Database Integrity: Challenges and Solutions

Database Integrity: Challenges and Solutions
by Jorge H. Doorn and Laura Rivero (eds) ISBN: 1930708386
Idea Group Publishing © 2002 (344 pages)

Geared toward designers and professionals interested in the conceptud
aspects of integrity problemsin different paradigms, this text gives a
thorough examination.

Table of Contents
Database | ntegrity—Challenges and Solutions

Preface
Chapter | - Introduction

_ Database Integrity—Fundamentals and Current
Chapter Implementations

_ Preserving Relationship Cardinality Constraintsin
Chapter 111 Relational Schemata

_Integrity Congtraints in an Active Database
Chapter [V Environment

Chapter V- Integrity Constraints in Spatial Databases

_ Consistent Queries Over Databases With Integrity
Chapter VI Constraints

_ Trandating Advanced Integrity Checking Technology
Chapter VI t0 SOL

Functional Dependencies for Vaue Based
Chaoter VIl - qentification in Object-Oriented Databases

_Integrity Issuesin the Web—Beyond Distributed
Chapter IX Databases

Chapter X - Integrity Maintenance in Extensible Databases
[ndex

List of Figures
List of Tables

Database I ntegrity—Challenges and
Solutions

Jorge H. Doorn Universidad Nacional del Centro de la Provincia de Buenos Aires,
Argentina

Laura C. Rivero Universidad Nacional del Centro de la Provincia de Buenos Aires and
Universidad Naciona de La Plata,

Argentina

Database Integrity: Challenges and Solutions

| dea Group Publishing

I nfor mation Science Publishing

Hershey « London « Melbourne « Singapore Beijing

Acquisition Editor: Mehdi Khosrowpour
Managing Editor: Jan Travers
Development Editor: Michele Rossi
Copy Editor: Nicholas Tonelli
Typesetter: LeAnn Whitcomb

Cover Design: Tedi Wingard

Printed at: Integrated Book Technology

Published in the United States of America by
|dea Group Publishing

1331 E. Chocolate Avenue

Hershey PA 17033-1117

Tel: 717-533-8845

Fax: 717-533-8661

E-mail: cust@idea- group.com

Web site: http://www.idea- group.com

and in the United Kingdom by

|dea Group Publishing

3 Henrietta Street

Covent Garden

London WC2E 8LU

Tel: 44 20 7240 0856

Fax: 44 20 7379 3313

Web site: http://www.eurospan.co.uk

Copyright © 2002 Idea Group Publishing

All rights reserved. No part of this book may be reproduced in any form or by any means,
electronic or mechanical, including photocopying, without written permission from the
publisher.

Library of Congress Cataloging-in-Publication Data

Doorn, Jorge H., 1946-

Database integrity: challenges and solutions/Jorge H. Doorn, Laura C. Rivero.
p. cm.

Includes bibliographical references and index.

Database Integrity: Challenges and Solutions

1-930708-38-6

(cloth)
1. Database management. 2. Database security. J. Rivero, Laura C., 1956-11. Title

QA76.9.D3 .D685 2002
005.74--dc21 2001059405

elSBN 1-59140-024-4

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

About the Authors

Jorge Horacio Doorn is full professor in the Computer Science Department at the
Universidad Nacional del Centro (UNCPBA), Argentina, since 1989. He has wide
experience in actual industrial applications. He has been project leader in severa projects
and currently he is the leader of the database research team in the Computer Science and
Systems Department. His research interests include compilers design and database
systems.

Laura Rivero has received her BS degree in systems analysis from the Universidad
Nacional del Centro (UNCPBA), Argentina, in 1979. Sheis a Professor in the
Department of Computer Science and Systems of the UNCPBA and a doctoral student in
Computer Science at the Universidad Nacional de La Plata. Her lecturing and research
activities concentrate on data structures and database design and integrity.

Juan M. Ale is Professor in the Computer Science Department, Faculty of Engineering
of Buenos Aires University. He holds degrees in scientific computation, systems
engineering and computer sciences from Buenos Aires University. His current research
interests include data mining, data warehousing and temporal databases.

Karla A. V. Borges received her B.S. degree in Civil Engineering in 1982 from PUC-
MG, and her M.Sc. in Informatics and Public Administration from Jo&o Pinheiro
Foundation, in 1997. She is the leader of geographic data modeling efforts for the GIS
project of Belo Horizonte, Brazil, and the former head of the Urban Management
Applications Department at Prodabel (Belo Horizonte's municipal information
technology company). Currently, sheis aPh.D. student at the Computer Science
Department of Universidade Federal de Minas Gerais. Her main interests are geographic
databases, geographic data modeling, urban GIS, and ontologies.

Elena Castro received the M. Sc. in Mathematics from Universidad Complutense of
Madrid in 1995. Since 1998 she has worked as assistant |ecturer in the Advanced

Database Integrity: Challenges and Solutions

Databases Group of the Computer Science Department at the Universidad Carlos 111 de
Madrid. She is currently teaching Relational Databases. Her research interests include
database conceptual and logical modelling, advanced database CASE environments and
information engineering.

Dolores Cuadra received the M. Sc. in Mathematics from Universidad Complutense of
Madrid in 1995. Since 1997 she has worked as assistant lecturer in the Advanced
Databases Group in the Computer Science Department at the Universidad Carlos 111 de
Madrid. She is currently teaching Database Design and Relational Databases. Her
research interests include database conceptual and logical modelling and advanced
database CA SE environments.

Clodoveu A. Davis Jr. received a B.S. degree in Civil Engineering in 1985 from
Universidade Federa de Minas Gerais. He also has M.Sc. and Ph.D. degrees in Computer
Science, also from Universidade Federal de Minas Gerais, in 1992 and 2000, respectively.
He led the team at Prodabel that conducted the implementation of GIS technology in the
city of Belo Horizonte, Brazil, and coordinated several geographic application
development efforts. Currently, he is a researcher at Prodabel's Development and Studies
Center, and the editor of Informatica Publica, a Brazilian journal on information
technology for the public sector. His main interests are urban GIS, geographic databases,
map generalization, and multiple representations in GIS.

Hendrik Decker graduated in Computer Science and Mathematics at the Technical
University of Munich (Germany). He did his PhD in the departments of Electrical
Engineering and Computer Science at the University of Kaiserdautern (Germany). He
was a researcher in the Knowledge-Bases group of the European Computer-Industry
Research Centre, from 1984 to 1990. Then, he was involved in database research,
development and customer consultancy at Siemens in Munich until 2001. Early in 2002,
he joined the Instituto Tecnol égico de Informaticain Vaencia (Spain) as aresearch
project manager. More information can be found a
http://www.pms.informatik.unimuenchen.de/mitarbeiter/assoziierte/hdecker.

Mauricio Minuto Espil is professor at the Catholic University of Argentina. He received
a degree in computer science from Buenos Aires University. His current research
interests include data warehousing, OLAP tools, non- monotonic reasoning and XML
databases.

Paloma Martinez Fernandezgot a degree in Computer Science from Universidad
Politécnica of Madrid in 1992. Since 1992, she has been working at the Advanced
Databases Group in the Computer Science Department at Universidad Carlos I11 of
Madrid. In 1998 she obtained the Ph.D. degree in Computer Science from Universidad
Politécnicaof Madrid. She is currently teaching Database Design, Advanced Databases
in the Computer Science Department at the Universidad Carlos |11 de Madrid. She has
been working in several European and National research projects about Natural Language
Processing, Advanced Database Technologies, knowledge-based systems and Software
Engineering.

Database Integrity: Challenges and Solutions

Viviana Ferraggine has received her BS degree in systems engineering from the
Universidad Nacional del Centro (UNCPBA), Argentina, in 1997. Sheis currently an
Auxiliary Assistant with the Department of Computer Science and Systems and a master
student in Computer Science at the Universidad Nacional de La Plata. Her research
interests include database systems and data structures.

Sergio Greco received its laurea degree in electrical engineering from University of
Caabria, Italy. Currently, heisafull professor at the faculty of Engineering at the
University of Calabria. Prior of this, he was researcher at CRAI, aresearch consortiumin
Informatics and assistant professor at the University of Calabria. He was a visiting
researcher at the research center of Microelectronics and Computer Center (MCC) of
Austin (Texas) and at the Computer Science Department of University of California at
Los Angeles. His area of research includes database theory, deductive database, logic
programming, and query languages.

Hans-Joachim Klein received his diplomain computer science from the University of
Saarbriicken, Germany, and his doctorate degree and the venia legendi from the
University of Kiel, Germany. He has taught at severa universities. Currently, heisa
lecturer at the Department of Computer Science of the University of Kiel. His research
interests include incomplete information in databases, graphical interfaces, integrity
constraints for object-oriented data models, and applications of graph-theoretic and
algebraic methods in crystallography.

Alberto H. F. Laender received the B.S. degree in Electrical Engineering and the M.Sc.
degree in Computer Science from the Universidade Federal de Minas Gerais, Belo
Horizonte, Brazil, in 1974 and 1979, respectively, and the Ph.D. degree in Computing
from the University of East Anglia, Norwich, UK, in 1984. He joined the Computer
Science Department of the the Universidade Federal de Minas Geraisin 1975, where he
is currently a Full Professor and the head of the Database Research Group. He was also
twice the Coordinator of the Computer Science Graduate Program (1987-89 and 1993~
96). In 1997, he was avisiting scientist at the Hewlett-Packard Palo Alto Laboratories.
He has served as a program committee member for several international conferences on
databases and Web-related topics, and was one of the program committee co-chairs of
19th International Conference on Conceptual Modeling held in Salt Lake City, Utah, in
October 2000. He is aso afounder member of the Brazilian Computer Society and an
Editorial Board member of the Journal of the Brazilian Computer Society and of the
Information Systems Review. His research interests include conceptual database modeling,
database design methods, database user interfaces, semistructured data, and Web data
management.

A.C. Gémez Lora is agraduate student in the Department of Computer Sciences of the
University of Mélaga. He received the M.S. degree in Computer Sciences from the
University of Mdagain 1997 and he is currently working towards the Ph.D. degree at
this University. He is currently supported by a research grant. His research interests
include hybrid techniques for recursive query evaluation and optimisation in distributed
systems and optimisation techniques at query evaluation time.

Database Integrity: Challenges and Solutions

J.F. Aldana Montes received the Ph. D. degree from the University of Mdaga, Spain, in
1998. He presently holds the rank of Assistant Professor in the Computer Sciences
Department of the University of Maaga. Dr. Aldana acted as program chair for the
JSBD from 1999-2001. One of his current research programs involves the study of
amalgamation of databases and web technologies. His areas of interest include Evaluation
and Optimisation of Recursive queries, on Datalog and SQL ; distributed evaluation of
XML; (semantic) optimisation of XML queries; semantic integration of information on
the Web.

Carlos Nieto received the M.Sc. in Mathematics from Universidad Complutense of
Madrid in 1991. He has working in several design and architecture research projects for
the Spanish Public Office. Since 1997 he has worked as assistant |ecturer and teacher at
the Advanced Databases Group in the Computer Science Department at the Universidad
Carlos 111 de Madrid. His research interests include conceptual modelling theories as well
as specification languages.

Jochen Rasch received his diploma and doctorate degree in computer science from the
University of Kiel, Germany, where he worked from 1993 to 1998 as a research and
teaching assistant at the Department of Computer Science. He is currently working for
SAP AG, Walldorf, on object models for Customer Relationship Management
applications. His interests include object-oriented modeling of business applications,
relational implementation of object-oriented data models, and value-based integrity
constraints for object databases.

Ulrich Schiel holds a Master in Informatics at PUC-Rio de Janeiro, Brazil (1978) and Dr.
rer. nat. at University of Stuttgart, Germany (1984). Visiting researcher at GMD-IPS,
Darmstadt-Germany (1988-1999). Since 1978 professor at Federal University of Paraiba,
Brazil. Research projects in Tempora Object-Oriented Databases and Multilingual
Information Indexing and Retrieval. Additional research interests in Information Systems
on the Web, Ontologies and Information Systems Design.

Manuel Velasco B.Sc. (1993) and Ph.D. (1998) degree in Computer Science from
Universidad Politécnica of Madrid. He isworking as lecturer and researcher in the
Computer Science Department at the Universidad Carlos 111 de Madrid. He has been
working in several researching fields in Software Engineering as Reuse and Software
Testing mainly, as well asin Information Science, with publications in international
papers and congresses. He has participated in some projects funded by the European
Union, collaborating with another universities and companies.

M.I. Yague del Valle received the B.S. and M.S. degrees in computer sciences from the
University of Graneda, Spain, in 1990 and 1992, respectively. She worked at Vigo
University, Spain, as a lecturer, from 1993-1996. She joined the University of Mdagain
1996 where she presently has a permanent position as lecturer in the Computer Sciences
Department. She is currently working towards the Ph.D. degree at the University of
Malaga. Her research interests include the application of XML related technology to

Database Integrity: Challenges and Solutions

databases, and the Semantic Web. She is currently studying the application of semantic
information on query optimisation on the Web.

Ester Zumpano received the laurea degree in computer science engineering from
University of Calabria, Italy. Currently, she is a Phd student at the faculty of Engineering
at the University of Calabria. Her area of research includes logic programming, deductive
database, database integration, and query languages.

Preface

The objective of this book is to give both innovative and classic knowledge about
database integrity concepts. Chapters covering topics on several well-established research
areas give the state of the art on basic database integrity issues, active databases, SQL
databases and geographical databases, including integrity support in current SQL-
compliant commercial systems. Chapters on novel subjects focus on specific problemson
recent database paradigms.

Chapters 2 through 5 are included in the first group whereas chapters 6 to 10 conform the
second group. A brief summary of each chapter is given in the proper section of the
Chapter 1.

Chapter 2 describes from a high semantic level, the integrity problemsin the real world
focusing on the granularity of the involved concepts. In this sense, the first concept
considered is the domain, later the relation and finally more complex restrictions. A
mapping from real world constraints to database world constraints is the heart of the first
part of this chapter, while the second part exemplifies how this mapping is seeing in
SQL-compliant commercia products. The degree of adhesion of every product to the
current SQL standard is analyzed, showing how it influences the mapping.

Chapter 3 addresses a very important topic in database design that has been almost
neglected in the literature. It deals with some aspects of the transformation of conceptual
schematas into logical ones, such as the Entity Relationship construct: the relationship
and its associated cardinality constraints.

In the active database context, Chapter 4 surveys the interaction among active rules and
integrity constraints from both the static point of view following the recent SQL standard
and the dynamic point of view using temporal logic formalism.

Chapter 5 focuses on the relationship existing between the nature of spatial information,
gpatial relationships, and spatial integrity constraints. The authors propose the use of
OMT-G, an object-oriented data model for geographic applications, at an early stagein
the specification of integrity constraints in spatial databases.

Database Integrity: Challenges and Solutions

Even though integrity constraints are usually used to define constraints on data, Chapter 6
illustrates their applicability in several contexts such as semantic query optimization,
cooperative query answering, database integration and view update.

The main goa of Chapter 7 isto arrive at a coherent technology for deriving efficient
SQL triggers from declarative specifications of arbitrary integrity constraints. In this
chapter, the author describes how to implement advanced datal og technology for
integrity checking in the framework of SQL, showing how to represent and evaluate
arbitrarily complex constraints in SQL without incurring major disadvantages usually
associated with integrity checking.

Chapter 8 focuses on the generalization of the well-known functional dependencies to
object schemas, offering insights on one of the fundamental concepts of the object-
oriented approach: object identity. Then the authors describe an approach to generalize
functional dependencies to object functional dependencies.

Chapter 9 addresses concepts of a recently introduced paradigm: the Web as the database,
and its implications regarding the progressive adaptation of database techniques to Web
usage. This chapter deals with different issues related to integrity and its maintenance on
the Web and introduces the reader to other related and open issues, such as the query
problem and query optimization on the Web.

Finally, Chapter 10 introduces an approach to integrate integrity constraints to the system,
asrulesinto a general (schema) to allow an easy way to define the semantics of a

complex data model. This approach is scalable since rules systems can, at any time, be
expanded to incorporate concepts of new applications.

Summing up, this book provides an exciting opportunity to understand relevant topics on
integrity in databases, and to find out current trends and solutions for consistency
problems in different database paradigms.

Acknowledgments

The editors would like to thank Mehdi Khosrow-Pour for the opportunity he gave us and
the Idea Group Publishing staff, mainly Jan Travers, Carrie Stull and Michele Rossi, for
their help in advising us how to solve multiple problems and for their guidance and
professional support. We acknowledge the support of the chapter authors who also helped
us, doing an invaluable job refereeing other chapters. Thanks aso to the external
reviewers who had provided many constructive comments:

MSc. Silvia Gordillo from LIFIA, Universidad Nacional de La Plata, BA, Argenting;

Dr. Stefano Ceri at the Dipartimento di Elettronica e Informazione, Politecnico di
Milano in Milano, Italy;

Database Integrity: Challenges and Solutions

Dr. Robert Laurini from LISI-Béat. Blaise Pascal INSA de Lyon and LISI-IUT Génie
Informatique Université Claude Bernard Lyon | in France;

Dr. Mario Piattini at the Escuela Superior de Informatica, Universidad de Castilla-La
Mancha. Spain and

Eng. Guillermo Unger at the Software Division of IBM Argentina.
A special note of thanks goes to the anonymous reviewers from Sybase and Oracle.

Jorge H. Doorn
Laura C. Rivero

Chapter I: Introduction

Jorge H. Doorn, Universidad Nacional del Centro de la Provincia de Buenos Aires,
Argentina

Laura C. Rivero, Universidad Nacional del Centro de la Provincia de Buenos Aires
and Universidad Nacional de La Plata,

Argentina

Viviana E. Ferraggine, Universidad Nacional del Centro dela Provincia de Buenos
Aires,

Argentina

INTRODUCTION

Computers are used to manage information. This use may range from collecting a small
piece of data, performing a calculation and producing an output as in an embedded
micro-controller application to the processing and storage of huge amounts of complex
data seen in large databases. Design software to perform such information management is
adifficult task. This book is oriented to discuss problems that arise in software products
with significant amounts of data. Software devel opers have to deal with the capture and
understanding of complex requirements, the design of the architecture of the software,
and the development of the planned software artifacts. Along with the software product
life cycle, many other activities are carried out, such as setting the software into service,
training users and adapting to a changing world. The proper requirement's elicitation of a
software product is a key factor in the success of the whole process.

Database Integrity: Challenges and Solutions

However, these requirements are not easy to deal with. They have different intrinsic
nature and they may appear showing different faces. In many cases, some requirements
are totally or partially hidden in the information collected by the software developers
(Jackson, 1995).

More than one criterion may be used to characterize requirements. One that seems to be
useful isto divide them into those properties related to what the software has to do, and
those properties that the software should have. The first group is usualy called
Functional Requirements and the second Non Functional Requirements A Functional
Requirement could be, for example, "The system should present the current balance of
the customer account in the screen” and a related Non Functional Requirement may be,
"The customer balance should be ready in less than five seconds’.

In most cases, Non Functional Requirements are harder to perceive and modd than
Functional Requirements. Functional Requirements are usually expressed as procedures,
methods or activities related to the software behavior. On the other hand, Non Functional
Requirements are expressed as rules or properties that must be satisfied in amore
declarative way.

Non Functional Requirements cover different areas of the desired product such as
security, performance and output quality. The data to be stored and processed by the
software have properties that must be ensured. Examples of data properties are found
everywhere; however, they are usually disregarded. This occurs because most data
properties are obvious and everybody knows about them, but also mostly everybody
forgets them. For example, there is no need to say that the age of one person is aways
younger than the age of his or her parents. Everybody knows it, but the Database Engine
where this data is stored does not (L oucopoulos & Karakostas, 1995).

The data and procedures approach to software design have to deal with the problem of
the properties of the data. The object oriented approach works with objects and
relationships among them. It seems that there is no data involved in this anaysis.
Actualy, the problem from the data properties point of view is alittle worse since the
attributes of involved objects have properties and maybe these properties relate one
object attribute with another object attribute. This is because the object orientation
watches the Universe of Discourse using a model that has an extra layer between the
developer and the data properties. This disadvantage does not damage the advantages of
the object-oriented approach; however, the developer has to cope with it.

Not every data property must be modeled; it must be looked at carefully to seeif itis
needed in the context of the scope and in the objective of the software artifact. A more
analytical approach may order the data properties, taking into account their importance
(Karlsson, 1996).

When a data property describes the alowed values for attributes, it is caled Domain

Property. Another kind of data properties establishes connections among different
attributes; these are known as Relationships. When a data property carries out a semantic

-10-

Database Integrity: Challenges and Solutions

that is specific to the Universe of Discourse not found in any other occurrence of the
same data, it is called Business Rule(Ceri et a., 1997), (Codd, 1990), (Ross, 1997).

DATA PROPERTIES

Data properties should be seen from the point of view of being as independent as possible
from the representation model. In this way, data properties can be analyzed from two
different perspectives: from the real world and the database world. A real world data
property of a given class may be mapped into a different database class of properties due
to materialization issues. This depends on the database paradigm and on the adhesion of
the DBM S to that paradigm.

These subjects are extensively analyzed in Chapter 2. The following sections only
introduce some concepts.

Domain Properties

Programming Languages and Database Engines have a set of built-in data types whose
main purpose is to deal with the Domain Properties of the data to be stored. These data
types are useful and have been used for decades, helping users to take care of their data
processing needs.

Aswell asal the other Non Functional Requirements, Domain Properties are expressed
in the Universe of Discourse in declarative ways. A Domain Property defines the Set of
Values that the attribute may have. Sets may be defined by enumeration of the members
or by abstraction. It becomes then natural to think, "... everything seemsto be okay, the
only problem is to map the Universe of Discourse declarative rule to one of the data type
offered by the engine...." The issue here is that this mapping is not aways possible.
Consider the following examples:

Age of the employee is a non-negative integer number.

The quantity of product in stock is a non-negative real number.

The customer name is made up of |etters and afew other characters.
The street name used in supplier's address must be an actual town street.
The shirt colorsin the price list must be one of the cloth supplier colors.

The non-negativeness condition of the employee age and the quantity in stock cannot be
mapped into the built-in type systems of most of the current Database Engines. The same
thing happens with the subset of characters allowed for customer name. In some Database
models, these three examples can be handled with small methods or procedures that
specialize the basic data type, keeping in some sense the declarative flavor of the
restriction but implemented with procedural technique. The key issue here is that when

-11-

Database Integrity: Challenges and Solutions

the implementation of the restriction is hidden and strongly coupled with the data itself,
the mapping is almost perfect.

The street name domain cannot be defined in a computer environment in a declarative or
"amost declarative' way. It must be defined by extension. In other words, a data resource
holding all existent street names should be created to make possible the enforcement of
this domain property. The shirt colors dominion has to be defined by extension, too.
Domain properties can be even worse. For example, what would happen if the shirt colors
"... must be one of those chosen by the marketing department for this promotion..."?. Or
simply "... must be one of those the sales manager likes..."?.

Within a certain time framework, the complete street name set may be considered
unchangesable or static. Otherwise, the complete color set appears as dynamic. Both
domain properties, defined by extension, are difficult to handle and dynamics are the
harder ones.

Poor design may create, in some paradigms, inclusion relationships among data in the
same or different tables or objects that could be confused with domain properties. These
situations will be detailed in next sections.

Relationship Properties

The connection among different attributes is the source of most of the data processing
richness and problems. These connections have a scope larger than domain restrictions
since they involve severa attributes—at least two—usually belonging to different objects or
entities. When people buy articles or students attend courses, the link between them isa
very important issue.

When software artifacts are involved, the links among real world things (persons, objects,
activities, etc.) are present throughout the whole process of their development. Sooner or
later, the links among those things become data rel ationships. How soon this happens
depends on the software design approach. Moreover, not every piece of data of a software
artifact can be traced back to real world things. Some are attributes of the relationship
itself.

Some relationships are smply binary since they connect two real world things
(cardinalities may be 1:1, 1N, N:M). However, relationships may connect three or more
real objects (then they are called nary relationships). When data and its relationships
need to be persistent in any data repository, an obvious issue needs to be analyzed: how
are they preserved? Some very old approaches put the linked data together to express the
relationship. These approaches used to have many well-known disadvantages especially
when the relationship cardinality was not 1:1. To overcome these disadvantages,
duplication of data approaches were used in the past, too. For example, the data of a
customer were usually attached to each of the bought products. This redundancy was also
known as source of a new problem-consistency of data—since a customer might appear
with two values for a given attribute due to data maintenance activities. Thisis avery

Database Integrity: Challenges and Solutions

well-known problem of data redundancy and it is also one of the reasons that pushed
towards the creation of the first database models.

A relationship whose cardinality is N:M between entities or objects introduces new
problems. First, there may be attributes belonging to the relationship itself and second,
more than one link is needed.

The redundancy can be reduced or avoided, expressing the links among data in other
ways. This implies the inclusion of a specia attribute in the data not found in the real
world but only used to represent the link. This attribute may be either a physical
reference-telling where the related data is stored—or a logical reference—holding akey
attribute that permits finding the related data. In both cases, the redundancy problem is
replaced by areferentia integrity problem.

To summarize, the technique used to store the data in the computer resources will create
one or both of the following problems: Data Redundancy or Referential Integrity.

Since the early Hierarchical Databases, the driving idea has been "no duplicated data is
allowed in the database.” If the duplicated data is factorized, any other data previousy
attached to the factorized data know where the removed information is now placed. The
way to know where such data is located is called a reference to the now missing data. In
different database paradigms, this reference could be a physical pointer or alogica key
reference, too.

No matter how it is referenced, the referred data should be available every timeit is
needed. But since the referred data is stored and processed independently from the
referring data, the link may become lost. Thisis called the Referential Integrity problem.

Codd introduced the term relational model in his seminal research work (1970). In a
subsequent article (1979), he presented the first published expression of entity integrity
rules and referential integrity. Nowadays, the referential integrity problem is a concern of
most relational commercial products that offer solutions to it.

In the object-oriented (OO) environment, objects are collected into classes and
relationships are established at the class level. When these notions reach the
implementation level, the problem is exactly the same. Relationships require references,
which may be, again, physical or logical.

Business Rules

A businessruleis an assertion that constrains or defines some aspect of the business.
Every organization restrains behavior in some way. Thisis strongly associated with
constraints that define which data may (or may not) be actualized. A businessruleisa
declarative sentence usually describing a correct state of a piece of data.

Database Integrity: Challenges and Solutions

The process of idertifying business rules is often iterative and heuristic, for rules begin as
genera organization statements of policy. Even if the policy is formal and specific, it is
typically described in a general and informal fashion, and it often remains for the person
responsible to trandate it into meaningful specific statements of what to do. These
statements are only sometimes originated in a given policy. More often, they arise from
the day-to-day operation of the organization. These sentences are sometimes clear,
sometimes (perhaps deliberately) ambiguous, and most of the time, contain more than
one idea (Ross, 1997).

At the data processing level, the scope of business rules may be as small as the domain
restrictions in some cases or as large as relationships in others. A business rule could be
confused because of its appearance, with domain restrictions and with relationships. A
business rule whose scope is only one attribute has, in fact, the same structure as a
domain restriction, sharing al their properties. On the other hand, business rules
involving more than one attribute belonging to the same or different entities or objects
may be either smilar to or rather different from the relationships.

However, business rules not always define alowed data states but allowed services
connected with data states, for instance: "a given report cannot be produced if a specific
datais missing". They may also establish a property involving data previously stored or
new incoming data, for example: "employee salary could not be diminished.”

Managing Data Properties

During the design phase of a software product, an important decision must be taken in
relation with the properties of the data. They should be considered part of the data or be
disconnected from the data and treated as Functional Requirements, included in what is
called Late Functional Requirements

From the early ages of the foundational programming languages, the properties of the
available data types were considered part of them. The mechanism to enforce these
properties was hidden from the user, giving a declarative flavor to them.

The programming tools have evolved for several decades, thus increasing their
expressiveness by hiding more and more data properties under user defined layers. In
other words, successful efforts have been made to let the developers handle some of those
properties as part of the dataitself.

However, the option remains open. There are still many data properties whose
enforcement cannot be easily attached to the dataitself. Open options aways mean
challenges. The challenge here is how to deal with complex data properties without
turning them into Functional Requirements, burdening the developers with many data
details that have to be taken into account every time they are handled.

This challenge is the core of this book. The following chapters are devoted to the study of
how the Data Properties preservation problems are handled in the framework of the

-14-

Database Integrity: Challenges and Solutions

different database paradigms. The problems presented in this chapter are not the only
ones found in databases. Database paradigms offer solutions to previously unsolved
problems but usually introduce new ones.

A tool developed in the framework of a given database paradigm is not the end of the
story; on the contrary it is the beginning. A software artifact has to be developed using
the tool and decisions about how to handle the preservation of data properties.

A well- conceived, implemented software artifact could be made using strategies that
improve the paradigm framework and increase its semantic level. Obvioudly, thisis not
new in the computer science arena. It may be recalled that many developers have
encapsulated data and procedures using only rigorous programming and file policies but
only with languages without data abstraction capability. Before that, they were
programmers creating well-structured programs using unstructured languages.

This book deals with the analysis of which directions to proceed, and how far. It is
desirable that some of the ideas found in the next chapters become tips to improve the
database paradigms, but most important, these ideas are intended to help readers deal
with the design and implementation of complex data processing systems by using a
database technique.

THE INTEGRITY PROBLEM IN DATABASES

One of the driving forces that stimulated the emergence of database technology was the
need to guarantee the quality of the data stored. As was already mentioned, the data have
properties; thus, quality of data means that all those properties are adequately represented
and preserved. Efficient maintenance of data integrity has become a critical problem,
since testing the validity of alarge number of constraints in a large database and after
each transaction is an expensive task.

Hierarchical and Network Databases

The data integrity problem in older databases only focused on relationships, which were
implemented through physical links. The domain properties were considered by means of
data types and business rules were completely ignored.

In network data models, referential integrity was supported through the set type
construction. If member records are fixed to an owner, deletion of owner has a cascading
effect. If member records need not be part of a set, the effect of deleting owner is
equivalent to setting the relationship to null.

In hierarchical systems this issue was supported where a dependent child record type has
total participation in the relationship with its parent record type. If aroot of atree or
subtree is deleted, then so are all of its dependents (cascading actions).

Relational Databases

Database Integrity: Challenges and Solutions

The term relational model is actually rather vague. It refers to a specific data model with
relations as data structures, an algebra for specifying queries, and no mechanisms for
expressing updates or constraints. Subsequent articles by Codd introduced the first
integrity constraints for this model-namely, functional dependencies. Researchersin
database theory developed a number of variations on Codd's original model, to gain a
higher expressive power. This evolution was accompanied by the evolution of the
integrity constraints. A rich theory for constraints has emerged, based mainly on a
fundamental class of constraints called dependencies. Its main motivation is to
incorporate more semantics into the relational model The term relational model has thus
come to refer to the broad class of database models that have relations as the data
structure and that incorporate some or al of the query capabilities, update capabilities and
integrity constraints (Abiteboul et a., 1995).

Among many other innovations, from the integrity point of view the main change
introduced by the earlier relational database models has been the use of logical references
or foreign keys instead of physical references. Regarding the domain properties, very few
things have changed from previous models. Business rules have recently started to be
considered.

Due to the misunderstanding of Codd's relational concepts by some relational vendors,
the author published a textbook in 1990 that highlights the characteristics arelational
system must have. In the integrity field, he introduced five types of integrity restrictions:
Entity type, Referential type, Column type, Domain type and User-defined type. Entity
integrity and referential integrity apply to the base relations in every relational database.
Entity integrity establishes that no component in a primary key is allowed to have null
values. Referentia integrity points that for each distinct foreign key value, an equa value
of aprimary key from the same domain must exist in the database. Otherwise, the foreign
key value must be null. Domain and column constraints refer to the alowed values for a
given attribute or set of attributes. Integrity constraints other than those mentioned are
needed for relational databases. These constraints, named user-defined integrity
congtraints, permit the DBA to define, in away that can be enforced by the DBMS, many
of the company regulations pertaining to the company operations (internal), and many of
the government and other external regulations. Once these constraints are defined and
included in the catalog, the DBMS should enforce them. Consequently, there should not
be the need to depend on voluntary compliance of application programmers or end users.
All integrity corstraints are applied not only to keep the database in an accurate state by
preventing violations of these constraints, but also to trigger specified repairing actions
when specified conditions arise in the database.

The observance of Codd's principles has been evolving positively throughout the last
decade. On the other hand, many ideas of other database paradigms already in the
scenario (and in their own evolution process) have been borrowed by researchers and
vendors, and introduced in current relational products. This fact created incomplete and
extended relational engines that started to be known as postrelational databases. They are
incomplete because not al the prescribed issues for the relational model are satisfied; and
extended because they go further in some other areas such as active characteristics. This

-16-

Database Integrity: Challenges and Solutions

mix is somehow explosive since users enforce a non-supported integrity constraint by
means of provided extensionsin arather unstructured way. Triggers are one of the
mechanisms that are overused.

