, JBuilder will not detect dependency changing on files until the project is rebuild.

NOTE When you change any debug or obfuscation options on the Build page
of the Project Properties dialog box, you must rebuild your project in order to
have the changes take effect.

Debug settings allow you to include or exclude variable information for debugging.
If you select Source, Line, And Variable Information, the java .class files will be built
with full debugging information, such as source name, line number, and local variable
information. If you select Source And Line Information Only, the java .class files will be
built with only source name and line number in its debug information. If you use
JBuilder SE or JBuilder Enterprise, you can build your project with only source name
in its debug information. In many cases, when we want to reduce the build size to the
smallest size possible, then we need to select None to the debug information to include
zero debug information.

You can use Target Virtual Machine (VM) to restrict the class files to work with a spe-
cific VM version. Choosing All Java SDKs generates Java .class files compatible with all
VMs in JDK 1.1 and Java 2 JDKs. Otherwise, JBuilder will generate Java .class files,
which work only for a selected VM. For example, if you select Java 2 SDK, v 1.4 and
Later, the generated class files will work only on VMs in the Java 2 SDK, v 1.4 and later.
They will not work on 1.1, 1.2, or 1.3 VMs.

TI P When you select the target VM, you need to enter the following VM
parameter on the Run page of the Runtime configurations dialog box in order
for the Smart Swap debugger feature (JBuilder Enterprise) to work properly:
Xverify:none.

Select the Show Warnings option to display any compiler warning messages in the
message pane. By default, the warning messages are displayed in yellow. The color
code can be customized using JBuilder Editor.

Show Deprecations displays all deprecated classes, methods, properties, events, and
variables when compiling the project. This option is very useful when we target exist-
ing applications to a new JDK. When this option is checked, we can see what specifi-
cally is deprecated.

If you select Borland Make as the compiler, Synchronize Output Dir will automati-
cally be enabled in the Project Properties dialog. This option keeps the Output Dir in
synchronization automatically with the current project by deleting class files on the
output path so that we do not have their source files in the project.

212 Chapter 10

To protect valuable source code from reverse engineering, you can use Obfuscate in
Borland Make. We should obfuscate code to protect the intellectual property from
hackers and dishonest competitors. Obfuscation reduces decompiling risk by replac-
ing readable variable names with different names, altering symbols to make it hard to
associate those variables with the source code.

You can also exclude Java source files from compiling. This can be done via check-
ing the Exclude Class option. This option is checked, so the build also excludes the
process of evaluating of the parameters passing to the static methods; the bmj could
run faster.

Common Build Settings
The common build settings are found in the General tab of the Build page of the Proj-
ect Properties dialog, as shown in Figure 10.3. They include the following options:

■■ Automatically save project files before each compiling process.

■■ Automatically generate sources to a given output path.

■■ Automatically refresh the project before building.

■■ Automatically cancel the build process when error occurs.

■■ Always build before refactoring.

■■ Automatically check JSPs for errors at build time.

Select a SQL translator for the current project. When a SQLJ translator is selected,
JBuilder automatically adds SQLJ files to the project. There are two supported SQLJ
translators: Oracle translator for Oracle database and IBM translator for DB2 database.
To set up a SQLJ translator, we open the Enterprise Setup dialog box (Tools|Enterprise
Setup) and select an appropriate translator. More information on SQLJ can be found at
www.sqlj.org.

Figure 10.3 General build settings.

Using Build Systems 213

214 Chapter 10

BORLAND BMJ AND BCJ COMMAND LINE TOOLS

JBuilder provides two utilities for the command-line compile option: bmj and bcj
commands. When compiling with bmj, the project enables dependencies checking and
generating a dependency file. bcj compiles only the specified Java source file without
doing dependencies checking or being concerned about the dependency file. The two
utilities are located in <JBuilder Dir>/bin directory. Here are the syntax and list of
options for both.

bmj [OPTIONS] {source.java} {[-s] {source.java} | -p {package} | -c {class}}Valid options
include the following:

-g Generate all debugging information
-g:none Generate no debugging information
-g:{lines,vars,source} Generate only some debugging information
-verbose Output messages about what the compiler is doing
-quiet Generate no messages
-nowarn Generate no warning messages
-obfuscate Obfuscate private symbols
-encoding <encoding> Specify character encoding used by source files
-d <directory> Specify the output directory
-deprecation Output source locations where deprecated APIs are used
-classpath <path> Specify where to find user class files
-bootclasspath <path> Override location of bootstrap class files
-extdirs <dirs> Override location of installed extensions
-sourcepath <path> Specify where to find input source files
-target <release> Generate class files for specific VM version
-exclude <classname> Exclude use of class from compile
-source <release> Accept source files for specific Java version
-rebuild Rebuild all class files
-nocompile No compilation of class files
-nocheckstable No checking of stable packages
-nomakestable Compile only changed classes in a package
-sync Synchronize source and output directory

bcj [OPTIONS] [SOURCE FILES]Valid options include the following:
-g Generate all debugging information
-g:none Generate no debugging information
-g:{lines,vars,source} Generate only some debugging information
-verbose Output messages about what the compiler is doing
-quiet Generate no messages
-nowarn Generate no warning messages
-obfuscate Obfuscate private symbols
-encoding <encoding> Specify character encoding used by source files
-d <directory> Specify the output directory

Managing Resource Files
JBuilder recognizes all defined resource types, and JBuilder can be configured to copy
those files from the source path to the output path during its compilation. The resource
information on files or by file extension can be configured on the Resource tab of the
Build page of Project Properties (Project|Project Properties), as shown in Figure 10.4.

The tab displays a list of project scope default settings for file extension and their
default deployment action. The action includes options for Copy or Do not copy
option. When you select Copy, JBuilder copies the defined file types to the output path
during its build process. When you select Do not copy, JBuilder will not copy the
defined files to the output path during the build process, regardless of whether the file
type is a common Java resource.

TI P You can use the Default Project Properties dialog box (Project|Default
Project Properties) to change default settings for all future projects.

Figure 10.4 Managing the Resource tab.

Using Build Systems 215

-deprecation Output source locations where deprecated APIs are used
-classpath <path> Specify where to find user class files
-bootclasspath <path> Override location of bootstrap class files
-extdirs <dirs> Override location of installed extensions
-sourcepath <path> Specify where to find input source files
-target <release> Generate class files for specific VM version
-exclude <classname> Exclude use of class from compile

-source <release> Accept source files for specific Java version

Changing Ant Library
JBuilder integrates its build systems with the latest Ant version 1.5; however, you can
add any Ant library or use a different version of Ant in the project. Changing Ant
libraries can be configured on the Resource tab of the Ant page of Project Properties
(Project|Project Properties), as shown in Figure 10.5.

JBuilder will use the new Ant libraries instead of the version shipped in the JBuilder
lib directory.

Figure 10.5 Adding Ant libraries.

216 Chapter 10

JBUILDER COMMAND-LINE INTERFACE

JBuilder provides a command-line interface with arguments to help you build an entire
JBuilder project from a Unix Shell console or DOS command console. Here is the
argument list (F:\Borland\JBuilder8\bin>jbuilder -help):

build: Build JBuilder projects (not available in Personal)
help: Display help on command-line options
info: Display configuration information
license: Display the license manager
nosplash: Disable splash screen
verbose: Display OpenTools loading diagnostics

Example usage:
jbuilder -build wileyproject.jpx rebuild

Figure 10.6 Configure Build menu.

Adding Items to Build Menu
Figure 10.1 showed two default items — Make and Rebuild — on the Build menu. You
can add and customize target items on the Menu Items tab of the Build page of Project
Properties (Project|Project Properties). See Figure 10.6 for an example.

The targets can be Clean, any Ant targets, or any external build tasks. You can move
a target item up or down to make the item appear first on the Build drop-down menu.
The default build item is listed first on the list. See Figure 10.7 for an example.

Figure 10.7 Drop-down Build menu.

Using Build Systems 217

Archive Builder

Java program deployment has gone far beyond applet deployment. Currently there are
at least 10 different deployment formats for Java applications, including applets and
advanced J2EE packets. A Java deployment process includes packaging together many
Java .class files, html files, xml files, image files, and other files bundled in the applica-
tion program. After packaging the file, the deployment process distributes the archive
files onto a server computer or a client computer where the programs are executed.

Different formats require different steps to archive a Java deployment. JBuilder pro-
vides an Archive Builder to assist the deployment process. The Archive Builder automat-
ically collects and bundles Java classes, resource files, and libraries into an archive format,
such as .ZIP or .JAR files. At the same time, JBuilder constructs the archive’s manifest.

Depending on what archive format you select, JBuilder’s Archive Builder will lead
you through the steps to create the archive. After compiling your project, you can
either choose Wizards|Archive Builder to bring up the Wizard or do File|New|
Build|Archive Builder, as shown in Figure 10.8.

First, the Archive Builder asks you to select an archive type (see Figure 10.8).
Depending on what type you select in this step, the wizard will take you through a dif-
ferent number of steps and configuration parameters. Following are different archive
types that the Archive Builder supports:

Applet JAR. An applet archive uses the compressed JAR that includes all
required classes from imported libraries; therefore, the applet is not dependent
on external files.

Applet ZIP. This archive is an alternative to the Applet JAR format. It supports
older Web browsers that cannot host .JAR files.

Application. An application archive contains a main class file that contains the
public static void main(String[] args) method. The archive is not compressed by
default. Usually, the application archive type does not contain the supported
libraries, which will be distributed along with the application installation.

Figure 10.8 Archive Builder wizard.

218 Chapter 10

Basic. This archive type is almost the same as the Application archive; the only
difference is that no main class is specified in the Basic archive.

J2EE Application Client. The J2EE Application Client archive uses the com-
pressed JAR format, which includes the J2EE client deployment descriptors and
class file. The deployment descriptor contains definitions of Enterprise Java-
Beans (EJB) and any other external resources for the J2EE application.

Native Executable. The Native Executable archive type uses compressed JAR
format. It also includes native executable wrappers for Windows, Linux, Solaris,
and Mac OS X, as shown in Figure 10.9.

OpenTool. The OpenTool archive uses the .JAR format. To be compliant with the
JBuilder OpenTools structure, you need to override the manifest file following
JBuilder OpenTool template.

Resource Adapter (RAR). An RAR archive contains J2EE component implemen-
tations. In being compliant with the J2EE 1.3 specification, a JBuilder RAR
archive includes the connector implementations. In the future, RAR will include
other J2EE service implementations.

Web Start Applet. The Web Start Applet archive uses the JAR file format. Typi-
cally, it belongs to WebApp node, and it will be deployed to a Web application
holder in a Web server. The Java Web Start now supports launching any Java
applet or application from a hypertext link on a Web page, in any Web browser.
Also, the Java Web Start includes automatic update features.

Web Start Application. Like the Web Start Applet archive, the Web Start Applica-
tion archive uses the JAR file format and is deployable by Java Web Start
technology.

Figure 10.9 Native Executable Builder.

Using Build Systems 219

Using External Build Task

In a complex environment with multiple build processes for different types of applica-
tions, it is a nightmare for developers to manage and execute builds across applications
and languages. JBuilder External Build Task (see Figure 10.10) allows us to configure
and set the JBuilder build system to work with any external build processes and scripts
that are already in place and working perfectly in the existing developing environ-
ment. To start the External Build Task wizard, choose File|New| Build page, and dou-
ble-click the External Build Task icon.

In this step, it is important that you provide which phase the task is scheduled to
execute in. Also, you should identify the targets that execute before and after the exter-
nal build task for that given phase.

When you click on the Insert Macro button, JBuilder displays a macro list for the
project (see Figure 10.11). You can select one or more items in combination to form an
environment variable as you desire.

Figure 10.10 External Build Task wizard.

220 Chapter 10

Figure 10.11 Select macro(s) to define environment variables.

After you have the external task defined, you can click on the external task node and
select Make to run the task. The JBuilder Message pane will display the Build tab infor-
mation, which includes the Standard error output and Standard output texts, as shown
in Figure 10.12.

Figure 10.12 StdOut message for External Build Task.

Using Build Systems 221

Using Project Groups

Developers often work on many JBuilder projects at once, and the projects may be tied
to each other. The idea of having all related projects grouped into a single project is
very powerful. It helps not only during the development and build phase but also dur-
ing packaging and deployment. For J2EE development, we can use the same codebase
on multiple application servers. The Project Group information stores information in
an XML-based project file. Subprojects within the group can be opened and built
simultaneously.

After creating and configuring individual projects, open the Project Group wizard
from the Project page of the Object Gallery (File|New|Project). See Figure 10.13 for an
example.

Next, you need to add projects into the Project group. You can add one project at a
time, or you can select the Add Recursively option to add all subdirectories and proj-
ect files to the group. In this example (see Figure 10.14), the two projects (testbuild.jpx
and testbuild2.jpx) will be added to the testbuild group.

Figure 10.13 Project Group wizard - Step 1.

Figure 10.14 Project Group wizard - Step 2.

222 Chapter 10

You can move the subprojects up or down to set the order in which the subprojects
will be built. This feature allows you to control the build order of all projects within the
project group.

Integrating the JBuilder Build System with Ant
Build Files

Ant does not replace the IDE; it is a complement to the IDE. Borland JBuilder provides
an integrated environment with Ant for building and automating complex Java proj-
ects. This section shows how JBuilder integration with Ant helps us be more effective
with Ant Build Wizard and Ant configurations for the projects.

When you install JBuilder, it automatically sets up your environment to work with
Ant. The latest version of Ant is installed in <JBuilder Dir>\extras\ant. If you want to
run Ant as a command-line tool, you just need to set your PATH pointing to <JBuilder
Dir>\extras\ant\bin. For example, set JAVA_HOME to <JBuilder Dir>/jdk1.4; set
ANT_HOME to <JBuilder Dir>\extras\ant; set PATH including ${ANT_HOME}/bin.

Ant Wizard
You can access the Ant wizard by doing File|New|Build|Ant or by Wizards|Ant.
JBuilder will display the wizard dialog shown in Figure 10.15.

Select Add to browse and add existing Ant build.xml files to the project. You can also
add existing Ant build.xml files by selecting Project|Add Files/Packages, navigating
to the Ant build file, and adding to the current project.

By default, JBuilder recognizes and displays any Ant build.xml files in the Project
pane. The build.xml is displayed with an Ant icon node with its relative path. This
default setting helps us to identify different build.xml files in case we have multiple
build.xml files in the project. Displaying the relative path can be disabled in the Ant
Properties dialog. All build targets in the build.xml file are displayed as children of the
build.xml node.

Figure 10.15 Ant Wizard dialog.

Using Build Systems 223

TI P JBuilder automatically recognizes any Ant build.xml file with the Ant icon
node. You can set build files with other names as Ant build files in the Ant
Properties dialog box. Right-mouse click the XML node, and choose Properties.
Then choose the Ant tab, and check the Ant Build File option. See Figure 10.16
for an example.

Ant Build File Properties
To add Build File properties, right-mouse click the XML node and choose Properties. The
Ant Properties dialog allows you to configure Ant settings, as shown in Figure 10.16.

When Ant build file is checked, the XML is defined as an Ant build file and JBuilder
will apply all build properties to the XML file. If the build file is named build.xml, this
option is grayed out. Show relative path is set by default to identify different build.xml
files in case we have multiple build.xml files in the project. Log level sets details we
want for message output. Four levels can be set — quiet, normal, verbose, or debug.
Use log file is selected to send output messages to a log file instead of the JBuilder mes-
sage pane. In addition, you can add, modify, or remove existing properties in the dia-
log. These property settings will override the equivalent settings in the build file.

Ant build file is considered a task in the JBuilder build system. This means that you
can set Task Scheduling to determine the build phase in which the build file is exe-
cuted. Also, you can select the other targets to be executed before and after the execu-
tion of the Ant build file.

If you want to automate your whole build system, you can check the Always run
Ant when building project option. By doing this, JBuilder will run the Ant build
process whenever it is building the project.

Figure 10.16 Ant Build File properties.

224 Chapter 10

TI P When running Ant as an external process from within JBuilder, you can
set the heap size for the VM depending on the size of your project. For
example, to set the maximum heap of the Java VM for Ant to 128MB, enter
Xmx128m as VM parameters.

By default, Borland Java Compiler is checked for the most optimized compilation.
You can, however, uncheck the setting and configure JBuilder to use another java com-
piler, such as JDK javac.

Ant Options
Following are additional Ant options for the Additional Options field of the Properties
dialog box:

help. Prints this message.

projecthelp. Prints project help information.

version. Prints the version information and exits.

Using Build Systems 225

ANT COMMAND LINE USAGE

Here are options for Ant command line tool.
ant [options] [target [target2 [target3] ...]]
Options:
-help Print this message
-projecthelp Print project help information
-version Print the version information and exit
-diagnostics Print information that might be helpful to

diagnose or report problems
-quiet, -q Be extra quiet
-verbose, -v Be extra verbose
-debug Print debugging information
-emacs Produce logging information without adornments
-logfile <file> Use given file for log
-l <file> ‘’

-logger <classname> Indicate the class that is to perform logging
-listener <classname> Add an instance of class as a project listener
-buildfile <file> Use given buildfile
-file <file> ‘’
-f <file> ‘’

-D<property>=<value> Use value for given property
-propertyfile <name> Load all properties from file with -D

properties taking precedence
-inputhandler <class> Specify the class that will handle input requests
-find <file> Search for buildfile toward the root of the

filesystem and use it

emacs. Produces logging information without adornments.

-logger classname. Indicates the class that is to perform logging.

listener classname. Adds an instance of class as a project listener.

find file. Searches for buildfile toward the root of the filesystem and uses the first
one found.

These options allow you to maximize the usage of Ant in your build environment.

Handling Compilation Errors with Ant
Building JBuilder projects is no different from running typical JBuilder build processes.
Two types of error messages may occur: Error messages and Warning messages. Error
messages show a problem that need to be fixed; for example, there is a syntax error.
Warning messages show a suspicious problem that should be reviewed and fixed. And
the warnings do not stop the compilation process.

JBuilder ErrorInSight indicates the true cause of the error when you click on the
error # in the Message pane. JBuilder will locate the line of code containing the error
when you double-click the error in the structure pane. The code line containing the
error will be highlighted in the editor.

Examining a StdErr node displayed in the Message pane will give you error mes-
sages. In this example, StdErr shows one error:

“CustomerBean.java”: [javac]

C:\demos\alm\company_build\src\keynote\ejb\CustomerBean.java:43: error

#200: ‘;’ expected at line 43

[javac] this.entityContext = entityContext

[javac] ^

Figure 10.17 Customer Bean. JAVA

226 Chapter 10

Summary

This chapter gives you a basic tour of the JBuilder build system and how to make it
work efficiently in your developing environment. You have seen different build facili-
ties, configuration, property settings, archive builder, and integration with Ant. The
build system allows you to fully control and extend the build process in your develop-
ment environment. The build system plays a critical role in JBuilder’s vision of an
Application Lifecycle Management environment.

Using Build Systems 227

229

Unit testing looks at code in small software components. Integration testing looks at
larger components. The unit testing context fits well with the Extreme Programming
methodology, which employs frequent builds and integration principles. The question
facing programmers is this: How does the nature of unit testing affect our busy coding
and deploying tasks? The Java community offers an excellent unit-level testing frame-
work called JUnit, which is an open-source framework. Borland JBuilder built a tight
integration with JUnit that enables programmers to unit test while they code.

This chapter gives you an overview of the JUnit architecture and focuses on how
JBuilder integrates with JUnit to perform unit testing. This chapter also guides you
through the steps of creating and running unit tests for the Java component using the
JUnit framework in the JBuilder.

JUnit Architecture

Thanks to the JUnit creators, Gamma and Kent Beck, the unit test framework was born
in glory. The Java community quickly adapted to the framework by its features; JUnit
TestCase and TestSuite firmly form a foundation that helps us write unit tests.

Unit Testing with JUnit

C H A P T E R

11

TestCase
TestCase is the smallest unit in the JUnit framework; TestCase defines the state of ini-
tial values for a test context. This testing context is referred to as a test’s fixture.

JUnit TestCase (shown in Figure 11.1) implements JUnit Test interface, which pro-
vides a public run() method to execute a test and collects its result into a TestResult
instance. We can implement a TestCase by following these simple steps:

1. Implement a subclass of TestCase.

2. Define instance variables as the initial state of the test fixture.

3. Initialize the fixture state by overriding setUp() method, and clean up after a
test by overriding the tearDown() method. TestRunner will execute the test
case in the following order:

1. TestRunner constructs one or more instances of the test case.

2. Each test instance calls the setUp() method to configure the test environ-
ment, calls the testMethodXXX() method to do a test, and calls the
tearDown() method to clean the fixture.

Here is an example:

public class TestSimpleCalculator extends TestCase {

private SimpleCalculator instance = null;

long a, b, c;

public TestSimpleCalculator(String name) {

super (name);

}

protected void setUp() throws Exception {

super.setUp();

instance = new SimpleCalculator();

a = 100;

b = 10;

c = 10;

}

// more codes

}

TestSuite
TestSuite is composed of test objects that implement the JUnit Test interface. Usually, the
components are test cases. We can run TestSuite as a batch processing to record a report

230 Chapter 11

Figure 11.1 UML view of JUnit TestCase.

of the success or failures of each test. By running the tests in an unattended batch
process, we are rescued from running a hundred test cases one at a time. TestSuite is
constructed by adding test objects to the suite via its addTest()or addTestSuites() meth-
ods. Also, we can construct a nested TestSuite depending on our test requirements. Here
is an example of constructing a new TestSuite and adding tests to the suite:

TestSuite suite= new TestSuite();

suite.addTestSuite(TestSimpleCalculator.class);

suite.addTest(new TestSimpleCalculator(“testSum”));

suite.addTest(new TestSimpleCalculator(“testSubtract”));

junit.framework

junit.framework

TestCase

fName : String

countTestCases() : int

getName() : String

run() : TestResult

run() : void

runBare() : void

setName() : void

TestCase() : void

TestCase() : void

toString() : String

createResult() : TestResult

runTest() : void

setUp() : void

tearDown() : void

junit.framework

TestResult

Assert

Test

junit1.test

AllTests

TestSimpleCalculator

Unit Testing with JUnit 231

Figure 11.2 UML view of JUnit TestSuite.

ju
n

it.fra
m

ew
o

rk

TestSu
ite

fN
am

e : Strin
g

fTests : V
ecto

r

ad
d

Test() : vo
id

ad
d

TestSuite() : vo
id

co
un

tTestC
ases() : in

t

createTest() : Test

g
etN

am
e() : Strin

g

g
etTestC

o
n

structo
r() : C

o
n

structo
r

run
() : vo

id

run
Test() : vo

id

setN
am

e() : vo
id

testA
t() : Test

testC
o

un
t() : in

t

tests() : En
um

eratio
n

TestSuite() : vo
id

TestSuite() : vo
id

TestSuite() : vo
id

TestSuite() : vo
id

to
Strin

g
() : Strin

g

ad
d

TestM
eth

o
d

() : vo
id

excep
tio

n
To

Strin
g

() : Strin
g

isPub
licTestM

eth
o

d
() : b

o
o

lean

isTestM
eth

o
d

() : b
o

o
lean

w
arn

in
g

() : Test

ja
va

.la
n

g

Strin
g

ja
va

.u
til

V
ecto

r

ja
va

.la
n

g

O
b

ject

ju
n

it.fra
m

ew
o

rk

Test

ju
n

it.fra
m

ew
o

rk

A
llTests

ja
va

.u
til

En
u
m

era
tio

n

ja
va

.lo

P
rin

tW
riter

Strin
g

W
riter

W
riter

ju
n

it.fra
m

ew
o

rk

A
ssert

TestC
a
se

TestR
esu

lt

ja
va

.la
n

g

C
lass

C
lassN

otFoun
d

Excep
tion

Illeg
alA

ccessExcep
tion

In
stan

tiation
Excep

tion
N

oC
lassD

efFoun
d

Error
N

oSuch
M

eth
od

Excep
tion

Strin
g

B
uffer

Th
row

ab
le

V
oid

ja
va

.la
n

g
.reflect

C
on

structor
In

vocation
Targ

etExcep
tion

M
eth

od
M

od
ifier

232 Chapter 11

Table 11.1 summarizes TestSuite’s methods.

Table 11.1 TestSuite Methods

RETURN TYPE METHOD NAME

void addTest(Test test)

Adds a test to the suite.

void addTestSuite(java.lang.Class testClass)

Adds the tests from the given class to the suite.

int countTestCases()

Counts the number of test cases that will be run by
this test.

static Test createTest(java.lang.Class theClass,
java.lang.String name)

Creates new test based on a given test class.

java.lang.String getName()

Returns the name of the suite.

static Constructor getTestConstructor(java.lang.Class theClass)

Gets a constructor that takes a single String as its
argument or a no arg constructor.

void run(TestResult result)

Runs the tests and collects their result in a
TestResult.

void runTest(Test test, TestResult result)

void setName(java.lang.String name)

Sets the name of the suite.

Test testAt(int index)

Returns the test at the given index.

int testCount()

Returns the number of tests in this suite.

java.util.Enumeration tests()

Returns the tests as an enumeration.

java.lang.String toString()

Unit Testing with JUnit 233

Figure 11.3 UML view of TestResult class.

ju
n

it.fra
m

ew
o

rk

TestR
esu

lt

fErro
rs : V

ecto
r

fFailures : V
ecto

r
fListen

ers : V
ecto

r
fR

un
Tests : in

t
fSto

p
 : b

o
o

lean

ja
va

.u
til

V
ecto

r

ja
va

.la
n

g

O
b

ject

ja
va

.la
n

g

T
h

rea
d

D
ea

th
T

h
ro

w
a
b

le

ju
n

it.fra
m

ew
o

rk

A
ssertio

n
Fa

iled
Erro

r
TestFa

ilu
re

P
ro

tecta
b
le

Test
TestC

a
se

TestListen
er

ja
va

.u
til

En
u
m

era
tio

n
ad

d
Erro

r() : vo
id

ad
d

Failure() : vo
id

ad
d

Listen
er() : in

t

en
d

Test() : vo
id

erro
rC

o
un

t() : in
t

erro
rs() : En

um
eratio

n

failureC
o

un
t() : in

t

failures() : En
um

eratio
n

rem
o

veListen
er() : vo

id

run
C

o
un

t() : in
t

run
Pro

tected
() : vo

id

sh
o

uld
Sto

p
() : b

o
o

lean

startTest() : vo
id

sto
p

() : vo
id

TestR
esult() : vo

id

w
asSuccessful() : b

o
o

lean

run
() : vo

id

clo
n

eListen
ers() : V

ecto
r

234 Chapter 11

JUnit Supporting Classes
There are two critical classes from the JUnit Framework: JUnit TestResult class and
JUnit Assert class. TestResult gathers the results from running a test case in a collection.
It is an excellent implementation of the Collecting Parameter pattern, which was intro-
duced by Kent Beck in 1996. The JUnit framework, for the most part, handles the
TestResult outputs behind the scenes; however, it is important to know about the
TestResult class when you need to extend TestResult to meet your custom test result
formats.

The JUnit test framework can distinguish between errors and failures. Errors are
reported as unanticipated problems; for example, an ArrayIndexOutOfBoundsExcep-
tion occurs. On the other hand, a failure is predictable and checked for with assertions
that are provided by the JUnit Assert class.

TI P Asserts are statements that contain Boolean expressions showing the
TRUE value to the developers’ best knowledge. Assert statements are evaluated
at runtime to catch errors if the expression results in false. By programming
experiences, using assertions is one of the quickest and most effective ways to
detect and correct bugs in the early coding phase. The assert process is turned
off by default. To enable the Assert option in JBuilder, choose Project|Project
Properties and click the Build tab.

The Assert class contains a set of possible assert methods used to check expected
values. When an assert fails, TestResult will record the information messages that the
Assert class produces. Assert class has a few types of assert method: assertEquals(),
assertFail(), assertTrue(), assertFalse(), assertSame(), assertNotSame(), assertNull(),
assertNotNull(), and fail() methods. Each type contains a few static overloading meth-
ods to check on different given parameters. Table 11.2 shows all assert methods for
JUnit Assert class.

There is a TestCase.assert() method, which is deprecated. We should not use the
deprecated TestCase.assert() because it collides with the enforced keyword assert() in
JDK 1.4.

Table 11.2 Assert Methods

METHOD NAME DISCRIPTION

assertEquals(boolean expected, Asserts that two Booleans are equal.
boolean actual)

assertEquals(byte expected, Asserts that two bytes are equal.
byte actual)

assertEquals(char expected, Asserts that two chars are equal.
char actual)

assertEquals(double expected, Asserts that two doubles are equal
double actual, double delta) concerning a delta.

(continued)

Unit Testing with JUnit 235

Table 11.2 (continued)

METHOD NAME DISCRIPTION

assertEquals(float expected, Asserts that two floats are equal
float actual, float delta) concerning a delta.

assertEquals(int expected, int actual) Asserts that two ints are equal.

assertEquals(long expected, long actual) Asserts that two longs are equal.

assertEquals(java.lang.Object Asserts that two objects are equal.
expected, java.lang.Object actual)

assertEquals(short expected, Asserts that two shorts are equal.
short actual)

assertEquals(java.lang.String message, Asserts that two Booleans are equal.
boolean expected, boolean actual)

assertEquals(java.lang.String message, Asserts that two bytes are equal.
byte expected, byte actual)

assertEquals(java.lang.String message, Asserts that two chars are equal.
char expected, char actual)

assertEquals(java.lang.String message, Asserts that two doubles are equal
double expected, double actual, concerning a delta.
double delta)

assertEquals(java.lang.String message, Asserts that two floats are equal
float expected, float actual, float delta) concerning a delta.

assertEquals(java.lang.String message, Asserts that two ints are equal.
int expected, int actual)

assertEquals(java.lang.String message, Asserts that two longs are equal.
long expected, long actual)

assertEquals(java.lang.String message, Asserts that two objects are equal.
java.lang.Object expected,
java.lang.Object actual)

assertEquals(java.lang.String message, Asserts that two shorts are equal.
short expected, short actual)

assertEquals(java.lang.String expected, Asserts that two Strings are equal.
java.lang.String actual)

assertEquals(java.lang.String message, Asserts that two Strings are equal.
java.lang.String expected,
java.lang.String actual)

assertFalse(boolean condition) Asserts that a condition is false.

assertFalse(java.lang.String message, Asserts that a condition is false.
boolean condition)

236 Chapter 11

Table 11.2 (continued)

METHOD NAME DISCRIPTION

assertNotNull(java.lang.Object object) Asserts that an object is not null.

assertNotNull(java.lang.String message, Asserts that an object is not null.
java.lang.Object object)

assertNotSame(java.lang.Object Asserts that two objects refer to the same
expected, java.lang.Object actual) object.

assertNotSame(java.lang.String Asserts that two objects refer to the same
message, java.lang.Object expected, object.
java.lang.Object actual)

assertNull(java.lang.Object object) Asserts that an object is null.

assertNull(java.lang.String message, Asserts that an object is null.
java.lang.Object object)

assertSame(java.lang.Object expected, Asserts that two objects refer to the same
java.lang.Object actual) object.

assertSame(java.lang.String message, Asserts that two objects refer to the same
java.lang.Object expected, object.
java.lang.Object actual)

assertTrue(boolean condition) Asserts that a condition is true.

assertTrue(java.lang.String message, Asserts that a condition is true.
boolean condition)

Test Runners
JUnit offers two TestRunners: a text-based TestRuner and a GUI TestRunner imple-
mented by using the standard Java Swing UI.

A text-based TestRunner outputs a number of test runs, test failures, and test errors.
Typically, the text-based TestRunner is used to automate unattended test runs. Follow-
ing is sample output from the text-based TestRunner:

Time: 0.02

There were 2 failures:

1) testGetAtt1(junitframework.TestJavaComponent2)junit.framework

.AssertionFailedError: Not yet implemented. at junitframework.

TestJavaComponent2. testGetAtt1(TestJavaComponent2.java:23)

2) testGetAtt2(junitframework.TestJavaComponent2)junit.framework.

AssertionFailedError: Not yet implemented. at junitframework.

TestJavaComponent2.testGetAtt2(TestJavaComponent2.java:28)

FAILURES!!!

Tests run: 2, Failures: 2, Errors: 0

Unit Testing with JUnit 237

Figure 11.4 Test Selector dialog.

The text-based TestRunner gives the quickest test results; however, for hundreds of
tests, it really helps to have an informative graphical user interface. GUI TestRunner
appears as a Java Swing-base application to configure how to execute the test and indi-
cate the level of progress graphically.

The Swing UI TestRunner provides a Test Selector, shown in Figure 11.4, to select a
test class to execute.

Each TestRunner can be configured two ways:

■■ The TestRunner can reload the testing class for each run. By doing this, we
do not have to restart the TestRunner every time the codes are changed.

■■ TestRunner restarts after each run to load updated classes. To select a reload-
configuration, as shown in Figure 11.5, Reload classes every run needs to be
checked.

Upon completing the tests, the TestRunner provides a tally of the number of test
runs, errors, and failures (see Figure 11.5).

Figure 11.5 JUnit Swing-based TestRunner.

238 Chapter 11

Via the Test Hierarchy, we can select a TestSuite, a TestCase, or even a test method to
execute; the test result will be displayed in the lower Message pane, and a text label
will indicate whether the test has passed or failed after its execution.

The JUnit TestRunner is helpful, but it does bring up questions. How can it be used
effectively with an IDE? How do we debug the test cases? How do we step into test
method code? How can we quickly build a test framework for our components? How
do we set up test fixtures? Borland JBuilder provides an IDE-level integration to JUnit
framework; the integration helps developers rapidly set up their test environment for
test cases and test suites. And, in addition to standard text-based TestRunner and
GUI-based TestRunner, JBuilder innovates with JBuilder’s TestRunner, enriched with
IDE advantages using the Messageview to locate failures and errors more quickly.

JUnit Integration with JBuilder

After we have the component coded, we can start building tests by clicking the
File|New or by bringing up the Object Gallery and selecting the Test tab. JBuilder then
displays the Test menu with all its wizards.

When the test class is created with the JUnit framework, JBuilder recognizes that test
class and enables appropriate Runtime configurations such as Run Test and Debug
Test. You can access these options from a Context menu by right-mouse clicking on the
source filename in the Project pane.

JBuilder includes wizards for creating TestCases and TestSuites.

Build a Test Case
When the Test Case wizard is run, JBuilder automatically generates a class that extends
junit.framework.TestCase. At the same time, JBuilder creates an appropriate Runtime
configuration and makes it available to the project Run Configuration. To help illus-
trate the Test Case construction, we use a very simple integer calculator example:

public class SimpleCalculator { // SimpleCalculator.java

public SimpleCalculator(){

}

public long sum(long _1, long _2) {

return _1 + _2 ;

}

public long multiply(long _1, long _2) {

return _1 * _2 ;

}

public long subtract(long _1, long _2) {

return _1 - _2 ;

}

public long divide(long _1, long _2) {

Unit Testing with JUnit 239

return _1 / _2 ;

}

}

Creating a JUnit TestCase uses a four-step wizard, as outlined next.

Step 1

First, choose a class to test, and choose one or more methods for building test methods
(see Figure 11.6). In addition, the Available Methods tree displays the methods of all
inherited classes of the selected class.

Step 2

Next, we will provide class information for the new test case: package name, class
name, and inheritance class (see Figure 11.7). By default, the wizard sets the inheri-
tance class to junit.framework.TestCase. The test case can inherit from any parent class,
which extends junit.framework.TestCase.

Step 3

The third step is selecting predefined fixtures for the test case. Fixtures are constructed
using the Fixture wizards. JBuilder supports JDBC fixture, JNDI fixture, Comparison
fixture, and Customize fixture. The selected test fixtures are displayed in the fixture
list. (See Figure 11.8.) You can add or remove any fixture item from the list by using the
Add and Remove buttons. Also, you can move fixtures from the list up or down to
change the order of the fixtures. The following code shows how fixtures are set up, con-
structed, and destructed in the setUp() and tearDown() method:

Figure 11.6 Test Case wizard, Step 1.

240 Chapter 11

Figure 11.7 Test Case wizard, Step 2.

protected void setUp() throws Exception {

super.setUp();

customFixture1 = new CustomFixture1(this);

jdbcFixture11 = new junit1.JdbcFixture1(this);

jdbcFixture12 = new JdbcFixture1(this);

jndiFixture1 = new JndiFixture1(this);

comparisonFixture1 = new ComparisonFixture1(this);

customFixture1.setUp();

jdbcFixture11.setUp();

jdbcFixture12.setUp();

jndiFixture1.setUp();

comparisonFixture1.setUp();

}

protected void tearDown() throws Exception {

instance = null;

customFixture1.tearDown();

jdbcFixture11.tearDown();

jdbcFixture12.tearDown();

jndiFixture1.tearDown();

comparisonFixture1.tearDown();

customFixture1 = null;

jdbcFixture11 = null;

jdbcFixture12 = null;

jndiFixture1 = null;

comparisonFixture1 = null;

super.tearDown();

Unit Testing with JUnit 241

Figure 11.8 Test Case wizard — Add test fixture.

When you click the Add button, JBuilder displays a Package Browser dialog box.
You can search or browse to the fixture class that you want the test case to include.

Step 4

The last step is to create a Runtime configuration for the new test case (Figure 11.9). If
we check the Create a runtime configuration checkbox, the Test Case wizard will allow
us to enter a name for the new runtime configuration. We also have the option of select-
ing a base configuration if we have any. The most important item in this step is to select
a TestRunner for the TestCase. By default, it is set to JBuilder TestRunner; however, we
can select JUnit Text-based or GUI-based TestRunner.

After finishing these four steps, JBuilder will generate a test case that extends
junit.framework.TestCase. The generated code shows the test case skeletons, which are
a placeholder for implementing real tests based on our test plan. Methods that still
need to be completed are marked with @todo Javadoc comments. These comments
are visible in the structure pane in the To-Do node of the tree. In this example, we
complete the skeletons with the actual codes, as shown here:

Figure 11.9 TestCase wizard, Step 4.

242 Chapter 11

// TestSimpleCalculator.java

package junit1.test;

import junit.framework.*;

import junit1.*;

public class TestSimpleCalculator extends TestCase {

private SimpleCalculator instance = null;

long a, b, c;

public TestSimpleCalculator(String name) {

super (name);

}

protected void setUp() throws Exception {

super.setUp();

instance = new SimpleCalculator();

a = 100;

b = 10;

c = 10;

}

protected void tearDown() throws Exception {

instance = null;

super.tearDown();

}

public void testDevide() {

assertEquals(c, instance.divide(a, b));

}

public void testMultiply() {

assertEquals(a, instance.multiply(b, c));

}

public void testSubtract() {

long d = a - b;

assertEquals(d, instance.subtract(a, b));

}

public void testSum() {

long d = a + b;

assertEquals(d, instance.sum(a, b));

}

}

Running the test case using JBuilder TestRunner, we should see the results shown in
Figure 11.10. The checkmark indicates that the test has passed. The cross sign indicates
that the test has failed.

Unit Testing with JUnit 243

Figure 11.10 JBTestRunner test hierarchy.

The JBTestRunner hierarchy shows that all four tests are passed. Let’s modify one of
the test methods to observe a failure case:

public void testDevide() {

long d = 1;

assertEquals(d, instance.devide(a, b));

}

The JBTestRunner shows that there are four tests in total; three tests succeeded, and
one test failed (see Figure 11.11). The purpose of this example is to observe a failure
case. Our best unit test writing practice is that we always test for success. Errors or fail-
ures should be fixed at once when a test failure occurs.

The Test Failures message pane displays a JUnit assertion exception, which shows
both the expected return value and the actual return value at the failed test method. If
we click on the test method, JBuilder will take us directly to the test method where the
error occurred. This is clearly an advantage of using JBuilder TestRunner instead of
JUnit-based TestRunner. JBuilder TestRunner allows easy integration into its IDE.

Build a TestSuite
TestSuite helps us run all tests as a single collection. The TestSuite layout (shown in
Figure 11.2) contains one or many Test objects, which can be made up of individual test
cases extending the JUnit Test class. Similar to creating the TestCase, the three-step
wizard helps us create a TestSuite in an easy manner. To bring up the Test Suite wizard,
select File|New from the menu to display the Object Gallery and then select Test Suite
from the Test page (see Figure 11.12).

Figure 11.11 JBuilder TestRunner test failures.

244 Chapter 11

Figure 11.12 TestSuite wizard, Step 1.

// AllTests.java

package junit1.test;

import junit.framework.*;

public class AllTests extends TestCase {

public AllTests(String s) {

super(s);

}

public static Test suite() {

TestSuite suite = new TestSuite();

suite.addTestSuite(junit1.test.TestSimpleCalculator.class);

return suite;

}

}

Similar to running a test case (Step 3), running a TestSuite will call a TestRunner. The
TestRunner will automatically execute all the test cases specified in the suite. The result
will be displayed accordingly in the TestRunner format.

After completing the three steps, JBuilder generates a TestSuite with all given test
cases. To add more test cases to the suite, you would use the same format of addTest-
Suite() method for each test case. For example:

suite.addTestSuite(junit1.test.TestSimpleCalculator2.class);

Using Test Fixtures
Test fixtures are defined as utility classes that are used to set up test contexts. Usually,
we set up test fixtures to perform repeatedly in our test environment. JBuilder has wiz-
ards for creating common fixtures for JDBC, JNDI, and Comparisons.

Unit Testing with JUnit 245

JDBC Fixture

To make it easier to write unit test cases involving JDBC connections, JBuilder provides
JDBC Fixture as an extension to the JUnit Fixture paradigm. When the JDBC fixture is
set up, the test case can use JDBC Fixture’s methods to get a connection, run an SQL
file, and set a URL. Table 11.3 summarizes the common JDBC Fixture methods.

Besides the common methods mentioned, JDBC Fixture has setters and getters for
its private attributes, such as the following:

private boolean verbose;

private String schema;

private String catalog;

private boolean promptForPassword;

private String password;

private String username;

private String driver;

private String url;

To create a new JDBC Fixture, open the Object Gallery, go to the Test tab, select the
JDBC Fixture icon, and click the OK button. The two-step wizard will lead us through
the creation of a JDBC Fixture (see Figure 11.13).

Table 11.3 JDBC Fixture Methods

RETURN TYPE METHOD NAME

void dumpResultSet(ResultSet rs, Writer writer) — Dumps the
values in a result set to a Writer.

Connection getConnection() — Returns a java.sql.Connection object
defining the JDBC connection.

void runSqlBuffer(StringBuffer buf, boolean abortOnFailure) —
Runs an SQL statement contained in a StringBuffer.

void runSqlFile(String s, boolean abortOnFailure) — Reads an
SQL script from a file and runs it. Takes a String indicating
the location of the file and a Boolean as parameters.

void setUrl(String s) — Sets the URL property of the JDBC
connection. Takes a String as a parameter.

void setUsername(String s) — Sets the username for accessing
the JDBC connection. Takes a String as a parameter.

void setPassword(String s) — Sets the password for accessing the
JDBC connection. Takes a String as a parameter.

246 Chapter 11

The Step 1 dialog asks for the generic information needed when developing a new
class in Java such as Package, Name, and Base class. The dialog in Step 2 requests JDBC
connection parameters. JBuilder supports JDBC drivers for many major databases on
the market. The sample screen shows that we selected a com.borland.datastore
.jdbc.DataStoreDriver accessing the following URL: http://jdbc:borland:dslocal:F
:\Borland\JBuilder8\samples\JDataStore\datastores\employee.jds. Also, we need to
have a user name and password to get authentication to access the database.

When completing the setup parameter, click Test Connection to check that you have
been successful connecting to the database. A success message is displayed to the right
of the Test Connection button. This step establishes a connection to a JDBC data source
and configures connection parameters for the test classes.

Clicking the Choose Existing Connection button displays a Select Database dialog.
In this dialog, JBuilder shows all the existing database connections we might have
already previously defined. If we select an existing connection, JBuilder will automat-
ically fill in all the fields on the page. The only field we need to complete is the
Password field. The Extended properties allow us to define name/value pair proper-
ties for the connection. If you want to save the connection information for later use, just
click on the Save Connection info button.

JNDI Fixture

To help facilitate those unit test cases involving JNDI lookups, JBuilder provides JNDI
Fixture, which extends the JUnit Fixture paradigm. To create a new JNDI Fixture, open
the Object Gallery, go to the Test tab, select the JNDI Fixture icon, and click the OK but-
ton. The two-step wizard will lead us through the creation of a JNDI Fixture (see Fig-
ure 11.14).

Figure 11.13 JDBC fixture.

Unit Testing with JUnit 247

Figure 11.14 Creating a JNDI fixture.

The JNDI Fixture wizard asks for 15 property name/value pairs to fill in required
attributes in javax.naming.context. Those name/value pairs (listed in Table 11.4) will
be used directly by the Fixture class; it will use the env.put() method to set the runtime
environment for the test, for example:

env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.fscontext.RefFSContextFactory”);

Table 11.4 JNDI Key Attributes

ATTRIBUTE SUMMARY

static String APPLET: Constant that holds the name of the environment property
for specifying an applet for the initial context constructor to use
when searching for other properties.

static String AUTHORITATIVE: Constant that holds the name of the environment
property for specifying the authoritativeness of the service requested.

static String BATCHSIZE: Constant that holds the name of the environment
property for specifying the batch size to use when returning data via
the service’s protocol.

static String DNS_URL: Constant that holds the name of the environment
property for specifying the DNS host and domain names to use for
the JNDI URL context (for example, “dns://starswar/billing.com”).

static String INITIAL_CONTEXT_FACTORY: Constant that holds the name of the
environment property for specifying the initial context factory to use.

static String LANGUAGE: Constant that holds the name of the environment
property for specifying the preferred language to use with the service.

248 Chapter 11

Table 11.4 (continued)

ATTRIBUTE SUMMARY

static String OBJECT_FACTORIES: Constant that holds the name of the
environment property for specifying the list of object factories to use.

static String PROVIDER_URL: Constant that holds the name of the environment
property for specifying configuration information for the service
provider to use.

static String REFERRAL: Constant that holds the name of the environment
property for specifying how referrals encountered by the service
provider are to be processed.

static String SECURITY_AUTHENTICATION: Constant that holds the name of the
environment property for specifying the security level to use.

static String SECURITY_CREDENTIALS: Constant that holds the name of the
environment property for specifying the credentials of the principal
for authenticating the caller to the service.

static String SECURITY_PRINCIPAL: Constant that holds the name of the
environment property for specifying the identity of the principal for
authenticating the caller to the service.

static String SECURITY_PROTOCOL: Constant that holds the name of the
environment property for specifying the security protocol to use.

static String STATE_FACTORIES: Constant that holds the name of the
environment property for specifying the list of state factories to use.

static String URL_PKG_PREFIXES: Constant that holds the name of the
environment property for specifying the list of package prefixes to
use when loading in URL context factories.

Similar to the JDBC Fixture getConnection() method, the JNDI Fixture getContext()
method is also the most used method. The method returns a JNDI Context instance,
which is created by the fixture constructor:

Context ctx;

public JndiFixture1(Object obj) {

try {

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

“com.sun.jndi.fscontext.RefFSContextFactory”);

ctx = new InitialContext(env);

}

catch (Exception e) {

System.err.println(e);

}

}

Unit Testing with JUnit 249

Figure 11.15 Comparison Fixture wizard.

Comparison Fixture

Comparison Fixture extends the JBuilder unit test component TestRecorder <com.bor-
land.jbuilder.unittest.TestRecorder>, which takes advantage of the Java IO Writer class
to record output results when executing a test. The output results will be used to com-
pare to that of previous test outputs. To create a new Comparison Fixture, open the
Object Gallery, go to the Test tab, select the Comparison Fixture icon, and click the OK
button. The one-step wizard will lead us through the creation of a Comparison Fixture
(see Figure 11.15).

In this example, we save comparison results in C:/demos/JB8_Book/junit1/test
because the data will be used by the comparison fixture later. We check Echo output
to console to echo the output results to the TestRunner console. Also, we have the Ver-
bose output option checked to view more detailed information. Let’s examine the
comparison fixture’s constructor:

public ComparisonFixture1(Object obj) {

super();

super.setMode(UPDATE);

super.setVerbose(true);

super.setEcho(true);

String fileName =

super.constructFilename(“C:/demos/JB8_Book/junit1/test”, obj);

super.setOutputFile(fileName);

}

super.setMode() method is called to set the output mode for the Comparison Fix-
ture. TestRecorder class provides four public static constants that can be passed into
the setMode() method:

static final int OFF = 0; // Disable comparison fixture

static final int RECORD = 1; // Records new output results, overwriting

existing data in the output file

250 Chapter 11

static final int COMPARE = 2; // Compares new output result to the

existing output results

static final int UPDATE = 3; // Compares and creates new output file,

and records new output results

TI P If an existing output file contains incorrect data, set the output mode to
RECORD after fixing the problem. Once you have recorded the desired output,
set the mode back to UPDATE.

The output file contains binary format data. Usually, the file has the same name as the
test case. The test case is changing during the course of our development; therefore, we
need to reinitialize the data file to have updated test results. In this case, we should use
the RECORD option instead of the UPDATE option to avoid deleting the existing data
file. Table 11.5 summarizes the most commonly used methods of the Test Recorder class.

Comparison Fixture extends the Java Writer class; therefore, it works effectively
with the JDBC Fixture static dumpResultSet() method, which takes in an SQL result set
and a Writer Object. For example:

ResultSet rs = stmt.executeQuery(“SELECT * FROM MYTESTTABLE”);

jdbcFixture1.dumpResultSet(rs, comparisonFixture1);

This code snippet shows that we take the ResultSet return from executing the SQL
query and use the JDBC Fixture’s dumpResultSet() method to store the result set into
the Comparison Fixture.

Table 11.5 Test Recorder Common Methods

RETURN TYPE METHOD NAME

void print(String s) — Prints a String that is passed to it as a
parameter.

void println(String s) — Prints a String that is passed to it as a
parameter with a line break.

boolean compareObject(Object) — Invokes the equals() method of an
object to compare an object passed to it to an object that was
previously recorded using recordObject(), and resets to the
original mode when done comparing; returns TRUE if the
object is successfully recorded.

boolean recordObject(Object) — Records an object so that it can later
be compared to another object using compareObject();
returns TRUE when it successfully records the data.

Unit Testing with JUnit 251

Custom Fixture

JUnit test fixtures set up test configurations and environments. We have seen JBuilder
built-in JDBC, JNDI, and Comparison fixtures; in many cases, we want to set up custom
fixtures to fit our test environment. The basic layout of a test fixture contains setUp()
and tearDown() methods. The setUp() method is used to initialize the variables and
construct other resources for the test to use. The tearDown() is used to release any
permanent resources we have allocated during setUp():

public class CustomFixture1 {

// declare any test variable and resource

public CustomFixture1(Object obj) {

// additional pre-work can be done here when constructing the

CustomeFixture object

}

public void setUp() {

// Initialize test variables

// Allocate resources

//

}

public void tearDown() {

// Close database connection

// Release allocated resource

// Clean up and reset variables

}

}

Unit Testing J2EE Applications

JBuilder’s wizards for JUnit allow you to get away from the pains of writing test cases
for standard Java components. Testing gets more complex when dealing with the
server side of Java programming, writing distributed Internet applications with the
J2EE framework. That EJB components are involved with local interface, remote inter-
face, transactions, inter-EJB interactions, container services, and so on creates too many
steps for most of us to set up an automatic test environment. Working to resolve these
problems, Borland JBuilder engineers came up with the EJB Test Client wizard to assist
us creating individual tests for each EJB component. EJB Test Client works with all
J2EE applications supported by JBuilder. We can execute our routine unit test without
leaving JBuilder to deploy or undeploy the Enterprise JavaBeans.

252 Chapter 11

The EJB Test Client wizard provides three different types of unit test clients:

■■ An EJB test client application tests the EJB services of the bean.

■■ A JUnit test case enables the test with the JUnit framework.

■■ A Cactus JUnit test case simulates the client application to test the EJBs running
on a remote server. This is covered in greater depth in Chapter 20.

Summary

In this chapter, we reviewed how JBuilder integrates with the JUnit test process to
build a solid code base. JBuilder combined its IDE and JUnit frameworks to make the
entire testing process — from instantiating the class to be tested to calling its methods
and checking the results — easier than ever for Java developers. The JBuilder wizards
for JUnit testing with TestCase, TestSuite, and Test Fixtures help us do the unit tests in
an easy manner and in an effective way.

Unit Testing with JUnit 253

255

JBuilder is an evolving software application. By providing a sophisticated develop-
ment environment with facilities for building Java applications across the J2SE, J2EE,
and J2ME specifications, JBuilder becomes a technology itself. And JBuilder technol-
ogy grows as Java developers demand better support for writing code. Because the
Unified Modeling Language (UML) was adopted and has rapidly become an essential
and common graphical language among software developers on software system
design, JBuilder uses UML structural diagrams to help developers visualize and tra-
verse Java classes and packages. With UML code visualization, we can do code review,
code analysis, design problem detection, code refactoring, and communication on
software design in the teamwork environment. This chapter focuses on how to use the
UML visualization in parallel with the development process.

UML Visualization

C H A P T E R

12

BACKGROUND ON UML

Supported by the object-oriented programming community since 1995, the Unified
Modeling Language (UML) became a standard notation for modeling object-oriented
software systems. In 1997, the Object Management Group (OMG) approved the UML
specification and established a special task force behind the UML specification to define
a graphical language for visualizing, specifying, constructing, and documenting the
artifacts of distributed object systems. Currently, OMG has released and maintained the
UML 1.4 specification (www.omg.org). In 2001, OMG task forces started working on UML
2.0 by announcing four RFPs: UML2.0 Superstructure, Object Constraint Language, and
UML Diagram Interchange. The UML 2.0 works are continuing.

Visualize Your Codes

JBuilder is not designed to substitute or replace the UML design tools in the market;
JBuilder mainly focuses on assisting developers with its innovated code visualization
via UML diagrams. The two UML structural diagrams, package dependency diagrams
and combined class diagrams, are used in JBuilder.

This package diagram shows how packages can be divided into modules with depen-
dency relationships between packages. Typically, the package dependency diagram can
be viewed as a high-level representation of a whole system or part of a subsystem of the
big picture.

The key benefit of having a package dependency diagram is to view the logical
modularization between packages visually. When the project is getting complex and
large, during the design phase, the package diagram is very helpful in organizing and
refactoring packages.

In JBuilder, the package diagram is intended to show all dependencies with the
main package, as shown in Figure 12.1. After compiling or rebuilding the project, you
can view the package dependency diagrams by opening the Package node in the Proj-
ect pane, then selecting the UML tab in the Content pane; the package diagram will
display.

A dashed line with an arrowhead represents Dependencies or Reverse Dependen-
cies, which define dependency relationships between objects. The displayed packages
with dependencies can be used for navigation from one package to another by double-
clicking them in the diagram.

The class diagram shows the static structure of the object in the system. Every Java
source file or class file can be visualized by its combined class diagram. When the file
is opened in the Content pane, view the UML class diagram by selecting the UML tab
at the bottom of the Content pane. The selected class will be displayed in the center of
each diagram. JBuilder positions all association relationships on the left and all depen-
dencies on the right of the class. Super classes or parent interfaces are placed on top of
the class. And child classes or implementing classes are placed on the bottom.

Figure 12.1 Package dependency diagram.

NewUserAction
SearchAction
SessionBean

com.wiley.mastering.jbuilder.web

BookstoreManagerFrame

com.wiley.mastering.jbuilder.javaclient

Column
DataModule
DataSet
DataSetData
ParameterRow
ReadRow

com.borland.dx.dataset

Exception
Integer
Object
String

java.lang

ClientDataModule

com.wiley.mastering.jbuilder.dm

Cart

com.wiley.mastering.jbuilder.ejb20

EJBObject

javax.ejb

EjbClientDataSet
RowData
SessionBeanConnection

com.borland.dx.ejb

256 Chapter 12

Let’s visualize the following code portion by using the UML class diagram (see Fig-
ure 12.2):

package com.wiley.mastering.jbuilder.ejb20;

import java.rmi.*;

import java.sql.*;

import java.util.*;

import javax.ejb.*;

import javax.sql.*;

import com.borland.dx.dataset.*;

import com.borland.dx.ejb.*;

public class CartBean implements SessionBean {

private SessionContext sessionContext;

private transient ServerDataModuleLocal serverDataModule;

private String username;

private String password;

private Integer id;

private transient User user;

private transient UserHome userHome;

private transient OrderHome orderHome;

private transient OrderitemHome orderitemHome;

private transient ShoppingCartHome shoppingCartHome;

private transient javax.naming.Context context;

public void ejbCreate() {

ejbCreate(null, null);

}

public void ejbCreate(String username, String password) {

this.username = username;

this.password = password;

lookup();

}

ƒƒ

public void ejbActivate() throws RemoteException {

lookup();

}

public void ejbPassivate() throws RemoteException {

}

public void setSessionContext(SessionContext sessionContext) throws

RemoteException {

this.sessionContext = sessionContext;

}

} // CartBean.java

UML Visualization 257

Figure 12.2 Combined UML class diagram for CartBean.Java.

co
m

.w
iley.m

a
sterin

g
.jb

u
ild

er.ejb
2

0

C
a
rtB

ea
n

co
n

text : C
o

n
text

id
 : in

teg
er

o
rd

erH
o

m
e : O

rd
erH

o
m

e
p

assw
o

rd
 : Strin

g
serverD

ataM
o

d
ule : ServerD

ataM
o

d
uleLo

cal
sh

o
p

p
in

g
C

artH
o

m
e : Sh

o
p

p
in

g
C

artH
o

m
e

user : U
ser

userH
o

m
e : U

serH
o

m
e

usern
am

e : Strin
g

ja
va

x
.ejb

Sessio
n
C
o
n
text

ja
va

.la
n

g

O
b

ject

ja
va

x
.ejb

Sessio
n
B

ea
n

ja
va

.la
n

g

Ex
cep

tio
n

System

C
o
n
text

co
m

.w
iley.m

a
sterin

g
.jb

u
ild

er.ejb
2

0

In
ven

to
ry

O
rd

er
O

rd
erItem

ServerD
a
ta

M
o
d
u
leLo

ca
lH

o
m

e
Sh

o
p
p
in

g
C
a
rt

Sh
o
p
p
in

g
C
a
rtP

K

co
m

.w
iley.m

a
sterin

g
.jb

u
ild

er.ejb
2

0

ja
va

.la
n

g

O
rderH

om
e

O
rderItem

H
om

e
ServerD

ataM
oduleLocal

ShoppingCartH
om

e
U

ser
U

serH
om

e

Integer
String

ja
va

.u
til

C
o

llectio
n

R
era

to
r

ja
va

x
.ejb

EJB
Ex

cep
tio

n
Fin

d
erEx

cep
tio

n
O

b
jectN

o
tFo

u
n

d
Ex

cep
tio

n

co
m

.b
o

rla
n

d
.d

x
.d

a
ta

set

D
a
ta

SetD
a
ta

P
a
ra

m
eterR

o
w

R
ea

d
R

o
w

co
m

.b
o

rla
n

d
.d

x
.ejb

R
o

w
D

a
ta

ja
va

.rm
i

R
em

o
teEx

cep
tio

n

ja
va

.sq
l

T
im

esta
m

p

ja
va

x
.n

a
m

in
g

In
itia

lC
o

n
tex

t

ad
d

To
Sh

o
p

p
in

g
C

art() : vo
id

ad
d

To
Sh

o
p

p
in

g
C

art() : vo
id

ad
d

U
ser() : b

o
o

lean

ejb
A

ctivate() : vo
id

ejb
C

reate() : vo
id

ejb
C

reate() : vo
id

ejb
Passivate() : vo

id

ejb
R

em
o

ve() : vo
id

g
etU

serId
() : In

teg
er

IsLo
g

g
ed

In
() : b

o
o

lean

lo
g

in
() : b

o
o

lean

lo
g

O
ut() : vo

id

p
ro

vid
eA

llD
ata() : D

ataSetD
ata[]

p
ro

vid
eIn

ven
to

ry() : D
ataSetD

ata[]

p
ro

vid
eSh

o
p

p
in

g
C

art() : D
ataSetD

ata[]

p
ro

vid
eU

ser() : D
ataSetD

ata[]

p
urch

ase() : vo
id

rem
o

veFro
m

Sh
o

p
p

in
g

C
art() : vo

id
reso

lveA
llD

ata() : D
ataSetD

ata[]

reso
lveIn

ven
to

ry() : D
ataSetD

ata[]

reso
lveSh

o
p

p
in

g
C

art() : D
ataSetD

ata[]

em
p

tySh
o

p
p

in
g

C
art() : vo

id

g
etIn

itialC
o

n
text() : C

o
n

text

g
etU

serParam
eterR

o
w

() : Param
eterR

o
w

lo
o

kup
() : vo

id

tran
sferSh

o
p

p
in

g
C

art() : vo
id

sessio
n

C
o

n
text : Sessio

n
C

o
n

text

ja
va

x
.n

a
m

in
g

258 Chapter 12

Classes that belong to a package are grouped into packages; for example, in Figure 12.2,
DataSetData, ParameterRow, and ReadRow class are grouped into the com.borland
.dx.dataset package. The class diagram in Figure 12.2 shows all associations and depen-
dencies from the selected class to other classes. We can traverse from one class to other
classes by double-clicking on the class we want to view. The UML diagrams can be saved
as a PNG image by selecting Save Diagram from a Context menu; this is explained in the
next section.

NOTE PNG stands for Portable Network Graphics, which is a flexible and
open format for storing bitmapped graphics images. PNG (pronounced as
“ping”) format provides a new and visually rich appearance compared to the
GIF format. Also, PNG files are smaller than GIF files.

As a typical UML class diagram, the Class view has four sections separated by hor-
izontal lines. The first section displays the class name; the second section displays the
attributes and their types; the third section displays the methods; the fourth section
displays properties. In Figure 12.3, there is an option to set ON/OFF for the Properties
display. By default, the option is ON. If it is turned OFF, properties will be displayed in
the same sections with attributes and methods.

Customize the UML Diagrams
Views of the UML diagrams can be customized via JBuilder IDE Options. Tools|IDE
Options with the UML page allow us to set options for sorting, grouping of elements,
determining font family and size, and setting the color of elements. The Tools|IDE
Options|UML Page dialog is shown in Figure 12.3.

Figure 12.3 UML browser options page.

UML Visualization 259

Figure 12.4 Tree view of the UML diagram in the Structure pane.

There are complex classes that have many dependency classes and packages to fit in
a UML class diagram. In order to simplify the UML view, you can exclude any classes
or packages; usually, the system packages, such as java.io and java.lang, should be
excluded for simplification. JBuilder Project|Properties dialog with the Class Filtering
page provides classes and packages filtering for a UML diagram. When you add any
classes and packages into the filtering list, the JBuilder UML view will filter out those
classes or packages. JBuilder allows us to enable or disable the UL class filtering even
if we exclude any classes or packages from the diagram.

Structure View of UML Diagram
When the UML class diagram is displayed in the Content pane, the structure pane
shows a Tree view of the UML diagram. This tree view includes Extended Classes,
Implemented Interfaces, Associations, and Dependencies. The Structure pane can be
easily used to traverse to other UML diagrams, as shown in Figure 12.4.

Extended Classes shows super-class classes whose attributes and methods are
inherited from another class. Implemented Interfaces shows all interfaces that are
implemented by the CartBean class. Associations shows relationships that CartBean
class has that refer to other classes. Dependencies shows dependencies where Cart-
Bean class has references to other classes in the project.

Context Menu for Refactoring

In addition to UML viewing and traversing functions, the UML browser provides a
Context menu listing common commands during the coding process. Depending on
what element in the UML pane we select, an appropriate Context menu for the selected
element appears. Figure 12.5 shows a Context menu that appears when we right-
mouse click and select a package.

260 Chapter 12

Figure 12.5 Context menu on package element.

In this Context menu, we can access one of the refactoring features: Rename Pack-
age. This refactoring feature helps us rename a package and the whole subtree of the
packages. When Rename refactoring a package, the package name and all import state-
ments in other Java files are updated. Physically, the package, any subpackages, and all
class source files are relocated to a new source directory on disk. If there exist any old
files with the same name, those old files are deleted.

NOTE The Rename refactoring not only gives a new name to a package, class,
method, field, variable, or property but also makes sure that all references to
that new name are changed accordingly across the project.

Figure 12.6 shows a Context menu that appears when we right-mouse click and
select a class in the UML browser.

The Context menu on class element enables these refactoring features:

■■ Find Reference is used to locate all references to a selected symbol. Found refer-
ences will be displayed in the Search Results tab, as shown in Figure 12.7.

■■ Rename Class is used to change the class name to a new name, which will be
reflected in the class declaration and in every instance of that class and every
other reference to that class throughout the project.

■■ Move Class is used to move a selected class to a new package. Only the top-level
public class is allowed to move. The required condition for this moving refac-
toring is that the new package does not already contain a source file with the
new name. When the class is moved, JBuilder will update the package, import
statements in the class source file, and all other referencing classes with the
moved class.

Figure 12.6 Context menu on class element.

UML Visualization 261

Figure 12.7 Find Reference Results tab.

■■ Change Parameters is used to add, rename, delete, or rearrange a method’s
parameters. Using the UML diagram, right-mouse click on the method where
the parameters are located. A dialog box will appear where you enter the new
information for parameters. The dialog shows the class in which this method
is located. Also, it shows current parameters of the method. To add or change
the parameter, you need to enter a name for the parameter, a Java type of the
parameter, and a default value for the parameter. Chapter 14, “DataExpress
and DBSwing Applications,” discusses refactoring in greater depth.

■■ Save Diagram is used to save the selected UML diagram as a PNG image
format.

■■ Enable Class Filtering allows us to disable or enable the UML browser to
display the excluded classes or packages.

■■ Go to Diagram is used to navigate and view the UML diagram of the selected
object.

■■ Go To Source is used to view the source code in the editor quickly.

■■ View Javadoc will activate a Builder’s help viewer to display the Java docu-
mentation, which is, in turn, generated from the Javadoc compiler.

Summary

This chapter highlights the UML view in JBuilder visual designer. In the current
release, this read-only UML view is designed to assist developers with code review,
code analysis, design problem detection, code refactoring, and communication on soft-
ware design. Although the UML view is not intended for full application design, it
does give developers another helpful set of hands and eyes for the codes.

262 Chapter 12

PA R T

Four

Two-Tier Client/Server
Development with JDBC

When JBuilder was first released, it had a very close tie to client/server program-
ming. One of the lifelines for client/server is accessing a database. JBuilder intro-
duced new tools and techniques to make two-tier development as easy as possible.

Back then, the only GUI framework was the Abstract Windows Toolkit (AWT).
That GUI framework was so limited in what it could do that was not really ready for
use in the real world. At the time, it was thought that companies would develop
their own GUI frameworks to enhance the one provided by Sun. Borland was one of
the first companies to introduce a standard-based GUI built on top of the AWT that
enhanced or added the needed functionality. The new framework was called Java-
Bean component library or JBuilder component library (JBCL) and was architected
by a Borland development engineer named Joe Nuxoll. The base of what JBuilder
had to work with the JBCL was actually a great GUI framework; it extended the base
components in every way and added some really great capabilities, especially the
data-aware aspects of the components

About a year into the release of JBuilder, Sun announced a new GUI framework
that would eliminate the shortcomings of the AWT and make a true interoperable GUI
framework that was codenamed Swing. Swing garnered a lot of attention because it
was being proposed by Sun, and the JBCL started to become one of those great
attempts at moving something in the right direction and ending up with nothing. The
JBCL later became the DBSwing libraries and was completely re-architected to be
based on the Swing framework. Again, Borland did a great job with the implementa-
tion; however, the general Java community labeled the framework as proprietary.
That was a real shame; the DBSwing libraries are still very useful today and have a lot
of nice features that are still on the side of cutting-edge. One thing to keep in mind

about DBSwing is that it is a completely open and standard library. It is based on the
Swing architecture and makes use of data-aware models. This means that if you want
to use the standard Java Foundation Classes (JFC, a.k.a. Swing), you can. This can save
considerable time and energy trying to recreate the functionality that is already pack-
aged with JBuilder.

At the same time that the JBCL was being created, Borland was working on a new
framework for JDBC. The DataExpress framework was born and extended the base
functionality supported by the 1.0 JDBC drivers of the time. DataExpress added key
features like cursors, providers/resolvers used in briefcase model computing, and the
ability to persist subsets of data. DataExpress continued to evolve from a lightweight
database API into a complete object/relational database called JDataStore. More infor-
mation and history on the evolution of how JBuilder supports JDBC are included in
this part of the book.

Part Four focuses on understanding how to use JDataStore and the tools in JBuilder
to create client/server-based applications:

Building the Database with JDataStore. Chapter 13 covers the product from begin-
ning to end. It shows how to use the graphic tools included with JBuilder and how to
do the same tasks using regular programming techniques.

DataExpress and DBSwing Applications. Chapter 14 brings attention to the frame-
works included in JBuilder that can help developers build great client/server applica-
tions without a lot of fuss. The tools included with JBuilder can literally generate a
complete application with no coding that will allow for manipulation of generic data
sources, JDBC or not.

