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Preface

Our main goals in updating the materials of Practical Methods for Design and
Analysis of Complex Surveys, published in 1995, for a second edition have been
well-focused extension of coverage, improved usability and meeting user feed-
back. As examples of extension, model-assisted estimation now covers a chapter
on estimation for domains. The chapter on handling nonsampling errors has
been completely re-written. More sophisticated estimation techniques have been
included in analysis methods for complex surveys. We have extended the chapter
of case studies. Practical methods for quality monitoring of survey processes are
now illustrated. A stronger aspect of international comparison is introduced by
a case study on a multinational educational survey. We believe that with these
and other extensions and enhancements, the book meets a wider spectrum of
user needs.

An important change has taken place in computational aspects since the
previous edition. We have inserted the technical materials into a web extension
of the book. The web extension is aimed to improve the practical applicability
of methods and to provide tools for teaching and training. Examples and case
studies can be worked out in an interactive environment and program codes, real
data sets and other supporting materials can be downloaded. For us, this gives an
option to flexibly update the technical materials when appropriate.

We greatly appreciate the support given by organizations when writing the
manuscript. In particular, we would like to mention the Institute for Educational
Research, University of Jyväskylä; Ministry of Transport and Communications,
Finland; National Public Health Institute, Finland; the Social Insurance Institution
of Finland; Statistics Finland and the University of Jyväskylä. Chief Statistical Ana-
lyst Antero Malin has produced materials for the case study on a multinational edu-
cational survey and Senior Consultant Virpi Pastinen for the case study on quality
monitoring of survey processes. We are very grateful for these contributions.

Detailed comments given by Professor Carl-Erik Särndal on several parts of the
book have been very valuable. Dr Juha Lappi has given helpful comments on a
part of the book. Thanks are also due to Vesa Kiviniemi, a doctoral student in
statistics, and Antti Pasanen, a graduate student in statistics, for their technical
work in building the web extension and to Elina Nykyri, a graduate student in
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statistics, who has assisted us in proofreading and similar final-phase tasks. We
are thankful to anonymous referees for comments on our proposal for the second
edition. Last but not the least, we are grateful to the staff of Wiley & Sons for their
patience and flexibility.

Jyväskylä, September 2003

Risto Lehtonen Erkki Pahkinen
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1

Introduction

General Outline

This book deals with sample surveys that can be conceptually divided into two broad
categories. In descriptive surveys, certain, usually few, population characteristics
need to be precisely and efficiently estimated. For example, in a business survey,
the average salaries for different occupational groups are to be estimated on the
basis of a sample of business establishments. Statistical efficiency of the sampling
design is of great importance. Stratification and other means of using auxiliary
information, such as the sizes of the establishments, can be beneficial in sampling
and estimation with respect to efficiency. Inference in descriptive surveys concerns
exclusively a fixed population, although superpopulation and other models are
often used in the estimation.

Analytical surveys, on the other hand, are often multi-purpose so that a variety
of subject matters are covered. In the construction of a sampling design for an
analytical survey, a feasible overall balance between statistical efficiency and cost
efficiency is sought. For example, in a survey where personal interviews are to
be carried out, a sampling design can include several stages so that in the final
stage all the members in a sample household are interviewed. While this kind
of clustering decreases statistical efficiency, it often provides the most practical
and economical method for data collection. Cost efficiency can be good, but gains
from stratification and from the use of other auxiliary information can be of
minor concern for statistical efficiency when dealing with many diverse variables.
Although in analytical surveys descriptive goals can still be important, of interest
are often, for example, differences of subpopulation means and proportions, or
coefficients of logit and linear models, rather than totals or means for the fixed
population as in descriptive surveys. Statistical testing and modelling therefore
play more important roles in analytical surveys than in descriptive surveys.

Both descriptive and analytical surveys can be complex, e.g. involving a complex
sampling design such as multi-stage stratified cluster sampling. Accounting for
the sampling complexities is essential for reliable estimation and analysis in both
types of surveys. This holds especially for the clustering effect, which involves
intra-cluster correlation of the study variables. This affects variance estimation

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
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2 Introduction

and testing and modelling procedures. And if unequal selection probabilities of
the population elements are used, appropriate weighting is necessary in order
to attain estimators with desired statistical properties such as unbiasedness or
consistency with respect to the sampling design. Moreover, element weighting may
also be necessary for adjusting for nonresponse, and imputation for missing variable
values may be needed, in both descriptive and analytical surveys.

Thus, there are many common features in the two types of complex surveys
and often, in practice, no real difference exists between them. A survey primarily
aimed at descriptive purposes can also involve features of an analytical survey
and vice versa. However, making the conceptual separation can be informative,
and is a prime intention behind the structuring of the material in this book.

Topics Covered

To be useful, a book on methods for both design and analysis of complex
surveys should cover topics on sampling, estimation, testing and modelling
procedures. We have structured a survey process so that we first consider the
principles and techniques for sample selection. The corresponding estimators for
the unknown population parameters, and the related standard error estimators,
are also examined so that estimation under a given sampling design can be
manageable in practice, reliable and efficient. These topics are considered in
the first part of the book (Chapters 2 and 3), mainly under the framework of
descriptive surveys.

Estimation and analysis specific to analytical surveys is considered in the sec-
ond part of the book (Chapters 5, 7 and 8). For complex analytical surveys, more
sophisticated techniques of variance estimation are needed. Our main focus in such
surveys, however, is on testing and modelling procedures. Testing procedures for
one-way and two-way tables, and multivariate analysis (including methods for
categorical data and logistic and linear regression) are selected because of their
importance in survey analysis practice. Topics relevant to both descriptive and
analytical surveys, concerning techniques for handling nonsampling errors such
as reweighting and imputation, are placed between the two main parts of the book
(Chapter 4). Chapter 6 discusses domain estimation also being relevant to both
survey types although the main concern is in descriptive surveys.

Fully worked examples and case studies taken from real surveys on health
and social sciences and from official statistics are used to illustrate the various
methods. Finally (Chapter 9), additional case studies are presented covering a
range of different topics such as travel surveys, business surveys, socioeconomic
surveys and educational surveys. We use a total of seven different survey data
sets in the examples and case studies. A summary of the survey data sets, with
selected technical information, is given in Table 1.1. Three types of survey data
are included in the table. The aggregate-level census data set (1) (source: Official
Statistics) is used in Chapters 2 to 4 to illustrate sampling and estimation for
descriptive surveys. The real survey data sets (2) (source: National Public Health
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Introduction 3

Table 1.1 Real survey data sets used in examples and case studies.

Type of primary
Number of strata, clusters and elements

in the survey data set
sampling unit

Name of survey PSU Strata Clusters (PSU:s) Elements

Census register data set

(1) Province’91 Population (data for
one province)

Municipality 2 8 regional groups of
municipalities

32 municipalities

Real survey data sets adjusted for pedagogical use

(2) Mini-Finland Health Survey (data
for males aged 30–64 years)

Municipality 24 48 municipalities 2699 persons

(3) Occupational Health Care Survey
(data for establishments with 10
workers or more)

Industrial
establishment

5 250 industrial
establishments

7841 employees

Real survey data sets used in case studies

(4) Passenger Transport Survey Person 25 (Element-level
sampling)

11 711 persons

(5) Wages Survey Business firm 25 744 firms 13 987 employees
(6) Health Security Survey (data for

one stratum)
Household 1 878 households 2071 persons

(7) PISA 2000 Survey (data for 7
countries)

School 7 1388 schools 32 101 pupils

Institute) and (3) (source: Social Insurance Institution of Finland) are used in
Chapters 5 to 8 for worked examples on domain estimation, variance estimation
and multivariate modelling in complex analytical surveys. The real survey data
sets (4) to (7) (sources: Ministry of Traffic and Communications; Statistics Finland;
Social Insurance Institution of Finland; OECD’s PISA International Database,
respectively) are used in further case studies presented in Chapter 9.

To fully benefit the practical orientation of the book, the reader is encouraged
to consult the web extension where the empirical examples and case studies are
worked out in more detail. There, the accompanying program codes and datasets
can be downloaded for further interactive training.

In Chapters 2 and 3, the basic and more advanced sampling techniques, namely,
simple random sampling, systematic sampling, sampling with probability proportional
to size, stratified sampling and cluster sampling are examined for the estimation of
three different population parameters. These parameters are the population total,
ratio and median. The estimators of these parameters provide examples of linear,
nonlinear and robust estimators respectively. A small fixed population is used
throughout to illustrate the estimation methods, where the main focus is on
the derivation of appropriate sampling weights under each sampling technique.
Special efforts are made in comparing the relative performances of the estimators
(in terms of their standard errors) and the available information on the structure
of the population is increasingly utilized. The use of such auxiliary information is
considered for two purposes: the sampling design and the estimation of parameters
for a given sampling design. The use of this information varies between different
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4 Introduction

sampling techniques, being minor in the basic techniques and more important
and sophisticated in others, such as in stratified sampling and in cluster sampling.
Estimation using poststratification, ratio estimation and regression estimation are
considered in some detail under the framework of model-assisted estimation. The
design effect is extensively used for efficiency comparisons. It is shown that proper
use of auxiliary information can considerably increase the efficiency of estimation.
Statistical properties of the total, ratio and median estimators, such as bias and
consistency, are also examined by Monte Carlo simulation techniques. This
treatment is extended in the web extension, where the behaviour of the estimators
can be examined under various sampling designs.

In Chapter 5, we extend the variance estimation methodology of Chapters 2
and 3 by introducing additional (approximative) techniques for variance estima-
tion. Subpopulation means and proportions are chosen to illustrate ratio-type
estimators commonly used in analytical surveys. The linearization method and
sample reuse techniques including balanced half-samples, jackknife and bootstrap
are demonstrated for a two-stage stratified cluster sampling design taken from
the Mini-Finland Health Survey. This survey is chosen because it represents
an example of a realistic but manageable design. Approximation of variances
and covariances of several ratio estimators is needed for testing and modelling
procedures. Using the linearization method, various sampling complexities includ-
ing clustering, stratification and weighting are accounted to obtain consistent
variance and covariance estimates. These approximations are applied to the Occu-
pational Health Care Survey sampling design, which is slightly more complex
than that of the previous survey. Chapter 6 addresses the estimation of totals for
domains, which are subpopulations constructed on regional or similar criteria.
Design-based model-assisted techniques are introduced and illustrated using data
from the Occupational Health Care Survey.

The analysis of complex survey data is considered in Chapters 7 and 8. For
testing procedures of goodness of fit, homogeneity and independence hypotheses
in one-way and two-way tables, we introduce two main approaches, the first of
these using Wald-type test statistics and the second, Rao–Scott-type adjustments
to standard Pearson and Neyman test statistics. The main aim in these test
statistics is to adjust for the clustering effect. These testing procedures rely on
the assumption of an asymptotic chi-square distribution of the test statistic with
appropriate degrees of freedom; this assumption presupposes a large sample and
especially a large number of sample clusters. For designs where only a small
number of sample clusters are available, certain degrees-of-freedom corrections
to the test statistics are derived, leading to F-distributed test statistics.

In Chapter 8, we turn to multivariate survey analysis, where a binary or a con-
tinuous response variable and a set of predictor variables are assumed. In the
analysis of categorical data with logit and linear models, generalized weighted least
squares estimation is used. Further, for logistic and linear regression in cases in
which some of the predictors are continuous, we use the pseudo-likelihood and
generalized estimating equations (GEE) methods. For proper analysis using either of
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Introduction 5

these methods, certain analysis options are suggested. Under the full design-based
option, all the sampling complexities are properly accounted for, thus providing a
generally valid approach for complex surveys. The options based on an assump-
tion of simple random sampling are used as references when measuring the effects
of weighting, stratification and clustering on estimation and test results. Using
these options, multivariate analysis is further demonstrated in the additional case
studies in Chapter 9.

The nuisance (or aggregated) approach, where the clustering effects are regarded
as disturbances to estimation and testing, is the main approach for the design-based
analysis in this book. In this approach, the main aim is to eliminate these effects to
obtain valid analysis results. In the alternative disaggregated approach, which also
provides valid analyses, clustering effects are themselves of intrinsic interest. We
demonstrate this approach for multi-level modelling of hierarchically structured
data in the last of the additional case studies in Chapter 9.

Computation

In the design of a survey, whether descriptive or analytical, the various phases
of the so-called total survey process should be carefully worked out. Typically,
a survey process starts with a problem-setting phase arising from an actual
information need. An overall plan of the survey will be prepared, including
sampling, measurement and analysis designs as phases in which statistical and
survey methodologies are obviously needed. In the course of the implementation
of the survey, the plan will be evaluated and made operational. Finally, the results
will be disseminated. In the total survey process, a number of statistical operations
relevant to this book can be identified. These are illustrated in Figure 1.1, where
the necessary methodologies and technical tools are referred to.

A computerized frame population, prepared in phase (1), serves as a basis for
the sample selection in phase (2). The frame population includes usually auxiliary
information on all population elements. The auxiliary data can be taken from
various sources, such as a population census and different administrative registers.
These data are assumed to be merged on a micro level (this is often possible in
practice e.g. by using the element identification keys that are unique in all the data
sources). The collected data are cleaned in phase (3), where also selected auxiliary
data from the frame population can be incorporated, to be used in estimation and
analysis phases. In the data processing phase (4), the sampling design identifiers
are included in the cleaned survey data set to be analysed in phase (5). Thus, the
auxiliary data can be used in two phases: to construct an efficient sampling design,
and to improve the efficiency for a given sample by model-assisted estimation
techniques. Both of these phases are discussed extensively in this book. Usually
in practice, user-specific computer programs are used in phases (1) to (4). In
phase (5), both standard survey estimation and analysis software packages and
user-specific solutions can be used.

To be manageable in practice, we have in the examples and case studies demon-
strated the methodology and computational tools using commercially available
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6 Introduction

(1) Frame population

Preparation of sampling frame

Incorporation of auxiliary data
from register sources 

(2) Sampling and data
collection

Sampling design and sample selection

Preparation of measurement
instruments and field work

(3) Data entry and data cleaning

Data entry, coding, editing, imputation

(4) Inclusion of sampling
design information

Stratum, cluster and case identifiers
Imputed value identifiers
Weight variables

Technical tools

User-specific computer
programs and environments 
for data processing purposes

(5) Estimation and analysis

Design-based and model-assisted
estimation in a descriptive survey

Design-based survey analysis in an 
analytical survey

Technical tools

User-specific computer
programs for survey
estimation purposes

Software products for
multivariate survey analysis
purposes

Figure 1.1 Flow chart for design-based estimation and analysis of complex survey data.

software products for data processing and survey estimation and analysis. A more
technical treatment of the methodologies and computational tools is included in
the web extension of the book.

Use of the Book

This book is primarily intended for researchers, sample survey designers and
statistics consultants working on the planning, execution or analysis of descrip-
tive or analytical sample surveys. We have aimed to supply such workers with an
applied source covering in a compact form the relevant topics of recent method-
ology for the design and analysis of complex surveys. By using real data sets with
computing instructions and computerized examples, the reader can also be led to
a deeper understanding of the methodology. In this effort, the reader is encour-
aged to consult the web extension of the book. In the web environment, many of
the empirical examples are extended and worked out in more detail. An option
for further training is provided, including the possibility to download program
codes and real data sets for interactive analysis in the user’s personal computing
environment.

The material in the book can also be used in university-level methodological
courses. A first course in survey sampling can be based on Chapters 2 to 4 where

TLFeBOOK



Introduction 7

the students can also be guided to real sampling and estimation using the small
population provided. A more advanced course can be based on Chapters 5 to 8. In
both types of courses, the web extension can be used to support the teaching and
learning. Also, useful data sets are supplied in the web extension for practising
variance approximation, testing procedures and multivariate analysis in complex
surveys. Chapter 4 might be included in a more advanced course. Chapter 6 might
serve as material for a course on estimation for domains.
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2

Basic Sampling Techniques

Simple random sampling, systematic sampling and sampling with probability propor-
tional to size are introduced as the basic sampling techniques in this chapter. We
start with a discussion of sampling, and sampling errors, and estimation of a given
sampling scheme. Definitions of some key concepts are given.

Sampling and Sampling Error

In survey sampling, a fixed finite population is under consideration, where the
population elements are labelled so that each element can be identified. Probability
sampling provides a flexible device for the selection of a random sample, or a sample
for short, from such a fixed population. A key property of probability sampling
is that for each population element a positive probability of selection is assigned;
this probability need not be equal for all the elements. A specific sampling scheme
is used in drawing the sample. The term sampling scheme refers to the collection of
techniques or rules for the selection of the sample. The composition of the sample is
thus randomized according to the probabilistic definition of the sampling scheme.

In principle, a large number of different samples could be drawn from a
population using a particular sampling scheme. Depending on which specific
population elements happen to be drawn, different numerical estimates are
obtained from the sample for an unknown population parameter such as a total,
i.e. the sum of the population values of a variable. Sampling error describes the
variation of the estimates calculated from the possible samples. In the design
of the sample-selection procedure for a specific survey, a sampling scheme is
desired under which the sampling error would be as small as possible. In order
to attain this goal, knowledge on the structure of the population can be helpful.
Relationships between the sampling scheme and the structure of the population
are considered for various specific sampling situations in this chapter and in
Chapter 3. In this discussion, the standard error of an unbiased estimate is used as

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
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10 Basic Sampling Techniques

a measure of the sampling error, and the comparison of the sampling errors under
various sampling schemes is carried out using the design-effect statistic.

Estimation from Selected Sample

When an actual sample is drawn using a specific sampling scheme, measurements
are recorded from the sampled elements for some variable of interest, called a
study variable. After data collection, statistical analyses can be carried out. For
example, an estimate of the population total of the study variable and its estimated
standard error are frequently calculated. In this chapter and the next, we
examine practical methods for designing manageable sampling procedures and
for carrying out proper estimation under a given sampling scheme. For this, let
us first discuss various approaches concerning the role of the sampling scheme in
the estimation process.

When a survey is analysed in practice, it is emphasized that the estimation
should take into account the structure of the sampling scheme. To accomplish
this, the analysis is carried out using the so-called design-based approach. An
essential property of the design-based approach is that any of the complexities
due to the sampling scheme can be properly accounted for in the estimation.
These complexities can arise, for example, when elements have unequal selection
probabilities; this will be discussed further in this chapter and Chapter 3. These
features of a sampling scheme can be incorporated into the estimation in the
design-based approach because a fixed finite population with labelled elements
is being considered. By using the labels assigned to each element, appropriate
sampling design identifiers can be included in the sample data set and used in the
analysis. Making use of the sampling identifiers is examined in some detail in this
and the next chapter, for estimation under various sampling schemes.

An analysis ignoring all the sampling complexities is used often in this book as
a reference to the design-based analysis. Especially, a certain sampling situation,
namely where elements are selected with equal probabilities and are replaced in
the population after each draw is called simple random sampling with replacement
and will occasionally be used as a reference design when comparing the efficien-
cies of more complex sampling schemes. In the design-based approach, it can
sometimes be useful to assume that the finite population is a realization from some
hypothetical superpopulation. This assumption together with appropriate auxiliary
information can be used by postulating models for the estimation of parameters
of the finite population under consideration. When auxiliary variables are incor-
porated in the estimation procedure by using a model, but the inference is still
design-based, we call this the design-based model-assisted approach, or more simply
the model-assisted approach (Särndal et al. 1992). This approach is introduced in the
last part of Chapter 3 and applied further in Chapter 6.

Let us consider the design-based model-assisted approach more closely to
show how a model assumption can be used to simplify the estimation for a
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Basic Sampling Techniques 11

certain sampling scheme. Suppose that a shipping company wants to know the
approximate total weight of the passengers on a ferry. This piece of information is
important for future planning. Weighing all the passengers would be too expensive
and time-consuming, thus sampling would be more appropriate in this context.
Suppose, therefore, that every tenth passenger is weighed. This yields a sample
data set of n passengers denoted by y1, . . . , yk, . . . , yn. The researcher is faced
with the problem of estimating the total weight of passengers using the sample
observation, and moreover, of evaluating the precision of the estimate.

In estimating the total weight of passengers, the researcher notes that the
sample was drawn from a specific finite population using a particular sampling
scheme. Obviously, systematic sampling was used, and from the passenger register,
the total number of passengers on board, N, would be known as an additional
information. An estimator for the total weight is easily defined in the form t̂ = Ny,
where y =∑n

k=1 yk/n is the sample mean of the n passenger weights. To assess
the sampling error, the standard error of t̂ should be estimated as the square root
of the variance estimate v̂(t̂). To estimate v̂(t̂), the researcher uses the textbook
variance estimator v̂srs(t̂) = N2(1 − n/N)ŝ2/n, which is for simple random sampling
without replacement, where ŝ2 =∑n

k=1(yk − y)2/(n − 1) is the sample variance of
the passenger weights.

The estimates obtained using the above formulae would usually be adequate for
practical purposes. But it is instructive to progress further and examine the present
estimation problem more closely. Actually, the researcher made a procedure-
simplifying assumption when estimating the variance of t̂ as an estimator from
simple random sampling. In fact, the variance formula for systematic sampling
would be more complex, because another design parameter, the intra-class
correlation ρint, should be included. The two variance estimators are related
by v̂sys(t̂) = v̂srs(t̂)[1 + (n − 1)ρ̂int], where v̂sys is the variance estimator under
systematic sampling.

Unfortunately, the variance estimator v̂sys(t̂) is not suitable for practical pur-
poses, since only one element is drawn into the sample from each sampling
interval. Therefore, an estimate ρ̂int cannot be obtained from the selected sample
without having auxiliary information on the order in which the passengers step
on board, or without making a simplifying model assumption for the process
of boarding.

The simplest model assumption would be that the passengers step on board in
a completely random order. In this case the intra-class correlation would be zero.
Then, the variance of t̂ estimated from systematic sampling would coincide with
that from simple random sampling. By using this simplifying model assumption,
we thus implicitly make use of auxiliary information in the design-based analysis,
in the form of a superpopulation assumption. For systematic sampling, the
alternative ways of making use of auxiliary information, or a model assumption,
are examined in Section 2.4. There, it will be shown that proper use of auxiliary
information not only simplifies the estimation but can also make the estimation
more efficient.
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12 Basic Sampling Techniques

In this and the next chapter, five different sampling techniques are introduced
and selected population parameters are estimated with corresponding standard
errors under the design-based approach. It will become evident that it is essential
to derive appropriate element weights wk specific to each sampling scheme. In
the example above, the weights would be equal to N/n for all passengers, i.e.
the inverse of the probability of selecting a passenger in the sample. This weight
derivation holds, for example, for both simple random and systematic sampling;
for more complex schemes, the weights are not necessarily equal for all elements.
The estimators and standard error estimators are derived for a given sampling
scheme so that the correct weights are incorporated into the equations. Moreover,
it will be pointed out to what extent, and how, auxiliary information available on
the population can be used with a specific sampling scheme. In addition to the
use of auxiliary information in sampling, such information will also be used for
model-assisted estimators applied to a selected sample for reducing standard errors
and to obtain estimates close to the corresponding population values. There, a
new type of weight is derived called the g weight and denoted gk. Its value depends
on both the selected sample and the chosen model-assisted estimator.

2.1 BASIC DEFINITIONS

The formal framework and basic definitions are now given for Chapters 2 to 4,
and the various sampling schemes are briefly described in relation to their use of
auxiliary information.

Population and Variables

A finite population {u1, . . . , uk, . . . , uN} of N elements is considered with elements
labelled from 1 to N. For simplicity, let the kth element of the population be
represented by its label k, so that the finite population can be denoted by

U = {1, . . . , k, . . . , N}.
We denote by y the study variable with unknown population values

Y1, . . . , Yk, . . . , YN . In some cases an additional study variable, x, and an auxiliary
variable, z, are also used. The unknown population values of x are denoted by
X1, . . . , Xk, . . . , XN . The auxiliary variable z represents additional information on
the finite population and is usually assumed known for all the N population
elements. The known population values of the auxiliary variable are denoted by
Z1, . . . , Zk, . . . , ZN.

Population Parameters

A parameter of the finite population U is a function of the population values Yk of
the study variable y; in some cases, the function includes population values Xk of
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the study variable x. Typical parameters are the total, the ratio and the median.
They are defined as follows:

Total T =
N∑

k=1

Yk = Y1 + Y2 + · · · + YN

Ratio R = T/Tx, where Tx is the population total of the study variable x

Median M = F−1(0.5), where F is the population distribution function of y.

The population total has been chosen because of its importance in survey
sampling, most notably by descriptive surveys carried out by statistical agencies
publishing official statistics. Much of the classical literature on survey sampling
deals with the estimation of population totals. Because the population mean Y is
a simple transformation of the total, i.e. Y = T/N, the estimators presented below
for totals are equally applicable to means with a few minor changes. Instead of
the mean, the median is considered since it is often a more appropriate measure of
location, as is the case for the demonstration data used later. The ratio is chosen
as a more complicated parameter to estimate, and because it is frequently used
in practice. Ratio-type estimators will be extensively used in the survey analyses
considered in Chapters 5 to 9.

Sampling Design and Sample

The aim of a sample survey is to estimate the unknown population parameters
T, R or M based on a sample from the population U. A sample is a subset of U.
There are many different samples that could be drawn. We denote by S the set of
all possible samples of size n (n < N) from the population U. The actual sample
is denoted by s = {1, . . . , k, . . . , n}, so that s is one of the possible samples in the
set S. To draw a sample from U a specific sample selection scheme is used. Under
a sampling scheme it is possible to state the selection probability for a sample s.
This probability is denoted as p(s). Formally, the function p(·) is called a sampling
design. The sampling design determines the statistical properties (expectation and
sampling error) of random quantities such as the sample total, sample ratio and
sample median calculated from the sample drawn under the actual sampling
scheme. In what follows, we will use interchangeably the terms sampling scheme
and sampling design, although somewhat different definitions have been given
for these concepts in the literature. For the purpose of this book, the terms
are taken to refer roughly to the way in which we draw a sample from the
fixed population.

Under a fixed sampling design p(·), an inclusion probability is assigned for each
population element to indicate the probability of inclusion of the element in the
sample. For a population element k, the inclusion probability is denoted by πk. It
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14 Basic Sampling Techniques

is also called the first-order inclusion probability. Such inclusion probabilities will
be used when we introduce the various sampling techniques.

A population element can appear more than once in a sample s if sampling
involves replacement of the selected element in the population after each draw.
Such a sampling design is of a with-replacement-type (WR). On the contrary, under
without-replacement-type sampling (WOR), a population element can appear in a
sample s only once. The with-replacement assumption simplifies the estimation
under complex sampling designs and is often adopted, although in practice sam-
pling is usually carried out under a without-replacement-type scheme. Obviously,
the difference between with-replacement and without-replacement sampling
becomes less important when the population size is large and the sample size is
noticeably smaller than it.

The study variable y is measured for the elements belonging to the sample s.
The n sample values of y are denoted by lower-case letters y1, . . . , yk, . . . , yn. In
some cases, as for the estimation of the ratio R, the data set also includes the
measurements xk, k = 1, . . . , n, of a study variable x. We assume for simplicity
that the measurements are free from measurement errors. In addition to the study
variables, the data set should include appropriate information on the sampling
design, i.e. the design identifiers such as stratum and cluster identifiers and a weight
variable. An auxiliary variable z (or several such variables) are also often included
in the data set. These variables are described in detail under each sampling
technique to be introduced.

Estimator

An estimator of a population parameter refers to a specific computational formula
or algorithm that is used to calculate the sample statistics for the selected sample.
Estimators that are unbiased or consistent with respect to the sampling design are
usually desired so that the expectation of an estimator equals, or approximates
more closely, the population parameter, with increasing sample size n. The
following three estimators will be considered:

Total t̂ =
n∑

k=1

wkyk, where wk is the element weight

Ratio r̂ = t̂/t̂x, where t̂x is the estimated total of x

Median m̂ = F̂−1(0.5), where F̂ is the estimated distribution function of y

The observed numerical value obtained by using an estimator for the actual
sample is called an estimate.

A combination of a sampling design p(·) and an estimator is a strategy. This
concept will be used especially in the last part of Chapter 3 when discussing
model-assisted estimation.
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Variance of Estimator

The estimates for a population parameter vary from sample to sample. This
variation due to sampling describes the uncertainty of inference based on a
particular sample. The sample-to-sample variation is measured by the variance
Vp(s) of an estimator. Because Vp(s) depends on the sampling design, it is also called
the design variance. Its value can be estimated from the actual sample by using an
appropriate variance estimator, which will be denoted by v̂p(s). The square root of a
variance estimator is the estimated standard error (s.e) of an estimator.

Strictly speaking, the design variance is only appropriate for unbiased estima-
tors; for biased estimators, a more general measure of sampling error called the
mean squared error, MSE, should be used. The MSE can be expressed as the sum
of the design variance and the squared bias of an estimator, where the bias is the
deviation of the expected value of an estimator from the corresponding parameter.
Generally, in survey estimation, unbiased or approximately unbiased estimators
are preferred, so that the use of design variances can be justified. This holds also
for consistent estimators whose bias decreases with increasing sample size.

Design Effect

Different sampling designs use different design variances of an estimator of a
population parameter. A convenient way to evaluate a sampling design is to
compare the design variance of an estimator to the design variance from a
references sampling scheme of the same (expected) sample size. Usually, simple
random sampling with or without replacement is chosen as the reference. For
example, for an estimator t̂ of the total T, the ratio of the two design variances,
called the design effect and abbreviated to DEFF, is defined by

DEFFp(s)(t̂) = Vp(s)(t̂)

Vsrs(t̂)
,

where p(·) refers to the actual sampling design. Obviously, obtaining a DEFF
requires the values of both design variances. These are rarely available in practice.
However, in some instances we will calculate such figures. In practice, an estimate
of the design effect is calculated using the corresponding variance estimators for
the sample data set. An estimator of the design effect is thus

deffp(s)(t̂) = v̂p(s)(t̂)

v̂srs(t̂)
.

More generally, the design effect can be defined for a strategy {p(·), t̂∗}, where
p(·) denotes the sampling design and t̂∗ denotes a specified estimator for the total T:

DEFFp(s)(t̂∗) = Vp(s)(t̂∗)
Vsrs(Ny)

,
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16 Basic Sampling Techniques

where y =∑n
k=1 yk/n is the sample mean of y. In this DEFF, t̂∗ is a design-

based or model-assisted estimator of T under p(s) and Ny = t̂ is a design-based
estimator under simple random sampling, and Vp(s) and Vsrs are the corresponding
variances. For example, the estimator t̂∗ of the total can be a regression estimator
(see Section 3.3).

As a rule, a sampling design is equally as efficient as SRS if DEFF is equal to one,
more efficient if DEFF is less than one and less efficient if DEFF is greater than one.
The efficiencies of different sampling designs or strategies will be compared using
a design-effect statistic based on either of the definitions given above.

Use of Auxiliary Information in Sampling and Estimation

A sampling frame, i.e. a list or register of the population elements from which
the sample is drawn, often includes additional information on the population
elements. Auxiliary information can also be taken from other sources such as
administrative registers and official statistics. This auxiliary information can be
useful in the construction of the sampling design and in improving the efficiency
of the estimation for the actual sample. To be useful, auxiliary information should
be related to the variation of the study variable.

The use of auxiliary information in the sample selection phase is as follows.

Simple random sampling (SRS) The sample is drawn without using auxiliary
information on the population. Therefore, a simple random sampling scheme
(with or without replacement) provides a reference when assessing the gain
from the use of auxiliary information in more complex designs or in improving
the estimation.

Systematic sampling (SYS) Auxiliary information is used in the form of the list
order of population elements in the sampling frame. For example, if the values of
the study variable increase with the list order, then systematic sampling appears
to be more efficient than simple random sampling. Intra-class correlation, an
additional design parameter in the design variance of an estimator, provides a
measure of the correlation between list order and the values of the study variable.

Sampling with probability proportional to size (PPS) An auxiliary variable z is
assumed to be a measure of the size of a population element. Varying inclusion
probabilities can be assigned using this auxiliary variable. The magnitude of
sampling error depends on the relationship between the study variable y and the
auxiliary variable z.

Stratified sampling (STR) The population is first divided into non-overlapping
subpopulations called strata, and sampling is executed independently within each
stratum. The total sampling error is the sum of the stratum-wise sampling errors.
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If a large share of the total variation of the study variable is captured by the
variation between the strata, then stratified sampling can be more efficient than
simple random sampling.

Cluster sampling (CLU) The population is assumed to be readily divided into
naturally formed subgroups called clusters. A sample of clusters is drawn from
the population of clusters. If the clusters are internally homogeneous, which is
usually the case, then cluster sampling (CLU) is less efficient than simple random
sampling. The intra-cluster correlation coefficient is the important design parameter
in cluster sampling and it measures the internal homogeneity of the clusters.

These five sampling techniques can be used to construct a manageable sampling
design for a complex sample survey, either using a particular method or more
usually a combination of methods. In all the schemes, excluding simple random
sampling, auxiliary information on the elements of the population is required. For
the selected sample, auxiliary information can be used in the estimation phase. The
general framework is model-assisted estimation. The use of auxiliary information
during the estimation phase is as follows:

Poststratification The selected sample is divided into non-overlapping poststrata
according to a categorical auxiliary variable, and the estimation follows that
of stratified sampling. The assisting model is of an ANOVA type. Efficiency can
improve if the poststrata are internally homogeneous.

Ratio estimation The population total of a continuous auxiliary variable z is
assumed known. The assisting model is of regression-type (without an intercept
term). Efficiency can improve if the study variable y and the auxiliary variable z
are correlated.

Regression estimation As in ratio estimation, the population total of an auxiliary
variable z is assumed known. The assisting model is of regression-type (with an
intercept term). Here, also, efficiency can improve if y and z are correlated.

Thus, auxiliary information can be used in the construction of the sampling design
and, for a given sample, to improve the efficiency. As a rule, sampling error can
be decreased by the proper use of auxiliary information. Thus, it is worthwhile to
make an effort to collect this type of data.

Further Reading

The main topic of this book is design-based survey estimation and analysis,
especially methods to account for sampling design complexities in estimation
and analysis phases. An early textbook written in a similar spirit is Kish (1965),
where the design effect statistic is introduced and used for a variety of practical
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18 Basic Sampling Techniques

applications. A practical orientation is adopted in Lohr (1999) in which design-
based, model-assisted and model-based estimation are illustrated with examples
taken from real surveys. A more mathematically oriented book by Särndal et al.
(1992) covers the important areas of survey sampling under a sound theoretical
and mathematical framework. For additional references, the reader is advised to
consult the web extension of this book.

2.2 THE PROVINCE’91 POPULATION

In practical survey sampling, we are interested in finite populations, which are
limited in size. Indeed, real populations are generally very large as will be seen
later in this book when practical survey samples are analysed. In the case of real
surveys, it is not easy to see how sampling error arises and how the properties of
the estimators depend on it. For this reason, we have chosen a more restricted
problem and a small finite population in order to demonstrate different sampling
schemes and their influence on sampling error. For example, the parameters total,
ratio and median of the target population can be calculated exactly and compared
with their estimates computed from the appropriate sample. This allows a view of
the whole target population. This finite population consists of only 32 population
elements from which a sample of fixed size of 8 units is drawn. It is immediately
obvious that there is an enormous gap between this demonstration survey and
a real large-scale sample survey. But the demonstration data set can help clarify
such important concepts and issues as how to determine the sampling distribution
and how a sampling design affects estimators and their design variances.

To illustrate the main ideas, a small data set under the title Province’91 has been
taken from the official statistics of Finland. This data set will be used as a sampling
frame in Chapters 2 to 4. Finland is divided into 14 provinces from which one has
been selected for demonstration. This province comprises 32 municipalities and
had a total population of 254 584 inhabitants on 31 December 1991. The data set
is presented in Table 2.1.

The Province’91 population contains three kinds of information categorized
according to their purpose throughout the survey process. The first phase is
sampling design in which identification variables, such as labels, and the ability
to identify important subgroups of the population such as strata and clusters,
are needed. Here, as the population of elements are municipalities, the name or
register number serves as an identifier of a population element. The other two
types of information define the study and the auxiliary variables.

In the official statistics of Finland, municipalities are listed in alphabetical
order with urban municipalities in the first group and rural municipalities in
the second group. This gives a natural order for a certain sampling technique
called systematic sampling and further, allows the population of municipalities
to be divided into non-overlapping subpopulations called strata. Another type of
population subgroup is formed by combining four neighbouring municipalities in
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Table 2.1 The Province’91 population. Percentage unemployment (%UE) and totals of
unemployed persons (UE91), labour force (LAB91), population in 1991 (POP91) and number
of households (HOU85) by municipality in the province of Central Finland in 1985.

ID LABEL STR CLU %UE UE91 LAB91 POP91 HOU85

Urban 12.67 8022 63 314 129 460 49 842
1 Jyväskylä 1 1 12.20 4123 33 786 67 200 26 881
2 Jämsä 1 2 11.07 666 6016 12 907 4663
3 Jämsänkoski 1 2 13.83 528 3818 8118 3019
4 Keuruu 1 2 12.84 760 5919 12 707 4896
5 Saarijärvi 1 3 14.62 721 4930 10 774 3730
6 Suolahti 1 5 15.12 457 3022 6159 2389
7 Äänekoski 1 3 13.17 767 5823 11 595 4264

Rural 12.63 7076 56 011 125 124 41 911
8 Hankasalmi 2 5 15.07 391 2594 6080 2179
9 Joutsa 2 6 9.38 194 2069 4594 1823

10 Jyväskylän mlk. 2 7 11.82 1623 13 727 29 349 9230
11 Kannonkoski 2 4 18.64 153 821 1919 726
12 Karstula 2 4 13.53 341 2521 5594 1868
13 Kinnula 2 8 13.92 129 927 2324 675
14 Kivijärvi 2 8 15.63 128 819 1972 634
15 Konginkangas 2 3 21.04 142 675 1636 556
16 Konnevesi 2 5 12.91 201 1557 3453 1215
17 Korpilahti 2 1 11.15 239 2144 5181 1793
18 Kuhmoinen 2 2 12.91 187 1448 3357 1463
19 Kyyjärvi 2 4 11.31 94 831 1977 672
20 Laukaa 2 5 12.11 874 7218 16 042 4952
21 Leivonmäki 2 6 10.65 61 573 1370 545
22 Luhanka 2 6 10.34 54 522 1153 435
23 Multia 2 7 11.24 119 1059 2375 925
24 Muurame 2 1 9.79 296 3024 6830 1853
25 Petäjävesi 2 7 15.08 262 1737 3800 1352
26 Pihtipudas 2 8 13.02 331 2543 5654 1946
27 Pylkönmäki 2 4 17.98 98 545 1266 473
28 Sumiainen 2 3 12.80 79 617 1426 485
29 Säynätsalo 2 1 10.28 166 1615 3628 1226
30 Toivakka 2 6 11.72 127 1084 2499 834
31 Uurainen 2 7 16.47 219 1330 3004 932
32 Viitasaari 2 8 14.16 568 4011 8641 3119

Whole province 12.65 15 098 119 325 254 584 91 753

Sources: Statistics Finland: Population Census 1985. Statistics Finland (1992): Statistical
Yearbook of Finland, Volume 87. Ministry of Labour of Finland (1991): Employment Service
Statistics, November 30, 1991.
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a cluster. Thus, the total number of clusters is eight. The identification variables
STR (stratum) and CLU (cluster) correspond to the urban versus rural and
neighbouring municipalities, respectively.

For the following calculations, the total number of unemployed persons on 30
November 1991, abbreviated as UE91, is taken as the study variable. Technically,
the process is as follows: using a certain sampling technique, a fixed-size sample
of eight municipalities is selected. From this observed sample, a design-based
estimate of a parameter of UE91 is calculated, and its efficiency studied, by means
of the design-effect statistic. For model-assisted estimation and for sampling
proportional to size (PPS), an auxiliary variable from a Population Census (see
Table 2.1, footnote) is selected. This is the number of households, abbreviated as
HOU85. The reason for taking HOU85 as an auxiliary variable is that it is available
from the population register and is highly correlated with the study variable UE91.
The frequency histogram for UE91 is displayed in Figure 2.1. Since the distribution
is skewed, the mean is not the most appropriate statistic for location and the
median has been chosen for further analysis.

Three different types of population parameters are considered: total T, ratio
R and median M. The total of UE91 is the number of unemployed persons. The
population total is given by

Tue91 =
32∑

k=1

Yk = 15 098.
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Figure 2.1 Frequency histogram for the number of unemployed persons in 1991 (the
Province’91 population; N = 32).
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Another population total is the size of labour force LAB91, which can also be
calculated from the figures in Table 2.1. This total is given as

Tlab91 =
32∑

k=1

Xk = 119 325.

Finally, the total population size in the Province’91 population data is 254 584
inhabitants. The totals have long been the main parameter of interest in classical
sampling theory, and official statistical agencies often produce survey estimates
of population totals.

In what follows, the total Tue91 remains the target parameter that will be
estimated under the various sampling techniques. It provides in a single figure
the information on how many persons are unemployed in the province under
consideration. Because an estimator t̂ of the total is a linear estimator on the
observations, its design variance and the corresponding variance estimator are
simple and tractable.

Another interesting population parameter is the unemployment rate in this
province. It can be given as the ratio of two totals

R = Tue91

Tlab91
= (15 098/119 325) = 0.1265.

A more practical expression of the ratio is to express it as an unemployment
percentage given by %UE = 100R = 100 × 0.1265 = 12.65%.

Although the parameter R is simple, the design variance of an estimator r̂ of the
ratio can be complicated even if the sampling design is not complex. This is because
the estimator of the ratio is of a nonlinear type and calls for approximations in the
derivation of the design variance. In classical sampling theory, a ratio estimator
refers to ratio estimation; this will be considered in Section 3.3.

The third parameter of interest is the median or 50th percentile of the distribution
of municipalities according to the number of unemployed persons. It is obtained
by first deriving the population cumulative distribution function (c.d.f.) given by

F(y) =
N∑

k=1

I(yk ≤ y)/N,

where I(yk ≤ y) = 1 if yk ≤ y and zero otherwise. From the c.d.f. of UE91 the
population median M is calculated as

M = F−1(0.5) = 229.

Here, the median has been chosen instead of the mean since the distribution of
the number of unemployed persons is very skewed; the mean is Y = 472. The
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median estimator m̂ belongs to the family of robust estimators. These estimators
are reasonably unaffected by extreme or outlying observations. However, the
derivation of the design variance of the median estimator and the corresponding
variance estimator can be cumbersome and requires approximations.

We have defined three population parameters: the total T, the ratio R and the
median M. In the Province’91 population these parameters have clear interpre-
tations. The parameter T measures the total number of unemployed persons in
the whole province and the parameter R, multiplied by 100, gives the province’s
unemployment percentage. The parameter M, the median, gives information on
the location of the distribution of unemployed persons and is more appropriate
than the mean because of the strongly skewed distribution of UE91.

In the following examples, we will take a sample of n = 8 elements from
the Province’91 population using five different sampling techniques. These are
simple random sampling (SRS), systematic sampling (SYS), stratified sampling
(STR), sampling proportional to size (PPS) and cluster sampling (CLU). Sampling
causes sampling error, which varies according to the sampling design, but the
computationally manageable size of the demonstration population will provide
an opportunity to analyse the behaviour of the sampling distributions.

2.3 SIMPLE RANDOM SAMPLING AND DESIGN EFFECT

Simple random sampling can be regarded as the basic form of probability sampling
applicable to situations where there is no previous information available on the
population structure. This sampling technique ensures that each population
element has an equal probability of selection, and thus the resulting sample
constitutes a fair representation of the population.

Simple random sampling serves two functions. Firstly, it sets a baseline for
comparing the relative efficiency of other sampling methods. Secondly, amongst
the more advanced sampling techniques such as stratified sampling and cluster
sampling, simple random sampling can be used as the final method for selecting
the elementary or primary sampling units and for working out randomization.

Simple random sampling is seen in this section from the viewpoint that
sampling a subset from a population always gives rise to sampling variation
in computations. A parameter for a fixed and finite population, as for example
in the Province’91 population, the total number of unemployed in the province,
is a fixed number (T = 15 098), which is a constant. However, if a sample of 8
municipalities is selected out of this population of 32 municipalities, then naturally
the sample estimate t̂ of the total number of unemployed will vary among different
samples depending on sample structure. This variation leads to uncertainty in
statistical inference, and the way it comes into being is the reason for labelling it
a sampling error.

However, in actual practice there is only one sample to be analysed. The random
variation due to sampling needs to be kept under control in statistical inference,
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and consequently one has to be familiar with the sampling distributions of the
estimators of the unknown population parameters.

In the following, simple random sampling is introduced by looking at three
sampling techniques: Bernoulli sampling (SRSBE), simple random sampling with
replacement (SRSWR) and simple random sampling without replacement (SRSWOR).
These sampling techniques have been illustrated by selecting an SRSWOR sample
of eight elements from the Province’91 population for further analysis. On this basis,
sample estimates for three parameters are supplied: total T, ratio R and median M.
The estimates are obtained by using survey estimation software, which produces
point estimates and appropriate standard error and design-effect estimates.

Finally, the behaviour of the sampling error is examined by simulating 1000
Monte Carlo samples from the Province’91 population and calculating the mean
and variance of this sampling distribution. In the case of an unbiased estimator,
the mean of the sampling distribution of the estimator should be equal to the
parameter under consideration and the variance of the simulated distribution is
expected to be close to the design variance of the estimator. A design variance
can be calculated exactly in a fixed and known population as exemplified by the
Province’91 population. The examination of simple random sampling is concluded
by presenting design-effect parameters and the corresponding estimates obtained
from the actual sample.

Sample Selection

Simple random sampling can be executed by three specific selection techniques:
Bernoulli sampling, simple random sampling with replacement and simple ran-
dom sampling without replacement. In the first method, the sample size is not
fixed in advance; in the two other methods it is fixed. Sample selection in both
the Bernoulli and without-replacement types of random sampling can be con-
veniently carried out by a list-sequential procedure applied to a database. In the
with-replacement type of selection, on the other hand, each separate instance of
sampling has to be done by lottery or a draw-sequential procedure. All these tech-
niques belong to the class of equal-probability sampling designs where the inclusion
probabilities are πk = π , i.e. a constant for all population elements.

Bernoulli sampling (SRSBE) The selection probability is set first, which in this
case is the constant π with regard to all elements so that 0 < π < 1. The value of
the constant π is fixed so that the expected or mean sample size is E(ns) = Nπ . In
practice, the selection is done by appending two variables to the frame population
register; let one variable be PI with the same value or a chosen π for each
observation and the other variable EPSN takes a value drawn from a uniform
distribution over the range (0, 1). The kth population element is included in the
sample if EPSN < π . Following this procedure, all the population elements are
treated sequentially. This method leads to a variation in sample size with the
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expected value E(ns) = Nπ and the variance V(ns) = N(1 − π)π . This creates
problems in variance estimation for small samples, but varying sample size
is relatively unimportant in large samples. Note that Bernoulli sampling is a
without-replacement-type sampling scheme.

Simple random sampling with replacement (SRSWR) Simple random sampling with
replacement is based on a selection by lottery from the population by replacing the
chosen element in the population after each draw. The probability of the selection of
an element remains unchanged after each draw, and any two separately selected
samples are independent of each other. This property also explains why this
method is used as the default sampling technique in many theoretical statistical
studies. Because the with-replacement assumption considerably simplifies the
formulae for estimators, especially variance estimators, it is often adopted as an
approximation when working with more complex sampling designs. An SRSWR
design is often used also as a reference design in design-effect calculations.

Simple random sampling without replacement (SRSWOR) The most common
simple random sampling method used in practice is that of simple random
sampling without replacement. For simplicity, an abbreviation SRS for SRSWOR
sampling is used in formulae. The probability of the selection of a single element
is a constant, but this is related to how far the sampling has progressed, since
the probability of selecting an element still present in the population increases
with each draw. This causes difficulties in calculating the variance estimators;
with-replacement sampling, dealt with earlier, is easier in this respect.

One of the possible SRSWOR samples of size 8 elements from the Province’91
population is presented in Table 2.2. The sampling rate is n/N = 0.25. It is

Table 2.2 A simple random sample
drawn without replacement (n = 8) from
the Province’91 population.

Element
Study variables

LABEL UE91 LAB91

Jyväskylä 4123 33 786
Keuruu 760 5919
Saarijärvi 721 4930
Konginkangas 142 675
Kuhmoinen 187 1448
Pihtipudas 331 2543
Toivakka 127 1084
Uurainen 219 1330

Sampling rate = 8/32 = 0.25
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noteworthy that this sample could have been produced by any of the three
SRS methods, namely, Bernoulli, with replacement or without replacement. Even
under complex designs, the assumption can be made that the actual sample would
be a realization of one of these basic selection techniques. This being the case,
simple random sampling without replacement can also be used as the reference in
design-effect calculations when dealing with actual complex designs. The sample
just drawn will now be subjected to design-based estimation.

Estimation

Statistical inference generalizes from the sample to the target population, by
calculating point and interval estimates for parameters and, further, by performing
tests of statistical hypotheses. For the Province’91 population, the interest focuses
on the population total T, the relative proportion 100R% and the median M,
with the calculations including point estimates and their standard error estimates
reflecting sampling errors. In the case of simple random sampling, the design is not
complex but can still be used to highlight the essential features when developing
design-based estimators, design variances and the estimators for these variances.

When the corresponding estimates have been computed from the sample, the
desired confidence intervals can be obtained. Moreover, a statistical test can be
performed on the percentage of unemployed in the province. For example, we
can test whether the percentage has remained the same since last year, i.e.
H0 : 100R% = 100R0% = 9%.

Let us introduce the formulae for the estimators t̂, r̂ and m̂ of the total T, the
ratio R and the median M, and the corresponding design variance and standard
error estimators under simple random sampling without replacement. For the
total T, we have an estimator t̂ given in the standard form by

t̂ = Ny = N
n∑

k=1

yk/n (2.1)

or the sample mean y multiplied by the population size N. The estimator can
be expressed as t̂ =∑n

k=1 wkyk = (N/n)
∑n

k=1 yk, where wk = N/n. The con-
stant N/n is the sampling weight and is the inverse of the sampling fraction
n/N. Alternatively, an estimator for the total can be written by first defining
the inclusion probability of a population element. Under SRSWOR, the inclu-
sion probability of a population element k is πk = n/N or the same constant
for every population element. On the basis of the inclusion probabilities, an
estimator of the total can be expressed as a more general Horvitz–Thompson-
type estimator:

t̂HT =
n∑

k=1

wkyk =
n∑

k=1

1
πk

yk = N
n

n∑
k=1

yk. (2.2)
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In this case, the estimators t̂ and t̂HT obviously coincide, because the inclusion
probabilities πk = n/N are equal for each k. The Horvitz–Thompson-type esti-
mator is often used, for example, with probability-proportional-to-size sampling
where inclusion probabilities vary. The estimator has the statistical property of
unbiasedness in relation to the sampling design.

The estimator of the ratio R is the ratio of the estimators of two totals or

r̂ = t̂/t̂x, (2.3)

where t̂x denotes the total of the study variable x. Although both the estimators
for totals are unbiased, the estimator r̂ of a ratio nonetheless belongs to the class
of biased estimators. Let us consider more closely the bias of r̂.

The bias of r̂ is related to the linear regression existing between the two
variables, y and x, which takes the form y = A + Bx. If the intercept is A = 0,
then the regression line goes through the origin, which means that the ratio
Yk/Xk is constant among the elements of the population. In this instance the ratio
estimator r̂ is unbiased, whereas if A > 0 the bias amounts to

BIAS(r̂) = E(r̂) − R
.= Vsrs(y)

A

Y
2
X

, (2.4)

where Vsrs(y) denotes the design variance of y under the SRSWOR design and Y
and X are the population means of the study variables y and x.

The formula shows that if the constant A is large, the bias is also considerable. On
the other hand, with increasing sample size the variance Vsrs(y) declines, leading
to a reduced bias. Therefore r̂ is a consistent estimator of R and can be considered
more reliable as the sample size increases (see Figure 2.3 for finite-population
consistency).

An estimator of the median M can be constructed by first estimating the
cumulative distribution function of the study variable at the point y. The
Horvitz–Thompson-type estimator of the c.d.f. is given by

F̂(y) =
n∑

k=1

wkI(yk ≤ y)/N̂, (2.5)

where wk denotes the weight for the kth sample element and I(yk ≤ y) is one if
yk ≤ y and zero otherwise. The sum of the weights is N̂ =∑n

k=1 wk. The estimated
c.d.f. is a step function that should first be smoothed to form an estimate m̂ of
the median M. The procedure is described only briefly. The smoothed distribution
function is constructed by connecting the points F̂(y) with straight lines and the
estimated quantiles, including the median, are computed from this. The procedure
provides an unbiased estimator for the median. More details are given in Francisco
and Fuller (1991).
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To determine confidence intervals and test statistics, the design variances, or
rather the estimators of these variances, are required for the estimators t̂, r̂ and
m̂. They are used to estimate the sampling error brought about by the random
selection of a sample from the population. Here we derive those variance estimators
that are suitable for the single-sample situation. The behaviour of sampling error
in more general terms is taken up separately in the context of design variances
and sampling distributions of estimators.

An unbiased estimator of the design variance Vsrs(t̂) (see equation (2.8)) of the
estimator t̂ of the total is given by

v̂srs(t̂) = N2
(

1 − n
N

) n∑
k=1

(yk − y)2/n(n − 1) = N2
(

1 − n
N

)
ŝ2/n, (2.6)

where y =∑n
k=1 yk/n is the sample mean and ŝ2 =∑n

k=1(yk − y)2/(n − 1) is an
estimator of the element variance S2. The square root of the variance estimator is
the standard error of the estimator t̂ and is denoted by s.e (t̂).

Variance estimators for the ratio r̂ and the median m̂ are considerably more com-
plicated since both must be regarded as nonlinear estimators. The approximate
variance estimator for the estimator r̂ of the ratio is

v̂srs(r̂) =
(

1 − n
N

)( 1

x2

) n∑
k=1

(yk − r̂xk)
2/n(n − 1). (2.7)

In developing this variance estimator, the ratio estimator has been linearized with
the Taylor series expansion, and therefore the above equation gives an approximate
estimator of the design variance. This technique will be considered in more detail
in Chapter 5. The variance estimator of m̂ also requires use of the linearization
method. This implies that the variance estimator of the median cannot be expected
to be very stable, especially for small samples. The standard error for a median is
determined as follows. A lower 0.975-level and an upper 0.025-level bounds for
the smoothed cumulative distribution function are created. The standard error
for the pth quantile is a quarter of the horizontal distance at level p between the
upper and lower bounds of the smoothed distribution function.

Computation of Design-based Estimates

The computation of design-based estimates and their standard errors has been
performed here and elsewhere in this book using the appropriate software,
which accounts for the design complexities. The statistical analysis follows the
steps presented in the flow chart in Figure 1.1. We assume that the data are
cleaned such that the necessary data-processing operations have been completed
successfully. This includes data entry, coding, editing and imputation and the
derivation of the sampling weight.
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For design-based estimation, the following sampling-design identifiers must be
included in the data set to be analysed: stratum identification variable, cluster
identification variable and sampling weight variable. It should be noted that in
addition to complex designs, these identifiers can also be assigned for simple
designs, for example, for a design involving only one stratum or a design without
clustering (each single unit constitutes a cluster of its own). In addition to these
variables, sampling rates must be supplied under without-replacement sampling.
User-specific computer programs are often used to prepare the cleaned data set for
analysis purposes.

In the analysis phase, the sampling identifiers are then supplied to the chosen
survey analysis software. Of course, the use of the design information requires full
awareness of the complexities of the actual sampling design. Use of the design
information in estimation is illustrated under all the sampling techniques to be
considered in this book. The output of a standard survey estimation software
includes the point estimates and their estimated standard errors, coefficients of
variation and design effects. These statistics are calculated by taking the sampling
design into account. In addition, some useful sampling design information is
usually included. Our first example is of design-based estimation under simple
random sampling without replacement.

Example 2.1

Analysing an SRSWOR sample from the Province’91 population. We produce
the estimates of the total, the ratio and the median, and their standard error
estimates, from the sample selected earlier under simple random sampling without
replacement. First, the design identifiers are appended to the sampled data set.
These include the stratum identifier STR, which in the case of a simple random
sample is a constant for all sample elements, i.e. STR = 1. Next, we need to know
whether an element belongs to a group of elements or a cluster. In element
sampling, each element is a cluster of its own; therefore CLU equals the ID number
of the observation. Finally, we enter the weight variable, which under the SRSWOR
design is the inverse of the inclusion probability or wk = πk

−1 = (n/N)−1 = N/n.
It is used to weight the sample observations in the estimation of the total so that
the weights sum to N. In general for the estimation of a total, the weight variable
should be scaled such that the sum of the weights equals the population size. In
this example, the population size is 32 municipalities (N = 32) and the selected
sample includes eight municipalities (n = 8); therefore, the weight variable is
given the value WGHT = 32/8 = 4.

As soon as these preliminary steps are completed, the data set should resemble
Table 2.3. To make the table more readable, an alphanumeric variable LABEL has
been included and the rest of the variables have been divided into two headlines:
‘Sample design identifiers’ and ‘Study variables’.

It is important under without-replacement-type sampling to provide the sam-
pling rate to account for the finite-population correction (f.p.c.) in the variance
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Table 2.3 A simple random sample drawn without replacement from the
Province’91 population (n = 8) provided with the sample design identifiers.

Sample design identifiers
Element

Study variables

STR CLU WGHT LABEL UE91 LAB91

1 1 4 Jyväskylä 4123 33 786
1 4 4 Keuruu 760 5919
1 5 4 Saarijärvi 721 4930
1 15 4 Konginkangas 142 675
1 18 4 Kuhmoinen 187 1448
1 26 4 Pihtipudas 331 2543
1 30 4 Toivakka 127 1084
1 31 4 Uurainen 219 1330

Sampling rate = n/N = 8/32 = 0.25

estimators when dealing with small populations. In this example, the sampling
rate is 8/32 = 0.25, and thus the f.p.c. equals (1 − n/N) = 0.75.

Estimation results are displayed in Table 2.4. It includes the point estimates for
t̂, r̂ and m̂, and their estimated standard errors, coefficients of variation and design
effects. The coefficient of variation is, for example, for the total c.v (t̂) = s.e (t̂)/t̂. In
this case, the deff estimates are equal to unity, since SRSWOR design is also the
reference scheme. In addition to the estimates, the values of the corresponding
population parameters T, R and M are supplied. For further details, the reader is
advised to consult the web extension of the book.

The results of the estimation are interpreted as follows. The point estimate of the
total number T of unemployed persons UE91 for the whole province is t̂ = 26 440
and the corresponding standard error estimate is s.e (t̂) = 13 282. On the basis
of these two estimates, and by using the standard normal distribution N(0,1) as
an approximate distribution for the estimated total, the following 95% confidence
interval is obtained for the total number of unemployed persons in the province:

t̂ − 1.96 × s.e(t̂) < T < t̂ + 1.96 × s.e(t̂)

i.e. 407 < T < 52 472, which is so wide as to lack any significance for adminis-
trative purposes. We shall see later how this confidence interval is affected by

Table 2.4 Estimates from a simple random sample drawn without replacement (n = 8);
the Province’91 population.

Statistic Variables Parameter Estimate s.e c.v deff

Total UE91 15 098 26 440 13 282 0.50 1.00
Ratio (%) UE91, LAB91 12.65% 12.78% 0.41% 0.03 1.00
Median UE91 229 226 150 0.66 1.00
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selecting a more effective sampling scheme in such a way as to produce a smaller
sampling error.

The estimate r̂ for percentage unemployment in the province is 12.78%. Since
the standard error estimate (s.e) of r̂ is available, we can test statistically whether
the current unemployment rate R is different from that estimated a year ago: it
was then 9%, thus H0: R = R0 = 0.09. Using again the normal approximation
we have

Z = r̂ − R0

s.e(r̂)
= 0.1278 − 0.09

0.0041
= 9.22∗∗∗,

and we reject the H0 hypothesis and conclude that the unemployment percentage
of the province has changed significantly during the past year. The significance
level is denoted as ∗∗∗ referring to the rejection probability, i.e. the p-value of the
test which in this case is less than 0.001.

On the other hand, the point estimates for the ratio and the median are close to
the corresponding parameters.

Next, we study the design variances and sampling distributions of the estimators
t̂, r̂ and m̂ in greater detail.

Design Variance and Sampling Distribution

Simple random sampling is convenient for demonstrating how different estimators
and their variances behave under a certain sampling design and how the sampling
error is influenced by the randomization. We examine this behaviour by first
calculating the design variances of t̂, r̂ and m̂, denoted by Vsrs, under the SRSWOR
design. These variances can be calculated for the small fixed population under
consideration. However, the design variance does not contain all the information
on the sampling error; derivation of the sampling distributions of the estimators
allows closer examination of the behaviour of the estimators.

Sampling distributions of estimators are often derived by simulating a large
number of samples from the population using the given sampling scheme. We
have simulated by the Monte Carlo method a total of 1000 samples of size eight
(n = 8) elements from the Province’91 population under SRSWOR. From each of
these samples, the estimates t̂, r̂ and m̂ are calculated. The distribution of each
estimator constitutes an experimental sampling distribution for that estimator,
i.e. the total, the ratio and the median. These distributions provide information
about the location and shape of the sampling distribution.

Design variance formulae and the corresponding observed values for the total,
ratio and median estimators under SRSWOR using the Province’91 population are:

Total T: A design variance for t̂ is

Vsrs(t̂) = N2

n

(
1 − n

N

) N∑
k=1

(Yk − Y)2/(N − 1) = N2
(

1 − n
N

)
S2/n, (2.8)
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where Y =∑N
k=1 Yk/N is the population mean and S2 =∑N

k=1(Yk − Y)2/(N − 1)
is the population variance. The observed design variance is

Vsrs(t̂) = 322

8

(
1 − 8

32

)
743.362 = 72832.

Ratio R: An approximate design variance for r̂ is

Vsrs(r̂)
.= 1

X
2

1
n

(
1 − n

N

) N∑
k=1

(Yk − R × Xk)
2/(N − 1), (2.9)

which gives the observed value

Vsrs(r̂) = 1
37292

1
8

(
1 − 8

32

)
315.912/(32 − 1) = 0.0052.

Median M: There are several approximative variances available for the design
variance of the median m̂. One possibility is to approximate the variance from the
cumulative distribution function as follows:

Vsrs[F̂(m̂)] = N − n
N − 1

1
n

F(M)(1 − F(M))
.= 1 − n/N

n
0.25, (2.10)

which is very simple because no unknowns are included. It gives

Vsrs[F̂(m̂)] .= 1 − 0.25
8

0.25 = 0.02,

which should be rescaled to obtain the design variance of m̂ on the ordinary
study variable scale. In the Province’91 population, however, we use the approx-
imate design variance from the Monte Carlo simulations (see Figure 2.2); hence
we obtain

Vsrs(m̂)
.= v̂(m̂mc) = 1072.

Note that the design variances are displayed in terms of squared standard
errors to facilitate comparison with the standard error estimates (s.e) exhibited in
Table 2.4. When comparing the design variance, or standard error of an estimator
to the corresponding estimate from the actual sample, it can be seen that they differ
owing to sample-to-sample variation. For example, the variance estimate for the
total was v̂srs(t̂) = 13 2822, and the corresponding design variance was calculated
as Vsrs(t̂) = 72832. The sample estimate considerably overestimates the design
variance in this case. For the ratio estimator these figures are v̂srs(r̂) = 0.0042

and Vsrs(r̂) = 0.0052, which are quite close. Finally, for the median we have
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Figure 2.2 Sampling distributions of the estimators t̂, r̂ and m̂ from 1000 Monte Carlo
samples taken from the Province’91 population under an SRSWOR design (N = 32, n = 8).

v̂srs(m̂) = 1502 and Vsrs(m̂) = 1072; the sample estimate is again noticeably larger
than the corresponding design variance.

For a closer examination of the behaviour of the estimators under simple
random sampling without replacement, estimates for the total, ratio and median
from Monte Carlo simulations are displayed as histograms in Figure 2.2. The mean
of the distribution of a Monte Carlo estimator is expected to coincide with the
corresponding population parameter, and the variance should approximate the
design variance of the estimator.

The mean of the total estimates is t̂mc = 15 049, which fits well with the
corresponding parameter T = 15 098. The variance of the total estimates is 72782,
which is close to the design variance Vsrs(t̂) = 72832. In this respect the estimator
t̂ works well.

On closer examination, two peaks are noted in the histogram. The distribution
does not seem bell-shaped when referred to the normal distribution, which can be
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used as the reference (the values from the corresponding normal distribution are
displayed as a solid curve in the figure). Great discrepancies are noted between
the observed and theoretical distributions. This cautions us against basing our
inferences on an assumption of a normal distribution. The causes are obvious.
The sampling distribution of t̂ strongly depends on the distribution of UE91 in
the Province’91 population, which is highly skewed in favour of one municipality
(provincial capital), where one-third of the total population of the province
lives (see Figure 2.1). The population and sample sizes are not large enough to
meet the requirements of a normal approximation. Consequently, simple random
sampling might not be an appropriate technique for the estimation of the total in
this population.

The simulated distribution indicates that the estimator r̂ for the ratio UE91/
LAB91 works well. The mean of the ratio estimates is r̂mc = 0.128, which is almost
equal to the population parameter R = 0.1265. The variance of the ratio estimates
is 0.0062 and coincides with the design variance, Vsrs(r̂) = 0.0052. Moreover, the
distribution is reasonably bell-shaped, indicating that the normal approximation
is better motivated than that for the total estimator.

The median M was defined as the 50th percentile of the cumulative distribution
function (c.d.f.) of the study variable y. Usually, the c.d.f. is unknown and the
median should be approximated. The generally used procedure for a median
estimate is to arrange the sample values in ascending order y(1) < · · · < y(k) <

· · · < y(n) and to take the middle value as the median if the sample size is
odd, otherwise the median is taken as the mean of the two middle values or
m̂ = 1

2 [y(n/2) + y(n/2+1)]. This kind of an estimator of a median is often called 50%
trimmed mean.

For a symmetric population, the mean and median coincide. The Province’91
population is heavily skewed, as can be seen in Figure 2.1, and therefore the
difference between the population mean and median is as great as Y − M =
472 − 229 = 223. We next investigate the effect of sample size on the behaviour
of the estimators for a total and a ratio.

Finite Population Consistency and Sample Size

Statistical properties of two basic estimators, t̂ (for a total) and r̂ (for a ratio) are
now examined in more detail by using simulation methods.

A method of estimation is called unbiased if the average value of the estimate,
taken over all possible samples of given size n, is exactly equal to the true population
value. Further, a method of estimation is called consistent if the estimate becomes
exactly equal to the population value when n = N, that is, when the sample
consists of the whole population (Cochran 1977, pp. 21–22). In Särndal et al.
(1992, p. 168), this type of consistency is defined as finite population consistency.
We examine the behaviour of total and ratio estimators by Monte Carlo methods
by simulating 1000 samples with SRSWOR from the Province’91 population.
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Figure 2.3 Bias, consistency and precision of the estimator t̂ of a total and r̂ of a ratio.
Monte Carlo means t̂mc and r̂mc and the corresponding standard errors of simulated 1000
SRSWOR samples with different sample sizes drawn from the Province’91 population.

Varying-size samples are selected; sample sizes vary from n = 1 to the population
size N = 32. Results are presented in Figure 2.3.

The estimator t̂ = N ×∑n
k=1 yk/n of the total T (= 15 098) of the study variable

UE91 (number of unemployed) is unbiased, as Figure 2.3(a) indicates. As expected,
the standard error s.e(t̂) decreases when the sample size increases, as can be seen
from Figure 2.3(b). On the other hand, the estimator r̂ =∑n

k=1 yk/
∑n

k=1 xk of the
ratio, where x refers to the study variable LAB91 (size of labour force), is somewhat
biased for the population ratio R (= 0.1265), but is consistent (Figure 2.3(c)).
Consistency is verified by a vanishing bias with increasing sample size. Also for the
estimator of the ratio, the standard error estimate declines when the sample size
increases (Figure 2.3(d)). We conclude that both estimators are consistent and,
moreover, the estimator for the total is unbiased.

DEFF and Efficiency of Sampling Design

The design effect was previously defined as the ratio of two design variances where
the numerator is the design variance of an estimator under the actual sampling
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design and the denominator is the design variance of a simple random sample of
the same number of elements. This definition was originally given by Kish (1965,
p. 258) in which simple random sampling without replacement was taken as the
reference. More formally, let the design variance of an estimator, e.g. for the total
estimator t̂, be Vp(s)(t̂) under the actual design. The DEFF parameter is obtained as

DEFF(t̂) = Vp(s)(t̂)

Vsrs(t̂)
. (2.11)

In the design effect (2.11), it is assumed that the estimator t̂ applies to both the
actual and reference designs. For more complex actual designs, the DEFF was,
in Section 2.1, given also by a more general formula that allows a design-based
estimator, denoted by t̂∗, which differs from the SRSWOR counterpart t̂. Moreover,
in the Kish definition, SRSWOR acts as the reference. In practice, this definition is
often interpreted more loosely. The reason for this is that simple random sampling
either with or without replacement tends to lead to the same results if the target
population is large and the sampling fraction n/N is small. This is generally the
case with large-scale survey sampling. Variance estimators under SRSWR are
algebraically simpler than those under SRSWOR, so SRSWR is in this respect
more convenient as the reference design. This is also emphasized in software
applications for survey analysis.

Obviously, if the actual sampling design is SRSWOR then DEFF = 1. And for
simple random sampling with replacement (SRSWR), whose design variance for
a total estimator t̂ is Vsrswr(t̂) = N2(1 − 1/N)S2/n, the DEFF reduces to

DEFF(t̂) = Vsrswr(t̂)

Vsrs(t̂)
=

N2

(
1 − 1

N

)
S2

n

N2
(

1 − n
N

) S2

n

= N − 1
N − n

.

This DEFF is always greater than one if n ≥ 2, which implies that the SRSWR
design is less efficient than the SRSWOR design. Thus, DEFF for SRSWR depends
only on the population size N and sample size n. If the population is very large and
the sampling rate n/N is negligible, then DEFF is close to one.

In practice, the design variance Vp(s) and the corresponding SRSWOR (or
SRSWR) reference variance of an estimator are estimated from the selected sample.
Thus, the DEFF must be estimated from the sampled data and for obtaining an
estimate deff, the estimates of the variances are used. In the next example, we
calculate DEFF and deff figures for data from the Province’91 population.

Example 2.2

A sample of size n = 8 is selected from the Province’91 population (N = 32) by
SRSWOR. This sample is now assumed to be a realization of SRSBE (Bernoulli
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sampling) and SRSWR (simple random sampling with replacement). To compare
the efficiencies of these sampling designs, we calculate DEFF parameters for the
estimator t̂ of the total number of unemployed UE91. From the population, we
know that the standard deviation S = 743 and the mean Y = 472. Thus,

DEFFsrs(t̂) = 1 (by definition),

DEFFsrswr(t̂) = N − 1
N − n

= 32 − 1
32 − 8

= 1.29 and

DEFFsrsbe(t̂) = 1 − 1
N

+ Y
2

S2
= 1 − 1

32
+ 4722

7432
= 1.37.

The DEFF parameters show that both SRSWR and SRSBE are less efficient than
the reference SRSWOR design. For SRSBE, increased variance is partly due to the
random sample size.

We calculate the deff estimates from the selected sample presented in Table 2.3.
The estimate for the population standard deviation is ŝ = 1355.615 and for the
population mean y = 826.25. Interpreting this sample as a realization of simple
random sampling with replacement or Bernoulli sampling, the deff estimates are:

deffsrs(t̂) = 1 (by definition),

deffsrswr(t̂) = N − 1
N − n

= 32 − 1
32 − 8

= 1.29 and

deffsrsbe(t̂) = 1 − 1
N

+ y2

ŝ2
= 1 − 1

32
+ 826.252

1355.622
= 1.34

Of course, the deff estimate for SRSWR is the same as the parameter DEFF. Even
for SRSBE sampling, the deff estimate is almost the same as the corresponding
DEFF parameter.

Design variances and variance estimators of the total, ratio and median were
considered under simple random sampling without replacement. For the linear
estimator t̂ of the total, an analytical design variance was derived, yielding a
basically equal formula for the corresponding variance estimator. For the ratio r̂
as a nonlinear estimator, an approximative design variance was derived by the
linearization method; the variance estimator also mirrored the design variance.
And for the design variance of the robust estimator, the median m̂, alternative
approximative estimators are available whose suitability, however, varies at least
for small samples.

Summary

Simple random sampling was introduced in order to promote familiarity with the
most important concepts of estimation under a specific sample-selection scheme.
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The key statistical concepts appeared at three levels. At the first level are the
unknown population parameters of the study variable, such as the total T, the
ratio R and the median M, which are to be estimated from a selected sample.
At the second level are the estimators of the population parameters, and the
design variances of these estimators, including the design parameters and other
characteristics of the sampling distribution of an estimator. The randomization
produced by the sampling involves variation in the observed values of the
estimators calculated from repeated samples from the population. The design
variance is intended to capture this variation, which is also reflected in the
sampling distribution of an estimator. It appeared that it is beneficial to be aware
of the properties of the sampling distribution as a basis for appropriate point and
interval estimation and for hypothesis testing. The efficiency of a sampling design
is reflected in the design effect DEFF of an estimator.

In practice, only the sample actually drawn is available for the estimation.
Thus, at the third level are the sample estimates of the population parameters, and
the estimators of the design variances for obtaining standard error estimates and
the corresponding confidence intervals. An important figure is the deff estimate
calculated from the sample by using the estimated design variance and the
respective variance estimate from the assumed simple random sample.

Covering all three levels, the properties of the estimators of the total, ratio
and median were studied in detail for a simple random sample drawn without
replacement from the Province’91 population. The estimator t̂ was for the total
number T of unemployed persons UE91 in the province, the ratio estimator r̂ was
for the unemployment rate R in the province, and the median estimator m̂ was for
the average number M of unemployed persons per municipality. These estimators
cover three important families of estimators, namely linear, nonlinear and robust
estimators. In this case, all the DEFF figures and deff estimates were ones because
SRSWOR was also the reference in the design-effect calculations. Under other
sampling schemes, we will see in later chapters how efficiency varies according
to both the estimator and the sampling design, and in many cases deff estimates
differing from unity will be obtained.

Finally, note that SRS cannot be taken solely as a simple device for the
demonstration of sampling error and other key concepts when discussing the
basics of survey sampling, nor as the reference in efficiency comparisons. Simple
random sampling can also be included as an inherent part of sampling designs in
complex sample surveys; thus it is of practical value as well.

2.4 SYSTEMATIC SAMPLING AND INTRA-CLASS
CORRELATION

Systematic sampling is one of the most frequently used sample selection techniques.
A list of population elements or a computerized register serves as the selection
frame from which every qth element can be systematically selected. For example,
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many population registers are alphabetically ordered by family name. The first
member is selected at random among the first q elements. The rest of the sample
is selected by taking every qth element thereafter down to the end of the list. We
have devoted a great deal of space to discussing estimation in a systematic sample,
since it presents a good example of the complexities encountered when estimating
under a design that involves a certain design parameter in the design variance of
an estimator. Here the design parameter is the intra-class correlation coefficient
ρint. A further complexity arises in the estimation of the design variance; as there
is no known analytical variance estimator even for such a simple estimator as
the total, we shall derive several approximate variance estimators. In choosing
between them, further information on the structure of the target population
would be helpful.

Systematic sampling may in some cases be more effective than simple random
sampling. This will occur, for example, if there is a certain relationship between
the ordering of the frame population and the values of the study variable. The
most common cases are those where the population is already stratified or a trend
exists that follows the population ordering, or there is a periodic trend; all these
situations can also be reached by appropriate sorting procedures. Periodicity may
be harmful in some cases, especially if harmonic variation coincides with the
sampling interval. Good a priori knowledge of the structure of the population is
thus beneficial to gaining efficient estimation.

Sample Selection

Let us suppose that a systematic sample of size n elements is desired from a fixed
population of N elements. There are several ways of selecting the sample. The
most common is to draw a single sample of size n with a sampling interval of
q = N/n. Alternatively, two, or more generally m, replicated systematic samples
can be taken, each of size n/m elements, the length of the sampling interval being
m × q. This method is suitable if variance estimation is to be carried out using
so-called replication techniques.

Let us consider systematic sampling with one random start. The first task is to
number the elements of the frame population consecutively by 1, 2, . . . , q, q +
1, . . . , N − 1, N, where q = N/n refers to the sampling interval. If q is not an
integer, all sampling intervals can be defined as of equal length except one. The
selection proceeds as follows. Select a random integer with an equal probability
of 1/q between 1 and q. Let it be q0. The sample will be composed of elements
numbered q0, q0 + q, q0 + 2q, . . . , q0 + (n − 1)q, so that one member from each
sampling interval is included.

Another selection with one random start can be executed by taking a random
integer from the interval [1, N]. Let it be Q0. Starting from Q0, the selection
proceeds forward and backward with steps of the length of the sampling interval
q. The composition of the systematic sample will be . . . , Q0 − 2q, Q0 − q, Q0, Q0 +
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q, Q0 + 2q, . . .. Alternatively, a systematic sample can be drawn by treating the
observations in the frame as a closed loop. Beginning from the random start Q0

the selection proceeds successively by drawing elements Q0 + q, Q0 + 2q, . . ., till
the end of the frame, and then the selection continues from the beginning of the
frame. The loop will be closed when n elements have been drawn. These random
start methods lead to the selection of a systematic sample size of n elements, and
the methods are equivalent with respect to the estimation.

In replicated systematic sampling, multiple random starts are used. The intended
sample size n is first allocated to the m subsamples so that the sampling interval
for each subsample of equal size n/q is m × q. For every subsample, an integer for
random start is chosen without replacement from the first sampling interval, and
the selection is performed according to the first of the methods introduced above.
This procedure gives a set of equal-sized replicate systematic samples comprising
n distinct elements in the combined sample.

In systematic sampling, the number of different samples is quite small. If the
sampling interval is q = N/n, there will be q separate systematic samples in total.
Thus, the selection probability for a sample s is p(s) = 1/q. When one element from
each sampling interval is included, the inclusion probability for the kth population
element is πk = 1/q = n/N, which is the same as the selection probability. The
inclusion probability is also equal to that under simple random sampling without
replacement. So systematic sampling is also an equal-selection-probability design
of without-replacement type.

Estimation

The ease of selection of a systematic sample does not continue into the estimation
phase. Point estimates for total T, ratio R and median M are still easily calculated
using the corresponding estimators from simple random sampling. But it is not
possible to estimate the design variance analytically from the selected sample;
approximations have to be used for this purpose. This is the consequence of
only one population member being drawn from each sampling interval. Thus, no
information is available in the sample on the variation within a sampling interval
required to analytically estimate the variance. The problem can be illustrated in
the estimation of total T using the estimator

t̂ = N
n∑

k=1

yk/n, (2.12)

which is the same as equation (2.1) for SRSWOR. Under systematic sampling, the
design variance of t̂ is given by

Vsys(t̂) = N2
q∑

j=1

(Yj − Y)2/q, (2.13)
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where Yj is the mean of the jth systematic sample and Y is the population mean.
The variation depends on the extent to which the q sample-specific means Yj vary
around the overall mean Y. If each sample closely mirrors the composition of
the population, the design variance would be small and thus the estimation of
the total would be efficient. But if the sample-specific means vary, a large design
variance would be obtained. The situation can be illustrated by a decomposition
of the total variation between and within the systematic samples. This will be
discussed further under intra-class correlation.

In practice, only one systematic sample is selected and the design variance is
approximated by using one of the alternative, but more or less biased, variance
estimators v̂sys(t̂). The choice of the approximate variance estimator should be
based either on auxiliary information available in the frame population or the use
of certain methodological solutions such as sample reuse or selection of replicated
systematic samples. Five approximative variance estimators are introduced in
equations (2.14) to (2.18).

1. Randomly ordered population It is often natural to assume that the values of
the study variable are in random order in the frame population. If this model is
correct, the variance estimator of simple random sampling without replacement,
given by

v̂1.sys(t̂)
.= v̂srs(t̂) = N2

(
1 − n

N

)
ŝ2/n, (2.14)

is unbiased under the actual systematic sample. Although seldom exactly correct,
this model seems to be realistic, for example, for population registers if the persons
appear alphabetically by name within it.

2. Implicitly stratified population The population elements are sorted according
to the values of a variable. For example, in a population register, persons can be
listed according to sex so that females occur first followed by males. This kind
of stratification is called implicit stratification. The corresponding approximate
variance estimator is based on successive differences ai = yi − yi−1 and is given by

v̂2.sys(t̂)
.= N2

(
1 − n

N

)
(1/n)

n∑
i=2

a2
i /2(n − 1). (2.15)

Alternatively, it is possible to make direct use of the variance estimator of stratified
random sampling with proportional allocation by using equation (2.6) from
SRSWOR in each implicit stratum; hence we get an estimator denoted by v̂2.str(t̂)
to be introduced in Section 3.1.

3. Autocorrelated population This possibility arises under the superpopulation
mechanism, which is assumed to generate a correlation ρq between each pair of
elements of the population that are q units apart. This correlation is similar to the
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autocorrelation familiar from the analysis of time-series. It is expected that this
correlation is positive; if not, some of the other approximations should be used.
The autocorrelation coefficient can be estimated from the selected sample and
used as a correction factor for the variance estimator v̂srs as follows:

v̂3.sys(t̂)
.= N2

(
1 − n

N

)
(ŝ2/n)[1 + 2/ log(ρ̂q) + 2/(ρ̂−1

q − 1)], (2.16)

where 0 < ρ̂q < 1 is the estimated value of the autocorrelation. When the auto-
correlation is greater than zero, the term in brackets is less than one and
decreases towards zero with increasing ρ̂q. Thus, strong autocorrelation increases
the efficiency.

4. Sample reuse The parent sample is split into two or more equally sized distinct
systematic subsamples. The design variance is estimated from the observed
variation between the m subsamples as follows:

v̂4.sys(t̂)
.= N2

(
1 − n

N

) m∑
l=1

(yl − y)2/m(m − 1), (2.17)

where y =∑m
l=1 yl/m is the mean of the m subsample means. In place of y, the

estimate y can be used in (2.17). Other sample reuse methods such as bootstrap,
jackknife and balanced half-samples are other possible candidates for variance
estimation. Sample reuse methods will be discussed in more detail in Chapter 5.

5. Replicated systematic sample This method resembles the one above where the
parent sample is split into two or more subsamples, but here this is done before
the sample selection. Selection is performed by drawing without replacement
two or more replicated systematic subsamples. The variation between the m
subsamples gives an opportunity to estimate the design variance. The formula for
the approximate variance is the same as that for the previous method, i.e.

v̂5.sys(t̂) = v̂4.sys(t̂). (2.18)

All the five variance estimators are approximate and thus their statistical proper-
ties depend on the validity of the respective model assumption or on the success
of the splitting of parent samples. In the real world there is, of course, no assur-
ance of this. We can, however, evaluate the validity of these variance estimators
for the Province’91 population, since it is possible to calculate the value of the
design variance Vsys and, therefore, also the intra-class correlation ρint as the
design parameter.

Example 2.3

Variance approximations under systematic sampling from the Province’91 pop-
ulation. A systematic sample of 8 municipalities (n = 8) from the total of 32
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municipalities in the Province’91 population can be selected in two alterna-
tive ways:

1. The province is divided into eight sampling intervals, each containing four
municipalities. A single sample is selected, including, for example, the first
municipality from each sampling interval. Thus, the sample size will be
eight elements.

2. The province is divided into four sampling intervals, each containing eight
municipalities. Two parallel systematic samples are selected without replace-
ment, one of which includes, for example, the first municipality of each
sampling interval and the other, the fifth. The sample is thus composed of
two distinct replicated systematic samples of four municipalities, and the total
sample size is again eight municipalities.

Both the methods are assumed to produce in this case, the same actual sample.
The sampled data is displayed in Table 2.5. Recall from Table 2.1 that the implicit
stratification is based on the ordering of the municipalities in the municipality
register: densely populated towns are given first, followed by rural municipalities.
Systematic sampling through such a frame register selects municipalities from
each stratum in the same proportion that they are found in the stratum. The result
of this sampling is the same as stratified sampling using proportional allocation.
Stratified sampling will be discussed in more detail in Section 3.1.

All the five approximate variance estimators have been calculated on the
basis of the sampled data set. To compute the variance estimate under the
stratification assumption, the stratum identifiers receive the value STR = 1 if the
municipality is a town, or STR = 2 for a rural municipality. Similarly, as under
simple random sampling, the cluster identifier (CLU) receives the corresponding
element-identification value. In proportionally stratified sampling the element

Table 2.5 A systematic sample from the Province’91 population (sample
design identifiers are given for implicit stratification).

Sample design identifiers
Element

Study variables

STR CLU WGHT LABEL UE91 LAB91

1 1 4 Jyväskylä 4123 33 786
1 5 4 Saarijärvi 721 4930
2 9 4 Joutsa 194 2069
2 13 4 Kinnula 129 927
2 17 4 Korpilahti 239 2144
2 21 4 Leivonmäki 61 573
2 25 4 Petäjävesi 262 1737
2 29 4 Säynätsalo 166 1615

Sampling rates: Stratum 1 = 0.25. Stratum 2 = 0.25

TLFeBOOK



Systematic Sampling and Intra-class Correlation 43

weights are constants or, as here, the weight equals WGHT = 4 as under simple
random sampling. The sampling rate is given for each stratum separately, but
even then it is the same figure, 0.25.

The estimation results under implicit stratification are displayed in Table 2.6 in
addition to the values of the corresponding parameters. The point estimates t̂, r̂
and m̂ are equal to those obtained under an SRSWOR design, but the variance
estimates differ. Here, the variance estimator v̂2.str(t̂) is used. The deff estimates for
the total and the median are considerably smaller than one. Thus the use of implicit
stratification in variance approximation under systematic sampling makes these
estimates more precise when compared to variance estimators calculated under
simple random sampling without replacement. The deff estimate of the ratio,
however, is greater than one, indicating that no gain was reached from implicit
stratification.

Let us consider more closely the variance approximations for the total t̂.
The point estimate for the total T of course remains the same under all the
approximations and is t̂ = 23 580. There are two variance estimators under the
stratification assumption: the one (v̂2.str) based on implicit stratification and
the other, v̂2.sys, based on successive differences. Put together, the following
approximate variance estimates are obtained:

v̂1.sys(t̂)
.= N2

(
1 − n

N

)
ŝ2/n = 13 5492 deff = 1.00

v̂2.sys(t̂)
.= N2

(
1 − n

N

)
(1/n)

n∑
i=2

a2
i /2(n − 1) = 13 2202 deff = 0.95

v̂2.str(t̂)
.=

2∑
h=1

v̂(t̂h) = 11 8022 deff = 0.76

v̂3.sys(t̂)
.= N2

(
1 − n

N

)
(ŝ2/n)[1 + 2/ log(ρ̂q) + 2/(ρ̂−1

q − 1)] = 82242

deff = 0.35

v̂4.sys(t̂) = v̂5.sys(t̂)
.= N2

(
1 − n

N

) m∑
l=1

(yl − y)2/m(m − 1) = 12 9592

deff = 0.87.

Table 2.6 Estimates from a systematic sample drawn from the Province’91 population
using implicit stratification.