Hazardousness is not contradictory with usefulness. Current DBMS may be used in a
very productive way if the risk of using some of their extensions is understood. When a
restriction cannot be expressed declaratively, triggers are very useful tools to support data
integrity in adatabase. In actual commercial relationa products implementing the SQL-
92 standard, integrity constraints can alternatively be expressed as triggers, which also
allow the definition of policiesto repair violations. However, declarative constraints are
generally preferable to explicit triggers because they are easier to manage (Rivero, Doorn
& Ferraggine, 2000).

The relational model has provided an excellent framework for theoretical research into
fundamental aspects of data manipulation and integrity constraints. This research
provides a strong foundation for the study of other models (Abiteboul, Hull & Vianu,
1995).

Dolores Cuadra et al. devote Chapter 3 to the study of the transformation of conceptual
schematas into logical ones in a methodological framework, focusing on a special Entity
Relationship construct: the relationship and its associated cardinality constraints. The
authors remind us that, concerning the logical design, the transformation process of
conceptual schemata into relational schemata should be performed with an effort made to
completely preserve the semantics included in the conceptual schema. Even though the
final objective is to keep the semantics in the database itself and not in the applications
accessing the database, sometimes a certain loss of semantics is produced, for instance,
foreign key and not null options in the relational model are not enough to control ER
cardinality constraints. In their chapter entitled 'Preserving Relationship Cardinality
Constraints in Relational Schemata,” the authors review the relationship and cardinality
constraint constructs through different methodol ogical approaches; they analyze the
transformation of conceptual n-ary relationships into the relational model following an
active rules approach, and provide several practical implications as well as future
research paths.

Active Databases

Supporting reactive behavior implies that a database management system may be viewed
from a production rule system perspective. These production rules are well known today,
in database terminology, as active rules or smply triggers.

Active rules provide reactive behavior. It isaform of computation, which is motivated by
the occurrence of some event, typically a database operation, executing a reaction to that
stimulus. Active rules may pose queries to the database to collect information about
events and database objects and decide whether events require an action; then they may
execute actions, normally any sequence of database operations (Ceri et a., 1997).

-17 -

Database Integrity: Challenges and Solutions

Reactive behavior is seen as an interesting and practical way to check for satisfaction and
enforcement of integrity constraints. Nevertheless, integrity constraint maintenance,
materialized view maintenance (especially useful in the warehousing area) and
implementation of business rules are not the only areas of application of data repositories
with reactive behavior. Other interesting application areas are replication of data for audit
purpose, data sampling, workflow processing, scheduling, real time applications, and
many others. In fact, practically all products offered today in the marketplace support
complex reactive behavior on the client side.

Undesired behavioral characteristics have been observed related to production rule
systems, however. For example, termination is not always guaranteed, nron-determinism
could be expected in the results, confluence with respect to a desired goal could be not
achieved. Since triggers and declarative integrity constraint definitions may appear
intermingled in a concrete application, an integrating model is needed to soften to some
extent the effects of this undesirable behavior, ensuring that no matter what the nature of
the rules involved is, integrity is always preserved.

Active rules and integrity constraints are related topics. Systems do not support both
completely, but partially, in their kernels (see Chapter I1). When a constraint must be
enforced on data, if such constraint cannot be declared, it may be implemented by
defining triggers. Studying the relationships between constraints and triggers from this
point of view is therefore mandatory. In simple words, methods are needed to check and
enforce constraints by means of triggers.

From a user point of view, reactivity is a concept related with object state evolution over
time. Dynamic congtraints, i.e., constraints making assertions on the evolution of object
states, may be needed to control changes in the state of data objects. Dynamic constraints
are mandatory in the correct design of applications, particularly for workflow processing
and for the Web. Actua products support some kind of functionality in this area,

allowing triggers to refer to transitions when an atomic modification operation is
executed. Supporting such type of constraints by means of handcrafted triggers written by
a novice, without any method in mind, may be potentially dangerous from the perspective
of correctness. Forma methods guaranteeing correctness are needed for good deployment
of suchtriggers.

Juan M. Ale and Mauricio Minuto Espil entitled their contribution: "Integrity Constraints
in an Active Database Environment." In Chapter |V the authors survey the interaction
between active rules and integrity constraints. First, they analyze the static case following
the SQL-1999 Standard Committee point of view. Then, they consider the case of
dynamic constraints using temporal logic formalism. This chapter also includes a
comprehensive discussion of the applicability, limitations and partia solutions found
when attempting to ensure the satisfaction of dynamic constraints.

Spatial Databases

Database Integrity: Challenges and Solutions

Even though there is a very active research areainterested in the design of robust and
efficient spatial databases, it is still evident that the inability of current GIS regarding the
implementation and management of spatial integrity constraints occur because of the
scope of geographic applications, and specia problems come up due to the locational
aspects of data. A modification in a spatial database may cause simultaneous updates in a
large number of records in multiple files, making it hard to manage all the environment.
A very sophisticated control is required to avoid redundancy and loss of integrity. In
Chapter V entitled “ Integrity Constraints in Spatial Databases,, KarlaA. V. Borges,
Clodoveu A. Davis Jr., and Alberto H. F. Laender address the relationship existing
between the nature of spatial information, spatial relationships, and spatial integrity
constraints, and propose the use of OMT-G, an object-oriented data model for geographic
applications, at an early stage in the specification of integrity constraints in spatial
databases. OMT-G provides appropriate primitives for representing spatial data, supports
gpatial relationships and allows the specification of spatial integrity rules (topological,
semantic and user integrity rules) through its spatial primitives and spatial relationship
constructs. Once constraints are explicitly documented in the conceptual modeling phase,
and methods to enforce the spatial integrity constraints are defined, the spatial database
management system and the application must implement such constraints.

Since Chapter V does not cover integrity constraints associated with the representation of
simple objects, such as constraints implicit to the geometric description of a polygon, the
authors provide relevant references to research related to consistency rules associated
with the representation of spatial objects.

Object-Relational Databases

Object-oriented literature typically uses the term "relationship” to mean, specificaly,

rel ationships supported by foreign keysin arelational system. ORDBMSs may use this
SQL-92 oriented implementation. On the other hand, OR systems, like Illustra, provide
the references as a natural substitute for primary key-foreign key relationships found in
traditional SQL systems. These systems allow a column in atable to contain a value that
is areference to an instance of a composite type stored in another table. Conceptually,
this data type is a pointer to a record of a specific type in the table. This implementation
is supported by the unique object identifier (OID), which all rows in atable have. In this
case, each value stored in the referencing column is an OID. To summarize, in order to
support referential integrity you can use typical primary key-foreign key relationships
(logica pointer) as well as a pointer implementation (reference viaan OID). Whenever
available, the second option is preferable, because an OID is guaranteed to be unique and
never changed, while the foreign key value is not necessarily time invariant. SQL was
extended with capabilities such as a function for the recovery of referenced objects, and
support for other functions over the type reference engine (Stonebraker, 1996).

Various levels of support for referential integrity have been implemented in those

systems. Some do not support referential integrity, leaving it as the responsibility of the
user-written code. Other systems check that all references are to existing objects of the

-19-

Database Integrity: Challenges and Solutions

right type (taking special care of avoiding dangling references) or keep al references up
to date automatically (Connolly et al., 1999).

Asintherelational paradigm, triggers are very effective in supporting data integrity in a
database, especially to deal with those restrictions that cannot be expressed declaratively.
ORDBMSs and OODBM Ss demand a system of triggers even more flexible than the
relational one.

In Chapter V1 "Consistent Queries over Databases with Integrity Constraints™ Sergio
Greco and Ester Zumpano point out that even though integrity constraints are usually
used to define constraints on data, nowadays they have a wide applicability in severa
contexts such as semantic query optimization, cooperative query answering, database
integration and view updates. In this chapter, the authors illustrate recent techniques for
computing consistent answers and repairs for possibly inconsistent databases. They
present some preliminaries on relational databases, disjunctive deductive databases and
integrity constraints and then they introduce the formal definition of repair, consistent
answer and the different techniques for querying and repairing inconsistent databases,
including an extension of relational algebra; the integrated relational calculus which
extends relations and algebra for querying inconsistent data; techniques for merging
relations based on majority criteria, for querying and repairing inconsistent data based on
the concept of residuals, for querying inconsistent databases based on the definition of a
logic program for defining possible repairs and a technique based on the rewriting of
integrity constraints into digunctive Datalog rules.

Hendrik Decker is the author of Chapter V11 entitled "Translating Advanced Integrity
Checking Technology to SQL Databases.” The main goa of this chapter isto arrive at a
coherent technology for deriving efficient SQL triggers from declarative specifications of
arbitrary integrity constraints. The user may specify integrity constraints declaratively in
some manner, then the triggers derived from such specifications will behave such that
whenever some update event violates any of the integrity constraints, one or several of
the triggers derived from that constraint are activated to enforce the constraint. In this
chapter the author describes how to implement advanced datal og technology for integrity
checking in the framework of SQL, showing how to represent and evaluate arbitrarily
complex constraints in SQL without incurring major disadvantages usually associated
with integrity checking in knowledge-rich applications. error-prone procedural
specification and laborious maintenance of integrity constraints is avoided and the cost of
evaluation is considerably reduced by an automated trandlation of declarative
specifications to SQL triggers.

Object-Oriented Databases

Given that in an OO environment, objects are collected into classes, relationships also are
established at the class level; a relationship between classes denotes a set of relationships

between the objects of the respective classes. Relationships may have attributes. A model

is aways a compromise to achieve the right amount of expressive power while keeping

Database Integrity: Challenges and Solutions

simplicity and clarity. Domain restrictions—keys and referential integrity constraints-may
be used straightforwardly in OODBM Ss.

Other kinds of constraints are peculiar to OODBMSs, for instance: constraints of the
migration of objects between classes (roles); exclusivity constraints between classes,
constraints on the definitions of subclasses; and existence dependencies. The last ones are
the key to semantic integrity checking since they allow the designers to track and solve
inconsistencies in an object-oriented conceptual schema (Snoeck & Dedene, 1998).

Some currently available OO systems do not provide mechanisms for the definition,
management and control of integrity constraints. In these systems, it is possible to embed
integrity constraints as part of the update methods associated with the objects. The
introduction of alanguage for defining the constraints would facilitate such constraints to
be defined in a declarative rather than procedural way (Bertino & Martino, 1993).

Chapter VII1 by Jochen Rasch and Hans-Joachim Klein entitled "Functional
Dependencies for Value-Based Identification in Object-Oriented Databases,”" focuses on
the generalization of the well-known functional dependencies to object schemas. The
authors offer insights on one of the fundamental concepts of the object-oriented approach:
object identity. They first introduce some basic notions of the object model, including a
formalization of the terms object schema and schema graph, as well as some concepts of
the relational data model. Then they describe an approach to generalize functiona
dependencies to object functional dependencies. The chapter presents different semantics
for object functional dependencies, based on arelational representation of relevant parts
of states. The proposal introduced by the authors is compared to related approaches and
some interesting challenges for future research are pointed out in the conclusions.

Chapter 1X "Integrity Maintenance in Extensible Data Bases" by Ulrich Schiel, analyzes
the problem of the increasing complexity in the data models required by new applications
holding, for example, complex structured objects, multimedia data, and unstructured
documents, each with their own semantic complexity. To alow an easy way to define the
semantics of such complex data models, the author introduces an approach to define it by
means of general (schema) integrity constraints integrated to the system as rules.

Distributed Databases

A distributed database managing system (DDBMY) is a database management system
(DBMYS) that supports characteristics of a distributed database, that is, the possibility of
handling information contained in multiple locations, preserving data integrity at the
sametime. A DDB differs from a centralized DB mainly in that data are placed at a
number of locations instead of being located in only one site. This characteristic of DDBs
causes the control of data integrity to be more complex than for centralized environments.
Each transaction can involve more than one location, and it is hard to keep an execution
order of the instructions of the transaction to preserve data integrity. The information
integrity problems discussed for a centralized DB also appear for a DDB, together with a

-21-

Database Integrity: Challenges and Solutions

series of new issues. The studies carried out for transactions in centralized environments
can be used as a starting point to solve the problems in distributed environments.

Some authors define a DDB as a DB that uses the same DBMS at each location of the net.
Other state that when there is a distributed system using heterogeneous DBMSs in the
network, it is called Heterogeneous Data Base (HDB). In general, data integrity questions
are dealt with in similar ways both for DDBs and HDBs, DBMS interoperability allows
for solving integrity problems.

At first glance, the Web is a huge repository of information without any structure
whatsoever. Nowadays, this is changing quickly. The Web presents the highest degree of
distribution, heterogeneity, and autonomy, and therefore, traditional distributed database
techniques must be further extended to deal with this new environment. Chapter 1X,
"Integrity Issuesin The Web: Beyond Distributed Databases” by JF. Aldana Montes, M.I.
Yague del Valle and A.C. Gomez Lora, focuses on introducing a new paradigm: The

Web as the database, and its implications regarding integrity, i.e., the progressive
adaptation of database techniques to Web usage. The authors study the different issues
related to integrity and its maintenance on the Web and introduce the reader to other
related and open issues, such as the query problem and query optimization on the Web.

REFERENCES

Abiteboul, S., Hull, H., & Vianu V. (1995). Foundations on databases. Addison Wesley
Publ. Co.

Bertino, E. & Martino, L. (1993). Object-oriented database systems. Concepts and
architectures. Addison Wesley.

Ceri, S. & Fraternali, P. (1997), Designing database applications with objects and rules:
The IDEA methodol ogy, Addison Wesley.

Codd, E. (1970). A Relational Model of Data for Large Shared Data Banks. CACM.
13(6): 377-387.

Codd, E. (1979). Extending the Data Base Relational Model to Capture More Meaning.
ACM Trans. On Database Systems, 4(4): 397—434.

Codd, E. (1990) The relational model for database management. Version 2. Addison
Wesley Publ. Co.

Connally, T., Begg, C. & Strachan, A. (1999) Database systems. A practical approach to
design, implementation and management. 2"%. Edition. Addison Wesley.

Jackson, M. (1995). Software Requirements & Specifications. A Lexicon of Practice,
principles and prejudices. Addison Wesley, ACM Press.

Karlsson, J. (1996). Software Requirements Prioritizing. ICRE'96 Second International
Conference on Requirements Engineering. IEEE CSP. Los Alamitos, CA. Proceedings.
Loucopoulos, P & Karakostas. (1995). System Requirements Engineering. McGraw Hill
International Seriesin Software Engineering.

Rivero, L., Doorn, J. & Ferraggine, V. (2000). Inclusion Dependencies. In Developing
Quality Complex Database Systems: Practices, Techniques, and Technologies. Hershey:
|dea Group Publishing.

Database Integrity: Challenges and Solutions

Ross, Ronad. G. (1997). The business rule book. Classifying, defining and modeling
rules’ .Database Research Group, R. Ross Editor/Publisher.

Snoeck, M. & Dedene, G. (1998). Existence dependency: The key to semantic integrity
between structural and behavioural aspects of object types. |IEEE Trans. On Software
Engineering. 24 (4). April 1998.

Stonebraker, M. (1996). Object-relational DBMSs. The next great wave. Morgan
Kauffman Publishers

Chapter |1: Database I ntegrity—
Fundamentals and Current
| mplementations

LauraC. Rivero, Universidad Nacional del Centro dela Provincia de Buenos Aires
and Universidad Nacional de La Plata,

Argentina
Jorge H. Doorn, Viviana E. Ferraggine, Universidad Nacional del Centro dela
Provincia de Buenos Aires,

Argentina

In Part |, this chapter surveys the state of the art of the semantic integrity constraints in
some relational and object relational available database systems. In Part 1, it also
provides an overview of the SQL standard integrity issues and describes semantic
integrity support in the following DBMSs: Oracle, IBM DB2, Informix, Sybase and

PostgreSQL.

The major differences and similarities among these systems are analyzed in relation to
the definition, semantics and fidelity to the SQL standard prescriptions.

PART |: INTRODUCTION

This chapter is devoted to expanding the concepts presented in Chapter 1. One of the most
important current trends in database management is the increase of the semantic content
of stored data. In this way, the first step in the establishment of the database theory is the
precise definition of data models, since without it the database concepts cannot be
understood as regards the design, analysis and implementation of schemas, transactions,
and databases (Thalheim, 1996).

Taking into account that a database is a resource shared by many applications, it is
advisable to register any knowledge about data semantics in the database in such a way
that there is no need to replicate it into the applications using such knowledge. This
knowledge covers alarge variety of fields of the Universe of Discourse (UofD) "under

Database Integrity: Challenges and Solutions

the form" of rules, which can be grouped in the following families: rules about the valid
values of particular items of data; rules describing the way the data are associated with
one ancther (interdata connections); and rules about the actions that should be performed
when a specific event shows up (business or enterprise rules). Generaly, the first two
kinds of rules are included under the denomination "integrity constraints." However, the
concept of rulesis preferable since, in general, the distinction between constraints and
business rulesis not clear. From an operational point of view, all rules can be treated as
active requirements since the system must verify that user manipulations leave the data in
an allowed state. If the execution of a proposed transaction leads to a constraint violation,
the system either aborts the transaction or executes repairing actions, clearly revealing a
reactive nature.

In the database world, rules are relevant concepts to describe a piece of active
requirements. Rules define the intended structural and behavioral properties of objects
involved in a database application, and they can be specified in several ways. At
procedural and production levels, rules clearly exhibit a reactive structure. At the
conceptual level, some rules already have an active form while some others do not, but
al of them involve active requirements (Van den Berghe, 1999).

When the database engine automatically enforces rules like these, stored data become
more "active," thus acquiring a richer level of semantic content (Chamberlin, 1998). In
other words, database constraints can be regarded as a language to specify the semantics
of data.

Most database systems provide some support for integrity constraints. For example,
current commercial database systems (especially RDBM Ss) enforce only a small set of
constraints, mainly because of the performance overhead associated with update
operations. In this manner, in RDBM Ss and ORDBM Ss some restrictions related to the
valid values of a particular column (typing constraints) can be directly represented at
schema definition time using the facilities the language (usually SQL) offers for the data
definition (DDL). Others are expressed and enforced by mechanisms such as check
conditions, assertions and triggers in RDBM Ss or specific methods in OODBMSs. The
best approach to implement semantic integrity constraints requires aformal specification
method to define assertions and a set of enforcement algorithms to guarantee database
consistency relative to these assertions.

With respect to the rules related to valid values and data associations, it should be pointed
out that since there are many different restrictions over data, many different classes of
constraints are generated. The different database paradigms—elational, object relational
or others—were not conceived with the integrity vision as the primary objective, then they
have aweak semantic approach to this subject. In the specific field of RDBMSs a
database can be viewed as a collection of tuples. Tuples are a very poor mediato express
semantic qualities so additional semantic features must be specified in another way. The
specification of such features depends on the choice of a DBMS, being the level of
support of current relational products uneven from system to system.

-24-

Database Integrity: Challenges and Solutions

On the other hand, updates to data items may also be constrained by business rules
governing the real world changes. These changes are represented by updates in the
database world. Some DBM Ss provide more facilities than others do for defining
enterprise constraints. In most systems, there is no support for some or al of the
enterprise constraints and it will be necessary to include the constraints into the
applications (Connolly, Begg & Strachan, 1999) or specific purpose programs.

This chapter is devoted to examining the state of the art of the semantic integrity
constraints in some (object) relational-available DBMSs, also provides an overview of
the SQL standard integrity issues and a comparison of the semantic integrity support in
Oracle, IBM DB2, Informix, Sybase and PostgreSQL .. The main differences and matches
among these systems are analyzed in relation with the definition, semantics, and fidelity
to the SQL standard prescriptions.

This chapter has been structured as follows: In the section "Integrity Constraints" a
constraint classification is presented. In "The SQL Standard Facilities" section, the
diverse integrity features proposed in the SQL-99 standard are discussed in detail. Part ||
begins with the presentation of the reference systems, and the description of a motivating
example. The review of integrity issues in mentioned reference systems is developed in
the section "Integrity Constraints in Current Database Management Systems.” Finaly,
this chapter ends with some concluding remarks.

INTEGRITY CONSTRAINTS

During the conceptual modeling phase, the designer captures and describes both the
relevant actors and resources playing in the UofD and the semantic links among them,
producing a connected network of object and relationship types. These types are defined
by their components (attributes) and assertions on the valid values and their behavior. By
enriching the conceptual schema with a complete set of such assertions, which should be
enforced dynamically and continuously, the database designer depicts consistent states at
design time (Codd, 1990). Integrity enforcement efficiency isinfluenced by the
complexity of the assertion set, by the structure of the database repository and by the
device that controls and drives database actualizations. Semantic data control ensures the
maintenance of database consistency by reecting update transactions that lead to
inconsistent states or by activating specific actions on the database state to compensate
the effect of the previous transaction. In this context, the task to ensure the fulfillment of
the integrity requirements is a well-known problem and target of current research. Since
most of the current relational DBMS systems fail to provide adequate support for the
integrity maintenance, this activity becomes a DBA programmer’s responsibility.

Aswas briefly introduced in Chapter | the data properties are seen from a point of view
as much independent as possible from the representation model. In this way, data
properties can be analyzed from two different perspectives: from the real world and from
the database world. A real-world data property of a given class may be mapped into a
different database class of properties due to materialization issues. Doing so depends on
the database paradigm and on the adhesion of the DBM S to that paradigm.

Database Integrity: Challenges and Solutions

According to this approach, when a data property describes the allowed values of an
attribute or a set of attributes in the real world, it is called Domain Restriction in the
database world. The semantic connections among objects and among the properties of a
given object are called Relationshipsin the real world and they become a different kind
of link in the database world. The restrictions over these links and the links themselves
are materialized in the database world by means of restrictiors over attributes pertaining
to the same or different objects.

The identification of actors or things using a unique inherent or an artificial attribute
(surrogate key) is a need of the real world. Since data processing emphasizes this need, in
a database context, this necessity leads to the selection of primary keys.

Finally, when a data property carries out a semantic that is specific of the UofD,

modeling the reaction to events or stimuli generated in the real world, it is called Business
Rule. Some business rules may be expressed as domain restrictions and some others ook
like relationships but most of them must be expressed in a more complex way (Ceri et d.,
1997; Codd, 1990; Ross, 1997). At data processing level, the scope of business rules may
be as limited as domain restrictions or as extensive as relationships; in other cases they
are completely different. A business rule whose scope is only one attribute has, in fact,
the same structure as a domain restriction and it shares al their properties. On the other
hand, business rules involving more than one attribute belonging to the same or different
entities or objects may be either smilar to or rather different from the relationships.

Table 1 shows a general and succinct definition of the restrictions according to both
points of view and Figure 1 depicts the mapping between both worlds. Boldfaced arrows
represent common situations and narrow ones stand for not so frequent mappings. The
borders among the kinds of rules in the database world depend on the context in which
the assertion is made. In such way, for instance, some constraint having the appearance of
a SQL domain restriction could be materialized as a genera restriction in an actual
engine.

Table 1: Real world restrictions and their correlates in the database world

REAL WORLD RULES DATABASE WORLD RULES
NAME DEFINITION DEFINITION NAME
DOMAIN Allowed values for data Attribute values DOMAIN
items constrained by basic | RESTRICTION
types or
specializations of
them
RELATIONSHI P |Semantic connections Inclusion OBJECT
among real things (inter- dependencies, RESTRICTION

object) and/or among the referential integrity
identifier/ descriptor data constraints and
items of real things (intra- functional

object) dependencies

-26-

Database Integrity: Challenges and Solutions

Table 1: Rea world restrictions and their correlates in the database world

REAL WORLD RULES DATABASE WORLD RULES
NAME DEFINITION DEFINITION NAME
BUSINESS Specific semantic Complex assertions GENERAL
RULE characteristics of the UofD \combining columns | RESTRICTION

from arbitrary
combinations of base
tables

Figure 1: Restriction Mapping

Obvioudly, there are semantic gaps between the real world and the database world
columns of Table 1. In the real world a domain may be-and frequently is-compound
such as it happens with: the employee address (composed by the number, street name,
city name and zip code); the room number in a hotel (composed of the floor number ard
the room number), etc. In the database world, these domains may be specified as a unit or
through their components. Only domains defined as a unit may become Domain
Restrictions in the database world. More complex approaches must be used to preserve
database compound domains. For example, not all possible combinations of numbers and
streets represent valid addresses of a given city, but usually the specification of the
allowed values is hard to define unless the components are specified separately. As a
counterexample, the hotel room domain can be precisely specified when all floors have
the same number of rooms.

The gap between Relationships and Object Restrictions is less evident since two different
problems of the real world are enclosed in a single notion: connections among different
real objects and connections among data items of a single object. On the other hand,
Object Restrictions naturally fulfill both approaches.

Finally, Business Rules are an open family of restrictions while General Restrictions
collect al issues not supported by the previous two kinds.

Examples:

-27-

Database Integrity: Challenges and Solutions

i. Consider amedical center. In this context, a Patient can be identified via his’her
Patient Id (Pl) or via hissher Social Security Number (SSN). Suppose a business
rule of this information system which requires that each Patient must have a SSN
or aPl or both. In area system, atrigger such as the one depicted in section
"Integrity Constraints in Current Commercial Products' below implements this
constraint. This example corresponds to the arrow

ii. Inthe same context, suppose a Patient can ask for, at most, three Medical Services.
Thisis a property of the relationship between the patient and the Medical Service
entities but, due to limitations in the implementation of these facilities, in current
systems this restriction must be expressed as atrigger or viaapiece of codein an
application program

iii. A relationship among the identifier and descriptive attributes represents a
functional dependency, which is specified viaa PRIMARY KEY clause

iv. Finaly, suppose a domain defined over a set of prime numbers less than 10,000.
This domain property can be specified in three ways: via a Domain Restriction,
enumerating all possible instances an attribute may have (1); viaan inclusion
dependency if the set of prime numbers is materialized as a one-column table (2);
or via a coded generating algorithm (3).

Domain Restrictions

Aswas aready defined, a domain restriction defines the set of values that an attribute
may have. These sets may be defined by enumeration of the members or by intension and
they are associated with a specifically-defined domain. And in relational systems, they
apply to every column in every base table that is defined over that domain. Examples of
this class are null and default restrictions, value restrictions, enumerated and scope
restrictions.

Database Integrity: Challenges and Solutions

Within the SQL 2 standard, domain restrictions are unfortunately considered as a basic
type with additional restrictions specified by extension or by intension. Thisis a version,
limited in one sense and extended in another, of the user defined data typesin
programming languages. It is limited because it can only use a basic type and no other
built types, such as Cartesian product. On the other hand, it is an extended version
because all possible values are restricted in a more flexible and expressive way than in
those cases. SQL 3 overcomes this limitation.

Domain definitions are useful when several tables contain identical column definitions. In
this way, the domain is defined just once and is used wherever it is needed. Definition of
domains must be carefully specified to avoid contradictory constraints. To specify a
column domain, the definition of such domain must be provided. A new problem then
arises: the integrity of the integrity rule set. Thisis usually called the metaintegrity
problem (Zaniolo et a., 1997). Every property of the integrity rule set applies to the
metaintegrity rules. Their unique characteristic is that metaintegrity rule objects are
integrity rules. Available commercial products present an insufficient coverage of this
area.

When these restrictions are not generalized as domains, i.e., when they are associated
with a specific column in a specific table, they are usually called column constraints
(Codd, 1990).

In SQL, domain restrictions can be expressed in the specification of atable (CREATE
TABLE sentence) or viaa domain definition (CREATE DOMAIN sentence).
Additionally, domain definitions can be altered or dropped through the clausessALTER
DOMAIN and DROP DOMAIN.

The syntax of these clauses can be found in the section "The SQOL Standard Facilities"
and examples are provided in the section"Integrity Constraints in Current Commercial
Products’.

Object Restrictions

As was previously mentioned, relationship constraints allow the characterization of intra-
and inter-object relationships. In the relational context, the most relevant relationships,
which connect attributes that describe and/or identify the entities, are the functional
dependencies. They may be tagged as primary or secondary according to the structure of
their left term. When the left term is the primary key of the relation, the dependency isa
primary one.

In other cases, they are secondary dependencies. Thistype of dependency is not currently
supported.

On the other hand, relationships between real-world things (actors and resources) also
become rel ationships in the database world, having a scope larger than domain

Database Integrity: Challenges and Solutions

restrictions since they involve severa attributes, at least two, usually belonging to
different objects or entities.

The manner that these connections appear in the database world depends on the way the
objects have been represented. In arelational context, relations are used to model the real
world, i.e., entities, their descriptions and the relationships among entities. A database
designed "strictly" adhering to a methodology only produces rel ationships between
properly designed classes of entities. On the contrary, ad-hoc refinements of the logical
schema without concern for the corresponding conceptua design usualy lead to the
modeling of another kind of relationships. Asin this case the entities were not properly
designed, i.e., the schema holds hidden entities, the relationships among them and other
objects are a'so misrepresented. A hidden entity is one that has not been made explicit as
arelation in the schema, but it conceptually exists in the real world.

It should be noticed that even though relationships are symmetric, a designator and a
designated relationship term could be distinguished. These components are usually

named left and right- hand side of the relationship, respectively. When the right side is
properly modeled, the real-world relationship is represented as a key-based inclusion
dependency (usually named referential integrity restrictions) in the database world. In this
case, the attribute or a set of attributes-which materializes the reference and pertainsto
the left term-is named the foreign key and the connection is based either on the primary
key or on an alternate key of the right side table. On the other hand if the right sideis a
hidden entity, a non-key (pure) inclusion dependency represents the relationship, and its
terms have no specia names.

Systems adhering to the SQL standard allow the specification of referential integrity
using the FOREIGN KEY clause. Non-key inclusion dependencies are ailmost completely
disregarded by actual systems, obliging the users to manage them via special-case code or
triggers. SQL offers an extension of the well-known FOREIGN KEY clause adding
PARTIAL and FULL MATCH options. These concepts are detailed in the section ‘ The
SQL Standard Facilities'.

Most relationships are simply binary since they connect two real world things
(cardinalities may be 1:1, 1.N, N:M). However, relationships may connect three or more
real objects (then they are called nary relationships). In this case, they may be converted
into a set of binary relationships.

A main issue strongly related to the relationships is the "referentia action.” The
referential action isformed by the set of operations that is necessary to perform in order
to maintain the relationships in a proper way. In other words, if a designated object is
deleted or changed, what actions are to be performed in order to preserve the database
integrity? One option may be: delete (change) all related objects, and the objects related
to these ones and so on. Other options are: do not permit the deletion (update) if there are
objects designing it; destroy the link between the objects nullifying the reference in the
designator; or label the link asinvalid replacing it by a default value. These options are
named cascade, restricted (no action), set null and set default, respectively. They are fully

Database Integrity: Challenges and Solutions

described in the following section and are the standard actions. However, some authors
have proposed another kind of actions (forgive, label as an exception, etc.) that can be
implemented in combination with the standard ones and with prompts to allow the users
to execute specific actions (Etzion, 1993). Current systems partially support only
standard actions.

General Restrictions

A business rule constrains or defines some aspect of the business. Their name proceeds
from the fact that they perform part of the business management, modeling the reaction to
events which occur in the real world with tangible side effects on the database state (Ceri
& Fraternali, 1997). However, business rules sometimes do not define allowed data states
but allowed actions connected with data states ("a given report cannot be produced if a
specific datais missing") and/or establish a property involving data previously stored or
new incoming data ("employee salary could not be diminished").

Even though SQL provides the CHECK and the CREATE ASSERTION clauses, they are
usually insufficient to represent the richness of real world rules. For this reason, current
systems offer an additional facility: procedures that are actively invoked under update
operations. These procedures are called triggers.

Because of the trigger reactive behavior, the system reaction is not limited to the typical
rollback of the offending transaction (abort rules). Looked from a higher level of
abstraction, integrity restrictions can be specified within the context of a maintenance
integrity policy. In this context, the action to be performed over a database state if a
congtraint is violated is specified and thus the rules become repairing.

Triggers are procedures that are implicitly invoked under the occurrence of certain pre-
established events, generally data updates of a specific table. They are the most-used tool
to materialize business rules and their needed reactive behavior.

Considered as active rules, triggers should materialize all the concepts those rules exhibit.
Active rulesfit in the Event-ConditionAction paradigm. In this way, the consideration of
atrigger—the concept relative to the event that activates it—can be immediate, deferred, or
detached. Immediate consideration can occur BEFORE the activating event, AFTER the
event, or INSTEAD OF the event. Deferred consideration can occur, for instance, at the
end of atransaction or after user-defined commands. Finally, detached consideration
happens in the context of a separate transactiontt! Execution of the action is the concept
relative to the condition consideration. It can be immediate, deferred, or detached as well.
I mmediate execution implies the action execution to immediately follow the condition
consideration; it is the most used option. Deferred execution postpones the executions of
the actions until the end of the transaction, and finally, detached execution happensin the
context of a separate transaction after the rule is considered.