Once the developer has completed this part of the book, he or she should feel confi-
dent about the use of JDataStore and know how to use the database frameworks
included with JBuilder to create client/server applications.

264 Part Four

265

The JDataStore (JDS) product that is included with JBuilder is a great all-Java object-
relational database. Its functionality is limited only to the users of the product; it can be
extended in ways that can help fit any problem.

This database includes advanced enterprise features found on the most expensive
databases available today, including the following:

■■ GUI tooling that enhances the productivity of the product

■■ Strong encryption

■■ XA (eXtended Architecture)-supported transactions that allow for two-phase
commits

■■ Two type 4 JDBC drivers, one for local access and the other for remote

■■ Very small footprint, both physical (hard drive space) and memory

■■ Ability to run on any JDK 1.2 or above

There are many ways to take advantage of JDS’s flexibility. This chapter shows how
to create and use JDatastore; it includes understanding JDataStore Explorer functions
and features from a GUI perspective and then covers how to accomplish the same
results programmatically. This chapter highlights creating JDataStores, adding tables,
setting up access rights, and working with encryption features. Each section focuses on
using the GUI to establish the concepts of working with the product and during the
programming parts. JBuilder wizards and components are used wherever possible.

Building the Database
with JDataStore

C H A P T E R

13

Database Design for JDataStore

The data structure for the JDataStore is shown in Figure 13.1. It includes three tables,
CATALOG, CATEGORIES, RESPONSE, all with a common reference called CATA-
LOG_ID, which is a foreign key in CATEGORIES and RESPONSE tables. In JDS this
will not be the case, as it does not currently support foreign keys. This may be seen as
a limitation of JDS, but some of the newer frameworks — like J2EE — require a flat
data structure of the database. JDS can make the implementation easier than tradi-
tional implementations by enabling optimizations on reads and integrity checking.
This structure will be used in the example in Chapter 14, “ DataExpress and DBSwing
Applications.”

The ID field for all three tables is the primary key; it will also be defined as an
AutoIncrement field. AutoIncrement fields have special advantages and handling in
JDS. This is for fields of either integer or long data types and will have the following
criteria: Only one AutoIncrement field will be defined per table, they will always be
unique, they will never be NULL, and values that have been deleted from the database
will not be reused. Defining the ID fields as primary keys will ultimately save space.
JDS does not need that integer column or index associated with it because the AutoIn-
crement field is the same as the internal row, which is the default table manager JDS
uses to control tables.

NOTE If you change an integer or long data type to an AutoIncrement field,
set the column.setAutoIncrement(true); before opening the database. If you set
a column to AutoIncrement after the database has been opened, then you will
have to call a Restructure method, for example, StorageDataSet.restructure();.

Figure 13.1 Database layout.

CATALOG
ID: Integer <PK>
SYNOPSIS: String
TITLE: String
URI: String
RATING: Double

CATEGORIES
ID: Integer <PK>
CATALOG_ID: Integer
NAME: String

RESPONSE
ID: Integer <PK>
CATALOG_ID: Integer
COMMENT: String
RATING: Integer
AREA: String

266 Chapter 13

Laying out the types of fields that will be included in the tables is the next task; a fair
amount of attention was given to the ID fields of the tables because of its special data type.
The rest of the fields will be defined next, and any special information will be noted:

■■ The SYNOPSIS field will be of data type String and will be responsible for
holding a short description of the report a customer may choose to read.

■■ The TITLE field will be of data type String and represent the name of the
reports that a customer may choose to read.

■■ The URI (Uniform Resource Identifier) field will be of data type String and will
represent the location that will contain the document.

■■ The RATING field will be of data type Double because of the possibility that it
may not be properly represented by a whole number.

■■ The CATALOG_ID field of the CATEGORIES table will make it possible to exe-
cute a query quickly to find all reports that are part of that category. The data
type will be Integer for this field to match the ID field in the CATALOG table.

■■ The NAME field will be of data type String and represent the category.

■■ The CATALOG_ID field of the RESPONSE table will make it possible to exe-
cute a query quickly to find all responses dealing with a specific report. It will
have a side benefit; if it does not exist, then it will represent feedback not
related to a specific report. The data type will be Integer for this field to match
the ID field in the CATALOG table.

■■ The COMMENT field will be of data type String and represent the actual
response from the feedback mechanism.

■■ The RATING field will be of data type Integer and be one way a customer can
give instant feedback.

■■ The AREA field will be of data type String and will be used for possible future
search criteria.

NOTE The Uniform Resource Identifier (URI) is sometimes confused with the
more common Uniform Resource Locator (URL) that has been popularized by
the Internet browsers on the market today. URL is a specific type of URI. Read
more about it at www.w3.org/Addressing.

Launching JDataStore Explorer

An all-purpose GUI called JDataStore Explorer has been developed for doing general
tasks with JDS, such as creating tables, packing tables, importing information into the
tables, setting security, and performing many other database-related tasks. There are
several ways to start JDataStore Explorer:

Building the Database with JDataStore 267

■■ Using the command line: /jbuilder/bin/jdsexplorer.

■■ Setting the proper classpath and calling its main class,
com.borland.dbtools.dsx.DataStoreExplorer, found in the dbtools.jar file in the
/jbuilder/lib directory. For more information on the .jar files needed for proper
execution from the command line, review the jdsExplore.config file located in the
/jbuilder/bin directory.

■■ If you are using a graphic environment like Windows, KDE, or Aqua from
Apple, JDataStore Explorer, launching from the item in the JBuilder group.

Starting JDataStore Explorer from the JBuilder group will load a common explorer-
style interface. The Main menu holds all the functions available from the interface; the
toolbar allows for limited functions to be done, including new JDataStore, Open JData-
Store, General SQL, and Verifying a JDataStore. The rest of the interface includes a
Hierarchal view of JDataStores on the left and a Context view in the Content pane, then
finishing the interface with a Status Bar.

Creating a New Database

Creating a new JDataStore database is very simple. For this example you will place all
the databases into a single directory structure. Using JDataStore, start by selecting the
File|New menu item, which will display the New JDataStore dialog (see Figure 13.2),
or you can click the Database icon on the toolbar.

We want to create a database that is called xyzanalyst.jds, so your edit box in the dia-
log should be /masteringjbuilder/databases/xyzanalyst.jds. If you need to create a
special directory, or if you do not like to type, then you can press the ellipsis button that
displays the standard Java JFC file manager. This dialog allows you to browse the file
system and gives you general file/directory handling capabilities. JDS is based on a
single file storage mechanism and usually updates the format with every release. This
normally is not a problem because JDS is completely backward compatible, so you can
take advantage of the new tools that may be introduced in JDS without being required
to use an older, less feature-rich version of the product. It also supports legacy database
versions that may be in production. Examples include Inprise AppServer 4.1x, which
used version 3.51, and the Borland AppServer 4.5x, which used version 4. Be sure to
select the 6.0 file version for the database being created.

When JDS creates a new database, it uses the block size to determine how data will
be written to the database. Four is the default block size. If a block size is too small, a
performance hit will be incurred when your data is constantly causing the database to
allocate more space. If you choose a block size that is too large, you will incur a data-
base with a large amount of wasted spaces. This property is used only when the data-
base is created; after creation, attempts to modify it will be ignored. It can be read from
the database for helping to optimize the buffering when coping functions are being
executed:

byte[] buffer = new byte[4 * store.getDataStore().getBlockSize() * 1024];

268 Chapter 13

Figure 13.2 New JDataStore GUI.

This results in a reference to the DataStore called store with the getDataStore()
method. Once that is obtained, you can retrieve the block size that was set when the
database was created. This number is returned in kilobytes and is multiplied by 1024,
and then an arbitrary number is multiplied against the prior number. For this example
it is 4; this will then set the buffer size for reading from the database. This is not an
exact equation, and some tweaking may be required to find the proper number to fit
your data. JDataStore ships a program called WebBench located in the /jbuilder/sam-
ples/jdatastore/webbench directory. This JBuilder project will allow testing of differ-
ent blocking and buffering schemes to see which one performs the best. This program
also allows benchmarks to occur between different JDBC drivers.

One of the major enterprise features of JDS is the fact that it fully supports ‘xa’/two-
phase commits. The XA protocol is a specification developed by IBM for a standard
way of handling multiple transactions, usually with different data sources inside one
transaction. This is often very important in large distributed systems that may need to
write to different data sources. The transactions are handled by a transaction manager
(TX Manager) that manages the transaction to a recoverable cache, ensuring that each
individual transaction can be written to its data source called an xa resource. All xa
resources are required to register with the transaction manager, which controls the
process, if they want to participate in the transaction. Once all the transactions have
been written, the TX Manager performs a prepare commit operation that asks each xa
resource whether the write to recoverable storage was successful. Each xa resource
then votes, either commit or rollback. All xa resources participating in that particular
transaction must vote commit; if this occurs, the TX Manager performs a commit oper-
ation. Once a commit operation is executed, it is up to each database to ensure that the
transaction completes. If any xa resource votes rollback, all the resources are told by the
TX Manager to roll back, thus removing them from the temporary storage area and
making it appear that nothing happened. This process is logged for many reasons; the
most important is recovery purposes. Normally, two-phase commits are architected
out of the database because of the inherent overhead associated with this process.

Building the Database with JDataStore 269

Figure 13.3 Tx Manager Properties dialog.

Clicking the Properties button inside the New JDataStore dialog (see Figure 13.3) will
display the TX Manager properties for this database. They include Maximum open logs;
higher numbers can produce better performance, but the overhead may be increased at
the same time. The Maximum log size, if exceeded, will cause an incremental log to be cre-
ated, whose default size is 64 Megabytes. The Check frequency option is the frequency in
which checkpoints are made. The smaller the number, the better crash recovery, but the
logs will grow faster. The smaller the number, the crash recovery process is slowed, but
the logs will grow at a much slower pace. The default is 2 Megabytes, and this option
needs to be tested for best results. The soft commit relates to the type of commit guaran-
tee that is needed, turning soft commits on supports only application crash recovery and
is very fast, but it does not support O/S or hardware failures. Turning soft commits off
will guard against all types of failures, but performance may suffer. The A and B log direc-
tories are the location to which the developer wants to write the log files. The Record sta-
tus controls the level to which messages are written to the A log, which can affect
performance. When the properties have been set, click the OK button to continue.

The last process that we have to handle is clicking the OK button to continue. The
screen will pause momentarily and return with a pie chart revealing the current size
and block allocations.

Creating a New Database Programmatically

This section shows how to create the exact same table, this time programmatically.
Start JBuilder, and create a new project with a package name of basicjdsexample. Then
create a new class called JDSExample.java with a main method; review Chapter 7,
“Creating Classes,” and Chapter 4, “Project Properties and Configurations.” Once the
new class has been created, click the Design tab under the Content pane to take
JBuilder into the GUI designer. Then click on the DataExpress tab on the component
palette. A review of the environment is located in Chapter 8, “Modifying Classes.” The
screen should resemble the one in Figure 13.4.

Click the DataStore component on the DataExpress component palette, and click
anywhere in the Content pane or Structure pane. You will notice under the Data Access
folder in the Structure pane that a dataStore1 Java Bean has been added. Next click the
TX Manager component in the same fashion, and you will also see it appear in the

270 Chapter 13

Figure 13.4 JBuilder in Designer mode with DataExpress.

Structure pane as txManager1. Using the Java Bean property editor, we can set the
parameters for each component. Table 13.1 outlines the TxManager Properties, and
Table 13.2 lists DataStore Properties that should be set in the object inspector. This can
be done by selecting TxManager1 in the component tree, setting its properties, and
then doing the same to the DataStore.

NOTE The attributes that we are setting on the components with the Java
Bean editor reflect the same ones we set using the JDataStore Explorer. By
adding the components in the designer, JBuilder will automatically add the
proper libraries for supporting JDataStore.

Table 13.1 Tx Manager Properties

ATTRIBUTE VALUE NOTES

aLogDir /enterprisejava/databases/ This is where the transaction
log will be stored.

bLogDir /enterprisejava/ This is where the backup of the
transaction log will be stored.

Building the Database with JDataStore 271

Table 13.2 DataStore Properties

ATTRIBUTE VALUE NOTES

fileName /enterprisejava/databases
/xyzanalyst.jds

txManager txManager1 Select from the choice box.

In a production system, the DataStore and Tx Manager would have the names
changed. This can lead to confusion in example text, so for these examples we use the
default names. When the properties have been set, click the Source tab and the source
code should look as follows:

package basicjdsexample;

import com.borland.datastore.*;

/**

* <p>Title: Basic JDS Example</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael J. Rozlog

* @version 1.0

*/

/**

* Notice that the DataStore and TxManager have been

* created as instance variables from the interaction from

* the JBuilder IDE.

*

*/

public class JDSExample {

DataStore dataStore1 = new DataStore();

TxManager txManager1 = new TxManager();

/**

* When the class is first created the constructure

* will call the private jbInit() method that JBuilder’s

* designer creates for a logical separation of GUI code

* and standard code.

*/

public JDSExample() {

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

272 Chapter 13

/**

* The static void main method will first create

* the actual JDSExample1 object. Once that is created

* then we will check to see if the JDataStore file

* has been created; if it has then we will open the

* database; if not then we will create the database with

* the defined parameters.

* @param args could be used for arguments on the command line

*/

public static void main(String[] args) {

JDSExample JDSExample1 = new JDSExample();

try {

//General best practice is to open a database with a user name

//and password. Even though we have not defined one at this

//point.

JDSExample1.dataStore1.setUserName(“”);

JDSExample1.dataStore1.setPassword(“”);

if (!new java.io.File(

JDSExample1.dataStore1.getFileName()).exists()) {

JDSExample1.dataStore1.create();

System.out.println(“JDataStore created”);

} else {

JDSExample1.dataStore1.open();

System.out.println(“JDataStore opened”);

}

JDSExample1.dataStore1.close();

System.out.println(“JDataStore closed”);

} catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

/**

* This method is used for setting the components that have

* been added from the JBuilder IDE and initializing them.

*

* Notice the filename and the setting of the txManager1 attribute

* @throws Exception

*/

private void jbInit() throws Exception {

dataStore1.setFileName(

“C:\\EnterpriseJava\\databases\\xyzanalyst.jds”);

dataStore1.setTxManager(txManager1);

txManager1.setALogDir(“C:\\EnterpriseJava\\databases”);

txManager1.setBLogDir(“C:\\EnterpriseJava”);

}

}

Building the Database with JDataStore 273

Figure 13.5 First run of JDSExample.

The boldface code needs to be added to the program before running it. This program
will expand as each process is completed. Once the code has been added, press
File|Save All and then press Run|Run Project, or you could right-mouse click on the
JDSExample.java file node located in the Project pane.

TI P The first time you run the project, you may have to define the application
main class for JBuilder. For this example, it would be JDSExample. A review of
runtime configurations can be found in Chapter 4.

When you run the project (see Figure 13.5), you should see the Message pane
display the Java command line and then System.out messages.

The JDataStore was created and then closed. If you run the project again, the
Message pane will report that the JDataStore was opened and then closed. The pro-
gram has done the same steps that were completed in the prior section on Creating a
new JDataStore using JDataStore Explorer.

Adding Tables to the Database

The next task is to create the tables that will be used in the example. To create a table in
the JDataStore Explorer, restart the JDataStore Explorer if it is not running and use the
Tools|Create Table menu item to start the designer (see Figure 13.6).

In this example, the Table name edit box should be filled with CATALOG for the
name; the Table locale should be set to en_US for the Unicode type. Because JDS fully
supports Unicode, which is a 16-bit character encoding, JDataStore is completely inter-
nationalized and will fully support the world’s major languages. The resolvable
option, when checked, can add overhead to a database. It is primarily used when
a database is going to be used in a briefcase model, which allows disconnected or
offline editing of the databases. The process works by doing a query into a local data
store, disconnecting from the data source, pointing the program to use the local data
store, doing normal operations on the database, and then reconnecting to the database

274 Chapter 13

and resolving all the changes located inside the local data store back to the real data-
base. Selecting the option means that additional meta data must be kept to ensure data
integrity when applying changes back to the database at a later time. For this example,
please check the option. The Uppercase table and column names option for SQL com-
pliance can be checked.

The next part of the screen is the navigational control; it will be used for controlling
the fields that will be created in this table. If you have ever used a database navigation
control (prior, next, add, and delete operations), this interface uses the same metaphor.

NOTE The navigational control will insert field information in reverse order.
This is why the Up and Down buttons have been added; so that order can be
manipulated after the vital information about the table has been captured.

To review, the Catalog table will include three data fields and one primary key field;
this can be found in Figure 13.1. The primary key field will be designated as an integer
type; the data fields will all be represented as String values.

Using the navigational control, we can add fields to the Catalog table. Press the +
button to add a row to the grid display. The following are the definitions of the attri-
butes associated with the definition of a column that resides in the table:

Column Name. The column name or identifier that will be part of a row of data
located in the table. The character limit for the column name is 132 bytes.

Data Type. The Data Type field is represented by a drop-down box, which will
allow you to select the proper data type. The current valid field types are all rep-
resented by proper Java object types. The reason for displaying only Java object
types is that the underlying architecture has the field extending the
java.lang.object type. This gives users of the database incredible flexibility. A
field can be represented by InputStream or be of type Object. This does not
affect the overall speed of JDS. JDS is designed to manage large data types effi-
ciently. This means that if a field is larger than 64 bytes, JDS will automatically
store that field internally as a BLOB type — reducing the overhead when query-
ing or manipulating the database.

JDS can technically store any type of data that can be manipulated with Java.
For instance, you could store whole files or graphics inside JDS. JDS also has the
ability to represent a complete file system. This means that in certain embedded
cases you may want to use JDS as the complete file system and the database for
the entire application, thus reducing the overall footprint of the files on a
machine.

Precision. This can be viewed at the maximum for that field. An example is a
data type of String with the precision set to 30, meaning a max of 30 characters
would be allowed in that field.

Scale. In most applications, if you do not set the scale item, the number will
include too many numbers.

Required. This is equivalent to setting the column not NULL.

Building the Database with JDataStore 275

AutoIncrement. This allows a number value to be incremented by a standard
unit. An example would be setting a data type to integer and using the AutoIn-
crement feature to add 1 every time a new row is inserted.

Default. This value can represent the initial value of a field. It can also be set
using a database FUNCTION like CURRENT_DATE.

Fixed Precision. This value relates true if a fixed number of decimals is being
held for the field or false if not.

Max Inline. This allows a value for Strings and InputStreams to override the 64-
byte max size. As stated in the data type definition, if you have a data type that
exceeds 64 bytes, it will be saved as a BLOB; this value will allow for a larger
rule to be followed. Keep in mind that setting this value can limit the size of the
row or the amount of columns in a table.

Java Class. When using the data type of a Java object, this will represent the
object’s class.

Hidden. This is used internally by the JDS; it is not recommend for developers’
use.

Local. This will set the field to the proper double-byte character set.

The next column in this highlighted row is now ready for input. Click on the empty
Column Name field, and type ID for the name. The data type for the ID column should
be type INT; once the selection has been made, the rest of the row will be activated.
Double-click on the AutoIncrement option so that a check mark is present. This will
allow the key ID field, which represents our primary key, to be incremented without
program or user intervention.

The next four columns (SYNOPSIS, TITLE, URI, RATING) use the same method as
described, except that they will be of type STRING. Click the + button; again you will
notice that a new line is inserted above the line added. Then fill in the needed values
from the previous layout; no additional field attributes are needed for the fields. The
final field is the RATING field, and a Double data type will represent it.

Once this step is completed, you will notice that the field order is not organized with
the ID field at the top. Select the row by clicking on it, and use the UP and DOWN but-
tons on the navigational line to create the proper order.

Figure 13.6 Create Table dialog after using the Up and Down buttons.

276 Chapter 13

NOTE As a general rule, try to make all the necessary changes in the Create Table
dialog before clicking the OK button. Once the table has been created, any
changes that may need to occur will cause the database to have to be restructured.
This restructuring process could cause data loss in some extreme cases.

The Create Table dialog should appear (see Figure 13.6). Click the OK button to cre-
ate the table. The screen will automatically return to the JDataStore Explorer window
when it is finished.

In the Catalog table, you will notice that it has three additional tables under it. Look-
ing at Figure 13.7, you will notice that we set the table to Resolvable; as stated in the
prior text this allows extra meta data to be kept on the table for making offline edits.
We have a single table for each type of modification: Deleted Rows, Added Rows, and
Updated Rows. This process works by keeping the SQL statement that was used to
produce the dataset; then, as changes to that dataset occur, they will be logged into the
appropriate table. When it is time to write the changes back to the master database or
the database comes on line again, these changes will be resolved back to that database.
The process will call the same SQL and then try to make the necessary changes to the
online database in the same order that they were made to the offline dataset.

The Catalog table is considered the major table because it will have the most inter-
action with the applications connecting to it. Some support tables, though, are neces-
sary to add functionality that will be needed throughout the application’s lifecycle:

■■ The Categories table is responsible for handling the growing number of cate-
gories for the reports being generated. In the future, customers will be able to
sort or view limited Category views to help lower the search criteria.

■■ The Response table monitors each catalog entry and helps handle the responses
or feedback about the Web site.

Figure 13.7 Showing the meta data tables located under the Catalog table.

Building the Database with JDataStore 277

Figure 13.8 Context menu inside the table designer.

We follow the same instructions to add these tables. Use the Tools|Create Table
menu item to start the Create Table dialog. Start with the Categories table, and this
time deselect the Resolvable checkbox and remember to select the en_US for the locale.
This will be the same for the Response table as well. Another useful shortcut is right-
mouse clicking in the Create Table dialog to view the Context menu (see Figure 13.8).
This allows you to Add, Delete, Post, and Cancel Row changes and set the table’s sort
attribute.

The final JDataStore Explorer should resemble Figure 13.7, except it now has both
the CATEGORIES and RESPONSE tables under the CATALOG table. Notice that both
the Categories and the Response tables do not have the additional meta data tables
under them; this is because we did not select the resolvable feature on each of these
tables. The resolvable feature can be turned on later without interfering with the over-
all layout of the table, or you can set it programmatically at a later time.

The Structure tab in the Content pane of the JDataStore Explorer GUI was also
clicked. This is where you can make structural changes to the table. For instance, if you
wanted to change the Table locale, you could select a different Unicode character set or
you could turn on Resolvable. Each of these changes should not affect the underlying
table except that when changing from one locale to another, certain characters may not
be supported. If you change the order or add or delete fields, data most likely will
become an issue. It would be better to create a new table and then create a quick con-
version program for moving the data from the old table to the new.

Adding Tables Programmatically

This section picks up from where we created the database programmatically. In
JBuilder, use the File|Open Project and load basicjdsexample project, if it is not already
loaded. If you have not developed that project to this point, review the section Creating
a New Database Programmatically earlier in this chapter.

The first step is to add the DataExpress library to the JBuilder project properties.
Either right-mouse click on the basicjdsexample.jpx in the Project pane and select the
Project Properties menu item, or click the Project|Project Properties menu item to
reach the same location.

Next, click on the inner tab set with the label Required Libraries tab on the Path
panel. Add the DataExpress from the list; it will be added to the libraries that are sup-
ported by the project. Click the OK button to continue. For more information on library
use and configuration, refer to Chapter 2, “Customizing the AppBrowser.”

278 Chapter 13

Now that we have added the proper libraries to support table creation, we need to
add an import statement to make the objects available to the project:

import com.borland.dx.dataset.*;

Once this is added to the imports in the Source tab, click the Designer tab again so
that we can drop three TableDataSets (second icon on the DataExpress tab) under the
Data Access tree item in the component tree in the design mode. Name each Table-
DataSet table1, table2, and table3, respectively. Then click the Source tab and add three
methods, all returning void, called createTable1(), createTable2(), and createTable3().
Once the methods have been added, we will add the code needed to create columns
and their attributes, just as in the prior steps of creating tables. Source 13.1 is the com-
pleted version with all methods completed.

package basicjdsexample;

import com.borland.datastore.*;

import com.borland.dx.dataset.*;

/**

* <p>Title: Basic JDS Example</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael J. Rozlog

* @version 1.0

*/

/**

* Notice that the DataStore and TxManager have been

* created as instance variables from the interaction from

* the JBuilder IDE.

*

*/

public class JDSExample {

DataStore dataStore1 = new DataStore();

TxManager txManager1 = new TxManager();

TableDataSet table1 = new TableDataSet();

TableDataSet table2 = new TableDataSet();

TableDataSet table3 = new TableDataSet();

/**

* When the class is first created the constructure

* will call the private jbInit() method that JBuilder’s

* designer creates for a logical separation of GUI code

* and standard code.

*/

Source 13.1 Add table code to database. (continued)

Building the Database with JDataStore 279

280 Chapter 13

public JDSExample() {

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

/**

* The static void main method will first create

* the actual JDSExample1 object. Once that is created

* then we will check to see if the JDataStore file

* has been created; if it has then we will open the

* database; if not then we will create the database with

* the defined parameters.

* @param args could be used for arguments on the command line

*/

public static void main(String[] args) {

JDSExample JDSExample1 = new JDSExample();

try {

//General best practice is to open a database with a user name

//and password. Even though we have not defined one at this

//point.

JDSExample1.dataStore1.setUserName(“”);

JDSExample1.dataStore1.setPassword(“”);

if (!new java.io.File(

JDSExample1.dataStore1.getFileName()).exists()) {

JDSExample1.dataStore1.create();

System.out.println(“JDataStore created”);

} else {

JDSExample1.dataStore1.open();

System.out.println(“JDataStore opened”);

JDSExample1.createTable1();

JDSExample1.createTable2();

JDSExample1.createTable3();

}

//Generally use close for restructuring the database

JDSExample1.dataStore1.close();

//Use shutdown for removing the cache and closing all streams

JDSExample1.dataStore1.shutdown();

System.out.println(“JDataStore closed”);

} catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

Source 13.1 (continued)

Building the Database with JDataStore 281

}

}

/**

* Method used for creating table 1 finishes with a restructure

* because the table already exists.

*/

private void createTable1(){

try {

table1.setStoreName(“Catalog”);

table1.setStore(dataStore1);

table1.open();

if (table1.getColumns().length == 0) {

table1.close();

table1.addColumn(“ID” , Variant.INT);

table1.addColumn(“SYNOPSIS” , Variant.STRING);

table1.addColumn(“URI” , Variant.STRING);

table1.addColumn(“TITLE” , Variant.STRING);

table1.addColumn(“RATING” , Variant.DOUBLE);

//Setting the ID column to have AutoIncrement turn on

table1.getColumn(“ID”).setAutoIncrement(true);

table1.open();

//Good practice anytime you create a table

table1.restructure();

System.out.println(“table 1 - created”);

}

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

try {

table1.close();

System.out.println(“Table 1 - closed”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

}

/**

* Method used for creating table 2 finishes with a restructure

* because the table already exists.

*/

Source 13.1 (continued)

private void createTable2(){

try {

table2.setStoreName(“Categories”);

table2.setStore(dataStore1);

table2.open();

if (table2.getColumns().length == 0) {

table2.close();

table2.addColumn(“ID” , Variant.INT);

table2.addColumn(“CATALOG_ID” , Variant.INT);

table2.addColumn(“NAME” , Variant.STRING);

//Setting the ID column to have AutoIncrement turn on

table2.getColumn(“ID”).setAutoIncrement(true);

//This will turn off briefcase model, which does not

//create the meta table information

table2.setResolvable(false);

table2.open();

//Good practice anytime you create a table

table2.restructure();

System.out.println(“table 2 - created”);

}

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

try {

table2.close();

System.out.println(“Table 2 - closed”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

}

/**

* Method used for creating table 3 finishes with a restructure

* because the table already exists.

*/

private void createTable3(){

try {

table3.setStoreName(“Response”);

Source 13.1 (continued)

282 Chapter 13

table3.setStore(dataStore1);

table3.open();

if (table3.getColumns().length == 0) {

table3.close();

table3.addColumn(“ID” , Variant.INT);

table3.addColumn(“CATALOG_ID” , Variant.STRING);

table3.addColumn(“COMMENT” , Variant.STRING);

table3.addColumn(“RATING” , Variant.INT);

table3.addColumn(“AREA” , Variant.STRING);

//Setting the ID column to have AutoIncrement turn on

table3.getColumn(“ID”).setAutoIncrement(true);

//This will turn off briefcase model, which does not

//create the meta table information

table3.setResolvable(false);

table3.open();

//Good practice anytime you create a table

table3.restructure();

System.out.println(“table 3 - created”);

}

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

try {

table3.close();

System.out.println(“Table 3 - closed”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

}

/**

* This method is used for setting the components that have

* been added from the JBuilder IDE and initializing them.

*

* Notice the filename and the setting of the txManager1 attribute

* @throws Exception

*/

private void jbInit() throws Exception {

Source 13.1 (continued)

Building the Database with JDataStore 283

dataStore1.setFileName

(“C:\\EnterpriseJava\\databases\\xyzanalyst2.jds”);

dataStore1.setTxManager(txManager1);

txManager1.setALogDir(“C:\\EnterpriseJava\\databases”);

txManager1.setBLogDir(“C:\\EnterpriseJava”);

}

}

Source 13.1 (continued)

Source 13.1 JDSExample.java now has the ability to create three tables just like the
tables created using JDataStore Explorer. The three methods for creating the tables and
adding the columns are essentially the same; the only difference is the table name,
number of columns, and their data types:

private void createTable1(){

try {

table1.setStoreName(“Catalog”);

table1.setStore(dataStore1);

table1.open();

if (table1.getColumns().length == 0) {

table1.close();

table1.addColumn(“ID” , Variant.INT);

table1.addColumn(“SYSNOPSIS” , Variant.STRING);

table1.addColumn(“URI” , Variant.STRING);

table1.addColumn(“RATING” , Variant.DOUBLE);

//Setting the ID column to have AutoIncrement turn on

table1.getColumn(“ID”).setAutoIncrement(true);

table1.open();

//Good practice anytime you create a table

table3.restructure();

System.out.println(“table 1 - created”);

}

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

try {

table1.close();

System.out.println(“Table 1 - closed”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

284 Chapter 13

dse.printStackTrace();

}

}

}

The boldface code is the main workhorse of the method. The rest is exception han-
dling. Because of the way this program was constructed for this book, certain design
issues are present. The architecture of the program is to allow for multiple executions
to highlight the different behaviors and the code that is being executed. After setting
the storename (table name) and the store name (database name), the table is opened.
This will automatically create the table at that time; the table columns and attributes
could have been defined before the open, and a restructure would not have to occur.
Because this program will be run multiple times, checking to see whether columns
have been added is a nice way to ensure that it is the first time through the code. After
adding the columns, then you can retrieve the columns and set advanced attributes
like AutoIncrement. When the table is open, the new columns will be written and a
restructure is processed; when the process is complete, the table is closed.

WARN I NG Restructuring should occur anytime a table attribute is changed,
especially if column data types have changed. This can cause data type
coercions; more information can be found in the JDataStore Developer’s Guide:
Persisting data to a JDataStore.

Also, notice the following line located in the main method:

//Generally use close for restructuring the database

JDSExample1.dataStore1.close();

//Use shutdown to remove the cache and close all streams

JDSExample1.dataStore1.shutdown();

General practice dictates that you use the close() method when you plan on restructur-
ing the underlying database. This method also returns a Boolean so that you can check to
see whether a database is closed; this also works equally well with a table located inside
the database. Use the shutdown() method when you are done with the database; this
method will release all existing resources tied to the database, including its file cache.

Before running the program, make sure that all databases are closed, then remove
the database from the /enterprisejava/databases/ directory. This will ensure a com-
plete show of the code in the program.

The first time you run the program, the Message pane will simply display the Java
command line and two output lines. One is JDataStore created, and the other is JData-
Store closed. The second time you run it, you will notice the following display in the
Message pane:

JDataStore opened

table 1 - created

Building the Database with JDataStore 285

table 1 - closed

table 2 - created

table 2 - closed

table 3 - created

table 3 - closed

JDataStore closed

Notice how the JDataStore was opened, and then each table was created and closed
before the JDataStore was finally closed. The final time you run it, you will notice that
the JDataStore is opened, each table will be closed, and then the JDataStore will be
closed.

Adding Access Control to the Database

After creating the tables, we now need to add some security to the database. In the next
chapter, we will discuss how to encrypt the database, but for this phase of the project
we want to limit the people who can get into the database and make changes to it. JDS
has a built-in User Administration feature that will allow for custom database rights to
be assigned to each user. Each user must have a unique user name and password. The
password is encrypted using the same algorithm used in the encryption process for the
complete database. Each database will have an administrator that will have an admin-
istrator password. The administrator should have all database attribute rights
assigned to him or her for long-term data integrity.

NOTE Once the administrator has been defined and a password set, it cannot
be removed. Also, if the password for the administrator is lost or forgotten,
Borland has no way of getting it back or resetting it. Please do not forget or lose it.

The Tools|Administer Users menu displays the dialog, which has three fields that
need to be filled in. The Administrator user name is sysdba, and the password is mas-
terkey, which needs to be typed twice. Both name and password are case sensitive.
When this is complete, press the Enter key to continue. When the dialog is removed,
JDataStore will display an Administer Users dialog, which will show the user as sys-
dba with all rights checked. Click the OK button to continue. Close the database, then
reopen the database; notice that the user name should be sysdba and the dialog should
be waiting for the password. Type masterkey, and click the OK button.

NOTE The administrator will always have all rights. Any new users added to
the table will require setting their attributes.

Expanding the database in the Tree view on the left side will reveal that the database
is now writing an additional stream called SYS, which contains a users table (see
Figure 13.9). This is where all information will be kept on all users added.

286 Chapter 13

As you can see, JDS has multiple authorization attributes, which are used to manage
the access and rights of each user who has access to the database. If you do not set up
an administrator and password for the database in JDS, then technically no user name
or password is required. If you are accessing the database programmatically, then you
will at least have to set blank strings for the attributes; the JDSExample.java–Example
1 project shows the best practice.

The authorization rights are outlined next. They can be mixed and matched; how-
ever, only a few combinations make sense. The ability to assign new rights is the
responsibility of the users with administrator rights only:

Administrator. This allows you to add, remove, and change the rights of users
and gives you the ability to encrypt the database. Startup rights are given by
default to the administrator, but they can be removed. The ability to WRITE,
CREATE, DROP, and RENAME cannot be removed from the administrator. The
administrator rights can be assigned to multiple users of the database.

Startup. This allows you to open a database that is shut down. Keep in mind that
a user password is required to add startup rights to a user.

Write. Write to a file or table inside a JDS.

Create. Create a new file or table inside a JDS.

Drop. Remove a file or table from JDS.

Rename. Rename a file or table in JDS.

Now that we have added the administrator to the database, we are complete with
this part of the requirements. Your final look at the JDataStore Explorer should resem-
ble Figure 13.9.

NOTE Whenever access control is added to a database in JDS, it will cause
the database to be restructured. Because the underlying table structure is not
tampered with, this operation is completely safe. Always make sure that you
have a backup before doing major restructuring to any database.

Figure 13.9 Completed creation of the tables and access control in JDataStore Explorer.

Building the Database with JDataStore 287

288 Chapter 13

Adding Access Control to the
Database Programmatically

Using the same JDSExample.java program, it is time to modify it again so that we can
see how to add access control as we did using the JDataStore Explorer. We need to add
another component to the program, so click the Design tab, click the DataExpress tab,
and add the DataSetConnection component to the Data Access in the component tree.
Then click the Source tab, and add another method that returns void, called addAc-
cessControl(). The complete program is shown in Source 13.2; add only the lines that
are in bold if you have the rest written.

package basicjdsexample;

import com.borland.datastore.*;

import com.borland.dx.dataset.*;

/**

* <p>Title: Basic JDS Example</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author Michael J. Rozlog

* @version 1.0

*/

/**

* Notice that the DataStore and TxManager have been

* created as instance variables from the interaction from

* the JBuilder IDE.

*

*/

public class JDSExample {

DataStore dataStore1 = new DataStore();

TxManager txManager1 = new TxManager();

TableDataSet table1 = new TableDataSet();

TableDataSet table2 = new TableDataSet();

TableDataSet table3 = new TableDataSet();

DataStoreConnection dataStoreConnection1 = new DataStoreConnection();

/**

* When the class is first created the constructure

* will call the private jbInit() method that JBuilder’s

* designer creates for a logical separation of GUI code

* and standard code.

*/

Source 13.2 Access control added programmatically. (continued)

public JDSExample() {

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

/**

* The static void main method will first create

* the actual JDSExample1 object. Once that is created

* then we will check to see if the JDataStore file

* has been created, if it has then we will open the

* database, if not then we will create the database with

* the defined parameters.

* @param args could be used for arguments on the command line

*/

public static void main(String[] args) {

JDSExample JDSExample1 = new JDSExample();

try {

//General best practice is to open a database with a user name

//and password. Even though we have not defined one at this

//point.

JDSExample1.dataStore1.setUserName(“”);

JDSExample1.dataStore1.setPassword(“”);

if (!new java.io.File(

JDSExample1.dataStore1.getFileName()).exists()) {

JDSExample1.dataStore1.create();

System.out.println(“JDataStore created”);

} else {

JDSExample1.dataStore1.open();

System.out.println(“JDataStore opened”);

JDSExample1.createTable1();

JDSExample1.createTable2();

JDSExample1.createTable3();

JDSExample1.addAccessControl();

}

//Generally use close for restructuring the database

JDSExample1.dataStore1.close();

//Use shutdown for removing the cache and closing all streams

JDSExample1.dataStore1.shutdown();

System.out.println(“JDataStore closed”);

Source 13.2 (continued)

Building the Database with JDataStore 289

} catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

/**

* Method used for creating table 1 finishes with a restructure

* because the table already exists.

*/

private void createTable1(){

try {

table1.setStoreName(“Catalog”);

table1.setStore(dataStore1);

table1.open();

if (table1.getColumns().length == 0) {

table1.close();

table1.addColumn(“ID” , Variant.INT);

table1.addColumn(“SYSNOPSIS” , Variant.STRING);

table1.addColumn(“URI” , Variant.STRING);

table1.addColumn(“RATING” , Variant.DOUBLE);

//Setting the ID column to have AutoIncrement turn on

table1.getColumn(“ID”).setAutoIncrement(true);

table1.open();

//Good practice anytime you create a table

table3.restructure();

System.out.println(“table 1 - created”);

}

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

try {

table1.close();

System.out.println(“Table 1 - closed”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

}

/**

* Method used for creating table 2 finishes with a restructure

* because the table already exists.

Source 13.2 (continued)

290 Chapter 13

*/

private void createTable2(){

try {

table2.setStoreName(“Categories”);

table2.setStore(dataStore1);

table2.open();

if (table2.getColumns().length == 0) {

table2.close();

table2.addColumn(“ID” , Variant.INT);

table2.addColumn(“CATALOG_ID” , Variant.INT);

table2.addColumn(“NAME” , Variant.STRING);

//Setting the ID column to have AutoIncrement turn on

table2.getColumn(“ID”).setAutoIncrement(true);

//This will turn off briefcase model, which does not

//create the meta table information

table2.setResolvable(false);

table2.open();

//Good practice anytime you create a table

table2.restructure();

System.out.println(“table 2 - created”);

}

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

try {

table2.close();

System.out.println(“Table 2 - closed”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

}

/**

* Method used for creating table 3 finishes with a restructure

* because the table already exists.

*/

private void createTable3(){

try {

Source 13.2 (continued)

Building the Database with JDataStore 291

table3.setStoreName(“Response”);

table3.setStore(dataStore1);

table3.open();

if (table3.getColumns().length == 0) {

table3.close();

table3.addColumn(“ID” , Variant.INT);

table3.addColumn(“CATALOG_ID” , Variant.STRING);

table3.addColumn(“COMMENT” , Variant.STRING);

table3.addColumn(“RATING” , Variant.INT);

table3.addColumn(“AREA” , Variant.STRING);

//Setting the ID column to have AutoIncrement turn on

table3.getColumn(“ID”).setAutoIncrement(true);

//This will turn off briefcase model, which does not

//create the meta table information

table3.setResolvable(false);

table3.open();

//Good practice anytime you create a table

table3.restructure();

System.out.println(“table 3 - created”);

}

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

try {

table3.close();

System.out.println(“Table 3 - closed”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

}

}

/**

* Used to add access control to the database

* the first level of security. Close the table

* re-open the table with a user name, this is

* because the database is transactional and

* anytime the users are going to change it needs

* to be logged. Create a DataStoreConnection that

Source 13.2 (continued)

292 Chapter 13

* will write a user file stream, set the user name

* open the connection and add user.

*/

private void addAccessControl(){

try {

dataStore1.close();

dataStore1.setUserName(“none”);

dataStore1.open();

dataStoreConnection1.setUserName(“none”);

dataStoreConnection1.setFileName(dataStore1.getFileName());

dataStoreConnection1.open();

dataStoreConnection1.addUser(“sysdba”,”sysdba”,”masterkey”,

DataStoreRights.FULL_RIGHTS);

System.out.println(“User added, with full rights”);

}

catch (com.borland.dx.dataset.DataSetException dse) {

dse.printStackTrace();

}

finally {

dataStoreConnection1.close();

}

}

/**

* This method is used for setting the components that have

* been added from the JBuilder IDE and initializing them.

*

* Notice the filename and the setting of the txManager1 attribute

* @throws Exception

*/

private void jbInit() throws Exception {

dataStore1.setFileName

(“C:\\EnterpriseJava\\databases\\xyzanalyst2.jds”);

dataStore1.setTxManager(txManager1);

txManager1.setALogDir(“C:\\EnterpriseJava\\databases”);

txManager1.setBLogDir(“C:\\EnterpriseJava”);

}

}

Source 13.2 (continued)

The first time the program is run, it will display an additional line in the Message
pane stating the following:

User added, with full rights

Building the Database with JDataStore 293

The second time the program is run, the Message pane will report the following:

See com.borland.datastore.DataStoreException error code: BASE+51

com.borland.datastore.DataStoreException: You do not have STARTUP rights

for this JDataStore

at com.borland.datastore.DataStoreException.b(Unknown Source)

...

The reason for this is that the code has the user name and password as empty
strings. Change the code to reflect the sysdba and password as masterkey. This will get
the code to run again until it gets to the addAccessControl() method; once the user-
name is set to “none” and the open() is attempted, the user is not known. To fix the
problem, wrap the statements inside the addAccessControl() method with the follow-
ing if statement:

if (!dataStore1.getUserName().equals(“sysdba”)) {

current lines In the method...

}

The access control method completes the same steps as JDataStore. Because the
database has transactions enabled, close the database. Now, reopen the database with
a user name because a user name has not been used before, and use the user name of
none. Once the user name has been set, open the database. JDataStore has three default
file streams that it uses for various tasks, listed in Table 13.3.

The CONNECTIONS stream is a table, and its columns are used for holding the
valid JDBC connections to the database. The QUERIES stream is a table, and its
columns are used to hold valid queries that can be run against tables in the database.
The USERS stream is a table, and its columns are used by JDataStore to store users,
passwords, and rights for each user. As an extra security measure, RIGHTS and ID
fields are encrypted into the PASSWORD field. If the RIGHTS are tampered with by an
intruder, the tampering will have no effect on the security of the system.

Table 13.3 Default JDataStore File Streams

NAME FUNCTION

/SYS/CONNECTIONS/ Defines the table and column names for the
/SYS/CONNECTIONS system table.

/SYS/QUERIES/ Defines the table and column names for the
/SYS/QUERIES system table.

/SYS/USERS/ Defines the table and column names for the
/SYS/USERS system table.

294 Chapter 13

Because everything was done programmatically, there has been no process to ensure
that a correct database has been setup. This can be accomplished by running JData-
Store Explorer and opening the database. Figure 13.9 shows the screen you should see
after running the program for the final time.

Adding Encryption
Once the access rights have been added to the JDataStore, it can be encrypted; this will
change the contents of the file. This can be done by going to the JDataStore Explorer
and using the Tools|Encrypt JDataStore menu item. This process will copy the existing
database for backup purposes and then encrypt the new one. Once the operation is
complete, there is no going back; you must use the backup database to return.

WARN I NG Borland has no good password or back door to this process.
Once a JDataStore is encrypted and password protected, it cannot be opened
or reverse engineered back to the original format.

JDataStore uses the TwoFish block cypher, which is state-of-the-art encryption tech-
nology that has never been beat. People trying to stop people from breaking into a
secure JDataStore should understand that the JDataStore file is not password pro-
tected; this would allow people to view its contents in encrypted form. All passwords
are encrypted using the same cipher as the database, and it uses a pseudo-random
number generator as the initialized encryption process.

WARN I NG The remote JDBC driver that is shipped with JDataStore uses
socket communication and does not include a secure channel. The local JDBC
driver is in process, so the communication is secure.

Summary

This chapter highlights JDataStore, an all-Java object-relational database, by showing
how to create databases, tables, and access rights in a GUI and programmatically. It
also covers encryption that is included with JDataStore. JDataStore is incredibly versa-
tile, and many of its features are not discussed in this chapter, such as programming
streams, user-defined Functions (UDFs), and remote access.

Building the Database with JDataStore 295

297

Companies are always trying to reduce the cost associated with a project or system life-
cycle. One way to ensure that developers and teams are as productive as possible is by
abstracting major design problems into known ideas or processes. Creating objects that
abstract the complex into real-world items is one the main principles of object-oriented
programming (OOP).

Extending these objects to handle different circumstances and packaging them
together create libraries. The libraries can be used in a framework that removes a lot of
the tedious work that most developers have to endure. This is where DataExpress and
DBSwing come into the picture. DataExpess is a general JDBC enhancement class
library, and DBSwing is a component library that is based on Swing that understands
the DataExpress components. These combined frameworks can remove significant
complexity when developing database-specific applications. Each one of these frame-
works can run independently of the other; however, they work best when used
together.

This chapter covers the wizards that are included with JBuilder to create standard
two-tier database applications. The concept of Data Module is introduced and used
throughout the chapter; this allows a lot of functionally to be created with very little
code.

DataExpress architecutre and DataExpress technologies go back to the beginning of
Java and JBuilder. At that time, the concept of going beyond the applet world with a
small graphic doing cartwheels was not on most people’s radar. The JDBC 1.0 specifi-
cation was being kicked around, but one of its main objectives was matching Open
DataBase Connectivity (ODBC) by Microsoft. These broad initiatives led to companies
writing specific drivers for their databases. At the time, it was conceived that with four

DataExpress and
DBSwing Applications

C H A P T E R

14

different driver types, every database would have an implementation that would be
native to get the best performance or would wrap the existing drivers to communicate
with the database. Again, a primary concern was to get communication established.
The first cut of the JDBC spec was limited in functionality because of the other issues
being addressed. Remembering back, the only operations available were select, insert,
delete, and update. There was more, of course, but the functionality behind it was so
limited that is was almost unusable. Borland had a vast amount of brainpower to put
behind the effort of making working with databases as easy as possible. The heritage
of Paradox, dBase, and InterBase as in-house databases and its integration with the
award-winning Delphi, the best IDE for developing Windows-based applications, had
given Borland a real lead in this area. A team led by Steve Shaughnessy developed a
framework in JBuilder that simplifies the complexities found in raw JDBC, which can
slow the development process.

The DataExpress architecture can be broken into three main concepts. The first con-
cept, “Providing,” allows you to retrieve a subset of information from any underlying
data source, which is then placed into a dataset. Once the data is held in a dataset, it can
be freely navigated and edited; this is called the “Manipulation” concept. The dataset
is completely separate from the database, thus eliminating database communication
while working with the data. The last concept, “Resolving,” occurs after all the
changes to the dataset are complete. Resolving saves the changes made to the dataset
back to the data source from which the data came. DataExpress offers sophisticated
built-in reconciliation technology that helps eliminate data conflicts.

The DataExpress approach is well suited for partitioned applications because the
Providing and Resolving stages (called the deferred update model or briefcase model)
are done in separate processes with an arbitrary amount of time for editing.

DataExpress’s dataset can be broken down into a class hierarchy that allows for the
entire functionality found in the DataExpress components. The first layer is an abstract
object that represents data in a two-dimensional array. It gives the ability to sort the
array and make relationships of a master-detail nature, plus it introduces the concept
of rows to the data. The second object to make up the hierarchy is the StorageDataSet;
also abstract in nature, it adds some key functionality, such as the concepts of table
names from a database, maximum rows retrieved from the data source, and marking
the information as read-only. The following objects are the ones commonly exposed in
the JBuilder GUI environment:

DataStore. It adds the ability to save the dataset’s contents into a high-
performance all-Java file system.

QueryDataSet. The QueryDataSet allows you to use industry-standard SQL
statements to retrieve data from the data source.

ProcedureDataSet. The ProcedureDataSet allows you to call prepared or stored
procedures inside the database.

TableDataSets. The TableDataSet gives you the ability to connect to an arbitrary
file and manipulate its contents.

298 Chapter 14

These objects all share common methods because of the inheritance found in the Data-
Express hierarchy. The JDataStore product was initially conceived from the underlying
research of DataExpress.

Evolution of DBSwing Architecture

While one Borland team was working on getting the underlying framework together
for getting data back to a developer, another team was working on a GUI framework
to help work with the new DataExpess technology. The first incarnation was called
JBuilder Component Library or JavaBean Component Library (JBCL). This GUI frame-
work far exceeded the current technology offered by Sun at the time, which was the
Abstract Windows Toolkit or Awful Windows Toolkit (AWT).

The first few versions of AWT were not based solely on the JavaBean component
architecture and were therefore rather limited to the underlying GUI widget system on
which Java was running. The major problem with this approach was that not all GUI
widgets were available on each operating system, which caused Sun to limit the
number of supported widgets to the lowest common denominator. The architecture —
called a peer system because the underlying widgets relied on the operating system for
rendering AWT — is still used today as the initial window in JFC. Most were unable to
develop real applications, though, and it competed with technologies that had
complete native development products — Delphi, C++Builder, Visual Basic (P-code
interpreted), and Visual C++.

The JBCL offered a new component framework that was based on JavaBeans, but it
would be available on all platforms that supported a compliant Java VM, and it was
completely data-aware to the DataExpress libraries. At the same time, JavaSoft was
working on a whole new concept for using widgets in Java. This Swing project
promised to deliver true platform independence and definable look and feels; it would
be completely object-oriented and would not be reliant on any special underlying
hardware or software. After the Swing libraries were released to the general public
under the name Java Component Framework (JFC), adoption became rather quick.
This caused Borland to rethink the current direction toward the new Swing libraries.

JBuilder 2 introduced a new data-aware framework designed on top of the Swing
libraries, called DBSwing. DBSwing has gone through many changes over a couple of
releases and has settled down into a reliable, easy-to-use data-aware framework that
can fully support native Swing applications as well as it does DBSwing applications. It
is one of the fastest ways to get data integrated into an application.

Wizard Building Applications

In Chapter 13, “Building the Database with JDataStore,” JDataStore was used to create
a new database with three tables. The data design was not complex, and the techniques
discussed were more important than just a simple database. That simple database,

DataExpress and DBSwing Applications 299

though, needs to get data into it so that the business can get to the Web. JDataStore
Explorer does fully support inserting data into the tables, but it is rather limited in how
it can do that. In this section, we use JBuilder’s wizards to build applications, using the
JBuilder GUI designer and components, discuss how to do it programmatically, and
cover how to use Swing with DataExpress.

Using Data Modules to Generate Applications
The first step is to create a new project in JBuilder by clicking the File|New Project menu
item. The project name will be FirstDataBase, and the Directory will be /mastering
jbuilder/jbproject/firstdatabase/. Make sure to turn on Project notes, and then click the
Next button to continue with the wizard or the Finish button to complete. For additional
information on setting up a project in JBuilder, refer to Chapter 4, “Project Properties and
Configurations.”

Now that the project has been created, click the File|New menu item. This will
display the Object Gallery; this dialog is used several times in this chapter, but for
this example we focus on the Application, DataModule, and the DataModule Applica-
tion icons on the New tab. For more information on the Object Gallery, please refer to
Chapter 7, “Creating Classes.”

The first application will talk to the database that was created in Chapter 13. It will
allow for interaction with each table. No relationships between the tables will exist in
this application.

Creating a Data Module

Select the Data Module icon on the New tab in the Object Gallery. and then click the OK
button. This will display a new Data Module dialog (see Figure 14.1), which allows for
the defining of the Data Module. This includes the Package where the Data Module will
be located and the name of the Data Module for this project. Two additional items are
options when creating a Data Module. The first is Invoke Data Modeler, which will allow
queries to be graphically created; the second option is Generate headers. Both of these
options are to be selected. The Package should be com.wiley.mastering.jbuilder
.firstdatabase, and the Class name should be DMBasic.

A Data Module is a specialized interface for holding your data access components
and their logic. It even extends to the concept of business-logic. It makes a very nice
separation of function, which allows the program to have a more modular setup.

NOTE A Data Module must be compiled before it can be referenced in a project.

When you click the OK button, the Data Module wizard will start the Data Modeler.
The Data Modeler is a nice GUI interface where you can define your data interactions
and set up all the needed SQL for each table. You can also add data sources or JDBC
connections to use with the wizard. This wizard can be reentered from within a project
by right-mouse clicking on the Data Module node in the Project pane and selecting the
Activate the Data Modeler menu item.

300 Chapter 14

Figure 14.1 Data Module wizard.

Data Modeler

The Data Modeler (see Figure 14.2) is divided into a two major areas:

■■ The Queries, where the queries will be defined.

■■ The Current query, which is a tab interface for defining and creating SQL state-
ments in a point-and-click manner.

Once a query is defined, a representation will be located in the Queries pane. The
current example requires that three queries be created.

The first step in the process is to open the database connection. There should be one
already defined by the last chapter; if not, select the Database menu item and select the
Add connection URI. This will bring up a new dialog that will allow for the selection of
the JDBC driver located on your machine. After the selection from the choice control, the
location of the database is needed. After that has been completed, then click the OK but-
ton to continue. Once you have clicked the OK button, the JDBC connection will be
added to available columns in the first pane, where it displays the JDBC connection
strings. Select that string or the string that represents the databases from the last projects;
it should be the one that is located in the /masteringjbuilder/ directory. If security is
turned on, then a popup will appear for the user name and password for that database.
The database that was defined in the prior chapter had the user name of sysdba and a
password of masterkey.

NOTE The user name and password are both lowercase because the database
is case sensitive.

This will expand the Tree view for that connection; notice that, once the connection
has been started, it will expand to show the Table icon under the connection string.
Open the Table icon and notice that it lists all the tables that were defined in the prior
project. Select the Catalog table; notice that the second pane with the Definition will be

DataExpress and DBSwing Applications 301

updated to show the properties of that table. A Data tab is located next to the Defini-
tion tab; clicking on the Data tab will automatically show the data in that table.

NOTE If you have a really large database, clicking the Data tab could take a
rather long time to execute because it tries to load the complete table.

Now click the Copy All button on the right-hand side of the dialog. You will notice
that all the table columns are in the Selected columns area and that the Queries section
has been updated to show Catalog.

Click the SQL+ button on the toolbar, and you will see a new item added to the
Queries section called <new query>. Select the Categories table under the JDBC con-
nection string. Click the Copy All button, and notice that the same things occur: The
Queries pane changes, and the columns are listed under the Selected columns. Repeat
this operation one more time with the Response table. After that is complete, you
should see three queries in the Queries pane: Catalog, Categories, and Response tables.

Select the File|Save menu item to call the template that generates the code defined
during the selection of the tables. Next, select the File|Exit menu item, and notice that
the JBuilder Project pane has a new package located in it that includes one file called
DMBasic.java file. Save the project by clicking the Save All icon, or select the File|Save
All menu item and then rebuild the project.

Generate an Application

Now that a Data Module has been created, creating a DBSwing application is only a mat-
ter of a couple clicks of the mouse. Select the File|New menu item, click the Data Module
Application icon, and click OK to continue. This will display a Data Module Application
wizard, and the only thing that you need to create an application is to click on the choice
control for Data Module, select DMBasic, and click the OK button to continue.

Figure 14.2 New Data Modeler.

302 Chapter 14

DataExpress and DBSwing Applications 303

TI P If you do not see the Data Module for the project in the choice control or
want to use a Data Module that has already been defined in another, click the
(...) button to the right of the choice control. This will start a Class Browser
interface. Select the class from the package that holds it, and then click the OK
button to continue.

When the code is being generated for the DBSwing application, a quick dialog may
be displayed showing the progress of the generation. It will disappear, and the Project
pane has changed. In your package, the DMBasic becomes a package itself and has
children located underneath the two-tier package. This is where all of the DBSwing
files have been generated. Notice that outside the package there are now two addi-
tional files; one is a .html, which represents all of the files that were generated. The
other is the runner application that calls all of the code that was generated.

The first code to review is the actual Data Module code (see Source 14.1). This will
show all the QueryDataSets, which are the components that wrap the JDBC Select
statement. The code is also responsible for making the connections to the database.

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author not attributable

* @version 1.0

*/

package com.wiley.mastering.jbuilder.firstdatabase;

import java.awt.*;

import java.awt.event.*;

import com.borland.dx.dataset.*;

import com.borland.dx.sql.dataset.*;

public class DMBasic implements DataModule {

private static DMBasic myDM;

Database database1 = new Database();

QueryDataSet catalog = new QueryDataSet();

QueryDataSet categories = new QueryDataSet();

QueryDataSet response = new QueryDataSet();

public static DMBasic getDataModule() {

if (myDM == null) {

myDM = new DMBasic();

}

return myDM;

}

public DMBasic() {

Source 14.1 DMBasic.java. (continued)

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

private void jbInit() throws Exception {

response.setQuery(new

com.borland.dx.sql.dataset.QueryDescriptor(database1, “SELECT

\”Response\”.ID,\”Response\”.CATALOG_ID,\”Response\”.COMMENT,\”Response\

”.RATING,\”Response\”.AREA “ +

“FROM \”Response\””, null, true, Load.ALL));

categories.setQuery(new

com.borland.dx.sql.dataset.QueryDescriptor(database1, “SELECT

\”Categories\”.ID,\”Categories\”.CATALOG_ID,\”Categories\”.NAME “ +

“FROM \”Categories\””, null, true, Load.ALL));

catalog.setQuery(new

com.borland.dx.sql.dataset.QueryDescriptor(database1, “SELECT

\”Catalog\”.ID,\”Catalog\”.SYSNOPSIS,\”Catalog\”.URI,\”Catalog\”.TITLE,\

”Catalog\”.RATING “ +

“FROM \”Catalog\””, null, true, Load.ALL));

database1.setConnection(new

com.borland.dx.sql.dataset.ConnectionDescriptor(“jdbc:borland:dslocal:C:

\\masteringjbuilder\\xyzanalyst.jds”, “sysdba”, “masterkey”, false,

“com.borland.datastore.jdbc.DataStoreDriver”));

}

public Database getDatabase1() {

return database1;

}

public QueryDataSet getCatalog() {

return catalog;

}

public QueryDataSet getCategories() {

return categories;

}

public QueryDataSet getResponse() {

return response;

}

}

Source 14.1 (continued)

When we used the Data Modeler, we defined three queries. Notice the number of
instance variables using QueryDataSet; there should be three. Also notice that a
Database object is created, which holds all the information needed to connect to a
database — it is just a simple wrapper for a JDBC connection string. Inside the jbInit()
method is where the values for database1 and queryDataSet (1,2,3) are set. For most
developers, this code does not need to be explained. It is also possible to click the

304 Chapter 14

Design tab in JBuilder and look at each component’s property using the GUI designer.
Remember that any changes made in the designer will be made to the code and that
any code changes will be made in the designer.

To understand what the Data Module Application builder did, you first might want
to look inside the /jbuilder/templates directory. There you will find a number of code
templates that JBuilder uses to generate code for Data Modules and CORBA. These
templates can be modified; however, that topic is outside the scope of the book.
JBuilder reads the Data Module and then generates the appropriate application from
its contents using the templates in that diretory. The resulting application looks
something like this:

DMBasic->Generates->DMBasicTwoTier.java->which calls the framework ->

ClientFrame.java -> which calls the generated UI beans for ->

CatalogUIbean -> CategoriesUIBean -> ResponseUIBean

Plus, some of the other classes are also loaded, such as the about box and client
resource classes. Looking at only one of the generated UI beans for Catalog, the code
resembles Source 14.2.

/**

* Copyright (c) 2002

* Template File

* ColumnarUIBean.java.template

* DataModule Object

* DMBasic.Catalog

* Generation Date

* Sunday, December 8, 2002 12:47:22 AM EST

* DataModule Source File

*

D:/JBuilder8/.jbuilder8/jbproject/firstdatabase/src/com/wiley/mastering/

jbuilder/firstdatabase/DMBasic.java

* Abstract

* Implements a columnar user interface for a particular DataSet.

* @version 1.0

*/

package com.wiley.mastering.jbuilder.firstdatabase._DMBasic.twotier;

import java.awt.*;

import com.borland.dx.dataset.*;

public class CatalogUIBean

extends javax.swing.JPanel {

StorageDataSet dataSet;

com.wiley.mastering.jbuilder.firstdatabase.DMBasic module;

Source 14.2 CatalogUIBean.java. (continued)

DataExpress and DBSwing Applications 305

FlowLayout flowLayout1 = new FlowLayout();

GridBagLayout gridBagLayout1 = new GridBagLayout();

GridLayout gridLayout1 = new GridLayout(1, 2, 3, 0);

javax.swing.JPanel panelID = new javax.swing.JPanel();

com.borland.dbswing.JdbLabel labelID = new

com.borland.dbswing.JdbLabel();

com.borland.dbswing.JdbTextField fieldID = new com.borland.dbswing.

JdbTextField();

javax.swing.JPanel panelSYSNOPSIS = new javax.swing.JPanel();

com.borland.dbswing.JdbLabel labelSYSNOPSIS = new com.borland.dbswing.

JdbLabel();

com.borland.dbswing.JdbTextField fieldSYSNOPSIS = new

com.borland.dbswing.

JdbTextField();

javax.swing.JPanel panelURI = new javax.swing.JPanel();

com.borland.dbswing.JdbLabel labelURI = new

com.borland.dbswing.JdbLabel();

com.borland.dbswing.JdbTextField fieldURI = new com.borland.dbswing.

JdbTextField();

javax.swing.JPanel panelTITLE = new javax.swing.JPanel();

com.borland.dbswing.JdbLabel labelTITLE = new

com.borland.dbswing.JdbLabel();

com.borland.dbswing.JdbTextField fieldTITLE = new com.borland.dbswing.

JdbTextField();

javax.swing.JPanel panelRATING = new javax.swing.JPanel();

com.borland.dbswing.JdbLabel labelRATING = new

com.borland.dbswing.JdbLabel();

com.borland.dbswing.JdbTextField fieldRATING = new

com.borland.dbswing.

JdbTextField();

com.borland.dbswing.JdbNavToolBar navigatorControl1 = new

com.borland.dbswing.

JdbNavToolBar();

com.borland.dbswing.JdbStatusLabel statusBar1 = new

com.borland.dbswing.

JdbStatusLabel();

public CatalogUIBean() {

}

public void

setModule(com.wiley.mastering.jbuilder.firstdatabase.DMBasic

module) {

this.module = module;

try {

jbInit();

}

catch (Exception e) {

Source 14.2 (continued)

306 Chapter 14

e.printStackTrace();

}

}

private void jbInit() throws Exception {

dataSet = module.getCatalog();

this.setLayout(gridBagLayout1);

navigatorControl1.setDataSet(dataSet);

navigatorControl1.setLayout(new GridLayout(1, 11));

this.add(navigatorControl1,

new java.awt.GridBagConstraints(1, 1, 2, 1, 1.0, 1.0,

java.awt.GridBagConstraints.NORTH,

java.awt.GridBagConstraints.

HORIZONTAL,

new Insets(3, 0, 3, 0), 0,

0));

labelID.setText(“Id”);

fieldID.setColumnName(“ID”);

fieldID.setDataSet(dataSet);

panelID.setLayout(gridLayout1);

labelID.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);

panelID.add(labelID);

panelID.add(fieldID);

this.add(panelID,

new java.awt.GridBagConstraints(1, 2, 2, 1, 1.0, 1.0,

java.awt.GridBagConstraints.NORTH,

java.awt.GridBagConstraints.

HORIZONTAL,

new Insets(3, 0, 3, 3), 0,

0));

labelSYSNOPSIS.setText(“Sysnopsis”);

fieldSYSNOPSIS.setColumnName(“SYSNOPSIS”);

fieldSYSNOPSIS.setDataSet(dataSet);

panelSYSNOPSIS.setLayout(gridLayout1);

labelSYSNOPSIS.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);

panelSYSNOPSIS.add(labelSYSNOPSIS);

panelSYSNOPSIS.add(fieldSYSNOPSIS);

this.add(panelSYSNOPSIS,

new java.awt.GridBagConstraints(1, 3, 2, 1, 1.0, 1.0,

Source 14.2 (continued)

DataExpress and DBSwing Applications 307

java.awt.GridBagConstraints

.NORTH,

java.awt.GridBagConstraints.

HORIZONTAL,

new Insets(3, 0, 3, 3), 0,

0));

labelURI.setText(“Uri”);

fieldURI.setColumnName(“URI”);

fieldURI.setDataSet(dataSet);

panelURI.setLayout(gridLayout1);

labelURI.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);

panelURI.add(labelURI);

panelURI.add(fieldURI);

this.add(panelURI,

new java.awt.GridBagConstraints(1, 4, 2, 1, 1.0, 1.0,

java.awt.GridBagConstraints.NORTH,

java.awt.GridBagConstraints.

HORIZONTAL,

new Insets(3, 0, 3, 3), 0,

0));

labelTITLE.setText(“Title”);

fieldTITLE.setColumnName(“TITLE”);

fieldTITLE.setDataSet(dataSet);

panelTITLE.setLayout(gridLayout1);

labelTITLE.setHorizontalAlignment(javax.swing.SwingConstants.RIGHT);

panelTITLE.add(labelTITLE);

panelTITLE.add(fieldTITLE);

this.add(panelTITLE,

new java.awt.GridBagConstraints(1, 5, 2, 1, 1.0, 1.0,

java.awt.GridBagConstraints.NORTH,

java.awt.GridBagConstraints.

HORIZONTAL,

new Insets(3, 0, 3, 3), 0,

0));

labelRATING.setText(“Rating”);

fieldRATING.setColumnName(“RATING”);

fieldRATING.setDataSet(dataSet);

panelRATING.setLayout(gridLayout1);

Source 14.2 (continued)

308 Chapter 14

labelRATING.setHorizontalAlignment(javax.swing.SwingConstants

.RIGHT);

panelRATING.add(labelRATING);

panelRATING.add(fieldRATING);

this.add(panelRATING,

new java.awt.GridBagConstraints(1, 6, 2, 1, 1.0, 1.0,

java.awt.GridBagConstraints.NORTH,

java.awt.GridBagConstraints.

HORIZONTAL,

new Insets(3, 0, 3, 3), 0,

0));

statusBar1.setDataSet(dataSet);

this.add(statusBar1,

new java.awt.GridBagConstraints(1, 7, 2, 1, 0.0, 0.0,

java.awt.GridBagConstraints.SOUTH,

java.awt.GridBagConstraints.

HORIZONTAL, new Insets(3,

0, 3, 0),

0, 0));

}

}

Source 14.2 (continued)

This is the basic panel for the Catalog that was used in the application. The best part
about this is that it is a complete JavaBean. For more information on how to work and
create JavaBeans, review Chapter 8, “Modifying Classes.” This means that this bean
could be put onto the component pallet and used again in another program if desired.
The code is really not that interesting; it has a lot of formatting for where the compo-
nents are located because of the use of GridBagLayout layout manager. Notice that the
Data Module reference gets passed into the class and is used to display the data. These
connections are called datasources.

This program is completely extensible; using the GUI designer, additional fields or
components could be added in a drag-and-drop environment.

Execute the code, and see what kind of program was generated for all the hard work
so far. Right-mouse click on the DMBasicTwoTierApp.java, and select the Run menu
item. This will start the application (see Figure 14.3).

The application generated has a tab interface. Each tab represents one of the tables
located inside the database. The ability to remove tabs and display the help area is
available; these can be added at a later time.

DataExpress and DBSwing Applications 309

Figure 14.3 Application 1, running.

If you have not added any data to the database, this would be an excellent time to
do so. Starting with the Categories might help, but remember that you have to have a
category available to add to the catalog entry. Make sure to add a few; this way the next
example will show how those relationships can be exploited using the templates in
JBuilder.

Master-Detail Relationships

DataExpress is designed to handle the master-detail relationship in a database. The
current data structure has a perfect master-detail relationship between the Categories
and Catalog tables, and Borland created an Application wizard smart enough to
handle it.

For this example, continue with the existing one that we just completed. Select the
File|New menu item, and activate the Object Gallery. Then click the Data Module icon,
and click the OK button to continue. The New Data Module dialog will be displayed,
so make this Data Module’s name DMMasterDetail and leave all options selected. This
time when the Data Modeler wizard appears, the JDBC definition should already be
defined. If this is still the same session, click on that JDBC connection string; it will
show the tables. Expand the tables to show the children under the Table icon.