Statistic Variables Parameter Estimate s.e c.v deff

Total UE91 15 098 23 580 11 802 0.50 0.76
Ratio (%) UE91, LAB91 12.65% 12.34% 0.33% 0.03 1.29
Median UE91 229 198 27 0.14 0.21
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Of the approximate variance estimates, the value of v̂1.sys, being based on an
assumption of SRSWOR, is the largest. The others fall more or less below it.
This could indicate that, in this case, systematic sampling is more efficient than
simple random sampling. The most efficient approximation method turns out
to be autocorrelative modelling, which gave the value deff = 0.35. This model
is based on the assumption of an autocorrelated superpopulation, of which the
fixed population constitutes one realization. The design effect turns out to be
DEFF = 0.55, confirming the result.

The results on variance estimation can be evaluated by studying the properties
of the intra-class correlation coefficient ρint, which is the single design parameter
under systematic sampling, and the efficiency of this sampling scheme. Moreover,
it is illustrated how the sorting order in the frame register is related to the value of
the intra-class correlation coefficient.

Intra-class Correlation

Systematic sampling is our first example of a design where a design parameter
exists. This parameter, called the intra-class correlation coefficient ρint, will be
included in the design variance Vsys of an estimator. The magnitude of the
intra-class correlation, and consequently its effect on variance estimates, depends
partly on the selected sampling interval and partly on whether there is a successive
system of ordering the study variable’s values in the population frame. Under
systematic sampling, the design variance of t̂ was given in (2.13) as Vsys(t̂) =
N2

q∑
j=1

(Yj − Y)2/q. The design variance can also be written as

Vsys(t̂) =
q∑

j=1

(NYj − NY)2/(N/n) = N ×
q∑

j=1

n × (Yj − Y)2. (2.19)

Let us analyse the design variance (2.19) in more detail. First we decompose
population variance into the variation between the systematic samples and the
variation within the systematic samples, as in standard one-way analysis of
variance. In ANOVA terms, we have

SST = SSW + SSB, (2.20)

where SST represents the total sum of squares, SSW the within sum of squares
and SSB the between sum of squares. The decomposition (2.20) can be written as

N∑
k=1

(Yk − Y)2 =
q∑

j=1

n∑
k=1

(Yjk − Yj)
2 +

q∑
j=1

n(Yj − Y)2. (2.21)

Thus, an alternative form for design variance is Vsys(t̂) = N × SSB.
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By using the decomposition of the total sum of squares (2.20), the intra-class
correlation is defined as

ρint = 1 − n
n − 1

× SSW
SST

. (2.22)

If the variance between the means is zero, or SSB = 0, then the intra-class cor-
relation reaches its minimum −1/(n − 1) and, correspondingly, where SSW = 0
it reaches its maximum, or ρint = 1.

Further, we can write the variance of the total estimator in the form

Vsys(t̂) = N2
(

1 − n
N

) S2

n
[1 + (n − 1)ρint], (2.23)

or alternatively as the product of the SRSWOR design variance times a correction
factor including the intra-class correlation coefficient as a correction factor

Vsys(t̂) = Vsrs(t̂) × [1 + (n − 1)ρint].

Hence, the design effect is

DEFFsys(t̂) = Vsys(t̂)

Vsrs(t̂)
.= 1 + (n − 1)ρint. (2.24)

Systematic sampling compared with simple random sampling with replacement is

1. more efficient, if −1/(n − 1) < ρint < 0,
2. equally efficient, if ρint = 0, or
3. less efficient, if 0 < ρint < 1.

This can be interpreted to mean that the more heterogeneous the sampling
intervals (i.e. negative intra-class correlation), the more efficient systematic
sampling will be. Therefore, in systematic sampling there is a connection between
the design parameter ρint and the sorting order of the frame population, a fact that
can be successfully utilized in practice.

Example 2.4

Intra-class correlation (ρint) in the Province’91 population. We will now calculate
the intra-class correlation under systematic sampling from the Province’91 pop-
ulation, where the total of UE91 is to be estimated. The intra-class correlation is
calculated for systematic sampling involving a single systematic sample of eight
(8) elements. The decomposition of the total sum of squares (2.21) is given in
Table 2.7.

Hence, the intra-class correlation coefficient is

ρint = 1 − n
n − 1

SSW
SST

= 1 − 8
8 − 1

× 162.14 × 105

171.32 × 105
= −0.082.
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Table 2.7 Population ANOVA Table; Systematic sampling q = 4 and n = 8.

Source of variation df Sum of squares MSE

Between samples 3 SSB = 9.18 × 105 MSB = 3.06 × 105

Within samples 28 SSW = 162.14 × 105 MSW = 5.79 × 105

Total 31 SST = 171.32 × 105 S2 = 5.53 × 105 = 7432

Because the intra-class correlation is negative, systematic sampling will be more
efficient in this case than simple random sampling without replacement. Thus,
the design effect is

DEFFsys(t̂)
.= 1 + (n − 1)ρint = 1 + (8 − 1) × (−0.082) = 0.426,

which shows that systematic sampling is very efficient in this case.
Next, we examine in more detail the efficiency of systematic sampling under

different model assumptions or assumptions on the sort order of the popula-
tion, considered earlier for a given sample. We now use the corresponding
design variances.

Example 2.5

Implicit stratification and DEFF. In the Province’91 population, the urban munic-
ipalities in the province occur first, followed by the rural municipalities, both in
alphabetic order. Thus, the order of the list involves two implicit strata. In the first
stratum, there are the urban municipalities, which are relatively large in terms of
population and, thus, also in terms of the number of unemployed. Consequently,
there will be a slightly declining trend with the order of ID numbers. The cor-
responding scatterplot (Figure 2.4) shows the dependence of the study variable
UE91 on the sort order of the elements in the population.

The dependence of the values of UE91 on the list order has certain implications
for selecting a proper variance estimator.

1. The dispersion figure clearly shows that the successive order is not random,
and thus it is not fair to consider this sample as a simple random sample. We found
this out earlier when calculating DEFFsys(t̂) = 0.554 < 1. Thus, the SRSWOR
design variance Vsrs(= 72832) would distinctly overestimate the design variance
Vsys(= 54202).

2. The population is ordered successively by stratum in the register. The
following stratum sizes and means of UE91 can be calculated for the implicit strata:

Stratum ID Size Mean

1. Urban 1–7 7 1146
2. Rural 8–32 25 283
Whole population 1–32 32 472
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Figure 2.4 Plot of UE91 versus sequence number (ID) for the Province’91 population.
Implicit stratification to two strata is indicated.

Systematic sampling reveals these implicit strata and draws a sample that
corresponds to a proportionally stratified sample (STR). If the stratum weights are
known, the sample can be analysed as a poststratified sample, as considered in
Section 3.3.

The design effect under stratified sampling would be

DEFFsys,str(t̂) = 62512/72832 = 0.737,

hence this stratification makes estimation efficient. Hence, this approximation
also overestimates the true design variance.

3. A linear trend exists between the study variable and identification number
that can be modelled by a simple linear regression

Yk = 1070.72 − 36.30 × IDk.

The squared multiple correlation coefficient for this model is R2 = 0.21. Using
this regression model as auxiliary information in the actual estimation, we could
use regression estimation (see Section 3.3). For example, the design effect under
regression estimation would be

DEFFsrs,reg(y)
.= 1 − R2 = 1 − 0.21 = 0.79,

which falls in the interval 0.554 < 0.79 < 1, where 0.554 is the exact DEFF for t̂
under systematic sampling.
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4. The listing order of the municipalities also includes autocorrelative depen-
dence between the successive municipalities. Using the sampling interval q = 4
as the lag, the coefficient of autocorrelation turns out to be ρ4 = 0.09085, so that
the design effect under this autocorrelation would be

DEFFsrs,autocor(y)
.= 44052/72832 = 0.366,

which is very close to the exact design effect 0.426 under systematic sampling.
In the case of an autocorrelated situation, the only disadvantage appears if the
frame population contains harmonic variation with a period corresponding to the
sampling interval. This was not the situation here.

5. Pre-sorting of the register and efficiency of systematic sampling. Frame reg-
isters are usually presented as computer databases that can be sorted by desired
variables. A sorting procedure affects the contents of the sampling intervals, but is
not so damaging to the efficiency of estimation as might be expected. For example,
the Province’91 population was sorted by the number of unemployed in decreasing
order in order to achieve a monotonic trend. Further, the internal order of the
sampling intervals was alternated so that the number of unemployed was decreas-
ing in every second sampling interval and increasing at every other interval. In
this way, we achieved an optimal order of the frame population with respect to
systematic sampling. The corresponding design variance is Vsys,opt(t̂) = 23482 and
DEFF = 0.104, which indicates that the advantage of sorting is substantial in this
case. Nonetheless, sorting to achieve certain implicit stratification is often used in
large-scale surveys.

Summary

Systematic sampling is easy to accomplish from a computerized frame register
and therefore it is very commonly used in practice. The problem, however, is
the estimation of the design variance of an estimator under systematic sampling.
One solution is to use auxiliary information already available in the frame
population. If reasonable, it can be assumed that the population elements are in
completely random order in the register and then the estimators under simple
random sampling can be used. However, if certain structures such as implicit
stratification, trend or periodicity of the study variable is present in the register, it is
more efficient to use this information in the estimation, by using the corresponding
approximative variance estimator. In our case, the estimates obtained using these
approximative estimators were closer to the exact design variance than those
produced by the estimator from SRSWOR, because a certain structure was
present in the population. Particularly when working with a large systematic
sample, it is worth trying out techniques based on the reuse of the selected sample,
leading to other approximative variance estimators. Wolter (1985) offers a more
comprehensive study of variance estimation under systematic sampling; he points
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out that it is worthwhile to try alternative variance estimators in order to select
the most appropriate for the situation at hand.

We have dealt rather broadly with systematic sampling because of its popularity
in practice, and because it involves an interesting design parameter, i.e. intra-class
correlation. The design parameter is not essential as such, but has a particular
effect on variance estimation, and thus on the specification of sampling error,
confidence limits and sizes of tests. Consequently, the main lines of approximative
variance estimation were provided and supplemented by an excursion to model-
assisted estimation.

2.5 SELECTION WITH PROBABILITY PROPORTIONAL
TO SIZE

Situations can be met where the population contains a number of elements that
have an extremely large value for the study variable. This is often the case in
business surveys. A suitable sampling technique in such a case, especially for the
estimation of a total, is one in which the inclusion probability depends on the
size of the population element. Reduction in variance can then be expected if the
size measure and the study variable are closely related. Because this sampling
technique is based on inclusion probabilities proportional to relative sizes of the
population elements, it is called sampling with probability proportional to size (PPS).

In PPS sampling, inclusion probabilities will vary according to the relative
sizes of the elements. The size of a population element is measured by an
auxiliary positive-valued variable z. It is assumed that the value Zk of the auxiliary
variable is known for each population element k, since the relative size equals
the quotient pk = Zk/Tz, where Tz is the population total of the auxiliary variable
or more precisely Tz =∑N

k=1 Zk. Commonly used size measures are variables that
physically measure the size of a population element. In business surveys, for
example, the number of employees in a business firm is a convenient measure of
size, and in a school survey the total number of pupils in a school is also a good
size measure.

The auxiliary variable z is selected such that its own variability resembles that
of the study variable y. More precisely, a size measure z is sought whose ratio to
the value of the study variable is, as close as possible, a constant. This is because
the efficiency under PPS depends on the extent that the ratio Yk/Zk remains a
constant C, for all the population elements. If the ratio remains nearly a constant,
then the design variance of an estimator will be small.

In PPS sampling, the inclusion probabilities πk are proportional to the relative
sizes pk = Zk/Tz of the elements, and the individual weighting of the sampled
elements is based on the inverse values of these relative sizes. It is possible
to draw a PPS sample either without or with replacement. Calculation of the
inclusion probabilities is easier to manage under with-replacement-type sampling.
Obtaining these probabilities can be complicated in without-replacement-type
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PPS sampling because when the first element is sampled, the relative size of
the remaining (N − 1) elements is changed and then new inclusion probabilities
should be calculated. Various techniques have been developed to overcome this
difficulty, and PPS sampling can be very efficient, especially for the estimation of
the total, if a good size measure is available.

Sample Selection

A number of sampling schemes have been proposed for selecting a sample with
probability proportional to size. The starting point is knowledge of the values
of the auxiliary variable z for each population element so that probabilities of
selection can be calculated. The inclusion probability πk for a population element k
is proportional to the relative size Zk/Tz. For example, in the trivial case of simple
random sampling with replacement, the relative sizes are pk = 1/N for each k.
The quantity 1/N is also called the single-draw selection probability of a population
element k. The inclusion probability of an element for a sample of size n would be
πk = n × pk = n/N. But in PPS sampling, the inclusion probabilities πk vary and,
thus, it is not an equal-probability sampling design in contrast to simple random
sampling and systematic sampling.

In practice, the selection of a PPS sample can be based on the relative sizes of the
population elements or, alternatively, on the cumulative sum of size measures.
The cumulative total for the kth element is

Gk =
k∑

j=1

Zj, k = 1, . . . , N, GN = Tz.

The natural numbers [1, G1] are associated with the first population element,
and the numbers [G1 + 1, G2] with the second element; generally, the kth ele-
ment receives the numbers belonging to the interval [Gk−1 + 1, Gk]. The sample
selection process is based on these figures.

We consider five specific selection schemes for PPS sampling. These are Poisson
sampling, which resembles Bernoulli sampling, the cumulative total method with
replacement or without replacement, systematic sampling with unequal probabilities
and the Rao–Hartley–Cochran method (RHC method; Rao et al. 1962). Of these,
the cumulative total method with replacement and systematic sampling with
unequal probabilities are considered in more detail. In the examples, the variable
HOU85 measures the size of a population element. It is register-based and gives
the number of households in each population municipality.

Poisson sampling This sampling scheme uses a list-sequential selection proce-
dure. First the inclusion probabilities πk = n × Zk/Tz are calculated. Then, let
ε1, . . . , εk, . . . , εN be independent random numbers drawn from the uniform (0,1)
distribution. If εk < πk, then the element k is selected. This procedure is applied to
all population elements k = 1, . . . , N, in turn.
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Obviously, under Poisson sampling, the sample size is not fixed in advance but is
a random variable. The expectation of the sample size is E(ns) =∑N

k=1 πk. Poisson
sampling is sometimes used in business surveys for sample coordination purposes
(see Ohlsson, 1998).

PPS sampling with replacement (PPSWR) Sample selection with replacement
has its own value in the evaluation of the statistical properties of estimators,
since the corresponding design variance formulae are tractable. PPS sampling
with replacement is rather like simple random sampling with replacement. The
difference between these two methods is due to the way that selection numbers
are assigned to population elements. In simple random sampling, a single number
from the set of natural numbers 1, . . . , k, . . . , N is assigned to a population
element. In PPS sampling, on the other hand, a corresponding interval from
the set of numbers 1, . . . , Gk, . . . , GN is assigned to an element, where Gk are
cumulative totals.

PPS sampling with replacement is performed by first producing a single random
number from the interval [1, GN]. This number is then compared to the numbers
associated with the population elements. An element whose selection interval
includes this random number will be drawn. The single-draw selection probability
of an element is thus pk = Zk/Tz. The procedure is repeated until the desired
number n of draws are completed. Over all the draws, the inclusion probability
of element k in the sample is πk = n × pk. It should be noted that under with-
replacement sampling the same population element may be selected several times.
This is especially true for those population elements whose size is large, because
their selection probabilities will also be large.

PPS sampling without replacement (PPSWOR) When selecting without replace-
ment, a new problem arises concerning the computation of inclusion probabilities.
With the selection of the first element, the single-draw probability is exactly
πk = pk = Zk/Tz. When the first sample element has been selected, the single-
draw selection probability changes because the total Tz of the remaining N − 1
elements in the population decreases. Particularly for large samples, the cal-
culation of inclusion probabilities becomes tedious. For this reason, numerous
alternative without-replacement sample selection techniques have been devel-
oped to overcome this difficulty. For example, the population can be divided into
a number of non-overlapping subpopulations or strata. Then, two elements are
drawn without replacement from each stratum, as in the methods by Brewer
(1963) and Murthy (1957). Alternatively, more than two units can be drawn from
each stratum, as in Sampford’s method (1967). We will discuss in greater detail
two methods that enable the selection of a PPS sample of size two or more elements
without replacement.

Systematic PPS sampling (PPSSYS) This method is the easiest to operate under
without-replacement-type selection with probability proportional to size. In this

TLFeBOOK



52 Basic Sampling Techniques

method, the properties of systematic sampling and sampling proportional to size
are combined into a single sampling scheme. In ordinary systematic sampling,
the sampling interval is determined by the quotient q = N/n. In systematic PPS
sampling, the sampling interval is given by q = Tz/n. As in the ordinary one-
random-start systematic sampling, we first select a random number from the
closed interval [1, q]. Let it be q0. The n selection numbers for inclusion in the
sample are hence

q0, q0 + q, q0 + 2q, q0 + 3q, . . . , q0 + (n − 1)q.

The population element identified for the sample from each selection is the first
unit in the list for which the cumulative size Gk is greater than or equal to the
selection number. Given this method, the inclusion probability of the kth element
in the sample is again πk = n × pk.

PPS under the Rao–Hartley–Cochran method (RHC method) The population is
first divided into n subpopulations N1, N2, . . . , Ng, . . . , Nn using the size measure
z so that in subpopulation g the sum Tg of the size measure will be close to Tz/n.
There can be varying numbers of elements in the subgroups. Next, one element is
drawn from each subpopulation with selection probabilities proportional to size
so that for an element k the selection probability is pk = Zk/Tg. The RHC method
is easily managed and suitable for various PPS sampling situations.

Estimation

Estimation should be considered separately under the with-replacement and
without-replacement options. Under with-replacement sampling, the single-draw
selection probability of an element remains constant (i.e. equal to the relative size
pk of the element). But under without-replacement sampling, the selection prob-
abilities of the remaining population elements change after each draw and this
causes difficulties, especially in variance estimation. To introduce the basic prin-
ciples of estimation under PPS sampling, we shall consider the with-replacement
case only. And as an approximation, PPSSYS, which will be extensively used in
the examples, is also simplified to the with-replacement case.

To construct the estimators, the relative size pk of population element k is
required; using the size measure Zk the relative size is

pk = Zk∑N
k=1 Zk

= Zk

Tz
.

The quantity pk is also the single-draw selection probability for the kth element.
The inclusion probability πk of the element k in an n-element sample is, in turn,
written as

πk = n × pk = n × Zk

Tz
.
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The inclusion probabilities should fulfil the requirement πk ≤ 1. In the trivial
case of n = 1, this holds true for each population element. When n > 1 and some
population values Zk are exceptionally large, the inclusion probabilities for some of
these elements may be greater than one, n × Zk/

∑N
k=1 Zk > 1. This conflict can be

encountered in practice but fortunately it is solvable. One possibility is to set πk = 1
for all those values of k for which nZk >

∑N
k=1 Zk, i.e. to take these elements with

certainty. In practice, single-element strata are formed from these elements. For
the remaining elements, πk is set proportional to the size measure. For example,
if only one of the population elements, say the element k′, is overly large in
this sense, set πk′ = 1, and the inclusion probabilities of the N − 1 remaining
population elements are

πk = (n − 1)
Zk∑N

k=1 Zk − Zk′
, k �= k′,

which assures that the condition πk ≤ 1 holds. An application of this is shown in
Example 2.8.

The two well-known estimators of the total for PPS samples, namely the
Horvitz–Thompson or the HT estimator, and the Hansen–Hurwitz or the HH
estimator, are essentially based on these probability quantities. Let us derive these
estimators of the total T. Under PPS sampling without replacement, an unbiased
HT estimator of T (Horvitz and Thompson, 1952) is given by

t̂HT =
n∑

k=1

yk

πk
, (2.25)

where πk denotes the inclusion probability. For a with-replacement PPS scheme
the corresponding HH estimator (Hansen and Hurwitz, 1943) is given by

t̂HH = 1
n

n∑
k=1

yk

pk
= 1

n
(t̂1 + · · · + t̂k + · · · + t̂n), (2.26)

where each t̂k = yk/pk estimates the total T. An estimator r̂ of the ratio R can be
derived as a ratio of two HT estimators, or as a ratio of two HH estimators. Further,
in the estimation of the median M, the empirical cumulative distribution function
is constructed with the inverse inclusion probabilities 1/πk as the element weights.

The with-replacement assumption also simplifies the estimation of the design
variances. For the estimator t̂HH of the total, the design variance under PPS with
replacement is

Vppswr(t̂HH) = N2

n

N∑
k=1

pk

(
Yk

Npk
− Y
)2

= 1
n

N∑
k=1

pk(Tk − T)2, (2.27)
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where Tk = Yk/pk. From (2.27) it can be inferred that if Yk is strictly proportional
to Zk such that Yk/Zk = C holds for each k, then the design variance would be
zero—an ideal case rarely met in practice. An unbiased estimator of the variance
is given by

v̂ppswr(t̂HH) = N2

n(n − 1)

n∑
k=1

(
yk

Npk
− y
)2

= 1
n(n − 1)

n∑
k=1

(t̂k − t̂HH)2 (2.28)

where Y and y are the population mean and sample mean of the study variable y,
respectively.

We use this variance estimator as an approximation under systematic PPS
sampling. Approximative variance estimators can also be derived for the without-
replacement case and for the Rao–Hartley–Cochran method, but we omit the
details here and refer the reader to Wolter (1985).

Example 2.6

Estimation under systematic PPS sampling. A sample of eight (n = 8) municipali-
ties is drawn with PPSSYS from the Province’91 population such that the number
of households HOU85 is used as the size measure z. The cumulative sum over
the population is Tz = 91 753, and under PPSSYS the sampling interval would be
q = 91 753/8 = 11 469.

The largest single element ‘Jyväskylä’ has the value 26 881 for the variable
HOU85, which is more than twice the sampling interval. Therefore, the element
‘Jyväskylä’ would be drawn twice, and the remaining 6 elements would be drawn
from the remaining population elements (31). Such a situation is commonly
managed in the following way. An element that has a size measure larger than
the selection interval is drawn with certainty (but only once). For such a certainty
element, the weight and the inclusion probability are one by definition. In this
case, therefore, we first put ‘Jyväskylä’ in the first stratum and take it with
certainty, and then draw 7 elements from the remaining 31 population elements
from the second stratum by systematic PPS sampling. This results in the following
sample of eight (n = 8) municipalities. Note that the sample is sorted by the size
measure HOU85 in Table 2.8.

It is important for the estimation under a systematic PPS design to construct a
proper weight variable. For a population element k, the weight wk is calculated
using the formula

wk = 1
pk × n

= 91 753/(Zk × n),

where Zk is the value of HOU85 for element k. However, in this case ‘Jyväskylä’ is
an element drawn with certainty, whose weight gets the value one. The element
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Table 2.8 A systematic PPS sample (n = 8) from the Province’91 population.

Sample design identifiers
Element Size measure

Study variables

STR CLU WGHT LABEL HOU85 UE91 LAB91

1 1 1.000 Jyväskylä 26 881 4123 33 786
2 10 1.004 Jyväsk.mlk. 9230 1623 13 727
2 4 1.893 Keuruu 4896 760 5919
2 7 2.173 Äänekoski 4264 767 5823
2 32 2.971 Viitasaari 3119 568 4011
2 26 4.762 Pihtipudas 1946 331 2543
2 18 6.335 Kuhmoinen 1463 187 1448
2 13 13.730 Kinnula 675 129 927

Sampling rate: (not used here)

weights of the remaining seven municipalities in stratum two are calculated by

wk = 1
pk × n

= (91 753 − 26 881)/(Zk × 7).

In the estimation, the other required design identifiers are the stratum identifier
STR, which is one for the certainty element and two for the remaining elements.
The element identifier is used for CLU, because each element is taken to be a
separate cluster. In addition, the finite-population correction

(
1 −∑n

k=1 pk
)

could
also be used to make sampling resemble the without-replacement type. The
estimates in Table 2.9 are produced for the total t̂HT , ratio r̂HT and median m̂HT of
UE91. For comparison, the values of the corresponding parameters T, R and M are
also displayed.

As expected, PPSSYS is very efficient for the estimation of the total. The design-
effect estimate for t̂HT is close to zero (deff = 0.004). This results from the strong
linear correlation of the size measure HOU85 and the study variable UE91, and is
also due to the linearity of the estimator itself. For the estimator r̂HT of the ratio,
which is a nonlinear estimator, PPSSYS is still quite efficient but much less so,
however, than for the total. And for the robust estimator m̂HT for the median, the
design is slightly more efficient than simple random sampling. This is in part caused

Table 2.9 Estimates under a PPSSYS design (n = 8); the Province’91 population.

Statistic Variables Parameter Estimate s.e c.v deff

Total UE91 15 098 15 077 521 0.03 0.0035
Ratio (%) UE91, LAB91 12.65% 12.85% 0.2% 0.02 0.1854
Median UE91 229 134 188 1.401 0.92
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by the property of PPS sampling that the larger elements tend to be drawn, and
these represent the margin rather than the middle part of the distribution of UE91.

Efficiency of PPS Sampling

We discuss the efficiency of PPS sampling in more detail for the estimation of the
total T. It can be shown that the PPS design variance Vpps(t̂HT) of the estimator t̂HT

is related to the finite-population regression

Yk = A + BZk + Ek

of the size measure z and the study variable y where Ek, k = 1, . . . , N, is the
residual term.

The relationship between the residual sum of squares and the population
variance is given by

1
N − 1

×
N∑

k=1

(Yk − A − BZk)
2 ≈ S2(1 − ρ2

yz),

where S2 is the population variance of y and ρ2
yz is the squared correlation

coefficient of the variables y and z. The residual variation is small if the correlation
is close to ±1. Actually, this variance coincides with that considered later under
regression estimation. The efficiency of PPS sampling should thus be examined
under the above regression model, but strong correlation ρyz alone does not
guarantee efficient estimation, as will become evident.

A simple condition for the efficiency of PPS sampling can be looked for by
comparing the variances of the total estimators from SRSWR and PPSWR. It can
been shown that

Vsrswr(t̂) − Vppswr(t̂HT) = N2Cov(z, y2/z)/n.

Thus, PPS sampling is more efficient than SRS if the correlation of the variable
pair (z, y2/z) is positive. On the other hand, it was previously noted that most
efficient PPS sampling occurs if the ratio Yk/Zk is a constant, say C for each
population element. Then the design variance Vppswr(t̂HT) attains its minimum,
zero. If we insert C = Yk/Zk in the previous covariance term, it is noted that
Cov(z, y2/z) reduces to the covariance of z and y. Thus, the correlation of z and
y2/z is equal to that of the original variables z and y in this case. We conclude that
a necessary condition of PPS sampling being more efficient than SRSWR is that
the study variable y and the auxiliary variable z are positively correlated in the
population. But for a sufficient condition, the ratio Yk/Zk should remain constant
over the population. These two conditions will be examined more closely in the
next example.
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Example 2.7

Efficiency of PPS sampling in the Province’91 population. To evaluate the efficiency
of PPS sampling two conditions should be examined. These are the stability of the
ratio Yk/Zk across the population and the regression fit Ŷk = 26.657 + 0.155 × Zk,
which, for good efficiency, should intercept the y-axis near the origin. For these
purposes, two scatterplots from the Province’91 population are displayed and
appropriate coefficients are calculated.

The variation of the ratio Yk/Zk in the population is displayed in Figure 2.5.
PPS sampling is efficient if the ratio is close to a constant over the population,
as is the case here. It can be seen that the towns in the leftmost part (ID ≤ 7)

are the largest, and especially among these, the ratio Yk/Zk is nearly a constant.
Under PPS sampling the largest elements tend to be drawn, which means efficient
estimation of the total. The same property also holds for the ratio Yk/Xk if the ratio
Yk/Zk and the ratio Xk/Zk are constants.

The correlation of y and z is ρyz = 0.997 (see Figure 2.6). Strong correlation,
however, is not sufficient for efficient estimation in a PPS sample. Let us consider the
extreme case where this correlation is perfect, i.e. the regression Yk = A + B × Zk

holds exactly. Using the usual interpretation of regression coefficients, it can be
shown that if A is large, i.e. the regression line intercepts the y-axis far from the
origin, then SRSWR is more efficient than PPS. In the Province’91 population,
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Figure 2.5 Scatterplot of the ratio UE91/HOU85 against sequence number (ID); the
Province’91 population.
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Figure 2.6 Scatterplot of UE91 against HOU85; the Province’91 population.

the number of households HOU85 explains 99% of the variation in the number of
unemployed UE91 and, moreover, the coefficient A is approximately zero, as can
be seen from Figure 2.6.

Summary

Sampling with PPS provides a practical technique when sampling from popula-
tions with large variation in the values of the study variable, and often gives a
considerable gain in efficiency. The efficiency of PPS sampling depends upon two
things. First, efficiency varies considerably according to the type of parameter to
be estimated; here these were the total, the ratio and the median. The estimation
of the total appeared to be the most efficient. Under PPS sampling an auxiliary
size measure (z) must be available and for efficient estimation the size measure
should be strongly related to the study variable y. A condition for this is that the
variable pair (z, y2/z) is positively correlated. In the Province’91 population this
condition was satisfied, but this alone cannot guarantee efficient estimation. The
ratio Yk/Zk must also remain constant over the population. Because this condition
was satisfied in the Province’91 population, PPS provided efficient estimation of
the total. The reader who is more interested in PPS sampling is recommended to
consult books by Brewer and Hanif (1983) or Hedayat and Sinha (1991, Chapter 5).
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Further Use of Auxiliary
Information

Auxiliary information recorded from the population elements can be successfully
used to design a manageable and efficient sampling design and, after sample
selection, to further improve the efficiency of estimators. We previously employed
auxiliary information in systematic sampling (SYS) to select an appropriate vari-
ance estimator under various assumptions about the listing order of the population
frame. In probability proportional sampling (PPS), auxiliary information was used
in the sampling phase; an appropriate choice of an auxiliary size measure tended
to considerably improve efficiency. In Sections 3.1 and 3.2, auxiliary information
will be used for stratified sampling (STR) and cluster sampling (CLU). In both these
techniques, auxiliary information is used to design the sampling scheme; under
stratified sampling, the primary goal is to improve the efficiency, whilst in cluster
sampling, the practical aspects of sampling and data collection are the main
motivation for the use of auxiliary information.

Auxiliary information can be used to improve the efficiency of estimation
under the sample already drawn, independent of the sampling design used. A
categorical auxiliary variable could be used for poststratification, i.e. stratification
of the sample after selection. If a continuous auxiliary variable is available that is
strongly correlated with the study variable, it is possible to improve the efficiency
by using ratio estimation or regression estimation. In these methods, auxiliary
information is incorporated into the estimation procedure using statistical models.
These model-assisted techniques are introduced in Section 3.3. The use of these
techniques can considerably improve the accuracy of estimates, i.e. produce
estimates that are close to the corresponding population values and, in addition,
decrease the design variances of the estimators. This is demonstrated in the web
extension of the book.

Auxiliary Information in Stratified Sampling

In stratified sampling, the target population is divided into non-overlapping sub-
populations called strata. These are conceptually regarded as separate populations

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84769-7
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in which sampling can be performed independently. To carry out stratification,
appropriate auxiliary information is required in the sampling frame. Regional,
demographic and socioeconomic variables are often used as the stratifying aux-
iliary variables. The efficiency can benefit from stratification, because the strata
are usually formed such that similar population elements, with respect to the
expected variation in the values of the study variable, are collected together within
a stratum. Hence, the within-stratum variation is small.

Information for the stratification can sometimes be inherent in the population.
For example, strata are clearly identified if a country is divided into regional
administrative areas that are non-overlapping. Separate sampling from each
area guarantees the proper representation of different parts of the country in
the sample. Auxiliary information of such an administrative type can be used in
designing the sampling. Stratification can also be used in estimation for population
subgroups or domains of interest. Important domains are then defined as separate
strata, which allows the allocation of a desired sample size for each of them (see
Chapter 6). Moreover, for example, regional comparisons or comparisons between
the strata can also be conducted. Thus, in addition to functioning as a tool for
creating internally homogeneous subpopulations, stratification can also serve as
a classifying variable in the estimation and testing procedures.

Auxiliary Information in Cluster Sampling

Instead of drawing the sample directly from the element population, in cluster
sampling a sample is drawn from the population of naturally occurring subgroups
called clusters. Subgroups often used in practice are, for example, clusters of
employees in establishments, clusters of pupils in schools and clusters of people in
households. For sampling purposes, a frame of the population clusters is needed;
however, it is not necessary to have a complete frame covering all the population
elements, but only those elements from the sampled clusters. Recognizing the
structure of the population reveals the existence of the primary sampling units.
Educational surveys in which the primary sampling unit is usually a school, and a
sample of schools is first drawn from a register of schools, are good examples of the
use of such a structure. Moreover, the population clusters can be stratified before
sample selection. Auxiliary information in cluster sampling therefore concerns not
only the grouping of the population elements into clusters but also the properties
of the clusters needed if stratification is desired.

In forming clusters of population elements, groups of elements are collected
together, which often tend to be cluster-wise similar in the various respects
relevant to the survey. This intra-cluster homogeneity tends to decrease the
efficiency of estimation. However, cluster sampling can be cost-effective due
to reduced fieldwork costs. Intra-cluster homogeneity involves a certain design
parameter called intra-cluster correlation. There are two main approaches that
take proper account of the intra-cluster correlation necessary for valid estimation.
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Firstly, intra-cluster correlation can be taken as a nuisance effect in the estimation,
with the aim being to remove this disturbance effect from the estimation and testing
results. Alternatively, the clustering can be regarded as a structural phenomenon
of the population to be modelled. The population is thus seen as having a
hierarchical or multi-level structure. In educational surveys, for example, the first
level of the structure contains the schools, the second the teaching groups, and the
third or lowest level the pupils. Pupils’ measured achievements are conditioned
by this hierarchical structure. Modelling methods using the multi-level structure
share this approach and also presuppose that the corresponding information
exists in the data set. The nuisance approach and the multi-level approach are
discussed in Chapter 8 and in Section 9.4, respectively.

Auxiliary Information in the Estimation Phase

Auxiliary information can be used to improve the efficiency of a given sample,
by using model-assisted estimation techniques discussed in Section 3.3. In model-
assisted estimation, the auxiliary data are incorporated in estimation by using
statistical models. In poststratification, a linear analysis of variance or ANOVA
model is assumed, and the auxiliary data consists of population cell and marginal
frequencies of one or several categorical variables. Ratio estimation uses a linear
regression model where the intercept is excluded, and the auxiliary data consists
of the population totals of one or several continuous variables, which can come
from a source such as official statistics. In regression estimation, a standard linear
regression model is used to incorporate the auxiliary data in the estimation pro-
cedure. The methods are special cases of generalized regression (GREG) estimators.
In all these methods, estimation can be more effective than that from just simple
random sampling (SRS) if there is a relation between the study variable and
auxiliary variable, such as a strong correlation.

3.1 STRATIFIED SAMPLING

Stratification of the population into non-overlapping subpopulations is another
popular technique where auxiliary information can be used to improve efficiency.
Such auxiliary information is often available in registers or databases that provide
sampling frames. Typical variables used in stratification are regional (e.g. county),
demographic (sex, age group) and socioeconomic (e.g. income group) variables
gathered in a census. To fully benefit from the gains in efficiency of stratified
sampling, it is important not only to be careful when selecting stratification
variables but also to appropriately allocate the total sample to the strata.

There are several reasons for the popularity of stratified sampling:

1. For administrative reasons, many frame populations are readily divided into
natural subpopulations that can be used in stratification.
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2. Stratification allows for flexible stratum-wise use of auxiliary information for
both sampling and estimation.

3. Stratification can enhance the precision of estimates if each stratum is homo-
geneous.

4. Stratification can guarantee representation of small subpopulations or domains
in the sample if desired.

Estimation and Design Effect

In stratified sampling, auxiliary information is used to divide the population into
H non-overlapping subpopulations of size N1, N2, . . . , Nh, . . . , NH elements such
that their sum is equal to N. A sample is selected independently from each stratum,
where the stratum sample sizes are n1, . . . , nh, . . . , nH elements respectively. In
stratified sampling, the estimators are usually weighted sums of individual stratum
estimators where the weights are stratum weights Wh = Nh/N. The strata can
thus be regarded as mutually independent subpopulations. An estimator t̂ for a
population total T, is given by

t̂ = N
H∑

h=1

Whyh =
H∑

h=1

t̂h = t̂1 + · · · + t̂h + · · · + t̂H, (3.1)

where t̂h = Nhyh is the total estimator in stratum h and yh =∑nh
k=1 yk/nh. If all

the stratum totals are unbiased estimates, then the estimator of the population
total is also unbiased. Because the samples are drawn independently from each
stratum, the design variance Vstr(t̂str) of t̂ is simply the sum of stratum variances
V(t̂h). For example, if simple random sampling without replacement is used in
each stratum, the design variance of the estimator t̂ is

Vstr(t̂) =
H∑

h=1

Vsrs(t̂h), (3.2)

whose unbiased estimator is correspondingly

v̂str(t̂) =
H∑

h=1

v̂srs(t̂h). (3.3)

The design effect (DEFF) of t̂ depends heavily on the proportion of the total
variation given by the division into between- and within-stratum variance com-
ponents. From the variance equation (3.2), it can be inferred that to benefit
from a small design variance, internally homogeneous strata, which have small
within-stratum variances, should be constructed. The efficiency is also affected
by the allocation scheme, since the individual stratum variances depend on the
respective stratum sample sizes. Let us consider the calculation of DEFF with
the estimation of the total T using stratified sampling with proportional allocation
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where stratum sample sizes are nh = n × Wh and n =∑H
h=1 nh. If the elements are

selected with simple random sampling without replacement (SRSWOR) within
each stratum, the estimator t̂ is unbiased for T and

Vstr(t̂) = N2(1 − n/N)

H∑
h=1

WhS2
h/n

is the design variance of t̂, where S2
h is the variance of y in stratum h. Alternatively,

the SRSWOR variance Vsrs(t̂) = N2(1 − n/N)S2/n of t̂ = (N/n)
∑n

k=1 yk can be
written in terms of stratified sampling as follows. Assuming large n, we get

Vsrs(t̂)
.= N2(1 − n/N)

[
H∑

h=1

WhS2
h +

H∑
h=1

Wh(Yh − Y)2

]
/n,

where Yh is the population mean in stratum h, and the first term in brackets
measures the within-stratum variation and the squared differences (Yh − Y)2

measure the variation of the stratum means around the population mean Y, i.e.
the between-stratum variation. The total variance is thus split into within-stratum
and between-stratum variance components. Therefore, the DEFF of t̂ is given by

DEFFstr(t̂)
.=

H∑
h=1

WhS2
h

H∑
h=1

Wh[S2
h + (Yh − Y)2]

, (3.4)

or by analogy with analysis of variance:

DEFFstr(t̂)
.= within-stratum variance

total variance
= MSW

S2
,

where total variance = within-stratum variance + between-stratum variance.

Example 3.1

Next, we will calculate the parameter DEFFstr,pro(t̂) for stratified simple random
sampling (STRSRS) with proportional allocation on the Province’91 population.
The population consists of two strata: stratum 1 for towns (N1 = 7) and stratum 2
for rural municipalities (N2 = 25). Using these two strata as levels of a factor in an
ANOVA setting, we get a decomposition of the total variation of the study variable
UE91 as presented in Table 3.1. Inserting in (3.4) the within-stratum variance
component MSW = 4.35 × 105 and the total variance S2 = 5.53 × 105 gives

DEFFstr,pro(t̂)
.= 4.35

5.53
= 0.79,
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Table 3.1 Population ANOVA table for stratified SRSWOR sampling with H = 2 strata
and N1 = 7 and N2 = 25.

Source of variation df Sum of squares Mean square

Between strata 1 SSB = 40.73 × 105 MSB = 40.73 × 105

Within strata 30 SSW = 130.60 × 105 MSW = 4.35 × 105

Total 31 SST = 171.32 × 105 S2 = 5.53 × 105 = 7432

which is an approximation to the exact DEFF parameter calculated as DEFFstr,pro

(t̂) = 0.84.
Proportional allocation provides a simple allocation method. Stratified SRSWOR

sampling with proportional allocation appears to be more efficient than the
SRSWOR design. In the following, we will consider other allocation schemes that
can be more efficient. This can be achieved by more effectively accounting for
stratum-wise variances.

Allocation of Sample

Allocation provides a tool for determining the number of sample units to be
taken from each stratum under the constraint that the total number of units
to be sampled is n. The modest target is to find an allocation scheme which
enables efficient estimation, under the rather restricted situation of a descriptive
survey with one study variable. It should be noted, however, that in a large-scale
analytical survey it is impossible to reach global optimality for the allocation
with a stratified sampling design, because, generally, numerous study variables
are present.

Optimality of the allocation depends on the stratum sizes and, more generally,
on the share of the total variance of the study variable to the between-stratum
and within-stratum variances. Of the many methods of allocation suggested in
the literature, optimal or Neyman allocation and power or Bankier allocation will be
considered, in addition to proportional allocation.

1. Proportional allocation This is the simplest allocation scheme and is widely
used in practice. It presupposes a knowledge of the stratum sizes only, since the
sampling fraction nh/Nh is constant for each stratum. The number of sample
elements nh in stratum h is given by

nh,pro = n × Nh

N
= n × Wh,

where Wh is the stratum weight.
Proportional allocation guarantees an equal share of the sample in all the

strata, but can produce less efficient estimates than generally expected.

TLFeBOOK



Stratified Sampling 65

As the sampling fraction is a constant n/N in each stratum, the inclusion
probability of any population element k is also a constant πk = π = n/N. The
scheme therefore provides an equal-probability sampling design equivalent to
that of SRSWOR. This property simplifies the estimation because then

t̂ = N
H∑

h=1

nh∑
k=1

yhk/n,

so the within-stratum means need not be calculated. For this reason, a propor-
tionally allocated sample has the property of self-weighting. This property is not
present in the other allocation schemes where the inclusion probabilities vary
between strata.

2. Optimal or Neyman allocation This can be used if Sh, the standard deviations
for individual strata of the study variable, are known. The number of sample units
nh in stratum h under optimal allocation is given by

nh,opt = n
NhSh∑H

h=1 NhSh

.

In practice, Sh is rarely known, but from experience gained in past surveys,
close approximations to the true standard deviations may be made. In optimal
allocation, a stratum which is large or has a large within-stratum variance, has
more sampling units than a smaller or more internally homogeneous stratum. This
type of allocation provides the most efficient estimates under stratified sampling.

3. Power allocation This is suggested for surveys in which there are numerous
small strata and that also have the need for precise estimates at each stratum
level. For example, under power allocation the nh that are required to efficiently
estimate stratum totals are given by

nh,pow = n
(Thz)

aC.Vhy∑H
h=1(Thz)aC.Vhy

,

where Thz is the stratum total of an auxiliary variable z and C.Vhy is the coefficient
of variation (C.V) of y in stratum h. The constant a is called the power of allocation
and in practice, a suitable choice of a may be 1

2 or 1
3 . This choice can be viewed

as a compromise between the Neyman allocation and an allocation that leads to
approximately constant precision for all strata.

Example 3.2

Different allocation schemes under stratified simple random sampling in the
Province’91 population. The population is first divided into two strata, one urban
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Table 3.2 Stratum-level parameters for the variable UE91 from the
Province’91 population.

Statistic Stratum 1 Stratum 2 All

Mean 1146 283 472
Total 8022 7076 15 098
Standard deviation 1318 331 743
Coefficient of variation 1.150 1.170 1.572
Stratum size 7 25 32

and the other rural. Of all the municipalities, seven (N1 = 7) are towns and the
remainder (N2 = 25) are rural districts. A stratified simple random sample of eight
(n = 8) municipalities is drawn, and the appropriate stratum sample sizes are
calculated under (a) proportional, (b) optimal and (c) power allocation schemes.
Certain background information for the strata is displayed in Table 3.2.

From Table 3.2, nh for each stratum under various allocation schemes can
be calculated.

(1) Proportional allocation:

nh,pro = n
Nh

N
=




n1 = (8)
7

32
= 1.75

n2 = (8)
25
32

= 6.25

(2) Optimal allocation:

nh,opt = n
NhSh∑H

h=1 NhSh

=
{

n1 = (8)9226/(9226 + 8275) = 4.22

n2 = (8)8275/(9226 + 8275) = 3.78

(3) Power allocation (approximate) with a = 0:

nh,a=0 = n × C.Vhy∑H
h=1 C.Vhy

=




n1 = 8 × 1.150
1.150 + 1.170

= 3.97

n2 = 8 × 1.170
1.150 + 1.170

= 4.03

(3’) Power allocation (exact) with a = 0 and a stratum-specific coefficient ch:

nh,a=0 = n × C.Vhy∑H
h=1 C.Vhy

× ch =




n1 = 8 × 1.150
1.150 + 1.170

× 0.81 = 3.22

n2 = 8 × 1.170
1.150 + 1.170

× 1.19 = 4.78
.

These calculations lead to the following results. With proportional allocation, the
individual stratum sample sizes are n1 = 2 and n2 = 6, whilst with the optimal
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Table 3.3 Stratum sample sizes and coefficients of variation under different allocation
schemes. Estimation of a total from an STRSRS sample (n = 8). Province’91 population.

Sample size Stratum Population

Allocation n1 n2 C.V(t̂1) C.V(t̂2) C.V(t̂) DEFF

Optimal 4 4 0.38 0.54 0.32 0.44
Power (exact) 3 5 0.50 0.47 0.35 0.51
Proportional 2 6 0.68 0.42 0.42 0.74

and approximate power allocation n1 = n2 = 4. Note that the so-called equal
allocation, in which the sample sizes in each stratum are equal (nh = n/H), also
gives n1 = n2 = 4. The efficiency of optimal allocation and power allocation over
proportional allocation can be inferred from the corresponding DEFF values,
which are 0.44 (for optimal allocation), 0.51 (for power allocation) and 0.74 (for
proportional allocation).

In addition, exact power allocation has been calculated, because in the case
of small populations (such as the Province’91 population), the assumption of low
sampling rate per stratum is not valid. Exact power allocation with a = 0 gives
the following sample size per stratum: n1 = 3 and n2 = 5.

The allocation schemes can be compared by calculating coefficient of variation
C.V(t̂) or relative standard error for the total sample and for each stratum. The
results are shown in Table 3.3. On the population level, as expected, optimal
allocation gives the most precise estimate C.V(t̂) = 0.32. But for equal precision
on the stratum level, exact power allocation gives the best estimate because the
c.v of t̂ is about 0.5 in both strata. Proportional allocation gives poor precision on
the population level and the difference between the two stratum-level coefficients
of variation is substantial in this case.

As mentioned earlier, coinciding domains with strata before the sample alloca-
tion would give considerable gains in precision if power allocation (approximate
or exact) were used. Domain estimation is considered in more detail in Chapter 6.

Sample Selection

Sample selection is carried out independently in each stratum, which provides
an opportunity to use different selection schemes in different strata. However,
for convenience the same selection scheme is often used. In STR sampling, the
total population should first be stratified and then a random sample selected in
each stratum. Simple random sampling, SYS or PPS sampling can be applied to
individual strata.

Inclusion probabilities depend on stratum-wise sample selection methods. For
example, using an SRSWOR design in all strata gives πhk = nh/Nh, where nh

is the stratum sample size and Nh is the total number of population elements
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in stratum h. If PPS sampling is applied, then the inclusion probability is
πhk = nh × (Zhk/Thz), where Thz is the stratum total Thz =∑Nh

k=1 zhk of a size
measure z. The inclusion probabilities are needed to define appropriate sampling
weights. Let us next consider stratified sampling with optimal allocation from the
Province’91 population.

Example 3.3

Stratified simple random sampling from the Province’91 population using optimal
allocation. The demonstration population is divided into two strata—rural and
urban municipalities. The allocation scheme is the optimal method, which leads to
equal stratum sample sizes n1 = n2 = 4, when the population total T is estimated,
as previously shown. Under this allocation, a stratified simple random sample
is selected (Table 3.4). Once the sample is drawn, the relevant design identifiers
should be added to the data set as new variables (STR, CLU and WGHT) and
used in the estimation procedure. The three estimation problems are considered
as before. The estimator t̂str of the total number of unemployed persons UE91
demonstrates clearly how stratification decreases the standard error in this
case (Table 3.4). A similar effect is also noted for the ratio estimator r̂ of the
unemployment rate UE91/LAB91. For the third estimator m̂, the median of the
population distribution of UE91, no gain is achieved by using the stratification and
optimal allocation.

The stratum identifier has the value STR = 1 for a town and STR = 2 for a rural
municipality. Cluster identifier CLU refers to the groups of elements; here, each
cluster contains a single element and the ID number of each municipality is chosen
as the cluster identifier. The weight variable has to be calculated for each stratum
separately from the stratum size and stratum sample-size figures. The weight,

Table 3.4 An optimally allocated stratified simple random sample from
the Province’91 population.

Sample design identifiers
Element

Study variables

STR CLU WGHT LABEL UE91 LAB91

1 1 1.75 Jyväskylä 4123 33 786
1 2 1.75 Jämsä 666 6016
1 4 1.75 Keuruu 760 5919
1 6 1.75 Suolahti 457 3022
2 21 6.25 Leivonmäki 61 573
2 25 6.25 Petäjävesi 262 1737
2 26 6.25 Pihtipudas 331 2543
2 27 6.25 Pylkönmäki 98 545

Sampling rates: Stratum 1 = 4/7 = 0.57. Stratum 2 = 4/25 = 0.16.
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Table 3.5 Estimates from an optimally allocated stratified simple random sample (n = 8);
the Province’91 population.

Statistic Variables Parameter Estimate s.e c.v deff

Total UE91 15 098 15 211 4286 0.28 0.21
Ratio (%) UE91, LAB91 12.65% 12.78% 0.3% 0.02 0.38
Median UE91 229 177 64 0.36 0.19

WGHT, for the first stratum is w1k = N1/n1 = 7/4 = 1.75 and for the second is
w2k = N2/n2 = 25/4 = 6.25. In addition, for simple random sampling without
replacement, sampling rates for each stratum are needed, given by 4/7 = 0.57 for
the first stratum and 4/25 = 0.16 for the second.

The estimation results with the values of the corresponding population param-
eters are shown in Table 3.5. The point estimates t̂ and r̂ for the total and the
ratio are close to the values of the population parameters T and R. However, for
the median, the estimate m̂ = 177 deviates considerably from the true median
M = 229. The optimally allocated stratified SRSWOR design seems to be very
efficient for the estimation of the total and the ratio in this case, with design-
effect estimates deff(t̂) = 0.21 and deff(r̂) = 0.38. However, the estimation of the
median is more efficient than under the unstratified SRSWOR design, because
deff(m̂) = 0.19 is considerably less than one.

Finally, the stratum-wise precision or c.v is calculated for the total estimate
of variable UE91. The estimates of totals are t̂1 = 10 507 for the first stratum and
t̂2 = 4700 for the second stratum. Corresponding standard error estimates are
s.e (t̂1) = 4015 and s.e (t̂2) = 1481. Then the c.v estimates are c.v (t̂1) = 0.38 and
c.v (t̂2) = 0.32 which are about the same size.

Summary

A small population split into two strata was considered with various allocation
schemes. In estimating the total, ratio and median, stratified sampling with
optimal allocation produced deff estimates that indicated gain in efficiency for the
total and ratio estimators; however, the estimated median had a deff estimate
greater than one. Generally, the overall gain of precision attained in stratified
sampling depends on the stratification scheme and on the allocation of the sample
between the strata. At stratum level, precision can be affected by a suitable
allocation scheme; this is important especially if estimates are to be calculated for
separate strata.

Stratification provides a powerful tool for improving the efficiency and, being
suitable for various sampling situations, it is commonly used in practice. In
addition to element sampling, stratified sampling is often present in sampling
designs for complex surveys where the population of clusters is stratified.
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3.2 CLUSTER SAMPLING

In complex surveys, naturally formed groups of population elements such as
households, villages, city blocks or schools are often used for sampling and data
collection. For example, a household can be chosen as the unit of data collection
in an interview survey. In addition to the original person-level population, there
is the additional population of households. Assuming that a suitable frame is
available, a sample of households is drawn for the interviewing of the sample
household members. This is an example of one-stage cluster sampling. If a household
population frame is not available but a block-level frame is, a sample from the
register of blocks can be drawn, and a sample of households can then be drawn
from the sampled blocks by using lists of dwelling units prepared from only the
selected blocks. This is an example of two-stage cluster sampling.

Cluster sampling in social and business surveys is motivated by the need for
practical, economic and sometimes also administrative efficiency. An important
advantage of cluster sampling is that a sampling frame at the element level is
not needed. The only requirements are for cluster-level sampling frames and
frames for subsampling elements from the sampled clusters. Cluster-level frames
are often easily accessible, for example, for establishments, schools, blocks or
block-like units etc. Moreover, these existing structures provide the opportunity
to include important structural information as part of the analysis. For instance,
in an educational survey it is practical to use the information that pupils are
clustered within schools and further clustered as classes or teaching groups
within schools. Schools can be taken as the population of clusters from which
a sample of schools is first drawn and then a further sample of teaching groups
can be drawn from those schools that have been sampled. If all the pupils in the
sampled teaching groups are measured, then the design belongs to the class of
two-stage cluster-sampling designs. And in addition to sample selection and data
collection, the multi-level structure can be used in the analysis, for example, for
examining differences between schools.

Thus, in multi-stage sampling, a subsample is drawn from the sampled clusters
at each stage except the last. At this stage, all the elements from the sampled
clusters can be taken in an element-level sample, or a subsample of the elements
can be drawn. One- and two-stage cluster sampling are discussed in this chapter
and demonstrated using the Province’91 population. A more general setting for
cluster sampling, also covering stratification of populations of clusters, will be
demonstrated by various real surveys in Chapters 5 to 9.

The economic motivation for cluster sampling is the low cost of data col-
lection per sample element. This is especially true for populations that have
a large regional spread. Using cluster sampling, the travelling costs of inter-
viewers can be substantially reduced as the workload for an interviewer can
be regionally planned. The cost efficiency of cluster sampling can therefore be
high. But there are also certain drawbacks of cluster sampling that concern
statistical efficiency. If each cluster closely mirrors the population structure, we
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would attain efficient sampling such that standard errors of estimates would
not exceed those of simple random sampling. However, in practice, clusters tend
to be internally homogeneous, and this homogeneity increases standard errors
and thus decreases statistical efficiency. We shall consider this more closely by
considering intra-cluster correlation. This concept will be used extensively in
later chapters when analysing real data sets from cluster sampling using two
approaches: by taking the intra-cluster correlation as a nuisance effect and by
multi-level modelling methods.

Cost Efficiency in Cluster Sampling

Let us first use a simple case to illustrate the cost efficiency of cluster sampling
relative to SRS without replacement. The cost efficiency of cluster sampling can
be assessed by a simple cost function

Cclu = c1(m) + c2(m × B),

where
Cp(s) is the total sampling costs,
c1 is the sampling cost for a cluster,
c2 is the sampling cost for an element in a cluster,
B is the number of elements in a cluster (equal-sized clusters),
m is the number of sample clusters,
n = m × B is the element sample size.

Under SRSWOR the cost function is

Csrs = c1n + c2n,

where n is the element sample size.
The constraint of equal total sampling costs C = Cclu = Csrs requires the follow-

ing sample sizes for SRSWOR and CLU sampling:

nsrs = C
c1 + c2

nclu = C
(1/B)c1 + c2

,

indicating that with a fixed sampling cost more population elements can be
measured using cluster sampling than using SRSWOR. Moreover, standard errors
decrease inversely with square root of sample size, which in part compensates for
the counter-effect of intra-cluster homogeneity upon standard errors. This implies
that the DEFF cannot serve as a single measure of the total efficiency of cluster
sampling, so cost efficiency should also be taken into account.

TLFeBOOK



72 Further Use of Auxiliary Information

Example 3.4

Cost efficiency under cluster sampling. The budget of a nationwide survey based
on computer-assisted personal interviews (CAPI) includes a grant of EUR 15 000
to cover sampling and data-collection costs. Costs per interview are EUR 30 and
average travelling expenses per interview are EUR 35. By first assuming that the
sample is drawn by SRSWOR, the sample size under fixed total costs is

nsrs = 15 000
35 + 30

= 231.

Next, assuming that the population can be split into clusters each consisting of
five people (B = 5), the sample size is

nclu = 15 000
35/5 + 30

= 405

Cluster sampling nearly doubles the available sample size relative to SRSWOR,
since the costs of a single journey will cover five interviews instead of one.

One-stage Cluster Sampling

Let us introduce the principles of cluster sampling under the simplest design of
this sort, namely, one-stage cluster sampling. In one-stage cluster sampling, it is
assumed that the N population elements are clustered into M groups, i.e. clusters.
Making the somewhat unrealistic assumption of equal-sized clusters, each cluster
is taken to consist of B elements. In a more general case, it is assumed that
the population is clustered such that the size of cluster i is Bi elements. In both
cases, a sample of m clusters is drawn from the population of M clusters, and
all the elements of the sampled clusters are taken into the element-level sample.
Remember, there is only a single sampling stage, namely that of the clusters, and
therefore this design is known as one-stage cluster sampling.

The sample of m clusters is drawn from the population of clusters using a specific
element-sampling technique such as SRS, SYS or PPS sampling. Because standard
element-sampling schemes can be used in one-stage cluster sampling, the selection
techniques previously described are readily available. The only difference is that a
cluster, i.e. a group of population elements, constitutes the sampling unit instead
of a single element of the population. Moreover, if the selection of the clusters is
done with equal inclusion probabilities, for example, using SRSWOR or SYS, then
the inclusion probabilities for the population elements are also equal, and this is
independent of cluster sizes being equal.

In the simple case of equal-sized clusters, the element sample size is fixed and is
n = m × B. If the cluster sizes vary, as is often the case in practice, the sample size
n =∑m

i=1 Bi cannot be fixed in advance and depends upon which clusters happen
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to be drawn in the sample. The expected element-level sample size (m/M) × N
and the actual sample size n can differ considerably if the variation in cluster
sizes is large. This inconvenience can usually be controlled using an appropriate
sampling scheme. For example, if the sizes of the population clusters are (even
roughly) known as auxiliary information, the clusters can be stratified by size,
making it possible to approximately control the element sample size, n.

We introduce the basics of the estimation under one-stage cluster sampling
in the case in which M unequal-sized clusters are present with cluster sizes Bi,
and SRSWOR is used to sample the m clusters; we call this one-stage CLU design.
Equally sized clusters where Bi = B is a special case of this. The element-level
population size is thus given by N =∑M

i=1 Bi elements. Our aim is to estimate the
population total T. For this, formulae from simple random sampling in Section 2.3
can be used and applied to the cluster totals. Certain alternative estimators are
also given.

Let the value of the study variable be denoted Yik, i = 1, . . . , M in the population,
and in the sample yik, i = 1, . . . , m, and in both instances k = 1, . . . , Bi. The
cluster-wise totals Ti in the population are

Ti =
Bi∑

k=1

Yik = BiYi, i = 1, . . . , M,

where Yi is the mean per element in population cluster i, whose sample estimator
is yi =∑Bi

k=1 yik/Bi, i = 1, . . . , m.
An unbiased estimator of the population total T =∑M

i=1 Ti is given by

t̂ = (M/m)

m∑
i=1

Biyi. (3.5)

The design variance Vclu−I(t̂) of t̂ and its unbiased estimator ν̂clu−I(t̂) can be
derived from the corresponding SRSWOR equations, because the only source
of variation is that of the cluster totals Ti around the overall mean per cluster
TM =∑M

i=1 Ti/M.
The design variance of t̂ is given by

Vclu−I(t̂) = M2(1 − m/M)

M∑
i=1

(Ti − TM)2/m(M − 1). (3.6)

An unbiased estimator of the design variance is

ν̂clu−I(t̂) = M2(1 − m/M)

m∑
i=1

(Biyi − T̂m)2/m(m − 1), (3.7)

where T̂m =∑m
i=1 Biyi/m is an estimator of the mean per cluster TM.
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It can be inferred from (3.6) that if the cluster sizes Bi are equal or nearly so
and if the cluster means Yi vary little, then the cluster totals Ti = BiYi will also
vary little and so a small design variance will be obtained. On the other hand, if
the variation in the cluster sizes is large, the cluster totals will vary greatly and
the design variance becomes large, showing inefficient estimation. However, the
efficiency can be improved using a ratio estimator where the cluster sizes Bi are
used as an auxiliary size measure z. We can then have an estimator for the total
given by

t̂rat = N

∑m
i=1 Ti∑m
i=1 Bi

= N × y, (3.8)

where y =∑m
i=1 Ti/

∑m
i=1 Bi is the sample mean per element, which is an estimator

of the population mean per element Y = T/(M × B). This ratio estimator is a
special case of the ratio estimator considered later in Section 3.3. Assuming a large
number of sample clusters, an approximate design variance of t̂rat is

Vclu−I(t̂rat)
.= M2(1 − m/M)

M∑
i=1

B2
i (Yi − Y)2/m(M − 1). (3.9)

The variation in the cluster means per element Yi around the population mean
per element Y can usually be expected to be smaller than that of the cluster totals
Ti around the mean per cluster TM =∑M

i=1 Ti/M. If so, the estimation will be more
efficient. Hence, an estimator of the design variance is

ν̂clu−I(t̂rat) = M2(1 − m/M)

m∑
i=1

B2
i (yi − y)2/m(m − 1). (3.10)

A similar effect on the efficiency can be expected when using PPS sampling for the
clusters if we know their sizes Bi in advance. Then, one can use the corresponding
PPS estimators from Section 2.5.

It is also possible to base the estimation of the total T on the mean ym of the
cluster means yi given by

ym =
m∑

i=1

yi/m,

which is an estimator of the population mean YM =∑M
i=1 Yi/M of the cluster

means. If the clusters are equal-sized, i.e. if Bi = B, then the resulting estimator

t̂m = Nym = N
m∑

i=1

yi/m (3.11)
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is unbiased for T and equal to t̂ given in (3.5), and t̂rat given in (3.8). But the t̂m can
be biased and even inconsistent under unequal-sized clusters. This can be seen by
looking more closely at the bias. The bias is given by

BIAS(t̂m) = −
M∑

i=1

(Bi − B)(Yi − YM),

where B is the average cluster size. The equation for the bias indicates that the
estimator t̂m is unbiased if the cluster sizes Bi do not correlate with the cluster
means Yi, which is the case when the cluster sizes are equal. Therefore, if t̂m is
intended to be used, the relation of the cluster sizes and cluster means should be
examined carefully.

Under equal-sized clusters, the design variance of t̂m can also be written as

Vclu−I(t̂m) = (M × B)2(1 − m/M)S2
b/m, (3.12)

where the between-cluster variance S2
b can be derived from the cluster means Yi

and their mean YM by

S2
b =

M∑
i=1

(Yi − YM)2/(M − 1).

Because of equality in cluster sizes, t̂ and Y can be used in place of t̂m and YM in
(3.12) and in S2

b .
We shall next study the efficiency of one-stage cluster sampling by inspecting

the DEFF of a total estimator under one-stage CLU design in the simple case in
which the clusters are assumed to be equal-sized.

Example 3.5

Efficiency of one-stage cluster sampling from the Province’91 population. We
consider the efficiency of one-stage cluster sampling in the estimation of the total
number T of unemployed persons (UE91) by calculating the DEFF of an estimator
of T. Clusters are formed by combining groups of four neighbouring municipalities
into eight clusters. The N = 32 municipalities of the province are divided into
M = 8 equal-sized clusters so that Bi = B = 4. It should be noticed that in real
surveys the cluster sizes are usually unequal and, moreover, the number of
population clusters is noticeably larger than here; therefore, the calculations
should be taken hypothetically with the aim of illustrating the principles of the
estimation. Table 3.6 presents the cluster means Yi and totals Ti of UE91 in all the
population clusters.

The sum of cluster totals Ti is equal to the population total T = 15 098. The
population mean per element and the mean of the cluster means YM are both 472
because of the equality of the cluster sizes. Let the sample size be m = 2 clusters,
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Table 3.6 Cluster means and totals in the Province’91 population, where each regional
cluster includes four neighbouring municipalities.

Cluster identifiers

Mean and total of
UE91 for population

clusters

STR CLU Elements (municipalities included) Mean Yi Total Ti

1 1 Jyväskylä, Korpilahti, Muurame, Säynätsalo 1206 4824
1 2 Jämsä, Jämsänkoski, Keuruu, Kuhmoinen 535 2141
1 3 Saarijärvi, Konginkangas, Äänekoski, Sumiainen 427 1709
1 4 Kannonkoski, Karstula, Kyyjärvi, Pylkönmäki 172 686
1 5 Suolahti, Hankasalmi, Konnevesi, Laukaa 481 1923
1 6 Joutsa, Leivonmäki, Luhanka, Toivakka 109 436
1 7 Jyväskylä mlk., Multia, Petäjävesi, Uurainen 556 2223
1 8 Kinnula, Kivijärvi, Pihtipudas, Viitasaari 289 1156

Sum of cluster totals T = 15 098
Mean per cluster TM = 1887
Mean per element Y = 472

Mean of cluster means YM = 472

then the element sample size is n = m × B = 2×4 = 8. Because the cluster sizes
are equal, the total estimators t̂, t̂rat and t̂m would provide the same estimates,
and any of the corresponding design variances could be used. To evaluate the
efficiency, we calculate the design variance of t̂ using equation (3.16).

First, the between-cluster variance is obtained as

S2
b = 1

(8 − 1)

8∑
i=1

(Yi − 472)2 = 3402,

giving the design variance

Vclu−I(t̂) = (8×4)2(1 − 2/8)S2
b/2 = 322×3/4×3402/2 = 66632.

The between-cluster variance S2
b = 3402 will also be used in two-stage cluster

sampling. Hence, the design effect of the total estimator t̂ is

DEFFclu−I(t̂) = Vclu−I(t̂)

Vsrs(t̂)
= 66632

72832
= 0.84.

The one-stage cluster sampling design appears to be slightly more efficient
than the SRSWOR design in this case. However, under complex surveys, due
to positive intra-cluster correlation, cluster sampling usually tends to be less
efficient than SRSWOR when measured by the estimated design effects, as shown
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in later chapters. The unexpected result here can be partly explained by the
method of forming the clusters on an administrative basis, which produces
relatively internally heterogeneous clusters with respect to the variation of UE91.
If the clusters were formed by some other criteria, for example, on a travel-
to-work area basis, different results might be obtained because unemployment
may be more homogeneous in such areas than in the regionally neighbouring
municipalities.

In the next example in which a one-stage cluster sample is drawn from the
Province’91 population, it appears that, based on the estimated variances, the
efficiency can be worse than that of SRSWOR. This result, however, is crucially
dependent on the composition of the sample in this case because only two clusters
will be drawn from the small and heterogeneous population of clusters.

Example 3.6

Analysing a one-stage CLU sample drawn from the Province’91 population. The
Province’91 population is divided on a regional basis into eight (M = 8) clusters,
each comprising four (B = 4) neighbouring municipalities. Eight municipalities
are required in the sample, so the element sample size is n = 8. Because the clusters
are equal-sized, the cluster-level sample size is m = 2. The sample of clusters is
drawn by simple random sampling without replacement. As a result, the clusters
2 and 8 were drawn and we obtained the sample of eight municipalities from the
population of clusters as shown in Table 3.7.

The sample identifiers required for the analysis of the data set are the following
three variables: STR is the stratum identifier, which in this case is a constant
because the population of clusters is not stratified, i.e. there is only one stratum. The

Table 3.7 A one-stage CLU sample of two clusters from the Province’91 population
(sample clusters are in bold).

Cluster identifiers

Mean and total of
UE91 for sampled

clusters

STR CLU Elements (municipalities included) Mean Yi Total Ti

1 1 Jyväskylä, Korpilahti, Muurame, Säynätsalo · · · · · ·
1 2 Jämsä, Jämsänkoski, Keuruu, Kuhmoinen 535.25 2141
1 3 Saarijärvi, Konginkangas, Äänekoski, Sumiainen · · · · · ·
1 4 Kannonkoski, Karstula, Kyyjärvi, Pylkönmäki · · · · · ·
1 5 Suolahti, Hankasalmi, Konnevesi, Laukaa · · · · · ·
1 6 Joutsa, Leivonmäki, Luhanka, Toivakka · · · · · ·
1 7 Jyväskylä mlk., Multia, Petäjävesi, Uurainen · · · · · ·
1 8 Kinnula, Kivijärvi, Pihtipudas, Viitasaari 289.00 1156

Sampling rate (clusters) m/M = 2/8 = 0.25.
· · ·Nonsampled cluster.
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Table 3.8 Estimates from a one-stage CLU sample (n = 8); the Province’91 population.

Statistic Variables Parameter Estimate s.e c.v deff

Total UE91 15 098 13 188 3412 0.26 1.92
Ratio (%) UE91, LAB91 12.65% 12.93% 0.6% 0.04 1.44
Median UE91 229 337 132 0.39 1.29

cluster identification (2 or 8) is given by the variable CLU; and the weight variable
is a constant WGHT = 4, i.e. the cluster size. The finite-population correction at
the cluster level is (1 − 0.25) = 0.75, and so the sampling rate is 0.25.

Estimation results for the total t̂, ratio r̂ and median m̂, and the values of the
corresponding parameters T, R and M are displayed in Table 3.8. From there it
can be seen that one-stage cluster sampling appears to be inefficient for all three
estimators. The deff estimates are noticeably greater than one (1.29 ≤ deff ≤1.92).
Moreover, for this actual sample, the estimated deff (t̂) = 1.92 differs noticeably
from the corresponding parameter DEFF (t̂) = 0.84. This is due to the small
number of sample clusters, which causes instability in the estimated design
variances. The variance estimates depend heavily on which clusters happen to be
drawn; thus, by selecting two clusters other than those just drawn, deff estimates
noticeably less than one could be obtained. The problem of instability will be
discussed in more detail in Chapter 5.

Two-stage Cluster Sampling

Subsampling from the sampled clusters is common when working with large
clusters. This offers better possibilities, for instance, for the control of the element-
level sample size n, when the cluster sizes vary. Moreover, with subsampling,
the number of sample clusters can be increased when compared to one-stage
cluster sampling for a fixed-element sample size, which can increase efficiency. A
practical motivation is the availability of sampling frames that are only required
for subsampling from the sampled clusters.

In two-stage cluster sampling, a sample of clusters is drawn from the population
of clusters, i.e. primary sampling units (PSUs) at the first stage of sampling,
using the standard element-sampling techniques such as SRSWOR, SYS or PPS.
Moreover, the population of clusters can be stratified by using available auxiliary
information. The simplest stratified two-stage cluster-sampling design in which
exactly two clusters are drawn from each stratum is often used in practice, offering
the possibility of using a large number of strata and thereby increasing efficiency.
At the second stage, an element-level sample is drawn from the sampled clusters
again using standard element-sampling techniques. In practice, the cluster sizes
in the population, and the cluster sample sizes, usually vary. Moreover, the
inclusion probabilities can vary at each stage of sampling. But a sample with
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a constant overall sampling fraction can be obtained by an appropriate choice
of the sampling fractions and selection techniques at each stage of sampling.
This kind of multi-stage design is called an epsem design (equal probability of
selection method).

In one-stage cluster sampling, all the elements in the sampled clusters make
up the element-level sample and, thus, the only variation due to sampling
is between-cluster variation. But in two-stage cluster sampling, an additional
source of variation arises due to subsampling, namely, the variation within the
clusters, and this also contributes to the total variation.

For illustrating the basics of two-stage cluster sampling, we assume SRS without
replacement at both stages of sampling and equality of the cluster sizes in the M
population clusters, i.e. Bi = B for all i. The element-level population size is thus
N = M × B. Moreover, let us further assume that the element-level sample sizes
are also equal for simplicity, i.e. bi = b in all the m sample clusters; the sample
size is thus n = m × b. Cluster sampling under these assumptions results in equal
inclusion probabilities for the population clusters, and they are also equal for the
population elements, which provides an epsem sample. We can see by writing the
sampling fractions m/M for the first stage and b/B for the second stage, giving a
constant overall sampling fraction (m/M) × (b/B) = n/N.

The main interest in the estimation is usually concentrated on the second stage,
i.e. element-level parameters. Let us consider the estimation of the population
total T =∑M

i=1 Ti, where Ti = B × Yi is the population total in cluster i and
Yi =∑B

k=1 Yik/B is the mean per element in cluster i as previously. An unbiased
estimator of the total T is

t̂ = (M × B)

m∑
i=1

yi/m, (3.13)

where yi =∑b
k=1 yik/b is the mean per element in sample cluster i. In the derivation

of the design variance for t̂, a decomposition of the total variance into the between-
cluster variance and within-cluster variance components can be used. The design
variance for the estimator t̂ is the weighted sum of the between-cluster variance S2

b
and within-cluster variance S2

w:

Vclu−II(t̂) = (M × B)2
[(

1 − m
M

) S2
b

m
+
(

1 − b
B

)
S2

w

mb

]
, (3.14)

with

S2
b = 1

(M − 1)

M∑
i=1

(Yi − Y)2,

S2
w = 1

M(B − 1)

M∑
i=1

B∑
k=1

(Yik − Yi)
2,
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and Y = T/(M × B) is the overall population mean per element. The between-
cluster variance term is due to the first-stage sampling of the clusters and is similar
to one-stage cluster sampling and the additional within-cluster variation is due
to the subsampling. In one-stage cluster sampling, the within-cluster variance
component is zero because all the B elements were taken from the sampled
clusters, i.e. b = B.

Estimators of the variance terms S2
b and S2

w are obtained by inserting the sample
counterparts in place of the population values. We hence obtain

ŝ2
b = 1

(m − 1)

m∑
i=1

(yi − y)2,

ŝ2
w = 1

m(b − 1)

m∑
i=1

b∑
k=1

(yik − yi)
2,

where y =∑m
i=1 yi/m is the sample mean per element. The estimator of the design

variance t̂ is then given by

ν̂clu−II(t̂) = (M × B)2
[(

1 − m
M

) ŝ2
b

m
+
(

1 − b
B

)
m
M

ŝ2
w

mb

]
. (3.15)

From (3.15), it can be inferred that if the first-stage sampling fraction m/M is small,
then the second component in the variance estimator becomes negligible. Then,
a variance estimator based on only the between-cluster variation can be used as
a slightly negatively biased approximation of the design variance of t̂, which has
the convenient property that it is only computed from cluster-level quantities.
Further, if m/M is small, the first-stage finite-population correction would be close
to one and thus can be omitted, leading to a with-replacement-type variance
estimator. This kind of variance approximation will be extensively used when
discussing survey analysis in later chapters. Alternatively, if the fraction m/M is
not negligible, the within-variance component can contribute substantially to the
variance estimate.

In practice, the cluster sizes Bi and the sample sizes from the sampled clusters
bi usually vary, and moreover, the population of clusters can be stratified.
Appropriate estimators for the total and the design variance of the total estimator
should be used to properly account for the stratification and the variation in the
cluster sample sizes. For the total, a ratio-type estimator or an estimator based on
PPS sampling of the clusters can be used with the cluster sizes as the auxiliary size
measure. The estimation of the design variance of a ratio-type estimator under
two-stage stratified cluster sampling will be discussed in Chapter 5. There, various
approximate variance estimators are introduced.

The inconvenient effect of variation in cluster sizes can be controlled using PPS
sampling of the clusters. Let us suppose that an epsem sample is desired with a
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fixed size of n elements. This can be attained by drawing a constant number bi = b
of elements from each of the m unequally sized sample clusters when the clusters
are selected with PPS with inclusion probabilities proportional to the cluster sizes
Bi, as can be inferred from the following formula:

n
N

= m × Bi∑M
i=1 Bi

× b
Bi

,

where m is the desired number of sample clusters and b = n/N ×∑m
i=1 Bi/m.

In the next example, we evaluate the efficiency of two-stage CLU design in
the simple situation of equal-sized clusters, based on the calculation of the DEFF.
Comparison is made with the one-stage cluster design.

Example 3.7

Efficiency of two-stage cluster sampling from the Province’91 population. The
number of clusters consisting of neighbouring municipalities is 8, so that M = 8,
and each cluster comprises B = 4 municipalities. We compare the efficiency of
one- and two-stage CLU designs in the estimation of the total T. Both designs
involve equal clustering at the first stage. In one-stage cluster sampling, two
clusters (m = 2) were drawn, and all the four municipalities from the sampled
clusters were taken into the element-level sample. The sample size was thus
n = m × B = 2×4 = 8 municipalities. In two-stage cluster sampling, we take
m = 4 clusters in the first-stage sample, and we draw b = 2 municipalities from
each sampled cluster at the second stage. The element-level sample size is then
also m × b = 4×2 = 8 municipalities.

Under the one-stage CLU design, the design variance was calculated as Vclu(t̂) =
66632, and the design effect was DEFF(t̂) = 0.84. Under the two-stage CLU
design, we must first calculate the between-cluster and within-cluster variance
components. The between-cluster variance in Example 3.3 was calculated as
S2

b = 3402. The within-cluster variance is

S2
w = 1

8(4 − 1)

8∑
i=1

4∑
k=1

(Yik − Yi)
2 = 6602.

The design variance of t̂ is thus

Vclu−II(t̂) = (8×4)2
[(

1 − 4
8

)
3402

4
+
(

1 − 2
4

)
6602

4×2

]
= 65322

and the DEFF of t̂ for the two-stage design is

DEFFclu−II(t̂) = 65322/72832 = 0.80.
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When compared to the one-stage CLU design, the two-stage design is slightly
more efficient. This is in part due to the property of the two-stage design that,
with a given n, more first-stage units can be drawn than for the one-stage design.
In this case, the number of sample clusters is doubled, which decreases the
first-stage variance component. Of the total variance, 35% is contributed by the
first stage (between-cluster) and 65% by the second stage (within-cluster). Thus,
the within-cluster contribution dominates, which is in part due to the relative
heterogeneity of the clusters. It should, however, be noticed that in the Province’91
population, the population of clusters is small and so are the cluster sample size
and the sample size in subsampling. Therefore, these calculations should be taken
as a hypothetical example, because in a real survey the corresponding figures are
larger, the clusters tend to be relatively homogeneous and a major share of the
design variance is often due to between-cluster variation.

The next example demonstrates computational results based on a sample drawn
from the Province’91 population using the two-stage CLU design. The efficiency is
studied on the basis of estimated design variances. The efficiency is also compared
with that of the one-stage CLU sample from Example 3.6.

Example 3.8

Analysing a two-stage CLU sample drawn from the Province’91 population. In
the first stage, the clusters numbered 2, 3, 4 and 7 were drawn. In the second
stage, two municipalities were drawn from each sample cluster. The population
of clusters and the two-stage CLU sample is displayed in Table 3.9.

Table 3.9 A two-stage cluster sample from the Province’91 population. First stage:
SRSWOR sample of four clusters (2, 3, 4 and 7). Second stage: four SRSWOR samples of
two elements in each sampled cluster. (Sampled elements in sampled cluster are in bold).

Cluster identifiers

Estimated mean and
total of UE91 for
sampled clusters

STR CLU Elements (municipalities included) Mean yi Total t̂i

1 1 Jyväskylä, Korpilahti, Muurame, Säynätsalo · · · · · ·
1 2 Jämsä, Jämsänkoski, Keuruu, Kuhmoinen 473.5 1894
1 3 Saarijärvi, Konginkangas, Äänekoski, Sumiainen 454.5 1818
1 4 Kannonkoski, Karstula, Kyyjärvi, Pylkönmäki 96.0 384
1 5 Suolahti, Hankasalmi, Konnevesi, Laukaa · · · · · ·
1 6 Joutsa, Leivonmäki, Luhanka, Toivakka · · · · · ·
1 7 Jyväskylä mlk., Multia. Petäjävesi, Uurainen 241.0 962
1 8 Kinnula, Kivijärvi, Pihtipudas, Viitasaari · · · · · ·

Sampling rates: First stage 4/8 = 0.50. Second stage 2/4 = 0.50.
· · ·Nonsampled cluster.
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In the analysis of the data from the two-stage CLU design, the following design
identifiers are required: the stratum identifier STR, which is a constant 1 for all
the sample elements, the cluster identifier CLU, which has the values 2, 3, 4 and
7 corresponding to the sampled clusters, and the weight variable WGHT, which
is a constant (4) for all the sample elements. It should be noted that the weight
would vary between the clusters if the cluster sizes varied and the selection rates
in the clusters were not equal. Because SRSWOR was used at both stages, the
first-stage sampling rate of 4/8 and the second-stage sampling rate of 2/4 are also
supplied, giving the weights wik = (M × B)/(m × b) = (8×4)/(4×2) = 4 for all
the sample elements. Estimation results on the total number of unemployed t̂, the
unemployment rate r̂ and the median unemployment m̂, as well as the values of
the corresponding parameters T, R and M are displayed in Table 3.10.

The estimated design effects (deff) for the total, ratio and median estimators
are close to one, indicating that the two-stage CLU sample does not differ greatly
from SRSWOR in efficiency. But the efficiency differs considerably from that of
the one-stage counterpart where design-effect estimates noticeably larger than
one were obtained for all the estimators. In the one-stage design, the number of
sample clusters was very small, thus resulting in serious instability in the variance
estimates. In the two-stage design, on the other hand, one half of all the population
clusters were drawn and, therefore, the design is not as sensitive to instability
and, in addition, the population clusters were relatively heterogeneous. It should
be noticed, however, that in this example the clustering was an illustration of the
estimation under two-stage cluster sampling, not an example of cluster sampling
in real surveys. These will be considered in later chapters.

Intra-cluster Correlation and Efficiency

Efficiency of cluster sampling depends strongly on the internal composition of
the clusters. Cluster sampling would be as efficient as simple random sampling if
the clusters were internally heterogeneous so that each of them closely mirrored
the overall composition of the element population. Efficiency decreases if the
clusters are internally homogeneous and if the between-cluster variation is
large. In practice, many naturally formed population subgroups are of this
latter type.

Table 3.10 Estimates from a two-stage CLU sample (n = 8); the Province’91 population.

Statistic Variables Parameter Estimate s.e c.v deff

Total UE91 15 098 10 116 2659 0.26 0.93
Ratio (%) UE91, LAB91 12.65% 13.81% 0.5% 0.04 0.99
Median UE91 229 192 49 0.25 0.84
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The efficiency can be studied by intra-cluster correlation, which is a measure
of the internal homogeneity of the clusters. This correlation can be included in
the design variance equations of estimators from cluster sampling. Recall that
in systematic sampling, a similar coefficient (intra-class correlation) also played
a crucial role; SYS can indeed be taken as a special case of one-stage cluster
sampling where only one cluster is drawn.

Let us assume equal-sized clusters Bi = B in all the population clusters. We first
study the ANOVA decomposition SST = SSW + SSB of the total variation SST of
the study variable y into the variation within the clusters (SSW) and between the
clusters (SSB). The total variation SST can be written

M∑
i=1

B∑
k=1

(Yik − Y)2 =
M∑

i=1

B∑
k=1

(Yik − Yi)
2 +

M∑
i=1

B(Yi − Y)2, (3.16)

where Yik is the population value of the study variable for an element ik from
cluster i, Y is the overall mean per element and Yi is the cluster mean per element
as previously given.

By using the formulae for intra-class correlation ρint derived in Section 2.4
under SYS for cluster sampling, we get

ρint = 1 − B
B − 1

× SSW
SST

. (3.17)

The interpretation of intra-cluster correlation depends on the share of the
total variation between the two variance components. First, if all the varia-
tion is within the clusters and there is no between-cluster variation, then the
intra-cluster correlation coefficient is at minimum ρint = −1/(B − 1). If, on the
other hand, all the variation is between the clusters, in which case the clus-
ters are internally completely homogeneous, the coefficient has its maximum
ρint = 1. And with the value ρint = 0 the elements are assigned to clusters
at random.

Let us consider the efficiency of one-stage CLU sampling with respect to SRSWOR
of the same size n. The design variance of an estimator t̂ of the total T was in
equation (3.12) under the CLU design given as

Vclu−I(t̂) = (M × B)2
(

1 − m
M

) S2
b

m
,

where S2
b is the between-cluster variance component. From equations (3.16) and

(3.17) it follows that the between-cluster variance component can be written as

SSB = SST
B

[1 + (B − 1)ρint].
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Inserting it into the variance formula above, we obtain

Vclu−I(t̂) = (M × B)2
(

1 − m
M

) S2

m

[
1
B

(B − 1)ρint

]
× N − 1

N
× M

M − 1
.

Assuming large N and M, the last two terms become close to one and can thus
be dropped. We hence obtain, for the design variance of t̂, an expression based on
the total variance S2 and the intra-cluster correlation ρint:

Vclu−I(t̂)
.= (M × B)2

(
1 − m

M

) S2

n
[1 + (B − 1)ρint], (3.18)

because m × B = n. But the corresponding SRS design variance of t̂ can be
written as

Vsrs(t̂) = (M × B)2
(

1 − n
N

) S2

n
,

which leads to the DEFF of t̂ given by

DEFFclu−I(t̂) = Vclu−I(t̂)

Vsrs(t̂)
= 1 + (B − 1)ρint, (3.19)

because m/M = n/N in the finite-population correction term of Vclu−I(t̂).
The equation of DEFF indicates that when ρint is positive, which is usually

the case in practice, then cluster sampling is less efficient than simple random
sampling. And for a given ρint, the DEFF increases with increasing cluster size B.
In the final example in this section, efficiency is further discussed as a function of
cluster size and intra-cluster correlation.

Example 3.9

Intra-cluster correlation, cluster size and DEFF in the Province’91 population.
One-way of analysis of variance is calculated for the variable UE91 using the eight
regional clusters as factor levels. Results are presented in Table 3.11.

Table 3.11 Population ANOVA table; one-stage cluster sampling with M = 8 and B = 4
from the Province’91 population.

Source of variation df Sum of squares Mean square

Between clusters 7 SSB = 32.30 × 105 MSB = 4.61 × 105

Within clusters 24 SSW = 139.02 × 105 MSW = 5.79 × 105

Total 31 SST = 171.32 × 105 S2 = 5.53 × 105 = 7432

TLFeBOOK



86 Further Use of Auxiliary Information

Inserting the figures in equation (3.17), we get

ρint = 1 − 4
4 − 1

× 139.02 × 105

171.32 × 105
= −0.082.

Design effect can be approximated from equation (3.19) (equal-sized clusters B = 4
are assumed) as DEFFclu−I = 1 + (B − 1)ρint = 1 + (4 − 1)(−0.082) = 0.754.

This figure is smaller than the exact DEFF = 0.84 computed in Example 3.4,
because the formula (3.17) is an approximation more applicable for large popula-
tions with small sampling fraction.

The intra-class, or intra-cluster, correlation appeared to be an important
design parameter in systematic sampling and in cluster sampling. The intra-
class correlation measures the correlation between pairs of elements belonging
to the same subgroup of population. In SYS, this subgroup was the elements
in a sampling interval. In cluster sampling, intra-cluster correlation indicates
dependency of elements belonging to the same cluster or a natural subgroup of
population elements. We will consider a number of such grouping structures:
pupils within a school, employees within a business firm and household members
within a household. Several options are available when measuring the internal
homogeneity of such clusters with an intra-cluster correlation coefficient. In
systematic sampling and cluster sampling, the intra-cluster correlation coefficient
was calculated in a design-based manner. In multivariate modelling, other options
become more relevant. This includes the ‘working’ intra-cluster correlation
coefficient to be introduced in Chapter 8 in the context of multivariate survey
analysis estimation. In Section 9.4, intra-class correlation coefficients will be
calculated in a model-based manner. This holds also for another way of forming
clusters, namely, the workloads of interviewers (see Section 9.1).