In the following sections, additional features for the commercia product triggers
implementation, and several examples are provided.

-31-

Database Integrity: Challenges and Solutions

As aconcluding remark of this section note that, given the importance of standard
compliance, al vendors have tried to produce systems as close as possible to the
preliminary standard document, disregarding some of its most exotic features, but
documents left a number of open issues, which have been "closed” by vendorsin
different ways.

WNaturally, this issue concerns concepts such as isolation levels, concurrency control and
others related to them. They constitute another perspective of the database integrity
problem.

THE SQL STANDARD FACILITIES

The following sections have been framed taking into account the SQL-92 standard and
preliminary documents of SQL 3.

Lately the main commercial database engines have adhered—in larger or smaller degrees—
to the standard of SQL known in the literature as SQL2 or SQL-92 (Date & Darwen,
1997) and throughout the last years, to some characteristics published in the preliminary
and the final document of SQL 3 standard, also known as SQL-99 (SQL99-1, 1999;
SQL99-2, 1999). What is called SQL in this chapter is at least SQL2 and when needed,
additional characteristics from SQL 3 are explicitly included.

These standards have been divided into three levels: Full SQL, Intermediate SQL, and
Entry SQL. The former is the complete standard, the second is a subset of it, and the
latter is a subset of the second level. Current products implement Entry SQL facilities
together with some extra characteristics from the second and/or the third level. Since
integrity restrictions have a precise format whose complete specification is provided in
the full level, whenever one of such restrictions is needed, it must be specified in an ad-
hoc way according to the features each DBM S provides.

In this context, an integrity constraint is seen as a conditional expression required to
evaluate TRUE. SQL provides a broad variety of methods to implement integrity
constraints. The overall restriction specified in SQL for a particular database can be
interpreted as the logical conjunction (AND) of all particular restrictions.

Within the standard guidelines, when a user tries to incorporate a new restriction, the
database state should be checked in order to verify if it satisfies this restriction. In case
the new restriction is violated, it should not be included in the database catalog. All
restrictions have a name given by the user or automatically provided by the system.
These names are important in two senses. On one hand, they help the user to perform the
database application debugging, to disable or drop an integrity check; or to find a
constraint to change the checking model. On the other hand, they are essential for the
DBMS for the identification and management of the schema components into the
metadatabase. These characteristics are explained in the corresponding sections.

Database Integrity: Challenges and Solutions

Each conceptual schema developed under the SQL standard prescriptions contains a set
of definitionsrelated to the relevant concepts of the UofD. In this way, domains, base
tables, views, restrictions, privileges, and any other object that can be represented in SQL
have their respective definitions (Date & Darwen, 1997).[2E]

Domain Restrictions

Aswas previously expressed, domains can be specified via a declarative clause or inside
the definition of the columns of atable. The SQL clause used to define domainsis
CREATE DOMAIN. The basic CREATE DOMAIN clause must specify the domain
name, the basic data type it constrains and optionally the default value an instance of this
domain can accept and the restriction on the values the domain can contain. The syntax is:

CREATE DOVAI N domain-nanme [AS] data-type
[DEFAULT default-option] [CHECK (search-condition)]

Default-option and search-condition are detailed below.

If the domain definition needs to be modified, the ALTER DOMAIN clause should be
used; whenever a domain definition is no longer necessary, the proper sentence is DROP
DOMAIN.

ALTER DOVAI N <donmmi n- nane> <domai n-al teration-acti on>
DROP DOMAI N <dommi n- nane> { RESTRI CT | CASCADE }

The domain-alteration-action may be the modification of the default value of a domain,
the addition of a column-constraint-definition or the elimination of a constraint over that
domain.

At this point, a metaintegrity subject arises. Since the domain definitions and the table
definitions are related, the ateration or dropping of a domain definition produces the
propagation of this action over the related components. When RESTRICT is specified,
the delete operation succeeds if, and only if, it is not referenced in any column definition
in any table, view or integrity restriction definition. If CASCADE is specified, DROP
DOMAIN aways succeeds since all references from column tables, views or constraints
will be dropped, too, and those column definitions will be atered with the DEFAULT
value or the constraint definition if it corresponds.

Domains are useful when several tables contain identical column definitions.
Another way to materialize domain restrictions is by including them into the column of a

table definition. In the CREATE TABLE sentence, the user specifies the name of the
table and its components following this syntax:

Database Integrity: Challenges and Solutions

CREATE TABLE tabl e-nanme (table-elenment-1ist);

Table-element-list is defined as alist of table-element, separated by commas. A table-
element may be

colum-definition | constraint-definition
whereas a column-definition is

col um-nane { data-type | dommin-nane }
[DEFAULT defaul t-option]

[colum-constraint-definition ...]

[collate-clause]

A column-constraint-definition is

[constraint-nanme-definition] columm-constraint
[constraint-attributes]

And a column-constraint :

Not - nul | -definition | unique-constraint-definition
referential -constraint-definition | check-constraint-
definition

On the other hand, a constraint-definition is specified as

[constraint-nane-definition] table-constraint
[constraint-attributes]

where a table-constraint may be a unique-constraint-definition, a referential-constraint-
definition or a check-constraint-definition. They are defined in their corresponding
sections.

Modifications to the table definition can be expressed by means of the statement

ALTER TABLE t abl e- name
[colum-alteration-action | table-constraint-
alteration-action]

Database Integrity: Challenges and Solutions

Using this sentence the user can alter column definitions and integrity restriction
definitions. Related to the former casg, it is possible to perform the addition of columns,
the modification of the definition of a column or the elimination of a column. The
elimination of a column failsif it is the unique column in atable definition or if the
RESTRICT modality has been specified to perform the deletion and this column is yet
referenced. Findly, if the table definition is no longer necessary, the user can express

DROP TABLE t abl e-name { RESTRI CT | CASCADE}

Default Option

Default values can be defined both in the domain definition and in the table definition.
The default value can be NULL, a literal or some function provided by SQL. When a new
default definition is added to the definition of adomain, it is automatically applied to all
columns defined over such domain. On the other hand, when a default definition is
eliminated, the default value is copied in the definition of all related columns. If a column
defined over adomain has its own default value, it is preserved when a default definition
is dropped or added to the domain definition.

Sear ch-Condition

Constraints over domains can be defined as part of a domain definition, as part of atable
definition or via a general definition. A constraint defined in a domain definition is
expressed as:

[CONSTRAI NT constraint-nane] CHECK (search-condition)

The search-condition includes logical combinations of simple expressions which, in turn,
can be aBETWEEN comparison, a LIKE condition, an IN condition, aMATCH
condition, aNULL condition, a table lookup, etc. Several examples are provided in the
following sections.

In some situations, the user needs integrity constraints to be checked immediately, i.e.,
after each SQL statement has been executed. In other cases, the user needs the checking
at the transaction commit. To accomplish those behaviors, the user can define a constraint
asINITIALLY IMMEDIATE (default) or INITIALLY DEFERRED, respectively. In the
first case an additional meta restriction qualifying IMMEDIATE can be expressed using
[NOT] DEFERRABLE. It indicates whether the option can be changed within the context
of the current transaction.

A constraint-definition may also be included as part of atable definition.

Database Integrity: Challenges and Solutions

Other constraints over columns of atable may be: null restrictions (Not Null Definition),
aprimary key constraint (Primary Key Definition), or a referential integrity restriction
(detailed in the subsection "Object Restrictions”).

Once more, these restrictions can be incorporated using the ADD table-constraint-
definition clause and they can be eliminated using

DROP CONSTRAI NT constraint-name { RESTRICT | CASCADE}

The creation of defaults and check constraints for columns cannot be defined for SQL
supplied data types and columns of text, image, or timestamp types.

Asit can be seen in Figure 1, when the SQL facilities described in this section are
insufficient to define a complex domain, assertions, checks, and even triggers can be used.

Not Null Definition

This can be specified as part of a column definition and used to indicate whether a
column is alowed to contain nulls. Nulls are different from zeroes or blanks, and they are
used to represent missing data items or not applicable ones. When NOT NULL is
specified, the system rejects any attempt to insert a null value in the column; otherwise,
the system accepts null values. The standard default is NULL.

Uniqueness Constraint Definition

In the relational model, a candidate key is a unique not null identifier involving one or
more columns. The standard supports entity integrity with the PRIMARY KEY clausein
the CREATE TABLE and ALTER TABLE statements. In this model, a table can have
more than one candidate key but one of them must be designated as the primary key
while the rest are considered as alternate ones. The uniqueness of alternate keys can be
ensured by using the keyword UNIQUE.

On the contrary, in the SQL context the uniqueness restriction is optional and can be
specified as part of the CREATE TABLE or the ALTER TABLE definitions, using the
PRIMARY KEY or the UNIQUE clauses. All columns included into the uniqueness
constraint must also be defined as NOT NULL. A table can have an arbitrary number of
uniqueness restrictions but just one definition of a primary key.

A PRIMARY KEY can be specified as a part of the column definition, or separately in
the table definition.

The syntax is:

[CONSTRAI NT constrain-name] {PRIMARY | UNI QUE } (
colum-1list);

Database Integrity: Challenges and Solutions

Data Type Features

The SQL 3 standard has incorporated new features concerning user-defined and
constructed data types. These types can be created using the CREATE TY PE sentence. A
user-defined data type is a schema object whereas a constructed type (atomic or
composite) is a data type having values that, in turn, can be composed of zero or more
values of a declared data type. Inthis way, abstractions such as structured types and
distinct types may be declared and used to define complex domains. A structured typeis
simply a user-defined data type comprising a number of attribute values that are
encapsulated, i.e., they are not directly accessible to the user. A distinct typeis alimited
special case of a user-defined data type. Its physical implementation must involve exactly
one of the built-in scalar types. Distinct types do not have implicit coercion to any other
data type, even with the one on which it is based. On the other hand, row types are
sequences of one or more (field name, data type) pairs. A value of arow type consists of
one value for each of itsfields. Columns of these types can be defined as nont nullable in
the same way the predefined data types are.

CREATE TYPE <type-nane> AS <built-in scalar type name>
FINAL ...

Object Restrictions

Regarding the definitionsin Table 1, only primary functional dependencies and
referential integrity restrictions can be treated in the SQL context. Secondary functional
dependencies and non key-based dependencies cannot be specified in SQL, even though
the document presents some considerations about known dependencies in specific
denormalized tables (SQL99-1, 1999) and the potential utility of the FOREIGN KEY
match options.

An object constraint is associated with a specific table (which does not mean that it
cannot refer to another table). In the SQL context, it can express aforeign key definition,
aprimary or candidate key definition, or an arbitrary combination of columnsin atable.

Considering Figure 1, primary and candidate keys are related to object restrictions, since
they imply a functional dependency. On the other hand, primary and candidate keys are
related to domain constraints since they cannot hold NULL values and they must be
UNIQUE. For this reason, keys have been considered in the previous section.
Referential -Constraint-Definition

Aswas previoudly defined, a relationship can be established through a referential
constraint whose syntax is:

-37-

Database Integrity: Challenges and Solutions

FOREI GN KEY (col um-1i st)

REFERENCES r ef er enced-t abl e-nane [(primary-key-col um-
list)],

[MATCH {FULL | PARTI AL}

[ON DELETE {NO ACTI ON | CASCADE | SET DEFAULT | SET NULL
| RESTRI CT}]

[ON UPDATE {NO ACTI ON | CASCADE | SET DEFAULT | SET NULL
| RESTRICT}]]

The referential corstraint specified by means of a FOREIGN KEY clause definesa
relationship between atable T1 (referencing table) and atable T2 (referenced table). The
number of columns involved in the foreign key must match the number of columns of the
referenced primary key and their types must be compatible. Table T2 in the clause
REFERENCES must identify a base table already defined in the catalog, but not a system
table.

The MATCH option provides additional constraints in relation with foreign keys having
null values. If the match is simple (default option), for each row of the referencing table
either at least one of the values of the referencing columnsis a null value or the value of
each referencing column is equal to the value of the corresponding referenced column for
some row. If the chosen option is MATCH FULL, the foreign key components must all
have valid values or must al have null values. If the option is MATCH PARTIAL, the
foreign key must be completely null or there must be at least one tuple in the referenced
table that could satisfy the congtraints if its nulls are properly replaced by valid values.
Referentia integrity is usually associated with MATCH FULL. Each match type
constrains the previous one, i.e., match full is stronger than match partial, which in turnis
stronger than match simple.

Within the reference constraint definition, it is possible to indicate the referentia actions
associated with updates and/or deletions in the referenced table. Referentia actions are
compensating operations, ustelly more effective than simply rejecting the operation that
would violate a referential constraint. There are five possible actions: NO ACTION,
RESTRICT, CASCADE, SET NULL and SET DEFAULT. When RESTRICT or NO
ACTION (default action) is specified, no row is updated or deleted in T2 if one or more
tuplesin T1 reference it. Otherwise, the tuple in T2 may be updated or deleted,
respectively. If the specified action is CASCADE, the actualization over T2 is propagated
to the dependent tuplesin T1. If SET NULL isdeclared, al foreign key valuesin the
tuples which reference the ones intended to be actualized in T2, are set to null.

Obvioudly, if one or more of the foreign key columns are constrained by a null restriction,
this option is not appropriate. Omitting the declaration of the clauses ON DELETE and/or
ON UPDATE sets the default action: NO ACTION. Cycles of deletions must be avoided,
with an exception: if al referential actions are CASCADE.

When two or more tables are connected by two or more referential paths starting in the
same table T1 and ending in another table T2 (the same for all the paths), some

Database Integrity: Challenges and Solutions

irregularities may show up if certain referential actions are combined. This problem is
known as "the conterminous path problem™ and it has been extensively studied (Date,
1989; Markowitz, 1994; Rivero & Doorn, 2000). In those works, sets of rules on the
combination of referential actions are presented to avoid unpredictable results when the
referenced table is updated.

Once more, as it happens with other restrictions, aforeign key constraint can be specified
in the context of a column definition as part of atable definition or it can be added using
the ALTER TABLE clause.

Differences Between NO ACTION and RESTRICT

NO ACTION and RESTRICT arereferential actions for deletions and updates. They are
different in relation to the moment in which the restriction is applied. RESTRICT updates
or deletions are applied before other restrictions, including other update rules such as
CASCADE or SET NULL. No ACTION rules for deletions and/or updates are applied
after other referentia restrictions. The effect of the application of these rules produces
different outcomesin only a few cases.

Check Constraints

The CHECK and CONSTRAINT clauses alow the definition of additional constraints. If
used as a column constraint, as explained in the previous section, the CHECK clause can
reference only the column being specified. If used as a table constraint, it is associated
with a specific table and the search-condition can involve an arbitrary combination of its
columns.

Execution Model For Declarative Integrity Constraints

Together with the declarative support for the integrity constraints given in SQL-99, the
semantics of the possible interactions, which can exist among them, are also defined.

Once the set of tuples (rows) affected by the transaction is determined, BEFORE triggers
are executed (before the original operation). Note that in this case, it is not possible to
carry out database update operations. AFTER triggers are executed after the original
operation has been completely executed and all declarative constraints have been verified.
The order to which the declarative checkupsis applied is:

Lo

referential integrity restrictions with RESTRICT modality.

2. referentia integrity restrictions with CASCADE, SET NULL, or SET DEFAULT
modalities

3. not null, unique/primary key, check and referential integrity with NO ACTION

modality restrictions.

Database Integrity: Challenges and Solutions

General Restrictions
Assertions

When arestriction involves an arbitrary complex combination of columns of an arbitrary
number of tables, it is preferable to express it by means of the CREATE ASSERTION
clause rather than duplicating a check on a column in each table definition. Assertions
must be expressed following the syntax:

CREATE ASSERTI ON assertion-name CHECK (search-
condi tion)

A column restriction can be specified using CREATE ASSERTION, whereas adomain
restriction cannot. This happens because in assertions it is impossible to define the
domain type.

An assertion can be dropped by using DROP ASSERTION.

There are differences between the definitions of a constraint if it isin the CREATE
TABLE context or if it is defined by a CREATE ASSERTION clause. If a column having
an associated constraint is dropped from atable definition (with RESTRICT option), this
operation will succeed. On the contrary, if it isinvolved in a CREATE ASSERTION
clause, the dropping will fail. Multi-table assertions need to be evaluated when any table
referenced in the condition is modified.

Triggers

An effort to define a standard for SQL triggers has been ongoing since the late 1980s.
Even though trigger support was not included as part of the SQL-92 standard (probably
because of the inadequacy of the standard document, which was very complex, especially
in the section listing measures to avoid mutual triggering), they were supported by some
products aready in the early to mid-1990s (Zaniolo et a., 1997). The SQL-99 standard
has extensive coverage of triggers, and today all major relational DBM S verdors have
some support for triggers. Unfortunately, because the standard was influenced by
preexisting product support, and many products do not do a good job integrating
constraints and triggers, most products support only a subset of the SQL-99 trigger
standard, and most do not adhere to some of the more subtle details of the execution
model (Cochrane et al., 1996). Furthermore, some trigger implementations rely on
proprietary programming languages for specifying parts of their triggers, which makes
portability across different DBM Ss difficult. There are a number of important details to
the specification and execution semantics of triggers, only a few of which are covered
here.

Database Integrity: Challenges and Solutions

In contrast to declarative constraints, triggers are explicitly procedural. A trigger isan
SQL compound statement that is automatically executed by the DBMS as a response to
an insert, delete, or update on a particular table. Once activated, an optional specified
condition is checked and, if the condition is true (or omitted), an action is executed. A
trigger is anamed SQL block, similar to a routine with declarative, executable, and
conditional handling sections (Connolly et al., 1999). The basic format of the CREATE
TRIGGER statement is as follows:

CREATE TRI GGER tri gger-nane

{BEFORE | AFTER} firing-event ON tabl e-nane
[REFERENCI NG ol d- or - new val ues]

[FOR EACH { ROW | STATEMENT}]

[WHEN (trigger condition)]

trigger-body

Firing events are the basic table manipulations (insertion, deletion and update). A
BEFORE (respectively, AFTER) trigger is fired before (respectively, after) the associated
event occurs. The triggered action can be executed in one of two ways. FOR EACH
ROW or FOR EACH STATEMENT. In the former case, the action is executed for each
row that is affected by the event.

In the second case the triggered action is executed only once for the entire event. Thisis
the default option.

When FOR EACH ROW is stated, the old-or-new-values can refer to an old or new row.
In case of an AFTER trigger, it refersto an old or new table.

The body of the trigger is a set of sentences, excepting COMMIT or ROLLBACK, SQL
manipulation or definition sentences.

More than one trigger can be activated by the same event and in the same activation time.
Hence, severa triggers can be simultaneously selected for execution. If several triggers
are fired at the same time, their executions are ordered with consideration to their
timestamp. In case two or more triggers have the same timestamp, their relative order is
determined by the implementation: each system has its own pre-established order,
although the standard advises to follow the PostgreSQL/DB2 ordering model. On the
other hand, several events can refer to the same trigger.

Even though triggers can be seen as ECA rules, the consideration of their condition and
action parts can be neither detached nor deferred.

Stored Procedures and User-Defined Functions

The SQL2 standard, as originaly defined, did not include any support for user-defined
functions and stored procedures. However, commercia products have been providing

-4 -

Database Integrity: Challenges and Solutions

such issues for years (Date, 2000), (Cochrane et a., 1996; Turker & Gertz, 2001). With
the incorporation of the Persistent Stored Modules (PSM) into the standard in late 1996,
SQL became computationally complete, so object behavior (methods) can be stored and
executed. It includes statements such as CALL, RETURN, SET, FOR, WHILE, etc., as
well as several related features such as variables and exception handlers. Therefore, there
should not be the need to combine SQL with some distinct "host” language in order to
develop compl ete applications.

Current available system-stored procedures support includes the ability to create user-
defined functions and procedures, to invoke such functions (for example from a SELECT
clause), to invoke such procedures by a CALL (or similar) clause, and the provision of a
proprietary programming language for the definition of these components.

PSM utilizes the term "routine" to cover both functions and procedures. Routines can be
written in SQL or in another nonSQL language (usually a proprietary one). Key words,
such as FUNCTION or PROCEDURE, identify the routine type. PSM routines share the
programming language, their definition includes the definition of parameters—
corresponding to the arguments provided in the invocation, and they are subject to the
same authorization mechanisms, among other similarities (Date, 2000).

Procedures and even pieces of code embedded in the application programs are often
employed to express general corstraints, even though it is not the most recommended
practice.

Although triggers extend the constraint logic with transitional constraints, exception
handling and user defined repairing actions, they should not be used in lieu of declarative
congtraints (Cochrane et al., 1996). Many examples are provided in the section "Integrity
Constraints in Current Commercial Products’.

A model that integrates the execution of triggers and the evaluation of declarative
constraints in SQL database systems is completely described in Cochrane et al. (1996)
and Turker & Gertz (2001).

[2The following subsections have been developed taking into account the following
references: Connolly et al., 1999, Date, 2000, Date & Darwen, 1997, SQL99-1, 1999,
SQL99-2, 1999, Ceri et a., 2000, Zaniolo et al., 1997.

[3n some cases, it is presented an incomplete definition syntax. Just the clauses sufficient
to explain integrity issues are shown.

PART |I: REVIEWED PRODUCTS

To exemplify al integrity issues, the following current postrelational or object-relational
systems will be considered: DB2®, Informix®, Oracle®, PostgreSQL and Sybase®.
These systems are presented in alphabetical order. Details of each of them may be found
in the Appendix./4

Database Integrity: Challenges and Solutions

The references to commercial products correspond to the following versions:

DB2 UDB: DB2 Universal Database V 7.1
Informix: Informix Dynamic Server V. 9.1.
Oracle: Oracle8i Release 8.1.6
PostgreSQL : PostgreSQL V 7.

Sybase Sybase Adaptive Server V 12.0

Whenever necessary, other products or versions are explicitly mentioned.

UDB, aswell as Oracle and Informix, are compliant with the SQL-92 Entry level, but
include features from the Intermediate and Full levels, in addition to several features of

SQL3.

PostgreSQL is compliant with SQL-92 language features, including primary keys, quoted
identifiers, literal string type coercion, type casting, and binary and hexadecimal integer
input. The newest enhancements in PostgreSQL include important features such as
subselects, defaults, constraints, and triggers, and improvements of built-in types
(including new wide-range date/time types and additional geometric type supports).

Sybase is compliant with the SQL-92 Entry level. This behavior is set by default for
embedded applications but it can be changed using a set of commands in Transact-SQL.

To illustrate the concepts developed in this chapter, according to the integrity issues
provided by different commercial products, the following example will be considered.

Motivating Example: A Medicare Organization Database

Consider a Medicare Organization (MO) that provides health services for the employees
of certain organization. An MO is supported by the contributions of its associates mainly
through enforced deductions from their salaries. MOs have three main actors. the
organization itself, the actual health service providers and the user or covered person. The
health service provider may be an individual professional or from a health association
such as Medicare centers or hospitals or even a district professional collegiate association.
The users of the MO are those employees and their family group. Their imposed salary
deductions or voluntary contributions are assigned to the MO.

In the MO context, an affiliate is first identified as a person, then as a member of a family
group and finally according to the role he or she plays in the family group (dependent
affiliates). According to these three perspectives, a person is atitular affiliateif he or she
contributes to the MO with a percentage of his or her salary or by the payment of afeein
the framework of a pre-paid policy.

Database Integrity: Challenges and Solutions

Each affiliate has amedical service history, i.e., the services the affiliate has made use of.
It is the chronological record of all services the user has requested.

Within their MO, the set of services to which each family group can access is defined as a
health plan.

The affiliates are divided into groups, identifying them according to the geographical
location of their primary residence. The affiliate may contact the MO to require services
or some formalities in the nearest office, the delegation.

Figure 2 shows an EER diagram that represents the relevant aspects of the UofD,
according to the Information Engineering (IE) methodology.

TITULAR_AFFILIATE H——— | PERSON |
X . I
! |
: . |
| DELEGATION x v

FAMILY GROUP_COMPONENT
1

| HEALTH_PLAN |
' <#| SERVICE |-

Figure 2: EER of the MO components

Figure 3 shows the physical model of the EER in Figure 2, also following the |1E
methodol ogy.

uc Dotvmediorte U
A g

HEALTH_ PLAN [—
BERVICE_HISTORY
AT

Figure 3: Physical model of the MO components

[4References of this section are Chamberlin, 1998, DB2 UDB-1,1998, DB2 UDB-2,1998,
DB2 UDB-3,1998, DB2 UDB-4, 2000, Informix, 1998, Kim et al, 1994, Oracle, 2000,
Postgres, 2001, SQL99-1, 1999, SQL99-2, 1999, Sybase-1, 2001, Sybase-2, 2001,
Sybase-3, 1999, Sybase-4, 1999, Sybase-5, 1999, Sybase-6, 1999, Sybase-7, 1999,
Sybase-8, 2000, Turker & Gertz, 2001, Zaniolo et.a., 1997.

INTEGRITY CONSTRAINTSIN CURRENT
DATABASE MANAGEMENT SYSTEMS

Database Integrity: Challenges and Solutions

Domain Restrictions

The SQL syntax corresponding to these restrictions has been introduced in the section
"The SQL Standard Facilities".

Informix, Oracle, PostgreSQL and UDB do not support CREATE DOMAIN but they
provide facilities to define composite constructed data types instead.

Concerning the UDB design, IBM has included several characteristics in order to capture
the data semantics. UDB SQL implementation does not support the sentence CREATE
DOMAIN but UDB products provide some other mechanisms to define complex objects
and to extend built- in data types with their own functions. User-defined structured types
are among the data types in DB2 that allow the user to create a structure containing a
sequence of named attributes, each one with their own data type. Structured types can be
combined into a hierarchy, and they can be used as the type of atable or aview. Tables
or views defined using a structured type are called typed tables and typed views,
respectively. Structured types and typed tables enable the user to configure a better model
of the business entities and relationships in the real world.

To specify user-defined data types, UDB provides the sentence CREATE DISTINCT
TYPE. Example:

CREATE DI STI NCT TYPE Nane AS VARCHAR(30) W TH COVPARI SONS

CREATE TABLE DELEGATI ON (

Del egati onl d | NTEGER NOT NULL,
Del egat i onNane Narme NOT NULL CHECK ((VALUE NOT
LIKE ' %)

AND (VALUE <> ''))
)

CREATE DOMAIN and CREATE DISTINCT TYPE are different since the latter
sentence cannot include default value definitions or constraint definitions. These
definitions must be defined at table creation time.

For example, for the creation of arow type:

CREATE ROW TYPE Address

(Street varchar (20),
Number i nt eger,
City var char (20),
State var char (20),
Zi pcode i nt eger);

Database Integrity: Challenges and Solutions

To define adomain integrity constraint the Oracle user must include a CONSTRAINT
clausein a CREATE TABLE or ALTER TABLE statement.

Informix allows the definition of complex data types such as collections (LIST, SET,
MULTISET); named ROW (the Address definition, for example) and unnamed ROW. In
this case, the previous example turnsinto:

CREATE TABLE PERSON (

Docunent Type VARCHAR2(20) NOT NULL
Docunent Nunber NUMBER NOT NULL

Fi r st Nane VARCHAR2(30) NOT NULL

Last Name VARCHAR2(30) NOT NULL

Addr ess ROW Street varchar (20), Num

ber integer, City varchar
(20), State varchar (20),
Zi pcode i nteger)

In Oracle, it is possible to create either an object type, a named varying array (VARRAY),
a nested table type, or an incomplete object type using CREATE TY PE athough this
command is available only if the Oracle object option is installed on the database server.
For the creation of atype in a schema, the user must have the CREATE TY PE system

privilege.

Oracle implicitly defines a constructor method for each user-defined type created. A
constructor is a system-supplied procedure which is used in SQL statementsor in
PL/SQL code to construct an instance of the type value. The name of the constructor
method is the same as the name of the user-defined type.

An incomplete type is created by a forward-type definition. It is called "incompl ete”
because it has a name but no attributes or methods. However, other types can reference it
and it can be used to define types that refer to each other. It is the correlate of the type
definition in the SQL standard.

Sybase CREATE DATATY PE can be used as an aternative to CREATE DOMAIN. This
practice is not recommended because the SQL 3 standard provides the CREATE
DOMAIN statement for this purpose. Once a data type is created, the user 1D that
executed the CREATE DOMAIN statement is the owner of that data type even though
any user can use the data type. Domains can be dropped by their owner or by the DBA,
using the DROP DOMAIN statement.

Many of the attributes associated with columns, such as allowing NULL values, having a
DEFAULT vaue, and so on, can be built into a domain. Any column that is defined on
the data type automatically inherits the NULL setting, CHECK condition, and
DEFAULT values.

Database Integrity: Challenges and Solutions

When needed, the attributes of the data type can be overridden by explicitly provided
attributes for the column.

In Sybase, domains are created with a base data type, and optionally aNULL or NOT
NULL condition, a default value, and a CHECK condition. Although the standard
permits named constraints and named defaults, these issues are not supported.

The CREATE DOMAIN statement can be used only in Adaptive Server Anywhere. The
sp_addtype system procedure can be used to add a domain both in Adaptive Server
Anywhere and in Adaptive Server Enterprise.

In Oracle and UDB, not null constraints can be attached to each of the structured data
components. Notice that this characteristic may promote updating problems. For example,
the insertion

I NSERT | NTO Person (Docunent Type, Document Number, FirstNane,
Last Name, P-Address)VALUES ('D, '12345678', 'John Davis',
null);

will be rejected (supposed that P-Address is defined on the Address type), whereas

I NSERT | NTO Per son (Docunent Type, Docunent Nunber,
First Nane, LastNane, P-Address)VALUES ('D, '12345678',
"John Davis', address (null, null, null, null));

will be accepted. To avoid these semantic differences, the latter way should be
disallowed. The correct employment of the nullability issuesis by defining not null
constraints on each structured data type component.

Default Option

All the reviewed products provide the Default Definition according to the SQL standard.
For instance, the following sentence represents that "Inactive” is the default value of the
affiliate status,

CREATE TABLE FAM LY_GROUP_COVPONENT
(..., Status CHAR(8) NOT NULL DEFAULT 'Inactive', ...);

On the other hand, Sybase allows the specification of default values as part of the
CREATE DOMAIN definition. The previous example, in this caseiis.

CREATE DOMAI N status AS char (8) NOT NULL DEFAULT
"I nactive',
CHECK (status IN ('lnactive', 'Active'));

S47-

Database Integrity: Challenges and Solutions

Search Condition

Within all the reviewed products, a constraint definition can be specified as part of the
CREATE TABLE sentence or by means of an ALTER TABLE statement. For instance in
UDB, if the delegation names cannot begin with spaces and cannot be the empty string:

Del egati onNane Nane NOT NULL
CHECK ((VALUE NOT LIKE ' %) AND (VALUE <> '"));

Name has been previoudy defined using CREATE DISTINCT TYPE.

Columns specified in a unique constraint must be defined as NOT NULL. The following
example shows the use of domain constraints for the remaining systems.

CREATE TABLE HEALTH_PLAN (

Basi cFee DECI MAL CHECK ((VALUE IS NULL) OR
(VALUE >= 0)),

Adi ti onal Fee DECI MAL CHECK (Basi cFee +
Adi ti onal Fee > 500)

In Sybase, domains are aiases for built-in data types, including precision and scale
values, where applicable, and optionaly, including DEFAULT vaues and CHECK
conditions. Some domains, such as the monetary datatypes, are pre-defined in Adaptive
Server Anywhere, but the user can add more of his or her own.

Not Null Definition

In UDB, Informix, PostgreSQL and Oracle, NOT NULL and NULL can be specified in
column constraints only in the CREATE TABLE context or viathe ALTER TABLE
statement. Oracle does not permit NOT NULL definitionsin atable constraint.

Sybase alows the specification of NOT NULL or NULL inaCREATE TABLE or
ALTER TABLE statement and CHECK ISNOT NULL in CREATE DOMAIN or
ALTER DOMAIN statement.

Columns in Adaptive Server Enterprise default to NOT NULL, whereas in Adaptive
Server Anywhere the default setting is NULL. This setting can be controlled using the
ALLOW_NULLS BY_DEFAULT database option. The user should explicitly specify
NULL or NOT NULL to make data definition statements transferabl e between both
Versions.

Database Integrity: Challenges and Solutions

Informix, Oracle, PostgreSQL and Sybase follow the SQL-99 prescription about primary
keys, i.e. anot null definition is made implicit. UDB requires the explicit definition of the
nullability clause.