Figure 14.4 Link Queries dialog.

310 Chapter 14

NOTE If you need to add another session, add the user name and password
to access the tables.

Select the Catalog table, and then click the Copy All button; this will add the query
to the Queries pane. Then click the SQL+ button on the toolbar, select the Categories
table, and click the Copy All button; the Categories will then be added to the Queries
pane. The Queries pane allows for relationships to be drawn between one or more
tables. Click and hold the left-mouse button to draw a line between the Categories
table and the Catalog table to establish a relationship between the two tables; always
draw the line from the master table to the detail table. This would mean the Categories
table would be considered the master table and the detail table would be the Catalog
table. The result will be a Link queries dialog, as shown in Figure 14.4.

Once the Link Queries dialog has been displayed, the interface allows for customizing
the relationship between the tables and keys. For the Categories table, leave the ID as the
main key. For the Catalog table, click the Choice box and select the CATEGORIES_ID for
the link key. Other options are available on the screen — the ability to allow for both cas-
cading updates and deletes. Cascading updates will allow changes to the master table to
be processed through the detail table. This will have to be set if you were using multiple
master-detail relationships throughout an application; this would occur when a detail
record is a master record for another relationship. The same can be said about the cas-
cading deletes because when you delete the master record, the detail children will be
deleted in the same operation.

Once these keys are defined, click the OK button to continue, and a line will be drawn
between the two tables (see Figure 14.5). Notice that the order of the tables has changed.
Select the File|Save menu item to save and generate the Data Module and the relation-
ship code that was just defined, then select the File|Exit menu item to continue.

Figure 14.5 Data Modeler.

DataExpress and DBSwing Applications 311

Figure 14.6 Master-Detail application.

Back in the application, save the current project and recompile it. The next step is to
generate the application for the new master detail Data Module that was created with
the Data Modeler. Select the File|New menu item, click the Data Module Application
icon, and click the OK button to continue. Again, the Data Module Application dialog
will be displayed. Select the DMMasterDetail from the choice box; if you do not see it,
click the (...) icon and select the Data Module from the current package. Once this has
been selected, then click the OK button. Again, the Progress dialog could display briefly
and then clear. After the generation is complete, save the project and recompile it.

It is now time to run the new application. Right-mouse click on the DMMaster
DetailTwoTierApp.java file in the Project pane, and select the Run menu item. Figure
14.6 shows what should be displayed when the application runs.

Creating a DBSwing application

The final example to show in this chapter is creating a standard DBSwing application
using the GUI wizards and designers included with JBuilder. You will notice that it is
not much more difficult than using the Data Module Application wizard to create
something very similar.

Create a new project called seconddatabaseapp, by selecting the File|New Project
menu item. Then select the File|New menu item, and select the Data Module, name it
MyDM, use the Data Modeler and Generate Header comments, then click the OK button

312 Chapter 14

to continue. Now open the defined database in the Data Modeler; you may be asked for
user name and password (sysdba and masterkey). If you started this chapter at the exam-
ple, please review the beginning steps of the first example. Click the Catalog button, click
the Copy All>> button, then click the SQL+ icon. Select the Categories table, and click the
Copy All>> button. Then draw a line between Catalog and Categories; this will produce
the Link dialog. Click the OK button to continue. Finally select the File|Save all menu
item, and then select the File|Exit menu item.

The next step is to create an application; this can be done by selecting the File|New
menu tiem, clicking the Application icon, and clicking the OK button. For this example,
click the Finish key to generate the code. Once the application is generated, click the
Design tab to start the GUI designer.

Select the Wizards|Use DataModule menu item (see Figure 14.7); this is responsible
for establishing the reference to the Data Module in the Frame class. It should already
have MyDM for the Data Module and have a definition of MyDM1 for the field decla-
ration. The last option is for how the Data Module should be created:

■■ Create new instance of DataModule. This means that if multiple applications
are hitting the Data Module, a new unique instance of the Data Module will be
created.

■■ Share (static) instance of DataModule. This will share the connection between
instances of the applications hitting it. This conserves resources and database
connections.

■■ Caller sets instance with setModule. This gives ultimate control over access and
creation to the developer.

Leave the Share selected, and click the OK button to continue.

Figure 14.7 Use Data Module wizard.

DataExpress and DBSwing Applications 313

Under the Data Access in the component tree, you should notice a new item called
myDM1, which is the reference to the Data Module we just created.

Now it is time to create the GUI interface for our application:

1. Click the dbSwing tab in the designer. Select the jdbNavToolbar, and drop it on
the top of the frame; its constraints properties should read North.

2. Select the jdbStatusLabel, and drop it on the bottom of the frame; its constraints
properties should read South.

3. Click the Swing containers, select a Jpanel, and drop it in the center of the GUI.
Its constraints should be set to Center.

4. jPanel1 layout property should be set to grid.

5. Expand the jPanel1 in the component tree, and select its layout manager (set to
grid), then set the rows to 2.

6. Then drop two JPanels off the Swing containers tab under the jPanel1 in the
component tree.

7. Click on jPanel2, and set its border property to Etched.

8. Click on jPanel3, and set its border property to line.

9. Next select the jPanel2 panel, and set its layout manager to null.

10. Drop two JDBTextFields onto jPanel2.

11. Set jPanel3 layout manager to BorderLayout.

12. Drop JTableScrollPane into the center of jPanel3.

13. Drop a JDBTable inside the JTableScrollPane.

14. Now select jDBTextFields using the multiselect feature, using the Shift-click
operation.

15. Set the dataSet property MyDM Categories.

16. Set jDBTextField1 columnName property to ID.

17. Set jDBTextField2 columnName property to Name.

18. Click the jDBTable, and set its dataSet property to MyDM Catalog.

NOTE This example is being done to show how easy it is to create a GUI
master-detail application without using the Data Module Application wizard.
The process is about getting it done with the fewest steps for this example.
The code generated was already explained.

314 Chapter 14

Figure 14.8 GUI layout in the Designer.

Once these steps are followed, select File|Save All and the Rebuild the project
option; then finally run it (see Figure 14.9). It should have the same functionality as the
master-detail in the last example. Again, no programming is needed. One highlight is
that the jdbNavToolbar and jdbStatusLabel are context aware, meaning that we did not
set their dataset properties, which means that every dataset has focus at the time of the
operation that has control over that control.

Figure 14.9 Programmed master-detail application.

DataExpress and DBSwing Applications 315

Summary

This chapter highlights just how easy it is when a robust framework is available. JDBC
programming is greatly simplified by using the DataExpress libraries, and data-aware
GUI development is a snap when using the DBSwing libraries. Understanding Data
Modules and how they are an abstraction of a centralized container for holding all the
database access in one location eliminates confusion and can significantly reduce code
complexity. Then using the built-in template technology to generate a full two-tier data-
base application with no coding is a great way to prototype an application’s data model.
Generating the exact application, but doing so using JBuilder’s GUI designer and com-
ponents to produce a fully functioning application that can be run, tested, and deployed
and again with no code, can really increase the developers’ productivity and get solutions
to the market in a breeze. When combined with programming logic, DataExpress and
DBSwing can be a great combination.

316 Chapter 14

PA R T

Five

Web Development with
Servlets, Java Server

Pages, and Struts

J2SE (Standard Edition) is intended for client-side development and can be used to
develop traditional two-tier client/server-based applications. While Sun continues
to expand the number of technologies included in the Standard Edition, borrowing
technology from the Enterprise Edition (J2EE), it also keeps expanding the tech-
nologies that make up J2EE.

While J2EE development does not officially have a major and a minor compo-
nent, unofficially the Java development community has separated Web develop-
ment from the rest of J2EE. This separation is at least supported by the fact that two
distinctly different containers manage J2EE components. The Web container man-
ages servlets and is responsible for compiling JavaServer Pages into servlet source
code as well as providing the infrastructure that supports the model view controller
framework know as Struts. The EJB container manages Enterprise JavaBeans and
provides the infrastructure that supports Session, Entity, and Message Driven
Beans. Part Five focuses on the development of technologies that are deployed in the
Web container. While the components that are deployed in these two containers are
very different, the various services of J2EE are available to both worlds.

This part is broken into four chapters:

Server and Service Configuration. JBuilder itself does not provide the technolo-
gies that are compliant with the various specifications that make up J2EE. To develop
solutions within J2EE, an application server will need to be configured. Chapter 15
goes over the setup and configuration principles common to all servers.

Web Enablement with Servlets. Developing servlets that will be packaged in a
given Web application’s Web archive is the focus of Chapter 16. In addition, basic
edits to the Deployment Descriptor specific to servlets are also discussed.

Moving from Basic Servlets to JavaServer Pages. Expanding on the servlet tech-
nology, Chapter 17 explains how JavaServer Pages allow developers to separate pre-
sentation from Java code by using tags within HTML. Developers can also create
their own tags by developing Tag Libraries.

Chapter 18, Developing with Struts. Taking full advantage of the servlet,
JavaServer Page, and Tag Library capabilities outlined in the previous chapters,
Chapter 18 covers the Struts Framework, which provides a model view controller
architecture for developing dynamic Web applications.

318 Part Two

319

Within complex distributed frameworks like J2EE, developers create several compo-
nents according to certain business requirements. How these components are developed
and the target application server that is chosen usually determine the bounds to the
capability limits that these components can achieve. Each application server has its own
set of services and environment settings, plus its own particular way of developing the
components that are to run in these environments. These application servers are
typically responsible for making various services available to the components that they
host. These services include Naming and Directory Services, Stateful Session Services,
Transaction Services, and even the different Containers in which the components will
run. Although it is true that all J2EE application servers are compliant with a version of
the J2EE specification, this specification is open for interpretation in many areas.

Learning the varying complexities of this development process for each application
server takes time. JBuilder helps simplify this complexity into a few basic concepts. For
Java development, most of this complexity centers on the management of paths, param-
eters, and tools. For instance, there are the various versions of the Java Development
Kit (JDK), external compilers, third-party libraries as well as the class, source, and
document locations for each project. Dealing with third-party development platforms
adds yet another layer to the mix. Similar to the manner in which JBuilder deals with
third-party libraries and versions of the JDK, JBuilder allows the developer to config-
ure the various paths, parameters, and tools of the target J2EE application server.

This chapter will start out with setting the global properties that affect the way that
JBuilder works with various servers. We will also look at other enterprise configura-
tions that affect other tools that JBuilder uses in the development of applications for
these servers, and we will continue with the more specific settings that affect individual

Server and Service
Configuration

C H A P T E R

15

projects. Within a given project, there can be several project nodes, referred to as Web
applications and EJB modules, that further refine how JBuilder will build and how the
Web and EJB containers should manage the various components to be developed. And
we will look at how the final products, the Web, EJB, and Enterprise Archives, are
deployed and run in the target server’s Web and EJB containers. These concepts are
organized as follows within this chapter:

Configure Your Server. JBuilder can develop J2EE solutions for a variety of
servers. Each server has its own particular environment, and the OpenTool
that JBuilder uses to communicate to the Server during development needs to
be configured properly.

Enterprise Setup. In addition to configuring JBuilder to work with a particular
server, there are additional enterprise settings that can affect the development
environment equally across all application servers. This includes which CORBA
ORB and RDBMS implementations are chosen.

Selecting Server Options. Once JBuilder is configured properly for all of the tar-
get servers and additional enterprise resources that are needed, the individual
project will need to know which server it is to work with and which additional
enterprise tools will be used. The capabilities of each server are defined as ser-
vices. Within a single project, only one server can provide the capabilities of an
individual service. Multiple servers can be used, but only one can be assigned
to each service.

Building Server Components. Within a project, developers will build Web
components and EJB components. Collections of Web components are defined
within a Web application, and collections of EJB components are defined within
EJB modules. Each JBuilder project can work with multiple EJB modules as well
as multiple Web applications.

Deploying the Finished Product. After development has reached a point where
it is ready to be tested or deployed to a target, the Web and EJB archives are
deployed to the target server’s container. Additionally, Enterprise Archives can be
built that contain both Web and EJB archives. These Enterprise Archives can also be
deployed to the target server. Runtime configurations are used to define exactly
how JBuilder is to deploy each of these archives to the server’s container. These
runtime configurations can also define what services are to be made available.

Configuring Your Server

Most servers have basic configuration information in common. Each server may also
have some proprietary or custom information that may also need to be configured. It is
important to note that if you have a mapped drive to install an application server on a
machine, the install that you configure within JBuilder must be for the same operating
system. Just because you can map a drive to a directory on a Solaris machine does not
mean that JBuilder running on a Windows machine will be able to use this installation.

Often, the tools that JBuilder evokes to call various compilers, verifiers, and even the
launching process of the server are native applications and not pure Java applications.

320 Chapter 15

For this reason, we recommend using a local install rather than a remote install on a
server. You may also notice performance issues if the libraries that you build against
are somewhere across the network on another machine.

Configuring Borland Enterprise Server, AppServer Edition
Before a server can be used, it must first be enabled and properly configured. From
JBuilder’s Tools menu, select Configure Servers. You will see a list of application
servers that JBuilder supports. Additional servers are supported by third parties. If
your application server vendor has manufactured an OpenTool for development
within JBuilder, you will need to download and install that OpenTool in order to see
your server on the list of servers. The JBuilder OpenTool API is an open specification
for how to develop extensions to the JBuilder IDE. To configure an application server,
select the application server that you have installed and set the Home Directory to the
root directory to which you installed the application server. In Figure 15.1, notice that
an Enable server checkbox is checked. If you do not enable the server, you will not be
able to edit the configuration.

Configure General Server Settings

Each server will have similar settings. For the most part, each server performs and
behaves the same from a developer’s point of view. There are server-specific APIs that
JBuilder must interact with. Each server has a plug-in associated with it that uses the
following settings to interact with the tools and programs specific to each server.

Figure 15.1 Borland Enterprise Server General settings.

Server and Service Configuration 321

Home Directory. Set to the root directory where the application server has been
installed. Usually it is enough to set the Home Directory setting. The Home
Directory is used to set the default for most of the other settings. Most of the
OpenTools developed for each server are aware of the default relative location
of the various classes, directories, executables, and jar files.

Native Executable Launcher. If this option is available, your target application
server will begin the process. If this process is not automatically initiated, it does
not necessarily mean that your application server is not Java-based. Often ven-
dors wrap the native java.exe entry point in their own code to control the use of
various system parameters. In such cases, the defined native executable will be
executed by the Runtime configuration.

Main Class. Because the Borland Enterprise Server uses a Native Executable
Launcher to start, the Main class setting is not accessible. Other servers may
have a Main class that defines how the server is started. This class launches the
application server from the Runtime configurations.

VM Parameters. This setting passes information to the Java Virtual Machine that
will be used to run the application server. When starting a Java process, there
are two types of parameters than can be passed in; VM Parameters pass infor-
mation into the Java Virtual Machine. These parameters include and are not
limited to control of the memory allocation, instructions on which just-in-time
compiler or Hotspot compiler to use, and debug information.

Server Parameters. This passes information used by the application server.
Similar to VM Parameters, Server Parameters are information that is passed to
the server. When writing Java programs, this would be the String array that is
passed into the main() method that defines the entry point into the application’s
process. Server parameters vary depending on the target application server that
has been selected.

Working Directory. Not all application servers need this parameter set. Often it
will default to the project’s Working Directory or to the application server’s
Home Directory.

Library Settings for Servers

Some servers also define Library Settings from the General tab of the server configura-
tion screen (see Figure 15.1). The Borland Enterprise Server does not, which is why the
following is not displayed. The following additional Library Settings, when available,
will be added to the project’s settings when the application server is configured from the
Server tab of the Project Settings.

Class. This includes the location of any classes that the application server needs to
operate. Some application servers build their lists of classes dynamically at startup.
Therefore you may need to include only a minimal set of classes that know where to
load all additional classes, such as a bootstrap class as utilized by Tomcat 4.0.
Therefore you will want to consult the documentation on the application server

322 Chapter 15

you are configuring prior to setting up the classes. Some application servers add
classes to their respective classpaths dynamically.

Source. This includes the location of any source files that the debugger can walk
through while you are debugging and that OptimizeIt can access while optimizing
your code.

Documentation. This includes the location of any JavaDoc associated with the
classes and source files that JBuilder will display when selecting the Doc tab.

Required Libraries. If you have already configured a set of libraries that you
wish to include in the operation of the application server, you can add those
libraries here — for instance, utility classes that were either purchased from
a third party or built in house. These Required Libraries will be added to the
classpath when the application server is run, debugged, or optimized.
Just because the application you are building requires additional classes and
packages does not mean that the application server is also dependent on these
classes and packages. There are other mechanisms to add classes to a server’s
classpath without having to modify the required libraries of the server. You can
modify the Runtime configuration to add required libraries of the project to the
classpath of the server, and you can also add required libraries of the project to
any resource files or archives that are to be created and deployed. This particu-
lar Required Libraries setting should be reserved to define any required classes
that the server needs to operate normally.

Configure Custom Server Settings

Each server can also have more specialized settings. These settings are configured on
the Custom tab of the Configure Servers dialog. The most common of the custom set-
tings for each server is the ability to specify a specific version of the JDK on which the
server depends. JBuilder itself is hosted on a particular JDK, and this JDK should not
be swapped out for a newer version. The same holds true for application servers. By
making the target JDK specific for an application server, each time the project proper-
ties change its server configuration, the target JDK configuration will also change. In
addition to setting the target JDK for a server, other settings include adding access to
various server tools to the Tools menu as well as configuring logon id and passwords
that are required by some application servers in order to use their console and even
deploy packaged modules into their environment.

Reset to Defaults

If you have edited several of the properties and nothing is working the way it should,
you can change them all back to their default values. This includes their default setting
for the installation directory. Only the currently selected server’s setting will be
affected. After reviewing the installation directory setting, check the remaining
defaulted parameters, and click the OK button. You may have to exit JBuilder and
restart because JBuilder must add certain libraries to its own classpath in order to
complete the configuration.

Server and Service Configuration 323

Enterprise Setup

Application servers are not the only enterprise tools that JBuilder needs to interact
with. IDL compilers, JDBC drivers, and SQLJ executables are also necessary when
developing applications for deployment into a given server’s environment. These
tools may be used in conjunction with an application server, or they may be utilized on
their own. On the Tools menu there is an item titled Enterprise Setup. This is where
additional tools are configured. Some of these configurations require JBuilder to restart
in order for certain libraries to be added to JBuilder’s classpath.

Configuring CORBA
The Object Management Group (OMG) defines the standard for the Common Request
Broker Architecture (CORBA). CORBA is a technology for creating, distributing, and
managing processes across network, operating system, and development language
boundaries. There are several implementations of what is called an Object Request Bro-
ker (ORB) and the necessary tools required to build both clients and servers within this
architecture. JBuilder Enterprise comes with a developer’s license of Borland Enterprise
Server AppServer Edition that includes all of the tools and technologies necessary for
developing CORBA-based solutions in Java. If you have already configured the Borland
Enterprise Server (BES) as a server, then you will notice that the required CORBA set-
tings for VisiBroker (the CORBA ORB implementation that comes with BES) have
already been configured (see Figure 15.2).

Figure 15.2 Enterprise Setup dialog for CORBA.

324 Chapter 15

Figure 15.3 Java IDL configuration.

Setting Up Java IDL as CORBA Compiler

Chances are that the version of the target JDK you have set up as the default JDK for your
projects within JBuilder already has an implementation of an ORB. This implementation
is commonly referred to as Java IDL. JBuilder by default is not configured to use this
ORB. You can, however, create a CORBA configuration for Java IDL. From the Enterprise
Settings on the Tools menu, select the CORBA tab and click on New. Here you will see the
setting necessary for JBuilder to evoke an external IDL compiler (see Figure 15.3). Con-
sult the tools documentation that comes with the Java Developers Kit you are working
with to verify the proper parameters for using the IDL-to-Java Compiler. For Java IDL,
the settings are these:

Name for this configuration. Any name will do. It may be wise to include a
version number in the name in case you have multiple Java Development Kits
installed and configured on the same machine. For this example “Java IDL 1.4.1”
was used as the name for this configuration.

Path for ORB tools. This is where the directory containing the IDL Compiler Com-
mand is located. JBuilder will look in this directory for the executable and any of
its necessary native libraries. For Java IDL, this would be the bin directory located
just under the JAVA_HOME location for the Java Developers Kit installation.

Library for projects. Unlike the path that indicates the location of the native
libraries and executables, this library was configured containing all of the Java
packages and classes that are part of the implementation of the ORB that is to be
configured. For Java IDL, no additional library is necessary to configure. The
VisiBroker configuration uses the Borland Enterprise Server Library, which is
automatically configured when configuring the server.

IDL compiler command. JBuilder does assume that the IDL compiler is a native
executable. This configuration option need be only the full name of the exe-
cutable. For JavaIDL this would be specified as idlj.exe.

Server and Service Configuration 325

Command option for output directory. When JBuilder builds the project, the
location of the output directory will need to be passed in as a parameter so that
the generated output can be directed to the location of JBuilder’s project output.
For Java IDL, this parameter is specified in the JDK tools documentation. This is
specified as “-td”.

Once these parameters are set, they can be accessed again by selecting Edit from the
CORBA tab of the Enterprise Setup dialog. There are four additional settings for each
IDL compiler that is configured:

Apply configuration to the current project. On the Project Properties page, you can
select which IDL complier is utilized during the build process. If a new IDL com-
piler configuration is configured while an existing project is open, this option will
change the settings within the currently open project to use this new IDL compiler.

Make configuration’s ORB the default for the Java VM. Although the Java IDL
compiler ORB that comes with the Java Developers Kit does not need to be named
specifically for the Java Virtual Machine, other ORBs do. By selecting this option, a
file titled orb.properties will be created in the JAVA_HOME’s lib directory. This
properties file contains the information necessary to select a particular ORB as the
default ORB for a running instance of the Virtual Machine. Following is an exam-
ple of the file that would be utilized for configuring VisiBroker as the default ORB:

Make VisiBroker for Java the default ORB

org.omg.CORBA.ORBClass=com.inprise.vbroker.orb.ORB

org.omg.CORBA.ORBSingletonClass=com.inprise.vbroker.orb.ORB

Add a VisiBroker SmartAgent item to the Tools menu. This configuration is
obviously VisiBroker-specific. This process — called the Smart Agent or
OSAgent — is executable when running acts as a sort of naming agent, similar
in effect to a naming service.

Smart Agent port. Also specific to VisiBroker is the port that the Smart Agent
will use.

Figure 15.4 JDBC database driver configuration.

326 Chapter 15

Configuring Database Drivers
Certain database productivity tools that JBuilder utilizes during the development
process require that the Java database connectivity drivers be configured (see Figure
15.4). This is so that JBuilder can add the necessary libraries to its own classpath to make
these drivers accessible. Prior to adding a database driver to JBuilder’s Enterprise
Setup, you must first configure a library for this driver. It is therefore beneficial to keep
all database drivers configured as their own separate library, and add these libraries to
other libraries only when necessary. Configuring a new library that points to the loca-
tion of a JDBC driver will allow a project to compile, run debug, and optimize using the
JDBC driver, but if that library is not configured as a database driver on the Enterprise
Setup tool, the JDBC driver will not be added to JBuilder’s classpath. It is important to
add the JDBC driver to JBuilder’s classpath so that JBuilder can use the JDBC driver
during development. This includes the ability to design DBSwing applications using
live data to populate DataExpress components, the use of database tools such as the
Database Pilot, and the ability to create a DataSource in the EJB 2.0 Designer, which is
used, in turn, to create Container Managed Persistence Entity Beans.

Setting Up the InterClient JDBC Driver

The following steps can be used to install any JDBC driver, but for our example we will
use InterBase InterClient JDBC Driver. InterBase is a SQL92-compliant relational data-
base management system (RDBMS) manufactured by Borland. InterBase uses a Type-
3 JDBC driver, which means that there is actually an intermediary server (referred to as
the InterClient Server) that listens for JDBC connections and brokers such calls on to
the actual InterBase Database Server.

The first step is to ensure that a library has already been configured and that only the
JDBC driver is included in this library. As noted previously, libraries themselves can
specify other libraries as dependents. Therefore, if you feel that you need to include a
given JDBC driver with a collection of other classes and packages, just make the JDBC
drive library a dependent library of the other. If a library has not been created for the
InterClient JDBC packages and classes, create one using the Tools menu’s Configure
Libraries option to create a new library and add the directory jar full of classes to the
libraries classpath (see Figure 15.5).

Next, enter the Enterprise Setup’s Database Driver tab, and click on Add. Scroll
through the list of libraries, and select the library that contains the classpath informa-
tion for the InterClient JDBC Driver. Click OK.

Once JBuilder accepts this configuration, a file will be added to JBuilder’s lib/ext
directory using the name of the Library. A list of such files will be displayed on the
Database Drivers tab of the Enterprise Setup. The file contains the addpath informa-
tion that JBuilder will use at startup time. It is therefore sometimes necessary to restart
JBuilder for these changes to take effect. Following is the typical content for such a file:

addpath C://Borland/InterBase/InterClient/interclient.jar

Server and Service Configuration 327

Figure 15.5 Create the InterClient library.

JBuilder is able to add only one version of each JDBC drive to its classpath. You could
establish several libraries in JBuilder for each JDBC driver — possibly including the
version number in the name of the library — and then go into the Enterprise Setup for
Database Drivers and add each to JBuilder’s classpath. JBuilder would still append each
configuration to JBuilder’s classpath, and the classloader will load the class from the loca-
tion it finds first. If you are curious about the order of JBuilder’s resulting classpath from
all of the additions that have been made, select the Info tab on the About JBuilder menu
item located on the Help menu (see Figure 15.6). Double-click on the java.class.path item
in the list to see its value. Check here to resolve any classpath conflicts that you may
encounter.

Figure 15.6 JBuilder’s classpath.

328 Chapter 15

Configuring SQLJ
Other programming languages like C have been able to take advantage of extensions
to SQL. SQLJ is the term used to refer to the SQL extensions for Java. This allows devel-
opers to embed SQL statements into Java methods. JBuilder can be configured to call
the SQLJ translator for any .SQLJ files in the project. Both Oracle and DB2 SQLJ are
configurable from Enterprise Setup. The configuration is very similar to the CORBA
configuration. You must instruct JBuilder about the location of the external executable
and inform JBuilder of any additional parameters that must be passed into said exe-
cutable. When properly configured, JBuilder will process the .sqlj files included in a
given project and generate the necessary .java files. These .java files will appear as
nodes to the .sqlj file. Once the .java files have been created, JBuilder will compile the
.java files. To configure JBuilder to use an SQLJ translator during the build of a project,
go to the SQLJ tab of the Enterprise Setup dialog (see Figure 15.7) to edit the following:

SQLJ executable. Browse to and select the SQLJ executable that evokes the SQLJ
translator. You may have to download this tool separately, depending on which
vendor’s SQLJ translator you are planning to use.

Additional options. Include any additional parameters that you wish to pass
into the SQLJ executable.

Libraries. If the SQLJ executable requires additional classes or packages, you can
instruct JBuilder to use the classes and packages specified in any one of the
libraries that have already been defined. If the classes and packages you require
do not have libraries defined, you will have to configure them. You can also
select the order in which the libraries will be passed.

Figure 15.7 SQLJ translator settings.

Server and Service Configuration 329

Selecting a Server’s Services

Typically, each project will work with just one server configured for the entire project,
but there are times when more than one server configuration is necessary for a given
project. Services add the ability to select multiple servers for a single project. Because
you cannot select multiple servers for a single service within a project, services break
down the capabilities of each server. This selection of which server will be utilized for
a given service is specific to a project and therefore configurable on the Project Proper-
ties’ Server tab.

Beyond the basic configuration of the parameters and paths of the server, each ser-
vice can also be configured within a project. JBuilder controls the application server
through a combination of servers and services. Just because an application server is
configurable as a server does not necessarily mean that all services that the application
server poses will be available. The service that JBuilder requires will depend on the
capabilities of both the application server and the OpenTool developed to support that
application server. Not every application server will have every service available.

Once you’re in JBuilder, you can configure the project to use one application server
and the services available to that particular application server, or you can assign a dif-
ferent server for each service. Services can also be turned on and off for a given project
by deselecting the checkbox to the left of the service. You can set the following services
in the default project properties:

Client JAR creation. Client Java Archive (JAR) files can be created from a
deployable Enterprise JavaBean JAR file and then used in the development of an
EJB client.

Connector. This will instruct the application server to turn on support for J2EE
connectors when the application server is started.

Figure 15.8 Default Project Properties dialog.

330 Chapter 15

Deployment. JBuilder build tasks can be evoked prior to deployment. This can
be turned on and off to ensure that unnecessary builds are not performed or that
the most recent changes are reflected in the build that is to be deployed. It is up
to the individual developer to determine which setting best fits his or her devel-
opment style.

EJB. The EJB container can be configured to support various versions of the speci-
fication (see Figure 15.8). If the EJB container for a particular application server
supports only EJB 1.1, it will be reflected in this read-only property. This affects
the availability of the EJB 2.0 designer. The EJB 2.0 designer will not be accessible
to a project that has selected an application server that does not support the EJB
2.0 specification. Some EJB containers will also be dependent on other services.
These dependent services will also be listed here in this read-only property:

JDataStore. This is primarily used by Borland Enterprise Server, so you can con-
figure which port the JDataStore Server listens to.

JSP/Servlet. The Web container that is to be utilized can be configured to support
various versions of the specification (see Figure 15.9). If the Web container for a
particular application server supports only JSP 1.1, it will be reflected here in
this read-only property.

Naming Directory. This instructs the application server to turn on support for
the Naming and Directory Service when the application server is started.

Session. This tells the application server to turn on support for the Stateful Ses-
sion Service at startup.

Transaction. This turns on support for the Transaction Manager when the appli-
cation server is started.

Figure 15.9 Default Project Properties dialog.

Server and Service Configuration 331

JBuilder does not provide the necessary integration between application servers if a
mix is chosen. You may, in fact, be able to instruct JBuilder that you intend to use Bor-
land Enterprise Server as your JSP and Servlet Engine, iPlanet as your Naming Ser-
vices, WebLogic as your EJB container, and even WebSphere for your deployment. It is
up to you to ensure that each application server environment is configured properly to
work in such a configuration. JBuilder does not have the context smarts to actually
resolve any conflicts that you may have introduced in the configuration; it would sim-
ply evoke the appropriate compilers and launching executables as you have config-
ured them. You will see errors and exceptions in the Message view.

The project properties do not allow the developer to assign a particular service to an
application server that does not have such a service available. Tomcat 4.0, for instance,
cannot be configured to be the project’s EJB container.

To configure the default server that will be used by all future projects you create, edit
the Default Project Properties Server tab.

Configuring the CORBA IDL Compiler
Each project can use a different IDL compiler, but you cannot configure multiple IDL
compilers within the same project (see Figure 15.10). For instance, if you use VisiBroker
as the IDL compiler for the server and Java IDL as the compiler for the client, you
would need to set up two separate projects. You can point both projects at the same
directory structure, but you will need two .jpx files.

To configure the IDL compiler that is to be used by JBuilder projects, select Default
Project Properties from the Project menu, and choose the IDL tab from the Build tab.
Here you can choose which IDL compiler to use as well as specify the behavior of the
IDL compiler.

Figure 15.10 Default Project Properties dialog.

332 Chapter 15

Building Server Components

Some servers need to have various tools evoked during JBuilder’s build process. These
tools can be configured from the project properties. JBuilder projects not only have to
know how to interact with a given server when building, running, debugging, and
optimizing; JBuilder projects also need to manage the various components that devel-
opers want to work with. These components range from servlets to Java Server Pages
to Enterprise JavaBeans. Within a project, there are various project nodes that JBuilder
uses to manage these components. The two main classifications of nodes that JBuilder
manages for a server are called Web applications and EJB modules. Web applications
manage servlets and Java Server Pages in addition to the developed classes, required
libraries, and deployable content that are to be part of the Web archive that the Web
application also manages. EJB modules manage Enterprise JavaBeans in addition to
the developed classes and required libraries that are to be part of the Java archive that
the EJB Module also manages. Both Web applications and EJB modules manage a
deployment descriptor that contains the configuration information specific to the
servlets, Java Server Pages, and Enterprise JavaBeans that they manage.

Web Applications
The basis for all Web development in JBuilder begins with the Web application. The
Web application is a managed node within a JBuilder project that contains all of the
content for a particular Web site. As per the J2EE specification, this also includes all of
the necessary information and content necessary to create a compliant Web archive
(WAR). All Web-based components that are to be part of the WAR must be added to a
Web application somehow. This includes the all-important Deployment Descriptor for
Web applications. The Deployment Descriptor is an XML file (web.xml) that contains
the information that the Web container needs to manage the deployed content of a Web
application. A Deployment Descriptor Editor exists to help edit and manage the ele-
ments of the Deployment Descriptor. Each server that JBuilder supports can have addi-
tional configuration information specific to that particular server. When working with
Web applications, the necessary vendor-specific deployment descriptor information
will also be added to the WAR. The dependent libraries of the project will also become
the dependent libraries of the Web application. Configuring the dependencies of the
Web application will also allow developers to decide which libraries will be deployed
as part of the WAR and which libraries will not be deployed. A decision to include
these required libraries in the generated WAR file will place them in the WEB-INF/lib
directory of the WAR file.

Server and Service Configuration 333

Figure 15.11 Web Application wizard.

If a Web application has not been created, JBuilder will create a default Web appli-
cation and add all new Web-based content to this default Web application. A single
project can manage several Web applications. Creating a new Web application to be
added to an existing project requires some basic information. All of these settings can,
of course, be modified after the Web application has been created, by right-clicking on
the Web application node in the Project pane and modifying the Web application’s
properties. To create a new Web application, open the Object Gallery, and click on the
Web Application wizard (see Figure 15.11) on the Web tab to enter the following infor-
mation:

Name. The name of the Web application will affect the URL of all of the content
within the Web application. This is not just the name of the managed node in the
JBuilder project; it is the deployed name relative to the Web server’s root that
will be utilized by the Web container. The name of the Web application also has
an effect on the URL used to access the contents of the Web application. For
instance, if the name of the Web application is “FirstWebApplication,” then the
root URL for this Web application would be http://localhost:8080/FirstWebAp-
plication. If you rename the Web application, you will change the URL as well.

Directory. The directory selected will be the root directory of the Web applica-
tion. This will be the location that is used for all of the Web application content.
If you already have a directory of HTML documents and image files, you can
point the Web application’s directory to this directory. When creating a Web
archive (WAR), the contents of this directory will be added to the root directory
of the WAR file. If you do decide to add static content to this directory, or per-
haps an images directory, you may notice that the files and directories that you
have created do not immediately show up under the Root Directory folder node
of the Web application. When this happens, just click on the Refresh toolbar but-
ton just above the Project pane, and the contents should display.

Build WAR. Web archives (WARs), as defined by the J2EE specification, are self-
contained Web sites. The Web application determines what will and what will
not be included in the WAR. Depending on the amount of content, building a

334 Chapter 15

WAR could take considerable time. For this reason, you can configure exactly
how often a Web application’s WAR file is to be generated: when building either
the project or Web app, when building the project only, when building the Web
app only, or never.

JSP/Servlet Frameworks. There are several different frameworks that a given
Web application can decide to implement. You can select these when the Web
application is created, or you can add them later by modifying the Web applica-
tion’s properties:

Cocoon. Part of the Apache XML Project, Cocoon is a servlet-based framework
for distributing XML documents formatted with XSL stylesheets. This frame-
work allows for the separation of content, style, and business logic.

InternetBeans Express 1.1. Borland’s DataExpress technology is an extension
of the JDBC technology that implements provider and resolver capabilities
for distribution of DataSets. DBSwing is a collection of DataSet-aware visual
components for designing rich client/server-based Swing applications. Inter-
netBeans Express is also a collection of DataSet-aware visual components, for
designing rich Web-based HTML applications.

JSTL 1.0. The JavaServer Pages Standard Tag Library (JSTL) is a collection of
Tag Libraries that have been accepted as an industry-standard set of Tag
Libraries. Apache’s Jakarta Project manages an implementation of JSTL.

Struts. Based on servlet and JavaServer Pages technology, Struts is a model,
view, controller-based framework for developing Web-based systems using
Java.

Launch URI. This will be used as the default URI that is requested if you right-
click on the Web application node in the Project pane and select Run, Debug, or
Optimize.

Web Application Properties
To access a Web application’s properties, right-click on the Web application in the Project
pane and select Properties (see Figure 15.12). The Web application’s properties contain
instructions for JBuilder’s build system on how to create and manage the content of the
Web archive (WAR). Each Web application can manage one and only one WAR. The prop-
erties of the Web aAplication can also affect the contents of the WAR’s Deployment
Descriptor (web.xml). There are five tabs located on the Web applications Properties
dialog: WebApp, Directories, Classes, Dependencies, and Manifest:

WebApp. The first tab should look very similar to the Web Application wizard.
On the WebApp tab you can modify the name and location of the WAR that is to
be created as well as name of the Web application itself. You will also notice the
listing of frameworks that can be selected. You can also choose the frequency of
how often the WAR file will be built. If you like to compile the classes of your
project frequently, but you do not want to rebuild the WAR file each time, you
can set the build option to never.

Server and Service Configuration 335

Directories. There are two types of directories, directories of project content to
exclude and directories of Web content to include. The first list of exclude directories
can be expanded to list any directory that the archive should explicitly not include
the content of when building the WAR file. The WAR file will automatically create a
WEB-INF directory. This WEB-INF directory is where the Deployment Descriptor is
stored. Only the Web container has access to files in the WEB-INF directory. You can
choose to include additional content from the WEB-INF directory other than just the
Deployment Descriptor (web.xml). You can also create additional directories under
the WEB-INF directory. Placing resources, HTML documents, and even JavaServer
Pages in the WEB-INF directory hides this content from external access. Only
servlets and JavaServer Pages can request content from the WEB-INF directory by
using the forward and include functionality. If you do wish to include such content
in the generated WAR, be sure to select “Include regular content in WEB-INF and
subdirectories.”

Classes. The output directory of the project is where candidate classes are chosen
to include in the classes directory of the WAR. These classes will actually be
stored in the WEB-INF/classes directory. You can choose to include all of the
classes and resources or to include only the specified list of classes and
resources. If you choose to include only the specified classes, JBuilder can check
to make sure that all dependent classes are included as well. You can add indi-
vidual classes or entire packages of classes to the specified classes and resources
list.

Dependencies. Each project also has a list of required libraries. These required
libraries can be added to the WEB-INF/lib directory of the WAR. You can
choose to always include the dependent libraries or to never include the depen-
dent libraries on an individual basis. To control the size of the WAR file, you
may consider including the classes that are actually used. This is not the only
way to add classes to the classpath of the Web container. You can also modify
the classpath of the Web container by modifying the dependent libraries for the
server’s configuration from the Tools menu, or you can elect to make the proj-
ect’s output path available to the Web container from the server settings of the
Runtime configuration properties for the server you have selected.

Manifest. All archives can elect to include a Manifest file listing the contents of
the archive. You can choose to maintain the manifest file yourself, or you can
have JBuilder generate one for you each time the Web archive is built.

Deployment. Not all servers support the ability to deploy Web archives from
JBuilder to a target server running somewhere on the attached network. If the
server that has been selected does support the ability to deploy Web archives,
then the particular settings that enable JBuilder to deploy are configured on the
Deployment tab of the Web Archives Properties dialog. JBuilder does not actu-
ally know how to deploy per se; what JBuilder actually does is access the target
server’s deployment tool and pass in the necessary project-related information
including the location and name of the Web archive that is to be deployed.

336 Chapter 15

Figure 15.12 Web application properties.

EJB Modules
Before you create a new EJB module (see Figure 15.13), you may want to check to be
sure that the server that you selected in the Server tab of the Project Properties dialog
is capable of supporting EJB development. A project must first have an EJB module
if you plan on developing EJBs. There are two types of EJB modules to choose from:
EJB 1.1-compliant modules and EJB 2.0-compliant modules. EJB modules contain the
build information that JBuilder uses to create the EJB Java Archive, including the
Deployment Descriptor file. When working with EJB modules, the vendor-specific
deployment descriptor will be added to the META-INF directory. Each application
server has its own compiler for the generated stubs and skeletons, as well as a verifier
that is used to ensure that the information in the Deployment Descriptor is correct. You
can configure the Web module to evoke or not to evoke these utilities from within the
given Web Modules properties. It is also possible to configure the server-specific
deployment configuration for each EJB module.

Name. Unlike the name of the Web application, the name has no effect on the
running status or name of the EJBs. The name is used only to distinguish one
EJB module in a given project from another.

Format. Originally, JBuilder would save project and EJB modules in a binary file
format. JBuilder has since changed to using an XML file format for the project
and EJB modules it creates and manages. You can still elect to create a binary file
by selecting binary instead of XML. It is recommended that you use XML.

Version. Here you will choose between a 1.1- or a 2.0-compliant EJB module. If
you choose 1.1, then you will use the EJB wizards located on the Enterprise tab
of the Object Gallery to create your EJBs. If you choose 2.0, you will use the EJB
Designer to create your EJBs.

Server and Service Configuration 337

Figure 15.13 EJB Module wizard.

Output JAR file Name. The main task of the EJB module is to create and manage
the contents of the EJB Archive that will be deployed to a target application
server. The name of the EJB module is not important; just make sure that it is
not the same name used by another EJB module or Java Archive already being
managed by the project.

Output JAR file Path. You can specify the location to which JBuilder will gener-
ate the completed EJB archive. Some developers like to specify the location that
the target application server will use to deploy the EJB Archive from.

EJB Modules from Existing Deployment Descriptors
If you already have developed a collection of EJBs and would like to continue devel-
opment with JBuilder, you can create a project and add a new EJB module to that proj-
ect using the existing Deployment Descriptor files that you have already created. This
wizard (see Figure 15.14) does make the assumption that the Deployment Descriptor
file ejb-jar.xml is located in a directory named META-INF and that this directory is
located in the source directory. Set the following when using this wizard:

Directory. Set to the directory where the ejb-jar.xml file is located. The wizard
will proceed to look for Deployment Descriptor files and will try to identify the
parent directory as the root directory that the source code is located within.

Identified EJB Descriptors. A list of Deployment Descriptors that the wizard has
located will be displayed.

Identified Root Source. Once the root source is identified, you will have the option
of adding this directory to the list of source paths on the Project Properties Paths tab.

338 Chapter 15

Figure 15.14 Using existing deployment descriptors.

EJB Module Properties
To access the properties of an EJB module, right-mouse click on the EJB module in the
Project pane and select Properties (see Figure 15.15). For the most part, the properties are
very much the same for all servers that are capable of managing EJBs. For that matter,
there are considerable similarities with the properties of the Web application as well. The
major difference between the Web application and the EJB module’s properties actually
has more to do with the layout of the Web and EJB archive file structures. When you open
the EJB Modules properties, you will notice the following tabs:

Build. EJB modules not only help JBuilder projects manage EJB components, EJB
modules also are responsible for managing the instructions that JBuilder’s build
system will use in the creation of the EJB archive. This includes basic informa-
tion such as the name and location of the archive to be generated as well as the
content that is to be added to the archive as well. The Build tab of the EJB mod-
ule’s Properties lists the Deployment Descriptor files that are to be copied into
the META-INF directory of the EJB archive when it is created. The actual
Deployment Descriptor files are embedded in the .ejbgrpx file. If you have an
existing Deployment Descriptor file that you wish to use, you can simply add
that file to the descriptors already in the module. This action will replace the
descriptor files that are already embedded in the .ejbgrpx file. You can have
JBuilder make a copy of these files each time the EJB archive is built by specify-
ing a directory to which the descriptor files should be copied. Certain servers
will also have their own tab on the EJB module’s Build tab to specify how the
stub files are to be created and what parameters are to be passed into the com-
piler that generates the stub files.

Content. Almost exactly the same as the Web application’s Properties classes tab,
the Content tab of the EJB module’s Properties determines which classes are to
be included in the EJB archive that is generated. EJB archives more closely resem-
ble Java Archives in that the root of the archive is also the root of the classpath

Server and Service Configuration 339

for the archive. Web archives have two separate classpaths located under the
WEB-INF directory located in the classes and lib subdirectories. EJB archives
have only one classpath, and that is the root of the archive itself; that is why EJB
archives contain individual classes.

Dependencies. When a Required Library listed on the Dependencies tab of the
EJB module’s Properties dialog is selected, the classes in that particular library
will be copied into the EJB archive. This means that each individual class will be
copied, not the .jar file associated with the library, as is the case with Web appli-
cations. Web applications will copy all .jar files into the Web archive’s WEB-
INF/lib directory, but no such directory exists in the EJB archive. Therefore
JBuilder will copy the individual classes into the EJB archive when Include all is
choosen.

Manifest. All archives can elect to include a Manifest file listing the contents of
the archive. You can choose to maintain the Manifest file yourself, or you can
have JBuilder generate one for you each time the EJB archive is built.

Deployment. Not all servers support the ability to deploy EJB archives from
JBuilder to a target server running somewhere on the attached network. If the
server that has been selected does support the ability to deploy EJB archives,
then the particular settings that enable JBuilder to deploy are configured on the
Deployment tab of the EJB module’s Properties. JBuilder does not actually know
how to deploy per se; what JBuilder actually does is access the target server’s
deployment tool and pass in the necessary project-related information including
the location and name of the EJB archive that is to be deployed.

Figure 15.15 EJB module properties.

340 Chapter 15

Enterprise Archives
Web as well as EJB archives can all be contained within one Enterprise Archive (EAR)
file. If a project has multiple EJB modules and multiple Web applications, a single
Enterprise Archive can be created that will combine all of the files in one easily deploy-
able archive. Like Web applications and EJB modules, it is also possible to configure the
server-specific deployment configuration for each Enterprise Archive. To create a new
Enterprise Archive, select the EAR wizard from the Object Gallery’s Enterprise tab.
The wizard will walk you through a series of steps asking which existing modules and
resources already managed by the project are to be included in the Enterprise Archive.
These settings are accessible after the wizard has completed by accessing the Enter-
prise Archive’s properties (see Figure 15.16) in the same manner that the Web applica-
tion and the EJB module’s properties are accessed. When you open the Enterprise
Archives properties, you will notice the following tabs:

Build. This specifies the name and location of the Enterprise Archive that is to be
generated as well as the name of the Enterprise Archive node in the Project
pane. The Enterprise Archive also has a Deployment Descriptor file applica-
tion.xml that defines the modules that are contained within the archive and
specifies what type they are.

EJBs. This specifies the EJB archive files that are to be included. The first tab will
list all of the EJB modules in the project. Because each EJB module can manage
only one EJB archive, selecting a module is the same as selecting the archive that
the module manages. You can also include any external EJB archives that are not
associated with the current project.

Connectors. Resource Adapter Archives (RARs) can also be added to the Enter-
prise Archive. Resource adapters are components that comply with J2EE’s Con-
nector specification. The J2EE Connector architecture defines the manner in
which the components of a J2EE system, namely EJBs, can communicate with
other non–J2EE-based systems that may already exist.

AppClients. Similar in concept to Web Start clients, application clients are
deployable client application archives. Application clients are archives that con-
tain client applications that run in their own Java virtual machines and start
with their own main() methods. Application client archives also have their own
Deployment Descriptor files typically named application-client.xml. These
Deployment Descriptors are similar to the Deployment Descriptors of Web
archives and EJB archives in that they contain information that the application
container will use to provide access to external components, most likely EJBs
running inside EJB containers. A server can deploy these application client
archives, but exactly how they are required to deploy such archives is not clear.
The technology that exists that is most closely related to such a task is the Web
Start technology. Web Start is a way to deploy Java Archives containing applica-
tions over the Web.

Server and Service Configuration 341

Figure 15.16 Enterprise Archive properties.

Web. Web applications that are part of the project will display, and you can
choose which Web application’s Web archives are to be included in the Enter-
prise Archive. You can also select Web archives that are not part of the project
and add them to the Enterprise Archive as well.

Other. Just about any additional file can be added to the Enterprise Archive
including other Java Archives and even native libraries and documentation.

Deployment. Not all servers support the ability to deploy Enterprise Archives
from JBuilder to a target server running somewhere on the attached network. If
the server that has been selected does support the ability to deploy Enterprise
Archives, then the particular settings that enable JBuilder to deploy are config-
ured on the Deployment tab of the Enterprise Archive Properties dialog.
JBuilder does not actually know how to deploy per se; what JBuilder actually
does is access the target server’s deployment tool and pass in the necessary
project-related information including the location and name of the Enterprise
Archive that is to be deployed.

Deploying the Finished Product

Once JBuilder is configured properly for the server you are developing with the proj-
ect and is set up to utilize the services that the server provides properly, and you have
added several Web applications, EJB modules, and Enterprise Archives to your project,
it is time to develop the various J2EE components. The following chapters outline how
to develop these components. Once you have finished a particular stage of develop-
ment, you will undoubtedly want to run or deploy your work into the target server’s

342 Chapter 15

environment for testing. There is a specific type of Runtime configuration that exists
that was specifically designed to select and configure the use of the target server as
well as the services that the target server has to offer.

Runtime Configurations for Servers
The part of JBuilder’s Project Properties dialog that is responsible for managing the
launch commands for each server is located on the Run tab. You can either open
the Project Properties and select the Run tab, or you can directly access the Runtime
configurations from the Run menu’s configurations (see Figure 15.17). The type of
Runtime configuration this chapter is going to focus on is “Server.”

Controlling the Server

The settings that are used to control how the server is started come from the Project
Properties Server tab, which in turn comes from the server configuration. This three-
layer approach narrows the options and configurations until you get to the specific
Runtime configuration used to launch the server. The following three categories exist
that are specific to the server:

Command Line. JBuilder uses Runtime configurations to control the way in
which new processes are launched. The VM and server parameters come from
the server configuration. You can also elect to make the project’s output path
and Required Libraries classpaths part of the classpath of the command line that
is used to launch the server. This is an all-or-none configuration. Either all
Required Libraries are to be added to the server’s classpath, or none are added.

Libraries. The project’s Required Libraries can alternatively be deployed to the
container that the Web, EJB, or Enterprise Archives are also being deployed to.
Choosing between making all Required Libraries part of the server’s classpath
and deploying individual Required Libraries will most definitely have an impact
on how the server will locate and load a Library’s classes. In most servers, the
container has its own classloader; in some cases, each deployed archive has its
own dedicated classloader assigned to it. So, depending on the server, how and
where you deploy dependent libraries will have an effect on the container’s abil-
ity to locate and find the classes it needs. The third option is, of course, to include
the Required Library in the archive that is being deployed. This is typically con-
figured on the Dependencies tab of each archive’s properties.

Archives. Each project can manage several archives. Each archive can be a differ-
ent type, or they can all be of the same type. You can choose which archive to
deploy. Multiple Runtime configurations can be created, each one deploying a
separate archive to a different container.

Server and Service Configuration 343

Figure 15.17 Runtime Configuration Properties dialog.

Selecting the Services

In the server configuration and in the Project Properties dialog, you were configuring
the availability of the various services of a given server. In the Runtime configuration
for a server, you are actually instructing the server on exactly which services to start
and which services not to start. JBuilder will pass in the necessary options to the server
to control which service is started depending on which available services are checked.

Deploy Options
For certain servers, there will be an additional menu that is available when you right-
mouse click on the various enterprise nodes in the Project pane. This option is titled
“Deploy Options.” It is assumed that, by accessing these deploy options, the target
server as defined in the deployment settings of the Web application’s, EJB module’s, or
Enterprise Archive’s properties is already running. If the archive has not been
deployed yet, you can select to deploy the archive. Otherwise, you can either redeploy
the archive or undeploy the archive. If you are not exactly sure which archives have
been deployed, you can choose to list the deployed archives.

Enterprise Deployment
Once the application has been developed, tested, and optimized, it is time to deploy the
finished product. From the Tools menu, select Enterprise Deployment to start the
server-specific deployment tool. The server selected determines which deployment tool

344 Chapter 15

to evoke. If the tool supports it, the generated Web application WAR files, EJB module
JAR files, and Enterprise Archive EAR files will be passed in to the deployment tool.

Summary

In this chapter we saw how JBuilder manages the components of J2EE applications at
three different layers: from the server-end enterprise configuration, to a project’s prop-
erties and the definition of Web Applications and EJB Archives managed by a project,
to the specific Runtime configurations that control how the J2EE server is to execute
the application. In the forthcoming chapters, we will focus on how to develop these
components.

Server and Service Configuration 345

347

Delivering dynamic content over the Web to avoid the pains of software distribution is
a driving force behind developers’ use of Java technologies like servlets to develop
Web-based systems. The Internet Engineering Task Force (IETF) manages while the
World Wide Web Consortium (W3C) formally recognizes the Hyper Text Transfer Pro-
tocol (HTTP) as the standard for Web-based communications. Sun Microsystems
helped form the Java Community Process (JCP) that develops and revises Java tech-
nology specifications, reference implementations, and technology compatibility kits.
Java Specification Request (JSR) 154, Java Servlet 2.4 Specification, and its predecessors
define the objectification of Hyper Text Transfer Protocol (HTTP) in Java. The Apache
Software Foundation manages the Jakarta Project, which develops and maintains
Apache Tomcat. Apache Tomcat is the official reference implementation for the Java
Servlet and Java Server Pages technologies. JBuilder ships with two versions of Apache
Tomcat; version 3.3.1 supports the Servlet 2.2 and the JSP 1.1 APIs, and version 4.0.4
supports Servlet 2.3 and JSP 1.2 APIs.

This chapter covers the following topics:

Objectifying client requests and server responses. Taking the raw set of charac-
ters that make up an incoming HTTP request, the servlet specification defines
how to transform this request into a Java object. Once the request is in object
form, servlet programmers can develop business and data access logic to create
dynamic content on the Web. There are three basic types of servlets to choose
from. The most common is the Standard Servlet.

Web Enablement with Servlets

C H A P T E R

16

Creating a new Standard Servlet. Servlets are the backbone of dynamic Web
delivered-content in Java. This section will go over the steps necessary to create
servlets in JBuilder and add them to a Web application. In addition, various
Deployment Descriptor settings will also be covered.

Creating a Filter Servlet. Filter Servlets are used to perform specific tasks for
well-defined URL request patterns. This section walks through the steps of cre-
ating a Filter Servlet that helps explain the subtle differences between Standard
and Filter Servlets.

Using DataSources. Accessing a database is key to dynamic content development
with servlets. This section outlines the steps necessary to add a DataSource to the
Deployment Descriptor and bind that DataSource to Tomcat’s naming service.
Three different techniques for adding a JDBC driver to the Web container’s
classpath are also discussed.

Objectifying Client Requests and Server Responses

The Hyper Text Transfer Protocol (HTTP), or RFC 2616, defines the structure of data
and its meta data for stateless communication between a client (or requestor) and a
server (or responder). Each message that a client (or Web browser) sends to a server (or
Web server) is called a request. This request is primarily composed of a message header
and a message body. The message header specifies the Uniform Resource Identifier
(URI), request method type, and version. Using the TCP Monitor located on the Tools
menu (see Figure 16.1), you can review the request and response from any Web
browser to any Web server.

Figure 16.1 Monitoring HTTP requests.

348 Chapter 16

Launch the TCP Monitor and stop listening to port 8082. Set the host to the name of
any Web server (for this example, we use www.borland.com), set the port to the default
HTTP port 80, and start listening to port 8082 once again. The TCP Monitor will actually
act as a proxy to www.borland.com. Any request for localhost:8082 will actually proxy
to www.borland.com. Use any Web browser and browse to http://localhost:8082/
index.html. In this example, a typical Web browser may send the following HTTP
request to a Web server:

GET /index.html HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-powerpoint, application/vnd.ms-excel,

application/msword, */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Host: www.borland.com

Connection: Keep-Alive

A browser may, in fact, display http://www.borland.com/index.html as the Web
address or Uniform Resource Locator (URL), but the browser actually used “www” as
the host name, borland.com as the domain, and the default HTTP port 80 to connect to
the Web server and send the formatted HTTP request. The URI in this example would
be /index.html, the request method is GET, and the version is HTTP:/1.1. Once the
Web server receives this GET request method from the Web browser, it will determine
whether the URI is valid and respond to the Web browser by sending the following
HTTP response header:

HTTP/1.1 200 OK

Date: Sat, 07 Sep 2002 18:26:26 GMT

Server: Apache/1.3.26 (Unix)

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html

An HTTP response is also made up of a message header and a message body. The
message header contains the version, a status message, and content type. In this exam-
ple, the version is HTTP/1.1, the status is 200 OK, and the content type is text/html.
Following this response header would be the message body content, or more specifi-
cally, the HTML page titled index.html. Writing a basic Web server is as simple as lis-
tening to a TCP/IP port and parsing through streams of characters, according to the
HTTP specification.

The Java Servlet API primarily defines the object-oriented form of the HTTP proto-
col in the Java language. This technology provides the necessary framework to allow
developers to extend the static capabilities of Web servers and provide dynamic con-
tent to its clients. A Java-enabled, dynamic Web server will typically have a Servlet
Engine, also called the Servlet’s container or a Web container (the terminology is
defined in the J2EE spec and can be used to describe a process that understands HTTP

Web Enablement with Servlets 349

and hosts servlets or JSP). This container is responsible for handling all network activ-
ity as well as creating the object-oriented equivalent of an HTTP Request and Response
objects. The container is also responsible for managing the lifecycle of the servlet.

When an HTTP request comes into a Web server, a servlet — specifically an extension
of javax.servlet.http.HttpServlet — decides what to do with the request, and some-
thing needs to prepare an HTTP response to send back to the client or Web browser.
The HttpServlet contains all of the information contained in the HTTP request and is
responsible for creating all of the information and content of the HTTP response. When
the Web container creates an instance of an HttpServlet, the Web container has already
created an instance of an HttpServletRequest object with all of the information that the
client has sent to the server as well as an empty HttpServletResponse object that will be
populated and sent back to the client.

Some Web servers are responsible for providing access to HTML documents and
other information that never change. This content that does not change is referred to as
static content. With static-based Web servers, the rule of thumb is if the Web page or
image exists, send a copy back to the client. Each request that comes in can produce one
and only one response each and every time. On the other hand, developers also want
to be able to provide dynamic content. In this case, each request that comes to a Web
server can produce from one to many different responses. With dynamic base Web
servers, developers typically write code or business logic that determines what to do
with the information in an incoming request and how to construct the appropriate
response. This is the responsibility of the servlet. A Standard Servlet is an extension of
HttpServlet that implements one of the doGet(), doPost(), doPut(), or doDelete()
request methods. It is not a Listener or a Filter.

Creating a New Standard Servlet

Before you start creating servlets, you must first have created a project and added a
Web application to that project. If you do not add a Web application to the project, a
default Web application will be created for you. To create a new Standard Servlet in
JBuilder, open the Object Gallery, go to the Web tab, select the Servlet wizard, and click
the OK button. A Standard Servlet is the most common type of servlet, and it imple-
ments at least one of the following HTTP request methods: GET, POST, PUT, or
DELETE. In addition to Standard Servlets, there are also Filter and Listener Servlets.
The first step (see Figure 16.2) of the Servlet wizard is the same for all three types of
servlets. Once you select a Standard, Filter, or Listener Servlet, the number of subse-
quent steps will change. Standard Servlets can have a total of five steps, whereas Filter
and Listener Servlets have only three steps. The first step is as follows:

Package and class name. Servlets are Java classes and can exist in any package. It
used to be that the package and class name also affected the URI of the servlet
itself, but this is no longer the case. You can create a servlet with any class name
and place it within any package while accessing it from a completely independent
URI. The Web container is responsible for managing the relationship between a
servlet’s URI and its class name. This information is configured in the Deploy-
ment Descriptor or web.xml file located in the WEB-INF directory of the Web
archive and is set when you enter the WebApp details while creating the servlet.

350 Chapter 16

Figure 16.2 Choose servlet name and type.

Generate header comments. Not to be confused with the HTTP header, selecting
this option will utilize the project properties for title, description, company,
author, and version. You can edit these values on the General tab of the Project
Properties using the following code. Selecting this option will produce the fol-
lowing header comments in the generated source code:

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author unascribed

* @version 1.0

*/

Single Thread Model. If selected, the generated servlet class will implement the
javax.servlet.SingleThreadModel interface. This interface has no methods, but
it ensures that only one thread will ever access a servlet’s service method at the
same time. This will guarantee that each servlet will handle only one request at
a time. Selecting this option will generate the necessary implementation of the
SingleThreadModel interface as follows:

public class FirstServlet extends HttpServlet implements

SingleThreadModel {

WebApp. A Web application is a managed node of a JBuilder project that man-
ages the content of a Web site and generates a Web archive. If no Web applica-
tion exists, a default Web application will be generated. If a JBuilder project has
multiple Web applications, you can select to which Web application this new
servlet was to be added. Each Web application also manages the Deployment
Descriptor for the Web archive. The Deployment Descriptor contains informa-
tion about the content of a Web archive. The Deployment Descriptor also has
information about the Web archive that the Web container needs to control the
behavior and access to the various contents within a Web archive.

Web Enablement with Servlets 351

Figure 16.3 Edit standard servlet details.

Content Types and Response Message Body
A servlet’s response will be in HTTP format and will contain content. The format of this
content can come in almost any form. As shown in Figure 16.3, there are standard
media types in which the body of a response will be formatted. Clients need to know
what type of media they are receiving inside a given server’s response message body.
The content type of the response message header tells the requesting client what type
of media is being delivered.

Each media type can also be further classified by subtype. For instance, a servlet
may send text data to a client browser, and this text data may be HTML. Therefore, the
content-type would be text/html. For the servlet class being generated, a private static
final String variable named CONTENT_TYPE will be created as a data member of the
servlet, and it will be set to the value specified here. There are four values to choose
from — HTML, XHTML, WML, and XML — when selecting which type of content to
generate. For the XML values, an additional static final String variable named
DOC_TYPE will be created as a data member of the servlet. This DOC_TYPE element
will be used to specify what kind of HTML is being used in the message body. Depend-
ing on which option you select, the following declarations will be generated:

//HTML set as Generate Content Type

private static final String CONTENT_TYPE = “text/html”;

//XHTML set as Generate Content Type

private static final String CONTENT_TYPE = “text/html”;

private static final String DOC_TYPE = “<!DOCTYPE html PUBLIC \”-

//W3C//DTD XHTML 1.0 Strict//EN\”\n

\”http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\”>”;

//WML set as Generate Content Type

private static final String CONTENT_TYPE = “text/vnd.wap.wml”;

352 Chapter 16

private static final String DOC_TYPE = “<!DOCTYPE wml PUBLIC \”-

//WAPFORUM//DTD WML 1.2//EN\”\n

\”http://www.wapforum.org/DTD/wml12.dtd\”>”;

//XML set as Generate Content Type

private static final String CONTENT_TYPE = “text/xml”;

/**@todo set DTD*/

private static final String DOC_TYPE = null;

This CONTENT_TYPE will be used to set the Response object’s content type
attribute in the implemented response method’s message body. You set the content
type in the response object as follows:

response.setContentType(CONTENT_TYPE);

Because the message body of an HTTP response is always character-based, using
java.io.PrintWriter makes sense. The PrintWriter is an attribute of the response
attribute of the servlet:

out.println(“<?xml version=\”1.0\”?>”);

out.println(DOC_TYPE);

It is also possible to stream binary data back to a requesting client by getting the
ServletResponse.getOutputStream() and writing to it. If you are creating a servlet for
this purpose, you will have to generate the preceding code and delete it after the wiz-
ard is finished.

Request Methods of a Servlet
Here is where you decide which request methods of the HttpServlet to override. HTTP
has a limited set of request methods: GET, POST, DELETE, PUT, HEAD, OPTIONS,
and TRACE. Each of these methods can evoke a completely different behavior for a
given URI. The URI and the request method determine which servlet is created and
which method of the servlet is evoked. The URI typically determines which servlet is
created, and the request method determines which method of the servlet is evoked.

HTTP GET is implemented in an HttpServlet’s doGet() method. The purpose of this
method is to retrieve whatever information is associated with the request URI. This is
one of the two most common request methods utilized by Web servers. Some refer to
the following information at the end of the address or URL as a query string:

http://localhost:8080/<webapp-name>/<servlet-

name>?name1=value1&name2=value2&name3=value3

Typically this information at the end of the URL is formatted as a series of name-
equals-value pairings separated by ampersands. The first pair is usually separated
from the URL’s absolute path by a question mark.

Web Enablement with Servlets 353

HTTP POST is implemented in a HttpServlet’s doPost() method. The second of the
two most commonly used request methods, the POST method is typically used within
an HTML’s form as shown here:

<form method=POST action=”http://localhost:8080/<webapp-name>/<servlet-

name>”>

<input TYPE=”text” NAME=”name1” VALUE=”value1”>

<input TYPE=”hidden” NAME=”name2” VALUE=”value2”>

<input TYPE=”password” NAME=”name3” VALUE=”value3”>

<input TYPE=”submit” NAME=”request”>

</form>

This is the proposed method to use when sending data to the server for processing.
When using HTML forms, the Web browser will send the data as part of the HTTP
message body, not as part of the query string at the end of the URL.

HTTP DELETE is implemented in an HttpServlet’s doDelete() method, and HTTP
PUT is implemented in a HttpServlet’s doPut() method. PUT is generally a request to
store the message body at the location specified by the URI. DELETE is generally a
request to delete any content located at the location specified by the URI. Think of
these two methods as a means to use an HTTP server as a sort of FTP server, putting
and deleting content. A popular extension of these HTTP request methods is WebDAV,
used for developing Web-based version control systems.

HTTP HEAD is implemented in an HttpServlet’s doHead() method. HEAD should
be treated the same way that GET is treated, except HEAD will not return any content;
only the headers are to be returned. The default behavior implemented in the
HttpServlet’s doHead() method is compliant with the HTTP RFC 2616, and therefore it
is not necessary to override.

HTTP OPTIONS is implemented in an HttpServlet’s doOptions() method. OPTIONS
should respond with usage information about the URI. This may include a listing of
implemented request methods and expected data. The default behavior implemented
in the HttpServlet’s doOptions() method is compliant with the HTTP RFC 2616, and
therefore it is not necessary to override.

HTTP TRACE is implemented in an HttpServlet’s doTrace() method. The content
type of the message header of a response to a TRACE request method will be mes-
sage/http, and the message body of the response to a TRACE request method will be
an exact copy of the HTTP request that was sent to the server. The default behavior
implemented in the HttpServlet’s doTrace() method is compliant with the HTTP RFC
2616, and therefore it is not necessary to override. The HttpServlet’s doTrace() method
would send the following as a response:

HTTP/1.1 200 OK

Content-Type: message/http

Content-Length: 334

Date: Mon, 09 Sep 2002 01:06:23 GMT

Server: Apache Tomcat/4.0.3 (HTTP/1.1 Connector)

** client: data from 127.0.0.1:8080 (334 bytes)

TRACE /firstservlet HTTP/1.1

354 Chapter 16

accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-powerpoint, application/vnd.ms-excel,

application/msword, */*

accept-language: en-us

accept-encoding: gzip, deflate

user-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

host: localhost

connection: Keep-Alive

SHTML and Server-Side Includes
Similar to the <jsp:include> tag used in Java Server Pages, servlet developers can use
SHTML to replace <servlet> tags within a given HTML document with the body of the
response from a servlet. This technology is also referred to as server-side includes
because you are technically instructing the Web server to replace the <servlet> tag with
dynamic content. Depending on which request methods are selected, the options will
be different. If the doGet() method is selected and the option to generate a <Servlet>
tag is selected, all requests for *.SHTML are handled by the com.borland.jbuilder.web-
serverglue.shtml.ShtmlLoaderEcho servlet, and the webserverglue.jar file is added to
the WAR files WEB-INF/lib directory. The Deployment Descriptor for the Web appli-
cation is also modified so that all requests for documents ending in .shtml will be
mapped to the ShtmlLoaderEcho servlet as follows:

<servlet>

<servlet-name>servlet-shtml</servlet-name>

<servlet-

class>com.borland.jbuilder.webserverglue.shtml.ShtmlLoaderEcho</servlet-

class>

</servlet>

<servlet-mapping>

<servlet-name>servlet-shtml</servlet-name>

<url-pattern>*.shtml</url-pattern>

</servlet-mapping>

Only selecting the doGet() method along with the <servlet> tag will produce the
desired result of inserting dynamic content within an HTML document. Unlike using
<applet> tags, which will execute Java code within the browser, this technique does
not allow the developer to execute a servlet’s Java code within a Web browser. The
resulting HTML code includes the following:

<servlet

codebase=””

code=”com.wiley.mastering.jbuilder.FirstServlet.class”

>

<param name=”name1” value=”value1” />

<param name=”name2” value=”value2” />

<param name=”name3” value=”value3” />

</servlet>

Web Enablement with Servlets 355

Selecting the doPost() method removes the option of generating a <Servlet> tag.
Instead, the SHTML page generated will include a <form> tag that will not evoke the
servlet until the Submit button is clicked. This will evoke the implemented doPost()
method:

<form action=”/firstservlet” method=”post”>

<p>param <input type=”text” name=”name1” value=”value1”></p>

<p>param <input type=”text” name=”name2” value=”value2”></p>

<p>param <input type=”text” name=”name3” value=”value3”></p>

<p>press Submit to post to servlet ThirdServlet</p>

<p><input type=”submit” name=”Submit” value=”Submit”>

<input type=”reset” value=”Reset”></p>

</form>

If you opt to select Generate link instead, the outcome is not quite the same. The
resulting HTML page will contain a <a href> tag, which will not evoke the servlet until
the link is clicked. This will evoke the implemented doGet() method:

Click here to call Servlet: FirstServlet

URL Mapping
Rather than specify the servlet’s fully qualified class name in the URI, the Web con-
tainer maintains a list of names for the servlets in each Web archive. The Deployment
Descriptor contains the mapping between the servlet class and the URL mapping. Each
servlet will be managed by a particular name (see Figure 16.4), and each servlet’s name
will map to a specified URL. This value can be modified in the Web application’s
Deployment Descriptor’s properties for servlets as follows:

<servlet>

<servlet-name>firstservlet</servlet-name>

<servlet-class>com.wiley.mastering.jbuilder.FirstServlet</servlet-

class>

</servlet>

<servlet-mapping>

<servlet-name>firstservlet</servlet-name>

<url-pattern>/firstservlet</url-pattern>

</servlet-mapping>

356 Chapter 16

Figure 16.4 Enter webapp details.