Summary

Cluster sampling is commonly used in practice because many populations are
readily clustered into natural subgroups. Typical clusters met in real surveys
are regional administrative units, city blocks or block-like units, households,
business firms or establishments and schools or school classes. Often, for practical
and economical reasons, these kinds of clusters are used in sampling and in
data-collection procedures. A practical motivation is that sampling frames for
subsampling are needed only for the sampled clusters. And an economical
motivation is that the cost efficiency of cluster sampling can be fairly high. Good
examples of various cluster-sampling designs are to be found later in this book. A
drawback in cluster sampling, however, is that due to the relative homogeneity of
the clusters, as is often the case in practice, the statistical efficiency can be less than
that of simple random sampling. However, high cost efficiency can successfully
compensate for this inconvenience.
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Our demonstration data, the Province’91 population, appeared restrictive for a
thorough demonstration of cluster sampling and was thus used for illustrating the
basic principles of sampling and estimation in one-stage and two-stage designs.
In large-scale surveys, there are usually a large number of clusters both in the
population and in the sample. Moreover, the population of clusters can be stratified,
and sampling can be achieved using several stages. In the analysis of such data,
ratio-type estimators with approximative variance estimators are usually used in
the estimation. These topics will be considered in detail in Chapter 5.

Cluster sampling is discussed in most textbooks on survey sampling. As further
reading, Kish (1965), Lohr (1999), Levy and Lemeshow (1991) and Snijders and
Bosker (2002) can be recommended, covering introductory, advanced and more
theoretical topics on cluster sampling.

3.3 MODEL-ASSISTED ESTIMATION

Introduction

In the techniques discussed so far, auxiliary information of the population elements
is used in the sampling phase to attain an efficient sampling design. We now turn
to a different way of utilizing auxiliary information. Our aim is to introduce
estimators that can be used for the selected sample to obtain better estimates of the
parameters of interest, relative to the estimates calculated with estimators based
on the sampling design used.

Let us assume that appropriate auxiliary data are available from the population
as a set of auxiliary variables. Of these variables, some might be categorical
and some continuous. Some auxiliary data are perhaps used for the sampling
procedure. Others can be used for improving efficiency; a way to do this is, for
example, to use an auxiliary variable z, which is related to our study variable y,
for a reduction of the design variance of the original estimator of the population
total of y. In Särndal et al. (1992), these techniques are discussed in the context
of model-assisted design-based estimation. Model-assisted estimation refers to the
property of the estimators that models such as linear regression are used in
incorporating the auxiliary information in the estimation procedure for the
finite-population parameters of interest, such as totals. Model-assisted estimation
should be distinguished from the multivariate survey analysis methods to be
discussed in Chapter 8. There, models are also used but for multivariate survey
analysis purposes.

In the following text, a brief review is given on model-assisted estimation.
More specifically, poststratification, ratio estimation and regression estimation are
considered. The methods are special cases of so-called generalized regression
estimators. All these methods are aimed at improving the estimation from a
given sample by using available auxiliary information from the population. This
can result in estimates closer to the true population value and a reduction in the
design variance of an estimator calculated from the sampled data.
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In model-assisted estimation, an auxiliary variable z, which is related to the
study variable y, is required. If this variable is categorical, the target population
U can be partitioned into subpopulations U1, . . . , Ug, . . . , UG according to some
classification principle. In poststratification, these subpopulations are called post-
strata. If the poststrata are internally homogeneous, this partitioning can capture
a great deal of the total variance of the study variable y, resulting in a decrease
in the design-based variance of an estimator. Moreover, poststratification can
be used to obtain more accurate point estimates and reduce the bias of sample
estimates caused by nonresponse.

The auxiliary variable z is often continuous. If it correlates strongly with the
study variable y, a linear regression model can be assumed with y as the dependent
variable and z as the predictor. This regression can be estimated from the observed
sample and used in the estimation of the original target parameter. For this, ratio
estimation and regression estimation can be used. By these methods, substantial
gains in efficiency and increased accuracy are often achieved.

To construct a model-assisted estimator, two kinds of weights are considered.
The preliminary weights are the usual sampling weights wk, which generally are
the inverses of the inclusion probabilities πk; these weights are extensively used
in this book. The other type of weights are called g weights and their values gk

depend both on the selected sample and on the chosen estimator. The product
w∗

k = gkwk gives new weights known as calibrated weights, which are used in
the model-assisted estimators. Thus, using calibrated weights, a model-assisted
estimator can be written as t̂cal =∑n

k=1 w∗
k yk. A property of the calibrated weights

is that for example for ratio estimation, the estimator t̂z,cal =∑n
k=1 w∗

k zk of the total
of the auxiliary z-variable reproduces exactly the known population total Tz. The g
weights and calibrated weights will be explicitly given for poststratification, ratio
estimation and regression estimation.

The basic principles of model-assisted estimation are most conveniently intro-
duced for SRSWOR, although natural applications in practical situations are often
under more complex designs. A further simplification is that only one auxiliary
variable is assumed. Also, this assumption can be relaxed if multiple auxiliary
variables are available as is assumed in discussing regression estimation. The
concept of estimation strategy will be used referring to a combination of the sam-
pling design and the appropriate estimator. The model-assisted strategies to be
discussed are shown in Table 3.12. In the design-based reference strategies, no
auxiliary information is used.

Poststratification

Poststratification can be used for improvement of efficiency of an estimator if
a discrete auxiliary variable is available. This variable is used to stratify the
sample data set after the sample has been selected. Recall from Section 3.1 that
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Table 3.12 Estimation strategies for population total.

Strategy
Auxiliary

information
Assisting

model

Design-based strategies
SRSWOR Not used None
SRSWR Not used None

Model-assisted strategies
Poststratification SRS*pos Discrete ANOVA
Ratio estimation SRS*rat Continuous Regression (no intercept)
Regression estimation SRS*reg Continuous Regression

stratification of the element population as part of the sampling design often gave a
gain in efficiency. This was achieved by an appropriate choice of the stratification
variables so that the variation in the study variable y within the strata would
be small. Poststratification has a similar aim. To avoid confusion with the usual
(pre)stratification, the population is partitioned into G groups that are called
poststrata.

To carry out poststratification, the sample data are first combined with the
appropriate auxiliary data obtained perhaps from administrative registers or
official statistics. Combining the sampled data with poststratum information and
the corresponding selection probabilities, we can proceed with the estimation in
basically the same way as if it were being done by ordinary (pre)stratification.
Certain differences exist, however. Because we are stratifying after the sample
selection or, more usually, after the data collection, we cannot assume any specific
allocation scheme. The sample size n is fixed but how it is allocated to the different
strata is not known until the sample is drawn. This property causes no harm to
the estimation of, for example, the total, but estimating of the variance of the total
estimator requires more attention.

The poststratified estimator for the total T of y is given by

t̂pos =
G∑

g=1

t̂g =
G∑

g=1

ng∑
k=1

w∗
gkygk, (3.20)

where t̂g = Ngyg is an estimator of the poststratum total Tg and Ng is the size of
the poststratum g. The poststratum weights are w∗

gk = ggkwgk, where the g weights

are ggk = Ng/N̂g with the estimated poststratum sizes in the denominator, and wgk

are the original sampling weights. The calculation of w∗
gk will be illustrated in

Example 3.9. The variance of t̂pos can be determined in various ways, depending
on how one uses the configuration of the observed sample. The configuration
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refers to how the actual poststratum sample sizes ng are distributed, and if this is
taken as given, the conditional variance is simply the same as the usual variance
for stratified samples:

Vsrs,con(t̂pos|n1, . . . , ng, . . . , nG) =
G∑

g=1

N2
g

(
1 − ng

Ng

)
S2

g

ng
, (3.21)

where the poststratum variances are given by S2
g =∑Ng

k=1(Ygk − Yg)
2/(Ng − 1).

By averaging (3.21) over all possible configurations of n, the unconditional variance
is obtained. This gives an alternative variance formula,

Vsrs,unc(t̂pos) =
G∑

g=1

N2
g

(
1 − E(ng)

Ng

)
S2

g

E(ng)
, (3.22)

where E(ng) is the expected poststratum sample size. This variance can be
approximated in various ways. One of the approximations is

Vsrs,unc(t̂pos)
.= N2

(
1 − n

N

)( 1
n

) G∑
g=1

(
Ng

N

)
S2

g +
(

1
n

) G∑
g=1

(
1 − Ng

N

)
S2

g


 .

(3.23)

The difference between the conditional and unconditional variances could be
considerable if the sample size is small. The corresponding variance estimators
v̂srs,con(t̂pos) and v̂srs,unc(t̂pos) are obtained by inserting ŝ2

g for S2
g , where ŝ2

g =∑ng

k=1(ygk − yg)
2/(ng − 1). For illustrative purposes, both variances Vsrs,con and

Vsrs,unc are estimated in the next example.

Example 3.10

Estimation with poststratification. The sample used is drawn with SRSWOR
from the Province’91 population in Section 2.3 (see Example 2.1). The sample
is poststratified according to administrative division of the municipalities into
urban and rural municipalities. The target population contains N1 = 7 urban and
N2 = 25 rural municipalities. The two poststrata have the value 1 for urban and 2
for rural municipalities.

In Table 3.13, the sample information used for the estimation with poststratifi-
cation is displayed.

Let us consider more closely the estimation of the total T. The poststratum
totals of UE91 estimated from the table are t̂1 = N1y1 = 7 × 1868 = 13 076 and
t̂2 = N2y2 = 25 × 201.2 = 5030. Using these estimates, the poststratified estimate
for T is t̂pos = t̂1 + t̂2 = 18 106.
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Alternatively, the total estimate t̂pos can be calculated using the poststratum
weights w∗

k . To calculate w∗
k , the original sampling weights wk should be adjusted

by the sample dependent gk weights. For this, first the estimate of the poststratum
size is determined. Denoting by wgk the original element weight of a sample element
that belongs to the poststratum g, an estimate for poststratum size N̂g is given
by summing up these original weights. Then, the corresponding g weight for an
element k in poststratum g is simply ggk = Ng/N̂g, where Ng is the exact size of the
poststratum g. For example, in Table 3.13, the original sampling weight under SRS
is wk = 4, or a constant for each population element. In the first poststratum, the
poststratum size is N1 = 7 and its estimated size is N̂1 = 4 + 4 + 4 = 12, because
there are three sampled elements in the first poststratum. Thus, the corresponding
g weight is g1k = N1/N̂1 = 7/12 = 0.5833. Finally, the poststratum weights are
given for the first poststratum by w∗

1k = g1k × w1k = 0.5833 × 4 = 2.3333. This
value turns out to be the same for all the sampled elements for the first poststratum
(urban municipalities). Using the poststratum weights, the estimate t̂pos will be
equal to that previously calculated.

Estimation results for the estimators of total and ratio are displayed in Table 3.14.
The original setting of sample identifiers remains, say STR = 1 and CLU = ID,
but the element weights are to be replaced by the poststratum weights, and
the sampling rate is 0.43 for the first poststratum and 0.20 for the second
poststratum. Original sampling weights are used and the sampling rate is 0.25
for both poststrata for estimation of unconditional variance. Note that this
procedure roughly approximates the formula given in (3.23). For comparison, the
design-based estimates t̂ and r̂ obtained under SRSWOR are included.

Table 3.13 A simple random sample drawn without replacement from the Province’91
population with poststratum weights.

Sample design identifiers Study variables
Poststratification

Element g Post.
STR CLU WGHT LABEL UE91 LAB91 POSTSTR WGHT WGHT

1 1 4 Jyväskylä 4123 33 786 1 0.5833 2.3333
1 4 4 Keuruu 760 5919 1 0.5833 2.3333
1 5 4 Saarijärvi 721 4930 1 0.5833 2.3333
1 15 4 Konginkangas 142 675 2 1.2500 5.0000
1 18 4 Kuhmoinen 187 1448 2 1.2500 5.0000
1 26 4 Pihtipudas 331 2543 2 1.2500 5.0000
1 30 4 Toivakka 127 1084 2 1.2500 5.0000
1 31 4 Uurainen 219 1330 2 1.2500 5.0000

Sampling rate for calculation of unconditional variance: 8/32 = 0.25
Sampling rates for calculation of conditional variance:

Stratum 1 (Urban) = 3/7 = 0.43
Stratum 2 (Rural) = 5/25 = 0.20
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Table 3.14 Poststratified estimates from a simple random sample drawn
without replacement from the Province’91 population.

(1) Poststratified estimates (conditional)

Statistic Variables Estimate s.e c.v deff

Total UE91 18 106 6014 0.33 0.33
Ratio UE91, LAB91 12.97% 0.45% 0.03 0.59

(2) Poststratified estimates (unconditional)

Statistic Variables Estimate s.e c.v deff

Total UE91 18 106 7364 0.41 0.50
Ratio UE91, LAB91 12.97% 0.49% 0.03 0.70

(3) Design-based estimates

Statistic Variables Estimate s.e c.v deff

Total UE91 26 440 13 282 0.50 1.00
Ratio UE91, LAB91 12.78% 0.41% 0.03 1.00

The comparison shows how poststratification affects point estimates. The big
gain is obtained when estimating the population total. The estimate of the num-
ber of unemployed is t̂pos = 18 106, which is closer to the true value T = 15 098
than the design-based estimate t̂ = 26 440. The ratio estimate changes only
slightly.

The reason for a more accurate estimate for the total is obvious. Under
SRSWOR, one should have drawn urban and rural municipalities approximately
by their respective proportions: (8/32) × (7) ≈ 2 towns and (8/32) × (25) ≈ 6
rural municipalities. The urban municipalities have larger populations and
unemployment figures. If by chance they are over-represented in the sample,
then the design-based estimator will overestimate the population total. But
poststratification can correct (at least partially) skewnesses. Therefore, we could
also get a point estimate closer to its true value.

Poststratification can also improve efficiency. Again, this is true especially
for the total. The estimated variance of t̂pos under the conditional assumption
is reduced to one-third when compared with the pure design-based estimate
t̂, which is indicated by deff = 0.33. If the unconditional variance is used as
a basis, then deff = 0.50. The unconditional variance estimate is greater than
the conditional variance estimate, because the poststratum sample sizes ng are
by definition random variables whose variance contribution increases the total
variance.
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Ratio Estimation of Population Total

The estimation of the population total T of a study variable y was considered
previously under poststratification using the sample data and a discrete auxiliary
variable. Ratio estimation can also be used to improve the efficiency of the estimation
of T, if a continuous auxiliary variable z is available. The population total Tz and
the n sample values zk of z are required for this method. Such information
can often be obtained from administrative registers or official statistics. This
information can be used to improve the estimation of T by first calculating
the sample estimator r̂ = t̂/t̂z of the ratio R = T/Tz and multiplying r̂ by the
known total Tz. Ratio estimation of the total can be very efficient if the ratio
Yk/Zk of the values of the study and auxiliary variables is nearly constant across
the population.

Ratio estimators are usually effective but slightly biased. Because of bias, the
mean squared error (MSE) could be used instead of the variance when examining
the sampling error. It has been shown that the proportional bias of a ratio
estimator is 1/n and so becomes small when the sample size increases. Thus, the
variance serves as an approximation to the MSE in large samples. The properties
of ratio estimators have been studied widely in classical sampling theory.

Let us consider ratio estimation of the total T of y under simple random sampling
without replacement. We are interested in a ratio-estimated total given by

t̂rat = r̂ × Tz =
n∑

k=1

w∗
k yk, (3.24)

where r̂ = t̂/t̂z = Ny/Nz =∑n
k=1 yk/

∑n
k=1 zk and Tz is the population total of the

auxiliary variable z. The calibrated weights are w∗
k = gkwk = (Tz/t̂z)wk.

In the estimator (3.24), r̂ is a random variable and the total Tz is a constant.
Thus, the variance of t̂rat can be written simply as Vsrs(t̂rat) = T2

z × Vsrs(r̂). If the
SRSWOR design variance of the estimator r̂ of a ratio (equation (2.9)) is introduced
here, an approximative variance of the ratio-estimated total is given by

Vsrs(t̂rat)
.= N2

(
1 − n

N

)( 1
n

) N∑
k=1

(Yk − R × Zk)
2

N − 1
, (3.25)

whose estimator is given by

v̂srs(t̂rat) = N2
(

1 − n
N

)( 1
n

) n∑
k=1

(yk − r̂zk)
2

n − 1
. (3.26)

By studying the sum of squares in the variance equation (3.25), it is possible to
find the condition under which ratio estimation results in an improved estimate

TLFeBOOK



94 Further Use of Auxiliary Information

of a total. The total sum of squares can be decomposed as follows:

N∑
k=1

(Yk − R × Zk)
2/(N − 1) =

N∑
k=1

[(Yk − Y) − R(Zk − Z)]2/(N − 1)

=
N∑

k=1

[(Yk − Y)2 − R2(Zk − Z)2

− 2R(Yk − Y)(Zk − Z)]/(N − 1)

= S2
y + R2S2

z − 2RρyzSySz,

where ρyz is the finite-population correlation coefficient of the variables y and z.
Consider the difference

Vsrs(t̂) − Vsrs(t̂rat) = N2
(

1 − n
N

)( 1
n

)
{S2

y − [S2
y + R2S2

z − 2RρyzSySz]}.

The ratio estimator improves efficiency if Vsrs(t̂) > Vsrs(t̂rat), which occurs when

R2S2
z < 2RρyzSzSy

is valid or
2ρyz >

RSz

Sy
.

It should be noted that R = Y/Z, and that the former condition expressed in terms
of coefficients of variation (C.V) of the variables z and y is given by

ρyz >

(
1
2

)
C.Vy

C.Vz
,

where C.Vy = Sy/Y and C.Vz = Sz/Z are the coefficients of variation of y and
z respectively. Therefore, improvement in efficiency depends on the correlation
between the study and auxiliary variables y and z and the C.V of each variable.

Example 3.11

Efficiency of a ratio-estimated total in the Province’91 population. The variable
UE91 is the study variable y and HOU85 is chosen as the auxiliary variable z.
The correlation coefficient between UE91 and HOU85 is ρyz = 0.9967, and the
corresponding coefficients of variation are C.Vy = Sy/Y = 743/472 = 1.57 and
C.Vz = Sz/Z = 4772/2867 = 1.66. Thus, the condition given above is valid since

ρyz = 0.9967 > 0.4729 = 1
2

× 1.57
1.66

.
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It can be seen that the ratio estimation improves the efficiency. The improvement
can also be measured directly as a design effect. In addition to the parameters
given, the ratio R = Y/Z = 472/2867 = 0.1646 is required. The value of the design
effect of the ratio-estimated total t̂rat in the Province’91 population is given by

DEFFsrs(t̂rat) = S2
y + R2S2

z − 2RρyzSySz

S2
y

= 7432 + 0.16462×47722 − 2×0.1646×0.9967×743×4772
7432

= 0.0102

which is close to 0. This substantial improvement in efficiency is due to the
favourable relationship between UE91 and HOU85 such that the ratio Yk/Zk is
nearly constant across the population.

The ratio-estimated total is in practice calculated using the available survey
data under the actual sample design. If the design is, say, stratified SRS, the
corresponding parameters would be estimated by using appropriate stratum
weights. The present example was evaluated under simple random sampling
without replacement, which will also be used in the following example. There, the
use of g weights will also be illustrated.

Example 3.12

Calculating a ratio-estimated total from a simple random sample drawn without
replacement from the Province’91 population. Again we use UE91 as the study
variable and HOU85 as the auxiliary variable. The estimated ratio is r̂ = y/z =
0.1603, which is calculated from the sample in Table 3.15. The sample identifiers
are STR = 1, ID is the cluster identifier, and the weight is WGHT = 4.

Table 3.15 A simple random sample drawn without replacement from the Province’91
population prepared for ratio estimation.

Sample design identifiers
Element Study var. Aux. var. g Adj.

STR CLU WGHT LABEL UE91 HOU85 WGHT WGHT

1 1 4 Jyväskylä 4123 26 881 0.5562 2.2248
1 4 4 Keuruu 760 4896 0.5562 2.2248
1 5 4 Saarijärvi 721 3730 0.5562 2.2248
1 15 4 Konginkangas 142 556 0.5562 2.2248
1 18 4 Kuhmoinen 187 1463 0.5562 2.2248
1 26 4 Pihtipudas 331 1946 0.5562 2.2248
1 30 4 Toivakka 127 834 0.5562 2.2248
1 31 4 Uurainen 219 932 0.5562 2.2248

Sampling rate: 8/32 = 0.25.
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To carry out ratio estimation of the total, the calibrated weights w∗
k are

first calculated. The sampling weight wk is a constant wk = N/n = 32/8 = 4 as
before. The values of the g weight are gk = Tz/t̂z. The population total of the
auxiliary variable is Tz = 91 753 and its estimate calculated from the sample is
t̂z = 164 952. Thus, the g weight is the constant gk = 91 753/164 952 = 0.5562.
Multiplying the weight wk by the g weight gives the value for the calibrated weight
w∗

k = 4 × 0.5562 = 2.2248.
The ratio estimate for the total is calculated as

t̂rat =
n∑

k=1

w∗
k yk = r̂ × Tz = 0.1603 × 91 753 = 14 707,

which is much closer to the population total T = 15 098 than the SRSWOR
estimate t̂ = 26 440 for the total number of unemployed. The variance estimate
for the total estimator is

v̂srs(t̂rat) = 322 (1 − 0.25)
8

× 912 = 8922.

The corresponding deff estimate is

deffsrs(t̂rat) = v̂srs(t̂rat)

v̂srs(t̂)
= 8922/13 2822 = 0.0045,

which also shows that ratio estimation improves the efficiency. The minimal
auxiliary information of the population total Tz and the sample values of z yield
good results.

It is also possible to calculate the DEFF when using the ratio-estimated total
since the variance Vsrs(t̂rat) is

Vsrs(t̂rat)
.= N2

(
1 − n

N

)( 1
n

) N∑
k=1

(Yk − R × Zk)
2

(N − 1)

= 322 (1 − 0.25)
8

× 752 = 7362.

Division by the corresponding SRSWOR design variance of t̂ gives

DEFFsrs(t̂rat) = Vsrs(t̂rat)

Vsrs(Ny)
= 7362/72832 = 0.0102,

which is the same figure presented previously in Example 3.11.
For these data, ratio estimation considerably improves efficiency and brings

the point estimate for the total close to its population value. The value of the
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ratio estimator is based on the fact that across the population, the ratio Yk/Zk

remains nearly constant. It should be noted that even a high correlation between
the variables does not guarantee this, because the ratio estimator assumes that
the regression line of y and z goes near the origin. Thus, an intercept term is
not included in the corresponding regression equation. The ratio estimator may
therefore be unfavourable if the population regression line intercepts the y-axis
far from the origin, even if the correlation is not close to zero. For these situations,
the method presented next would be more appropriate.

Regression Estimation of Totals

Regression estimation of the population total T of a study variable y is based on
the linear regression between y and a continuous auxiliary variable z. The linear
regression can, for example, be given by EM(yk) = α + β × zk with a variance
VM(yk) = σ 2, where yk are independent random variables with the population
values Yk as their assumed realizations, α, β and σ 2 are unknown parameters,
Zk are known population values of z, and EM and VM refer respectively to the
expectation and variance under the model. The finite-population analogues of
α and β, denoted respectively by A and B, are estimated from the sample using
weighted least squares estimation so that the sampling design is properly taken
into account. It is immediately obvious that multiple auxiliary variables can also
be incorporated in the model. Note that the model assumption introduces a new
type of randomness; in the estimation considered previously, the sample selection
was the only source of random variation.

We consider the basic principles of regression estimation for SRS without
replacement using the above regression model with a single auxiliary variable.
The finite-population quantities A and B are estimated by the ordinary least
squares method giving b̂ = ŝyz/ŝ2

z as an estimator of the slope B and â = y − b̂z as
an estimator of the intercept A. Using the estimator b̂, the regression estimator of
the total T of y is given by

t̂reg = N(y + b̂(Z − z)) = t̂ + b̂(Tz − t̂z) (3.27)

where t̂ = Ny is the SRSWOR estimator of T, t̂z = Nz is the SRSWOR estimator of
Tz and Z = Tz/N. Alternatively, if transformed values z∗

k = Z − zk are used in the
regression instead of zk, an estimated intercept for this model is â∗ = â + b̂Z giving
t̂reg = Nâ∗, because (3.27) can be written also as t̂reg = Nâ + b̂Tz. Note that the
regression estimation of the total T presupposes only knowledge of the population
total Tz and the sample values zk of the auxiliary variable z.

Regression estimators constitute a wide class of estimators. For example, the
previous ratio estimator t̂rat = r̂Tz is a special case of (3.27) such that the intercept
A is assumed 0 and the slope B is estimated by b̂ = r̂ = t̂/t̂z.
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Alternatively, we can calculate calibrated weights w∗
k = wk × gk where wk is

the sampling weight and the g weight is calculated from

gk = N

N̂


1 + Z − z

n − 1
n

ŝ2
z

× (zk − z)


 ,

where Z is the population mean and z is the sample mean of the auxiliary variable
z, the sum of the sampling weights is

∑n
k=1 wk = N̂ and

ŝ2
z =
∑n

k=1(zk − z)2

n − 1
.

The weights gk and calibrated weights w∗
k are presented under the model EM(yk) =

α + β × zk in Table 3.16 for an SRSWOR sample from the Province’91 Population.
A regression estimate for the population total thus is the calibrated weight w∗

k
multiplied by the observed value yk and summed-up over all sample elements. The
regression estimator given in (3.27) can thus also be expressed as t̂reg =∑n

k=1 w∗
k yk.

An approximate design variance of t̂reg under SRSWOR is given by

Vsrs(t̂reg)
.= N2

(
1 − n

N

)( 1
n

)
S2

E, (3.28)

where S2
E =∑N

k=1(Ek − E)2/(N − 1), Ek = Yk − Ŷk and E =∑N
k=1 Ek/N is the

mean of population residuals. The fitted values Ŷk = A + B × Zk are calculated
from the population values. An approximate estimator of the design variance of
t̂reg under SRSWOR design is given by substituting S2

E by an estimate ŝ2
ê =∑n

k=1(êk − ê)2/(n − 1), where êk = yk − ŷk and ê =∑n
k=1 êk/n. Fitted values ŷk =

â + b̂ × zk are calculated from the sample values. An alternative, more conserva-
tive estimator, which uses g-weights is given by

ν̂srs(t̂reg) = N2
(

1 − n
N

)( 1
n

)(
n − 1
n − p

)
× ŝ2

ê∗ , (3.29)

where ŝ2
ê∗ =∑n

k=1(ê∗
k − ê

∗
)2/(n − 1), ê∗

k = gk × êk, ê
∗ =∑n

k=1 ê∗
k/n and p is the

number of estimated model parameters.
The improvement gained in regression estimation, as compared to the cor-

responding simple-random-sampling estimators, depends on the value of the
finite-population correlation coefficient ρyz = Syz/(SySz) between the variables y
and z. This can be seen by writing the approximate variance (3.28) in the form

Vsrs(t̂reg)
.= N2

(
1 − n

N

)( 1
n

)
S2

y(1 − ρ2
yz). (3.30)
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It will be noted that the value of the correlation coefficient has a decisive influence
on the possible improvement of the regression estimation. If ρyz is zero, the
variance of the regression estimator t̂reg equals that of the SRSWOR counterpart
t̂. But with a nonzero correlation coefficient, the variance obviously decreases.

Under certain conditions, the regression estimator of a total is more efficient than
the ratio estimator. This will be demonstrated below by considering the variances
of the SRSWOR estimator, the ratio estimator and the regression estimator. Simple
random sampling without replacement is assumed, and the constant (c) given in
the formulae represents c = N2(1 − (n/N))(1/n) The variances are

Design-based estimator Vsrs(t̂) = cS2
y

Ratio estimator Vsrs(t̂rat) = c(S2
y + R2S2

z − 2RρyzSySz)

Regression estimator Vsrs(t̂reg) = cS2
y(1 − ρ2

yz)

Studying the relationship between the regression coefficient B and the ratio
R = T/Tz will reveal the condition where the regression-estimated total is more
efficient than the ratio-estimated total. To find this condition, the difference
between the two variances is

Vsrs(t̂rat) − Vsrs(t̂reg) = c[(S2
y + R2S2

z − 2RρyzSySz) − S2
y + ρ2

yzS2
y]

= c[(R2S2
z − 2RρyzSySz) + ρ2

yzS2
y].

Regression estimation is more efficient if the difference is positive:

R2S2
z − 2RρyzSySz + ρ2

yzS2
y > 0.

The condition can be rewritten as

−ρ2
yzS2

y− < R2S2
z − 2RρyzSySz.

By dividing the inequality above by S2
z and inserting ρyz = Syz/SySz and B =

Syz/S2
z , gives

−B2 < R2 − 2RB.

Regression estimation, then, is more efficient than ratio estimation if

(B − R)2 > 0.

Thus the squared difference between the finite-population regression coefficient
and the ratio determines when the regression estimation is more efficient.

Regression estimation can also be applied using a multiple regression model
as the assisting model. We postulate a linear regression model between the
study variable y and p continuous auxiliary variables z1, z2, . . . , zp, given by
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yk = α + β1z1k + β2z2k + · · · + βpzpk + εk, where α refers to the intercept and
βj, j = 1, . . . , p, are the slope parameters, and εk is the residual. For multiple
regression estimation, we assume that the population totals Tz1, Tz2, . . . , Tzp are
known for each auxiliary variable. They can come from some source outside
the survey, such as published official statistics. The regression estimator of the
population total T of y is now given by

t̂reg = t̂ + b̂1(Tz1 − t̂z1) + b̂2(Tz2 − t̂z2) + · · · + b̂p(Tzp − t̂zp), (3.31)

where the estimated regression coefficients b̂1, b̂2, . . . , b̂p are obtained from the
sample data set using weighted least squares estimation with wk = 1/πk as
the weights. The estimators t̂ and t̂zj, j = 1, . . . , p, refer to Horvitz–Thompson
estimators.

A different form, often referred to as the generalized regression (GREG) estimator
(Särndal et al. 1992) is given by

t̂reg =
N∑

k=1

ŷk +
n∑

k=1

wk(yk − ŷk), (3.32)

where ŷk = â + b̂1z1k + b̂2z2k + · · · + b̂pzpk are fitted values calculated using the
estimated regression coefficients and the known values of z-variables. Note
the difference between (3.31) and (3.32). In the former we only need to know the
population totals of the auxiliary z-variables, but in the latter, the individual values
of z-variables are assumed known for every population element (because the first
summation is over all N population elements). Thus, (3.32) requires more detailed
information on the population than (3.31). Micro-level auxiliary z-data may indeed
be available, for example, in a statistical infrastructure where population census
registers or similar statistical registers, compiled from various administrative
registers, are used as sampling frames. In this case, the frame population often
includes the necessary auxiliary z-data at a micro-level (see Chapter 6).

Let us consider the expression (3.32) for a multiple regression estimator in
more detail. It is obvious that if the weights are equal for all sample elements,
and ordinary least squares estimation had been used for a model that includes
an intercept, then the latter part of (3.32) vanishes, and the regression estimate
reduces to the sum of the fitted values over the population. This is the case for a
self-weighting design such as simple random sampling. But if the weights vary
between elements, then the sum of weighted residuals can differ from zero, as can
happen for example in stratified SRS with non-proportional allocation. In such
cases, the latter part of (3.32) serves as a bias adjustment factor protecting against
model misspecification.

Under SRSWOR, an approximate design variance given in (3.28) can be applied
by using the fitted values Ŷk = A + B1Z1k + · · · + BpZpk. A variance estimator is
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obtained by replacing Ŷk by sample-based fitted values ŷk = â + b̂1z1k + · · · + b̂pzpk.
An alternative variance estimator is calculated as

ν̂srs(t̂reg) = ν̂srs(t̂)(1 − R̂2), (3.33)

where the multiple correlation coefficient squared R̂2 is calculated for the sample
data set. Because this term is always non-negative, the multiple regression
estimator is always at least as efficient as simple random sampling without
replacement. Efficiency improves when multiple auxiliary z-data that correlates
with the study variable y are incorporated in the estimation procedure.

In the next example, we compute a regression-estimated total from a sample
data set, first in a single auxiliary variable case and then in the context of multiple
regression estimation.

Example 3.13

Single Auxiliary Variable
Regression estimation of the total in the Province’91 population. The previously
selected simple random sample is used. There, the study variable UE91 is regressed
with the auxiliary variable HOU85. We conduct regression estimation in two ways,
resulting in equal estimates. HOU85 is first used as the predictor and an estimate
t̂reg is computed using the estimated slope b̂. In Table 3.16, the sample identifiers
correspond to the SRSWOR case, and the sampling rate is, as previously, 0.25.

Using UE91 as the dependent variable and HOU85 as the predictor, the slope is
estimated as b̂ = 0.152, giving

t̂reg = t̂ + b̂(Tz − t̂z) = 26 440 + 0.152(91 753 − 164 952) = 15 312.

Table 3.16 A simple random sample drawn without replacement from the Province’91
population prepared for regression estimation.

Auxiliary information

Sample design identifiers
Element Study var. Variable Model

WGHT

STR CLU WGHT LABEL UE91 HOU85 group g-weight w∗-weight

1 1 4 Jyväskylä 4123 26 881 1 0.2844 1.1378
1 4 4 Keuruu 760 4896 1 1.0085 4.0341
1 5 4 Saarijärvi 721 3730 1 1.0469 4.1877
1 15 4 Konginkangas 142 556 1 1.1057 4.6058
1 18 4 Kuhmoinen 187 1463 1 1.1216 4.4863
1 26 4 Pihtipudas 331 1946 1 1.1391 4.4227
1 30 4 Toivakka 127 834 1 1.1423 4.5691
1 31 4 Uurainen 219 932 1 1.1515 4.5562

Sampling rate = 8/32 = 0.25.
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The same point estimate is obtained using the calibrated weights by calcu-
lating t̂reg =∑8

k=1 w∗
k yk = 15 312 (see Table 3.16). For variance estimation, the

formula (3.29) or (3.33) can be used. The former gives a conservative estimate
especially if the sample size is small as is the case here. Thus, by (3.29) we obtain

ν̂srs(t̂reg) = N2
(

1 − n
N

)( 1
n

)(
n − 1
n − p

)
× ŝ2

ê∗

= 322
(

1 − 8
32

)(
8 − 1
8 − 2

)(
1
8

)
× 61.242 = 6482.

The corresponding design-based total estimate obtained under SRSWOR was
t̂ = 26 440, whose standard error was 13 282. Therefore, the deff estimate is
deff = 6482/13 2822 = 0.002, which is almost zero and is persuasive evidence
of the superiority of regression estimation over design-based estimation for the
present estimation problem. Improved efficiency is due to the strong linear
relationship between UE91 and HOU85.

Multiple Regression Model
Multiple regression estimation of the total in the Province’91 population. Here,
the study variable UE91 is regressed with two auxiliary variables, HOU85 and
a variable named URB85 with a value 1 for urban municipalities and zero
otherwise (see Table 2.1). We use both the formula (3.31) and the GREG method
with equation (3.32). First, the estimated regression coefficients b̂1 and b̂2 are
calculated by fitting a two-predictor regression model for the sample data set
of n = 8 municipalities, as given in Table 3.16. The estimates are b̂1 = 0.14956
and b̂2 = 68.107. The estimated totals of auxiliary variables are t̂z1 = 164 952,
as previously, and t̂z2 = 12. In addition, we use the known population totals
Tz1 = 91 753 and Tz2 = 7. Using (3.31), we obtain

t̂reg = t̂ + b̂1(Tz1 − t̂z1) + b̂2(Tz2 − t̂z2)=26 440 + 0.14956 (91 753 − 164 952)

+ 68.107 (7 − 12) = 15 152.

Using (3.32), we first calculate the fitted values for all population elements. The
sum of the fitted values over the population provides the desired regression
estimate. The GREG estimation procedure is summarized in Table 3.17. There also,
the estimate 15 152 can be obtained. Note that in the SRSWOR case in which the
sampling weights are equal, the sum of the residuals over the sample data set is
equal to zero.

Calculating the multiple correlation coefficient squared R̂2 = 0.998 for the
sample data set, we obtain the variance estimate of t̂reg by (3.33), v̂(t̂reg) = 5692,
which is smaller than in the previous case where HOU85 was used as the only
auxiliary variable. There, an estimate v̂(t̂reg) = 6482 was obtained. Hence, multiple
regression estimation appeared to be slightly more efficient in this case. The design
effect estimate is now deff = 5692/13 2822 = 0.0018.
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Table 3.17 Population frame merged with sample data for multiple regression estimation.
Simple random sample drawn without replacement from the Province’91 population.

Population frame Sample Model fitting

ID
k LABEL

URB85
z1k

HOU85
z2k

Sample
indicator

WGHT
wk

UE91
yk

Fitted
value ŷk

Residual
êk

1 Jyväskylä 1 26 881 1 4 4123 4118.15 4.85
2 Jämsä 1 4663 0 . . . . . . 795.27 . . .

3 Jämsänkoski 1 3019 0 . . . . . . 549.40 . . .

4 Keuruu 1 4896 1 4 760 830.12 −70.12
5 Saarijärvi 1 3730 1 4 721 655.73 65.27
6 Suolahti 1 2389 0 . . . . . . 455.18 . . .

7 Äänekoski 1 4264 0 . . . . . . 735.60 . . .

8 Hankasalmi 0 2179 0 . . . . . . 355.66 . . .

9 Joutsa 0 1823 0 . . . . . . 302.42 . . .

10 J:kylä mlk. 0 9230 0 . . . . . . 1410.20 . . .

11 Kannonkoski 0 726 0 . . . . . . 138.36 . . .

12 Karstula 0 1868 0 . . . . . . 309.15 . . .

13 Kinnula 0 675 0 . . . . . . 130.73 . . .

14 Kivijärvi 0 634 0 . . . . . . 124.60 . . .

15 Konginkangas 0 556 1 4 142 112.93 29.07
16 Konnevesi 0 1215 0 . . . . . . 211.49 . . .

17 Korpilahti 0 1793 0 . . . . . . 297.93 . . .

18 Kuhmoinen 0 1463 1 4 187 248.58 −61.58
19 Kyyjärvi 0 672 0 . . . . . . 130.28 . . .

20 Laukaa 0 4952 0 . . . . . . 770.39 . . .

21 Leivonmäki 0 545 0 . . . . . . 111.29 . . .

22 Luhanka 0 435 0 . . . . . . 94.83 . . .

23 Multia 0 925 0 . . . . . . 168.12 . . .

24 Muurame 0 1853 0 . . . . . . 306.91 . . .

25 Petäjävesi 0 1352 0 . . . . . . 231.98 . . .

26 Pihtipudas 0 1946 1 4 331 320.82 10.18
27 Pylkönmäki 0 473 0 . . . . . . 100.52 . . .

28 Sumiainen 0 485 0 . . . . . . 102.31 . . .

29 Säynätsalo 0 1226 0 . . . . . . 213.13 . . .

30 Toivakka 0 834 1 4 127 154.51 −27.51
31 Uurainen 0 932 1 4 219 169.16 49.84
32 Viitasaari 0 3119 0 . . . . . . 496.25 . . .

Sum 7 91 753 8 32 6610 15 151.98 0.00

. . .Nonsampled element.

Regression estimation was illustrated in simple cases where one or two auxiliary
variables were used and SRSWOR was assumed. The method can also be applied
for more complex designs, and multiple auxiliary variables can be incorporated
in the estimation. For this, weighted least squares regression can also be used.
Although the use of multivariate regression models for regression estimation
is technically straightforward, there are certain complexities when compared
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to regression estimation under simple random sampling, such as the possible
multicollinearity of the predictor variables. Another generalization is also obvious
since discrete covariates can also be incorporated into a linear model. Using this
kind of auxiliary variables for regression estimation leads to analysis-of-variance-
type models. Further extensions are discussed in Chapter 6 in connection with the
estimation for population subgroups.

Comparison of Estimation Strategies

For model-assisted estimation, we created three sets of new weights, denoted w∗.
First, we check the calibration property of these weights. For ratio estimation, the
calibration equation for the auxiliary variable z is

n∑
k=1

w∗
k × zk = Tz

where Tz =∑N
k=1 Zk = 91 753. This holds for the regression estimator as well.

We next compare the model-assisted estimation results obtained previously
from a sample drawn with SRSWOR from the Province’91 population. More
specifically, poststratification, ratio estimation and regression estimation results
for the population total T of UE91 are compared. The design-based estimate using
the standard SRS formula is also included (see Table 3.18). The known population
total T = 15 098 of UE91 is the reference figure.

Two obvious conclusions can be drawn. Firstly, point estimates calculated using
auxiliary information are closer to the population total than the design-based
estimate. Secondly, the model-assisted estimators are much more efficient than
SRSWOR.

The poststratified estimator uses, as discrete auxiliary information, the admin-
istrative division of municipalities into urban and rural municipalities. Improved

Table 3.18 Estimates for the population total of UE91 under different estimation strategies:
an SRSWOR sample of eight elements drawn from the Province’91 population.

Estimation strategy Estimator Estimate s.e deff

Desing-based

SRSWOR t̂srswor 26 440 13 282 1.0000
SRSWR t̂srswr 26 440 15 095 1.2917

Design-based model-assisted

Poststratified estimator t̂pos 18 106 6021 0.3323
Ratio estimator t̂rat 14 707 892 0.0045
Regression estimator one z-variable t̂reg,1 15 312 648 0.0020

two z-variables t̂reg,2 15 152 569 0.0018
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estimates result, since this division is in relation to the variation of the study
variable in such a way that the variation of unemployment figures is smaller in
the poststrata than in the whole population. But the relation is not as strong as
that between UE91 and the continuous auxiliary variable HOU85, the number of
households. This can be seen from the ratio and regression estimation results.
Because ratio estimation assumes that the regression line of UE91 and HOU85
goes through the origin, and this is not the case, regression estimation performs
slightly better than ratio estimation.

Summary

Using auxiliary information from the population in the estimation of a finite-
population parameter of interest is a powerful tool to get more precise estimates, if
the variation of the study variable has some strong relationship with an auxiliary
covariate. If so, efficient estimators can be obtained such that they produce
estimates close to the true population value and have a small standard error. The
auxiliary variable can be a discrete variable, in which case poststratification can
be used. If the covariate is a continuous variable, ratio estimation or regression
estimation is appropriate.

Model-assisted estimation is often used in descriptive surveys to improve the
estimation of the population total of a study variable of interest, whereas in
multi-purpose studies, where the number of study variables may be large, it may
be difficult to find good auxiliary covariates for this purpose. In such surveys,
however, poststratification is often used to adjust for nonresponse.

We have examined here the elementary principles of model-assisted estimation
supplemented with computational illustrations. For more details, the reader is
encouraged to consult Särndal et al. (1992); there, model-assisted survey sam-
pling covering poststratification, ratio estimation and regression estimation is
extensively discussed. These methods are considered as special cases of generalized
regression estimation which is used in many statistical agencies in the production
of official statistics (for example Estevao et al. 1995). A clear overview of poststrat-
ification can be found in Holt and Smith (1979). Further, as a generalization of
poststratification, Deville and Särndal (1992) and Deville et al. (1993) consider a
class of weights calibrated to known marginal totals. Silva and Skinner (1997)
address the problem of variable selection in regression estimation.

3.4 EFFICIENCY COMPARISON USING DESIGN EFFECTS

The design effect provides a convenient tool for the comparison of efficiency of
the estimation of the population parameter of interest under various sampling
designs. In this section, we summarize the findings on efficiency evaluations from
the preceding sections.
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Efficiency is derived by comparing the variance of an estimator with that
obtained under SRSWOR, and is measured as the population design effect (DEFF),
or as an estimated design effect (deff) calculated from the selected sample. We
previously evaluated the efficiency in three ways: (1) analytically, by deriving
the corresponding design variance formulae, (2) population-based, by calculating
from the small fixed population, the Province’91 population, the true value of
the design variances, and (3) sample-based, by estimating the design variances
from one realization of a sampling design applied to the Province’91 population.
Evaluation by these methods covered all the basic sampling techniques considered.
In the sample-based evaluation of the design effect using an estimated deff, we
considered the estimators of a total, a ratio and a median.

Let us consider first the evaluation of efficiency for the estimation of the total T
of a study variable y. The design effect is defined as a ratio of two design variances:
the actual variance Vp(s)(t̂∗) of an estimator t̂∗ of the total, reflecting properly the
sampling design, and the variance Vsrs(Ny) derived assuming SRSWOR, where
t̂∗ is the design-based estimator of the total under the design p(s) and Ny = t̂ is
the corresponding SRSWOR estimator. Note that the two estimators of the total
may be different, and the same sample size is assumed as for the actual sampling
design. The DEFF is thus

DEFFp(s)(t̂∗) = Vp(s)(t̂∗)/Vsrs(Ny) (3.34)

as defined in Section 2.1. The equation indicates that if DEFF > 1, then the actual
design is less efficient than SRSWOR; if DEFF is approximately 1, then the designs
are equally efficient; and if DEFF < 1, the efficiency of the actual design is superior
to SRSWOR.

Analytical Evaluation of Design Effect

The analytical evaluation of DEFF is possible if the population parameters in
the variance equations, such as the population variance S2, cancel out in the
formula of the design effect. For example, the design effect under simple random
sampling with replacement (SRSWR) can be calculated for a given sample size n
and population size N. Hence, we have DEFF = (N − 1)/(N − n) with the result
that the design effect for SRSWR is greater than or equal to 1. It is also sometimes
possible to identify conditions when the DEFF will be less than 1 and the actual
design will be more efficient than SRSWOR.

Analytical evaluation of the design effect for an estimator of a total is illustrated
for stratified simple random sampling, sampling with probabilities proportional to
a size measure, and cluster sampling. Systematic sampling is excluded because it
can be considered a special case of cluster sampling.

1. Stratified sampling with proportional allocation (STR) Factors affecting effi-
ciency under STR are the possible heterogeneity of separate strata and internal
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homogeneity within each stratum. The design effect for an estimator t̂∗ = t̂ of the
total T of the study variable y is

DEFFstr(t̂)
.=
∑H

h=1 WhS2
h

S2
, (3.35)

where S2
h are stratum variances and S2 is the population variance of y (see

Section 3.1). In stratified sampling, the DEFF is usually less than one, which
happens when the strata are internally homogeneous with respect to the variation
of the study variable, i.e. if the stratum variances are small.

2. Sampling with probability proportional to a measure of size (PPS) The value
of an auxiliary variable z measuring the size of a population element is required
from all the units in the population. Assuming that the population regression line
of y and z intercepts the y-axis near to the origin, an approximate equation of the
design effect of an estimator t̂ = t̂HT (the Horvitz–Thompson estimator) is given by

DEFFpps(t̂HT)
.= (1 − ρ2

yz), (3.36)

whereρyz is the finite-population correlation coefficient between the study variable
y and the size measure z (see Section 2.5). Given the above condition, if z is a good
size measure correlating strongly with y, a DEFF smaller than one is obtained.

3. Cluster sampling (CLU) The design effect under CLU depends on the value
of the intra-cluster coefficient ρint of the study variable y measuring inter-
nal homogeneity of the population clusters. Assuming equal-sized clusters, an
approximative equation of the design effect of an estimator t̂ is given by

DEFFclu(t̂)
.= 1 + (B − 1)ρint (3.37)

where B is the cluster size (see Section 3.2). Because in cluster sampling, the
clusters are usually internally homogeneous, resulting in a positive ρint, the
design effects tend to be greater than one.

To fully utilize the above formulae in planning a sampling design, it is necessary
to know the variation of the study variable in the population. In choosing a
sampling design, the planner would also need knowledge about the variation
at stratum and cluster levels, and information on the correlation of the study
variable and the size measure. In practice, however, this kind of information is
rarely available, but in some cases approximations can be taken from auxiliary
sources, or by carrying out a smaller pilot study.

Population Design Effects

We next perform a numerical evaluation of the population design effects for the
total by calculating the design variances by the corresponding formulae for the
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Table 3.19 Population DEFFs for a total estimator under various sampling
designs for the Province’91 population (fixed sample size n = 8).

Sampling design S.E DEFF

Sampling proportional to size (wr) PPS 720 0.01
Stratified sampling (power alloc.) STR 4852 0.44
Systematic sampling (random start) SYS 5420 0.55
Cluster sampling (two-stage) CLU2 6532 0.80
Cluster sampling (one-stage) CLU1 6663 0.84
Simple random sampling SRSWOR 7283 1.00

six sampling designs considered for the Province’91 population. The fixed sample
size is eight municipalities (n = 8) drawn from the population of 32 municipalities
(N = 32). The values of the population design effects are displayed in Table 3.19.

PPS sampling with probability proportional to a measure of size appears to be
the most efficient sampling design for the estimation of a total. The population
DEFF is 0.01, which is very small. Improved efficiency is due to the relationship
between UE91 and HOU85 (which was used as the size measure) such that the
ratio of these variables is nearly constant across the population. It should be
noted that the shape of the population distribution of the study variable UE91
also affects efficiency. The distribution of UE91 in the Province’91 population is
very skewed. However, under PPS, large selection probabilities are given for large
clusters, such that the possible samples drawn from the population will vary to
a rather small extent in their composition. Sample totals are thus not expected
to vary much from sample to sample and this leads to efficient estimation. For
improved efficiency, it is also beneficial if the study variable and the size measure
are strongly correlated. In the case considered, the correlation was close to one.

Stratified sampling also appears to be quite efficient for the estimation of a total
because the DEFF is 0.44, but the difference in favour of PPS is still noticeable.
The stratification divided the municipalities into urban and rural ones, and it
appeared that in urban municipalities there are more unemployed on average
than in rural municipalities. The strata were thus internally homogeneous, a
property that increases efficiency. The efficiency of systematic sampling is close
to the STR design. Since there is a monotonic trend in the sampling frame, intra-
class correlation becomes close to zero, leading to improved efficiency. Efficiency
of two-stage cluster sampling is somewhat less than that of SYS, and one-stage
cluster sampling is slightly less efficient than two-stage cluster sampling.

Sample Design Effects

The previous efficiency comparisons were theoretical in the sense that we consid-
ered the design variances at the population level. We next evaluate the efficiency

TLFeBOOK



Efficiency Comparison Using Design Effects 109

from a selected sample of size n = 8 units drawn from the Province’91 popula-
tion. We thus obtain an estimated design effect, calculated by the corresponding
variance estimates v̂p(s)(θ̂

∗) and v̂srs(θ̂), which for an estimator of a population
parameter θ is given by

deffp(s)(θ̂
∗) = v̂p(s)(θ̂

∗)
v̂srs(θ̂)

, (3.38)

where θ̂∗ is a design-based estimator of θ and θ̂ is the SRSWOR counterpart.
Using the sample deff (see Table 3.20), the efficiency of estimation under the

given sample obtained with the various sampling designs p(s) is compared for
the estimators t̂∗ (total), r̂∗ (ratio) and m̂∗ (median). There is a natural inter-
pretation for these estimators in the Province’91 population. The total measures
the total number of unemployed (UE91) in the province, the ratio measures the
unemployment rate, and the median gives an average number of unemployed per
municipality.

The deff estimates vary not only between the sampling designs but also between
the estimators for a given design. PPS and STR are the most efficient designs for
the total because the deff estimates are close to zero. For the ratio, PPS and STR
are superior to the others but have larger design effects than those calculated
for the total. For the median, the deff estimates are close to zero under SYS with
implicit stratification and under STR.

Summary

The design effect provides a practical tool for the evaluation of efficiency of an
estimator under a given sampling design. Using design effects, it is also possible
to compare the efficiency of different sampling designs. The design effect clearly
shows the effect of complex sampling relative to simple random sampling. Even for
a scalar-type estimator, the sampling design can affect the design effect in various
ways depending on the type of the estimator being considered. An estimator of

Table 3.20 The sample design effect estimates of the estimators of the total, the ratio and
the median under the six different sampling designs; the Province’91 population.

Sampling design deff(t̂∗) deff(r̂∗) deff(m̂∗)

Sampling proportional to size PPS 0.0035 0.19 0.92
Stratified sampling (power alloc.) STR 0.21 0.38 0.19
Systematic sampling (implicit str.) SYS 0.76 1.29 0.21
Cluster sampling (two-stage) CLU2 0.93 0.99 0.84
Cluster sampling (one-stage) CLU1 1.92 1.44 1.29
Simple random sampling SRSWOR 1.00 1.00 1.00
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a total is a linear-type estimator, a ratio estimator is a nonlinear estimator and
a median is a robust estimator of a mean. These represent the types of estimator
commonly used in statistical analysis. It is important to note that if an optimal
design were desired for a given estimator, say for the total, so as to minimize
its standard error, i.e. to produce a deff estimate close to zero, the optimality
criterion would not necessarily be fulfilled for another estimator. In our examples,
an estimator m̂ for median seemed to be almost untouched by the design effect.

Design effects can be successfully utilized in the analysis of complex survey data.
In the preceding sections, we used design effects mainly for descriptive purposes to
solve estimation problems concerning a small fixed population. In the following
chapters, we present several analytical situations and give further practical
examples of the use of design effects. There, estimation and testing problems are
considered for complex survey data from large populations. It will be shown,
for example, that using design effects (or their generalizations) it is possible to
estimate standard errors and calculate observed values of test statistics so that the
complexities of a sampling design are properly accounted for. For both descriptive
and analytical purposes, design effects can be obtained by using commercial
software for survey analysis. Moreover, design effects are good indicators of the
effects of complex sampling inherent in the computations. The papers by Kish and
Frankel (1974) and Kish (1995) are recommended as further reading on this topic.
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Handling Nonsampling
Errors

In the survey estimation methodology discussed so far, the only source of variation
has been the sampling error, which has been measured by the standard error
of an estimator. In addition to the sampling error, there are also other sources
of variation in surveys causing so-called nonsampling errors. In particular, these
errors can be present in large-scale surveys. Survey organizations make efforts to
minimize nonsampling errors occurring in the data-collection and data-processing
phases. A good coverage of the frame population, carefully planned and tested
measurement instruments, well-trained and motivated interviewers and well-
implemented fieldwork and data-processing operations can guarantee a high
response rate and minor measurement and processing errors and, thus, good total
survey quality.

The important types of nonsampling errors are nonresponse, coverage errors,
measurement errors and processing errors. Nonresponse implies that the intended
measurements have not been obtained from all sample units. Coverage errors
include the possible imperfections in the frame population. Measurement errors
describe the difference between the observed value and the true value of a study
variable. Processing errors cover such components as data entry and coding and
editing errors, which can occur when the collected survey data are transformed
to machine-readable form.

Nonsampling errors can cause biased estimation. Various techniques are
available for adjusting for this undesirable effect of nonsampling errors. In the
following two sections, we discuss in greater detail methods for adjusting for a
particular source of nonsampling error, namely that caused by nonresponse. We
will also demonstrate the adjusting for nonresponse by using the methods that
have been described in previous sections. This chapter will be closed by a summary
section covering a brief discussion on total survey quality. References for further
reading will also be given.

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84769-7
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Nonresponse

Failure to obtain all the intended measurements or responses from all the selected
sample members is called nonresponse. Nonresponse causes missing data, i.e. results
in a data set whose size for the study variable y is smaller than planned. Two
types of missing data are distinguished for a sample element. First, all intended
measurements for a selected sample element could be missing, e.g. owing to a
refusal to participate in a personal interview. The unit nonresponse has thus arisen,
because all values of study variables are missing for that sample element. On the
other hand, if an interviewed person does not respond to all of the questions, an
item nonresponse has arisen, because a measurement for at least one study variable
is missing for that element. Missing data of either type can give biased estimates
and erroneous standard error estimates.

To illustrate typical response rates in large-scale surveys organized by govern-
mental bodies, we summarize in Table 4.1 the response rates of six real large-scale
surveys used in this book (see Chapter 1). Response rate refers here to the share
of completed data-collection operations out of the total number of planned oper-
ations (usually, the share of completed interviews, or completed questionnaires,
of the total sample size), for a given type of sampling unit. In the multinational
PISA 2000 survey, the median of country-level response rates is presented owing
to heavy country-wise variation.

The figures indicate a clear variation in response rates between surveys. The
highest response rate is for the Mini-Finland Health Survey (96%) and the lowest
is for the Passenger Transport Survey (65%). There can be different reasons
for this variation: the attractiveness of the subject matter area of the survey,
effectiveness of the fieldwork or the data-collection mode chosen, just to mention
a few possibilities.

For example, in the Passenger Transport Survey (6), computer-assisted tele-
phone interviewing (CATI) was used. A problem in this case was the identification
of a phone number for every sampled unit, reducing possibilities for contact-
making and thus excluding some sampled units out of the interview. In the
two establishment surveys, (2) and (5), and in the PISA 2000 Survey (3), a

Table 4.1 Response rate in different surveys.

Name of the survey and section
where the survey is described

Sampling
unit

Sample
size

Response
rate (%)

(1) Mini-Finland Health Survey, Section 5.1 Person 8000 96
(2) Occupational Health Care Survey, Section 5.1 Establishment 1542 88
(3) PISA 2000 Survey, Section 9.4 School 6638 85
(4) Health Security Survey, Section 9.3 Household 6998 84
(5) Wages Survey, Section 9.2 Business firm 1572 80
(6) Passenger Transport Survey, Section 9.1 Person 18 250 65
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self-administered questionnaire was used. Paper and pencil interview provides a
traditional data-collection mode where trained interviewers contact the sample
units and was used successfully in (1) and (4).

Readers more interested in nonresponse issues are advised to consult the brief
technical descriptions included in each section in which the survey in ques-
tion is discussed. The methods are demonstrated further in the web extension
of the book.

The type of missing data, unit nonresponse or item nonresponse guides the
selection of an appropriate method for adjusting for the nonresponse in an
estimation procedure. Various reweighting methods are available for appropriate
adjustment for the unit nonresponse. And for the item nonresponse, the missing
values can be imputed by various imputation methods. Reweighting and imputa-
tion are discussed separately in the following two sections. Next, an example of a
possible unfavourable impact of unit nonresponse is shown.

Impact of Unit Nonresponse

Unit nonresponse results in a sample data set whose size n(r) is smaller than the
intended sample size n, thus increasing the standard errors of the estimates. This
can be seen by considering the variance of an estimator t̂HT of a population total
T. Under simple random sampling without replacement (SRSWOR), this variance
is Vsrs(t̂HT) = N2(1 − n/N)S2/n, where the denominator is the original sample
size n. If the number of respondents decreases because of unit nonresponse, the
denominator decreases, and thus the variance increases.

A more serious consequence of unit nonresponse is that the estimation can
become biased because of missing observations. This is particularly true if the
probability θk of the kth population unit to respond depends on the value Yk of the
study variable y. Little and Rubin (1987) call this nonignorable nonresponse. This
means that there is an association between the study variable and the probability to
respond. For example, if the probability of responding to income-related questions
decreases with increasing income level, then nonignorable nonresponse takes
place. On the other hand, nonresponse is ignorable if Yk is independent of θk. We
point out two trivial situations when this is true. This happens when the value
Yk of the study variable is a constant (Yk = Y) for each population unit or the
probability θk to respond is a constant θ for all k.

The following example concerns the effect of nonignorable nonresponse. As
an extreme case, let us suppose that in an interview survey, a certain subgroup
of the sample totally refuses to participate. In this case, the total population can
be divided into two subpopulations, one for the response group and one for the
nonresponse group, whose sizes are N1 and N2. After the fieldwork, all the sample
data available for the estimation come only from the first group, thus covering only
the response cases. Let the estimator for the total T be t̂HT(r) = N × y(r), where the
mean of the respondent data is y(r). Because all the respondents are from group
1, the expectation of the respondent mean y(r) equals, say Y1, the population

TLFeBOOK



114 Handling Nonsampling Errors

mean of that group. If the population group means are unequal or Y1 �= Y2, then
the estimator t̂HT(r)is a biased estimator for the population total T, since

BIAS(t̂HT(r)) = E(t̂HT(r)) − T = NY1 − (N1Y1 + N2Y2) = N2(Y1 − Y2) (4.1)

In practice, it is difficult to evaluate this bias. Although the subpopulation
size N2 could be roughly estimated, the subpopulation mean Y2 remains totally
unknown. Moreover, the mean squared error (MSE) should be examined instead
of the variance, where the MSE for an estimator t̂HT(r) of the total can be written as

MSE(t̂HT(r)) = Vp(s)(t̂HT(r)) + BIAS2(t̂HT(r)). (4.2)

A further inconvenience is that the variance of the estimated total will be underes-
timated. The bias due to unit nonresponse is illustrated in the following example.

Example 4.1

Unit nonresponse bias in the Province’91 population. Let us assume that the
southern municipalities were not able to complete the records for the unemployed
in time. These municipalities are Kuhmoinen, Joutsa, Luhanka, Leivonmäki
and Toivakka. The population of municipalities can thus be divided into two
subpopulations, the group of the respondents (N1 = 27) and the group of the
nonrespondents (N2 = 5), whose group totals, sizes and means are as follows:

T1 = 14 475 N1 = 27 (group of respondents) Y1 = 536.11
T2 = 623 N2 = 5 (group of nonrespondents) Y2 = 124.60
T = 15 098 N = 32 (whole province) Y = 471.81

When drawing the sample by SRSWOR, the selected sample would include
both the response and the nonresponse municipalities. Thus, the expected value
of the total estimator, based on the response group sample total t̂HT(r), will
be E(t̂HT(r)) = N × Y1 = 32 × 536.11 = 17 156. If this estimator is taken as the
estimator of the population total, a biased estimate results, where the bias due to
the unit nonresponse is

BIAS(t̂HT(r)) = E(t̂HT(r)) − T = N2(Y1 − Y2) = 5 × (536.11 − 124.60) = 2058,

and is noticeably large.

Framework for Handling Nonresponse

In the first part of this book, we examined randomness generated by a sam-
pling design p(s). In the case of nonresponse, we meet another source of
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randomness, which is generated by an unknown response mechanism, which
creates the unknown conditional probability that response set s(r) is realized,
given the sample s of size n under the sampling design p(s). This motivates
us to consider that in the presence of nonresponse, the point estimators
may differ from that of the full design-based estimators and the correspond-
ing variances of estimators include two components: the first component is
due to the sampling design used and the second is due to the unknown
response mechanism. Taking this dualism as a framework for handling non-
response presupposes that we guess or model the unknown response proba-
bility. This view is clearly presented in the technical report by Lundström and
Särndal (2002).

The two main methods for adjustment for nonresponse are reweighting and
imputation. The adjustment for unit response can be done by reweighting. The
sampling weights wk = 1/πk are adjusted by the inverses 1/θ̂k of estimated
response probabilities θ̂k, providing new analysis weights or reweight w∗

k =
1/(πkθ̂k). Reweighting methods for unit nonresponse are commonly used, for
example, by national statistical agencies. In Section 4.1, reweighting techniques
will be discussed.

Imputation for item nonresponse means that a missing value of a measurement
yk is filled in by a predicted value ŷk. The goal of imputation is to achieve a
complete data matrix for further analysis. Imputation can be performed under
single or multiple imputation methods. Little and Rubin (1987) consider the main
lines of multiple imputation techniques in theory and practice. Section 4.2 focuses
on different imputation methods.

4.1 REWEIGHTING

Unit nonresponse refers to the situation in which data are not available within the
survey data set for a number of sampling units. Reweighting can then be used and
applied to the observations from the respondents, with the auxiliary information
available for both the respondents and the nonrespondents. As a simple example,
consider the estimation of a population total. The values obtained from the
respondents can be multiplied by an expansion or raising factor to produce a
data set, which better agrees with the initial or intended sample size. A simple
expansion factor is the inverse of the response rate. For example, if the overall
response rate in a survey is 71%, a suitable raising factor would be 1/0.71 = 1.41. In
this nonresponse model, it is assumed that each population element has the same
probability θ of responding if selected in the sample, i.e.θk = θ for all the population
elements k = 1, . . . , N, and θ is estimated by θ̂ = n(r)/n. Under this rather naive
assumption of a nonresponse mechanism, a reweighted Horvitz–Thompson (HT)

TLFeBOOK



116 Handling Nonsampling Errors

estimator based on the constant response probability assumption for the population
total would be

t̂∗HT =
n(r)∑
k=1

w∗
HT,k × yk = 1

θ̂

n(r)∑
k=1

wk × yk = n
n(r)

n(r)∑
k=1

wk × yk, (4.3)

where yk is observed value for the respondent k of the study variable y, w∗
HT,k =

(1/θ̂) × wk is the analysis weight, and the subscript ‘(r)’ refers to the respondents;
so, n(r) denotes the number of respondents in the sample.

Although these kinds of expansion factors are sometimes used in practice, better
estimation can be attained by modelling the response probability. A commonly
used model is to divide the population into response homogeneity groups, denoted
as RHG. These groups are denoted by 1, . . . , c, . . . , C. The group sample sizes
and the numbers of respondents in each group are denoted correspondingly by
n1, . . . , nc, . . . , nC and n1(r), . . . , nc(r), . . . , nC(r). The homogeneity of RHGs means
that all the elements in a group c are assumed to have the same response probability
θc, which is estimated by the group response rate θ̂c = nc(r)/nc. Between the RHGs,
however, the response probabilities can vary. And in the reweighting, the inverses
of the estimated response probabilities, i.e. estimated group response rates θ̂c, can
be used, giving an analysis weight w∗

rhg,k = (1/θ̂c) × wk. Hence, the reweighted HT
estimator based on the RHG method is

t̂∗rhg =
n(r)∑
k=1

w∗
rhg,k × yk =

C∑
c=1

(
1

θ̂c

) nc(r)∑
k=1

wck × yck =
C∑

c=1

nc

nc(r)

nc(r)∑
k=1

wck × yck, (4.4)

where wck and yck are the sampling weight and the value of y for responding unit
k in group c, respectively.

This adjustment for the unit nonresponse can be more powerful than the
previous one, because the response probabilities are modelled by using, more
efficiently, the information about the structure of the nonresponse. If the value zk

of an auxiliary variable z is known for every sample unit and z correlates with the
study variable y, one can try to apply a reweighted ratio estimator, whose weights
are w∗

rat,k = [(1/θ̂) × (z/z(r))] × wk, where z is the mean of an auxiliary variable
z calculated from all sampled units and z(r) is that calculated from responding
units, and θ̂ = n(r)/n. Correspondingly, the reweighted HT estimator based on the
ratio model is

t̂∗rat =
n(r)∑
k=1

w∗
rat,k × yk = z

θ̂ × z(r)

n(r)∑
k=1

wk × yk = n × z
n(r) × z(r)

n(r)∑
k=1

wk × yk. (4.5)

Next we turn to variance estimation of a reweighted HT estimator of a total. In
the context of design-based inference, the sample weights are known constants

TLFeBOOK



Reweighting 117

wk = π−1
k . In reweighting, these constants are multiplied by a sample-dependent

weighting factor specific for each reweighting method. This causes an additional
variance component to be measured and included into a design-based variance
of the estimator of a total. We denote this component as Vrew, where ‘rew’ refers
to reweighting. The variance component Vrew can be estimated under the above-
defined framework for handling unit nonresponse. For this, we conceptually
decompose the sample selection procedure into two phases: the selection of the
sample s according to a sampling design p(s) and the realization of the set s(r)

of the respondents from the selected sample s. This sampling scheme gives an
opportunity to estimate separately the variance components of the first and second
phases. The first component, denoted as Vsam, represents the variance due to the
sampling design and the second component, denoted as Vrew, represents that due
to the unknown response mechanism. If assuming, as in Särndal (1996), that these
two components are independent, the variance of a reweighted HT estimator t̂∗HT
for a total T can be decomposed as

V(t̂∗HT) = Vsam(t̂∗HT) + Vrew(t̂∗HT), (4.6)

where Vsam(t̂∗HT) is the design variance of the basic HT estimator t̂HT , defined for
respondent data, and Vrew(t̂∗HT) is the variance component due to the reweighting
method used. In Example 4.2, three reweighted estimators t̂∗HT, t̂∗rhg and t̂∗rat and
their variance components will be calculated.

Example 4.2

Adjustment for unit nonresponse by reweighting for an SRSWOR sample drawn
from the Province’91 population. The data set is presented in Table 4.2. Let us
assume two unit nonresponse cases, namely, Kuhmoinen and Toivakka. Note
that the value of the auxiliary variable HOU85 is available for the nonresponse
cases also. The initial sample size is eight municipalities. Thus, the estimated
response rate θ̂ = n(r)/n = 6/8 = 0.75. In addition, three of the sampled munic-
ipalities are towns (response homogeneity group c = 1) and the other five are
rural municipalities (response homogeneity group c = 2). Because all the towns
responded, estimated response probabilities are correspondingly θ̂1 = 3/3 = 1.00
for the first group and θ̂2 = 3/5 = .60 for the second group. The mean of the aux-
iliary variable HOU85 calculated for the total sample (n = 8) is z = 5154.75. The
mean of HOU85 calculated for the respondent data set (n = 6) is z(r) = 6490.17.
Furnished with this background information, we are ready to calculate the three
previously introduced reweighted HT estimators t̂∗HT, t̂∗rhg and t̂∗rat for the total T of
the variable UE91.

For calculating the reweights, we should first define the appropriate response
homogeneity groups. In this case, a natural group for estimators t̂∗HT and t̂∗rat
is the total sample, and for the estimator t̂∗rhg, two response homogeneity groups
are created according to urbanicity. For the estimator t̂∗HT , we adopt a naive
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Table 4.2 A simple random sample from the Province’91 population including two
nonresponse cases, constructed response homogeneity groups and weights for adjustment
for unit nonresponse.

Sample design
identifiers Response data Response

Reweight by nonresponse model

Element homogeneity REW−HT RHG RATIO
STR CLU WGHT LABEL UE91 HOU85 group (RHG) w∗

HT,k w∗
rhg,k w∗

rat,k

1 18 4 Kuhmoinen žž 1463 2 žž žž žž
1 30 4 Toivakka žž 834 2 žž žž žž
1 26 4 Pihtipudas 331 1946 2 5.3333 6.6667 4.2359
1 31 4 Uurainen 219 932 2 5.3333 6.6667 4.2359
1 15 4 Konginkangas 142 556 2 5.3333 6.6667 4.2359
1 1 4 Jyväskylä 4123 26 881 1 5.3333 4.0000 4.2359
1 4 4 Keuruu 760 4896 1 5.3333 4.0000 4.2359
1 5 4 Saarijärvi 721 3730 1 5.3333 4.0000 4.2359

A missing value is denoted as ‘žž’.

reweighting method; the reweight is w∗
HT,k = (1/θ̂) × wk = (1/0.75) × 4 = 5.3333

for the respondents. For the estimator t̂∗rhg, the reweight in the first response homo-

geneity group (towns) is w∗
rhg,1 = (1/θ̂1) × wk = (1/1) × 4 = 4. It is equal to the

sampling weight because all towns responded. In the second response homogene-
ity group (rural municipalities), w∗

rhg,2 = (1/θ̂2) × wk = (1/0.60) × 4 = 6.6667. In
the case of the ratio estimator, the total sample is taken again as the response
homogeneity group. We use the same formula as given in the case of calculation
of adjusted weights (see ratio estimation in Section 3.3), but this time the popu-
lation mean (or total) of the auxiliary variable is replaced by that calculated from
the sample. Reweights for the respondents are w∗

rat,k = (1/θ̂) × (z/z(r)) × wk =
[(n × z)/(n(r) × z(r))] × wk, and for SRSWOR they have the same value for
each respondent. Empirical values are calculated from the selected sample:
w∗

rat = [(8 × 5154.75)/(6 × 6490.17)] × 4 = 4.2359 for responding units.
Using the calculated reweights, the point estimates and their variance estimates

can be calculated. Point estimates for the total T of UE91 are simply reweighted
HT estimators calculated from the respondent data set. Estimates are presented
in Table 4.3. We focus on the variance estimation because it now includes two
components: the variance estimator v̂sam due to the sampling design and the
variance estimator v̂rew caused by the response mechanism. We assume that
nonresponse is ignorable within each response homogeneity group.

Because the sample design is SRSWOR, we use the appropriate design variance
of the total

Vsam(t̂∗HT) = N2
(

1 − n
N

)
× S2

(r)
/n(r) (4.7)
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where S2
(r) =∑N(r)

k=1(Yk − Y(r))
2/(N(r) − 1) is calculated from the respondent part

U(r) of the population U.
The estimated value of this component in this case is

v̂sam(t̂∗HT) = N2
(

1 − n
N

)
× ŝ2

(r)/n(r) = 322
(

1 − 8
32

)
× 1527.592/6 = 14 9672,

where ŝ2
(r) =∑n(r)

k=1 (yk − y(r))
2/(n(r) − 1) and is estimated from the respondent

data set.
This variance component is the same for each reweighted estimator. The

reweighting component of the total variance depends on the reweighting method
used. For the reweighting methods, the estimation of Vrew is next carried out. Note
that the HT estimator t̂HT(r), when calculated from the respondent data set, does
not include a variance component because of reweighting.

1. Reweighted estimator t̂∗HT . In the case of the first reweighted HT estimator,
the variance component Vrew(t∗HT) is

Vrew(t̂∗HT) = N2
(

1 − n(r)

n

)
× S2

(r)/n(r), (4.8)

where S2
(r) =∑N(r)

k=1 (Yk − Y(r))
2/(N(r) − 1) is calculated from the respondent

part U(r) of the population U. The estimated value of this component is

v̂rew(t̂∗HT) = N2
(

1 − n(r)

n

)
× ŝ2

(r)/n(r)

= 322
(

1 − 6
8

)
× 1527.592/6 = 9978.182,

where ŝ2
(r) is estimated from the respondent data.

2. Response homogeneity group estimator t̂∗rhg . We have two RHGs whose
sample sizes are n1 = 3 and n2 = 5. From these figures, one can estimate the
sizes of the corresponding subpopulations, which are as follows:

N̂1 = (n1/n) × N = (3/8) × 32 = 12 for the first subpopulation and

N̂2 = (n2/n) × N = (5/8) × 32 = 20 for the second.

The reweight component of variance for the response homogeneity group
estimator t̂∗rhg is

Vrew(t̂∗rhg) =
C∑

c=1

N̂2
c

(
1 − nc(r)

nc

)
× S2

c(r)/nc(r), (4.9)
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where S2
c(r) =∑Nc(r)

k=1 (Yck − Yc(r))
2/(Nc(r) − 1) is calculated separately for each

response homogeneity group. The number of responding units in the sub-
population Uc, where c = 1, 2, is denoted as Nc(r). The corresponding estimate
v̂rew(t̂rhg) is calculated from (4.9) by substituting each variance S2

c(r) by its
estimated value ŝ2

c(r) calculated from the respondent data set. Thus, we get

v̂rew(t̂∗rhg) = 122
(

1 − 3
3

)
× 1952.992/3 + 202

(
1 − 3

5

)
× 95.042/3

= 0 + 694.072

= 694.072.

3. Reweighted ratio estimator t̂∗rat . First, we derive a variable of residuals
Ek(r) = Yk(r) − (Y(r)/Z(r)) × Zk(r). Note that the residuals are calculated from
the responding part of the population. The reweight component of the variance
of the estimator t̂∗rat is given by

Vrew(t̂∗rat) = N2
(

1 − n(r)

n

)
× S2

E(r)
/n(r), (4.10)

where S2
E(r)

=∑N(r)

k=1 (Ek(r) − E)2/(N(r) − 1) and E =∑N(r)

k=1 Ek(r)/N(r).
The residuals Ek(r) are estimated from the respondent data set as

êk(r) = yk(r) − (y(r)/z(r)) × zk(r).
In this particular case, the reweight component of variance v̂rew(t̂∗rat) is

v̂rew(t̂∗rat) = N2
(

1 − n(r)

n

)
ŝ2

ê(r)
/n(r) = 322

(
1 − 6

8

)
× 120.292/6 = 785.732,

where ŝ2
ê(r)

=∑n(r)

k=1 (êk(r) − ê(r))
2/(n(r) − 1) is calculated from the respondent

data set.
The sampling rates are defined as the number of respondents in the sample

divided by the estimated or actual size of the response homogeneity group in the
target population. Estimators t̂∗HT and t̂∗rat have the whole sample as the response
homogeneity group. Thus, the sampling rate is n(r)/N = 6/32 = 0.1875 for both.
For the estimator t̂∗rhg, the sampling rate in the first response homogeneity group

is n1(r)/N̂1 = 3/12 = 0.25 and that in the second response homogeneity group is
n2(r)/N̂2 = 3/20 = 0.15.
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Table 4.3 Estimates of the total and components of its variance estimate under various
reweighting methods; a simple random sample from Province’91 population presented in
Table 4.2.

Method and estimator
Estimate for

the total v̂(t̂) v̂sam v̂rew

Respondent data (n(r) = 6) t̂HT(r) 33 579 17 9882 17 9882 0
Reweighted estimator t̂∗HT 33 579 17 9882 14 9672 99782

Response homogeneity group t̂∗rhg 27 029 14 9832 14 9672 6942

Ratio estimator t̂∗rat 26 669 14 9882 14 9672 7862

‘Full response’ (n = 8) t̂HT 26 440 13 2822 13 2822 0

Results are summarized in Table 4.3. In addition to the reweighted estimators,
two reference estimators are included. The estimator t̂HT(r) = N × y(r) is calculated
directly from the respondent data. In this case, the sampling rate is n(r)/N = 6/32 =
0.1875. For a fair comparison, the basic design-based estimator t̂HT for a total is
calculated from the figures presented in the last row headed as ‘Full response’.
The sampling rate is, in this case, n/N = 8/32 = 0.25. The variance component
v̂sam is estimated separately for the respondent data (n = n(r) = 6) and the ‘Full
response’ (n = 8), respectively, by (4.7). The last column headed as v̂rew shows
that for the respondent data (first row) and ‘Full response’ (bottom row) there is
no variance component due to reweighting.

A desired property of a reweighted estimator is that it reproduces, as closely
as possible, the value of the full response estimator. In this sense, both the
response data estimator t̂HT(r) and the reweighted HT estimator t̂∗HT give poor
results. The point estimate t̂HT(r) = t̂∗HT = 33 579 is very far from that of the
‘Full response’ estimator t̂HT = 26 440. The same holds for variance estimates
v̂(t̂HT(r)) = v̂(t̂∗HT) = 17 9882>13 2822. The reason for the reweighted HT estimator
to produce poor results is that a simple response mechanism was assumed
involving a constant response probability θ̂ for all population elements. The
response homogeneity group estimator t̂∗rhg and the ratio estimator t̂∗rat use auxiliary
information gathered from the sample data set. The use of these estimators is
based on more appropriate model assumptions, and if the assumptions hold
closely, as seems to be the case, these two estimators reproduce closely the ‘Full
response’ estimate.

4.2 IMPUTATION

Item nonresponse means that in the data set to be analysed some values are present
for a sample element, but at least for one item a value is missing for that element.
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When using this kind of data matrix with some computer programs for survey
estimation, each observation with a missing value for any of the variables included
in the analysis is excluded. Moreover, in some programs, a complete data matrix
is required. This leads to loss of information for the other variables for which data
are not missing. Therefore, efforts are often made to get a more complete data set.
To attain this goal, different imputation techniques have been devised.

Imputation implies simply that a missing value of the study variable y for
a sample element k in the data matrix is substituted by an imputed value ŷk.
For example, in some computer packages, a technique called mean imputation
is available, in which an overall respondent mean y(r), calculated from the
respondent values of the study variable, is inserted in place of the missing values
for that variable. Then the imputed value for element k is ŷk = y(r). However, there
are certain disadvantages in this method, as will be demonstrated in Example 4.3.
In more advanced methods, auxiliary information available from the frame
population or from the original sample is utilized to model the missing values
more realistically.

Mean imputation does not use any auxiliary information possibly available in
the sample data set. Here, as before, an auxiliary variable z, which is correlated
with the study variable y and whose values are known for all sampled units, could
be used in an imputation method. For example, we could use the sample values
of the auxiliary variable z to create distances |zl − zk| between two sampling units
where l �= k. The sample element for which the distance reaches the minimum is
called a nearest neighbour. If the element k belongs to the group of nonrespondents
and the element l to the group of respondents, we substitute the value yl for
the missing value of element k, providing an imputed value ŷk = yl. Thus, the
sample element l is a donor for the element k. Note that this estimate is a real
measurement actually observed. And ratio estimation can be applied here as
in the context of reweighting. Now, we predict an individual value for each
missing value through the equation ŷk = zk × (y(r)/z(r)), where y(r) and z(r) are
respectively the respondent means of the study and auxiliary variables. For
example, the incomplete data set can be imputed using hot-deck imputation. In hot-
deck imputation, a measurement value is selected randomly from the response
data and is applied for the missing value. All these methods belong to single
imputation methods.

A single missing value may be replaced by two or more imputed values, as in the
method of multiple imputation. This is done independently for each missing value.
When we repeat this procedure m times for each missing item, we get m complete
data sets, which are ready for statistical analysis. The original weighting system
derived from the sample design p(s) can be used. In all imputation methods, we are
faced with a similar problem as formerly in reweighting. We should evaluate and
add the imputation variance component to the variance formula of an estimator.
In the case of single imputation, where one predicted value ŷk is substituted for a
missing value, the formula (4.6) can be used by replacing the component Vrew by
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a new component Vimp due to imputation, giving

V(t̂∗) = Vsam + Vimp. (4.11)

In multiple imputation, we predict m values ŷ1, . . . , ŷj, . . . , ŷm for each missing
item. We thus create m ‘completed’ data sets. In order to combine the results,
we define first the multiple imputation estimate of our parameter of interest. For
example, for a total, an estimate is

t̂∗mi = 1
m

×
m∑

j=1

t̂∗j , (4.12)

where t̂∗j is an estimate for the total and v̂p(s)(t̂∗j ) is the variance estimate from
the jth ‘completed’ data set, j = 1, . . . , m. The variance estimate of t̂∗mi includes
two components, the within-imputation variance component and the between-
imputation variance component. The within-imputation variance is calculated
as the mean of the m variance estimates v̂p(s)(t̂∗j ), representing the variance Vsam.
The between-imputation variance component is associated with the variability
of t̂∗j . This component is interpreted here as the variance Vimp due to imputation.
Under multiple imputation, the variance estimate of the total is thus

v̂(t̂∗mi) = v̂sam + v̂imp

=

 1

m
×

m∑
j=1

v̂p(s)(t̂∗j )


+

(1 + 1

m

)
×

m∑
j=1

(t̂∗j − t̂∗mi)
2

m − 1


 (4.13)

where v̂p(s)(t∗j ) is the variance estimate calculated under the sample design p(s)
from the jth completed data set and (1 + (1/m)) is an adjustment for a finite m.

In practice, m is usually taken to be a small number. m = 2 is a minimum but 3
to 5 is preferred. Example 4.3 illustrates the estimation of the variance components
for different imputation methods.

Example 4.3

We impute two missing values for the sample selected from the Province’91
population with SRSWOR. The same sample is used as in Example 4.2, and it
includes n = 8 municipalities. A missing value is created for the study variable
UE91 in two municipalities (Kuhmoinen and Toivakka). Missing values are marked
as ‘žž’ in the data set displayed in Table 4.4. Variable HOU85 serves as an auxiliary
variable having no missing values.

Four imputation techniques will be applied for completing the sample data set.
The first is the respondent mean imputation method. The mean of the respondents
(n(r) = 6) is y(r) = 1049.33. The two missing values are replaced by this overall
mean. The second and the third nonresponse models use the variable HOU85 as
an auxiliary variable z. The second method is called nearest neighbour imputation.
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Table 4.4 Completed data sets obtained by single imputation methods (The Province’91
population).

Response data
Imputed data sets by model

ID Element Respondent Nearest Ratio Full
k LABEL UE91 HOU85 mean neighbour estimation response

18 Kuhmoinen žž 1463 1049.33* 331* 236.54* 187
30 Toivakka žž 834 1049.33* 219* 134.84* 127
1 Jyväskylä 4123 26 881 4123 4123 4123 4123
4 Keuruu 760 4896 760 760 760 760
5 Saarijärvi 721 3730 721 721 721 721
15 Konginkangas 142 556 142 142 142 142
26 Pihtipudas 331 1946 331 331 331 331
31 Uurainen 219 932 219 219 219 219

Imputed values are flagged with ‘*’ and missing values with ‘žž’.

For nonresponding unit k, we select the value of responding unit l, for which
the distance |zk − zl| attains the minimum over all potential donors (a potential
donor is a sample unit that belongs to the group of respondents for variable
y). The minimum is reached when Pihtipudas (y26 = 331) is the donor for
Kuhmoinen (|1949 − 1463| = 486) and Uurainen (y31 = 219) is the donor for
Toivakka (|932 − 834| = 98). In the third model, we use ratio estimation. We
calculate the ratio B̂ = y(r)/z(r) = 1049.33/6490.17 = 0.1617 from the response
data set and then evaluate the predicted values ŷk = B̂ × zk, which are ŷ18 =
0.1617 × 1463 = 236.57 for Kuhmoinen and ŷ30 = 0.1617 × 834 = 134.86 for Toi-
vakka. The sample data set amended with the imputed values is displayed in
Table 4.4. Note that in mean imputation and ratio estimation, a predicted value is
used for a missing observation. For this reason, these values are with two decimal
digits. On the other hand, a nearest neighbour as a donor gives an integer value
for imputation. This holds also for multiple imputation, because we have used
hot-deck imputation, where every responding unit is a potential donor.

Three complete data sets, one for each single imputation method, are now
created for estimation. We use sampling weights, which are here a constant
wk = 4, because our sampling design is an SRSWOR design. However, a new
aspect is revealed in the variance estimator, which now includes two components
(see formula 4.11). In the estimation of a total, an estimator of the sampling
variance is

v̂sam(t̂∗HT) = N2
(

1 − n
N

)
× ŝ2

(r)/n(r) = 322
(

1 − 8
32

)
× 1527.592/6 = 14 9672

where ŝ2
n(r)

=∑n(r)

k=1 (yk − y(r))
2/(n(r) − 1) is computed from the respondent data

set. This variance component is the same for each imputation method. The
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imputation variance component Vimp for all single imputation methods is esti-
mated by

v̂imp(t̂∗HT) = N2
(

1 − n(r)

n

)
×
∑n(r)

k=1 (êk − ê)2

n(r) − 1
/n(r) (4.14)

where ê =∑n(r)

k=1 êk/n(r) is the mean of residuals êk = yk − ŷk. For mean imputation,
the residuals are êk = yk − y(r). Using a nearest neighbour as the donor results in
residuals êk = yk − yk(l), where yk(l) is the y-value of the donor l. Ratio estimation
results in êk = yk − (y(r)/z(r)) × zk. Incorporating these variables in 4.14, we get
the estimated imputation variance components as follows:

v̂imp(t̂∗rm) = 322
(

1 − 6
8

)
× 1527.592/6 = 9978.182

v̂imp(t̂∗nn) = 322
(

1 − 6
8

)
× 1365.622/6 = 8920.202

v̂imp(t̂∗ra) = 322
(

1 − 6
8

)
× 120.292/6 = 785.732.

Note that the smallest variance due to imputation is for the ratio model.
Next, we turn to the multiple imputation method. For this simple exercise, we use

five independent repetitions of hot-deck imputation. Note that hot-deck imputation
is used here just to illustrate the basic principles of multiple imputation for this quite
restricted small-scale data set. For practical purposes, much more sophisticated
multiple imputation techniques have been developed and computerized. There is
much literature on the alternative techniques; the reader is advised to consult the
book by Schafer (2000) and the paper by Rubin (1996) for further details.

For each run, the missing responses are replaced by values selected randomly
from the respondent data set. This procedure results here in five complete data sets,
which are presented in Table 4.5. A point estimate t̂∗mi of the total of unemployed
persons is here the mean value of the five individual datawise estimates t̂∗j of the
same total. Thus, we get from (4.12)

t̂∗mi = (1/5)(28 792 + 31 108 + 28 944 + 44 716 + 29 100) = 32 532.