Unigueness Constraint Definition

A primary key can be defined on a single column or on a set of columns (composite
primary keys).

In Oracle a primary key or unique key column cannot be of LONG or LONG RAW data
types and a composite primary key can contain a maximum of 16 columns.

When dropping tables in Oracle (DROP TABLE t abl e_name [CASCADE CONSTRAI NT])
the following operations are automatically performed:

Oracle removes al rows from the table (as if the rows were deleted); it drops all the table
indexes, regardless of who created them or whose schema contains them. If the tableisa
base table for views or if it is referenced in stored procedures, functions, or packages,
Oracle invalidates these objects but it does not drop them.

UDB does not allow the user to disable/enable one constraint at a time. However, the user
can disable/enable a group of constraints at atime. For example, they can be
disabled/enabled all the constraints of atable or all the referential integrity constraints of
atable. The command is SET INTEGRITY. The following example shows how to
disable/enable al the constraint checkings for table T1.

SET INTEGRITY FOR T1 OFF;
SET INTEGRITY FOR T1 CHECK | MVEDI ATE;

For asingle transaction, the user can use SET CONSTRAINT to set if a deferrable
constraint is checked following each DML statement or when the transaction is
committed.

Figure 4 shows a complete example which summarizes the previous ones. This example
isvalid for al systems but since Sybase supports domain definitions, Name definition
could be replaced by

CREATE DOMAI N Name AS varchar (30) NOT NULL
CHECK ((VALUE NOT LIKE ' %) AND VALUE <> ''));

- 49-

Database Integrity: Challenges and Solutions

CREATE DIETINCT TYFE DESCRIFTION AB VARCHARCGOD! WITH
COMPARTEING ;

CREATE DISTINCT TYPE KAME AS VARCHAR (30} WITH

COMPARTEONE

CREATE DISTINGT TYPE STATUS AS CHAR([18) WITH

COMPARTEING o

CREATE TABLE FARHILY O80RiF O0MdO
HEALTHPLAKID VARCHAR {101 MOT NULL,
AFFILIATEID WARCHAR [15] WOT NULL.
FAMILYROLE NIMERIC MOT MULL,
COCIMERTTTFE YARCHAR (20] WOT WRL.
DOCIMESTHUMBER INTEOER NOT NULL,
BTATUS CHARIA] WOT WULL DEFAILT

“THACTIVE'
CHECK {STATUS IN (“ACTIVE", "INACTIVE-]]
FRIMARY KEY (HEALTHPLANID. AFFILIATEID,
FAMILYROLE)

CREATE TABLE DELEQATION |
DELEGATIONEID INTEGEIR NOT MULL,
CELEGAT IDHRAME BAMHE HOT HOILL
CHECK | (VALOE WBIT LIKE * W) KHD [VALUR <> #))
CUMETRAINT PRIMARY EEY FE_DELEGATION
[CELEGATIONID]

CREATE TABLE PERGON [

PLCIMENTTTFE VARCHAR [30] WOT HULL,

CCOIMENTHIMEER INTEJER WOT HULL,

FIESTHAME HAME HOT NULL

CHECE {{VALUE ROT LIEE * '} AND [VALUE aw
a1

LAETHAME HAME KOT WULL

CHECE {{VALUE BOT LIEE * %'} AND [VALUE «=
371

ETREET VARTHAR (301 WOT WL,

HIMEER INTEQER,

CITY VARTHAR (30] .

ETATE VARCHAR [20] .

EEIPOGDE IHTRGER

CHECK (VALDE BETWEEN 1000 AND 95391
FRIMARY EEY [DOOUMENTTYPE. DOCTMENTHUMBER)
1

CREATE TABLE WERLTM_Pilasi |
HEALTHPLANID VARCHAR [10] WOT NULL,
HEALTHFLANDESCRIFT GESCRIFTION MNOT NULL
CHECKE ({VALUE BETWEEN 1000 AND 9999,

BASICFEE DECIHAL
CHECK {IVALUE IS NULL) OR (VWALUE »= 9}),
ARITIGEALFEE DECIMAL.

CHECE {BASICFEE + ADITIONALFEE » S04}
I

ALTER TABLE HEALTH PLAN ADD PRIMARY KEY
NHEALTHRFLANID)

Figure 4: The medicare organization example
Schema Maintaining

The DROP clause of an ALTER TABLE statement eliminates the constraint. When it is
dropped, the system stops enforcing the constraint and removes it from the data
dictionary.

Dropping the uniqueness or the primary key condition of an attribute, being part of a
referential integrity constraint, requires the dropping of the foreign key and any other
restriction mentioning it. In Oracle, the referenced key and the foreign key can be
dropped together by specifying the referenced key with the CASCADE option in the
DRORP clause as established in the SQL-99 standard. When the CASCADE option is
omitted (RESTRICT isthe default), Oracle does not drop the unique or primary key
congtraint if any foreign key references it. Thisis the only reference system bearing this
characteristic.

The following statement drops the primary key of the DEPT table:

Database Integrity: Challenges and Solutions

ALTER TABLE dept DROP PRI MARY KEY CASCADE;

If the name of the PRIMARY KEY constraint is PK_DEPT, it can also be dropped by the
following statement:

ALTER TABLE dept DROP CONSTRAI NT pk_dept CASCADE;

Object Restrictions
Referential Constraint Definition

UDB supports deletions with NO ACTION, RESTRICT, CASCADE and SET NULL
referential actions. As regards update operations, only NO ACTION and RESTRICT are
permitted.

With respect to Oracle, Informix and Sybase, they implement the NO ACTION semantics
for deletions and updates, but they do not allow the keywords ON DELETE (or ON
UPDATE) NO ACTION. Additionally Oracle supports CASCADE and SET NULL
options for deletions and no other option for updates. In addition, Informix provides the
ON DELETE CASCADE clause. Sybase does not provide any support for declarative
referential actions (triggers must be used for this purpose) and PostgreSQL permits ON
DELETE (and ON UPDATE) with NO ACTION, RESTRICT, CASCADE, SET NULL
and SET DEFAULT modalities. NO ACTION is the default option.

UDB has an additional restriction: if a table contains more than one foreign key, al these
must coincide in the delete referential action. On the contrary, if the first defined
restriction is ON DELETE SET NULL, no other foreign key can be defined for that table.
These limitations permit to avoid some of the conterminous path problems (see the "The
SQL Standard Facilities" section).

All reference systems, but PostgreSQL, support only MATCH SIMPLE (default).
PostgreSQL permits the MATCH FULL clause and by default, it permits some foreign
key columns to be NULL while other parts of the foreign key are not NULL.

In Sybase, aforeign key can reference either a primary key or a column with a unique
constraint, but not a unique index, since it may include multiple instances of NULL. If
the column- name is specified in a REFERENCES column- constraint, it must be a column
in the primary table, it must be subject to a unique constraint or primary key constraint,
and that constraint must consist of only one column. If column-name is not specified, the
foreign key references the primary key of the primary table. If aforeign key column is
not explicitly defined, it is created with the same data type as the corresponding column
inthe primary table. These automatically created columns cannot be part of the primary

-51-

Database Integrity: Challenges and Solutions

key of the foreign table. Thus, a column used in both the primary and the foreign key of
the same table must be explicitly created.

If Sybase foreign key column- names are specified, then primary key column names must
also be specified. In these cases, the column names are paired according to their position
in the lists. On the other hand, if at least one value in a multi-column foreign key is
NULL, there is no restriction on the values which can be held in other columns of the key.

UDB Example:

ALTER TABLE SERVI CE_HI STORY

ADD FOREI GN KEY (Heal thPlanld, Affiliateld, Fam | yRole)
REFERENCES FAM LY_GROUP_COWPO
ON DELETE SET NULL;

Deferrable or Not Deferrable Integrity Check

Sybase referential integrity has been implemented via the following two extensions of the
CREATE TABLE and ALTER TABLE commands.

FOREI GN KEY [rol e-nane] [(colum-name, ...)]
REFERENCES t abl e-nane [(colum-nanme, ...)] [CHECK ON
COWM T]

Sybase has the database global option WAIT_FOR_COMMIT. If itisset to ON, or if a
foreign key is defined usng CHECK ON COMMIT in the CREATE TABLE statement,
the database can be updated in such away that if areferential integrity is violated, these
violations are resolved before the changes are committed. In Sybase CHECK ON
COMMIT clause overrides the WAIT_FOR_COMMIT database option.

As considered in the SQL 2 standard, Oracle table and column constraints can be
specified as DEFERRABLE or NOT DEFERRABLE.

General Restrictions

Assertions: Assertions have not been implemented in the commercial products revised,
yet.

Triggers

All the reference systems implement triggers following a procedural approach. In most
cases, each system provides a proprietary programming language. The relevant

-52-

Database Integrity: Challenges and Solutions

characteristics of this issue in the evaluated system are examined in the following
subsections.

UDB Triggers

UDB supports BEFORE ROW, AFTER STATEMENT, and AFTER ROW triggers;
BEFORE STATEMENT triggers are not supported. UDB also supports transition
variables, OLD and NEW tables, and OLD and NEW column values. BEFORE ROW
triggers can only include select, set, and signal statements. AFTER TRIGGERS can
include set, signal, inserts, updates, and deletes.

UDB triggers have the following characteristics: calls to DB2 functions and user-defined-
functions (UDF) are permitted whereas calls to stored procedures are not; the firing order
is based on the creation time; triggers can use the CASE expression; if the body contains
more than one SQL statement DB2 allows the use of COMPOUND SQL and the SQL
statements are enclosed between BEGIN COMPOUND ATOMIC and END, separated
by semicolons.

UDB triggers are stored in the database and compiled at runtime together with the SQL
statement associated with the trigger. Multiple triggers can be created for the same event,
activation time and subject tables. A triggered action is composed of one or more SQL
statements or by an optional condition for the execution of the SQL statements. Adding a
trigger to atable having already rows will not cause triggered actions to be activated.

UDB triggers allow the specification of the columns of atable that will cause the trigger
to be fired. If split up the trigger based on the affected columns is required, the WHEN
clause should be utilized to handle some of the logic flow.

Informix Triggers

Informix triggers alow the inclusion of calls to stored procedures; the coding of the firing
order; the use of the WHEN() expression; ‘ statement’ as the default granularity; and
AFTER and BEFORE activation times.

A delete trigger is not alowed on atable containing aforeign key with Cascade
referential action.

Informix allows just one trigger per event. In case of updates, multiple triggers are
allowed whenever the lists of columns over which they are defined are mutually
exclusive?

OracleTriggers

In Oracle, the trigger body consists of an anonymous PL/SQL block. Oracle triggering
statementsare DELETE, INSERT and UPDATE. A trigger must specify at least one of

Database Integrity: Challenges and Solutions

these commands, allowing all of them. Trigger restriction can be specified within the
WHEN clause. The condition must be a SQL condition, rather than a PL/SQL condition.

Oracle triggers can be specified with BEFORE, AFTER, FOR EACH ROW, FOR EACH
STATEMENT options within the CREATE TRIGGER command.

An Oracle trigger must be enabled or disabled. If it is enabled, whenever atriggering
statement is issued and the condition of the trigger restriction is met, the trigger is fired.
On the contrary, if atrigger is disabled, even through atriggering statement is issued and
the condition of the trigger restriction is met, the trigger is not fired.

When atrigger is created, Oracle enables it automatically, but it can be subsequently
disabled and enabled with the DISABLE and ENABLE options of the ALTER
TRIGGER command or the ALTER TABLE command.

When atrigger is created for more than one operation, conditional predicates can be used
within the trigger body to execute specific blocks of code, depending on the type of
statement that fires the trigger (INSERTING, DELETING, UPDATING and UPDATING
(column)).

Whenever multiple triggers of the same type, firing for the same command, are
associated with the same table, the order in which Oracle fires these triggersis
indeterminate. If the application requires that one trigger is to be fired before another one,
both triggers should be combined into a single one whose trigger-action performs the
tasks of the original triggers in the appropriate order.

In Oracle allows INSTEAD OF triggersto perform DELETE, UPDATE, or INSERT
operations on views, which are not inherently modifiable. Oracle produces the mutating
error problem since it implements the concept of versioning.

PostgreSQL Triggers

PostgreSQL allows the invocation of C language functions from the trigger-action. In this
version, statement-level triggers are not supported and, as well as in Oracle and Sybase,
multiple events per trigger are possible. PostgreSQL accepts AFTER- and BEFORE-
triggers and provides the support for cascading triggers, without an explicit limit on the
number of levels.

Sybase Triggers

In Sybase, triggers are coded using Transact-SQL and stored in the database. The SQL
Server allows nested triggers by default, and multiple events per trigger. Statement-level
triggers are the only supported ones. The default granularity is FOR EACH ROW and the
activation time is AFTER.

Examples

Database Integrity: Challenges and Solutions

Since none of the reference systems allows the declarative definition of "ON INSERT
CASCADE", the following example illustrates this issue, in relation with the Medicare
Organization example. In this case, the desired behavior is that when a
TITULAR_AFILIATE is inserted, the corresponding tuple in the
FAMILY_GROUP_COMPONENT table must be inserted too (see the relationship
between these two entities in Figure 3).

This behavior is supported by an AFTER trigger since the execution of its body must
follow the original sentence. If not, the FAMILY_GROUP_COMPONENT reference
should be violated (it is RESTRICT).

Only the HealthPlanld, Affiliateld and FamilyRole values are provided, leaving the
system to compl ete the remaining ones with default values.

UDB Example

create trigger INSERT _TIT_AFFIL after INSERT on TI TULAR _AFFI LI ATE
REFERENCI NG NEW AS NEW f or each row node db2sql
- TITULAR_AFFI LI ATE AND FAM LY_GROUP_COWVPO ON PARENT | NSERT
CASCADE
insert into FAM LY _GROUP_COVPONENT (Heal t hPl anl d,
Affiliateld, Fam | yRole)
VALUES (inserted.HealthPlanld, inserted.affiliateld,
0)
end!

Informix Example

create trigger INSERT_TIT_AFFIL I NSERT on TI TULAR_AFFI LI ATE
referencing NEWas inserted
for each row
- TITULAR_AFFI LI ATE AND FAM LY_GROUP_COWPO ON PARENT | NSERT
CASCADE
insert into FAM LY_GROUP_COWMPONENT (Heal t hPl anl d,
Affiliateld, Fam | yRole)
VALUES (inserted.HealthPlanld, inserted.affiliateld,
0)

Oracle Example

create trigger INSERT_TIT_AFFIL after |INSERT on TI TULAR_AFFI LI ATE
for each row
begin
/* TI TULAR_AFFI LI ATE AND FAM LY_GROUP_COVPONENT ON PARENT

| NSERT CASCADE */

insert into FAM LY_GROUP_COMPONENT (Heal t hPl anl d,
Affiliateld, Fam | yRole)
VALUES (:new. HealthPl anld, :new affiliateld, O0)

end;

Database Integrity: Challenges and Solutions

Sybase Example

create trigger INSERT_TIT_AFFIL on TI TULAR _AFFI LI ATE
for I NSERT as
begin
/* TI TULAR_AFFI LI ATE AND FAM LY_GROUP_COVPONENT ON PARENT

| NSERT CASCADE */

insert into FAM LY_GROUP_COMPONENT (Heal t hPl anl d,
Affiliateld, Fam | yRole)
VALUES (:new. Heal thPl anld, :new affiliateld, O0)

end;
PostgreSQL Example

create function tg _upd_cascade_ta() returns opaque as '
begin
/* TI TULAR_AFFI LI ATE AND FAM LY_GROUP_COVPONENT ON PARENT
| NSERT CASCADE */
insert into FAM LY_GROUP_COMPONENT (Heal t hPl anl d,
Affiliateld, Fam|yRole)
VALUES (:new. Heal thPl anld, :new affiliateld, O0)

return new,
end;
create trigger INSERT TIT _AFFIL after I NSERT on TI TULAR_AFFI LI ATE
for each row
execute procedure tg_upd_cascade_ta()

end;

Stored Procedures and User Defined Functions

Although the declarative support for integrity issues has greatly evolved over the last
years, regrettably most products today follow a declarative integrity support approach.
While the situation is slowly improving in this regard, some products (specially
nonrelational ones) specifically emphasize the opposite approach, i.e., procedural support,
using stored or triggered procedures. Stored procedures are precompiled procedures,
usually stored at the server site, which can be invoked from application programs (i.e. the
client) by a remote procedure call (RPC). One of the advantages of stored proceduresis
to share the program with multiple clients. From a performance viewpoint, there will be
less network overhead because there will be less client-server traffic. Stored procedures
provide better security: for instance, a user might be authorized to invoke a stored
procedure but not to operate directly on the data accessed by that procedure (Date, 2000).

One disadvantage of stored procedures is that different vendors offer very different
facilitiesin this area, despite the fact that the SQL 2 was extended to include some stored
procedure support under the name of Persistent Stored Modules (PSM).

UDB stored procedures are written in a 3GL since it does not provide a proprietary 4GL.
C, COBOL, Java, FORTRAN, and other languages can be used to code stored procedures
using embedded static or dynamic SQL. UDB does not allow a stored procedure to call

Database Integrity: Challenges and Solutions

another stored procedure and it does not support commit or rollback commands inside
stored procedures.

Informix allows a stored procedure to call another stored procedure. It uses the SQL
extension procedural language SPL to code them.

In Oracle, stored procedures must be programmed in PL/SQL. Oracle support commit or
rollback inside stored procedures.

PostgreSQL follows the SQL proposal as regards the PSM procedural language and
Sybase stored procedures are coded using Transact-SQL.

[3The remaining systems do not have this limitation.

CONCLUDING REMARKS

This chapter provides an overview of semantic integrity characteristics in the SQL-99
standard and some major relational and object relational database management systems:
DB2 UDB, Informix, Sybase, Oracle and PostgreSQL .

It can be pointed out that, in relation with integrity features, these systems basically
support the Entry level of SQL-92 and some features of SQL-99. Since these systems
have implemented triggers prior to the introduction of the SQL-99, there is an inevitable
discrepancy with this standard. It is expected that, as time goes by, current DBM Ss will
incorporate missing characteristics and will be compliant with the standard.

APPENDIX: POSTRELATIONAL DATABASE
SYSTEMS

DB2® Universal Database (UDB) Version 7.1

IBM DB2® Universa Database (UDB) isthe latest generation of relational database
products developed at IBM's laboratories in Toronto, Canada and San Jose, California.
UDB shares the DB2 name but uses recent technology based on the Starburst architecture
developed at Almaden Research Center (Filkenstein & Widom, 1989). It provides object-
relatioral features, supports different types of applications, in different software and
hardware environments. These latter characteristics permit the scaling from a single- user
database on a personal workstation to terabyte databases on large multiuser platforms.

UDB serversrun on severa platforms: Windows NT, OS/2, many Unix-based systems
including Al X and Solaris while UDB clients run on Windows 95, 98 and recent releases,
and Macintosh systems.

UDB presents some SQL 3 complaint features including enhanced and nontraditional data
types, procedures and functions, active rules and recursive SQL extensions. It permits the

-57-

Database Integrity: Challenges and Solutions

users to create new data types and functions and to define constraints and triggers to
encapsulate their business rules. This product offers a set of "extenders' for the
management of images, audio and video datatypes (Chamberlin, 1998; Ceri & Fraternali,
1997).

The DB2 UDB products and components include:

DB2® UDB Satellite Editionis areduced version of DB2, for a single-user environment.
It can be installed in systems supported by 32 bits Windows. It was developed focusing

on remote systems that occasionally connect to the database such as portable PC systems.
Usually the same server manages severa instances of DB2 UDB Satellite Edition in a
centralized way.

DB2® UDB Personal Edition is a complete version of DB2 for a single-user
environment. It includes an object-relational database engine; the support for Business
Intelligence by means of the OLAP Starter Kit; the support for a datawarehouse through
the Datawarehouse Center; and multimedia support by means of the DB2 "extenders’. It
also provides the access to a great variety of IBM data sources through the DB2
DataJoiner facility; data replication support by using the DataPropagator issue; extended
tools for managing GUI through the DB2 Control Center; and a client for applications
development. This product is available for the OS2, Windows NT, and Windows 95
operating systems.

DB2® UDB Workgroup EditionisaDB2 version for a small multiuser environment. It
has been developed for small organizations. It contains all issues and functions of the
Personal Edition version and includes the following extra characteristics: the possibility
for remote users to access the data and to perform managemert tasks in a DB2

workgroup server; Web access through Net.Data; and the application server IBM
WebSphere. It enables local clients, remote clients and applications to create, update,
control and manage relational databases using Structured Query Language (SQL), ODBC,
or CLI and contains al the latest DB2® Client Application Enablers, which enable client
workstations to access the DB2 UDB server and all supported DB2 Net.Data products.

DB2® UDB Enterprise Edition has been developed for large databases with an important
number of users. It incorporates al Workgroup Edition version characteristics and also
includes:

DB2® Connect Enterprise Edition to support the host connectivity. This provides
multi- user access to DB2 databases residing on host systems such as MV S/ESA, OS/390,
AS/400, VM, and VSE. The DB2 Enterprise Edition supports unlimited LAN database
access.

DB2® UDB Enterprise- Extended Edition (formerly known as DB2 Parallel Edition).
Thisis the larger version, thought for large databases. It is the proper product to develop
datawarehousing, data mining, and great scale OLTP applications. It includes server
cluster support and enables a database to be partitioned across multiple independent

Database Integrity: Challenges and Solutions

computers of acommon platform. SQL operations and utilities can operate in parallel on
the individual database partitions.

DB2 Softwar e Developer's Kit (DB2 SDK). This component is a collection of tools that
enable database application devel opers to build character-based, multimedia or object-
oriented applications. It includes libraries, header files, documented APIs and sample
programs.

It can be used to develop applications that use the following interfaces. Embedded SQL
(both static and dynamic), Call Level Interface (CLI) development environment
(compatible withODBC from Microsoft), Java Database Connectivity (JDBC), etc. DB2
SDK also supports several programming languages (including COBOL, FORTRAN, Java,
C, and C++) for application development, and provides precompilers for the supported
languages. It is available on al DB2 UDB-supported platforms.

| nfor mix® Dynamic Server (IDS)® Version 9.1
The following are some products of the Informix’s family:

Informix Dynamic Server (IDS) is Informix latest database server. It is the full product,
multi- user version for Intel and UNIX platforms. It does not support user-defined types,
user-defined functions or other object relational features without the Universal Data
Option. | DS supports two types of large object datatypes: Byte and Text. IDS is capable
of supporting many concurrent users with high reliability, availability, and scalability. It
offers the following features and enhancements: increased performance benefits;
enhanced Virtual Table Interface (VTI) (providing the ability to integrate and view
legacy data from avariety of dissimilar systems, databases, and formats); fault-tolerant
capabilities; and easy migration from previous Informix database products (Informix,
1998).

Developer's Edition This is the single-user version for workstations which is generally
used as a devel opment platform.

Personal Edition This product is a subset of Dynamic Server to be properly used in
single- user mode, while Workgroup Serveris aso asubset of Informix Dynamic Server
which is more suitable for smaller applications running on low-end processors.

Advanced Decision Support Option This product extends the capabilities of Dynamic
Server's indexing and optimizer for decision support applications.

Extended Parallel Option (XPS — 8.2) It extends the capabilities of Dynamic Server
for inter-paraleism.

Universal Data Option (9.1) It extends the capabilities of Dynamic Server for object
relational support.

Database Integrity: Challenges and Solutions

Related to new technologies to be integrated with the Web, Informix provides the
following issues: a character-based user interface that isinstalled and used on the server
for manipulating database objects, running queries and scripts (Dbaccess); a graphical
user interface (GUI) for the workstation that is used to manage Informix databases
(Dbcockpit); a graphical user interface that runs on the workstation for managing
Informix databases and data (Enterprise Command Center); a Web based administration
tool (OnWeb); and runtime libraries for INFORMIX-ESQL for C and COBOL and
INFORMIX-CLI (Informix-Connect).

With respect to the application development support, some Informix products are:
Informix-SQL - a separate product that is used for interactive SQL access; Informix
Client Software Developer's Kits, providing single packaging for several application
programming interfaces (including C, C++, Javaand ESQL); and a rapid development
language that compiles into C language (Informix-4GL). Other packages include: an SQL
API that permits the embedding of both static and dynamic SQL statements directly into
a3GL program (ESQL product releases for C and COBOL); a graphical development
environment (NewEra); and a Call Level Interface that enables application developers to
dynamically access Informix database servers (Informix CL1) SQL Extenders
(DataBlades) are object extensions that expand the capabilities of Informix Dynamic
Server to manage complex data types such as video, audio and image, as well asto
develop and use functions to manipulate these data types.

With Informix DataBlade technology, the intelligence of the application is extended by
adding geospatial and regional information as a natural extension to the data managed by
the server.

Informix DataBlade modules are not just options, but actual server extensions that are
integrated into the very core of the engine. DataBlade modules integrate traditional
alphanumeric data types, without sacrificing the reliability and scalability of the
traditional relational DBMS. Informix DataBlade technology lets businesses treat Web
sites as applications, letting the Informix Internet Foundation 2000 manage and
dynamically deliver al site content. The server can be rapidly modified to accommodate
new data types as business requirements evolve.

Informix-Gateway with DRDA provides access to non-Informix databases such as
Oracle, Sybase, and DB2. In addition, some products of the Informix family support Web
applications:

I nternet Foundation 2000; Universal Web Connect (it provides connectivity between
Web servers and Informix Dynamic Server); Data Director for Web (a suite of
graphical user interface tools) designed to enable a developer to build and manage
Informix-based Web sites and applications.

An Informix RDBMS consists of a database server, a database, and one or more client
applications. Informix Dynamic Server works with relational databases and a

Database Integrity: Challenges and Solutions

multithreaded relational database server that exploits symmetric multiprocessor (SMP)
and uniprocessor architectures.

| DS permits the following types of data: integer, floating-point number, character string,
fixed or variable length, date and time, time interval, numeric, decimal and complex data
stored in objects System catal og tables track the following objects: tables, constraints,
views, triggers, authorized users and privileges that are associated with tables and stored
procedures

Informix Dynamic Server supports the following types of databases: ANSI compliant,
Distributed, Distributed on multiple vendor servers and Dimensional (data warehouse)

Oracle Server Version 8i. Release 1.6

Oracle is based on the SQL language and includes severa features from SQL92 and the
preliminary documents of the SQL 3 standard for triggers. Oracle Server includes
declarative facilities ensuring scalable, reliable enforcement of data integrity while
minimizing development, maintenance, and administration costs. It provides PL/SQL, an
advanced procedural 4GL language that is tightly integrated with the Oracle Server,
offering the power to easily express complex business rules as stored, procedural code.

Application Development SQL implementations are 100-percent ANSI/ISO SQL 92
Entry Level compliant. It includes features to support SQL extensions including UNION,
INTERSECT, MINUS, outer join, and tree-structured queries SQL 3 inline views (query
in the FROM clause of another query). Oracle aso provides support for declarative
integrity constraints 100-percent ANSI/ISO standard declarative entity and referential
integrity constraints.

Some products of the Oracle Corporation are:

Oracle Database Enter prise Edition Options These options for Oracle Database
Enterprise Edition extend the power of the Oracle database in secure data management,
transaction processing, and datawarehousing.

Application Servers The Oracle Internet Application Server runs a great variety of
Internet applications. It enhances the power of the Oracle database to provide all the
features needed for a complete, smple platform for the Internet.

Internet Application Server Oracle offers a complete suite of application development
and business intelligence tools for building any kind of e-business application using the
latest Internet technologies.

Integration Products Oracle Integration Products enable the users to integrate their
legacy data and applications into the Oracle environment. Oracle offers solutions for the
Data Warehousing requirements, supplying tools to design, to build, to deploy and to
manage an Intelligent Webhouse.

-61-

Database Integrity: Challenges and Solutions

Oracle provides Java functionality, XML support, and security features. Breakthrough
Internet features, built directly inside the database, help developers build Internet-savvy
applications providing global information access across platforms and across the
enterprise.

On October 2, 2000, Oracle announced the Or acle9i database, the newest generation of
the company RDBMS. Oracle9i includes built-in OLAP, Data Mining and ETL functions
so that the database can act as a single repository of relational data as well as analytical
data. It also includes infrastructure for developers to create hosted applications with
common, collaborative software services, and continues to add features and capabilities
mainly related to development platform; manageability; Windows2000 integration;
Internet content management packaged applications and business intelligence (Oracle,
2000).

PostgreSQL Version 7.1

Implementation of the Postgres DBMS began in 1986 and it has undergone several maor
releases since then.

Thefirst "demoware" system became operational in 1987 and was shown at the 1988
ACM-SIGMOD Conference. Version 1 was released in June 1989 (the rule system was
redesigned) and Version 2 was released in June 1990. Version 3 appeared in 1991 and
added support for multiple storage managers, an improved gquery executor, and a
rewritten rewrite rule system. For the most part, releases until Postgres95 focused on
portability and reliability. The size of the external user community nearly doubled during
1993. It then became obvious that the maintenance of the prototype code and support was
taking up far too much time, which should have been devoted to database research
instead. In an effort to stop this burden of support, the project officially ended with
Version 4.2. In 1994, Andrew Y u and Jolly Chen added a SQL language interpreter to
Postgres. Since Postgres is intended to supercede the Ingres RDBMS, the intention is to
integrate object-oriented features into a database system, maintaining its relational
database background (Kim, Nelson & Rossiter, 1994). Regarding data and integrity
issues, the main design goals of Postgres are to offer better support for complex objects;
to provide user extendibility for data types, operators and access methods; and to make
available alerters and triggers to implement active characteristics.

Postgres95 was subsequently released to the Web to find its own way in the world as an
open-source descendant of the original Postgres Berkeley code. Postgres95 code was
completely ANSI C and trimmed in size by 25%. Some of its major enhancements are:

1. The query language Postquel was replaced with SQL (implemented in the server).
Subqueries were not supported until PostgreSQL, but they could be imitated in
Postgres95 with user-defined SQL functions. Aggregates were re-implemented.

-62-

Database Integrity: Challenges and Solutions

Support for the GROUP BY query clause was also added. The libpg interface
remained available for C programs.

2. Theinstance-level rule system was removed. Rules were still available as rewrite
rules.

3. A short tutorial introducing regular SQL features as well as those of Postgres95
was distributed with the source code.

Table-level locking has been replaced by multi- version concurrency control, which
allows readers to continue reading consistent data during writer activity and enables hot
backups from pg_dump while the database remains available for queries.

By 1996, the name "Postgesd5" was replaced by PostgreSQL reflecting the relationship
between the original Postgres and the more recent versions with SQL capability. The
Object-Relational Database Management System now known as PostgreSQL was derived
from the Postgres package written at Berkeley.

As atraditional relational database management system (RDBMYS), it supports a data
model consisting of a collection of named relations, containing attributes of a specific
type. It includes floating-point numbers, integers, character strings, money, and date
types. Postgres offers the following four additional basic concepts in such away that
users can easily extend the system: classes, inheritance, types and functions. These
features put Postgres into the category of databases referred to as object-relational. Other
Postgres features are constraints, triggers, rules and transaction integrity.

It is an open-source database offering multi- version concurrency control, supporting
amost all SQL constructs (including subselects, transactions and, user-defined types and
functions), and having awide range of language bindings available (including C, C++,
Java, perl, tcl, and python) (Postgres, 2000).

Important backend features, including subselects, defaults, constraints, and triggers, have
been implemented and additional SQL 92-compliant language features have been added,
including primary keys, quoted identifiers, literal string type coercion, type casting and,
binary and hexadecimal integer inpuit.

Built-in types have been improved, including new wide-range date/time types and
additional geometric type support.

In the relational modd the basic data structure is the relation (table), whereas in this
system it is the class. Classes are collections of instances of objects used to define
complex types and represent abstract data types (ADTSs). They permit the definition of
types of columnsin the relational tables thus, allowing complex data to be stored in a
field of atable. In this way, attributes of a table can be user-defined types, operators
functions or procedures.

Database Integrity: Challenges and Solutions

Data manipulation in Postgres is provided via its own query language PostQUEL, which
isan extension to the Ingres QUEL relational calculus that can deal with ADTS,
inheritance, and many other features. Additionally, tables in Postgres can be manipulated
via C language. Rules can also be incorporated into the data manipulation features
(triggers and aerters).

Sybase Adaptive Server Enterprise 12.0

Sybase Adaptive Server Enterprise (ASE) 12.0 is designed to support the demanding
requirements of Internet as well as traditional, missioncritical OLTP and DSS
applications. The multi- threaded architecture, internal parallelism, and query
optimization of Adaptive Server Enterprise deliver high levels of performance and
scalability.