Accessing a Request’s Incoming Parameters
As noted in the GET and POST request methods, data can be sent from the client to the
server. This data is part of the Request object’s attributes and is accessible using the
getParameter(), getParameterNames(), getParameterValues(), and getParameterMap()
methods. If you already know that certain data will be sent to the servlet for process-
ing, you can specify the name and data type of that information here (see Figure 16.5).
The name entered is to be used in the <FORM> element (such as an input tag, not the
form tag itself) of the HTML file or in the GET query string. JBuilder will use this value
when generating the <SERVLET> tag of the SHTML file. JBuilder does not generate a
sample HTML file with <FORM> tags for servlets:

<servlet

codebase=””

code=”com.wiley.mastering.jbuilder.FirstServlet.class”

>

<param name=”name1” value=”value1” />

</servlet>

This setting will be used as the pass-in value for accessing the information using the
request object’s getParameter() method. If the value is not set, a default value can be
assigned using the following code:

//some comment

String variable1 = request.getParameter(“name1”);

if (variable1 == null) {

variable1 = “value1”;

}

Web Enablement with Servlets 357

Figure 16.5 Enter servlet request parameters.

Runtime configurations are used to set up and run, debug, and optimize the Java
applications created in JBuilder. The Standard Servlet wizard can automatically create
a Runtime configuration for the Standard Servlet being created (see Figure 16.6). When
this option is selected, a server will be selected as the run type, and the server will be
set to the server that was selected for the project.

Modifying a Standard Servlet’s Deployment
Descriptor Properties
The Standard Servlet wizard makes all of the initial entries into the Deployment
Descriptor that are necessary for a given servlet. Additional modifications can be made
using the Deployment Descriptor editor for servlets (see Figure 16.7).

Figure 16.6 Define servlet configuration.

358 Chapter 16

Figure 16.7 Deployment Descriptor servlet configuration.

To access the Deployment Descriptor editor, double-click on the Web application’s
web.xml file located under the Deployment Descriptors node in the Project pane. In the
Content pane you should notice servlets with a plus sign to the left. Under Servlets,
there should be an entry for each Standard Servlet that was added to this Web applica-
tion using the Servlet wizard. If you click on the Servlets node in the Content pane, you
will see a listing of all URL mappings of servlets for the Web application. You can
change the URL mapping on this window, but to change the servlet name you must
right-mouse click on the Servlet name in the Content pane and choose Rename. You
can edit the following on the Servlet view of the Deployment Descriptor:

Large icon, small icon, display name, and description. Administration tools
and deployment tools can best utilize these self-explanatory fields, much as
how JBuilder utilizes similar fields on the Designers Palette for JavaBeans.

Servlet class. This is the fully qualified class name of the servlet. This is the
servlet class that the Web container will create when the predefined URL pattern
is requested. Each named servlet in the Deployment Descriptor has a predefined
URL pattern.

JSP file. A Web container can maintain a URL mapping for either a servlet or a
JSP. If this node were created for a JSP page, the name of the JSP page would be
entered here.

Load priority. If a positive integer value is set, the Web container should create
and initialize the servlet at startup rather than when a servlet is first accessed.
The startup order will be determined by the value entered. Servlets with lower
values will load first. If two servlets have the exact same value, it is at the Web
Container’s discretion which servlet is loaded first.

Run as. When using security roles, a given servlet can run with the authorities of
a given role.

Web Enablement with Servlets 359

The Servlet Lifecycle
The Web container manages the lifecycle of the servlet. It first creates an instance of the
Servlet class and then calls that servlet’s init() method. Whenever a request matching
the mapped URL for the servlet is received by the Web container, the servlet’s service()
method is called. The service() method is rarely overridden because it is the inherited
HttpServlet’s implementation that evaluates the header and determines which request
method to evoke. When the Web container is shutting down, the servlet’s destroy()
method is called. You can edit the following on the Servlet view of the Deployment
Descriptor:

Init parameters. A parameter list can be created when the servlet is initialized.
This list of keys and associated values can be accessed at runtime by calling
this.getInitParameter(), passing in the string name as a key to retrieve the speci-
fied value. Although these parameters can be accessed at any time, it is custom-
ary to use them in the init() method of the servlet.

Security role refs. If the code in the servlet is already utilizing a role that is not
the same name as the role defined in the Deployment Descriptor, this grid can
be used to maintain a mapping of servlet role names to Descriptor role names.

Project Properties and Required Libraries
Depending on which server has been selected in the Project Properties dialog prior to
using the Servlet wizard, there will be an addition to your project’s Required Libraries.

By right-mouse clicking on the Standard Servlet in the Project pane, you can access
properties specific to servlets. The Web Run properties will enable right-mouse click
access to the Web Run, Web Debug, and Web Optimize functions from the Project pane.
This setting should be automatically set for all servlets that were created using the
Servlet wizard.

Creating a Filter Servlet

Filtering allows the developer to review and even change the contents of the Request
object coming in, as well as the Response object before it goes back out. Filters do not typ-
ically handle an incoming request and directly respond as a Standard Servlet does. A Fil-
ter Servlet is a type of servlet that implements the javax.servlet.Filter() interface that
requires an implementation of a doFilter() method. For registered filters within the Web
application’s Deployment Descriptor, the Web container will call the Filter Servlet’s
doFilter() method rather than a Standard Servlet’s service() method. Similar to the inher-
ited implementation of the HttpServlet’s service() method, Filter Servlets have access to
the Request and Response objects. The generated doFilter() method will look like this:

public void doFilter(ServletRequest request, ServletResponse response,

FilterChain filterChain) {

try {

filterChain.doFilter(request, response);

}

catch(ServletException sx) {

360 Chapter 16

filterConfig.getServletContext().log(sx.getMessage());

}

catch(IOException iox) {

filterConfig.getServletContext().log(iox.getMessage());

}

}

To create a new Filter Servlet in JBuilder, open the Object Gallery, go to the Web tab,
select the Servlet icon, and click the OK button (see Figure 16.8). The Filter Servlet wiz-
ard is similar to the Standard Servlet wizard. Because Filter Servlets do not process
requests like Standard Servlets, not all the information necessary in the Standard
Servlet is required.

The main difference between the Standard and Filter Servlet lies in both how the
URL mapping is defined, as well as how it is used. The URL mapping for Standard
Servlets is defined on the Enter webapp details page, whereas Filter Servlets use the
URL pattern that the Web container defines for all incoming requests that fit a certain
pattern. Filter Servlets were not designed to be the only servlet evoked for an incoming
request. They were designed to filter through incoming requests, perform some small
task, and hand processing over to a Standard Servlet or Java Server Page for final pro-
cessing. You can also create a Filter Servlet that handles all incoming requests for a par-
ticular named servlet already in the Web application.

Like Standard Servlets, rather than specify the Filter Servlet’s fully qualified class
name in the URI, the Web container maintains a list of names for the servlets in each
Web archive. The Deployment Descriptor defines this list. Each servlet will be man-
aged by a particular name, and each servlet’s name will map to a specified URL. This
name value can be modified in the Web application’s Deployment Descriptor’s prop-
erties for servlets. Each Filter Servlet can be registered to filter all requests to a URL pat-
tern or to filter all requests to a specific servlet:

<filter>

<filter-name>firstfilterservlet</filter-name>

<filter-class>com.wiley.mastering.jbuilder.firstfilterservlet</filter-

class>

</filter>

Figure 16.8 Enter webapp details.

Web Enablement with Servlets 361

Filter Servlets that are to be registered to filter all requests to any URL pattern are
specified here. For all requests that match this particular URL pattern, the Web container
will evoke the registered Filter Servlet’s doFilter() method:

<filter-mapping>

<filter-name>firstfilterservlet</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

Rather than specify a particular URL pattern, a Filter Servlet can be registered to
filter all requests to a specific servlet. The servlet’s name is used rather than its class.
The Web container will first notice that the incoming URI is for the named servlet and
then realize that a Filter Servlet has been registered to filter all requests. Rather than
evoke the named servlet’s service() method, the Filter Servlet’s doFilter() method will
be evoked:

<filter-mapping>

<filter-name>firstfilterservlet</filter-name>

<servlet-name>firstservlet</servlet-name>

</filter-mapping>

Filter Servlet’s Deployment Descriptor Properties
Like the Standard Servlet, there are settings in the Deployment Descriptor for Filter
Servlets that are similar to those of the Standard Servlet. On the filter mappings, you
can right-mouse click on the Filters node in the WebApp Deployment Descriptor to
either add or remove a filter. You add filters in the same manner as you add servlets.
When you add a new filter, you will be prompted for a name. Once it is added, you can
move filters up and down in the list. The order does make a difference; it is the order
in which the filters will be applied.

Double-clicking on a filter name in the Content pane will open the individual Filter
Servlet’s properties (see Figure 16.9) for editing the following information:

Large icon, small icon, display name, and description. Administration tools and
deployment tools can best utilize these self-explanatory fields, similar to how
JBuilder utilizes similar fields on the Designers Palette for JavaBeans.

Filter class. Like the Standard Servlet, this is the fully qualified class name of the
Filter Servlet. This is the Filter Servlet class that the Web container will create
when the predefined URL pattern or mapped servlet is requested. Each named
Filter Servlet in the Deployment Descriptor has a predefined URL pattern or
mapped servlet.

Init parameters. A parameter list can be created when the servlet is initialized.
This list of keys and associated values can be accessed at runtime by calling
this.getInitParameter(), passing in the string name as a key to retrieve the speci-
fied value. Although these parameters can be accessed at any time, it is custom-
ary to use them in the init() method of the servlet.

362 Chapter 16

Figure 16.9 Filter servlet Deployment Descriptor.

Using DataSources

DataSources are part of the Java standard extensions of the Java Database Connectiv-
ity (JDBC) technology. It is recommended that developers work with DataSources pro-
vided by the Web container rather than establish a JDBC Connection by itself. Typically
DataSources are bound to some sort of name server and accessed via the Java Naming
and Directory Interface (JNDI). An initial context to the JNDI service is established, and
the DataSource is located using the standard lookup() method as follows:

javax.naming.Context initCtx = new javax.naming.InitialContext();

javax.naming.Context envCtx =

(javax.naming.Context)initCtx.lookup(“java:comp/env”);

javax.sql.DataSource ds =

javax.sql.DataSource)envCtx.lookup(“jdbc/EmployeeDB”);

java.sql.Connection conn = ds.getConnection();

Deployment Descriptor
The string name that is used in the lookup() method, “jdbc/EmployeeDB”, must be
defined in the Deployment Descriptor so that the Web container knows about
the resource that the components it is responsible for managing will ask for. All the
resources that any component within the Web container will need should be defined
within the Deployment Descriptor, not just DataSources.

Resource Manager Connection Factory References

Each Web application node in the Project pane has a Deployment Descriptors folder;
double-click on the web.xml file under this folder to bring up the Deployment Descrip-
tor editor. In the Content pane, locate the Resource Manager Connection Factory
References (see Figure 16.10); this is where you will add the necessary information

Web Enablement with Servlets 363

about the DataSource that you want to use from within your Web application. The
XML that is added to the Deployment Descriptor will be as follows:

<resource-ref>

<res-ref-name>jdbc/EmployeeDB</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

You can enter this information using the deployment descriptor editor as follows:

Resource name. This is the name that will be used as the JNDI lookup() sting.
In the preceding example code, this would be jdbc/EmployeeDB.

Type. Set the type to javax.sql.DataSource, and you should see that the resource
name is automatically modified to begin with a jdbc/. You will still need to
modify the resource name to match the name used in the JNDI lookup() code.

Authentication. This sets the authentication to either application if you wish
to perform the resource sign-on programmatically or sets it to container if the
sign-on is to be based on the supplied mapping information.

Sharing scope. The resource factory can either be shareable or unshareable.

Description. A description can be added to help distinguish similar resources.

Binding the DataSource to the Server’s Naming Service
Each application server will handle the binding of DataSources to the naming service
a little differently. Some application servers will expect that all DataSources be defined
globally as part of the server’s configuration; others will allow for DataSource defini-
tions to be deployed to a running container.

Figure 16.10 Resource Manager Connection Factory References.

364 Chapter 16

Tomcat DataSource Binding

When JBuilder runs an instance of the Tomcat 4.0 Web container, a new directory titled
./Tomcat will be created in the working directory of the project (by default, this will be
located in the root directory of the project). There will be a temporary directory created
called names ./conf. This directory will exist only when Tomcat is actually running. If
you look in this directly while Tomcat is running, you will notice a file named
server8080.xml. This is the server.xml file that is used. The goal is to modify this gen-
erated temporary file in order to add the necessary elements to create the DataSource
that the Deployment Descriptor has defined and that the Servlet code intends to access.
Examining the contents of this file, you will see the following:

<!--This file, generated by JBuilder, may be deleted and regenerated at

any time.-->

When you exit or shut down the running instance of Tomcat that created this file, the
file will be deleted. To prevent this from happening, you will need to delete the com-
ment that claims that the file is generated and may be deleted. You can also create a
server8080.xml file in the ./Tomcat/conf directory without running the server, and
JBuilder will use this file as well. If you do, it will most likely look something like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<Server debug=”0” port=”8081” shutdown=”SHUTDOWN”>

<Service name=”Tomcat-Standalone”>

<Connector acceptCount=”10”

className=”org.apache.catalina.connector.http.HttpConnector”

connectionTimeout=”60000” debug=”0” maxProcessors=”75” minProcessors=”5”

port=”8080”/>

<Engine debug=”0” defaultHost=”localhost” name=”Standalone”>

<Host

appBase=”C:\Borland\JBuilder8\jbproject\FirstProject\Tomcat\webapps”

debug=”0” name=”localhost” unpackWARs=”true”>

<Context debug=”0”

docBase=”C:\Borland\JBuilder8\jbproject\FirstProject\webapp”

path=”/webapp” reloadable=”true”

workDir=”C:\Borland\JBuilder8\jbproject\FirstProject\Tomcat\work\webapp”

>

<Resource name=”jdbc/EmployeeDB” auth=”Container”

type=”javax.sql.DataSource”/>

<ResourceParams name=”jdbc/EmployeeDB”>

<parameter><name>factory</name><value>org.apache.commons.dbcp.BasicDataS

ourceFactory</value></parameter>

<parameter><name>username</name><value>sample</value></parameter>

<parameter><name>password</name><value>sample</value></parameter>

<parameter><name>driverClassName</name><value>com.borland.datastore.jdbc

Web Enablement with Servlets 365

.DataStoreDriver</value></parameter>

<parameter><name>url</name><value>jdbc:borland:dsremote://localhost//Bor

land/JBuilder8/samples/JDataStore/datastores/employee.jds</value></param

eter>

</ResourceParams>

</Context>

</Host>

</Engine>

</Service>

</Server>

The edits that you make to this server8080.xml file will be global to all Web applica-
tions that are defined within the project. For Tomcat 4.1, a more modular approach was
adopted. Each Web application has its own server configuration file located in the
./Tomcat/webapps directory. This file is also generated automatically and will have
the same comment as the server8080.xml file. You can edit just this file to make the
resource available to only one Web application, rather than all Web applications. The
file you create will look like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<Context debug=”0”

docBase=”C:\Borland\JBuilder8\jbproject\FirstProject\webapp”

path=”/webapp” reloadable=”true”

workDir=”C:\Borland\JBuilder8\jbproject\FirstProject\Tomcat\work\webapp”

>

<Resource name=”jdbc/EmployeeDB” auth=”Container”

type=”javax.sql.DataSource”/>

<ResourceParams name=”jdbc/EmployeeDB”>

<parameter><name>factory</name><value>org.apache.commons.dbcp.BasicDataS

ourceFactory</value></parameter>

<parameter><name>username</name><value>sample</value></parameter>

<parameter><name>password</name><value>sample</value></parameter>

<parameter><name>driverClassName</name><value>com.borland.datastore.jdbc

.DataStoreDriver</value></parameter>

<parameter><name>url</name><value>jdbc:borland:dsremote://localhost//Bor

land/JBuilder8/samples/JDataStore/datastores/employee.jds</value></param

eter>

</ResourceParams>

</Context>

In both examples, the Jakarta Commons Database Connection Pool (DBCP) was
used. You will have to download and configure a library for the DBCP, which is depen-
dent on the Collections and Pool Jakarta subprojects. All three libraries will need to be
added to the Web container’s classpath in the same manner as the JDBC driver is
added to the Web container’s classpath.

366 Chapter 16

Adding the JDBC Driver to the Web Container’s
Classpath
It is important first to ensure that a library has been created for the JDBC driver that
you want to use. You will also want to configure the enterprise settings located on the
Tools menu to add the JDBC driver to JBuilder’s classpath. This will ensure that
JBuilder can use the JDBC driver as well. If the JDBC drive is not defined as within one
of the Required Libraries of the project, JBuilder will not be able to add the JDBC dri-
ver to the server’s classpath. Each option to add the JDBC driver to the server’s class-
path will actually modify the classpath in very different ways. Depending on which
technique you employ, a different class loader may actually have access to the JDBC
driver. You may have to experiment with each technique if you experience problems
accessing and using the JDBC driver from within the Web application that you are
deploying.

Deploying the Driver in the WEB-INF/lib Directory

Required Libraries can be added to the Web archive’s WEB-INF/lib directory by mod-
ifying the dependencies of the Web application’s properteis (see Figure 16.11) The
WEB-INF/lib directory is the most portable solution. It is also the most limited solu-
tion. If multiple Web applications are deployed to the Web container, and all Web
applications will need to use the same JDBC driver, then each will need its own copy
of the JDBC driver in its own WEB-INF/lib directory. Web applications do not share
the resources located in their respective WEB-INF directories. When the WAR file is
created, the JDBC driver will be added. Depending on how many dependent libraries
are included in the Web application’s WAR file, the build process may take a while.
You may want to configure the Web application’s properties not to build the WAR file
each time the project is built. You may want to take exclusively manual control of when
the WAR file is actually constructed by setting the WAR’s build property to never.

Figure 16.11 Deploy libraries.

Web Enablement with Servlets 367

Making All Required Libraries of the Project Available on Run

The Runtime configuration can be set up to modify the classpath used to launch the
process that starts the server (see Figure 16.12). You can choose to make the output path
part of the server’s classpath, and you can also choose to make all the Required
Libraries of the project part of the server’s classpath. You cannot pick and choose
which dependent library you want to add to the server’s classpath; it is all or none. You
could notice the modified classpath used in the Message view the next time you run
the server.

Deploy JAR Files to Web Container

The Runtime configuration can also be set up to deploy various Required Libraries of
the project to the Libraries directory of the server (see Figure 16.13). Select the Libraries
node located under the server in the Runtime configuration that you use to launch the
server. If you are creating a new Runtime configuration, make sure that your run type
is set to server. You should see a listing of the Required Libraries of the project in the
list. Check the dependent libraries that you wish to deploy. These libraries will be
deployed each time you run this configuration.

Figure 16.12 Run Libraries.

368 Chapter 16

Figure 16.13 Deploy Libraries.

Summary

This chapter helped explain the core of dynamic, Web-based development in Java —
namely servlets. From a basic understanding on how browsers and servers communi-
cate to how that communication layer was objectified into Java classes, the servlet
specification was explained through the eyes of the tools and wizards of JBuilder. The
creation of Standard and Filter Servlets and the associated Deployment Descriptor
editors were discussed. When it comes to dynamic content, relational databases are
typically utilized to provide the data on which the dynamic content is based. Using
DataSources to establish connections to databases using a JDBC driver is a key skill to
master for all servlet developers. Leveraging three different techniques to modify the
Web container’s classpath is a critical component of getting DataSources to work the
way they should.

Web Enablement with Servlets 369

371

A typical servlet contains Java source code wrapped around blocks of HTML text.
Servlet developers work with the java.io.PrintWriter object to generate both the pri-
marily static as well as the dynamic portions of an HTML document. Web developers
quickly realize that the majority of characters that make up a single HTML document
remain the same each time the same URL is requested and that this primarily static
HTML content is the most volatile when it comes to the initial design of a Web site.
Unlike a servlet, a Java Server Page (JSP) is a file containing HTML or XML text with
tagged blocks of Java source code. The Web container will turn the JSP inside out to
create a servlet.

Once a JSP is converted into a servlet, it follows the same lifecycle within the Web
container as a regular servlet. As far as the JVM is concerned, it is just another Java
class. Similar to how the Web container handles an incoming request for a servlet, the
Web container also handles incoming requests for Java Server Pages. The main differ-
ence is that the Web container must first compile the Java Server Page into Java source
code and then compile the Java source code into Java class files. It is the manner in
which the JSP compiler turns the scripted mixture of HTML, XML, and Java into the
classes necessary to complete the task at hand. There are structured commands that
evoke a series of standard actions that instruct the JSP compiler to generate specific
blocks of Java code.

These structured commands, or tags, must follow the same syntactical format con-
straints that XML documents follow. Developers can also create their own collections,
or libraries, of tags to instruct the JSP compiler to work with predefined interfaces of
specialized Java classes called Tag Libraries. A standard set of these Tag Libraries

Moving from Basic Servlets to
Java Server Pages

C H A P T E R

17

called the Java Server Pages Standard Tag Library (JSTL) has been developed and can
now be considered part of the specification:

Java Server Pages Tags. Using Apache Software Foundation’s reference imple-
mentation for the JSP specification, this chapter opens with a discussion of the
basic concepts of what a JSP is and what it is capable of. Emphasis is placed on
understanding the relationship between JSPs and servlets and the realization
that they are very similar.

Creating a Java Server Page. Using the wizards, the steps involved with creating
a Java Server Page are outlined.

Tag Libraries. Controlling access to your JavaBean in a manner that allows Java
Server Page developers to focus more on the HTML than the Java code, Tag
Libraries provide a mechanism for creating custom tags. Creating a custom tag
library and adding it to a Web application will become a common practice for
many Java Server Page developers.

JSP Tags

A tag is an instruction that is passed from the developer or designer to the compiler or
rendering engine. In the case of an HTML document created by a user interface
designer, tags are used to instruct the Web browser how to operate or, more simply,
how to display images and text. For the Java Server Page developer, tags are used to
instruct the Java source code generator how to construct the resulting servlet’s source
code. The most basic of tags utilized by the Java Server Page developer simply instructs
the code generator to insert the following Java source code. More complex tags can be
used to perform a set of standard operations. Developers can also create their own Tag
Libraries and even use existing Tag Libraries developed by other developers.

Converting a Java Server Page into Java source code sounds easy. Just create a single
servlet with an implementation of a doGet() method, and stream the entire content into
one massive out.println() parameter. Actually, it is converted into a class that is an
implementation of the javax.servlet.jsp.HttpJspBase interface, an extension of the
servlet interface, and the method being evoked is actually the _jspService() method.

For the most basic of Java Server Pages, it is almost this easy, but there is, of course,
much more to it than just one big println() method call. In fact, you can embed Java
source code anywhere in the content of the Java Server Page using reserved tags that
the Web containers compiler understands. To begin, the most basic and common tags
for developing Java Server Pages are the open parenthesis followed by a percent sign.
Because this code will actually be within the scope of the HttpJspBase’s _ jspService ()
method, certain references to familiar classes are made available to the Java Server
Page developer. Besides the HttpServletRequest and the HttpServletResponse objects
that are used throughout basic servlet programming, two other implicit objects are
available to the Java Server Page developer: the PageContext and the JspWriter.

372 Chapter 17

Working with the JspWriter
The JspWriter is similar to the PrintWriter used in servlet programming. The local han-
dle to this object is defined as “out”. Java Server Page developers have access to this
object’s handle and can use it just as in servlet Programming, as demonstrated in the
following scriptlet:

<HTML>

<!-- This is a comment. -->

<%

out.println(“Hello World”);

%>

</HTML>

There is also a variation of this tag that will pass the String results of a command
directly to the JspWriter without having to use the println() method called the expres-
sion tag:

<HTML>

<%=

%>

<HTML>

Standard Actions of a Java Server Page
Beyond just adding blocks of Java code to an HTML or XML document for the JSP com-
piler to invert, there are also structured commands that instruct the JSP compiler to
generate specific blocks of Java code. The original premise here is to allow nonpro-
grammers to have a little bit of control of the classess within the Web container with-
out having to learn Java. These standard actions are also useful to the trained Java
programmer. The range of actions varies from creating instances of simple Java Beans
and accessing their properties, to passing control to other Java Server Pages and
servlets. The tags that make up the collection of standard actions are identified by the
jsp prefix.

Creating a Java Server Page

Unlike servlets, Java Server Pages do not actually have to contain any Java code. You
could actually take an existing HTML document and change its file extension to .jsp,
and you would have a Java Server Page. The Java Server Page wizard in JBuilder gen-
erates HTML code and adds a few tags specific to Java Server Pages, based on the
options selected. The wizard will also make any necessary edits to the Web applica-
tion’s Deployment Descriptor and create a Runtime configuration if desired. To create
a new Java Server Page in JBuilder, open the Object Gallery, go to the Web tab, select
the Java Server Page icon, and click the OK button.

Moving from Basic Servlets to Java Server Pages 373

Declare JSP and Components
The first step (see Figure 17.1) in the wizard allows the developer to choose with which
Web application this Java Server Page is to be associated, the file name, and which
additional components to create. Selecting additional components will add steps to the
process of creating a Java Server Page. Define which Web Application is to be used as
follows:

Web App. Like servlets, Java Server Pages are added to Web applications. The
major difference is that where a servlet’s Java source code is added to the Proj-
ect’s source path, the Java Server Page is added to a given Web application’s
root directory. If a Web application does not exist, a default Web application will
be created automatically and added to the project. If the JBuilder project has sev-
eral Web applications, you can select which Web application this Java Server
Page will be part of. Where servlets are placed in the project’s source directory,
Java Server Pages are placed in what is defined as the root directory of the Web
application.

Name. This will be the file name of the generated Java Server Page that will be
placed in the root directory of the Web application. It is not necessary to add the
.jsp file extension. In fact, the period is an illegal character for this edit box, and
you will not be able to proceed to the next step of the wizard if you try to enter
this file extension.

Generate sample bean. It is good practice to keep the amount of Java Source
Code in the Java Server Page to a minimum. Java Server Pages can easily access
the attributes and methods of other classes. To make accessing these classes eas-
ier, the Standard Action tag <jsp:useBean> is utilized to create a reference to the
class. The wizard can also create a new class just for this use. Selecting Generate
sample bean will add the necessary <jsp:useBean> Standard Action tag as well
as generate the Java source code for a new Java Bean that will also be added to
the project. The details will be added in an upcoming step. Selecting Generate
sample bean will either enable or disable access to the additional step. You do
not have to Generate sample bean in order to access additional classes from a
Java Server Page; an upcoming step, Enter additional beans, will also allow you
to select existing JavaBeans.

Generate error page. If an exception occurs during the processing of a Java
Server Page, you can designate a specific Java Server Page to handle the excep-
tion. The following will be included in the generated Java Server Page:

<%@ page errorPage=”FirstJavaServerPage_error.jsp” %>

374 Chapter 17

Figure 17.1 Declare JSP and components.

Edit JSP File Details
The second step (see Figure 17.2) controls the generation of the initial HTML code used
in the Java Server Page as follows:.

Background. The default is that no background color is set for the JSP, but you
can select the background color of the HTML of the generated Java Server Page.

<body bgcolor=”#ffffc0”>

Generate submit form. A self-serving form tag will be implemented in the
resulting HTML that is generated for the Java Server Page. A single input
value will be inserted into the HTML <FORM> as well as a Submit button.

<form method=”post”>

Enter new value : <input name=”sample”>

<input type=”submit” name=”Submit” value=”Submit”>

<input type=”reset” value=”Reset”>

Value of Bean property is :<jsp:getProperty name=”

firstJavaServerPageBeanId” property=”sample” />

</form>

Tag Libraries. Tag Libraries are collections of classes that are referred to as Tag
Handlers. This is similar to simply using Java Beans from within a Java Server
Page with one major exception; Tag Libraries can be utilized without writing
any Java code in the Java Server Page. The Tag Libraries that are available on
this step are all third-party Tag Libraries. In order to use Tag Libraries in a Java
Server Page, a Tag Library Directive is defined somewhere in the Java Server
Page. Selecting individual Tag Libraries in this step will generate the necessary
Tag Library Directive code in the Java Server Page being generated. The follow-
ing is an example of the Tag Library Directive for the JSTL core library:

<%@ taglib uri=”http://java.sun.com/jstl/c” prefix=”c” %>

Moving from Basic Servlets to Java Server Pages 375

376 Chapter 17

Figure 17.2 Edit JSP file details.

Edit Sample Bean Details
This step is accessible only if the Generate sample bean option is selected in the first
step of the wizard. This page is a watered-down version of the new Class wizard and
allows only the developer to select the most basic of options, including the following:

Sample bean’s Package. This is the name of the package that the sample bean
will reside. You can either create a new package by simply typing in the package,
clicking on the drop-down list box to select from a list of commonly chosen pack-
ages already used in the current project, or clicking on the ellipses (three periods)
and browsing to the package you want to use using the Package Browser.

package com.wiley.mastering.jbuilder;

Sample bean’s class name. This is the name of the class that the sample bean will
use. This will also be the name of the Java file because the bean class to be gen-
erated will be a public class.

public class FirstJavaServerPageBean {

Figure 17.3 Edit sample Bean details.

Generate header comments. Using the values defined in the project’s Class
JavaDoc Fields (located on the General tab of the Project Properties dialog),
selecting this option will generate a Comment tag at the beginning of the
sample bean’s source code.

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

Moving from Basic Servlets to Java Server Pages 377

HIDING JSPS IN THE WEB ARCHIVE’S WEB-INF DIRECTORY

It is actually possible to hide Java Server Pages from outside access by creating them
within the WEB-INF directory. The WEB-INF directory is not accessible from any outside
request. This means that only other Java Server Pages and servlets can access any content
located in the WEB-INF and its subdirectories. To create Java Server Pages in the WEB-INF
directory, be sure to add the directory location to the name of the Java Server Page being
created (WEB-INF/Jsp1.jsp). Only the Web container can assess files and resources
located in the WEB-INF directory. This means that no external request can directly access
any Java Server Page located in the WEB-INF directory. Typically, access is controlled by
other Java Server Pages using the <jsp:include> and <jsp:forward> Standard Action tags
or even from servlets that use the forward() and include() methods of the
RequestDispatcher. It is common practice to create a servlet that controls access to many
of the Java Server Pages in this manner. The following is an example on how this would
look within a servlet:

String path = “WEB-INF/Jsp1.jsp”;

RequestDispatcher requestDispatcher =

context.getRequestDispatcher(path);

RequestDispatcher.forward(request,response);

For JavaServer Pages, the <jsp:include> Standard Action tag will fetch the results of
requesting the contents identified by the associated page or file attribute. The page=
attribute will most likely be the URL of another Java Server Page, servlet, or some form of
static content. The contents of the result will be inserted at the location of the include.
Parameters can also be passed in using the <jsp:param> Standard Action tag.

Unlike the <jsp:include>, which will call an external resource and insert the resulting
contents, the <jsp:forward> Standard Action tag will actually pass control to the external
resource. If you decide to hide your Java Server Pages under the WEB-INF directory to
prevent accidental browsing, you can use the forward Standard Action tag to access these
hidden pages.

When using the <jsp:include> and <jsp:forward> Standard Action tags, you may want
to pass additional parameters to the forwarded or included URL. To do this, you would
use the <jsp:param> Standard Action tag. Each <jsp:param> will be accessible in the
same manner in which parameters from an HTML’s <form> and a URL’s Query String are
accessed.

<jsp:param name=”name” value=”value” />

* @author not attributable

* @version 1.0

*/

The <jsp:useBean> Standard Action tag will also be added to the Java Server
Page based on the entries entered in this step.

<jsp:useBean id=”firstJavaServerPageBeanId” scope=”session”

class=”com.wiley.mastering.jbuilder.FirstJavaServerPageBean” />

Enter Additional Beans
Beyond just generating a sample bean, existing Java Beans can also be utilized in a Java
Server Page. You can do the following:

Add/remove bean. If you already have a Java Bean in mind that you want to use
in the Java Server Page, you can select this bean and add it to the list of beans
to be accessible. When you select Add Bean, the Package Browser will display
where you can either browse to a class in the classpath or you can search for a
class in the classpath. Just as in adding a sample bean, the <jsp:useBean> tag
will be added to the generated Java Server Page. After adding a bean, you can
remove a bean from the list (Figure 17.4).

Class. This is the fully qualified package and class name of the Java Bean to be
referenced.

Id. In the Java Server Page’s Java code, a local reference or handle name will be
available to the developer. You can edit what name will be assigned to the refer-
ence by setting the id property of the <jsp:useBean> Standard Action tag.

Scope. The scope defines where and how the reference for the Java Bean will be
created.

Figure 17.4 Enter additional beans.

378 Chapter 17

When you enter additional beans in the Java Server Page wizard, the idea is to
abstract as much programming logic from the Java Server Page as possible. Most of the
more complex coding activity should take place in the scope of the added Java Beans.
The <jsp:useBean> Standard Action tag identifies a reference name that a particular
instance of a class will be referred to throughout the Java Server Page’s Java code. The
id= attribute is the name of the reference that is to be defined. This handle is accessible
by all Java code segments throughout the page. The scope= attribute can be set to page,
request, session, or application. This attribute will determine the lifetime of the object
instance. None of the Java Beans identified in the <jsp:useBean> Standard Action tag
will actually be a member of the generated servlet class. If you examine the generated
Java source code, you will notice that it is the PageContext that will manage all
instances of these Java Beans. Setting the scope= to page will make the class instance
available:

<jsp:useBean id=”bean0” scope=”page”

class=”com.wiley.mastering.jbuilder.JavaBean0” />

pageContext.getAttribute(“bean0”,PageContext.PAGE_SCOPE);

<jsp:useBean id=”bean1” scope=”application”

class=”com.wiley.mastering.jbuilder.JavaBean1” />

pageContext.getAttribute(“bean1”,PageContext.APPLICATION_SCOPE);

<jsp:useBean id=”bean2” scope=”session”

class=”com.wiley.mastering.jbuilder.JavaBean2” />

pageContext.getAttribute(“bean2”,PageContext.SESSION_SCOPE);

<jsp:useBean id=”bean3” scope=”request”

class=”com.wiley.mastering.jbuilder.JavaBean3” />

pageContext.getAttribute(“bean3”,PageContext.REQUEST_SCOPE);

The <jsp:setProperty> Standard Action tag is used in conjunction with the id= prop-
erty set in the <jsp:useBean> Standard Action tag. Assuming that the bean identified in
the <jsp:useBean> declaration is, in fact, a true JavaBean, there will be independent
getter and setter methods for each of the private data members of the class. A quick
way of accessing these getter and setter methods is through the use of the <jsp:set-
Property> and <jsp:getProperty> Standard Action tags. The <jsp:setProperty> will call
the setter method for the property= being identified, passing in the specified value= as
the parameter:

<jsp:setProperty name=”bean0” property=”sample” value=”value1”/>

Rather than code a value, it is also customary to pass in the value of one of the
incoming parameter values that are typically defined in a <form> of a HTTP POST or
in the query string of a HTTP GET:

<form method=”post”>

<input name=”param1”>

<jsp:setProperty name=”bean1” property=”sample” param=”param1”/>

</form>

Moving from Basic Servlets to Java Server Pages 379

If the names of all the incoming parameters exactly match the properties of the Java
Bean identified, an asterisk “*” can be used to set all the properties of the Java Bean
using the values of all the matching parameter values. The Web container will actually
generate the necessary servlet code to iterate through the parameters and evoke the
same named property of the Java Bean:

<jsp:setProperty name=”bean2” property=”*”/>

The <jsp:getProperty> Standard Action tag is also used in conjunction with the id=
property set in the <jsp:useBean> Standard Action tag. The <jsp:getProperty> will call
the getter method and will retrieve the value of the property with the following code:

<jsp:getProperty name=”bean3” property=”sample” />

Edit Error Page Details
Only accessible if the Generate error page option is selected in the first step, an addi-
tional HTML document will be generated that will be used as the result if an exception
occurs while processing the request for the generated Java Server Page. The Error Page
Details (Figure 17.5) can be input as follows:

Error page’s name. This will be the name of the Java Server Page generated as
the error page. The first selection in Step 1 enabled this accessibility of this step.
When the Java Server Page is generated, the appropriate Error Page tag will be
placed in the beginning of the Java Server Page. Error pages are not static HTML
pages; rather, they are also Java Server Pages.

<%@ page isErrorPage=”true” %>

<html>

<body>

<h1>Error page FirstJavaServerPage</h1>

An error occured in the bean. Error Message is: <%=

exception.getMessage() %>

Stack Trace is : <pre><%

java.io.CharArrayWriter cw = new java.io.CharArrayWriter();

java.io.PrintWriter pw = new java.io.PrintWriter(cw,true);

exception.printStackTrace(pw);

out.println(cw.toString());

%></pre>

</body>

</html>

Error page’s background. The default is that no background color is set for the
error page, but you can select the background color of the HTML of the gener-
ated error page.

<body bgcolor=”#ffffc0”>

380 Chapter 17

Figure 17.5 Edit error page details.

Define JSP Configuration
Runtime configurations are useful when running, debugging, or optimizing a given
application’s entry point (Figure 17.6). They are used to set up and run, debug, and
optimize the Java applications created in JBuilder. The Java Server Page wizard can
automatically create a Runtime configuration for the Java Server Page being created.

Tag Libraries

Standard Actions do have some advantages over Java Server Pages, but everything
that a Web application developer wants to do is not defined in such a standard set of
actions. Each developer will most likely want to define his or her own set of tags to
interact with. For this purpose, the Java Server Page specification has defined what is
referred to as Tag Libraries.

Figure 17.6 Define JSP configuration.

Moving from Basic Servlets to Java Server Pages 381

With Tag Libraries, developers can pass in information to a specific Java Bean’s
properties and evoke code. By design, these custom Tag Libraries will have access to
the same Response, Request, and Context objects that servlets and Java Server Pages
have access to. Java Beans that are to be used as Custom Tag Libraries are also called
Tag Handlers. These Tag Handlers will be referenced in the Java Server Page. There are
two methods of creating Tag Handlers: implementing one of the Tag Handler inter-
faces and implementing an extension of one of the helper classes.

Tag Handlers: Implement the Interface
Use the New Class wizard to create a new Java object and the New Test Case wizard to
test the properties that were added using BeansExpress. Implementing one of the
javax.servlet.jsp.tagext interfaces — Tag, IterationTag, BodyTag, or TryCatchFinally —
makes these classes accessible to Java Server Pages as Tag Handlers. When using the
Implement Interface wizard in this manner, the task of implementing the logic that
goes into creating one of these interfaces rests entirely on the shoulders of the Tag Han-
dler developer.

package com.wiley.mastering.jbuilder;

import javax.servlet.jsp.PageContext;

import javax.servlet.jsp.tagext.Tag;

import javax.servlet.jsp.JspException;

public class FirstTagInterface extends FirstJavaBean implements Tag {

public void setPageContext(PageContext pc) {

/**@todo Implement this javax.servlet.jsp.tagext.Tag method*/

throw new java.lang.UnsupportedOperationException(“Method

setPageContext() not yet implemented.”);

}

public void setParent(Tag t) {

/**@todo Implement this javax.servlet.jsp.tagext.Tag method*/

throw new java.lang.UnsupportedOperationException(“Method

setParent() not yet implemented.”);

}

public Tag getParent() {

/**@todo Implement this javax.servlet.jsp.tagext.Tag method*/

throw new java.lang.UnsupportedOperationException(“Method

getParent() not yet implemented.”);

}

public int doStartTag() throws JspException {

/**@todo Implement this javax.servlet.jsp.tagext.Tag method*/

throw new java.lang.UnsupportedOperationException(“Method

doStartTag() not yet implemented.”);

}

public int doEndTag() throws JspException {

/**@todo Implement this javax.servlet.jsp.tagext.Tag method*/

382 Chapter 17

throw new java.lang.UnsupportedOperationException(“Method doEndTag()

not yet implemented.”);

}

public void release() {

/**@todo Implement this javax.servlet.jsp.tagext.Tag method*/

throw new java.lang.UnsupportedOperationException(“Method release()

not yet implemented.”);

}

}

Tag Handlers: Extending the Support Class
If you already have a tested Java Bean that is being utilized by other classes, it might be
best to extend one of the support classes and use delegation to access the existing prop-
erties and business functionality. The two dummy classes in the javax.servlet.jsp.tagext
package that were created for this purpose are the TagSupport and BodyTagSupport
support classes. These classes have already implemented the required methods of the
IterationTag and BodyTag interfaces. All that is left for the developer is to choose which
inherited methods to override and to implement the necessary delegation code. Use
the Class wizard (see Figure 17.7) from the Object Gallery to extend the TagSupport
class and generate the following code:

package com.wiley.mastering.jbuilder;

import java.io.*;

import javax.servlet.jsp.tagext.*;

public class FirstTagExtension

extends TagSupport {

FirstJavaBean firstJavaBean1 = new FirstJavaBean();

public FirstTagExtension() {

try {

jbInit();

} catch (Exception e) {

e.printStackTrace();

}

}

private void jbInit() throws Exception {

}

public String getFirstProperty() {

return firstJavaBean1.getFirstProperty();

}

public void setFirstProperty(String firstProperty) {

Moving from Basic Servlets to Java Server Pages 383

firstJavaBean1.setFirstProperty(firstProperty);

}

public int doStartTag() throws javax.servlet.jsp.JspException {

javax.servlet.jsp.JspWriter out = this.pageContext.getOut();

try {

out.println(“Value of FirstProperty is: “ +

firstJavaBean1.getFirstProperty());

} catch (IOException ex) {}

return javax.servlet.jsp.tagext.Tag.SKIP_BODY;

}

}

Choosing which method to override depends greatly on what you what to accom-
plish. The doStartTag(), doAfterBody(), and doEndTag() methods are a few options
available. Using the Override Method wizard (see Figure 17.8) to select the appropri-
ate method to override; the next step would be to implement the logic as follows:

public int doStartTag() throws javax.servlet.jsp.JspException {

/**@todo Implement this javax.servlet.jsp.tagext.Tag abstract

method*/

throw new java.lang.UnsupportedOperationException(“Method

doStartTag() not yet implemented.”);

}

Figure 17.7 Extend TagSupport class.

384 Chapter 17

Figure 17.8 Override doStartTag() method.

In the scope of the class that extends TagSupport, the PageContext is available.
Through the PageContext attribute, the JspWrite is accessible, as well as the Servlet-
Request, the ServletResponse, and the HTTPSession classes. Basically, the doStartTag()
method can act as if it were a local method of the Java Server Page itself.

public int doStartTag() throws javax.servlet.jsp.JspException {

javax.servlet.jsp.JspWriter out = this.pageContext.getOut();

try {

out.println(“Value of FirstProperty is: “ +

firstJavaBean1.getFirstProperty());

} catch (IOException ex) {}

return javax.servlet.jsp.tagext.Tag.SKIP_BODY;

}

Tag Library Descriptor: Creation and Validation
Depending on whether the Tag Library that you have created is to be utilized only by
the current project you are working with or if multiple existing projects are to use this
Tag Library, the location of the Tag Library Descriptor will change. If this is to be the
only Web application that is to use the Tag Library, then create the Tag Library Descrip-
tor file under the Web application’s WEB-INF directory. When the Web archive is gen-
erated, all Tag Library Descriptors will be added to the WEB-INF directory.

On the other hand, if this Tag Library is to be used by other projects and perhaps
even other developers, then you may want to consider creating a Java Archive using
the Archive Builder. In this case, the Tag Library Descriptor file must be created under
the source directory in a subdirectory of the root of the source directory titled META-
INF and end in the .tld file extension.

Moving from Basic Servlets to Java Server Pages 385

Create Tag Library Descriptor File for Basic Archives

Select “Add Files/Packages to Project” from the toolbar or the Project menu, or by right-
mouse clicking on the Project node in the Project pane. If you are creating an archive
for this Tag Library, be sure to add the Tag Library Descriptors to the META-INF direc-
tory of the root of the project’s source directory. The Archive Builder will look in the
project’s source path for additional content.

To add the Tag Library’s Tag Library Descriptor to the META-INF directory of the
Java Archive, you must first create a META-INF directory in the project’s source path.
You will have to create this directory manually, using the New folder toolbar button
located in the Add Files or Packages to Project dialog box. Once this is created, you can
then add the Tag Library Descriptor to this newly created META-INF directory. When
you create the archive, be sure to add this file specifically to the content of the basic
archive you created.

Create Tag Library Descriptor File for Web Applications

If you are adding the Tag Library Descriptor file to the Web application’s WEB-INF
Directory, no additional directory needs to be created. Add the Tag Library Descriptor
file directly to the WEB-INF directory that already exists under the root directory of the
Web application (see Figure 17.9). You will need to modify the Directory properties of
the Web application to include regular content in WEB-INF and subdirectories. If you
do not do this, the Tag Library Descriptor will not be added to the WEB-INF directory
of the generated Web archive when you build the Web application.

Edit Tag Library Descriptor

There are three main parts to a Tag Library Descriptor file:

■■ The header, which contains information pertaining to the type and format
of the XML document itself using the <?xml/>, <!NOTATION>, and
<!DOCTYPE> elements

■■ The root element <taglib/>, which defines the Tag Library as a whole

■■ The individual <tag/> elements, which define the implemented class as well
as the accessible attributes of each Tag Handler

Making sure that the header is defined properly will ensure that the validation of the
grammatical content is possible as follows:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!NOTATION WEB-JSPTAGLIB.1_2 PUBLIC–-//Sun Microsystems, Inc.//DTD

JSP Tag Library 1.2//ENî>

<!DOCTYPE taglib

PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”

“http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_2.dtd”>

386 Chapter 17

Figure 17.9 Add file to project.

Taglibrary

Looking at the DTD, the Tag Library itself primarily defines versioning information
and a unique short name for the library itself:

<!ELEMENT taglib (tlib-version, jsp-version, short-name, uri?, display-

name?,small-icon?, large-icon?, description?, validator?, listener*,

tag+) >

Additional information can be defined such as the library’s URI. All options for the
<taglib/> root element are defined in detail in the comments of Java Server Page Tag
Library Descriptor Document Type Definition file. For this example the following will
suffice:

<taglib>

<tlibversion>1.0</tlibversion>

<jsp-version>1.2</jsp-version>

<short-name>firsttaglibrary</short-name>

</taglib>

Tag

Once the Tag Library Descriptor has been created, adding individual entries for each
Tag Handler is next. Each Tag Handler will require a separate <tag/> element within
the Tag Library Descriptor’s <taglib/> tag. The definition for the tag is as follows:

<!ELEMENT tag (name, tag-class, tei-class?, body-content?, display-

name?, small-icon?, large-icon?, description?, variable*, attribute*,

example?) >

Moving from Basic Servlets to Java Server Pages 387

This is used to associate the implementing class with a name. The required elements
of an individual <tag/> element are the name of the tag and the full class name of the
Tag Handler.

Add tagclass to tag using the following code:

<tag>

<name>firsttag</name>

<tagclass>com.wiley.mastering.jbuilder.FirstTagExtension</tagclass>

</tag>

Attribute

Within each <tag/>, there should be as many <attribute/> tags as there are properties
in the implementing Tag Handler’s class. The definition for the tag is as follows:

<!ELEMENT attribute (name, required? , rtexprvalue?, type?,

description?) >

Each getter/setter pairing needs only one <attribute/> tag. The only required ele-
ment of the <attribute/> element is the canonical name of the individual property that
is implemented on the Tag Handler, which can be generated using the following code:

<attribute>

<name>FirstProperty</name>

</attribute>

Using Compound Code Templates

Code templates can be set up and used to accelerate the development of Tag Library
Descriptors. Through the use of a series of broken code templates, a more complex task
can be accomplished without having to move the cursor around. Using the pipe “|”
character in a given code template, the cursor’s position at the completion of the code
template can be controlled. In this manner, creating unfinished or incomplete code for
the initial steps in a compound code template is necessary. To keep things simple and
streamlined, it is often necessary to uniquely identify a given code template in three or
four characters, using the description to help jog the memory. Once all code templates
in a compound code template series have been completed, the code segment should be
valid.

Add a TLDLibrary code template as follows:

<taglib>

<tlibversion>1.0</tlibversion>

<jsp-version>1.2</jsp-version>

<short-name>|

</taglib>

388 Chapter 17

Add a TLDName code template as follows:

</short-name>

<tag>

<name>

</tag>

Add a TLDClass code template as follows:

</name>

<tagclass>|</tagclass>

Validate the Tag Library Descriptor

Regardless of which methods are used to create the Tag Handler and the Tag Library
Descriptor, you can validate the Tag Library Descriptor file because it is an XML docu-
ment. You can check this XML document to see whether it is well formed and to see
whether it is grammatically valid. If there are syntactical errors in the Tag Library
Descriptor, an Error folder will appear in the Structure pane listing all syntactical
errors in the document. If, for instance, the first <taglib> tag was actually mistyped as
<mytaglib>, you may notice a syntactical error listed in the Structure pane (see Figure
17.10), stating that the element type “mytaglib” must be terminated by the matching
end tag “</mytaglib>”.

To validate the Tag Library Descriptor file, you must have access to the Java Server
Page Tag Library Descriptor Document Type Definition file (DTD) that is identified in
the DOCTYPE of the Tag Library Descriptor. If you are connected to the Internet (or if
you have a local copy of the DTD file on your host machine or local network), you can
validate the format of the Tag Library Descriptor file you created by right-mouse click-
ing on the file in the Project pane and selecting Validate. If there are any errors, they
will be displayed in the Message view (see Figure 17.11).

This will check to see whether the grammar of the tag structure that was utilized
conforms to the specified DTD. When migrating from version 1.1 of the Java Server
Page Tag Library Descriptor Document Type Definition to version 1.2, you will mainly
notice that many of the tags have introduced a hyphen between words.

If you are not connected to the Internet, or if your Internet connection is quite slow,
you could always point the DOCTYPE of the Tag Library:

<!DOCTYPE taglib

PUBLIC “-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN”

“file:///JBuilder/extras/BorlandXML/example/j2ee/dtd/web-

jsptaglibrary_1_2.dtd”>

Figure 17.10 Well-formed XML error.

Moving from Basic Servlets to Java Server Pages 389

Figure 17.11 Gramatical XML error.

Packaging Tag Libraries in Basic Archives

The classes that make up a Tag Library do not have to reside in the WEB-INF/classes
directory with their Tag Library Descriptor files in the WEB-INF directory. Rather, Tag
Libraries can also be packaged into a single Java Archive and deployed in the WEB-
INF/lib directory instead. When packaging Tag Libraries, you must also be sure to
place the Tag Library Descriptor in the Java Archive’s META-INF directory. Web con-
tainers will look in the META-INF directory of the Java Archives (see Figure 17.12)
deployed in their respective WEB-INF/lib directories and make the Tag Libraries
available to all Java Server Pages in that particular Web application.

Modifying the Web Application’s Deployment Descriptor

If you have added the Tag Library Descriptor to the Web applications WEB-INF direc-
tory (see Figure 17.13), you will also have to modify the web.xml Deployment Descrip-
tor file of the Web application. A map needs to be created in the Web applications
Deployment Descriptor.

Figure 17.12 Java Archive’s META-INF directory content.

390 Chapter 17

Figure 17.13 Web archive’s WEB-INF directory content.

Tag Library Directive: Accessing Custom Tag Libraries
from the Java Server Page
Java Server Pages know which Tag Libraries to communicate via Tag Library Direc-
tives. The Tag Library Directive is the part of the Java Server Page that establishes the
tag prefix that will be used throughout the Java Server Page for which a particular Tag
Library will be used. These directives are very similar to the <jsp:useBean> Standard
Action tag also used by Java Server Pages. Only two properties, uri and prefix, need to
be defined. The uri= property of the Tag Library Directive points to the definition in the
Tag Library Descriptor or is a redirect to the web.xml file that contains the real URI to
the Tag Library Descriptor or jar file. The prefix= property is used as a sort of local refer-
ence for the Java Server Page to use when accessing the various tags of the Tag Library.

<%@ taglib uri=”/FirstUri” prefix=”firstPrefix” %>

Java Server Page Tag Library Compilation Errors
In the Web application, you can compile the Java Server Pages prior to deploying the
Web archive to the Web container. This is particularly useful when working with Tag
Libraries. Some Java Server Page compilation errors are specific to working with
Tag Libraries. Not much can go wrong when compiling Java Server Pages that use Tag
Libraries. The error is usually the URI, Tag Library Descriptor location, Tag Handler
class name, or attribute name that was typed incorrectly in the Web applications
Deployment Descriptor, the Tag Library Descriptor, or the Java Server Page itself. Deci-
phering the Java Server Page compilation error is usually a matter of tracking down
where the erroneous setting is. Tomcat’s Jasper Java Server Page compiler was used to
produce the following compiler errors:

Moving from Basic Servlets to Java Server Pages 391

“jsp1.jsp”: org.apache.jasper.JasperException: File “/FirstUri “ not found. The
.tld file containing the Tag Library Descriptors was not located by the Web con-
tainer. If adding Tag Library Classes to the WEB-INF/classes directory of the
Web application, make sure that there is a corresponding .tld file in the WEB-
INF directory as well as the necessary entry in the Web applications Deploy-
ment Descriptor web.xml file. If both are not in place, the Tag Library Directive
that you coded in your Java Server Page will not be valid. Also ensure that the
URI that you used in the Tag Library Directive matches the URI that you speci-
fied in both the Web application’s Deployment Descriptor as well as the Tag
Library Descriptor. If you are getting this error only when you deploy your Web
archive, make sure that you have “included regular content in WEB-INF and
sub directories” on the Web applications Directories properties. It may be that
the .tld file is not being included when the Web archive is being created.

“jsp1.jsp”: Unable to load class firsttag. If you have created your Java Server
Pages as you have created your Tag Handlers, it may be that you are trying to
make or compile your Java Server Page prior to making or compiling the Tag
Handler class itself. Also ensure that the name being specified for a particular
prefix matches exactly the name of a tag identified for the Tag Library to which
the prefix is pointing. If you are using a prebuilt Java Archive of Tag Handlers,
make sure that the Java Archive has a Library defined and that the Library is
part of the Project’s Required Libraries and is “Always Included” as a Required
Library in the Web application’s dependencies.

“jsp1.jsp”: According to the TLD attribute FirstProperty is mandatory for tag
firsttag. The Tag Library Descriptor has identified an attribute that is manda-
tory. This means that all usage of this tag must set a value for this property prior
to using the tag.

“jsp1.jsp”: Unable to find setter method for attribute: FirstProperty. Properties
are case sensitive and follow standard naming conventions for Java Beans. It is
typical for the property to begin with a lowercase alpha character and for the
setter method to use the uppercase of this alpha character. Make sure that the
method implemented in the Tag Handler is using the proper setFirstProperty()
naming convention and that the Tag Library Descriptor for the named tag speci-
fies the proper firstProperty naming convention. It is also important to use the
lowercase name in the Java Server Page as well.

Summary

In this chapter we examined how JSPs are not only the inverse of a servlet from a devel-
opment point of view, but also how JSPs are servlets from the Web container’s point of
view. We also examined how Standard Action tags can be utilized to interact with Java
objects without having to write any Java code. We also took a look at how to develop
custom tags that can communicate directly to the Tag Libraries that we created. In
Chapter 18, “Developing with Struts,” we see how the fundamentals of servlet and JSP
technologies can be used together to create the model view controller architecture
know as Struts.

392 Chapter 17

393

Servlets lay the groundwork for all Java-based Web technologies. Java Server Pages
extend the technology by providing a developer-friendly framework that allows the
separation of the presentation layer from the reusable Java classes that are accessed via
Standard Action tags or more extensively by using Tag Libraries, including a standard
set of Tag Libraries that have been endorsed and accepted as the Java Standard Tem-
plate Library.

Taking this to the next level, so to speak, would be to look for a framework based on
the servlet technologies and that uses the flexibility introduced by Java Server Pages to
implement a pattern of development common to user interface design. Though there
are various event- and listener-based patterns associated with user interface design, it
is the model view controller architecture that has been identified with the Java Foun-
dation Classes (Swing) that would also make an excellent candidate for Web develop-
ment as well. To that end, the Jakarta Project that is being managed by the Apache
Software Foundation has devised a Web-based implementation of the model view con-
troller architecture based on the Java Servlet and Java Server Pages specifications.

This chapter covers the following topics:

Developing in the Struts Framework. A basic understanding of the design
principles of the Struts Framework is outlined. In addition, the use of the tech-
nologies provided by the Java Servlet and JSP specifications is discussed to
emphasize the fact that the Struts Framework is a logical extension of these base
technologies. A simple action is created to demonstrate the steps necessary to
develop Web-based solutions based on the Struts Framework.

Developing with Struts

C H A P T E R

18

HTML Form Processing. Once an understanding of how to develop actions is
mastered, one realizes that this is only half the equation. Web browsers need to
send data to Web servers for processing. The <form> element in HTML provides
a basic mechanism for sending this data. Struts provide an ActionForm specifi-
cally for creating easier access to the data sent from the browser to the server.
Techniques on how to generate ActionForms from existing HTML code or how
to generate JSPs from existing ActionForms are discussed.

Creating a Struts 1.1 Library. Struts is an evolving technology. Although JBuilder
does not officially support Struts 1.1, some basic capabilities do exist. How to
unlock these capabilities and develop Struts-based solutions using the latest
builds is outlined.

Developing in the Struts Framework

The Struts Framework is based on the model view controller design paradigm. This
means that the underlying technology that Struts is based on will help the Web appli-
cation developer separate even further his or her presentation code from the business
logic and data access code. When moving from servlet development to Java Server
Pages, one of the main differences was in the way that the Java program source code
was separated from the user interface markup code. In a traditional servlet, a consid-
erable amount of Java coding is dedicated to parsing together chunks of HTML code to
create the user interface. Java Sever Pages help by initially inverting this world and
allowing the Web application developer to insert Java source code in HTML. Standard
actions could be used to interact with objects in the JVM, and the use of Tag Libraries
helped separate even further HTML presentation code from Java source code.

How developers decide to take advantage of this opportunity to separate the pre-
sentation or view from the business logic and data access layer or model is up to each
individual developer. Think of Struts as the conductor that steps in to take control and
organize or coordinate the manner in which the Java source code is separated from
HTML source code. The first step in allowing Struts to take control of the situation is to
enable the Struts controller to handle all incoming requests by setting up a <servlet-
mapping> in the Web application’s Deployment Descriptor.

Configure the Struts Controller for a Web Application
Web applications can be configured to use the Struts Framework when they are first
created, or the struts configuration can be added to an existing Web application by
modifying its properties. When creating a new Web application, you will notice a list
of JSP/servlet Frameworks to choose from (see Figure 18.1). By selecting Struts 1.0, the
name and the directory will be set to “struts” (unless it is already named). When fin-
ished, the appropriate Struts Tag Library entries will be added to the Deployment
Descriptor for the Web application, and the Struts library will be added to the depen-
dencies list of the Web application and set to Include All. In addition, a struts-config.xml
file will be added to the WEB-INF directory of the Web application.

394 Chapter 18

Figure 18.1 Enter basic web application attributes.

With an existing Web application, you can add the Struts Framework to the Web
application by modifying its properties (see Figure 18.2). In either case, not only have
the Struts Tag Libraries been added to the Web application’s Deployment Descriptor,
but an Action Servlet has also been added that will respond to all incoming requests
that are to be handled by the Struts Framework. This is made possible by creating a
servlet mapping for all incoming requests in the Deployment Descriptor as follows:

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>

<init-param>

<param-name>debug</param-name>

<param-value>2</param-value>

</init-param>

<init-param>

<param-name>config</param-name>

<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

<load-on-startup>2</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

The org.apache.struts.action.ActionServlet is the Controller class that determines
how to handle incoming requests. Extension mapping is used to register Apache’s
ActionServlet to handle all incoming requests that match the *.do extension. Taking
charge of incoming requests is where Struts begins. It is the struts-config.xml file that
is set up in the <init-param> that defines exactly what is to happen based on the infor-
mation contained in the incoming HTTP requests. This HTTP request comes into the
server and is converted to an HTTPServletRequest object, which is then passed on to the
Servlet that is registered to handle requests based on the URI. In this case, an instance

Developing with Struts 395

of the ActionServlet object will be created, and its doGet() or doPost() method will be
evoked depending again on the information contained in the HTTP request. Based on
the configuration information contained in the struts-config.xml file, an Action class’s
execute() method will be evoked.

Control Access to the Model with the Action Wizard
In the Struts Framework, the Action class controls access to the business logic and data
access code. The ActionServlet will determine which Action class to call based on the
information in the struts-config.xml document and will evoke the execute() method of
the Action class. The Action wizard on the Object Gallery’s Web tab can be used to cre-
ate a new instance of an Action class.

WebApp and Name for Action

With this wizard (see Figure 18.3), you can choose from any Web application that has
already been added to the project, or you can elect to create a new Web application. If
you choose to add an Action class to a Web application that has not been configured to
utilize the Struts Framework, it will be assumed that you intended to do this and the
Action Class wizard will make the changes for you. The properties of the Web applica-
tion will be modified, and the Struts 1.0 Framework will be selected; the necessary
edits will be made to the web.xml file, and the Struts Library will be added to the
dependencies. Most importantly, the struts-config.xml file will be added to the Web
application’s WEB-INF directory, and an entry will be made for the Action class.

Figure 18.2 Web application properties.

396 Chapter 18

Figure 18.3 WebApp and name for action.

The Action class is an extension of the org.apache.struts.action.Action class and will
initially contain an implementation of the execute() method. In this method is where
you will place the source code to control access to the business logic and data access
code. The first step of the Action wizard will expect the following:

Package. The package name that will be used to create the Action class.

Action. The public name of the class and therefore the name of the .java file as
well.

Base class. The base class from which the Action class will extend.

Configuration Information

The ActionServlet class will use the information in the struts-config.xml file to deter-
mine which Action class’s execute() method to evoke (Figure 18.4). This information
will be added to the struts-config.xml file and has no effect on the generated Java
source code.

Action Path is the name associated with the Action class that the ActionServlet will
use to distinguish which execute() method to call. In the HTTP request, this is typically
the name that has the *.do extension added to it. Therefore, the servlet mapping for
*.do passes all incoming HTTP requests to the ActionServlet, and the Action Servlet
looks at the Action Path preceding the *.do extension to determine which Action class
to use.

Depending on how you decide to develop your Struts components, you may
already have an ActionForm developed that you want to utilize for the Action class
that you are developing. The optional ActionForm information that you enter will be
added to the Action entry in the struts-config.xml file. If you have not created an
ActionForm, you will be able to use the Struts Config Editor to add this information
later:

Developing with Struts 397

Figure 18.4 Configuration information.

FormBean name. The name of the ActionForm class that is to be utilized when-
ever the Action class is called. An instance of this ActionForm call will be passed
in as a parameter to the perform() method of the Action class.

Scope. The scope of the action can be set to either request or session.

Validate FormBean. ActionForms, along with having properties that correspond
with a <form>’s field definitions, also have validate() methods that can be used
to check the values of the properties prior to executing an Action’s perform()
method. The ActionServlet will evoke the validate() method of the FormBean if
the value is set to true and will not if the value is set to false.

Input JSP. There are two views to consider for each Action and ActionForm that
is created. The first view is obvious; it is the view that will be displayed when
the Action has completed successfully. The second view, which is not as obvi-
ous, is the view that is used to call the Action in the first place. The Input JSP
can be set to point to the URL of the Java Server Page or HTML document that
originally called the Action class. If an error occurs when calling the Action-
Form’s validate() method, the ActionForm developer can create an instance of
an ActionError object:

package com.wiley.mastering.jbuilder;

import org.apache.struts.action.*;

import javax.servlet.http.*;

public class FirstAction extends Action {

public ActionForward perform(ActionMapping actionMapping, ActionForm

actionForm, HttpServletRequest httpServletRequest, HttpServletResponse

httpServletResponse) {

/**@todo: complete the business logic here, this is just a

skeleton.*/

398 Chapter 18

throw new java.lang.UnsupportedOperationException(“Method

perform() not yet implemented.”);

}

}

At a really basic level, the perform() method of the Action class is very similar to the
service() method of a servlet. Just as the Web container uses the information in the
web.xml file to determine which servlet’s service method to evoke, the ActionServlet
uses the struts-config.xml file to determine which Action’s perform() method to evoke.
Also similar to the servlet’s service() method, theAction’s perform() method is passed
references to the HttpServletRequest and the HttpServletResponse objects. The differ-
ence is that the Action’s perform() method also has a reference to an ActionForm and
an ActionMapping object.

HTML Form Processing

When you storyboard how the various views flow through the Web application from
the end user’s point of view, you will find that each view will have from zero to many
different directions for the end user to choose. Each direction that the end user can take
will be a navigation-only direction, or additional information will be collected and
passed to the server for processing or storage.

When additional information is passed to the server, that information will go
through several transformations before it becomes useful to the developer who is writ-
ing the business logic or data access logic. The first transformation will be managed by
the Web container and will map raw text of an HTTP request to the attributes of a
HttpServletRequest object. These attributes are then accessible through the HttpServlet-
Request object’s API, as specified by the Java Servlet specification. Though this is help-
ful, many developers take the transformation one step further and use the attributes of
the HttpServletRequest object to populate the attributes of domain-specific objects that
have more meaning to the application being developed.

ActionForm Wizard
ActionForm classes help collect information that is passed to the Web application via
the HTTP request. There are two basic mechanisms for passing information into the
Web application. The first, part of the URL itself, is called the Query String and is asso-
ciated with GET requests. Query Strings are usually at the end of the URL, begin with
a question mark (?), and contain name=value pairs of information separated by amper-
sands (&), as follows:

First

Action

Developing with Struts 399

The second mechanism by which information is passed into the Web application
occurs when the name=value pairs of information are actually part of the message
body and are associated with POST requests:

<form action=”/firstAction.do” method=”POST”>

<input type=”text” name=”name1”>

<input type=”text” name=”name2”>

<input type=”submit” name=”Submit” value=”Submit”>

<input type=”reset” value=”Reset”>

</form>

Web Application and Class Information for ActionForm

You can choose from any Web application that has already been added to the project, or
you can elect to create a new Web application. If you choose to add an ActionForm class
to a Web application that has not been configured to utilize the Struts Framework, it will
be assumed that you intended to do this and the ActionForm Class wizard will make
the changes for you. The properties of the Web application will be modified, and the
Struts 1.0 Framework will be selected, the necessary edits will be made to the web.xml
file, and the Struts Library will be added to the dependencies. Most importantly, the
struts-config.xml file will be added to the Web application’s WEB-INF directory.

When you create a new ActionForm (see Figure 18.5), you can configure the package
that it is to be named in as well as the name of the ActionForm class itself and the base
class that it will extend:

Package. The package name that will be used to create the Action class.

ActionForm. The public name of the class and therefore the name of the .java
file as well.

Base class. The base class from which the Action class will extend.

Figure 18.5 Web Application and class information for ActionForm.

400 Chapter 18

Figure 18.6 Field definition for ActionForm.

Field Definition for ActionForm

Defining the field definitions of an ActionForm is the whole point of having an Action-
Form in the first place. The ActionForm wizard is a unique wizard in that it was
designed to overlay existing ActionForms with new field definitions (see Figure 18.6).
This means that you can use the ActionForm wizard to modify an existing Action-
Form’s field definitions. For instance, if you use the ActionForm wizard to create an
ActionForm from an existing JSP or HTML document’s <form>, and later you decide
to add another JSP or HTML document’s <form> to the same ActionForm, you can run
the ActionForm wizard a second time and modify the existing ActionForm. It is impor-
tant to note that the ActionForm wizard will read in the existing ActionForm’s field
definitions and add them to the list. If you delete the existing field definitions from the
list, they will be removed from the ActionForm. These definitions will all turn into
properties of the ActionForm with a getter and setter method for public access to each
property:

Name and type. Manually adds field definitions by specifying their names and
data types.