By (4.13), the variance of the estimator t̂∗mi is decomposed to within-imputation
variability and between-imputation variability. The elements of within-imputation
variation are the five datawise estimates of the design variance estimates of the
estimator t̂∗j . Thus, the first term of (4.13) is

v̂sam = 1
m

×
m∑

j=1

v̂p(s)(t̂∗j ) = 1
5

×
(

1 − 8
32

)
× 322

× (1330.7152 + 1298.9822 + 1325.4162

+ 1699.9892 + 1324.7162)/8 = 13758.872
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Table 4.5 Imputed data sets obtained by multiple imputation (m = 5). Hot-deck imputa-
tion is used for each completed data set (the Province’91 population).

ID Element

Response
data
UE91

Repeated samples including imputed
values and flagged as ‘*’

Full
response1 2 3 4 5

18 Kuhmoinen žž 760* 760* 721* 4123* 760* 187
30 Toivakka žž 142* 721* 219* 760* 219* 127

1 Jyväskylä 4123 4123 4123 4123 4123 4123 4123
4 Keuruu 760 760 760 760 760 760 760
5 Saarijärvi 721 721 721 721 721 721 721

15 Konginkangas 142 142 142 142 142 142 142
26 Pihtipudas 331 331 331 331 331 331 331
31 Uurainen 219 219 219 219 219 219 219

Mean 1049.33 899.75 972.12 904.50 1397.38 909.37 826.25
STD (y) 1527.59 1330.71 1298.98 1325.42 1699.99 1324.72 1355.15

Imputed values are flagged with ‘*’ and missing values with ‘žž’.

where v̂p(s)(t̂∗j ) = v̂srswor(t̂∗j ) or a variance estimator for a total when the sampling
design is SRSWOR.

The corresponding between-variability or imputation variance is estimated by

v̂imp =
(

1 + 1
m

)
×

m∑
j=1

(t̂∗j − t̂∗mi)
2

m − 1

= 1.2 × 6876.4442 = 7532.392

Summing up these two components gives a variance estimate for the estimator
t̂∗mi as

v̂(t̂∗mi) = v̂sam + v̂imp = 13758.872 + 7532.392 = 15686.862.

Results from all imputation methods are summarized in Table 4.6. Again, for a
comparison, the bottom row represents the estimate and its variance estimate
in the case of ‘full response’. This row serves as the reference. If an imputation
method works well, it should produce a value close to the ‘full response’ estimate.
This is expected to happen for the point estimate (but not for the variance estimator
because it includes an additional imputation variance term).

Respondent mean imputation gives the same total estimate as the ‘no adjust-
ment’ method (33 579) but leads to underestimation of the variance unless the
imputation variance (v̂imp = 99782) is added. The more advanced nonresponse
models, ‘nearest neighbour’ and ‘ratio estimation’, result in estimates that are
closer to the reference value calculated from the data set of ‘full response’. For the
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Table 4.6 Estimates of a total and its standard error under various imputation methods
(the Province’91 population).

Model type Estimator
Estimate

for a total v̂(t̂∗) v̂sam v̂imp

No adjustment (n(r) = 6) t̂HT(r) 33 579 17 9882 17 9882 0
Respondent mean t̂∗ma 33 579 17 9882 14 9672 99782

Multiple imputation (m = 5) t̂∗mi 32 532 15 6862 13 7592 75322

Nearest neighbour t̂∗nn 27 384 17 4242 14 9672 89202

Ratio estimation t̂∗ra 26 669 14 9882 14 9672 7862

Full response (n = 8) t̂HT 26 440 13 2822 13 2822 0

‘nearest neighbour method’, we obtain t̂∗nn = 27 384. Using auxiliary information
by the ratio model, the calculated estimate is t̂∗ra = 26 669, which is close to the
reference value t̂HT = 26 640. Though, a penalty due to imputation causes only
moderate variance increase: the imputation variance is v̂imp = 7862.

Multiple imputation behaves differently. The point estimate t̂∗mi = 32 532 is
clearly greater than that of the ‘full response’. On the other hand, the total
sample variance calculated according to the formula (4.13) is v̂(t̂∗mi) = 15 6862and
is thus smaller than that of nearest neighbour imputation and respondent
mean imputation.

Imputation has two different impacts. Firstly, a substitute value can be imputed
for a missing value and, secondly, imputation has an effect on the standard error
of the estimator that we are interested in. An obvious gain from imputation is that
the analyst has a complete data matrix for analysis, but if the imputation model
gives biased values, the results of analysis may be misleading. All depends on
how successfully the imputation model catches the nonresponse. If nonresponse
is ignorable within a response homogeneity group, then the respondent mean is
an unbiased estimate for response homogeneity group all the elements belonging
to this group including the missing values. But, because imputed values are also
estimates, they have their own variance component that is to be added to the
variance of the basic estimator.

4.3 CHAPTER SUMMARY AND FURTHER READING

The aim of this section is to give a broader perspective on survey production as
could be achieved by considering only design-based estimators and their sampling
errors generated by the randomness due to probability sampling. We discuss
on nonsampling errors by considering briefly different sources of survey errors
that are components of the total survey error. The concept of total survey error
is difficult to define and even more difficult to measure in practice. One reason
is that the different survey errors are not independent of each other. However,
for practical purposes it is reasonable to consider different types of survey errors
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separately and to search for strategies to reduce them one by one. Then, the total
survey error can be expected to decrease.

Nonresponse is present in large-scale sample surveys, causing an incomplete
data set. Because most computer packages for data analysis presuppose complete
data, as a first step after the data-collection phase, the data are cleaned and
adjusted for those that are missing. Nonresponse involves missing data in the
form of unit nonresponse or item nonresponse, which can cause biased estimation
and erroneous standard error estimates. Effective operations are important during
the data-collection phase to reduce the nonresponse.

Nonresponse can be adjusted for by various techniques. We introduced a
practical way to perform an adjustment by modelling the nonresponse by using
auxiliary information available in the sampled data set. Alternatively, auxiliary
data can be extracted from a census or business register. The difference between
these methods depends upon the extent to which auxiliary information is utilized.
Nonresponse in social surveys is discussed, for example, in Groves et al. (2001) and
that in business surveys in Dillman (1999).

Coverage errors, processing errors and measurement errors and often met in
the context of large-scale surveys and are discussed, for example, in a policy paper
published by the U.S. Federal Committee on Statistical Methodology (2001). In the
following text, definitions given in that paper are used.

Coverage error is an error associated with the failure to include some target
population elements in the frame used for sample selection (undercoverage) and
the error associated with the failure to exclude units, which do not belong to the
target population (overcoverage). The source of coverage error is the sampling
frame itself. It is important, therefore, that information about the quality of
the sampling frame, and its completeness for the target population, is assessed.
Measurement methods for coverage error rely on methods external to the survey
operations: for example, comparing survey estimates to independent sources or
implementing a case-by-case matching of two registers. Coverage errors do not
leave any apparent indication of their existence; they can be measured only by
a reference to an outside source. Often-used methods are aggregate comparison
to another source and case-by-case matching. It is possible to compare the
distribution of age, sex and other population characteristics in a study population
with that of a census register. A second approach for measuring coverage error is
based on case-by-case matching. This method presupposes that an alternative list
of population units exists or can be constructed using the census/survey/record
system. The population not on either list is, of course, not observable. However, it
can be estimated when two lists are, approximately, independent. An often-used
measure in CATI is the number of identified phone numbers of sample units
divided by the nominal sample size. An example is given in Section 9.1.

Processing error can occur after the survey data are collected, usually during
the process of converting collected data to consistent machine-readable form for
statistical analysis. Processing errors include data entry, coding and editing errors,
thus inducing damaged data records. Error rates are determined through quality
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control samples; however, in recent years authors have advocated continuous
management practices. For example, editing is the procedure for detecting and
adjusting individual errors in data records resulting from data collection. Edit
rules or, simply, edits are used for identifying missing or erroneous, or suspicious
values. Generally, this procedure is performed by computer-assisted methods.
For example, Cox et al. (1995) and Couper et al. (1998) devote many chapters to
the methods for detecting and handling processing errors in business and social
surveys. Producers of official statistics such as national statistical agencies have
developed automated procedures to monitor and adjust for processing errors.

Measurement error is characterized as the difference between the observed value
of a variable and the true but unobserved value of that variable. Measurement
error comes from four primary sources in survey data collection: the questionnaire
(as a formal presentation or request for information), the effect the interviewer
has on the response to a question (interviewer effect), the data-collection mode
and the respondent (as the recipient of the request for information). These sources
comprise the entity of data collection, and each source can introduce error into the
measurement process. For example, measurement error may occur in respondents’
answers to survey questions, including misunderstanding the meaning of the
question, failing to recall the information accurately and failing to construct the
response correctly (e.g. by summing the components of an amount correctly).
Measurement errors are difficult to quantify, usually requiring special, expensive
studies. Re-interview programs, record check studies, behaviour coding, cognitive
testing and randomized experiments are a few of the approaches used to quantify
measurement error. An example of measurement error is the interviewer effect,
which has been generally measured by the intra-class correlation coefficient ρint

introduced in Section 2.3. For example, the book by Biemer et al. (1991) addresses,
with strong empirical background, the measurement error both in business and
in social surveys.

Total survey quality is an interesting concept in this context. It refers to a
multidimensional characteristic covering sampling and different nonsampling
components of survey error. Groves (1989) discusses this concept from a different
point of view and presents an interesting dualism that survey errors can be
classified into observational errors and errors of nonobservation. In addition, he
analysed the effect of different types of errors separately and how they influence
the bias and variance of estimators. Several examples of survey practice conducted
led to the conclusion that the survey quality indeed is a multidimensional property
and its different components could be inter-correlated. Then the quality profile,
including a set of well-defined indicators, of a social or business survey can
be constructed and communicated rather than a single figure of total survey
error. This idea is strongly supported, for example, in a paper of Platek and
Särndal (2001).
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5

Linearization and Sample
Reuse in Variance

Estimation

In this chapter and in Chapters 7 and 8, we discuss estimation, testing and mod-
elling methods for complex analytical surveys common, for example, in social,
health and educational sciences. In analytical surveys, variance estimation is
needed to obtain standard error estimates of sample means and proportions
for the total population and, more importantly, for various subpopulations. In
modelling procedures, variance estimates of estimated model coefficients, such as
regression coefficients, are needed for proper test statistics. Subpopulation means
and proportions are defined as ratio estimators in Section 5.2. Approximation
techniques are required for the estimation of the variances of these nonlinear
estimators. These techniques supplement those examined for descriptive surveys
in Chapters 2 and 3. The linearization method, considered in Section 5.3, is used
as the basic approximation method. Alternative methods (balanced half-samples,
jackknife and bootstrap) based on sample reuse techniques are examined in
Section 5.4, and all the methods are compared numerically in Section 5.5. The
variance approximation methods are demonstrated for the Mini-Finland Health
Survey, providing a complex analytical survey in which stratified cluster sampling
is used with regional stratification and two regional sample clusters per stratum.
A more complex setting is introduced in Section 5.6, in which the Occupational
Health Survey (OHC) data is introduced. The sampling design of the OHC Survey
is a combination of stratified one-stage and two-stage sampling with industrial
establishments as clusters. These data will be used in extending variance esti-
mation to the estimation of the covariance matrix of several ratio estimators,
which are each calculated for a specific population subgroup. Covariance-matrix
estimates of such ratio estimators as subpopulation proportions and means are
needed, for example, to conduct logit modelling and other types of modelling

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84769-7
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procedures. The other extension is to consider non-epsem complex designs. This
is done by incorporating appropriate element weights in the estimators.

All the approximation methods for variance estimation of a ratio estimator
under a complex sampling design, introduced in previous sections, would also
be available for the covariance-matrix estimation. We choose the linearization
method because of its practical importance. Covariance-matrix estimation using
linearization is considered in Section 5.7. There, the concept of the design effect of
a ratio estimator is extended to a design-effects matrix of a vector of several ratio
estimators. The design-effects matrix is also used when assessing the contribution
from clustering on a covariance-matrix estimate. The chapter summary is given
in Section 5.8.

5.1 THE MINI-FINLAND HEALTH SURVEY

The Mini-Finland Health Survey was designed to obtain a comprehensive picture
of health and of the need for care in Finnish adults, and to develop methods for
monitoring health in the population. The sampling design of the survey belongs
to the class of two-stage stratified cluster sampling. A variety of data collection
methods were used; one aim of the survey was to compare the reliability of these
various methods (Heliövaara et al. 1993). A large part of the data was collected
in health examinations using a Mobile Clinic Unit, and by personal interviews.
Cluster sampling with regional clusters was thus motivated by cost efficiency.

The target population of the survey was the Finnish population aged 30
years or over. A two-stage stratified cluster-sampling design was used in such
a way that one cluster was sampled from each of the 40 geographical strata.
The one-cluster-per-stratum design was used to attain a deep stratification of
the population of the clusters. The sample of 8000 persons was allocated to
achieve an epsem sample (equal probability of selection method; see Section 3.2).
Recall that an epsem sample refers to a design involving a constant overall
element-sampling fraction.

Original Sampling Design

The 320 population clusters in the original sampling design consisted of one
municipality or, in some cases, two regionally neighbouring municipalities. The
clusters were stratified by whether they were urban or rural and the shares of the
population in manufacturing industry and agriculture. From the largest towns,
8 self-representing strata were formed. The other 32 strata consisted of several
nearly equal-sized clusters and consisted of 40 000–60 000 eligible inhabitants.
One cluster was sampled from these noncertainty strata using PPS sampling with
a cumulative method in which the inclusion probabilities were proportional to the
size of the target population in a stratum (see Section 2.5). Second-stage sample
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sizes were obtained by proportional allocation, resulting in an epsem design.
Sample sizes from the sampled clusters varied between 50 and 500 people, the
mean being 150. The person-level samples were drawn by systematic sampling in
each stratum using a register database as the sampling frame, which covered the
relevant population of the sampled clusters.

Modified MFH Survey Sampling Design

The estimation of between-cluster variance was not possible in the noncertainty
strata because only one cluster was drawn from each stratum. The original design
was thus modified for variance estimation using the so-called collapsed stratum
technique. A total of 16 pseudo-strata were formed from the 32 noncertainty
strata so that there were two clusters in each of the new strata. A pair of strata
was formed by combining two of the original strata that were approximately
equal-sized and had similar values for the stratification variables. To obtain
a manageable design for analysis, which is also useful for our pedagogical
purposes, two pseudo-clusters were formed in the eight self-representing strata
by randomly dividing the sample into two approximately equal-sized parts in
each stratum. Note that, alternatively, one could assume an element-sampling
design in the eight certainty strata such that each element constitutes a cluster
of its own and, then, the modified overall design would consist of 8 one-stage
strata and 16 two-stage strata with 2 sample clusters in each of them. In the
modified design, called the MFH Survey sampling design, there are 24 strata and
48 sample clusters. The MFH design is described in more detail in Lehtonen and
Kuusela (1986).

The relatively small number of sample clusters in the MFH Survey sampling
design can cause a problem in the estimation of variances and covariances. The
number of clusters determines the degrees of freedom available for variance and
covariance estimation. These degrees of freedom are defined as the number of
sample clusters less the number of strata, i.e. 48 − 24 = 24 in the MFH design.
This small number can cause instability in variance and covariance estimates,
possibly resulting in difficulties in testing and modelling procedures. The situation
is different, for example, in the Occupational Health Care Survey and in the
Finnish Health Security Survey, where the number of sample clusters is much
larger (these surveys will be described in Sections 5.6 and 9.3, respectively).

Data Collection and Nonresponse

The main phases of the field survey were a health interview, a health examination,
which consisted of two phases, and an in-depth examination. The field survey
was carried out in 1978–1981. The main methods were interviews, question-
naires, tests of performance, physical and biochemical measurements, observer
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assessments and a clinical examination by a doctor. The interview was carried
out by local public health or hospital nurses, and the health examination was
carried out by a Mobile Clinic Unit.

Of the 8000 people in the sample, 7703 (96%) completed the health interview,
and 7217 (90%) took part in the screening phase of the health examination.
Over 6000 persons of those examined during the screening phase had at least one
symptom, or finding, or gave a disease history that led to their being asked to attend
the clinical phase of health examination; 94% attended. Almost 5300 of those
examined during the screening phase were asked to attend the doctor’s clinical
examination; 4840 participated. The data for non-attendance were amended after
the field study. Thus, clinical data based on a doctor’s examination, or data
similar to these data, are available for all 5292 persons invited to the doctor’s
examinations. The response rates are thus very high for each phase of the survey.

Design Effects

The regional clusters in the MFH Survey sampling design had quite large and
heterogeneous populations. Because of the type of clusters, only slight intra-
cluster correlations can be expected in most study variables. But there are also
variables for which clustering effects are noticeable. Design-effect estimates of
sample means or proportions of selected study variables are displayed in Table 5.1,
which covers data from the screening phase of the health examination. The
design-effect estimates vary between 3.2 and 0.9, the largest estimate being for the
mean of a continuous variable, systolic blood pressure. The design-effect estimates
in many study variables were close to one, and in some cases less than one,
indicating a weak clustering effect.

Table 5.1 Design-effect estimates of
sample means or proportions of
selected study variables in the MFH
Survey data set.

Study variable deff

Systolic blood pressure 3.2
Chronic morbidity 2.0
Number of physician visits 1.4
Body mass index 1.4
Serum cholesterol 1.2
Number of dental visits 1.0
Number of sick days 0.9
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Demonstration Data Set

In examining variance approximation techniques for subpopulation means and
proportions, we used a subgroup of the MFH Survey data consisting of 30–64-
year-old males who took part in the screening phase of the health examination
and who also belonged to an active labour force or had a past labour history.
These data consist of 2699 eligible males. The data set includes sampling identifiers
STRATUM, CLUSTER and WEIGHT; and two binary response variables, CHRON
(presence of chronic illness) and PHYS (suffering or having suffered from physical
health hazards at work); and a continuous response variable SYSBP (systolic
blood pressure). Information on these data is displayed in Table 5.2. Note that
the selected subgroup is of a cross-classes type, properly reflecting all essential
properties of the MFH Survey sampling design such as the number of strata (24)
and the number of sample clusters (48) covered.

Our aim is to estimate the variances of the subpopulation proportion estimator
of CHRON and the subpopulation mean estimator of SYSBP by using approxima-
tion methods based on linearization and sample reuse. Both response variables
indicated relatively strong intra-cluster correlation from the total MFH Survey
data. The response variable PHYS is used in a test for two-way tables in Chapter 7.
Before turning to these tasks, we briefly discuss the issue of weighting in the
relevant MFH Survey subgroup.

Poststratification

The MFH Survey data set can be regarded as self-weighting because the design
is epsem and adjustment for nonresponse is not necessary. However, for further

Table 5.2 Age distribution, proportions (%) of chronically ill persons
(CHRON) and persons exposed to physical health hazards at work (PHYS),
and average of systolic blood pressure (SYSBP) in the MFH survey subgroup
of 30–64-year-old males.

Sample
CHRON PHYS SYSBP

Age n % % % Mean

30–34 508 18.8 13.8 12.8 134.0
35–39 384 14.2 21.4 17.4 136.2
40–44 437 16.2 28.4 18.8 138.5
45–49 395 14.6 44.8 18.5 141.9
50–54 379 14.0 52.2 17.4 144.7
55–59 336 12.4 68.5 21.4 151.2
60–64 260 9.6 73.8 21.2 154.3

Total sample 2699 100.0 39.8 17.8 141.8
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demonstration of poststratification as considered in Sections 3.3 and 4.1, we
develop the poststratification weights, and we compare the unweighted and
weighted estimation results. For this, let us suppose for a moment that we are
working with a simple random sample (although this is not actually true for the
MFH Survey data set).

We construct the poststratification weights using the regional age distributions
for both sexes, which are available on the population level. We first divide the
target population into 30 regional age–sex poststrata with five regions and three
age groups. Let us consider the selected MFH Survey subgroup of 30–64-year-
old males; the corresponding population and sample frequency distributions
and proportions are displayed in Table 5.3. Using these distributions, two different
weights are derived for the sample elements in poststratum g: a weight w∗

g = Ng/ng,
and a rescaled weight w∗∗

g = w∗
g × n/N, where Ng and ng denote the population size

and sample size in poststratum g, respectively, and N and n are the corresponding
sizes of the population and the sample data set.

The weights w∗
g indicate the amount of population elements ‘represented’ by a

single sample element. Over an n-element sample data set, these weights sum up to
the relevant population size N. The rescaled weights w∗∗

g sum up to n. In Table 5.3,
these weights vary only slightly around their mean value of one, indicating the
self-weighting property of the MFH data set. In a strictly self-weighting data set,

Table 5.3 Poststratification weight generation for the MFH Survey subgroup of
30–64-year-old males. Population and sample sizes Ng and ng, the corresponding
proportions Pg and pg, and the weights w∗

g and w∗∗
g in the 15 poststrata for males.

Poststratum Ng ng Pg pg w∗
g w∗∗

g

1 56 658 140 0.05806 0.05187 404.70 1.1192
2 32 450 94 0.03325 0.03483 345.21 0.9547
3 21 681 66 0.02222 0.02445 328.50 0.9085
4 71 324 199 0.07308 0.07373 358.41 0.9912
5 41 422 123 0.04244 0.04557 336.76 0.9313
6 33 168 93 0.03399 0.03446 356.65 0.9863
7 75 172 215 0.07703 0.07966 349.64 0.9669
8 45 507 131 0.04663 0.04854 347.38 0.9607
9 33 011 97 0.03382 0.03594 340.32 0.9412

10 116 822 309 0.11970 0.11449 378.06 1.0456
11 62 917 172 0.06447 0.06373 365.80 1.0116
12 47 261 157 0.04843 0.05817 301.03 0.8325
13 188 252 466 0.19289 0.17266 403.97 1.1172
14 88 185 254 0.09036 0.09411 347.19 0.9602
15 62 105 183 0.06364 0.06780 339.37 0.9386

Total 975 935 2699 1.00000 1.00000
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rare in practice, the weights w∗
g would be constant and the rescaled weights w∗∗

g
would be equal to one for all sample elements.

When using the weights, it is obvious that the weight w∗
g is suitable for proper

estimation of population totals and the rescaled weight w∗∗
g is convenient in testing

and modelling procedures when population totals are not of interest.
Developing a weight variable for poststratification is more complicated for a

non-epsem data set from a complex sampling design, because there may already
exist an element weight to compensate for unequal inclusion probabilities. For
the simplest case, an adjusted weight to account for nonresponse can be derived
by multiplying the sampling weight by the response rate in a poststratum, and
then the product can be used as a weight variable in an analysis program. Strictly
speaking, however, the variance estimators of poststratified estimates are different
from the estimators obtained using the adjusted weights. However, in practice,
the differences in variance estimates are usually small.

Let us compare the estimation results from an unweighted and a weighted MFH
Survey data set, and using poststratified estimators. For simplicity, we ignore the
original stratification and clustering; the MFH sample data set is thus taken as
a simple random sample (drawn with replacement) for the unweighted analysis
(SRSWR), a stratified simple random sample with non-proportional allocation
in the weighted analysis (STRWR) and a poststratified simple random sample
in the third case. Weighted estimates are obtained using the weights w∗

g or w∗∗
g

in the weight variable, and the poststratification is carried out by supplying
the population sizes Ng in each poststratum in the estimation procedure. The
corresponding sample means and standard-error estimates of CHRON, PHYS and
SYSBP are displayed below:

Study
SRSWR STRWR Poststratified

variable n Mean s.e Mean s.e Mean s.e

CHRON 2699 0.398 0.0094 0.386 0.0084 0.386 0.0085
PHYS 2699 0.178 0.0074 0.176 0.0073 0.176 0.0073
SYSBP 2699 141.8 0.3677 141.4 0.3353 141.4 0.3375

The unweighted and poststratified means differ for CHRON and somewhat for
SYSBP because of their dependence on the demographic decomposition of the
poststrata, especially on age, which is stronger than for PHYS. It should be
noted that poststratification can increase efficiency. Poststratification executed
as a usual stratified analysis decreases standard error estimates for CHRON and
SYSBP. The extra variance owing to the poststratification can be seen from the last
column (especially for SYSBP) where the standard errors are estimated using the
most appropriate variance estimators. However, when compared to the stratified
analysis, the differences are still quite small.
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5.2 RATIO ESTIMATORS

In the estimation of variances we concentrate on ratio estimators, which are the
simplest examples of nonlinear estimators. The means and proportions estimated
in population subgroups, for example, the mean of systolic blood pressure and
the proportion of chronically ill persons in the MFH Survey subgroup, are typical
nonlinear ratio estimators. Variance estimation is examined under a stratified
cluster-sampling design, which is epsem like the MFH Survey sampling design.
This kind of sampling design is simple for variance estimation and is popular
in practice.

Nonlinear Estimators

A linear estimator constitutes a linear function of the sample observations.
Totals such as t̂ = N

∑n
k=1 yk/n are linear estimators when calculated from a

simple random sample whose size n is fixed in advance. Under cluster sampling,
situations are often encountered in which a fixed-size sample cannot be assumed.
This occurs, for example, in one-stage cluster sampling if the cluster sizes Bi vary.
Then, in the total estimator t̂rat = N

∑m
i=1 yi/

∑m
i=1 Bi (considered in Section 3.2)

where yi is the sample sum of the response variable in cluster i, the denominator
should also be taken as a random variate whose value depends on which clusters
are drawn. Because of this, t̂rat turns out to be a nonlinear estimator.

The estimator t̂rat is a special case of the ratio estimation considered in
Section 3.3, where ratio estimation refers to the estimation of the population
total T of a response variable using auxiliary information. There, the estimator
t̂rat = r̂ × Tz was derived, where r̂ = t̂/t̂z is a ratio of the total estimators t̂ and
t̂z of the response variable of interest and an auxiliary variable z, respectively,
and Tz is the known population total of z. For the estimation of the population
ratio R = T/Tz, the estimator r̂ is directly available, and it can be written as
r̂ =∑m

i=1 yi/
∑m

i=1 zi. The estimator r̂ is called an estimator of a ratio, or a ratio
estimator. In this estimator, the denominator is the sample size, which is not
assumed to be fixed. In practice, subpopulation means and proportions estimated
from a subgroup of a sample such that the subgroup sample size is not fixed, as
in the MFH Survey subgroup of 30–64-year-old males, provide the most common
examples of ratio estimators. We shall consider such ratio estimators here.

Combined Ratio and Separate Ratio Estimators

Let the population clusters be divided into H strata so that there are Mh clusters
in stratum h. A first-stage sample of mh (≥2) clusters is drawn from each stratum
h, and a second-stage sample of a total of n =∑H

h=1 nh elements is drawn from the
m =∑H

h=1 mh sample clusters. As we often work with subgroups of the sample
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whose sizes are not fixed in advance, we will use xh in place of nh. Note that we
do not use zh to avoid confusion with notation used for an auxiliary variable.
We assume that the sample is self-weighting, i.e. the inclusion probability of
each of the N population elements is constant over the strata and adjustment
for nonresponse is not necessary. Element weights are thus constant for all
sample elements. Further, let yhi =∑xhi

k=1 yhik denote the subgroup sample sum
of the response variable in sample cluster i of stratum h, and let xhi denote the
corresponding sample size. Two types of ratio estimators are derived by using
the sample sums yhi and xhi. A combined ratio (across-stratum ratio) estimator is
given by

r̂ =

H∑
h=1

yh

H∑
h=1

xh

=

H∑
h=1

mh∑
i=1

yhi

H∑
h=1

mh∑
i=1

xhi

, (5.1)

which is a ratio estimator of a mean Y = T/N or of a proportion P = N1/N, where
T is the population total of a continuous response variable and N1 is the count
of persons having the value one on a binary response variable in the population
subgroup considered. It is essential to note that in the ratio estimator r̂ not only the
numerator quantities yhi vary between clusters but the denominator quantities
xhi may also do so.

For (5.1) yhi and xhi were first summed over the strata and clusters. A separate
ratio (stratum-by-stratum ratio) estimator is a weighted sum of stratum ratios
yh/xh. It is given by

r̂s =
H∑

h=1

Whr̂h, (5.2)

where Wh = Nh/N are known stratum weights, and

r̂h = yh

xh
=

mh∑
i=1

yhi

mh∑
i=1

xhi

, h = 1, . . . , H.

The separate ratio estimator is often used in descriptive surveys, whereas the
combined ratio estimator is more common in complex analytical surveys. We
will exclusively use combined ratio estimators in this chapter and in subsequent
chapters and call them ratio estimators. In the case of a continuous response
variable, we put r̂ = y (a sample mean) and in the case of a binary response, r̂ = p̂
(a sample proportion). We will often denote the ratio estimator in (5.1) simply
as r̂ = y/x, where y =∑H

h=1 yh and x =∑H
h=1 xh. The quantities y and x thus
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refer to the sample sum of the response variable and the sample size, respectively,
in a subgroup of the sample. Note that the above discussion applies equally to
an estimator r̂ calculated from the whole sample if its size is not fixed by the
sampling design.

The ratio estimator r̂ is not unbiased but is consistent. The bias of r̂ depends
on the variability of the cluster sample sizes in the subgroup. The coefficient of
variation of the cluster sample sizes xhi can be used as a measure of this variability.
If the coefficient of variation is small, the ratio estimator r̂ is nearly linear and
hence nearly unbiased. The bias is not disturbing if the coefficient of variation is
less than, say, 0.2.

Various kinds of subgroups can be formed in which the bias properties of ratio
estimators can vary. In cross-classes, which cut smoothly across the strata and
sample clusters, the decrease in the subgroup sample sizes xhi within clusters
is proportional to the decrease in the subgroup sample size relative to the total
sample size. The coefficient of variation of the subgroup sample sizes hence has
the same magnitude as for the total sample. For this kind of a subgroup, basic
features of the sampling design are well reflected; for example, the number of
strata and sample clusters covered by a cross-class are usually the same as for
the entire sample. Alternatively, in segregated classes covering only a part of the
sample clusters, the coefficient of variation of the subgroup sample sizes can
increase substantially. These are, for example, regional subgroups. It should
be noted that, in contrast to a cross-classes-type domain, a segregated class
does not properly reflect the properties of the sampling design, possibly leading
to instability problems in variance estimation (see Section 5.7). Between these
extremes are mixed classes, which are perhaps the most common subgroup
types in practice. Demographic subgroups often constitute cross-classes while
socioeconomic subgroups tend to be mixed classes. Moreover, a property of
design-effect estimates of subpopulation ratio estimators for cross-classes is that
they tend to approach unity with decreasing subgroup sample size. This property
is not shared by the other types of subgroups.

Variance Estimation of a Ratio Estimator

For the ratio estimator (5.1), not only the cluster-wise variation in the numerator∑H
h=1 yh but also the variation in the denominator

∑H
h=1 xh contributes to the total

variance. Therefore, variance estimation of a ratio estimator is more complicated
than that of a linear estimator. Analytical variance estimators for linear estimators,
such as for population totals considered in Chapter 2, were derived according to
the special features of each basic sampling technique. For nonlinear estimators,
analytical variance estimators can be cumbersome or may not be available. Other
types of variance estimators are thus needed. To be successful, these estimators,
and the corresponding computational techniques, should have multi-purpose
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properties that cover the most common types of complex sampling designs and
nonlinear estimators.

Approximative variance estimators can be used for variance estimation of a
nonlinear estimator. These variance estimators are not sampling-design-specific,
unlike those for linear estimators. Approximative variance estimators are flexible
so that they can be applied for different kinds of nonlinear estimators, including
the ratio estimator, under a variety of multi-stage designs covering all the different
real sampling designs selected for this book. We use the linearization method as
the basic approximation method. Alternative methods are based on sample reuse
techniques such as balanced half-samples, jackknife and bootstrap. Approximative
techniques for variance estimation are available in statistical software products
for variance estimation in complex surveys.

Certain simplifying assumptions are often made when using approximative
variance estimators. In variance estimation under a multi-stage design, each
sampling stage contributes to the total variance. For example, under a two-stage
design, an analytical variance estimator of a population total is composed of a
sum of the between-cluster and within-cluster variance components as shown in
Section 3.2. In the simplest use of the approximation methods, a possible multi-
stage design is reduced to a one-stage design, and the clusters are assumed to be
drawn with replacement. Variances are then estimated using the between-cluster
variation only. In more advanced uses of the approximation techniques, the
variation of all the sampling stages can be properly accounted for.

5.3 LINEARIZATION METHOD

Linearization Method for a Nonlinear Estimator

In estimating the variance of a general nonlinear estimator, denoted by θ̂ , we adopt
a method based on the so-called Taylor series expansion. The method is usually
called the linearization method because we first reduce the original nonlinear
quantity to an approximate linear quantity by using the linear terms of the
corresponding Taylor series expansion, and then construct the variance formula
and an estimator of the variance of this linearized quantity.

Let an s-dimensional parameter vector be denoted by Y = (Y1, . . . , Ys)
′ where

Yj are population totals or means. The corresponding estimator vector is denoted
by Ŷ = (Ŷ1, . . . , Ŷs)

′ where Ŷj are estimators of Yj. We consider a nonlinear
parameter θ = f (Y) with a consistent estimator denoted by θ̂ = f (Ŷ). A simple
example is a subpopulation mean parameter θ = Y = Y1/Y2 with a ratio estimator
θ̂ = y = Ŷ1/Ŷ2 = y/x, where y =∑H

h=1

∑mh
i=1 yhi is the subgroup sample sum of

the response variable and x =∑H
h=1

∑mh
i=1 xhi is the subgroup sample size, both

regarded as random quantities.
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Suppose that for the function f (y), continuous second-order derivatives exist in
an open sphere containing Y and Ŷ. Using the linear terms of the Taylor series
expansion, we have an approximative linearized expression,

θ̂ − θ
.=

s∑
j=1

∂f (Y)

∂yj
(Ŷj − Yj), (5.3)

where ∂f (Y)/∂yj refers to partial derivation. Using the linearized equation (5.3),
the variance approximation of θ̂ can be expressed by

V(θ̂ )
.= V


 s∑

j=1

∂f (Y)

∂yj
(Ŷj − Yj)


 =

s∑
j=1

s∑
l=1

∂ f (Y)

∂yj

∂ f (Y)

∂yl
V(Ŷj, Ŷl), (5.4)

where V(Ŷj, Ŷl) denote variances and covariances of the estimators Ŷj and Ŷl.
We have hence reduced the variance of a nonlinear estimator θ̂ to a function
of variances and covariances of s linear estimators Ŷj. A variance estimator v̂(θ̂ )

is obtained from (5.4) by substituting the variance and covariance estimators
v̂(Ŷj, Ŷl) for the corresponding parameters V(Ŷj, Ŷl). The resulting variance
estimator is a first-order Taylor series approximation where justification for
ignoring the remaining higher-order terms is essentially based on practical
experience derived from various complex surveys in which the sample sizes have
been sufficiently large.

As an example of the linearization method, let us consider further a ratio
estimator. The parameter vector is Y = (Y1, Y2)

′ with the corresponding estimator
vector Ŷ = (Ŷ1, Ŷ2)

′. The nonlinear parameter to be estimated is θ = f (Y) =
Y1/Y2, and the corresponding ratio estimator is θ̂ = f (Ŷ) = Ŷ1/Ŷ2. The partial
derivatives are

∂f (Y)/∂y1 = 1/Y2 and ∂f (Y)/∂y2 = −Y1/Y2
2 .

Hence we have

V(θ̂ )
.=

2∑
j=1

2∑
l=1

∂f (Y)

∂yj

∂f (Y)

∂yl
V(Ŷj, Ŷl)

= 1
Y2

1
Y2

V(Ŷ1) + 1
Y2

(
− Y1

Y2
2

)
V(Ŷ1, Ŷ2)

+
(

− Y1

Y2
2

)
1

Y2
V(Ŷ2, Ŷ1) +

(
− Y1

Y2
2

)(
− Y1

Y2
2

)
V(Ŷ2)

= (1/Y2
2)(V(Ŷ1) + θ2V(Ŷ2) − 2θV(Ŷ1, Ŷ2))

= θ2(Y−2
1 V(Ŷ1) + Y−2

2 V(Ŷ2) − 2(Y1Y2)
−1V(Ŷ1, Ŷ2)). (5.5)

TLFeBOOK



Linearization Method 143

Basic principles of the linearization method for variance estimation of a non-
linear estimator under complex sampling are due to Keyfitz (1957) and Tepping
(1968). Woodruff (1971) suggested simplified computational algorithms for the
approximation by transforming an s-dimensional situation to a one-dimensional
case. A good reference for the method is Wolter (1985). The linearization method
can also be used for more complex nonlinear estimators such as correlation and
regression coefficients. The linearization method is used in most survey analysis
software products for variance estimation of ratio estimators and for more compli-
cated nonlinear estimators. We next consider the estimation of the approximative
variance of a ratio estimator using the linearization method.

Linearization Method for a Combined Ratio Estimator

A variance estimator of the ratio estimator r̂ = y/x =∑H
h=1

∑mh
i=1 yhi/∑H

h=1

∑mh
i=1 xhi given by (5.1) should, according to equation (5.5), include the

following terms: first, a term accounting for cluster-wise variation of the subgroup
sample sums yhi, second, a term accounting for cluster-wise variation of the
subgroup sample sizes xhi, and finally, a term accounting for joint cluster-wise
variation of the sample sums yhi and xhi, i.e. their covariance. A variance estima-
tor of r̂ can thus be obtained from equation (5.5) by substituting the estimators
v̂(y), v̂(x) and v̂(y, x) for the corresponding variance and covariance terms V(y),
V(x) and V(y, x). Hence we have

v̂des(r̂) = r̂2(y−2v̂(y) + x−2v̂(x) − 2(yx)−1v̂(y, x)), (5.6)

as the design-based variance estimator of r̂ based on the linearization method,
where v̂(y) is the variance estimator of the subgroup sample sum y, v̂(x) is the
variance estimator of the subgroup sample size x, and v̂(y, x) is the covariance
estimator of y and x.

The variance estimator (5.6) is consistent if the estimators v̂(y), v̂(x) and
v̂(y, x) are consistent. The cluster sample sizes xhi should not vary too much
for the reliable performance of the approximation based on the Taylor series
expansion. The method can be safely used if the coefficient of variation of
xhi is less than 0.2. If the cluster sample sizes are equal, the variance and
covariance terms v̂(x) and v̂(y, x) are zero and the variance approximation
reduces to v̂des(r̂) = v̂(y)/x2. And for a binary response from simple random
sampling with replacement, this variance estimator reduces to the binomial
variance estimator v̂des(p̂) = v̂bin(p̂) = p̂(1 − p̂)/x, where x = n, the size of the
available sample data set.

The variance estimator (5.6) is a large-sample approximation in that a good
variance estimate can be expected if not only a large element-level sample is
available but a large number of sample clusters is also present. In the case of a
small number of sample clusters, the variance estimator can be unstable; this will
be examined in Section 5.7.
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Strictly speaking, the variance and covariance estimators in (5.6) depend on
the actual sampling design. But assuming that at least two sample clusters are
drawn from each stratum and by using the with-replacement assumption, i.e.
assuming that clusters are drawn independently of each other, we obtain relatively
simple variance and covariance estimators, which can be generally applied for
multi-stage stratified epsem samples:

v̂(y) =
H∑

h=1

mhŝ2
yh, v̂(x) =

H∑
h=1

mhŝ2
xh

and

v̂(y, x) =
H∑

h=1

mhŝyxh,

where

ŝ2
yh =

mh∑
i=1

(yhi − yh/mh)
2/(mh − 1),

ŝ2
xh =

mh∑
i=1

(xhi − xh/mh)
2/(mh − 1),

and

ŝyxh =
mh∑
i=1

(yhi − yh/mh)(xhi − xh/mh)/(mh − 1). (5.7)

Note that by using the with-replacement approximation, only the between-cluster
variation is accounted for. Therefore, the corresponding variance estimators
underestimate the true variance. This bias is negligible if the stratum-wise first-
stage sampling fractions are small, which is the case when there are a large
number of population clusters in each stratum (see Section 3.2).

For the estimation of the between-cluster variance, at least two sample clusters
are needed. If the sampling design is such that exactly two clusters are drawn
from each stratum, the estimators (5.7) can be further simplified:

v̂(y) =
H∑

h=1

(yh1 − yh2)
2, v̂(x) =

H∑
h=1

(xh1 − xh2)
2

and

v̂(y, x) =
H∑

h=1

(yh1 − yh2)(xh1 − xh2). (5.8)
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This kind of design is popular in practice because of the simplicity of the variance
and covariance estimators. The modified MFH Survey sampling design is of this
type. The linearization method is demonstrated in the MFH Survey’s two-stage
design in Example 5.1.

Example 5.1

Linearization method in the MFH Survey. We consider the estimation of the
variance of a subpopulation proportion estimator r̂ = p̂ for the binary response
variable CHRON (chronic morbidity) and a subpopulation mean estimator r̂ = y
for the continuous response variable SYSBP (systolic blood pressure) by the
linearization method. The MFH Survey subgroup covers 30–64-year-old males.
The subgroup sample size is x = 2699 and the data set is self-weighting. In the
modified MFH Survey sampling design, described in Section 5.1, there are H = 24
regional strata and m = 48 regional sample clusters. Two sample clusters are thus
drawn from each stratum. Recall that the subgroup maintains these properties of
the sampling design because it constitutes a cross-classes-type domain. The data
set is displayed in Table 5.4.

For the binary response variable CHRON, we obtain:

y =
24∑

h=1

2∑
i=1

yhi =
24∑

h=1

(yh1 + yh2) = 1073

chronically ill males in the sample, and a sample sum of

x =
24∑

h=1

2∑
i=1

xhi =
24∑

h=1

(xh1 + xh2) = 2699

males in the subgroup. The subpopulation proportion estimate of CHRON is

p̂ = y/x = 1073/2699 = 0.3976.

For the variance estimate v̂des(p̂) of p̂, we calculate the variance and covariance
estimates v̂(y), v̂(x) and v̂(y, x). By using equation (5.8), these are:

v̂(y) =
24∑

h=1

(yh1 − yh2)
2 = 1545, v̂(x) =

24∑
h=1

(xh1 − xh2)
2 = 2527

and

v̂(y, x) =
24∑

h=1

(yh1 − yh2)(xh1 − xh2) = 1435.
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Table 5.4 Cluster sample sums yhi of the response variables CHRON and SYSBP and the
corresponding cluster sample sizes xhi for the subgroup of 30–64-year-old males in the
MFH Survey.

Stratum
h

Cluster
i

CHRON
yhi

SYSBP
yhi xhi

Cluster
i

CHRON
yhi

SYSBP
yhi xhi

1 1 70 29 056 204 2 74 29 417 210
2 1 12 3692 26 2 14 4564 30
3 1 15 7741 59 2 16 8585 63
4 1 9 6277 45 2 14 5668 43
5 1 10 2322 17 2 16 3960 30
6 1 10 3080 21 2 6 3252 22
7 1 10 3966 27 2 4 3261 24
8 1 12 4156 28 2 6 2852 20
9 1 15 6617 46 2 23 6616 48

10 1 37 10 552 73 2 25 11 032 77
11 1 11 8759 60 2 25 9876 72
12 1 33 9901 69 2 24 6828 47
13 1 31 8624 61 2 27 9390 66
14 1 22 6960 48 2 20 7130 49
15 1 18 6646 49 2 22 7094 49
16 1 24 9841 69 2 37 11 786 83
17 1 19 6910 48 2 23 6446 45
18 1 25 10 742 73 2 29 9026 61
19 1 36 9350 65 2 34 8912 62
20 1 9 3810 26 2 22 7098 51
21 1 18 6998 53 2 34 9970 69
22 1 29 11 146 79 2 41 13 215 94
23 1 22 6596 48 2 18 6002 41
24 1 15 3808 27 2 7 3148 22

Over both clusters in all strata 1073 382 678 2699

Using these estimates, we obtain a variance estimate (5.6):

v̂des(p̂) = p̂2(y−2v̂(y) + x−2v̂(x) − 2(y × x)−1v̂(y, x))

= 0.39762 × (1073−2 × 1545 + 2699−2 × 2527

− 2 × (1073 × 2699)−1 × 1435) = 0.1103 × 10−3.

For the continuous response variable SYSBP, we obtain the sample sum

y =
24∑

h=1

2∑
i=1

yhi =
24∑

h=1

(yh1 + yh2) = 382 678.
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Hence the subpopulation mean estimate of SYSBP is

y = y/x = 382 678/2699 = 141.785.

For the variance estimate v̂des(y) of y, we obtain:

v̂(y) =
24∑

h=1

(yh1 − yh2)
2 = 50 469 516

and

v̂(y, x) =
24∑

h=1

(yh1 − yh2)(xh1 − xh2) = 349 962.

Using these estimates, we obtain a variance estimate (5.6):

v̂des(y) = y2(y−2v̂(y) + x−2v̂(x) − 2(y × x)−1v̂(y, x))

= 141.7852 × (382 678−2 × 50 469 516 + 2699−2 × 2527

− 2 × (382 678 × 2699)−1 × 349 962) = 0.2788.

All these variances could be estimated from the cluster-level data set given in
Table 5.4. For CHRON we next calculate a binomial variance estimate of p̂ corre-
sponding to simple random sampling with replacement, and the corresponding
design-effect estimate. The variance estimate is

v̂bin(p̂) = p̂(1 − p̂)/x = 0.3976 × (1 − 0.3976)/2699 = 0.0887 × 10−3,

where v̂bin is the standard binomial variance estimator. The design-effect estimate
is d̂(p̂) = v̂des(p̂)/v̂bin(p̂) = 1.24. Note that the design-effect estimate is noticeably
smaller than that for the total survey data because the subgroup is a cross-class.
The design-effect estimate also indicates that intra-cluster correlation in CHRON
in the subgroup is only slight. For SYSBP, on the other hand, access to the
individual-level data set is required for the calculation of the variance estimate of
y with an assumption of simple random sampling with replacement. This turns
out to be

v̂srswr(y) =
2699∑
k=1

(yk − y)2/(2699(2699 − 1)) = 0.1352,

and hence the design-effect estimate is d̂(y) = 2.06. The estimate indicates a
substantial intra-cluster correlation in the response SYSBP in the subgroup, even
the estimate is considerably smaller than that for the total survey data. The
coefficient of variation of the subgroup sample size is c.v(x) = s.e(x)/x = 0.019,
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which is small enough to justify the use of the Taylor series linearization. We
finally collect the estimation results below.

Study Estimate
Standard-error estimate

variable r̂ s.edes(r̂) s.esrs(r̂) deff

CHRON 0.3976 0.0105 0.0094 1.24
SYSBP 141.785 0.5280 0.3677 2.06

In practice, the estimation of the variance of a ratio-type proportion or mean
estimator can be carried out by suitable software for survey analysis. Instead of
the cluster-level data set, an individual-level data set is usually used as input in
applying survey analysis software. For further training, the user is encouraged to
visit the web extension of the book.

5.4 SAMPLE REUSE METHODS

Sample reuse methods can be used as an alternative to the linearization method
in variance approximation of a nonlinear estimator θ̂ under complex multi-stage
designs. The term reuse refers to a procedure in which variance estimation is
based on repeated utilization of the sampled data set that itself is obtained as
a single sample from the population. Therefore, these methods are sometimes
called pseudoreplication techniques. Pseudoreplication should be distinguished
from techniques such as the random groups methodology, which rely on true
replication where several independent samples are actually drawn from the same
population. These methods are excluded here because of their limited practical
applicability in complex analytical surveys.

In this section, we consider three particular sample reuse techniques: bal-
anced half-samples, jackknife and bootstrap. They all share the following basic
variance estimation procedure (which actually originates from random groups
methodology):

1. From the sample data set, we draw K pseudosamples by a particular technique
with a value of K that is specific to each reuse method.

2. An estimate θ̂k mimicking the parent estimator θ̂ is obtained from each of the
K pseudosamples.

3. The variance V(θ̂ ) of the estimator θ̂ is estimated by using the observed
variation of the pseudosample estimates θ̂k, essentially based on squared
differences of the form (θ̂k − θ̂ )2. Typically, sample reuse estimators are of the
form v̂(θ̂ ) = c

∑K
k=1(θ̂k − θ̂ )2, where c is a constant, specific for each sample

reuse method. An average θ̂ =∑K
k=1 θ̂k/K of the K pseudosample estimates θ̂k

can be used in place of θ̂ to form the squared differences.
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The estimator θ̂ is usually a nonlinear estimator, a ratio estimator or an
estimator of a regression coefficient. In the linearization method, analytical
expressions for partial derivatives of such nonlinear functions were needed in the
construction of a variance estimator. This is not so in sample reuse techniques.
In fact, the basic variance estimation procedure described above is independent
of the type of estimator and, therefore, the methods are applicable for any kind
of nonlinear estimator. Pseudoreplication techniques, especially the bootstrap,
however, involve much more computation than the linearization method; thus
they are flexible but computer-intensive.

The technique of balanced half-samples was introduced by McCarthy (1966,
1969) for variance approximation of a nonlinear estimator under an epsem
design, where a large number of strata are formed and exactly two clusters
are drawn with replacement from each stratum. For variance estimation in a
similar design, McCarthy (1966) also introduced the jackknife method, which was
originally developed by Quenouille (1956) for bias reduction of an estimator. A
key property of the jackknife method is compactly stated as jack-of-all-trades and
master of none. Both methods have been generalized for more complex designs
involving more than two clusters per stratum and without-replacement sampling
of clusters. Good introductions to balanced half-samples and jackknife techniques
for complex surveys may be found in Wolter (1985) and Rao et al. (1992).

Bootstrapping was introduced by Efron (1982) for a general nonparametric
methodology for various statistical problems: ‘Our goal is to understand a collection
of ideas concerning the nonparametric estimation of bias, variance and more general
measures of error’ (Efron 1982, p. 1). Since then, the technique has been extensively
applied, using computer-intensive simulation, for a variety of non-standard
variance and confidence-interval approximation problems when working with
independent observations. Originating, like the jackknife, outside the survey-
sampling framework, the bootstrap technique has been only recently applied
for variance estimation of nonlinear estimators in complex surveys. One of the
first developments for finite-population without-replacement sampling was given
in McCarthy and Snowden (1985). Extensions of the bootstrap technique are given
in Rao and Wu (1988), Rao et al. (1992), covering non-smooth functions such as
quantiles, and Sitter (1992, 1997). A brief summary of the bootstrap technique for
complex surveys is given in Särndal et al. (1992).

Here we only introduce the basic principles of the sample reuse techniques and
concentrate on their practical application within the MFH Survey setting. As an
example of a nonlinear estimator we again consider the (combined) ratio estimator
r̂ = y/x, given by (5.1), where y =∑H

h=1

∑mh
i=1 yhi is the sum of the cluster-level

subgroup sample sums of a response variable and x =∑H
h=1

∑mh
i=1 xhi is the

corresponding sum of the cluster-level subgroup sample sizes. A two-stage epsem
sampling design is assumed such that the clusters are drawn with replacement.
The with-replacement assumption involves bias to the approximative variance
estimates but the bias is negligible if the first-stage sampling fraction is small. Note
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that the cluster-level data set used for variance approximation in all the reuse
methods is similar to that used in the linearization method.

Balanced half-samples and jackknife techniques for variance approximation
of a ratio estimator r̂ are examined in a design in which exactly two clus-
ters are drawn from each stratum. Note that the MFH Survey sampling design
is of this type. The bootstrap technique is applied to a more general design
in which at least two clusters are drawn from each stratum but the num-
ber of sample clusters is constant over the strata. Under these designs, the
techniques are here called balanced repeated replications (BRR), jackknife repeated
replications (JRR) and bootstrap repeated replications (BOOT). Because there are
several alternative versions of BRR and JRR suggested in the literature, our
aim is also to compare estimation results with each other, and also with the
results attained by the linearization method. An overall comparison is given in
Section 5.5.

Sample reuse methods differ in their asymptotic and other properties, com-
putational requirements and practicality. Comparative results for the properties
of the sample reuse methods for nonlinear estimators from complex sampling
are reported by Kish and Frankel (1970, 1974), Bean (1975), Krewski and Rao
(1981), Rao and Wu (1985, 1988), Rao et al. (1992) and Shao and Tu (1995). We
discuss briefly the relative merits of the methods in Section 5.5.

The BRR Technique

In its basic form, the technique of balanced repeated replications can be applied to
variance approximation in epsem designs where exactly two clusters are drawn
with replacement from each stratum, and the number of strata is large. We
consider using this design, the BRR method for a ratio estimator r̂ = y/x, which
is a subpopulation mean or proportion estimator, where y =∑H

h=1(yh1 + yh2)

and x =∑H
h=1(xh1 + xh2) and yhi, xhi, i = 1, 2, are the cluster-level sample sums

previously given.
The way of forming pseudosamples in the BRR technique starts from the fact

that, with H strata and mh = 2 sample clusters per stratum, the total sample can
be split into 2H overlapping half-samples each with H sample clusters. For each
half sample, one of the pairs (y11, x11) and (y12, x12) from the first stratum, one of
the pairs (y21, x21) and (y22, x22) from the second stratum, and so forth, is selected.
A ratio estimator

r̂k =

H∑
h=1

2∑
i=1

δhikyhi

H∑
h=1

2∑
i=1

δhikxhi

, k = 1, . . . , 2H (5.9)
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is derived for each half-sample k, where the weights δhik = 1 if the cluster hi is
selected in the kth half-sample, and δhik = 0 otherwise.

Variance estimator of the mean of r̂k over all half-samples, namely,

r̂ =
2H∑

k=1

r̂k/2H, (5.10)

and that of the parent estimator, r̂, can be constructed using r̂k obtained from the
half-samples. Hence we have:

v̂(r̂) =
2H∑

k=1

(r̂k − r̂)2/2H

and

v̂(r̂) =
2H∑

k=1

(r̂k − r̂)2/2H. (5.11)

If r̂ is a linear estimator, an identity r̂ = r̂ holds, and the two variance estimators
in (5.11) are equal. Although for a ratio estimator the identity does not hold,
in practice the parent estimate and the mean of the half-sample estimates are
usually close and either of the variance estimators (5.11) could be used as a
variance estimator for the parent estimator r̂. But it is obvious that these variance
estimators are not useful in practice because they often presuppose forming a very
large number of half-samples, e.g. in the MFH Survey setting about 17 million. To
avoid the onerous task of constructing all possible pseudosamples, a subset of them
may be selected. But if this subset is chosen at random, a nonzero cross-stratum
covariance term will appear in the corresponding variance estimator. In the BRR
technique, a subset of K half-samples is selected by a balanced method. Balancing
involves the selection of the half-samples in such a way that the cross-stratum
covariance term is zero. This considerably reduces the number of half-samples
needed. In practice, the number K should be selected such that it is at least equal
to the number of strata H.

The balanced selection of half-samples is achieved by applying a method
developed by Plackett and Burman (1946) for the construction of K × K orthogonal
matrices where K is an integer multiple of 4. An example of such an orthogonal
Hadamard matrix B with K = 12 such that B′B = 12 × I, where I denotes an
identity matrix, is given below. The rows in the matrix refer to the half-samples
and the columns to the strata. A +1 in a cell (k, h) of the matrix denotes that
the first cluster h1 in a stratum h is included in the kth half sample, whilst −1
denotes that the cluster h2 is included. Note that complement half-samples can be
obtained simply by reversing the signs in the matrix. The number of half-samples,
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K = 12, is thus noticeably smaller than the total amount of possible half-samples,
which in this case is 212 = 4096.

Half-
Stratum h

sample k 1 2 3 4 5 6 7 8 9 10 11 12

1 +1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1
2 +1 +1 −1 +1 −1 −1 −1 +1 +1 +1 −1 −1
3 −1 +1 +1 −1 +1 −1 −1 −1 +1 +1 +1 −1
4 +1 −1 +1 +1 −1 +1 −1 −1 −1 +1 +1 −1
5 +1 +1 −1 +1 +1 −1 +1 −1 −1 −1 +1 −1
6 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1 −1 −1
7 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1 −1
8 −1 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1 −1
9 −1 −1 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1

10 +1 +1 −1 −1 +1 +1 +1 −1 +1 +1 −1 −1
11 −1 −1 −1 −1 +1 +1 +1 −1 +1 +1 +1 −1
12 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

If the actual number of strata is 12, we use the full matrix in the balanced
construction of the half-samples. If H is smaller than K, e.g. 10, we can choose
any 10 rows of the matrix. In the MFH Survey design, we will use K = 24, which
equals the number of strata. When working with linear estimators, full orthogonal
balance is reached, which involves equality of a full-sample mean estimate with
the estimate obtained as an average of the half-sample estimates, by choosing K
as an integer multiple of 4, which is greater than H. Hadamard matrices of orders
2 to 100 are given in Wolter (1985); such matrices can also be easily reproduced
by a suitable computer algorithm.

Several BRR variance estimators are suggested in the literature for the variance
V(r̂) of the parent estimator r̂. The variance estimator based on estimators r̂k from
the K half-samples and the full-sample estimator r̂ is

v̂1.brr(r̂) =
K∑

k=1

(r̂k − r̂)2/K, (5.12)

which is equal to (5.11) based on all 2H half-samples. As a counterpart to the
variance estimator v̂1.brr(r̂), an estimator based on estimates r̂c

k obtained from the
K complement half-samples is given by

v̂2.brr(r̂) =
K∑

k=1

(r̂c
k − r̂)2/K. (5.13)
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Using the variance estimators (5.12) and (5.13), a combined variance estimator

v̂3.brr(r̂) = (v̂1.brr(r̂) + v̂2.brr(r̂))/2 (5.14)

is derived. Counterparts to the variance estimators (5.12)–(5.14) can be derived
on the basis of the averages of r̂k and r̂c

k. An estimator corresponding to v̂1.brr

is hence

v̂4.brr(r̂) =
K∑

k=1

(r̂k − r̂)2/K, where r̂ =
K∑

k=1

r̂k/K, (5.15)

and that formed by using the complement half-samples is

v̂5.brr(r̂) =
K∑

k=1

(r̂c
k − r̂

c
)2/K, where r̂

c =
K∑

k=1

r̂c
k/K. (5.16)

Using v̂4.brr and v̂5.brr we obtain a counterpart to v̂3.brr:

v̂6.brr(r̂) = (v̂4.brr(r̂) + v̂5.brr(r̂))/2. (5.17)

Using the estimators r̂k and r̂c
k from all the half-samples, we finally obtain

v̂7.brr(r̂) =
K∑

k=1

(r̂k − r̂c
k)

2/4K. (5.18)

For a linear estimator, all these variance estimators coincide. However, this is not
so for a ratio estimator. For example, there is a relationship between v̂3.brr and
v̂7.brr:

v̂3.brr(r̂) = v̂7.brr(r̂) +
K∑

k=1

(r̂ − r̂)2/K,

and hence v̂3.brr(r̂) ≥ v̂7.brr(r̂). According to Wolter (1985), v̂7.brr could be regarded
as the most natural BRR variance estimator for the parent estimator θ̂ . In prac-
tice, however, all the estimators should yield nearly equal variance estimates, as
appears to be true in the MFH Survey.

Example 5.2

The BRR technique in the MFH Survey. We continue working with variance
approximation of ratio-type subpopulation mean and proportion estimators from
the MFH Survey data, as considered in the previous section for the linearization
method. The binary response variable CHRON (chronic morbidity) and the
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continuous response variable SYSBP (systolic blood pressure) are used. The
subgroup consists of 30–64-year-old males; the subgroup size is 2699. A proportion
estimator for CHRON is denoted by r̂ = p̂ and a mean estimator for SYSBP is
denoted by r̂ = y. We calculate all the seven BRR variance estimators for p̂ and y.

Recall that there are H = 24 strata and m = 48 sample clusters in the modified
MFH Survey design, with exactly two clusters drawn from each stratum. Variance
estimation by BRR starts with forming the K half-samples and the corresponding
complement half-samples. We choose K = 24, i.e. the number of strata, and use
the whole matrix in forming the half-samples and their complements. Note that
for a full orthogonal balance we would choose K = 28. We work out a weight
matrix from the 24 × 24 Hadamard matrix to perform the computations, which
are based on the cluster-level data set given in Example 5.1.

The parent ratio and mean estimates p̂ and y, and the corresponding means of
the half-sample estimates p̂k and yk with their complement half-sample estimates
p̂c

k and yc
k, are first calculated. These are:

p̂ = 0.3976, p̂ =
24∑

k=1

p̂k/24 = 0.3953 and p̂
c =

24∑
k=1

p̂c
k/24 = 0.3997,

y = 141.785, ŷ =
24∑

k=1

yk/24 = 141.804 and ŷ
c =

24∑
k=1

yc
k/24 = 141.768.

All three CHRON proportion estimates and SYSBP mean estimates are close. We
next calculate the BRR variance estimates (5.12)–(5.18). For CHRON, using p̂ we
obtain from the half-samples and their complements:

v̂1.brr(p̂) =
24∑

k=1

(p̂k − 0.3976)2/24 = 0.1104 × 10−3,

v̂2.brr(p̂) =
24∑

k=1

(p̂c
k − 0.3976)2/24 = 0.1103 × 10−3,

and
v̂3.brr(p̂) = (v̂1.brr(p̂) + v̂2.brr(p̂))/2 = 0.1103 × 10−3.

Using the mean estimates p̂ and p̂
c
, we obtain the counterparts:

v̂4.brr(p̂) =
24∑

k=1

(p̂k − 0.3953)2/24 = 0.1052 × 10−3,

v̂5.brr(p̂) =
24∑

k=1

(p̂c
k − 0.3997)2/24 = 0.1056 × 10−3,
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and

v̂6.brr(p̂) = (v̂4.brr(p̂) + v̂5.brr(p̂))/2 = 0.1054 × 10−3.

From all the half-samples we finally obtain:

v̂7.brr(p̂) =
24∑

k=1

(p̂k − p̂c
k)

2/(4 × 24) = 0.1103 × 10−3.

For CHRON the first three BRR variance estimates, and the last one, happen to be
equal to those obtained by the linearization method. Those based on the mean of
the half-sample estimates are somewhat, but not very much, smaller.

For SYSBP, we obtain the following BRR variance estimates:

v̂1.brr(y) =
24∑

k=1

(yk − 141.785)2/24 = 0.2791,

v̂2.brr(y) =
24∑

k=1

(yc
k − 141.785)2/24 = 0.2790,

v̂3.brr(y) = (v̂1.brr(y) + v̂2.brr(y))/2 = 0.2791,

v̂4.brr(y) =
24∑

k=1

(yk − 141.804)2/24 = 0.2787,

v̂5.brr(y) =
24∑

k=1

(yc
k − 141.768)2/24 = 0.2788,

v̂6.brr(y) = (v̂4.brr(y) + v̂5.brr(y))/2 = 0.2787,

v̂7.brr(y) =
24∑

k=1

(yk − yc
k)

2/(4 × 24) = 0.2790.

For SYSBP, all the BRR variance estimates (and that obtained by the linearization
method) are equal to 0.279 when rounded to three digits.

All the BRR variance estimators provided similar results for a ratio estimator,
a subpopulation proportion or a mean, for the response variables considered.
These results equal those drawn from other comparable empirical studies. Also
on theoretical grounds, no definite preference for the BRR variance estimators of
a nonlinear estimator can be given. In addition to the BRR variance estimators
introduced, other versions have been also developed, such as a BRR variant, called
the Fay’s method (Judkins 1990), resembling jackknife-type estimation.
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The JRR Technique

The particular jackknife method based on jackknife repeated replications has many
features of the BRR technique, since only the method of forming the pseudosamples
is different. Application of the JRR technique to a design where more than two
sample clusters are drawn from a stratum is more straightforward than for BRR.
We, however, consider the JRR technique in the simplest case where the number
of sample clusters per stratum is exactly two, and the clusters are assumed to be
drawn with replacement, i.e. with a design similar to that required for BRR. JRR
variance estimators are derived for a ratio estimator r̂, which is a subpopulation
proportion or mean estimator.

We construct the pseudosamples following the method suggested by Frankel
(1971). For the first pseudosample, we exclude the first cluster h1 from the first
stratum and weight the second cluster h2 by the value 2, leaving the remaining
H − 1 strata unchanged. By repeating this procedure for all strata, we get a total
of H pseudosamples. For a similar set of H complement pseudosamples, we change
the order of the clusters that are excluded. The JRR variance estimators are derived
using these two sets of pseudosamples.

Like the BRR technique, several alternative JRR variance estimators can
be constructed for the parent ratio estimator r̂. For these, we first derive the
pseudosample estimators for each stratum. Let r̂h denote a pseudosample estimator
based on excluding cluster h1 and duplicating cluster h2 in stratum h:

r̂h =
2yh2 +

H∑
h′ �=h

2∑
i=1

yh′i

2xh2 +
H∑

h′ �=h

2∑
i=1

xh′i

, h = 1, . . . , H. (5.19)

These estimators are constructed for each pseudosample. From the complement
pseudosamples, we obtain corresponding estimators r̂c

h by excluding cluster h2 and
duplicating cluster h1. Using the pseudosample estimators and the complement
pseudosample estimators, we can derive the first set of JRR variance estimators
for the parent estimator r̂. Hence we have

v̂1.jrr(r̂) =
H∑

h=1

(r̂h − r̂)2, (5.20)

and from the complement pseudosamples

v̂2.jrr(r̂) =
H∑

h=1

(r̂c
h − r̂)2. (5.21)
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A combined variance estimator is

v̂3.jrr(r̂) = (v̂1.jrr(r̂) + v̂2.jrr(r̂))/2. (5.22)

Another set of variance estimators can be obtained using the so-called pseu-
dovalues introduced by Quenouille (1956) to reduce the bias of an estimator. In the
case considered above, pseudovalues are of the form

r̂p
h = 2r̂ − r̂h, h = 1, . . . , H, (5.23)

and for the complement pseudosamples they are denoted by r̂pc
h . By using the first

set of H pseudovalues r̂p
h, we obtain a bias-corrected estimator given by

r̂
p =

H∑
h=1

r̂p
h/H, (5.24)

and using the pseudovalues r̂pc
h from the complement pseudosamples we obtain

r̂
pc =

H∑
h=1

r̂pc
h /H. (5.25)

Counterparts to the variance estimators (5.20)–(5.22) can be derived from the
pseudovalues and the bias-corrected estimators, giving

v̂4.jrr(r̂) =
H∑

h=1

(r̂p
h − r̂

p
)2, (5.26)

and from the complement pseudosamples

v̂5.jrr(r̂) =
H∑

h=1

(r̂pc
h − r̂

pc
)2. (5.27)

A combined variance estimator can also be derived:

v̂6.jrr(r̂) = (v̂4.jrr(r̂) + v̂5.jrr(r̂))/2. (5.28)

Finally, from all the 2H pseudosamples we obtain:

v̂7.jrr(r̂) =
H∑

h=1

(r̂h − r̂c
h)

2/4. (5.29)
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A similar way of constructing the JRR variance estimators was used to that given
for the BRR technique. For a linear estimator, the bias-corrected JRR estimators
reproduce the parent estimator, and all the JRR variance estimators coincide.
This is not the case for nonlinear estimators, but in practice all JRR variance
estimators should give closely related results. Like BRR, the variance estimator
v̂7.jrr could be taken as the most natural estimator of the variance of the parent
estimator θ̂ .

The JRR technique can be extended to a more general case in which more than
two clusters are drawn from each stratum, for without-replacement sampling of
clusters. Pseudosamples and their complements are constructed by consecutively
excluding a cluster and weighting the remaining clusters appropriately in a
stratum (see Section 4.6 in Wolter 1985).

Like BRR, we use the JRR technique for variance estimation of a ratio estimator
r̂ for the MFH Survey design.

Example 5.3

The JRR technique in the MFH Survey. We continue to consider the estimation of
variance of a ratio-type subpopulation proportion estimator p̂ of CHRON (chronic
morbidity) and a subpopulation mean estimator y of SYSBP (systolic blood
pressure) for 30–64-year-old males. Using the cluster-level data set available, we
calculate all the seven JRR variance estimates for p̂ and y.

Because H = 24, we construct 24 JRR pseudosamples with their complements
by the Frankel method. The parent ratio and mean estimates p̂ and y, and the
corresponding bias-corrected estimators given by (5.24) and (5.25) based on the
pseudovalues p̂p

h, p̂pc
h , yp

h and ypc
h calculated from the pseudosamples and their

complements, are first obtained. These are

p̂ = 0.3976, p̂
p =

24∑
k=1

p̂p
k/24 = 0.3972 and p̂

pc =
24∑

k=1

p̂pc
k /24 = 0.3980,

y = 141.785, ŷ
p =

24∑
k=1

yp
k/24 = 141.793 and ŷ

pc =
24∑

k=1

ypc
k /24 = 141.777.

All three CHRON proportion estimates and SYSBP mean estimates are close. Next
we calculate the JRR variance estimates. For a CHRON proportion estimator p̂ the
first variance estimate (5.20) is

v̂1.jrr(p̂) =
24∑

h=1

(p̂h − 0.3976)2 = 0.1099 × 10−3,
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and from the complement pseudosamples we obtain, using (5.21):

v̂2.jrr(p̂) =
24∑

h=1

(p̂c
h − 0.3976)2 = 0.1107 × 10−3.

The combined variance estimate (5.22) is thus

v̂3.jrr(p̂) = (v̂1.jrr(p̂) + v̂2.jrr(p̂))/2 = 0.1103 × 10−3.

The second set (5.26)–(5.29) of JRR variance estimates is obtained by using the
pseudovalues and the bias-corrected estimators. A counterpart of v̂1.jrr is

v̂4.jrr(p̂) =
24∑

h=1

(p̂p
h − 0.3972)2 = 0.1060 × 10−3,

and from the complement pseudosamples we have

v̂5.jrr(p̂) =
24∑

h=1

(p̂pc
h − 0.3980)2 = 0.1067 × 10−3.

The combined variance estimate is

v̂6.jrr(p̂) = (v̂4.jrr(p̂) + v̂5.jrr(p̂))/2 = 0.1063 × 10−3.

From all the pseudosamples and their complements we obtain

v̂7.jrr(p̂) =
24∑

h=1

(p̂h − p̂c
h)

2/4 = 0.1103 × 10−3.

The JRR variance estimates for the CHRON proportion estimator p̂ are quite
close, as expected. For the SYSBP mean estimator y, we obtain the following JRR
variance estimates:

v̂1.jrr(y) =
24∑

h=1

(yh − 141.785)2 = 0.2773,

v̂2.jrr(y) =
24∑

h=1

(yc
h − 141.785)2 = 0.2803,

v̂3.jrr(y) = (v̂1.jrr(y) + v̂2.jrr(y))/2 = 0.2788,
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v̂4.jrr(y) =
24∑

h=1

(yp
h − 141.793)2 = 0.2759,

v̂5.jrr(y) =
24∑

h=1

(ypc
h − 141.777)2 = 0.2789,

v̂6.jrr(y) = (v̂4.jrr(y) + v̂5.jrr(y))/2 = 0.2774,

v̂7.jrr(y) =
24∑

h=1

(yh − yc
h)

2/4 = 0.2788.

For SYSBP, the JRR variance estimates of y are also very close. All the JRR
variance estimators of a proportion estimator and a mean estimator provided
closely related numerical results. Therefore, either practical or computational
considerations can guide the selection of an appropriate JRR variance estimator.
The jackknife technique is available in some software products for the analysis of
complex surveys.

The BOOT Technique

Similar to the other sample reuse methods, the bootstrap can be used for variance
approximation of a nonlinear estimator under a complex sampling design. The
method, however, differs from BRR and JRR in many respects, e.g. the generation
of pseudosamples is quite different. We consider the bootstrap technique for
variance estimation of a ratio estimator under a two-stage stratified epsem design
where a constant number of clusters (which may be greater than two) is drawn
with replacement from each stratum. We adopt a simple version of the bootstrap,
introduced in Rao and Wu (1988) as a naive bootstrap, for this kind of design, and
call it the BOOT technique.

Let us assume that mh = a (≥2) clusters are drawn with replacement from each
of the H strata. The number of sample clusters is thus m = a × H. We construct
the bootstrap pseudosamples in the following way:

Step 1. From the a sample clusters in stratum h, draw a simple random sample
of size a with replacement. This is performed independently in each stratum.
The resulting H simple random samples together constitute a bootstrap sample of
m clusters.

Step 2. Repeating Step 1 K times, a total of K independent bootstrap samples
are obtained.

It is important in Step 1 that the simple random samples in each stratum are
drawn with replacement, and the stratum-wise samples are drawn independently.
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So, a particular sample cluster in a stratum may be included in a bootstrap sample
many (even a) times, or not at all.

We consider the BOOT technique for the estimation of the variance of the
ratio estimator r̂. A ratio estimator for a bootstrap sample k is denoted by
r̂k (k = 1, . . . , K). The mean of the bootstrap sample estimates r̂k provides a
bootstrap estimator

r̂ =
K∑

k=1

r̂k/K. (5.30)

A Monte Carlo variance estimator based on r̂k and the bootstrap estimator (5.30)
is first derived for the parent estimator r̂:

v̂mc(r̂) =
K∑

k=1

(r̂k − r̂)2/K. (5.31)

Unfortunately, this intuitively attractive variance estimator is unacceptable
because it is not consistent for the variance of r̂ and, moreover, it is not unbiased
even for the variance of a linear estimator, as Rao and Wu (1988) have shown.
But in the case considered, where a constant number of clusters is drawn from
each stratum, an appropriately rescaled Monte Carlo variance estimator provides
a consistent variance estimator for the parent estimator r̂. Hence the first BOOT
variance estimator is

v̂1.boot(r̂) = a
a − 1

v̂mc(r̂) = a
a − 1

K∑
k=1

(r̂k − r̂)2/K. (5.32)

By using the parent estimator r̂ in place of the bootstrap estimator, another
variance estimator is obtained:

v̂2.boot(r̂) = a
a − 1

K∑
k=1

(r̂k − r̂)2/K. (5.33)

It should be noticed that for the naive bootstrap there is no obvious solution to the
scaling problem in the case in which the number of sample clusters per stratum
varies. Rao and Wu (1988) derive a rescaling bootstrap for these cases, based on
drawing simple random samples of size mh (≥1) clusters with replacement from
a stratum. With appropriate selection of mh, different versions of the bootstrap
are provided. Sitter (1992) proposes a generalization of this method, based on
resampling without replacement rather than with replacement, and repeating this
many times with replacement. Rao et al. (1992) redefine the rescaling bootstrap
to be also suitable for variance estimation of non-smooth functions such as
the median.
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In the BOOT technique, to obtain variance estimation results with sufficient
precision the number K of bootstrap samples should be large, preferably 500 to
1000. The technique thus requires large processing capabilities and can consume
a lot of computer resources. In this, the BOOT technique is more obviously
computer-intensive than BRR and JRR.

Example 5.4

The BOOT technique in the MFH Survey. We apply the BOOT technique for
variance approximation of subpopulation proportion and mean estimators p̂ (for
CHRON) and y (for SYSBP), both considered as ratio estimators. The MFH Survey
subgroup consists of 2699 males aged 30–64 years. In the MFH Survey design
there are H = 24 strata each with a = 2 sample clusters, so each bootstrap sample
constitutes of m = 2 × 24 = 48 clusters. In the generation of the bootstrap samples
we use the cluster-level data set. We obtain a bootstrap sample by drawing a
simple random sample of two clusters with replacement, independently from each
stratum. Thus, a cluster in a stratum can appear in a bootstrap sample either 0,
1 or 2 times so that the sample size from a stratum is always 2 clusters. Note that
the number of such samples can become large; e.g. if we have 1000 bootstrap
samples, a total of 24 000 independent samples of size 2 must be drawn. In this
example, K = 1000 bootstrap samples.

An estimate r̂k mimicking the parent estimator r̂ is calculated from each of the
K bootstrap samples. A bootstrap estimate is then calculated as an average of the
r̂k. By using the r̂k, the bootstrap estimate and the parent estimate, we finally
obtain BOOT variance estimates v̂1.boot(r̂) and v̂2.boot(r̂).

With K = 1000 bootstrap samples, the distribution of the bootstrap sample
estimates for CHRON and SYSBP are displayed in Figure 5.1. The parent estimates
and the bootstrap estimates (5.30) for CHRON proportion and SYSBP mean are

p̂ = 0.3976, and the bootstrap estimate is p̂ = 0.3973,

y = 141.785, and the bootstrap estimate is ŷ = 141.783.

The BOOT variance estimates (5.32) and (5.33) for CHRON proportion p̂ are,
respectively

v̂1.boot(p̂) = 2 ×
1000∑
k=1

(p̂k − 0.3973)2/1000 = 0.1039 × 10−3

and

v̂2.boot(p̂) = 2 ×
1000∑
k=1

(p̂k − 0.3976)2/1000 = 0.1040 × 10−3.
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Figure 5.1 Bootstrap histograms for CHRON (a binary variable) and SYSBP (a continuous
variable) from the bootstrap estimates r̂k with K = 1000 bootstrap samples.

The BOOT variance estimates for SYSBP mean y are

v̂1.boot(y) = 2 ×
1000∑
k=1

(yk − 141.783)2/1000 = 0.2798

and

v̂2.boot(y) = 2 ×
1000∑
k=1

(yk − 141.785)2/1000 = 0.2798.

For a CHRON proportion estimator p̂ and a SYSBP mean estimator y, both BOOT
variance estimates are approximately equal. As in the other reuse methods, any
definite preference for the type of variance estimator has not been suggested. From
a computational point of view, the estimator v̂2.boot is simpler than v̂1.boot.

5.5 COMPARISON OF VARIANCE ESTIMATORS

The linearization method and sample reuse methods were used as basic approxi-
mation techniques for variance estimation of a nonlinear ratio estimator. It was
assumed that the sample was from a two-stage epsem sampling design with at
least two clusters drawn with replacement from each stratum. The linearization
method was considered under a design with a varying number (≥2) of sample
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clusters per stratum. Basic forms of the balanced half-samples (BRR) and jackknife
repeated replications (JRR) techniques involved a design with exactly two sample
clusters per stratum, and the number of strata is assumed to be large. Both the
methods have been generalized for designs with a varying number (≥2) of sample
clusters per stratum. The bootstrap technique was considered under a design in
which a constant number (≥2) of clusters were drawn from each stratum. Also,
the bootstrap has been generalized for the case of a varying number of sample
clusters per stratum. Of the approximation methods, the bootstrap tends to require
more computer resources. We next compare the numerical results obtained from
the MFH Survey for variance approximation by the linearization and sample
reuse techniques.

Comparison of Variance Estimates in the MFH Survey

Using linearization, BRR, JRR and BOOT techniques we estimated the variance
of a subpopulation proportion estimator of a binary response CHRON (chronic
morbidity), and the variance of a subpopulation mean estimator of a continu-
ous response SYSBP (systolic blood pressure). Both estimators were ratio-type
estimators for the MFH Survey subgroup that consisted of 2699 males aged
30–64 years. Detailed results were given in Examples 5.1–5.4. There were a
total of 24 strata, each with two sample clusters in the MFH Survey sampling
design, which therefore provides adequate data for demonstrating all the variance
approximation methods. A cluster-level data set with 48 observations was used
in all techniques.

Variance and design-effect estimates for a CHRON proportion p̂ and a SYSBP
mean y are displayed in Table 5.5. The design-effect estimator is of the form
deff = v̂/v̂srswr, where v̂ is the variance estimator being considered and v̂srswr is the
variance estimator corresponding to simple random sampling with replacement.

For CHRON, the variance estimate from linearization, and the first three BRR
and JRR estimates and the last one from the BRR and JRR techniques are all
nearly equal. When compared with these estimates, the fourth, fifth and sixth
BRR and JRR variance estimates, and both of the BOOT variance estimates, are
somewhat smaller. Note that the linearization and the last BRR and JRR variance
estimates (which could be taken as the most appropriate variance estimates) are
equal. For SYSBP, all the BRR variance estimates are nearly equal, and the JRR
estimates indicate larger variation. The BOOT variance estimates are somewhat
larger than the others. For SYSBP, the linearization and the last BRR and JRR
variance estimates are also nearly equal.

The design-effect estimates indicate a varying degree of intra-cluster correlation
for CHRON and SYSBP. CHRON has noticeably less intra-cluster correlation than
SYSBP. For SYSBP, the design-effect estimates indicate only a slight variation
between techniques.
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Table 5.5 Linearization, BRR, JRR, BOOT and SRSWR variance and design-effect esti-
mates v̂ and deff of a CHRON proportion estimate p̂ and a SYSBP mean estimate y in the
MFH Survey subgroup of 30–64-year-old males.

Method

Chronic morbidity Systolic blood pressure

10−3 × v̂(p̂) deff (p̂) v̂(y) deff (y)

Linearization
DES 0.1103 1.24 0.2788 2.06

Balanced repeated replications
1 0.1104 1.24 0.2791 2.06
2 0.1103 1.24 0.2790 2.06
3 0.1103 1.24 0.2791 2.06
4 0.1052 1.18 0.2787 2.06
5 0.1056 1.19 0.2788 2.06
6 0.1054 1.19 0.2787 2.06
7 0.1103 1.24 0.2790 2.06

Jackknife repeated replications
1 0.1099 1.24 0.2773 2.05
2 0.1107 1.25 0.2803 2.07
3 0.1103 1.24 0.2788 2.06
4 0.1060 1.19 0.2759 2.04
5 0.1067 1.20 0.2789 2.06
6 0.1063 1.20 0.2774 2.05
7 0.1103 1.24 0.2788 2.06

Bootstrap
1 0.1039 1.17 0.2798 2.07
2 0.1040 1.17 0.2798 2.07
SRSWR 0.0888 1.00 0.1352 1.00

In conclusion, variance estimates of the ratio estimators obtained by the
linearization, BRR, JRR and BOOT techniques do not differ significantly from
each other, for both response variables. Therefore, software availability and other
practical reasons might guide the selection of a technique in applications. For
further training in the pseudoreplication methods, the reader is encouraged to
use the facilities provided in the web extension of the book.

Other Properties of the Variance Approximation Methods

The variance approximation techniques based on linearization, BRR, JRR and the
bootstrap have been evaluated in the literature by empirical investigations and
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simulation studies, on more theoretical arguments. We briefly refer to some of
the results.

Kish and Frankel (1974) empirically studied the relative performances of lin-
earization, BRR and JRR under an epsem one-stage stratified design with two
clusters drawn with replacement from each stratum. They showed first that for
a linear estimator, the variance estimators coincided and were the same as a
standard textbook variance estimator. Properties of the variance estimators were
different for nonlinear estimators such as ratio estimators, regression coefficients
and correlation coefficients. The linearization method provided the most stable
variance estimates, whilst BRR gave the least stable, but none of the estimators
gave an overall best performance when many criteria were considered. Kish and
Frankel concluded that the linearization technique might be the best choice for
ratio estimators, and sample reuse techniques for other nonlinear estimators.

Krewski and Rao (1981) showed that linearization, BRR and JRR have similar
first-order asymptotic properties. Rao and Wu (1985) considered higher-order
properties and showed that linearization and JRR provide equal second-order
properties under a design in which two clusters are drawn with replacement from
each stratum. Rao and Wu (1988) considered the bootstrap and showed that the
first-order properties of their rescaling bootstrap variance estimator coincide with
those of linearization, BRR and JRR. Second-order properties, however, differ. The
rescaling bootstrap also indicated greater instability than either the linearization
or the JRR. Rao et al. (1992) studied the performances of jackknife, BRR and
bootstrap for variance estimation of the median and noticed no considerable
differences between the methods.

5.6 THE OCCUPATIONAL HEALTH CARE SURVEY

In this section we describe the sampling design, data collection and properties
of the available survey data of the Occupational Health Care Survey (OHC
Survey). The sampling design of the OHC Survey is an example of stratified cluster
sampling in which both one- and two-stage sampling are used. Thus, the OHC
Survey sampling design is slightly more complex than that of the MFH Survey.
Moreover, in the OHC Survey sampling design a large number of sample clusters
are available, and the design produces noticeable clustering effects for several
response variables. Therefore, this sampling design is very suitable for examining
the effects of clustering in the analysis of complex surveys. The OHC Survey will
be used for further examples given in Chapters 7 and 8.

In Finland, as in many industrialized countries, the provision of occupational
health (OH) services is regulated by legislation. An Occupational Health Services
Act came into force in 1979 to guide the development of OH services. All
employers, with a few minor exceptions, would be required to provide OH services
for their employees so that the activities would focus on the main work-related
health hazards. Through the National Sickness Insurance Scheme, employers are
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reimbursed by the Social Insurance Institution for a certain share of the costs of
OH services. For employees, OH services are free of charge. Sample surveys have
been carried out to evaluate the functioning of the OHC Act, with a major one,
the OHC Survey, conducted in 1985.

Sampling Design

The OHC Survey can be characterized as a multi-purpose analytical sample
survey similar to the MFH Survey. The OHC Survey was aimed at assessing
implementation of the activities prescribed by the OHC Act, at discovering how
well the essential goals of the legislation had been attained, and at defining how
OH services could be further developed. The survey focused on establishments in
all industries except farming and forestry, on the employers and employees, and
on the units that provided the OH services for the sites surveyed. There were about
2 million employees and over 100 000 industrial establishments in the target
populations.

In the study design, the industrial establishment was the primary unit of
sampling and data collection. Because in Finland there are nationwide registers
available for a sampling frame covering the target establishments, cluster sam-
pling was a natural choice to be used with establishments as the clusters, i.e.
primary sampling units. In contrast to the MFH sampling design, the principal
motivation for cluster sampling in the OHC Survey was subject matter rather than
cost efficiency.

Within the establishment sampling frame, the size of PSUs varied widely, from
one-person workplaces to enterprises with a thousand or more workers. This
property of varying cluster sizes should be taken into account when considering
the person-level sample size for data collection. Therefore, the population of
clusters was stratified by cluster size and by using two-stage sampling in strata
that covered large sites. In addition to size, type of industry of establishment
was used to form six explicit strata. One-stage sampling was used in strata
covering establishments with a maximum of 100 employees; otherwise, two-stage
sampling was used with approximately 50 employees sampled from each large
site. This would produce an estimated total sample of about 17 000 employees in
a sample of 1542 establishments. Stratum-wise allocation of the clusters, based
on prior knowledge of their expected mean sizes, was carried out so that the
employee sample would be nearly epsem, giving approximately equal inclusion
probabilities for the employees. The sampling design is described in more detail
in Lehtonen (1988).

Data Collection and Nonresponse

Structured questionnaires were used to collect data from employers, employees
and OH units. During the data collection it turned out that a number of sample
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establishments, mainly small ones, had closed down, and the final number of
establishments for the appropriate questionnaire was 1362. The response rate
was 88%. Furthermore, 82% (13 355) of the employees from the 1195 responding
establishments completed the personnel questionnaire. Finally, 93% of the OH
units of the responding establishments completed the appropriate questionnaire;
this produced information on 760 out of a total of 816 establishments covered by
OHC. The numbers of establishments and employees in the resulting survey data
for each stratum are displayed in Table 5.6.

Analyses based on logit models indicated statistically significant variation in the
response rates of the establishment questionnaire, depending on certain structural
features of the establishments such as size, type of industry and organizational
type. Predicted response rates for the appropriate questionnaire (based on a logit
model with size, type of industry, organizational type and interaction of the
two last mentioned as the model terms) are displayed in Figure 5.2. Small size,
belonging to the construction industry, and having only a single site all increased
the probability of nonresponse.

Nonresponse was quite low in large establishments and was independent of
the type of industry or organizational type. It was also noted that establishments
covered by OH services, and for which the regulations of the OHC Act were
obligatory, responded most frequently to the appropriate questionnaire. Also,
establishments for which the regulations of the Act were obligatory had an
approximately equal response rate whether or not they were covered by OH
services. Nonresponse was highest in those smallest single-site establishments
that operated in the construction industry and were not covered by OH services.

Table 5.6 The number of establishments and employees by stratum in the OHC Sur-
vey data.