Sybase Adaptive Server is compliant with the SQL standard thus, allowing the
definition of column-level integrity constraints and table-level integrity constraints.
Integrity constraints may be expressed in the CREATE TABLE statement or they can be
specified by means of triggers, rules, defaults and indexes. Transact-SQL is the Sybase
4GL language. It provides two methods for maintaining database integrity: a) defining
rules, triggers, indexes or defaults and b) defining CREATE TABLE constraints (Sybase-
4, 1999).

ASE is designed to support the demanding requirements of Internet and traditional,
mission-critical OLTP and DSS applications. It is available on the following platforms:
Sun Solaris, IBM RS6000, Digital, UNIX, HP UX, Windows NT. This system introduces
row-level locking (RLL) capabilities designed to provide faster performance, fewer
deadlock contentions, and greater flexibility in the management of system resources. It
presents three types of locking strategies to ensure the widest range of versatility in
application environment: Datapage Locking, Datarow Locking, All-Page Locking.

Additionally, this product includes enhancements to the optimizer, query processing
improvements such as index statistics and descending keys, database recovery
enhancements and improved space management features.

It also provides optimization improvements for SQL queries that contain "OR" clauses
and dynamic SQL requests bypassing expensive catalog activities via the use of a feature
called "lightweight stored procedures’.

Some products of the Sybase line are:
SQL Anywhere Studio is a comprehensive package that provides data management and

enterprise synchronization to enable the rapid development and deployment of distributed
e-Business solutions.

Database Integrity: Challenges and Solutions

Adaptive Server |Q isareational database designed specifically from the ground up to
meet the needs of business intelligence and a new generation of scalability requirements
for Web-enabled data warehousing.

EAI/Middleware Key Products. Enterprise Application I ntegration (EAI) solutiors
from Sybase deliver data integration, data replication, and event handling across the
entire enterprise. They are designed to match the needs of enterprise IT customers, from
mainframes to the Web and from single database users to global organizations with
multiple systems spanning diverse geographies. Sybase EAl/Middleware products used in
conjunction with Enterprise Portal provide an array of integration options for data, events
and application, without the re-engineering of the legacy systems.

Sybase Enterprise Portal It is the foundation for e-Business. Sybase EP is an extensible
portal environment that meets e-Business requirements. Sybase EP is built upon a global-
class portal platform for highly secure, personalized and, scalable portal deployments.

Adaptive Server Anywhere It provides relational database technology designed
specificaly for the needs of mobile and embedded computing. The relational database at
the heart of SQL Anywhere has been designed from the ground up with this market in
mind. Adaptive Server Anywhere has been designed to operate efficiently with limited
memory, CPU power, and disk space. At the same time, Adaptive Server Anywhere
contains the features needed to take advantage of workgroup servers, including support
for many users, scalability over multiple CPUs and, concurrency features.

Adaptive Server Anywhere runs on Windows (95, 98, NT, and CE), UNIX, Novell
NetWare, and Linux. It supports both entity and referential integrity. It supports SQL
standards being compatible with SQL/92 Entry level feature.

Applications communicate with the database server using a programming interface
(ODBC, JDBC, Sybase Open Client, or Embedded SQL). The programming interface
provides a set of function calls for communicating with the database.

The Personal database version of Adaptive Server Anywhere is generally used for
standalone applications. A client application connects through a programming interface
to a database server running on the server. With Adaptive Server Anywhere Network
Database Ser ver, which supports network communications, SQL Anywhere can be used
to build an installation with many applications, running on different machines, connected
over a network to a single database server running on a separate machine.

In the three-tier computing, application logic is held in an application server, such as
Sybase Enterprise Application Server, which fits between the database server and the
client applications. In many situations, a single application server may access multiple
databases in addition to nonrelational data stores. In the Internet case, client applications
are browser-based, and the application server is generally a Web server extension. Sybase
Enterprise Application Server stores application logic in the form of components, and

Database Integrity: Challenges and Solutions

makes these components available to client applications. The components may be
PowerBuilder components, Java beans, or COM components.

Adaptive Server Anywhere personal and network database servers can both mount
severa databases simultaneously. Databases on multiple database servers, or even on the
same server, can be accessed using the Adaptive Server Anywhere Remote Data
Access features.

[8/BM (NY SE:IBM) and Informix Corporation (Nasdag: IFMX) announced on April 24,
2001 that they have entered into a definitive agreement for IBM to acquire the assets of
Informix Software—Informix's database business—in a cash transaction valued at $1
billion.

ENDNOTES

1. Naturaly, this issue concerns corcepts such as isolation levels, concurrency
control and others related to them. They constitute another perspective of the
database integrity problem.

2. The following subsections have been developed taking into account the following
references:. Connolly et al., 1999, Date, 2000, Date & Darwen, 1997, SQL99-1,
1999, SQL99-2, 1999, Ceri et a., 2000, Zaniolo et a., 1997.

3. In some cases, it is presented an incompl ete definition syntax. Just the clauses
sufficient to explain integrity issues are shown.

4. Referencesof this section are Chamberlin, 1998, DB2 UDB-1,1998, DB2 UDB-

2,1998, DB2 UDB-3,1998, DB2 UDB-4, 2000, Informix, 1998, Kim et al, 1994,

Oracle, 2000, Postgres, 2001, SQL99-1, 1999, SQL99-2, 1999, Sybase-1, 2001,

Sybase-2, 2001, Sybase-3, 1999, Sybase-4, 1999, Sybase-5, 1999, Sybase-6, 1999,

Sybase-7, 1999, Sybase-8, 2000, Turker & Gertz, 2001, Zaniolo et.a., 1997.

The remaining systems do not have this limitation.

IBM (NY SE:IBM) and Informix Corporation (Nasdag: |FMX) announced on

April 24, 2001 that they have entered into a definitive agreement for IBM to

acquire the assets of Informix Software—Informix's database business—in a cash

transaction valued at $1 billion.

o u

REFERENCES

Ceri, S. & Fraternali, P. (1997). Designing database applications with objects and rules:
The IDEA methodology. Addison Wesley.

Ceri, S. ; Cochrane, R. J. & Widom, J. (2000). Practical Applications of Constraints and
Triggers: Successes and Lingering Issues. Proceedings of 26™. VLDB Conference, Cairo
Egypt, September 2000.

Cochrane, R.; Pirahesh, H. & Mattos, N. (1996). Integrating triggers and declarative
constraints in SQL database systems. Proceedings of 22", VLLDB Conference, Mumbai
(Bombay) India

Database Integrity: Challenges and Solutions

Codd, E. (1990). The relational model for database management. Version 2. Addison
Wesley Publ. Co.

Connally, T., Begg, C. & Strachan, A. (1999). Database systems: A practical approach
to design, implementation and management. 2%, Edition Addison Wesley.

Chamberlin, D. (1998). A complete guide to DB2 Universal Database. Morgan Kauffman
Publishers. Co.

Date, C. & Darwen, H. (1997). The SQL standard. 4™". ed. Addison-Wesley.

Date, C. (1989). Relational Databases, Selected Writings. Addison Wesley. Reprinted
with corrections.

Date, C. (2000). An introduction to database systems. Addison Wesley.

DB2 UDB-1. (1998) Informix to DB2 Migration Comparison White Paper. Software
Migration Project Office. DB2 Migration Team. [On line] Available at:
http://www.ibm.com/sol utions/softwaremigration

DB2 UDB-2 (1998) Oracle to DB2 Migration Comparison White Paper. Software
Migration Project Office DB2 Migration Team. [On line] Available at:
http://www.ibm.com/sol utions/softwaremigration

DB2 UDB-3. (1998) Sybase to DB2 Migration Comparison White Paper. Software
Migration Project Office DB2 Migration Team. [On ling] Available at:
http://www.ibm.com/sol utions/softwaremigration

DB2 UDB-4. (2000). DB2 Universal Database Workgroup Edition V. 7.1. Information
Center. DB2 Manuals.

Etzion, O. (1993). PARDES - A Data-Driven Oriented Active Database Model. SGMOD
Record, 22(1).

Informix Software, Inc. (1998) Informix Guide to SQL: Tutorial. [On line] Available at:
http://www.informix.com.my/answers/english/docs/visionary/infoshel f/sqglt/.

Kim, M.J., Nelson, D.A., Rossiter, B.N. (1994). Evaluation of the Object-Relational
DBMS Postgres .I. Administrative Data. Newcastle University. October 1994.
Markowitz, V. (1994), Safe Referential Integrity and Null Constraint Sructuresin
Relational Databases. Personal communication.

Oracle Corporation (2000). Oracle8i. Language Reference manual.

PostgreSQL Interactive Documentation. (2001) PostgreSQL 7.1 Documentation. [On ling]
Availableat: http://www.postgesql.org/idocs/.

Rivero L., & Doorn J. (2000). Satic Detection of Sources of Dynamic Anomaliesin a
Network of Referential Integrity Restrictions. In Proceedings of 2000 ACM SAC. Como,
Italy. March 2000.

Ross, R. G. (1997). The Business Rule Book. Classifying, Defining and Modeling Rules.
Database Research Group, R. Ross Editor/Publisher.

SQL99-1. (1999). Database Language SQL. Part 1. SQL Framework Document | SO/IEC
9075-1: 1999.

SQL99-2. (1999). Database Language QL. Part 2: SQL Foundation Document | SO/IEC
9075-2: 1999.

Sybase-1. Sybase ® Adaptive Server™ (2001) Introduction to Adaptive Server Enterprise
11.9.2 [On Line] Available at:
http://netimpact.sybase.com/products/databaseservers/ase/ase1192.html.

Sybase-2. Sybase ® Adaptive Server™ (2001) Products. [On Line] Available at:
http://www.sybase.com/products.

-67-

Database Integrity: Challenges and Solutions

Sybase-3. Sybase ® Adaptive Server™ Enterprise. (1999). Transact-SQL User's Guide
Adaptive Server Enterprise version 1.2. Document-1d 32300—01-1200-01.

Sybase-4. Sybase ® Adaptive Server™ Enterprise. (1999). What's new in Sybase Adaptive
Server Enterprise?. Adaptive Server Enterprise version 1.2. Document-1d 37429—1-
1200-01.

Sybase-5. Sybase® Adaptive Server™ Enterprise. (1999) Reference Manual Volume 1.
Building Blocks Adaptive Server Enterprise Version 12 Document ID: 36271-01-1200-01
(October 1999)

Sybase-6. Sybase® Adaptive Server™ Enterprise. (1999) Reference Manual Volume 2:
Commands Adaptive Server Enterprise Version 12 Document 1D: 36272-01-1200-01
(October 1999)

Sybase-7. Sybase® Adaptive Server™ Enterprise. (1999) Reference Manual Volume 3:
Procedures Adaptive Server Enterprise Version 12 Document ID: 36271-01-1200-01
(October 1999)

Sybase-8. Adaptive Sybase Anywhere Reference. (2000) [On Line] Available:
http://downl oad-europe.sybase.com/pdf docs/awg0702e/dbrfen7.pdf.

Thalheim, B. (1996). An overview on semantical constraints for database models. In
Proceedings of 6. International Conference on Intellectual Systems and Computer
Science. Moscow, Russia.

Turker, C., Gertz, M. (2001). Semantic integrity support in SQL-99 and commercial
(Object-) relational database management systems. To appear in VLDB Journal.

Van den Berghe, T. (1999). A methodological framework for active application
development. Ph. D. Thesis. Université Catholique de Louvain. Belgium.

Zaniolo, C. et. a. (1997). Advanced Database Systems. Morgan Kauffman Publishers, Inc.

Chapter 111: Preserving Relationship
Cardinality Constraintsin Relational
Schemata

Dolores Cuadra, Carlos Nieto, Paloma Martinez, Elena Castro, Manued Velasco,
Universidad Carlos |1l de Madrid,

Spain
INTRODUCTION

Database modelling is a complex task that involves conceiving, understanding,
structuring and describing real Universes of Discourse (UD) through the definition of
schemata using abstraction processes and data models. To face this problem,

methodol ogies that incorporate intelligent assistance are required. Some current
methodol ogies only provide some recommendations or heuristics while others give well
established and formalised processes. Traditionally, three phases are identified in
database design: conceptual, logical and physical design. Conceptual modelling phase

Database Integrity: Challenges and Solutions

represents the most abstract level since it is independent of any database management
system (DBMYS) and, consequently, is very close to the user and allows him to collect
almost completely the semantics of the real world to be modelled.

A conceptual schema, independent of the data formalism used, plays two main rolesin
the conceptual design phase: a semantic role, in which user requirements are gathered
together and the entities and relationshipsin a UD are documented, and a
representational role that provides a framework that allows a mapping to the logical
design of database development. Three topics are involved in the database conceptual
modelling process. data modelling formalism, methodologica approach and CASE tool
support. One of the most extended data modelling formalisms, the Extended Entity
Relationship (EER) model has proven to be a precise and comprehensive tool for
representing data requirements in information systems development, mainly due to an
adeguate degree of abstraction of the constructs that it includes. Although the original ER
model was proposed by Chen (1976), many extensions and variations as well as different
diagrammatic styles have been defined (Hull & King, 1987; McAllister, 1998; Peckhan &
Maryanski, 1988).

In database conceptual analysis, one of the most difficult concepts to be modelled are
relationships, especially higher order relationships, as well as its associated cardinalities.
Some textbooks (Boman et a., 1997; Ullman & Widom, 1997) assume that any
conceptual design can be addressed by considering only binary relationships since itsaim
isto create a computer oriented model. We understand the advantages of this approach
although we believe that it may produce certain loss of semantics (some biases are
introduced in user requirements) and it forces us to represent information in rather
artificial and sometimes unnatural ways.

Concerning the logical design, the transformation process of conceptual schemata into
relational schemata should be performed trying to completely preserve the semantics
included in the conceptual schema; the final objective is to keep the semanticsin the
database itself and not in the applications accessing the database. Nevertheless,
sometimes a certain loss of semantics is produced; for instance, foreign key and not null
options in the relational model are not enough to control ER cardinality constraints.

This chapter is devoted to the study of the transformation of conceptual into logical
schemata in a methodological framework focusing on a special ER construct: the
relationship and its associated cardinality constraints. The section entitled "EER Model
Revised: relationships and cardinality constraint” reviews the relationship and cardinality
constraint constructs through different methodological approaches to establish the
cardinality constraint definition that will be followed in next sections. The section
"Transformation of EER Schemeta into Relational Schemata is related to the
transformation of conceptual n-ary relationships (n=2) into the relational model following
an active rules approach. Finally, several practical implications as well as future research
paths are presented.

Database Integrity: Challenges and Solutions

EER MODEL REVISITED: RELATIONSHIPS AND
CARDINALITY CONSTRAINTS

This section reviews entity, relationship and cardinality constraint constructs of different
data models in order to highlight some special semantic problems derived from the
different methodological approaches given to them. The EER model (Teorey, Yang &
Fry, 1986) is considered as the basic framework to study the different meanings of
cardinality constraints. The objective is to make a profound study of the different
cardinality constraints definitions as well as the implications of their usage.

Basic Concepts. Entities, Relationships and Cardinality Constraints

The central concepts of the ER model are entities and relationships. These constructs
were introduced by Chen (1979 and have been incorporated in other conceptual models,
although with different names! : class, type, etc., for entities and associations for
relationships. Nevertheless, those concepts do not have precise semantics, and
consequently, it is necessary to fix their meaning.

In spite of the entity concept being widely used and accepted, there is no agreement on a
definition; for instance, Thalheim (2000) collects twelve different entity denotations.
Although experts are not able to give a unique definition, the underlying concept is
coincident in all of them, and its usage as design element does not suppose great
disadvantages. An entity definition is not given here just to highlight, according to
Thalheim (2000) that an entity is a representation abstraction with modelling purposes.
Date (1986) adds that the represented concept is an distinguishable object, but we do no
consider this feature as essential because it depends on the designer point of view.

The relationship concept is more confusing; it is defined as an association among entities.
This definition offers many interpretations; for instance, in severa design methods, there
are some differences depending on whether relationships can participate in other
relationships, asin HERM, (Thalheim, 2000), by means of association entities asin UML,
OMG (2000), or by grouping as clusters a set of entities and relationships (Teorey, 1999).
These differences are due to the fact that a relationship combines association features

with representation features and therefore might be considered a relationship (if
association aspects are highlighted) or an entity (if representation aspects are emphasi sed).
For instance, a marriage can be seen as a relationship (association between two people) or
as an entity (representation of asocial and legal concept), and both of them are possible.
This duality is a source of design problems.

Previous comments are based on several experiments described in Batra & Antony (1994)
and Batra & Zanakis (1994) proving that novice designers do not have any difficulty in
representing entities and attributes because they are simple concepts and easily
identifiable from specifications. However, the identification of relationships and their
properties is more complicated. They argue that the big number of combinations for a

-70-

Database Integrity: Challenges and Solutions

given set of entities is an obstacle in detecting relationships and, consequently, more
design errors appear.

Apart from these definitions, the linguistic level applied to these conceptsis very
important; it is required to distinguish between entity/relationship and occurrences of an
entity/relationship. In the first case, there is an agebraic, or abstract data, type
perspective that groups a set of possible values that are being represented (or associated)
and, in the second case, an occurrence references a specific value of an entity or
relationship.

Finally, depending on the number of entities related we distinguish binary relationships if
they associate two entities and higher order relationships if they associate three or more
entities.

The next section explains how the entity occurrences can be combined in a relationship
and how cardinality constraints add more semantics to the relationship definition.

Cardinality Constraint Characterisation

Cardinality constraint is one of the most important restrictions that can be established in a
conceptual schema. Its functionality is to limit the number of entity occurrences that are
associated in arelationship, i.e., that participate in a relationship. The most commonly
employed limits are alower bound (minimum cardinality) and a upper bound (maximum
cardinality), athough other cardinality constraints are possible (for example, that
occurrence participation follows a predetermined statistical distribution). In spite of a
simple concept, the definition of this constraint admits several variants. Without being
exhaustive, the following cardinality constraint approaches are presented.

Let Eiand Ej (i ? j) be entities that are linked by the relationship | and E; the entity on
which the cardinality constraint is being defined. If | isabinary relationship it only will
associate two entities (E; and E;, then i=1 and j=2) and there are the possibilities given
below:

From the | viewpoint:
o Def. 1: Number of times that an occurrence of E; appearsin the

relationship | (it is called participation)

From the E; viewpoint:

-71-

Database Integrity: Challenges and Solutions

o Def. 2. Number of occurrences (any) of E; that can be related to an
occurrence of E; (lookup).

o Def. 3: Number of timesthat an occurrence (fixed) of E, can be related to
an occurrence of E; (individual lookup).

From the E, viewpoint:

o Def. 4: Number of occurrences (any) of E; that can be related to an
occurrence of E, (lookacross or Chen's style).

o Def. 5: Number of times that an occurrence (fixed) of E; can be related to
an occurrence of E; (individual lookacross).

There are subtle differences and similarities between these definitions that may be
clarified by an example. Let us suppose the relationship | of Figure 1g supposing there
are not multivalued attributes'? in the relationship Figure 1b shows all possible
occurrences of the relationship | for E; and E; entities. Note that according to the
definition of the relationship presented above (Definition 1) this table represents the
maximum possible extension at any time of the relationship I.

E; oceumences: By ocourrences:
a b ¢ d.e
Figure 1la: Binary relationship example

Figure 1b: All possible occurrences of relationship | of Figure 1a

Any constraint established on the relationship will prevent the appearance of some of the
presented occurrencesin Figure 1b. Especially, cardinality constraint taking as basis the
definition 1 applied to E; restricts the number of times that any occurrence of E; appears
in Figure 1b; that is, the upper resulting value of counting the number of x (from E;)
appearing in each column will not exceed the established maximum cardinality nor will
the lower value be inferior to the established minimum cardinality. Note as the principal
difference with the other definitions, that the limit over the occurrences of E; is
established independently of E,.

-72-

Database Integrity: Challenges and Solutions

Definition 2 supposes to count for any x (from E1) the number of y (from E2) that appear
in each column and to keep the maximum or minimum of the resulting values. Definition
3 supposesto count for any x (from E1) the number of y (from E2) with each one of they
values that appears in each column. Thus, taking into account the occurrences presented

in Figure 1b, cardinality values of E; calculated as shown in Figure 2 are two according
to Definition 2 and one according to Definition 3.

Def 1 Cardinality Value
o appears twice i the interrelationshap b
I appears twice m the mterrelationship <
¢ appcars twice in the interrelationship 2
Def 2
1 CTH EPPEIT onee willy o el once willi ¢ 271+13
r con INREIT Oned with o mmd once with ¢ Fr1+1%
¢ com appenr once with o and once with ¢ 2(1+1)
Del 3

e can appenr once with 1
o can appear once with ¢ I
Ir can appear once with o 1
I cam appear once with ¢ |
o con appear onee with o I
¢ can appear once with ¢ I

Figure 2: Calculus of different cardinality values from Figure 1b

Definitions 4 and 5 will only exchange the role of E; and E;. Note that the values

obtained with Definition 3 and Definition 5 are the same ones, since the occurrences of
both entities are fixed.

For higher order relationships, we will have among others the following possibilities,
taking into account that E; and E; are defined as before.

From the | viewpoint:

o Def. 1: Number of times that an occurrence of E; appearsin the
relationship (participation)

From the E; viewpoint:

o Def. 2: Number of times that any occurrence of each E; appears related to
an occurrence of E;.

o Def. 3: Number of times that a fixed occurrence of each one of the entities
E; appears related to an occurrence of E;.

o Def. 4: Number of times that any combinatiord? of occurrences of the
entities Ej appears related with an occurrence of E; (lookup).

(o]

Database Integrity: Challenges and Solutions

Def. 5: Number of times that a specific combination of occurrences of the
entities E; appears related with a occurrence of E; (individual lookup).

From the E; viewpoint:

Def. 6: Number of any occurrence of E; that can participate in the
relationship with an occurrence of E;.

Def. 7: Number of times that a specific occurrence of E; can be seen in the
relationship with an occurrence of E;.

Def. 8: Number of any occurrence of E; that can be seen in the relationship
with a combination of occurrences of the entities E; (lookacross or Chen's

style).

Def. 9: Number of times that a specific occurrence of E; can be seen in the
relationship with a combination of occurrences of the entities E;
(individual lookacross).

Note that binary relationships are particular cases of the higher order relationships.
Moreover, for higher order relationships, Definitions 2, 3, 6 and 7 are included as
particular cases of Definitions 4, 5, 8 and 9, respectively, when the combination is
restricted to only one entity. The next example will clarify the differences among these

definitions.

Let us suppose the ternary relationship | presented in the Figure 3a in which the
occurrences of the entities are also indicated. Figure 3b contains the possible occurrences
of the relationship | obtained from the occurrences of the E, E» and Es entitied®. The
maximum number of occurrences in the relationship will be considered in absence of any
constraint, and their extension will be the Cartesian product of the sets of occurrences of
the entities that participate in the relationship.

}|

N

Erocourrences:
ahc

Es

E:

Haoccurmences:

def

Iy oocurmences:

g h

Figure 3a. Ternary relationship example

-74-

Database Integrity: Challenges and Solutions

fadg bdg, cdg,
adh, bdh cdh
a8 bEgpe GeEp
ach beh ceh
afg, bfg cfg,
afth bth, efh}

Figure 3b: All possible occurrences of relationship | of Figure 3a

The analysis of the first definition is similar to the one carried out for the binary
relationships, that is, a constraint on the number of occurrences in each column of Figure
3b. In order to study the rest of the definitions, the cardinality constraint of the entity E;
will be calculated and, for the sake of ssimplicity it will be supposed that it is calculated
with regard to the combination of entities formed only by entity E,. This supposition will
force Definition 2 coincident with Definition 4, Definition 3 with Definition 5, Definition
6 with Definition 8 and Definition 7 with Definition 9.

In Definition 2 to Definition 5, cardinality constraint is obtained by fixing an x (from E1)
and then counting the number of occurrences of E, that appear in Figure 3b. Therefore,
Definition 2 and definition 4 for each x (from E1) fixed count the number of y (from E2)
that appear in each column and keep the maximum and the minimum. Definition 3 and
definition 5 fix an x (from E1) and an y (from E2), so that for each y (from E2) the
number of timesthat it is combined with an x (from E1) is counted keeping the values
maximum and minimum as cardinality values. Finally, notice that the Definition 6 to
Definition 9 would only exchange the role of E; and E;. The values obtained with the
Definition 3 and Definition 7 and with the Definition 5 and Definition 9 are the same,
since the occurrences of both entities are fixed.

Furthermore, in absence of multivalued attributes in the relationship and establishing that
the set of occurrences of each entity is limited, the maximum cardinality constraint is
limited by the cardinal of the Cartesian product of the rest of entities (6 in the example),
although in the practice the value n is used to avoid specifying a maximum value.

There are other proposals for cardinality constraints. Jones & Song (1998), Elmasri &
Navathe (1994) and Ramakrishnan (1997) present an approach that combine the
maximum cardinality proposed by Chen (1976) with participation semantics
(optional/mandatory) for the minimum cardinality.

In McAllister (1998) and Thalheim (2000), a systematic approach for the cardinality
constraint definition is presented. McAllister (1998) shows a tabular representation that
allows collecting maximum and minimum cardinalities of any combination of entities
with any other combination. Thus, many of the aforementioned definitions can be
comprised in an unique formalism; however, the number of cardinality constraints to be
defined is very high (e.g., with three entities it would be necessary to define 12 pairs,

-75-

Database Integrity: Challenges and Solutions

with four entities, 50, and so on). To facilitate this task, a set of rulesis provided. On the
other hand, Thalheim (2000) analyses different variants of cardinality constraints and
proposes a general cardinality constraint that subsumes as particular cases all the
previously presented definitions. Nevertheless, the implications of each in the design
process are hardly explained, although it is important to underline that the HERM data
model implements a cardinality constraint with participation semantics.

Main Cardinality Constraint Approaches

In this section, the most extended data models with their corresponding cardinality
constraint approaches are studied. Two main approaches are discussed: first, the Chen's
style constraint that is one extension of the mapping constraint (a special case of
cardinality constraint that considers only the maximum cardinality and that for binary
relationships can be 1:1, 1N or N:M), (Chen, 1976), that different data models and
methodol ogies have adopted or extended and, secondly, the MERISE approach, (Tardieu,
1989), that incorporates the participation semantics. Concerning the aforesaid definitions
for higher order relationships they are related to Definition 1 and Definition 8,
respectively.

These two approaches meet when cardinality constraints for binary relationships are
defined (excepting the natural differences in graphical notations). Both represent the
same semantics in binary relationships athough the way of expressing them is different.

Binary Relationships

Figure 4 shows an example of cardinality constraint over a binary association using UML
notation (OMG, 2000); it is called multiplicity constraint and it represents that an
employee works in one department (graphically denoted by a continuous line) and that at
least one employee works in each department (graphically denoted by a black circle with
the tag +1). Minimum multiplicity of one in both sides forces all objects belonging to the
two classes to participate in the association. Maximum multiplicity of n in Employee
class indicates that a department has n employees and maximum multiplicity of 1 in
Department means that for each employee there is only one department. Consequently,
UML multiplicity follows Chen's style because to achieve the cardinality constraints of
one class it is needed to fix an object of the other class and obtain the number of objects
related to it.

EMPLOYEE + works DEPARTMENT
+]

Figure 4: Cardinality constraints using UML

Figure 5 illustrates the same example but using MERISE methodology (Tardieu, 1989);
cardinality constraints represent that an occurrence of the Employee entity participates
once in the Works relationship and an occurrence of the Department entity participates at
least once in the relationship.

-76-

Database Integrity: Challenges and Solutions

; —— lan /\ (l.n)
EMPLOYEE w DEPARTMENT

Figure 5: Cardinality constraints using MERISE

Notice that both examples represent the same semantics although expressed in different
ways. Figure 6 shows Chen's style notation of the Works relationship. Comparing it to
MERISE notation, cardinality tags are exchanged (in MERISE notation, cardinality tag is
situated near the constrained entity and in Chen's notation, the cardinality tag islocated in
the opposite ending). This difference reflects the distinct perspective adopted by these
methodologies: MERISE methodology constrains the participation of an entity in the
relationship and Chen methodology limits the participation of a combination of the other
entity(ies) with an entity in the relationship. Thus sometimes a conceptual schema could
be misunderstood if it has been created using another methodology. Figure 7 shows the
same constraint expressed in the Teorey notation, (Teorey, Yang & Fry, 1986), the
shaded area represents a maximum cardinality of n. With this graphical notation it is only
allowed maximum cardinalities of 1 or n and minimum cardinalities of O or 1.

i1,m /\ (1,1)
EMPLOYER \{I';ﬁ/ DEPARTMENT

Figure 6: Cardinality constraints using ER model

wiorks
EMPLOYEE ‘0 DEPARTMENT

Figure 7: Cardinality constraints using Teorey model

Table 1 gives a summary of the aforementioned concept for binary relationships.

Table 1: Cardinality constraints summary
Minimum Cardinality Maximum Cardinality

0 Optional Inapplicable: There are no
occurrences in the relationship

1 Mandatory: It is mandatory that all occurrences Determination'® or Uniqueness:
of entity A participate in the relationship (there Thereis at most an occurrence of
isat least one occurrence of entity Brelated to entity B related to each occurrence
each occurrence of entity A). of entity B.

k k-Mandatory: It is mandatory that each k-Limit: There are at most k

(>1) loccurrence of entity A participates at least k occurrences of entity B related to
times in the relationship (there are at least k each occurrence of entity A.
occurrences of entity Brelated to each
occurrence of entity A).

N Without limit of minimum participation. Without limit of maximum
participation.

Database Integrity: Challenges and Solutions

Table 1. Cardinality constraints summary
Minimum Cardinality Maximum Cardinality

(¥This concept is trandated from the relational model into a functional dependency that
can be used in refining the relational schema.

Higher Order Relationships

In database conceptual modelling, binary relationships are the most frequently used. In
fact, there are severa data models that only allow thiskind of relationships, see NIAM
(Nijssen & Halpin, 1989). That is why most methodologies, see MERISE (Tardieu, 1989),
OMT (Rumbaugh, Blaha & Premerlani, 1991), UML (OMG, 2000) and Teorey (1999),
do not put the emphasis on n-ary relationships (n > 2). Although higher relationships are
not so common, sometimes it is not possible to completely represent the UD using binary
relationships; for instarce, to represent the database requirement: "it is required to know
the programming languages used by the employees in the projects they are working," a
ternary relationship would reflect this requirement!”, while three binary relationships
would not be able to represent the whole semantics (Figure 8); the combination of binary
relationships Works, Uses and Requires neither alow to know the programming
languages that a specific employee uses in a specific project nor to know the projectsin
which a specific employee is working with a specific programming language.

[ey e [s

ary relationships (first solution)

Figure 8: Ternary relationships versus bin

The suggested solution provided by the data models that exclusively consider binary
relationships is to transform the higher order relationship into one or more entities and to
add binary relationships with the remaining entities, (Ullman & Widom, 1997; Boman et
al., 1997). Figure 9 shows this solution where an entity Task is introduced; three binary
relationships connect entity Task with Employee, Project and Programming Language
entities. The principal advantage of this approach is that is nearer to relational model and
thus, closer to implementation. However, this approach implies to include entities that are
not explicitly exposed in the UD and to add complex constraints to keep the correct
semantics. With these models, designer perspective is conditioned and the conceptual
schema obtained could result in an artificial schema.

Q

IR O AN G
AN AGE

Figure 9: Ternary relationsips versus binary relationships (second solution)

Database Integrity: Challenges and Solutions

Keeping in mind that higher order relationships are necessary in database conceptual
modelling, severa methodologies have generalised the cardinality constraint definition of
binary relationships (in the two approaches previously commented), raising some
difficulties that are explained below.

Fird, there is an inconsistency problem, depending on the adopted approach, because
higher order relationships do not represent the same semantics that binary relationships.
Figures 10 and 11 represent Chen and MERISE cardinality constraints, respectively, for
the semantic constraint: "an employee works in severa projects and (s)he could use a
programming language in each of them".

EMPLOYEE PROJECT

PROGEAMMING
LANGUAGE

Figure 10: ER cardinality constraints using Chen's style

{0, 1) /\ {0,

works

EMPLOYEE PROJECT

PROGREANMMING
LANGUAGE

Figure 11: ER cardinality constraints using MERISE approach

In the Chen approach the cardinality constraint of an entity depends on the remaining
entities that participate in the relationship, thus, there are several problemsin order to
scale up his definition from binary to higher order relationships since the remaining
entities could be combined in different ways. However, the most frequent generalisation
determines that a combination of all remaining entities is used in specifying the
cardinality constraints of only one entity. Therefore, using the ER model notation in order
to obtain the cardinality constraint of Programming Language entity (Figure 10) it is
needed first to fix two occurrences of Employee and Project entities that are related by
Wor ks relationship and then to count the number of times (minimum and maximum) that
occurrences of Programming Language entity could appear related to. Next, the same
procedure is applied to Project entity (with pairs of Programming Language and
Employee occurrences) and to Employee entity (with pairs of Project and Programming
Language occurrences).