Add from JSP. Even though it claims to be able to read only the <html.form>
of any Java Server Page that has been coded, you can also point to any JSP or
HTML document in the Web application that has traditional <form> tags.
The field definitions from the documents specified will be added to the Field
Definition list.

Select Additional Options

With the final step of this wizard (see Figure 18.7) , you can choose to modify the struts-
config.xml while generating the ActionForm source code, or you can always use the
Struts Config Editor to do the following:

Developing with Struts 401

Add to struts-config.xml. Selecting this option will modify the struts-config.xml
file with the definition of the ActionForm class. This will not add the Action-
Form to an existing Action. To add a new ActionForm to an existing Action, you
will have to edit the struts-config.xml file using the Struts Config Editor.

FormBean name. A default name will initially be provided based on the class
name of the ActionForm; this is the name that will be used in the struts-
config.xml file.

Create/replace reset() method body. If you are overlaying an existing Action-
Form, you can opt to replace the reset() method with a new reset() method. If
you are creating a new ActionForm, this option will also generate the code for
the reset() method. It is up to the developer to code the implementation of the
reset() method.

Clear validate() method body in original file. This option should be selectable
only if you are overlaying an existing ActionForm and the existing ActionForm
has a validate() method already implemented. Selecting this option will over-
write the existing validate() method.

package com.wiley.mastering.jbuilder;

import org.apache.struts.action.*;

import javax.servlet.http.*;

public class FirstActionForm extends ActionForm {

public ActionErrors validate(ActionMapping actionMapping,

HttpServletRequest httpServletRequest) {

/**@todo: finish this method, this is just the skeleton.*/

return null;

}

public void reset(ActionMapping actionMapping, HttpServletRequest

httpServletRequest) {

}

}

Once a basic ActionForm has been created, one that was not created from an exist-
ing Java Server Page or HTML document that already contains a <form>, you can also
add properties to the ActionForm using the BeansExpress Properties Editor.

JSP from ActionForm wizard
If you have created an ActionForm, you can generate a Struts-compliant Java Server
Page that will contain the <html:form> tag and necessary field definitions based on the
properties of the ActionForm class.

402 Chapter 18

Figure 18.7 Select additional options.

WebApp, JSP, and ActionForm

Select the Web application to which you want to add the Java Server Page, and edit the
name of the Java Server Page (see Figure 18.8). You can browse the classes in the project
to select the ActionForm class whose properties you wish to generate the <html:form>
from. In addition, you can also select the Action that will be used in the form.

Tag Types for ActionForm Fields in JSP

You cannot add any field definitions to the list (see Figure 18.9), but you can decide
how the field will be utilized in the form — as text, password, or textfield. Addition-
ally, you can elect not to use the field definition at all. This is particularly useful when
using a single ActionForm to handle the field definitions from several Java Server
Pages.

Figure 18.8 WebApp, JSP and ActionForm.

Developing with Struts 403

Figure 18.9 Tag types for ActionForm fields In JSP.

Specify the Options for Creating This Strut’s JSP

The Struts Tag library also provides additional tags for processing the Java Server Page
(see Figure 18.10). You can select which Java Server Pager you wish to implement:

<%@ taglib uri=”/WEB-INF/struts-logic.tld” prefix=”logic” %>

<%@ taglib uri=”/WEB-INF/struts-template.tld” prefix=”template” %>

<%@ taglib uri=”/WEB-INF/struts-bean.tld” prefix=”bean” %>

<%@ taglib uri=”/WEB-INF/struts-html.tld” prefix=”html” %>

<%@ page contentType=”text/html; charset=windows-1252” %>

<html:html xhtml=”true” locale=”true”>

<head>

<title>

FirstJsp1

</title>

<html:base/>

</head>

<body>

<h1>JBuilder Generated Struts JSP for ActionForm

com.wiley.mastering.jbuilder.FirstActionForm</h1>

<p>

<html:form action=”/firstAction.do” method=”POST”>

<html:text property=”name1”/>

<html:hidden property=”name2”/>

<html:password property=”name3”/>

<html:submit property=”submit” value=”Submit”/>

<html:reset value =”Reset”/>

</html:form>

</body>

</html:html>

404 Chapter 18

Figure 18.10 Specify the options for creating this Strut’s JSP.

Creating a Struts 1.1 Library

Struts 1.1 is not officially supported because it is being beta tested. If you decide that
you want to work with Struts 1.1, you will have to download the binary distribution
from Apache’s Jakarta Project and create a new library that points to the location where
you installed the download. Include the appropriate jar files as part of the library’s
class definition. Depending on which version of Tomcat you are using and which ver-
sion of the JDK you are targeting, the jar files you include could change. If you have
downloaded the source and API documentation in JavaDoc form, you can set that up
as well.

If you decide to configure this Struts 1.1 Library as the Struts Framework, you will
have to disable the Struts 1.0 Framework by setting the Framework setting to None on
the Struts 1.0 Libraries Framework tab. Only one library can be configured as “the”
Struts Framework. If you do this, you will not include the additional Tag Library
Descriptors that are now part of Struts 1.1. If you do have multiple libraries configured
as Struts Framework, you will notice some weird behavior in the Web application. The
best bet is to configure the library as a User Defined Tag Library. The only benefit that
you will lose is the automatic adding of the struts-config.xml file in the WEB-INF direc-
tory of the Web application. This is no major loss because the file that is added is not
exactly correct for using Struts 1.1. There is a new Data Type Definition (DTD) for Struts
1.1 that you will have to use in place of the version of the DTD that was used for Struts
1.0. Once you change the version of the DTD that you are using, the Struts Config Edi-
tor will come alive with all the new edits that are part of the Struts 1.1 Framework:

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE struts-config PUBLIC “-//Apache Software Foundation//DTD

Struts Configuration 1.0//EN”

“http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd”>

<struts-config />

Developing with Struts 405

You can even manually add the Tiles Definition XML to the WEB-INF directory by
creating a file named tiles-defs.xml:

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE tiles-definitions PUBLIC “-//Apache Software Foundation//DTD

Tiles Configuration//EN” “http://jakarta.apache.org/struts/dtds/tiles-

config.dtd”>

<tiles-definitions>

Summary

Struts development can become very addictive. It is very easy to get into a smooth
rhythm when developing Actions and ActionForms. Depending on how you decide to
initiate the development of a given Web site, we examined two different techniques for
bringing <form> elements together with ActionForms. In the first scenario, Action-
Forms were created first, and the JSP was generated based on the fields in the Action-
Form. In the second scenario, HTML and JSP <form> elements were utilized to generate
ActionForms quickly. In both cases, Actions were easily associated with ActionForms
using the Struts Configuration Editor.

406 Chapter 18

PA R T

Six

Enterprise Development
with Enterprise

JavaBeans

Where Part Five focused on the various Web-based technologies that make up the
Enterprise Edition of Java 2 (J2EE), Part Six focuses on the Enterprise JavaBean (EJB)
specification. JBuilder can develop to either the 1.1 or the 2.0 version of the EJB spec-
ification. Which version you want to use to depends on what is supported by the
target application server you are using. The EJB 2.0 specification stipulates that all
compliant EJB 2.0 containers must be equipped to support EJB 1.1 deployed mod-
ules. If your application server is compliant with EJB 2.0, you should also be able to
develop and deploy EJB 1.1 code. This is particularly useful if you started develop-
ing with EJB 1.1, deployed some applications, and now want to take advantage of
the features introduced in EJB 2.0. A key difference between EJB 1.1 and EJB 2.0
development in JBuilder is the introduction of the EJB 2.0 Designer.

This part consists of two chapters:

Developing EJB 1.1. Focusing on version 1.1 of the Enterprise JavaBean specification,
Chapter 19 will outline the steps necessary to develop Enterprise JavaBeans compli-
ant with the EJB 1.1 specification. In addition, Deployment Descriptor edits and con-
figuration will be discussed for Session Beans and Entity Beans.

Developing EJB 2.0. Not only are there new capabilities in the EJB 2.0 specification,
but JBuilder has also introduced a new way of developing EJBs with the EJB 2.0
Designer. Chapter 20 will cover the development of EJBs using all the features and
capabilities of this designer.

409

Sun Microsystems not only invented the Java programming language, but it also was
instrumental in coming up with a distributed object framework. Beyond the basics of
transferring streams of data from point A to point B on a given network, the Enterprise
JavaBean (EJB) specification originally set out to define a set of capabilities that objects
in a distributed system should have. As the job of providing the necessary infrastruc-
ture to support these basic sets of capabilities became more complex, additional sup-
porting frameworks were birthed. The entire collection of technologies that were
created for enterprise systems, now referred to as the Java 2 Enterprise Edition (J2EE),
support a fundamental set of services that the EJB container now uses. The EJB con-
tainer is responsible for making these services available to the components it manages,
namely Enterprise JavaBeans. The lifecycle of each type of Enterprise JavaBean is also
the responsibility of the Enterprise JavaBean container, just as the lifecycle of the
servlet and the Java Server Page is the responsibility of the Web container. So what is
an EJB?

There are two basic types of Enterprise JavaBeans in the 1.x version of the specifica-
tion: Session Beans and Entity Beans. You could think of these two classifications of
EJBs as a decoupling of the business methods from the attributes of what is tradition-
ally referred to as a business object. Session Beans are primarily responsible for the
implementation of application and business logic (workflow), and Entity Beans are
responsible for the object-to-relational mapping of the business attributes and data.
Given this, one may think that this breaks the business object concept and is a bad
design, but this may not necessarily be true. Think of EJB as more of an implementa-
tion detail of the business model. When you get right down to the metal, the way that

Developing EJB 1.1

C H A P T E R

19

the most elegant objects within the Java Virtual Machine are executed within the reg-
istries of the central processing unit of a given machine for a given cycle is hardly dis-
tinguishable from the machine code compiled from the most procedural of function
calls. Eventually, all designs turn into a series of ones and zeros.

So, what is the most elegant implementation that most effectively gets the job done
for a given business requirement? How does the design of Enterprise JavaBeans lead to
more effective execution of Java byte code within the Java Virtual Machine? It was
noticed that most distributed systems aspired to certain design principles and offered
a basic set of capabilities to each object within certain closed systems. There is typically
a published interface that identifies the accessible methods of an object and a factory
class that controls the access and construction of the object, as well as the implemented
business logic of the object itself. Each Enterprise JavaBean will always have these
three components: the Remote and Home interfaces and the Bean itself. When you want
to create a new Enterprise JavaBean, all three Java source files also must be created.

New Enterprise JavaBean 1.x

Before creating Enterprise JavaBeans, it is important that you determine the version of
the EJB specification with which your particular EJB container complies. This will deter-
mine the type of EJB module to create as well as what types of Enterprise JavaBeans to
create. Regardless of which server is configured, the wizards will all behave the same
way. Choosing a server is also choosing an implementation of the EJB container and,
therefore, the compliant version of the EJB specification. The Enterprise JavaBean 1.x
wizard will generate the necessary code for the Remote and Home interfaces as well as
the Bean class itself.

Select EJB Module
Collections of Enterprise JavaBeans are packaged within a Java Archive and deployed
to an EJB container for execution. This Java Archive also contains the required
Deployment Descriptor that instructs the EJB container how to manage the Enterprise
JavaBeans within the Java Archive as well as how to configure certain resources that
are to be made available to the Enterprise JavaBeans. JBuilder manages each of these
Java Archives in what is called an EJB module.

To create Enterprise JavaBeans compliant with the 1.x version of the specification, it
is important that the EJB module was initially set up specifically for 1.x EJB develop-
ment. It is not possible to mix 1.x and 2.x EJB in the same EJB module. The EJB module
can have one and only one Deployment Descriptor and will produce one and only one
EJB Java Archive. Each Deployment Descriptor within the Java Archive is validated
against the Document Type Definition for each compliant version of the EJB specifica-
tion. EJB containers themselves are to be backward compatible, but this means only
that they can host both 1.x-compliant archives and 2.x-compliant archives. Depending
on the application server selected, it may be possible to deploy both 1.x and 2.x Enter-
prise JavaBean archives. Likewise, projects can have multiple EJB modules, each with

410 Chapter 19

its own EJB Java archive, and each EJB module can, of course, have multiple Enterprise
JavaBeans, again provided that all of the EJBs within a single module are compliant
with the same version of the EJB specification.

Only EJB 1.x-compliant EJB modules should appear in this list. Likewise, only EJB
modules that are already nodes of the project will show up in this list. If a 1.x-compliant
EJB module does not exist, selecting the “New...” button can create one. If several 1.x-
compliant EJB modules exist, one must be selected.

Create a New Enterprise JavaBean Component
This is the main step of the 1.x wizard (see Figure 19.1). Here you will choose which type
of Enterprise JavaBean you wish to create as well as establish the basic class information.

Class Information

Class information is used to establish how the Enterprise JavaBean relates to existing
packages and classes that have already been developed. Enter the following informa-
tion for each Enterprise JavaBean you create:

Package. Though not necessary, it is a good idea to consider separating Enter-
prise JavaBeans by business function or by implemented design pattern. Each
package name could contain groupings of related Enterprise JavaBeans:

package com.wiley.mastering.jbuilder;

Class name. This is the actual Java class name that will be used by the class that
implements the core logic.

public class FirstStatelessSessionBean implements SessionBean {

Figure 19.1 Create a new Enterprise JavaBean component.

Developing EJB 1.1 411

Base class. Because the Enterprise JavaBean, represented by the preceding class
name, which is generated by the wizard, is an implementation of an existing
javax.ejb.EntityBean, or javax.ejb.SessionBean interface, developers are free to
extend preexisting classes. By clicking on the ellipses, the Find Classes dialog
will appear to allow the developer to either browse or search the project’s class-
path for a particular class to extend. In all cases, the remote interface code that is
generated will extend javax.ejb.EJBObject; the code is initially identical, regard-
less of the option selected. This is also true for the Home interface, which
extends javax.ejb.EJBHome.

Options

The Stateless Session Bean, which resembles a CORBA server, is probably the most com-
mon Enterprise JavaBean. Successive calls to Stateless Session Beans are not guaran-
teed to reach the same Enterprise Bean instance. In fact, if the load is particularly high,
and if there are several clients accessing the same Stateless Bean, chances are more than
likely that two successive calls from the client, even within the same scope of a single
method, will not reach the same instance of the Enterprise Bean class running in the
EJB container.

It is important to note that clients do not have direct handles to the implemented
class running in the EJB container. Clients have access to the EJB container, and the EJB
container is responsible for maintaining the lifecycle of the Enterprise Bean instance as
well as delegating access to its methods. The following is the generated source code for
the Session Bean’s Bean class:

package com.wiley.mastering.jbuilder;

import java.rmi.*;

import javax.ejb.*;

public class FirstSessionBean implements SessionBean {

SessionContext sessionContext;

public void ejbCreate() {

}

public void ejbRemove() {

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void setSessionContext(SessionContext sessionContext) {

this.sessionContext = sessionContext;

}

}

Stateful Session Beans are Enterprise Beans designed to maintain state, as long as the
client retains the handle to the Remote interface. Once the client’s reference to the

412 Chapter 19

Remote Interface of a Stateful Session Bean goes out of scope, the EJB container is no
longer responsible for maintaining the stateful information associated with the Session
Bean. If it is necessary for successive calls within the scope of a single method on a
client to access exactly the same instance of a Session Bean, then Stateful Session Beans
should be used. It is also true that the Stateful Session Service can maintain the Stateful
information of a Session Bean in a long-term repository (such as a relational database),
but this is not a requirement for use. Do not think of successive calls from the user
interface point of view. Using a Stateful Session Bean solely to retain data collected by
the user interface for use in a future action by the user interface may not be in the best
interest of the infrastructure. Consider retaining that information closer to the user
interface or persisting it in the back-end data store or repository (database). The differ-
ence between a Stateful and Stateless Session Bean is not distinguishable in the source
code; rather, it is a property that is set in the Deployment Descriptor:

<session-type>Stateful</session-type>

Only Stateful Session Beans should consider implementing the javax.ejb.Session-
Synchronization interface. This should also be considered only where container-
managed transactions are being used. This will add afterBegin(), beforeCompletion(),
and afterCompletion() methods to the Enterprise Bean class. The intention of this inter-
face is to give the Enterprise JavaBean developer the ability to perform work just after
a transaction has begun, just before it is to complete, and after it has completed:

public void afterBegin() {

}

The afterBegin() method will be evoked some time shortly after a new transaction
has been started and before the first business method is called. This method is executed
in the scope of the transactional context:

public void beforeCompletion() {

}

The beforeCompletion() method will be evoked some time shortly after the last busi-
ness method is evoked and just prior to the transaction being committed. Like the after-
Begin() method, this method is also executed in the scope of the transactional context:

public void afterCompletion(boolean committed) {

}

The afterCompletion() method will be evoked after the transaction has completed. If
the transaction was successful, the value of the committed parameter will be true. If the
transaction was not successful, the value will be false.

Entity Beans are the object-oriented representation of information that is typically
stored in relational databases. An Entity Bean’s state is guaranteed to be maintained
based on the state of the last successful transaction to create, update, or delete. The data
that Entity Beans represent is meant to be used over relatively long periods of time.

Developing EJB 1.1 413

This data is also meant to be shared by more than one client. There are two very differ-
ent strategies for developing Entity Beans. Bean Managed Persistence should more likely
be termed Developer Managed Persistence because it is the Entity Bean Developer that
is responsible for developing the code necessary to persist the state of the Entity Bean.
This usually involves the use of JDBC:

package com.wiley.mastering.jbuilder;

import java.rmi.*;

import javax.ejb.*;

public class FirstEntityBean implements EntityBean {

EntityContext entityContext;

public String ejbCreate() throws CreateException {

/**@todo Implement this method*/

return null;

}

public void ejbPostCreate() throws CreateException {

}

public void ejbLoad() {

}

public void ejbStore() {

}

public void ejbRemove() throws RemoveException {

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void setEntityContext(EntityContext entityContext) {

this.entityContext = entityContext;

}

public void unsetEntityContext() {

entityContext = null;

}

}

The EJB container will take care of most of the object relational mapping for the
Entity Bean developer. All of the information that is required by the EJB container to
manage the object to relational mapping for a Container-Managed Persistence Entity
(CMP) Bean is stored within the Deployment Descriptor. The EJB 1.x Entity Bean
Modeler wizard does a more effective job of creating CMP Entity Beans based on exist-
ing database tables that are accessible via an existing JDBC driver.

Primary Keys contain the unique information that is used to locate a single instance
of an Entity Bean. This class could be as simple as a java.lang.String object, or it could
be a new class that you create. It is important that this class implements the java.io.Seri-
alizable interface:

414 Chapter 19

package com.wiley.mastering.jbuilder;

import java.io.*;

public class FirstPrimaryKey implements Serializable {

public String key;

public FirstPrimaryKey() {

}

public FirstPrimaryKey(String key) {

this.key = key;

}

public boolean equals(Object obj) {

if (this.getClass().equals(obj.getClass())) {

FirstPrimaryKey that = (FirstPrimaryKey) obj;

return this.key.equals(that.key);

}

return false;

}

public int hashCode() {

return key.hashCode();

}

}

Set EJB Interface Names
Prior to actually generating the Java source code and editing the Deployment Descrip-
tor, the individual names of each of the components can be modified (see Figure 19.2).
The naming convention that is utilized by default uses the class name established in the
previous step as the Enterprise Bean class, replaces “Bean” with “Home” for the Home
Interface class, and removes both “Bean” and “Home” for the Remote Interface class.
This affects both the generated Java source code and the initial XML code that is added
to the Deployment Descriptor as follows:

<session>

<ejb-name>FirstStatelessSessionBean</ejb-name>

<home>com.wiley.mastering.jbuilder.FirstStatelessSessionBeanHome</home>

<remote> com.wiley.mastering.jbuilder.FirstStatelessSession</remote>

<ejb-class>

com.wiley.mastering.jbuilder.FirstStatelessSessionBean</ejb-class>

<session-type>Stateless</session-type>

<transaction-type>Container</transaction-type>

</session>

Developing EJB 1.1 415

You can enter the following information using the Deployment Descriptor Editor:

Enterprise Bean class: <ejb-class>. This is the class that the EJB container will
access to evoke the implemented application and business logic that the Enter-
prise JavaBean developer has written. The EJB container also maintains the life-
cycle of this class.

Home Interface class: <home>. The Home interface defines all of the methods
to create, remove, and find Enterprise JavaBeans. Clients that want to access the
Enterprise Bean class must first obtain a reference to its Home Interface class.
The client, through a standard Java naming and directory lookup using the
defined JNDI name, can discover the Home interface.

Remote Interface class: <remote>. The Remote Interface class defines the meth-
ods that are accessible to the calling client. Clients do not access Enterprise Bean
classes directly. Where this gets a bit confusing is when you notice that the
Enterprise Bean class does not implement the Remote Interface class. It is easy
to see the relationship between the Home and Remote interfaces. It is the
responsibility of the EJB container to delegate access to the Enterprise Bean class
via the Remote Interface class that the client is using. Clients do not communi-
cate directly with the Enterprise Bean class; clients communicate with the EJB
container.

Bean name: <ejb-name>. This name is used by the Deployment Descriptor
and the EJB container. It has no meaning to the Java source code of the Home,
Remote, or Bean classes. This will be the name that is displayed in the Project
pane under the EJB module. Clicking on this name in the Project pane will go
to the Deployment Descriptor Editor for the Bean.

JNDI name. Each application server can set up the JNDI tree differently. The
JNDI name that is entered here will be used in the container-specific Deploy-
ment Descriptor. This is the registered name that clients will use to look up the
Home Interface class.

Generate headers. Using the values defined in the project’s class JavaDoc fields
(located on the General tab of the Project properties), selecting this option will
generate a Comment tag at the beginning of the Sample Bean’s source code:

/**

* <p>Title: </p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>

* <p>Company: </p>

* @author not attributable

* @version 1.0

*/

416 Chapter 19

Figure 19.2 Set EJB interface names.

Deployment Descriptor Editor

A list of all EJBs that are part of the EJB module is displayed in the Project pane (see Fig-
ure 19.3) under the EJB module node. Double-clicking on each node will open the
Deployment Descriptor Editor for that particular Enterprise JavaBean. Once the
Deployment Descriptor Editor is open, you will notice that there are several tabs: Gen-
eral, Environment, EJB Reference, Resource Reference, Security Role Reference, and
Properties. Each tab configures various behaviors and settings that the EJB container is
to manage for the Enterprise JavaBean when it is deployed.

General Tab
Similar to the “Set EJB Interface Names” step of the new Enterprise JavaBean 1.x wiz-
ard, the General tab is where the developer would set the various classes that make up
this particular Enterprise JavaBean. For the most part, if the wizard was used to create
the Enterprise JavaBean, there will be few reasons to modify the settings on the Gen-
eral tab. If, however, any of the class names or packages were refactored, renamed, or
migrated, it will be necessary to update the information in the Deployment Descriptor
to use the new names. There are also differences in the General tab for Session Beans
and Entity Beans, including the following:

Bean class <ejb-class>. This is the Enterprise Bean class that the EJB container
will access to evoke the implemented application and business logic that the
Enterprise JavaBean developer has written. The EJB container also maintains
the lifecycle of this class.

Developing EJB 1.1 417

Figure 19.3 Project pane.

Home interface <home>. This class defines all the methods to create, remove,
and find Enterprise JavaBeans. Clients that want to access the Enterprise Bean
class must first obtain a reference to its Home Interface class. The client, through
a standard Java naming and directory lookup using the defined JNDI name, can
discover the Home interface.

Remote interface <remote>. This class defines the methods that are accessible to
the calling client. Clients do not access Enterprise Bean classes directly. Where
this gets a bit confusing is when you notice that the Enterprise Bean class does
not implement the Remote Interface class. It is easy to see the relationship
between the Home and Remote interfaces. It is the responsibility of the EJB con-
tainer to delegate access to the Enterprise Bean class via the Remote Interface
class that the client is using. Clients do not communicate directly with the Enter-
prise Bean class; clients communicate with the EJB container.

Home JNDI name. Each application server can set up the JNDI tree differently.
The JNDI name that is entered here will be used in the container-specific
Deployment Descriptor. This is the registered name that clients will use to look
up the Home Interface class.

Description. This optional information is useful only to the developer and is
meaningless to the EJB container. You can enter descriptive information that
could be displayed on a console’s screen depending on the target application’s
EJB container.

Small and large icon. Also meant for use in deployment consoles as well as
development tools, the Enterprise JavaBean Developer can set both a small and
a large icon similar to those used by graphical Java Beans that are added to the
Component Palette in the Swing Designer.

Session

The following information is only visible when viewing the Deployment Descriptor
for Session Beans:

Session Type. In the new Enterprise JavaBean 1.x wizard, it appeared that two
different types of Java source code were chosen to be generated. What was
actually being determined was how to set this particular property in the
Deployment Descriptor. The <session-type> property can be set to either
Stateful or Stateless (Figure 19.4).

418 Chapter 19

Figure 19.4 General properties.

Transaction type <transaction-type>. This can be set to either Bean or Container.
The default value is Container. It is also assumed that if implementing the Ses-
sionSynchronization interface in Stateful Session Beans, that container-managed
transactions are used. If Bean-managed transactions are desired, then the Session
Bean developer is responsible for creating an instance of a javax.transaction
.UserTransaction and managing the transaction programmatically. A third
option would be for the calling client to create the UserTransaction and handle
the transactional programming from the client side.

Timeout. Only editable for Stateful Session Beans, this property controls the
lifetime that a Stateful Session Bean will remain in a passive state. The EJB con-
tainer is responsible for managing the lifecycle of all Enterprise JavaBeans and
may remove any Stateful Session Beans after their timeout is reached. Any suc-
cessive calls from the client will result in a java.rmi.NoSuchObjectException.
This is a requirement for all compliant EJB containers.

Entity

The following information is only visible when viewing the Deployment Descriptor
for Entity Beans:

Persistence type. Similar to Stateful and Stateless Session Beans, there is not
much difference between the base implementation of a Bean-Managed Persis-
tence Entity Bean and a Container-Managed Persistence Entity Bean. The differ-
ences do become more obvious once all the necessary persistence logic is added

Developing EJB 1.1 419

to the Bean-Managed Persistence Entity Beans, of course. But again, it is primar-
ily the Deployment Descriptor that determines if a given Entity Bean’s attributes
are to be Container Managed or Bean Managed.

Primary Key class. All Entity Beans are to have a Primary Key class that can
uniquely identify a specific instance of a given Entity Bean. Think of this as
a unique object that is used as a key in a hashtable.

Reentrant. Developers can control how many clients can access an Entity Bean at
a given point in time within the scope of a particular transactional context. For
two calls to be made to a given Entity Bean’s remote interface using the same
transactional context while a previous call is still doing “work” is quite rare.
This is typically possible only when Entity Beans engage in the use of callbacks
to the client.

Environment
Environment variables (see Figure 19.5) can be established in the Deployment Descrip-
tor and accessed using the JNDI API just as resources are used in more traditional Java
programming. You can Add, Remove, and Remove All properties on the Environment
page of the Deployment Descriptor Editor as follows:

Description. This optional information is useful only to the developer and is
meaningless to the EJB Container. You can enter descriptive information that
could be displayed on a console’s screen depending on the target EJB container.

Property. This is the name that will be used to look up the instance of the type of
property in order to return the value. Think of this as a sort of String Key value
or a JNDI name that will be used.

Value. This is the actual value that will be returned by the instance of the type of
property that is looked up.

Type. Values can be of many types. Typically only the object equivalent of Java’s
basic types are used.

To access information, set up in the Environment settings of a given Enterprise Java-
Bean; the developer can write JNDI code to access the environment context and
retrieve the value of the property accordingly:

javax.naming.Context initCtx = new javax.naming.InitialContext();

javax.naming.Context myEnv =

(javax.naming.Context)initCtx.lookup(“java:comp/env”);

java.lang.Integer someNumber =

(java.lang.Integer)myEnv.lookup(–SomeNumberî);

420 Chapter 19

Figure 19.5 Environment settings.

EJB Reference
There are times when one Enterprise JavaBean will want to call on another Enterprise
JavaBean. In all such cases an EJB Reference (see Figure 19.6) must be established for
each such call. You can Add, Remove, and Remove All properties on the EJB Reference
page of the Deployment Descriptor Editor.

The description is optional information. It is useful only to the developer and is
meaningless to the EJB container. You can enter descriptive information that could be
displayed on a console’s screen depending on the target EJB container.

The name will be used locally by the Enterprise JavaBean to perform the lookup. For
calls to other EJBs, it is the accepted practice to preface the name with an ejb/ prior to
establishing a unique name. Think of this as a layer of indirection; the ejb/LocalSec-
ondStatelessSession name will be directed to the SecondStatelessSession JNDI name. It
is the EJB container’s responsibility to provide all access to external resources; this
includes other EJBs. This code within the EJB that establishes this EJB Reference would
look something like this:

javax.naming.Context context = new javax.naming.InitialContext();

java.lang.Object object =

context.lookup(“java:comp/env/ejb/SecondStatelessSession”);

com.wiley.mastering.jbuilder.SecondStatelessSessionHome home =

(com.wiley.mastering.jbuilder.SecondStatelessSessionHome)

javax.rmi.PortableRemoteObject.narrow(object,

com.wiley.mastering.jbuilder.SecondStatelessSessionHome.class);

com.wiley.mastering.jbuilder.SecondStatelessSession

secondStatelessSession = home.create();

Developing EJB 1.1 421

Figure 19.6 EJB Reference.

EJB Is in a Java Archive Deployed to the Same EJB Container

If you check the IsLink property, the Type, Home, Remote, and JNDI Name selection
boxes are no longer accessible. Instead, the Deployment Descriptor looks at other
Enterprise JavaBeans that are already defined in the Deployment Descriptor; these
beans and only these beans are selectable in the Link selection box. The Type, Home,
and Remote settings are set based on the information already defined in the Deploy-
ment Descriptor for the Enterprise JavaBean selected. The JNDI name is no longer nec-
essary because the EJB container will not be asked to make a remote call or use the
registered JNDI naming service to look up a reference to the Enterprise JavaBean.

Instead, the IsLink setting is letting the EJB container know that the Enterprise
JavaBean is already located within the container and is already being managed within
the same EJB container as the calling Enterprise JavaBean. Where this gets a little more
confusing is when multiple EJB archives are to be deployed to the same EJB container.
Although it is true that the same EJB container will manage Beans in each archive, and
depending on the container’s implementation, they may also both share the same class
loader, JBuilder does not know that this is the intention of the developer. Therefore,
only Enterprise JavaBeans defined in the same EJB module are visible in the list.

EJB Is in a Different Java Archive Deployed
to a Different EJB Container

Other than selecting an Enterprise JavaBean that is already defined in the same EJB
module, the other option is to set the necessary properties to access an Enterprise Java-
Bean that is running in another EJB container somewhere on the network. Here you
select the type of Enterprise JavaBean that you wish to access, either a Session Bean or

422 Chapter 19

an Entity Bean. Again, this selection box is accessible only when Enterprise JavaBeans
are being defined that are not part of the EJB module and therefore not to be part of the
EJB archive that the EJB module is to create (IsLink is not selected). The Home and
Remote Interface classes are selected and set and should correspond to the classes that
are defined in conjunction with the JNDI name that is defined. The developer will use
code that will already assume the Home and Interface class and will perform a JNDI
lookup based on the name.

In the Deployment Descriptor, the developer can modify the actual JNDI name that
the Enterprise JavaBean is bound to without having to modify the source code. This
could be useful if a different JNDI name is used for test and production. This way, the
same compiled class can be accessed by a test JNDI name, and a separately running
instance on the same network can be accessed by a production JNDI name. Switching
from test to production can take place without editing the source code and without
rebuilding the project and repackaging the EJB archive.

Resource References
Resource references are used to make various external resources available to Enterprise
JavaBeans being managed by the EJB container (Figure 19.7). In general, all resources
that an Enterprise JavaBean will need to perform its implemented logic must be regis-
tered with the EJB container in some manner. There are Environment objects, EJB ref-
erences, and Resource references. All are looked up via a JNDI name. Some of these
resources are accessible only locally and have only one JNDI name bound to them;
others have their own local JNDI name that the Enterprise JavaBean uses as well as their
own JNDI name. The most common type of Resource reference used is, of course, a
DataSource. You can Add, Remove, and Remove All properties on the Resource Refer-
ence page of the Deployment Descriptor Editor as follows:

Figure 19.7 Resource references.

Developing EJB 1.1 423

Description. This optional information is useful only to the developer and is
meaningless to the EJB container. You can enter descriptive information that
could be displayed on a console’s screen depending on the target application
server.

Name. This is the name that will be used locally by the Enterprise JavaBean to
perform the lookup. For calls to external resources like DataSource, it is the
accepted practice to preface the name with a jdbc/ prior to establishing a unique
name for the local DataSource. This is also a layer of indirection because the
DataSource must be bound to the naming service and the name used by the
Enterprise JavaBean must be a separate name. Only Container Managed Persis-
tence Entity Beans need this type of resource to be defined. The EJB container
will lookup this reference and establishes a connection. Bean Managed Persis-
tence Entity Beans and Session Beans will need to look up these resources and
obtain connections programmatically. The code that establishes this type of
JDBC connection would look something like this:

javax.naming.Context context = new javax.naming.InitialContext();

javax.sql.DataSource dataSource = (javax.sql.DataSource)ctx.lookup

(“java:comp/env/jdbc/LocalFirstDataSource”);

java.sql.Connection conn = dataSource.getConnection();

Type. There are several different types of resources that can be defined in the
Deployment Descriptor. DataSources are probably the most widely used.

Authentication. Can be set to wither container or application.

Summary

In this chapter we looked at the development steps necessary to create Enterprise Java-
Beans that are compliant with the EJB 1.1 specification. JBuilder employs the use of
wizards to generate the Home, Remote, and Bean classes for both Session Beans and
Entity Beans. In Chapter 20, “Developing EJB 2.x,” we not only see some of the new
technology features that are introduced in the updated EJB 2.0 specification, but we
also look at how JBuilder solves the problem of not being able to go back and use a wiz-
ard on existing code by using a new two-way EJB 2.0 Designer.

424 Chapter 19

425

As the EJB specification evolved, so did the tools used to create Enterprise JavaBeans.
One of the biggest changes introduced in the 2.0 version of the Enterprise JavaBean
specification was in the area of Entity Beans. With EJB 1.x development, JBuilder pro-
vided a series of wizards and code generators as well as a Deployment Descriptor Edi-
tor to help J2EE developers create their Enterprise applications. The limitation of this
RAD approach is true of all code-generation productivity wizards: What happens after
the code is initially generated?

One may think that using a UML design tool could help with creating Enterprise
JavaBeans, but this just does not seem to be true. To start, the relationships between the
Remote interface, Home interface, and the Bean implementation class itself are not
exactly represented by a “has a” or an “is a” relationship. It is actually the EJB container
that is responsible for managing the relationship between an Enterprise JavaBeans
Remote interface and the lifecycle of the implemented Bean class. This is also true of
the relationships between two Entity Beans. It is the column of the relational database
tables defined in the Deployment Descriptor that actually defines the nature of the
relationship between two Entity Beans. In fact, so much of the relationships between
Enterprise Beans are dependent on information in the Deployment Descriptor, it is
almost impossible to solely depend on a purely object-oriented class diagram based on
UML to manage the development of Enterprise JavaBeans within the J2EE framework.

Just as developers do not use UML modelers to create graphical user interfaces (for
instance, JFrame has a JPanel, JPanel has a JButton, JPanel has a JTextField, and so on),
it does not make sense for Enterprise Java developers to rely on UML modelers to
developer their Enterprise JavaBeans. Given the limitations of solely using code gener-
ators, and the limitations of depending on UML modelers to graphically develop
Enterprise JavaBeans, it is only natural that an EJB Designer was considered.

Developing EJB 2.x

C H A P T E R

20

This chapter looks at the following EJB technologies:

EJB 2.0 Designer. With the EJB Designer, developers can work on laying the
foundation that they will use to create their EJB applications. With Container-
Managed Persistence Entity Beans, the developer may never need to modify the
source code or the Deployment Descriptor outside of the Designer. With other
Enterprise JavaBeans like Session Beans, the two-way nature of the EJB 2.0
Designer will help make tedious modifications easier with the visual designer.

EJB Test Client. Once development has reached a point where it is time to test
the business logic that has been implemented in the various EJBs contained
within a given EJB module, the EJB Test Client can be used to generate the test
code necessary to evoke the various remote methods. JUnit can be used as a
testing framework.

EJB Deployment Descriptor. Most of the Deployment Descriptor edits are
now handled by the EJB Designer. The EJB module still owns the Deployment
Descriptor and other layout files that the Designer now uses.

DataSources. Accessing databases through the use of DataSources, the EJB
Designer can either generate design time schema definitions of existing databases
or use the fields of the various Entity Beans to create a new schema that can, in
turn, be used to generate the Data Definition Language to create a database.

EJB 2.0 Bean Designer

There are actually two ways to access the EJB 2.0 Bean Designer. From the Object
Gallery, you can select the new EJB 2.0 Designer wizard, which will prompt you for the
name of the existing EJB module that will contain EJB 2.0 Enterprise JavaBeans. If there
are no EJB modules in the project that are set to develop version EJB 2.0 Enterprise
JavaBeans, you can click on the New button to create one. You must first ensure that
the server that you have selected for the project is capable of supporting EJB 2.0.

It is not possible to change the version of EJBs that an EJB module was created to
develop after the EJB module was established. If an EJB 1.x module was created by
mistake, then a new EJB 2.0 module must be created. By default, when an EJB 2.0 mod-
ule is created, and the module is opened (by double-clicking on the module’s name in
the Project pane), the EJB 2.0 Bean Designer is open, even if you did not create an EJB
2.0 Bean Designer. This is the other way to access the EJB 2.0 Bean Designer: by creat-
ing one from the Object Gallery, or by creating a new EJB 2.0-compliant EJB module
and double-clicking on the EJB module name in the project pane. The two-way tool
nature of the various editors in the EJB Designer ensures that edits outside the
Designer are in sync with any changes or edits made within the Designer. The
EJB Designer is a graphical way to edit both the Java source code and the Deployment
Descriptor for each Enterprise Bean in the EJB module.

426 Chapter 20

Once the EJB 2.0 Bean Designer is open, you will notice a toolbar along the top of the
Designer (see Figure 20.1); there are technically no more wizards involved in the cre-
ation of EJB within that particular EJB module, at least not in the traditional sense of a
wizard. This is where you will begin to work with the Designer. Here you will Create,
Delete, and View the source code of EJBs as well as Create and Import Database
Schemas and Control Design Time views of the EJBs you are working on. Alternatively,
you can also right-mouse click anywhere within the EJB Designer, and a menu will pop
up, giving you access to the same functionality (see Figure 20.2).

Create EJB
You have the ability to create CMP or BMP Entity Beans, Session Beans, and Message
Driven Beans. The principle is the same, and except where there are specific differences
between the 1.1 and the 2.0 versions of the EJB specification, the generated source code
and deployment descriptor edits are basically the same. The added ability you now
have is that you can go back and modify the settings and properties you could only set
when the wizard was first used. Within the EJB Designer, you have the full two-way
tool capability to modify source and Designer.

Container Managed Persistence Entity Bean

There are two different types of Entity Beans. Container Managed Persistence (CMP) is
where the EJB container is responsible for generating all of the necessary Structured
Query Language (SQL) code used to persist the object’s attributes to the Java Database
Connectivity (JDBC) DataSource. Most often, it is the case that a given vendor’s CMP
engine is optimized to persist only the delta between the previous state of the Entity
Bean and the new state of the Entity Bean. CMP engines should also be optimized to
make the fewest remote procedure calls (RPCs).

With CMP Entity Beans, there are two basic design approaches to take. One is where
the attributes and class relationships are defined by an existing database table struc-
ture, and the other is where the attributes and class relationships define a new database
table structure. Deciding which way to go will determine how to utilize the EJB
Designer. If the CMP Entity Bean is to be developed first, then use the Designer’s tool-
bar or popup menu to create the Entity Bean. This will give you an empty shell to
which you can quickly add field and methods.

Figure 20.1 EJB Designer toolbar.

Developing EJB 2.x 427

Figure 20.2 EJB Designer popup menu.

Bean Properties

When you first create a new CMP Entity Bean, a Properties dialog will appear in the
Designer (see Figure 20.3), where you can edit configuration settings of the Bean at
design time. This is a change from the one-way wizards of EJB 1.1 development. Use
this dialog to enter the following information:

Bean name: <ejb-name>. This name is used by the Deployment Descriptor
and the EJB container. It has no meaning to the Java source code of the Home,
Remote, or Bean classes. This will be the name that is displayed in the Project
pane under the EJB module. Clicking on this name in the Project pane will bring
out the Deployment Descriptor Editor for the Bean. This name is also accessible
from the Classes and Packages dialog. You can also change this name on the
Classes and Packages dialog.

Abstract schema name. Defined for each Entity Bean, the value of the abstract
schema name must be unique within the ejb-jar file and therefore unique within
the Deployment Descriptor for a given EJB module. This name will be used in
the specification of EJB QL queries. Most likely, this name will be set to the same
name as the Bean name, but that is not a requirement.

Figure 20.3 CMP Entity Bean properties.

428 Chapter 20

Always wrap primary key. If there is only one field that makes up the Primary
Key for a given CMP Entity Bean, and that field is an implementation of an Object
class in the java.lang.* package (String, Double, Short, Long, Float, Integer, and
so on), you have the choice of using this class as the Primary Key class or having
the EJB Designer “wrap” the class in another class that has an implementation
of an object in the java.lang.* package as one of its properties. Setting this value
to true will force the creation of a new Primary Key class. Setting this value to
false will allow one of the Object classes in the java.lang.* package to be used as
the Primary Key class if only one field is used to make up the primary key.

Interfaces

With the introduction of EJB 2.0, the choice you make during development as to which
interface your Enterprise JavaBeans subscribe to affects the actual code you develop.
This architectural change that forces a developer to make a decision that should not be
made until deployment time is largely due to limitations in certain vendors’ commu-
nications layer. Beans that were co-located within the same Java Virtual Machine were
making remote procedure calls to each other. This decision will affect the interface
options that the methods and fields you implement can choose from as well as the gen-
erated classes that are named in the Classes and Packages dialog:

Remote. If the Enterprise JavaBeans you are developing are to be accessed by an
external client or other Enterprise JavaBeans running within a separate EJB con-
tainer running in a different partition or on a separate server, then you will want
to use the Remote interface.

Local. If the Enterprise JavaBeans you develop are to be accessed only by other
beans within the EJB container and are most likely packaged within the same
EJB archive file (therefore all part of the same EJB module), then you will want
to use the Local interface.

Local/Remote. If you are not sure, or if you are sure that your Enterprise JavaBean
will be accessed locally by other Enterprise JavaBeans co-located in the same
Java Virtual Machine as well as by clients and other Enterprise JavaBeans run-
ning in an external Java Virtual Machine, then you should select to support both
Local and Remote interfaces.

Classes and Packages

You can almost use the designer too much and forget that actual code is being gener-
ated and updated. You can initially set the Class and Package names of the generated
source code (see Figure 20.4). If you change this after developing and working on this
and other code within the project, and come back to change the classes and packages
for a particular JavaBean, you will most likely break some other piece of code. This
does not work as the UML refactoring works, nor does it work like a global search and
replace. What this will do is update both the source code and the Deployment Descrip-
tor, which is something that the UML refactoring cannot do. The Classes and Packages
options are as follows:

Developing EJB 2.x 429

Figure 20.4 CMP Entity Bean class definitions.

Default package. Although not necessary, it is a good idea to consider separating
Enterprise JavaBeans by business function or by implemented design pattern.
Each package name could contain groupings of related Enterprise Beans.

package com.wiley.mastering.jbuilder;

Bean name: <ejb-name>. This name is used by the Deployment Descriptor
and the EJB container. It has no meaning to the Java source code of the Home,
Remote, or Bean classes. This will be the name that is displayed in the Project
pane under the EJB module. Clicking on this name in the Project pane will bring
up the Deployment Descriptor Editor for the Bean. If you change the Bean name
here, it will also change the Bean name on the Beans Properties page.

Bean class: <ejb-class>. This is the Enterprise Bean class that the EJB container
will access to evoke the implemented application and business logic that the
Enterprise JavaBean developer has written. The EJB container also maintains
the lifecycle of this class.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

abstract public class FirstCMPEntityBean implements EntityBean {

EntityContext entityContext;

public java.lang.String ejbCreate(java.lang.String untitledField1)

throws CreateException {

setUntitledField1(untitledField1);

return null;

}

public void ejbPostCreate(java.lang.String untitledField1) throws

CreateException {

/**@todo Complete this method*/

}

public void ejbRemove() throws RemoveException {

/**@todo Complete this method*/

}

430 Chapter 20

public abstract void setUntitledField1(java.lang.String

untitledField1);

public abstract java.lang.String getUntitledField1();

public void ejbLoad() {

/**@todo Complete this method*/

}

public void ejbStore() {

/**@todo Complete this method*/

}

public void ejbActivate() {

/**@todo Complete this method*/

}

public void ejbPassivate() {

/**@todo Complete this method*/

}

public void unsetEntityContext() {

this.entityContext = null;

}

public void setEntityContext(EntityContext entityContext) {

this.entityContext = entityContext;

}

}

Home interface class: <home>. This class defines all the methods to create,
remove, and find Enterprise JavaBeans. Clients that want to access the Enter-
prise Bean class must first obtain a reference to its Home Interface class. The
client, through a standard Java naming and directory lookup using the defined
JNDI name, can discover the Home interface.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

import java.rmi.*;

public interface FirstCMPEntityRemoteHome extends javax.ejb.EJBHome {

public FirstCMPEntityRemote create(String untitledField1) throws

CreateException, RemoteException;

public FirstCMPEntityRemote findByPrimaryKey(FirstCMPEntityBeanPK

pk) throws FinderException, RemoteException;

}

Local home interface class. A major difference between the EJB 1.x and the EJB
2.x specification is in the area of Local versus Remote classes. Local Home Inter-
face classes are accessed only by other Enterprise JavaBeans within the same
deployed JAR and therefore are managed by the same EJB container.

Developing EJB 2.x 431

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

public interface FirstCMPEntityHome extends javax.ejb.EJBLocalHome {

public FirstCMPEntity create(String untitledField1) throws

CreateException;

public FirstCMPEntity findByPrimaryKey(String untitledField1) throws

FinderException;

}

Remote interface class: <remote>. This class defines the methods that are acces-
sible to the calling client. Clients do not access Enterprise Bean classes directly.
Where this gets a bit confusing is when you notice that the Enterprise Bean class
does not implement the Remote Interface class. It is easy to see the relationship
between the Home and Remote interfaces. It is the responsibility of the EJB con-
tainer to delegate access to the Enterprise Bean class via the Remote Interface
class that the client is using. Clients do not communicate directly with the Enter-
prise Bean class; clients communicate with the EJB container.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

import java.rmi.*;

public interface FirstCMPEntityRemote extends javax.ejb.EJBObject {

public String getUntitledField1() throws RemoteException;

}

Local interface class. A major difference between the EJB 1.x and the EJB 2.x
specifications is in the area of Local versus Remote classes. Local Interface
classes are accessed only by other Enterprise JavaBeans within the same
deployed JAR and therefore are managed by the same EJB container.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

public interface FirstCMPEntity extends javax.ejb.EJBLocalObject {

public String getUntitledField1();

}

Primary key class. When developing a CMP Entity Bean, a Primary Key class
will be created if more than one field is set as being part of the Primary Key, or
if you have decided to always wrap the Primary Key in the Bean properties.
The Primary Key is to be created by the client and passed in to the findBy-
PrimaryKey() method of the Entity Bean’s Home interface. The Primary Key is
typically a combination of fields that can uniquely identify a single instance of
the Entity Bean. If a database is used, the field or fields that make up the Primary

432 Chapter 20

Key for the Entity Bean are likely the same database table columns that make up
the Primary Key or Index for that table. Just as important as it is that the field or
combination of fields results in a unique combination, it is important that the
equals() and hashCode() methods of the Primary Key Class function properly:

package com.wiley.mastering.jbuilder;

import java.io.*;

public class FirstCMPEntityBeanPK

implements Serializable {

public String untitledField1;

public FirstCMPEntityBeanPK() {

}

public FirstCMPEntityBeanPK(String untitledField1) {

this.untitledField1 = untitledField1;

}

public boolean equals(Object obj) {

if (obj != null) {

if (this.getClass().equals(obj.getClass())) {

FirstCMPEntityBeanPK that = (FirstCMPEntityBeanPK) obj;

return (((this.untitledField1 == null) &&

(that.untitledField1 == null)) ||

(this.untitledField1 != null &&

this.untitledField1.equals(that.untitledField1)));

}

}

return false;

}

public int hashCode() {

return untitledField1.hashCode();

}

}

Inheritance

Similar to the Base class of the 1.x Java Bean wizard, this allows the developer to extend
the Bean Class from an existing implementation or abstract class. Because the Enter-
prise JavaBean, represented by the preceding Bean class, is an implementation of an
existing javax.ejb.EntityBean, or javax.ejb.SessionBean interface, developers are free to
extend preexisting classes. By clicking on the ellipses, the Find Classes dialog will
appear to allow the developer to either browse or search the project’s classpath for a
particular class to extend. In all cases, the remote interface code that is generated will
extend javax.ejb.EJBObject and is initially identical code regardless of the option
selected. This is also true for the Home interface, which extends javax.ejb.EJBHome.

Developing EJB 2.x 433

CMP Properties

Container Managed Persistence Entity Beans have additional properties that are con-
figured in the Deployment Descriptor and that instruct the EJB container how to man-
age the individual CMP Entity Beans. These properties are specific to each server. How
these properties are configured can affect the behavior and performance of the EJB
container.

Table References

Each CMP Entity Bean will have a primary table that is used to map its attributes for
persistence. If you are creating the CMP Entity Bean first, you can edit the table name
to be the table name that will be used when the Schema is generated. Once the Schema
is generated, you can produce the Data Definition Language (DDL) that will have all of
the SQL needed to create the necessary tables to support the CMP Entity Beans you
have created in the Designer. Before you use a table reference, you must first define a
table name. You have two choices: You can either create a separate CMP Entity Bean
and establish a relationship between the two Entity Beans, or you can add a table ref-
erence to an existing CMP Entity Bean and establish a table reference to make the
columns of the referenced table accessible to the persisted fields of the first CMP Entity
Bean. You can add tables to the table references list, and their columns will become
available on the individual field’s drop-down list of column name choices. When you
do add a new table to the Reference table list (see Figure 20.5), a dialog will pop up ask-
ing which fields in the corresponding database tables are to use to link the two tables
together. This is the same mechanism that is used when establishing relationships
between two different CMP Entity Beans.

Figure 20.5 Table references.

434 Chapter 20

Bean Managed Persistence Entity Bean

As mentioned, there are two different types of Entity Beans; Bean Managed Persistence
(BMP) is where the Entity Bean developer is responsible for writing all of the JDBC
code necessary to persist the attributes of a given Entity Bean. Once you start develop-
ing BMP Entity Beans, you will most likely start identifying some utility classes, per-
haps as simple as requesting a DataSource from a connection pool, and you will
eventually begin to realize that much of the BMP code you write is very repetitive and
similar. You will look for patterns in your BMP code style and try to abstract out certain
responsibilities to your ever-increasing BMP utility class framework to make BMP
development a little easier.

Once you begin deploying your BMP Entity Beans, performance will become an
issue. You will also start looking for areas of your reusable BMP utility class framework
to enhance the overall performance of your persistence logic. Eventually your BMP
persistence solution will very closely resemble a CMP engine. This is not to say that
there are not any good reasons to use BMP Entity Beans.

If you do decide to switch from a Container Managed Persistence Entity Bean to a
Bean Managed Persistence Entity Bean by changing the persistence type on the Gen-
eral tab of the Deployment Descriptor Editor for the Entity Bean, all of the CMP 2.0
edits that were applied to the Deployment Descriptor (containing the object-to-
relational mapping data for each of the fields) will be lost.

Bean Properties

Bean Managed Persistence Entity Beans have a similar look to them when compared to
Container Managed Persistence Entity Beans. Because most of the work of persisting
the fields of the BMP Entity Bean is the responsibility of the developer and not the EJB
container, you need to set less information when developing BMP Entity Beans. This is
apparent in the Designer by the decrease in the number of properties that exist. You can
modify the following properties from within the EJB Designer:

Bean name: <ejb-name>. This name is used by the Deployment Descriptor
and the EJB container. It has no meaning to the Java source code of the Home,
Remote, or Bean classes. This will be the name that is displayed in the Project
pane under the EJB module. Clicking on this name in the Project pane will bring
out the Deployment Descriptor Editor for the Bean. This name is also accessible
from the Classes and Packages dialog. You can also change this name in the
Classes and Packages dialog.

Always wrap primary key. Just as with CMP Entity Beans, JBuilder can generate
the Primary Key class for Bean Managed Persistence Entity Beans. This makes
sense because the format of the generated code of the Primary Key is based
solely on the fields that make up the Entity Bean and are not dependent on the
Deployment Descriptor of the EJB container. As with CMP Entity Beans, if there
is only one field that makes up the Primary Key for a given BMP Entity Bean,

Developing EJB 2.x 435

and if that field is an implementation of an Object class in the java.lang package
(String, Double, Short, Long, Float, Integer, etc.), you have the choice of using
this class as the Primary Key class or having the EJB Designer “wrap” the class
in another class that has an implementation of an Object in the java.lang pack-
age as one of its properties. Setting this value to true will force the creation of a
new Primary Key class. Setting this value to false will allow one of the Object
classes in the java.lang package to be used as the Primary Key class if only one
field is used to make up the Primary Key.

Interfaces

With the introduction of EJB 2.0, the choice you make at development time as to which
interface your Enterprise JavaBeans subscribe to has an impact on the actual code you
develop. This architectural change that forces a developer to make a decision that
should not be made until deployment time is largely due to limitations in certain ven-
dors’ communications layer. Beans that were co-located within the same Java Virtual
Machine were making remote procedure calls to each other. This decision will affect
the interface options that the methods and fields you implement can choose from as
well as the generated classes that are named in the Classes and Packages dialog:

Remote. If the Enterprise JavaBeans you are developing are to be accessed by an
external client or other Enterprise JavaBeans running within a separate EJB con-
tainer running in a different partition or on a separate server, then you will want
to use the Remote interface.

Local. If the Enterprise JavaBeans you develop are to be accessed only by other
beans within the EJB container and are most likely packaged within the same
EJB Archive file (therefore all are part of the same EJB module), then you will
want to use the Local interface.

Local/Remote. If you are not sure, or if you are sure that your Enterprise Java-
Bean will be accessed locally by other Enterprise JavaBeans co-located in the
same Java Virtual Machine as well as by clients and other Enterprise JavaBeans
running in an external Java Virtual Machine, then you should select to support
both Local and Remote interfaces.

Classes and Packages

You can almost use the Designer too much and forget that actual code is being gener-
ated and updated. You can initially set the Class and Package names of the generated
source code. If you change this after developing and working on this and other code
within the project, and if you come back to change the classes and packages for a par-
ticular JavaBean, you will most likely break some other piece of code. This does not
work as the UML refactoring works, nor does it work like a global search and replace.
What this will do is update both the source code and the Deployment Descriptor,
which is something that the UML refactoring cannot do. The Classes and Packages
options are as follows:

436 Chapter 20

Default package. Although not necessary, it is a good idea to consider separating
Enterprise JavaBeans by business function or by implemented design pattern.
Each package name could contain groupings of related Enterprise Beans.

package com.wiley.mastering.jbuilder;

Bean name: <ejb-name>. This name is used by the Deployment Descriptor and
the EJB container. It has no meaning for the Java source code of the Home,
Remote, or Bean classes. This will be the name that is displayed in the Project
pane under the EJB module. Clicking on this name in the Project pane will bring
up the Deployment Descriptor Editor for the Bean. If you change the Bean name
here, it will also change the Bean name on the Beans Properties page.

Bean class: <ejb-class>. This is the Enterprise Bean Class that the EJB container
will access to evoke the implemented application and business logic that the
Enterprise JavaBean developer has written. The EJB container also maintains
the lifecycle of this class.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

public class FirstBMPEntityBean implements EntityBean {

EntityContext entityContext;

java.lang.String untitledField1;

public java.lang.String ejbCreate() throws CreateException {

return null;

}

public void ejbPostCreate() throws CreateException {

/**@todo Complete this method*/

}

public void ejbRemove() throws RemoveException {

/**@todo Complete this method*/

}

public java.lang.String getUntitledField1() {

return untitledField1;

}

public java.lang.String ejbFindByPrimaryKey(java.lang.String

untitledField1) throws FinderException {

/**@todo Complete this method*/

return null;

}

public void ejbLoad() {

/**@todo Complete this method*/

}

public void ejbStore() {

/**@todo Complete this method*/

}

public void ejbActivate() {

}

Developing EJB 2.x 437

public void ejbPassivate() {

}

public void unsetEntityContext() {

this.entityContext = null;

}

public void setEntityContext(EntityContext entityContext) {

this.entityContext = entityContext;

}

}

Home interface class: <home>. This class defines all the methods to create,
remove, and find Enterprise JavaBeans. Clients that want to access the Enter-
prise Bean class must first obtain a reference to its Home Interface class. The
client, through a standard Java naming and directory lookup using the defined
JNDI name, can discover the Home interface.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

import java.rmi.*;

public interface FirstBMPEntityRemoteHome extends javax.ejb.EJBHome {

public FirstBMPEntityRemote create() throws CreateException,

RemoteException;

public FirstBMPEntityRemote findByPrimaryKey(String untitledField1)

throws FinderException, RemoteException;

}

Local home interface class. A major difference between the EJB 1.x and the EJB
2.x specification is in the area of Local versus Remote classes. Local Home Inter-
face classes are accessed only by other Enterprise JavaBeans within the same
deployed JAR and therefore are managed by the same EJB container.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

public interface FirstBMPEntityHome extends javax.ejb.EJBLocalHome {

public FirstBMPEntity create() throws CreateException;

public FirstBMPEntity findByPrimaryKey(String untitledField1) throws

FinderException;

}

Remote interface class: <remote>. This class defines the methods that are acces-
sible to the calling client. Clients do not access Enterprise Bean classes directly.
Where this gets a bit confusing is when you notice that the Enterprise Bean class
does not implement the Remote Interface class. It is easy to see the relationship
between the Home and Remote interfaces. It is the responsibility of the EJB con-
tainer to delegate access to the Enterprise Bean class via the Remote Interface

438 Chapter 20

class that the client is using. Clients do not communicate directly with the Enter-
prise Bean class; clients communicate with the EJB container.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

import java.rmi.*;

public interface FirstBMPEntityRemote extends javax.ejb.EJBObject {

public String getUntitledField1() throws RemoteException;

}

Local interface class. A major difference between the EJB 1.x and the EJB 2.x
specification is in the area of Local versus Remote classes. Local Interface classes
are accessed only by other Enterprise JavaBeans within the same deployed JAR
and therefore are managed by the same EJB container.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

public interface FirstBMPEntity extends javax.ejb.EJBLocalObject {

public String getUntitledField1();

}

Primary key class. When developing a CMP Entity Bean, a Primary Key class
will be created if more than one field is set as being part of the Primary Key, or
if you have decided to always wrap the Primary Key in the Bean properties. The
Primary Key is to be created by the client and passed in to the findByPrimary-
Key() method of the Entity Bean’s Home interface. The Primary Key is typically
a combination of fields that can uniquely identify a single instance of the Entity
Bean. If a database is used, the field or fields that make up the Primary Key for
the Entity Bean are likely the same database table columns that make up the
Primary Key or Index for that table. Just as important as it is that the field or
combination of fields results in a unique combination, it is important that the
equals() and hashCode() methods of the Primary Key class function properly.

package com.wiley.mastering.jbuilder;

import java.io.*;

public class FirstBMPEntityBeanPK

implements Serializable {

public String untitledField1;

public FirstBMPEntityBeanPK() {

}

public FirstBMPEntityBeanPK(String untitledField1) {

Developing EJB 2.x 439

this.untitledField1 = untitledField1;

}

public boolean equals(Object obj) {

if (obj != null) {

if (this.getClass().equals(obj.getClass())) {

FirstBMPEntityBeanPK that = (FirstBMPEntityBeanPK) obj;

return (((this.untitledField1 == null) &&

(that.untitledField1 == null)) ||

(this.untitledField1 != null &&

this.untitledField1.equals(that.untitledField1)));

}

}

return false;

}

public int hashCode() {

return untitledField1.hashCode();

}

}

Inheritance

Similar to the Base Class of the 1.x Java Bean wizard, this allows the developer to
extend the Bean Class from an existing implementation or abstract class. Because the
Enterprise JavaBean, represented by the preceding Bean class is an implementation of
an existing javax.ejb.EntityBean, or javax.ejb.SessionBean interface, developers are free
to extend preexisting classes. By clicking on the ellipses, the Find Classes dialog will
appear to allow the developer to either browse or search the project’s classpath for a
particular class to extend. In all cases, the generated remote interface code that is gen-
erated will extend javax.ejb.EJBObject and is initially identical code regardless of the
option selected. This is also true for the Home interface, which extends javax.ejb
.EJBHome.

Session Bean

The only real difference between Stateful and Stateless is actually in the Deployment
Descriptor. The generated source code for both Session Beans is the same. Left-clicking
on the Session Bean in the Designer will bring up the Bean Properties Editor.

Bean Properties

The Bean Properties for the Session Bean (see Figure 20.6) affect not only the Java
source code but also the Deployment Descriptor for the Session Bean being edited. The
two-way tool nature of the Bean Properties Editor in the EJB Designer ensures that
edits outside of the Designer are in sync with any changes or edits made within the
Designer.

440 Chapter 20

Figure 20.6 Session Bean properties.

The Bean name (<ejb-name>) is used by the Deployment Descriptor and the EJB
container. It has no meaning to the Java source code of the Home, Remote, or Bean
classes. This will be the name that is displayed in the Project pane under the EJB mod-
ule. Clicking on this name in the Project pane will bring out the Deployment Descrip-
tor Editor for the Bean. This name is also accessible from the Classes and Packages
dialog.

Interfaces

With the introduction of EJB 2.0, the choice you make at development time as to which
interface your Enterprise JavaBeans subscribe to has an impact on the actual code you
develop. This architectural change that forces a developer to make a decision that
should not be made until deployment time is largely due to limitations in certain ven-
dors’ communications layer. Beans that were co-located within the same Java Virtual
Machine were making remote procedure calls to each other. This decision will affect
the interface options that the methods and fields you implement can choose from as
well as the generated classes that are named in the Classes and Packages dialog,
including the following:

Remote. If the Enterprise JavaBeans you are developing are to be accessed by an
external client or other Enterprise JavaBeans running within a separate EJB con-
tainer running in a different partition or on a separate server, then you will want
to use the Remote interface.

Local. If the Enterprise JavaBeans you develop are to be accessed only by other
beans within the EJB container and are most likely packaged within the same
EJB Archive file (therefore all are part of the same EJB module), then you will
want to use the Local interface.

Local/Remote. If you are not sure, or if you are sure that your Enterprise Java-
Bean will be accessed locally by other Enterprise JavaBeans co-located in the
same Java Virtual Machine as well as by clients and other Enterprise JavaBeans
running in an external Java Virtual Machine, then you should select to support
both Local and Remote interfaces.

Developing EJB 2.x 441

Stateful or Stateless

The appropriate use of Stateful Session Beans seems to differ depending on what it is
you want to accomplish. With Stateless Session Beans, you are not guaranteed that two
successive calls, even from the same client, are going to evoke the same instance. It is
the responsibility of the EJB container to determine how to best allocate resources and
respond to incoming requests. With Stateful Session Beans, successive calls from the
same client are guaranteed to evoke the same instance as long as the remote reference
is maintained. Once the remote reference goes out of scope, the instance of the Stateful
Session Bean is lost. Use the EJB Designer to select and set the following information:

Session type. This is where you choose between a Stateful and a Stateless Session
Bean. If a Stateful Session Bean is chosen, the Session Synchronization edit field
will be enabled.

Session synchronization. Only Stateful Session Beans should consider imple-
menting the javax.ejb.SessionSynchronization interface. Likewise, this should
also be considered only where container managed transactions are being used.
This will add an afterBegin(), beforeCompletion(), and afterCompletion()
method to the Enterprise Bean class. The intention of this interface is to give the
Enterprise JavaBean developer the ability to perform work just after a transac-
tion has begun, just before it is to complete, and after it has completed.

public void afterBegin() {

}

The afterBegin() method will be evoked sometime shortly after a new transac-
tion has been started and before the first business method is called. This method
is executed within the scope of the transactional context.

public void beforeCompletion() {

}

The beforeCompletion() method will be evoked sometime shortly after the last
business method is evoked and just prior to the transaction being committed.
Like the afterBegin() method, this method is also executed within the scope of
the transactional context.

public void afterCompletion(boolean committed) {

}

The afterCompletion() method will be evoked after the transaction has com-
pleted. If the transaction was successful, the value of the committed parameter
will be true. If the transaction was not successful, the value will be false.

Transaction type. This can be set to either Bean or Container. The default value is
Container. It is also assumed that, if implementing the SessionSynchronization
interface in Stateful Session Beans, container managed transactions are used. If
Bean managed transactions are desired, then the Session Bean developer is
responsible for creating an instance of a javax.transaction.UserTransaction and
managing the transaction programmatically. A third option would be for the
calling client to create the usertransaction and handle the transactional program-
ming from the client side.

442 Chapter 20

Classes and Packages

The default package is not necessary, but it is a good idea to consider separating Enter-
prise JavaBeans by business function or by implemented design pattern. Each package
name could contain groupings of related Enterprise Beans.

package com.wiley.mastering.jbuilder;

The Bean name (<ejb-name>) is used by the Deployment Descriptor and the EJB
container. It has no meaning to the Java source code of the Home, Remote, or Bean
classes. This will be the name that is displayed in the Project pane under the EJB mod-
ule. Clicking on this name in the Project pane will bring out the Deployment Descrip-
tor Editor for the Bean. If you change the Bean name here, it will also change the Bean
name on the Beans Properties page.

The Bean class (<ejb-class>) is the Enterprise Bean class that the EJB container will
access to evoke the implemented application and business logic that the Enterprise
JavaBean developer has written. The EJB container also maintains the lifecycle of this
class.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

public class FirstStatelessSessionBean implements SessionBean {

SessionContext sessionContext;

public void ejbCreate() throws CreateException {

/**@todo Complete this method*/

}

public void ejbRemove() {

/**@todo Complete this method*/

}

public void ejbActivate() {

/**@todo Complete this method*/

}

public void ejbPassivate() {

/**@todo Complete this method*/

}

public void setSessionContext(SessionContext sessionContext) {

this.sessionContext = sessionContext;

}

}

The Home Interface class (<home>) defines all the methods to create, remove, and
find Enterprise JavaBeans. Clients that want to access the Enterprise Bean class must
first obtain a reference to its Home Interface class. The client, through a standard Java
naming and directory lookup using the defined JNDI name, can discover the Home
interface.

Developing EJB 2.x 443

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

import java.rmi.*;

public interface FirstStatelessSessionHome extends javax.ejb.EJBHome {

public FirstStatelessSession create() throws CreateException,

RemoteException;

}

A major difference between the EJB 1.x and the EJB 2.x specification is in the area of
Local versus Remote classes. Local Home Interface classes are accessed only by other
Enterprise JavaBeans within the same deployed JAR and therefore are managed by the
same EJB container.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

import untitled22.*;

public interface FirstStatelessSessionLocalHome extends

javax.ejb.EJBLocalHome {

public FirstStatelessSessionLocal create() throws CreateException;

}

The Remote Interface class (<remote>) defines the methods that are accessible to the
calling client. Clients do not access Enterprise Bean classes directly. Where this gets a
bit confusing is when you notice that the Enterprise Bean class does not implement the
Remote Interface class. It is easy to see the relationship between the Home and Remote
interfaces. It is the responsibility of the EJB container to delegate access to the Enter-
prise Bean class via the Remote Interface class that the client is using. Clients do not
communicate directly with the Enterprise Bean class; clients communicate with the EJB
container.

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

import java.rmi.*;

public interface FirstStatelessSession extends javax.ejb.EJBObject {

}

A major difference between the EJB 1.x and the EJB 2.x specification is in the area of
Local versus Remote classes. Local Interface classes are accessed only by other Enter-
prise JavaBeans within the same deployed JAR and therefore are managed by the same
EJB container.

444 Chapter 20

package com.wiley.mastering.jbuilder;

import javax.ejb.*;

import java.util.*;

public interface FirstStatelessSessionLocal extends

javax.ejb.EJBLocalObject {

}

Inheritance

Similar to the Base class of the 1.x Java Bean wizard, this allows the developer to extend
the Bean class from an existing implementation or abstract class. Because the Enterprise
JavaBean, represented by the preceding Bean class, is an implementation of an existing
javax.ejb.EntityBean, or javax.ejb.SessionBean interface, developers are free to extend
preexisting classes. By clicking on the ellipses, the Find Classes dialog will appear to
allow the developer to either browse or search the project’s classpath for a particular
class to extend. In all cases, the generated remote interface code that is generated will
extend javax.ejb.EJBObject and is initially identical code regardless of the option
selected. This is also true for the Home interface, which extends javax.ejb.EJBHome.