Stratum Size

Number of
Average cluster

Establishments Employees sample size

1 1–10 696 1730 2.5
2 11–100 176 4143 23.5
3 101–500 52 2396 46.1
4 501+ 21 976 46.5
5 (all sizes) 109 1396 12.8
6 (all sizes) 141 2714 19.2

Total sample 1195 13 355 11.2

Type of industry:
Strata 1–4: All except those in strata 5 and 6
Stratum 5: Construction industry
Stratum 6: Public services
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Figure 5.2 Predicted response rates in the establishment questionnaire (based on a
logit model) by size and type of industry of establishment, in establishments of multi-site
enterprises and in single-site establishments.

Weighting for nonresponse was required in the establishment-level analyses, for
example, for the estimation of coverage of the OHC. The weight was constructed
so that stratum-wise variation in inclusion probabilities of the PSUs was also
compensated for. At the employee level the sampling design was nearly epsem,
and the total number of employees at the small nonresponse establishments
was relatively small. Therefore, adjustment for nonresponse in the element-level
analyses was not so critical as at the cluster level. This was so, for example,
in inferences concerning employee-level target populations on establishments
covered by OH services.

Design Effects

A subgroup of establishments with a minimum of 10 employees will make up the
OHC Survey data set used for demonstration purposes in examples. The data set
includes a total of 250 clusters in 5 strata, and a total of 7841 employees. The
data set can be regarded as approximately self-weighting. Cluster sample sizes in
this subgroup vary from 10 to about 60 workers. Note that the subgroup is of a
segregated classes type. These data, for selected response variables, are displayed
in Table 5.7.

The number of sample clusters, i.e. establishments, is large (250) and this is
favourable for covariance-matrix estimation. The sample establishments tend
to be homogeneous with respect to certain subject-level response variables,
resulting in positive intra-cluster correlations. For example, in a manufacturing
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Table 5.7 The available OHC Survey data by sex and age of respondent, and proportions
(%) of chronically ill persons (CHRON) and persons exposed to physical health hazards of
work (PHYS), and the mean of the standardized first principal component of nine psychic
(psychological or mental) symptoms (PSYCH).

Sample
CHRON PHYS PSYCH

Sex Age n % % % Mean

Males 4485 57.2 29.3 46.0 −0.104
Females 3356 42.8 29.2 19.4 0.139
Males 15–24 504 6.4 15.5 52.8 −0.300
25–34 1355 17.3 19.8 50.8 −0.160
35–44 1453 18.5 27.1 42.9 −0.073
45–54 847 10.8 44.2 41.9 −0.033
55–64 326 4.2 61.3 39.3 0.102
Females 15–24 418 5.3 16.0 19.1 0.095
25–34 993 12.7 18.9 18.9 0.132
35–44 1002 12.8 26.5 17.9 0.104
45–54 681 8.7 43.5 18.5 0.168
55–64 262 3.3 61.8 29.4 0.301
Both sexes 15–24 922 11.8 15.7 37.5 −0.121
25–34 2348 29.9 19.4 37.4 −0.036
35–44 2455 31.3 26.9 32.7 −0.000
45–54 1528 19.5 43.8 31.5 0.056
55–64 588 7.5 61.6 34.9 0.191

Total sample 7841 100.0 29.2 34.6 0.000

firm, working conditions tend to be similar for most workers, these conditions
being different from those of an office establishment, which in turn are also
internally homogeneous. This produces design-effect estimates of means and
proportions noticeably greater than one, especially for subject-level response
variables measuring workplace-related matters such as physical or psycho-social
working conditions. In some other variables, intra-cluster correlations were
smaller, e.g. in variables describing overall psychic (psychological or mental)
strain and psychosomatic symptoms. Design effects for selected response variables
are displayed in Table 5.8.

The average design-effect estimates are noticeably large especially in response
variables strongly associated with working conditions. The averages are closer
to one in the variables that cannot be considered work-related. For further
analyses, three response variables are selected: the variables PHYS (physical
health hazards of work) and CHRON (chronic morbidity), which are binary,
and the variable PSYCH (psychic strain), which is continuous. PHYS has strong
intra-cluster correlation with a large overall design-effect estimate of 7.2. The
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Table 5.8 Averages of design-effect estimates of
proportion estimates of selected groups of binary
response variables in the OHC Survey data set
(number of variables in parentheses).

Study variable Mean deff

Physical working conditions (12) 6.5
Psycho-social working conditions (11) 3.3
Psychosomatic symptoms (8) 2.0
Psychic symptoms (9) 1.8

overall design-effect estimates of CHRON and PSYCH are 1.8 and 2.0 respectively.
Moreover, PHYS is apparently work-related; this is not as clear for CHRON
and PSYCH.

5.7 LINEARIZATION METHOD FOR
COVARIANCE-MATRIX ESTIMATION

Weighted Ratio Estimator

We previously considered the case of a single ratio estimator. A vector of ratio
estimators consists of u ratio estimators, where u ≥ 2 is the number of population
subgroups called domains. The domains are formed by cross-classifying one or more
categorical predictors such as sex, age group, socioeconomic factors, or regional
variables. Our aim is to estimate consistently the domain ratio parameters and the
corresponding covariance matrix of the ratio estimators under a given complex
sampling design. For this, we construct a weighted ratio estimator to be used for the
domain ratios. For a binary response variable, we work with weighted domain
proportions, and for a continuous response variable we work with weighted
domain means.

Let the population of N elements be divided into u non-overlapping subpop-
ulations or domains. The unknown population ratio vector is a column vector
denoted by R = (R1, . . . , Ru)

′. It consists of u domain ratio parameters Rj = Tj/Nj,
where Tj denotes the population domain total of a response variable and Nj denotes
the domain size,

∑u
j=1 Nj = N. In the binary case, the ratio parameter vector is

denoted by p = (p1, . . . , pu)
′, consisting of proportion parameters pj = Nj1/Nj,

where Nj1 is the population total of a binary response variable in domain j. And
in the continuous case, the parameter vector is denoted by Y = (Y1, . . . , Yu)

′,
where Yj are domain mean parameters Yj = Tj/Nj. A sample of n elements is
drawn using stratified cluster sampling such that mh clusters are drawn from
each of the h = 1, . . . , H strata with a total m =∑H

h=1 mh of sample clusters,
where H ≥ 1, m ≥ 2H and m > u. In two-stage cluster sampling, a sample of
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nhi elements is drawn from sample cluster i in stratum h,
∑H

h=1

∑mh
i=1 nhi = n. If

sampling is performed in one stage, all the elements of the selected sample clusters
are taken in the element-level sample.

In complex surveys, epsem designs with an equal inclusion probability for each
population element are often used because they are convenient for statistical
analysis. We considered such designs in the previous sections of this chapter, and
the MFH and OHC Survey sampling designs are taken as being epsem. In practice,
however, element inclusion probabilities can vary between the strata, and, even
in epsem designs, reweighting may be necessary to adjust for nonresponse to
attain consistent estimation. Also to cover these cases, we derive a weighted ratio
estimator, which is more generally applicable than that previously considered for
epsem samples.

For a self-weighting data set, an epsem sampling design is required and unit
nonresponse is considered ignorable. If the data set is not self-weighting, an
appropriate weight variable should be generated for statistical analyses. A weight
variable assigns a positive value for each element of the data set such that
unequal element inclusion probabilities and nonresponse are adjusted. Basically,
as shown in Chapter 2, the weight wk for a sample element k is wk = 1/πk i.e. the
reciprocal of the inclusion probability. And in Chapter 4, a weight w∗

k = 1/(πkθ̂k)

was introduced, where θ̂k is an estimated response probability. In epsem designs,
πk is a constant π for all population elements. In non-epsem designs, unequal
inclusion probabilities may arise, for example, due to non-proportional allocation.
For nonresponse adjustment, the sample data set can be divided into a number of
adjustment cells, and the response rate θc is assumed constant within cell c but is
allowed to vary between the cells. The cells are formed using auxiliary variables,
which are also available for nonresponse cases. When using poststratification,
adjustment cells are formed by using auxiliary information on the population
level (see Sections 3.3 and 5.1 and Chapter 4). Note that weight is a constant for
all elements in a self-weighting data set because πk and θ̂k are constants.

As shown in Section 5.1, there are two main approaches for a weight variable. In
a descriptive survey in which the population total on a study variable is estimated,
a weight variable is constructed such that the sum of all n element weights w∗

k

provides a consistent estimate N̂ of the population size N. This type of weighting
was extensively used in Chapters 2 to 4. In analytical surveys, where such totals
are rarely estimated, it is customary to rescale the weights so that their sum
equals the size n of the available sample data set. Although either kind of a weight
variable can be used in software available for survey analysis, rescaled weights
w∗∗

k , that sum up to n, are often more convenient for statistical analyses requiring
a weight variable.

When using weights w∗
k , a vector r̂ = (r̂1, . . . , r̂u)

′ of combined ratio estimators
is constructed consisting of domain ratio estimators r̂j = t̂j/N̂j, where t̂j is a
weighted total estimator of the population total Tj of the response variable in
domain j and N̂j is the weighted size of domain j, and

∑u
j=1 N̂j = N̂, the sum of all
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n sample weights. As a result, the weighted estimators tj and N̂j are consistent for
the corresponding population analogues Tj and Nj, so the domain ratio estimator
r̂j is consistent for the domain ratio Rj in a given complex sampling design.

The weighted totals t̂j and N̂j in the previous domain ratio estimators r̂j are
scaled to sum to the population level. For analytical purposes, we rescale the
weights so that they sum to n, the size of the sample data set. Thus, to derive an
estimator r̂j we use the scaled weighted analogues yj and xj of t̂j and N̂j such that
yj = (n/N̂)t̂j and xj = (n/N̂)N̂j with

∑u
j=1 xj = n. The domain ratio estimator r̂j

can thus be written in the form

r̂j = yj

xj
=

H∑
h=1

mh∑
i=1

yjhi

H∑
h=1

mh∑
i=1

xjhi

=

H∑
h=1

mh∑
i=1

xhi∑
k=1

w∗∗
jhikyjhik

H∑
h=1

mh∑
i=1

xhi∑
k=1

w∗∗
jhik

, j = 1, . . . , u, (5.34)

where yjhi is the weighted sample sum of the response variable for the elements
falling in domain j in sample cluster i of stratum h, and xjhi is the corresponding
weighted domain sample size. The rescaled weights w∗∗

jhik in (5.34) therefore sum
up to n.

For a binary response, the ratio estimator r̂ with elements of the form (5.34)
is a proportion estimator vector denoted by p̂ = (p̂1, . . . , p̂u)

′, which consists of
domain ratio estimators p̂j = yj/xj = n̂j1/n̂j, where n̂j1 is the weighted sample
sum of the binary response for sample elements belonging to the domain j and
n̂j is the weighted domain size such that

∑u
j=1 n̂j = n. Under an epsem design

and, moreover, if the data set is self-weighting, a simple unweighted estimator
p̂U = (p̂U

1 , . . . , p̂U
u )′ of p is obtained, where p̂U

j = nj1/nj is a consistent estimator of
the domain parameter pj, nj1 is the sample sum of the binary response in domain j
and nj is the corresponding domain sample size such that

∑u
j=1 nj = n. In this case,

p̂ and p̂U coincide. Note that if the data set is not self-weighting, the estimator p̂U

is not consistent for p.
For a continuous response variable, we denote the weighted ratio estimator

vector y = (y1, . . . , yu)
′, where the domain sample means yj = yj/xj are consistent

for the corresponding population domain means Yj = Tj/Nj. The corresponding
unweighted counterpart is yU = (yU

1 , . . . , yU
u )′.

It may be noted that the data actually needed for the ratio estimators r̂j consist
of m cluster-level scaled weighted sample sums yjhi and xjhi. Indeed, the analysis
of such data can be performed by using the cluster-level data set of size m and
access to the element-level data set of size n is not necessarily required. In practice,
however, when using software for survey analysis, the weighted sample sums yj

and xj are estimated from an element-level data set using the rescaled element
weights w∗∗

jhik.
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Covariance-matrix Estimation

The unknown population covariance matrix V/n of the ratio estimator vector
p̂ has u rows and u columns, thus it is a u × u matrix. V/n is symmetric such
that the lower and upper triangles of the matrix are identical. Variances of the
domain ratio estimators are placed on the main diagonal of V/n and covariances
of the corresponding domain ratio estimators on the off-diagonal part of the
matrix. There is a total of u × (u + 1)/2 distinct parameters in V/n that need to
be estimated.

The variance and covariance estimators v̂des(r̂j) and v̂des(r̂j, r̂l), being respec-
tively the diagonal and off-diagonal elements of a consistent covariance-matrix
estimator V̂des of the asymptotic covariance matrix V/n of the ratio estimator
vector r̂ = (r̂1, . . . , r̂u)

′, are derived using the linearization method considered in
Section 5.3. The variance and covariance estimators of the sample sums yj and
xj in a variance estimator v̂des(r̂j) of r̂j = yj/xj, and the covariance estimators of
the sample sums yj, yl, xj and xl in the covariance estimators v̂des(r̂j, r̂l) of r̂j and
r̂l in separate domains, are straightforward generalizations of the corresponding
variance and covariance estimators given in Section 5.3 for the variance estimator
of a single ratio estimator r̂. We therefore do not show these formulae.

Like the scalar case, the variance and covariance estimators of r̂j and r̂l are
based on the with-replacement assumption and the variation accounted for is the
between-cluster variation. This causes bias in the estimates, but the bias can be
assumed to be negligible if the first-stage sampling fraction is small.

The variance and covariance estimators of yj, xj, yl and xl are finally collected
into the corresponding u × u covariance-matrix estimators V̂yy, V̂xx and V̂yx.
Using these estimators, the design-based covariance-matrix estimator of r̂ based
on the linearization method is given by

V̂des = diag(r̂)(Y−1V̂yyY−1 + X−1V̂xxX−1

− Y−1V̂yxX−1 − X−1V̂xyY−1)diag(r̂), (5.35)

where

diag (r̂) = diag (r̂1, . . . , r̂u) = diag (y1/x1, . . . , yu/xu)
Y = diag (y) = diag (y1, . . . , yu)
X = diag (x) = diag(x1, . . . , xu)
V̂yy is the covariance-matrix estimator of the sample sums yj and yl

V̂xx is the covariance-matrix estimator of the sample sums xj and xl

V̂yx is the covariance-matrix estimator of the sums yj and xl, and
V̂xy = V̂′

yx

and the operator ‘diag’ generates a diagonal matrix with the elements of the
corresponding vector as the diagonal elements and with off-diagonal elements
equal to zero. Note that in a linear case, all elements of the covariance-matrix
estimators V̂xx, V̂yx and V̂xy are zero.
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In the estimation of the elements of V̂des, at least two clusters are assumed to be
drawn with replacement from each of the H strata. In the special case of mh = 2
clusters routinely used in survey sampling, the estimators can be simplified in a
manner similar to that done in Section 5.3.

As a simple example, let the number of domains be u = 2. The elements of the
covariance-matrix estimator

V̂des =
[

v̂des(r̂1) v̂des(r̂1, r̂2)

v̂des(r̂2, r̂1) v̂des(r̂2)

]

are the following:
Variance estimator:

v̂des(r̂j) = r̂2
j (y−2

j v̂(yj) + x−2
j v̂(xj) − 2(yjxj)

−1v̂(yj, xj)), j = 1, 2.

Covariance estimator:

v̂des(r̂1, r̂2) = r̂1r̂2((y1y2)
−1v̂(y1, y2) + (x1x2)

−1v̂(x1, x2)

− (y1x2)
−1v̂(y1, x2) − (y2x1)

−1v̂(y2, x1)).

The estimator v̂des(r̂2, r̂1) is equal to v̂des(r̂1, r̂2) because of symmetry of V̂des. If the
estimators r̂j are taken as linear estimators, then the denominators xj are assumed
fixed. In this case, the variance and covariance estimates v̂(xj) and v̂(yj, xj) are
zero, and v̂des(r̂j) = v̂(yj)/x2

j . And for a binary response in the binomial case, this
estimator reduces to v̂bin(p̂j) = p̂j(1 − p̂j)/nj.

It is important to note that V̂des is distribution-free so that it requires no
specific distributional assumptions about the sampled observations. This allows
an estimate V̂des to be nondiagonal. The nondiagonality of V̂des is because the
ratio estimators r̂j and r̂l from distinct domains can have nonzero correlations.
In contrast, the binomial covariance-matrix estimators considered in this section
have zero correlation by definition.

One source of nonzero correlation of the estimators r̂j and r̂l from separate
domains comes from the clustering of the sample. Varying degrees of correlation
can be expected depending on the type of the domains. If the domains cut smoothly
across the sample clusters, distinct members in a given sample cluster may fall in
separate domains j and l such as cross-classes like demographic or related factors.
Large correlations can then be expected if the clustering effect is noticeable. In
contrast, if the domains are totally segregated in such a way that all members
of a given sample cluster fall in the same domain, zero correlations of distinct
estimates r̂j and r̂l are obtained. This happens if the predictors used in forming
the domains are cluster-specific unlike cross-classes where factors are essentially
individual-specific. If, for example, households are clusters, typical cluster-specific
factors are net income of the household and family size, whereas age and sex of a
family member are individual-specific. Mixed-type domains, often met in practice,
are intermediate, so that nonzero correlations are present in some dimensions of
the table with zero correlations in the others.
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Detecting Instability

The covariance-matrix estimator (5.35) is consistent for the asymptotic covariance
matrix V/n under the given complex sampling design so that, with a fixed cluster
sample size, it is assumed to converge to V/n by increasing the number m of
sample clusters. But with small m, an estimate V̂des can become unstable, i.e.
near-singular. This can also happen if the number of domains u is large, which
may require the estimation of several hundred distinct variance and covariance
terms. The instability of a covariance-matrix estimate causes numerical problems
when the inverse of the matrix is formed, which can severely disturb the reliability
of testing and modelling procedures.

A near-singularity or instability problem is present if the degrees of freedom f for
the estimation of the asymptotic covariance matrix V/n are small. For standard
complex sampling designs, f can be taken as the number of sample clusters less
the number of strata, i.e. f = m − H. A stable V̂des can be expected if f is large
relative to the number u of domains or, more specifically, relative to the residual
degrees of freedom of the model to be fitted. In practice, instability problems are
not expected if a large number of sample clusters are available, and if u is also
much smaller than m.

The statistic condition number can be used as a measure of instability of V̂des.
It is defined as the ratio cond(V̂des) = λ̂max/λ̂min, where λ̂max and λ̂min are the
largest and smallest eigenvalues of V̂des respectively. If this statistic is large, e.g. in
hundreds or thousands, an instability problem is present. If the statistic is small,
e.g. less than 50, no serious instability problems can be expected. Unfortunately,
this statistic is not a routine output in software products from survey analysis.
In the following table, condition numbers of V̂des with various values of u are
displayed for the proportion estimator vector of the binary response variable
CHRON (chronic morbidity) from the MFH and OHC Survey designs. The domains
for each survey are formed by the sex of respondent and equal-sized age groups.

No. of domains MFH OHC

4 6.5 2.8
8 10.6 3.5

12 39.8 3.6
20 421.5 5.6
24 423 684 6.6
40 n.a. 9.9

n.a. not available

Note that in the MFH Survey f = 24, and in the OHC Survey f = 245. Therefore,
in the MFH Survey, the largest possible value of u is 24, and with this value
the corresponding V̂des becomes very unstable. With values of u less than 12 the
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Figure 5.3 The covariance-matrix estimates V̂des of u = 24 domain proportion estimates
of CHRON in the MFH and OHC Survey designs.

estimate remains quite stable. In the OHC Survey, condition numbers slightly
increase with increasing u, but V̂des indicates stability with all values of u.
These properties of the covariance-matrix estimates V̂des can also be depicted
graphically. In Figure 5.3, the estimates V̂des for CHRON proportions with u = 24
domains from the MFH and OHC Survey designs are displayed. For the MFH
Survey, the instability in V̂des is indicated by high ‘peaks’ in the off-diagonal part
of the matrix. The stability of V̂des in the OHC Survey design is also clearly seen.

Design-effects Matrix Estimator

For a design-effects matrix estimator, we derive the binomial covariance-matrix
estimator of a proportion estimator vector. A design-effects matrix is obtained using
the binomial and the corresponding design-based covariance-matrix estimators.
Design-effect estimators taken from the diagonal of the design-effects matrix
are used to derive the covariance-matrix estimators that account for extra-
binomial variation.

For the construction of a design-effects matrix estimator we need not only the
design-based covariance-matrix estimator of the proportion vector but also the
binomial counterpart. For a binary response, we assume a binomial sampling
model for a proportion vector p̂ so that the weighted number of successes in each
domain j is assumed to be generated by a binomial distribution and the generation
processes are assumed independent between the u domains. The covariance-
matrix estimator V̂bin(p̂) of a proportion estimator p̂ is a diagonal matrix with
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diagonal elements derived from the binomial distribution, given by

v̂bin(p̂j) = p̂j(1 − p̂j)/n̂j, j = 1, . . . , u. (5.36)

For the unweighted proportion vector p̂U, the corresponding estimate, denoted by
V̂bin(p̂U), is obtained by using (rescaled) element weights equal to one. It should
be emphasized that, in the denominator of the binomial variance estimate (5.36)
the weighted number of observations n̂j is used, i.e. an expected sample size for the
jth domain. An observed domain sample size nj could be used in the denominator
instead of the expected one.

Using the design-based covariance-matrix estimator V̂des(p̂) and the binomial
counterpart V̂bin(p̂), the corresponding design-effects matrix estimator is derived
for the domain proportion estimator vector p̂, given by

D̂ = V̂−1
bin(p̂)V̂des(p̂), (5.37)

where V̂−1
bin is the inverse of V̂bin. The design-effect estimators d̂j of p̂j are the

diagonal elements of the design-effects matrix estimator, hence the name design-
effects matrix. The eigenvalues δ̂j of the design-effects matrix are often called the
generalized design-effects. The sum of the design-effects estimates equals the sum
of the eigenvalues, whose sum can be obtained from the sum of the diagonal
elements of D̂, i.e. its trace. And the design-effect estimates and the corresponding
eigenvalues are equal only in the special case where the estimate V̂des is also
diagonal. All this holds in the case where the first covariance-matrix estimate
in (5.37) is a diagonal matrix, such as V̂bin. But in more complicated situations
with proportions, where this is not true, the design-effects are not the diagonal
elements of D̂ nor is the sum of design-effects equal to the sum of the eigenvalues.
These more complicated design-effects matrices are sometimes called generalized
design-effects matrices and will be discussed in Chapters 7 and 8.

The design-effect estimators of the proportion estimators p̂j are of the form

d̂j = v̂des(p̂j)/v̂bin(p̂j), j = 1, . . . , u, (5.38)

where the variance estimators v̂des are diagonal elements of V̂des. The design-effect
estimates d̂j measure the extra-binomial variation in the proportion estimates p̂j

due to the effect of clustering. Extra-binomial variation is present if design-effect
estimates are greater than one.

If in the binomial variance estimate in (5.38) an observed domain sample
size is used instead of an expected one, different design-effect estimates can be
obtained. This is especially so if expected and observed domain sample sizes,
n̂j and nj, deviate considerably, as can happen, e.g. due to non-proportionate
sample allocation. Thus, design-effect estimates for subgroup proportion estimates
calculated with a certain software package can differ from those obtained using
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another. Obviously, in self-weighting samples both approaches should yield equal
design-effect estimates.

It should be noted that, in the design-effects matrix estimator (5.37) only the
contribution of the clustering is accounted for, because a binomial covariance-
matrix estimator of the consistent weighted proportion estimator vector is used.
By using in (5.37) a binomial covariance-matrix estimator of the unweighted
proportion estimator vector instead of that of the weighted proportion estimator
vector, all the contributions of complex sampling on covariance-matrix estimation
are reflected, such as unequal inclusion probabilities, clustering and adjustment
for nonresponse. Obviously, both approaches give similar design-effect matrix
estimates when working with self-weighting samples. If adopting as a rule the use
of a consistent proportion estimator p̂, then working with weighted observations,
and thus with (5.37) would be reasonable. Then, the crucial role of adjusting for
the clustering effect in the analysis of complex surveys would also be emphasized.
However, the calculation of the deff matrix estimate by using both versions of the
binomial covariance-matrix estimate can be useful in assessing the contribution
of weighting to the design effects.

Example 5.5

Covariance-matrix and design-effects matrix estimation with the linearization
method. Using the OHC Survey data we carry out a detailed calculation of
the covariance-matrix estimate V̂des of a proportion estimate p̂ of the binary
response PHYS (physical health hazards of work), and of a mean estimate y of the
continuous response PSYCH (the first standardized principal component of nine
psychic symptoms), in the simple case of u = 2 domains formed by the variable
sex. V̂des is thus a 2 × 2 matrix, and the domains are of a cross-class type. A part of
the data set needed for the covariance-matrix estimation is displayed in Table 5.9.
Note that these data are cluster-level, consisting of m = 250 clusters in five strata.
Thus, the degrees of freedom f = 245. The employee-level sample size is n = 7841.

The ratio estimator is r̂ = (r̂1, r̂2)
′ = (y1/x1, y2/x2)

′, where r̂1 and r̂2 are given
by (5.34). For the binary response PHYS, we denote the ratio estimator as
p̂ = (p̂1, p̂2)

′, and for the continuous response PSYCH y = (y1, y2)
′. The following

figures for PHYS are calculated from Table 5.9.
Sums of the cluster-level sample sums yjhi(= yji) and xjhi(= xji):

n̂11 = y1 = 2061 and n̂1 = x1 = 4485 (males),

n̂21 = y2 = 650 and n̂2 = x2 = 3356 (females).

Proportion estimates for PHYS, i.e. the elements of p̂ = (p̂1, p̂2)
′:

p̂1 = y1/x1 = 2061/4485 = 0.4595 (males),
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Table 5.9 Cluster-level sample sums y1i (males) and y2i (females) of the response variables
PHYS and PSYCH with the corresponding cluster sample sizes x1i (males) and x2i (females)
in sample clusters i = 1, . . . , 250 in two domains formed by sex (the OHC Survey).

Stratum Cluster
PHYS PSYCH

h i y1i y2i y1i y2i x1i x2i

2 1 11 3 −0.1434 −0.0322 36 22
2 2 18 4 −0.1925 0.1867 57 21
2 3 4 5 0.0045 0.3674 9 15
2 4 2 2 0.7135 −0.3679 12 15
2 5 1 0 −0.1681 0.1235 27 8
2 6 1 0 −0.2673 0.1504 19 21
2 7 9 4 0.0099 0.2099 23 27
2 8 4 2 0.3681 0.0155 16 31
2 9 0 0 −0.5033 0.0755 6 6
2 10 3 0 −0.3176 −0.2516 8 8
2 11 2 7 0.9746 0.1903 6 67
2 12 7 3 −0.3361 0.5572 22 31
2 13 4 1 −0.2329 −0.2181 9 7
2 14 0 0 −0.2032 0.5893 13 16
2 15 1 23 0.4137 0.2565 4 56
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

6 245 14 2 0.1984 −0.4271 23 7
6 246 2 1 −0.1049 0.3905 7 7
6 247 4 7 −0.2961 0.5018 7 13
6 248 0 1 −0.8073 0.9278 3 9
6 249 2 0 0.0006 −0.3484 16 13
6 250 13 1 −0.1273 −0.1466 26 4

Total sample 2061 650 −26.7501 33.7983 4485 3356

and
p̂2 = y2/x2 = 650/3356 = 0.1937 (females).

We next construct the diagonal 2 × 2 matrices diag(p̂), Y and X for the
calculation of the estimate V̂des for the PHYS proportion estimator p̂:

diag(p̂) =
[

0.4595 0
0 0.1937

]
, Y =

[
2061 0

0 650

]

and

X =
[

4485 0
0 3356

]
.
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The covariance-matrix estimates V̂yy, V̂xx and V̂yx, also obtained from the cluster-
level data displayed in Table 5.9, are the following:

V̂yy =
[

15 722.50 −130.45
−130.45 3261.71

]
,

V̂xx =
[

34 560.23 −7315.43
−7315.43 34 099.04

]
,

and

V̂yx =
[

18 973.88 −5907.69
−1098.11 6051.14

]
= V̂′

xy.

By using these matrices we finally calculate for PHYS proportions the covariance-
matrix estimate V̂des given by (5.35). Hence we have

V̂des =
[

v̂des(p̂1) v̂des(p̂1, p̂2)

v̂des(p̂2, p̂1) v̂des(p̂2)

]
= 10−4

[
2.775 0.576
0.576 1.951

]
.

For example, using the estimates calculated, the variance estimate v̂des(p̂1) is
obtained as

v̂des(p̂1) = 0.45952 × (2061−2 × 15 722.50 + 4485−2 × 34 560.23

− 2 × (2061 × 4485)−1 × 18 973.88) = 0.2775 × 10−3.

Correlation of p̂1 and p̂2 is 0.25, which is quite large and indicates that the domains
actually constitute cross-classes. The condition number of V̂des is cond(V̂des) = 1.9,
indicating stability of the estimate owing to a large f and small u.

For PSYCH, the following figures are calculated from Table 5.9.
Sums of the cluster-level sample sums yjhi and xjhi:

y1 = −26.7501 and x1 = 4485 (males),

y2 = 33.7983 and x2 = 3356 (females).

Mean estimates for PSYCH, i.e. the elements of y = (y1, y2)
′:

y1 = y1/x1 = −0.1008 (males),

and
y2 = y2/x2 = 0.1347 (females).
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The diagonal 2 × 2 matrices diag(y), Y and X are constructed in the same way as
for PHYS. The covariance-matrix estimate V̂xx is equal to that for PHYS, and the
covariance-matrix estimates V̂yy and V̂yx are:

V̂yy =
[

6765.34 1036.34
1036.34 6585.20

]
,

V̂yx =
[−3139.98 2129.01

−2051.46 2259.73

]
= V̂′

xy.

By using these matrices we calculate for PSYCH means the covariance-matrix
estimate V̂des:

V̂des =
[

v̂des(y1) v̂des(y1, y2)

v̂des(y2, y1) v̂des(y2)

]
= 10−4

[
3.223 0.427
0.427 5.856

]
.

Results from the design-based covariance-matrix estimation for PHYS propor-
tions and PSYCH means including the standard-error estimates s.edes(r̂j) are
displayed below.

PHYS PSYCH

j Domain p̂j s.edes(p̂j) yj s.edes(yj) n̂j

1 Males 0.460 0.0167 −0.1008 0.0180 4485
2 Females 0.194 0.0140 0.1347 0.0242 3356

Total sample 0.346 0.0144 0.0000 0.0158 7841

Variance and covariance estimates V̂yy, V̂xx and V̂yx can be calculated using
the cluster-level data set displayed in Table 5.9 by suitable software for correlation
analysis. The matrix operations in the formula of V̂des can be executed by any
suitable software for matrix algebra. In practice, however, it is convenient to esti-
mate V̂des using an element-level data set using appropriate software for survey
analysis. Generally, in the case of u domains formed by several categorical predic-
tors, a linear ANOVA model can be used by fitting, with an appropriate sampling
design option, for the response variable, a full-interaction model excluding the
intercept. The model coefficients are then equal to the domain proportion or mean
estimates, and the covariance-matrix estimate of the model coefficients provides
the covariance-matrix estimate V̂des of the proportions or means.

We next calculate the design-effects matrix. For this, a binomial covariance-
matrix estimate is needed.

For PHYS, by computing the elements of the binomial covariance-matrix
estimate

V̂bin(p̂) =
[

v̂bin(p̂1) 0
0 v̂bin(p̂2)

]
=
[

p̂1(1 − p̂1)/n̂1 0
0 p̂2(1 − p̂2)/n̂2

]
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of the proportion vector p̂ we obtain

p̂1(1 − p̂1)/n̂1 = 0.4595(1 − 0.4595)/4485 = 0.0000554 (males),

and

p̂2(1 − p̂2)/n̂2 = 0.1937(1 − 0.1937)/3356 = 0.0000465 (females).

Inserting these variance estimates in V̂bin we have

V̂bin(p̂) = 10−4
[

0.554 0
0 0.465

]
.

It is important to note that the covariance-matrix estimate V̂bin is diagonal because
the proportion estimates p̂1 and p̂2 are assumed to be uncorrelated. The effect of
clustering is not accounted for, even in the variance estimates, in the estimate V̂bin.
Therefore, with positive intra-cluster correlation, the binomial variance estimates
v̂bin(p̂j) tend to be underestimates of the corresponding variances. This appears
when calculating the design-effects matrix estimate D̂ = V̂−1

binV̂des of the estimate p̂:

D̂(p̂) =
[

18 058.295 0
0 21 489.421

]
× 10−4

[
2.775 0.576
0.576 1.951

]

=
[

5.01 1.04
1.24 4.19

]
.

The design-effect estimates d̂j on the diagonal of D̂ are thus

d̂(p̂1) = v̂des(p̂1)/v̂bin(p̂1) = 0.0002775/0.0000554 = 5.01 (males),

and

d̂(p̂2) = v̂des(p̂2)/v̂bin(p̂2) = 0.0001951/0.0000465 = 4.19 (females).

These estimates are quite large, indicating a strong clustering effect for the
response PHYS. This results in severe underestimation of standard errors of the
estimates p̂j when the binomial covariance-matrix estimate V̂bin is used. In addition
to the design-effect estimates, the eigenvalues of the design-effect matrix, i.e. the
generalized design effects, can be calculated. These are δ̂1 = 5.81 and δ̂2 = 3.39. It
may be noted that the sum of the design-effect estimates is 9.20, which is equal
to the sum of the eigenvalues. The mean of the design-effect estimates is 4.60,
which indicates a strong average clustering effect over the sex groups. However,
the mean is noticeably smaller than the overall design-effect estimate d̂ = 7.2
for the proportion estimate p̂ calculated from the whole sample. This is due to
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the property of design-effect estimates that, when compared against the overall
design-effect estimate, they tend to get smaller in cross-class-type domains.

Estimation results for PHYS proportions are collected below.

j Domain p̂j s.edes s.ebin d̂j n̂j

1 Males 0.460 0.0167 0.0074 5.01 4485
2 Females 0.194 0.0140 0.0068 4.19 3356

Total sample 0.346 0.0144 0.0054 7.17 7841

5.8 CHAPTER SUMMARY AND FURTHER READING

Summary

Proper estimation of the variance of a ratio estimator is important in the analysis
of complex surveys. First, variance estimates are needed to derive standard errors
and confidence intervals for nonlinear estimators such as a ratio estimator.
The estimation of the variance of ratio mean and ratio proportion estimators was
carried out under an epsem two-stage stratified cluster-sampling design, where the
sample data set was assumed self-weighting so that adjustment for nonresponse
was not necessary. The demonstration data set from the modified sampling design
of the Mini-Finland Health Survey (MFH Survey) fulfilled these conditions.

A ratio-type estimator r̂ = y/x was examined for the estimation of the subpop-
ulation mean and proportion in the important case of a subgroup of the sample
whose size x was not fixed by the sampling design. Therefore, the denominator
quantity x in r̂ is a random variable, involving its own variance and covariance
with the numerator quantity y. In addition to the variance of y, these variance
and covariance terms contributed to the variance estimator of a ratio estimator
calculated with the linearization method. This method was considered in depth
because of its wide applicability in practice and popularity in software products
for survey analysis.

We also introduced alternative methods for variance estimation of a ratio
estimator based on sample reuse methods. The techniques of balanced half-
samples (BRR) and jackknife (JRR) are traditional sample reuse methods, but
the bootstrap (BOOT) has been applied for complex surveys only recently. Being
computer-intensive, they differ from the linearization technique but are, as such,
readily applicable for different kinds of nonlinear estimators. With-replacement
sampling of clusters was assumed for all the approximation methods. With this
assumption, the variability of a ratio estimate was evaluated using the between-
cluster variation only, leading to relatively simple variance estimators. The design
effect was used extensively as a measure of the contribution of the clustering on
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a variance estimate, relative to the variance estimate based on simple random
sampling with replacement.

The MFH Survey sampling design was selected for variance estimation because
of its simplicity: there were exactly two sample clusters in each stratum in the
modified sampling design. A subgroup of the MFH Survey data set covering
30–64-year-old males was used with all the variance approximation methods.
This specific subgroup was chosen instead of the entire MFH Survey sample
because the total sample size was fixed by the sampling design, but for the
subpopulation considered the sample size was a random variate, thus providing a
good target for demonstrating variance estimation with approximative methods.
The selected subgroup constitutes a cross-classes-type domain mimicking properly
all essential properties of the MFH Survey sampling design such as inclusion of
elements from all of the 24 strata and 48 sample clusters. This would not be the
case if, for example, a regional subgroup were chosen where only a part of the
strata and sample clusters would be covered.

The variance approximation methods provided similar results in variance
estimation of a proportion estimator of a binary response variable CHRON (chronic
morbidity), which was a slightly intra-cluster correlated variable, and for a mean
estimator of a continuous response variable SYSBP (systolic blood pressure)
having stronger intra-cluster correlation. Because no theoretical arguments are
available for choosing between the approximative variance estimators, technical
factors such as software availability often guide the selection of an appropriate
method in practice.

Several domain ratios, collected in a vector of ratios, were estimated using
appropriate element weights in a combined ratio estimator derived for each
domain. This produced consistent estimation of the ratios under a non-epsem
complex sampling design. Use of the linearization method gave consistent esti-
mation of the covariance matrix of the weighted domain ratio estimator vector.
It was demonstrated that positive intra-cluster correlation of a response variable
not only increases the variance estimates but can also introduce nonzero corre-
lations between ratio estimates from separate domains; the asymptotically valid
covariance-matrix estimator was derived to account for the extra variation and
nonzero correlations. The estimator was essentially nondiagonal with nonzero
off-diagonal covariance terms that occurred especially when working with cross-
classes-type domains. This kind of a covariance-matrix estimator is needed for
asymptotically valid modelling procedures with logit and linear models.

A covariance-matrix estimate calculated by the linearization method might be
unstable in such small-sample situations where the number of sample clusters is
small. Instability can cause problems in standard-error estimation and in testing
and modelling procedures. Techniques are available for detecting instability,
based, for example, on a statistic condition number and on graphical inspection
of a covariance-matrix estimate. For a design-effects matrix estimator, a binomial
covariance-matrix estimator of the consistent (weighted) domain proportion
estimator vector was constructed. This kind of a design-effects matrix estimator is
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primarily intended to account for intra-cluster correlation in testing and modelling
procedures, and will be extensively used in Chapters 7 and 8. By using a binomial
covariance-matrix estimator of an unweighted proportion estimator vector, a
different design-effects matrix estimator would be obtained accounting for all
the other contributions of complex sampling on covariance-matrix estimation
such as weighting procedures. We demonstrate empirically both approaches in
Sections 9.3 and 9.4. It should be noticed that different definitions of a design effect
can be employed in software products for survey analysis, leading to different
design-effect estimates from the same data set. Therefore, care should be taken to
avoid misinterpretation.

Further Reading

In-depth consideration of the estimation of variance of a ratio, and other nonlinear
estimators, can be found in Wolter (1985). Supplementary sources on the topic,
in addition to those already mentioned, are Kalton (1983) and Verma et al. (1980).
Thorough discussion on the concept of design effect is given in Kish (1995).
Jackknife technique and the bootstrap are discussed in Shao and Tu (1995). Rao
and Shao (1993) and Yung and Rao (2000) address the jackknife technique
for variance estimation. Rao (1999) reviews many of the advances in variance
estimation under complex sampling.

The estimation of the asymptotic covariance matrix of a domain ratio esti-
mator vector is considered in Skinner et al. (1989). Smoothed estimates for
unstable situations are derived in Singh (1985), Kumar and Singh (1987), Morel
(1989) and Lehtonen (1990). The method of effective sample sizes is introduced
in Scott (1986) and applied in Rao and Scott (1992). Brier (1980), Williams (1982)
and Wilson (1989) consider accounting for extra-binomial variation using the
beta-binomial sampling model. The role of weighting for unequal inclusion prob-
abilities and for adjustment for nonresponse in the analysis of complex surveys
has deserved its considerable attention in the literature. Important contribu-
tions are by Little (1991, 1993), Kish (1992), Pfeffermann (1993) and Pfeffermann
et al. (1998).
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Model-Assisted Estimation
for Domains

In this chapter, we examine the estimation for population subgroups or domains.
Regional areas constructed by administrative criteria, such as county or munic-
ipality, are typical domains or domains of interest. The population also can be
grouped into domains by demographic criteria, such as sex and age group, as in
a social survey. In a business survey, enterprises are often grouped into domains
according to the type of industry. Further, elements can be assigned into domains
by demographic criteria within regional areas. In all these instances, estimation
for domains, or domain estimation, refers to the estimation of population quantities,
such as totals, for the desired population subgroups. Estimation of domain totals
will be discussed in the context of design-based estimation, which is the main
approach of the book. In practice, design-based estimation is mainly used for
domains whose sample size is reasonably large. For small domains (with a small
sample size in a domain), methods falling under the headline of small area estima-
tion are often used. In Section 6.1, we outline the framework and basic principles
of domain estimation. We also summarize the operational steps of a domain
estimation procedure. Section 6.2 introduces two important concepts, estimator
type and model choice, in the context of domain estimation. Selected estimators
and models are worked out and illustrated in Section 6.3. Section 6.4 includes an
empirical examination of properties of some estimators of domain totals based on
Monte Carlo experiments. Summary and further reading is in Section 6.5.

6.1 FRAMEWORK FOR DOMAIN ESTIMATION

We focus on the estimation of population totals for domains in a descriptive survey.
The estimation of domain totals is discussed from a design-based perspective, with
the use of auxiliary information. According to Särndal et al. (1992), the framework

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84769-7
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is called model-assisted. The reason for incorporating auxiliary data in a domain
estimation procedure is obvious: with strong auxiliary data it is possible to
obtain better accuracy for domain estimates, when compared to an estimation
procedure not using auxiliary data. Thus, this chapter extends the treatment of
model-assisted estimation introduced in Section 3.3.

Different types of auxiliary data can be used in model-assisted estimation. In
Section 3.3, we used population-level aggregates of auxiliary variables. Here, we
also employ unit-level auxiliary data for model-assisted estimation for domains.
These data are incorporated in a domain estimation procedure by unit-level
statistical models. This is possible if we make the following technical assumptions:
(1) register data (such as population census register, business register, different
administrative registers) are available as frame populations and sources of aux-
iliary data, (2) registers contain unique identification keys that can be used in
merging at micro-level data from registers and sample surveys (see Figure 1.1 in
Chapter 1). Obviously, access to micro-merged register and survey data involves
much flexibility for a domain estimation procedure. This view has been adopted,
for example, in Särndal (2001) and Lehtonen et al. (2003). Much of the material of
this chapter are based on these sources.

The methods specific to small-area estimation include a variety of model-
dependent techniques such as synthetic (SYN) estimators, composite estimators,
EBLUP (empirical best linear predictor) estimators and various Bayesian tech-
niques, and techniques developed in the context of demography and disease
mapping. The monograph by J.N.K. Rao (2003) provides a comprehensive treat-
ment of model-dependent small-area estimation and discusses design-based
methodologies for the estimation for domains as well. Other materials include, for
example, Schaible (1996), Lawson et al. (1999), and Ghosh (2001), who discusses
especially empirical and hierarchical Bayes techniques.

Basic Principles

Let us introduce our basic notation for population quantities and sample-specific
quantities in the context of domain estimation. The finite population is again
denoted by U = {1, 2, . . . , k, . . . , N} and, in domain estimation, we consider a set
of mutually exhaustive subgroups of the population denoted U1, . . . , Ud, . . . , UD

(note that in this chapter we use exclusively a subscript d for domains of interest).
We assume that the population U can be used as a sampling frame. This implies
that U is available as a computerized data set, for example, a population register, or
a register of business firms. We therefore also assume that the frame population U
contains (in addition to the ‘labels’ k of the population elements) values for certain
additional variables for all elements k ∈ U (where the symbol ‘∈’ refers to the
inclusion of an element in a set of elements). These variables are unique element-
identification (ID) keys, domain membership indicators, stratum membership
indicators and the auxiliary z-variables.
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Denote by y the variable of interest and by Yk its unknown population value
for unit k. The target parameters are the set of domain totals, Td =∑k∈Ud

Yk, d =
1, . . . , D, where summation is over all population elements k belonging to domain
Ud (for simplicity, we use this notation throughout this chapter). Auxiliary
information is essential for building accurate domain estimators, and increasingly
so when the sample size of domains get smaller. Let zk = (z1k, . . . , zjk, . . . , zJk)

′ be
the auxiliary variable vector of dimension J ≥ 1. The value zk is assumed to be
known for every element k ∈ U. In a survey on individuals, zk may specify known
data about a person k, such as age, sex, taxable income and other continuous or
qualitative variable values. In a business survey, zk may indicate the turnover, or
the total number of staff, for business firm k. It is important to emphasize that we
assume the auxiliary z-data to be at the micro-level, that is, a value is assigned
for each population element in the frame register. This is for flexibility, because
the data can be then aggregated at higher levels of the population, such as at the
domain or stratum level, if desired. Indeed, for some estimators, it suffices to know
the population totals Tdz1 , . . . , TdzJ of the auxiliary variables zj for each domain of
interest. In the model-fitting phase, we often assume that a constant value 1 is
assigned as the first element in a vector zk.

For unique identification of domain membership for each population element,
we define δk = (δ1k, . . . , δdk, . . . , δDk)

′ to be the domain indicator vector for unit k,
such that δdk = 1 for all elements k ∈ Ud, and δdk = 0 for all elements k /∈ Ud, d =
1, . . . , D. An indicator vector τk for stratum identification for population element
k is constructed in a similar manner: τhk = 1 for all k ∈ Uh, h = 1, . . . , H, and
τhk = 0 otherwise, where Uh refers to stratum h and H is the number of strata.
Thus, a total of D domain indicator variables and H stratum indicator variables
are assumed in the population frame.

A probability sample s of size n is drawn from U using a sampling design p(s)
such that an inclusion probability πk is assigned to unit k. The corresponding
sampling weights are wk = 1/πk. Measurements yk of the response variable y are
obtained for the sampled elements k ∈ s. We assume that a unique element ID
key is included in sample s making it possible to micro-merge these data with the
frame register U.

The domain samples are sd = Ud ∩ s, d = 1, . . . , D. A domain is defined
unplanned, if the domain sample size nsd is not fixed in the sampling design.
This is the case in which the desired domain structure is not a part of the sampling
design. Thus, the domain sample sizes are random quantities introducing an increase
in the variance estimates of domain estimators. In addition, an extremely small
number (even zero) of sample elements in a domain can be realized in this
case, if the domain size in the population is small. For planned domains on the
other hand, the domain sample sizes are fixed in advance by stratification. Stratified
sampling in connection with a suitable allocation scheme is often used in practical
applications.

A certain domain structure for a stratified sample of n elements can be illustrated,
for example, as in Table 6.1. In the table setting, an unplanned domain structure
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Table 6.1 Planned and unplanned domain structures in a stratified sample of n
elements.

Unplanned
Strata (planned domains)

domains 1 2 . . . h . . . H Sum

1 ns11 ns12 . . . ns1h . . . ns1H ns1

2 ns21 ns22 . . . ns2h . . . ns2H ns2

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

d nsd1 nsd2 · · · nsdh · · · nsdH nsd

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

D nsD1 nsD2 . . . nsDh . . . nsDH nsD

Sum n1 n2 . . . nh . . . nH n

Sample sizes nsd , d = 1, . . . , D, for unplanned domains are not fixed in advance and
thus are random variables.
Stratum sample sizes nh, h = 1, . . . , H are fixed in the sampling design. Thus, the
strata are defined as planned domains.
Cell sample sizes nsdh are random variables in both cases.

cuts across the strata, a situation that is common in practice. In other types of
structures, strata and domains can be nested such that a stratum contains several
unplanned domains (for example, regional sub-areas within larger areas) or the
strata themselves constitute the domains. The latter case represents a planned
domain structure. Singh et al. (1994) illustrates the benefits of the planned domain
approach for domain estimation. They presented compromise sample allocation
schemes for the Canadian labour force survey to satisfy reliability requirements
at the provincial level as well as at sub-provincial level. However, for practical
reasons, it is usually not possible to define all desired domain structures as strata.

For the estimation for domains, it is advisable to apply the planned domains
approach when possible, by defining the most important domains of interest
as strata and to use a suitable allocation scheme in the sampling design, such
as power or Bankier allocation (see the next example). It is also beneficial to
use a large overall sample size to avoid small expected domain sample sizes if an
unplanned domain approach is used. And in the estimation phase, it is often useful
to incorporate strong auxiliary data into the estimation procedure by carefully
chosen models and estimators of domain totals (see Example 6.2 and Section 6.4).

Example 6.1

Impact of sampling design in estimation for domains: the cases of unplanned and
planned domain structures. Problems may be encountered when working with
an unplanned domain structure, because small domain samples can be obtained
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for domains with a small population size, if the overall sample size is not large,
involving imprecise estimation. For example, if the sample has been drawn with
simple random sampling without replacement, then the expected sample size in
a domain would be E(nsd) = n × (Nd/N), thus corresponding to the proportional
allocation in stratified sampling. An alternative is based on the planned domain
structure, where the domains are defined as strata. Then, more appropriate
allocation schemes can be used. In this example, the allocation scheme is based
on power allocation (see Section 3.1). In power or Bankier allocation, the sample is
allocated to the domains on the basis of information on the coefficient of variation
of the response variable y in the domains and on the possibly known domain
totals Tdz of an auxiliary variable z. We use a simplified version of power allocation
in a hypothetical situation in which the coefficients of variation C.Vdy = Sdy/Yd

of the response variable y are known in all domains, where Sdy and Yd are
the population standard deviation and the population mean of y in domain d,
respectively.

In power allocation, the domain sample sizes are given by

nd,pow = n × Ta
dz × C.Vdy

D∑
d=1

Ta
dz × C.Vdy

,

where the coefficient a refers to the desired power (typical choices are 0, 0.5 or
1). Here we have chosen a = 0 for simplicity. Thus, information on coefficients of
variation is only used.

We illustrate the methodology by selecting an SRSWOR sample (n = 392
persons) from the Occupational Health Care Survey (OHC) data set (N = 7841
persons) and estimating the total number of chronically ill persons in the D = 30
domains constructed. In the population, the sizes of the domains vary with
a minimum of 81 persons and a maximum of 517 persons. The results for
the allocation of the sample by proportional allocation (corresponding to an
unplanned domain structure) and by power allocation (corresponding to a
planned domain structure) are shown in Table 6.2. The domain totals of the
number of chronically ill persons are estimated by a Horvitz–Thompson (HT)
estimator t̂dHT =∑k∈sd

wkyk. The stability of the estimators is measured by the
population coefficient of variation of an estimator of a domain total, given by
C.V(t̂dHT) = S.E (t̂dHT)/Td.

The results show that SRSWOR sampling produces a large variation in the
expected domain sample size: the average domain sample size is 13, the minimum
sample size is 4 and the maximum is 26. On the other hand, power allocation
smoothes considerably the variation in domain sample size: the minimum domain
sample size is now 10 and the maximum is 17. The percentage coefficient of vari-
ation varies much in the case of SRSWOR. For example, the difference between
the smallest and largest coefficient of variation is over 60% points. In power
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Table 6.2 Allocation schemes for a sample of n = 392 elements for D = 30 domains of
the OHC Survey data set. Calculation of the expected domain sample size E(nsd ) under an
SRSWOR design and realized domain sample size nd under a stratified SRSWOR design
with power allocation (a = 0), and the corresponding coefficients of variation (%) of a
Horvitz–Thompson estimator t̂dHT .

Domain sample size

Coefficient of
variation C.V (%)

of HT estimators of
domain totals

Domain

Unplanned domain
structure

Expected under
SRSWOR

Planned domain
structure Realized under

stratified SRSWOR
(power allocation)

Unplanned
domain

structure
SRSWOR

Planned domain
structure

Stratified SRSWOR
(power allocation)

d Nd E(nsd ) nd C.V(t̂dHT) C.V(t̂dHT)

10 81 4 11 84.10 38.88
20 101 5 12 78.41 40.54
18 129 6 13 72.69 42.38
3 133 7 15 81.04 45.63
8 141 7 16 81.03 46.54

30 146 7 15 74.80 45.03
21 153 8 12 62.87 41.15
23 156 8 11 57.65 39.05
16 165 8 13 64.94 43.19

1 181 9 17 75.90 48.78
11 187 9 14 63.52 44.52
6 188 9 13 60.37 43.22

28 194 10 10 50.52 38.69
24 200 10 13 58.68 43.39
22 242 12 10 44.27 38.30
15 252 13 14 55.68 45.50
7 292 15 17 60.34 50.06
4 295 15 15 53.92 47.04

13 305 15 13 46.00 43.04
12 311 16 12 44.50 42.38

5 323 16 16 53.50 48.23
25 339 17 11 40.57 41.03

2 352 18 14 46.80 45.74
26 364 18 11 38.87 40.88
29 365 18 11 38.25 40.45

9 366 18 14 45.99 45.85
17 426 21 12 36.67 41.62
14 447 22 13 37.95 43.37
19 490 24 11 33.60 41.22
27 517 26 10 30.68 39.34

Sum 7841 392 392
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allocation, the difference is reduced to 12% points. Thus, power allocation tends
to smooth the variation in the coefficient of variation such that large coefficients
are considerably decreased. However, the coefficients of variation of estimated
domain totals tend to be quite large; this is mainly due to the small overall
sample size.

The progression in coefficients of variation can be illustrated graphically. In
Figure 6.1, the coefficients of variation have been plotted against domain size in
population. The curve for the HT estimator obtained for coefficients of variation
under SRSWOR shows clear decrease with increasing domain size. For power
allocation, the curve is clearly stabilized.

To continue the specification of the setting for domain estimation, our further
technical assumption is as follows. We assume that after data collection from
the selected sample and preparation of the final sample data set, denoted by
s(y), the population frame U and the sample measurements s(y) can be micro-
merged using the unique element ID keys that are available in both data sources.
Completing this procedure we have obtained an enhanced frame register data set
that includes the auxiliary z-data and stratum and domain indicator variables
for all population elements, amended with y-measurements for the elements
belonging to the sample.

We have now completed the technical preparations for conducting an estima-
tion for the domains. The operational steps in a domain estimation procedure,
given in general terms, are summarized in Box 6.1.
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Figure 6.1 Coefficient of variation (%) of Horvitz–Thompson estimator of domain total
under SRSWOR sampling (corresponding to the unplanned domain structure) and strat-
ified SRSWOR sampling with power allocation (a = 0) (corresponding to the planned
domain structure).

TLFeBOOK



194 Model-Assisted Estimation for Domains

BOX 6.1 Operational steps in a domain estimation procedure

Step 1: Construction of frame population Construction of the frame population
U = {1, 2, . . . , k, . . . , N} of N elements containing unique element ID keys,
domain indicator vectors δk, stratum indicator vectors τ k, inclusion probabili-
ties πk for drawing of an n element sample with sampling design p(s), and the
vectors zk of auxiliary z-data, for all elements k in U.

Step 2: Sampling and measurement Sample selection by using the design p(s)
and measurement of the values of the response variable y, and the construction
of the sample data set s(y), including the element ID keys, observed values yk

and sampling weights wk = 1/πk, for all elements k ∈ s.

Step 3: Frame population revisited Construction of a combined data set by
micro-merging the frame population U and the sample data set s(y) by using
the element ID keys.

Step 4: Model choice and model fitting The choice of the model, specification
of model parameters and effects, model fitting using the sample data set and
model validation and diagnostics. On the basis of the fitted model, calculation
of fitted values ŷk for all population elements k ∈ U and residuals êk = yk − ŷk

for all elements k ∈ s (y), the sample data set.

Step 5: Choice of estimator of domain totals and estimation for domains Supply of
fitted values, residuals and weights in the chosen estimator for domain totals.
Basically, estimators of domain totals labeled ‘model-dependent’ use the fitted
values ŷk, k ∈ U, and the estimators of domain totals labeled ‘model-assisted’
use the fitted values ŷk, k ∈ U, and in addition, the residuals êk and the weights
wk, k ∈ s.

Step 6: Variance estimation and diagnostics Choice of an appropriate variance
estimator. Calculation of standard error estimates and coefficients of variation.

In Table 6.3, we summarize in a hypothetical situation, the progression in
the population frame data set that occurs when the operations in Steps 1 to
4 of Box 6.1 are implemented for a domain estimation procedure. Because the
vectors zk = (z1k, . . . , zJk)

′ of auxiliary z-variables are assumed to be known for
every population element, including sampled and nonsampled elements, the
vector Tz = (Tz1, . . . , TzJ)

′ with Tzj =∑k∈U zjk, j = 1, . . . , J, of population totals of
auxiliary z-variables is known. Also, domain totals Tdzj =∑k∈Ud

zjk, d = 1, . . . , D
and j = 1, . . . , J, can be calculated for each z-variable, because the domain
indicators are assumed to be known for all k ∈ U. The sample membership

TLFeBOOK



Estimator Type and Model Choice 195

Table 6.3 Execution of Steps 1, 3 and 4 of Box 6.1 in a domain estimation procedure
(hypothetical situation).

Step 1: Construction of the
frame population U

Step 3: Merging of the
frame population
U and the sample

data set s(y)

Step 4: Calculation
of fitted y-values

and residuals

Element
ID

Domain
ID

vectors
δ′

k

Stratum
ID

vectors
τ ′

k

Inclusion
probability

πk

Auxiliary
z-vectors

z′
k

Sampling
weight

wk

Sample
membership

indicator
Ik

Study
variable

yk

Fitted
values

ŷk

Residuals
êk

1 δ′
1 τ ′

1 π1 z′
1 0 0 . . . ŷ1 . . .

2 δ′
2 τ ′

2 π2 z′
2 0 0 . . . ŷ2 . . .

3 δ′
3 τ ′

3 π3 z′
3 w3 1 y3 ŷ3 ê3

4 δ′
4 τ ′

4 π4 z′
4 0 0 . . . ŷ4 . . .

5 δ′
5 τ ′

5 π5 z′
5 w5 1 y5 ŷ5 ê5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

k δ′
k τ ′

k πk z′
k wk 1 yk ŷk êk

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

N δ′
N τ ′

N πN z′
N 0 0 . . . ŷN . . .

. . . Nonsampled element.

indicator variable I is created for the whole population data set such that Ik = 1
if k ∈ s, zero otherwise. Obviously, the sum of the indicator variable over the
population is n, the sample size. In the model-fitting phase, the fitted values ŷk are
calculated for all N elements k ∈ U. On the other hand, the residuals êk = yk − ŷk

can be calculated for the sampled elements k ∈ s only. It is also important to
emphasize that the fitted values {ŷk; k ∈ U} calculated by a given model differ from
one model specification to another. This will be apparent in the next section in
which models and estimators of domain totals are treated in more detail.

6.2 ESTIMATOR TYPE AND MODEL CHOICE

Important phases in a model-assisted domain estimation procedure are the
selection of the type of the estimator of a total, the choice of the auxiliary variables
to be used, the formulation of the model for the incorporation of the auxiliary
data into the estimation procedure, the model-fitting phase and the derivation of
variance estimators for the selected domain total estimators (see Box 6.1). In this
section, we consider these phases in a more technical manner.

Estimator Type

We first discuss two concepts, estimator type and model choice, making the basis
for the construction of an estimator of the population totals for domains of interest.
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The concept estimator type refers to the explicit structure of the selected estimator
of the domain totals. There are two main types of estimators discussed in this
chapter. These are the generalized regression (GREG) estimator and the synthetic
(SYN) estimator. The main conceptual difference in these estimators is that GREG
estimators use models as assisting tools, whereas SYN estimators rely exclusively
on the model used. Thus, GREG estimators are model-assisted and SYN estimators
are model-dependent. The main consequence of this differing role of a model is
that a GREG estimator of a domain total is constructed to be design unbiased (or
approximately so) irrespective of the ‘truth’ of the model. This is a benefit of GREG
estimators. However, a GREG estimator can be very unstable if the sample size in
a domain becomes small. On the other hand, the bias of a SYN estimator depends
heavily on a correct model specification. If the model is severely misspecified,
a SYN estimator can involve substantial design bias. If, on the other hand, the
model is correctly specified or nearly so, then the bias of a SYN estimator can
be small.

In a typical large-scale survey conducted, for example, by a national statistical
agency, some domains of interest are large enough, and the auxiliary information
strong enough, so that the GREG-type estimators will be sufficiently precise. But
for a small domain the variance of a GREG estimator can become unacceptably
large, and in this case, the variance of a SYN estimator can be much smaller. Better
precision of SYN estimators for small domains favours their use, in particular, for
small-area estimation (recall that ‘small area’ refers to the situation in which the
attained sample size in a given domain, or ‘area’, is small, or very small, even zero).

To summarize the main theoretical properties of the estimator types, GREG
estimators are constructed to be design unbiased; the SYN estimators usually are
not. Variance of the GREG estimator can be large for a small domain, that is, if
the domain sample size is small, causing poor precision. The SYN estimator is
usually design biased; its bias does not approach zero with increasing sample size;
its variance is usually smaller than that of GREG; this holds especially for small
domains. The accuracy, measured by the mean squared error MSE, of a SYN
estimator can be poor even in the case of a small variance, if the bias is substantial.

Model Choice

The concept model choice refers to the specification of the relationship of the
study variable y with the auxiliary predictor variables z1, . . . , zJ, as reflected by the
structure of the constructed model. Model choice has two aspects, the mathematical
form of the model and the specification of the parameters and effects in the model.
For example, when working with a continuous study variable, a linear model
formulation is usually appropriate. For binary or polytomous study variables, one
might make a choice for a nonlinear model, such as a binomial or multinomial
logistic model. For example, for a binary study variable, a logistic model formulation
is arguably an improvement on a linear model type, because the fitted y-values
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under the former will necessarily fall in to the unit interval, which is not always
true for a linear model.

The second aspect of model choice is the specification of the parameters and
effects in the model. Some of these may be defined at the fully aggregated population
level, others at the level of the domain (domain-specific parameters), yet others
at some intermediate level. We will separate a fixed-effects model formulation and
a mixed model formulation. A fixed-effects model can involve population-level or
domain-specific fixed effects, or effects specified on an intermediate level. In a mixed
model, there are domain-specific random effects in addition to the fixed effects. Using
a mixed model type, we can introduce stochastic effects that recognize domain
differences.

To summarize, the chosen model specifies a hypothetical relationship between
the variable of interest, y, and the predictor variables, z1, . . . , zJ, and makes
assumptions about its perhaps complex error structure. Fixed-effects models can
often be satisfactory, but mixed models offer additional possibilities for flexible
modelling. For every specified model, we can derive one GREG estimator and
one SYN estimator, by observing the respective construction principles. How-
ever, fixed-effects models have been more common in model-assisted estimators,
whereas mixed models have most often been used in model-dependent estimators.

By combining these two aspects of an estimator for domain totals, estimator
type and model choice, we get a two-dimensional arrangement of estimators. To
illustrate this, we have included in Table 6.4 a number of selected estimators.
There are six model-dependent SYN-type estimators and six design-based GREG-
type estimators in the table. Each of the six rows corresponds to a different model
choice. A population model (P-model; rows 1 and 2) is one whose only parameters
are fixed effects defined at the population level; it contains no domain-specific
parameters. A domain model (D-model) is one having at least some of its parameters
or effects defined at the domain level. These are fixed effects for rows 3 and 4 and

Table 6.4 Classification of estimators for domain totals by model choice and estimator
type.

Model choice Estimator type

Specification of
model effects

Level of
aggregation

Functional
form

Model-
dependent

Design-based
model-assisted

Population Linear SYN-P GREG-P
Fixed-effects models models Logistic LSYN-P LGREG-P

Domain Linear SYN-D GREG-D
models Logistic LSYN-D LGREG-D

Mixed models
including fixed and
random effects

Domain
models

Linear
Logistic

MSYN-D
MLSYN-D

MGREG-D
MLGREG-D
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random effects for rows 5 and 6. ‘Linear’ and ‘logistic’ refer to the mathematical
forms. In Example 6.2 and Section 6.4, we will consider in more detail a number
of these estimators.

6.3 CONSTRUCTION OF ESTIMATORS AND MODEL
SPECIFICATION

Construction of Estimators of Domain Totals

The estimators of domain totals are constructed in the following three phases
(according to Steps 4 and 5 in Box 6.1):

1. The parameters of the designated model are estimated using the sample data
set s(y) = {(yk, zk); k ∈ s}.

2. Using the estimates of the model parameters and the population vectors zk, the
fitted value ŷk is computed for every population element k, including elements
belonging to the sample and also elements that are not sampled.

3. For obtaining an estimate t̂d of the total Td in domain d, the fitted values,
{ŷk; k ∈ U}, and the sample observations, {yk; k ∈ s}, are incorporated in the
respective formulas for the GREG and SYN estimators.

We will illustrate the domain estimation procedure in the context of linear
models. Consider a fixed-effects linear model specification such that yk = z′

kβ + εk,
where β is an unknown parameter vector requiring estimation, and εk are the
residual terms. The model fit yields the estimate β̂. The supply of fitted values
given by ŷk = z′

kβ̂ is computed for all elements k ∈ U. Similarly, for a linear mixed
model involving domain-specific random effects in addition to the fixed effects, the
model specification is yk = z′

k(β + ud) + εk, where ud is a vector of random effects
defined at the domain level. Using the estimated parameters, fitted values given
by ŷk = z′

k(β̂ + ûd) are computed for all k ∈ U. In more general terms, models
used in the construction of GREG- and SYN-type estimators of domain totals are
special cases of generalized linear mixed models, such as a mixed linear model and a
logistic model (see e.g. McCulloch and Searle 2001; Dempster et al. 1981).

The fitted values {ŷk; k ∈ U} differ from one model specification to another. For
a given model specification, an estimator of domain total Td =∑k∈Ud

yk has the
following structure for the two basic estimator types:

Synthetic estimator: t̂dSYN =
∑
k∈Ud

ŷk (6.1)

Generalized
regression estimator: t̂dGREG =

∑
k∈Ud

ŷk +
∑
k∈sd

wk(yk − ŷk) (6.2)
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where wk = 1/πk, sd = s ∩ Ud is the part of the full sample s that falls in to domain
Ud, and d = 1, . . . , D.

Note that t̂dSYN uses the fitted values given by the estimated model, and thus
relies on the ‘truth’ of the model and, therefore, can be biased. On the other
hand, t̂dGREG has a second term that aims at protecting against possible model
misspecification. Note also that in the case in which there are no sample elements
in a domain, t̂dGREG reduces to t̂dSYN for that domain. A Horvitz–Thompson
estimator t̂dHT =∑k∈sd

wkyk is often calculated as a reference when assessing the
benefits from the more complex estimators.

Model Specification

Let us first discuss fixed-effects linear models. Let zk = (1, z1k, . . . , zjk, . . . , zJk)
′ be

a (J + 1)-dimensional vector containing the values of J ≥ 1 predictor variables
zj, j = 1, . . . , J. This vector is used to create the predicted values ŷk, k ∈ U, in the
estimators (6.1) and (6.2).

1. Fixed-effects P-models. The estimators SYN-P and GREG-P build on the model
specification

yk = β0 + β1z1k + · · · + βJzJk + εk = z′
kβ + εk (6.3)

for k ∈ U, where β = (β0, β1, . . . , βJ)
′ is a vector of fixed effects defined for the

whole population. Owing to this property, we call (6.3) the fixed-effects P-model. If
y-data were observed for the whole population, we could compute the generalized
least-squares (GLS) estimator of β given by

B =
(∑

k∈U

zkz′
k/ck

)−1∑
k∈U

zkyk/ck, (6.4)

where the ck are specified positive weights. With no significant loss of generality,
we specify these to be of the form ck = λ′zk for k ∈ U, where the (J + 1)-vector
λ does not depend on k. As a further simple specification, we can set ck = 1 for
all k, and (6.4) reduces to an ordinary least-squares (OLS) estimator. In practice,
a weighted least-squares (WLS) estimate for (6.4) is calculated on the observed
sample data, yielding

b̂ =
(∑

k∈s

wkzkz′
k

)−1∑
k∈s

wkzkyk, (6.5)

where wk = 1/πk is the sampling weight of unit k. The resulting predicted values
are given by

ŷk = z′
kb̂, k ∈ U. (6.6)
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By incorporating predicted values ŷk into (6.1) and (6.2), we obtain the corre-
sponding SYN-P and GREG-P estimators. Note that using a P-model for a given
domain d, y-values from other domains also contribute to the predicted values
incorporated in an estimator SYN-P and GREG-P for that domain. For this reason,
the estimators t̂dSYN−P and t̂dGREG−P, using a fixed-effects P-model type, are called
indirect estimators.
2. Fixed-effects D-models. The estimators SYN-D and GREG-D are built with the
same predictor vector zk, but with a different model specification allowing a
fixed-effects vector βd separately for every domain, so that

yk = z′
kβd + εk (6.7)

for k ∈ Ud, d = 1, . . . , D, or equivalently,

yk =
D∑

d=1

δdkz′
kβd + εk (6.8)

for k ∈ U, where δdk is the domain indicator of unit k, defined by δdk = 1 for all
k ∈ Ud, and δdk = 0 for all k /∈ Ud, d = 1, . . . , D. Model (6.7) is called the fixed-
effects D-model. Again, if the model (6.7) could be fitted to the data for the whole
subpopulation Ud, the GLS estimator of βd would be

Bd =

∑

k∈Ud

zkz′
k/ck




−1∑
k∈Ud

zkyk/ck, d = 1, . . . , D. (6.9)

In practice, the fit must be based on the observed sample data in domain d.
Setting again ck = 1 for all k, the following WLS estimator can be used:

b̂d =

∑

k∈sd

wkzkz′
k




−1∑
k∈sd

wkzkyk, d = 1, . . . , D. (6.10)

The resulting predicted values are given by

ŷk = z′
kb̂d (6.11)

for k ∈ Ud; d = 1, . . . , D. By incorporating predicted values ŷk from (6.11) into
(6.1) and (6.2), we obtain the corresponding SYN-D and GREG-D estimators. For
a given domain d, y-values are used from that domain only in the model fitting
and in the calculation of the predicted values incorporated in an estimator SYN-D
and GREG-D in that domain. Thus, the estimators t̂dSYN−D and t̂dGREG−D, using a
fixed-effects D-model type, are called direct estimators. Note that because of the
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specification ck = λ′zk = 1, we have
∑

k∈sd
wk(yk − ŷk) = 0. Consequently, SYN-D

and GREG-D are identical, that is, t̂dSYN−P = t̂dGREG−P for every sample s, when
using the fixed-effects D-model specification.
3. Mixed D-models. The estimators MSYN-D and MGREG-D build on a two-level
linear model, called the mixed linear D-model, involving fixed as well as random
effects recognizing domain differences,

yk = β0 + u0d + (β1 + u1d)z1k + · · · + (βJ + uJd)zJk + εk = z′
k(β + ud) + εk

(6.12)

for k ∈ Ud, d = 1, . . . , D. Each coefficient is the sum of a fixed component and
a domain-specific random component: β0 + u0d for the intercept and βj + ujd,

j = 1, . . . , J for the slopes. The components of ud = (u0d, u1d, . . . , uJd)
′ represent

deviations from the coefficients of the fixed-effects part of the model,

yk = β0 + β1z1k + · · · . + βJzJk + εk = z′
kβ + εk, (6.13)

which agrees with (6.3). More generally, we can have that only some of the
coefficients in (6.12) are treated as random, so that, for some j, ujd = 0 for every
domain d. A simple special case of (6.12), commonly used in practice, is the one
that includes domain-specific random intercepts u0d as the only random terms,
given by yk = β0 + u0d + β1z1k + · · · + βJzJk + εk. We insert the resulting fitted
y-values

ŷk = z′
k(β̂ + ûd) (6.14)

into (6.1) to obtain the two-level MSYN-D estimator. Inserting the fitted val-
ues (6.14) into (6.2), we obtain the two-level MGREG-D estimator, introduced
by Lehtonen and Veijanen (1999). A two-level D-model (6.12) can be fitted, for
example, by estimating the variance components by maximum likelihood (ML)
or restricted maximum likelihood (REML) and the fixed effects by GLS given these
variance estimates; for details see, for example, Goldstein (2002) and McCulloch
and Searle (2001). In estimating a mixed D-model, an assumption is usually made
that the random effects follow a joint normal distribution. Note, however, that the
assumption of normality is not necessary to obtain approximate unbiasedness for
the resulting MGREG-D estimator.

Alternative options are available for the estimation of the design variance for
estimators (6.1) and (6.2) of domain totals. When working with planned domains,
where the domain sample sizes nd are fixed in the stratified sampling design and,
for example, the samples are drawn with SRSWOR in each stratum, approximate
variance estimators presented in Section 3.3 for regression estimation can be used
separately for each domain. In this setting, a sample of nd elements is drawn from
the population of Nd elements in domain d, and the weights are wk = Nd/nd for
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all k ∈ Ud. For example, for the GREG estimator (6.2), an approximate variance
estimator is given by

v̂srs(t̂dGREG) = N2
d

(
1 − nd

Nd

)(
1

nd

)∑
k∈sd

(êk − êd)
2

nd − 1
, (6.15)

where the residuals are êk = yk − ŷk, k ∈ sd, and êd =∑k∈sd
êk/nd is the mean of

the residuals in domain d, d = 1, . . . , D. It is obvious that in the SRSWOR case
in which the weights are constants, for a direct estimator the sum of residuals in
each domain is zero. But for other designs, and for an indirect estimator, the sum
can differ from zero.

In an unplanned domain case, the extra variation due to a random domain
sample size nsd should be accounted for. Let us consider the case of SRSWOR
with n elements drawn from the population of N elements. The sampling fraction
is n/N and the weights are wk = N/n for all k. By denoting ydk = δdkyk and
êdk = ydk − ŷk, d = 1, . . . , D, where the domain membership indicator was given
by δdk = 1 if k ∈ Ud, zero otherwise, we obtain an approximate variance estimator
given by

v̂srs(t̂dGREG) = N2
(

1 − n
N

)( 1
n

)∑
k∈s

(êdk − êd)
2

n − 1
. (6.16)

Note that also elements outside the domain d contribute to the variance estimate,
because êdk = −ŷk for elements k /∈ Ud and k ∈ s. An alternative approximate
variance estimator is given by

v̂srs(t̂dGREG) = N2
(

1 − n
N

)( 1
n

)
pd

∑
k∈sd

(êk − êd)
2

nd − 1

(
1 + qd

c.v2
dê

)
, (6.17)

d = 1, . . . , D, where pd = nd/n and qd = 1 − pd, and c.vdê = ŝdê/êd is the sample
coefficient of variation of residuals in domain d with ŝdê as the sample standard
deviation of residuals in domain d. The estimator (6.17) corresponds to the variance
estimator commonly used under Bernoulli sampling (see Example 2.2).

Let us consider in more detail the choice of a model and the construction of an
estimator of the total in the context of ratio estimation and regression estimation for
domains. In Section 3.3 the estimation of the total T for the whole population was
discussed. There, the auxiliary information assumed to be known at the whole-
population level was the total Tz of the auxiliary variable z, and the assisting
fixed-effects linear regression model was of the form yk = β0 + β1zk + εk, k ∈ U,
given by (6.3). The ratio estimator of the population total was given in Section 3.3
by t̂rat = Tz × t̂/t̂z, and the regression estimator by t̂reg = t̂ + b̂1(Tz − t̂z), where t̂
and t̂z are SRSWOR estimators of totals T and Tz, respectively and the estimate b̂1

is a sample-based OLS estimate of the finite-population regression coefficient B1.
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For the estimation of domain totals Td these ratio and regression estimators can
be used, but more complex model types can also be introduced, including model
types (6.3), (6.7) and (6.12) described above.

Consider a continuous response variable y, whose total Td is to be estimated
for a number of domains of interest Ud, d = 1, . . . , D. Assuming one auxiliary
variable z, for example, the following assisting models can be postulated.

1. Fixed-effects P-model for yk, k ∈ U:
(1a) yk = β0 + εk Common intercept model
(1b) yk = β1zk + εk Common slope model
(1c) yk = β0 + β1zk + εk Common intercept and slope model.

2. Fixed-effects D-model for yk, k ∈ Ud, d = 1, . . . , D:
(2a) yk = β0d + εk Domain-specific intercepts model
(2b) yk = β1dzk + εk Domain-specific slopes model
(2c) yk = β0d + β1dzk + εk Domain-specific intercepts and slopes model.

3. Mixed D-model for yk, k ∈ Ud, d = 1, . . . , D:
(3a) yk = β0d + εk = β0 + u0d + εk Domain-specific random intercepts

model
(3b) yk = β0d + β1zk + εk = β0 + u0d + β1zk + εk Domain-specific random

intercepts and common slope model.

Models (1b) and (2b) can be used in ratio estimation for domains and models
(1c) and (2c) in regression estimation. It is obvious that indirect SYN and GREG
estimators are obtained with model specification (1) and (3), and model type (2)
gives direct SYN and GREG estimators.

For example, using the P-model (1b), a SYN estimator (6.1) for domain totals Td

is given by

t̂dSYN−P =
∑
k∈Ud

ŷk =
∑
k∈Ud

b̂1zk = Tdzb̂1 = Tdz × t̂HT/t̂zHT, d = 1, . . . , D, (6.18)

resembling the ratio estimator t̂rat for the whole population, but in t̂dSYN−P, domain
totals Tdz are used instead of the overall total Tz. The estimator for the population
slope B1 is

b̂1 =

∑
k∈s

wkyk

∑
k∈s

wkzk

= t̂HT

t̂zHT
,

which is the ratio of two HT estimators, t̂HT and t̂zHT , of totals of the study variable
y and auxiliary variable z respectively. These total estimates are calculated at the
whole-population level and, thus, the estimator of domain totals is indirect. While
using y-values from the whole sample, the estimator t̂dSYN−P aims at borrowing
strength from the other domains.
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A SYN estimator (6.18) using a type (1b) model can be biased. The bias of t̂dSYN−P

is approximated by

BIAS(t̂dSYN−P) = E(t̂dSYN−P) − Td
.= −Tdz(B1d − B1),

where B1d =∑k∈Ud
yk/
∑

k∈Ud
zk is the domain-specific slope, d = 1, . . . , D, and

B1 =∑k∈U yk/
∑

k∈U zk is the slope for the whole population. For a given domain,
the bias is negligible if the domain slope closely approximates the population slope.
But a substantial bias can be encountered if this condition does not hold.

The corresponding indirect GREG estimator (6.2) for domain totals Td is given by

t̂dGREG−P =
∑
k∈Ud

ŷk +
∑
k∈sd

wk(yk − ŷk) = t̂dSYN−P +
∑
k∈sd

wk(yk − b̂1zk)

= t̂dHT + t̂HT

t̂zHT
(Tdz − t̂dzHT) (6.19)

mimicking the regression estimator for the whole population, but the underlying
model is different. Note that an attempt to ‘borrow strength’ also holds for the
indirect GREG estimator.

The direct SYN and GREG estimators of type (2b) use y-values from the given
domain only. The estimators are obtained by replacing b̂1 by domain-specific
counterparts b̂1d given by

b̂1d =
∑

k∈sd
wkyk∑

k∈sd
wkzk

= t̂dHT

t̂dzHT
, d = 1, . . . , D,

where t̂dHT and t̂dzHT are HT estimators of totals Td and Tdz at the domain level. The
direct SYN estimator t̂dSYN−D hence is

t̂dSYN−D =
∑
k∈Ud

ŷk =
∑
k∈Ud

b̂1dzk = Tdzb̂1d = Tdz × t̂dHT/t̂dzHT, d = 1, . . . , D. (6.20)

For this model specification, the direct GREG counterpart t̂dGREG−D coin-
cides with the SYN estimator because the second term in GREG estimator
(6.2) vanishes.

Let us consider the relative properties of the estimators (6.18) and (6.20) with
respect to bias, precision and accuracy. First, the indirect estimator t̂dSYN−P given
by (6.18) is biased, and the bias can be substantial if the model assumption does
not hold in a given domain. The direct counterpart t̂dSYN−D given by (6.20),
which coincides with the GREG estimator t̂dGREG−D, is almost design unbiased,
irrespective of the validity of the model assumption. The variance of the indirect
estimator (6.18) is of the order n−1 and thus can be small even in a small domain
if the total sample size n is large. On the other hand, the variance of the direct
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estimator (6.20) is of the order n−1
d and becomes large when the sample size nd in

domain d is small. Thus, there is a trade-off between bias and precision, depending
on the validity of the model assumption and the domain sample size. Using the
mean squared error, MSE(t̂d) = V(t̂d) + BIAS2(t̂d), we can conclude the following.
In small domains, the indirect estimator (6.18) can be more accurate than the
direct counterpart (6.20) because the variance of (6.20) can be very large. But for
large domains (with large domain sample size), the direct estimator can be more
accurate, because the squared bias of (6.18) can dominate. This holds especially
if the model assumption is violated (this trade-off is examined in more detail, for
example, in Lehtonen et al. 2003).

In Example 6.2, we study selected estimators for domain totals for a single
SRSWOR sample drawn from the OHC Survey data set. In Section 6.4, we
examine in more detail the relative properties (bias and accuracy) of the synthetic
and generalized regression estimators under different model choices. There, the
methods are investigated by Monte Carlo simulation techniques, where a large
number of independent SRSWOR samples are drawn from a fixed population.

Example 6.2

Estimation of domain totals by design-based methods under SRSWOR sampling.
We illustrate the domain estimation methodology by selecting an SRSWOR
sample (n = 1960 persons) from the OHC Survey data set (N = 7841 persons)
and estimating the total number of chronically ill persons in the D = 30 domains
constructed. In the population, the sizes of the domains vary with a minimum of 81
persons and a maximum of 517 persons. The domain proportion of chronically ill
persons varies from 18 to 39%, and the overall proportion is 29%. The intra-domain
correlation of being chronically ill (binary response) and the age (in years) varies
from 0.08 to 0.55; the overall correlation is 0.28.

In the sampling procedure, we consider the domains as unplanned type. Thus,
the domain sample sizes are not fixed in the sampling design but are random
variates. A Horvitz-Thompson estimator is first calculated. Auxiliary data are then
incorporated into the estimation procedure by using the model-assisted GREG
estimator given by (6.2). Values of the auxiliary variable z are measurements of
age, being available for all persons in the OHC data set, which we, for this example,
assume to constitute the population of interest. Therefore, in this hypothetical
situation the domain totals Td of the study variable y also are known for all domains
d = 1, . . . , D, and can be used when comparing the estimates of domain totals.

A simple model (1b) from Example 6.2, given by yk = β × zk + εk, postulates a
uniform ratio R = T/Tz(= 7.778 × 10−3) for all domains. Thus, a GREG estimator
built on this P-model is of indirect type. On the basis of the SRSWOR sample
of n = 1960 elements, an estimate of the ratio R is r̂ = t̂HT/t̂zHT = 7.651 × 10−3,
where t̂HT(= 2252.3) is the HT estimator of the total T of the study variable
y and t̂zHT(= 294357.5) is that of the total Tz of the auxiliary variable z. The
predicted y-values are calculated by ŷk = r̂ × zk, k = 1, . . . , 7841. Alternative
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expressions of the estimators are summarized in (6.21). There, the sampling
weights are wk = N/n = 7841/1960 = 4.001, Tdz are the known domain totals of
the auxiliary variable z and t̂dzHT =∑k∈sd

wkzk are the corresponding HT estimates.

t̂dHT =∑k∈sd
wkyk = N/n

∑
k∈sd

yk

t̂dGREG−P =∑k∈Ud
ŷk +∑k∈sd

wk(yk − ŷk) = t̂dHT + r̂(Tdz − t̂dzHT),
(6.21)

where sd (with nd elements) and Ud (with Nd elements) are the sets of the sample
and the population elements belonging in domain d respectively and d = 1, . . . , D.
Note that the corresponding indirect synthetic estimator is t̂dSYN−P =∑k∈Ud

ŷk =
Tdz × r̂, which is based on the same simple model as the GREG estimator.

In the examination of the accuracy, we use the estimated standard error s.e(t̂d)
and percentage coefficient of variation c.v(t̂d)% = 100 × s.e(t̂d)/t̂d of an estimator
t̂d. The variance estimators used are as follows:

v̂srs(t̂dHT) = N2
(

1 − n
N

)( 1
n

)
pdŝ2

dy

(
1 + qd

c.v2
dy

)
, and

v̂srs(t̂dGREG−P) = N2
(

1 − n
N

)( 1
n

)
pdŝ2

dê

(
1 + qd

c.v2
dê

)
,

(6.22)

where pd = nd/n, qd = 1 − pd, variance estimators are ŝ2
dy =∑k∈sd

(yk − yd)
2/(nd −

1) and ŝ2
dê =∑k∈sd

(êk − êd)
2/(nd − 1), estimated coefficients of variation are

c.vdy = ŝdy/yd and c.vdê = ŝdê/êd, where yd =∑k∈sd
yk/nd and êd =∑k∈sd

êk/nd,
and residuals are êk = yk − r̂ × zk.

In the realized sample, domain sample sizes vary from 24 to 132 elements and
the mean size is 65. The situation thus is realistic for design-based estimation
for domain totals. We first examine the average performance of the Horvitz-
Thompson estimator t̂dHT and the indirect GREG estimator t̂dGREG−P. In the
first part of Table 6.5, a simple average measure |t̂ − T|/T of absolute relative
difference is calculated in three domain sample size classes, where t̂ is the mean
of the estimated domain totals t̂d and T is the mean of the true values Td in a
given size class. Absolute relative differences of the HT and GREG estimates tend to
decrease with increasing domain sample size, and for a given size class, the figures
closely coincide. The realized domain sample size and coefficient of variation have
a clear association for GREG and HT estimators: sample coefficients of variation
tend to decrease with increasing domain sample size, as is indicated in the average
coefficient of variation figures given in the second part of Table 6.5. On average,
estimated coefficients of variation are smaller for the GREG estimator.

Domain-wise point estimates, standard errors and coefficients of variation for
the 30 domains are given in Table 6.6 in which the domains are sorted by the
domain sample size. When compared to the HT estimator t̂dHT , use of auxiliary
information by the model-assisted GREG estimator t̂dGREG−P clearly improves
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Table 6.5 Average absolute relative difference and average coefficient of variation of
Horvitz–Thompson and GREG estimates by domain sample size class.

Average absolute relative
difference (%)

Average coefficient
of variation (%)

Size class HT estimator GREG estimator HT estimator GREG estimator
–39 10.6 10.2 30.8 24.7

40–79 2.0 3.4 23.5 19.8
80– 3.2 3.7 16.0 13.6

All 1.8 1.7 23.0 19.0

accuracy. In all 30 domains, estimated standard errors of the GREG estimator are
smaller than those of the HT estimator. In most domains, estimated coefficients of
variation are smaller for the GREG estimator, as expected.

Let us complete the example by considering briefly the relationship of the
GREG estimator and the corresponding model-dependent indirect SYN estimator
t̂dSYN−P = Tdz × r̂ in the context of the realized sample. By the expression (6.21) for
the GREG estimator, we obtain for example in the first domain (n1 = 41):

t̂1GREG−P =
∑
k∈U1

ŷk +
∑
k∈s1

wk(yk − ŷk)

= 45.43 + 4.001 × (−0.5974) = 43.04,

where the sum of predicted values ŷk in the first domain is calculated as
∑

k∈U1
ŷk =

T1z × r̂ = 5937 × 0.0076515 = 45.43. This is the synthetic estimate t̂1SYN−P for
the first domain. And, for example, for domain d = 19 (n19 = 115) we obtain
t̂19GREG−P = 160.00 and t̂19SYN−P = 138.09, whereas the true value is T19 = 165. The
bias-adjustment term of the GREG estimator thus happens to adjust successfully
the bias of the SYN estimator for these domains. But this does not necessarily
hold for all domains. In fact, the GREG estimator is more successful than the
SYN estimator in 17 out of 30 domains because in several domains, the bias
correction affects to a correct direction but too strongly. In the estimation of the
accuracy of the SYN estimator, an estimated mean squared error (MSE) should
be used because the SYN estimator is not design unbiased. We will consider the
relationship of the GREG and SYN estimators for domain totals in more detail in
Section 6.4 and further, in the web extension of the book.