Figure 10 illustrates that minimum cardinality of Programming Language entity is O, that
is, there are occurrences of Worksrelationship that associate occurrences of Employee
and Project entities but with no occurrence of Programming Language!®. This
circumstance causes problems in identifying the relationship occurrences. The

Database Integrity: Challenges and Solutions

relationship is capable of representing occurrences with unknown information (the case
of Programming Language in the example). However, this interesting capability
(exclusive of Chen's style) will again allow us to review the meaning of the relationship
concept.

In summary opposed to MERISE methodology, Chen's style presents three main troubles:
generalisation, difficulty of the treatment of unknown information in relationships and the
lack of information about the participation of each occurrence of associated entities.

In contrast, generalisation of cardinality constraint definition in MERISE methodol ogy
does not pose any problem because the semantics of cardinality constraints is the same in
binary and higher order relationships. Figure 11 illustrates an example of the Works
ternary relationship; the cardinality constraint of Programming Language is obtained by
counting the number of appearances of a specific Programming Language occurrence in
the Worksrelationship. The cardinality constraints of Employee and Project entities are
obtained in the same way.

Additionally, MERISE methodology includes a new construct called Functional Integrity
Constraint (CIF¥) that represents one of the participating entities is completely
determined by a combination of the other entities (an example is shown in Figure 12).
Moreover, these CIF have many implications in decomposing higher order relationships
as well asin transforming them into the relational model.

[IH] /\\ io.nl
works

EMPL OYEE \ PROJECT

ik

PR OGEAMMING
L ANGUAGE

1

{CIF)
Figure 12: An example of functional integrity constraint in MERISE

Therefore, the MERISE approach has two constructs to represent cardinality constraints
while the Chen approach only uses one. On the other hand, CIF constraints do not
satisfactorily resolve the treatment of unknown information. Finally, minimum

cardinality constraint in MERISE approach represents optional/mandatory participatior?
and, thus, maximum cardinality constraint typically will be n.

Table 2 (Soutou, 1998), shows the differences between the two approaches for cardinality
constraints when higher order relationships are transformed into the relational model.

Table 2: Summary of the differences among cardinality constraints

Database Integrity: Challenges and Solutions

Cardinality Models based on the ER model M odels based on Participation

(MER) Constraint (MPC)
Min0O Presence of NULL values No constraint
Min1l No constraint An occurrence of the entity relation

cannot exist in the n-ary relationship
without being implicated in one
occurrence

Min (n) |For each (n-1) record thereareat |An occurrence of the entity relation
least more than one occurrences for (cannot exist in the nary relationship

the other single in the nary without being implicated in many
relationship occurrences

Max 1 |For each (n1) record thereisa Unique value for the column (No
unique occurrence for the other duplicates)
single column in the n-ary
relationship

Max (n) For each (n1) record thereis more No constraint
than one occurrence for the other
single column in the n-ary
relationship

Adopting a Cardinality Constraint Definition

The decision about adopting a cardinality constraint definition has several theoretical and
practical consequences. Let the ternary relationship that represents the requirement

"There are writers that write books that may be concerning different topics'. Figure 13
shows the conceptual schema solution using the MERISE definition with the next
interpretation: there may be occurrences of all entities that do not participate in the
occurrences of Writes relationship. In this way, less semantics is represented by the
cardinality constraints because it is not known how the participation of any of Author,
Book or Topic entities in the relationship affects the participation of the remaining entities.
Moreover, it is impossible to represent that there can be anonymous books.

Ok /\ IR}
Wl =

ALTHOR ROOK

TOPIC

Figure 13: Ternary relationship using MERISE cardinality constraints
From Chen's perspective, the example could be modelled in two semantically equivalent

ways (Figures 14 and 15) both of them considering anonymous books. The first solution
is more compact although more complex; a unique ternary relationship collects the

-81-

Database Integrity: Challenges and Solutions

association semantics. The second solution is more intuitive because the ternary
relationship reflects the books whose authors are known and the binary relationship thet
represents the anonymous books. The choice of afinal solution depends on the designer
perspective about the UD.

{1.naj
AUTHOR Wrileg Ok
Tﬁl.‘l-

TOPIC

Figure 14: Ternary relationship using Chen's style (first solution)

{1.n} /\ (1,n)
writes

AUTHOR BOOK

-Ij.ll]

il.n)

(0,

IOPIC

Figure 15: Ternary relationship using Chen's style (second solution)

Both solutions imply that it is necessary to check that a specific book does not
simultaneously appear as an anonymous book and a book with a known author. In the
first solution, this constraint could be modelled as an exclusivity constraint among the
occurrences of the ternary relationship, while in the second solution, it could be modelled
as an exclusive-or constraint between the two relationshipstY, that is, the pair book-topic
present in the ternary relationship occurrences does not appear in any binary relationship
occurrence in the case that the model includes this kind of constraint.

In this chapter, we adopt the Chen's style concerning the cardinality constraints and the
ER model as the basic model. Chen notation is able to reflect the functional dependencies
as well asincomplete information as we have seen in the previous examples while
MERISE cardinality constraints are less restrictive. Before using ait areview of the
incomplete information concept is given in the next section.

Implicationsin the Definition of Relationships: Handling | ncomplete
I nformation

There is awide variety of literature about the representation and treatmert of incomplete
information in the relational model; Van Der Meydem (1998) gives a complete revision
from alogical perspective of this subject. This kind of information has not been deeply
studied in conceptual modelling. In ER based models, traditionally, optional attributes
have been allowed both in entities (except for attributes that compose the entity
identifier't2) and relationships in order to treat unknown information, although other

Database Integrity: Challenges and Solutions

proposals Wand, Storey & Weber (1999) argue that the usage of optional attributes
contradicts the ontological foundation of entities and relationships.

Sometimes, it is not possible to cover completely the semantics of a UD when designing
aschema. So it is necessary to reflect the incomplete information, athough it is under
discussion if a conceptual model should provide mechanisms to represent this kind of
information (implicitly or explicitly asit has been seen in the two approaches for
cardinality constraints of previous sections).

A traditiona distinction of incomplete information has to do with the source of
incompleteness. The unknown information source ("it exists avaue but it is unknown")
and the undefined information source ("it does not exist avalue" or equivalently "valueis
inapplicable"). Also ahybrid of these, no information, has been considered ("either it
exists an unknown value or it is inapplicable"). The perspective adopted in this section
only covers the unknown information case. We believe that a conceptual model does not
have to contemplate other sources of incompleteness, since the origin of an inapplicable
attribute is always an inadequate conceptual design that does not fully reflect the UD
requirements. It can be argued that by practical reasons it may be necessary to treat with
inapplicable attributes in order to not complicate a conceptual scheme reflecting a
exceptional situation, but at the conceptual level, it always exists as an equivalent
solution that uses optional attributes or introduces new entities to reflect the exceptional
Cases.

By observing the two solutions of Figures 14 and 15, there are important methodol ogical
implications depending on the solution selected, apart from the designer preferences. It is
necessary to highlight that the first solution (Figure 14) allows the existence of
relationship occurrences that do not associate occurrences of the three entities but only
associating Book and Topic occurrences; this issue contradicts what many authors
consider as arelationship. The cause of this contradiction has its origin in the strong
influence of the relational model. Relational model is alogical model (not conceptual)
with mathematical foundations. In this model, relations are defined as subsets of the
Cartesian product of attribute domains. Many conceptual models define the relationships
in asimilar way and, consequently, there are no unknown relationship occurrences. So,
the next relationship definition has been widely used.

Definition 1: Relationship in complete universes of discourse with information
completely known.

Let E be an entity and Ext'(E) be its extension at timet (set of occurrences that compose it
in the ingtant t, supposedly a discrete line of time).

The extension at timet of a relationship | anong n entities (E1, E», ... E), that could not
be all different entities, Ext'(l), is a subset of the Cartesian product of the entity
extensions at timet such that its elements verify some predicate that defines this
relationship':¥ . So, the next property holds:

Database Integrity: Challenges and Solutions

Finally, the relationship | as the transfinite union of their extensions at any time is defined.

This definition has a great advantage: the subsequent transformation into the relational
model is direct. The relationship is trandated, in the most general case, into one relation
whose primary key is the combination of the foreign keys referencing the participating
entities in the original relationship. So, the entity integrity of the relational model (Codd,
1979), is guaranteed because no null values in the primary key of arelation are allowed.
In contrast, the previous definition does not contemplate the probable presence of
unknown information in relationships. In this way, this definition of relationship would
be inconsistent with the cardinality constraint definition of the Chen approach. Adopting
this relationship definition would supposedly not have minimum cardinalities of O in
higher order relationships.

Incomplete information has been captured in ER based models mostly via optional
attributes. The previous discussion shows that merely with optional attributes it is not
possible to reflect the presence of unknown information in the relationships. This
situation is opposite to what happens in the relational model, where optiona attributes
alone allow one to design logical schemata that reflect the presence of unknown
information in any possible situation. It isimportant to highlight this fact because in the
ER model there are two basic constructs, while in the relational model there is only one.

The next relationship definition is consistent with Chen's cardinality constraint definition
and also it allows conceptual models to represent unknown information. To support
unknown information, an expansion of extensions of entities, Ext(E), is required; it will
be denoted as bottont (?).

Definition 2: Relationship in incomplete Universes of Discourse with unknown
information.

Let E be an entity and Ext'? (E) beitslifted extension at time't defined as Ext'? (E) =

Ext'(E)? ? . Noticethat each ? £ symbol has to be specific for each entity E although
we omit the entity it applies to.

The lifted extension at time t of a relationship | anong n entities (E1, E», ... E,), that
could not be all different entitiesis a subset of the Cartesian product of the entity lifted
extensions at time t such that its elements verify some predicate that defines this
relationship't® . The tuple totally composed of unknown information is excluded,
although it could be interesting in a higher order model to retain it. So, the next property
holds:

Vi, Ext y(1) cExt'y (Ey) x Ext' (E3) X ... X Exty (Ey) \ (Ley, Lo, oy L5y)

Database Integrity: Challenges and Solutions

Finaly, the lifted relationship | as the transfinite union of their lifted extensions at any
time is defined.

If an in-depth study is performed and also a partial ordering relation (degree of
information definition) among the relationship occurrences is included, the ER model
could be seen as atheory of algebraic domains, asit is proposed by Buneman et al. (1991)
for the relational model. In the same way, a conceptual modelling process could be
considered as a construction of algebraic domains and a conceptual schema could be
viewed as the specification of the structural component of an abstract data type,
facilitating the integration of programming languages and databases.

Note that this lifted relationship definition could pose some counter-intuitive conclusions,
for instance, in the existence of incomplete occurrences in binary relationships,
occurrences composed of occurrences of one of the entitied® are allowed. Nevertheless,
the usua interpretation of Chen's cardinalities for binary relationships excludes this
possibilityd. Notice also that a N:M:P ternary relationship could have occurrences
composed of occurrences of only one entity (at most N), two entities (at most N* M) or
three entities (at most N*M* P). Nevertheless, the usual interpretation of Chen's
cardinalities express only occurrences of the last two types.

If aconceptual model uses this definition of lifted relationship, the process of
transforming conceptual schemata into relational schemata complicates the matter since
the presence of unknown information has to be solved. The approach shown in the next
section considers this concept of relationship as well as the extension of Chen's
cardinality constraint in order to allow a more abstract design process and postponing to
the transformation step the set of problems concerning semantic preservation in logical
design.

The two definitions of relationship presented here are often indistinct and interchanged,
resulting in potential confusion. In these definitions we have differentiated between non
lifted and lifted relationships athough in the rest of the chapter we will use the term
relationship to always mean lifted relationship with the Chen's cardinality constraint.

In equality based models, like the relational, there is no difference between two
occurrences with the same values (including the bottom) and this issue will prevent the
handling of unknown information. Some values could be utilised to represent two
different real world objects, and thus there would be a collision of these two objectsin
only one representation. Roughly speaking one indefinite occurrence represents many
real world occurrences. However, non-equality-based models could differentiate two
identical occurrences of the same entity or relationship because they differentiate each
occurrence of the bottom symbol by using a partial ordering relation among the tuples or
using aternative identification mechanisms such as surrogate keys. These aspects are
common to any model that allows us to reflect unknown information, for example, many
extensions to tables of relational models have been developed for allowing a better
trestment of incomplete information than the simple replacement by nulls of unknown
attributes.

Database Integrity: Challenges and Solutions

In the example shown in the section "Adopting a cardinality constraint definition”, we
will adopt the first solution (Eigure 14) as the most adequate choice, while the second
solution (Figure 15) will be considered in the next section as a valid design option as well
as an intermediate step for transforming relationships into the relational model by
eliminating the unknown information from the original higher order relationship.

Some Conclusions

After reviewing ER constructs, it seems necessary to deepen the definition, foundations,
constructs and notation of the ER model to achieve a conceptual tool able to reflect the
situations that frequently appear in data modelling scenarios. Hence, the redefinition of
the ER model, taking into account previous aspects as well as the development of a wider
notation, are tasks to be dealt with.

The detection and specification of abstractionsin an UD that lead to correct and complete
schemata are critical problems that combine psychological and methodological aspects.
There are many other aspects associated with the specification of constraints. Their
identification and validation require more formal treatments. Identification can be faced
to with alexical analysis of a problem description. Syntactic and semantic validation of
relationships is acritical aspect of interna coherence with the UD. All these topics are
not analysed in this chapter.

In this section a set of problems related to cardinality constraints and its influence on the
other ER constructs has been analysed and important inconsistencies concerning this kind
of constraint have been highlighted. The next section explains some topics involved in
how to transform relationships into the relational model while trying to preserve the
origina ER semantics.

WErom now on, we will use the original names (entity and relationship).

[The presence of amultivalued attribute in a relationship implies that the identification

of its occurrences has to consider this attribute.

[3possible occurrences of the relationship with incomplete information are not considered.
[4IMultiple combinations of entities are possible; for example, in n-ary relationships
(n>=2), combinations of only one entity up to combinations of n-1 entities are possible.

In this sense, the definitions that consider combinations do not define a unique possihility,
but many (as many as possible combinations).

[3The possible occurrences of the relationship with incomplete information are not
considered.

[IwWe suppose that there are not additional semantic constraints between the entities
participating in the ternary relationship of type: "an employee works exactly in one
department,” "an employee uses one programming language,” etc.

(8 Maximum cardinality of 1 in Programming Language expresses a functional
dependency: employee, project ? programming language.

(91 French, constrainte d'intégrité fonctionnel.

[19\w/hile Chen's approach is not able to express optional/mandatory participation, it
represents functional dependencies.

Database Integrity: Challenges and Solutions

(1 This exclusive-or constraint is not directly established between the two relationships,
because oneis aternary relationship while the other is a binary one. It is established
between the binary relationship and an algebraic projection of the ternary relationship.
(2 Entity integrity constraint (defined in the relational model and generalized to the ER
model) disallows optional attributes as part of an entity identifier; this constraint has been
relaxed in the relational model (Thalheim, 1989; Levene and Loizou, 1998), by replacing
the identification concept with the distinguishability (disjunctive identification) concept.
(331t is not aformal and correct definition if we want to keep the relational model
property that the order of attributes isirrelevant. In addition, it does not consider the
existence of attributes in the relationship and suppose that all attributes in the entities are
rimary identifier attributes.
21This symbol has been used in a similar way by denotational semantics.
(23]}t s not aformal and correct definition if we want to keep the relational model
property that the order of attributes isirrelevant. In addition, it does not consider the
existence of attributes in the relationship and suppose that al attributes in the entities are
Pri mary identifier attributes.
20| n fact, these occurrences are pairs composed of an occurrence of one entity and the
bottom symbol of the other entity.
[11This observation poses a difficulty in attaining consistency among the model
constructs that can interact with each other in unpredictable ways.

TRANSFORMATION OF EER SCHEMATA INTO
RELATIONAL SCHEMATA

The major difficulty when transforming an EER schemainto a schemain alogical model
is information preservation. Generally, to achieve a complete mapping of both elements
and their inherent and semantics restrictions from an EER model to arelational model is
quite complicated. Usually, restrictions that can not be applied in the relational model
must be reflected in the application programs some other way, i.e., outside the DBMS. In
this way, there are several extensions to the relational model proposed by Codd (1970),
Codd (1979), Date (1995), and Teorey (1999), that provides a more semantic model.

The principal transformation rules are described in most database text-books. In this
section, we will show the transformation of relationships into relational model, since this
construct collects more semantics than others, as entities for example.

A correct transformation of schemata and constraints expressed in them is necessary in
order to preserve their intended meaning. Although initially the standard relational model
(Codd, 1970) was insufficient to reflect al the semantics that could be present in a
conceptua schema, it has been enhanced with specific elements that are used to preserve
the original semantics. In this chapter, transformation of EER schemata into relational
schemata is performed using a extended relational model with active capabilities

(triggers).

- 87-

Database Integrity: Challenges and Solutions

To carry out the transformation of cardinalities of the EER schemata into the relational
model without semantic losses the relational model provides mechanisms to express
semantic constraints. These mechanisms are: the use of primary key, the use of foreign
keys and its delete and update options, the use of alternative keys (UNIQUE), NOT
NULL and verification (CHECKS and ASSERTIONS) constraints and triggers.

Once the concept of cardinality constraint has been established, it will be analysed in how
to preserve this semantic constraint when a conceptual schema is transformed into a
logical schema. This section is divided in two parts depending on the relationship type,
since the semantics of the cardinality constraint is different when we deal with binary or
nary (n>2) relationships.

Binary Relationships

The analysis of binary relationships is structured in three parts: the first one concerns
N:M relationships, the second deals with 1:N relationships and the third part is devoted to
1:1 relationships. This classification is due to the fact that a N:M relationship produces a
new relation in arelational model while 1:N and 1:1 relationships can be transformed by
propagating the primary key from arelation to another relation (Teorey, Yang & Fry,
1986; Fahrner & Vossen 1995). For each case a solution is provided using relational
model constraints and triggers.

The syntax provided for triggersis similar to the SQL3 proposal, (Meton & Simon,
1993), with the exception that procedural calls are allowed in order to interact with the
user to capture the required data avoiding semantic |osses.

The triggers will have the following structure:

CREATE TRI GGER tri gger _nane
BEFORE/ AFTER/ | NSTEAD OF | NSERT/ DELETE/ UPDATE
ON tabl e_reference [FOR EACH ROWN
BEG N
trigger_body
END;

For data input the following procedures will be used:

ASK_PK (table, primary_key)—this procedure obtains the primary key of the
"table."

ASK_REST (table, rest_attributes)-this procedure obtains all attributes of the
relation "table," excepting those that compose the primary key.

Database Integrity: Challenges and Solutions

Transformation of N:M Binary Relationships

A N:M relationship | (Figure 16) becomes arelation |, that has as primary key attributes
the set of attributes of the primary keys of the entities that it associates, asit is shown in
Figure 17 in which the standard transformation can be seen as it is described in the
concerning literature (Date, 1995). If the relationship contains any attribute, it is included
as an attribute of the new relation. If there are multivalued attributes it is necessary to
study how they will be included in the primary key (Martinez et a., 2001).We study the
cardinalities of one of the ends of the relationship, represented in Figure 16 by cardinality
(X,n), since the reasoning for the other end, cardinality (_,n), is similar.

N:M

E, _O E,
& ‘. (_.n) (X.n) . *

Figure 16: A N:M relationship
E, (K,, attributes E;) E; (K, atiributes Eq)

A 4
]

1 (K, K;. attributes i)
Figure 17: Relational model transformatoin of Figure 16

Let us study, according to minimum cardinalities, how the connection relation (1) is
defined, as well as the delete and update options of the foreign key and, if it is necessary
to create some trigger to control these cardinalities when insertions, deletions and updates
are performed in each one of the resulting relations.

Cardinality (0,n)

Figure 16 shows the EER schema (where X=0) and its standard transformation is
displayed in Figure 17.

Table 3 shows the analysis of the possible semantic losses when an updating is made in
therelations E;, E; and .

Table 3: Semantic loss in cardinality (o, n) updating transactions

Relations \Updating Isthere any semantic loss?
Why?
Ex Insert/Delete/Update NO It is possible to insert/del ete/update tuples into E;
without connecting to E»
E, Insert NO |It is not a case of study
Delete/Update NO It is possible to delete/update tuples from E» without

Database Integrity: Challenges and Solutions

connecting to E;
Insert NO |It is possible to insert tuples with no restriction

Delete/Update NO |It is possible to delete/update from | and to have
sometuples of E; not connected

Notice that when the minimum cardinality is O the participation of E; in| is optional, this
implies that no restriction has to be added to the standard transformation since it does not
exist in any semantic loss. Considering the foreign key K is part of the primary key, the
delete and update options of the foreign key K; in therelation | cannot be either SET
NULL or SET DEFAULT.

Cardinality (1,n)

In this case the minimum cardinality constraint is stronger than in the previous case (see
Figure 16 with X=1); it isrequired that all occurrences of E; have to be inevitably related
to one or more occurences of E,. Asin the previous case, in the creation of the relation |,
the delete and update options of the foreign key K, (in asimilar way to K1), cannot be
either SET NULL or SET DEFAULT.

However, foreign key options are not enough to control the minimum cardinality
constraint; it is necessary to ensure that all occurrences of E; are related to at least one
occurrence of E, and, therefore, we must take care that the DB is not in an inconsistent
state every time that a new tuple isinserted into E; or atuple is deleted from | (Table 4).

Table 4: Semantic loss in cardinality (1,n) updating transactions

Relations Updating Isthere any semantic loss?
Why?
Ex Insert YES |It is not possible to insert tuples into E; without

connecting to E;
Delete/Update NO It is checked by the FK delete/update optionin |

E> Insert/Update NO It is not a case of study
Delete YES |It is not possible to delete tuples from E» and to have
sometuples of E;not connected
Insert NO Itispossible to insert tuples with no restriction

Delete/Update YES It is not possible to delete/update from | and to have some
tuples of E;not connected

To preserve cardinality constraints semantics (actions with "YES" in table 6), four
triggers are required.

Table 6: Semantic loss in cardinality (1,n) updating transactions

Database Integrity: Challenges and Solutions

Relations Updating Isthere any semantic loss?
Why?
Ex Insert YES |It is not possible to insert tuples of E; without connecting
to B>
Delete/lUpdate NO It is checked by the FK delete/update option in E»
E> Insert NO Itisnot acase of study

Delete/Update YES |It is not possible to delete/update tuples from E;, and to
have some tuples of E;not connected

Firgt, it will be needed a trigger that when inserting into E; createsatuplein I. The two
possibilities contemplated in the trigger are:

The new occurrence of E; isrelated to an occurrence of E; that is already in the
relation E».
The new occurrence of E; isrelated to a new occurrence of Es.

CREATE TRI GGER | NSERTI ON_NM (1, N) _E;
BEFORE | NSERT ON E;
FOR EACH ROW
BEG N
ASK_PK (Ep, : VKy) ;
ASK_REST (1, : VREST_ATTRI BUTES |):
| F NOT EXI STS(SELECT * FROM E; WHERE Kp=: VK;) THEN
BEG N
ASK_REST(E,, : VREST_ATTRI BUTES_E,)
I NSERT | NTO E, (K, REST_ATTRI BUTES_E,)
VALUES (:VK,, :VREST ATTRI BUTES E,)
END;
I NSERT INTO | (K, K, REST_ATTRI BUTES_ I)
VALUES (: NEW K, : VK, :VREST ATTRI BUTES |)
END;

To control the deletion of tuples from the relations | and E; and the update in | the
following triggers are required to avoid that an occurrence of E; is not related to any
occurrence of E;:

CREATE TRI GGER DELETION_NM (1, N) _E;
BEFORE DELETE ON E;
FOR EACH ROW

BEG N

-01-

Database Integrity: Challenges and Solutions

IF :OLD. Ky IN (SELECT K, FROM | WHERE K; I N
(SELECT K; FROM | GROUP BY K; HAVI NG

COUNT(*)=1))

THEN ROLLBACK (*WE UNDO THE TRANSACTI ON*)

END;

CREATE TRI GGER DELETI ON_NM (1, N) _I
BEFORE DELETE ON |
FOR EACH ROW

BEG N

IF :OLD. Ky N (SELECT K, FROM | WHERE K; I N
(SELECT K; FROM | GROUP BY K; HAVI NG

COUNT(*) =1))

THEN ROLLBACK

END;

CREATE TRI GGER UPDATE_NM (1, N) _I
BEFORE UPDATE ON |
FOR EACH ROW

BEG N

| F :OLD. Ki<>: NEW K; AND : OLD. K; I'N
(SELECT K, FROM | WHERE K; I N
(SELECT K; FROM | GROUP BY K; HAVI NG
COUNT(*) =1))

THEN ROLLBACK

END;

Transformation of Binary 1:N

For binary 1:N relationships (Figure 18), there are two solutions when transforming them
into the relational model:

a. Propagating the identifier of the entity that has maximum cardinality 1 to the one
that has maximum cardinality N, removing the name of the relationship. (This
implies semantic losses, see Figure 19). If there are attributes in the relationship
these will belong to the relation that possesses the foreign key (Date, 1995).

b. Creating a new relation for the relationship as in the case of the binary N:M
relationships (Fahrner & Vossen, 1995).

-02-

Database Integrity: Challenges and Solutions

I:N

E, w E;
& (X,1) (Y.,n) *
K-| KE

Figure18: A 1:N relationship

E; (K, rest attibutes E,)
. . ! e
E; (K., rest attributes E; K, rest attributes i)
Figure 19: Relational model standard transformation of Figure 18

We will study the case (a), the most general, distinguishing the different types of
minimum cardinality constraints.

Cardinality (0,n)

Asthe E;occurrences can or cannot be related to E» occurrences (see Figure 18 with Y=0
and X=0 or 1. It is not necessary to add anything else to control this cardinality (see Table
5). The delete and update options should be RESTRICT, CASCADE and SET NULL;
depending on the cardinality of the other end of the relationship (case study carried out
with X =0and X = 1) and of course on the semantics reflected.

Table 5: Semantic loss in cardinality (o,n) updating transactions

Relations Updating Isthere any semantic loss?
Why?
Ex Insert NO |It is possible to insert tuples of E; without
connecting to E;
Delete/Update NO It is checked by the FK delete/update option in E;
E, Insert/Delete/Update NO It is not a case of study

Cardinality (1,n)

This cardinality indicates that each E;occurrence has to be related to at |east one
Exoccurrence (see Figure 18 with Y=1 and X=0 or 1), and thus insertion of new E;
occurrences should be controlled. Moreover, if an occurrence of E; is deleted, it is
necessary to control that no element of E; remains without being related to an element of
E, (see Table 6).

To represent this cardinality the following triggers must be created:

CREATE TRI GGER | NSERTI ON_1IN (1, N) _E;

Database Integrity: Challenges and Solutions

BEFORE | NSERT ON E;
FOR EACH ROW

BEGI N
ASK_PK (Ep, : VKy) ;
| F NOT EXI STS(SELECT * FROM E, WHERE Ko=: VK»)
THEN
(* CREATE A NEW TUPLE IN E, THAT |'S RELATED
TO THE NEW OCCURRENCE OF E; *)
ASK_REST (Ep, : VREST_ATTRI BUTES_Ey) ;
I NSERT | NTO E, (K, REST_ATTRI BUTES_E,, Ky
VALUES (: VK, :VREST_ATTRI BUTES_E,, : NEW K;)
ELSE
UPDATE E,
SET Kqi=: NEW K;
WHERE Kp=: VK,
END;

For the deletions and updates of tuplesin the relation E, the following triggers have been
implemented:

CREATE TRI GGER DELETI ON_1IN (1, N) _E,
BEFORE DELETE ON E,
FOR EACH ROW

BEG N

|F :OLD. Ko I N (SELECT K, FROM E; WHERE K; I N
(SELECT K; FROM E, GROUP BY K; HAVI NG
COUNT(*) =1))

THEN ROLLBACK

END;

CREATE TRI GGER UPDATE_1N (1, N)_E;

BEFORE UPDATE ON E;

FOR EACH ROW

BEG N

I F :OLD. Ki<>: NEW K; AND : OLD. K; I'N
(SELECT K, FROM E; WHERE K; I N
(SELECT K; FROM E; GROUP BY K; HAVI NG
COUNT(*) =1))

THEN ROLLBACK

END;

Both foreign key delete and update options can be RESTRICT or CASCADE, depending
on the semantics to reflect.

Cardinality (0,1)

Database Integrity: Challenges and Solutions

Figure 18 displays this case (with X=0 and Y=0 or 1). To control that the minimum
cardinality isO (see Table 7), the foreign key K; (see Figure 19) has to admit null values.
The delete and update options, besides RESTRICT or CASCADE, can be SET NULL; it
will depend on the semantics in the UD. The update option will be CASCADE. In this
case, it is not necessary the use of triggers.

Table 7: Semantic loss in cardinality (0,1) updating transactions

Relations Updating Isthere any semantic loss?
Why?
Ex Insert NO |It isnot a case of study
Delete/lUpdate NO It is checked by the FK delete/update option in E;
E, Insert/Delete/Update NO It is possible to insert/del ete/update tuples into E;

without connecting to E;
Cardinality (1,1)
In this case, when forcing all occurrences of E; to be related to an occurrence of E; (see
Figure 18, with X=1 and Y=0 or 1), the foreign key K;(see Figure 19) can not admit null
values and therefore, the delete and update options do not admit the SET NULL.

Asnoticed in Table 8, it is not necessary to implement any trigger for specifying
cardinaity constraints in the transformation into relational model.

Table 8: Semantic loss in cardinality (1,1) updating transactions

Relations Updating Isthere semantic loss?
Why?
Ex Insert NO |It is not a case study
Delete/Update NO |It is checked by the FK delete/update option in E;
E, Insert NO It is checked by the NOT NULL option of K

Delete/Update NO It is possible to delete/update tuples from E;

Transformation of Binary 1:1 Relationships

Thiskind of relationship can be considered a special case of the N:M or 1:N relationships.
Therefore, its transformation to the relational model can be performed in different ways.

It has been chosen as the transformation that avoids the presence of null values, although
other considerations could have been kept in mind; for example, efficiency in updating or
guerying the database.

Cardinality (0,1), (0,1)

Database Integrity: Challenges and Solutions

Thereationship | (Figure 20) becomes a new relation. None of the two foreign keys
admits null values and one of them (in this case Ky according to Figure 21) will play the
role of primary key while the other one is defined as an alternative key (K2). The delete
and update options of the foreign keys can be RESTRICT or CASCADE. Triggers that
enforce the database integrity are not needed (see Table 9).

1:1

I;‘l | I I'..z_
* (0,1) : (0,1) |
K] Kl

Figure20: A 1:1 relationship
K, (K, rest attributes K.) Ey (K, rest_attributes_ Kz)

. ’
||

1 {El‘ F.. rest attnbutes 1)
Figure 21: Relational model transformation of Figure 20
Table 9: Semantic loss in cardinality (0,1) (0,1) updating transactions

Relations Updating I sthere semantic loss?
Why?

Ex Insert/Delate/Update NO It is possible to insert/del ete/update tuples into E;
without connecting to E;

E, Insert/Delate/Update NO It is possible to insert/del ete/update tuples into E;

without connecting to E;
I Insert/Delete/Update NO It is possible to insert/delete/update tuples into |

Cardinality (1,1), (0,1)

Figure 22 (with X=1 and Y =0) shows arelationship of this type. The transformation
process propagates the key of the entity with cardinality (1,1) to the resulting relation of
the entity with cardinality (0,1), see Figure 19. Null values are not admitted in the foreign
key that is also an aternative key (UNIQUE); in thisway, it is ensured that all
occurrences of E; are related to an occurrence of E;. The delete and update options of the
foreign key can be RESTRICT or CASCADE. Therefore, no triggers are needed. to
control this cardinality (see Table 10).

Ei %
‘ (X,1) (Y.1)
K, K,

Figure22: A 1:1 relationship

Database Integrity: Challenges and Solutions

Table 10: Semantic loss in cardinality (1,1) (0,1) updating transactions

Relations Updating Isthere any semantic |oss?
Why?
Ex Insert NO |It is possible to insert tuples into E; without
connecting to E;
Delete/Update NO It is checked by the FK delete/update option in E;
E> Insert/Delete/Update NO It is checked by the FK in E»

Cardinality (1,1), (1,1)

Figure 22 shows a relationship of this type (with X=Y =1). The transformation into the
relational model would be performed by propagating the primary key, asit is observed in
the Figure 19. Another more symmetrical choice would be the propagation of both keys,
which would duplicate the triggers and slow down the database updates. This foreign key
isnot null (NOT NULL), or unique (UNIQUE), and the deletion option can be
RESTRICT or CASCADE (the same values for the update option). With these semantic
constraints, it is ensured that all occurrences of E; are related to one and only one E;. To
reflect that all occurrences of E; are related to one and only one occurrence of E, the
following triggers should be created (see Table 11).