Import Enterprise JavaBeans
Assuming that there is additional EJB source code in your project’s source path that is
not already part of the existing EJB module that you are working with, you can add
EJBs to the Designer and therefore to the EJB module without having to create a new
Enterprise JavaBean. Using the dialog that is provided (see Figure 20.7), you can use
the class browser to search for the Bean class, and Remote and Home Interface classes
as well as the following:

Bean name: <ejb-name>. This name is used by the Deployment Descriptor
and the EJB container. It has no meaning to the Java source code of the Home,
Remote, or Bean classes. This will be the name that is displayed in the Project
pane under the EJB module. Clicking on this name in the Project pane will bring
out the Deployment Descriptor Editor for the Bean. If you change the Bean
name here, it will also change the Bean name on the Beans Properties page.

Bean type. You must specify what type of Enterprise JavaBean is being imported
so that the necessary Deployment Descriptor fields can be created. You can choose
CMP 2.0, BMP, Session, or Message-Driven.

Bean class: <ejb-class>. This is the Enterprise Bean class that the EJB container
will access to evoke the implemented application and business logic that the
Enterprise JavaBean developer has written. The EJB container also maintains
the lifecycle of this class.

Home interface class: <home>. This class defines all the methods to create,
remove, and find Enterprise JavaBeans. Clients that want to access the Enter-
prise Bean class must first obtain a reference to its Home Interface class. The

Developing EJB 2.x 445

client, through a standard Java naming and directory lookup using the defined
JNDI name, can discover the Home interface.

Local home interface class. A major difference between the EJB 1.x and the EJB
2.x specification is in the area of Local versus Remote classes. Local Home Inter-
face classes are accessed only by other Enterprise JavaBeans within the same
deployed JAR and therefore are managed by the same EJB container.

Remote interface class: <remote>. This class defines the methods that are acces-
sible to the calling client. Clients do not access Enterprise Bean classes directly.
Where this gets a bit confusing is when you notice that the Enterprise Bean class
does not implement the Remote Interface class. It is easy to see the relationship
between the Home and Remote interfaces. It is the responsibility of the EJB con-
tainer to delegate access to the Enterprise Bean class via the Remote Interface
class that the client is using. Clients do not communicate directly with the Enter-
prise Bean class; clients communicate with the EJB container.

Local interface class. A major difference between the EJB 1.x and the EJB 2.x
specification is in the area of Local versus Remote classes. Local Interface classes
are accessed only by other Enterprise JavaBeans within the same deployed JAR
and therefore are managed by the same EJB container.

Primary key class. When developing a CMP Entity Bean, a Primary Key class
will be created if more than one field is set as being part of the Primary Key, or
if you have decided to always wrap the Primary Key in the Bean properties.
The Primary Key is to be created by the client and passed in to the findBy-
PrimaryKey() method of the Entity Bean’s Home interface. The Primary Key is
typically a combination of fields that can uniquely identify a single instance of
the Entity Bean. If a database is used, the field or fields that make up the Primary
Key for the Entity Bean are likely the same database table columns that make up
the Primary Key or Index for that table. Just as important as it is that the field or
combination of fields result in a unique combination, it is important that the
equals() and hashCode() methods of the Primary Key class function properly.

Figure 20.7 Import EJB dialog.

446 Chapter 20

Delete Selected Enterprise JavaBeans
Inside of the EJB Designer, you can select one or several enterprise JavaBeans. You will
be able to tell which Enterprise JavaBeans have been selected based on the color of the
border. If your JBuilder settings are still set to the default, a black border signifies an
Enterprise JavaBean that is not selected, and a red border signifies an Enterprise Java-
Bean that is selected. You can delete EJBs from the Designer and from the EJB module
in this manner. When you delete a selected EJB, this not only removes the selected EJB
from the EJB module, it also deletes the associated source code from the project’s
source path.

Adding Methods and Fields
Once you have created your Enterprise JavaBean, you will want to start working on it
by adding methods, fields, and ejbCreate methods, as well as establishing relation-
ships with other CMP Entity Beans and developing Finder methods to help locate spe-
cific instances of an Entity Bean or collections of related Entity Beans. Most of the
editors for each of the Enterprise JavaBeans are the same.

Add and Delete Methods

Typically most business methods would be added to Session Beans, and Session Beans
will be used as Facades to access Entity Beans. The properties of the method (see Fig-
ure 20.8) are as follows:

Method name. This is the name of the method.

Return type. You can use the class browser to select the Object class that will be
the return type for this method.

Input parameters. Type out the parameter list as it would appear in the Java
source code. For instance, if you were to pass in a String with a handle named
param1, you would type java.lang.String param1. If you have multiple input
parameters, separate them with a comma, just as you would when directly
editing the source code.

Interface. If the Enterprise JavaBean is only local or only remote, you can choose
between none or either Local or Remote interfaces.

Figure 20.8 Method Editor.

Developing EJB 2.x 447

Add and Delete Fields

You should be adding fields to CMP Entity Beans only if you have created the CMP
Entity Bean prior to creating the database table, or if you are adding a table reference
to an existing CMP Entity Bean that was generated from an existing database table’s
DataSource information. It is important that either the table name and/or the table ref-
erence has been established that contains the database column to which this field is to
be persisted. The properties of the fields (see Figure 20.9) are as follows:

Field name. This will be the name of the field. When using the BeansExpress
Properties wizard to develop Java Beans and EJB 1.x Entity Beans, it became
customary to use a lowercase alpha character to begin the name of a given field.

Type. Any class can be used as the type for the field, but remember that the CMP
engine must map the field to a corresponding database field type.

Is persisted. This property is not accessible if the field is part of the Primary Key.
There must be at least one field in a CMP Entity Bean, and at least one field
must be used in the Primary Key. All Primary Key fields must be persisted. This
property is visible only for CMP Entity Beans.

Is primary key. If only one field is a Primary Key, then it could be the Primary
Key class as well. If multiple fields comprise the Primary Key, then all fields will
be wrapped into a single class that will be the Primary Key class for the CMP
Entity Bean. If you have elected to always wrap the Primary Key in the Bean
Properties, then a separate Primary Key class will be created even if just one
field is a Primary Key field. Once a field is set to be part of the Primary Key, it
must be set as a persisted field. This property is visible for Entity Beans.

In ejbCreate(). Entity Beans can have several ejbCreate() methods. Typically
these methods vary by the number of parameters they accept. Most likely all
parameters that are passed into an Entity Beans Create Statement map to one of
the fields of the Entity Bean. This property is visible for Entity Beans.

Getters and Setters. Here you can determine if an Entity Bean’s fields are read
only or have write access to the client that is using them. You can further refine
access to an Entity Bean’s fields by having only the Local interface allow write
access, while the Remote interface has only read access.

Column name. Each field in a CMP Entity Bean maps back to a column in a rela-
tional database table. This property is visible only for CMP Entity Beans.

Figure 20.9 Entity Bean Field Editor.

448 Chapter 20

Figure 20.10 ejbCreate Method Editor.

Add and Delete ejbCreate() Methods

Not all Enterprise JavaBeans need to be created the same way. It is possible to overload
the ejbCreate() method and provide several distinctly different ways of creating the
same class of Enterprise JavaBean. Creating ejbCreate() methods is very similar to
creating any other method, except that ejbCreate() methods do not have return types.
Session Beans can have only one ejbCreate method, whereas Entity Beans can have
several. The properties of the ejbCreate() method (see Figure 20.10) are as follows:

Method name. Because you are creating multiple ejbCreate() methods for an
Entity Bean, you should enter a unique method name.

Input parameters. Type out the parameter list as it would appear in the Java
source code. For instance, if you were to pass in a String with a handle named
param1, you would type java.lang.String param1. If you have multiple input
parameters, separate them with a comma just as you would when directly
editing the source code.

Home interface. If you have chosen to support both Local and Remote interfaces,
you can choose between including the ejbCreate() method on the local home, the
remote home, or both.

Add and Delete Finder Methods

All Entity Beans can be found by their Primary Keys. By default, a findByPrimaryKey()
method will be added to each Entity Bean. You can control which fields are used in the
findByPrimaryKey() method by making that field part of the Primary Key. The find-
ByPrimaryKey() is meant to produce a unique result and therefore will return a single
instance of the Entity Bean. If you would like to return a collection of Entity Beans that
all share a similar characteristic, then you can create a specific finder method (see Fig-
ure 20.11) for that purpose. The following finder information can be modified from
within the EJB Designer:

Finder name. This is the method name for the Finder.

Return type. For Finder methods, the return type is either a bean instance or a
java.util.Collection. The Container will return several Entity Beans based on the
input parameter, or the container will return a single instance. If the Query that
is used does not return a single instance, and if the return type is set to return a
bean instance, then the EJB container will most likely return the first bean
instance that the query provides.

Developing EJB 2.x 449

Figure 20.11 Finder Method Editor.

Input parameters. Type out the parameter list as it would appear in the Java
source code. For instance, if you were to pass in a String with a handle named
param1, you would type java.lang.String param1. If you have multiple input
parameters, separate them with a comma, just as you would when directly edit-
ing the source code.

If you decide to use the refactoring tool to change the parameters that are being
passed into the method you have created, you will notice that its interface has
been modified to none in the EJB Designer. You will need to reset the Interface
setting and regenerate interfaces. You will also have to ensure that all of the
code successfully builds. This includes successfully creating a JAR file and pass-
ing the verify test. If you do not wish to build a JAR and verify that JAR each
time you build the project’s source code, you can change the EJB module’s prop-
erties. If the project does not build successfully, the refactor will fail. If the build
does complete successfully, you will see the following in the Message view:

WARNING: You are refactoring an EJB file. This may require that you

change some source code and the deployment descriptor by hand. We

recommend using the EJB Designer for most refactoring scenarios.

Home interface. Depending on whether the Entity Bean supports Local, Remote,
or both interfaces, you may or may not have a choice to make here. If only a
Local interface is supported by this Entity Bean, then only Local will be a choice.
If both Local and Remote interfaces are supported, then you will be able to
choose between Local, Remote, or both interfaces. This allows the developer to
create Finder methods that are accessible only by local Enterprise JavaBeans and
separate Finder methods that are accessible only remotely.

Query. This is where you type in the Enterprise JavaBean Query Language
statement.

Add and Delete Relationships

Unique to CMP Entity Beans, rather than create a reference table that will allow you to
expose the columns of other tables as attributes of a given Entity Bean, you may want
that second table to have its own Entity Bean that can be accessed independently.
In this case, you would want to create a relationship between the two Entity Beans. To
create a relationship, right-click on the Bean that you want to create the relationship
for (see Figure 20.12), and drag the mouse to the Entity Bean with which you want to
create the relationship.

450 Chapter 20

Figure 20.12 CMP relationships.

View Bean Source
This will take you to the Java source code of the Bean class itself. This Bean class is
where you will implement any specific code for the methods that you have added to
the Bean. You should be able to manage the Home and Remote interfaces through the
Designer, and you should rarely have to edit their source code directly. If you make
changes to the Bean class, you may need to regenerate the Bean’s Interface classes.

Regenerate Interfaces
If you have made significant changes to the Enterprise JavaBean by directly editing the
source code of the Bean class, you may forget to make all of the necessary changes to
the related Interface classes as well. And because there is no direct relationship
between a Bean class and its Remote or Home Interface classes, a rebuild of the project
may not catch this discrepancy, especially if you are not always creating the JAR file
when building the project or if you have elected not to verify compliance after build-
ing JAR in the properties of the EJB module.

Views
Views do not directly affect either the Java code or the Deployment Descriptor. Views
are a way to organize the EJBs that are part of an EJB module. If there are more than 10
to 20 EJBs in a single module, the EJB Designer could get a little complicated. The EJB
designer is not like a UML view; you will be able to see all the EJBs of a given EJB mod-
ule, regardless of class or package. The commonality between the EJBs from the
designer’s point of view is the Deployment Descriptor.

You may want to organize the EJBs that you are working with by business function,
Bean type, or possibly by implemented design pattern. For instance, you may have one
or more views dedicated to only Entity Beans, another view for all Stateless Session
Facades, and yet another for all Enterprise JavaBeans that deal with state tax calcula-
tion, for instance. Fundamentally, there are two types of Actions you can take for views
and EJBs within views. One type of Action deals with the management of the views
themselves, and the other deals with the management of the contents with views.

Developing EJB 2.x 451

New, Delete, or Rename View

Creating a view will create a tab at the bottom of the EJB Designer. Each tab that is
added actually adds a new <view> tag to the ejb-modeler-layout.xml file. Even the
Default view has its own <view> tag associated with it. New views can be created, or
existing views can be deleted or renamed. Renaming a view does not have any effect
on the Beans within that view. When you delete a view, all Bean shortcuts will be
moved to the leftmost or default view, even if the leftmost view is no longer named
Default. What is actually happening is that all of the XML that defines the layout of
EJBs within the deleted view is being copied to the first view node within the ejb-
modeler-layout.xml file.

<view>

<name>Entity Beans</name>

</view>

Move, Copy, or Remove Selection

Working with EJBs within a view, you can move an EJB’s shortcut from one view to
another. You can also copy an EJB’s shortcut to another view. This allows you to see an
EJB in several different views. For instance, you may want to view your Stateless Ses-
sion Facades all in one view, and you may also want to view them within a separate
view along with the Entity Beans to which they delegate access. To move multiple
EJBs, you can use the mouse to drag and select multiple EJBs at the same time. You will
visually be able to notice which EJBs are selected by looking at their border. Using the
default color scheme, their border will be red if they are selected and black if they are
not selected.

It is important to note that removing an EJB from a view does not remove the EJB
from the Deployment Descriptor and therefore does not remove the EJB from the
EJB module. You have removed the EJB only from the view or from all views. You
should not be able to remove the final shortcut for a given EJB. This means that each EJB
within an EJB module must exist on at least one view. If, for some reason, an EJB is still
part of the Deployment Descriptor and is therefore still part of the EJB module, but it
is not in any view, you could just add the necessary XML to the ejb-modeler-layout.xml
file manually.

<ejb>

<name>FirstStatelessSessionBean</name>

<x>425</x>

<y>225</y>

<width>131</width>

<height>91</height>

</ejb>

452 Chapter 20

Arrange EJBs

When working in the EJB Designer, you may want to have the graphical representa-
tions of the EJBs realign themselves.

Find EJB from Search Menu

When using the EJB Designer, you will notice an option on the Search menu that
appears only when you are in the EJB Designer. You can search for an EJB by name.
This is particularly useful when you have multiple EJBs spread across several different
views.

EJB Test Client

Most of the client code that will be written to access a deployed Enterprise JavaBean is
very similar. In all cases, the external client will work primarily with the Home and
Remote interfaces of the Bean. For this reason, Enterprise JavaBeans that implement
the Local Home and Local interfaces will not be accessible by EJB test clients. The JNDI
lookup code will, in most cases, look like the following initialize() method:

public void initialize() {

try {

//get naming context

Context context = new InitialContext();

//look up jndi name

Object ref = context.lookup(“FirstSessionBean”);

//look up jndi name and cast to Home interface

firstSessionHome = (FirstSessionHome)

PortableRemoteObject.narrow(ref, FirstSessionHome.class);

}

catch(Exception e) {

e.printStackTrace();

}

}

There are three basic types of test clients that will be built around the initialize()
method: Application, JUnit, and Cactus.

Application
Applications are the only client that can generate a main() method. Applications can
have their own runtime configurations. All three types of EJB test clients are very sim-
ilar (see Figure 20.13). Only the Application class can run on its own. When creating an
application, the following information is required:

Developing EJB 2.x 453

EJB name. Initially only Enterprise JavaBeans that are part of the currently open
project will be selectable. You can also point to external EJB Archive files and
even directories that contain Enterprise JavaBeans to expand this list.

From project, JAR, or directory. The test client that is to be generated can read
the remote interface of any Enterprise JavaBean in the currently open project, or
you can select an existing JAR or directory in which the bean is located. Once
you point to an external EJB Archive or directory containing EJBs, the list of EJB
names will expand.

Package, class name, and base class. The EJB test client that you create does not
have to belong to the same package to which the existing Enterprise JavaBeans
belong. Select the base class from which the EJB test client is to extend and
choose the name of the class.

Generated code options. When all options are not selected, you will generate a
test client with only the initialize() method. Additionally, you can add header
comments and logging information. The logging information will print out a
message to the standard out, which, in turn, is displayed in the JBuilder’s
Message view. The logged message will include such information as the name
of the method that was called and how long the method took to execute.

Create a Runtime configuration. Each EJB test application that is created can
become its own Runtime configuration.

Figure 20.13 Enterprise JavaBean Test Client wizard.

454 Chapter 20

JUnit
The main difference that the JUnit has over the application is that the base class that is
generated is an extension of the junit.framework.TestCase Class. The other major dif-
ference is that EJB test clients that are JUnit test clients cannot have their own main()
methods. When you configure a Runtime configuration for JUnit, you can choose the
type of test runner you want to use. It is common to want to generate a new EJB test
client over to an existing test client when the interface of an Enterprise JavaBean
changes. This can cause problems when you modify the generated class after using the
wizard. It is possible to generate an EJB test client application and then create a sepa-
rate JUnit test case from the Object Gallery’s Test tab that uses the EJB test client. In this
situation, the EJB test client application can be generated over and over, again and
again, without writing over any test code. That is, of course, if the only changes that
have been made to the remote interface were the addition of methods and not the
removal or changing of a method’s parameter or return type.

Cactus
An extension to JUnit, Cactus is a way to proxy access to your EJBs through a Web
application. Like the JUnit EJB test client, the Cactus EJB test client is very similar to the
code generated when creating an application EJB test client. Once the project is config-
ured properly to use Cactus, Cactus EJB test client can be created. The main difference
between the JUnit test client and the Cactus test client is that the JUnit test client
extends junit.framework.TestCase, whereas the Cactus test client extends org.apache
.cactus.ServletTestCase, a descendant of the junit.framework.TestCase.

Configure the Project for Cactus

When using Cactus for testing your Enterprise JavaBeans, you must ensure that you
have set up the integration between the deployed Web application and the EJB module
properly. With Cactus, there will actually be a Java Server Page deployed to a Web con-
tainer that is being used as a proxy to access the Enterprise JavaBeans that you have
deployed to an EJB container. It is equally important that the Web application that is to
be utilized for testing has all of the necessary JUnit and Cactus libraries deployed and
configured. To assist in this part of the setup, the EJB Test Client wizard has a Config-
ure Project for Cactus button that will be accessible only when you choose to test your
application using Cactus. This will walk you through the necessary steps to configure
a Web application for Cactus.

Developing EJB 2.x 455

EJB Deployment Descriptor

From time to time, you may feel the need to edit the various XML files of the EJB mod-
ule directly and not use the Deployment Descriptor Editor. When you do this, you may
be surprised to find out that the EJB module does not manage the XML files of an
Enterprise JavaBeans Archive individually. Instead, all of the relevant .xml files located
in the META-INF directory of the archive are all located within the EJB module’s .ejb-
grpx file. You can access what appears to be each file individually, but what is actually
happening is that you are editing the .ejbgrpx file that was created by the EJB Module
wizard. There are not too many differences between the Deployment Descriptor in EJB
1.1 and the Deployment Descriptor in EJB 2.0. For the most part, you will make most of
the edits to the Deployment Descriptor in the EJB Designer directly. There are two new
files that are maintained by the EJB module because of the EJB Designer; these are the
modeler-schema and the modeler-layout XML files, as described here:

■■ ejb-jar.xml is the actual Deployment Descriptor that is compliant with the
EJB 2.0 specification.

■■ ejb-borland.xml is the vendor-specific portion of the Deployment Descriptor
as allowed by the specification.

■■ ejb-modeler-schema.xml is the schema that was created for the DataSources
from either an existing database or the fields of Entity Beans within the
Designer.

■■ ejb-modeler-layout.xml controls which Enterprise JavaBeans appear on which
views and where they are placed within the view.

You can edit the Beans Deployment Descriptor settings using the Deployment
Descriptor Editor. This menu item is provided as a quick and easy way to access this
information. Alternatively, you can also double-click on the Bean’s name in the Project
pane under the EJB module that it is part of.

DataSources

DataSources are similar to database connections. From the EJB 2.0 Bean Designer’s
point of view, a DataSource contains the Schema information for the tables and columns
that are used to map the fields of CMP 2.0 Entity Beans. You can create a Schema from
newly created Entity Beans, or you can import an existing Schema from an existing
connection using a JDBC driver. When you create a new EJB module that is compliant
with the EJB 2.0 specification, you will notice that the EJB module is added to the Proj-
ect pane (see Figure 20.14), the Designer is visible in the Content pane, and the Data-
Source viewer is visible in the Navigation pane.

456 Chapter 20

Figure 20.14 DataSources.

Create Schema from Selection
After creating a single Entity Bean or a collection of Entity Beans, you can generate a
Schema based on the table names, reference table names, and the column names in the
Entity Beans. The first time you use this capability, assuming you have not imported or
created a Schema already, you will be prompted to name a new DataSource.

If a DataSource already exists, you will not be prompted; it will be assumed that
you will want to add the information to the existing DataSource’s Schema. If multiple
DataSources exist, you will be prompted to choose which DataSource you want to add
the Schema to. So, if you have an existing DataSource that points to an existing data-
base, and if you want to create a new Schema for a new DataSource, create the new
DataSource first; otherwise, the Schema will be automatically added to the existing
DataSource.

While creating Entity Beans, you could also be editing the table names, reference
table names, and the column names for all of the new Entity Beans you are creating.
When you are finished, you can then select these Entity Beans and generate a Schema.
This Schema should then be used to generate the Data Definition Language that con-
tains the create table SQL that you can use to create the required table structure to sup-
port the Entity Beans you have been working on. If you forget to name all of the table
names, reference table names, and column names for all of the fields in all of the Entity
Beans you have created, or if you are creating Bean Managed Persistence Entity Beans
that do not have access to such properties, the EJB 2.0 Bean Designer will create the
table and column names for you.

Import Schema from Database
JBuilder creates a Schema from an existing JDBC database connection. Right-mouse
click on the DataSources node in the Navigation pane to bring up the menu items that
will allow you to either import or add a new DataSource. The Schema file that is cre-
ated and that the Designer uses is actually kept with the Deployment Descriptor files.
You can view and edit this file named ejb-modeler-schema.xml from the EJB DD
Source tab.

Developing EJB 2.x 457

Database Schema Provider

The Database Schema Provider (see Figure 20.15) will allow you to define the JDBC
connection properties that will be used to connect to the database and extract the
necessary information to create the Schema that will be used in the EJB 2.0 Bean
Designer, including the following:

All schemas. If the username and password you use to establish a logon to the
database allow you to view more than just one Schema, typically the Schema
assigned to a particular user account, you can display multiple Schemas’ tables
and views.

Views. By default, views will not appear. Check this option if you wish to
display views in addition to tables.

Driver. Specify the full class name of the JDBC Drive class that will be used to
connect to the database.

URL. The database URL that will be used to establish a connection.

Username. This is the username used to logon to the database.

Password. This is the password used to logon to the database.

JNDI name. This is the JNDI name that the EJB container will use to bind the
DataSource.

Add DataSource
If you do not have an existing database that you are using for the Enterprise JavaBeans
that you are creating, you can simply create a new, empty DataSource.

Figure 20.15 Database Schema Provider dialog.

458 Chapter 20

Figure 20.16 DataSource Properties.

Working with DataSources
Once a DataSource is established, you can export the DataSource to an SQL file contain-
ing the DDL necessary to create the database table structure that the DataSource repre-
sents (see Figure 20.16). You can also edit the DataSource properties to point to a
different database server containing another instance, perhaps a test versus production
instance of the database you are working with, or you can refresh the DataSource’s
Schema if the table structure has changed.

Export to SQL DDL

The Schema that you have either created from the Entity Beans you have created or
from the database you are working from can be exported in the form of a Data Defini-
tion Language file that can be used to create (or recreate, as the case may be) the tables
that the Schema represents. This is a one-way path, meaning that you could create the
DataSource Schema, generate the DDL, use the DDL in the database pilot to create the
table structures, modify the DataSource properties, and refresh the DataSource from
the database.

Edit DataSource Properties

If you have imported the Schema from an existing database, then the DataSource
properties (see Figure 20.17) should already be set for you. On the other hand, if you
have created the Schema from scratch, and if you now want to point it to a new data-
base instance, you can edit the properties and point the DataSource at a new database
instance. You can also edit existing DataSource properties to change from a test to a
production database prior to deploying a finished EJB module. The DataSource prop-
erties are as follows:

Driver. Specify the full class name of the JDBC Driver class that will be used to
connect to the database.

URL. This is the database URL that will be used to establish a connection.

Username. This is the username used to logon to the database.

Password. This is the password used to logon to the database.

Developing EJB 2.x 459

Figure 20.17 Working with DataSources.

Add Table

When working with CMP 2.0 reference tables, it is sometimes useful to add a new table
to the DataSource Schema prior to editing the Bean’s properties. Otherwise, when you
go to generate the Schema, the Designer will not know if your intention was to use the
reference table or the primary table.

Refresh from Database

It is often the case that database table structures change during the development
process. When this happens, you may need to refresh a DataSources Schema from the
updated database information.

Rename or Delete DataSource

If the original DataSource name that was entered needs to be changed, or if you no
longer need the DataSource defined for this particular EJB module, you can either
rename the DataSource or delete it entirely.

Working with Tables
A given DataSource will have from one to many tables defined. Each table can be used
to generate an Entity Bean. Additionally, you can add columns to tables and even
rename and delete tables from the DataSource it belongs to (see Figure 20.18).

Figure 20.18 Working with tables.

460 Chapter 20

Create CMP 2.0 Entity Bean

To create a CMP 2.0 Entity Bean in the Designer, first choose from which table you want
to create the Entity Bean, then right-mouse click on that table and create the Entity
Bean. If you select several tables, several Entity Beans will be created. If your intention
was to create a single Entity Bean from several tables, decide which table is to be the
master table and create a single Entity Bean for that table. Then go into the Entity
Bean’s properties, and add a reference table. Once the reference table is added, you can
add the addition fields manually, setting their column to point to the reference table.

Create BMP Entity Bean

To create a BMP Entity Bean in the Designer, first choose from which table you want to
create the Entity Bean, then right-mouse click on that table and create the Entity Bean.
If you select several tables, several Entity Beans will be created. For BMP Entity Beans
for which you wish to create a single Entity Bean from several tables, decide which
table is to be the master table, create a single Entity Bean for that Table, go into the
Entity Bean’s properties, and add the addition fields manually.

Add Column

You can add columns to the DataSources Schema for the table. This does not have a
direct effect on the actual table structure. This is mainly useful when developing Entity
Beans and setting their fields’ Columns properties to the column names for a given
table. Once the table has all of the necessary columns to support the Entity Beans you
are creating, you can generate the DDL and create the tables in the database that you
are planning to use.

Rename and Delete Table

You can rename the tables that are part of a DataSource as well as delete the table
entirely. It is important to note that renaming and deleting tables in a particular Data-
Source will not automatically be reflected in the Entity Beans that have already speci-
fied this table’s name in their CMP table or their reference table definitions. You will
have to go back and modify these settings manually.

Working with Columns
Drilling down one more layer, you can also work with a given table’s columns (see
Figure 20.19). You can change their properties, rename a column, and even delete a
column from a table.

Developing EJB 2.x 461

Figure 20.19 Working with columns.

You can rename the individual columns of a table or delete the columns entirely. Just
as with tables, if you delete or rename a column, the corresponding column names
used in the individual fields for the Entity Beans will not be modified automatically.
You will have to edit these changes manually in the Designer.

Summary

In this chapter we have seen how a two-way designer can be used to quickly lay the
foundation necessary for constructing complex Enterprise JavaBean applications.
Once a collection of EJBs has been created, EJB test clients can be utilized to test for the
expected results and zero in on any problem areas quickly. We have also seen that with
the use of DataSources, CMP Entity Beans can be quickly generated from existing data-
base connections. If BMP is to be used, the Schema can quickly be generated from the
fields of the Entity Beans, and a new database can be created using the Data Definition
Language that results.

462 Chapter 20

PA R T

Seven

Distributed Computing
with RMI, CORBA and

Web Services

By now you should have read about the latest, hottest topics on J2EE development
with JSP, servlets, and Enterprise JavaBeans. In Part Seven, we will discuss pre-EJB
technologies, like RMI and CORBA, followed by the post-EJB technology that is
Web services. This part focuses on how JBuilder works and integrates with the
development environment for RMI, CORBA, and Web services applications.

Part Seven includes three chapters:

RMI Development with JBuilder. Chapter 21 discusses how JBuilder facilitates
development with RMI.

CORBA Development with JBuilder. Chapter 22 discusses how JBuilder facilitates
development with CORBA.

Web Services Development with JBuilder. In Chapter 23, you will learn to con-
sume and construct Web services with the Apache Axis toolkit and Borland application
server. JBuilder provides wizards to create Web services from any Java class and EJB
components. Also, the chapter shows the Web Services Explorer for searching and
publishing Web services to a UDDI registry.

465

Remote Method Invocation (RMI), Common Object Request Broker Architecture
(CORBA), and Java 2 Enterprise Edition (J2EE) together make up the Java server-side
architecture. This chapter (as well as Chapter 22, “CORBA Development with JBuilder”)
focuses on how JBuilder facilitates development with RMI and CORBA.

RMI was first introduced in JDK 1.1, and it was highly and widely accepted by the
Java community for its ease of use and its considerable performance in all Java distrib-
uted object applications (Figure 21.1). An RMI application contains both a server com-
ponent and a client component. The server component generates and maintains its
objects, which are also called remote objects. The server component registers local refer-
ences to those remote objects to a directory service, which is RMIRegistry — a boot-
strap naming service provided by JDK. The RMIRegistry is an implementation of the
java.rmi.registry.Registry interface and the java.rmi.registry.LocateRegistry class. It
provides a bootstrap service for retrieving and registering objects by names. When the
client application obtains a remote reference to one of the remote objects in the registry,
the client application is able to make invocations to the remote object’s methods. This
RMI mechanism is enabled using a Java interface that extends java.rmi.Remote pack-
age. Each server component owns an interface, which has contractual services that
enable remote invocations. RMI uses object serialization as a key mechanism to mar-
shal and unmarshal parameters from components to components.

This chapter introduces the JBuilder environment for developing RMI applications.
First, we take a brief look at how to configure RMI options in JBuilder. Then, we review
the RMI development process in order to follow how JBuilder assists in developing
RMI applications.

RMI Development with JBuilder

C H A P T E R

21

Figure 21.1 RMI Object model view.

Configuring RMI in JBuilder

This section shows you how to configure RMI options in the JBuilder environment.
Typically, you should see an RMIRegistry item under JBuilder Tools menu (see Figure
21.2). If you do not see it, use the Configure Tools dialog box to add RMIRegistry to
JBuilder’s Tools menu. The RMIRegistry items that you add can run externally from
JBuilder, or they can run as a service within JBuilder (see Figure 21.3). To display this
dialog box, choose Tools|Configure Tools.

Figure 21.2 RMIRegistry configuration.

RemoteObjectRemote

RemoteServer

IOException

RemoteException

ActivateableObject UnicastRemoteObject

466 Chapter 21

Figure 21.3 Create RMI registry item.

JBuilder provides a Properties Settings for its Java files. You can open the Properties
dialog box for a Java file by right-clicking on a .java file in the Project pane and select-
ing Properties. When this Generate RMI stub/skeleton option is selected and the proj-
ect is compiled, the stub and skeleton files will be generated.

RMI Development Process

The RMI development process consists of the following steps:

1. Define an interface for the server component. First we need to define a remote
object interface. Per the RMI specification (http://java.sun.com/j2se/1.4.1/
docs/api/java/rmi/package-summary.html), the remote interfaces must be
declared public and extend the java.rmi.Remote interface. The interface will
declare each of the methods provided by the services for remote invocation
later. Each method must throw a java.rmi.RemoteException.

2. Implement the interface. When the interface is defined, we will write a class
that implements the interface. The class is designed to fulfill all methods and
their signatures declared in the interface.

3. Generate RMI stub/skeleton. RMI Stub and Skeleton class files are generated
by compiling the .java source files using rmic compiler in the JDK. A stub is
defined as a client-side proxy for a remote object. The stub is responsible for
forwarding remote invocation calls to the server-side dispatcher, which is
called a skeleton. A skeleton communicates with the actual remote object
implementation. JBuilder handles this step automatically for you when you
have the Generate RMI stub/skeletons enabled in the java node properties.

4. Create a server. The server program constructs an instance of the remote object
implementation. The server then binds that instance to a name referenced by an
RMIRegistry. The RMIRegistry is a simple model of a name server that allows
remote clients to get a reference to a remote object. It is typically used for boot-
strapping the communication.

RMI Development with JBuilder 467

Figure 21.4 RMI development process.

5. Create a client. The client program mainly gets a reference to the remote object
from the RMIRegistry. After obtaining the remote object reference, the client
can invoke any public method of the remote methods on the server’s remote
object.

6. Write an RMI policy file. The policy file is used to set access permission at the
method level for the Java application environment, specifically a Policy class
that is defined in the java.security package.

Building the RMI Application

In this section, we follow the RMI development steps (Figure 21.4) with JBuilder to build
an RMI application; those steps involve writing Java codes for interfaces and implemen-
tation classes, generating Stub and Skeleton class files from the implementation classes,
writing Java codes for a remote service host program and RMI client program, and
installing and running the RMI application. Those steps are described as follows:

1. Create a JBuilder project, and name it: rmi_stockmarket.

2. Create a remote interface, and define its methods. Use New Class wizard
[Choose File|New Class] to create an interface named StockMarket that extends
the base interface of java.rmi.Remote. Then edit the file StockMarket.java with
the following code:

// StockMarket.java

package chapter_rmi;

Define a remote
interface

Implement the
interface

Javac - rmic
Compiler

Object Implementation
Byte Code

Server
Implementation

Source
Server Skeleton

Source

Java
Compiler

Client Program
Byte Code

Client
Program
Source

Client
Stub Source

Java
Compiler

468 Chapter 21

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface StockMarket extends Remote { // line 4

double getPrice(String strSymbol) throws RemoteException; // line 5

}

In Line 4, StockMarket is defined as an RMI interface; therefore, it must extend
the java.rmi.Remote interface. In line 5, the method getPrice(String strSymbol)
throws a RemoteException because the RMI specification calls for each invok-
able method to raise a java.rmi.RemoteException when there is a remote
communication error.

3. Create an implementation for the remote interface. Use the New Class wizard
[Choose File|New Class] to construct a class named StockMarketImpl that
extends java.rmi.server.UnicastRemoteObject. Then use the Implement
Interface wizard to implement the StockMarket interface. Then edit the file
StockMarketImpl.java with the following code:

// StockMarkerImpl.java

package chapter_rmi;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.RemoteException;

import java.rmi.Naming;

import java.net.MalformedURLException;

import java.util.Random;

class StockMarketImpl extends UnicastRemoteObject

implements StockMarket //line 8

{

public StockMarketImpl(String strName) throws RemoteException {

super(); // line 12

try {

Naming.rebind(strName, this); // line 14

}

catch (MalformedURLException ex) {

ex.printStackTrace();

}

catch (RemoteException ex) {

ex.printStackTrace();

}

}

public double getPrice(String strSymbol) throws RemoteException{

double price;

Random random_generator =

new Random(System.currentTimeMillis());

RMI Development with JBuilder 469

price =

(double)strSymbol.length()*random_generator.nextDouble()*10.0; //line

24

return price;

}

}

In line 8, the StockMarketImpl class extends java.rmi.UnicastRemoteObject and
implements the interface StockMarket. By extending UnicastRemoteObject, the
StockMarketImpl is enabled to use RMI’s default sockets-based transport for its
remote object communication. If you choose to extend a remote object from any
class other than UnicastRemoteObject, please refer to the RMI specification for
more information: http://java.sun.com/j2se/1.4/docs/guide/rmi.

In line 12, to export the remote object, StockMarketImpl needs to invoke the par-
ent constructor super() method, which is a no-argument constructor of
java.rmi.server.UnicastRemoteObject.

In line 14, note that the StockMarketImpl constructor accepts a string as an
input parameter. Naming.rebind(strName, this) is used to bind the given name
to a reference for the remote object. This rebinding will replace any existing
binding by the specified name.

In line 24, a sample implementation of getPrice() method returns a random
double as a value of a given symbol.

4. Generate the RMI stub and skeleton using rmic compiler. Right-mouse click on
StockMarketImpl.java. Select “Properties”; you should see the Properties form
for StockMarketImpl.java. Check the box Generate RMI stub/skeleton, and
click the OK button on the Build | RMI/JNI table (see Figure 21.5). The Gener-
ate RMI stub/skeleton option generates Java codes for remote method invoca-
tion communication transparently. This allows code on the client side to invoke
a method on a remote object on the server side.

Figure 21.5 RMIC configuration.

470 Chapter 21

There are additional option settings for rmic compiler, as shown in Figure 21.6.

1. Right-mouse click on StockMarketImpl.java. Select “Make”; JBuilder will
generate stub and skeleton for the StockMarket interface by invoking the
configured rmic compiler.

2. Expand StockMarketImpl.java node; you should see that the file
StockMarketImpl_stub.java has been generated.

3. Create a server program that constructs an instance of the StockMarketImpl
class. Use New Class wizard [Choose File|New Class] to create a class named
NasdaqServer with a main method and no constructor. Then edit the file
NasdaqServer.java with the following code:

// NasDaqServer.java

package chapter_rmi;

import java.rmi.RMISecurityManager;

import java.util.Date;

import java.rmi.RemoteException;

public class NasdaqServer {

public static void main(String[] args) {

try {

System.setSecurityManager(new RMISecurityManager()); // Line

11

StockMarketImpl nasdaqServer = new StockMarketImpl(“NASDAQ”);

System.out.println(“NASDAQ is up at “ + new Date().toString()

);

}

catch (RemoteException ex) {

ex.printStackTrace();

}

}

}

Figure 21.6 Additional option settings for rmic.

RMI Development with JBuilder 471

In lines 10-11, the server sets a new system-level RMISecurityManager; then
it instantiates an instance of the StockMarketImpl class, specifying a name
“NASDAQ”. Behind the scene, the StockMarketImpl implementation registers
its remote object with the RMIRegistry. Indeed, the remote object is made avail-
able to remote clients as “// <server name or IP address >:<service port
number>/ NASDAQ”.

4. Create a client that connects to the server object. Use the New Class wizard
[Choose File|New Class] to create a class named Broker with a main method
but no default constructor. Then edit the file Broker.java with the following
code:

// Broker.java

package chapter_rmi;

import java.rmi.*;

import java.net.*;

public class Broker {

public static void main (String[] args) {

try {

System.setSecurityManager (new RMISecurityManager ());

StockMarket nasdaq = (StockMarket)

java.rmi.Naming.lookup(“//localhost:1099/NASDAQ”); //Line 11

System.out.println (“Market price of BORLAND is “ +

nasdaq.getPrice (“BORL”));

} catch (RemoteException ex) {

ex.printStackTrace ();

} catch (NotBoundException ex) {

ex.printStackTrace ();

} catch (MalformedURLException ex) {

ex.printStackTrace ();

}

}

}

472 Chapter 21

RMISECURITYMANAGER

RMISecurityManager extends the java.lang.SecurityManager class. The RMISecurityManager
is used to install an example security manager for use by RMI applications. If an RMI
application does not have SecurityManager installed, the RMI class loader will not allow
any classes downloaded from remote locations.

In general, RMISecurityManager enables RMI applications to implement a security
policy that sets what operations can be allowed or disallowed to perform based on the
security policy.

In line 11, in order to contact a remote RMI server, the RMI client must obtain
a reference to the server. The java.rmi.Naming.lookup() method is used to ini-
tially obtain references to remote servers. A typical remote reference URL is
//host:port/<server>, which includes a server host name and port number
that allow RMI clients to communicate to the server virtual machine. When an
RMI client has a remote reference, the client will use the host name and port
provided in the reference to open a socket connection to the remote server.

Note that the RMI default port is set to 1099. Remember to specify the port
number in the remote reference URL if a server creates a registry on a port
other than the default. For example, a port number can be supplied in the refer-
ence URL as “//localhost:14400/NASDAQ”.

5. Write an RMI policy file. Choose Add Files/Packages, and enter nasdaq.policy in
the File Name field. Click OK to create the file. In this example, nasdaq.policy
is saved to <C:\Demos\JB8_Book\chapter_rmi>. Double-click the file nasdaq
.policy to open it in the editor. Enter the following code:

grant {

permission java.net.SocketPermission “*:1024-65535”, “accept,

connect, listen”;

};

Note that this policy is used for demonstration purpose only. The policy file
gives global permission to anyone from anywhere to listen on unprivileged
ports. And it should not be used in a production environment. Visit http://
java.sun.com/j2se/1.4/docs/guide/security/PolicyFiles.html#FileSyntax for
more information on the Java policy file and its syntax.

When the coding for the StockMarket example is done, the project should have
the following files:

■■ StockMarket.java. Contains codes for the remote interface definition.

■■ StockMarket Impl.java. Contains codes for the remote object
implementation.

■■ NasdaqServer.java. Contains codes for the RMI server side.

■■ Broker.java. Contains codes for the RMI client.

■■ nasdaq.policy. Contains permission information.

6. Create run configurations for the NASDAQ server and the RMI client program.
Use the New Configuration wizard [Choose Run|Configuration] to create run
configurations for both the RMI server and client programs.

VM parameters for the NASDAQ Server Run configuration are as follows:

■■ Djava.rmi.server.codebase=file:C:\Demos\JB8_Book\chapter_rmi\
classes\.

■■ Djava.security.policy=file:C:\Demos\JB8_Book\chapter_rmi\
nasdaq.policy.

RMI Development with JBuilder 473

Figure 21.7 Set up server run configuration.

■■ The URL is set with the system property java.rmi.server.codebase for clients
to download the stub classes. Note that the backslash “\” is required after
the class, and no space can be used in the class name and its path.

VM parameters for the Broker client run configuration are as follows:

■■ Djava.security.policy=file:C:\Demos\JB8_Book\chapter_rmi\
nasdaq.policy.

■■ Start RMIRegistry by selecting Tools|RMIRegistry.

Figure 21.8 Set up client run configuration.

474 Chapter 21

Figure 21.9 RMIRegistry running in the Message pane.

7. Run RMI server (see Figure 21.10). When the NASDAQ server is started, the
NASDAQ server Message pane should display a message in the following
format:

■■ NASDAQ is up at Mon Aug 12 03:05:35 EDT 2002.

■■ When the Broker runs, the Broker Message pane should display a message
in the following format:

Market price of BORLAND is 21.981286069775898

RMI Deployment

The RMI application can be deployed to a location on a server or client machine where
the application will be executed. JBuilder provides a wizard to assist the deployment
process. JBuilder’s Archive Builder automatically and selectively collects necessary
Java classes, resources, and libraries and then archives these files to a compressed for-
mat as ZIP or JAR file. In this example, we use JBuilder Archive Builder to construct a
server archive JAR file and a client archive JAR file.

To set up the client archive, as shown in Figure 21.10, follow these steps:

1. Open Wizards|Archive Builder.

2. Set the Archive type to Basic, then click Next.

3. Set the Name field to an archive node name (for example, ClientArchive) and
the file (C:\Demos\JB8_Book\chapter_rmi\deploy\Broker.jar), then click Next.

4. Set Include required classes and known resources. Click Add File and select
nasdaq.policy from the RMI project directory.

5. Click Add Class and select Broker, StockMarket, and StockMarketImpl_Stub
from chapter_rmi package.

6. Click Finish.

Figure 21.10 Project run configuration.

RMI Development with JBuilder 475

Figure 21.11 Add classes to client archive.

To set up the server archive, as shown in Figure 21.11, follow these steps:

1. Open Wizards|Archive Builder.

2. Set the Archive type to Basic, then click Next.

3. Set the Name field to an archive node name (for example, ServerArchive) and
the file (e.g., C:\Demos\JB8_Book\chapter_rmi\deploy\NasDaqServer.jar),
then click Next.

4. Set Include required classes and known resources. Click Add File and select
nasdaq.policy from the RMI project directory.

5. Click Add Class and select NasDaqServer, StockMarket, and
StockMarketImpl from chapter_rmi package.

6. Click Finish.

Figure 21.12 Add classes to server archive.

476 Chapter 21

You can start the server and client application by using the commands listed here:

■■ To start the server application: “java -cp Broker.jar -Djava.security.policy=c:
\demos\JB8_Book\chapter_rmi\nasdaq.policy -Djava.rmi.server
.codebase=file: c:\demos\JB8_Book\ chapter_rmi\rmi_stockmarket\
Broker.jar rmi_stockmarket.NasdaqServer”

■■ To start the client application: “java -cp Broker.jar -Djava.security.policy=c:
\demos\JB8_Book\chapter_rmi\nasdaq.policy -Djava.rmi.server
.codebase=file: c:\demos\JB8_Book\ chapter_rmi\rmi_stockmarket\
Broker.jar rmi_stockmarket.Broker”

Summary

The JBuilder development environment provides an easy approach to create RMI
distributed applications. After having the RMI interface defined, JBuilder generates
many necessary stub and skeleton files for the application. Then you can just code your
business logic without going through generating the required RMI files. The JBuilder
approach also utilizes the CORBA development process, which we discuss in
Chapter 22.

RMI Development with JBuilder 477

479

CORBA is a standard for developing distributed systems with the concentration in
object-oriented methodology. It is platform, programming language, and implementa-
tion neutral. To get started with CORBA, we recommend that you visit the OMG
Web site for many CORBA tutorials and white papers: www.omg.org/gettingstarted/
corbafaq.htm.

The chapter gives a brief introduction to CORBA and its development process. We
assume that you are familiar with the CORBA framework in this chapter. The objective
is to help you understand how to use JBuilder to implement CORBA applications for
both client-side and server-side applications. The chapter walks you through different
approaches to enable the CORBA applications, such as using object reference via the
file system, using Borland VisiBroker ORB development tools, or using CORBA Nam-
ing Services.

While reading this chapter, you may need to refer back to Chapter 15, “Server and
Service Configuration,” for information on setting up the CORBA environment with
JBuilder.

Overview of CORBA

Before we get into what and how JBuilder works with distributed application devel-
opment using CORBA, the following section offers some basic information about
CORBA: the IDL interface, Object Request Broker, and some CORBA common services.

CORBA Development
with JBuilder

C H A P T E R

22

The IDL Interface
Similar to RMI technology, CORBA starts with an interface. RMI uses Java as the inter-
face language, whereas CORBA uses its own language called the Interface Definition
Language (IDL). IDL is a contract that defines the server’s services and shows how
clients should send requests for the services that implement the defined interfaces.
Here is an IDL example:

module FirstCorbaApp // Module defines namespace that corresponds

closely to a Java package.

{

interface HelloWorld // An IDL interface declares a set of

operations, exceptions, and attributes

{

attribute string objectID;

string sayHelloWorld();

oneway void exit();

};

};

After we define the interface, we need to compile the interface based on our selected
implementation language. For example, if we select Java as our implementation lan-
guage, we will run the interface through an IDL-to-Java compiler. The IDL compiler is
provided by any ORB vendor. This compilation process will produce the IDL stubs,
skeletons, and many other support classes. JBuilder should activate the appropriate
IDL compiler automatically when you run a make on the IDL file.

Object Request Broker
The Object Request Broker (ORB) can be viewed as the network plumbing facility. It is
a collection of libraries and network resources that is integrated with end-user appli-
cations, allowing CORBA client applications to locate and utilize server objects. It uses
Internet Inter-ORB Protocol (IIOP) as its communication protocol over TCP/IP. An
ORB connects a client application with the targeted server. It enables “the plumbing”
transparently; that is, the client program does not know whether the targeted server
resides on the same computer or on a remote node in its network (see Figure 22.1). The
client program passes the server’s name and the server’s interface to the ORB, which
then locates the server, dispatches the request, and delivers the result. The ORB uses
the subordinate source files generated by the IDL compiler to facilitate the communi-
cation process and to provide accurate marshaling of the IDL data types, as defined in
the CORBA specification.

Currently, Borland VisiBroker 5.1 is a CORBA 2.4-compliant ORB implementation.

480 Chapter 22

Figure 22.1 CORBA as a middleware.

Common Services
In addition to the core ORB functionality, the Object Management Group has intro-
duced a set of services that provide additional capabilities to the CORBA framework
(see Figure 22.2). These services include the following:

CORBA Naming Service (or COS Naming). This is a name-to-object association
directory called a name binding. CORBA servers register object names to COS
Naming; CORBA clients look up references by name via COS Naming.

CORBA Event Service (or COS Event). This service enables asynchronous com-
munications between CORBA objects. COS Event uses the channel approach to
orchestrate multiple suppliers’ communication with multiple consumers asyn-
chronously. Event channels are standard CORBA objects, and communication
with an event channel is accomplished using standard CORBA requests via a
push model or a pull model.

CORBA Notification Service. This extends the existing COS Event Service
by adding industrial required capabilities, which are defined as typed data
structure, event filtering, quality of service, and event repository.

CORBA Object Transaction Service (OTS). This service brings transaction
capabilities to CORBA objects. The service is essential to developing reliable
distributed applications addressing the business problems of commercial
transaction processing.

CORBA Security Service. This enables CORBA systems security, including
confidentiality, integrity, accountability, and availability characteristics.

Any language
with an IDL

mapping

ORB

CORBA Development with JBuilder 481

Figure 22.2 Common services.

These popular services are implemented by Borland VisiBroker, which is included
with JBuilder Enterprise. Ten additional services are Collection Service, Concurrency
Service, Externalization Service, Licensing Service, Life Cycle Service, Property Service,
Query Service, Relationship Service, Time Service, and Trading Object Service. You can
find more information on these services at www.omg.org.

CORBA Development Process
Similar to the RMI development process, the CORBA development process contains a
series of steps to define the server object interface, create server object implementation,
register server objects, and implement client-side component (see Figure 22.3):

1. Define an IDL interface for server object component. CORBA objects must
have an IDL interface. The IDL interface defines an object type along with its
operations, exceptions, and typed attributes.

NOTE An IDL interface can inherit from one or more other interfaces. Syntax
for IDL is closely similar to Java or C++ syntax, and IDL has appropriate
mappings for each programming language. IDL can be translated to a selected
programming language by using an IDL-to-specific-language compiler. For the
example in this chapter, we will use Borland VisiBroker idl2java compiler.

Application
Components

Legacy
System or
Database

Object Request
Broker (ORB)

Services

Events/
Publish &
Subscribe

Naming

Trader

Security

Data
Access

Transactions

482 Chapter 22

2. Generate CORBA stub, skeleton, and supporting files. CORBA Stub and
Skeleton class files are generated by compiling the IDL. Similar to RMI, a stub
is defined as a client-side proxy for a remote object. Stubs are responsible for
forwarding remote invocation calls to the server-side dispatcher, which is also
called a skeleton. Skeletons directly communicate with the actual remote object
implementation. Supporting files include helper classes and holder classes,
which are object management and object marshaling utilities.

3. Implement the interface. Typically, the IDL compiler generates an implementa-
tion file for the interface. The naming convention for the implementation class
is the actual interface name suffixed by “Impl.” For example, if the interface
name is Nasdaq, the IDL compiler will generate a file name NasdaqImpl. This
step fulfills the business logic for all methods and their signatures, declared in
the interface.

4. Create a server program. A server application offers one or more CORBA
objects to client applications. The server program must complete the following
tasks: initialize the Object Request Broker, create a Portable Object Adapter
(POA) with its appropriate policies, construct the servant object, activate the
Object Adapter, and signal its ready state to receive requests. Since OMG released
the CORBA 2.3 specification, many ORB vendors have implemented the POA
architecture in replacement of the deprecated Basic Object Adaptor (BOA).

5. Create a client program. The client program uses the generated stubs, obtains
server object references, and invokes any of the IDL methods on the server’s
object.

Figure 22.3 CORBA development process.

IDL
Definition

ORB Interface
and Management

Classes

IDL
Compiler

Object Implementation
Byte Code

Object
Implementation

Source
Skeleton
Source

Java
Compiler

Client Program
Byte Code

Client
Program
Source

Object
Implementor

Client
Implementor

Stub
Source

Java
Compiler

CORBA Development with JBuilder 483

Building a CORBA Application

This section covers how to apply the CORBA development process to creating a
distributed application using JBuilder and the VisiBroker ORB. JBuilder Enterprise
Edition ships with a development version of Borland Enterprise Server (BES), which
includes the VisiBroker product. Those steps involve defining an IDL interface; gener-
ating Stub, Skeleton, and support class files from the IDL; writing Java codes for the
object service; writing the server and client program; and building and running the
CORBA application.

Define the IDL Interface
We will use the same StockMarket example as we illustrated in Chapter 21 and imple-
ment the example using the CORBA approach.

1. Create a JBuilder project, and name it: corba_stockmarket. Note that you need
to set the project server to Borland Enterprise Server; refer to Chapter 15 for
more information.

2. Select File|New, then select Sample IDL from the CORBA page of the Object
Gallery.

3. Enter nasdaq.idl in the File Name field. Click OK.

4. Edit nasdaq.idl with the following code:

module StockMarket {

interface Nasdaq {

double getPrice(in string ticketSymbol);

};

};

The nasdaq.idl defines a Nasdaq object, on which a client can invoke the getPrice()
operation with a string argument and return a double result. In addition to the type,
IDL, the parameters are specified by in, out or inout attributes; these attributes identify
whether the value will be passed from client object to server object, or from server
object to client object, or bidirectional across client object and server object.

484 Chapter 22

WHAT IS THE POA?

Per the CORBA specification (www.omg.org), the specification defines a Portable Object
Adapter that can be used for most ORB objects with conventional implementations. The
intent of the POA is to provide an Inter-ORBs interoperable Object Adapter, which
intercepts a client request and identifies the object that satisfies the client request. The
object is then invoked, and the response is returned to the client. Also, the POA is
designed to offer portability on the server side to achieve a minimum of rewriting needed
to deal with different vendors’ implementations.

Figure 22.4 Role of the ORB in the CORBA system.

To edit the IDL compiler settings, you can open the Properties dialog box by right-
mouse clicking on nasdaq.idl file in the Project pane and selecting Properties. The dia-
log box in Figure 22.5 will be displayed. The box includes the following options:

Package. When this option is set to a specified package, codes are generated
accordingly and stored under the specified package name.

Strict portable code generation. When this option is selected, compiled codes are
generated strictly to be compliant with the CORBA specification. This means
that any vendor-specific code will not be generated.

Generate example implementation. When this option is selected, the IDL
compiler will generate example implementation classes.

Generate comments. When this option is selected, the IDL compiler will insert
comments in the generated codes.

Figure 22.5 IDL compiler dialog box.

object
implementation

Location Service
Transport Layer

Stubs and skeletons are automatically generated from IDL interfaces

Multithreading

method

language
mapping entry
points

Object Adapter

ORB

client program

call

language
mapping

operation
signatures

SkeletonStub

CORBA Development with JBuilder 485

Generate tie bindings. When this option is selected, the IDL compiler will
generate CORBA _tie classes for CORBA skeletons. For more information on
the CORBA tie mechanism, see http://info.borland.com/techpubs/books/bes/
htmls/DevelopersGuide5/DevelopersGuide/tie.html#3373.

Include path. If the IDL file includes other IDL files, you must select a directory
that contains those included IDL files:

Example:

#include MutualFundMarket.idl

module StockMarket {

interface Nasdaq {

double getPrice(in string ticketSymbol);

};

};

Additional options. You can use this field to set additional IDL compiler options.

IDL2package. This puts definitions in the scope of IDL into the specified Java
package.

Conditional Defines. This tab adds conditional IDL compilation parameters;
i.e., #define name def.

IDL Compilation
When nasdaq.idl is compiled, a directory structure containing the Java mappings for the
IDL declarations is created (see Figure 22.6 and Table 22.1).

Figure 22.6 Generated Stub/Skeleton classes.

486 Chapter 22

WHAT IS THE VISIBROKER ORB?

The VisiBroker ORB provides a complete CORBA ORB runtime and supporting development
environment for building, deploying, and managing distributed Java applications that are
open, flexible, and interoperable. The VisiBroker ORB is part of the Borland Enterprise
Server AppServer Edition, which comes “in the box” with JBuilder. Objects built with the
VisiBroker ORB are easily accessed by Web-based applications that communicate using
OMG’s Internet Inter-ORB Protocol (IIOP) standard for communication between distributed
objects through the Internet or through local intranets (see Figure 22.4). In addition,
VisiBroker ORB provides implementation of key CORBA common services such as COS
Naming, COS Event, COS Notification, OTS, and COS Security Service.

Table 22.1 Generated Files

FILE FUNCTION

_NasDaqStub.java Is stub code for the NasDaq object on the client side.

NasDaq.java Declares the NasDaq interface.

NasDaqHelper.java Declares the NasDaqHelper class, which defines
helpful utility methods.

NasDaqHolder.java Declares the NasDaqHolder class, which provides a
holder for passing the NasDaq object.

NasDaqOperations.java Declares the method signatures defined in the
NasDaq interface in the nasdaq.idl file.

NasDaqPOA.java Is the POA servant code (implementation base code)
for the NasDaq object implementation on the server
side.

NasDaqPOATie.java Used to implement the NasDaq object on the server
side using the CORBA tie mechanism.

Create a Server Application
JBuilder provides a wizard to construct an application that has a complete default
implementation for a CORBA server. To open this wizard, choose File|New, select the
CORBA tab of the Object Gallery, and then select the CORBA Server Application (see
Figure 22.7).

Following this two-step wizard, you will construct a visible server application with
a log GUI and object counter GUI. You can later modify the generated server applica-
tion to meet your requirements. In addition, this wizard will create a new Runtime
configuration for running the CORBA Server Application.

Figure 22.7 CORBA Server Application wizard.

CORBA Development with JBuilder 487

The wizard generates the following files:

■■ NasdaqImpl.java provides default implementation for the server side of a
CORBA. This file can also be generated using the CORBA Server Interface
wizard. Our next step is to provide business logic for this implementation.

■■ StockMarketServerApp.java is a CORBA Server Application.

■■ ServerResources.java contains server application strings for localization.

■■ ServerFrame.java is a server application frame that is the container for the Server
Monitor.

■■ ServerMonitor.java maintains the server log and is the container for all the
Server Monitor pages.

■■ ServerMonitorPage.java implements a Server Monitor page to display interface
counters.

Reviewing the generated server application codes (StockMarketServerApp.java), we
see that the JBuilder wizard has taken care of all major tasks: initializing the Object
Request Broker, creating a Portable Object Adapter with its appropriate policies, con-
structing the servant object, activating the Object Adapter, and signaling its ready state
to receive requests. The only necessary step for us is to implement the business logic
for the Nasdaq object (see Source 22.1).

// StockMarketServerApp.java

package corba_stockmarket;

import corba_stockmarket.StockMarket.server.*;

import javax.swing.UIManager;

import java.awt.*;

import org.omg.PortableServer.*;

public class StockMarketServerApp {

private boolean packFrame = false;

public StockMarketServerApp() {

ServerFrame frame = new ServerFrame();

if (packFrame)

frame.pack();

else

frame.validate();

Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

Dimension frameSize = frame.getSize();

if (frameSize.height > screenSize.height)

Source 22.1 StockMarketServerApp.java.

488 Chapter 22

frameSize.height = screenSize.height;

if (frameSize.width > screenSize.width)

frameSize.width = screenSize.width;

frame.setLocation((screenSize.width - frameSize.width) / 2,

(screenSize.height - frameSize.height) / 2);

frame.setVisible(true);

}

public static void main(String[] args) {

try {

UIManager.setLookAndFeel(“com.sun.java.swing.plaf.windows.WindowsLookAnd

Feel”);

//UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

//UIManager.setLookAndFeel(“javax.swing.plaf.metal.MetalLookAndFeel”);

//UIManager.setLookAndFeel(“com.sun.java.swing.plaf.motif.MotifLookAndFe

el”);

//UIManager.setLookAndFeel(“com.sun.java.swing.plaf.windows.WindowsLookA

ndFeel”);

}

catch (Exception ex) {

}

new StockMarketServerApp();

try {

java.util.ResourceBundle res =

java.util.ResourceBundle.getBundle(“corba_stockmarket.StockMarket.server

.ServerResources”);

String name;

//(debug support)System.getProperties().put(“vbroker.agent.debug”,

“true”);

//(debug support)System.getProperties().put(“vbroker.orb.warn”,

“2”);

if (System.getProperties().get(“vbroker.agent.port”) == null) {

System.getProperties().put(“vbroker.agent.port”, “14000”);

}

if (System.getProperties().get(“org.omg.CORBA.ORBClass”) == null)

{

System.getProperties().put(“org.omg.CORBA.ORBClass”,

“com.inprise.vbroker.orb.ORB”);

}

if (System.getProperties().get(“org.omg.CORBA.ORBSingletonClass”)

== null) {

Source 22.1 (continued)

CORBA Development with JBuilder 489

System.getProperties().put(“org.omg.CORBA.ORBSingletonClass”,

“com.inprise.vbroker.orb.ORB”);

}

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,

System.getProperties());

POA poaRoot =

POAHelper.narrow(orb.resolve_initial_references(“RootPOA”));

name = “Nasdaq”;

org.omg.CORBA.Policy[] NasdaqPolicies = {

poaRoot.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)

};

POA poaNasdaq = poaRoot.create_POA(name + “_poa”,

poaRoot.the_POAManager(),

NasdaqPolicies);

poaNasdaq.activate_object_with_id(name.getBytes(), new

NasdaqImpl());

ServerMonitor.log(ServerResources.format(res.getString(“created”),

“StockMarketServerApp.java Nasdaq”));

poaRoot.the_POAManager().activate();

ServerMonitor.log(ServerResources.format(res.getString(“isReady”),

“StockMarketServerApp.java StockMarket”));

orb.run();

}

catch(Exception ex) {

System.err.println(ex);

}

}

}

Source 22.1 (continued)

Object Implementation
Open and edit NasDaqImpl.java with the following changes to the getPrice() method:

// NasdaqImpl.java

package corba_stockmarket.StockMarket.server;

import java.sql.*;

import java.util.*;

490 Chapter 22

import java.math.*;

import org.omg.PortableServer.*;

public class NasdaqImpl extends corba_stockmarket.StockMarket.NasdaqPOA

{

private String _name = “Nasdaq”;

public static ServerMonitorPage monitor = null;

public java.util.Random randomGenerator =

new java.util.Random(System.currentTimeMillis());

private void init() {

if (monitor == null) {

monitor = ServerMonitor.addPage(this, “Nasdaq”);

monitor.showObjectCounter(true);

}

monitor.updateObjectCounter(1);

}

public NasdaqImpl(java.lang.String name, java.lang.String

creationParameters) {

this._name = name;

init();

}

public NasdaqImpl(java.lang.String name) {

this._name = name;

init();

}

public NasdaqImpl() {

init();

}

// For demonstration purpose, we use a fake implementation of getPrice()

method that returns a random double as a value of a given symbol.

public double getPrice(String ticketSymbol) {

double price;

price =

(double)ticketSymbol.length()*randomGenerator.nextDouble()*10.0;

ServerMonitor.log(“(“ + _name + “) NasdaqImpl.java getPrice()”);

return price;

}

}

Figure 22.8 shows the NasDaqImpl class in a UML format.

CORBA Development with JBuilder 491

Figure 22.8 NasDaqImpl UML view.

N
asd

aq
P

O
A

_n
am

e : Strin
g

g
etPrice() : d

o
ub

le

N
asd

aq
lm

p
l() : vo

id

N
asd

aq
lm

p
l() : vo

id

N
asd

aq
lm

p
l() : vo

id

in
it() : vo

id

m
o

n
ito

r : ServerM
o

n
ito

rPag
e

co
rb

a_sto
ck

m
ark

et

Sto
ck

M
ark

etServerA
p

p

N
a
sd

a
q
PO

A

java.lan
g

O
b

ject
Strin

g
B

u
ffer

co
rb

a_sto
ck

m
ark

et.Sto
ck

M
ark

et.server

ServerM
o

n
ito

r

co
rb

a_sto
ck

m
ark

et.Sto
ck

M
ark

et.server

ServerM
o

n
ito

rP
ag

e

java.lan
g

Strin
g

co
rb

a.sto
ck

m
ark

et_Sto
ck

M
ark

et.server

co
rb

a_sto
ck

m
ark

et.Sto
ck

M
ark

et

492 Chapter 22

Create a Client Application
A typical CORBA client program performs the following tasks:

■■ Initializes the ORB.

■■ Obtains an object reference to the CORBA server.

■■ Invokes the server’s remote methods.

The object reference contains a structure for CORBA server’s host machine/IP
address, the port on which the host server is listening on for requests. Following is an
example of an object reference content:

Interoperable Object Reference:

Type ID: IDL:omg.org/CosNaming/NamingContextExt:1.0

Contains 1 profile.

Profile 0-IIOP Profile:

version: 1.2

host: 192.168.0.190

port: 3717

Object Key: ServiceId[service=/CONTEXT_POAnamingservice,id={1 bytes:

[2]},key_string=%00PMC%00%00%00%04%00%00%00%1a/CONTEXT_POAnamingser

vice%00%20%20%00%00%00%012]

VB Capability component:

ORB_TYPE Component: VBJ 4.x

Code Sets Component: native char codeset:ISO 8859_1

conversion_code_sets:, native wchar codeset:ISO UTF-16

conversion_code_sets:

CORBA client programs obtain object references from a factory object, the naming
service, or a string that was specially created from an object reference. The example in
this chapter shows you how a client locates a server via VisiBroker SmartAgent.

To best assist in building the CORBA application, JBuilder provides a wizard to gen-
erate a client interface that is a wrapper of CORBA service calls for the client side. The
client interface is generated as a Java Bean format, which can be utilized in any client-
side applications. When a client-side application constructs this bean and invokes meth-
ods in this bean, this bean will connect to an ORB and execute the server’s methods.

CORBA Development with JBuilder 493

WHAT IS THE SMART AGENT?

VisiBroker Edition’s Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities used by both client programs and object implementations. A Smart
Agent must be started on at least one host within your local network. When your client
program invokes bind() on an object, the Smart Agent is automatically consulted. The
Smart Agent locates the specified implementation so that a connection can be
established between the client and the implementation. The communication with the
Smart Agent is completely transparent to the client program. See http://info.borland.com/
techpubs/books/bes/htmls/DevelopersGuide5/DevelopersGuide/smrtagnt.html#.

Figure 22.9 CORBA Client Interface wizard.

To open this wizard, select File|New, select the CORBA tab of the Object Gallery,
then select CORBA Client Interface and click OK. The dialog box shown in Figure 22.9
will appear.

Select nasdaq.idl in the current project from the drop-down list to create the CORBA
interface bean, which is named as NasdaqWrapper under Class field. Change the pack-
age name for the generated file to corba_stockmarket.StockMarket.client. The Interface
field reflects a list of interfaces associated with the provided file. In this case, nasdaq.idl
is provided, and the corba_stockmarket.StockMarket.NasDaq Interface is selected (see
Source 22.2).

// NasdaqWrapper.java

package corba_stockmarket.StockMarket.client;

import java.awt.*;

import org.omg.CORBA.*;

public class NasdaqWrapper {

private boolean bInitialized = false;

private corba_stockmarket.StockMarket.Nasdaq _nasdaq;

private com.borland.cx.OrbConnect orbConnect1;

private String _name = “Nasdaq”;

public NasdaqWrapper() {

try {

jbInit();

}

catch (Exception ex) {

ex.printStackTrace();

}

}

private void jbInit() throws Exception {

Source 22.2 NasdaqWrapper.java.

494 Chapter 22

}

public boolean init() {

if (!bInitialized) {

try {

org.omg.CORBA.ORB orb = null;

if (orbConnect1 != null) {

orb = orbConnect1.initOrb();

}

if (orb == null) {

orb = org.omg.CORBA.ORB.init((String[])null,

System.getProperties());

}

_nasdaq = corba_stockmarket.StockMarket.NasdaqHelper.bind(orb,

“/” + _name + “_poa”, _name.getBytes());

bInitialized = true;

}

catch (Exception ex) {

ex.printStackTrace();

}

}

return bInitialized;

}

public corba_stockmarket.StockMarket.Nasdaq getCorbaInterface() {

return _nasdaq;

}

public void setCorbaInterface(corba_stockmarket.StockMarket.Nasdaq

intf) {

_nasdaq = intf;

}

public com.borland.cx.OrbConnect getORBConnect() {

return orbConnect1;

}

public void setORBConnect(com.borland.cx.OrbConnect orbConnect) {

this.orbConnect1 = orbConnect;

}

public double getPrice(String ticketSymbol) {

init();

return _nasdaq.getPrice(ticketSymbol);

}

}

Source 22.2 (continued)

CORBA Development with JBuilder 495

NasdaqWrapper code uses the CORBA express component, which contains CORBA
connection classes. The OrbConnect class is a non-UI bean that resolves a given name to
a CORBA object without using the VisiBroker ORB root context extension to the Nam-
ing Service. The OrbConnectBeanInfo class provides descriptive information so that the
UI Designer will be more useful when inspecting an instance of that object.