6.4 FURTHER COMPARISON OF ESTIMATORS

In this section, we examine further the properties of model-dependent estimators
and model-assisted estimators for domain totals using Monte Carlo simulation
methods. For this exercise, we again use the OHC Survey data set. To examine
empirically the theoretical properties (bias and accuracy) of the different SYN and
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Table 6.6 Estimates of the total number of chronically ill persons in domains calculated
for an SRSWOR sample (n = 1960) from the OHC data set. Domain sample sizes nd, domain
sizes Nd, population totals Td, and point estimates, standard error estimates and coefficient
of variation estimates (%) for HT and GREG estimators, by domain sample size class.

Domain
Estimate
of total Standard error

Coefficient of
variation (%)

d nd Nd Td t̂dHT t̂dGREG s.e(t̂dHT) s.e(t̂dGREG) c.v(t̂dHT) c.v(t̂dGREG)

Domain sample size nd< 40

20 24 101 31 32.0 31.6 9.77 7.13 30.5 22.5
10 26 81 27 32.0 25.6 10.83 8.05 33.8 31.5
18 26 129 36 20.0 27.2 7.60 6.95 38.0 25.5
23 31 156 57 44.0 53.2 10.82 9.10 24.6 17.1

8 35 141 29 24.0 24.5 8.57 7.88 35.7 32.2
30 36 146 34 32.0 33.8 9.86 8.56 30.8 25.3

3 37 133 29 36.0 32.6 10.77 8.73 29.9 26.8
16 37 165 45 52.0 54.8 12.14 9.15 23.3 16.7

Domain sample size 40 ≤ nd < 80

1 41 181 33 40.0 43.0 10.80 9.15 27.0 21.3
21 43 153 48 64.0 55.3 14.55 10.93 22.7 19.8

6 45 188 52 24.0 26.6 8.51 7.67 35.5 28.9
28 51 194 74 88.0 85.4 16.61 11.65 18.9 13.6
24 53 200 55 56.0 55.7 13.21 11.06 23.6 19.9
22 57 242 96 112.0 115.0 17.79 13.08 15.9 11.4
15 58 252 61 60.0 66.4 13.20 11.90 22.0 17.9
11 59 187 47 52.0 39.5 13.30 10.89 25.6 27.6
13 69 305 89 80.0 88.5 15.10 12.86 18.9 14.5
12 73 311 95 56.0 65.9 12.85 11.40 22.9 17.3
4 76 295 65 68.0 68.1 14.39 12.17 21.2 17.9
7 78 292 52 40.0 36.3 11.09 10.17 27.7 28.0

Domain sample size nd ≥ 80

2 84 352 86 76.0 78.6 14.95 13.49 19.7 17.2
5 86 323 66 76.0 70.5 15.31 13.62 20.1 19.3

26 89 364 124 124.0 126.0 19.07 15.72 15.4 12.5
29 90 365 128 124.0 124.5 19.12 15.10 15.4 12.1
25 91 339 114 112.0 101.6 18.68 14.81 16.7 14.6
17 99 426 139 176.0 183.3 22.11 16.72 12.6 9.1
9 103 366 89 88.0 79.3 16.66 13.82 18.9 17.4

19 115 490 165 152.0 160.0 20.81 17.13 13.7 10.7
14 116 447 130 136.0 128.4 20.31 16.28 14.9 12.7
27 132 517 197 176.0 173.8 22.94 17.51 13.0 10.1

All 1960 7841 2293 2252.3 2254.8 69.42 66.88 3.1 3.0
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GREG estimators for domains, we make the following conventions. First, similarly
as in Example 6.2, we consider the OHC data set as a frame population of size 7841
elements, such that the necessary auxiliary data are included at micro-level in
the data set. Secondly, we construct for the population frame data set a domain
structure involving 60 domains in total. This is because we want to consider
also domains with a small sample size. Finally, we will draw a large number of
independent SRSWOR samples of 1000 elements from the constructed artificial
frame population under an unplanned domain structure. We study the bias and
accuracy of estimators on the basis of the average figures calculated over the
simulated samples.

We assume (according to the principles presented in Box 6.1) that the con-
structed OHC frame population of N = 7841 persons and D = 60 domains includes
unique identification keys, domain membership indicators, inclusion probabil-
ities for all elements k ∈ U for a SRSWOR sample of n = 1000 elements and
values of the auxiliary z-variable age (in years). The binary response variable
y to be measured from the sample elements is chronic illness (value 0: No,
1: Yes).

P-models and D-models are used for the indirect SYN and GREG estima-
tors based on linear models of the general form yk = β0 + u0d + β1zk + εk. In
the mixed D-model case, model parameters are estimated by restricted maxi-
mum likelihood (REML) and generalized least squares (GLS), and predictions
ŷk = β̂0 + û0d + β̂1zk, k ∈ U, are calculated. For a fixed-effects P-model, estima-
tion is based on ordinary least squares (OLS), and predictions are calculated
as ŷk = b̂0 + b̂1zk, k ∈ U. Residuals are calculated as êk = yk − ŷk, k ∈ s, in both
cases. By micro-merging these data in the frame population U (see Table 6.3), the
data are successfully completed for domain estimation.

Domain totals to be estimated are given by

Td =
∑
k∈Ud

Yk, d = 1, . . . , D.

The indirect estimators to be used are the following:

t̂dSYN =
∑
k∈Ud

ŷk, d = 1, . . . , D (synthetic estimator), and

t̂dGREG =
∑
k∈Ud

ŷk +
∑
k∈sd

wk(yk − ŷk), d = 1, . . . , D

(generalized regression estimator).

In these formulas, the predicted values ŷk, k ∈ U, and observed y-data yk,
sampling weights wk and residuals êk, k ∈ s, provide the materials for the
calculation of estimates for domain totals. The indirect estimators use fixed-
effects P-models and mixed D-models. For the synthetic estimators t̂dSYN−P and
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t̂dMSYN−D, only the predictions ŷk are used. And for the GREG estimators t̂dGREG−P

and t̂dMGREG−D, predicted values ŷk, observed y-data yk, sampling weights wk and
residuals êk = yk − ŷk are used. In the SRSWOR case considered here, the weights
wk = N/n are constants, and the sum of residuals over the whole sample data set
is
∑

k∈s êk = 0. Note that this does not necessarily hold for the domains because
we work with indirect estimators of domain totals.

We compare the bias and accuracy of the various estimators by using estimates
t̂d(sv) from the K repeated Monte Carlo samples sv; v = 1, 2, . . . , K. For each
domain d = 1, . . . , D, the following Monte Carlo summary measures of bias and
accuracy are computed. We use two measures of accuracy, the relative root mean
squared error (RRMSE) and the median absolute relative error (MdARE), because
for a binary response variable there is sometimes a difference in the conclusions
drawn from the two measures.

(i) Absolute relative bias (ARB), defined as the ratio of the absolute value of bias
to the true value: ∣∣∣∣∣ 1

K

K∑
v=1

t̂d(sv) − Td

∣∣∣∣∣ /Td.

(ii) Relative root mean squared error (RRMSE), defined as the ratio of the root
MSE to the true value: √√√√ 1

K

K∑
v=1

(t̂d(sv) − Td)2/Td.

(iii) Median absolute relative error (MdARE) is defined as follows. For each
simulated sample sv; v = 1, 2, . . . , K, the absolute relative error is calculated
and a median is taken over the K samples in the simulation:

Median
over ν = 1, . . . , K

{|t̂d(sv) − Td|/Td}.

A summary of the features of the experimental design used in this simple
exercise is given in Table 6.7.

A summary of the results for the simple models (1a) and (2a) is presented in
Part A of Table 6.8 and for the more complex models (1b) and (2b) in Part B of
the table. The results indicate that the bias, measured by the average of absolute
relative bias ARB, of the GREG estimators GREG-P and MGREG-D is negligible
for all models and in all size classes. The bias for the SYN-type estimators varies
with the model choice. The bias of SYN-P is substantial for the extremely simple
fixed-effects P-model (1a), and the bias decreases when the more realistic fixed-
effects model (1b) is used. A similar effect is noticed for the mixed models (2a)
and (2b), which provides the smallest bias figures for SYN estimators. Especially

TLFeBOOK



Chapter Summary and Further Reading 211

Table 6.7 Summary of technical details of Monte Carlo experiments.

Population:

OHC Survey frame
population of size
N = 7841 persons

Sample size: n = 1000
persons

Number of domains:
D = 60 areas

Number of simulated
samples:

K = 500 independent
SRSWOR samples
(unplanned domain
structure)

Response variable y:
Chronic illness (binary;
0 = No, 1 = Yes)

Auxiliary z-data:
Domain membership
indicators
Age (in years)

Models:

(1a) Linear fixed-effects
P-model with intercept
only:
yk = β0 + εk

(1b) Linear fixed-effects
P-model with age as the
predictor:
yk = β0 + β1zk + εk

(2a) Linear mixed D-model
with random intercepts:
yk = β0 + u0d + εk

(2b) Linear mixed D-model
with age as the predictor:
yk = β0 + u0d + β1zk + εk

Target parameters:

Domain totals Td of
chronically ill people,
d = 1, . . . , 60

Estimators of domain
totals:
SYN estimators:
t̂dSYN−P using a linear
fixed-effects P-model
t̂dMSYN−D using a two-level
linear D-model

GREG estimators:
t̂dGREG−P using a linear
fixed-effects P-model
t̂dMGREG−D using a two-level
linear D-model

Measures of performance:
Averages calculated over
domain size classes of:

ARB Absolute relative bias
RRMSE Relative root mean

squared error
MdARE Median absolute

relative error

in small domains, the accuracy is better for SYN estimators when compared to
GREG estimators, in all model types and with both measures RRMSE and MdARE.
But as soon as the domain sample size increases, the difference in accuracy tends
to decrease.

The results in Table 6.8 also indicate that the model improvement, that is, mov-
ing from a ‘weak’ model towards a ‘stronger’ model, is much more prominent for
SYN-type estimators than for GREG-type estimators. Note that for this estimation
exercise we needed an access to the micro-merged frame population and sample
data set. An access to these data is provided by the web extension of the book.

6.5 CHAPTER SUMMARY AND FURTHER READING

In this chapter, we concentrated on design-based model-assisted estimation for
domains. This approach is frequently used, for example, in the production of official
statistics. We made several assumptions for the treatment of estimation for domain
totals. In particular, we assumed that in a given statistical infrastructure, registers
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Table 6.8 Simulation results for SYN and GREG estimators for domain totals of chroni-
cally ill people with different model choices (K = 500 independent SRSWOR samples with
n = 1000 elements in each).
A. Fixed-effects P-model yk = β0 + εk and mixed D-model yk = β0 + u0d + εk.

Average over domains of

Estimator

Domain
sample

size
class

Domain
total in

population

Estimate
of

domain
total

Absolute
relative

bias
ARB%

Relative
root
MSE

RRMSE%

Median absolute
relative

error
MdARE%

Domain
sample

size

SYN-P 0–10 17.5 13.7 36.9 37.4 37.0 5.6
11–20 37.0 34.4 50.3 50.7 50.3 14.1

21– 62.4 78.8 43.6 44.2 43.6 32.4
All 38.2 41.2 43.5 44.0 43.5 16.9

MSYN-D 0–10 17.5 14.9 25.1 33.0 27.9 5.6
11–20 37.0 35.7 22.7 33.3 25.0 14.1

21– 62.4 66.3 11.6 26.0 17.4 32.4
All 38.2 38.2 20.0 30.9 23.6 16.9

GREG-P 0–10 17.5 17.5 2.4 55.2 39.5 5.6
11–20 37.0 37.0 1.6 40.7 27.8 14.1

21– 62.4 62.4 1.1 31.1 20.8 32.4
All 38.2 38.2 1.7 42.8 29.7 16.9

MGREG-D 0–10 17.5 17.3 2.6 53.5 38.9 5.6
11–20 37.0 37.0 1.9 39.5 27.3 14.1

21– 62.4 62.5 1.1 30.3 20.2 32.4
All 38.2 38.2 1.9 41.5 29.1 16.9

B. Fixed-effects P-model yk = β0 + β1zk + εk and mixed D-model yk = β0 + u0d + β1zk + εk.

SYN-P 0–10 17.5 18.0 27.0 28.1 27.1 5.6
11–20 37.0 36.6 19.6 20.8 19.7 14.1

21– 62.4 62.0 12.1 13.9 12.5 32.4
All 38.2 38.1 19.8 21.2 20.0 16.9

MSYN-D 0–10 17.5 18.0 25.9 27.5 26.4 5.6
11–20 37.0 36.6 17.7 20.2 18.5 14.1

21– 62.4 62.1 9.7 14.4 11.6 32.4
All 38.2 38.2 18.1 20.9 19.1 16.9

GREG-P 0–10 17.5 17.5 2.7 53.0 38.5 5.6
11–20 37.0 37.0 1.4 38.9 26.5 14.1

21– 62.4 62.5 1.1 30.0 20.2 32.4
All 38.2 38.2 1.8 41.0 28.7 16.9

MGREG-D 0–10 17.5 17.5 2.7 52.8 38.4 5.6
11–20 37.0 37.0 1.5 38.8 26.4 14.1

21– 62.4 62.5 1.0 29.8 20.2 32.4
All 38.2 38.2 1.8 40.8 28.6 16.9
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are available as frame populations and sources of micro-level and aggregate-level
auxiliary data, and unique identification keys are available in order to merge
the data from a sample survey with data from a statistical register. We believe
that fulfilling these conditions can provide much flexibility for sampling design
and estimation for domains. For example, the data can then be aggregated at
higher levels of the population if desired. The use of unit-level data and unit-level
modelling can be beneficial for both design-based model-assisted estimation and
model-dependent estimation for domains. It appeared that careful and realistic
modelling is especially important in model-dependent estimation for domains.
This was demonstrated by a small-scale simulation study. The materials discussed
in the examples of this chapter will be worked out further in the web extension of
the book.

In practice, design-based model-assisted estimation is most often used for
domains whose sample size is reasonably large. For small domains, methods
of small-area estimation are used instead. For the estimation for domains, it
is recommended to define, if possible, the intended domains as strata in the
sampling phase, and to use a suitable allocation scheme, such that a reasonably
large sample size is attained for all domains. And in the estimation phase it is
advisable to incorporate strong auxiliary data into the estimation procedure by
using carefully chosen models.

Supplementing the references mentioned earlier in this chapter, design-based
model-assisted estimation for domains is discussed, for example, in Estevao et al.
(1995) and Estevao and Särndal (1999). Lehtonen and Veijanen (1998) discuss
nonlinear GREG estimators, such as a multinomial logistic GREG estimator.

In addition to Rao (2003), model-dependent methods for small area estimation
are presented in Ghosh and Rao (1994) and Rao (1999). You and Rao (2002) discuss
pseudo EBLUP estimators involving survey weights. Underlying models and their
features is a prominent theme in recent literature (Ghosh et al. 1998; Marker 1999;
Moura and Holt 1999; Prasad and Rao 1999; Feder et al. 2000). There is extensive
recent literature on small area estimation from a Bayesian point of view, including
empirical Bayes and hierarchical Bayes techniques (Datta et al. 1999; Ghosh and
Natarajan 1999; You and Rao 2000). Some recent publications relate frequentist
and Bayesian approaches in small area estimation (Singh et al. 1998). Valliant
et al. (2000) discuss small-area estimation under a prediction approach.

TLFeBOOK



TLFeBOOK



7

Analysis of One-way and
Two-way Tables

One-way and two-way frequency tables commonly occur in the analysis of
complex surveys. Such tables are formed by tabulating the available survey data
by a categorical variable or by cross-classifying two categorical variables with the
aim being to test the hypotheses of goodness of fit, homogeneity or independence.
For example, goodness of fit of the age distribution of the MFH Survey subgroup
of 30–64-year-old males can be studied relative to the respective population age
distribution. Or the OHC Survey data set may be tabulated by sex of respondent
and a binary response variable CHRON (chronic morbidity) in a 2 × 2 table,
with a null hypothesis of homogeneity of CHRON proportions in males and
females stated. Further, we may consider an independence hypothesis of response
variables CHRON and a categorical variable formed by classifying PSYCH (first
principal component of psychic—psychological or mental—symptoms) into a
number of classes. Under simple random sampling, valid inferences for these
hypotheses can be based on a standard Pearson chi-squared test statistic. But with
more complex designs, the testing procedures are more complicated because of
clustering effects.

For homogeneity and independence hypotheses on an r × c frequency table
from simple random sampling, the Pearson test statistic is asymptotically chi-
squared with (r − 1)(c − 1) degrees of freedom. But this standard asymptotic
property is not valid for a frequency table from a complex survey based on cluster
sampling. Positive intra-cluster correlation of the variables used in forming the
table causes the test to be overly liberal relative to nominal significance levels.
Therefore, the observed values of the test statistic can be too large, which can lead
to erroneous inferences.

For valid inferences in complex surveys, certain corrections to the Pearson test
statistic have been suggested such as Rao–Scott adjustments or, alternatively, test
statistics such as the Wald test statistic can be used, which automatically account

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
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for the clustering. Both approaches are demonstrated with an introductory
example for a simple goodness-of-fit test in Section 7.1. The goodness-of-fit test
is further considered in Section 7.2. The basics of testing for two-way tables are
presented in Section 7.3. In Section 7.4, test statistics for a homogeneity hypothesis
in a two-way table are examined, and in Section 7.5, a test of independence of
two categorical variables is considered. The OHC and MFH Surveys involving
clustered designs, described in Chapter 5, are used in the examples.

7.1 INTRODUCTORY EXAMPLE

Binomial Test and Effective Sample Size

Let us consider a hypothetical example of a simple goodness-of-fit test, basically
originating from Sudman (1976), also illustrated in Rao and Thomas (1988), but
applied here for the OHC Survey setting. A sample of m = 50 clusters is drawn
from a large population of clusters which are industrial establishments. Let us
assume that in each sample cluster i = 1, . . . , 50, there are ni = 20 employees.
The element sample size is thus n = 1000. Given appropriate data under this
sampling design, one might want to study whether the coverage of occupational
health care (OHC), i.e. the unknown population proportion p of workers having
access to occupational health (OH) services, is 80% based on prior knowledge from
the previous year. The null hypothesis H0 : p = p0 = 0.8 can thus be stated. Let
the significance level for this test be chosen as α = 5%.

A survey estimate p̂ = n1/n = 0.84 is obtained, where n1 = 840 is the number
of sample workers having access to OH services. The binomial test is chosen,
to be referred to the standard normal N(0, 1) distribution, with a large-sample
test statistic

Z = |p̂ − p0|
/√

p0(1 − p0)/n, (7.1)

where the denominator is the standard error of the estimate p̂ under the null
hypothesis. We calculate the value of Z with an assumption of simple random
sampling with replacement and also using a design-based approach that takes the
clustering into account. In this simple case, the standard error of p̂, needed for the
calculation of an observed value of Z, is, for both approaches, based on a binomial
assumption but with different sample sizes.

In a test based on the assumption of simple random sampling, we ignore the
clustering and use the actual sample size n = 1000 in the standard error formula.
The observed value of the test statistic (7.1) is hence

Zbin = |p̂ − p0|
/√

p0(1 − p0)/1000 = 3.162 > Z0.025 = 1.96,

where
√

0.8(1 − 0.8)/1000 = 0.0126 is the corresponding standard error of p̂. The
result obviously suggests rejecting the null hypothesis when compared against
the appropriate critical value from a standard N(0, 1) distribution.
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It appeared that if an establishment is covered by OHC, then each worker at that
site has equal access to OH services, which is an important piece of information
that was ignored in the previous test. In fact, taking more than one person from a
sample establishment does not increase our knowledge of the coverage of OHC at
that site. Therefore, the effective sample size is n = 50 in contrast to the assumed
1000 in the previous test. Recall that the concept of effective sample size refers to
the size of a simple random sample, which gives an equally precise estimate for
an unknown parameter p as that given by a sample of n = 1000 persons from the
actual cluster sample design.

By using the effective sample size, we have for a design-based test,

Zdes = |p̂ − p0|
/√

p0(1 − p0)/50 = 0.707,

where
√

0.8(1 − 0.8)/50 = 0.0566, which is much larger than the corresponding
standard error from the previous test. Therefore, the observed value of Zdes is
smaller than that of Zbin, and our test now suggests that the null hypothesis should
not be rejected. We shall next study this example in a slightly more general setting
and introduce alternative test statistics in which the effect of clustering can be
successfully removed.

Pearson Test Statistic and Rao–Scott Adjustment

The binomial test statistic Zbin appeared to be liberal when compared to the design-
based counterpart Zdes. This is because, with Zbin, the clustering is not taken into
account. Let us examine the asymptotic behaviour of the test statistic Zbin more
closely by constructing the corresponding Pearson test statistic X2

p. For this, the
following frequency table is used, where nj are the observed cell frequencies and
p0j are the hypothesized cell proportions:

j nj p0j

1 840 0.8
2 160 0.2
All 1000 1.0

In a finite-population framework, let the unknown cell proportions be pj = Nj/N,
on the basis of a population of N elements, where Nj is the number of population
elements in cell j. The pj can also be taken as the unknown cell probabilities
under a superpopulation framework. The Pearson test statistic for the simple
goodness-of-fit hypothesis H0 : pj = p0j, j = 1, 2, is given by

X2
P =

2∑
j=1

(nj − np0j)
2/(np0j) = n

2∑
j=1

(p̂j − p0j)
2/p0j, (7.2)
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where the proportions p̂j = nj/n are estimates of the parameters pj with nj being
the sample value of Nj. In the case of two cells, p̂2 = 1 − p̂1 and p02 = 1 − p01, and
an analogy exists between the statistics Zbin and X2

P:

X2
P = n

2∑
j=1

(p̂j − p0j)
2/p0j = (p̂ − p0)

2/(p0(1 − p0)/n) = Z2
bin,

where p̂ = p̂1 and p0 = p01. With two cells, there is one degree of freedom for the
goodness-of-fit test statistic X2

P because of one constraint (the proportions must
sum up to one), and no parameters need to be estimated.

Rao and Scott (1981) have given general results about the asymptotic distri-
bution of the Pearson test statistic X2

P. With two cells, the test statistic X2
P is

asymptotically distributed as a random variate dW, where W is distributed as
a chi-squared random variate χ2

1 with one degree of freedom, and d denotes
the design effect of the proportion estimate p̂. The design effect can be obtained
from d = Vdes(p̂)/Vbin(p̂), where Vdes(p̂) = p0(1 − p0)/n is the design variance of
the estimate p̂, n denotes the effective sample size, and Vbin(p̂) = p0(1 − p0)/n
is the standard binomial variance counterpart. Hence, in this case, the design
effect reduces to d = n/n, which also confirms that the effective sample size is
n = n/d.

If the sample of employees had actually been drawn with simple random
sampling directly from the employee population, we would have d = 1 because
Vdes and Vbin would then be equal. In this case, for two cells, the Pearson test
statistic X2

P would be asymptotically chi-squared with one degree of freedom.
But if the sample is actually drawn under cluster sampling, positive intra-
cluster correlation gives a design effect d greater than one. Owing to this, the
statistic X2

P is no longer asymptotically chi-squared with the appropriate degrees
of freedom.

Being now aware of the consequences of positive intra-cluster correlation on
the asymptotic distribution of the Pearson test statistic X2

P, the next step is to
derive a valid testing procedure. Because, in general, accounting for intra-cluster
correlation cannot be incorporated in the formula for X2

P, an external correction
to X2

P must be made. For this purpose, first note that the asymptotic expectation of
X2

P is E(X2
P) = d, which under positive intra-cluster correlation is greater than the

nominal expected value of one. Since E(X2
P/d) = E(χ2

1 ) = 1, we can construct a
simple Rao–Scott correction to X2

P by dividing the observed value of the test statistic
by the design effect. The resulting test statistic adjusted for the clustering effect is
given by

X2
P(d) = X2

P/d (7.3)

and is asymptotically chi-squared with one degree of freedom in the case of
two cells.
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An analogous adjustment can be made to the corresponding likelihood ratio (LR)
test statistic X2

LR of goodness of fit, which in the case of two cells is

X2
LR = 2n

2∑
j=1

p̂j log(p̂j/p0j). (7.4)

Under simple random sampling, the statistic X2
LR is also asymptotically chi-squared

with one degree of freedom when the null hypothesis is true. For clustered designs,
the corresponding adjusted test statistic is

X2
LR(d) = X2

LR/d, (7.5)

which is asymptotically chi-squared with one degree of freedom.
We next compute the values of the Pearson and LR test statistics, with their

Rao–Scott adjustments, for the OHC Survey setting. For the adjustments, the
observed design effect is required, and this is

d = Vdes(p̂)/Vbin(p̂) = 0.0032/0.00016 = 20,

which can also be calculated as d = n/n = 1000/50 = 20.
For the Pearson test statistic, we obtain

X2
P = (0.84 − 0.80)2/(0.80 × 0.20/1000) = 10.00

with a p-value of 0.0016. The value of the Rao–Scott corrected Pearson test
statistic is hence

X2
P(d) = X2

P/d = Z2
bin/d = 3.1622/20 = 10.00/20 = 0.50,

which has a p-value of 0.4795. It can be noticed also that Z2
des = 0.7072 = 0.50, i.e.

Z2
des = X2

P(d) as expected. For the LR test statistic and the corresponding Rao–Scott
correction, we obtain

X2
LR = 2 × 1000 × (0.84 × log(0.84/0.80)+ 0.16 × log(0.16/0.20)) = 10.56,

with a p-value of 0.0012, and

X2
LR(d) = X2

LR/d = 10.560/20 = 0.528

with a p-value of 0.4675.
The observed design effect d = 20 is unusually large since the positive intra-

cluster correlation is complete. The intra-cluster correlation coefficient is thus
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ρint = 1, calculated from the equation d = 1 + (m − 1)ρint, where m = 20 is the
average cluster size. In practice, intra-cluster correlations are usually positive but
less than one, and design-effect estimates d̂ are correspondingly greater than one.
A typical d̂ is less than 3, corresponding to an estimated positive intra-cluster
correlation coefficient ρ̂int < 0.1 with m = 20.

Neyman and Wald Test Statistics

As an alternative to the Pearson test statistic, a Neyman test statistic X2
N of a

simple goodness-of-fit hypothesis can be calculated. In the case of two cells, it
reduces to

X2
N = n

2∑
j=1

(p̂j − p0j)
2/p̂j = (p̂ − p0)

2/(p̂(1 − p̂)/n), (7.6)

which differs from the Pearson statistic since the estimated proportions p̂j are
inserted in the denominator in place of the hypothetical ones, p0j. With simple
random sampling, the Neyman test statistic is asymptotically chi-squared with
one degree of freedom in the case of two cells. But under cluster sampling
the Neyman test statistic should be adjusted in a similar manner to that used
for the Pearson test statistic. The Rao–Scott adjusted Neyman test statistic
is hence

X2
N(d̂) = X2

N/d̂ = d̂−1(p̂ − p0)
2/(p̂(1 − p̂)/n). (7.7)

The estimated design effect is calculated by the formula d̂ = v̂des(p̂)/v̂bin(p̂), where
v̂des is the design-based variance estimate of p̂ corresponding to the actual sampling
design and v̂bin is the binomial counterpart.

We next calculate the values of the Neyman test statistic and its Rao–Scott
correction. For this, the estimated design effect is used. The design-based variance
estimate of p̂ is first obtained:

v̂des(p̂) =
m∑

i=1

(p̂i − p̂)2/(m(m − 1)) =
50∑

i=1

(p̂i − 0.84)2/(50 × 49) = 0.002743,

where m is the number of sample clusters, p̂i is the coverage of OHC in sample
cluster i and p̂ is the corresponding estimate in the whole sample. It should be
noted that p̂i is either zero or one. A design-effect estimate can be calculated using
a binomial variance estimate, which is

v̂bin(p̂) = p̂(1 − p̂)/n = 0.000134,
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giving an estimated design effect d̂ = 0.002743/0.000134 = 20.4. Alternatively,
the design effect can be estimated as d̂ = v̂des(p̂)/Vbin(p̂) = 17.1.

The observed value of the Neyman test statistic is

X2
N = (0.84 − 0.80)2/(0.84 × 0.16/1000) = 11.90

with a p-value of 0.0006. For the Rao–Scott corrected Neyman test statistic,
we obtain

X2
N(d̂) = X2

N/d̂ = 11.9/20.4 = 0.583

with a p-value of 0.4451. Note that the observed values of the Neyman test
statistic and the corresponding Rao–Scott adjustment are somewhat larger than
the values of the Pearson statistic and its Rao–Scott adjustment.

The Neyman test statistic X2
N is a special case of the Wald (1943) test statistic of

goodness of fit. The Wald statistic differs from the Pearson, LR and Neyman test
statistics by automatically accounting for intra-cluster correlation. This can be
seen in the formula of the design-based Wald statistic, which in the case of two
cells reduces to

X2
des = (p̂ − p0)

2/v̂des, (7.8)

where v̂des is the design-based variance estimate of p̂. The statistic X2
des is asymp-

totically chi-squared with one degree of freedom in the cluster-sampling design
considered, without any auxiliary corrections. For a simple random sample, the
variance estimator v̂bin is used in (7.8) in place of v̂des and so the Neyman test
statistic X2

N and the resulting Wald statistic, denoted by X2
bin, coincide. Obviously,

for a clustered design, X2
bin also requires an adjustment similar to that of the

Neyman statistic.
When calculating the value of the design-based Wald statistic, we obtain

X2
des = (0.84 − 0.80)2/0.002743 = 0.583,

which is equal to the value of the Rao–Scott corrected Neyman statistic, as
expected. This demonstrates the flexibility of the Wald statistic. Using an appro-
priate variance estimate reflecting the complexities of the sampling design, we
have an asymptotically valid test statistic without any auxiliary corrections.
This can be seen as an obvious advantage over the Rao–Scott corrected statis-
tics, but, as we shall see later, in more general cases when working with more
than two cells, there are certain drawbacks to the design-based Wald statistic
caused by possible instability in the variance estimates in some small-sample
situations.
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Finally, we display the test results from the test statistics (7.2)–(7.8) below:

Test statistic df
Observed

value p-value

Pearson
X2

P 1 10.00 0.0016
X2

P(d) (adjusted) 1 0.500 0.4795

Likelihood ratio
X2

LR 1 10.56 0.0012
X2

LR(d) (adjusted) 1 0.528 0.4675

Neyman
X2

N(= X2
bin) 1 11.90 0.0006

X2
N(d̂) (adjusted) 1 0.583 0.4451

Wald
X2

des 1 0.583 0.4451

The two main approaches to accounting for the clustering effect in the test
statistics demonstrated in this example, namely the Rao–Scott adjusting method-
ology used for the Pearson, likelihood ratio and Neyman test statistics, and the
design-based Wald statistic, are readily applicable for more general one-way
tables, and for two-way tables where the number of rows and columns is greater
than two. We next consider a more general case for a simple goodness-of-fit test
and give details of alternative test statistics. Then, the tests for a homogeneity
hypothesis and a hypothesis of independence are considered for a two-way table.
In the testing procedures, we will concentrate on the design-based Wald statistic
and on various Rao–Scott adjustments to the Pearson and Neyman test statistics.

7.2 SIMPLE GOODNESS-OF-FIT TEST

A valid testing procedure for a goodness-of-fit hypothesis in the case of more
than two cells is more complicated than the simple case of two cells. This is true
both for the design-based Wald statistic and for the Rao–Scott adjustments to the
Pearson and Neyman test statistics. We next discuss these testing procedures in
some detail.

The design-based Wald statistic provides a natural testing procedure for a simple
goodness-of-fit hypothesis since it is generally asymptotically correct in complex
surveys. The Wald statistic can be expected to work adequately in practice if a
large number of sample clusters are present, which is the case, for example, in
the OHC Survey. But the test statistic can suffer from problems of instability if
the number of sample clusters is too small. Then, observed values of the statistic
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can be obtained, which are too large. Fortunately, effects of instability on the
test statistic can be reduced by an F-correction. Another generally asymptotically
valid testing procedure is based on a second-order Rao–Scott adjustment to the
Pearson and Neyman test statistics. It is important to be able to obtain a full
design-based covariance-matrix estimate for both these testing procedures, and
this presupposes access to the element-level data set.

There are situations we come across in practice where there is no access to
the element-level data set. For example, in secondary analyses on published
tables, an estimate of the full design-based covariance matrix is rarely provided.
Therefore, a Wald statistic, or a second-order Rao–Scott adjustment, cannot be
used. But certain approximative first-order adjustments are possible if appropriate
design-effect estimates are reported. Although adjustments based on these design-
effect estimates are asymptotically valid only under special conditions, in many
situations they can be used as a better alternative to the uncorrected Pearson or
Neyman test statistics.

A goodness-of-fit hypothesis for u ≥ 2 cells can be written as H0 : pj = p0j, j =
1, . . . , u, where pj = Nj/N are the unknown cell proportions and p0j are the
hypothesized cell proportions. The null hypothesis can be conveniently written,
using the corresponding vectors, as H0 : p = p0, where p = (p1, . . . , pu−1)

′ is
the vector of the unknown cell proportions and p0 = (p01, . . . , p0,u−1)

′ is the
vector of the hypothesized proportions. The consistently estimated vector of cell
proportions, based on a sample of n elements, is denoted by p̂ = (p̂1, . . . , p̂u−1)

′,
where p̂j = n̂j/n. The n̂j are scaled weighted cell frequencies accounting for
unequal element inclusion probabilities and adjustment for nonresponse, such
that

∑u
j=1 n̂j = n (see Chapter 5). The p̂j are ratio estimators if n is not fixed in

advance, typically when working with a population subgroup as is assumed here.
Note that only u − 1 elements are included in each of the vectors p, p0 and p̂
because the proportions are constrained to sum up to one, thus, for example,
p̂u = 1 −∑u−1

j=1 p̂j.

Design-based Wald Statistic

A design-based Wald statistic X2
des of the simple goodness-of-fit hypothesis was

previously introduced for the case of two cells with clustered sampling designs as
an alternative to the adjusted Pearson statistic. In the case of more than two cells,
the design-based Wald statistic of goodness of fit is slightly more complicated:

X2
des = (p̂ − p0)

′V̂−1
des(p̂ − p0), (7.9)

where V̂des denotes a consistent covariance-matrix estimator of the true covariance
matrix V/n of the proportion estimator vector p̂. An estimate V̂des can be obtained
by the linearization method; the sample reuse methods, such as the jackknife, can
also be used. The statistic X2

des is asymptotically chi-squared with u − 1 degrees
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of freedom if the null hypothesis is true, thus providing a valid testing procedure
for complex surveys. In practice, X2

des can be expected to work reasonably if the
number of sample clusters is large and the number of cells is relatively small,
because then we can expect a stable estimate V̂des. Note that the statistic (7.8) is a
special case of the statistic (7.9).

Unstable Situations

If there is a small number m of sample clusters available, an instability problem
in the estimate V̂des may be encountered because there may only be a few degrees
of freedom f = m − H for the estimate. Consequences of instability of an estimate
V̂des to the Wald statistic X2

des can be severe, making the statistic overly liberal. One
of the most widely used techniques to overcome instability is to make a degrees-
of-freedom correction to the Wald statistic, giving rise to a new statistic that is
assumed F-distributed. There are two alternative F-corrected Wald statistics. The
first one is given by

F1.des = f − u + 2
f (u − 1)

X2
des, (7.10)

which is treated as an F-distributed random variate with u − 1 and f − u + 2
degrees of freedom, and the second is

F2.des = X2
des/(u − 1), (7.11)

which is in turn referred to the F-distribution with u − 1 and f degrees of freedom.
Note that if u = 2, both corrections reproduce the original statistic. The effect of
an F-correction to X2

des can be easily seen in the case of just two cells. If f is small,
then a p-value for X2

des from the F-distribution with one and f degrees of freedom
is larger than that from the chi-squared distribution with one degree of freedom,
but when f increases the difference vanishes. Thus, the corrections are ineffective
if f is large. But for a small f , they can effectively correct the liberality in the
uncorrected Wald statistic; this is true also where u > 2.

Thomas and Rao (1987) provide comparative results of the performances of
various test statistics of a simple goodness of fit under instability, based on
simulation. Although they noticed that the F-corrected Wald statistic F1.des did not
indicate overall best performance relative to its competitors, it behaved relatively
well in standard situations where instability was not very severe. The F-corrected
Wald statistics are widely applied in practice and are also implemented in software
products for survey analysis.

Pearson Test Statistic and Rao–Scott Adjustments

As noted in the introductory example, test statistics based on an assumption of
simple random sampling require adjustments for the clustering effects to meet the
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desired asymptotic properties. Let us first consider the Pearson test statistic X2
P.

The statistic can be compactly written in a matrix form

X2
P = n

u∑
j=1

(p̂j − p0j)
2/p0j = n(p̂ − p0)

′P−1
0 (p̂ − p0), (7.12)

where P0 = diag(p0) − p0p′
0 and P0/n is the (u − 1) × (u − 1)multinomial covari-

ance matrix of p̂ under the null hypothesis, and the operator diag(p0) generates
a diagonal matrix with diagonal elements p0j. The covariance matrix P0/n is a
generalization of the case of u = 2 cells to the case of more than two cells. Note
that the matrix formula of X2

P mimics that of the Wald statistic (7.9), the only
difference being that P0/n is used instead of V̂des. In case of two cells, X2

P reduces
to the simple formula X2

P = (p̂1 − p01)
2/(p01(1 − p01)/n) previously considered,

where the denominator corresponds to a binomial variance derived under the
null hypothesis.

To examine the asymptotic distribution of the Pearson test statistic X2
P, we

generalize the previous results from the case of two cells to the case of u > 2 cells.
In this case, X2

P is asymptotically distributed as a weighted sum δ1W1 + δ2W2 +
· · · + δu−1Wu−1 of u − 1 independent chi-squared random variables Wj each with
one degree of freedom. The weights δj are eigenvalues of a generalized design-effects
matrix D = P−1

0 V, where V/n is the true covariance matrix of the proportion
estimator vector p̂ based on the actual sampling design. These eigenvalues are
also called generalized design effects. Note that, in general, they do not coincide with
the design-effects dj.

If the actual sampling design is simple random sampling, then the generalized
design-effects δj are all equal to one because the true and assumed covariance
matrices V/n and P0/n coincide and, therefore, the generalized design-effects
matrix is an identity matrix. The weighted sum

∑u−1
j=1 δjWj then reduces to∑u−1

j=1 Wj, i.e. a sum of u − 1 independent chi-squared random variates χ2
1 whose

distribution obviously is χ2 with u − 1 degrees of freedom. Thus, under simple
random sampling, the Pearson statistic X2

P is asymptotically chi-squared with
u − 1 degrees of freedom.

If the actual sampling design is more complex by involving clustering, then
the true V/n and the assumed P0/n do not necessarily coincide, and in this case,
the generalized design-effects δj are not equal to one. The δj tend to be greater
than one on average because of the clustering effect and, thus, the asymptotic
distribution of the random variate

∑u−1
j=1 δjWj is not assumed to be a chi-squared

distribution with u − 1 degrees of freedom. Therefore, the Pearson test statistic
X2

P requires corrections similar to those used in the case of two cells. However,
there are now more possibilities for an adjusted Pearson statistic, namely the
so-called first-order and second-order Rao–Scott adjustments developed by Rao
and Scott (1981). The aim of the first-order adjustment is to correct the asymptotic
expectation of the Pearson statistic, and the second-order adjustment also involves
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an asymptotically correct variance. Technically, both adjustments are based on
eigenvalues of an estimated generalized design-effects matrix D̂.

We first consider a simple mean deff adjustment to X2
P, due to Fellegi (1980) and

Holt et al. (1980), and the first-order Rao–Scott adjustment. These adjustments
are aimed at situations where the full design-based estimate V̂des is not available.
If this estimate is provided, a more exact second-order adjustment is preferable.

The mean deff adjustment is based on the estimated design-effects d̂j of the
proportions p̂j. An adjusted statistic to (7.12) is calculated by dividing the observed
value of the Pearson statistic by the average design effect:

X2
P(d̂ž) = X2

P/d̂ž, (7.13)

where d̂ž =∑u
j=1 d̂j/u is an estimator of the mean d of the unknown design-effects

dj. We estimate the design effects by d̂j = v̂des(p̂j)/(p̂j(1 − p̂j)/n), where v̂des(p̂j) are
design-based variance estimators of the proportion estimators p̂j. This adjustment
thus requires that the design-effect estimates of the u cell proportion estimates are
available. Positive intra-cluster correlation gives a mean d̂ž greater than one, and
so the mean deff adjustment tends to remove the liberality in X2

P. The mean deff
adjustment can also be executed by calculating the effective sample size n = n/d̂ž

and then inserting n into equation (7.12) of X2
P in place of n.

The mean deff adjustment is approximate so that it does not involve exact
correction to the asymptotic expectation of X2

P, because the mean of the design
effects is generally not equal to the mean of the generalized design effects. Under the
null hypothesis, the asymptotic expectation of X2

P is E(X2
P) =∑u−1

j=1 δj, so E(X2
P/δ) =

E(χ2
u−1) = u − 1, where the mean of the eigenvalues is δ =∑u−1

j=1 δj/(u − 1). This
argument leads to a first-order Rao–Scott adjustment to X2

P given by

X2
P(δ̂ž) = X2

P/δ̂ž, (7.14)

where δ̂ž is an estimate of the mean δ of the unknown eigenvalues. This mean can
be estimated using the design-effect estimates by the equation

(u − 1)δ̂ž =
u∑

j=1

p̂j

p0j
(1 − p̂j)d̂j

without estimating the eigenvalues themselves. Alternatively, δ̂ž can be obtained
from the generalized design-effects matrix estimate D̂ = nP−1

0 V̂des by the equation
δ̂ž = tr(D̂)/(u − 1), i.e. by dividing the trace of D̂ by the degrees of freedom.
The adjusted statistic X2

P(δ̂ž) is asymptotically chi-squared with u − 1 degrees of
freedom only if the eigenvalues δj are all equal, but the statistic is noted to work
reasonably in practice if the variation in the estimated eigenvalues δ̂j is small.
Because only design-effect estimates of p̂j are needed, the statistic is also suitable
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for secondary analyses from published tables if the design-effect estimates are
supplied. The first-order Rao–Scott adjustment X2

P(δ̂ž) is more exact than the
corresponding mean deff adjustment X2

P(d̂ž), which can be taken as a conservative
alternative to X2

P(δ̂ž).
The first-order Rao–Scott adjustment (7.14) is aimed at successfully correcting

the Pearson test statistic X2
P so that the asymptotic expectation would be equal to

the degrees of freedom. If the variation in the estimated eigenvalues δ̂j is noted to
be large, then a correction to the variance of X2

P is also required. This is achieved
by a second-order Rao–Scott adjustment based on the Satterthwaite (1946) method.
The second-order adjusted Pearson statistic is given by

X2
P(δ̂ž, â2) = X2

P(δ̂ž)/(1 + â2), (7.15)

where an estimator of the squared coefficient of variation a2 of the unknown
eigenvalues δj is

â2 =
u−1∑
j=1

δ̂2
j /((u − 1)δ̂2

ž ) − 1.

An estimator of the sum of the squared eigenvalues is given by

u−1∑
j=1

δ̂2
j = tr(D̂2) = n2

u∑
j=1

u∑
k=1

v̂2
des(p̂j, p̂k)/p0jp0k,

where v̂des(p̂j, p̂k) are variance and covariance estimators of p̂j and p̂k. The degrees
of freedom must also be adjusted for this statistic; X2

P(δ̂ž, â2) is asymptotically chi-
squared with Satterthwaite adjusted degrees of freedom dfS = (u − 1)/(1 + â2).
Note that the full covariance-matrix estimate V̂des is required in the second-order
adjustment, whereas in the first-order adjustment only the variance estimates v̂des

were needed.
In unstable situations, an F-correction to the first-order Rao–Scott adjustment

(7.14) may be beneficial. It is given by

FX2
P(δ̂ž) = X2

P/((u − 1)δ̂ž). (7.16)

The statistic is referred to the F-distribution with u − 1 and f degrees of freedom.
Thomas and Rao (1987) noted this statistic as being better than the uncorrected
first-order adjustment in unstable situations.

Neyman (Multinomial Wald) Statistic

The Neyman test statistic X2
N was previously used as an alternative to the Pearson

statistic. The Neyman statistic corresponds to a Wald statistic derived using an
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assumption of a multinomial distribution on p̂. The Neyman statistic is

X2
N = n

u∑
j=1

(p̂j − p0j)
2/p̂j = n(p̂ − p0)

′P̂−1(p̂ − p0), (7.17)

where P̂ = diag(p̂) − p̂p̂′ and P̂/n is the estimated (empirical) multinomial covari-
ance matrix. Note that this equation mimics equations (7.9) and (7.12) of the
design-based Wald statistic and the Pearson statistic; the only difference is that
P̂/n is used instead of V̂des or P0/n. Under simple random sampling, X2

N is asymp-
totically chi-squared with u − 1 degrees of freedom, but for more complex designs
the statistic requires adjustments similar to those used for the Pearson statistic.
We thus have a mean deff adjustment for X2

N given by X2
N(d̂ž) = X2

N/d̂ž, a first-order
Rao–Scott adjustment X2

N(δ̂ž) = X2
N/δ̂ž, a second-order Rao–Scott adjustment

X2
N(δ̂ž, â2) = X2

N(δ̂ž)/(1 + â2) and an F-corrected first-order Rao–Scott adjustment
FX2

N(δ̂ž) = X2
N(δ̂ž)/(u − 1).

Test Statistic and Distributional Properties

Our discussion so far indicates that the asymptotic properties of a test statistic
depend on the sampling design assumptions specific to the statistic and on the
actual sampling design. More specifically, let D = P−1V be a design-effects matrix,
where P/n is the covariance matrix corresponding to the assumed sampling design
and V/n is the true covariance matrix based on the actual design. Asymptotic
distribution of a test statistic depends on the eigenvalues of such a design-effects
matrix. If all the eigenvalues are equal to one, a test statistic of goodness of fit is
asymptotically chi-squared with u − 1 degrees of freedom.

For the Pearson test statistic, the assumed covariance matrix P/n was a
multinomial P0/n. If the actual design was also simple random sampling, then
the true V/n and assumed P/n would coincide and all the eigenvalues would be
equal to one. But if the actual design is more complex, the covariance matrices do
not coincide and the eigenvalues differ from the nominal value of one. Thus, an
adjustment to X2

P is required.
For the design-based Wald statistic, the situation is different because the

assumed and actual sampling designs coincide. Thus, the covariance matrices
P/n and V/n in D are equal by definition. So, if the actual design is simple random
sampling, we put P/n = V/n = P0/n, and if the actual design is more complex,
involving clustering and stratification, we put P/n = V/n. In both cases, the
eigenvalues of the corresponding design-effects matrix are equal to one and no
adjustment to X2

des is required.

Residual Analysis

If a goodness-of-fit test does not support the null hypothesis, a residual analysis
can be performed to study the deviations from H0. For a simple random sample,
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the standardized residuals are of the form

êj = (p̂j − p0j)/s.esrs(p̂j), j = 1, . . . , u, (7.18)

where s.esrs(p̂j) is the square root of the corresponding diagonal element of the
multinomial covariance-matrix estimate P̂/n. A large absolute value of êj indicates
deviation from H0. But in complex surveys, these standardized residuals can be
too large because the multinomial standard errors tend to underestimate the true
standard errors. We therefore derive the design-based standardized residuals by
using the corresponding design-based standard errors s.edes(p̂j). Hence, we have

êj = (p̂j − p0j)/s.edes(p̂j), j = 1, . . . , u. (7.19)

Clearly, if design-effect estimates are noticeably larger than one, smaller stan-
dardized residuals are obtained by (7.19) relative to the multinomial counterparts.
The design-based standardized residuals can be taken as approximate standard
normal variates under the null hypothesis, so they can be referred to critical
values from the N(0, 1) distribution.

Example 7.1

Goodness-of-fit test of the age distribution for the MFH Survey. We consider a
goodness-of-fit test for the age distribution of the MFH Survey subgroup of males
aged 30–64 years, relative to the respective population age distribution. We have
chosen the MFH design to demonstrate also the effects of a small number of
sample clusters (m = 48) on test results. Sample and population age distributions
with the estimated cell design effects of the proportion estimates are displayed in
Table 7.1. The standardized design-based residuals are also included in the table.

Because the cell proportions are constrained to sum up to one, there are
u − 1 = 2 degrees of freedom for the tests. The null hypothesis is stated as

Table 7.1 Estimated and hypothesized age distributions, design-effect estimates of the age
proportions, and standardized residuals in the MFH Survey subgroup of 30–64-year-old
males.

Age nj

Estimated
p̂j

Hypothesized
p0j

Deff

d̂j

Residuals
êj

30–44 1329 0.492 0.521 1.51 −2.45
45–54 774 0.287 0.277 1.70 0.88
55–64 596 0.221 0.202 0.43 3.64

Total sample 2699 1.000 1.000
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H0 : pj = p0j with j = 1, 2, 3. The values of the unadjusted Pearson and Neyman
test statistics, and the values of the mean deff adjustment and the first-order
Rao–Scott adjustment to the Pearson statistic, can be calculated from Table 7.1
using the sample and population proportions p̂j and p0j and the design-effect
estimates d̂j. But the second-order Rao–Scott adjustment and the Wald statistic
require a full estimate V̂des of the proportion estimates. This estimate was obtained
using the linearization method. For complete information, we supply the full 3 × 3
covariance-matrix estimate

V̂des = 10−5 ×

 13.9481 −12.0731 −1.8750

−12.0731 12.9158 −0.8427
−1.8750 −0.8427 2.7177


 .

For comparison, we display also the multinomial counterparts P0/n = (diag(p0) −
p0p′

0)/2699 and P̂/n = (diag(p̂) − p̂p̂′)/2699. These are

P0/n = 10−5 ×

 9.2464 −5.3471 −3.8993

−5.3471 7.4202 −2.0731
−3.8993 −2.0731 5.9724


 ,

and

P̂/n = 10−5 ×

 9.2603 −5.2317 −4.0286

−5.2317 7.5817 −2.3500
−4.0286 −2.3500 6.3786


 .

The covariance-matrix estimates P0/n and P̂/n can be used in the calculation of
the design-effects matrix estimate D̂ and the Pearson and Neyman test statistics
(7.12) and (7.17). Note that in the calculation of X2

des in (7.9), and X2
P and X2

N, we
need not use the full matrices but take the 2 × 2 submatrices from the estimates
V̂des, P0/n and P̂/n corresponding to the two elements of the vectors p̂ and p0. Of
course, the Pearson and Neyman statistics can be calculated as well by using the
standard formulae, which were also given in equations (7.12) and (7.17).

For the adjusted Pearson and Neyman test statistics, we obtain

d̂ž =
3∑

j=1

d̂j/3 = 1.21

δ̂ž =
3∑

j=1

p̂jp
−1
0j (1 − p̂j)d̂j/2 = 1.17

1 + â2 = 26992
3∑

j=1

3∑
k=1

(v̂2
des(p̂j, p̂k)/p0jp0k)/(2 × 1.172) = 1.37

dfS = (u − 1)/(1 + â2) = 1.46.
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Using these estimates, we obtain the following:

Neyman (multinomial Wald) statistic:

X2
N = 9.96 with 2 df (degrees of freedom) and a p-value 0.007.

Pearson statistic:

X2
P = 10.15 with 2 df and a p-value 0.006.

Mean deff adjustment to the Pearson statistic:

X2
P(d̂ž) = 10.15/1.21 = 8.38 with 2 df and a p-value 0.015.

First-order Rao–Scott adjustment to the Pearson statistic:

X2
P(δ̂ž) = 10.15/1.17 = 8.66 with 2 df and a p-value 0.013.

F-corrected first-order Rao–Scott adjustment:

FX2
P(δ̂ž) = 8.66/2 = 4.33 with 2 and 24 df and a p-value 0.025.

Second-order Rao–Scott adjustment to the Pearson statistic:

X2
P(δ̂ž, â2) = 8.66/1.37 = 6.30 with 2/1.37 = 1.46 df and a p-value 0.023.

Design-based Wald statistic:

X2
des = 15.28 with 2 df and a p-value 0.001.

F-corrected Wald statistics:

F1.des = (24 − 3 + 2)/(24 × 2) × 15.28 = 7.32 with 2 and 23 df and a

p-value 0.003, and

F2.des = 15.28/2 = 7.64 with 2 and 24 df and a p-value 0.003.

Of the test statistics introduced, the second-order Rao–Scott adjustment and the
Wald statistic with an F-correction could be expected to provide the most adequate
test results. The mean deff adjustment and the first-order Rao–Scott adjustment
are aimed to be used only if the design-effect estimates in Table 7.1 are available
but not the covariance-matrix estimate V̂des.

The test results indicate that the uncorrected Pearson and Neyman statis-
tics give liberal results relative to the adjusted Pearson tests, as expected. Of
the adjusted tests, the second-order Rao–Scott adjustment and the F-corrected
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first-order Rao–Scott adjustment are most conservative. The design-based Wald
test, however, is unexpectedly liberal, and the F-corrections involve no apparent
improvement in this case. The liberality may be due to the relatively few degrees
of freedom (f = 24) for the estimate V̂des, which might be unstable. Actually, the
eigenvalues of the relevant 2 × 2 submatrix of V̂des are 0.0002552 and 0.0000135,
and thus the condition number is 18.9, though this does not indicate serious
instability.

Which one of the seven test statistics aimed at accounting for the clustering
effects should be chosen in the MFH Survey where the degrees of freedom for V̂des are
small? Assuming first that an estimate V̂des is provided, the second-order Rao–Scott
adjustment would be chosen because of the apparent nondiagonality of V̂des, and
because the second-order correction is not expected to be seriously sensitive to
instability problems. Although also asymptotically valid, the design-based Wald
statistic, and its F-corrections, would be excluded in this case because of obvious
liberality. It should be noticed that in other testing situations where the number
of sample clusters is larger, the design-based Wald statistic will be a reasonable
alternative. If an estimate V̂des is not available but the appropriate design-effect
estimates are provided, the F-corrected first-order Rao–Scott adjustment would
be chosen and this also seems to successfully reduce the effect of instability.

The test results do not support the conclusion that the sample and population age
distributions were equal. A residual analysis for the design-based standardized
residuals êj indicates that the largest deviance is in the third age group, and
the standardized residual exceeds the 1% critical value 2.33 from the N(0, 1)
distribution. The residuals are smaller than the multinomial counterparts, except
in the last age group, which has a design-effect estimate noticeably smaller
than one.

Rejection of H0 suggests that it might be reasonable to weight the MFH Survey
data set to better match the sample age distribution with the population age
distribution. In Section 5.1, we demonstrated this by developing the appropriate
poststratification weights. It was noted that this weighting caused some, small,
differences in the weighted estimates, relative to the unweighted ones, in response
variables that were apparently age-dependent.

7.3 PRELIMINARIES FOR TESTS FOR TWO-WAY TABLES

In a two-way table, a test of homogeneity is appropriate to study whether the class
proportions of a categorical response variable are equal over a set of classes of
a categorical predictor variable. A test of independence is stated when studying
whether there is nonzero association between two categorical response variables.
The two tests thus conceptually differ in the formulation of the hypotheses and in
the interpretation of test results. Under a simple random sample, a multinomial-
based test such as the Pearson test can be used with an identical formula of a
test statistic for both hypotheses. For more complex designs involving clustering,
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we also separate the tests technically, and derive different adjustments for the
corresponding test statistics. We first introduce the preliminaries of the tests with
a simple example from the MFH Survey.

Test of Independence

Let us first consider the test of independence in the simplest case of a two-way
table. From the MFH Survey demonstration data set of size n = 2699 persons, we
have the following frequency table with two categorical variables, PHYS (physical
health hazards of work, 0: none, 1: some) and SYSBP (systolic blood pressure,
≤159 or >159):

SYSBP

PHYS ≤159 >159 All

0 1857 362 2219
1 390 90 480
All 2247 452 2699

For an independence hypothesis, our question is whether the two variables are
associated or not. This leads to the null hypothesis

H0 : pjk = pj+p+k, j, k = 1, 2,

where pjk are unknown population cell proportions and pj+ and p+k are the
corresponding row and column marginal proportions in an N element population
with cell frequencies Njk. We thus have

pjk = Njk/N and p11 + p12 + p21 + p22 = 1,

pj+ = pj1 + pj2 and p+k = p1k + p2k.

Because of the constraints on the cell and marginal proportions, the null hypothesis
reduces to H0 : p11 = p1+p+1 with one degree of freedom for the test.

For the independence hypothesis, the table of observed cell and marginal
proportions p̂jk = n̂jk/n, and p̂j+ = p̂j1 + p̂j2 and p̂+k = p̂1k + p̂2k, can now be derived
using the observed cell frequencies n̂jk:

SYSBP

PHYS ≤159 >159 All

0 0.6880 0.1342 0.8222
1 0.1445 0.0333 0.1778
All 0.8325 0.1675 1

TLFeBOOK



234 Analysis of One-way and Two-way Tables

Note that the cell proportions sum up to one over the table. A Pearson test statistic
for the hypothesis of independence is

X2
P(I) = n

2∑
j=1

2∑
k=1

(p̂jk − p̂j+p̂+k)
2

p̂j+p̂+k
= n(p̂11 − p̂1+p̂+1)

2

p̂1+(1 − p̂1+)p̂+1(1 − p̂+1)
,

which is a scaled measure of the squared differences of the observed proportions
from their expected values under the null hypothesis of independence. For a
standard inference on the null hypothesis, the Pearson statistic is referred to the
chi-squared distribution with one degree of freedom. Calculated from the table
above, the observed value of X2

P(I) is 1.68 with a p-value of 0.195, clearly suggesting
acceptance of the null hypothesis of independence.

Test of Homogeneity

For the independence hypothesis, both the classification variables SYSBP and
PHYS were actually taken as response variables. It is also possible to look at the
frequency table from another point of view. If we consider SYSBP as a response
variable and PHYS as a predictor variable, for a homogeneity hypothesis our
question is then whether the distributions of SYSBP in the two classes of PHYS
are equal. This leads to a null hypothesis

H0 : p1k = p2k

for both values of k = 1, 2. When compared to the independence hypothesis, we
now have different population proportions for which it holds

p11 + p12 = 1 and p21 + p22 = 1.

Because of these constraints, the null hypothesis reduces to H0 : p11 = p21, and
again there is one degree of freedom for the test.

For the homogeneity hypothesis, the table of observed cell proportions p̂1k =
n̂1k/n̂1 and p̂2k = n̂2k/n̂2, where n̂1 = n̂11 + n̂12 and n̂2 = n̂21 + n̂22 are row marginal
frequencies and observed marginal proportions are p̂j+ = 1 and p̂+k = (n̂1k +
n̂2k)/n, is the following:

SYSBP

PHYS ≤159 >159 All

0 0.8369 0.1631 1
1 0.8125 0.1875 1
All 0.8325 0.1675 1
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Note that both the row margins p̂1+ and p̂2+ are equal to one. A Pearson test
statistic for the hypothesis of homogeneity is now given as

X2
P(H) =

2∑
j=1

2∑
k=1

n̂j(p̂jk − p̂+k)
2

p̂+k
= (p̂11 − p̂21)

2

p̂+1(1 − p̂+1)/n̂1 + p̂+2(1 − p̂+2)/n̂2
,

which is again a measure of the squared differences of the observed proportions
from their expected values, under the null hypothesis of homogeneity. For
inference on the null hypothesis, this Pearson statistic is also referred to the
chi-squared distribution with one degree of freedom. Although the formulae of
X2

P(H) and X2
P(I) were written differently, the observed value, 1.68, for X2

P(H) is
the same as that in the test of independence, and the conclusion—accept the null
hypothesis—also remains true.

Cell Design Effects

The Pearson tests of independence and homogeneity were executed assuming
a simple random sample. But would the conclusions remain if we account for
the clustering effect? This can be examined by calculating the design-effect esti-
mates of the estimated cell and marginal proportions of the observed tables
for the independence and homogeneity hypotheses. Table 7.2 would then be
helpful. Cell design effects for the independence hypothesis are in the first
DEFF column, and those for the homogeneity hypothesis are in the second
DEFF column.

It is obvious that if the design-effect estimates are greater than one on aver-
age, then more conservative adjusted test statistics would be obtained, relative
to the unadjusted ones, and, therefore, the conclusion of accepting the null
hypotheses would remain. The mean of the cell design-effect estimates for the

Table 7.2 Cell and marginal percentages and design effects for the independence and
homogeneity hypotheses in the MFH Survey.

Test of independence Test of homogeneity

Physical Systolic Deff of Deff of
health blood Cell cell Row row
hazards pressure percent percent percent percent

No ≤159 68.8 1.50 83.7 0.88
>159 13.4 0.81 16.3 0.88

Yes ≤159 14.5 1.43 81.3 1.15
>159 3.3 1.34 18.7 1.15
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independence hypothesis is d̂ž(I) = 1.27, giving the mean deff adjusted Pearson
statistic X2

P(I, d̂ž) = 1.32 with a p-value of 0.251. And the mean of the cell design-
effect estimates for the homogeneity hypothesis is d̂ž(H) = 1.01, giving the mean
deff adjusted Pearson statistic X2

P(H, d̂ž) = 1.66 with a p-value of 0.198. These
design-based tests involve no new inferential conclusions, but, more importantly,
they demonstrate that, because of different adjustments, the adjusted Pearson test
statistics accounting for the clustering effect do not give numerically equal results,
although the unadjusted ones do. Difference between the adjustments to X2

P(I) and
X2

P(H) also holds for the Rao–Scott corrections, and the design-based Wald test
statistics of independence and homogeneity hypotheses would not coincide either.

The test results also indicate that in the case of the MFH Survey, intra-cluster
correlation has a greater effect on the test of independence than on the test of
homogeneity. This might be so because we are working with cross-classes-type
subgroups, and in part might be due to the few degrees of freedom available for
the variance estimates. It should be noticed that the situation can also reverse:
it has been noted in some surveys that inflation due to clustering is often less
for tests of independence than for tests of homogeneity (Rao and Thomas 1988).
This holds especially in cases in which the classes of the predictor variable are of
segregated-type regions.

For the analysis of more general r × c tables from complex surveys, a design-
based Wald statistic with an F-correction, and a second-order Rao–Scott
adjustment to the standard Pearson and Neyman test statistics, can be con-
structed for tests of homogeneity and independence as in the case of the simple
goodness-of-fit test. In secondary analyses from published tables, the mean deff
and first-order Rao–Scott adjustments are possible if cell and marginal design-
effect estimates are provided, but not the design-based covariance-matrix estimate
of proportion estimators.

7.4 TEST OF HOMOGENEITY

In survey analysis literature, a test of homogeneity is usually used to study
the homogeneity of the distribution of a response variable over a set of non-
overlapping regions where independent samples are drawn using multi-stage
sampling designs (e.g. Rao and Thomas 1988). It is thus assumed that the regions
are segregated classes so that all elements in a sample cluster fall into the same
region (class of the predictor variable). The classes of the response variable are
typically cross-classes that cut across the regions. More generally, the test of
homogeneity can be taken as the simplest example of a logit model with a binary
or polytomous response variable and one categorical predictor variable whose
type in practice is not restricted to a segregated class.

For a homogeneity hypothesis, assuming that columns of the table are formed
by the classes of the response variable and rows constitute the regions, it is assumed
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that each row-wise sum of cell proportions is equal to one. The population table
is thus as follows:

Response variable

Region 1 2 . . . k . . . c All

1 p11 p12 · · · p1k · · · p1c 1
2 p21 p22 · · · p2k · · · p2c 1
...

...
... · · · ... · · · ...

...

j pj1 pj2 · · · pjk · · · pjc 1
...

...
... · · · ... · · · ...

...

r pr1 pr2 · · · prk · · · prc 1

For simplicity, we consider the case of only two regions and assume that the
regions are of segregated classes type. A hypothesis of homogeneity of a c category
response variable for r = 2 regions was given in Section 7.3 as H0 : p1k = p2k,
where p1k = N1k/N1 and p2k = N2k/N2 are unknown population proportions in
the first and second regions respectively and k = 1, . . . , c. The hypothesis can be
written, using vectors, as H0 : p1 = p2, where pj = (pj1, . . . , pj,c−1)

′ denotes the
population vector of row proportions pjk in region j. There are thus c − 1 elements
in each regional proportion vector, because the proportions must sum up to
one independently for each region. Further, we denote by p = (p+1, . . . , p+,c−1)

′
the unknown common proportion vector under H0, where p+k = N+k/N and
N+k = N1k + N2k.

The estimated regional proportion vectors, based on independent samples from
the regions, are denoted by p̂j = (p̂j1, . . . , p̂j,c−1)

′, where p̂jk = n̂jk/n̂j is a consistent
estimator of the corresponding population proportion pjk, and n̂jk and n̂j are scaled
weighted-up cell and marginal frequencies accounting for unequal element
inclusion probabilities and adjustment for nonresponse, so that

∑c
k=1 n̂jk = n̂j.

The p̂jk are ratio estimators when we work with subgroups of the regional samples
whose sizes are not fixed in advance, as we assume here as in the goodness-of-fit
case. This also holds, for example, for the demonstration data sets from the MFH
and OHC Surveys.

Design-based Wald Statistic

Let us denote by V̂des(p̂1) the consistent covariance-matrix estimator of the pro-
portion estimator vector p̂1 in the first region, and have V̂des(p̂2) correspondingly
for p̂2 in the second region. The covariance-matrix estimators can be calculated
for each region in a similar manner as for the goodness-of-fit case. Using V̂des(p̂1)
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and V̂des(p̂2), a design-based Wald statistic X2
des of a homogeneity hypothesis for

two regions is given by

X2
des = (p̂1 − p̂2)

′(V̂des(p̂1) + V̂des(p̂2))
−1(p̂1 − p̂2), (7.20)

because of segregated classes and r = 2. The Wald statistic is asymptotically chi-
squared with (2 − 1) × (c − 1) = (c − 1) degrees of freedom. And also, if c = 2,
then X2

des reduces to X2
des = (p̂11 − p̂21)

2/(v̂des(p̂11) + v̂des(p̂21)). X2
des in (7.20) does not

directly generalize to the case with more than two regions but is more complicated
(see e.g. Rao and Thomas 1988).

The statistic X2
des can be expected to work reasonably if a large number of

sample clusters are available in each region. But if this is not the case, an
instability problem can be encountered. F-corrected Wald statistics may then be
used instead. By using f = m − H as the overall degrees of freedom for the estimate
(V̂des(p̂1) + V̂des(p̂2)), where m and H are the total number of sample clusters and
strata in the two regions, the corrections are given by

F1.des = f − (c − 1) + 1
f (c − 1)

X2
des, (7.21)

which is referred to the F-distribution with (c − 1) and (f − (c − 1) + 1) degrees
of freedom, and further,

F2.des = X2
des/(c − 1), (7.22)

which is referred to the F-distribution with (c − 1) and f degrees of freedom. These
test statistics can be effective in reducing the effect of instability if f is not large
relative to the number of classes c in the response variable.

Adjustments to Pearson and Neyman Test Statistics

A Pearson test statistic for the homogeneity hypothesis in the case of r = 2
regions is

X2
P =

2∑
j=1

c∑
k=1

n̂j(p̂jk − p̂+k)
2

p̂+k
= (p̂1 − p̂2)

′(P̂/n̂1 + P̂/n̂2)
−1(p̂1 − p̂2), (7.23)

where p̂+k = (n̂1p̂1k + n̂2p̂2k)/(n̂1 + n̂2) are marginal proportion estimators over
the rows of the table, i.e. estimators of the elements p+k of the hypothesized
common proportion vector p under H0, and P̂ = diag(p̂) − p̂p̂′ such that P̂/n̂1

is the multinomial covariance-matrix estimator of the estimator vector p̂ for the
first region and P̂/n̂2 correspondingly for the second region. Also, if c = 2, then
X2

P reduces to n̂1n̂2(p̂11 − p̂21)
2/((n̂1 + n̂2)p̂+1(1 − p̂+1)).
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As an alternative, a Neyman test statistic can be used, which can be derived
from the design-based Wald statistic (7.20) by assuming independent multinomial
sampling in both regions:

X2
N =

2∑
j=1

c∑
k=1

n̂j(p̂jk − p̂+k)
2

p̂jk
= (p̂1 − p̂2)

′(P̂1/n̂1 + P̂2/n̂2)
−1(p̂1 − p̂2), (7.24)

where P̂1 = diag(p̂1) − p̂1p̂′
1 and P̂1/n̂1 is the multinomial covariance-matrix

estimator for the first region and P̂2/n̂2 correspondingly for the second region.
Also, if c = 2, then X2

N reduces to (p̂11 − p̂21)
2/(p̂11(1 − p̂11)/n̂1 + p̂21(1 − p̂21)/n̂2).

Note that the matrix formulae of X2
P and X2

N resemble that of the design-based
Wald statistic, the only difference being which covariance-matrix estimator
is used.

The Pearson and Neyman test statistics are valid for a simple random sample,
i.e. they are chi-squared with (c − 1) degrees of freedom for two regions. But
under more complex designs, the statistics require adjustments that account
for clustering effects. The adjustments are basically similar to those for the
goodness-of-fit test, but, technically, they are obtained by different formulae.

For a mean deff adjustment and for a first-order Rao–Scott adjustment to X2
P

and X2
N, the cell design-effect estimates in both regions are needed, and for a

second-order Rao–Scott adjustment, a generalized design-effects matrix estimate
is required. The design-effect estimators in region j are of the form

d̂jk = d̂(p̂jk) = n̂jv̂jk/(p̂+k(1 − p̂+k)), j = 1, 2 and k = 1, . . . , c,

where v̂1k is the kth diagonal element of the covariance-matrix estimate V̂des(p̂1)

in the first region and v̂2k is the corresponding element of V̂des(p̂2). The generalized
design-effects matrix estimate is

D̂ = n̂1n̂2

n̂1 + n̂2
P̂−1(V̂des(p̂1) + V̂des(p̂2)). (7.25)

Mean deff adjustments to the Pearson and Neyman test statistics are

X2
P(d̂ž) = X2

P/d̂ž and X2
N(d̂ž) = X2

N/d̂ž, (7.26)

where

d̂ž =
2∑

j=1

c∑
k=1

d̂jk/(2c)

is the mean of the design-effect estimates. By using the eigenvalues δ̂k of D̂, the
first-order Rao–Scott adjustments to Pearson and Neyman test statistics (7.23)
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and (7.24) are given by

X2
P(δ̂ž) = X2

P/δ̂ž and X2
N(δ̂ž) = X2

N/δ̂ž, (7.27)

where

δ̂ž = tr(D̂)/(c − 1) = 1
c − 1

2∑
j=1

(
1 − n̂j

n̂1 + n̂2

) c∑
k=1

p̂jk

p̂+k
(1 − p̂jk)d̂jk

is an estimator of the mean δ of the eigenvalues δk of the unknown generalized
design-effects matrix D. Note that an estimate δ̂ž can also be computed directly
from D̂ by first calculating the sum of its diagonal elements, i.e. the trace. Both
adjustments are referred to the chi-squared distribution with (c − 1) degrees
of freedom. The adjustments are approximative in the sense that they can be
expected to work reasonably if the design-effect estimates, or the eigenvalues, do
not vary considerably.

A second-order adjustment to X2
P and X2

N is more appropriate if the variation in
the eigenvalue estimates δ̂k is noticeable. For the Pearson statistic, this adjustment
is given by

X2
P(δ̂ž, â2) = X2

P(δ̂ž)/(1 + â2), (7.28)

where â2 is the squared coefficient of variation of the eigenvalue estimates δ̂k. It is
obtained by the formula

â2 =
c−1∑
k=1

δ̂2
k /((c − 1)δ̂2

ž ) − 1,

where the sum of squared eigenvalues can be obtained as the trace of the
generalized design-effects matrix estimate raised to the second power:

c−1∑
k=1

δ̂2
k = tr(D̂2).

The second-order Rao–Scott corrected Pearson test statistic is asymptotically chi-
squared with Satterthwaite adjusted degrees of freedom dfS = (c − 1)/(1 + â2). A
similar adjustment can be carried out to the first-order corrected Neyman statistic
X2

N(δ̂ž) in (7.27).
If the regional covariance-matrix estimates V̂des(p̂1) and V̂des(p̂2) are based on a

relatively small number of sample clusters, they might be unstable and, therefore,
F-corrected first-order test statistics can be used instead. The Pearson statistic in
(7.27) with an F-correction for two regions is given by

FX2
P(δ̂ž) = X2

P(δ̂ž)/(c − 1) (7.29)
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referred to the F-distribution with (c − 1) and f degrees of freedom. This correction
is analogous for the Neyman statistic.

Residual Analysis

Under rejection of the null hypothesis H0 of homogeneity, the standardized
residuals can be computed to detect cell deviations from the hypothesized pro-
portions. Using the cell design-effect estimates d̂jk, we calculate the design-based
standardized residuals

êjk = (p̂jk − p̂+k)/s.edes(p̂jk − p̂+k), j = 1, 2 and k = 1, . . . , c, (7.30)

where a standard-error estimator s.edes(p̂jk − p̂+k) of a raw residual is obtained
from the design-based variance estimator, given by

v̂des(p̂1k − p̂+k) = n̂2(n̂2d̂1k + n̂1d̂2k)

(n̂1 + n̂2)2
p̂+k(1 − p̂+k)/n̂1, k = 1, . . . , c,

for the first region, and

v̂des(p̂2k − p̂+k) = n̂1(n̂2d̂1k + n̂1d̂2k)

(n̂1 + n̂2)2
p̂+k(1 − p̂+k)/n̂2, k = 1, . . . , c,

for the second region. Note that under simple random sampling, when d̂1k = d̂2k =
1, these variance estimators reduce to

v̂srs(p̂1k − p̂+k) = n̂2

n̂1 + n̂2
p̂+k(1 − p̂+k)/n̂1, k = 1, . . . , c,

for the first region, and

v̂srs(p̂2k − p̂+k) = n̂1

n̂1 + n̂2
p̂+k(1 − p̂+k)/n̂2, k = 1, . . . , c,

for the second region. It can be inferred from these formulae that under positive
intra-cluster correlation, smaller design-based standardized residuals are obtained
than those obtained from the equations based on an assumption of simple random
sampling. The design-based standardized residuals can be referred to the critical
values from the standard normal N(0,1) distribution.

Example 7.2

The test of homogeneity for two populations in the OHC Survey. We consider
the test of homogeneity of class proportions of the variable PSYCH, which is the
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Table 7.3 Class proportions of PSYCH (psychic symptoms) in public services and other
industries in the OHC Survey (design-effect estimates in parentheses).

PSYCH
Sample

Type of industry 1 2 3 All size

Public services 0.2939 0.3345 0.3716 1.00 1184
(2.02) (1.24) (1.74)

Other industries 0.3526 0.3216 0.3258 1.00 6657
(1.73) (1.23) (1.57)

All industries 0.3437 0.3236 0.3327 1.00 7841

first principal component of nine psychic symptoms measuring overall psychic
strain, categorized into three nearly equally sized classes. The two populations are
formed by the type of industry of establishment, constructed so that public services
constitute the first subgroup and all the other industries are put into the second
subgroup (Table 7.3). Note that the grouping follows industrial stratification and
thus is of segregated type, and independent samples can be assumed to be drawn
from each population. Of the 250 sample clusters available, 49 are in the first
subgroup and 201 in the second, and the element data sets in both subgroups are
taken to be self-weighting.

In public services, a larger proportion of serious psychic symptoms (class 3)
is obtained than that obtained in other industries. A homogeneity hypothesis
H0 : p1k = p2k, k = 1, 2, 3, of the class proportions over the two populations is
stated to examine the variation. Cell design-effect estimates, with an average 1.59,
indicate a moderate clustering effect, which should be accounted for in a testing
procedure. For the calculation of valid test statistics, we first obtain the two full
covariance-matrix estimates V̂des(p̂1) and V̂des(p̂2). These are

V̂des(p̂1) = 10−5 ×

 35.3394 −12.1408 −23.1986

−12.1408 23.3570 −11.2161
23.1986 −11.2161 34.4148


 ,

and

V̂des(p̂2) = 10−5 ×

 5.9177 −2.3978 −3.5200

−2.3978 4.0417 −1.6439
−3.5200 −1.6439 5.1639


 .

Because c − 1 = 2, we use the first two classes of PSYCH and the first 2 × 2 subma-
trices from the estimates V̂des(p̂1) and V̂des(p̂2) in the calculation of Wald statistics
and Rao–Scott adjustments. For a design-based Wald test (7.20) of homogeneity,
we get X2

des = 8.62 with 2 degrees of freedom and a p-value 0.0134, thus indicating
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non-homogeneity of the proportions over the populations. F-corrections (7.21)
and (7.22) to X2

des give F1.des = 4.29, which referred to the F-distribution with 2 and
244 degrees of freedom attains a p-value 0.0147, and F2.des = 4.31, which referred
to the F-distribution with 2 and 245 degrees of freedom attains a p-value 0.0144.
These corrections do not have a large impact on X2

des because of the relatively
large total number of sample clusters, in which case V̂des(p̂1) and V̂des(p̂2) can be
assumed to be stable.

As another valid testing procedure, we calculate the second-order Rao–Scott
adjustments (7.28) to the Pearson and Neyman test statistics (7.23) and (7.24).
The unadjusted statistics give observed values X2

P = 16.93, with a p-value 0.0002,
and X2

N = 17.77, with a p-value 0.0001, both significant at the 0.001 level, so they
are very liberal relative to X2

des as expected. For the Rao–Scott adjustments, a
generalized design-effects matrix estimate (7.25) is first obtained:

D̂ =
[

2.01374 −0.03663
0.35554 1.23977

]
.

The mean of the diagonal elements of D̂ is δ̂ž = tr(D̂)/2 = 1.627, and the sum
of the squared eigenvalues is

∑2
k=1 δ̂2

k = tr(D̂2) = 5.566. The second-order cor-
rection factor is thus (1 + â2) = 1.052, and this with Satterthwaite adjusted
degrees of freedom dfS = 1.902 gives X2

P(δ̂ž, â2) = 9.89, with a p-value 0.0063, and
X2

N(δ̂ž, â2) = 10.38, with a p-value 0.0049, both significant at the 0.01 level. The
results are somewhat liberal relative to those from the Wald test. These test results
indicate that the design-based Wald statistic works adequately in the OHC case,
unlike the MFH case (see Example 7.1).

We finally calculate the first-order adjustments (7.26) and (7.27) to X2
P and

X2
N under the assumption that the only information provided for a homo-

geneity test is that given in Table 7.3. The estimated mean design effect is
d̂ž = 1.59, and the corresponding adjustments to X2

P and X2
N are X2

P(d̂ž) =
10.66, with a p-value 0.0048, and X2

N(d̂ž) = 11.19, with a p-value 0.0037,
both significant at the 0.01 level. By using cell design-effect estimates and
cell proportions, we obtain δ̂ž = 1.627, giving the first-order Rao–Scott adjust-
ments X2

P(δ̂ž) = 10.41, with a p-value 0.0055, and X2
N(δ̂ž) = 10.92, with a p-

value 0.0043, which are also significant at the 0.01 level. The F-corrections
(7.29) to X2

P and X2
N give FX2

P = 5.20, with a p-value 0.0061, and FX2
N = 5.46,

with a p-value 0.0048, indicating no obvious change in the results from the
first-order corrected counterparts, again demonstrating stability of the test-
ing situation.

Because all the tests suggest rejection of H0 at least at the 0.05 level, we calculate
the design-based standardized residuals, êjk for both classes. Using (7.30), these
are as follows:
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PSYCH

Public
services

ê1k

Other
industries

ê2k

1 −2.79 2.79
2 0.78 −0.78
3 2.35 −2.35

The residuals sum up to zero across public services and other industries. Note
that from absolute values of the standardized residuals the largest are in the first
and third PSYCH classes. In the third PSYCH class, the direction of the difference
favours those from public services, whereas in the first class the situation is the
opposite. The design-based standardized residuals also exceed the 1% critical value
2.33 from the standard normal N(0,1) distribution in these classes.

In the case where all relevant information is available, we conclude that the
design-based Wald statistic provides an adequate and usable testing procedure for
the homogeneity hypothesis. And if only cell design effects are provided, but not
the two regional covariance-matrix estimates, we would choose the Rao–Scott
adjustment to a Pearson or Neyman test statistic. But inferential conclusions
remain unchanged independently of the test statistic chosen in the case considered;
the strength of the conclusion to reject the null hypothesis of homogeneity of
PSYCH proportions over the two populations, however, varies somewhat.

Logit modelling provides a convenient general framework for the test of a
homogeneity hypothesis. A test of homogeneity of PSYCH proportions in the
INDU (type of industry) classes in a 2 × 3 table can be taken as a simple example
of a logit model for a polytomous response variable. A test of homogeneity is
obtained by fitting the saturated logit model INTERCEPT + INDU, say, for PSYCH
logits and then by testing by the Wald test the significance of the INDU term.
The observed value of the Wald test statistic is X2

des = 8.13 with a p-value 0.0171.
The result, although slightly more conservative, is compatible with the previous
results from the Wald test statistic X2

des.

The Case of More than Two Regions

We have considered a test of homogeneity for two regions, where the regions
constitute segregated classes. Derivation of a design-based Wald statistic, and the
Rao–Scott adjustments to the Pearson and Neyman test statistics, for the case of
more than two segregated regions is straightforward, but involves more matrix
algebra. We omit the derivations and refer the reader to Rao and Thomas (1988).

The test of homogeneity for segregated classes is a special case of a more
general testing situation with any type of categorical predictor variable. This case,
with a binary response variable, is considered in Chapter 8 for logit modelling.
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There, the assumption of segregated-type regions is relaxed, and we work with
cross-classes also for the predictor variable. Then, the design-based covariance
matrices of the response variable proportions cannot be estimated separately in
the predictor variable subgroups, as was done in the segregated regions case, but
the between-region covariance must be estimated as well. This covariance was
assumed zero for segregated regions.

7.5 TEST OF INDEPENDENCE

A test of independence is applied to study whether there is nonzero association
between two categorical variables within a population. Organized in an r × c
contingency table, the data are thus assumed to be drawn from a single population
with no fixed margins. Therefore, it is assumed that the sum of all population
proportions pjk in the population table equals one. The population table is thus:

First
Second variable

variable 1 2 . . . k . . . c All

1 p11 p12 · · · p1k · · · p1c p1+
2 p21 p22 · · · p2k · · · p2c p2+
...

...
... · · · ... · · · ...

...

j pj1 pj2 · · · pjk · · · pjc pj+
...

...
... · · · ... · · · ...

...

r pr1 pr2 · · · prk · · · prc pr+
All p+1 p+2 · · · p+k · · · p+c 1

For the formulation of the null hypothesis, and for the interpretation of test
results, it is important to note that we are now working in a symmetrical case where
neither of the classification variables is assumed to be a predictor. The two response
variables with r and c categories are typically of cross-classes or mixed-classes
type so that they cut across the strata and clusters. A hypothesis of independence
of the response variables was formulated in Section 7.3 as H0 : pjk = pj+p+k, where
pjk = Njk/N, and pj+ =∑c

k=1 pjk and p+k =∑r
j=1 pjk are marginal proportions

with j = 1, . . . , r and k = 1, . . . , c. It is obvious that if the actual unknown cell
proportions pjk were close to the expected cell proportions pj+p+k under the null
hypothesis, then the two variables can be assumed independent. This fact is utilized
in the construction of appropriate test statistics for the independence hypothesis.

For the derivation of the test statistics of independence, we write the null hypoth-
esis in an equivalent form, H0 : Fjk = pjk − pj+p+k = 0, where j = 1, . . . , r − 1
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and k = 1, . . . , c − 1 because of the constraint
∑r

j=1

∑c
k=1 pjk = 1. The Fjk are

thus the residual differences between the unknown cell proportions and their
expected values under the null hypothesis, which states that the residual dif-
ferences are all zero. The residuals can then be collected in a column vector
F = (F11, . . . , F1,c−1, . . . , Fr−1,1, . . . , Fr−1,c−1)

′ with a total of (r − 1)(c − 1) rows.
The estimated cell proportions p̂jk = n̂jk/n, obtained from a sample of n elements,

provide consistent estimators of the corresponding unknown proportions pjk,
where n̂jk are scaled weighted-up cell frequencies accounting for unequal element
inclusion probabilities and nonresponse, such that

∑r
j=1

∑c
k=1 n̂jk = n. The p̂jk are

ratio estimators when working with a subgroup of the total sample whose size is
not fixed in advance, such as the demonstration data sets from the MFH and OHC
Surveys. As for the goodness-of-fit and homogeneity hypotheses, we also make
this assumption here.

Covariance-matrix Estimators

Let us first derive the covariance-matrix estimators of the estimated vector F̂ of
the residual differences under various assumptions on the sampling design, to be
used for a design-based Wald statistic and for Pearson and Neyman test statistics.
The estimated vector of residual differences is

F̂ = (F̂11, . . . , F̂1,c−1, . . . , F̂r−1,1, . . . , F̂r−1,c−1)
′, (7.31)

where F̂jk = p̂jk − p̂j+p̂+k, and p̂j+ and p̂+k are estimators of the corresponding
marginal proportions. For the design-based Wald statistic, we derive the consistent
covariance-matrix estimator V̂F of F̂, accounting for complexities of the sampling
design, given by

V̂F = Ĥ′V̂desĤ, (7.32)

where the (r − 1)(c − 1) × (r − 1)(c − 1) matrix Ĥ is the matrix of partial deriva-
tives of F with respect to pjk, evaluated at p̂jk. The matrix V̂des is a consistent
estimator of the asymptotic covariance matrix V/n of the vector of cell propor-
tion estimators p̂ = (p̂11, . . . , p̂1,c−1, . . . , p̂r−1,1, . . . , p̂r−1,c−1)

′. An estimate V̂des is
obtained by the linearization method as used previously for the goodness-of-fit and
homogeneity hypotheses. In practice, V̂des can be calculated from the element-
level data set by fitting a full-interaction linear model without an intercept, with
the categorical variables as the model terms. The estimated model coefficients
then coincide with the observed proportions, and the covariance-matrix estimate
of the coefficients provides an estimate V̂des.

The two multinomial covariance-matrix estimators of F̂ are as follows. For
the Pearson test statistic, we derive an expected multinomial covariance-matrix
estimator P̂0F/n of F̂ under the null hypothesis such that

P̂0F = Ĥ′P̂0Ĥ, (7.33)
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where P̂0 = diag(p̂0) − p̂0p̂′
0 with p̂0 being the vector of expected proportions

under the null hypothesis, i.e. a vector with elements p̂j+p̂+k. And for the Neyman
test statistic, we derive an observed multinomial covariance-matrix estimator
P̂F/n of F̂ given by

P̂F = Ĥ′P̂Ĥ, (7.34)

where P̂ = diag(p̂) − p̂p̂′. Note that all the covariance-matrix estimators of F̂ are
of a similar form and use the same matrix Ĥ of partial derivatives.