CREATE TRI GGER I NSERTI ON_11_(1,1) _E;
BEFORE | NSERT ON E;
FOR EACH ROW

BEG N ASK_PK (E, : VKy) :

ASK_REST (E,, : VREST_ATTRI BUTES_E,) ;

(*A NEW TUPLE I N E, CREATED THAT |'S RELATED W TH
THE NEW OCCURRENCE OF E;*)

| NSERT | NTO E, (K,, REST_ATTRI BUTES_E,, Ki)
VALUES (: VK, :VREST ATTRI BUTES_E,, : NEW Ky)

END;

Table 11: Semantic loss in cardinality (1,1) (1,1) updating transactions

Relations Updating Isthere any semantic loss?
Why?
Ex Insert YES /It is not possible to insert tuples into E; without

connecting to E;
Delete/Update NO It is checked by the FK delete/update option in E;
E, Insert NO It ischecked by the NOT NULL option of K;

Delete YES |It is not possible to delete tuples from E, because there
can be tuples not connected

Update NO It ispossible to update tuplesin Ex

-97-

Database Integrity: Challenges and Solutions

To control the deletion of tuples from the relation E:

CREATE TRI GGER DELETION 11 (1,1)_ E,
BEFORE DELETE ON E,
FOR EACH ROW

BEG N

(* DELETES THE CORRESPONDI NG TUPLE FROM E;*)
DELETE FROM E; WHERE K;=: OLD. K;

END;

Since the triggering graph obtained for the previous triggers contains execution cycles, it
is not a complex issue to control the possibility of nontermination. This would be carried
by eliminating the existing cycles from the activation graph if triggers are refined and
they control the number of entity occurrences that remains unsettled in accomplishing the
relationship cardinality constraints. Currently, an Oraclell® prototype that perfectly
reproduces this binary relationship behaviour is available. The extension of this approach
is to contemplate that several binary relationships naturally imply a bigger interaction
among the triggers as more problematic in guaranteeing the termination of the obtained
set of triggers.

Higher Order Relationships

In the previous section we presented the transformation of binary relationships to the
relational model to guarantee the semantics specified by the cardinalities by mears of an
active rules based technique (triggers). In this section we will study the transformation of
higher order relationships: first, some problems concerning the use of ternary
relationships are outlined; next, a semantics preserving transformation is defined and,
finaly, the generalisation to nrary relationships (n>2) is explained. In Dey, Storey &
Barrow (1999) asimilar analysis of transformation is performed considering semantics of
participation in cardinality constraints.

Several authors have attempted to reduce the complexity of transforming ternary
relationships into the relational model, looking for solutions at the conceptual level and
proposing that all ternary relationships become several binary relationships through an
intermediate entity type, (Ullman & Widom, 1997). This solution can be seen as a specia
case of the so-called standard of the transformation (Figure 24). However, we believe that
to carry out this transformation at the conceptual level is hasty and may imply a certain
semantic loss (Silberschatz, Korth & Sudarshan, 2001).

Database Integrity: Challenges and Solutions

E, (K,,attributes E;) E; (K;, attributes_E ;)

A A
|

Ik, Kz, Ky attributes 1)
|

v

E; (K, attributes_Ey)
Figure 24: Standard transformation of an ternary relationsihp (Figure 23)

On the other hand, Elmasri & Navathe (1994), Hansen & Hansen (1995) and others, treat
in different ways a ternary relationship in a conceptual model and its transformation into
arelational model. They propose as a unique solution the transformation to the general
case, athough they recognise that combining the ternary relationship with one or more
binary relationships could be of interest, even if cardinality constraints are not taken into
account. In our opinion, cardinality constraints contribute so much to validate and
transform ternary relationships.

The transformation to the general case (Figure 23) trand ates each entity into a relation
and the relationship into a new relation; the foreign key delete and update options would
be defined in the cascade mode, as is shown in Figure 24. The general case does not
observe the relationship cardinalities. However, as can be seen in the following
classification (Table 12) in aternary relationship there are atotal of twenty possible
combinations for the minimum and the maximum cardinalities and the previous
transformation will not be able to represent the associated semantics in al of them.

E,

Figure 23: A ternary relationship
Table 12: Ternary relationship classification

N:M:P 1I:N:M 1:1:N 1:1:1
A B C A B C A B |C A B C
(O,N) (O,N) (O,N) (0,2) (L,N) (1,\N) (0,1 (0,1) (O,N) (0,1) (0,1) ((0,2)

(1,N) (O,N) (1,N) (1,1
(4,N) (1,N) (O,N) (O,N)|(1,2) (0,2) (1,N) (1,1 (1,3)
(4,N) (L,N) (L,N) (1, (L,N) [(L,N) (ON) (1,D) (1,1 (1,1

(O,N) (1,1) (1,N)
(O,N) (O,N) (1,1) (1,N)

Database Integrity: Challenges and Solutions

Contrary to what happens in the binary relationships treatment, where problems arise

when the minimum cardinality is 1, in higher order relationships the biggest problems
take place when the minimum cardinality is O. It is not a singular issue because of the
different semantics that acquire the cardinalities in each case.

In the case that all the minimum cardinalities are 1, the standard transformation can be
applied (Figure 24), adding as primary key of | the three attributes that come from the
propagation of the primary keys of the entities associated by the relationship. Referential
integrity in the relationship | would ensure the semantics of the ternary relationship.

If one of the minimum cardinalitiesis O (for example, E; in Figure 25) and comparing it
to the relational schema of Figure 24 (standard transformation), standard transformation
would not be applicable, since the relationship | would have as a primary key the
composition of the primary keys of E;, E> y Es, but the presence of 0 would indicate that
there can be occurrences of E; related to occurrences of E;, but not to occurrences of Eg;
consequently, it means that K3 as the primary key component could allow nulls, which is
contradictory with the standard primary key definitiorii2,

(1,m) A (1)

E, E.

Figure 25: A ternary relationship with minimum cardinality O

Although the aforementioned authors propose to carry out the transformation in the
conceptual schema by means of the use of binary relationships, the same problem
remains due to the fact that transformation into the relational model of the connecting
entity has as primary key the set of the primary keys of the participant entities E;, E, and
Es. By imposing the use of binary relationships, we believe that a limitation of the
relational model is moved to the conceptual model, although it is an easier solution nearer
to implementation aspects; for example most of the commercial CASE tools only support
binary relationships in their models. Since we propose a conceptual model that is
completely independent of any logical model, we must concentrate our effortsin the
transformation process in order to allow the designer to model at the maximum
abstraction level.

To represent the semantics of minimum cardinality 0, the proposed solution, shown in
Figure 26, is to transform the original relationship | into two relations, | and g3 where |
contains the occurrences of E; related to E, and to E3, while g3 only represents those
occurrences of E; related to Ep, but not Es. Asit can be seen, new semantics has been
incorporated into the general case transformation.

- 100 -

Database Integrity: Challenges and Solutions

Tes (K, K;. attributes i)

I, (K, attributes_ Fy) IZ; (K, attributes_E;)

A 4
.

I (K, K. K; attributes_i)

t (Ks, attributes E,)
Figure 26: Relational model transformation of Figure 25

Relations | and g3 are semantically related although their understanding is different from
each other and also different from the original relationship I. The semantics of the
original relationship | (Figure 25) is equivalent to the whole semantics of both | and Igs.
Moreover, | and g3 should not be overlapped in the sense that the tuples of E; and E; that
participate in lgz cannot participate in | because they are not related to any tuple of Es.

Now that the problem for ternary relationships has been presented and the contribution to
solving it considering the minimum cardinalities O has been explained, let us see how we
can generalise this processing for nrary relationships (n>2).

Transformation of n-ary Relationships (n>2)

Let | be anary relationship with n>2 and no semantic constraint exist among the entities
that participatein I. Thisimplies that the relationship cannot be decomposed in lower
degree relationships without semantic loss (Figure 27). The entities E; have, asamain
identifier, an attribute or group of attributes K; and let us suppose that these entities are
different from each other. Besides, to clarify in the notation, the rest of the attributes of
the entities will not be considered since they do not affect the transformation process.

- 101 -

Database Integrity: Challenges and Solutions

= -

EII
Figure 27: N-ary relationship n>2

The standard transformation of the relationship | produces one relation that has at least n
attributes and each attribute has associated with it the foreign key constraint
corresponding to the entity in which the attribute was main identifier. Therefore, just like
the binary relationships case a basic transformation represented in the Figure 28 is used;
it includes the primary keys of each E; and the foreign keysin |. Delete and update
options are not represented, although in the transformation of binary relationship (see
previous section) these options help us specify the semantics of the cardinalities, but do
not contribute to the transformation of higher order relationships. Consequently, thisis
the standard transformation and additional constraints will be added for taking into

account the cardinalities of each E; in the conceptual model while trying to preserve their
semantic.

E; (K, atiributes E;) Es (g, atinibutes L)

Y d

ik, ke oo K o K Ky attributes 1)
*_4 |

F, (K, attributes F,) E, (Ky attributes_E,)

Eq o (Ky, attributes Loy
Figure 28: N-ary relationship standard transformation into the relational model

Definitions : Let Cix,v)(1) bethe groups of different cardinality constraints associated to
the entities participating in the higher order relationship | (n>2):

-102 -

Database Integrity: Challenges and Solutions

in which C(O,n)(') n C(O,l)(') n C(lyn)(|) n C(l,l)(l) =@ and C(O,n)(') ? C(O,l)(l) ? C(lyn)(|) ?
Cap() ={E,, En} and where card (I, Ei) indicates the minimum and maximum
cardinality of the entity type Ei in the relationship .

We also define the notation used for the semantic restrictions of relational modd:

PK(R) = attributes that composed the primary key of the relation R
FKi(R,S)= attributes that composed the i-th foreign key of therelation Rthat
references to the relation S.

UK(R) = attributes that composed the i-th alternative key of therelation R
MA(R) = mandatory attributes of R

The transformation algorithm is given below:

| f C(O,l) ? f then
1. Let be E ? Co 1 then add the follow ng constraints:
PK(') = (Kl,..., Ki—la Ki+1,..., Kn)
K ? MA(I)
2. For the remminder of E¢ ? Gy, add to each of themthe
fol |l owi ng
constraints:
UK(1) = (K, ooy Ken, Kisa,
A create a new rel ation:
lee (Ko, .o, Ken Kisn, oo, Ky)
And the follow ng associated constraints to the new rel ation:
PK(ls) = (Kg, ..., Ki-1, Kisr, oo Kp)
FKi(ls, E) = (K), t =1, ..., k-1, k+1, ..., n
3. For each E ? G117 add the follow ng constraints
UK(l)r = (Kl, ey Kr.l, Kr+]_, ey Kn)
4. For each Es ? Con create lg (Ky, ..., Ko1, Keig, ..., Ky
Wth the foll owing constraints:
PK(lg) = (K, ..., Ko, Ker ..., Ky
FKi(lgs, E) = (K), t =1, ..., s-1, s+l,

. Kw)

else If Caq ? f then
1. Let be E? Gy 1 then add the follow ng constraints:
PK(1) = (K, ..., K1, Kisg ., Ky
K ? MA(K)
2. For the remminder of E¢ ? Ca,1, add to each one of themthe
foll owi ng constraints:

-103-

Database Integrity: Challenges and Solutions

UKk = (K, ooy Ker K, -y Ky)
3. For each Eg ? C(O,n) create IES(Ky, ..., Ks1, Kesi1, ..., Kn)
Wth the foll owi ng constraints:
PK(IES) = (K11 IR KS-la KS+1 ----- Kn)
FKi(lg, E) = (K), t =1, ..., s-1, s+1, ..., n
else If Con ? f then
1. PK(lI) = (K, ooy Ky oo Kp)
2. For each E ? Con create lg(Ky ..., Ki.g,
I<j+:|_y ey Kn)
Wth the followi ng constraints:
PK(|EJ) = (Kl, ey Kj.l, Kj+1 ey Kn)
FKe (I, E) = (K), t=1,..., j-1,5+1, ..., n
else PK(l1) = (Kg, ..., K, ..., Kp

All relationships created, Ig;, will be transparent to the users who access to the database; it
means that they are supported on the DBMS. This automatic control of the relations Ig;
will make the semantics of the original relationship | (Figure 27) equivalent to the whole
semantics of the relations.

To carry out updates and queries in the appropriate relations when a data request is made
for the relation | the use of triggersisrequired . The problem is that the triggers only are
activated when the event is an update, and so has to be built as the result of the union of
al relations Ig; and | in order to use triggers in queries. This view will hide the
implementation details of the base relations to the users and, consequently, it will avoid
that the database could be in an inconsistent state. The update triggers will be associated
to this view and depending on the features of the update tuple(s) the transaction will be
madein | or in some Ig. Queries always will be carried out in the view, because this view
reflects the semantics of relationship 1.

Building arelational structure, such as aview, that is able to represent an abstraction

level between the user and the DB with the purpose of maintaining cardinality constraints
and in this way not leaving inconsistency in the database, implies severa practica
implications that will be commented on in the following section.

Finally, an example of the application of the algorithm for aternary relationship that

holds the most restrictive cardinalities (Figure 29a) from the point of view of Chen's qyle
definition is illustrated.

-104 -

Database Integrity: Challenges and Solutions

o

h| J I.-:

Ty ocourrences; <1 ocourmences:
b ¢ d

F. Iy occurrences:
® el

Figure 29a: Ternary relationship example

Let beaand b E; occurrences, ¢ and d E, occurrences and e and f Ez occurrences (Figure
293a). And let be, at timet, the following relationship occurrences, Figure 29b.

Figure 29b: | relationship occurances, at time't

Note that the bottom mears the optional cardinalitiesin E; and E,. The standard
transformation brings about a relation for each entity:

E; (Kl,) with PK (E]_)
E (Kz) with PK (EZ)
Es (K3,.....) with PK (Es)

And one relation for the relationship:

I(K1, Kz, Ks) with FK; (I, B) = (K)), i = 1,2,3.

It cannot be added to the primary key constraint since it might not exist K1 or K values.

-105-

Database Integrity: Challenges and Solutions

Applying the transformation algorithm, in order to add constraints and new relations to
gather the semantic of the cardinality constraint in I:

Asit exists one (and only one) entity in C(o 1), the input is the first If, so the following
constraints must be added:

PK(I) = (K2, K3)
K1 ? MA(l)

Note that as the E; minimum cardinality is 0, K1 may alow null values so it can not take
part of the | primary key. The maximum cardinality 1 is ensured by the primary key K,
Ks.

The maximum and minimum cardinality of Es is 1, so it exists as afunctional dependency
K1,K2? Kszandiscollected trough an alternative key:

UK(|)R = (Kl, K3)

Finally, to collect the semantic associated to the cardinality (0,n) the relation Ig2 (K1, Ks)
must be added, with the following constraints:

PK(||52) = (Kl, K3)
FKr(le, Er) = (K7), T=1.3

[281© Oracle Corporation.

[P The standard primary key definition is given in Date (1995), although other authors
like Thalheim maintain that the primary key can alow nulls in some of its attributes
(1989).

PRACTICAL IMPLICATIONS

The main problem for most database designers is that when using a conceptual model, in
spite of its powerful in semantics collection, it is very complicated to not lose part of this
semantics in the transformation into alogical model, as in the relational model (Codd,

- 106 -

Database Integrity: Challenges and Solutions

1979). Designers realise how to transform entities or classes, relationships or associations,
but there exist other significant constraints which are not so easy to transform.

This mears that conceptual models are used exclusively as a validation tool and as a
specification document of the user requirements. The database design will be carried out
in aless abstract model and in a model which may be directly implemented in a DBMS.

In many situations, designers lean on CASE tools to carry out the transformation from a
conceptual to logica model. However, these tools merge conceptual with logical and
even physical aspects and apply ssimple rules that they know, so they are only useful to
save time in design?Y.

In any case, constraints' control or business rules of an information system will be
allocated by the different applications that access to the database. In this way, developers
will have the responsibility to control the database consistency. This distribution of the
semantics has associated a potential lose of control, as well as database inconsistencies.

In this chapter a methodology is presented for achieving the transformation of a
significant constraint into conceptual models, as a cardinality or multiplicity constraint,
with the objective to keep their semantic in the database.

Due to the fact that the relational model does not support full control for cardinality
congtraints, the methodology leans on ECA rules that are built into several DBMSs,
fitting them of activity. There exist two types of active behaviour, proactive and reactive.
Proactive behaviour generates events, in the opposite, reactive behaviour consumes
events.

Usually active DBM Ss present reactive behaviour; therefore, it will be necessary for
some external element to act as a source of events. Once the DBM S detects the
appearance of an event, it will analyse its environment and it will autoromously execute
an action if necessary.

It isimpossible to collect all the semantics into the relational model. Additional elements
not belonging to the model are needed. In this way, in the triggers built, elements out of
standard proposals, as SQL3 (Melton & Simon, 1993) have been used. Next, the main
characteristics needed are shown:

User interaction.
Procedural capabilities
Transactional capabilities.
External semantic control.

- 107 -

Database Integrity: Challenges and Solutions

User interaction is needed to solve the information management required in the trigger
execution. In the internal constraints case, this interaction may be ruled by the DBMS
from the schema information in the database (metadata). In the implemented triggers,
user interaction is performed through invocation to procedures. The invocation to
procedures as action of ECA rulesis considered appropriate (ACT-NET Consortium,
1996) to allow the DBMS to control the information system. For example, this approach
could be used for the problem of maintaining updated forms that are visualised by the
user or as we have redlised for the problem of conduct data entry. Commercial DBM Ss
give insufficient support for interacting with the user through a call to a procedure for
data entrance, although it is possible to maintain severa updates ina data structure and
only to make them effective if it is proven that they don't violate the cardinality constraint.
That test will be carried out with triggers.

In some cases, in the case of user interaction, a potential problem is that the life of a
transaction is dependent on user's action. For example, if this user was absent of the work,
the resources used by the transaction would be locked. A possible solution would be to
establish atimer to force its end.

Many commercial RDBM Ss have extended the SQL 92 standard with procedural
capabilities. SQL 3 standard (Melton & Simon, 1993) has a part (SQL/PSM), based on
these capabilities. It is required to have, besides user interaction, at least the possibility of
minimal control flow capabilities (a conditional statement), comparison and set
membership.

The event of the triggers is always an update operation on the DB, thus, they are activated
in the scope of atransaction and the trigger execution must be integrated with transaction
execution. Interaction withtransaction is an active research field of Active DBMS.
Moreover, they would solve the synchronisation problems and the non-termination
possibility that can take place in the interaction between rules and the usual operation of
the DBM Ss. These problems would require the establishment of a concrete execution
model that is not objective of this study (Paton & Diaz, 1994; Ceri & Faternali, 1997
Paton & Diaz, 1999). In particular, in the trigger body it is only needed to roll back the
whole transaction. It can be useful a nested transaction model (Orfali, Harkey & Edwards,
1999; Gray & Reuter, 1993), such that it would alow reentry in case a procedure begins a
transaction.

When using external procedures to control the semantics, the DBM S does not know what
actions the procedures perform, so they may violate the integrity. A possible solution to
this problem, chosen in this chapter, is to establish a contract or a commitment between
the DBMS and the external procedure. In this way, the semantics control is only carried
out by the DBM S while the application procedures are limited only to dataentry. To
ensure the execution of this contract, a concrete system could demand application
registration and certification procedures.

To ensure that the semantic is shared by all applications independently, access to the
database is necessary to transfer the semantic control to the DBMS. Thisis especially

- 108 -

Database Integrity: Challenges and Solutions

significant with the tools that permit users to access the database contents. To maintain
the semantics together with the database schemata is an open research and away to fit to
the schemas of the executability property (Hartmann et al., 1994; Sernadas, Gouveia &
Sernadas, 1992; Pastor et al., 1997; Ceri & Faternalli, 1997). The case study presented in
this chapter tends to adjust to this possibility, because it alows the static semantic in the
EER schema may decide the dynamic behaviour in the database, although the system
dynamic behaviour is not studied.

[0 Sometimes, even if the tool learning cost is higher enough, it is not even time saving.

FUTURE RESEARCH

In this chapter we have tried to study in depth and clarify the meaning of the features of
conceptual models. The disagreements between the main conceptual models, the
confusion in the use of some of their constructors, and some open problemsin these
models, have been shown.

Another important question treated in this chapter is the conceptual schemata
transformation process into logical schemas. Some a gorithms have been present to
preserve the cardinality constraint semantics in both, binary relationships and higher
degree relationships for their implementation in a DBMS with active capabilities.

There are two main causes of semantic loss in database design: First, semantics collected
in conceptual schemata are not enough to reflect the overall Universe of Discourse due to
the limitations of conceptual constructors. This requires adding explicitly to the
conceptual schema some informal statements about constraints. A notation extension for
reflecting the MERISE participation and Chen cardinality definition in higher order
relationships should be proposed.

On the other hand, in any database devel opment methodology there is a process devoted
to transform conceptual schemata into logical schemata. In such process, a loss of
semantics can exist (logical constructs are not coincident with conceptual constructs; for
example, entities and relationships in conceptual schemata become relationsin logical
design). So, some algorithms with active rules must be applied to achieve that the logical
models keep their semantics.

In the last decade, multiple attempts of giving a more systematic focus to the resolution
of modelling problems have been developed. One such attempt has been the automation
of database design process by using CASE tools that neither have enough intelligent
methodol ogical guidance, or provide, usually, adequate support the design tasks.
Commercial CASE tools for database developments do not cover database design phase
with real EER models; that is, they only provide graphical diagrammatic facilities
without refinement and validation tools that are independent of the other development
phases. CASE environments usually manage hybrid models (merging aspects from EER
and Relational models) sometimes too close to physical aspects and they use a subset of
EER graphical notation for representing relational schemata.

- 109 -

Database Integrity: Challenges and Solutions

A suitable CASE tool is one that incorporates a complete conceptual model, as the ER
model, by adding the semantics into the relationships, in the way as we propose in this
chapter.

ACKNOWLEDGEMENTS

This work takes part of the project PANDORA (CASE Platform for Database
development and learning via Internet) Spanish research CICY T project (TIC99-0215).

ENDNOTES

11.

12.

13.

From now on, we will use the original names (entity and relationship).

The presence of a multivalued attribute in a relationship implies that the
identification of its occurrences has to consider this attribute.

Possible occurrences of the relationship with incomplete information are not
considered.

Multiple combinations of entities are possible; for example, in nary relationships
(n>=2), combinations of only one entity up to combinations of n-1 entities are
possible. In this sense, the definitions that consider combinations do not define a
unique possibility, but many (as many as possible combinations).

The possible occurrences of the relationship with incomplete information are not
considered.

This concept is trandated from the relational model into a functional dependency
that can be used in refining the relational schema.

We suppose that there are not additional semantic constraints between the entities
participating in the ternary relationship of type: "an employee works exactly in
one department,” "an employee uses one programming language,” €etc.

Maximum cardinality of 1 in Programming Language expresses a functional
dependency: employee, project ? programming language.

In French, constrainte d'intégrité fonctionnel.

. While Chen's approach is not able to express optional/mandatory participation, it

represents functional dependencies.

This exclusive-or constraint is not directly established between the two
relationships, because one is a ternary relationship while the other is a binary one.
It is established between the binary relationship and an algebraic projection of the
ternary relationship.

Entity integrity constraint (defined in the relational model and generalized to the
ER model) disallows optional attributes as part of an entity identifier; this
constraint has been relaxed in the relational model (Thalheim, 1989; Levene and
Loizou, 1998), by replacing the identification concept with the distinguishability
(disjunctive identification) concept.

It isnot aformal and correct definition if we want to keep the relational model
property that the order of attributes is irrelevant. In addition, it does not consider

-110-

Database Integrity: Challenges and Solutions

the existence of attributes in the relationship and suppose that all attributes in the
entities are primary identifier attributes.

14. This symbol has been used in asimilar way by denotational semantics.

15. It isnot aformal and correct definition if we want to keep the relational model
property that the order of attributes isirrelevant. In addition, it does not consider
the existence of attributes in the relationship and suppose that al attributes in the
entities are primary identifier attributes.

16. In fact, these occurrences are pairs composed of an occurrence of one entity and
the bottom symbol of the other entity.

17. This observation poses a difficulty in attaining consistency among the model
constructs that can interact with each other in unpredictable ways.

18. © Oracle Corporation.

19. The standard primary key definition is given in Date (1995), although other
authors like Thalhelm maintain that the primary key can allow nulls in some of its
attributes (1989).

20. Sometimes, even if the tool learning cost is higher enough, it is not even time
saving.

REFERENCES

ACT-NET Consortium (1996). The Active Database Management System Manifiesto: A
Rulebase of ADBMS Features. ACM Sgmod Record 25 (3), 4049, 1996.

Batra, D. & Antony, S. R. (1994). Novice Errorsin Conceptual Database Design.
European Journal of Information Systems, 3(1), 57-69.

Batra, D. & Zanakis, H. (1994). A Conceptual Database Design Approach Based on
Rules and Heuristics. European Journal of Information Systems, 3(3), 228-239.

Boman, M. et a. (1997). Conceptual Modelling. Prentice Hall Series in Computer
Science.

Buneman, P. et. al. (1991). Using power domains to generalize relational databases.
Theoretical Computer Science 91, 23-55.

Ceri, S. & Fraternali, P. (1997). Designing database applications with objects and rules :
the IDEA Methodology. Addison-Wesley.

Chen, P. P. (1976). The Entity-Relationship Model: Toward a Unified View of Data.
ACM Transactions on Database Systems. 1, 1, 9-36.

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks. CACM 13
(6), June 1970.

Codd, E. F. (1979). Extending the Database Relational Model to Capture More Meaning.
ACM Transactions on Database Systems, 4 (4), 397434, December 1979.

Date, C. J. (1986). An Introduction to Database Systems. Addison-Wesl ey, Reading,
Mass.

Date, C. J. (1990). An Introduction to Database Systems. 5 ed. Addison-Wesley,
Reading, Mass.

Date, C. J. (1995). An Introduction to Database Systems. 6™ ed. Addison-Wesley,
Reading, Mass.

Dey, D., Storey, V. C. & Barron, T. M. (1999). Improving Database Design Through the
Analysis of Relationships. TODS 24(4), 453-486.

-111-

Database Integrity: Challenges and Solutions

Elmasri, R. & Navathe, S. (1994). Fundamentals of Database Systems. 2nd ed.
Benjamin-Cummings, 1994.

Fahrner, C. & Vossen, G (1995). A survey of database design transformations based on
the Entity-Relationship model. Data & Knowledge Engineering 15, 213-250, 1995.
Gray, J. & Reuter, A. (1993). Transactions processing, concepts and techniques. San
Mateo: Morgan Kaufmann, cop.

Hansen, G. & Hansen, J. (1995). Database Management and Design. Prentice-Hall, 1995.
Hartmann, T. et. a. (1994). Revised Version of the Conceptual Modelling and Design
Language TROLL. Proceedings | SCORE Workshop, Amsterdam, 89-103.

Hull, R. & King, R. (1987). Semantic Database Modelling: Survey, Application, and
Research Issues. ACM Computing Surveys 19 (3), 201-260, 1987.

Jones, T. H. & Song, IL-Y. (1998). And Analysis of the Sructural Validity of Ternary
Relationships in Entity-Relationship Modelling. Proceedings of the 7" International
Conference on Information and Knowledge Management, CIKM'98, 331-339, November,
1998.

Levene, M. & Loizou, G. (1998). A Generalisation of Entity and Referential Integrity in
Relational Databases. Theoretical Computer Science, 206(1-2), 6 October 1998, 283—
300.

Martinez, P. et. al. (2001). Multivalued attributesin conceptual modelling: design
implications. To appear in Journal of Object Oriented Programming.

McAllister, A. (1998). Complete Rules for n-ary Relationship Cardinality Constraints.
Data & Knowledge Engineering 27, 255-288.

Méelton, J. & Simon, A.R(1993). Understanding the New SQL: A Complete Guide.
Morgan Kaufmann Publishers, Inc., San Mateo, CA.

Nijssen, G. M. & Halpin, T. A. (1989). Conceptual Schema and Relational Database
Design—A Fact Oriented Approach. Prentice-Hall, New Y ork.

OMG (2000). Unified Modelling Language Specification, Version 1-3. Object
Management Group. ACM Computing Surveys 31(1): 63-103

Orfdli, R., Harkey, D. & Edwards, J. (1999). Essential Client/Server Survival Guide. John
Wiley & Sons, Inc. 3% Edition.

Paton, N. W. & Diaz, O. (1999). Active Database Systems. ACM Computing Surveys, 31
(1), 63-103.

Paton, N. W. (1999). Active Rules in Database Systems. Springer-Verlag, New Y ork.
Pastor, O. et. a. (1997). OO-METHOD: An OO Software Production Environment for
Combining Conventional and Formal Methods. Proceedings CAISE'97, Olivé A., Pastor
JA. (Eds.), LNCS 1250, Barcelona, June 1997, 145-158.

Peckham, J. & Maryanski, F. (1988). Semantic Data Models. ACM Computing Surveys
20 (3): 153-189, 1988.

Ramakrishnan, R. (1997). Database Management Systems. MacGraw-Hill International
Editions, 1997.

Rumbaugh, J., Blaha, M. & Premerlani, W. J. (1991). Object Oriented Modelling and
Design. Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Sernadas, C., Gouveia, P. & Sernadas, A. (1992). OBLOG: Object-Oriented, Logic-
Based, Conceptual Modelling. Research report, Instituto Superior Técnico.

Silberschatz, A., Korth, F., & Sudarshan, S. (2001). Database Design Concepts. 4th ed.
McGraw-Hill, July 2001.

Database Integrity: Challenges and Solutions

Soutou, C. (1998). Relational Database Reverse Engineering: Algorithms to extract
Cardinality Constraints. Data & Knowledge Engineering 28, 161-207.

Tardieu, H., Rochfeld, A.& Coletti, R. (1983). La Méthode MERISE. Tome 1: Principles
et Outils Les Editions d'Organisation, Paris.

Teorey, T. J,, Yang, D. Fry, J. P. (1986). A Logical Design Methodology for Relational
Databases Using the Extended Entity-Relationship Model. ACM Computing Survey.
18(2).

Teorey, T. J. (1999). Database Modeling and Design: The Entity-Relationship Approach.
3% ed. Morgan K aufmann, San Mateo, 1990.

Thalheim, B. (1989). On Semantic Issues connected with Keys in Relational Databases
permitting Null Values. Journal of Information Processing Cybernetics, 25:11-20.
Thalheim, B. (2000). Entity-Relationship Modelling. Foundations of Database
Technology. Springer-Verlag

Ullman, J. D. & Widom, J. (1997). A First Course In Database Systems. Prentice-Hall
International.

Van der Meydem, R. (1998). Logical Approaches to Incomplete Information: A Survey.
In J. Chomicky and G. Saake editors, Logic for Databases and Information Systems.
Kluwer Academic Publishers Chapter 10, 307-356

Wand, Y., Storey, V. C. & Weber, R. (1999). An Ontological Analysis of the Relationship
Construct in Conceptual Modelling. ACM Transactions on Database Systems, 24(4),
494-528.

Chapter 1V: Integrity Constraintsin an
Active Database Environment

Juan M. Ale, Universidad de Buenos Aires,
Argentina

Mauricio Minuto Espil, Pontifica Universidad Catdlica Argentina,

Argentina

This chapter surveys the interaction between active rules and integrity constraints. First,
we analyze the static case following the SQL-1999 Standard Committee point of view
which, up to date, represents the state of the art. Then, we consider the case of dynamic
congtraints for which we use a temporal logic formalism. Finally, we discuss the
applicability, limitations and partial solutions found when attempting to ensure the
satisfaction of dynamic constraints.

INTRODUCTION

-113-

Database Integrity: Challenges and Solutions

Databases are essentially large repositories of data. From the mid-1980s to the mid-1990s,
a considerable effort has been made to incorporate reactive behavior to the data
management facilities available (Dayal et a., 1988), (Chakravarthy, 1989) and
(Stonebraker, 1986). Reactive behavior is seen as an interesting and practical way for
checking satisfaction of integrity constraints. Nevertheless, constraint maintenance is not
the only area of application of data repositories with reactive behavior. Other interesting
applications areas are materialized view maintenance (especialy useful in the
warehousing area), replication of data for audit purpose, data sampling, workflow
processing, implementation of business rules, scheduling, and many others. In fact,
practically al products offered today in the marketplace support complex reactive
behavior on the client side. Nevertheless, the reactive behavior supported by these
products on the server side is, in fact, quite poor. Recently, the topic has regained
attention, however, because of the inherent reactive nature demanded in Web applications,
and the necessity of migrating much of their functionality from browsers to active Web
servers.