Next, create a simple Java program to use NasDaqWrapper bean. Use the New Class
wizard (Choose File|New Class) to construct a class named NonGuiClient. Then edit
the file NonGuiClient.java with the following codes:

// NonGuiClient.java

package corba_stockmarket.StockMarket.client;

public class NonGuiClient {

public static void main(String[] args) {

NasdaqWrapper myCorbaInterface = new NasdaqWrapper();

System.out.println(“Price of BORL = “ +

myCorbaInterface.getPrice(“BORL”));

}

}

Run the Applications
In order to run both server and client applications, you need to start the VisiBroker
SmartAgent, which is a VisiBroker-specific object location service. When you used
Tools|Configure Server to set up the Borland Enterprise Server in the previous chap-
ter, your CORBA settings were automatically set up for you at the same time. You can
see your current settings on the CORBA page of the Tools|Enterprise Setup dialog box.
Also, a command to start the Smart Agent was added to the Tools menu item. To start
the VisiBroker ORB Smart Agent, choose Tools|VisiBroker Smart Agent. For Windows
users, note that running osagent will add an icon to the taskbar, and it does not have to
be restarted every time you restart the client or server.

To start the server implementation, right-mouse click the file StockMarketServer-
App.java in the Project pane. Choose Run. From the drop-down menu, choose Use
Server Application. The application will display the GUI shown in Figure 22.10.

Figure 22.10 StockMarket server application.

496 Chapter 22

To start the NonGuiClient, right-mouse click the file NonGuilClient.java in the Project
pane. Choose Run. From the drop-down menu, choose Use Server Application. The
JBuilder Message pane should display a similar result.

Price of BORL = 20.768581150166604

The server GUI will update its message, as shown in Figure 22.11.

Building a GUI Client with a CORBA Client Interface
NasdaqWrapper is a nonvisual bean, and it can be used in client CORBA applications.
This section explores how to connect a GUI application, a reference, and a CORBA
client interface that was built earlier. The Use CORBA Interface wizard provides infor-
mation on using CodeInsight in the Source pane, helping the UI designer connect the
necessary pieces.

The next step is to create a new application by clicking the File|New menu item,
selecting the Application icon, and clicking the OK button. This will display a three-
step dialog that will help create the Java GUI application:

1. Define a package name and an application class name (see Figure 22.12).

2. Enter a name for the application’s frame (see Figure 22.13).

3. Select to create a Runtime configuration (see Figure 22.14).

Figure 22.11 StockMarket server application update.

CORBA Development with JBuilder 497

Figure 22.12 Step 1 — Enter names for the package and application class file.

Figure 22.13 Step 2 — Enter frame class details.

Figure 22.14 Step 3 — Create a Runtime configuration.

498 Chapter 22

By default, the JBuilder Content pane should have BrokerGUIFrame.java opened
(see Source 22.3).

// BrokerGUIFrame.java

package corba_stockmarket.StockMarket.client;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class BrokerGUIFrame extends JFrame {

private JPanel contentPane;

private BorderLayout borderLayout1 = new BorderLayout();

//Construct the frame

public BrokerGUIFrame() {

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

//Component initialization

private void jbInit() throws Exception {

//setIconImage(Toolkit.getDefaultToolkit().createImage(BrokerGUIFrame.cl

ass.getResource(“[Your Icon]”)));

contentPane = (JPanel) this.getContentPane();

contentPane.setLayout(borderLayout1);

this.setSize(new Dimension(400, 300));

this.setTitle(“Nasdaq Broker”);

}

//Overridden so we can exit when window is closed

protected void processWindowEvent(WindowEvent e) {

super.processWindowEvent(e);

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

System.exit(0);

}

}

}

Source 22.3 BrokerGUIFrame.java.

We connect this GUI application to a CORBA client interface using the Use CORBA
Interface wizard. Select Wizards|Use CORBA Interface to display a two-step dialog
(see Figure 22.15 and Figure 22.16):

CORBA Development with JBuilder 499

Figure 22.15 CORBA Interface wizard, Step 1.

1. Select an existing CORBA interface bean.

2. Select the CORBA Interface Bean class, and set a field name as an instance
variable for that class.

On completing the wizard, JBuilder will insert myCorbaInterface as a private variable
and instantiate a new instance NasdaqWrapper() in BrokerGUIFrame.java file.

private NasdaqWrapper myCorbaInterface = new NasdaqWrapper();

Let’s design a simple GUI, as shown in Figure 22.17. The GUI includes a jGetQuote-
Button for command, a jResultLabel for output, jTicketSymbolTextField for input, and
three other labels that show static texts: “NASDAQ BROKER GUI”, “Stock Symbol”,
and “Last Sale At:”, respectively.

Figure 22.16 CORBA Interface wizard, Step 2.

500 Chapter 22

Figure 22.17 BrokerGUIFrame designer.

Double-click on the Get Quote button, and add this code to the source.

void jGetQuoteButton_actionPerformed(ActionEvent e) {

jResultLabel.setText(

String.valueOf(myCorbaInterface.getPrice(jTicketSymbolTextField.getText(

))));

}

To run the BrokerGUIApp, select Run|Run Project and pick BrokerGUIApp (see
Figure 22.18).

Figure 22.18 Select a run configuration.

CORBA Development with JBuilder 501

The BrokerGUIApp will display the simple GUI (see Figure 22.19), which is designed
in the previous step. Enter a symbol to look up its quote. For example, enter “BORL” for
Stock Symbol, and click the Get Quote button.

Deploying the Application

In order to deploy applications developed with VisiBroker ORB, you must first set up
a runtime environment on the host where the application is to be executed and ensure
that the necessary support services are available on the local network. The VisiBroker
ORB libraries and packages must be installed on the host where the deployed applica-
tion is to execute. The location of these libraries must be included in the path for the
application’s environment. Also, a Java Runtime Environment must be installed and
configured on the host. See http://info.borland.com/techpubs/books/bes/htmls/
DevelopersGuide5/DevelopersGuide/envsetup.html# for more information on set-
ting up VisiBroker deployment.

The CORBA application can be deployed to a location on a server or client machine
where the application will be executed. JBuilder provides a wizard to assist the deploy-
ment process. JBuilder’s Archive Builder automatically collects necessary Java classes,
resources, and libraries, then archives these files to a compressed format as ZIP or JAR
files.

Summary

This chapter provides a brief tutorial on the basic concepts and design of a CORBA
application with JBuilder using Borland VisiBroker ORB. The JBuilder provides an
integrated environment for developing CORBA-based distributed applications. After
defining object interfaces in IDL, JBuilder generates client stub routines and server ser-
vant (or skeleton) code. To help implement the server object, the CORBA Server Appli-
cation wizard constructs a server program that initializes the ORB, creates the POA,
creates the servant object, activates the servant object, activates the POA manager and
the POA, and prepares to receive requests. To help implementing the client program,
JBuilder provides a wizard to construct a CORBA client interface bean that initializes
the ORB, binds to the server object, invokes the server object’s method, and handles
exceptions.

Figure 22.19 BrokerGUI application.

502 Chapter 22

In the next chapter, we discuss how to extend various Java distributed technologies
like RMI and CORBA into the newly emerging Web services for a true Internet platform
for server-to-server or service-to-service communication. This will allow the developer
to write server applications using standardized XML messaging technology that openly
communicate with other servers, regardless of platform, hardware, or language.

CORBA Development with JBuilder 503

505

Web Services holds the promise of interoperability across software components, appli-
cations, platforms, programming languages, and organizations. Web Services is a
Web-centric architecture that can describe, publish, locate, and invoke Web service
applications over the network using standardized XML messaging technology. The
framework is built up by leading-edge technologies like Simple Object Access Protocol
(SOAP); Web Services Description Language (WSDL); and Universal Discovery,
Description, and Integration (UDDI). These new technologies integrate with existing
computing frameworks like CORBA, J2EE, COM/DCOM, and CGI.

The chapter does not provide yet another introduction to the Web Services frame-
work — we assume that you are familiar with Web Services and its offerings. Our
objective is to help you understand how to use JBuilder to implement Web Services
applications for both consumer-side and provider-side applications. This chapter pre-
sents an introduction to Web Services technology, including the benefits of Web Ser-
vices and how easy it is to facilitate Web Services using JBuilder. This chapter includes
a practical tutorial for understanding the concept of Web Services and how to apply it
in Java application. Also, this chapter discusses Web Services and J2EE integration.

Web Services Orientation

At the W3C Web Services Architecture Group, we found a definition of a Web service
as follows:

Web Services Development
with JBuilder

C H A P T E R

23

A Web service is a software application identified by a URI, whose interfaces and binding
are capable of being defined, described, and discovered by XML artifacts, and supports
direct interactions with other software applications using XML-based messages via Inter-
net-based protocols. (W3C — www.w3.org/TR/2002/WD-ws-arch-20021114/)

A distributed software component is defined as a software service that contains a
self-described service interface, implements a set of tasks that are published to the
world, and builds on top of a standard transportation protocol. In combination with
the W3C definition of Web service, a Web service is actually a distributed software
component that is invoked from any programming language and any platform, and
across a network. The service interface offered to the public is described in an XML-
based language called Web Services Description Language (WSDL). A published Web
service registers and describes itself in a Universal Discovery, Description, and Inte-
gration (UDDI) server so that one business can locate other businesses’ Web services
and build applications to suit their customers’ needs via a transportation protocol like
Simple Object Access Protocol (SOAP).

Benefits of Web Services
From the definition of the Web service and its supporting technology, here are a few
key messages that the Web service promises:

Interoperability. The communication between Web services components is
designed to be 100 percent platform and language independent. A universal
data format XML-based WSDL document is used to describe the interface and
illustrate the service over a standard network protocol. Web services written in
any language can run on any platform. For example, a consumer application
written using C++ and running on Windows could request a service from a
component written in Java and running on Linux.

Business integration. The Web services framework is designed to ease the inte-
gration across business in a rapid manner. Finding and discovering services are
operated dynamically as new services are made available from the service broker.
Binding and evoking services are on-demand 24 x 7 operations. This means that
the framework forms a self-configured, adaptive, and robust integrated system.

Simplicity. Loosely coupled and coarse-grained characteristics are the two most-
mentioned characteristics to reduce complexity for doing Web services. Service
requesters and providers are not tied to each other. They communicate via well-
defined interfaces that contain information necessary for them to interact with
each other. That enables Web service implementation to integrate many systems
at a corporate level to provide large business services in a coarse-grained manner.

Industrial standard. Many major companies are supporting Web services and
their underlying technologies. For example, Borland is going full speed at Web

506 Chapter 23

services by providing tools and frameworks across platforms and languages to
make it easy to develop, deploy, and manage Web service components.

Web Services Architecture
The Web Services Architecture view is based on three operations of typical Web ser-
vices: to publish, to find, and to bind. First, the Web services must be published or have
registered its services with a so-called Service Broker. This publish operation is han-
dled by a Service Provider. The Service Broker then makes the Web services available
for the “Service Requestor” to access by communicating with the Service Broker to find
the Web services. A Service Broker role is to help Service Providers and Service
Requestors locate each other. The Service Requestor is now able to bind and invoke a
particular Web service on demand via the Simple Object Access Protocol (SOAP). Ser-
vices deployed by service providers are described using the Web Services Description
Language (WSDL). A Service Requestor uses the Universal Discovery, Description, and
Integration (UDDI) APIs to request the required services from the Service Broker. The
conceptual view is described in Figure 23.1.

Web Services Technologies
In order to publish, describe, locate, and evoke a Web service, Web services use the
following core technologies.

Figure 23.1 Conceptual view of Web Services.

Service
Provider

Service
Requestor

Bind
(SOAP)

Find
(UDDI, WSDL)

Service
Broker

Publish
(UDDI, WSDL)

Web Services Development with JBuilder 507

Universal Description, Discovery, and Integration

The first step to connect to the Web service is to locate that business with the needed
services. Universal Description, Discovery, and Integration (UDDI) is the mechanism
to browse and query for a particular service. UDDI can be viewed as a “yellow page”
for the published Web services. The programmable UDDI API is used to discover the
service interface and semantics reference to the service. Web service providers can reg-
ister and describe their services in the UDDI registry. And Web service consumers can
query the registry to find the Web services and to locate information needed to inter-
operate with those services. UDDI registry is a Web service itself. Developers can use
SOAP messaging to communicate with the registry in support of publishing, editing,
browsing, and searching for information.

Web Services Description Language

The Web Services Description Language (WSDL) specification is an XML-based docu-
ment that describes the interfaces, semantics, and location information for a Web ser-
vice. WSDL semantics contains structured information for a Web service: input/output
parameters, return data type, and service protocol used in the binding process. In
short, WSDL describes the what-how-where aspect of the Web service.

Following is the WSDL definition for the FedEx Tracker service (www.xmethods
.net/sd/2001/FedExTrackerService.wsdl):

<?xml version=”1.0” ?>

<definitions name=”FedExTrackerService”

targetNamespace=”http://www.xmethods.net/sd/FedExTrackerService.wsdl”

xmlns:tns=”http://www.xmethods.net/sd/FedExTrackerService.wsdl”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<message name=”statusRequest”>

<part name=”trackingNumber” type=”xsd:string” />

</message>

<message name=”statusResponse”>

<part name=”return” type=”xsd:string” />

</message>

<portType name=”FedExTrackerPortType”>

<operation name=”getStatus”>

<input message=”tns:statusRequest” />

<output message=”tns:statusResponse” />

</operation>

</portType>

<binding name=”FedExTrackerBinding” type=”tns:FedExTrackerPortType”>

<soap:binding style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http” />

508 Chapter 23

<operation name=”getStatus”>

<soap:operation soapAction=”urn:xmethodsFedEx#getStatus” />

<input>

<soap:body use=”encoded” namespace=”urn:xmethodsFedEx”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</input>

<output>

<soap:body use=”encoded” namespace=”urn:xmethodsFedEx”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</output>

</operation>

</binding>

<service name=”FedExTrackerService”>

<documentation>Provides access to a variety of FedEx delivery status

information</documentation>

<port name=”FedExTrackerPort” binding=”tns:FedExTrackerBinding”>

<soap:address

location=”http://services.xmethods.net:80/perl/soaplite.cgi” />

</port>

</service>

</definitions>

This service allows access to FedEx tracking information. Method service takes in
a FedEx tracking number and returns the latest status from FedEx Tracking System.
Following is the definition of the FedEx tracking service:

METHOD: getStatus() INPUT: trackingNumber (xsd:string) OUTPUT:
xsd:string

Simple Object Access Protocol

Simple Object Access Protocol (SOAP) uses XML technology to provide a simple and
lightweight distributed protocol for exchanging information between software com-
ponents. XML is used because of its universal data format, programming language-
neutrality, and extensibility. From the W3C specification, SOAP consists of three parts:
an envelope that defines a framework for describing what is in a message and how to
process it, a set of encoding rules for expressing instances of application-defined data
types, and a convention for representing remote procedure calls and responses, shown
in Figure 23.2. Therefore, SOAP defines a simple mechanism to support a variety of
lower-level protocols, such as HTTP(S), SMTP, TCP, and others. The SOAP message
contains application semantics by providing a modular packaging model and encod-
ing mechanisms for encoding data within modules. This is the mobile characteristic
that allows SOAP to be used in different messaging systems.

Web Services Development with JBuilder 509

Figure 23.2 SOAP message structure.

Following is an example of a simple SOAP message sent over HTTP requesting the
current status of a FedEx package:

POST /FedexTrack HTTP/1.1

Host: www.fedex.com

Content-Type: text/xml; charset=”utf-8”

Content-Length: nnnnn

SOAPAction: “urn:fedex-track-services”

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

SOAP-

ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<SOAP-ENV:Body>

<m:GetLastTrackInfo xmlns:m=”Some-URI”>

<id>18973</id>

</m: GetLastTrackInfo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Apache eXtensible Interaction System (Axis)

Axis (http://xml.apache.org/axis) stands for Apache eXtensible Interaction System.
The name does not have a link to SOAP; however, Apache Axis is the actual implemen-
tation of the next-generation Apache SOAP 3.0 engine. It uses a Simple API for XML
(SAX, the Simple API for XML) streaming model to achieve modularity, flexibility, and
performance enhancement over SOAP 2.0 implementation. More than just a SOAP
engine, Axis has additional supports, such as a stand-alone server model, a servlet-able
server for the Tomcat engine, full support for the Web Service Description Language
(WSDL), and utilities for generating Java classes from WSDL (see Figure 23.3).

Header Block

SOAP Header

SOAP Envelope

Header Block

. . .

Body Block

SOAP Body

Body Block

. . .

510 Chapter 23

Figure 23.3 Apache Axis engine in the UML view.

The Axis engine is the main gate to the SOAP processor. The engine interacts with
the AxisHandlers to link Axis to the back-end components. Axis engine dispatches
incoming SOAP Web service requests to “Web service providers.” Axis supports
RPC/Java-type providers and EJB-type providers. Additional providers can be imple-
mented as add-ons to the Axis engine. For example, Borland Enterprise Server sup-
ports Axis with an additional CORBA provider for the Borland VisiBroker component.

o
rg

.a
p

a
ch

e.a
x
is

A
xisEn

g
in

e

D
EFA

U
LT_A

TTA
C

H
M

EN
T_IM

PL : Strin
g

EN
V

_A
TTA

C
H

M
EN

T_D
IR

 : Strin
g

EN
V

_SERV
LET_C

O
N

TEX
T : Strin

g
EN

V
_SERV

LET_R
EA

LPA
TH

 : Strin
g

PR
O

P_A
TTA

C
H

M
EN

T_C
LEA

N
U

P : Strin
g

PR
O

P_A
TTA

C
H

M
EN

T_D
IR

 : Strin
g

PR
O

P_A
TTA

C
H

M
EN

T_IM
PLEM

EN
TA

TIO
N

 : Strin
g

PR
O

P_D
EB

U
G

_FILE : Strin
g

PR
O

P_D
EB

U
G

_LEV
EL : Strin

g
PR

O
P_D

EFA
U

LT_C
O

N
FIG

_C
LA

SS : Strin
g

PR
O

P_D
O

M
U

LTIR
EFS : Strin

g
PR

O
P_PA

SSW
O

R
D

 : Strin
g

PR
O

P_SEN
D

_X
SI : Strin

g
PR

O
P_SO

A
P_V

ER
SIO

N
 : Strin

g
PR

O
P_SY

N
C

_C
O

N
FIG

 : Strin
g

PR
O

P_X
M

L_D
EC

L : Strin
g

_h
asSafePassw

o
rd

 : b
o

o
lean

lo
g

 : Lo
g

B
O

O
LEA

N
_O

PTIO
N

S : Strin
g

D
EFA

U
LT_A

D
M

IN
_PA

SSW
O

R
D

 : Strin
g

sessio
n

 : Sessio
n

o
rg

.a
p

a
ch

e.a
x
is.h

a
n

d
lers

B
a
sicH

a
n
d
ler

o
rg

.a
p

a
ch

e.a
x
is

En
g
in

eC
o
n
fig

u
ra

tio
n

o
rg

.a
p

a
ch

e.a
x
is.sessio

n

Sessio
n

o
rg

.a
p

a
ch

e.a
x
is.u

tils.ca
ch

e

C
la

ssC
a
ch

e

o
rg

.a
p

a
ch

e.co
m

m
o

n
s.lo

g
g

in
g

Lo
g

o
rg

.a
p

a
ch

e.a
x
is

A
x
isFa

u
lt

A
x
isP

ro
p

erties
C

o
n

fig
u

ra
tio

n
Ex

cep
tio

n
In

tern
a
lEx

cep
tio

n
M

essa
g

eC
o

n
tex

t
H

a
n
d
ler

o
rg

.a
p

a
ch

e.a
x
is.u

tils

Ja
va

U
tils

M
essa

g
es

ja
va

x
.x

m
l.rp

c.server

ServiceLifecycle

ja
va

x
.x

m
l.n

a
m

esp
a
ce

Q
N

a
m

e

o
rg

.a
p

a
ch

e.a
x
is.co

m
p

o
n

en
ts.lo

g
g

er

Lo
g

Fa
cto

ry

o
rg

.a
p

a
ch

e.a
x
is.en

co
d

in
g

Typ
eM

a
p

p
in

g
R

eg
istry

o
rg

.a
p

a
ch

e.a
x
is.h

a
n

d
lers.so

a
p

SO
A

P
Service

o
rg

.a
p

a
ch

e.a
x
is.sessio

n

Sim
p

leSessio
n

ad
d

A
cto

rU
R

I() : vo
id

A
xisEn

g
in

e() : vo
id

clean
up

() : vo
id

g
etA

p
p

licatio
n

Sessio
n

() : Sessio
n

getC
lientEngine() : A

xisEngine

g
etG

lo
b

alR
eq

uest() : H
an

d
ler

g
etG

lo
b

alR
esp

o
n

se() : H
an

d
ler

g
etH

an
d

ler() : H
an

d
ler

g
etService() : SO

A
PService

g
etTran

sp
o

rt() : H
an

d
ler

g
etTyp

eM
ap

p
in

g
R

eg
istry() : Typ

eM
ap

p
in

g
R

eg
istry

h
asSafePassw

o
rd

() : b
o

o
lean

in
it() : vo

id

n
o

rm
aliseO

p
tio

n
s() : vo

id

refresh
G

lo
b

alO
p

tio
n

s() : vo
id

rem
o

veA
cto

rU
R

I() : vo
id

saveC
o

n
fig

uratio
n

() : vo
id

setA
d

m
in

Passw
o

rd
() : vo

id

acto
rU

R
Is : A

rrayList

classC
ach

e : C
lassC

ach
e

co
n

fig
 : En

g
in

eC
o

n
fig

uratio
n

sh
o

uld
SaveC

o
n

fig
 : b

o
o

lean

curren
tM

essag
eC

o
n

text : Th
read

Lo
cal

Web Services Development with JBuilder 511

The Web service provider is specified in a deploy.wsdd file. The deploy.wsdd is a Web
service deployment descriptor that contains the definition for the Web service:

■■ Service Name defines the name of the service.

■■ Provider specifies the provider mechanism, such as java:RPC, java:EJB, or
java:VISIBROKER.

■■ Class Name defines the name of the class that is loaded when a request arrives
on this service.

■■ AllowedMethods defines methods that are invokable on this class.

■■ Type Mapping defines types that map to a Java class with its serializer and
deserializer information.

Here is an example of a deploy.wsdd file:

<?xml version=”1.0” encoding=”UTF-8”?>

<deployment

xmlns=”http://xml.apache.org/axis/wsdd/”

xmlns:ns=”http://bean.jbuilder.mastering.wiley.com”

xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>

<service name=”ProfileManager” provider=”java:RPC”>

<parameter name=”className”

value=”com.wiley.mastering.jbuilder.bean.ProfileManager”/>

<parameter name=”allowedMethods” value=”getProfile “/>

<parameter name=”scope” value=”Request”/>

<typeMapping

xmlns:ns=”http://bean.jbuilder.mastering.wiley.com”

qname=”ns:ProfileBean”

type=”java:com.wiley.mastering.jbuilder.bean.ProfileBean”

serializer=”org.apache.axis.encoding.ser.BeanSerializerFactory”

deserializer=”org.apache.axis.encoding.ser.BeanDeserializerFactory”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

/>

</service>

</deployment>

Using Web Services with JBuilder

There are four steps involved in developing Web services in JBuilder.

1. Construct the Web service business logic.

2. Package implementation files into a Web services deployable archive. Regard-
ing the Java language, the archive will contain .class file and the Web service
deployment descriptor.

3. Deploy the archive to the SOAP server. We talk about Apache Axis SOAP
server and the JBuilder deployment tool for Web services in a later section.

512 Chapter 23

4. Generate client access stubs. This step is necessary for developing client appli-
cations to consume the Web services. The generated client stubs will facilitate
the communication with the Web service.

Before getting into each step, we discuss how to obtain and install the Borland Web
Services Kit with JBuilder.

Borland Web Services Kit Installation
JBuilder 8 has incorporated the Borland Web Services Kit for Java with its installation.
You can skip this portion if you have JBuilder 8.

If you use a previous version of JBuilder, you need to download the Borland Web Ser-
vices Kit for Java at www.borland.com/products/downloads/download_jbuilder.html.
The download server will send you a Borland Web Services Kit license key via your
registered email address. The license key comes as a text file, and you need to save the
text file into your home directory. For example, if you run Windows 2000/XP, your
home directory is C:\Documents and Settings\<username>. If you run Unix or Linux,
the home directory could be /user/<username> or /home/<username>.

When installing the Web Services Kit, make sure that you extract the contents of the
archive for your platform into a temporary directory, and then run the installer from
that directory. If you try to run the installer directly from your archive file, you may
encounter problems where you are not prompted for the registration wizard. In this
case, the Web services functionality is disabled in JBuilder.

Follow these steps to install the Borland Web Services Kit for Java:

1. Unzip the webservices3_kit.zip into a temp directory.

2. Run wsk_install.exe to start the installation. Click Next to continue.

3. Read and accept the license agreement when prompted. Click Next to continue.

4. Review your selected options. Click Install to finalize the installation.

5. Click Done when the installation program is completed.

JBuilder Web Services Features
JBuilder supports these toolkits for developing Web services: Apache Axis, Apache
SOAP 2, Borland Enterprise Server, WebLogic, and WebSphere Application Server. It
provides three Web services wizards, which are available on the Web Services page of
the Object Gallery (File|New), as shown in Figure 23.4:

■■ Web Services Configuration wizard is for configuring your project for Web ser-
vices. The wizard is used to create a SOAP-enabled Web application that hosts
the Web services server locally.

■■ Export as a Web Service wizard is used for exporting Java classes and EJBs as Web
services.

■■ Import a Web Service wizard is used for importing Web services from a WSDL or
an EAR to generate Java classes for Web services consumer applications.

Web Services Development with JBuilder 513

Figure 23.4 Wizards for Web services.

JBuilder also provides additional tools for Web services development:

■■ Web Services Explorer (formerly known as UDDI Explorer) is used for browsing
and publishing your Web services. You can use the Explorer to browse to
WSDL documents and import them, browse to WSIL documents, publish
businesses and services, and monitor UDDI SOAP messages.

■■ TCP Monitor is used for monitoring SOAP requests and responses between the
Web services peer components. The TCP Monitor can also be used for debug-
ging JSP and servlet applications.

Constructing Web Services
The following sections introduce you to the first experience with Web services. The sec-
tions are tutorial-like sessions that take you, step–by–step, through how to construct
Web services applications in JBuilder. You need to configure your project working with
an application server. This chapter uses Borland Enterprise Server in its examples.
Refer to Chapter 15, “Server and Service Configuration,” for information on how to set
up an application server in JBuilder.

Consuming Existing Web Services

XMethods (www.xmethods.net) is one of the most popular sites for learning and play-
ing with Web services. XMethods lists more than 200 services on its home page. Each
service includes a short overview definition and a full description of how to use the
service. Note that the XMethods services are made available for your personal, non-
commercial use and demonstration purposes only. In this example, we build a client
application consuming AltaVista’s famous Babelfish service, shown in Figure 23.5.
BabelFish is a translation service that can translate a text of up to 150 words in length
from one language to another language.

To start the tutorial, let’s click on the BabelFist service. The XMethods server will
display detailed contents of the BabelFish service, as shown in Figure 23.6. On the
page, you can access the BabelFish service’s methods, parameters and their associated
SOAPAction, method Namespace URI, and endpoint URL.

514 Chapter 23

Figure 23.5 XMethods demo services.
Copyright 2002, XMethods, Inc.

Figure 23.6 Detailed Information for the BabelFish service.
Copyright 2002, XMethods, Inc.

Web Services Development with JBuilder 515

The BabelFish WSDL file shown here can be found at www.xmethods.net/sd/
2001/BabelFishService.wsdl:

<?xml version=”1.0” ?>

<definitions name=”BabelFishService”

xmlns:tns=”http://www.xmethods.net/sd/BabelFishService.wsdl”

targetNamespace=”http://www.xmethods.net/sd/BabelFishService.wsdl”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<message name=”BabelFishRequest”>

<part name=”translationmode” type=”xsd:string” />

<part name=”sourcedata” type=”xsd:string” />

</message>

<message name=”BabelFishResponse”>

<part name=”return” type=”xsd:string” />

</message>

<portType name=”BabelFishPortType”>

<operation name=”BabelFish”>

<input message=”tns:BabelFishRequest” />

<output message=”tns:BabelFishResponse” />

</operation>

</portType>

<binding name=”BabelFishBinding” type=”tns:BabelFishPortType”>

<soap:binding style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http” />

<operation name=”BabelFish”>

<soap:operation soapAction=”urn:xmethodsBabelFish#BabelFish” />

<input>

<soap:body use=”encoded” namespace=”urn:xmethodsBabelFish”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</input>

<output>

<soap:body use=”encoded” namespace=”urn:xmethodsBabelFish”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</output>

</operation>

</binding>

<service name=”BabelFishService”>

<documentation>Translates text of up to 5k in length, between a

variety of languages.</documentation>

<port name=”BabelFishPort” binding=”tns:BabelFishBinding”>

<soap:address

location=”http://services.xmethods.net:80/perl/soaplite.cgi” />

</port>

</service>

</definitions>

516 Chapter 23

Using the Import a Web Service Wizard

Let’s create a JBuilder project called ConsumerApplication. The next step is to use the
JBuilder utility to create a proxy from the BabelFish WSDL file by importing the WSDL
file. Open the Web Services page of the Object Gallery by doing File|New and select-
ing the Import a Web Service icon. JBuilder will display a series of wizard dialogs.

First, we need to select an available Web Service toolkit for a specific wizard of that
toolkit. In this example, we select Apache AXIS as the toolkit we will use. Enter the
URL for the BabelFish service (see Figure 23.7).

Web Services Development with JBuilder 517

BABELFISH USAGE

The BabelFish service defines its method, input, and output format as follows:

METHOD: BabelFish
INPUT :

translationmode(xsd:string)
sourcedata (xsd:string) which is the text to be translated.

OUTPUT
return (xsd:string) which is the translated text.

Available translationmodes include the following:

TRANSLATION TRANSLATIONMODE

English → French “en_fr”

English → German “en_de”

English → Italian “en_it”

English →Portugese “en_pt”

English → Spanish “en_es”

French → English “fr_en”

German → English “de_en”

Italian → English “it_en”

Portugese → English “pt_en”

Russian → English “ru_en”

Spanish → English “es_en”

.

Figure 23.7 Choose the WSDL to import.

In Step 2, we select server-side code generation options (see Figure 23.8). Check
Generate server-side classes to have Java source generated from the imported WSDL.
JBuilder provides two choices for server-side implementation on importing the WSDL
file. We can choose to implement the service as a Java class or an Enterprise Session
Bean. Depending on what we choose, the wizard will add steps to complete the imple-
mentation. Deploy scope options are to define how instances of the service will be cre-
ated. The Request option indicates that there is one instance per request. The Session
option indicates that there is one instance per authenticated session. And the Applica-
tion option indicates that there is one instance being shared among requests.

Check the Generate skeleton classes option when you want to generate the Skeleton
class to encapsulate an implementation for the server. When the option is checked, the
Skeleton class shows the meta data for methods and parameters. When the option is
unchecked, deploy.wsdd shows the meta data for methods and parameters.

Figure 23.8 Select server-side code generation options.

518 Chapter 23

Step 3 is to set output options for the generated classes (see Figure 23.9). A package
name is required for the package options. If you want to use an existing package, you
can select an available package from the drop-down list or use the ellipses button to
browse to a package in the project. When the Use this package globally for all types
option is checked, all the generated Java source will be located in the same package.
And later, you do not need to customize the namespace mapping that is used for
packages.

The Type version option allows us to select a particular type mapping. In this case,
there are two choices: SOAP 1.2 and SOAP 1.1 style type mappings. For more informa-
tion on SOAP type mappings, you can visit the following link: www.w3.org/2000/
XP/Group.

When the Overwrite any existing Bean types option is checked, existing bean types
of the same name will be overwritten with new generated Java sources. Next, generate
the declared type mapping in separate Helper classes. The Generate JUnit test case
option generates a JUnit test case to test the Web service immediately. In this example,
we check Generate JUnit test case and Generate wrapped style types options. The
Generate wrapped style types option is used to determine whether to generate a Java
class for the WSDL complex type. When this option is checked, the wrapped style
types are used as individual parameters, and no Java classes are being generated for
the complex type. Otherwise, all complex types in the WSDL will be generated to Java
classes.

Check the Generate code for all elements even if not referenced option if you want
to have nonreferenced elements in the WSDL being generated to Java classes. Finally,
the Ignore imports and use only the immediate WSDL document option is used to
bypass code generation for the import statements in the WSDL and the associated
schema within the WSDL. Click the Next button to advance to Step 4.

The final step is to edit the namespace mapping that is used for many packages. This
step is useful for organizing multiple Web services components in the same project.
Click Finish to complete the Import WSDL wizard. JBuilder then generates the files
listed in Table 23.1.

Figure 23.9 Configure Output Options dialog.

Web Services Development with JBuilder 519

Table 23.1 Generated Files from Import WSDL Wizard

GENERATED FILES DESCRIPTIONS

BabelFishBindingImpl.java This class implements the BabelFish portType
interface.

BabelFishBindingStub.java This local proxy class represents binding to a
remote BabelFish Web service.

BabelFishPortType.java This interface represents BabelFish portType in
the WSDL.

BabelFishService.java This service interface defines a get method for
the BabelFish port listed in the service element
of the WSDL. Also, it defines a factory class to
get the BabelFish stub instance.

BabelFishServiceLocator.java This class extends BabelFishService.java and
defines the port address to locate the
implementation of BabelFishService.

BabelFishServiceTestCase.java This is the JUnit test case for testing the Web
service.

Use the Generated JUnit Test Case

We can make use of the generated JUnit test case to test the Web service immediately.
Let’s edit the generated JUnit test case by adding a few lines of code to fulfill the test
case:

package net.xmethods.www;

import junit.framework.*;

public class BabelFishServiceTestCase extends TestCase {

public BabelFishServiceTestCase(java.lang.String name) {

super(name);

}

public void test1BabelFishPortBabelFish() {

BabelFishPortType binding;

try {

binding = new BabelFishServiceLocator().getBabelFishPort();

}

catch (javax.xml.rpc.ServiceException jre) {

if(jre.getLinkedCause()!=null)

jre.getLinkedCause().printStackTrace();

throw new AssertionFailedError(“Exception caught:”+ jre);

}

assertTrue(“binding is null”, binding != null);

try {

520 Chapter 23

java.lang.String value = null;

java.lang.String text = “Hello, how are you?”;

java.lang.String mode = “en_fr”;

value = binding.babelFish(mode, text);

System.out.println(text + “ is translated to: “ + value);

}

catch (java.rmi.RemoteException re) {

throw new AssertionFailedError(“Exception caught:” + re);

}

}

}

The output from running the test case is as follows:

Hello, how are you? is translated to: bonjour, comment allez-vous?

Build a Simple GUI Application

We can build a simple Swing GUI to do more tests for the BabelFish Web services. Go to
File|New and select Application. Choose “ConsumerApplication” as the application
name and “ConsumerFrame” as the application frame. JBuilder should generate a
ConsumerApplication.java and ConsumerFrame.java file and make ConsumerFrame.java
active in the Content pane. Click on the Design tab to go to the Design view for
ConsumerFrame and add a couple of buttons and text fields, as shown in Figure 23.10.

The changes in the GUI result in the code changes in ConsumerFrame.java. Double-
click on the Go! button and add the boldface code from Source 23.1 into the
jButton1_actionPerformed() method of the ConsumerFrame.java.

package com.wiley.mastering.jbuilder.webservices;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import net.xmethods.www.*;

public class ConsumerFrame extends JFrame {

JPanel contentPane;

JLabel jLabel1 = new JLabel();

JLabel jLabel2 = new JLabel();

JTextField jTextField1 = new JTextField();

JLabel jLabel3 = new JLabel();

JTextField jTextField2 = new JTextField();

JTextField jTextField3 = new JTextField();

JButton jButton1 = new JButton();

//Construct the frame

public ConsumerFrame() {

Source 23.1 ConsumerFrame.java. (continued)

Web Services Development with JBuilder 521

enableEvents(AWTEvent.WINDOW_EVENT_MASK);

try {

jbInit();

}

catch(Exception e) {

e.printStackTrace();

}

}

//Component initialization

private void jbInit() throws Exception {

contentPane = (JPanel) this.getContentPane();

jLabel1.setEnabled(true);

jLabel1.setFont(new java.awt.Font(“Dialog”, 1, 16));

jLabel1.setBorder(BorderFactory.createRaisedBevelBorder());

jLabel1.setHorizontalAlignment(SwingConstants.CENTER);

jLabel1.setText(“BabelFish Translator”);

jLabel1.setBounds(new Rectangle(75, 21, 223, 61));

contentPane.setLayout(null);

this.setSize(new Dimension(400, 300));

this.setTitle(“BabelFish Client”);

jLabel2.setText(“Enter Your Text:”);

jLabel2.setBounds(new Rectangle(45, 98, 84, 30));

jTextField1.setText(“”);

jTextField1.setBounds(new Rectangle(46, 125, 308, 35));

jLabel3.setText(“Translate To:”);

jLabel3.setBounds(new Rectangle(45, 174, 83, 26));

jTextField2.setText(“”);

jTextField2.setBounds(new Rectangle(46, 208, 307, 46));

jTextField3.setText(“en_fr”);

jTextField3.setBounds(new Rectangle(112, 178, 92, 21));

jButton1.setBounds(new Rectangle(216, 178, 73, 22));

jButton1.setText(“Go!”);

jButton1.addActionListener(new

ConsumerFrame_jButton1_actionAdapter(this));

contentPane.add(jLabel1, null);

contentPane.add(jLabel2, null);

contentPane.add(jTextField1, null);

contentPane.add(jLabel3, null);

contentPane.add(jTextField2, null);

contentPane.add(jTextField3, null);

contentPane.add(jButton1, null);

}

//Overridden so we can exit when window is closed

protected void processWindowEvent(WindowEvent e) {

super.processWindowEvent(e);

if (e.getID() == WindowEvent.WINDOW_CLOSING) {

System.exit(0);

}

Source 23.1 (continued)

522 Chapter 23

}

void jButton1_actionPerformed(ActionEvent e) {

net.xmethods.www.BabelFishPortType binding = null;

try {

binding = new BabelFishServiceLocator().getBabelFishPort();

java.lang.String translatedText = null;

java.lang.String text = jTextField1.getText();

java.lang.String mode = jTextField3.getText();

translatedText = binding.babelFish(mode, text);

jTextField2.setText(translatedText);

}

catch (javax.xml.rpc.ServiceException jre) {

jre.printStackTrace();

}

catch (java.rmi.RemoteException re) {

re.printStackTrace();

}

}

}

class ConsumerFrame_jButton1_actionAdapter implements

java.awt.event.ActionListener {

ConsumerFrame adaptee;

ConsumerFrame_jButton1_actionAdapter(ConsumerFrame adaptee) {

this.adaptee = adaptee;

}

public void actionPerformed(ActionEvent e) {

adaptee.jButton1_actionPerformed(e);

}

}

Source 23.1 (continued)

Figure 23.10 Form Design view for ConsumerFrame.

Web Services Development with JBuilder 523

Compile the whole project and run the ConsumerApplication. Now, you can enter a
text line and click the Go! button to see the translated text.

Generating Web Services from a Java Component

This section explores the use of the Export as a Web Service wizard to generate a Web
service from an already existing Java class in your project. Usually the Java class is a
Java Bean type class. In case you work with a non–Java Bean type class, you need to
implement and provide custom serializers and deserializers for the client-side stubs.

Create Sample Java Bean

To start, let’s create a new JBuilder project called javabean2webservice and add two
new Java classes, ProfileBean.java and ProfileManager.java in to the project.

The ProfileBean has two string properties and their getters and setters. To simplify
the example, the ProfileBean constructor takes in a string personID and sets a person-
Name to the combination of “Borland_” + the personID:

package com.wiley.mastering.jbuilder.bean;

public class ProfileBean {

private String personID;

private String personName;

public ProfileBean(String personID) {

this.personID = personID;

// This step is to obtain personName from the given personID.

// In this example, we just return a sample “Employee_” + personID

// for demonstration purpose.

this.personName = “Employee_” + personID;

}

public String getPersonID() {

return personID;

}

public void setPersonID(String personID) {

this.personID = personID;

}

public String getPersonName() {

return personName;

}

public void setPersonName(String personName) {

this.personName = personName;

}

}

ProfileManager implements a getProfile() method that simply constructs and
returns a new ProfileBean object with a personID:

524 Chapter 23

package com.wiley.mastering.jbuilder.bean;

public class ProfileManager {

public ProfileManager() {

}

public ProfileBean getProfile(String personID){

return new ProfileBean(personID);

}

}

Later, we will export ProfileManager with its getProfile() method as a Web service.

Configure the Web Service Application

Next, we configure the project for Web services before exporting the ProfileManager as a
Web service:

1. Use the Web Application wizard (File|New, Web, Web Application) to create a
new WebApp called mywebservice.

2. If the project uses an Enterprise application server, then we need to create an
EAR file by using the EAR wizard (File|New, Enterprise, EAR). In this exam-
ple, enter “Profile” as the EAR’s name.

3. Use the Web Services Configuration wizard (File|New, Web Services, Web Ser-
vices Configuration) to configure the project for Web service (see Figure 23.11).
Select Profile for the EAR file in the project and select mywebservice for a
WebApp in the project.

JBuilder integrates with three Web services toolkits: Apache Axis, Apache SOAP 2,
and WebLogic. In the example, we select an Apache Axis toolkit for the project.

Step 2 (see Figure 23.12) of the wizard is to set up a Web services server run-
configuration. Click Finish to complete the wizard and configure the project for
Web services.

Figure 23.11 Web Services Configuration wizard — Step 1.

Web Services Development with JBuilder 525

Figure 23.12 Web Services Configuration wizard — Step 2.

Using Export as a Web Service Wizard

To export ProfileManager as a Web service, right-mouse click on the ProfileManager
.java and select the Export as a Web service option. The wizard will export Profile-
Manager to a Web service component.

In this very first step, if you select Generate client stubs, the wizard will add two
additional steps to configure the output options of the client stubs. We do not need to
generate the client stubs in this example; therefore, we will go through only five steps
instead of seven steps.

Scope options define how instances of the service will be created. Request option indi-
cates that there is one instance per request. Session option indicates that there is one
instance per authenticated session. Application option indicates that there is one instance
being shared among requests.

Figure 23.13 Setting service-specific options.

526 Chapter 23

Location shows the URL address of the Web service. The URL will be set to the loca-
tion attribute of the <wsdlsoap:address> element in the WSDL file, for example:

<wsdlsoap:address

location=”http://localhost:8080/mywebservice/services/ProfileManager”/>

Apache Axis supports these styles: rpc, document, and wrapped. They are all
mapped to an RPC provider. When a style is selected, it is set to the binding style in the
WSDL document. For example:

<wsdlsoap:binding style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http”/>

SOAP Action sets a soapAction name for the operation in the WSDL. Default for the
soapAction is set to “ “, and it reflects in the WSDL as follows:

<wsdlsoap:operation soapAction=””/>

Service is a service name set to the <service> element in the generated WSDL file, as
follows:

<wsdl:service name=”ProfileManagerService”>

Port is a port name set to the <port> element in the generated WSDL file. Binding is
a binding name set to the <binding> element in the generated WSDL file. For example:

<wsdl:port binding=”intf:ProfileManagerSoapBinding”

name=”ProfileManager”>

<wsdlsoap:address

location=”http://localhost:8080/mywebservice/services/ProfileManager”/>

</wsdl:port>

PortType is a port type name set to the <portType> element in the generated WSDL
file; for example:

<wsdl:portType name=”ProfileManager”>

<wsdl:operation name=”getProfile” parameterOrder=”personID”>

<wsdl:input message=”intf:getProfileRequest”

name=”getProfileRequest”/>

<wsdl:output message=”intf:getProfileResponse”

name=”getProfileResponse”/>

</wsdl:operation>

</wsdl:portType>

Web Services Development with JBuilder 527

The next step is to set the output options for the generated WSDL, as shown in
Figure 23.14.

This step of the wizard configures output options to generate the interfaces and
implementations of the service. Select one of the following modes when generating
WSDL:

■■ Select the Interface and Implementation mode to generate both the interface
and implementation parts of the WSDL.

■■ Select the Interface Only mode to generate only the interface portion of the
WSDL.

■■ Select “Implementation Only” mode to generate only the implementation
portion of the WSDL.

■■ Select the Interface and Implementation in Separate Files mode to generate
both the interface and implementation parts of the WSDL into separate Java
source files. This selection will enable the Output Impl file and Import URL
options. The Output Impl file option contains the name of the file for the WSDL
implementation. The Import URL option contains a URL location to the inter-
face WSDL file.

■■ For the Output file option, enter the pull path and name of the WSDL file.

The next step is to select what business methods are to be exposed in the Web service
from the hierarchy Tree view (see Figure 23.15). You can expose one or more methods
in the class, or you can expose all available methods in the class. In this example, only
the getProfile() method is exposed to the Web service. By default, inherited packages
and classes are excluded from the Web service; however, you can include inheritance
exposure by checking the Enable inheritance option. You can use the Add/Remove
button to exclude or include additional packages and classes.

Figure 23.14 Select output options for the WSDL.

528 Chapter 23

Figure 23.15 Select methods to expose in the web service.

The last step is to enter custom namespace mapping for the packages. This step is
useful for organizing multiple Web services components in the same project. Click Fin-
ish to complete the Export as a Web Service wizard.

After completing the wizard, you can explore the Project pane to see that JBuilder
generated a Web service deployable archive in .war format; which is mywebservice
.war (see Figure 23.16). You also see the javabean2webservice.ear file, which can be
deployable to any J2EE application server supporting Web service deployment. In this
example, we deploy the .EAR file into Borland Enterprise Server.

The selected Apache Axis toolkit generated the deploy.wsdd and server-
config.wsdd. The two files contain information describing what, where, and how to
access the Web service. Source 23.2 shows the server-congfig.wsdd.

Figure 23.16 Project pane view.

Web Services Development with JBuilder 529

<?xml version=”1.0” encoding=”UTF-8”?>

<deployment xmlns=”http://xml.apache.org/axis/wsdd/”

xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>

<globalConfiguration>

<parameter name=”adminPassword” value=”admin”/>

<parameter name=”attachments.implementation”

value=”org.apache.axis.attachments.AttachmentsImpl”/>

<parameter name=”sendXsiTypes” value=”true”/>

<parameter name=”sendMultiRefs” value=”true”/>

<parameter name=”sendXMLDeclaration” value=”true”/>

<requestFlow>

<handler type=”java:org.apache.axis.handlers.JWSHandler”>

<parameter name=”scope” value=”session”/>

</handler>

<handler type=”java:org.apache.axis.handlers.JWSHandler”>

<parameter name=”scope” value=”request”/>

<parameter name=”extension” value=”.jwr”/>

</handler>

</requestFlow>

</globalConfiguration>

<handler name=”LocalResponder”

type=”java:org.apache.axis.transport.local.LocalResponder”/>

<handler name=”URLMapper”

type=”java:org.apache.axis.handlers.http.URLMapper”/>

<handler name=”RPCDispatcher”

type=”java:org.apache.axis.providers.java.RPCProvider”/>

<handler name=”Authenticate”

type=”java:org.apache.axis.handlers.SimpleAuthenticationHandler”/>

<handler name=”MsgDispatcher”

type=”java:org.apache.axis.providers.java.MsgProvider”/>

<service name=”ProfileManager” provider=”java:RPC”>

<parameter name=”allowedMethods” value=”getProfile “/>

<parameter name=”scope” value=”Request”/>

<parameter name=”className”

value=”com.wiley.mastering.jbuilder.bean.ProfileManager”/>

<typeMapping

deserializer=”org.apache.axis.encoding.ser.BeanDeserializerFactory”

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

qname=”ns1:ProfileBean”

serializer=”org.apache.axis.encoding.ser.BeanSerializerFactory”

type=”java:com.wiley.mastering.jbuilder.bean.ProfileBean”

xmlns:ns1=”http://bean.jbuilder.mastering.wiley.com”/>

</service>

<service name=”AdminService” provider=”java:MSG”>

<parameter name=”allowedMethods” value=”AdminService”/>

<parameter name=”enableRemoteAdmin” value=”false”/>

<parameter name=”className” value=”org.apache.axis.utils.Admin”/>

<namespace>http://xml.apache.org/axis/wsdd/</namespace>

Source 23.2 Server-Config.wsdd.

530 Chapter 23

</service>

<service name=”Version” provider=”java:RPC”>

<parameter name=”allowedMethods” value=”getVersion”/>

<parameter name=”className” value=”org.apache.axis.Version”/>

</service>

<transport name=”http”>

<requestFlow>

<handler type=”URLMapper”/>

<handler type=”java:org.apache.axis.handlers.http.HTTPAuthHandler”/>

</requestFlow>

</transport>

<transport name=”local”>

<responseFlow>

<handler type=”java:org.apache.axis.transport.local.LocalResponder”/>

</responseFlow>

</transport>

</deployment>

Source 23.2 (continued)

Deploy the Web Service Application

In this example, we use the Apache Axis toolkit shipped with Borland Enterprise
Server to host the Web services. When configuring the project for Web service devel-
opment, we did select a Web Services Server run configuration in the previous discus-
sion. Let’s review the settings of the Web Services Server run configuration. Do
Run|Configuration, and select Web Services Server to edit its settings (see Figure 23.17).

Figure 23.17 Web Services Server run configuration.

Web Services Development with JBuilder 531

Figure 23.18 Start Web Services Server.

Note that we select to run only JSP/servlet service because we do not need other ser-
vices in this example. Let’s start the Web Services Server, as shown in Figure 23.18.

After the Web Services Server launched, the archive files are deployed to the server.
The JBuilder Content pane will display the Axis entry Web page, as shown in Figure
23.19.

From this page, you can view a list of deployed services in the Axis server or vali-
date the local installations’ configuration. The validation process will examine the
webapp-deployed files and verify the included libraries. Also, the process will list all
system properties and class loader information. Click on the View link to display a list
of deployed services in the browser.

You can see that a ProfileManager (wsdl) link takes you to the ProfileManager.wsdl.
Then you can import the ProfileManager.wsdl to build the consumer-side application
for the Web service, as discussed in the previous session. We use a different approach
to discover the Web services via the Web Service Explorer.

Discovering Web Services with the Web Service Explorer

Let’s leave the Web Service Server running and create a new project called testwebser-
vice. When you have a new project activated in JBuilder, do Tools|Web Services
Explorer. Click on WSDL Servers, create a new server, and name it mywebservice
(see Figure 23.20).

Figure 23.19 Apache Axis Start page.

532 Chapter 23

Figure 23.20 Create a new WSDL server.

Enter http://localhost:8080/mywebservice/servlet/AxisServlet for the service port
URL, as shown in Figure 23.21.

When we click on the Display Services button, we will see the list of services avail-
able for the MyWebService WSDL server.

Now, we can import the ProfileManager service to build the consumer application.
Select the ProfileManger, and click on the Import WSDL icon, which is the last button
located above the WSDL servers. JBuilder will take you through the Import a Web Ser-
vice wizard, as discussed in the previous section. When completing the import WSDL
steps, we edit ProfileManagerServiceTestCase.java before running the test (Source 23.3).

/**

* ProfileManagerServiceTestCase.java

*

* This file was auto-generated from WSDL

* by the Apache Axis WSDL2Java emitter.

*/

package localhost;

public class ProfileManagerServiceTestCase extends

junit.framework.TestCase {

public ProfileManagerServiceTestCase(java.lang.String name) {

super(name);

}

public void test1ProfileManagerGetProfile() {

localhost.ProfileManager binding;

try {

binding = new

localhost.ProfileManagerServiceLocator().getProfileManager();

}

catch (javax.xml.rpc.ServiceException jre) {

Source 23.3 ProfileManagerServiceTestCase.java. (continued)

Web Services Development with JBuilder 533

if(jre.getLinkedCause()!=null)

jre.getLinkedCause().printStackTrace();

throw new junit.framework.AssertionFailedError(“JAX-RPC

ServiceException caught: “ + jre);

}

assertTrue(“binding is null”, binding != null);

try {

com.wiley.mastering.jbuilder.bean.ProfileBean value = null;

// set customerID as a current time in milli-second

String customerID =

String.valueOf(System.currentTimeMillis());

// invoke getProfile() from the web service to get

ProfileBean

// object.

value = binding.getProfile(customerID);

System.out.println(“GetProfile(): “ +

value.getPersonName());

}

catch (java.rmi.RemoteException re) {

throw new junit.framework.AssertionFailedError(“Remote

Exception caught: “ + re);

}

}

}

Source 23.3 (continued)

This is a sample output from running the test case:

GetProfile(): Employee_1037844915846

Figure 23.21 MyWebService WSDL server.

534 Chapter 23

Figure 23.22 Add the TCP Monitor listening port.

Monitoring Web Service with TCP Monitor

The Axis toolkit includes the TCP Monitor listening over a connection to help monitor
and debug any of the SOAP envelopes when the SOAP envelopes are transported
through the monitor. To start the TCP Monitor, select Tools|TCP Monitor (see Figure
23.22).

You need to create a new port for the TCP Monitor to listen to. Figure 23.22 shows
that port 8082 is selected for the listening port, the forwarding listener is set to host
127.0.0.1, and 8080 to the destination port. Click the Add button to activate the new
TCP/IP Monitor. A new page is added into the TCP Monitor GUI (see Figure 23.23).

The client application needs to use the listening port of TCP Monitor to send and
receive its messages. In this example, the listening port is 8082, and we need to edit the
ProfileManagerServiceLocator.java to redirect the messages to the listening port 8082.
Open ProfileManagerServiceLocator.java, and locate the following line:

// Use to get a proxy class for ProfileManager

private final java.lang.String ProfileManager_address =

“http://localhost:8080/mywebservice/servlet/AxisServlet/ProfileManager”;

Then change the port from 8080 to 8082 (see Source 23.4).

/**

* ProfileManagerServiceLocator.java

*

* This file was auto-generated from WSDL

* by the Apache Axis WSDL2Java emitter.

*/

Source 23.4 ProfileManagerServiceLocator.java. (continued)

Web Services Development with JBuilder 535

package localhost;

public class ProfileManagerServiceLocator extends

org.apache.axis.client.Service implements

localhost.ProfileManagerService {

// Use to get a proxy class for ProfileManager

private final java.lang.String ProfileManager_address =

“http://localhost:8082/mywebservice/servlet/AxisServlet/ProfileManager”;

public java.lang.String getProfileManagerAddress() {

return ProfileManager_address;

}

// The WSDD service name defaults to the port name.

private java.lang.String ProfileManagerWSDDServiceName =

“ProfileManager”;

public java.lang.String getProfileManagerWSDDServiceName() {

return ProfileManagerWSDDServiceName;

}

public void setProfileManagerWSDDServiceName(java.lang.String name)

{

ProfileManagerWSDDServiceName = name;

}

public localhost.ProfileManager getProfileManager() throws

javax.xml.rpc.ServiceException {

java.net.URL endpoint;

try {

endpoint = new java.net.URL(ProfileManager_address);

}

catch (java.net.MalformedURLException e) {

return null; // unlikely as URL was validated in WSDL2Java

}

return getProfileManager(endpoint);

}

public localhost.ProfileManager getProfileManager(java.net.URL

portAddress) throws javax.xml.rpc.ServiceException {

try {

localhost.ProfileManagerSoapBindingStub _stub = new

localhost.ProfileManagerSoapBindingStub(portAddress, this);

_stub.setPortName(getProfileManagerWSDDServiceName());

return _stub;

Source 23.4 (continued)

536 Chapter 23

}

catch (org.apache.axis.AxisFault e) {

return null;

}

}

/**

* For the given interface, get the stub implementation.

* If this service has no port for the given interface,

* then ServiceException is thrown.

*/

public java.rmi.Remote getPort(Class serviceEndpointInterface)

throws javax.xml.rpc.ServiceException {

try {

if

(localhost.ProfileManager.class.isAssignableFrom(serviceEndpointInterfac

e)) {

localhost.ProfileManagerSoapBindingStub _stub = new

localhost.ProfileManagerSoapBindingStub(new

java.net.URL(ProfileManager_address), this);

_stub.setPortName(getProfileManagerWSDDServiceName());

return _stub;

}

}

catch (java.lang.Throwable t) {

throw new javax.xml.rpc.ServiceException(t);

}

throw new javax.xml.rpc.ServiceException(“There is no stub

implementation for the interface: “ + (serviceEndpointInterface == null

? “null” : serviceEndpointInterface.getName()));

}

/**

* For the given interface, get the stub implementation.

* If this service has no port for the given interface,

* then ServiceException is thrown.

*/

public java.rmi.Remote getPort(javax.xml.namespace.QName portName,

Class serviceEndpointInterface) throws javax.xml.rpc.ServiceException {

java.rmi.Remote _stub = getPort(serviceEndpointInterface);

((org.apache.axis.client.Stub) _stub).setPortName(portName);

return _stub;

}

public javax.xml.namespace.QName getServiceName() {

Source 23.4 (continued)

Web Services Development with JBuilder 537

return new

javax.xml.namespace.QName(“http://localhost:8080/mywebservice/servlet/Ax

isServlet/ProfileManager”, “ProfileManagerService”);

}

private java.util.HashSet ports = null;

public java.util.Iterator getPorts() {

if (ports == null) {

ports = new java.util.HashSet();

ports.add(new javax.xml.namespace.QName(“ProfileManager”));

}

return ports.iterator();

}

}

Source 23.4 (continued)

Rebuild the testwebservice project, and run the ProfileManagerServiceTestCase to
interact with the Web service and view the SOAP requests and responses in the TCP
Monitor (see Figure 23.23).

The TCP Monitor can have multiple listener ports in different pages by adding new
listening ports. The SOAP messages can be edited and resent to view new requests and
responses through the TCP Monitor. In addition, requests and responses can be saved
to a file for later use.

Figure 23.23 TCP Monitor in action.

538 Chapter 23

Generating Web Services from an EJB Component

To create Web services from EJBs, follow these steps:

1. Generate a WSDL file that is used by clients for invoking the service using the
Axis tool: Java2WSDL.

2. Create the EJB deployable JAR file using your targeted application server’s
toolkit.

3. Create the Web service deployable WAR. This process involves generating the
client stubs for the EJB, packaging the client stubs into WEB-INF/lib directory
of the WAR, creating a Web services deployment descriptor (deploy.wsdd) file,
providing the JNDI name of the bean and the class name of the home interface,
and creating server-config.wsdd using Axis utilities.

JBuilder eliminates these steps in its well-designed wizard. It automatically exports
the EJBs as Web services, so there is no extra work required for this process. When you
have your EJB application implemented, you run the Web Services Configuration wiz-
ard to configure your project for Web services. Immediately, you see that the stateless
Session Beans, with their exposed business methods to remote interface, are automati-
cally made available to the server as Web services. You can later edit the Web service
deployment node to add or remove any business methods as you desire.

Create New Project, New EJB, and New WebApp

Let’s create a new project called nasdaq_ejb and configure the Borland Enterprise
Server as your targeted server. (Project|Project Properties, Server Tab, and select Bor-
land Enterprise Server 5.x).

This section will not cover how to create and implement an EJB application. Refer to
Chapter 20 and Chapter 21 for how to work with EJB applications. In this example, we
build two session beans: one named NasdaqSession and the other named Enterprise1
(see Figure 23.24).

The NasdaqSession has getQuote() as its exposed method. Enterprise1 has getTime-
Stamp() as its exposed method.

Figure 23.24 EJB Designer with two Session Beans.

Web Services Development with JBuilder 539

Figure 23.25 Configure NasdaqWebService.

Here are the implementations of the two exposed methods:

public String getQuote(String ticketSymbol) {

// Return fake value of the ticket sysmbol.

return String.valueOf(ticketSymbol.length()*10);

}

public String getTimeStamp() {

// Return System milli-sencond

return String.valueOf(System.currentTimeMillis());

}

The next step is to use the Configure Web Service Application wizard, as discussed
in the previous section for how to set up a Web service application. Let’s call the Web
service application NasdaqWebServiceApp (see Figure 23.25).

Upon completing the Web Services Configuration wizard, the nasdaq_ejb Project
pane will be updated with the new Web service component, as shown in Figure 23.26.

Figure 23.26 Updated Project pane.

540 Chapter 23

As seen in Figure 23.26, JBuilder automatically exports the NasdaqSession and
Enterprise1 stateless session EJB as Web services. You can see that their exposed busi-
ness methods to the remote interface are defined in the Web service deployment
descriptor. You can later edit the Web service deployment node to add or remove any
business methods. Right-mouse-click on the EJB-based services item under Web ser-
vice component node, as shown in Figure 23.26. Then select Properties. The Properties
dialog GUI shown in Figure 23.27 will be displayed.

In this example, we expose only the NasdaqSession bean by checking on the item.
The Web service deploy.wsdd is instantly updated with new changes:

<?xml version=”1.0” encoding=”UTF-8”?>

<deployment xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”

xmlns=”http://xml.apache.org/axis/wsdd/”>

<documentation>[JBUILDER marker begin 1037888029500 JBUILDER marker

end]</documentation>

<service name=”NasdaqSession” provider=”java:EJB”>

<documentation>JBUILDER should auto generate this entry:

YES(YES/NO)</documentation>

<parameter name=”beanJndiName” value=”NasdaqSession”/>

<parameter name=”homeInterfaceName”

value=”com.wiley.mastering.jbuilder.NasdaqSessionHome”/>

<parameter name=”allowedMethods” value=”getQuote”/>

</service>

</deployment>

Figure 23.27 EJB-based Web services properties.

Web Services Development with JBuilder 541

The essential parameters for the EJB-based Web services are as follows:

■■ beanJndiName indicates the name of the bean in JNDI.

■■ homeInterfaceName shows a fully specified class of the EJB home interface.
This class will be included in the WAR file.

■■ allowedMethods are exposed methods from the EJBs. Those methods can be
invoked on this EJB through the Web services. If there are more than two
exposed methods, they are separated by spaces. For example:

<parameter name=”allowedMethods” value=”getQuote getCompanyInfo

getLastestNew”/>

Those listed methods are available for remote invocation.
Note that the EJB-based deploy.wsdd uses Java:EJB as the Web service provider. The

Java:EJB provider understands that the class serving the Web service is an EJB. There-
fore, as a Web service request arrives, the EJB provider looks up the bean name in the
JNDI initial context, locates the home class, creates an instance of the bean, and invokes
the specified method using reflection on the EJB stub. The process requires that the
actual EJB be deployed to an EJB container before a client can access it. A J2EE EAR file
can contain both EJB-based Web services and the EJB component in one single archive
to ease the deployment process.

542 Chapter 23

WEB SERVICES FROM A CORBA COMPONENT

Depending on what Object Request Broker you use, there could be a different approach
to generate Web services from a CORBA component. Borland Enterprise Server (BES) by
nature is a CORBA-based application server. The BES partition for Web services supports
Java:RPC, Java:EJB, and Java:VISIBROKER service providers. We have talked about
Java:RPC and Java:EJB in a few sections. In order for the Java:VISIBROKER provider to
work properly, the class serving the Web service must be a Visibroker CORBA component.
This component can be either C++ or a Java component. When a Web service SOAP
request arrives, Java:VISIBROKER provider will initialize the ORB, bind to the name
specified to get a CORBA object, invoke the specific method on the CORBA object, and
return the result. You must have a VisiBroker server started before the Web service can
locate the CORBA object. Let’s take a look at the following IDL:

// StockModule.idl
module StockModule {
interface Quote {
string getStatus();
string getQuote (in string arg);
long getDelay(in long interval);

};
};

In contrast to the Web Services Server run configuration in Figure 23.17, we select
to run the server with all available J2EE services, which include EJB, JSP/Servlet,
Message, Naming/Directory, Session, and Transaction services. Now you can start the
Web Services Server and import the wsdl to build the consumer application for that
EJB-based Web service, as we discussed in the previous section.

Web Services Development with JBuilder 543

When we apply idl2java on StockModule.idl, we will get a set of stubs and skeleton.
We are interested in a generated file, called StockOperations.java. And here is the
equivalent deploy.wsdd, generated by using Java2WSDL on StockOperations interface.

<deployment
xmlns=”http://xml.apache.org/axis/wsdd/”
xmlns:ns=”http://borland.com”
xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>

<service name=” Quote” provider=”java:VISIBROKER”>
<parameter name=”className”

value=”com.wiley.mastering.jbuilder.QuoteModule. Quote”/>
<parameter name=”allowedMethods” value=”getStatus getQuote getDelay”/>
<parameter name=”locateUsing” value=”osagent”/>
<parameter name=”objectName” value=”StockName”/>

</service>
</deployment>

This deploy.wsdd shows that we will use OSAgent to locate the CORBA object by object
name. Here are different examples of deploy.wsdd that use other location services.

<!— Using poa object and OSAgent —>
<parameter name=”locateUsing” value=”osagent”/>
<parameter name=”objectName” value=” StockName2”/>
<parameter name=”poaName” value=”/quote_poa”/>

<!— Using naming service —>
<parameter name=”locateUsing” value=”nameservice”/>
<parameter name=”objectName” value=”USA/Virginia/Leesburg/StockName”/>

<!— Using ior and corbaname with host:port —>
<parameter name=”locateUsing” value=”ior”/>
<parameter name=”objectName” value=”corbaname::192.168.1.120:9999#

USA/Virginia/Leesburg/StockName “/>
—>

When packaging the deployment file, the CORBA stub must be packaged as part of the
WAR file.

Web Service Packaging

Generally, a Web service component is packaged in a WAR format. One WAR can
include multiple Web services. And multiple WAR files can be deployed into any Web
service container. Each Web services WAR file contains one Deployment Descriptor
named server-config.wsdd in the WEB-INF directory. The server-config.wsdd file pro-
vides Web service configuration information, such as the name of the Web service, the
provider type, and any corresponding Java classes and exposed methods.

Common Structure of a Web Service WAR File
Following is a typical component structure of a Web service WAR:

■■ WEB-INF/web.xml.

■■ WEB-INF/server-config.wsdd.

■■ WEB-INF/web-borland.xml. This is a vendor-specific Deployment Descriptor.

■■ WEB-INF/classes/. Java classes corresponding to your Web services are located
in this directory and common Web services toolkit libraries.

■■ WEB-INF/lib/. JAR files corresponding to your Web services are located in this
directory.

Index.html and other JSP pages launch the Web services. Figure 23.28 shows an
Apache Axis WAR structure.

Figure 23.28 Common structure of a Web service WAR.