Design-based Wald Statistic

By using the estimated vector F̂ of residual differences with its consistent
covariance-matrix estimate V̂F from (7.32), we obtain for the independence
hypothesis a design-based Wald statistic

X2
des = F̂′V̂−1

F F̂, (7.35)

which is asymptotically chi-squared with (r − 1)(c − 1) degrees of freedom. As in
the Wald tests for goodness of fit and homogeneity, this test statistic can suffer
from instability problems in cases in which only few degrees of freedom f are
available for an estimate V̂F. F-corrections to X2

des can then be used, where

F1.des = f − (r − 1)(c − 1) − 1
f (r − 1)(c − 1)

X2
des, (7.36)

which is referred to the F-distribution with (r − 1)(c − 1) and (f − (r − 1)(c −
1) − 1) degrees of freedom, and

F2.des = X2
des

(r − 1)(c − 1)
, (7.37)

which in turn is referred to the F-distribution with (r − 1)(c − 1) and f degrees
of freedom.

Adjustments to Pearson and Neyman Test Statistics

A Pearson test statistic for an independence hypothesis in Section 7.3 was given as

X2
P = n

r∑
j=1

c∑
k=1

(p̂jk − p̂j+p̂+k)
2

p̂j+p̂+k
. (7.38)
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A Neyman test statistic can be used as an alternative and is given by

X2
N = n

r∑
j=1

c∑
k=1

(p̂jk − p̂j+p̂+k)
2

p̂jk
. (7.39)

Observed values of these statistics can be obtained from the estimated cell and
marginal proportions. And under simple random sampling, both test statistics are
asymptotically chi-squared with (r − 1)(c − 1) degrees of freedom.

For a convenient common framework, we write the Pearson and Neyman test
statistics (7.38) and (7.39) using the corresponding matrix formulae,

X2
P = nF̂′P̂−1

0F F̂ (7.40)

for the Pearson statistic, where the null multinomial covariance-matrix estimator
P̂0F/n from (7.33) is used, and

X2
N = nF̂′P̂−1

F F̂ (7.41)

for the Neyman statistic, where the empirical multinomial covariance-matrix
estimator P̂F/n from (7.34) is used. Note that both statistics mimic the design-based
Wald statistic X2

des in (7.35), the only difference being which covariance-matrix
estimator of the residual differences is used. It should also be noted that in the
calculation of X2

des, X2
P and X2

N, the vector F̂ is an (r − 1)(c − 1) column vector,
and the covariance-matrix estimates are (r − 1)(c − 1) × (r − 1)(c − 1) matrices.
Thus, for example, in a 2 × 2 table, F̂ and the covariance-matrix estimates P̂0F

and P̂F reduce to scalars.
In complex surveys, there is a similar motivation to adjusting the statistics X2

P
and X2

N for the clustering effect as in the corresponding tests of goodness of fit
and homogeneity. Asymptotically valid adjusted test statistics are obtained using
second-order Rao–Scott corrections given by

X2
P(δ̂ž, â2) = X2

P/(δ̂ž(1 + â2)) (7.42)

for the Pearson statistic (7.40), where

δ̂ž = tr(D̂)/((r − 1)(c − 1))

is the mean of the eigenvalues δ̂l of the generalized design-effects matrix estimate

D̂ = nP̂−1
0F V̂F, (7.43)

and

â2 =
(r−1)(c−1)∑

l=1

δ̂2
l /((r − 1)(c − 1)δ̂2

ž ) − 1
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is again the squared coefficient of variation of the eigenvalue estimates δ̂l, with
the sum of squared eigenvalues given by

(r−1)(c−1)∑
l=1

δ̂2
l = tr(D̂2).

The second-order adjusted statistic (7.42) is asymptotically chi-squared with
Satterthwaite adjusted degrees of freedom

dfS = (r − 1)(c − 1)
(1 + â2)

.

A similar second-order correction can also be made to X2
N. There, a design-effects

matrix estimate D̂ = nP̂−1
0F V̂F can alternatively be used.

Both the design-based Wald statistic X2
des and the second-order Rao–Scott

adjustments to X2
P and X2

N require availability of the full covariance-matrix
estimate V̂des of the cell proportion estimators p̂jk. In secondary analysis situations,
this estimate is not necessarily provided, but cell design-effect estimates d̂jk,
possibly with marginal design-effect estimates d̂j+ and d̂+k, might be reported.
By using these design-effect estimates, approximative first-order corrections can
then be obtained. The simplest mean deff adjustment to the Pearson statistic X2

P is
calculated using the mean of the estimated cell design effects given by

X2
P(d̂ž) = X2

P/d̂ž, (7.44)

where d̂ž =∑r
j=1

∑c
k=1 d̂jk/(rc) is the average cell design effect. And the first-order

Rao–Scott adjustment to X2
P is given by

X2
P(δ̂ž) = X2

P/δ̂ž, (7.45)

where δ̂ž can be calculated from the cell and marginal design effects by

δ̂ž = 1
(r − 1)(c − 1)

r∑
j=1

c∑
k=1

p̂jk(1 − p̂jk)

p̂j+p̂+k
d̂jk −

r∑
j=1

(1 − p̂j+)d̂j+ −
c∑

k=1

(1 − p̂+k)d̂+k

without calculating the generalized design-effects matrix itself. Similar corrections
can again be made to X2

N. The statistics X2
P(d̂ž) and X2

P(δ̂ž) are referred to the chi-
squared distribution with (r − 1)(c − 1) degrees of freedom. X2

P(δ̂ž) is usually
superior to X2

P(d̂ž), and the statistic X2
P(δ̂ž) can be expected to work adequately if

the variation in the eigenvalue estimates δ̂l is small.
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If instability problems due to a relatively small f are expected, an F-correction
to X2

P(δ̂ž) can be obtained by

FX2
P(δ̂ž) = X2

P(δ̂ž)/((r − 1)(c − 1)), (7.46)

which is referred to the F-distribution with (r − 1)(c − 1) and f degrees of freedom.
A similar correction is also available for the first-order adjusted Neyman statistic
X2

N(δ̂ž).

Residual Analysis

If the null hypothesis of independence is rejected, then the standardized design-
based cell residuals can be obtained for a closer examination of deviations from
H0. These residuals are given by

êjk = F̂jk

s.e (F̂jk)
, (7.47)

where s.e(F̂jk) is the design-based standard-error estimate of F̂jk, i.e. square root
of the corresponding variance estimate from (7.32). Under positive intra-cluster
correlation, these design-based residuals tend to be smaller than the corresponding
residuals calculated assuming simple random sampling. These would be obtained
by inserting s.e0(F̂jk) in place of s.e(F̂jk), where s.e0(F̂jk) is the multinomial
standard-error estimate of F̂jk, i.e. the square root of the corresponding variance
estimate from (7.33).

Example 7.3

The test of independence of health hazards of work and psychic strain in the
OHC Survey. Let us study whether the variables PHYS (physical health hazards
of work: none or some) and PSYCH (overall psychic strain classified into three
nearly equally sized classes) are associated or not. Note that both classification
variables constitute cross-classes. The appropriate cross-tabulation is displayed in
Table 7.4.

A hypothesis of independence is stated as H0 : pjk = pj+p+k with j = 1, 2 and k =
1, 2, 3, or, analogously, H0 : p11 − p1+p+1 = 0 and p12 − p1+p+2 = 0. The design-
effect estimates of the cell proportions indicate a noticeable clustering effect,
which is due to strong intra-cluster correlation for the variable PHYS, as can
be seen from the corresponding marginal design-effect estimate, which is deff =
7.17. There is a natural interpretation for this unusually large design-effect
estimate: separate establishments tend to be internally homogeneous with respect
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Table 7.4 Cell and marginal proportions of variables PHYS (physical
health hazards) and PSYCH (overall psychic strain) in the OHC Survey
(design-effect estimates in parentheses).

PSYCH

PHYS 1 2 3 All n

None 0.2276 0.2188 0.2078 0.6543 5130
(2.09) (2.26) (2.63) (7.17)

Some 0.1161 0.1047 0.1250 0.3457 2711
(2.82) (2.37) (2.87) (7.17)

All 0.3437 0.3236 0.3327 1.00
(1.77) (1.23) (1.61)

n 2695 2537 2609 7841

to physical working conditions, but sites from different industries can differ
noticeably from each other in their working conditions. For the variable PSYCH,
on the other hand, marginal design effects are only moderate, which is also
understandable because experiencing psychic symptoms cannot be expected to
be a strongly workplace-specific phenomenon. The mean of cell design-effect
estimates is also quite large, 2.51. It is therefore important that a valid testing
procedure should account for the clustering effect.

For the test statistics (7.35), (7.38) and (7.39), the corresponding covariance-
matrix estimates V̂F, P̂0F and P̂F of residual differences F̂jk are required.

Technically, in the calculation of these estimates, the full (rc) × (rc) estimate Ĥ
of the partial derivatives and the corresponding full covariance-matrix estimates
V̂des, P̂0 and P̂ are used, but in the construction of the test statistics, only the
(r − 1)(c − 1) × (r − 1)(c − 1) submatrices of these matrices are used. For the
2 × 3 table, we thus calculate the 6 × 6 full matrices but use only the 2 × 2
submatrices of these. A full 6 × 6 covariance-matrix estimate V̂des is first obtained
using the linearization method. It is

V̂des = 10−5




4.6922 0.3207 0.6599 −1.6442 −1.6965 −2.3321
0.3207 4.9264 1.7922 −2.5751 −2.1611 −2.3030
0.6599 1.7922 5.5279 −2.8972 −2.5938 −2.4890

−1.6442 −2.5751 −2.8972 3.6938 1.9619 1.4608
−1.6965 −2.1611 −2.5938 1.9619 2.8332 1.6562
−2.3321 −2.3030 −2.4890 1.4608 1.6562 4.0072


 .

In addition to V̂des, the matrix Ĥ of partial derivatives is calculated to obtain the
covariance-matrix estimate V̂F = Ĥ′V̂desĤ of the vector of the residual differences,
F̂. In the construction of the Wald statistic, we use the 2 × 1 vector of residual
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differences,

F̂ =
[

F̂11

F̂12

]
=
[

p̂11 − p̂1+p̂+1

p̂12 − p̂1+p̂+2

]
= 10−3

[
2.778
7.162

]
,

and the corresponding 2 × 2 submatrix from the full V̂F, calculated as

V̂F = 10−6
[

7.8147 −2.8281
−2.8281 6.3930

]
.

For the design-based Wald statistic X2
des = F̂′V̂−1

F F̂, we obtain an observed value
X2

des = 13.41, which, referred to the chi-squared distribution with 2 degrees of
freedom, attains a p-value 0.0012, significant at the 0.01 level. The F-corrections
(7.36) and (7.37) to X2

des give observed values F1.des = 6.68, which, referred to
the F-distribution with 2 and 244 degrees of freedom, attains a p-value 0.0015,
and F2.des = 6.71, which with 2 and 245 degrees of freedom attains the same
p-value. The F-corrections do not contribute noticeably to the uncorrected
X2

des.
For the alternative asymptotically valid tests based on the second-order adjust-

ment to the Pearson test statistic X2
P, or the Neyman statistic X2

N, we first calculate
the estimated generalized design-effects matrix (7.43) as follows:

D̂ = nP̂−1
0F V̂F =

[
1.30761 0.21651
0.08616 1.05628

]
.

The first-order adjustment factor is δ̂ž = tr(D̂)/2 = 1.182, and the sum of squared
eigenvalues is

∑2
l=1 δ̂l = tr(D̂2) = 2.863, giving a second-order correction factor

(1 + â2) = 1.025. These figures indicate that the eigenvalues are close to one on
average, and their variation is negligible.

For the unadjusted test statistics (7.38) and (7.39), the observed values
X2

P = 16.40 and X2
N = 16.59 are obtained, both of which, referred to the chi-

squared distribution with 2 degrees of freedom, attain a p-value 0.0003, which is
significant at the 0.001 level. Note that X2

P and X2
N are considerably liberal relative

to X2
des. For the second-order Rao–Scott adjusted Pearson statistic (7.42), an

observed value X2
P(δ̂ž, â2) = 13.68 is obtained, which, referred to the chi-squared

distribution with Satterthwaite adjusted degrees of freedom dfS = 1.952, attains
a p-value 0.0010. This test appears somewhat liberal relative to the design-based
Wald statistic, which also seems to work reasonably in this OHC Survey testing
situation (see Example 7.2).

With the availability of only limited information, we calculate the first-order
adjustments (7.44), (7.45) and (7.46) to the Pearson statistic by using the design-
effect estimates in Table 7.4. The mean deff adjustment, with an observed value
X2

P(d̂ž) = 6.60 and a p-value 0.0369, is overly conservative relative to the first-
order Rao–Scott adjustment X2

P(δ̂ž) = 14.02, with a p-value 0.0009, and its
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F-correction FX2
P(δ̂ž) = 7.01, which attains a p-value 0.0011. Conservativity of

the mean deff adjustment arises because d̂ž = 2.51 considerably overestimates the
mean δ of the true eigenvalues, and the estimate δ̂ž = 1.182, calculated using
cell and marginal design-effect estimates, provides a much better estimate. This
suggests a warning against the use of the mean deff adjustment if either of
the classification variables is strongly intra-cluster correlated. The F-corrected
first-order Rao–Scott adjustment works very reasonably when compared to the
design-based Wald statistic and the second-order Rao–Scott adjustment.

The tests suggest rejection of the null hypothesis of independence of PHYS
and PSYCH. We finally calculate the design-based standardized cell residuals by
using (7.47):

PHYS

None Some
PSYCH ê1k ê2k

1 0.99 −0.99
2 2.83 −2.83
3 −3.40 3.40

The residual analysis shows that the largest deviations are in the last PSYCH class
so that the direction of the difference favours those suffering from physical health
hazards of work. Standardized residuals in these classes exceed the 0.1% critical
value 2.58 from the N(0, 1) distribution. Note that the sum of residuals is zero
across the two PHYS classes.

Also, in this testing situation, as in Example 7.2, the design-based Wald statistic
behaves adequately because of the relatively large number of sample clusters
(250), and we may conclude that the Wald test provides a reasonable testing
procedure for the independence hypothesis of PHYS and PSYCH. And if only the
cell and marginal design effects are provided, we would choose the F-corrected
first-order Rao–Scott adjustment to the Pearson (or Neyman) statistic. But if
only the cell design effects are provided and not the marginal design effects,
difficulties would arise in obtaining an approximately valid testing procedure
because of the apparent over-conservativity of the mean deff adjustment in such
a case.

The test of independence in a two-way table can also be executed as a
test of no interaction for an appropriate log-linear model with two categorical
variables. The independence test is obtained by fitting the saturated log-linear
model INTERCEPT + PHYS + PSYCH + PHYS∗PSYCH, say, and then by testing
with the Wald test the significance of the interaction of PHYS and PSYCH, i.e.
the item PHYS∗PSYCH. The design-based Wald statistic gives an observed value
X2

des = 13.83, with a p-value 0.0012, and is compatible with the previous results.
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7.6 CHAPTER SUMMARY AND FURTHER READING

Summary

For a goodness-of-fit test and tests of homogeneity and independence on tables
from complex surveys, testing procedures are available that properly account for
the complexities of the sampling design. These complexities include the weighting
of observations for obtaining consistently estimated proportions, and intra-cluster
correlations, which arise due to the clustering and are usually positive. Generally,
valid testing procedures include the design-based Wald test and the second-order
adjustment to the Pearson and Neyman test statistics.

The design-based Wald test can be expected to work adequately when working
with large samples in which a large number of sample clusters are also available.
This was the case in the OHC Survey. A drawback to the Wald test is its
sensitivity to such small-sample situations where only a small number of sample
clusters are present, leading to unexpectedly liberal test results. The MFH Survey
appeared to be an example of such a design. The degrees-of-freedom corrections
to the Wald statistic, leading to F-type test statistics, can be used to account for
possible instability. The second-order Rao–Scott adjustment to the Pearson and
Neyman test statistics can be expected not to be seriously sensitive to instability
problems. This adjustment appeared to work reasonably in both the OHC and
MFH Surveys.

A full design-based covariance-matrix estimate is required for the design-based
Wald test and for the second-order Rao–Scott adjustments. In secondary analyses
on published tables, where such a covariance-matrix estimate is not supplied, only
approximately valid first-order testing procedures are available. The mean deff
adjustment to the standard test statistics can be used if only the cell design-effect
estimates are provided. But this adjustment can be overly conservative, as seen
in the example from the OHC Survey. The first-order Rao–Scott adjustment is
superior to the mean deff adjustment, and, using an F-correction, the first-order
adjustment can in some cases account for possible instability problems, as seen in
the MFH Survey example.

Because a test of homogeneity can also be taken as a simple application of
logit modelling, and a test of independence in turn as an application of log-
linear modelling, these modelling approaches, implemented in software for the
analysis of complex surveys, can also be used. For further training of these
testing methodologies the reader is advised to visit the web extension of this
book.

In hypothesis testing, a vector of finite-population cell proportions was con-
sidered. But, if the finite population is large, these proportions are close to the
corresponding cell probabilities of the infinite superpopulation from which the
finite population can be regarded as a single realization. Thus, the design-based
inferences considered here also constitute an inference on the parameters of the
appropriate infinite superpopulation.
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Further Reading

The analysis of one-way and two-way frequency tables has received attention in
the survey analysis literature. Articles by Holt et al. (1980) and Rao and Scott (1981,
1984, 1987) cover important theoretical developments of the 1980s. More applied
sources include Hidiroglou and Rao (1987a, 1987b), and Rao and Thomas (1988,
1989). Thomas et al. (1996) evaluate various tests on independence on two-way
tables under complex sampling.

There are also overviews and more specialize material available on this topic,
such as the articles by Freeman and Nathan in the Handbook of Statistics (vol. 6,
1988) and a section in Särndal et al. (1992) and Lohr (1999). The duality between
design-based and model-based inference is discussed, e.g. in Rao and Thomas
(1988) and in Skinner et al. (1989). Rao and Thomas (2003) summarize many
recent findings on the analysis of categorical response data from complex surveys.
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8

Multivariate
Survey Analysis

Multivariate methods provide powerful tools for the analysis of complex survey
data. Multivariate analysis is discussed in this chapter in the case of one response
variable and a set of predictor or explanatory variables. For this kind of analysis
situation, logit models and linear models are widely used. Proper methods are
available for fitting these models for intra-cluster correlated response variables
from complex sampling designs. These methods have also been implemented in
software products for survey analysis. With logit and linear modelling in complex
surveys, as with the analysis of two-way tables, it is important to eliminate the
effects of clustering from the estimation and test results. Examination of recent
methodology for this task, supplemented with numerical examples, is the main
focus in this chapter. The range of multivariate methods considered, and the basic
logit and linear models, are introduced in Sections 8.1 and 8.2. The design-based
and other analysis options used in multivariate analysis are also presented in
Section 8.2. In Section 8.3, design-based analysis of categorical data is discussed
and illustrated. Methods for logistic and linear regression analysis are treated in
Section 8.4, and a summary is given in Section 8.5. The Occupational Health Care
(OHC) Survey data, providing an example of a complex survey, is used in empirical
applications. Materials presented in the examples are worked out further in the
interactive web extension of the book.

8.1 RANGE OF METHODS

The aim in fitting multivariate models is to find a scientifically interesting but
parsimonious explanation of the systematic variation of the response variable.
This is achieved by modelling the variation with a reasonable set of predictor
variables using the available survey data. For example, in a health survey based on

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
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a cluster sample of households, variation of health status and use of health services
is to be studied in order to find possible high-risk population subgroups to target in
developing a health promotion programme. Certain socioeconomic determinants
of the sample households and demographic and behavioural characteristics of
household members are used as predictor variables. In an educational survey
based on cluster sampling of teaching groups, one may wish to study the effect
of the teacher, and that of the students, on the differences in learning. Further,
in a survey on health-related working conditions, the association of perceived
psychic (psychological or mental) strain with certain physical and other working
conditions can be studied, again on the basis of data from cluster sampling with
industrial establishments as the clusters. In all these surveys, the data would
be collected with cluster sampling, but inferences concern mainly a person-level
population or, more generally, relationships of the person-level variables under a
superpopulation framework.

Response variables in the example surveys were binary (chronic sickness
is present or not present; psychic strain is low or high), polytomous (learning
outcomes are poor, medium or good), or quantitative or continuous (the number of
physician visits; principal component score of psychic strain). Logit modelling on a
binary or polytomous response and linear modelling on continuous measurements
provide two popular approaches to these cases. If cluster sampling is used, as in the
example surveys, the response variables are exposed to intra-cluster correlations.
The consequences of intra-cluster correlation are discussed briefly in the following
introductory example.

Introductory Example

Let us consider more closely the cases of a binary and a continuous response
variable. With categorical predictors, the data for a binary response can be
arranged in a table of proportions, and for a continuous response, in a table of
means. From the OHC Survey, we have the following table of perceived overall
psychic strain (PSYCH), which is originally a continuous variable of scores of the
first principal component from a set of psychic symptoms. For a binary response,
the variable PSYCH is recoded so that the value zero indicates strain below the
mean (low-strain group), and the value one indicates strain above the mean
(high-strain group). In the table, we have three categorical predictors, each with
two classes: sex and age of respondent, and the variable PHYS (physical health
hazards), which measures physical working conditions coded so that the value
one indicates more hazardous work. The domains are formed by cross-classifying
the predictors, and they cut across the sample clusters. The main interests are
in the relation of psychic strain to physical working conditions. In Example 7.3,
statistically significant dependence was noted for these variables, although in a
slightly different setting where PSYCH was recoded as a three-class variable.

TLFeBOOK



Range of Methods 259

The percentage of persons experiencing above-average psychic strain in the
whole sample is of course 50%, and in the risk group (PHYS = 1) this percentage
was noted to be 52.2%, i.e. only slightly higher than in the other group. But, when
inspecting the variation of percentage estimates in Table 8.1, it appears that there
are certain subgroups with a high proportion of persons suffering from psychic
strain. For both sexes, the proportions tend to increase with increasing age and,
in a given age group, the proportions are higher for those involved in physically
more hazardous work. There might also exist an interaction between age and
physical working conditions.

Thus, the variation in the proportions of the binary response is quite logical.
Obviously, the variation in the means of the corresponding continuously measured
psychic strain follows a similar pattern. A logit analysis would be chosen for the
analysis of the domain proportions, and linear modelling is appropriate for the
domain means. Because the predictors are categorical, an analysis-of-variance-
type model would be selected in both cases. If the data were obtained with
simple random sampling (SRS), the analysis would technically be a standard one:
take a procedure for binomial logit modelling and for linear analysis of variance
(ANOVA) from any commercial program package, search for well-fitting and
parsimonious logit and linear models and draw conclusions.

But in the OHC Survey, cluster sampling was used with establishments as the
clusters. Positive intra-cluster correlation can thus be expected for the response
variable PSYCH, as in Example 7.3. This correlation can disturb the analysis in
such a way that if it is ignored, erroneous conclusions might be drawn. From
Table 8.1 it can be seen that design-effect estimates of proportions are larger than

Table 8.1 Proportion (%) of persons in the upper psychic strain group, and mean of the
continuously measured psychic strain, in domains formed by sex, age and physical working
conditions of respondent, and design-effect estimates of the proportions and means (the
OHC Survey; n = 7841 employees).

PSYCH
(Binary)

PSYCH
(Continuous)

Domain SEX AGE PHYS % deff Mean deff

1 Males −44 0 41.9 1.16 −0.193 1.14
2 1 47.2 1.33 −0.084 1.36
3 45– 0 46.1 0.87 −0.075 1.05
4 1 52.0 1.18 0.139 1.25
5 Females −44 0 54.1 1.23 0.065 1.61
6 1 62.0 1.38 0.264 1.46
7 45– 0 53.2 1.65 0.098 1.74
8 1 70.0 1.47 0.656 1.44

All 50.0 1.69 0.000 1.97
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one on average, with an overall design-effect estimate deff = 1.7, indicating a
noticeable clustering effect. For a proper analysis, this clustering effect should be
taken into account, and a simpler model for the variation of PSYCH proportions can
be obtained than by ignoring the clustering effects, as will be seen in Example 8.1.

Two Main Approaches

There are two main approaches available for proper multivariate analysis of
an intra-cluster correlated response variable such as PSYCH. If intra-cluster
correlation is taken to be a nuisance, one may make efforts to eliminate this
disturbance effect from the estimation and test results, as was done in Chapter 7.
The nuisance approach, covering a variety of methods for logit and linear modelling,
has been developed over a long period, mainly within the context of survey
sampling. This approach is sometimes referred to as the aggregated approach.
In Chapter 8, we will discuss methods commonly used in fitting logit and linear
models for complex survey data under the nuisance approach, based on variants
of least squares (LS) estimation and maximum likelihood (ML) estimation.

If, on the other hand, clustering is interesting as a structural property of the
population, it can be examined with appropriate models. This approach has been
developed under a general framework of multi-level modelling for hierarchically
structured data sets. Multi-level modelling can also be applied to multivariate
analysis of correlated responses from clustered designs. However, for complex sur-
veys, the nuisance approach has had a dominant role, and it is the main approach
used here. The alternative approach, which can also be called disaggregated, will
be briefly discussed in this chapter and demonstrated in Chapter 9.

Estimation Methods

There are alternative asymptotically valid estimation methods for modelling
intra-cluster correlated response variables. For a binary or polytomous response
variable, we apply a variant of the generalized least squares (GLS) estimation in
cases where the data are arranged in a multidimensional table such as Table 8.1.
In using GLS for complex survey data, element weights are incorporated in the
estimation equations. We call it henceforth the generalized weighted least squares
(GWLS) method. This simple noniterative method will be discussed in Section 8.3
for logit and linear modelling of categorical data. The GWLS method, introduced
in Grizzle et al. (1969) and Koch et al. (1975), is applicable to a combination of
linear, logarithmic and exponential functions on proportions. Thus, in addition
to logit and linear models, log-linear models are also covered.

A widely used method for fitting models for binary, polytomous and count
response variables in complex surveys is based on a modification of ML estimation
such that the element weights are incorporated in the estimating equations. The
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method, called pseudolikelihood (PML) estimation, will be considered in Section 8.4
for logit analysis on a binary response. In linear modelling on a continuous
response, LS estimation will be used where element weights are also incorporated
in the estimation; the method will be called the WLS method. In all these methods,
proper design-based methods using approximation techniques, introduced in
Chapter 5, are applied in covariance-matrix estimation of estimated regression
coefficients. Linear and nonlinear models considered are special cases of a broad
methodology for fitting generalized linear models following Nelder and Wedderburn
(1972) and McCullagh and Nelder (1989) covering, for example linear, logit and
log-linear models.

The third method is based on the methodology of generalized estimating equations
(GEE) (Liang and Zeger 1986). The model parameters are estimated using the
so-called multivariate quasilikelihood method. We will briefly discuss and apply this
method in Section 8.4, because the method, like the PML method, has its roots in
generalized linear models methodology.

In testing procedures, design-based Wald test statistics and second-order
Rao–Scott adjusted test statistics can be used, providing asymptotically valid
testing procedures. However, the test statistics may suffer from instability prob-
lems, especially when the number of sample clusters is small. Instability can
disturb the behaviour of a design-based Wald statistic, resulting in overly liberal
test results relative to the nominal levels and leading to unnecessarily complex
models. This property is similar to that noted for Wald tests on two-way tables.
To protect against the effects of instability, certain degrees-of-freedom corrections
such as F-corrections are available.

Although there are many similarities in the estimation methods, their appli-
cability and properties differ in certain respects. For further discussion, we next
define the main types of linear and logit models, and more formally introduce the
corresponding models.

8.2 TYPES OF MODELS AND OPTIONS FOR ANALYSIS

Three Types of Models

In linear models, the expectation of a continuous response variable is related to
a linear expression on the predictors. In logit models, a nonlinear function of
the expectation of a binary response variable, called a logit or logistic function, is
related to a linear expression on the predictors. Note that both models share the
property that the expression on the predictors is a linear one. But the essential
difference is that in a linear model this predictor part is linearly related to the
response variable and in a logit model a nonlinear relationship is postulated.

For introducing the types of linear and logit models, it is instructive to consider
separately the case of multidimensional tables with categorical predictors and the
case where the predictors are purely continuous (or at least one of them is). In
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both instances, the response variable can be binary, polytomous, quantitative or
continuous.

In multidimensional tables, such as Table 8.1, the predictors are categorical
qualitative or categorized quantitative variables, and depending on additional
assumptions on their types, special cases of linear and logit models are obtained.
In models of ANOVA type, the classes of each predictor are taken to be qualitative.
Sex, occupation, social class and type of industry are examples of commonly used
predictors. For categorized quantitative predictors, monotonic ordering can be
assumed on the classes of each predictor, and desired scores can be assigned to the
classes. The predictors can then be taken to be continuous, leading to regression-
type models. Age, systolic blood pressure, monthly income of a household and first
principal component of psychic symptoms are examples of such predictors, each
categorized into a small number of classes. Note that the classes of an originally
quantitative variable can also be taken to be qualitative, as in Example 7.3. If
both qualitative and quantitative categorical predictors are present, we may call
the model an analysis of covariance or ANCOVA-type model. For ANOVA and
ANCOVA models, it is common to include interaction terms in the model and test
their significance, which often constitutes an essential part of model building.

Sometimes it is desirable to work with quantitative predictors without catego-
rizing them and arranging the data in a multidimensional table. Thus, we have at
least one continuous predictor, and depending on the types of the other predictors,
the corresponding models are obtained. If all the predictors are continuous mea-
surements, we have a regression-type model, and additional qualitative predictors
result in an ANCOVA-type model. It should be noted that in this case we actually
model individual-level differences, whereas in the former case we are modelling
differences between subgroups of the population.

In the analysis of a continuous response variable, the traditional ANOVA,
regression analysis and ANCOVA models constitute the commonly used special
cases of a linear model. We use analogous terminology for logit models with
a binary or polytomous response variable. For these, we therefore have the
corresponding logit ANOVA, logit (or logistic) regression and logit (or logistic)
ANCOVA types of models.

Logit and Linear Models for Proportions

The following examples often deal with logit and linear modelling on domain
proportions of a binary response variable because of the simplicity and popularity
of this analysis situation in practice. Let us thus introduce the logit and linear
models in the case where the data are organized in a multidimensional table
such that there are u domains that are formed by cross-classifying the categorical
predictors, and the response variable is binary. A logit or a linear model can then
be postulated for examining the systematic variation of the estimated domain
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proportions of the response variable across the domains. The situation is thus
essentially similar to that of Table 8.1.

Under a logit model, we deal with logarithms of ratios of proportions pj1 and
pj2, where the former is the proportion of ‘success’. We denote this proportion
by pj; thus the other is pj2 = 1 − pj. The variation is modelled by relating the
functions of the form log(pj/(1 − pj)) of the unknown proportions pj to linear
functions of the form b1xj1 + b2xj2 + · · · + bsxjs, where ‘log’ refers to natural
logarithm. A function log(pj/(1 − pj)) is called the logit or log odds of success.
In the linear functions, bk are the model coefficients to be estimated, of which
the first coefficient b1 is an intercept term. The values xjk are for the predictor
or explanatory variables xk, with a constant value of one assigned to the first
variable x1. Other variables depend on the model type. In logit ANOVA, xk are
indicator variables for the classes of the predictors. In logistic regression, they
are continuous-valued scores assigned to the classes or the original continuous
measurements. And in logit ANCOVA, the x-variables constitute a mixture of
indicator variables and continuous variables. Interpretation of the coefficients
bk depends on the model type and on the parametrization used under a specific
model. An advantage of the logit model is that odds-ratio-type statistics are readily
available, and in special cases, interpretations with the concepts of independence
and conditional independence are also possible.

Under linear modelling on proportions, on the other hand, we deal directly
with differences of proportions. Thus, the population proportions pj are related
linearly to the linear functions b1xj1 + b2xj2 + · · · + bsxjs. This model formulation
can be equally appropriate as a logit formulation, and it involves certain con-
venient interpretations. But interpretations by independence or related natural
terminology are excluded.

The logit and linear models can be compactly written in a matrix form. Let
p = (p1, . . . , pu)

′ be the vector of unknown domain proportions, b = (b1, . . . , bs)
′

be the vector of model coefficients and let X be the u × s matrix of xjk such that the
columns of the matrix represent the values of the variables xk. Usually, X is called
the model matrix. A hypothesized model can be written in the form

F(p) = Xb, (8.1)

where, in the case of a logit model, the function vector F(p) of the unknown
proportion vector p is formulated as

F(p) = F(f(b)) = log
(

f(b)

1 − f(b)

)
, (8.2)

and, in the case of a linear model, the function vector F(p) equals p because F is
simply an identity function. Further, for a logit model, the function vector f(b) is
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derived using the inverse of the logit function:

f(b) = F−1(Xb) = exp(Xb)

1 + exp(Xb)
, (8.3)

where ‘exp’ refers to the exponential function. For a linear model, this function
vector is obviously f(b) = Xb. An important motivation for the logit function is
that the values of the function vary between zero and one, i.e. in the same range
as the proportions pj themselves. Therefore, predicted proportions from a fitted
logit model always fall in the range (0,1). This property does not necessarily hold
for the linear model formulation.

As an illustration of the matrix expressions (8.1)–(8.3), let us consider the case
with two dichotomous predictors A and B for logit and linear ANOVA models for
proportions pj of a binary response variable. There are thus four domains (u = 4)

and the table of the unknown proportions pj is as follows:

Domain A B pj

1 1 1 p1

2 1 2 p2

3 2 1 p3

4 2 2 p4

We have three sources of variation in the table: that due to the effect of A, that due
to the effect of B and that due to the effect of the interaction of A and B. In order
to cover all these sources of variation, a total of four coefficients bk are included in
the model F(p) = Xb. The coefficient b1 is the intercept, b2 is assigned to A, b3 is
assigned to B and b4 is assigned to the interaction of A and B. This model is called a
saturated model, and by choosing a specific model matrix X, it can be expressed as


F(p1)

F(p2)

F(p3)

F(p4)


 =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






b1

b2

b3

b4


 , (8.4)

where for a logit model the functions F(pj) are the logits

F(pj) = logit(pj) = log
(

pj

1 − pj

)
, j = 1, 2, 3, 4,

and for a linear model the functions are F(pj) = pj. In the model matrix X of (8.4),
we first have a column of ones for the indicator variable x1. Then, there are three
columns of contrasts with values 1 or −1, of which the first is for the predictor A, i.e.
for the indicator variable x2, the second is for the predictor B, i.e. for the indicator
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variable x3, and the last one is for the interaction of A and B, i.e. for the indicator
variable x4. Note that each indicator variable sums to zero in this parametrization,
and there is one indicator variable for each predictor and its interaction, because
the predictors are two-class variables. Generally, there are t − 1 columns in the
model matrix for a t-class variable, and (t − 1) × (v − 1)columns for an interaction
of a t-class variable and a v-class variable, corresponding to the degrees of freedom
for a model term. The sum of these degrees of freedom is the number s of model
coefficients.

The parametrization just applied is sometimes called a marginal or full-rank
centre-point parametrization. Under this parametrization, for categorical predic-
tors with more than two classes, each indicator variable is used with the others
to contrast a given class with the average of all classes. For example, in a logit
ANOVA model, the coefficients bk indicate differential effects on a logit scale, i.e.
with respect to the average of all the fitted logits, and in a linear ANOVA model,
they indicate differential effects on the untransformed scale, i.e. with respect to
the average of all the fitted proportions.

It is important for proper inferences that we are fully aware of the specific
parametrization applied, because there are also other commonly used parametriza-
tions. For example, a parametrization called partial or reference-cell can be used.
There, a specific reference class is assumed, and each indicator variable is used
with the others to compare a given class with the reference class. Under this
parametrization, we put zeros in place of −1 in the previous model matrix X.
This parametrization is especially useful when a definite reference group can
be stated. In a logit model, the coefficients now indicate differential effects with
respect to the fitted logit in the reference class, and in a linear model, differential
effects with respect to the fitted proportion in the reference class. An odds ratio
OR(bk) = exp(bk) interpretation is readily available for logit models under partial
parametrization.

Under these parametrizations, we have for the functions F(pj):

Marginal Partial
F(p1) = b1 + b2 + b3 + b4 F(p1) = b1 + b2 + b3 + b4

F(p2) = b1 + b2 − b3 − b4 F(p2) = b1 + b2

F(p3) = b1 − b2 + b3 − b4 F(p3) = b1 + b3

F(p4) = b1 − b2 − b3 + b4 F(p4) = b1 + b4

Note that, because the functions F(pj) must be equal for both parametrizations,
the corresponding coefficients bk from these parametrizations cannot coincide. So,
for example, the coefficient b1 in the marginal parametrization is not equal to the
b1 in the partial parametrization.

Our discussion so far has been on logit and linear ANOVA models on domain
proportions. A similar discussion applies for linear ANOVA models on domain
means of a continuous response. For logit and linear regression and ANCOVA
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models on binary responses, and for the corresponding linear models on contin-
uous responses, the model matrices, however, are different, involving different
interpretation of the model parameters.

Model Building in Practice

When fitting a specified logit or linear model, the primary task is to estimate the
model coefficients bk and the variances of the estimated coefficients. Using the
resulting estimates, adequacy of the model is assessed by examining the goodness
of fit of the model, and tests of linear hypotheses are executed on model coefficients.
In practice, model building often involves repetition of this procedure several times
for alternative models.

Let us consider further the logit and linear models on proportions. In a model-
fitting procedure using standard notation, the previous ANOVA-type models
can be written as F(P) = log(P/(1 − P)) = A + B + A ∗ B for a logit model, and
F(P) = P = A + B + A ∗ B for a linear model with a binary response variable.
There are three model terms corresponding to the predictors: two main effects
and an interaction term. The model is saturated because it includes all the terms
possible in this situation; the intercept term is included as a default in all the
models. This kind of notation is commonly used for requesting a specified model
structure, i.e. the terms desired in the linear part of the model, in many programs
for linear and logit analysis.

A saturated model, including all possible main effects and interaction terms, is
seldom interesting because the model includes as many parameters as there are
degrees of freedom available. Also, the saturated model fits the data perfectly. In
a model-building procedure, the aim is to reduce the saturated model in order to
find a well-fitting model, which is parsimonious, so that as few model terms as
possible are included.

Using the above notation, the possible models in these logit and linear ANOVA
cases are as follows:

F(P) = A + B + A ∗ B (saturated model),

F(P) = A + B (main effects model),

F(P) = A (model for the predictor A only),

F(P) = B (model for the predictor B only), and

F(P) = INTERCEPT (null model).

Reduced models are obtained by hierarchically removing statistically nonsignif-
icant terms from a model. This procedure corresponds to removing columns (or
sets of columns) from the model matrix. Usually, a well-fitting model for further
use and for interpretation is found between the saturated and null models.
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A model-building procedure in linear ANOVA on domain means resembles that
of logit and linear ANOVA on domain proportions. In logistic and linear regression
or ANCOVA-type models involving continuous predictors, an appropriate model is
usually searched for by consecutively entering statistically significant or scientifi-
cally interesting terms, beginning from the null model. In these models, it should
be noted that interactions are not allowed between the continuous predictors.

In complex surveys, estimation of the model coefficients of a logit ANOVA,
ANCOVA or regression models on domain proportions can be executed by the
GWLS, the PML or the GEE method. For logistic regression and ANCOVA models
on a binary or polytomous response with strictly continuous predictors, the PML
or the GEE method is used. In practice, all these models can be conveniently fitted
with software for survey analysis.

Before entering into the details of modelling by GWLS, PML and GEE methods,
we discuss in greater depth the special features of multivariate analysis when
working with complex surveys. A number of options will be introduced for proper
analysis under different sampling-design assumptions.

Options for Analysis

Here, we introduce a set of options for multivariate analysis of complex survey
data involving clustering, stratification, multi-stage sampling and nonignorable
nonresponse. In the presence of such complexities, consistent estimators of model
coefficients and their variances, and valid test results, can be obtained by appro-
priately weighting the observations due to unequal inclusion probabilities and
nonresponse, and by appropriately accounting for the intra-cluster correlations.

Three specific analysis options are presented: a design-based option and two
options assuming simple random sampling (SRS), with or without replacement.
Usually, a with-replacement assumption is used. We call the first option the
design-based option, and it uses the actual, possibly complex, sampling design. In
SRS-based options, an assumption of simple random sampling is made, irrespective
of the possibly more complex sampling design actually used. The first SRS-based
option incorporates the weighting due to adjustment for nonignorable unit
nonresponse. We call it the weighted SRS option. The second SRS-based option is
called the unweighted SRS option. It ignores the sampling complexities including
the weighting.

An analysis under the design-based option accounts for all the sampling
complexities, that is, weighting, stratification and clustering. The weighted SRS
option ignores the stratification and clustering, and the unweighted SRS option
ignores all the sampling complexities. The SRS options can be used as a reference
for the design-based option when quantifying the effects of the design complexities
on analysis results.

Under the design-based option, intra-cluster correlations, unequal element
inclusion probabilities and adjustment for nonresponse can be properly accounted
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for. This option is evidently the most appropriate for multivariate analysis in
complex surveys. Therefore, design-based analysis is widely used in survey
analysis, and it will be adopted in this chapter as the main analysis option.

The design-based option can in practice be applied in various ways, depending on
special features of the sampling design and on software available for the analysis.
Sampling designs involving weighting due to stratification or poststratification
and several stages of sampling often require approximations to conveniently fit
the design-based option. For data from two-stage stratified cluster sampling with a
large population of clusters, a simple solution for this option is to reduce the design
to one-stage stratified sampling where the primary sampling units are assumed to
be drawn with replacement. This approximation is common in complex analytical
surveys. Use of this approximation requires access to an element-level data set,
which includes variables for stratum and cluster identification and for weighting.
The approximation was used in the design-based analysis of frequency tables in
Chapter 7 and will be used for multivariate analyses in this chapter.

In more advanced use of the design-based option, additional features of the
sampling design can be accounted for, if necessary, for proper estimation. Examples
are when the variation is due to several stages of sampling or sampling of clusters is
with unequal probabilities without replacement. This presupposes the availability
of population counts at each stage of sampling, and the calculation of single
and joint selection probabilities of each primary sampling unit and each pair of
PSUs in each first-stage stratum. Thus, more information must be supplied for an
analysis program.

In addition to the above refinements, analysis under the design-based option
can involve reorganization of the sample clusters into strata using the collapsed
stratum technique, if only one primary sampling unit was originally drawn from
each stratum, as was the case in the Mini-Finland Health (MFH) Survey. In
some cases, additional weighting for poststratification is desirable. Many of these
features have been implemented in software products for complex surveys.

In multivariate analysis of domain proportions of a binary response, it is assumed
for the design-based option that an appropriate design-based covariance-matrix
estimate of proportions can be calculated. In Chapter 5, we introduced a technique
for obtaining a consistent covariance-matrix estimate based on the linearization
method. Sample reuse methods, such as the jackknife, can also be used. This
estimate is allowed to be nondiagonal because the correlations of the proportions
from separate domains can be nonzero, which is the case when working with
cross-classes or mixed classes. But when working with domains constituting
segregated classes, it can be assumed that correlations of the proportions from
separate domains are zero, because all elements in a given cluster fall in the same
domain. In this case, the design-based covariance-matrix estimate simplifies to a
diagonal matrix.

The SRS-based analysis options assume a binomial covariance matrix of
the domain proportions, which is diagonal by definition. The validity of this
assumption depends on the actual sampling design and the domain structure.
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The SRS-based options assume simple random sampling with replacement.
Under the weighted SRS option, it is assumed that the domain proportions are
consistently estimated using the appropriate element weights, and a binomial
covariance matrix is assumed for these proportions. Under the unweighted SRS
option, simple random sampling with replacement is assumed, and the data set
is assumed to be self-weighting. Thus, all the complexities of the sampling design
are ignored.

Because the two versions of the SRS-based option are not valid for complex
surveys involving clustering, they will be used as reference options for the design-
based option and in the construction of appropriate generalized design-effect
matrices. The weighted SRS option is used when assessing the magnitude of
the clustering effects on results from multivariate analyses, and the unweighted
SRS option can be used as a reference option for the design-based option when
examining the effects of all the complexities of the sampling design on analysis
results, including the effect of weighting procedures.

The analysis options with respect to sampling design are summarized below:

Allowing Allowing Allowing
Option weights stratification clustering

Design-based Yes Yes Yes
Weighted SRS Yes No No
Unweighted SRS No No No

It should be noticed that in multivariate survey analysis, as in the analysis of
two-way tables, the design-based approach to inference also constitutes inference
on the parameters of the corresponding superpopulation model, provided that the
finite population is large (see Rao and Thomas 1988).

8.3 ANALYSIS OF CATEGORICAL DATA

The GWLS method of generalized weighted least squares estimation provides a
simple technique for the analysis of categorical data with ANOVA-type logit and
linear models on domain proportions. Allowing all the complexities of a sampling
design including stratification, clustering and weighting, the design-based option
provides a generally valid GWLS analysis. Analysis under the weighted or
unweighted SRS options assuming simple random sampling serves as a reference
when studying the effects of clustering and weighting on results.

The GWLS method is computationally simple because it is noniterative for both
logit and linear models on proportions. The alternative PML and GEE methods
of pseudolikelihood and generalized estimating equations for logit models are, as
iterative methods, computationally more demanding. For logit regression with

TLFeBOOK



270 Multivariate Survey Analysis

continuous predictors, which are not categorized, the PML and GEE methods can
be used but the GWLS method is inappropriate. The application area of the GWLS
method is thus more limited than that of PML and GEE methods.

In surveys with large samples, closely related results are usually attained by any
of the methods. But in fitting ANOVA-type models there can be many multi-class
predictors included in the model and, therefore, the number of domains can be
large, and a large element-level sample size is required to obtain a reasonably large
number of observations falling in each domain. This is especially important for
the GWLS method, which is mainly used in large-scale surveys where the sample
sizes can be in thousands of persons, as is the case in the OHC and MFH Surveys.
For proper behaviour of GWLS, PML and GEE methods, a large number of sample
clusters is beneficial. Recall that this property holds for the OHC Survey.

We consider the GWLS method for a binary response variable and a set of
categorical predictors. The data can thus be arranged into a multidimensional
table, such as Table 8.1, where the u domains are formed by cross-classifying the
categorical predictors and the proportions pj of the binary response are estimated
in each domain. The consistent estimates p̂j, used under the design-based and
weighted SRS options, are weighted ratio-type estimators of the form p̂j = n̂j1/n̂j,
where n̂j1 is the weighted sample sum of the binary response in domain j, and
n̂j are weighted domain sample sizes. The unweighted proportion estimates p̂U

j ,
used under the unweighted SRS option, are obtained using the unweighted
counterparts nj1 and nj.

When applying the GWLS method for logit and linear modelling under an
analysis option, the starting point is the calculation of the corresponding propor-
tion estimate vector and its covariance-matrix estimate. By using these estimates,
the model coefficients are estimated, together with a covariance matrix of the
estimated coefficients, and using these, fitted proportions and their covariance-
matrix estimates are obtained. Further, the Wald test of goodness of fit of the
model, and desired Wald tests of linear hypotheses on the model coefficients, are
executed. Finally, residual analysis is carried out to more closely examine the fit
of the selected model.

Design-based GWLS Estimation

Under the design-based option, a consistent GWLS estimator b̂des, denoted b̂ for
short in this section, of the s × 1 model coefficient vector b for a model F(p) = Xb
is given by

b̂ = (X′(HV̂desH)−1X)−1X′(HV̂desH)−1F(p̂), (8.5)

where V̂des is a consistent estimator of the covariance matrix of the consis-
tent domain proportion estimator vector p̂, and HV̂desH is a covariance-matrix
estimator of the function vector F(p̂). An estimate V̂des is obtained using, for
example, the linearization method as described in Chapter 5. The GWLS estimating
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equations (8.5) are thus based on the consistently estimated functions F(p̂j) and
their design-based covariance-matrix estimate. The equations also indicate that
no iterations are needed to obtain the estimates b̂k. A justification for the label
‘GWLS’ is that element weights are used in obtaining the proportion vector
estimate and its covariance-matrix estimate, which are supplied to the GLS
estimating equations.

The GWLS estimator b̂ from (8.5) applies for both logit and linear models
on domain proportions. But the matrix H in the covariance-matrix estimator
of the function vector differs. In the logit model, the diagonal u × u matrix H
of partial derivatives of the functions F(p̂j) has diagonal elements of the form
hj = 1/(p̂j(1 − p̂j)). And in the linear model, the matrix H is an identity matrix
with ones on the main diagonal and zeros elsewhere.

Under a partial parametrization of a logit ANOVA model (see Section 8.2),
where the columns of the model matrix X corresponding to the classes of the
predictors are binary variables, a log odds ratio interpretation can be given to the
estimates b̂k. Thus, an estimate exp(b̂k) is the odds ratio for the corresponding class
with respect to the reference class adjusted for the effects of the other terms in
the model. This interpretation of the estimated model coefficients is common in
epidemiology and also in social sciences.

A covariance-matrix estimate V̂des(b̂) of the estimated model coefficients b̂k

from (8.5) is used in obtaining Wald test statistics for the coefficients. This s × s
covariance matrix is given by

V̂des(b̂) = (X′(HV̂desH)−1X)−1. (8.6)

With proper choice of H, this estimator applies again for both logit and linear
models. Diagonal elements of V̂des(b̂) provide the design-based variance estimates
v̂des(b̂k) of the estimated coefficients b̂k to be used in obtaining the corresponding
standard-error estimates s.edes(b̂k) = v̂1/2

des (b̂k). Under a logit model, using these
standard-error estimates, for example, an approximative 95% confidence interval
for an odds ratio exp(bk) can be calculated as follows:

exp(b̂k ± 1.96 × s.edes(b̂k)). (8.7)

Two additional covariance-matrix estimators are useful in practice. These are
the u × u covariance-matrix estimator V̂des(F̂) of the vector F̂ = Xb̂ of the fitted
logits and the covariance-matrix estimator V̂des(f̂) of the vector f̂ = F−1(Xb̂) of
the fitted proportions. These are

V̂des(F̂) = XV̂des(b̂)X′ (8.8)

and
V̂des(f̂) = Ĥ−1V̂des(F̂)Ĥ−1. (8.9)
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For a linear model, these covariance matrices obviously coincide, because the fitted
functions are equal to the fitted proportions. For a logit model, the diagonal matrix
Ĥ has diagonal elements of the form ĥj = 1/(f̂j(1 − f̂j)), and the terms f̂j = fj(b̂) are
elements of the vector f̂ of fitted proportions calculated using the equation

f̂ = f(b̂) = exp(Xb̂)/(1 + exp(Xb̂)). (8.10)

The diagonal elements of the covariance-matrix estimates (8.8) and (8.9) are
needed to obtain the design-based standard errors of the fitted functions and of
the fitted proportions.

Goodness of Fit and Related Tests

Examining goodness of fit of the model is an essential part of a logit and linear
modelling procedure on domain proportions. Various goodness-of-fit statistics
can be obtained by first partitioning the total variation (total chi-square) in the
table into the variation due to the model (model chi-square) and into the residual
variation (residual chi-square). Hence, we have

total chi-square = model chi-square + residual chi-square

similar to the partition of the total sum of squares for usual linear regression and
ANOVA. A design-based Wald test statistic X2

des measuring the residual variation
is commonly used as an indicator of goodness of fit of the model. This statistic is
given by

X2
des = (F(p̂) − Xb̂)′(HV̂desH)−1(F(p̂) − Xb̂), (8.11)

which is asymptotically chi-squared with u − s degrees of freedom under the
design-based option. A small value of this statistic, relative to the residual degrees
of freedom, indicates good fit of the model, and obviously, the fit is perfect for a
saturated model. A Wald statistic denoted by X2

des(overall), measuring the variation
due to the overall model, is used to test the hypothesis that all the model coefficients
are zero. It is given by

X2
des(overall) = F(p̂)′(HV̂desH)−1F(p̂) − X2

des, (8.12)

where the first quadratic form measures the total variation and the second is
the residual chi-square (8.11) for the model under consideration. This statistic
is asymptotically chi-squared with s degrees of freedom. Also, a Wald statistic
denoted by X2

des(gof ) can be constructed for the hypothesis that all the model
parameters, except the intercept, are zero. This statistic is defined as the difference
of the observed values of the residual chi-square statistic (8.11) for the model where
only the intercept is included and for the model including all the terms of the
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current model, and therefore, it is asymptotically chi-squared with s − 1 degrees of
freedom. The statistic X2

des(overall) is sometimes called a test for the overall model,
and X2

des(gof ) a test of goodness of fit. Note that all these test statistics apply for
both logit and linear models on domain proportions.

Linear hypotheses H0 : Cb = 0 on the model coefficient vector b can be tested
using the Wald statistic

X2
des(b) = (Cb̂)′(CV̂des(b̂)C′)−1(Cb̂), (8.13)

where C is the desired c × s (c ≤ s) matrix of contrasts. The statistic is asymptot-
ically chi-squared with c degrees of freedom under the design-based option. This
statistic is used, for example, in the testing of hypotheses H0 : bk = 0 on single
parameters of the model using the Wald statistics

X2
des(bk) = b̂2

k/v̂des(b̂k), k = 1, . . . , s,

which are asymptotically chi-squared with one degree of freedom. Note that for
the corresponding t-test statistic the equation t2

des(bk) = X2
des(bk) holds.

Another asymptotically valid testing procedure for linear hypotheses on model
parameters is based on a second-order Rao–Scott adjustment to a binomial-based
Wald test statistic using the Satterthwaite method. This technique is similar to that
used in Chapter 7 on the Pearson and Neyman test statistics. We first calculate
the GWLS estimate b̂ = b̂bin by using in (8.5) the binomial covariance-matrix
estimate V̂bin of p̂ in place of V̂des, and construct the corresponding Wald test
statistic X2

bin(b):

X2
bin(b) = (Cb̂)′(CV̂bin(b̂)C′)−1(Cb̂),

where V̂bin(b̂) is the covariance-matrix estimate of the binomial GWLS estimates
obtained by using the estimate V̂bin in place of V̂des in (8.6). The second-order
corrected Wald statistic is given by

X2
bin(b; δ̂ž, â2) = X2

bin(b)

δ̂ž(1 + â2)
, (8.14)

where the first-order and second-order adjustment factors δ̂ž and (1 + â2) are
calculated from the c × c generalized design-effects matrix estimate

D̂ = (CV̂bin(b̂)C′)−1(CV̂des(b̂)C′) (8.15)

so that
δ̂ž = tr(D̂)/c
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is the mean of the eigenvalues δ̂k of the generalized design-effects matrix esti-
mate, and

(1 + â2) =
c∑

k=1

δ̂2
k /(cδ̂2

ž ),

where the sum of squared eigenvalues is calculated by the formula

c∑
k=1

δ̂2
k = tr(D̂2).

The second-order adjusted statistic X2
bin(b; δ̂ž, â2) is asymptotically chi-squared

under the design-based option with Satterthwaite adjusted degrees of freedom
dfS = c/(1 + â2). If c = 1, as in tests on separate parameters of a model, we have
(1 + â2) = 1 because the generalized design-effects matrix reduces to a scalar and
the adjustment reduces to a first-order adjustment. The test statistics are available
in software products for the analysis of complex surveys.

Unstable Situations

Because the Wald statistics X2
des, X2

des(overall)and X2
des(gof )of goodness of fit, and the

statistic X2
des(b) of linear hypotheses on model parameters, are asymptotically chi-

squared under the design-based option, they can be expected to work reasonably
well if the number m of sample clusters is large relative to the number u of
domains. But the test statistics can become overly liberal relative to the nominal
significance levels if the covariance-matrix estimate V̂des appears unstable. This
can happen if the degrees of freedom f = m − H are small for an estimate V̂des,
relative to the residual or model degrees of freedom.

There are certain F-corrected Wald test statistics available to protect against
the effects of instability similar to those used in Chapter 7 for hypotheses of
homogeneity and independence. For the goodness-of-fit test statistic (8.11), these
degrees-of-freedom corrections are

F1.des = f − (u − s) + 1
f (u − s)

X2
des, (8.16)

referred to the F-distribution with (u − s) and (f − (u − s) + 1) degrees of free-
dom, and

F2.des = X2
des/(u − s), (8.17)

referred in turn to the F-distribution with (u − s) and f degrees of freedom. These
F-corrections can also be derived for the Wald statistics X2

des(overall) and X2
des(gof ),

using the corresponding degrees of freedom s or (s − 1) in place of (u − s).
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Similar F-corrections can be derived for the Wald test statistics of linear
hypotheses on model parameters. For the statistic (8.13), these are

F1.des(b) = f − c + 1
fc

X2
des(b) (8.18)

and
F2.des(b) = X2

des(b)/c, (8.19)

referred to the F-distributions with c and (f − c + 1), and c and f degrees of
freedom, respectively.

Second-order Rao–Scott adjustments can be expected to be robust to instability
problems. However, for the second-order corrected statistic (8.14), an F-correction
can be derived. It is given by

Fbin(b; δ̂ž, â2) = (1 + â2)X2
bin(b; δ̂ž, â2)/c = X2

bin(b)/(cδ̂ž), (8.20)

which is referred to the F-distribution with dfS and f degrees of freedom.
The impact of these F-corrections on p-values of the tests is small if f is large.

However, if f is relatively small, and especially if f and the residual degrees of
freedom are close, the corrections can be effective. Under serious instability, the
statistics F1.des, and F1.des(b) or Fbin(b; δ̂ž, â2), are preferable. These corrections
have been implemented as testing options in software products for the analysis of
complex surveys.

Residual Analysis

It is desirable to examine more closely the fit of the selected model by calculating
the raw and standardized residuals. These can be used in detecting possible
outlying domain proportions. The raw residuals are simple differences (p̂j − f̂j) of
the fitted proportions f̂j from the corresponding observed proportions p̂j. Under the
design-based option, the standardized residuals are calculated by first obtaining a
covariance-matrix estimate V̂res of the raw residuals given by

V̂res = H−1(HV̂desH − V̂des(F̂))H−1, (8.21)

where HV̂desH and V̂des(F̂) are the design-based covariance-matrix estimates of
the vector F(p̂) of the observed functions and the vector F̂ = Xb̂ of the fitted
functions, respectively, and the matrix H depends on which model type, logit or
linear, is fitted. Using (8.21), the standardized residuals are calculated as

êj = (p̂j − f̂j)/

√
v̂j, j = 1, . . . , u, (8.22)
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where v̂j are the diagonal elements of the residual covariance matrix V̂res. A
large standardized residual indicates that the corresponding domain is poorly
accounted for by the model. Because the standardized residuals are approximate
standard normal variates, they can be referred to critical values from the N(0,1)
distribution.

Design Effect Estimation

A principal property of the GWLS method is its flexibility, not only for various
model formulations but also for alternative sampling designs. The design-based
GWLS method appeared valid under the design-based option involving a complex
multi-stage design with clustering and stratification. But the GWLS method can
also be used for simpler designs with the choice of an appropriate proportion
estimator and its covariance-matrix estimator reflecting the complexities of the
sampling design.

Under the weighted SRS option, the consistent proportion estimate p̂ and
its binomial covariance-matrix estimate V̂bin(p̂) are used in equations (8.5) and
(8.6) to obtain the corresponding GWLS estimate b̂ of model coefficients and
the covariance-matrix estimate V̂bin(b̂). The same holds for the unweighted SRS
option, where the unweighted counterparts p̂U and V̂bin(p̂U) are used. The GWLS
estimating equations indicate that the estimates b̂k obtained under the SRS-based
options would not numerically coincide with those from the design-based option.

The SRS-based options are restrictive in the sense that the effect of clustering
on standard-error estimates of estimated model coefficients cannot be accounted
for. This effect is indicated in design-effect estimates of model coefficient estimates.
The design-effect estimates are calculated by using the diagonal elements of the
covariance-matrix estimates V̂des(b̂) and V̂bin(b̂∗) of the model coefficients. Hence,
we have

d̂(b̂k) = v̂des(b̂k)/v̂bin(b̂∗
k), k = 1, . . . , s, (8.23)

where b̂∗
k denotes the estimated model coefficients obtained under the weighted

or unweighted SRS option. Under the unweighted SRS option, these design-
effect estimates indicate the contribution of all the sampling complexities, and
under the weighted SRS option, the contribution of clustering is indicated. It is
often instructive to calculate the design-effect estimates under both SRS options,
because then the contribution of the weighting to design effects can be examined.

Criteria for Choosing a Model Formulation

Which one of the model formulations for proportions, logit or linear, should
be chosen? In certain sciences, one type is more standard than the other, but
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taking an explicit position in favour of either of the types generally is not
possible. It appears that there are gains with the logit formulation, such as
possibilities for interpretation with odds ratios, and in certain cases with standard
independence concepts. Moreover, being a member of the broad category of so-
called exponential family models, a logit model for binomial proportions involves
convenient statistical properties that are not shared with linear models for
binomial proportions. Although these properties do not necessarily apply to logit
models in complex surveys, attention has also been directed to the use of logit
models for this kind of survey.

The linear model formulation on proportions, on the other hand, provides a
simple modelling approach that is especially convenient for those familiar with
linear ANOVA on continuous measurements. Being additive on a linear scale, the
coefficients of a linear model describe differences of the proportions themselves,
not their logits. In practice, however, logit and linear GWLS estimation results on
model coefficients do not markedly differ if proportions are in the range 0.2–0.8,
say. In the following example, we compare the logit and linear model formulations
in a typical health sciences analysis.

Example 8.1

Logit and linear ANOVA with the GWLS method. Let us apply the GWLS method for
logit and linear modelling on domain proportions in the simple OHC Survey setting
displayed in Table 8.1. Our aim is to model the variation of domain proportions
of the binary response variable PSYCH, measuring overall psychic strain, across
the u = 8 domains formed by sex and age of respondent, and the variable PHYS
describing the respondent’s physical working conditions. Table 8.2 provides a
more complete description of the analysis situation. The original domain sample
sizes n̂j and the number mj of sample clusters covered by each domain are included
in addition to the domain proportions p̂j, standard errors s.ej and design effects d̂j.
Note that the domain proportions vary around the value 0.5.

The design-based option provides valid GWLS logit and linear modelling in
this analysis. The sampling design involves clustering effects, as indicated by
design-effect estimates of proportions being on average greater than one. The
average design-effect estimate is 1.28. Further, the domains constitute cross-
classes, which is indicated by the fact that each domain covers a reasonably
large number of sample clusters. More apparently, this property can be seen
from the design-based covariance-matrix estimate V̂des of domain proportions
displayed in Figure 8.1. It can be noted that there exist nonzero covariance terms
in the off-diagonal part of the covariance-matrix estimate. The estimate also
seems relatively stable, because covariance estimates are much smaller than the
corresponding variance estimates. The condition number of V̂des is 12.1, which
also indicates stability. The corresponding binomial covariance-matrix estimate
V̂bin is displayed for comparison.
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Table 8.2 Proportion p̂j of persons in the upper psychic strain group, with standard error
estimates s.ej and design-effect estimates d̂j of the proportions, and domain sample sizes n̂j

and the number of sample clusters mj (the OHC Survey).

Domain j SEX AGE PHYS p̂j s.ej d̂j n̂j mj

1 Males –44 0 0.419 0.0128 1.16 1734 230
2 1 0.472 0.0145 1.33 1578 198
3 45– 0 0.461 0.0178 0.88 690 186
4 1 0.520 0.0247 1.18 483 138
5 Females –44 0 0.541 0.0125 1.23 1966 240
6 1 0.620 0.0270 1.38 447 152
7 45– 0 0.532 0.0236 1.65 740 185
8 1 0.700 0.0391 1.48 203 101

All 0.500 0.0073 1.69 7841 250
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Figure 8.1 Design-based and binomial covariance-matrix estimates V̂des and V̂bin of
domain proportion estimates p̂j.

We consider the model-building process under the design-based option, and
use the unweighted SRS option as a reference. There are three predictors, and
together with their main effects, an intercept, and four interaction terms, a total of
eight model terms appear in the saturated logit and linear ANOVA models, which
can be written in the form

F(P) = INTERCEPT + SEX + AGE + PHYS + SEX ∗ AGE

+ SEX ∗ PHYS + AGE ∗ PHYS + SEX ∗ AGE ∗ PHYS,
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where the function is F(P) = log(P/(1 − P)) for the logit model and F(P) = P for
the linear model, and P stands for proportions of the upper PSYCH group.

In the model-building process, we first fit the saturated logit and linear models
and test the significance of the interaction term of all the three predictors.
If it appears nonsignificant, we remove the term, and study the two-variable
interactions, in turn, for further reduction of the model. Model building is
completed when a reasonably well-fitting reduced model is attained. This stepwise
process is an example of the so-called backward elimination common in fitting of
log-linear and logit ANOVA models.

Let us consider more closely the results on logit model fitting. Under the
design-based option, the main effects model appeared reasonably well-fitting
and could not be further reduced. Results for the model reduction are given in
Table 8.3. There, the values of X2

des for a difference Wald statistic are obtained,
for example, in the comparison of the saturated model 5 and the model 4.
The difference statistic is calculated as X2

des(overall; 5) − X2
des(overall; 4) = 78.84 −

76.90 = 1.94, and compared to the chi-squared distribution with one degree of
freedom attains a nonsignificant p-value 0.1635, and thus, the interaction term
can be removed from the model 5. The observed value of the Wald statistic of
goodness of fit of the main effects model (Model 1) is X2

des = 78.84 − 72.39 = 6.45,
which with 4 degrees of freedom attains a p-value 0.1681, indicating reasonably
good fit.

Substantial reduction of the saturated logit model was possible, and the
model-building procedure produced quite a simple structure including the main
effects terms only. So, the suspected interaction of SEX and PHYS appeared
nonsignificant. We return to this conclusion later when fitting logit models under
the SRS-based analysis options.

Table 8.3 Observed values of the Wald statistics X2
des (overall) for overall models, and the

differences statistics X2
des when compared with reduced logit ANOVA models, under the

design-based analysis option.

Model df
Overall

X2
des p-value

Model
comparison df

Difference
X2

des p-value

5 8 78.84 0.0000 — 1 — —
4 7 76.90 0.0000 5–4 1 1.94 0.1635
3 6 76.09 0.0000 4–3 1 0.81 0.3693
2 5 74.78 0.0000 3–2 1 1.31 0.2533
1 4 72.39 0.0000 2–1 1 2.39 0.1218

Model 5: SEX + AGE + PHYS + SEX∗AGE + SEX∗PHYS + AGE∗PHYS + SEX∗AGE∗PHYS
Model 4: SEX + AGE + PHYS + SEX∗AGE + SEX∗PHYS + AGE∗PHYS
Model 3: SEX + AGE + PHYS + SEX∗PHYS + AGE∗PHYS
Model 2: SEX + AGE + PHYS + SEX∗PHYS
Model 1: SEX + AGE + PHYS
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In the partial parametrization used here, for each predictor the model coefficient
for the first class is set to zero. The first class of the last domain is the reference
domain—here domain 7 in Table 8.2. There are four coefficients bk to be estimated
in the main effects models. GWLS estimates b̂k are actually obtained under the
following model matrix:

X =




1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1




.

The fitted models can be written with b̂k and the model matrix as

F(f̂j) = b̂1 + b̂2(SEX)j + b̂3(AGE)j + b̂4(PHYS)j, j = 1, . . . , 8,

where F(f̂j) = log(f̂j/(1 − f̂j)) for the logit model, and F(f̂j) = f̂j for the linear model,
and the indicator variable values for SEX, AGE and PHYS are in the second, third
and fourth columns of the model matrix X.

Let us consider more closely the estimation and test results for the main effects
logit model. The estimation results for the model coefficients are displayed in
Table 8.4.

Table 8.4 Estimates from design-based logit ANOVA on overall psychic strain (model
fitting by the GWLS method).

95% confidence
interval for OR

Model
term

Beta
coefficient

Design
effect

Standard
error t-test p-value

Odds
ratio Lower Upper

Intercept −0.3282 1.32 0.0635 −7.02 0.0000 0.72 0.66 0.79
Sex

Males∗ 0 n.a. 0 n.a. n.a. 1 1 1
Females 0.4663 1.44 0.0579 8.06 0.0000 1.59 1.42 1.79

Age
–44∗ 0 n.a. 0 n.a. n.a. 1 1 1
45– 0.1385 1.23 0.0570 2.43 0.0159 1.15 1.03 1.28

Physical health
hazards
No∗ 0 n.a. 0 n.a. n.a. 1 1 1
Yes 0.2568 1.30 0.0574 4.48 0.0000 1.29 1.16 1.45

∗ Reference class; parameter value set to zero.
n.a. not available.
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In the table, a positive value of the estimated coefficients b̂2 and b̂3 for females
and for the older group is obtained as expected, and the corresponding t-tests
attain significant p-values. The sex–age adjusted estimate b̂4 for the PHYS class
of more hazardous work is positive, involving a clearly significant t-test. It should
be noticed that the absolute value of the t-test statistic used here corresponds to
the square root of the F-corrected Wald statistic (8.19). The design-effect estimates
d̂(b̂k) of the estimated model coefficients are larger than one owing to the clustering
effect. Thus, binomial standard-error estimates of the model coefficients would be
smaller than the corresponding design-based estimates.

Using the estimate b̂4 = 0.2568 for the interesting parameter of the PHYS class
of more hazardous work, the corresponding sex–age adjusted odds ratio estimate
with its 95% confidence interval can be obtained by (8.7). The odds ratio (OR)
estimate is exp(b̂4) = 1.29, and its 95% confidence interval is calculated as

exp(0.2568 ± 1.96 × 0.0574) = (1.16, 1.45).

The sex–age adjusted odds of experiencing a higher level of psychic strain is thus
1.3 times higher for persons under more hazardous working conditions than for
those in the group of less hazardous work. This result is consistent with the t-test
results, because the 95% confidence interval does not include the value one, which
is the odds ratio for the reference group.

We next turn to the test results on the model terms in the final main effects
ANOVA model (Table 8.5). There is a set of observed values from different Wald
test statistics and their F-corrections. Let us consider more closely the tests for the
model terms. The first test statistic corresponds to the original design-based Wald
statistic (8.13), and the second statistic is the F-corrected statistic (8.18). The third
statistic is the Satterthwaite corrected binomial statistic (8.14), and finally, the
fourth statistic is the F-corrected statistic (8.20). The design-based Wald statistic
X2

des(b) and the second-order corrected binomial statistic X2
bin(b; δ̂ž, â2) provide

similar results. The design-based Wald statistic thus works adequately in this

Table 8.5 Observed values and p-values of test statistics for model terms in the final logit
ANOVA model on overall psychic strain (model fitting by the GWLS method).

Contrast Df

(1) Design-
based
Wald
test

p-
value

(2)
F-cor-
rection
to (1)

p-
value

(3) Rao–Scott 2nd

order adjustment
to binomial
Wald test

p-
value

(4)
F-cor-
rection
to (3)

p-
value

SEX 1 64.92 0.0000 64.92 0.0000 64.92 0.0000 64.92 0.0000
AGE 1 5.90 0.0151 5.90 0.0159 5.90 0.0153 5.90 0.0159
PHYS 1 20.04 0.0000 20.04 0.0000 20.04 0.0000 20.04 0.0000

(1) Equation (8.13), (2) Equation (8.18), (3) Equation (8.14), (4) Equation (8.20)
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case, which is primarily due to the stability of the covariance-matrix estimate
V̂des(b̂). Because there is a large number of degrees of freedom f = 245 for an
estimate V̂des(b̂), the F-corrected tests do not contribute substantially to the
p-values of the original tests.

Although there is no controversy about the results from the alternative test
statistics in this analysis situation, there can be situations where the choice of an
adequate statistic is crucial. This is especially so if the number m of sample clusters
is small and the number of domains u is close to m. Then, some of the F-corrected
statistics can be chosen to protect against the effects of instability.

For a more detailed examination of the model fit, let us now calculate the fitted
proportions and the raw and standardized residuals for a residual analysis. These
are displayed in Table 8.6.

The observed and fitted proportions are close, except in the last three domains
where the largest raw residuals can be obtained. The standardized residuals in the
last two groups exceed the 5% critical value 1.96 from the N(0,1) distribution; so
the model fit is somewhat questionable for these domains. It should be noticed that
the fitted proportions and the residuals are independent of the parametrization of
the model.

It would be useful to consider briefly the logit analysis under the other analysis
options as a reference to the results from the design-based option. In this, we
are especially interested in the importance of the term SEX∗PHYS, describing
the interaction of SEX and PHYS, which appeared nonsignificant under the
design-based option. The results from the Wald tests are in Table 8.7.

The interaction of SEX and PHYS appears significant when ignoring the
clustering effect by using the unweighted SRS option. A more complex model is
thus obtained than under the design-based option. These results suggest further
warnings on ignoring the clustering effect even if it is not very serious as indicated
in the medium-sized domain design-effect estimates.

Table 8.6 Observed and fitted PSYCH proportions p̂j and f̂j with their standard errors,
and raw and standardized residuals (p̂j − f̂j) and êj for the logit ANOVA Model 1 under the
design-based option.

Domain SEX AGE PHYS p̂j s.e (p̂j) f̂j s.e (f̂j) (p̂j − f̂j) êj

1 Males –44 0 0.419 0.0128 0.419 0.0114 0.0000 0.0000
2 1 0.472 0.0145 0.482 0.0122 −0.0100 −1.270
3 45– 0 0.461 0.0178 0.453 0.0142 0.0082 0.771
4 1 0.520 0.0247 0.517 0.0167 0.0029 0.160
5 Females –44 0 0.541 0.0125 0.534 0.0115 0.0062 1.306
6 1 0.620 0.0270 0.597 0.0160 0.0222 2.012
7 45– 0 0.532 0.0236 0.569 0.0156 −0.0363 −2.073
8 1 0.700 0.0391 0.630 0.0199 0.0692 1.993
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Table 8.7 Wald tests X2(b) for the significance of the interaction
term SEX*PHYS in Model 2 under the design-based and unweighted
SRS analysis options.

Design-based Unweighted SRS

Term df X2
des p-value X2

bin p-value

SEX∗PHYS 1 2.39 0.1218 3.97 0.0463

Let us turn to the corresponding design-based analysis with a linear model for
the proportions of Table 8.2. In this situation, logit and linear formulations of an
ANOVA model lead to similar results because proportions do not deviate much
from the value 0.5. The main effects model (Model 1) is chosen, and results on model
fit, residuals, and on significance of the model terms, are close to those for the logit
model. But the estimates of the model coefficients differ and are subject to different
interpretations. For the logit model with the partial parametrization, an estimated
coefficient indicates differential effect on a logit scale of the corresponding class
from the estimated intercept being the fitted logit for the reference domain. And
for the linear model, an estimated coefficient indicates differential effect on a linear
scale of the corresponding class from the estimated intercept, which is now the
fitted proportion for the reference domain.

The linear model formulation thus involves a more straightforward interpreta-
tion of the estimates of the model coefficients. Under Model 1, these estimates are
as follows:

b̂1 = 0.5705 (Intercept)

b̂2 = −0.1172 (Differential effect of SEX = Males)

b̂3 = −0.0355 (Differential effect of AGE = −44)

b̂4 = 0.0650 (Differential effect of PHYS = 1).

The fitted proportion for falling into the upper psychic strain group is thus 0.57
for females in the older age group whose working conditions are less hazardous,
and for males in the same age group, 0.57 − 0.12 = 0.45. The highest fitted
proportion, 0.57 + 0.07 = 0.64, is for the older age group females doing more
hazardous work. Also, the fitted proportions are close to those obtained with the
corresponding logit ANOVA model.

8.4 LOGISTIC AND LINEAR REGRESSION

The PML method of pseudolikelihood is often used on complex survey data for logit
analysis in analysis situations similar to the GWLS method. But the applicability
of the PML method is wider, covering not only models on domain proportions of
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a binary or polytomous response but also the usual regression-type settings with
continuous measurements as the predictors. We consider in this section first a
PML analysis on domain proportions and then a more general situation of logit
modelling of a binary response with a mixture of continuous measurements and
categorical variables as predictors. Finally, an example is given of linear modelling
for a continuous response variable in an ANCOVA setting.

In PML estimation of model coefficients and their asymptotic covariance
matrix, we use a modification of the maximum likelihood (ML) method. In the ML
estimation for simple random samples, we work with unweighted observations
and appropriate likelihood equations can be constructed, based on standard
distributional assumptions, to obtain the ML estimates of the model coefficients and
the corresponding covariance-matrix estimate. Using these estimates, standard
likelihood ratio (LR) and binomial-based Wald test statistics can be used for testing
the model adequacy and linear hypotheses on the model coefficients.

Under more complex designs involving element weighting and clustering, an
ML estimator of the model coefficients and the corresponding covariance-matrix
estimator are not consistent and, moreover, the standard test statistics are not
asymptotically chi-squared with appropriate degrees of freedom. For consistent
estimation of model coefficients, the standard likelihood equations are modified
to cover the case of weighted observations. In addition to this, a consistent
covariance-matrix estimator of the PML estimators is constructed such that the
clustering effects are properly accounted for. Using these consistent estimators,
appropriate asymptotically chi-squared test statistics are derived.

The PML method can be conveniently introduced in a setting similar to the
GWLS method, assuming again a binary response variable and a set of categorical
predictors. The data set is arranged in a multidimensional table, such as Table 8.1,
with u domains, and our aim is to model the variation of the domain proportion
estimates p̂j across the domains. The variation is modelled by a logit model of the
type given in (8.1) and (8.2). A PML logit analysis for domain proportions, covering
logit ANOVA, ANCOVA and regression models with categorical predictors can
be carried out under any of the analysis options previously introduced by
using the corresponding domain proportion estimator vector and its covariance-
matrix estimate, and the steps in model-building are equivalent to those in the
GWLS method. The design-based analysis option provides a generally valid PML
logit analysis for complex surveys. In practice, a PML logit analysis under the
design-based option requires access to specialized software for survey analysis.

Design-based and Binomial PML Methods

Under both design-based and weighted SRS options, a consistent PML estimator
b̂pml for the vector b of the s model coefficients bk in a logit model F(p) = Xb is
obtained by iteratively solving the PML estimating equations

X′Wf(b̂pml) = X′Wp̂, (8.24)

TLFeBOOK



Logistic and Linear Regression 285

where W is a u × u diagonal weight matrix with weights wj = n̂j on the main
diagonal, and f = exp(Xb)/(1 + exp(Xb)) is the inverse function of the logit
function. It is essential in (8.24) that the weighted domain sample sizes n̂j and the
weighted proportion estimates p̂j be used, not their unweighted counterparts nj

and p̂U
j as in the ML method, i.e. under the unweighted SRS option. This is for

consistency of the PML estimators. The corresponding vector (8.5) of the GWLS
estimates can be used as an initial value for the PML iterations. Note that under
the linear formulation of the ANOVA model, the function vector f(b̂pml) would
be linear in b̂k and, thus, no iterations are needed. Henceforth, in this section we
denote the vector of PML estimates of logit model coefficients by b̂ for short.

Because the vector b̂ of PML estimates is equal under the design-based and
weighted SRS options, so also are the vectors F̂ = Xb̂ and f̂ = F−1(Xb̂) of fitted
logits and fitted proportions. The equality also holds for estimated odds ratios,
which can be obtained as exp(b̂k) under the partial parametrization of the model.
Fitted proportions f̂j = fj(b̂) are estimated under both options by the formula

f̂ = f(b̂) = exp(Xb̂)/(1 + exp(Xb̂)). (8.25)

Let us derive under the weighted SRS and design-based options the s × s
covariance-matrix estimators of the PML estimator vector b̂ calculated by (8.24).
Assuming simple random sampling, the covariance-matrix estimator is given by

V̂bin(b̂) = (X′W�̂WX)−1, (8.26)

where the diagonal elements of the diagonal u × u matrix �̂ are binomial-type
variances f̂j(1 − f̂j)/n̂j. The binomial covariance-matrix estimator (8.26) is not
consistent for complex sampling designs involving clustering. For these designs,
we derive a more complicated consistent covariance-matrix estimator that is valid
under the design-based option:

V̂des(b̂) = V̂bin(b̂)X′WV̂desWXV̂bin(b̂). (8.27)

This estimator is of a ‘sandwich’ form such that the design-based covariance-
matrix estimator V̂des of the proportion vector p̂ acts as the ‘filling’.

Approximate confidence intervals for odds ratio estimates exp(bk) under the
design-based and weighted SRS options can be calculated by (8.7) using the
corresponding variance estimates v̂des(b̂k) and v̂bin(b̂k) of the PML estimates b̂k,
as in the GWLS method. Also, the design-effect estimates d̂(b̂k) of the model
coefficients b̂k can be obtained by (8.23), again analogously to the GWLS method.

Expressions for the consistent covariance-matrix estimators V̂des(F̂) and V̂des(f̂)
of the vector F̂ of fitted logits and the vector f̂ of fitted proportions are similar
under the design-based option to those of the GWLS method, as given in equations
(8.8) and (8.9). The PML analogue V̂des(b̂) from (8.27) and the corresponding
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matrix Ĥ must of course be used in the equations. And under the weighted SRS
option, the covariance-matrix estimators V̂bin(F̂) and V̂bin(f̂) are derived similarly
by using the binomial estimator (8.26) in the equations in place of its design-based
counterpart.

A residual covariance-matrix estimator is needed for conducting a proper
residual analysis under the design-based option. This u × u estimator is given by

V̂res = AV̂desA′, (8.28)

where the matrix A is obtained by the formula

A = I − �̂WX(X′W�̂WX)−1X′W

with I being a u × u identity matrix. Using this estimate, design-based standardized
residuals of the form (8.22) can then be calculated.

There are thus many similarities between the PML formulae and those derived
for the GWLS method. The main differences lie in the way the estimates of model
coefficients and their covariance-matrix estimate are calculated. More similarities
are evident in the testing procedures. All the test statistics derived for the GWLS
method are also applicable to the PML method.

Under the design-based option, goodness of fit of the model can be tested with
the design-based Wald statistic X2

des given by (8.11). When examining the model
fit more closely, PML analogues to the Wald statistics X2

des(overall) and X2
des(gof )

can be used. The Wald statistics (8.13) and (8.14) for linear hypotheses on model
parameters are applicable as well. Finally, in unstable situations, the F-corrected
Wald and Rao–Scott statistics (8.16)–(8.20) can be used. It should be noted that
the PML estimates from (8.24) and the corresponding covariance-matrix estimate
(8.27) must be used in the calculation of these test statistics under the design-based
option. These test statistics are available in commonly used software products for
logit analysis for complex survey data.

In testing procedures for the weighted and unweighted SRS options, the
corresponding binomial covariance-matrix estimates are used in the test statistics
in place of those from the design-based option. As an alternative to the Wald
statistics, LR test statistics can be used, which for the design-based option should
be adjusted using the Rao–Scott methodology. A second-order adjustment to
LR test statistics similar to (8.14) for the binomial-based Wald statistic provides
asymptotically chi-squared test statistics. The residual covariance-matrix estimate
(8.28) can be used in deriving an appropriate generalized design-effects matrix
estimate for the adjustments.

The main application area of the PML method for complex surveys is under
the design-based option, and the weighted and unweighted SRS options are
used as the reference when examining the effects of weighting and intra-cluster
correlation on standard-error estimates of model coefficients and on p-values of
Wald test statistics.
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Logistic Regression

The PML method can also be used in strictly regression-type logit analyses on
a binary response variable from a complex survey, where the predictors are
continuous measurements. In logistic regression, we work with an element-level
data set without aggregating these data into a multidimensional table. So, the
measured values of the continuous predictor variables constitute the columns in
an n × s model matrix X for a logistic regression model. But all the other elements
of the PML estimation remain unchanged, and consistent PML estimates with
their consistent covariance-matrix estimate are obtained in a way similar to that
described for the design-based analysis option. Moreover, a logistic ANCOVA can
be performed by incorporating categorical predictors into the logistic regression
model. Then, interaction terms of the continuous and categorical predictors can
also be included.

A logistic regression model is usually built by entering predictors into the model
using subject-matter criteria or significance measures of potential predictors. In
this, t-tests tdes(bk), or the corresponding Wald tests X2

des(bk), on model coeffi-
cients can be used as previously and, under the design-based option, asymptotic
properties of these test statistics remain unchanged.

Instability of an estimate V̂des(b̂) from (8.27) can destroy the distributional
properties of the test statistics on model coefficients in such small-sample situations
where the number of sample clusters is small. Usual degrees-of-freedom, F-
corrections to the Wald and t-test statistics can then be used.

The GEE methodology of generalized estimating equations can also be used for
logistic modelling on complex survey data. In this method, the model coefficients
are estimated using the multivariate quasilikelihood technique, and intra-cluster
correlations are taken as nuisances. Using an estimated intra-cluster correlation
structure, a ‘robust’ estimator of the covariance matrix of the model coefficients
can be obtained, basically similar to the ‘sandwich’ form in the PML method.
Thus, the GEE method can be used to account for the clustering effects. We
describe only briefly the method and give an example for logistic ANCOVA in the
OHC Survey.

The GEE method was originally developed for accounting for the possible
correlation of observations in fitting generalized linear models in the context of
longitudinal surveys (Liang and Zeger 1986). The methodology has been further
described and illustrated in Liang et al. (1992) and Diggle et al. (2002).

Two alternatives of the GEE method have been presented. A preliminary GEE
method with an independent correlation assumption relates to the standard
PML method where observations are assumed independent within clusters for
the estimation of the regression coefficients, but are allowed to be correlated for
the estimation of the covariance matrix of the estimated regression coefficients.
In covariance-matrix estimation, a ‘sandwich’ form of estimator is used. In a
more advanced GEE method, assuming an exchangeable correlation structure,
observations are allowed to be correlated within clusters in the estimation of both
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regression coefficients and the covariance matrix of estimated regression coeffi-
cients. There, a ‘working’ intra-cluster correlation is estimated and incorporated
in the estimation procedure of regression coefficients and the covariance matrix
of estimated coefficients.

A generalized linear model can be compactly written as

EM(g(y)) = Xb, (8.29)

where EM refers to the expectation under the model and the function g refers to the
so-called link function postulating a relationship between the expectation of the
response variable vector y and the linear part Xb of the model. Special cases of link
functions are identity, logistic and logarithmic functions used in linear models for
continuous responses, logistic models for binary responses and log-linear models
for count data, respectively.

The covariance structure of observations within clusters is modelled by

Vi = φA1/2
i R(α)A1/2

i , i = 1, . . . , m, (8.30)

where Ai is a diagonal matrix of variances V(yk) in cluster i and R(α) is the
‘working’ correlation matrix specified by the (possibly vector-valued) correlation
parameter α of observations in cluster i. The parameter φ denotes the dispersion
parameter of the corresponding member of the exponential family of distributions.
Under an independent correlation assumption, all off-diagonal elements α of the
‘working’ correlation matrix are set to zero. Under an exchangeable correlation
of pairs of observations within a cluster, the parameter α is a scalar and requires
estimation. In an estimation procedure to obtain an estimate b̂, Newton–Raphson-
type algorithms are usually used. The covariance-matrix estimate V̂des(b̂) is
obtained using a ‘sandwich’ type estimator (see equation (8.27)). Element weights
can be incorporated in a GEE estimation procedure. GEE and the weighted analogue
can be applied using suitable software for the analysis of complex surveys.

The GEE method has been shown to produce consistent estimates of model
parameters and their covariance matrices, independently of a correct specification
of the ‘working’ correlation structure. In the next two examples, we apply logistic
ANCOVA first with the PML method and then with the GEE method assuming
an exchangeable intra-cluster correlation structure. For further training on the
PML and GEE methods in logistic modelling on the OHC Survey data, the reader
is advised to visit the web extension of the book.

Example 8.2

Logistic ANCOVA with the PML method. Let us consider in a slightly more general
setting the analysis situation of Example 8.1, where a logit ANOVA model was
fitted by the GWLS method to proportions in a multidimensional table. We now
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fit a logistic ANCOVA model using the PML method, by entering some of the
predictors as continuous measurements in the model. The design-based analysis
option is applied, providing valid PML analysis.