544 Chapter 23

Summary

This chapter introduces the basic concepts and design of a Web service application
with JBuilder using Web Service wizards. This includes a review of the steps to do the
following:

■■ Generate Java code from WSDL

■■ Generate WSDL from Java code, using a UDDI Explorer

■■ Use TCP Monitor to review request and response SOAP messages, then
deploy Web services using Tomcat and the Apache Axis implementation
of the SOAP standard with Borland Enterprise Server

■■ Generate Web services from a Session Bean in a J2EE application

Web Services Development with JBuilder 545

547

Index

A
Abstract Windows Toolkit (AWT), 165
access controls, User Administration,

286–287
accessor methods, properties, 162
Action class controls, 396–399
Action wizard, 396–399
ActionForm Class wizard, 400–401
ActionServlet class, 397–399
Add command, 206–207
Add Method Breakpoint dialog box,

103–104
Add Version Label command, 205
addAccessControl() method, 299
Added Rows table, JDS, 277
Administer Users dialog box, 286–287
Administrator authorization, database

access control, 287
afterBegin() method, EJB 1.1, 413
afterCompletion() method, EJB 1.1, 413
Ant library, bmj (Borland Make for Java),

216–217
Ant Properties dialog box, 224–226
Ant technology

Ant wizard, 223–226
command-line options, 225
compilation error handling, 226
file searches, 226
instance of a class, 226

JBuilder build system history, 209
logging class, 226
logging information, 226
print options, 225
property settings, 224–226
VM heap size, 225

Ant wizard, 223–226
Apache eXtensible Interaction System

(Axis), Web services, 510–512
Apache Software Foundation, Jakarta

Project management, 347
Apache Tomcat, Java Servlet reference

implementation, 347
AppBrowser

Audio panel, 28–29
audio themes, 28–29
browser options, 17–22
CodeInsight panel, 36–38
Color panel, 36
components, 14–17
Content pane options, 20–21
Content pane tabs, 41
Display panel, 35–36
editor options, 32–40
Editor panel, 33–35
EJB Designer panel, 31
event code generation, 74–75
File Types panel, 22
font settings, 18

548 Index

AppBrowser (continued)
generic editor options, 40
generic settings, 32
hot-key combinations, 15
IDE Options, 17–32
Image viewer, 41
Java Structure panel, 39–40
JavaDoc compiler, 43–44
keymaps, 20
Layout policy, 21
Look and Feel (L&F) options, 17–19
opening multiple copies, 45
orientation settings, 20
performance settings, 44
Run/Debug panel, 27–28
Template panel, 38–39
UML panel, 30
VCS integration options, 21
views concept, 13
Web panel, 23–24
XML panel, 24–27

Apple Macintosh OS, 17–18
Applet1.java file, 150–151
AppletJAR, archive file type, 218
AppletZIP, archive file type, 218
Application, archive file type, 218
application servers. See servers
Application wizard, Object Gallery,

140–143
Application1.java file, 142–143
applications

CORBA client, 493–496
deploying, 531–532
EJB 2.x test client, 453–454
External Build Task wizard, 220–221
RMI building, 468–475

Aqua, Look and Feel, 17–18
Archive Builder wizard

JBuilder deployment, 218–220
RMI deployment, 475–477

archive files, types, 218–219
AREA field, JDS, 267
arrays, debugging, 101–102
Assert class, 235–237
assert statements, described, 235
ATI graphics card, 7
attachments, remote debugging, 120–123
Audio panel, AppBrowser, 28–29

audiopak file extension, 29
authorizations, database access control, 287
AutoIncrement field, JDS, 266, 276
Automatic source packages, 62
AWT (Abstract Windows Toolkit),

BeansExpress events, 165
Axis (Apache eXtensible Interaction

System), Web services, 510–512

B
Babelfish, 514, 516
background colors, 375, 380–381
backups, 33, 61
base class, EJB 1.1, 412
base-switching mode, JDK support, 54
Basic, archive file type, 219
Basic Object Adapter (BOA), CORBA, 483
Bean Managed Persistence (BMP) Entity

Beans
classes, 436–440
described, 414
home interface class, 438
inheritance, 440
interfaces, 436
local home interface class, 438
local interface class, 439
naming conventions, 435, 437
packages, 436–440
primary key class, 439–440
properties, 435–436
remote interface class, 438–439

BeanInfo class, described, 169–171
BeanInsight Details dialog box, 159–160
BeanInsight interface, JavaBeans, 159
BeansExpress interface

access methods, 160
BeanInfo class, 169–171
events, 165–167
properties, 160–165
property editors, 168

beforeCompletion() method, EJB 1.1, 413
bin directory, default JBuilder directory

structure, 5–6
bindings

DataSources servlet/Tomcat, 365–366
property, 162

Block indent, editor settings, 34
bmj. See Borland Make for Java

Index 549

BMP Entity Beans. See Bean Managed
Persistence (BMP) Entity Beans

BOA (Basic Object Adapter), CORBA, 483
BodyTagSupport class, Tag Libraries, 383
book sets

Content pane display, 128–129
help system element, 126

Bookmark Editor dialog box, 133
bookmarks, help system element, 131–132
Boolean search, Find pane, 128
border components, 179–180
Borland Enterprise Server, AppServer

Edition, 321–323
Borland JBuilder

adding a JDK to, 53
audio themes, 28–29
cache switch settings, 9
default directory structure, 5–6
developer feedback, 4–5
exiting/restarting after modifying

configuration file, 8
extensibility, 4
InstallAnywhere program, 3–11
JPDA (Java Platform Debugger

Architecture) support, 54
lazy-loading tools, 176
license key storage/update, 8–9
non-proprietary code, 146
Obfuscation shortcomings, 89
OpenTools framework implementation, 4

Borland Make for Java (bmj)
Ant libraries, 216–217
common build settings, 213
debug settings, 212
deprecation options, 222
obfuscation settings, 212–213
Output Dir synchronization, 222
property settings, 211–213
resource file management, 215–216
SQL translator selection, 213
target items customizing, 217
target VM (Virtual Machine), 212
warning message options, 222

Borland VisiBroker 5.1, CORBA 2.4-
compliant ORB implementation, 480

Borland Web Services Kit for Java, 513
brace [and] characters, editor options, 35
brace match, editor options, 34–35

Breakpoint view, debugger, 103–105
breakpoints

Cross-process, 123
debugging, 89–91
line, 89–91, 98
Method, 103
multiprocess debugging, 111
setting on properties, 102–103

Brief, supported editor, 20
BrokerGUIFrame.java file, 499
Browser panel, Web panel versus, 23
browsers, AppBrowser options, 17–22
buffers, help system, 132
build filters, Project pane, 82
Build panel, project properties, 71–72
build process, defined, 209–210
build systems

Ant wizard, 223–226
Archive Builder, 218–220
bmj (Borland Make for Java) compiler,

211–217
BuildProcess, 209–210
clean phase, 210
compile phase, 210
deploy phase, 210
described, 209–210
External Build Task wizard, 220–221
Make process, 210
package phase, 210
post-compile phase, 210
pre-compile phase, 210
Project Group wizard, 222–223
Rebuild process, 210

Build tab, Object Gallery, 152
build targets, defined, 209–210
build tasks, defined, 210
BuildProcess, JBuilder OpenTool

component, 209–210

C
cache, configuration switch settings, 9
Cactus, EJB 2.x test client configuration, 455
Catalog table, JDS, 266, 275–277
CATALOG_ID field, JDS, 267
CatalogUIBean.java file, 305–309
Categories table, JDS, 266, 277–278
category_html.xsl file, 25
CDE/Motif, Look and Feel, 17–18

550 Index

Change Value dialog box, 99
character encoding, projects, 62
class filter, editor display, 157
Class Filter panel, project properties, 76–78
class information, EJB 1.1, 411–412
Class wizard, Object Gallery, 139–140
classes

Action, 396–399
ActionServlet, 397–399
adding/eliminating when running

debugger, 101
Assert, 235–237
BeanInfo, 169–171
BeansExpress interface, 160–161
BMP Entity Beans, 436–440
BodyTagSupport, 383
CMP Entity Beans, 429–433
Controller, 394–396
DataSetData, 259
Frame, 143–146
implementing interfaces, 189–190
Import Enterprise JavaBeans, 445–446
jbInit() method importance, 146–147
JSP, 376
naming conventions, 155–156
package grouping, 259
ParameterRow, 259
project headers, 63
ReadRow, 259
servlets, 350
Session Beans, 443–445
String, 172–173
TagSupport, 383
TestResult, 235–237

ClassInsight method (Ctrl-A-H-CUA), 36
classpaths, described, 54
clean phase, build systems, 210
client applications, CORBA, 493–496
Client JAR creation service, servers, 330
clients, remote debugging, 116
clipboard, copying/pasting help

system text
close() method, database restructuring, 285
CMP Entity Beans. See Container Managed

Persistence (CMP) Entity Beans
code block, formatting, 75
code lines, formatting, 75
CodeInsight panel, AppBrowser, 36–38

Color panel, AppBrowser, 36
colors

editor display settings, 36
error page background, 380–381
JSP background, 375
library dependencies, 55
Message pane error text, 21

columns
Catalog table definitions, 275–277
DataSource, 461–462
naming conventions, 275

combined class diagram, UML, 256–259
COMMENT field, JDS, 267
comments

JSP, 377–378
pound sign (#) indicator, 7
servlets, 351

Commit Browser command, 205
Commit command, 206
Common Request Broker Architecture

(CORBA)
application deployment, 502
application running, 496–497
Basic Object Adapter (BOA), 483
BrokerGUIFrame.java file, 499
client applications, 483, 493–496
configuration, 324–326
development process, 482–483
GUI client building, 497–502
IDL compilation, 486–487
IDL interface definition, 480, 482–486
interface implementation, 483
Internet Inter-ORB Protocol (IIOP), 480
NasdaqImpl.java file, 488, 490–491
NasdaqWrapper.java file, 494–496
object implementation, 490–493
Object Request Broker (ORB), 480–481
Portable Object Adapter (POA), 483–484
server application generation, 487–489
server program, 483
ServerFrame.java file, 488
ServerMonitor.java file, 488
ServerMonitorPage.java file, 488
ServerResources.java file, 488
services, 481–482
Skeleton class files, 483
StockMarketServerApp.java file, 488–490
Stub files, 483
Web Services, 542–543

Index 551

Common User Access (CUA), 20
Compare Files dialog box, 197–201
Comparison Fixture wizard, 250–251
compilation errors, JSP Tag Libraries,

391–392
compilers

bmj (Borland Make for Java), 211–217
command-line tools, 214–215
CORBA IDL, 332
IDE component, 13
Java IDL, 325–326
javac (Java2 SDK tool), 211
JavaDoc, 43–44
switching between, 211

Component Hierarchy pane, AppBrowser
component, 14–15

component palette, GUI designer, 176–177
component tree, GUI designer, 176–177
Concurrent Versions System (CVS)

CVSROOT environment variable, 202
described, 202
Ext connection type, 203
file-level commands, 206–207
installation verification, 201
JBuilder integration, 201–207
local connection type, 203
merge conflict resolution, 207
project-level commands, 205–206
projects placing new, 204–205
projects pulling existing, 203–204
property configurations, 202–203
PServer connection type, 203
repository, 202
saving files before modifying, 204
server log-on information, 203

confg (configuration) file extension, bin
directory storage, 5–6

config_readme.html file, 5–6
configuration files

bin directory storage, 5–6
comments (#) indicator, 7
exiting/restarting after modifying, 8
installation review, 6–7

Configure JDKs dialog box, 49
Configure Libraries dialog box, 54–55
Configure Web Service Application

wizard, 540
Connector service, servers, 330

Console view, debugger, 94–95
constructing, Web Services, 514–517
ConsumerFrame.java file, 521–523
Container Managed Persistence (CMP)

Entity Beans
classes, 429–433
described, 427
home interface class, 431
inheritance, 433
interfaces, 429
local home interface class, 431–432
local interface class, 432
naming conventions, 430
packages, 430
primary key class, 432–433
properties, 428–429, 434
remote interface class, 432
table references, 434

Content pane
AppBrowser component, 14–15
Doc tab, 129
graphics settings, 41
help system element, 128–129
insertion options, 21
JavaDoc compiler, 43–44
source settings, 41–42
tab labels, 20
tab options, 41–45
tab orientation settings, 20

content types, servlets, 352–353
Contents tab, listing all accessible open file

versions, 199
Context menu

hiding/displaying Message pane tabs, 17
Message pane access methods, 16
projects, 80
UML, 260–262

context-sensitive help (F1), 129
Controller class, Struts Framework

configuration, 394–396
controllers, Struts Framework configura-

tion, 394–396
controls, Action class, 396–399
copy buffers, help system, 132
CORBA. See Common Request Broker

Architecture
CORBA Client Interface wizard, 493–496
CORBA Event Service (COS Event), 481

552 Index

CORBA IDL compiler, server
configuration, 332

CORBA Naming Service
(COS Naming), 481

CORBA Notification Service, 481
CORBA Object Transaction Service

(OTS), 481
CORBA Security Service, 481
CORBA Server Application wizard,

487–489
CORBA tab, Object Gallery, 152
COS Event (CORBA Event Service), 481
COS Naming (CORBA Naming

Service), 481
Create authorization, database access

control, 287
Create Table dialog box, 277–278
Cross-process breakpoints, remote

debugging, 123
CUA (Common User Access), 20
curly braces { and }, editor options, 34–35
Current Frame view, debugger, 94–95
cursors

blinking/non-blinking, 34
debugger execution point display, 100
smart key positioning options, 33–34

Custom Fixture wizard, 252
CVS Properties dialog box, 202–203
CVS. See Concurrent Versions System

D
Data Modeler wizard, 301–302
Data Module Application wizard, Object

Gallery, 148
Data Module wizard, 148, 300–301
Data Type field, CATALOG table, 275
Data view, debugger, 99
Database Schema Provider dialog box, 458
databases

access controls, 286–295
AutoIncrement field, 266, 276
block size determinations, 268–269
data type definitions, 275
driver configuration, 327–328
encryption, 295
JDS design concepts, 266–267
JDS field layout, 266–267

link queries, 310–311
master-detail relationships, 310–312
ODBC (Open Database Connectivity),

297–298
table addition, 274–286
table restructuring, 285

DataExpress
DataSet hierarchy, 298
development history, 297–298
JDBC enhancement class library, 297
manipulation concept, 298
master-detail relationships, 310–312
objects, 298–299
providing concept, 298
resolving concept, 298

DataSetData class, grouping, 259
DataSources

columns, 461–462
database schema import, 457–458
EJB 2.x, 456–462
properties, 459–460
schema selection creation, 457
SQL DDL export, 459
tables, 460–461

DataSources servlet
Deployment Descriptor properties,

363–364
JDBC driver configuration, 367–369
JDBC technology, 363
JNDI interface, 363
naming service binding, 364–366
Resource Manager Connection Factory

Reference, 363–364
Tomcat binding, 365–366

DataStore object
DataExpress, 298
properties, 272

DBSwing
application creation, 302–315
component library, 297
development history, 299

DClient program, debugging, 109–111
DeadLock program, debugging, 113–114
Debug toolbar, elements, 91–93
Debug views, 93–96
debug window, Message pane element,

86, 90–91

Index 553

debuggers
IDE component, 13
interface elements, 86–89
update intervals, 27
visual queues, 98

debugging
arrays, 101–102
Breakpoint view, 103–105
changing values, 99
code modification controls, 92
code modification during, 105–106
code stop settings, 93
current frame view, 94–95
DClient program, 109–111
DeadLock program, 113–114
Debug toolbar elements, 91–93
debugger interface elements, 86–89
DebugShow.java, 96–102
DServer program, 107–109
eliminating/adding classes, 101
execution point display, 100
JPDA (Java Platform Debugger

Architecture), 85–86
line breakpoints, 89–91, 98
method navigation controls, 92
multiprocess, 107–113
Obfuscation, 89
property breakpoint settings, 102–103
remote, 115–123
sample project creation, 86–87
SimpleDebug.class, 86–89
source and line information only, 87–88
source code definition control, 93
source information only, 87–88
source, line, and variable information,

87–88
starting/stopping/pausing/resuming

sessions, 91–92
Thread Synchronization monitor, 114–115
views, 93–96

DebugServer file, remote debugging,
117–120

DebugServer window, remote
debugging, 118

DebugServer.bat file, remote debugging,
117–120

DebugServer.jar file, remote debugging,
117–120

DebugShow.java, 96–102
Default Project Properties dialog box, 215,

330–331
Deleted Rows table, JDS, 277
dependencies, library configuration, 55
dependency relationships, UML, 256
deploy phase, build systems, 210
Deployment Descriptor

DataSources servlet properties, 363–364
EJB 2.x, 456
Filter Servlet properties, 362–363
servlet property modifications, 358–360
URL mapping, 356–357
Web applications, 333

Deployment Descriptor Editor
EJB 1.1 naming conventions, 415–416
EJB Reference tab settings, 421–423
Environment tab settings, 420–421
General tab settings, 417–420
links, 421–423
Resource References tab, 423–424
Web applications, 333

Deployment service, servers, 331
design space, GUI designer element,

176–177
Dialog wizard, Object Gallery, 148
Diff tab, viewing differences between two

open file versions, 199
Diff view, file comparisons, 197–198
directories

bin, 5–6
home (root), 322
WEB-INF/lib, 367, 377
working, 322

Directories view, Project pane, 82
directory structure, default JBuilder

installation, 5–6
Display panel, AppBrowser, 35–36
display, blinking/non-blinking cursor, 34
DMBasic.java file, 303–305
doAfterBody() method, Tag Libraries, 384
Doc tab, help system Content pane, 129
documentation

JavaDoc compiler, 43–44
project storage path, 61

doDelete() method, HTTP request, 350, 354
doEndTag() method, Tag Libraries, 384
doFilter() method, Filter Servlet, 360–361

554 Index

doGet() method, HTTP request, 350, 353
doHead() method, HTTP requests, 354
doOptions() method, HTTP requests, 354
doPost() method, HTTP request, 350, 354
doPut() method, HTTP request, 350
doStartTag() method, Tag Libraries,

384–385
doTrace() method, HTTP requests, 354
double quote (“) characters, string

values, 99
drag-and-drop, GUI designer support,

179, 182–183
drivers, database configuration, 327–328
Drop authorization, database access

control, 287
DServer program, debugging, 107–109
Dsun.java2d.nodraw switch, AGI

graphics card, 7

E
EAR (Enterprise Archive) files, 341–342
Edit | Format All command, 75
Editor Options dialog box, 32–40
Editor panel, AppBrowser, 33–35
editors

AppBrowser options, 32–40
backups, 33
brace matches, 34–35
class filter display, 157
color settings, 36
Deployment Descriptor Editor, 333
display options, 34
error options, 35
font settings, 35–36
IDE component, 13
indents, 34
keymap support, 20
line numbering, 33
margin settings, 35–36
reverting to a previous save point, 33
save options, 34
searches, 34
smart keys, 33–34
static text entry conventions, 38–39
template addition, 38–39

EJB. See Enterprise JavaBean
EJB 1.1

class information, 411–412
Deployment Descriptor Editor, 415–424

Enterprise JavaBean wizard, 411–417
Entity Bean Modeler wizard, 414
Entity Beans, 409, 413–414
interface names, 415–416
module selection methods, 410–411
naming conventions, 415–416
Session Beans, 409
Stateful Session Beans, 412–413
Stateless Session Beans, 412

EJB 2.0 Designer
access methods, 426
Bean Managed Persistence (BMP) Entity

Beans, 435–440
Container Managed Persistence (CMP)

Entity Beans, 427–434
deleting Enterprise JavaBeans, 447
ejbCreate methods, 449
fields adding/deleting 447–448
finder methods, 449–450
Import Enterprise JavaBeans, 445–446
interface regeneration, 451
methods adding/deleting, 447
relationships, 450–451
selections, 447
Session Beans, 440–445
viewing source code, 451
views, 451–453

EJB 2.x
Cactus configuration, 455
Database Schema Provider, 458
DataSources, 456–462
Deployment Descriptor, 456
Designer wizard, 426–453
development history, 425–426
JUnit, 455
Session Beans, 440–445
test client, 453–455

EJB container service, servers, 331
EJB Designer panel, AppBrowser, 31
EJB Module wizard, 337–338
EJB Reference tab, Deployment Descriptor

Editor, 421–423
EJB Test Client wizard, 252–253
EJB wizard, 138
EJB-based Web services properties, 541
ejbCreate methods, EJB 2.0 Designer, 449
Emacs, supported editor, 20
encryption, JDS, 295
encryption, TwoFish block cypher, 295

Index 555

Enter key, indent options, 34
Enterprise Archive (EAR) files, 341–342
Enterprise Deployment, servers, 344–345
Enterprise JavaBean (EJB)

generating Web service, 539–543
Remote Smart Swap issues, 115

Enterprise JavaBean wizard, 411–417
Enterprise Server, installation

recommendations, 5
Enterprise Setup dialog box, 213, 324
Enterprise tab, Object Gallery, 152–153
Entity Bean Modeler wizard, 414
Entity Beans

BMP (Bean Managed Persistence),
435–440

CMP (Container Managed Persistence),
427–434

EJB 1.1, 409, 413–414
Environment tab, Deployment Descriptor

Editor, 420–421
environment variables, macro definitions,

220–221
equals() method, 171–174
error pages, JSP, 374, 380–381
error text, color settings, 21
errors

editor display options, 35
JUnit reports, 235

Evaluate/Modify dialog box, 106
events

BeansExpress interface, 165–167
JavaBean, 165–167
naming conventions, 165
vetoing, 188–189

exe (executable) file extension, bin
directory storage, 5–6

execute() method, Action class, 397
execution point, debugger display, 100
Export as a Web Service wizard, 513,

526–531
ExpressionInsight technology,

multiprocess debugging, 111–112
Ext connection, CVS, 203
extensibility, Borland JBuilder, 4
External Build Task wizard, 220–221

F
failures, JUnit reports, 235
FedEx Tracker service, WSDL definition,

508–509

feedback, audio options, 28–29
fields

ActionForm definitions, 401
Catalog table, 275–277
Data Type, 275
data type definitions, 275
EJB 2.0 Designer, 447–448
JDS table layout, 266–267
precision settings, 275

File | Compare Files command, 197
File | New (Ctrl+N) command, 138
File | New | Build | Ant command, 223
File | New | Build | Archive Builder

command, 218
File | New | Build command, 220
File | New | Projects command, 196
File | New Class command, 64
File | New Project command, 59, 156
File | Revert command, 33
file extensions

AppBrowser file type associations, 22
audiopak, 28
confg (configuration), 5–6
exe (executable), 5–6
jar, 9–10
jpgr (JBuilder Project GRoup), 67
jsp (Java Server Pages), 373
PNG (Portable Network Graphic), 41, 259
wav, 28

file saving, editor options, 34
file streams, JDS, 294
file types, projects, 59–60
File Types panel, AppBrowser, 22
files. See also source files

Applet1.java, 150–151
Application1.java, 142–143
archive types, 218–219
audio themes, 28
BrokerGUIFrame.java, 499
category_html.xsl, 25
config_readme.html, 5–6
DebugServer, 117–120
DebugServer.bat, 117–120
DebugServer.jar, 117–120
Duser.home, 8
EAR (Enterprise Archive), 341–342
editor backup settings, 33
Frame1.java, 144–146
include, 6–7
jbuilder.config, 6–7

556 Index

files (continued)
jbuilder.exe, 6
jbuilderw.exe, 6
JDK properties, 49–52
jdk.config, 6–7
NasdaqImpl.java, 488, 490–491
NasdaqWrapper.java, 494–496
project nodes, 69
project notes, 60
reverting to a previous save point, 33
ServerFrame.java, 488
ServerMonitor.java, 488
ServerMonitorPage.java, 488
ServerResources.java, 488
StockMarketServerApp.java, 488–490
Tag Library Descriptor, 385–391
viewing revision information, 199

Filter Servlet wizard, 360–363
Find Classes dialog box, 157
Find on Page dialog box, help system, 126
Find pane, help system element, 128
finder methods, EJB 2.0 Designer, 449–450
fixed precision value, database tables, 276
folders, creating/organizing, 82
fonts

AppBrowser settings, 18
display settings, 35–36
help system, 131–132

foreign keys, JDS non-support, 266
Formatting panel, project properties, 73–76
forms

JSP submit, 375
Struts Framework processing, 399–405

Frame class, described, 143–146
Frame wizard, Object Gallery, 148
Frame1.java file, 144–146

G
Garbage Collection (GC), free memory

settings, 6–7
General panel, project properties, 70
General tab

Deployment Descriptor Editor, 417–420
Object Gallery, 139–148

generated JUnit test case, 520–521
getDataStore() method, 269
getParameter() method, servlets, 357–358

getParameterMap() method, servlets,
357–358

getParameterName() method, servlets,
357–358

getParameterValues() method, servlets,
357–358

getter methods, described, 162
global settings, jdk.config file, 6–7
graphics, Image viewer, 41
GridBagConstraints dialog box, 183–184
GridbagLayout manager, GUI deployment,

183–184
groups

jpgr (JBuilder Project GRoup) file
extension, 67

project associations, 65–68
UML panel options, 30

GUI application, building, 521–524
GUI designer

activating, 176
border components, 179–180
component palette, 176–177
component placement methods, 181–182
component tree, 176–177
custom property editor, 179–180
cut/copy/paste support, 182–183
design space, 176–177
drag-and-drop component order

support, 179
drag-and-drop support, 182–183
fine adjustments, 181–182
interface elements, 176–177
JPanels, 176–179
layout managers, 178–180
multiple component selections, 181–182
Object Inspector, 176–177
switching between layout managers,

183–184
visual JavaBeans building, 176–179

GUI TestRunner, 237–238

H
hard drives, installation, 4
hashCode() method, 171–175
header comments

JSP, 377–378
servlets, 351

headers, project class generation, 63

Index 557

Help | Help Topics command, 125
Help | Tip of the Day command, 130
help system

access methods, 125–126
book sets, 126
bookmarks, 131–132
Content pane, 128–129
context-sensitive help, 130
copy buffers, 132
copying/pasting clipboard text, 132
Doc tab, 129
Find pane, 128
fonts, 131–132
Index pane, 127–128
phrase search, 126
printing topics, 126
tip-of-the-day (TOD), 130–131
toolbar navigation buttons, 126–127
topic ids, 126
zooming, 131

hidden value, database tables, 276
hierarchy, Java code display, 39–40
History pane, 199–201
home (root) directory, server

configuration, 322
home interface class

BMP Entity Beans, 438
CMP Entity Beans, 431
Import Enterprise JavaBeans, 445–446

horizontal orientation, Content
pane tabs, 20

hot-key combinations, AppBrowser, 15
HTML forms, Struts Framework

processing, 399–405
HTTP requests, monitoring, 348–349
Hypertext Transfer Protocol (HTTP),

request monitoring, 348–349

I
IBM translator, bmj (Borland Make for

Java) support, 213
Icon and short name label, Content

pane tabs, 20
Icon only label, Content pane tabs, 20
IDE. See Integrated Development

Environment
IDE Options dialog box, generic settings, 32
IDL. See Java IDL

IDL compiler dialog box, 485
IDL interface, CORBA, 482, 484–486
IETF (Internet Engineering Task Force),

HTTP recognition, 347
IIOP (Internet Inter-ORB Protocol),

CORBA, 480
Image viewer, AppBrowser, 41
Import a Web Service wizard, 513, 517–520
import statements, 75
imports, sort order, 75
include files, jdk.config, 6–7
indents, editor settings, 34
Index pane, help system element, 127–128
info switch, configuration information

display, 10
Info tab, viewing file revision information,

199
inheritance

BMP Entity Beans, 440
CMP Entity Beans, 433
IDL interface, 482
Session Beans, 445

insertion options, Content pane tabs, 21
Insight technology, popup delay settings, 38
InstallAnywhere

cache switch settings, 9
configuration file review, 6–7
default JBuilder directory structure, 5–6
Duser.home file, 8
installation review, 5–6
license key storage/review, 8–9
memory recommendations, 4
noncompressed drive, 4
OpenTools framework, 4–5
supported platforms, 3
troubleshooting, 10

instance variables, visibility settings, 74
Integrated Development Environment (IDE)

AppBrowser options, 17–32
components, 13

integration, XML/AppBrowser options,
24–25

InterClient JDBC driver, database
configuration, 327–328

Interface wizard, Object Gallery, 147
interfaces

BMP Entity Beans, 436
CMP Entity Beans, 429

558 Index

interfaces (continued)
EJB 2.0 Designer regeneration, 451
implementing, 189–190
Session Beans, 441

Internet Engineering Task Force (IETF),
HTTP recognition, 347

Internet Inter-ORB Protocol (IIOP),
CORBA, 480

J
J2EE Application Client, archive file

type, 219
J2EE applications, unit testing, 252–253
Jakarta Project, Ant technology

development, 209
jar files

pointer script, 9–10
servlet deployment, 368–369

Java Class, database tables, 276
Java Community Process (JCP), Java

technology specifications, 347
Java Debug Interface (JDI), JPDA element,

85–86
Java Debug Wire Protocol (JDWP), JPDA

element, 85–86
Java Development Kit (JDK)

adding to JBuilder, 53
base-switching mode, 54
configuration settings, 53–54
definitions, 49–52
development history, 47–48
home path, 53
JBuilder compiler advantages, 48
library configuration, 54–57
naming conventions, 53
properties file, 49–52
release statistics, 47
remote debugging version

requirements, 116
server support settings, 323
switching features, 54

Java IDL (Interface Definition Language),
325–326, 480

Java Naming and Directory Interface
(JNDI), DataSources servlet, 363

Java Platform Debugger Architecture
(JPDA)

JBuilder support, 54
JDI (Java Debug Interface), 85–86

JDWP (Java Debug Wire Protocol), 85–86
JVMDI (Java Virtual Machine Debug

Interface), 85–86
Java ServerPage (JSP)

background colors, 375
class names, 376
compilation errors, 391–392
declarations, 374
error page, 374, 380–381
header comments, 377–378
JavaBeans adding/removing, 378
jsp file extension, 373
jspWriter, 373
naming conventions, 374
packages, 376
sample bean, 374, 376–378
scope, 378
servlet versus, 371
submit form, 375
tag handlers, 382–385
Tag Libraries, 375, 381–392
Tag Library Descriptor, 385–391
Tag Library Directive, 391
tags, 372–374
Web application associations, 374
WEB-INF/lib directory, 367, 377

Java Server Page wizard, 373–381
Java Server Pages Standard Tag Library

(JSTL), 372
Java Servlet 2.4 Specification, 347
Java Specification Request (JSR) 154, 347
Java Structure panel, AppBrowser, 39–40
Java Virtual Machine Debug Interface

(JVMDI), JPDA element, 85–86
JavaBean wizard, Object Gallery, 156–157
JavaBeans

application building, 190–191
base class search, 157
BeanInfo class, 169–171
BeanInsight interface, 159
BeansExpress interface, 160–161
custom code addition, 171
development history, 155–156
equals() method overriding, 173–174
event veto, 188–189
events, 165–167
GUI designer, 176–183
hashCode() method overriding, 174–175
implementing interfaces, 189–190

Index 559

joins, 184–188
library selections, 185–186
persistence support issues, 160
properties, 160–165
property accessor methods, 162
property bindings, 162
property editors, 168
public class requirement, 157–158
public constructor requirement, 157–158
sample, 524–525
String class, 172–173
toString() method overriding, 174

javac compiler, 211
JavaDoc compiler, AppBrowser, 43–44
JavaDoc tags, todo (Ctrl+J), 173
jbInit() method, GUI application key,

146–147
JBuilder. See Borland JBuilder
JBuilder Enterprise, Object Gallery

elements, 139
JBuilder MobileSet, Object Gallery

elements, 139
JBuilder Personal, Object Gallery

elements, 139
JBuilder SE, Object Gallery elements, 139
jbuilder.config file, 6–7
jbuilder.exe file, 6
jbuilderw.exe file, 6
JCP (Java Community Process), Java tech-

nology specifications, 347
JDataSource (JDS)

access controls, 286–295
Added Rows table, 277
AutoIncrement field, 266, 276
block size determinations, 268–269
Catalog table, 266, 275–277
Categories table, 266, 277–278
database design concepts, 266–267
default file streams, 294
Deleted Rows table, 277
encryption, 295
Explorer, 267–268
features, 265
field layout, 267
foreign key non-support, 266
Response table, 266, 277–278
table addition, 274–286
table code database addition, 279–285
table layouts, 266

table restructuring, 285
TwoFish block cypher, 295
two-phase commits, 269
TX Manager, 269
Updated Rows table, 277
User Administration, 286–287
WebBench, 269
XA protocol support, 269

JDataStore Explorer
database table addition, 274–278
encryption, 295
JDS GUI, 267–268

JDataStore service, servers, 331
JDBC driver, DataSources servlet configu-

ration, 367–369
JDBC Fixture wizard, 246–247
JDSI (Java Debug Interface), JPDA ele-

ment, 85–86
JDK. See Java Development Kit
jdk.config file, free memory settings, 6–7
JDS. See JDataSource
JDWO (Java Debug Wire Protocol), JPDA

element, 85–86
JNDI (Java Naming and Directory

Interface), DataSources servlet, 363
JNDI Fixture wizard, 247–250
joins, JavaBeans, 184–188
JPanels, GUI designer, 176–179
JPDA. See Java Platform Debugger

Architecture
JPR file type, projects, 60
JPX file type, projects, 60
JSP. See Java ServerPage
JSP/Servlet service, servers, 331
jspWriter, JSP tags, 373
JSR (Java Specification Request) 154, 347
JSTL (Java Server Pages Standard Tag

Library), 372
JUnit

Assert class, 235–237
assert statements, 235
Comparison Fixture wizard, 250–251
Custom Fixture wizard, 252
EJB 2.x test client, 455
error reporting, 235
failure reporting, 235
JDBC Fixture wizard, 246–247
JNDI Fixture wizard, 247–250
Test Case wizard, 239–244

560 Index

JUnit (continued)
test fixtures, 245–252
TestCase, 230
TestResult class, 235–237
TestRunners, 237–239
TestSuite, 230–234
TestSuite wizard, 244–245

JVMDA (Java Virtual Machine Debug
Interface), JPDA element, 85–86

K
key attributes, JNDI Fixture wizard,

248–249
keymaps, AppBrowser editor support, 20

L
L&F (Look and Feel), 17–19
labels, Content pane tabs, 20
language translation, BabelFish service,

514–517
layout managers

GUI designer, 178–180
switching between, 183–184

Layout policy, AppBrowser, 21
lazy-loading tools, JBuilder concept, 176
leading tabs, file saving option, 34
libraries

adding to JBuilder environment, 56
Ant, 216–217
database driver configuration, 327–328
dependencies, 55
file paths, 55
InterClient JBDC, 327–328
JavaBeans, 185–186
JDK configuration, 54–57
server configuration, 322–323
Struts 1.1, 405–406
tag, 55

library references, projects, 63
license key

Duser.home file storage, 8
updating, 8–9

Licensing Information program, 8–9
line breakpoints

debugging, 89–91
setting, 98

line numbering, enabling/disabling, 33
link queries, database tables, 310–311

Link Queries dialog box, 310–311
links, Deployment Descriptor Editor,

421–423
Linux OS

audio playback problems, 29
supported L&Fs, 17–18

Loaded Classes view, debugger, 94
Local connection, CVS, 203
local home interface class

BMP Entity Beans, 438
CMP Entity Beans, 431–432
Import Enterprise JavaBeans, 446

local interface class
BMP Entity Beans, 439
CMP Entity Beans, 432
Import Enterprise JavaBeans, 446

local value, database tables, 276
Look and Feel (L&F), AppBrowser

options, 17–19
lookup() method, DataSources servlet, 363

M
Macintosh Code Warrior, supported

editor, 20
Macintosh OS, 17–18, 20
macros, environment variable definitions,

220–221
Main Class, server configuration, 322
Main menu, AppBrowser component,

14–15
Main toolbar, AppBrowser component,

14–15
Make command, 210
Make process, build systems, 210
margins, display settings, 35–36
max inline value, database tables, 276
maxMenuBookmarks property, help

system font settings, 132
MemberInsight method (Ctrl-space-CUA),

37–38
memory, 4, 6–7
Merge Conflicts tab, resolving file merge

conflicts, 200
message body text, servlets, 352–353
Message pane

AppBrowser component, 14–15
Context menu access methods, 16
debug window, 86, 90–91

Index 561

docking/undocking, 16
error text color, 21
hiding/displaying, 16
hiding/displaying tabs, 17
standard in/out/error streams, 16–17
word wrap, 16–17

Metal, Look and Feel, 17–18
Method breakpoint, setting, 103
MobileSet, installation recommendations, 4
multiprocess debugging

breakpoints, 111
DClient program, 109–111
described, 107–113
DServer program, 107–109
ExpressionInsight, 111–112
suspend mode, 111

myclasses directory, 118, 120

N
NAME field, JDS, 267
Name label, Content pane tabs, 20
Naming Directory service, servers, 331
NasdaqImpl.java file, 488, 490–491
NasdaqWebService, configuring, 539–540
NasdaqWrapper.java file, 494–496
Native Executable, archive file type, 219
Native Executable Launcher, server

configuration, 322
nested folders, Project pane, 82
New Event Set dialog box, 166
New JDataStore dialog box, 268–270
New JDK Wizard, 53
New Library Wizard, 56–57, 327–328
New Property dialog box, 162–163
nodes, project files, 69
noncompressed drive, installation

recommendation, 4
notes file, project generation, 60
Null layout manager, design use only, 180

O
Obfuscation, debugging, 89
Object Gallery

access methods, 138
Applet wizard, 148–151
Application wizard, 140–143
Build tab, 152
Class wizard, 139–140

CORBA tab, 152
Data Module Application wizard, 148
Data Module wizard, 148
Dialog wizard, 148
edition differences, 139
EJB wizard, 138
Enterprise tab, 152–153
Frame class, 143–146
Frame wizard, 148
General tab, 139–148
Interface wizard, 147
JavaBean application building, 190–191
JavaBean wizard, 156–157
OpenTools interface support, 138
Panel wizard, 148
project group creation, 66–68
Project tab, 148
single-pass wizards, 138
Test tab, 153
Web Services tab, 153
Web tab, 148–151
XML tab, 151–152

Object Inspector, GUI designer, 176–177
Object Management Group (OMG), 255, 324
Object Request Broker (ORB), CORBA,

324–325, 480–481
object-oriented programming (OOP),

described, 297
objects

DataExpress, 298–299
dependency relationships, 256

ODBC (Open Database Connectivity),
described, 297–298

OMG (Object Management Group),
CORBA standards, 255, 324

Open Database Connectivity (ODBC),
described, 297–298

OpenTools
archive file type, 219
extensibility concept, 4
Object Gallery support, 138

operating systems, supported L&Fs, 17–18
operators, Ternary, 151
OptimizeIT, installation, 4–5
Options | Font command, 132
Options | More command, 129
Options | Normal command, 131
Options | Zoom In (Ctrl+U) command, 131

562 Index

Options | Zoom Out (Ctrl+D)
command, 131

Oracle translator, bmj support, 213
ORB (Object Request Broker), CORBA

configuration, 324–325, 480–481
orientation, AppBrowser settings, 20
OTS (CORBA Object Transaction

Service), 481
output, project path, 61
Override Method wizard, 173, 384–385

P
package dependency diagram, UML, 256
package phase, build systems, 210
packages

BMP Entity Beans, 436–440
CMP Entity Beans, 430
EJB 1.1, 411
formatting, 75
JSP, 375
rename refactoring, 260–262
servlets, 350
Session Beans, 443–445

Palette Properties dialog box, 184–185
Panel wizard, Object Gallery, 148
panes, AppBrowser, 14–17
ParameterInsight method (Ctrl-Shift-

space-CUA), 37–38
ParameterRow class, grouping, 259
parentheses (and), editor options, 35
passwords, User Administration, 286
Paths panel, project properties, 69
PDF viewers, printing help system

topics, 126
perform() method, Action class, 398–399
performance

AppBrowser settings, 44
jbuilder.config file memory settings, 7
jdk.config file memory settings, 6–7
Runtime/Debugger update intervals, 27

persistence, JavaBean support issues, 160
phrase/text search, help system, 127
pipe (|) character, using, 39
playback, Audio panel feedback options,

28–29
popups, delay settings, 38
Portable Network Graphics (PNG), 41, 259
Portable Object Adapter (POA), 483–484
post-compile phase, build systems, 210

pound sign (#) comment indicator, 7
precision, database field element, 275
pre-compile phase, build systems, 210
primary key class

BMP Entity Beans, 439–440
CMP Entity Beans, 432–433
Import Enterprise JavaBeans, 446

printing
Ant technology options, 225
help system topics, 126

ProcedureDataSet object, DataExpress, 298
ProfileManagerServiceLocator.java file,

535–538
programs

DClient, 109–111
DeadLock, 113–114
DebugShow.java, 96–102
DServer, 107–109
SimpleDebug.class, 86–89

Project | Default Project Properties
command, 80, 215

Project | Project Group command, 67
Project | Project Properties command,

69, 211
Project Group Wizard, 66–68, 222–223
Project pane

AppBrowser component, 14–15
build filters, 82
Directories view, 82
nested folders, 82
new folder creation, 82
quick search, 80
sort order, 21
toolbars, 80–81

Project Properties dialog box, 69–82,
211–217

Project tab, Object Gallery, 148
Project Wizard, 59–64
projects

applying formatting, 75
backup path, 61
Build panel settings, 71–72
character encoding, 62
Class Filter panel settings, 76–78
Context menu, 80
creating, 59–64
default directory path, 60
documentation storage path, 61
event code generation, 74–75

Index 563

file locations, 60–61
file types, 59–60
folder organization, 82
Formatting panel settings, 73–76
General panel settings, 70
group associations, 65–68
grouping, 222–223
header generation, 63
import statement threshold, 75
instance variable visibility settings, 74
JDK file locations, 60–61
jpgr (JBuilder Project GRoup) file

extension, 67
JPX file type, 60
JRP file type, 60
library references, 63
multiple source roots, 64–65
naming conventions, 59–60
new folder creation, 82
nodes, 69
notes file generation, 60
output path, 61
Paths panel settings, 69
placing new into CVS, 204–205
Project pane, 80
pulling existing from CVS, 203–204
pulling from the VCS, 196
Required Libraries, 61
Run panel settings, 70–71
saving default properties, 80
Server panel settings, 78–79
Source directories, 61
source packages, 62
template options, 60
Test directories, 61
toolbars, 80–81
UML visualization references, 63–64
Working directory, 61

properties
accessor methods, 162
Ant technology settings, 224–226
BeansExpress interface, 160–165
bindings, 162
bmj (Borland Make for Java), 211–213
BMP Entity Beans, 435–436
breakpoint settings, 102–103
CMP Entity Beans, 428–429, 434
CVS configuration, 202–203
DataSource, 459–460

DataStore, 272
EAR (Enterprise Archive), 341–342
EJB module, 339–340
Import Enterprise JavaBeans, 445–446
JavaBean, 160–165
maxMenuBookmarks, 132
Session Beans, 440–441
TX Manager, 271
UML panel options, 30
Web applications, 335–336

property editors
GUI designer, 179–180
JavaBeans, 168

property files, exiting when modifying, 132
PServer connection, CVS, 203
public class, JavaBean requirement, 157–158
public constructor, JavaBean, 157–158

Q
queries

Data Modeler wizard, 301
link, 310–311

QueryDataSet object, DataExpress, 298
quick search, Project pane, 80

R
RAR (Resource Adapter), archive file

type, 219
RATING field, JDS, 267
ReadRow class, grouping, 259
Rebuild command, 210
Rebuild process, build systems, 210
refactoring, UML, 260–262
References tab, Deployment Descriptor

Editor, 423–424
registration, license key storage/update, 8–9
remote debugging

attachments, 120–123
clients, 116
Cross-process breakpoints, 123
described, 115–116
JDK version requirements, 116
myclasses directory, 118, 120
Remote Smart Swap, 115
scripting files, 117–120

remote interface class
BMP Entity Beans, 438–439
CMP Entity Beans, 432
Import Enterprise JavaBeans, 446

564 Index

Remote Method Invocation (RMI)
application building, 468–475
configuration, 466–467
deployment methods, 475–477
history, 465
process, 467–468
RMIRegistry, 465
SecurityManager, 472

remote objects, defined, 465
Remote Smart Swap, EJB container, 115
Remove command, 207
Rename authorization, 287
repository

CVS, 202
defined, 195

request methods, servlets, 353–355
requests, defined, 348
Required Libraries

library dependencies, 55
project settings, 61

Resource Adapter (RAR), archive file
type, 219

resource files, bmj (Borland Make for Java)
management, 215–216

Resource Manager Connection Factory
Reference, DataSources servlet, 363–364

Response table, JDS, 266, 277–278
RMI. See Remote Method Invocation
RMIRegistry, 465–467
RMISecurityManager, 472
root (home) directory, server

configuration, 322
Run | Add Breakpoint | Add Cross-

process breakpoint command, 123
Run | Show Execution Point command, 100
Run | Step Out command, 101
Run | View Classes with Tracing Disabled

command, 101
Run panel, project properties, 70–71
Run/Debug panel, AppBrowser, 27–28
Runtime

project properties, 70–71
server configurations, 343–344
TestRunner configuration, 242–244
update intervals, 27

Runtime Configuration Properties dialog
box, 343–344

S
scale, database column element, 275
schemes, editor color display, 36
scope, JSP, 378
scripting files, remote debugging, 117–120
scripts, .jar file pointer, 9–10
searches

Ant technology, 226
Boolean, 128
class filter, 157
Content pane, 129
editor options, 34–35
Find pane, 128
help system text/phrase, 126
Index pane, 127–128
JavaBean base class, 157
library references, 63
Project pane, 80

security, database access controls, 286–295
Selected Nodes dialog box, 170
server applications, CORBA, 487–489
Server panel, project properties, 78–79
Server Parameters, server configuration, 322
Server-Config.wsdd file, 530–531
ServerFrame.java file, 488
ServerMonitor.java file, 488
ServerMonitorPage.java file, 488
ServerResources.java file, 488
servers

Borland Enterprise Server, AppServer
Edition, 321–323

Client JAR creation service, 330
configuration, 320–323
Connector service, 330
CORBA configuration, 324–326
CORBA IDL compiler configuration, 332
custom settings, 323
database driver configuration, 327–328
deployment methods, 344–345
Deployment service, 331
EAR (Enterprise Archive) files, 341–342
EJB container service, 331
EJB modules, 337–340
home (root) directory, 322
JDataStore service, 331
JDK version support settings, 323
JSP/Servlet service, 331
library settings, 322–323

Index 565

Main Class, 322
Naming Directory service, 331
Native Executable Launcher, 322
resetting to default configuration, 323
Runtime configurations, 343–344
Server Parameters, 322
service selections, 330–332
service types, 319
Session service, 331
SQLJ configuration, 329
Transaction service, 331
VM Parameters, 322
Web applications, 333–337
working directory, 322

server-side includes, servlets, 355–356
Service Broker, Web services, 507
Servlet wizard, 350–360
servlets

class names, 359
content types, 352–353
DataSources, 363–369
Deployment Descriptor property

modifications, 358–360
Filter, 360–363
header comments, 351
HTTP request monitoring, 348–349
icon descriptions, 359
incoming request parameter access,

357–358
JAR file deployment, 368–369
JSP (Java ServerPage) versus, 371
JSP file container, 359
lifecycles, 360
load priority, 359
message body text, 352–353
package/class names, 350
request methods, 353–355
run authorities, 359
security roles, 360
server-side includes, 355–356
SHTML, 355–356
SingleThreadModel interface, 351
TCP Monitor, 348–349
URL mapping, 356–357
Web applications, 351
WEB-INF/lib directory, 367, 377

Session Beans
building, 539
classes, 443–455

EJB 1.1, 409
inheritance, 445
interfaces, 441
packages, 443–445
properties, 440–441
Stateful, 442
Stateless, 442

Session service, servers, 331
session synchronization, Stateful Session

Beans, 442
setAAmount() method, 164
setAZip() method, 164
setter methods, described, 162
setUp() method, test case building,

240–241
Short name label, Content pane tabs, 20
SHTML, servlets, 355–356
shutdown() method, database

restructuring, 285
Simple Object Access Protocol (SOAP),

506, 509–510
SimpleDebug.class, 86–89
single-quote (‘) characters, string values, 99
SingleThreadModel interface, servlets, 351
Skeleton class files, CORBA, 483
Smart Agent

described, 493
running CORBA applications, 496–497

Smart indent, editor settings, 34
smart keys, cursor positioning options,

33–34
Smart paste, editor settings, 34
SOAP (Simple Object Access Protocol),

506, 509–510
Solaris OS, supported L&Fs, 17–18
sorts

Content pane options, 21
History pane, 199
import order, 75
UML panel options, 30

sounds, Audio panel feedback options,
28–29

source and line information only,
debugging, 87–88

source code
access controls, 288–294
add table code to database, 279–285
Content pane display settings, 41–42
EJB 2.0 Designer viewing, 451

566 Index

source code (continued)
first JDS example, 272–274
JDK properties file, 50–52
modifying during debug session,

105–106
Source directories, projects, 61
source files. See also files

CatalogUIBean.java, 305–309
comparing, 197–201
ConsumerFrame.java, 521–523
CVS merge conflict resolution, 207
DMBasic.java, 303–305
filtering out format-related changes in

diff blocks, 200
listing all accessible open versions, 199
ProfileManagerServiceLocator.java,

535–538
ProfileManagerServiceTestCase.java,

533–534
resolving merge conflicts, 200
Server-Config.wsdd, 530–531
viewing differences between two open

versions, 199
source information only, debugging, 87–88
source packages, project settings, 62
Source Roots, projects, 64–65
source, line, and variable information,

debugging, 87–88
spaces, file saving option, 34
SQL translators, bmj (Borland Make for

Java), 213
SQLJ language, server configuration, 329
standard in/out/error streams, Message

pane, 16–17
StarTeam, installation recommendations, 5
Startup authorization, database access

control, 287
Stateful Session Beans, 412–413, 442
Stateless Session Beans, 412, 442
statements, assert, 235
Static Data view, debugger, 94
static text, editor entry conventions, 38–39
Status Bar

AppBrowser component, 14–15
status message timeout settings, 21

Status Browser command, 205
Status command, 206
status message, timeout settings, 21

StockMarketServerApp.java file, 488–490
String class, 172–173
string values, 99
strip trailing, file saving option, 34
Structure pane

AppBrowser component, 14–15
Java code display, 39–40

Struts 1.1 Library, 405–406
Struts controller, Web application

configuration, 394–396
Struts Framework

Action class controls, 396–399
ActionServlet class, 397–399
controller configuration, 394–396
HTML form processing, 399–405
model view controller design

paradigm, 394
Struts 1.1 Library, 405–406

Stub files, CORBA, 483
stylesheets, XML panel display, 24–27
submit form, JSP, 375
Sun Microsystems

JCP (Java Community Process), 347
supported L&Fs, 17–18

super templates, described, 39
suspend mode, debugging, 111
Swing event model, BeansExpress

events, 165
Swing UI TestRunner, 238
switches

caching, 9
commented versus uncommented, 7
Dsun.java2d.nodraw, 7
info, 10
jar file pointer, 9–10
jbuilder.config file, 7
jdk.config file, 6–7
verbose, 10

Sync Project Settings command, 205
synchronization, methods, 164
SYNOPSIS field, JDS, 267
syntax errors, editor display options, 35

T
Tab key

applying formatting, 75–76
cursor positioning options, 33–34

table references, CMP Entity Beans, 434

Index 567

TableDataSets object, DataExpress, 298
tables

Added Rows, 277
AutoIncrement field, 266, 276
Catalog, 275–277
Categories, 277–278
database addition, 274–286
DataSource, 460–461
Deleted Rows, 277
JDS layouts, 266
link queries, 310–311
Response, 277–278
restructuring, 285
Updated Rows, 277

tabs
Content pane labels, 20
Content pane options, 41–45
Content pane orientation settings, 20
file saving option, 34
hiding/displaying in Message pane, 17
insertion options, 21
sort options, 21

tag handlers, JSP Tag Library, 382–385
Tag Libraries

BodyTagSupport class, 383
compilation errors, 391–392
described, 375
JDK configuration, 55
tag handlers, 382–385
Tag Library Descriptor, 385–391
Tag Library Directive, 391
TagSupport class, 383

Tag Library Descriptor file, 385–391
Tag Library Directive, 391
tags, JSP, 372–374
TagSupport class, Tag Libraries, 383
TCP Monitor, 348–349, 514, 535–539
Team | Create Repository command, 202
team development

client-side implementation methods, 196
CVS (Concurrent Versions System),

201–207
described, 195–196
repository, 195
server-side implementation methods,

195–196
VCS (Version Control System), 196–201

Team | Select Project VCS command, 196

tearDown() method, test case building,
240–241

technologies, Web services, 507–512
Template panel, AppBrowser, 38–39
templates

adding to an editor, 38–39
directory path, 39
naming conventions, 38–39
pipe (|) character, 39
project selection, 60
super, 39

Ternary operator, defined, 151
Test Case wizard, 239–244
test client, EJB 2.x, 453–455
Test directories, projects, 61
Test Selector dialog box, 238
Test tab, Object Gallery, 153
TestCase, JUnit framework element, 230
TestResult class, 235–237
TestRunners

JUnit element, 237–239
Runtime configuration, 242–244

TestSuite
batch processing, 230–231
JUnit framework element, 230–234
methods, 233
nesting, 231

TestSuite wizard, 244–245
text-based TestRunner, 237–238
text/phrase search, help system, 126
themes, audio, 28–29
Thread Synchronization monitor, 114–115
threads, deadlock handling during

debugging, 113–114
thresholds, import statements, 75
timeout, status message settings, 21
tip-of-the-day (TOD), help system ele-

ment, 130–131
TITLE field, JDS, 267
todo JavaDoc tag (Ctrl+J), 173
Together, installation recommendations, 5
Tomcat, DataSources servlet binding,

365–366
toolbars

Debug, 91–93
help system, 126–127
Project pane, 80–81

Tools | Administer Users command, 286

568 Index

Tools | BeanInsight command, 159
Tools | Configure JDKs command, 49
Tools | Configure Libraries command, 54
Tools | Configure Palette command, 184
Tools | Configure Servers command, 321
Tools | Configure Tools command, 466
Tools | Create Table command, 274
Tools | Editor Options (Shift+F10)

command, 32
Tools | EncryptJDataStore command, 295
Tools | Enterprise Setup command, 213
Tools | IDE Options | UML Page

command, 259
Tools | IDE Options command, 259
tools, lazy-loading, 176
topic ids, help system element, 126
topics, adding to tip-of-the-day help, 130
toString() method, overriding, 174
Transaction service, servers, 331
transactions

Stateful Session Beans, 442
TX Manager, 269

transformations, XML panel options, 24–27
troubleshooting, InstallAnywhere, 10
TwoFish block cypher, JDS, 295
two-phase commits, JDS, 269
TX Manager, JDS transaction handling, 269
TX Manager Properties dialog box, 270–271

U
UDDI (Universal Discovery, Description,

and Integration), 506, 508
UML Page dialog box, 259–260
UML panel, AppBrowser, 30
UML visualization, project references, 63–64
Unified Modeling Language (UML)

class package grouping, 259
combined class diagram, 256–259
Context menu, 260–262
dependency relationships, 256
development history, 255
diagram customizing, 259–260
OMG (Object Management Group)

approval, 255
package dependency diagram, 256
PNG (Portable Network Graphics)

support, 259
refactoring, 260–262
structure view, 260

Universal Discovery, Description, and
Integration (UDDI), 506, 508

Unix Shell, JBuilder command-line
interface, 216

Update command, 206
Update Project command, 205
Updated Rows table, JDS, 277
URI field, JDS, 267
URL mapping, servlets, 356–357
Use CORBA Interface wizard, 497–502
Use Data Module wizard, 313–314
User Administration, 286–287
user.home file, license key storage, 8
users, database access controls, 286–295

V
validate() method, Action class, 398
VCS integration, AppBrowser options, 21
verbose switch, configuration information

display, 10
Version Control System (VCS)

commands, 196–197
connection methods, 196
merge conflict resolution, 200
pulling projects from, 196
source file revision management,

197–201
team development tool, 196–201
workspace connections, 196

vertical orientation, Content pane tabs, 20
views

AppBrowser concept, 13
debugger, 93–96

visibility, UML panel options, 30
VisiBroker ORB, described, 486
visual queues, debuggers, 98
Visual Studio, supported editor, 20
VM Parameters, server configuration, 322

W
W3C (World Wide Web Consortium), 347
WAR (Web archive), 333, 544
wav file extension, 28
Web Application wizard, 334–335
Web applications

ActionForm configuration, 400–401
Deployment Descriptor, 333
Deployment Descriptor Editor, 333
JSP associations, 374

Index 569

properties, 335–336
server components, 333–337
servlets, 351
Struts controller configuration, 394–396
Web archive (WAR) compliant, 333

Web archive (WAR), 333, 544
Web containers, JAR file deployment,

368–369
Web panel, AppBrowser, 23–24
Web service, definition, 506
Web Service Description Language

(WSDL)
FedEx Tracker service, 508–509
output options, 528

Web services
benefits, 506–507
Borland Web Services Kit for Java, 513
configuring applications, 525
constructing, 514–517
consuming existing, 514
CORBA, 542–543
deploying application, 531–532
EJB component, 539–543
GUI application building, 521–524
Java component, 524–539
orientation, 505–512
packaging, 544
TCP Monitor, 514, 535–539
testing, 520–521
wizards, 513

Web Services Architecture, 507
Web Services Configuration wizard,

513, 525
Web Services Explorer, 514, 532–535
Web Services pack, installation, 4–5
Web Services tab, Object Gallery, 153
Web Services technologies

Axis, 510–512
SOAP, 509–510
UDDI, 508
WSDL, 508–509

Web sites
Borland, 4
Borland Developer Network, 18
CORBA specification, 484
CORBA tutorials, 479
CVS (Concurrent Versions System), 202
FedEx Tracker service, 508

Jakarta Project, 209
memory management information, 7
Smart Agent, 493
URI (Uniform Resource Locator) infor-

mation, 267
XMethod, 514

Web Start Applet, archive file type, 219
Web Start Application, 219
Web tab, Object Gallery, 148–151
WebBench, blocking/buffering scheme

testing, 269
WEB-INF/lib directory, JDBC driver

deployment, 367, 377
Window | New AppBrowser command, 45
windowing technique, L&F variations, 18
Windows OS, supported L&Fs, 17–18
Wizards | Ant command, 223
Wizards | Archive Builder command,

218, 475
Wizards | Implement Interface

command, 189
Wizards | Override Methods

command, 173
Wizards | Use Data Module

command, 313
word wrap, Message pane, 16–17
working directory

projects, 61
server configuration, 322

workspace, VCS connections, 196
World Wide Web Consortium (W3C),

HTTP recognition, 347
Write authorization, database access

control, 287
WSDL. See Web Service Description

Language
WSDL file, BabelFish, 516

X
XA protocol, JDS support, 269
XML panel, AppBrowser, 24–27
XML tab, Object Gallery, 151–152
XYLayout manager, design use only, 180

Z
Zero G, InstallAnywhere program, 3–11
zooming, help system, 131

	TeamLib
	Cover
	Contents
	Foreword
	Acknowledgments
	Introduction
	Part 1 JBuilder as an Integrated Development Environment
	Chapter 1 Installing JBuilder
	Installing JBuilder
	Review the Installation
	Review the Configuration Files
	Set the user.home
	Review the License
	Set Other Switches
	Perform Troubleshooting
	Summary

	Chapter 2 Customizing the AppBrowser
	Generic AppBrowser Components
	Message Pane

	Configuring the AppBrowser Using IDE Options
	Browser
	File Types
	Web Panel
	XMLPanel
	Run/Debug Panel
	Audio Panel
	UMLPanel
	EJB Designer
	Generic Setup for IDE Options

	Configuring the AppBrowser with Editor Options
	Editor Panel
	Display Panel
	Color Panel
	CodeInsight Panel
	Template Panel
	Java Structure Panel
	Generic Setup for Editor Options

	Content Tabs
	Graphics
	Source
	Doc
	Using Multiple AppBrowsers

	Summary

	Chapter 3 Controlling Java Configurations
	Overview of Java Development Kits
	JDK Definitions
	Adding a JDK
	Configuring a JDK
	JDK Switching

	Configuring Libraries
	Summary

	Chapter 4 Project Properties and Configurations
	Creating a Simple Project in JBuilder
	Multiple Source Roots
	Project Groups

	Using Nodes
	Advanced Project Properties Features
	Paths Panel
	General Panel
	Run Panel
	Build Panel
	Formatting Panel
	Generated Tab
	Imports Tab

	Class Filter
	Server Panel
	Default Project Properties
	Project Pane Interface
	Context Menu
	Project Pane Toolbar
	Advanced Features

	Summary

	Chapter 5 Debugging with JBuilder
	Debugging Basics
	Line Breakpoints
	Debug Toolbar
	Main Group
	Control Group
	Code Modification Group
	Code Type Group
	Information Group

	Debug Views
	Loaded Classes and Static Data View
	Current Frame
	Understanding DebugShow
	Advanced Breakpoints

	Intermediate Debugging
	Modifying Code in a Debug Session
	Multiprocess Debugging

	Advanced Debugging
	Remote Debugging
	Launching
	Attaching

	Summary

	Chapter 6 Using the JBuilder Help System
	Getting Started
	Index Pane
	Find Pane
	Content Pane
	Context-Sensitive Help
	Using the Doc Tab

	Tip of the Day
	Advanced Help Features
	Bookmarks
	Fonts
	Copy Buffers

	Summary

	Part 2 JBuilder as a Rapid Application Development Tool
	Chapter 7 Creating Classes
	Overview of the Object Gallery
	Object Gallery Tabs
	General Tab
	Project Tab
	Web Tab
	XML Tab
	CORBA Tab
	Build Tab
	Enterprise Tab
	Test Tab
	Web Services Tab

	Summary

	Chapter 8 Modifying Classes
	Creating the First JavaBean
	Adding Properties
	Adding Events
	Adding Property Editors
	Adding a BeanInfo Class
	Adding Custom Code
	Java's Way of Solving the Problem
	Setting To-Do's Inside Code
	Overriding the equals() Method
	Overriding the toString() Method
	Overriding the hashCode() Method

	Building a Visual JavaBean
	Using the GUI Designer
	Creating a Border Component
	Maximizing the Designer
	Drag and Drop; Copy, Cut, and Paste
	Changing XYLayout to GridbagLayout for Deployment
	Adding a Nonvisual Bean to the Palette
	Adding the Component to the Visual Component
	Vetoing an Event
	Implementing Interfaces

	Building an Application
	Summary

	Part 3 JBuilder and Application Lifecycle Management
	Chapter 9 Integrated Team Development
	Team Development Tools
	Setting Up Your Project with a VCS
	Manage Revisions of the Source Files
	Compare|Files Dialog
	History View

	CVS Integration
	Creating CVS Repository
	Configuring CVS Properties
	Checking Out a Project from CVS
	Placing a New Project into CVS
	CVS Project-Level Commands
	CVS File-Level Commands
	Resolving CVS Merge Conflicts

	Summary

	Chapter 10 Using Build Systems
	Build System Basics
	Using the Compiler
	Compiler Settings
	Common Build Settings
	Managing Resource Files
	Changing Ant Library
	Adding Items to Build Menu

	Archive Builder
	Using External Build Task
	Using Project Groups
	Integrating the JBuilder Build System with Ant Build Files
	Ant Wizard
	Ant Build File Properties
	Ant Options
	Handling Compilation Errors with Ant

	Summary

	Chapter 11 Unit Testing with JUnit
	JUnit Architecture
	TestCase
	TestSuite
	JUnit Supporting Classes
	Test Runners

	JUnit Integration with JBuilder
	Build a Test Case
	Step 1
	Step 2
	Step 3
	Step 4

	Build a TestSuite
	Using Test Fixtures
	JDBC Fixture
	JNDI Fixture
	Comparison Fixture
	Custom Fixture

	Unit Testing J2EE Applications
	Summary

	Chapter 12 UML Visualization
	Visualize Your Codes
	Customize the UML Diagrams
	Structure View of UML Diagram

	Context Menu for Refactoring
	Summary

	Part 4 Two-Tier Client/Server Development with JDBC
	Chapter 13 Building the Database with JDataStore
	Database Design for JDataStore
	Launching JDataStore Explorer
	Creating a New Database
	Creating a New Database Programmatically
	Adding Tables to the Database
	Adding Tables Programmatically
	Adding Access Control to the Database
	Adding Access Control to the Database Programmatically
	Adding Encryption

	Summary

	Chapter 14 DataExpress and DBSwing Applications
	Evolution of DBSwing Architecture
	Wizard Building Applications
	Using Data Modules to Generate Applications
	Creating a Data Module
	Data Modeler
	Generate an Application
	Master-Detail Relationships

	Creating a DBSwing application
	Summary

	Part 5 Web Development with Servlets,Java Server Pages, and Struts
	Chapter 15 Server and Service Configuration
	Configuring Your Server
	Configuring Borland Enterprise Server, AppServer Edition
	Configure General Server Settings
	Library Settings for Servers
	Configure Custom Server Settings
	Reset to Defaults

	Enterprise Setup
	Configuring CORBA
	Setting Up Java IDL as CORBA Compiler

	Configuring Database Drivers
	Setting Up the InterClient JDBC Driver

	Configuring SQLJ

	Selecting a Server's Services
	Configuring the CORBA IDL Compiler

	Building Server Components
	Web Applications
	Web Application Properties
	EJB Modules
	EJB Modules from Existing Deployment Descriptors
	EJB Module Properties
	Enterprise Archives

	Deploying the Finished Product
	Runtime Configurations for Servers
	Controlling the Server
	Selecting the Services

	Deploy Options
	Enterprise Deployment

	Summary

	Chapter 16 Web Enablement with Servlets
	Objectifying Client Requests and Server Responses
	Creating a New Standard Servlet
	Content Types and Response Message Body
	Request Methods of a Servlet
	SHTML and Server-Side Includes
	URLMapping
	Accessing a Request's Incoming Parameters
	Modifying a Standard Servlet¡¯s Deployment Descriptor Properties
	The Servlet Lifecycle

	Project Properties and Required Libraries

	Creating a Filter Servlet
	Filter Servlet's Deployment Descriptor Properties

	Using DataSources
	Deployment Descriptor
	Resource Manager Connection Factory References

	Binding the DataSource to the Server's Naming Service
	Tomcat DataSource Binding

	Adding the JDBC Driver to the Web Container's Classpath
	Deploying the Driver in the WEB-INF/lib Directory
	Making All Required Libraries of the Project Available on Run
	Deploy JAR Files to Web Container

	Summary

	Chapter 17 Moving from Basic Servlets to Java Server Pages
	JSP Tags
	Working with the JspWriter
	Standard Actions of a Java Server Page

	Creating a Java Server Page
	Declare JSP and Components
	Edit JSP File Details
	Edit Sample Bean Details
	Enter Additional Beans
	Edit Error Page Details
	Define JSP Configuration

	Tag Libraries
	Tag Handlers: Implement the Interface
	Tag Handlers: Extending the Support Class
	Tag Library Descriptor: Creation and Validation
	Create Tag Library Descriptor File for Basic Archives
	Create Tag Library Descriptor File for Web Applications
	Edit Tag Library Descriptor
	Using Compound Code Templates
	Validate the Tag Library Descriptor
	Packaging Tag Libraries in Basic Archives
	Modifying the Web Application's Deployment Descriptor

	Tag Library Directive: Accessing Custom Tag Libraries from the Java Server Page
	Java Server Page Tag Library Compilation Errors

	Summary

	Chapter 18 Developing with Struts
	Developing in the Struts Framework
	Configure the Struts Controller for a Web Application
	Control Access to the Model with the Action Wizard
	WebApp and Name for Action
	Configuration Information

	HTML Form Processing
	ActionForm Wizard
	Web Application and Class Information for ActionForm
	Field Definition for ActionForm
	Select Additional Options

	JSP from ActionForm wizard
	WebApp, JSP, and ActionForm
	Tag Types for ActionForm Fields in JSP
	Specify the Options for Creating This Strut's JSP

	Creating a Struts 1.1 Library
	Summary

	Part 6 Enterprise Development with Enterprise JavaBeans
	Chapter 19 Developing EJB 1.1
	New Enterprise JavaBean 1.x
	Select EJB Module
	Create a New Enterprise JavaBean Component
	Class Information
	Options

	Set EJB Interface Names

	Deployment Descriptor Editor
	General Tab
	Session
	Entity

	Environment
	EJB Reference
	EJB Is in a Java Archive Deployed to the Same EJB Container
	EJB Is in a Different Java Archive Deployed to a Different EJB Container

	Resource References

	Summary

	Chapter 20 Developing EJB 2.x
	EJB 2.0 Bean Designer
	Create EJB
	Container Managed Persistence Entity Bean
	Bean Managed Persistence Entity Bean
	Session Bean

	Import Enterprise JavaBeans
	Delete Selected Enterprise JavaBeans
	Adding Methods and Fields
	Add and Delete Methods
	Add and Delete Fields
	Add and Delete ejbCreate Methods
	Add and Delete Finder Methods
	Add and Delete Relationships

	View Bean Source
	Regenerate Interfaces
	Views
	New, Delete, or Rename View
	Move, Copy, or Remove Selection
	Arrange EJBs
	Find EJB from Search Menu

	EJB Test Client
	Application
	JUnit
	Cactus
	Configure the Project for Cactus

	EJB Deployment Descriptor
	DataSources
	Create Schema from Selection
	Import Schema from Database
	Database Schema Provider

	Add DataSource
	Working with DataSources
	Export to SQL DDL
	Edit DataSource Properties
	Add Table
	Refresh from Database
	Rename or Delete DataSource

	Working with Tables
	Create CMP 2.0 Entity Bean
	Create BMP Entity Bean
	Add Column
	Rename and Delete Table

	Working with Columns

	Summary

	Part 7 Distributed Computing with RMI, CORBA and Web Services
	Chapter 21 RMI Development with JBuilder
	Configuring RMI in JBuilder
	RMI Development Process
	Building the RMI Application
	RMI Deployment
	Summary

	Chapter 22 CORBA Development with JBuilder
	Overview of CORBA
	The IDL Interface
	Object Request Broker
	Common Services
	CORBA Development Process

	Building a CORBA Application
	Define the IDL Interface
	IDLCompilation
	Create a Server Application
	Object Implementation
	Create a Client Application
	Run the Applications
	Building a GUI Client with a CORBA Client Interface

	Deploying the Application
	Summary

	Chapter 23 Web Services Development with JBuilder
	Web Services Orientation
	Benefits of Web Services
	Web Services Architecture
	Web Services Technologies
	Universal Description, Discovery, and Integration
	Web Services Description Language
	Simple Object Access Protocol
	Apache eXtensible Interaction System (Axis)

	Using Web Services with JBuilder
	Borland Web Services Kit Installation
	JBuilder Web Services Features
	Constructing Web Services
	Consuming Existing Web Services
	Generating Web Services from a Java Component
	Generating Web Services from an EJB Component

	Web Service Packaging
	Common Structure of a Web Service WAR File

	Summary

	Index