The binary response variable PSYCH measures high psychic strain, and we
take the variables AGE, PHYS (physical working conditions) and CHRON (chronic
morbidity) as continuous predictors such that AGE is measured in years and PHYS
and CHRON are binary. Thus there are four predictors, of which SEX is taken as a
qualitative predictor. So, the interaction of SEX with AGE, PHYS and CHRON can
also be examined.

A model with SEX, AGE, PHYS and CHRON as the main effects and an
interaction term of SEX and AGE was taken as the final model, because the
other interactions appeared nonsignificant at the 5% level. Results of the model
coefficients are displayed in Table 8.8.

The fitted logit ANCOVA model can be written using the estimated coefficients
b̂k and the corresponding model matrix X similar to the ANOVA modelling in
Example 8.1:

F(f̂1) = b̂1 + b̂2(SEX)l + b̂3(AGE)l + b̂4(PHYS)l

+ b̂5(CHRON)l + b̂6(SEX ∗ AGE)l,

where l = 1, . . . , 7841, and F(f̂l) = log(f̂l/(1 − f̂l)). The values for the model terms
are obtained from the corresponding columns of the 7841×6 model matrix X.
There, SEX, PHYS and CHRON are binary, and AGE has its original values (age

Table 8.8 Design-based logistic ANCOVA on overall psychic strain with the PML method.

95% confidence
interval for OR

Model
term

Beta
coefficient

Design
effect

Standard
error t-test p-value

Odds
ratio Lower Upper

Intercept 0.1964 1.56 0.1572 1.25 0.2127 1.22 0.89 1.66
Sex

Males −0.9926 1.43 0.2033 −4.88 0.0000 0.37 0.25 0.55
Females∗ 0 n.a. 0 n.a. n.a. 1 1 1

Age −0.0046 1.55 0.0041 −1.12 0.2624 1.00 0.99 1.00
Physical health

hazards 0.2765 1.39 0.0596 4.64 0.0000 1.32 1.17 1.48
Chronic

morbidity 0.5641 1.17 0.0575 9.82 0.0000 1.76 1.57 1.97
Sex, Age

Males 0.0131 1.41 0.0051 2.56 0.0111 1.01 1.00 1.02
Females∗ 0 n.a. 0 n.a. n.a. 1 1 1

∗ Reference class; parameter value set to zero.
n.a. not available.
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in years). Note the difference in the ANCOVA model matrix when compared with
that for the ANOVA model.

The t-tests on model coefficients indicate that the coefficients for the interesting
predictors, physical working conditions and chronic morbidity are strongly
associated with experiencing psychic strain. Persons in hazardous work, and
chronically ill persons are more likely to suffer from psychic strain than healthy
persons and persons whose working conditions are less hazardous. Note that the
sex–age adjusted coefficient b̂5 for CHRON is larger than b̂4 for PHYS. Thus, in the
model, chronic morbidity is more important as a predictor of psychic strain. This
can also be seen in the odds ratio (OR) estimates provided in Table 8.8.

Odds ratios with their approximative 95% confidence intervals (in parenthesis)
thus are

PHYS: Odds ratio = exp(0.2765) = 1.32 (1.17, 1.48),

CHRON: Odds ratio = exp(0.5641) = 1.76 (1.57, 1.97).

We may thus conclude that odds for experiencing a higher level of psychic strain,
adjusted for sex, age and chronic morbidity, is about 1.3 times higher for those
in more hazardous work than for those in less hazardous work. This conclusion
was similar in Example 8.1, where a closely related odds ratio and confidence
interval were obtained. Furthermore, the odds of experiencing much psychic
strain, adjusted for sex, age and working conditions, are about 1.8 times higher
for chronically ill persons than for healthier persons. Because neither of the 95%
confidence intervals covers the value one, the corresponding odds ratios differ
significantly (at the 5% level) from one. It should be noted that the binomial-based
confidence intervals would be narrower especially for the predictor PHYS, for
which the design-effect estimate is larger than for CHRON.

An analysis under the SRS options yield the same final model as the design-
based analysis, but the observed values of the test statistics are somewhat larger
and thus more liberal test results are attained.

Finally, let us examine more closely the fitted proportions f̂l for the upper psychic
strain group under the present model. The results are summarized in Figure 8.2
by plotting the proportions against the predictors included in the model. Fitted
proportions increase with increasing age for males, and decrease for females. At
a given age, the proportions are larger for the chronically ill and for those in
more hazardous work than in the reference groups. Also, in females the fitted
proportions tend to be larger than in males in all the corresponding domains,
although the differences decline with increasing age.

Example 8.3

Logistic ANCOVA with the GEE method. Let us consider further the analysis
situation of Example 8.2, where a logistic ANCOVA model was fitted by the
PML method. We now fit a logistic ANCOVA model using the GEE method with
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Figure 8.2 Fitted proportions of falling into the high psychic strain group for the final
logistic ANCOVA model.

an assumed exchangeable correlation of pairs of observations within a cluster.
Similarly as in Example 8.2, our response variable is the binary PSYCH measuring
psychic strain. The variable SEX is included in the model as a categorical predictor
and AGE, PHYS (physical working conditions) and CHRON (chronic morbidity) as
continuous predictors such that AGE is measured in years and PHYS and CHRON
are binary. We fit the same model as in Example 8.2.

Results are shown in Table 8.9. A comparison with logistic ANCOVA with the
PML method in Example 8.2 indicates that the results are quite similar, and our
inferential conclusions remain the same. There are, however, certain differences.
First, the estimated beta coefficients have changed. Absolute values of estimates
are larger than in the PML application, except for the CHRON effect. Standard-
error estimates are somewhat smaller than the PML counterparts. Hence, the
observed t-statistics tend to be larger involving slightly more liberal tests than
in the PML case. These differences are due to the fact that in the GEE method
with an exchangeable correlation structure, the correlation of observations also
contributes to the estimation of the beta parameters. The ‘working’ intra-cluster
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Table 8.9 Design-based logistic ANCOVA on overall psychic strain with the GEE method
under exchangeable intra-cluster correlation structure.

Model
Term

Beta
coefficient

Design
effect

Standard
error t-test p-value

Intercept 0.2292 1.44 0.1524 1.50 0.1338
Sex

Males −1.0290 1.36 0.2000 −5.14 0.0000
Females∗ 0 n.a. 0 n.a. n.a.

Age −0.0057 1.43 0.0039 −1.45 0.1489
Physical health hazards 0.3011 1.31 0.0587 5.13 0.0000
Chronic morbidity 0.5569 1.14 0.0568 9.81 0.0000
Sex, Age

Males 0.0144 1.33 0.0050 2.88 0.0044
Females∗ 0 n.a. 0 n.a. n.a.

∗ Reference class; parameter value set to zero.
n.a. not available.

correlation is estimated as α̂ = 0.0189. Using the expression deff = 1 + (m − 1)α̂,
where m is the average cluster size, this corresponds to an average design effect
of 1.57.

Linear Modelling on Continuous Responses

We have extensively considered the modelling of binary response variables from
complex surveys. The GWLS, PML and GEE methods were used, covering logit
and linear modelling on categorical data and logit modelling with continuous
predictors. These types of multivariate models are most frequently found in
analytical surveys, for example, in social and health sciences. But in some
instances it is appropriate to model a quantitative or continuous response variable,
such as the number of physician visits or blood pressure. We discuss briefly the
special features of multivariate analysis in such cases, and give an illustrative
example of a special case of linear ANCOVA.

Linear modelling provides a convenient analysis methodology for analysis
situations with a continuous response variable and a set of predictors. This
situation was present in Examples 8.2 and 8.3, where the dichotomized PSYCH
was analysed with a logistic ANCOVA model. There the original continuous
variable on psychic strain could be taken as the response variable as well, leading
to linear ANCOVA modelling. For a simple random sample, the analysis would
be based on ordinary least squares (OLS) estimation with a standard program for
linear modelling. For the OHC Survey data set, which is based on cluster sampling,
the design-based approach with weighted least squares (WLS) estimation provides
proper linear modelling.
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Under the design-based option, similar complexities to those of the previous
modelling techniques enter into linear modelling. In the estimation technique
and testing procedures, however, no novel elements are involved compared to
those already introduced for modelling with the GWLS, PML and GEE methods.
So, we first aim at consistent estimation of the model coefficients and consistent
estimation of the covariance matrix of the estimated coefficients. These require
weighting with appropriate element weights, and the construction of a covariance-
matrix estimator of the model coefficient estimates properly accounting for the
clustering effects.

A linear regression model can be written compactly in matrix form as

y = Xb + e, (8.31)

where y is the vector of response variable values, X is the model matrix, b is the
vector of regression coefficients to be estimated and e is the vector of random errors.

Under the design-based and weighted SRS options, the vector b is consistently
estimated by solving the weighted normal equations

X′WXb̂ = X′Wy, (8.32)

where the diagonal elements of W are the rescaled element weights w∗∗
l . Under

the unweighted SRS option, the weights are all one, and the estimation reduces
to usual OLS estimation. The WLS estimator b̂ is given by

b̂ = (X′WX)−1X′Wy. (8.33)

Under the design-based option, as for the design-based PML method for propor-
tions, the covariance matrix of the estimator b̂ can be estimated consistently by
a ‘sandwich’ type estimator. Also, desired tests of model adequacy and of linear
hypotheses on model coefficients can be executed using test statistics similar to
the Wald and F-statistics used in the GWLS, PML and GEE methods for logit and
linear modelling on proportions.

Linear modelling under the design-based option can be carried out in practice
most conveniently with appropriate software for survey analysis.

Example 8.4

Linear ANCOVA modelling with the WLS method on perceived psychic strain. In
Examples 8.2 and 8.3, a logistic ANCOVA model was fitted on the dichotomized
variable PSYCH of psychic strain. A linear ANCOVA model is now fitted on the
original variable PSYCH, whose values are scores of the first standardized principal
component of nine psychic symptoms. Thus, the average of PSYCH is zero and
the variance is one. The distribution of PSYCH is, however, somewhat skewed;
there are numerous persons in the data set not experiencing any of the psychic
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symptoms in question. The range of values of PSYCH is (−1, 4.7), and the median
of the distribution is −0.4.

We include the same variables as in the previous two examples as the potential
predictors in the linear ANCOVA model. The predictor SEX is taken to be
qualitative, and AGE, PHYS and CHRON are taken to be continuous, and we also
study the pairwise interactions of SEX and the continuous predictors. The model
is fitted by the WLS method, and the model-building produces a similar ANCOVA
model as in Examples 8.2 and 8.3. Thus, all the main effects and the interaction of
SEX and AGE appear significant.

The fitted linear ANCOVA model on PSYCH can be written using the estimated
coefficients b̂k and the corresponding model matrix X, as in the logistic model on
a binary PSYCH:

f̂l = b̂1 + b̂2(SEX)l + b̂3(AGE)l + b̂4(PHYS)l + b̂5(CHRON)l + b̂6(SEX ∗ AGE)l,

where l = 1, . . . , 7841, and the values for the model terms are obtained from the
model matrix X of Example 8.2. Results on the ANCOVA model coefficients with
the continuously measured psychic strain as the response variable are displayed
in Table 8.10.

The signs of model coefficients and the t-test results follow a similar pattern
to those in the corresponding logit ANCOVA model in Example 8.2. The model
coefficients, however, have different interpretations from those in the logit model.
In a logit ANCOVA, we were working on a logit scale on the binary response,
whereas we are now dealing with continuous measurements on a linear scale.
Thus, the coefficients of the linear ANCOVA model can be interpreted in the usual
linear regression context.

Under the weighted SRS analysis option, the same ANCOVA model would be
obtained, and the results on model coefficients would be equal. But the standard
errors of the model coefficients would be smaller because the design-effect estimates
d̂(b̂k) are greater than one. However, this does not affect the inferences from the
t-test results.

The continuous response variable PSYCH offered good possibilities for the
demonstration of linear modelling due to the continuity of the response vari-
able, although the distribution was somewhat skewed. Count variables, such
as the number of physician visits in a given time interval or related vari-
ables whose distribution can be very skewed, are often met with in practice.
Modelling of such quantitative response variables can involve such symmetriz-
ing transformations as logarithmic, often used in econometrics, or Box–Cox
transformations, prior to the fitting of a linear model. Moreover, a linear
model formulation can even be inappropriate for such variables. Then, other
regression modelling techniques should be used: for example, Poisson regres-
sion and a negative binomial model to account for extra-Poisson variation.
These methods belong to a class of generalized linear models for correlated
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Table 8.10 Design-based linear ANCOVA on overall psychic strain with the WLS method.

Model
term

Beta
coefficient

Design
effect

Standard
error t-test p-value

Intercept −0.0121 1.70 0.0831 −0.15 0.8846
Sex

Males −0.4975 1.48 0.0997 −4.99 0.0000
Females∗ 0 n.a. 0 n.a. n.a.

Age −0.0001 1.60 0.0021 −1.02 0.9804
Physical health hazards 0.1772 1.37 0.0290 6.11 0.0000
Chronic morbidity 0.3922 1.17 0.0294 13.33 0.0000
Sex, Age

Males 0.0057 1.39 0.0025 2.25 0.0252
Females∗ 0 n.a. 0 n.a. n.a.

∗ Reference class; parameter value set to zero.
n.a. not available.

response variables. For these models, for example, the pseudolikelihood and
generalized estimating equations methods can be successfully used under the
nuisance approach.

Methods for the Disaggregated Approach

Methods for multivariate analysis considered so far fall under the nuisance or
aggregated approach, where the aim is to clean out the possibly disturbing
clustering effects from the analysis results in order to attain consistent estimation
and asymptotically valid testing. Under the disaggregated approach, on the other
hand, intra-cluster correlation structures are intrinsically interesting, and the
estimation of these correlations constitutes an essential part of the analysis. This
often occurs in social and educational surveys when working with hierarchically
structured data sets. Clustering with villages, establishments or schools constitute
common examples of sources of such a hierarchical structure.

There are advanced methods available for multivariate analysis of intra-
cluster correlated response variables from hierarchically structured data sets. The
methodology of multi-level modelling is based on generalized linear mixed models,
where certain random effects are incorporated in the model. These constitute a
new class of models not yet considered in this book; in all the previous models,
the model parameters have been taken as fixed effects. Applications of multi-
level modelling have been mainly in linear modelling of continuous response
variables from educational surveys, where schools or teaching groups are used as
the clusters (Goldstein 1987, 2002). Multi-level models have also been developed
for binary and polytomous responses, and appropriate computing algorithms
are available. We will use multi-level modelling in Section 9.4 for a continuous
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response variable from clustered educational data. There, a brief introduction to
the method will be given.

8.5 CHAPTER SUMMARY AND FURTHER READING

Summary

Linear and logit modelling of an intra-cluster correlated response variable were
considered in this chapter mainly under the nuisance approach. The principal
aim was to successfully remove the effects of intra-cluster correlations from the
estimation and test results. The severity of these effects, however, varies under
different sampling designs and therefore various analysis options were introduced
for proper analysis in practice.

A design-based analysis option provides a generally valid analysis option for
multivariate analysis in complex surveys. Under this option, the complexities
of the sampling design can be properly accounted for, including clustering,
stratification and weighting. Analysis under the design-based option requires
access to the element-level data set, and availability of proper software for survey
analysis. Also, under stratified element sampling and simple random sampling,
the weighted and unweighted SRS options can be used for valid analysis. Under
the weighted SRS option, only the weighting is covered, and the unweighted SRS
option ignores all the sampling complexities. These options are thus inappropriate
for clustered designs of complex surveys.

Under any of the analysis options, logit and linear ANOVA, ANCOVA and
regression analysis on domain proportions of a binary or polytomous response
variable can be carried out by the GWLS method of generalized weighted least
squares estimation in a data set arranged into a multidimensional table. The
GWLS method, applied under the design-based option, provides valid analysis for
such tables from complex surveys. For reliable results, a large element sample and
a large number of sample clusters are required; these conditions are usually met in
large-scale analytical surveys such as the OHC Survey based on a stratified cluster-
sampling design. With a small number of sample clusters, instability problems
can arise, making the estimation and test results unreliable. This problem can be
successfully handled using appropriate correction techniques for the test statistics.

The PML method of pseudolikelihood estimation can be used in analysis
situations similar to the GWLS method, but its main applications are in logistic
regression with continuous predictors where the GWLS method fails. Under the
design-based option, the PML method provides valid logit analysis for complex
surveys. It is also beneficial for the PML method that the number of sample clusters
is large, and similar adjustments are available for unstable cases, as for the GWLS
method. We applied the PML method for logistic ANCOVA modelling in an OHC
Survey case study on a binary response variable.
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The PML method covers not only logistic regression models but also other
model types from the class of generalized linear models. So, linear models on
continuous responses are also covered. We briefly introduced the GEE method
of generalized estimating equations. The GEE version assuming an exchangeable
correlation structure within the clusters was applied for logistic ANCOVA mod-
elling on a binary response, and the results were similar to those from the PML
application.

In the case studies on selected multivariate analysis situations from the OHC
Survey, it appeared that accounting for sampling complexities, especially for the
clustering effects, can be crucial for valid inferences. We shall demonstrate this
important conclusion further in Chapter 9, where additional case studies from
other complex survey data sets will be given.

The nuisance, or aggregated, approach provides a reasonable and manageable
analysis strategy for different kinds of multivariate analysis situations on an intra-
cluster correlated response variable. In the alternative disaggregated approach,
the intra-cluster correlations are taken as intrinsically interesting parameters
to be estimated as well as the model coefficients. We discussed briefly multi-
level modelling, applicable for hierarchically structured data sets. The method of
multi-level modelling will be demonstrated in the next chapter.

Further Reading

Multivariate analysis of complex surveys has received considerable attention in
the literature. Advances in the methodology can be found in Binder (1983), Rao
and Scott (1984, 1987), Roberts et al. (1987), Rao et al. (1989) and Scott et al. (1990),
covering, for example, the weighted least squares, pseudolikelihood and quasi-
likelihood methods for logit and related analysis of categorical data from complex
surveys. The book edited by Skinner et al. (1989) covers many of the important
advances in multivariate analysis under both the aggregated and disaggregated
approaches. Rao and Thomas (1988) and Korn and Graubard (1999) provide more
applied sources on the methodology. The book edited by Chambers and Skinner
(2003) includes several articles on different views into the analysis methodology
for complex survey data.

Rao et al. (1993) discuss regression analysis with two-stage cluster sam-
ples. Binder (1992) addresses the fitting of proportional hazards models to complex
survey data. The analysis of categorical data with nonresponse is considered
in Binder (1991), and Glynn et al. (1993) consider multiple imputation in lin-
ear models.

Multi-level modelling is introduced in Goldstein (1987, 1991), and is further
developed in Goldstein and Rasbash (1992) and Goldstein (2002). Pfeffermann
et al. (1998) consider weighting issues in multi-level modelling. Modelling by the
generalized estimating equations is introduced in Liang and Zeger (1986), and
is further developed in Liang et al. (1992) and Diggle et al. (2002 ). Horton and
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Lipsitz (1999) discuss software and Ziegler et al. (1998) address literature on GEE
methodology. Breslow and Clayton (1993) give general results on approximate
inference in the framework of generalized linear mixed models. Analysis of
complex longitudinal survey data is discussed in Clayton et al. (1998) and Feder
et al. (2000).
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More Detailed Case Studies

Four additional case studies are selected to provide a more subject-matter-
oriented demonstration of the survey methodology discussed in this book. The
first case study (Section 9.1) deals with monitoring the quality of data collection
in a long-term survey. A number of statistics introduced earlier in this book
are used as quality indicators. Empirical findings are from a passenger transport
survey. The data-collection period covered a full calendar year with equal-sized
monthly samples.

The second case study (Section 9.2) is from a business survey that is an example
of resolving sampling frame problems often met in the production of business
statistics. The estimation of the annual mean salary of certain occupational
groups is discussed when two different frames are present. This results in a data-
collection strategy of mixed type in which three-quarters of data are collected
by the census-type and one-quarter by the survey-type. In addition, our analysis
on the business survey proves that the clustering effect should be accounted for
calculating employer-level statistics from a sample in which the sampling units
are firms.

In the case study from a socioeconomic survey (Section 9.3), a logit model is fitted
to categorical data from a cluster-sampling design with households as the clusters.
The main emphasis is not only on pointing out the importance of accounting for
the clustering effects but also on the importance of adequate selection of model
type for analysis. Here, analysis of variance and regression-type logit models are
used, which lead to different conclusions.

In the final case study (Section 9.4), we introduce and demonstrate an approach
of modelling hierarchically structured data sets using multi-level regression
models, applied to clustered survey data from a multinational educational survey.
These models differ from the methods of the nuisance approach, as used in the
preceding case study, in the sense that in multi-level modelling, the hierarchical
structure of the population is reflected in the structure of the model. Some
interesting comparisons between countries are also included.

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84769-7
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9.1 MONITORING QUALITY IN A LONG-TERM
TRANSPORT SURVEY

Data-collection operations in many surveys can be of a long-term nature covering,
for example, a whole calendar year. Good examples from this type of social surveys
are consumer attitude surveys and travel or mobility surveys in which the total
sample is divided into 12 equal-sized subsamples. This kind of survey strategy
is targeted at two different goals: to collect monthly cross-sectional data and
to compile yearly data to catch seasonal, cyclic or trend characteristics of the
phenomena. In such surveys, a major issue is the maintenance of uniform data
quality throughout the entire survey period. In this, monitoring the quality of the
data-collection procedure becomes important.

In this case study, a set of 20 statistical quality indicators are presented to monitor
possible deviations in quality for each data-collection wave. The indicators cover
important aspects of sampling and nonsampling errors. Some indicators are
defined earlier in this book, such as the coefficient of variation, coverage rate,
response rate and intra-class correlation. More extensive consideration of different
survey errors can be found in Groves (1989). Cox et al. (1995) deals with the subject
in the context of business surveys. Biemer and Lyberg (2003) gives a non-technical
introduction to survey quality.

Passenger Transport Survey

The use of quality indicators is demonstrated in a long-term survey, the Pas-
senger Transport Survey, conducted by the Finnish Ministry of Transport and
Communications in 1998–1999. The survey totalled 18 250 sampling units divided
into equal-sized monthly slots of 1500 persons. Data were collected by computer-
assisted telephone interview (CATI). The main results and survey processes are
reported in Pastinen (1999).

For monitoring the homogeneity of quality, two report formats were developed
for the monthly data-collection slots. The indicators were calculated for each
successive data-collection wave and compiled into a report format presenting the
values for the current sample and the cumulative sample. Monthly calculated
quality reports served as a basis for monitoring the homogeneity of the data-
collection process. Using these data, operations to correct the process could be
made when necessary.

An aim of the survey was to describe the mobility of people registered in Finland,
aged six years or over. The sample was selected by stratified simple random
sampling with proportional allocation. Stratification was based on age/sex/area
groupings. Data collection was timed in 12 monthly waves, each including 1500
sampling units selected from the Central Population Register. The data was
collected between July 1998 and June 1999. The survey covered every day for a
full period of 12 months so that temporal variation in mobility could be taken into
account. Data were processed on a monthly basis thus resulting in 12 data files.
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To ensure the quality of the fieldwork, the interviewers received advance
training and the data collection was monitored on a monthly basis. The inter-
viewers were also given regular feedback on their performance so that the material
they were collecting would be of consistent quality. The prospective respondents
were provided with advance information about the survey. For example, each
respondent received a contact letter detailing the background and objectives of
the survey.

We first present empirical findings on the four key quality indicators: coverage
rate (%), response rate (%), interviewer effect and coefficient of variation (%).
Then, one of the two report formats used for monitoring the quality of monthly
collected data is briefly discussed.

Monitoring Coverage Rate

In this survey, coverage rate (%) is defined as follows. The frame population
for sampling consists of a relevant population register. The frame for telephone
numbers consists of a register of phone numbers and the names of persons.
Coverage error is present if these two registers do not coincide. We estimate the
coverage rate by

COVERAGE RATE (%) = (nF/n) × 100,

where nF is the number of sample persons whose phone number is identified in
the frame and n is the sample size.

The phone penetration serves as an example. In a computer-assisted tele-
phone interview, the target population might be all the adult persons living
in private households in the country. The frame population, list of a database
of phone numbers, includes only persons who can be contacted by phone.
Usually, this frame population is noticeably smaller than the target popula-
tion, thus causing an under-coverage error. This is a nonsampling error due to
non-observation.

General telephone coverage in Finland is very high, as reported in Kuusela
(2000). Over 96% of households owned either ordinary or mobile phones or both
in 1996. The high density of phones does not ensure that telephone interviewing
is a successful data-collection mode in the sense of good coverage. A considerable
drawback is usually met during the identifying process of phone numbers. As
seen in Figure 9.1, the proportion of identified phone numbers in the Passenger
Transport Survey is about 85%. Under-coverage is thus 15%.

In phone interviews, the contact-making starts by locating up-to-date infor-
mation on addresses and phone numbers. The addresses may be culled from a
recent national census register, but finding phone numbers often causes problems.
However, even if a household has a phone it is not guaranteed that the phone
number will be found.
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Figure 9.1 Percentage of sample persons for whom phone numbers were identified and
interviews were completed in each survey month.

During the first survey month in July 1998, the percentage of phone numbers
identified remained below average. After this defect was found and adjusted, the
seeking out of phone numbers could be speeded up and the outcome could be
improved over the following months.

Monitoring Response Rate

Response rate (%) indicates the proportion of participating sample persons. A
measure for response rate is

RESPONSE RATE (%) = I
I + R + NC + O

× 100,

where I = number of interviewed persons
R = number of refusals known to be eligible

NC = number of non-contacts known to be eligible
O = number of other eligible sample units non-interviewed.

The seriousness of nonresponse is twofold: firstly, it decreases the effective
sample size thus inflating standard errors of estimates and secondly, possibly
causes nonresponse bias if respondents give values for study variables that
would systematically deviate those of the nonrespondents. Therefore, survey
organization recorded by continuous basis reasons for nonresponse (see Table 9.1).

As seen again from Figure 9.1, the monthly calculated response rate was about
65% except in July 1998, which was the first survey month. Temporal variation of
the response rate is insignificant during the total survey period. In the Passenger
Transport Survey, finding phone numbers had a high correlation with the final
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response rate, and if a low number of phone numbers was found there was little
the interviewers could do to raise the response rate. This explains an exceptionally
low response rate (%) in July 1998. The response rate was 10% units smaller than
the average rate due to low identification (%) of phone numbers. Compared to
similar national surveys there are no significant discrepancies in the response
rate. Groves et al. (2001) reports several national surveys from the point of view of
nonresponse.

Monitoring Interviewer Effect

Interviewer effect belongs to the class of nonsampling errors. A telephone or
personal interview is a social interaction process between the interviewer and
the respondent. Biemer et al. (1991) list four ways in which the interviewer effect
might occur: (a) the survey interview is seen as a structured social interaction, (b)
variations among interviewers when filling in questionnaires, (c) differing word
emphasis or intonation and (d) individual reaction to respondent difficulties. All
four factors might cause correlated answers within interviewers. A commonly
used statistic to assess this source of survey error is the intra-class correlation
coefficient (Kish 1962). Denoting by m the average size of the workload of an
interviewer, intra-class correlation can be estimated from the formula

ρ̂int =

(
V̂b − V̂w

m

)
(

V̂b − V̂w

m

)
+ V̂w

,

where the interviewer variance component is V̂b measured as the between mean
square in a one-way analysis of variance with interviewers as the factor, and V̂w

is the corresponding within mean square. Its value varies as − 1
m

≤ ρ̂int ≤ 1. Note

that this formula deviates from that given earlier for systematic sampling and
cluster sampling in Chapters 2 and 3. There, the intra-class correlation was defined
in a design-based setting. The starting point here is a model for measurement
error caused by interviewers, and thus the coefficient of intra-class correlation is
calculated in a model-based setting allowing also for varying workload size. The
contribution of the intra-class correlation caused by the interviewer effect should
be included in the standard error estimate of an estimate. For example, had a
nonzero ρ̂int met, the estimated design variance of the sample mean should be
multiplied by an inflating factor of deff = 1 + (m − 1)ρ̂int.

Next, an empirical finding is presented from the Passenger Transport Survey. As
a study variable, the number of trips per person per day was selected. In Figure 9.2,
the estimated ρ̂int is presented as a monthly figure and on a cumulative basis. Note
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Figure 9.2 Intra-class correlation of the number of trips per person per day.

that the monthly figures are calculated separately for each month’s workloads,
and for cumulative figures, the workloads of each interviewer are combined over
respective months. The first two months (June and July 1998) are lacking because
the monitoring of this characteristic started in August 1998.

On the basis of the cumulative figures, an average ρ̂int is about 0.02. Many
research findings show that in large-scale telephone surveys the value of ρint ≈
0.02 is typical (Groves 1989). As an interviewer effect, if present as in this case, it
broadens the confidence interval thereby absorbing the cumulative effect of the
increasing sample size, which in turn decreases the sampling error. This finding
recommends limiting the maximum workload per interviewer in large long-term
surveys in order to prevent overly large samples from being interviewed by the
same interviewer. Because of this, the sample persons should be assigned to each
interviewer randomly, a practice that evens out the interviewer effect within
sampled elements (Biemer et al. 1991).

One can calculate the average inflating effect of the intra-class correlation on
the sample mean by taking the monthly value as the basis. In June 1999, ρ̂int was
0.071 and the average workload m of the interviewers consisted of 96 respondents.
Thus, the inflating factor is deff = 1 + ρ̂int(m − 1) = 1 + 0.071(96 − 1) = 6.75.
For example, to adjust for the interviewer effect, the estimated standard errors of
sample means should be multiplied by the square root of this factor or

s.e(y) = √
6.75 × s.e(y)p(s) = 2.60 × s.e(y)p(s).

Monitoring Sampling Error Using the Coefficient of Variation

Coefficient of variation (%), denoted as C.V(θ̂ )% measures the relative sampling
error. For a non-negative study variable y, the estimated coefficient of variation
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Figure 9.3 Coefficient of variation (%) of the average number of trips per person per day;
monthly and cumulative figures.

for a point estimate θ̂ is given by c.v(θ̂) = s.e(θ̂ )/θ̂ . For making easier comparisons
between variables, surveys and monthly data slots, the coefficient of variation is
defined as a percentage by

COEFFICIENT OF VARIATION (%) = s.e(θ̂)

θ̂
× 100.

Figure 9.3 represents the monthly and cumulative values of the coefficient of
variation of the average number of trips per person per day. The cumulative
value clearly shows that the increase in the number of observations reduces the
coefficient of variation.

The average monthly value is about 2.7%, showing only slight relative sampling
error. As expected, the cumulative value of c.v(%) declines steadily when the
number of monthly slots increases.

A Format for a Quality Report

The survey organization decided to provide two monthly quality reports so that
the homogeneity of quality between successive data-collection waves could be
monitored. The first form included 25 different indicators whose values were
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Table 9.1 An example quality report: June 1999. Passenger Transport Survey
1998–1999.

Measurement June Cumulative Remarks

Sample size 1500 18 250 Monthly/yearly
Telephone numbers identified 84.7% 84.2% Coverage rate (%)
Eligible persons contacted 77.3% 77.5% Contact rate I
Contacted somebody at home 78.2% 77.9% Contact rate II
Responded by mobile phone 16.1% 12.5% Contact rate III
Completed interviews 63.9% 64.2% Response rate (%)
Unable to give answers 0.9% 1.3% Cause of nonresponse
Linguistic problems 0.0% 0.2% Cause of nonresponse
Refusals and reasons for refusal 12.5% 11.9% Causes of nonresponse
• No time/busy 1.8% 2.0%
• Don’t cooperate on principle 5.5% 3.6%
• Fearing the misuse of personal data 0.0% 0.0%
• Useless survey 0.2% 0.1%
• Uncertain about the use of study results 0.0% 0.0%
• Not interesting survey 1.3% 1.6%
• Other reason 3.7% 4.6%
Interview interrupted 0.1% 0.1% Cause of nonresponse
No contact 22.7% 22.5% No contact rate
Known endpoint from total number of trips 76.3% 71.7% Measurement error
Number of interviewers 10 19 Monthly/yearly
Completed interviews per interviewer 96 616 Workload/interviewer
Intra-class correlation of the numbers of trips 0.071 0.017 Interviewer effect
Intra-class correlation of daily kilometrage 0.0024 0.0016 Interviewer effect
Coefficient of variation of the number of trips 2.8% 0.8% Sampling error
Coefficient of variation of daily kilometrage 9.9% 2.7% Sampling error

Source: Pastinen (1999). Passenger Transport Survey 1998–1999 (in Finnish). Publications of the
Ministry of Transport and Communications 43/99. Finland: Edita Ltd

calculated from monthly data and from cumulative data. An example of this type
of format is reproduced in Table 9.1.

This report targeted the use of client and survey organizations. In Table 9.1,
cumulative figures serve as benchmarks for monthly figures. For example, the
coefficients of variations are presented on the two last rows. In practice, it
is important to estimate coefficients of variation for all variables of interest,
especially to check that the maximum acceptable level for releasing intermediate
results is not exceeded.

9.2 ESTIMATION OF MEAN SALARY IN A BUSINESS
SURVEY

The main concern in this case study is the estimation of average salaries of
employees in different occupations within the commercial sector using data
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collected from business firms. In the sampling design, the primary sampling unit
is the individual firm, which implies that data on salaries at the employee level are
clustered by firms and so, accordingly, this design should be taken into account in
the estimation. The actual sampling design is stratified one-stage cluster sampling.
In the estimation of the average salaries in the commerce sector as a whole, as
well as in certain occupational groups within this sector, three other sampling
design assumptions are also used for comparison.

Sampling Design

The sampling frame used is a business register, in which business firms in the
commerce sector are divided into two subpopulations. The first comprises all
the firms that are members of the Confederation of Commerce Employers (for
convenience, CCE firms). From this subpopulation, the Confederation collects
census data on salaries in different commercial occupations. The average salaries
calculated on the basis of the complete data set will be used as a point of reference
in subsequent comparisons.

The other subpopulation comprises firms that are not members of the Con-
federation of Commerce Employers. From this subpopulation, a stratified simple
random sample has been selected, using the individual firm as the primary sam-
pling unit. Our aim is to estimate the average salaries for different occupations in
this subpopulation using the collected sample data.

For a sampling frame for the present sample, the smallest companies (those
employing 1–2 people) have been first excluded from the business register. This
leaves a population of 25 345 companies, which is stratified into five categories
by the number of employees and into five categories by the branch of business,
giving 25 strata. Sampling fractions vary by stratum; in some strata, all firms are
included, and in others, only some firms. The order in which individual firms
appear in the Business Register is then stratum-wise randomized. Next, starting
from the top, the required number of units is sampled from each stratum. The
initial sample size was 1572 business firms. Excluding the frame over-coverage of
165 CCE member firms, 76 non-eligible firms and 38 firm closures resulted in a
final sample of 1369 business firms. The number of responding firms was 1100,
thus the response rate was 80%.

Insofar as the sampling takes place at the firm level, the sampling design
may be described as stratified simple random sampling without replacement. If
conclusions were to be drawn for the firm level, then the analysis would be carried
out within a stratified simple random sampling design. For example, this sort of
sample design is well suited to the analysis of turnover and similar firm-level data.

However, the purpose here is to estimate the average salaries of employees in
different occupations. This implies a different interpretation of the sampling design
in that the individual employee who is the unit of analysis is not the primary
sampling unit. The selection of a certain firm into the sample implies that all its
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employees are also included. Each selected firm should therefore be interpreted as
a cluster, the elements of which are all the firm’s employees. This sample design
is described as stratified one-stage cluster sampling. There is only one single stage
in the sampling procedure; namely, the sampling of firms. Within each selected
firm, then, data are collected on the salaries of all employees.

The specific concern here is the regular monthly salaries of commercial occupa-
tions at the time of measurement in August 1991. These occupations are grouped
according to the classification used by Statistics Finland. The average salaries of
22 occupational groups are regularly published, but some of these categories are
so small that for reasons of confidentiality only the job title can be indicated. The
focus here is restricted to the occupational groups that occur in at least 50 sam-
pling units or firms. One item obviously of special interest is the average salary for
the whole commercial sector, which in the present sample design comprises 744
firms or clusters with a total of 13 987 employees. When weighted by the inverse
of the sampling rate, the size of the corresponding population is estimated to be
N̂STATFIN = 57 762 employees. For comparison, the total number of employees in
the CCE Register is NCCE = 190 217.

Weighting and Estimators of the Mean

For the present kind of sample data, it is possible to construct different types of
mean estimators depending on the assumptions made in the sampling design.
In the following text, four alternative sampling designs are presented with the
corresponding mean and design-effect estimates. Appropriate variance estimators
have been considered in Chapters 2, 3 and 5 and we omit them here.

Simple random sampling The firm level is omitted and the sample at the employee
level is interpreted as a simple random sample taken directly from the employee
population. Thus, the corresponding estimator of average salary is

y = N̂
n

n∑
k=1

yk/N̂, (9.1)

where yk is the salary of the kth employee in the sample and the joint sample size
is n = 13 987. The same weight N̂/n is used for all employees; this is the inverse
of the approximate sampling rate. The weight is N̂/n = 57 762/13 987 = 4.13.
This coefficient could only be justified if the sampling had been carried out at
the employee level and if neither stratification nor clustering had been done. In
the present case, neither of these conditions holds. The variance of the mean
estimator is useful in determining the estimate of the design effect, a measure
that summarizes the effects of design complexities on variance estimation. As
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defined in Chapter 2, the design-effect estimator for the mean is a ratio of two
variance estimators:

deff (y∗) = v̂p(s)(y∗)
v̂srs(y)

, (9.2)

where y∗ is an estimator of the mean under the actual sampling design p(s) with
a variance estimator v̂p(s)(y∗), and v̂srs(y) is the variance estimator of y under
SRSWOR. If the design effect is close to one, the actual sample design can be
interpreted as an SRS design. In this case, the analysis does not require sampling-
design identifiers. In situations in which cluster sampling is used, the design effect
can be larger than one. Then, to obtain a proper analysis it is necessary to use
specialized software with the appropriate design identifiers. Under the SRS design,
the design effect is by definition equal to one.

Stratified simple random sampling Element-level sampling is assumed and each
stratum is assigned its own weight. The estimator of the average salary is

ystr =
H∑

h=1

nh∑
k=1

N̂h

nh
yhk/N̂. (9.3)

The stratum-specific weights are N̂h/nh or the inverse of the sampling rate in
stratum h where

∑H
h=1 N̂h = N̂ and

∑H
h=1 nh = n. It is worth noting that the

weight remains constant for all employees in the same stratum even if (as indeed
is the case in practice) they work in different companies.

Stratified cluster sampling with stratum-wise varying weights The estimator for the
mean is equal to that of stratified simple random sampling. However, the designs
involve different estimators for the standard error, which can be used to determine
confidence intervals, for instance. In stratified cluster sampling, the design effect
is usually larger than one (deff ≥ 1), depending on the internal homogeneity of
the clusters with respect to the study variable.

Stratified cluster sampling with cluster-wise varying weights This is a very realistic
assumption in samples of business firms. The size of firms (i.e. the size of the cluster),
measured in terms of the number of employees, usually varies considerably. In
this case, the design can be taken into account by estimating the mean using
the Horvitz–Thompson estimator and regarding the relative size of a cluster as the
sampling weight. Here, the relative size of a cluster is measured by the number
of employees Nhi in a firm divided by the total number of employees Nh in the
corresponding stratum. This will yield a cluster weight for a certain firm, and the
inverse of this figure is, accordingly, the sampling weight for that particular firm.
To match the sum of the weights with the total number of employees within the
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frame population, this figure must still be divided by the number mh of sample
firms in the stratum. Thus, the mean estimator is

yclu =
H∑

h=1

mh∑
i=1

nhi∑
k=1

N̂h

mh × Nhi
yhik/N̂. (9.4)

The estimator incorporates all the information concerning the sampling design:
sampling weights that vary firmwise, and stratification.

Results

The sample data have been analysed so that the appropriate sample design can be
properly taken into account. Estimations under the four sampling design assump-
tions differ in their weighting schemes and they take the same sampling design
into account to varying extents. The most realistic of these design assumptions
is obviously stratified cluster sampling with cluster-wise varying weights, which
incorporates all the information concerning the sampling design, whilst the SRS
design is the simplest one. The results on these sampling designs can also be com-
pared with the statistics on average salaries obtained by the CCE from its census.
In Table 9.2, these data are shown on the last line. The Statistics Finland sample
specifies the estimated number of employees as 57 762, which means that the figure
for the whole sector in August 1991 would have been 57 762 + 190 217 = 247 979
full-time employees.

The estimates from the SRS design give the largest average salary as EUR
1759. On the other hand, it also has the smallest standard error estimate of
s.e = 7.4. In other designs, the average salary approximates the reference figure
obtained from a census, which is EUR 1530. Since this is the exact figure for the
corresponding subpopulation, it obviously contains no standard error. The design
that estimates closest to the reference figure is stratified cluster sampling with
cluster-wise weights. The estimated average salary from this design is EUR 1581.

Table 9.2 Average salary (EUR) of commercial sector employees in 1991 based on different
sampling design assumptions and census data.

Sample design
Weighted

sample size
Average

salary
Standard

error deff

SRS 57 762 1759 7.4 1.00
STR (stratified) 57 762 1602 9.3 1.72
CLU (stratum weights) 57 762 1602 10.1 2.10
CLU (cluster weights) 57 762 1581 11.1 2.58
Census (CCE register) 190 217 1530 0 n.a.

n.a. not available
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There, the primary sampling unit was the firm, but the weighting is done at the
employee level.

Comparison of the Results

Moving on to look at average salaries in selected commercial occupational
groups, Table 9.3 compares the figures from three sources: the Confederation of
Commerce Employers register data, the Statistics Finland estimates based on the
stratified one-stage simple random sampling and finally the estimates obtained
from the stratified cluster sampling design with cluster-wise varying weights. The
comparison covers the biggest occupational categories on which data have been
obtained from at least 50 companies (Table 9.3).

There are certain differences between the figures based on the census data and
the sample compiled by Statistics Finland. However, since these differences only
occur in a small number of occupational groups, it would seem useful to look more
closely at the internal compatibility of occupational classifications used in different
statistical sources. On average, the estimates from stratified cluster sampling with
cluster-wise weights come closer to the census figures than those of Statistics
Finland, which are based on an assumption of stratified simple random sampling.

The use of complete design information significantly increases the standard
errors of average salary estimates. One possible reason for this is that during

Table 9.3 Average salaries in different occupational groups in August 1991:
census of CCE member companies and the Statistics Finland sample.

Average salary in August 1991

CCE
STATFIN sample

Occupational group census CLU design STR design

Shop managers 1612 1486 1430
Service station workers 1159 1173 1161
Cleaners 1150 911 906
Warehouse workers 1195 1196 1191
Van/lorry drivers 1313 1201 1216
Forwarders 1504 2164 2293
Other branches 1414 1288 1303
Upper white-collar 2545 2427 2421
Office management 3231 3306 3326
Office supervisors 2349 2523 2542
Clerical staff 1494 1708 1707
Motor-transport workers 1613 1332 1324
All occupational groups 1530 1581 1602
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the time lag between the compilation of the sampling frame and the sampling
date, firms have moved up or down from their original size category but have
retained the weight of that stratum. This was evident in the design effects in the
sample design employed by Statistics Finland (deff = 1.72). Firm-specific weights
have two kinds of effects. Firstly, they lessen the above-mentioned frame-ageing
problems by taking the actual size measure into account. Secondly, they introduce
a clustering effect, which results in positive intra-class correlation. Therefore, the
use of stratified sampling design with cluster-wise varying weights increases the
standard errors of average salaries and, accordingly, the design effects.

Conclusions

This case study illustrated a data-collection strategy of mixed type. The target pop-
ulation of business firms comprised two subpopulations: the registered members
of the employer’s confederation and firms not registered. For producing reliable
salary statistics, the information on paid salaries of each firm is needed, thus
influencing a strong response burden on the business population. Here the main
share of data was gathered from the available census-type administrative register.
From the rest of the firms or from the population of unregistered firms, Statistics
Finland selected a sample applying stratified simple random sampling using firms
as sampling units. Thus, only sampled firms of the total business population
should fill in a questionnaire. This procedure minimized the additional response
burden created by this kind of survey. On the other hand, the data collected
by this design should be analysed very carefully, as we showed, under different
estimation strategies.

The relatively high design-effect estimates of the clustered designs (2.10 ≤
deff < 2.58) lend further support to the argument that there is a considerable
clustering effect that should be taken into account in the calculation of average
salaries in business firms. Clustering effect here means that employees working in
a certain occupation within the same firm (say, shop assistants) have more or less
the same salary, whereas their salary is clearly different from the average pay for
their occupation in other firms. This observation also supports the view that the
calculation of average salaries should use weights at the cluster level. Another
factor that speaks in favour of cluster-level weights is the wide range of variation
in firm (cluster) size. The most natural way to do this is to apply Horvitz–Thompson
estimators. Recent developments in business survey methodology are summarized
in Cox et al. (1995).

9.3 MODEL SELECTION IN A SOCIOECONOMIC SURVEY

We demonstrate in this case study not only that accounting for the clustering
effect is crucial but also that the model formulation and assumptions on the
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predictors can be important. For this, we use the generalized weighted least
squares (GWLS) and pseudolikelihood (PML) methods introduced in Sections 8.3
and 8.4 for logit ANOVA and ANCOVA modelling on domain proportions. We
use three analysis options in this exercise (see Section 8.2). The design-based
analysis option (Option one) accounts for all the sampling-design complexities
present in this case, that is, weighting and clustering. The weighted SRS option
(Option 2) assumes simple random sampling but accounts for the weighting.
The unweighted SRS option (Option 3) assumes simple random sampling and
ignores all the sampling complexities. The study problem evaluates a sickness
insurance scheme. The data make up a single selected regional stratum from the
Finnish Health Security Survey sampling design, which involves clustering with
households as clusters and weighting for nonresponse adjustment.

The Study Problem and the Data

An important aim of sickness insurance is to reduce differences between population
subgroups in the utilization of health services, and to reduce the financial burden
of illness on individuals and families. In Finland, a public sickness insurance
scheme, covering the entire population, has been in force since 1964. In the
1980s, a supplemental sickness insurance scheme, supplied by private insurance
companies, was increasingly used, e.g. in reimbursing in the private health-care
sector, costs of visiting a physician because of sickness. We shall study variations
in the proportion of privately insured persons in various income groups using
data from the Finnish Health Security (FHS) Survey. The survey was conducted
in 1987 by the Social Insurance Institution of Finland.

The FHS Survey was intended to produce reliable information for the evaluation
of health and social security. Regionally stratified one-stage cluster sampling was
used. Both substantive matters and economy of data collection motivated the use of
households as the units of data collection. Of a sample of 6998 households, a total of
5858 (84%) took part in the survey. All eligible members in the sample households
formed the element-level sample, consisting of a total of 16 269 interviewed non-
institutionalized persons. Unit nonresponse was concentrated in urban regions,
especially large towns such as Helsinki. Because of the nonignorability of the
nonresponse, poststratification was used for adjusting so that the poststrata were
formed by region, sex and age groups.

Personal interviews were conducted household-wise, but the main interest was
on person-level inferences. It is obvious that many characteristics concerning
health, use of health services and health behaviour, tend to be homogeneous
within households. Owing to this, the corresponding study variables can be posi-
tively intra-cluster correlated. Design-effect estimates of means and proportions of
such variables were often greater than one but less than two. The largest design-
effect estimate (deff = 1.7) was found for a binary variable INSUR describing access
to private sickness insurance.
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A subsample of 2071 persons and 878 households living in the Helsinki Metropoli-
tan Area, being one of the 35 strata, is considered in this case study. The estimated
proportion of private sickness insured persons was relatively high, about 17% in
the Helsinki Metropolitan Area, where the supply of private health-care services
was high relative to other parts of the country. In rural areas, this proportion was
noticeably smaller.

Examining the association of INSUR with household incomes was seen to
be relevant to the evaluation of the public sickness insurance scheme. The
preliminary analysis, however, does not lend support to the hypothesis that
having private sickness insurance depends on high incomes. Estimated INSUR
proportions in three household-income categories (low, medium, high) are 15.2%,
17.3% and 18.1%, respectively. In a homogeneity test on these proportions, an
observed value X2

P = 2.15 of the Pearson test statistic was obtained, with a p-value
0.342, clearly indicating nonsignificant variation. Further, a logit regression with
INSUR as the response and household income as the quantitative predictor,
with integer scores from 1 to 3, has a p-value 0.148, indicating a nonsignificant
linear trend.

But, having private health insurance depends strongly on age. Private insurance
appears to be a form of sickness insurance used especially for children. In the
Helsinki Metropolitan Area, 43% of children were covered, whereas the proportion
for adults was only 9%. Moreover, the need to visit a physician because of a chronic
or acute illness tends to increase the probability of being privately insured. Of
those who had visited a doctor at least once in a given time interval, 27% had
access to private sickness insurance. The proportion was 14% in the other group.
Possible causal relationships (if any) can of course also work the other way
round. Taking the age of the respondent and visiting a private physician as
confounding factors can thus be informative when studying more closely the
relationship of a household member being privately insured with the income of
the household.

An ANOVA-type logit model on cross-classified data provides the simplest mod-
elling approach for studying the association further. For simplicity, we choose
the binary variables VISITS (visiting a private physician at least once during
a fixed time interval), AGE (0–17-year-old child or over-17-year-old adult) and
a three-category variable INCOME (household net income per OECD consumer
unit, one-third parts) as the predictors in the ANOVA model. With these pre-
dictors, a total of 12 population subgroups or domains are produced. Because
INCOME can also be taken as a quantitative predictor, we fit a logit ANCOVA
model for these proportions to further examine the possible linear trend for
household incomes.

Domain proportions of INSUR are displayed in Table 9.4. The proportions
p̂U

j = nj1/nj and the domain sample sums nj of INSUR and the domain sample sizes
nj are the original unweighted quantities used under the SRS option that ignores
the weighting. Under the other two options, the proportions p̂j = n̂j1/n̂j are used,
which are reweighted for the unit nonresponse. The proportion estimators are
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Table 9.4 Unweighted and weighted proportion estimates p̂U
j and p̂j (%) of privately

sickness insured persons (INSUR) by VISITS, AGE and INCOME in the Helsinki Metropolitan
Area (the FHS Survey).

Domain VISITS AGE INCOME p̂U
j nj p̂j d̂j n̂j mj

1 None Child Low 27.6 145 29.0 1.7 140 86
2 Medium 33.3 135 33.6 1.7 125 93
3 High 41.3 75 41.2 1.3 69 57
4 Adult Low 6.7 400 6.5 1.5 422 258
5 Medium 8.9 427 8.6 1.5 425 245
6 High 11.6 423 11.3 1.6 422 256
7 Some Child Low 60.5 43 60.3 1.4 44 33
8 Medium 74.4 39 75.2 1.4 37 30
9 High 75.6 41 75.4 1.3 41 35

10 Adult Low 12.6 103 12.9 1.3 110 92
11 Medium 12.5 88 11.4 1.0 87 83
12 High 11.2 152 10.5 1.3 149 127

Total sample 17.2 2071 16.8 1.8 2071 878

INSUR Access to private sickness insurance (binary response)
VISITS Visiting a private physician at least once in a given time interval
AGE Age (children 0–17 years/adults 18 years and above)
INCOME Household net income 1986/87 per OECD consumer unit (one-third parts)

thus consistent ratio estimators where n̂j1 and n̂j are weighted domain sample
sums and weighted domain sample sizes respectively. The design-effect estimates
d̂j are for the weighted proportion estimates p̂j. The number of sample clusters mj,
i.e. households covered by each subgroup, is also displayed.

With VISITS and AGE fixed, the INSUR proportions increase with increasing
income, except in the last three income groups. The proportions tend to be larger
on average in the second VISITS group and in the first AGE group. The largest
proportions are for children with at least one doctor’s visit. The design-effect
estimates indicate a slight clustering effect; their average is 1.4.

Methods

A logit ANOVA model is first fitted by the GWLS method to the INSUR proportions
p̂j and p̂U

j with VISITS, AGE and INCOME as the qualitative predictors. Then, a logit
ANCOVA model is fitted by the PML method for the same table, but the predictor
INCOME is taken as quantitative with scores from 1 to 3. We use the GWLS and
PML methods under the three analysis options introduced in Section 8.2. Under
the unweighted SRS option, all design complexities are ignored, and only the
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weighting is accounted for under the weighted SRS option. Under the design-
based option, the extra-binomial variation and the correlations between separate
proportion estimates are allowed in addition. This option uses the actual cluster-
sampling design, whereas the other two options assume simple random sampling.

There are obvious reasons for supporting design-based analysis. The response
variable INSUR appears positively intra-cluster correlated in such a way that if
a household member, especially a child, is insured, then the others tend to be
as well. This clustering effect is indicated in the design-effect estimate deff = 1.8
of the overall INSUR proportion and in the domain design effects, which clearly
indicate extra-binomial variation.

There is another important issue concerning the intra-cluster correlations
with respect to the domain structure. VISITS and AGE obviously constitute
cross-classes in that they cut across the clusters, i.e. the households. INCOME
constitutes segregated classes because it is a household-level predictor. These
predictors together thus produce a structure that is of a mixed-classes type. This
causes pair-wise correlations between separate proportions p̂j. Not all proportions
are allowed to be correlated, but only those corresponding to the respective
INCOME groups, i.e. every third domain. So, in addition to the extra-binomial
variation, positive covariances can be expected between the proportion estimates
in these domains, also supporting the use of the design-based analysis option.

The structure of the intra-cluster correlation is reflected in the 12 × 12 design-
based covariance-matrix estimate V̂des of domain proportions p̂j. This estimate
is displayed in Figure 9.4, in which the corresponding binomial estimate V̂bin is
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Figure 9.4 Covariance-matrix estimates for INSUR proportions p̂j. The design-based
estimate V̂des and the binomial estimate V̂bin (the FHS Survey).
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shown for comparison. The estimate V̂des, obtained by the linearization method,
appears quite stable owing to the large number of degrees of freedom, f =
m − H = 877, and the condition number of V̂des is not large (37.4). It can thus
be expected that the GWLS and PML methods work adequately under the
design-based option. Because the variance estimates on the diagonal of V̂des are
larger than the corresponding binomial variance estimates, liberal test results
can be expected under the SRS options, relative to those obtained under the
design-based option.

As was shown in Chapter 8, the vector of proportion estimates and its
covariance-matrix estimate, depending on the analysis option considered, are
required for logit modelling with the GWLS and PML methods. In the GWLS
analysis, equations (8.5) to (8.13) in Section 8.3 were used, and in the PML anal-
ysis, equations (8.24) to (8.27) in Section 8.4 were used. Under the design-based
option, the estimates p̂j and V̂des(p̂) were used. Under the weighted SRS option,
the binomial estimate V̂bin(p̂) was used in addition to p̂j. Under the unweighted
SRS option, the unweighted estimates p̂U

j and V̂bin(p̂U) were used.

Results

Let us first consider the test results for the logit ANOVA model. We wish to study
the dependence of being privately insured on incomes of the household with
adjustment for the confounding effects of visiting a doctor and age of respon-
dent. In addition to the corresponding main effects, possible interactions should
be examined as well. Thus, the relevant saturated logit model is of the form
log(P/(1 − P)) = V + A + I + V∗A + V∗I + A∗I + V∗A∗I, where V refers to VIS-
ITS, A refers to AGE, I refers to INCOME and P stands for the domain proportions
of being privately insured. Note that in this expression, all the predictors are taken
to be qualitative.

An ANOVA model with all the main effects, and an interaction of VISITS
and AGE, appeared to fit reasonably well and could not be further reduced.
Results on goodness of fit of the model are displayed in the left-most part of
Table 9.5, including the observed values of the Wald statistics based on the
SRS-based and design-based Wald statistics. There is no need for F-corrections
for unstability because of the large number of sample clusters. The reduced
ANOVA model fits well according to the test results, under any of the analy-
sis options.

The main interest in the analysis is the importance of the INCOME effect in the
ANOVA model as a predictor of being privately insured. The Wald test results
under the selected analysis options, using the statistic X2(b), are given in the
middle part of the table. The test results indicate that under the SRS-based options,
the INCOME effect clearly remains significant. The most liberal test, significant
at the 1% level, is under the unweighted SRS option. Under the weighted SRS
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Table 9.5 Wald-test results of goodness of fit of the logit ANOVA model, and of significance
of the INCOME effect and the INCOME contrast ‘low versus high’, under the design-based
and SRS-based analysis options (the FHS Survey).

Model fit
Significance

of INCOME effect
Significance of

contrast low vs high

Option X2 df p-value X2(b) df p-value p-value

Option 1 4.23 6 0.6450 4.35 2 0.1138 0.0372
Option 2 4.52 6 0.6063 7.95 2 0.0188 0.0048
Option 3 3.61 6 0.7290 9.31 2 0.0095 0.0023

Option 1: Design-based analysis under the actual cluster-sampling design
Option 2: Simple random sampling assumption, weighted analysis
Option 3: Simple random sampling assumption, unweighted analysis

option, the test is significant at the 5% level. In both of these tests, the clustering
effect is ignored. But, the INCOME effect turns out to be nonsignificant as soon as
the extra-binomial variation and the correlations of the domain proportions are
accounted for using the design-based option. Then, the INCOME effect becomes
nonsignificant even at the 10% level.

For more detailed inferences, we separately test the hypothesis that the model
parameters for the low and high INCOME groups were equal. The test results for
the corresponding contrast ‘low versus high’ are given in the right-most part of
Table 9.5. All the tests indicate a significant difference at least at the 5% level, and
the pattern of the p-value follows that of the previous tests.

We next calculate the corresponding adjusted odds ratios and their 95%
confidence intervals using the estimated model coefficients and their standard
errors (Table 9.6). This is done for the two extreme options 1 and 3.

Under both options, the adjusted odds ratios for the first INCOME group differ
significantly (at the 5% level) from one, which is the odds ratio for the highest
INCOME group.

The results from the logit ANOVA model give some support to the conclusion
that access to private sickness insurance might not be equally likely in the
two extreme income groups, although the overall effect of household incomes
appeared nonsignificant when the clustering effect was accounted for. It is thus
reasonable to model the variation further so that the possible linear trend in the
proportions in the INCOME groups, adjusted for the confounding factors, can
be tested more explicitly. This is carried out by a logit ANCOVA model, where
INCOME is taken as a quantitative predictor so that integer scores from 1 to 3 are
assigned to the classes. Hence, we increase the use of the information inherent in
the variable INCOME.

A logit ANCOVA model is fitted by the PML method. A model with identical
model terms as in the previous ANOVA model appears reasonable for further
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Table 9.6 Adjusted odds ratio statistics for INSUR under
the design-based analysis option and the unweighted SRS
option (the FHS Survey).

95% confidence
interval for OR

Option Odds ratio Lower Upper

Option 1
INCOME class

1 1 1 1
2 1.22 0.81 1.85
3 1.56 1.03 2.38

Option 3
INCOME class

1 1 1 1
2 1.23 0.91 1.69
3 1.64 1.19 2.22

Option 1: Design-based analysis under the actual cluster-
sampling design
Option 3: Simple random sampling assumption, un-
weighted analysis

examination. Let us consider more closely the test results on the regression coef-
ficient b4 for INCOME in this model. The results obtained under the design-based
and unweighted SRS are given in Table 9.7. In fact, the unweighted SRS results are
based on the ML method because the weighting is ignored. In the table, the t-test
results under both options indicate significant deviation from zero (at least at the
5% level) for the regression coefficient of INCOME. Here also, the SRS-based test
is liberal relative to the design-based test. The test result under the weighted SRS
option would be intermediate. Note also that the estimates b̂4 somewhat differ;
under the weighted SRS option, an equal estimate to the design-based counterpart
would have been obtained.

Summary

We studied whether access to private sickness insurance depends on household
incomes when the confounding effects of visiting a private physician and age
of respondent are adjusted for. For the analysis, the data were arranged in a
multidimensional table of domain proportions. The proportions indicated slight
clustering effects. Logit ANOVA modelling provided the simplest approach to
studying the variation of the proportions. The effect of household incomes appeared
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Table 9.7 Estimation and test results on the regression coefficient b4 for
INCOME in a logit ANCOVA model fitted by the PML method under the
design-based and unweighted SRS options (the FHS Survey).

Option b̂4 d̂(b̂4) s.e (b̂4) t-test p-value

Option 1 0.229 1.77 0.109 2.10 0.0357
Option 3 0.246 1.00 0.081 3.02 0.0026

Option 1: Design-based analysis under the actual cluster-sampling design
Option 3: Simple random sampling assumption, unweighted analysis

significant when the clustering effects were ignored, but it lost its significance
when these effects were accounted for. In the test of a contrast, and in the odds
ratio estimates, some evidence, however, was present on differences between the
extreme income groups with respect to the coverage of private sickness insurance,
thus supporting the need for further modelling. A logit ANCOVA model, where
a linear trend on household incomes was more explicitly tested, provided results
giving more evidence of having access to private insurance depending on high
incomes. This result indicates that a private insurance scheme, as a supplement
to a public insurance scheme, can involve inequality with respect to access to,
and use of, health-care services.

In the preceding analysis, the variable describing access to a private sickness
insurance scheme was the binary response. This was used mainly for illustrative
purposes; the intra-cluster correlation of that variable was relatively strong. It
would also be reasonable to take the variable describing use of health services
as the response, with the insurance variable as one of the predictors. Then, a
different view of the problem would be possible.

Methodological Conclusion

Positive intra-cluster correlation of a response variable can severely distort the
test results in a multivariate analysis even if the correlations were relatively weak,
as in the case demonstrated. In both logit ANOVA and ANCOVA modelling,
ignoring the clustering effects resulted in overly liberal tests relative to those
in which the clustering effects were properly accounted for. This was because
the standard errors of model coefficients were underestimated by ignoring the
clustering effects. Hence the results indicate a warning against relying on results
from standard analyses when working with data from a clustered design. For the
nuisance approach, which appeared to be relevant in the analysis considered,
the design-based methods using least-squares or likelihood-based estimation with
element weights provide a safe and easily manageable approach for modelling
intra-cluster correlated responses. There also, the results should be carefully
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compared with alternative model formulations in order to reach valid inferences
on the subject matter.

9.4 MULTI-LEVEL MODELLING IN AN EDUCATIONAL
SURVEY

Multi-level modelling on hierarchically structured data with a continuous
response variable is used in a study problem concerning students’ literacy in
a multinational educational survey. Cluster sampling has been used with schools
as clusters, reflecting the hierarchical structure of the population. The sampling
design introduces strong intra-cluster correlation for the response variable, and
this is a property that should be taken into account in the analysis. The disaggre-
gated approach introduced here provides an alternative to the methods for the
nuisance or aggregated approach, which is the main approach in this book. We
apply the disaggregated approach by fitting a two-level linear model separately
for data from a number of countries. The results are also compared with those
from an analysis ignoring the design complexities.

PISA: An International Educational Survey

The data are from the OECD’s Programme for International Student Assessment
(PISA). The first PISA Survey was conducted in 2000 in 28 OECD member countries
and 4 non-OECD countries. The PISA 2000 Survey covered three subject-matter
areas: reading literacy, mathematical literacy and scientific literacy. We discuss
here the area of reading literacy. We selected from the PISA database the following
countries: Brazil, Finland, Germany, Hungary, Republic of Korea, United Kingdom
and United States. Our selection of countries is deliberate; countries with varying
clustering effects were chosen, keeping, however, in mind a good regional
representativeness. The survey data set from these 7 countries comprised a total
of 1388 schools and 32 101 pupils.

A highly standardized survey design was used in the PISA 2000 Survey, includ-
ing standardization of basic concepts, procedures and tools, such as measurement
instruments, sampling design, data-collection procedures and estimation and
analysis procedures. This was to guarantee as far as possible the international
comparability of results.

Sampling of Schools and Students

In the sampling design for an educational survey, it is natural to utilize the existing
administrative and functional structures of the school system. There, the schools
can be taken as basic units, which are grouped by areas of school administration or
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similar administrative criteria. On the other hand, the teaching is organized into
teaching groups or school classes, composed of the students and the teacher. In
educational surveys, a school is often taken as the primary unit of data collection
because of economical and other practical reasons. From the sampled schools,
students are selected as the secondary units. There is thus a natural hierarchy in
the population, which is a property that is utilized both in the sampling design
and in the modelling procedures for this case study.

Stratified two-stage cluster sampling was used in most PISA countries. The first
stage consisted of sampling individual schools in which 15-year-old students were
enrolled. Schools were sampled with systematic PPS sampling (see Section 3.2),
the measure of size being a function of the estimated number of eligible (15-year-
old) students enrolled. In most cases, the population of schools was stratified before
sampling operations. A minimum of 150 schools was selected in each country
(where this number existed), although the requirements for national analyses
often required a somewhat larger sample.

In the second stage, samples of students were selected within the sampled
schools. Once the schools were selected, a frame list of each sampled school’s
15-year-old students was prepared. From this list, 35 students were then selected
with equal probability. All 15-year-old students were selected if fewer than 35
were enrolled.

A minimum response rate of 85% was required for the schools initially
selected. A minimum participation rate of 80% of students within participat-
ing schools was required. This minimum participation rate had to be met
at the national level, not necessarily by each participating school (OECD
2001, 2002a).

Weighting Schemes

Appropriate sampling weights were constructed for each national sample data set.
The element weight consisted of factors reflecting school selection probabilities,
student selection probabilities within schools and school and student nonresponse
adjustments. For each country, the weight wik for student k in school i can be
expressed as follows:

wik = w1i × w2ik × fi, i = 1, . . . , m and k = 1, . . . , ni,

where
w1i = 1/(πiθ̂i) is the reciprocal of the product of the inclusion probability πi and

the estimated participation probability θ̂i of school i;
w2ik = 1/(πk|iθ̂k|i) is the reciprocal of the product of the conditional inclusion

probability πk|i and estimated conditional response probability θ̂k|i of student k
from within the selected school i;
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fi is an adjustment factor for school i to compensate any country-specific
refinements in the survey design, and

m is the number of sample schools in a given country and ni is the number of
sample students in school i.

The student-level element weights, rescaled to sum up to the actual size of the
available sample data set in each country, were used in the analyses. In a given
country, the mean of the rescaled weights is one, but there are differences between
countries in the variation of the weights. The smallest standard deviation of the
rescaled weights is 0.143 and the largest is 0.983. A more detailed description of
weighting procedures is given in OECD (2002b).

Reading Literacy in Selected Countries

The outcome variable y is the student’s combined reading literacy score (or to
be exact, the first of five plausible values of combined reading literacy), scaled
so that the common mean over the participating OECD countries is 500 and the
standard deviation is 100. We call the response variable the combined reading
literacy score. Descriptive statistics on reading literacy in the selected countries are
presented in Table 9.8. Means and standard errors of the combined reading literacy
score have been calculated by techniques presented in Chapter 5. Therefore, the
estimates are design-based and account properly for the complexities (weighting,
stratification and clustering) of the sampling design used in a given country.
There are two different design effects in the table. The overall design effect
accounts for weighting, stratification and clustering. The second design effect

Table 9.8 Descriptive statistics for combined reading literacy score in the PISA 2000
Survey by country (in alphabetical order).

Combined reading literacy score

Overall
Design-effect

accounting for
Effective
sample

Number of
observations

in data set
Standard design stratification size of

Country Mean error effect and clustering students Students Schools

Brazil 402.9 3.82 8.33 5.17 476 3961 290
Finland 550.7 2.15 2.79 2.74 1600 4465 147
Germany 497.4 5.68 13.47 11.68 305 4108 183
Hungary 485.7 6.02 20.00 16.20 231 4613 184
Republic of Korea 526.6 3.66 12.99 11.67 351 4564 144
United Kingdom 531.4 4.08 14.08 7.16 564 7935 328
United States 517.0 5.16 6.93 5.46 354 2455 112

Data source: OECD PISA database, 2001.
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accounts for stratification and clustering and allows for a comparison with the
weighted SRS analysis option. Both design effects indicate a strong clustering
effect for most countries. In some cases, the difference between the first and
second design-effect estimates is substantial, indicating a large variation in
the weights.

The effective sample sizes of students are calculated by dividing the number of
students by the overall design effect. The effective sample size is the equivalent
sample size needed to achieve the same precision in estimation if simple random
sampling from a student population without any clustering were used. If the
observations are not independent from each other, the effective sample size
decreases: the higher the design effect, the smaller the effective sample size.
Though the nominal sample sizes of students are large (several thousands) in all
countries, some of the effective sample sizes are quite small (only a few hundred).

Design-effect estimates also indicate that standard errors calculated under an
erroneous assumption of simple random sampling would be much smaller than
the design-based standard error estimates for most countries.

Fitting a Two-level Hierarchical Linear Model

In the analysis, the outcome variable y is the combined reading literacy score.
The variation of the outcome variable is explained with two school-level and
four student-level variables. The school-level explanatory variables are school size
(SSIZE) and teacher autonomy (AUTONOMY). School size is a measure formed
from the actual number of students in the school, divided by 100. School principals
were asked to report who had the main responsibility for several tasks in the school.
Teacher autonomy was derived from the number of categories that principals
identified as being mainly the responsibility of teachers. Both variables were
standardized so that the common mean over the participating OECD countries
was zero and the standard deviation was one.

The student-level explanatory variables are student’s gender (recoded so that
one is for females and zero is for males, and named FEMALE), socioeconomic
background (SEB), engagement in reading (ENGAGEMENT) and achievement
press (ACHPRESS). The index of SEB was derived from students’ responses on
parental occupation. The index of engagement in reading was derived from
students’ level of agreement with several statements concerning reading habits
and attitudes, and the index of achievement press was derived from students’
reports of the pressure they feel from their teacher. These three indices were again
standardized so that the common mean over the participating OECD countries
was zero and the standard deviation was one.

The two-level regression model for the combined reading literacy score y, with
explanatory variables and random variation at both levels, is given by
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yik = INTERCEPT + γ1 × SSIZEi + γ2 × AUTONOMYi

+ β1 × FEMALEik + β2 × SEBik + β3 × ENGAGEMENTik

+ β4 × ACHPRESSik + ui + eik,

where the index k refers to the level-1 unit (student) and i to the level-2 unit
(school). The fixed effects γ and β denote regression coefficients of the school- and
student-level variables respectively. Residual ui is the random effect of school i
assumed normally distributed with mean zero and variance σ 2

u , whereas eik is the
student-level residual assumed normally distributed with mean zero and variance
σ 2

e . The random effects ui and eik are assumed independent. The student-level
rescaled weights were used in the analyses.

Units within naturally existing clusters, such as schools, tend to be more
similar or homogeneous with respect to the variable of interest than units
selected at random from the population. This means that the level-1 units
(students) cannot be assumed statistically independent within schools, and the
study variable tends to be positively intra-cluster correlated. In the context of
multi-level modelling, the intra-cluster correlation is estimated by (Skinner et al.
1989; Goldstein 2002; Snijders and Bosker 2002) as

ρ̂int = σ̂ 2
u

σ̂ 2
u + σ̂ 2

e
= σ̂ 2

u

σ̂ 2
,

where the estimated total variance σ̂ 2 of the study variable is divided into two
components, the between-school variance σ̂ 2

u and the within-school variance
σ̂ 2

e . The intra-cluster correlation coefficient measures the pair-wise correlation
between values of level-1 units (students) in the same level-2 group (school) and
is called the intra-school correlation coefficient. In a model-based context, the
coefficient is estimated from the variance components of the null model, i.e. the
multi-level model with only intercept and residuals at both levels. For example,
the estimated intra-school correlation coefficient for Hungary in Table 9.9 is
6093.7/(6093.7 + 3148.3) = 0.659. The coefficient can also be estimated from the
variance components of the model including explanatory variables, in which
case it is called the residual intra-school correlation coefficient. The residual
intra-school correlation coefficient for Hungary in Table 9.10 is 4744.2/(4744.2 +
2897.4) = 0.621. Note that the concept of intra-cluster correlation is used in a
design-based context earlier in this book (see Section 3.2).

Variance components were estimated by restricted maximum likelihood
(REML), and the fixed effects were estimated by generalized least squares (GLS)
given these variance estimates (Bryk and Raudenbush 1992). These estimates are
accompanied by standard error estimates that account for the clustering effect
(see, for example, the ‘sandwich’ form in Section 8.4).
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Table 9.9 Estimates of two-level variance component models (null models) for combined
reading literacy score in the PISA 2000 Survey by country (ordered by the size of the
estimated intra-school correlation coefficient).

Intra-school
Variance components

Country
correlation
coefficient

School
level

Student
level Intercept

Standard
error

Hungary 0.659 6093.7 3148.3 464.1 5.84
Germany 0.553 5572.2 4507.8 496.1 5.61
Brazil 0.428 3146.9 4201.4 387.9 3.61
Republic of Korea 0.375 1828.6 3043.0 520.9 3.74
United States 0.241 2318.2 7315.5 503.3 4.97
United Kingdom 0.212 1917.5 7126.5 529.0 2.88
Finland 0.063 470.7 6960.9 550.6 2.18

Data source: OECD PISA database, 2001.

Table 9.9 presents results for basic two-level variance component models, i.e.
null models without explanatory variables. In these models, one fixed effect, the
intercept, and the school-level random intercepts are estimated. The total variance
is divided into between-schools and within-schools variance components, which
are used to calculate the intra-school correlation coefficient. Estimated coefficients
vary considerably between the selected countries, with a minimum value of 0.063
and a maximum value of 0.659.

In a given country, the intercept in Table 9.9 is the estimated average of
school intercepts. The intercepts are somewhat different from the country means
in Table 9.8. Standard error estimates of estimated intercepts are also different
because they are calculated using the estimated multi-level model.

Estimated two-level models for combined reading literacy score are presented
in Table 9.10. In school-level variables, the effect of school size is statistically
significant in some countries. The second school-level variable, teacher autonomy,
does not have statistically significant effects in any of the countries.

In student-level explanatory variables, the effects of socioeconomic background
and engagement in reading are statistically significant at least at the 5% level in
every country. The effect of socioeconomic background varies greatly between
countries. The higher the socioeconomic background score, and the more he or
she is engaged in reading, the better tends to be his or her reading proficiency
score. The strength and direction of the effect of achievement press varies greatly.
In most cases, the gender effect was statistically significant.

The estimated models explain a considerable amount of school- and student-
level variation in reading literacy as is indicated by the proportional reduction
figures. However, there is substantial variation in the degree of reduction gained
by the fitted model, when compared to the null model. In most countries, the
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Table 9.10 Estimates of two-level models for combined reading literacy score in the PISA
2000 Survey by country.

Hungary Germany Brazil
Republic
of Korea

United
States

United
Kingdom Finland

Fixed effects:

Coefficient
Intercept γ0 471.2 496.4 382.0 506.8 496.6 524.9 531.6

s.e 6.36 4.58 4.56 6.29 6.05 3.38 4.91
t-test 74.14 108.37 83.75 80.53 82.12 155.06 108.27

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

School-level variables:

γ1 30.6 27.4 2.4 7.1 1.0 3.8 5.9
School size s.e 9.00 9.22 1.47 3.44 2.54 3.14 7.35

t-test 3.41 2.97 1.64 2.07 0.38 1.20 0.80
p-value 0.001 0.003 0.100 0.039 0.705 0.232 0.426

Teacher γ2 4.8 −7.1 −3.1 2.5 4.1 −2.3 2.8
autonomy s.e 5.62 5.22 4.24 5.39 3.63 2.61 2.68

t-test 0.86 −1.37 −0.74 0.47 1.14 −0.89 1.06
p-value 0.392 0.171 0.459 0.641 0.256 0.374 0.291

Student-level variables:

Female β1 6.4 3.6 3.1 15.9 14.9 9.8 19.6
s.e 2.22 2.41 2.54 2.49 3.71 2.64 2.43

t-test 2.89 1.50 1.21 6.38 4.00 3.71 8.09
p-value 0.004 0.133 0.228 0.000 0.000 0.000 0.000

Socioeconomic β2 6.0 11.5 9.9 2.2 16.7 23.3 15.8
background s.e 1.09 1.53 1.35 0.92 2.22 1.32 1.34

t-test 5.56 7.50 7.34 2.40 7.51 17.70 11.78
p-value 0.000 0.000 0.000 0.016 0.000 0.000 0.000

Engagement in β3 19.5 19.0 19.5 16.6 28.9 31.5 33.9
reading s.e 1.04 0.98 1.51 1.04 1.99 1.40 1.26

t-test 18.68 19.36 12.87 15.94 14.49 22.59 27.05
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Achievement β4 0.9 −1.6 3.4 3.4 −3.3 −7.2 −3.7
press s.e 0.93 1.16 1.44 0.89 2.04 1.59 1.40

t-test 0.92 −1.35 2.36 3.85 −1.62 −4.52 −2.65
p-value 0.356 0.176 0.018 0.000 0.106 0.000 0.008

Random effects:

Variance component
School level 4744.2 3501.6 2730.5 1387.3 1770.6 999.6 394.8
Student level 2897.4 3981.9 3830.6 2809.6 6094.1 5779.0 4984.3
Residual intra-school 0.621 0.468 0.416 0.331 0.225 0.147 0.073
correlation coefficient
Proportional reduction in variance
components, compared to null model (%)
School level 22.1 37.2 13.2 24.1 23.6 47.9 16.1
Student level 8.0 11.7 8.8 7.7 16.7 18.9 28.4
Total 17.3 25.8 10.7 13.8 18.4 25.0 27.6

Data source: OECD PISA database, 2001.
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unexplained school-level variation is still large, compared to the unexplained
total variation, which can be seen from the residual intra-school correlation
coefficient figures.

Only linear effects of explanatory variables were included in the models. The
possible quadratic effects could also be studied for some variables (e.g. school size).
All the coefficients of the level-1 explanatory variables are also considered as fixed
effects, although there may exist between-school variation in the coefficients, in
which case also random coefficient regression models could be used.

Comparison with Weighted SRS Analysis

We finally compare the results of the multi-level modelling exercise with those
obtained ignoring the clustering effects. We use the weighted SRS analysis
option (see Section 8.2) corresponding to an assumption of independence of
the observations. Under this option, a fixed-effects linear model is fitted for the
outcome variable, using similar explanatory variables as for the two-level model.
Estimation under the weighted SRS option uses the weighted least squares method
(see Section 8.4). We selected the German data for comparison (Table 9.11).

The response variable in the German data is highly intra-school correlated,
and, as a consequence, the standard-error estimates of the estimated fixed level-
2 effects are too small in the model fitted under the weighted SRS option.
One of the two school-level effects, teacher autonomy, would be mistakenly
considered as statistically significant if the weighted SRS analysis option were
used, and the effect of school size would be estimated as being too small.
From the level-1 explanatory variables, the effects of socioeconomic background
and engagement in reading are much larger compared to the estimates from
the two-level model. Achievement press would also appear as a statistically
significant effect.

Summary

This case study shows that for data obtained by cluster sampling, an analysis
assuming independent observations may be grossly misleading, since the positive
intra-cluster correlation of observations will be ignored. Only if the clustering
effect were not indicated would the results of an analysis with a two-level model
and a weighted SRS-based analysis be similar.

We used here a ‘disaggregated’ approach in which the hierarchical structure
of the population was explicitly modelled by a two-level model. An alternative
way to analyse hierarchically structured data is to use design-based methods,
as described in Chapter 8. There, instead of modelling the hierarchical structure,
the clustering effect induced by the data structure was considered as a nuisance.
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Table 9.11 Comparison of estimated coefficients of a two-level model for combined
reading literacy score and a fixed-effects model fitted under the weighted SRS analysis
option (the German data are used as an example).

Coefficient Two-level model Weighted SRS option

Intercept γ0 496.4 497.5
s.e 4.58 1.93

t-test 108.37 258.08
p-value 0.000 0.000

School size γ1 27.4 20.1
s.e 9.22 1.74

t-test 2.97 11.52
p-value 0.003 0.000

Teacher γ2 −7.1 −7.3
autonomy s.e 5.22 1.38

t-test −1.37 −5.26
p-value 0.171 0.000

Female β1 3.6 3.3
s.e 2.41 2.74

t-test 1.50 1.20
p-value 0.133 0.229

Socioeconomic β2 11.5 31.5
background s.e 1.53 1.38

t-test 7.50 22.9
p-value 0.000 0.000

Engagement in β3 19.0 28.9
reading s.e 0.98 1.17

t-test 19.36 24.6
p-value 0.000 0.000

Achievement β4 −1.6 −4.7
press s.e 1.16 1.31

t-test −1.35 −3.64
p-value 0.176 0.000

Data source: OECD PISA database, 2001.

Thus, in a design-based analysis, we try to ‘clean out’ the clustering effect from
the estimation and testing results to obtain valid inferences.

From a substance matter point of view, the extra contribution of multi-level
modelling is that it provides explicit information about the differences between
clusters, and thus more information is obtained for the interpretation of the results.

TLFeBOOK



TLFeBOOK



References

Bean J. A. (1975) Distribution and properties of variance estimators for complex multistage
probability samples Vital and Health Statistics Series 2, No. 65.

Biemer P. P., Groves R. M., Lyberg L. E., Mathiowetz N. A. and Sudman S. (eds) (1991)
Measurement Errors in Surveys Chichester: Wiley.

Biemer P. P. and Lyberg L. E. (2003) Introduction to Survey Quality New York: Wiley.
Binder D. A. (1983) On the variances of asymptotically normal estimators from complex

surveys International Statistical Review 51 279–292.
Binder D. A. (1991) A framework for analyzing categorical survey data with non-response

Journal of Official Statistics 7 393–404.
Binder D. A. (1992) Fitting Cox’s proportional hazards models from survey data Biometrika

79 139–147.
Breslow N. E. and Clayton D. G. (1993) Approximate inference in generalized linear mixed

models Journal of the American Statistical Association 88 9–25.
Brewer K. R. W. (1963) A model of systematic sampling with unequal probabilities Aus-

tralian Journal of Statistics 5 5–13.
Brewer K. R. W. and Hanif M. (1983) Sampling with Unequal Probabilities New York: Springer.
Brier S. S. (1980) Analysis of contingency tables under cluster sampling Biometrika 67

591–596.
Bryk A. S. and Raudenbush S. W. (1992) Hierarchical Linear Models: Applications and Data

Analysis Methods Newbury Park: Sage Publications.
Chambers R. and Skinner C. (eds) (2003) Analysis of Survey Data Chichester: Wiley.
Clayton D., Spiegelhalter D., Dunn G. and Pickles A. (1998) Analysis of longitudinal binary

data from multiphase sampling Journal of the Royal Statistical Society, B 60 71–87.
Cochran W. G. (1977) Sampling Techniques Third Edition. New York: Wiley.
Couper M., Baker R., Bethlehem J., Clark C., Martin J., Nicholls II W. and O’Reilly J. (eds)

(1998) Computer Assisted Survey Information Collection New York: Wiley.
Cox B. G., Binder D. A., Chinnappa B. N., Christiansson A., Colledge M. J. and Kott P. S.

(eds) (1995) Business Survey Methods New York: Wiley.
Datta G. S., Lahiri P., Maiti T. and Lu K. L. (1999) Hierarchical Bayes estimation of unem-

ployment rates for the states of the U.S. Journal of the American Statistical Association 94
1074–1082.

Practical Methods for Design and Analysis of Complex Surveys Risto Lehtonen and Erkki Pahkinen
 2004 John Wiley & Sons, Ltd ISBN: 0-470-84769-7

331

TLFeBOOK



332 References

Dempster A. P., Rubin D. B. and Tsutakawa R. K. (1981) Estimation in covariance compo-
nent models Journal of the American Statistical Association 76 341–353.

Deville J.-C. and Särndal C. E. (1992) Calibration estimators in survey sampling Journal of
the American Statistical Association 87 376–382.

Deville J.-C., Särndal C. E. and Sautory O. (1993) Generalized raking procedures in survey
sampling Journal of the American Statistical Association 88 1013–1020.

Diggle P. J., Heagerty P. J., Liang K.-Y. and Zeger S. L. (2002) Analysis of Longitudinal Data
Second Edition Oxford: Oxford University Press.

Dillman D. (1999) Mail and Internet Surveys: The Tailored Design Method Second Edition New
York: Wiley.

Efron B. (1982) The Jackknife, The Bootstrap and Other Resampling Plans Philadelphia: Society
for Industrial and Applied Mathematics.

Estevao V., Hidiroglou M. A. and Särndal C.-E. (1995) Methodological principles for a
generalized estimation system at Statistics Canada Journal of Official Statistics 11 181–204.

Estevao V. M. and Särndal C.-E. (1999) The use of auxiliary information in design-based
estimation for domains Survey Methodology 25 213–221.

Feder M., Nathan G. and Pfeffermann D. (2000) Multilevel modelling of complex survey
longitudinal data with time varying random effects Survey Methodology 26 53–65.

Federal Committee on Statistical Policy (2001) Measuring and Reporting Sources of Error
in Surveys Statistical Policy Working Paper 31, Washington DC: Statistical Policy Office,
Office of Management and Budget.

Fellegi I. P. (1980) Approximate tests of independence and goodness of fit based on stratified
multistage samples Journal of the American Statistical Association 75 261–268.

Francisco C. A. and Fuller W. A. (1991) Quantile estimation with a complex survey design.
Annals of Statistics 19 454–469.

Frankel M. R. (1971) Inference from Survey Samples Ann Arbor: Institute for Social Research,
The University of Michigan.

Freeman D. H. (1988) Sample survey analysis: analysis of variance and contingency tables.
In: Krishnaiah P. R. and Rao C. R. (eds) Handbook of Statistics 6. Sampling. Amsterdam:
North Holland, 415–426.

Ghosh M. (2001) Model-dependent small area estimation: theory and practice. In: Lehto-
nen R. and Djerf K. (eds) Lecture Notes on Estimation for Population Domains and Small
Areas Helsinki: Statistics Finland Reviews 2001/5 51–108.

Ghosh M. and Natarajan K. (1999) Small area estimation: a Bayesian perspective. In:
Ghosh S. (ed.) Multivariate Analysis, Design of Experiments, and Survey Sampling New
York: Marcel Dekker, 69–92.

Ghosh M., Natarajan K., Stroud T. W. F. and Carlin B. (1998) Generalized linear models for
small area estimation Journal of the American Statistical Association 93 273–282.

Ghosh M. and Rao J. N. K. (1994) Small area estimation: an appraisal Statistical Science 9
55–93.

Glynn R. J., Laird N. M. and Rubin D. B. (1993) Multiple imputation in mixture models for
nonignorable nonresponse with follow-ups Journal of the American Statistical Association
88 984–993.

Goldstein H. (1987) Multilevel Models in Educational and Social Research London: Griffin.
Goldstein H. (1991) Nonlinear multilevel models, with an application to discrete response

data Biometrika 78 45–51.
Goldstein H. (2002) Multilevel Statistical Models Third Edition London: Edward Arnold.

TLFeBOOK



References 333

Goldstein H. and Rasbash J. (1992) Efficient computational procedures for the estima-
tion of parameters in multilevel models based on iterative generalized least squares
Computational Statistics and Data Analysis 13 63–71.

Grizzle J. E., Starmer C. F. and Koch G. G. (1969) Analysis of categorical data by linear
models Biometrics 25 489–504.

Groves R. M. (1989) Survey Errors and Survey Costs New York: Wiley.
Groves R. M., Dillman D. A., Eltinge J. L. and Little R. J. A. (2001) Survey Nonresponse New

York: Wiley.
Hansen M. H. and Hurwitz W. N. (1943) On the theory of sampling from a finite population

Annals of Mathematical Statistics 14 333–362.
Hedayat A. S. and Sinha B. K. (1991) Finite Population Sampling New York: Wiley.
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