Supporting reactive behavior implies that a database management system has to be
viewed from a production rule system perspective. Production rule definitions must be
supported, therefore, by an active database system. These production rules are well
known nowadays, in database terminology, as active rules or simply triggers.

Undesired behavioral characteristics have been observed related to production rule
systems, though. For example, termination is not always guaranteed, non-determinism
can be expected in the results, and confluence with respect to an desired goal cannot be
achieved (Aiken, Hellerstein, Widom,1995; Baralis & Widom, 2000b). Since triggers and
declarative integrity constraints definitions may appear intermingled in a concrete
application, an integrating model is needed to soften, to some extent, the effects of this
undesirable behavior, ensuring that, no matter what the nature of the rules involved,
integrity is aways preserved.

Active rules and integrity constraints are related topics (Ceri, Cochrane, Widom, 2000).
Systems do not support both completely, but partially, in their kernels. When a constraint
must be enforced on data, if such constraint cannot be declared, it may be implemented
by means of triggers. Studying the relationships between constraints and triggers from
this point of view is therefore mandatory. In simple words, we need methods to check
and enforce constraints by means of triggers.

From a user point of view, reactivity is a concept related to object state evolution over
time. Dynamic constraints, constraints making assertions on the evolution of object states,
may be needed to control changes in the state of data objects (Sistla & Wolfson, 1995a).
Dynamic constraints are mandatory in the correct design of applications, particularly for
workflow processing and for the Web. Actual products support some kind of

functionality in this area, allowing triggers to refer to transitions, the relations existent
between states, when an atomic modification operation is executed. Supporting such type
of constraints by means of handcrafted triggers written by a novice, without any method

in mind, may result in potentially dangerous effects from the perspective of correctness.

- 114-

Database Integrity: Challenges and Solutions

Formal methods guaranteeing correctness are thus needed for a good deployment of such
triggers.

The main goal of this chapter is to analyze the concepts related to integrity constraintsin
an active database environment. Hence we focus our discussion on the interaction
between active rules and declarative constraints from both static and dynamic
perspectives.

BACKGROUND

Usually, a database system performs its actions in response to requests from the users ina
passive way. In some cases it is highly desirable that actions could be taken with no
human intervention, that is, automatically responding to certain events.

Traditionally, the latter has been obtained by mbedding that behavior into the
applications, that is, the application software recognizes some happenings and performs
some actions in response.

On the necessity of such reactive behavior, obvioudly, it would be desirable that such
functionality would be provided by the database system. A database with the capability to
react to stimulus, be these external or internal, is called an active database. Among the
applications we can find are inventory control systems, ontline reservation systems,
portfolio management systems, just to name afew (Paton & Diaz, 1999).

An active database system can be thought of as coupling databases and rule-based
programming. The active database rules enable many desired database features such as
integrity constraint checking and enforcement, derived data maintenance, alerts,
authorization checking and versioning.

Knowledge M odel
A central issue in the knowledge model of active databases is the concept of active rule.

An active rule can be defined throughout three dimensions. event, condition and action.
In this case, the rule is termed an ECA or eventconditiontaction rule, which specifies an
action to be executed upon the happening that is to be monitored, provided a condition
holds.

An event is defined as something that happens at a point in time. The source of the event
determines how the event can be detected and how it can be described. We have several
alternative sources, such as transactions, where the event is originated by transaction
commands abort, commit and begin-transaction. Other sources are operations on
structure, where the event is raised by an operation such as insert, delete or update, on
some components of the data structure; clock or temporal, where the event raises a a
given point in time; external, in the case that the event is raised by something happening

-115-

Database Integrity: Challenges and Solutions

outside the database. An example of the latter is the level of water reaching some
specified height.

An event can be either primitive, in which case it is raised by a single occurrence in one
source, or composite, in which case it is raised by a combination of events, whether
primitive or composite.

A condition, i.e., aSituation with respect to circumstances, is the second component of an
active rule. We must consider the context in which the condition is evaluated. In general,
we can associate three different database states with the condition in the processing of a
rule, i.e., the database at

the start of the current transaction,
the time when the event took place,
the time the condition is evaluated.

Moreover, since the state before and after the occurrence of an event may be different,
the condition can require the access to a previous or a new value.

An action consists of a sequence of operations. There are several options or possible
actions, such as updating the structure of the database, meke an external call, abort a
transaction, or inform the user about some situation. The action has a similar context to
that of the condition. The context, in this case, determines which data is available to the
action.

In general, an event can be explicit or implicit. In the first case, the event must always be
giveninarule. It is said that the system supports ECA-rules. If the event is not specified,
the rules are called condition-action.

In ECA rules the condition can be optional. Then, if no condition is given, we have
event-action rules.

Execution Model
The execution model determines how the rules are managed at execution time. This

model is strongly dependent on the particular implementation, however, it is possible
describe it in general by using aset of common activities or phases:

Sgnaling begins when some source causes an event occurrence.

- 116 -

Database Integrity: Challenges and Solutions

Triggering analyzes the event signaled and triggers the rules associated with that
event. Thisis called rule instantiation.

Evaluation evaluates the condition part of instantiated rules. In this phase the rule
conflict set is built containing every rule with satisfied conditions.

Scheduling determines how the conflictive rules will be processed.

Execution runs the corresponding actions from the instantiated rules with
satisfying the conditions.

How these phases are synchronized depend on the so-called coupling modes of ECA
rules. There are two coupling modes. Event-Condition (E-C) and Condition-Action (C-A).
We describe them as follows:

1. E-C coupling mode: Determines when the condition is evaluated, considering the

triggering event produced by some source. In this case, we have three different
options available:

o Immediate coupling, where the condition is evaluated as soon as the event
has happened.

o Deéayed coupling, where the evaluation of the condition part of theruleis
not performed immediately after the event triggering but is delayed until
something happens before the commit of the transaction.

o Detached coupling, where the condition is evaluated in a different
transaction from the one triggering the event.

2. C-A coupling mode: determines when the action is executed, considering the
condition evaluation. The same options as for EC are applicable in the C-A mode.

Activation timeis a concept that fixes the position of the signaling phase with respect to

the event occurrence. It can be expressed by using a temporal modal operator such as
before, after, while, and so on.

Transition granularity is a concept used in anayzing the relationship between event
occurrences and rule instantiations. This relationship can be one-to-one when the
trangition granularity is elementary. In this case, one event occurrence triggers one rule.
The relationship can aso be many-to-one, when the transition granularity is complex. In
this case, several event occurrences trigger onerule.

-17-

Database Integrity: Challenges and Solutions

Net Effect Policy is a feature that indicates whether it should be considered the net effect
of several event occurrences or each individual occurrence. The prototype database
system Starburst, as an example, computes the net effect of event occurrences as follow:

If an instance is created and possibly updated, and then deleted, the net effect is
null.

If an instance is created and then updated several times, the net effect is the
creation of the final version of the instance.

If an instance is updated and then deleted, the net effect is the deletion of the
instance.

Cycle Policy is related to what happens when an event is signaled as a consequence of a
condition evaluation or an action evaluation in arule. We consider two options: iterative
and recursive. In the former case, the events signaled by a condition or an action
evaluation are combined with those generated from the event sources and, consequently,
are then consumed by the rules. In the latter case, the events signaled by a condition or an
action evaluation cause the condition or action to be suspended in such away that the
rules monitoring the events can be processed immediately.

In the Scheduling phase, the order of rule execution is to be determined when multiple
rules are triggered simultaneously. Hence, the scheduler must consider the choice for the
next rule to be fired, applying some conflict resolutions policies, and the number of rules
to be fired. The latter presents several options such as: a) to fire al rules sequentialy; b)
tofireal rulesin parallel; c) to fire dl instantiations of a rule, before considering any
other rule.

Termination and Confluence

Even though active database systems are very powerful, the development of applications
can be difficult, mainly because of the unstructured and unpredictable nature of rule
processing. Thisis represented, basically, by rule interaction. Two important properties
related to this problem are termination and confluence. It is said that arule set is
guaranteed to terminate if, for any database state, and initial modification, rule processing
cannot continue for ever. A rule set is confluent if, for any database state, and initial
modification, the final database state after rule processing is independent of the order in
which the activated rules are executed.

In the last few years, many researchers have developed techniques that allow knowing in
advance if arule set has the properties of termination and confluence. These techniques
statically analyze arule set before setting the rules in the database. In particular, Baralis
& Widom (2000a) analyze some techniques for performing static analysis of Event-
conditiontAction and ConditiorAction rules. These techniques alow usto determine

- 118 -

Database Integrity: Challenges and Solutions

when the condition of one rule is affected by the action of other rules, and to determine if
two rule actions commute.

In the commercial systems side the approach consists of imposing syntactic limitations,
in order to guarantee termination or confluence at runtime, although in other cases
counters are used to prevent infinite execution.

INTEGRATING ACTIVE RULES AND
DECLARATIVE CONSTRAINTS

Let's get started by describing how kernels of present commercial DBM S support active
rules and declarative constraints together.

Today, almost every commercial relational DBM S to some degree adheres to the
proposal of the SQL-1999 standard. This standard establishes, in a more or less accurate
way, how active rule mechanisms and declarative constraints should be defined and
integrated.

Declar ative Constraints

We assume the reader is aready familiar with SQL constraints, so we smply start with a
brief introduction here to ease further comprehension. In a SQL-1999 compliant system,
four classes of declarative constraints are supported: check predicate constraints
referential constraints, assertions, and view check options. Check predicate constraints
aim at validating conditions against the actual state of one table in the database and
include primary key and unique definitions, not null column definition, and explicit check
clauses that validate general predicates on the values of some of the columns of the table.
Referentia constraints aim at guaranteeing that a many-to-one relationship holds on the
actual state of two tables: the referencing or child table, and the referenced or parent
table. A many-to-one relationship ensures that the column values of aforeign key (alist
of columns of the referencing table) match the column values of a candidate key (alist of
columns of the referenced table). Assertions aim at validating general predicates on rows
in different tables. View check options deal with the problem of admitting modification
operations through cascade defined views, yet retaining the natural meaning of the
operations.

A declarative constraint can be declared as having a deferrable or a nondeferrable
activation time. However, we limit our analysis in the chapter to non-deferrable
constraints only. The reader interested in a more thorough vision of constraint activation
time may refer to the standard documents. For example, suppose we have defined the
following table schemas:

invoice(invoice_number, customer, date, item_total);

-119-

Database Integrity: Challenges and Solutions

detail (invoice_number, item _id, quantity);
goods (item_id, price, quantity);

Declarative constraints for these tables could be:

cl: PRIMARY KEY (invoice_number), on table invoice;

c2: PRIMARY KEY (invoice_number, item_id), on table detail;

c3: PRIMARY KEY (item_id), on table goods,

c4: invoice_number REFERENCES INV OICE(invoice_number), on table detail
CASCADE;

c5 item_id references GOODS (item _id), on table detail RESTRICT.

Most of the declarative constraints included in the standard are currently supported by
almost every SQL-1999 compliant DBMS in the marketplace. Exceptions arise, however.
Complex conditions on rows in a table, like nested predicates and predicates involving
aggregation, athough allowed to appear in explicit check clauses by the standard, are
rarely supported nowadays in commercial systems. Assertions are scarcely seen in
commercia systems, either. We put off discussing these exceptions for the moment; we
will proceed with them in alater section.

Triggers

In SQL-1999 an active rule defined by the user is called atrigger, which is a schema
object in a database. The trigger structure is defined as follows:

CREATE TRIGGER <trigger_name> [BEFORE | AFTER] [<event > | <events>|
ON <table >

REFERENCING NEW AS <new_value> OLD AS <old value> NEW TABLE
AS<new_table> OLD TABLE AS<old _table>

FOR EACH [ROW | STATEMENT] WHEN <condition > <action >

Events can be statements INSERT, DELETE, or UPDATE <list >; <table > must be the
name of a defined base table or view name, <list > alist of column names of table <table
>. When understood from the context, the list of columnsin UPDATE statementsis
omitted. As we have pointed out before, we do not treat triggers on views here. From
now on, atrigger event is therefore a modification operation on a base table. The

Database Integrity: Challenges and Solutions

activation time is specified by keywords BEFORE or AFTER, thus yielding before and
after triggers. Before triggers fire immediately before the operation specified as the
trigger event has been issued. After triggers fire immediately upon operation completition.
The referencing clause admits defining correlation variables for transition values and
trangition tables, which allows the trigger to access column values in the affected rows
before and after the execution of the modification operation. The transition granularity is
specified by clause FOR EACH, and can be either set to ROW or STATEMENT. Hence,
row level and statement level triggers can be defined. Row level triggers fire one
instantiation for each row affected by the modification operation. Provided no row is
affected, arow level trigger is never instantiated. Statement triggers fire only once per
statement invocation and are evaluated even in the case the event does not happen to
affect any row. For example, triggers for the tables defined above are:

TRI GGER t 1: AFTER DELETE ON i nvoice
REFERENCI NG OLD AS ol d_inv_t FOR EACH
STATEMENT
WHEN exists (select * fromold_inv_t where
old inv_t.date > actual date)

rai se error and undo the del ete operation;

Trigger t1 prevents the user from removing future pendant invoices.

TRI GGER t 2: AFTER DELETE ON det ai |
REFERENCI NG OLD AS dt| FOR EACH ROW
updat e goods set quantity = goods.quantity - dtl.quantity
where goods.itemid=dtl.item.id.;

Trigger t2 updates the stock of an item whenever the item is removed from the detail of
an invoice.

Viewing Constraints as Rules

Integrating triggers with declarative constraints has proved to be a nonsimple task, due to
ubtleties present in actual implementations. Signaling, triggering and scheduling models
for active rules turn out to be non-uniform among database vendors, thus compromising
the clear understanding of the meaning of active rulesin general.

Moreover, aSQL constraint, although specified in a declarative manner, cannot be
regarded ssimply as a passive component. A declarative constraint includes, explicitly or
implicitly, the specification of repairing actions. Hence, declaring a SQL constraint may
be thought of as entailing the activation of internal active rules that enforce repairing
actions whenever the constraint is violated. Bulk dataimport and load operations are
different matters, of course, but these operations are normally supported by special utility

-121-

Database Integrity: Challenges and Solutions

packages and not by the kernel itself. Concede us putting away import-export operations,
therefore.

In summary:

1. Once acheck constraint is declared, two after rules for events INSERT and
UPDATE candidate key, respectively, become active on the (target) table where
the constraint is defined, with statement level granularity, and a condition defined
so as to be satisfied whenever the associated predicate is violated. The action part
for both rules consists in the execution of a controlled rollback undoing the effects
of the application of the modification operation. For instance, constraint c1
implies that a constraint rule with statement level granularity become active,
having INSERT as the rule event, invoice as the target table, and predicate:

2. exists (select * frominvoice, ?(invoice,insert)"V

3. where invoice.invoice_nunber =
?(invoice,insert)™ invoi ce_nunber

4, and not (invoice.ROND = ?(invoice,insert)™ ROND))

as the rule condition. In the predicate above, ? (invoice,insert)"®" stands for the new
trangition table, and ROWID stands for a dummy column containing the identifier of each
row in the table.

2. Whenever areferential integrity constraint is declared, the activation of the
following internal active rules are generated:

a. Two after rules for events INSERT and UPDATE foreign key,
respectively, on the referencing table, with statement level granularity, and
a condition stating that there exists at least one row in the new transition
table whose foreign key value does not match the candidate key value of
any row in the referenced table. Asit is the case with check constraints,
the action prescribed by these rule specifies a controlled rollback. For
instance, constraint c4 entails the activation of arule for event UPDATE
invoice_number on table detail, with predicate:

b. exists (select * from ?(detail, update)™™¥

C. where ?(detail, update)"™ . invoice_nunber not in
(select

d. i nvoi ce_number frominvoice)),

Database Integrity: Challenges and Solutions

asthe rule condition. ?(detail ,update)"™ above stands for the new
transition table.

e. Providing that the repairing action for constraint violation is neither
RESTRICT nor NO ACTION, two after rules for events UPDATE
candidate key and DELETE, respectively, on the referenced table, with
row level granularity, and a condition stating that there exists at |east one
(dangling) row in the referencing table whose foreign key value matches
the old value of the row instantiating the rule. For instance, constraint c4
entails the activation of arule for event DELETE on table invoice, with
row granularity, and predicate:

exists (select * fromdetail where
?(i nvoi ce, del ete) 9 invoi ce_nunmber =
detail.invoi ce_nunber)

old

asthe rule condition. ?(invoice,delete)™" above stands for the old value of each

row.

The firing of any of these rules would carry out the execution of an UPDATE
operation that sets the foreign key value of each dangling row in the referencing
table to null or a default value (options SET NULL and SET DEFAULT,
respectively), or the execution of a DELETE operation, removing all dangling
rows from the referencing table (option CASCADE). For instance, the constraint
rule for event DELETE on table invoice associated with constraint ¢4 has the
SQL command:

delete fromdetail where detail.invoice_nunber =
?(i nvoi ce, del ete) 9 i nvoi ce_nunber

asthe rule action. Again, ?(invoice,delete) stands for the old value of the row
being deleted.

6. Providing the repairing action for constraint violation is RESTRICT or
NO ACTION, two after triggers on the referenced table, for events
UPDATE candidate key and DELETE, respectively, with statement level
granularity, and a condition stating that there exists at least one row in the
referencing table whose foreign key value matches the candidate key of a

Database Integrity: Challenges and Solutions

row in the old transition table. For instance, constraint c5 implies the
activation of arule for event DELETE on table goods, with predicate:

7. exists (select * fromdetail,
d«(goods, del et e) °d
8. wher e dy(goods, delete)®d itemid = detail.itemid)

as the rule condition. di(detaildelete)”® stands here for the old transition table (the
notation will be clarified later). The firing of any of these rules would carry out the
failure of the modification operation and a controlled rollback undoing all changes.

Up to this point, the reader may wonder if declarative constraints and triggers are all the
same thing. Despite their similarities, declarative constraints and constraint rules must be
distinguished.

First, declarative constraints should be processed only after all changes entailed by an
SQL modification statement are effectively applied. Thisis not an arbitrary policy if we
accept that a modification statement in SQL may affect many rows at once and some
declarative constraints as primary and foreign key definitions involve the analysis of
many rows, too.

Second, it is unlikely to suppose that a rule designer is aware, when writing a trigger, of
all possible inconsistent states the database could reach. Hence, admitting alack of
consistency when firing a trigger would introduce unpredictable behavior in user
applications. The query optimizer could also outperform due to lack of consistency, when
aquery is prepared for execution in the body of arule, because the optimizer usually
makes use of constraints to simplify execution plans. A declarative constraint, on the
contrary, is meant to deal with inconsistent database states. Consequently, a trigger
should not be exposed to an inconsistent database state when the evaluation phase of a
rule instantiation begins, while a constraint could.

Moreover, a particular user would expect that the success or failure of the execution of a
particular statement could be predicted, particularly in the presence of triggers. In a sense,
she requires the process to be confluent. Unfortunately, this is not a simple goal to
achieve. The outcome of a modification statement may be affected in many ways; by the
order in which the rows involved in the modification are processed; by the particular
ordering chosen when applying cascade repairing actions to enforce multiple integrity
congtraints; by the firing of triggers; and so on.

The considerations above imposed the obligation of producing a precise specification on

how declarative integrity constraints and constraint rules should be integrated. The actual
accepted specification produced by the SQL-1999 standardization committee is based on

- 124 -

Database Integrity: Challenges and Solutions

a proposal submitted by a research group at the IBM Almaden Research Center
(Cochrane, Pirahesh, Mattos, 1996) We proceed now to review the set of
recommendations the standard draft establishes on how to proceed when triggers and
declarative constraints are specified together.

Binding Variablesto Transitions

The execution of an operation e affecting one row of atablet in the database (an
elementary modification operation) can be abstracted by the existence of atransition, a
pair consisting of the state ?(t,e)? of the row immediately before the execution starts,
and the state ?(t,e)"®" reached when the execution is complete (considering meaningless
values as old values in insert operations and new values in delete operations as nulls).
Since we have aready established that old and new transition variables are defined along
with atrigger, and since they can be referred by the condition and action parts of the
trigger, transition values have to be saved in memory. A binding has to be provided
therefore for each affected row, that links the trigger transitionvariables to the areain
memory that stores the values.

SQL modification operations are essentially bulk operations, so they can be abstracted as
sets of elementary transitions. Since the sets of transitions describing the SQL operation
must become available for use whenever firing atrigger or a constraint rule, transition
tables ?(t,€)%% and ?(t,€)"™" has to be created so as to store these sets of transitions. A
separate working area organized as forming a stack of storage space dots must be
provided to hold transition tables.

Evaluating Constraintsand Triggers

Suppose an SQL modification operation e, asan INSERT, UPDATE, or DELETE
statement, has been issued on atable t. The following steps are followed:

1. Thetransition old and new valuesimplied by operation e are computed and stored
in tables ?(t,e)” and ?(t,€)™" placed in the working space slot on top of the stack.
For example, suppose we have the statement:
delete invoice where invoice_number=15932; and the database instance:

2. invoice = { ..., ?1 (15932, 'A&R Lntd', 10-2-2001, 2), ... }

3. detail ={ ..., 2, (15932, 'Az532', 15), ?5 (15932, ' BD225'
3), ...}

4. goods = { ..., ?, ('AZ532', U$S45, 15751), 2?5 ('BD225', U$S18,
2769), ... }

?; standing for row numbers:

The transition tables computed for this operation are:

-125-

Database Integrity: Challenges and Solutions

?(invoi ce, del et e) ©d
and
?(invoice, del ete) ™"

{ 7, (15932, 'A&R Lntd', 10-2-2001, 2) }

{220C-, -, -, -)1

. A variable k, denoting the round number, is set to 0. Old and new transition tables
2(t,e)% and ? (t,€)™", currently at the top of the stack, are given aliases do(t,e)
and do(t,€)"®", respectively, for round 0. Note that when k=0, it turns out to be one
pair of tables dy(t,e)”® and dy(t,e)"" only, that corresponds to the transitions
computed for SQL statement e.

For each pair of tables di(t,e)”® and dk(t,€)"", before triggers with e in <events >
and t as <table> are considering for application, on aone by one basis, according
to aglobal ordering criteria, and enter their signaling phase. Statement triggers are
considered first whether currently selected table di(t,e)°® is empty, providing that
they have not been fired yet. Row level triggers are fired next, once for each row
in table di(t,e)”?, on arow by row basis. Each row in table di(t,e)”? generates an
instantiation of the trigger, and is attached to the trigger old transition variable. If
the event is INSERT or UPDATE, and the trigger action updates its new
transition variable, the corresponding row in table di(t,e)"®" is updated. If an error
occurs or is raised when executing the action part of the trigger, or an attempt to
modify the database is made, the entire process breaks down, al changes to the
database are undone and an error is reported.If dy(t,e)”® is empty, no before
trigger is instantiated.

. The database is modified according the contents in table d(t,e)"". Inserts are
carried out first, updates are performed next, and deletes are postponed to the end.
In our example, row ?7 is removed from table invoice. Note that any row in
dk(t,€)"*", modified in the previous step, due to the execution of a before trigger
action that modifies its new transition variable, implies that a modification to the
corresponding database table applies here.

. The constraints must be checked, so that the database state remains consistent.

Recall that constraints are viewed as rules. The first rules to be selected for
constraint satisfaction checking are the rules corresponding to referential
congtraints on Table t that match the event e, and have RESTRICT specified asits
repairing action. The reason for this preemption criterion is that referential
constraints with RESTRICT semantics are meant to be checked before any
cascade action has taken place. Because RESTRICT semantics prescribe undoing
al work performed in association with a modification operation that brings out a
dangling foreign key, no harm is done if the constraints are chosen on an arbitrary
order basis. If the condition in any constraint rule is satisfied (the constraint is
violated), the process ends in an error.
. Rules generated by referential constraints on Table t having cascade repairing
actionsas SET DEFAULT, SET NULL or CASCADE are considered now.
Because repairing actions € (an update statement for SET DEFAULT, adelete
statement for CASCADE) refer to the parent table, let's call it t', new intermediate
transition tables di.1 (t',€)? and dy1(t',€)™" are generated in the working storage,
before any change is effectively made. Many new intermediate transition tables

10.
11.

12.

13.

Database Integrity: Challenges and Solutions

may appear as aresult. In our example, when k=0, constraint c4 activates an

instantiation of arule that entails the execution of the SQL command:
delete fromdetail where detail.invoice_nunber =
?(i nvoi ce, del ete) 9 i nvoi ce_nunber

with row ?1 in do(invoice,delete)®® replacing ?(invoice,delete)?, so yielding the
transient tables di(detail delete)”? as consisting of rows 2, (15932, ‘AZ532, 15)
and ?3 (15932, * BD225', 3), and d;(detail ,delete)"™ as consisting of rows 2, (-,
S -y ad 2% (-,-,-).

The contents of all tables di(t,e)°? and di(t,e)"*" are appended to the contents of
tables ?(t,e)°% and ?(t,e)"®", as long as k>0. Tables ? (t,e)%% and ?(t,e)"*" are
created and allocated in the current working area (at the top of the stack), on the
condition that they do not already exist. If no transient table with subscript k+1
exists, then there are no pending cascade actions to be applied, so the resultant
state of the database must be checked over for constraints not entailing cascade
actions or restricting semantics. This checking process is described in the next
step. If at least one transient table with subscript k+1 exists, variable k is updated
to k+1, and the processis resumed at step 3.

In our example, when k=1:

o step 3 performs no action, because no before triggers are associated with
table detail;

o rows?; and ?3 are removed from table detail in step 4;

o no constraint with restrict semantics is violated, so step 5 performs no
action;

o no referential constraint with cascade action is defined on table detail, so
no transient table is generated with subscript 2.

Check constraints and referential constraints with NO ACTION semantics are
considered. The associated rules are fired then, as long as the rule target table
matches the table argument t of any transient table ?(t,€)"", and the event
argument e is the firing event in the rule. If the condition of any of these rules
holds (the constraint is violated), then the entire process fails, all modifications to
the database are undone, and an error is returned. If none of the conditions are
satisfied, then the database is consistent, and after triggers would apply safely. In
our example, when k=0, no rules for primary key constraints c1, c2 and c3 are
fired, because, whereas constraint c1 matches the table argument in transient table
?(invoice,delete)"™ and constraint c2 matches the table argument in transient
table ? (detail , delete)"®", their event argument is neither UPDATE nor INSERT.

- 127-

Database Integrity: Challenges and Solutions

14. After triggers call for attention now. For each pair of existing tables ?(t,e)°® and
?(t,e)"", after triggers with e in <events> and t as <table > are considered for
application, on aone by one basis again, according to the global ordering. Row
level triggers are considered first in this case, once for each row in current table
2(t,6)%, on arow by row basis. Asit was the case with before triggers, each row
in table ?(t,e)°? generates an instantiation of the trigger, and a binding to the
trigger's old transition variable is established for each row. If table ?(t,e)"" is
empty, no row level trigger is instantiated and subsequently fired. Statement
triggerson table t for event e are fired providing that they have not been fired
before, table ? (t,e)"" exists, and all row level after triggers have already been
instantiated and fired. The new transition variable is useless in the case of after
triggers; issuing an update of such a variable makes no sense. Whereas failure is
treated identically to how it was treated in the case with before triggers, attempts
to execute SQL modification operations against the database must receive a
different treatment; they are alowed to occur in the action part of after triggers.
Hence if werecall that an SQL modification operation € on atablet,’ occurring in
the action part of the trigger entails the presence of transitions, and that these
transitions should be saved, tables d(t,e)°® and d(t,e)" will be created to contain
the new transitions.

In our example, trigger t2 is instantiated twice, because table ? (detail del ete) has
two rows (?, and ?3). The instance of t2 corresponding to row ?, entailsthe
execution of the update statement:

t2(?,): update goods set quantity = goods.quantity - 15
where goods.item.id = "'AzZ532";

The instance of t2 corresponding to row ?3 entails the execution of the update
statement:

t2(?3): update goods set quantity = goods.quantity - 3
where goods.item.id = 'BD225";

Update statements t2(?,) and t2(?3) produce the tables

o d(goods,update)?? ={ 2,4 (*AZ532', U$45, 15751), 75 (‘BD225',
U$S18, 2769) }

o d(goods,update)"™ ={ 24 (‘AZ532', U$45, 15736), ?5 (' BD225,
U$S18, 2766) }

On the contrary, trigger t1 enter its signaling phase, table variable old inv_tis
bound to table ? (invoice,delete)®, and no action is executed, for condition:

Database Integrity: Challenges and Solutions

exists (select * from ?(invoice, delete)®d where
?(invoi ce, del ete)°d date
> actual _date) does not hold.

15. Finaly, if no pair of tables d(t,€)”? and d(t,e)"™" exists or, if there both tables are
empty, the process ends successfully. Otherwise, the top of the stack is advanced,
each pair of nonempty tables d(t,e)”® and d(t,e)"*" become the new ? (t,e)°“ and
?(t,e)"" at the top of the stack, and the process is resumed at step 2.

In our example, tables d(goods,update)®® and d(goods,update)™" are non empty, so they

become the sole tables ?(goods,update)®® and ? (goods,update)™” at the top of the stack.
A new pass is accomplished, starting at step 2. During the second pass, updates to rows
?4 and ?5 are applied to the database (step 4), and because no constraint is now violated,
step 10 ends successfully.

GENERAL STATIC CONSTRAINTSASTRIGGERS

As was pointed out in the previous section, highly expressive declarative static

constraints, as general check conditions and assertions, are rarely supported in

commercia systems. Hence, a question is imposed: How can we enforce such constraints,
since they are not supported by vendors in the kernel of their products? Fortunately, we
have seen that a declarative static constraint, in general, can be viewed as a generator of
active rules. We simply need to code appropriate triggers therefore, in order to enforce
general static constraints. The transcription of constraints into triggers has received
considerable attention in the last decade, and a body of work has dealt with the problem,
focusing particularly on SQL (Ceri & Widom, 1990, Ceri, Fraternali, Paraboschi & Tanca,
1995; Baralis & Widom, 2000b).

We will present the main underlying ideas herein. First, we proceed to negate the
assertion required to hold, and embed the resultant formula as the condition of atrigger
template. If the database product does not allow complicate formulas to appear in the
condition part of atrigger, aconditional statement on the result of the evaluation of the
formula can be introduced instead in the body of the rule, as a guard for the action to be
fired. A trigger template is thus generated for each constraint with this technique in mind.

There is a problem, however, if we follow such an approach. It is necessary to determine
which events are candidates to fire the trigger and which tables are the target for these
events. An extremely cautious and conservative approach would see any modification
operation as potentially able to produce values violating the constraint, and would lead to
the generation of many triggers as there are modification operations, checking for event
occurrences on every table that appear in the formula. This approach can be improved
considerably if we think that there exists a close relationship between modification

Database Integrity: Challenges and Solutions

operations and query predicates, thus indicating that certain modification operations
might not affect the result of certain queries. If these relationships could be analyzed in a
systematic manner, the number of triggers to generate in order to emulate the behavior of
an assertion could be considerably reduced.

A good method for studying relationships between modification operations and queriesis
to analyze propagation. Propagation consists essentially in treating modification as
gueries. The fact must not surprise the reader, as long as she realizes that transition tables
may be computed by executing a select query on the instance of the table been modified,
with the arguments of the modification statement interspersed along the from and where
clauses. For example suppose we have a table USER with column names NAME and
PASSWORD in its schema. Now suppose we have the following modification statemert
Upd:

Upd: update USER
set PASSWORD=""
wher e NAME=: i nput _namne

The transition table for this statement can be computed by executing the select statement:

?Upd: sel ect NAME as NAME® Y PASSWORD as PASSWORD® ¢
NAME as NAME™W "" as PASSWORD™W
from USER
where not NAME=: i nput_nane)

The new state of table USER after the modification can be then computed as the result of:

(select NAME, PASSWORD
from USER
where not NAME=: i nput_nane)
uni on
(select NAME™Y as NAME, PASSWORD™" as PASS-
WORD
from ?Upd)

If we have a constraint involving a complex SQL where condition g on table USER, we
can replace references to table USER by the last SQL expression, to form the propagation
of the modification Upd in the query g. We can then study if: @) the query may contain
more data after the modification, an insert propagation case; b) the query may contain
less data after the modification, a del ete propagation case; ¢) the query may contain
updated data after the modification, an update propagation case; d) the query remains
unchanged, a null-effect propagation case. Cases a, and c-, lead to the generation of a

Database Integrity: Challenges and Solutions

trigger for the event UPDATE PASSWORD on the table USER. Cases b- and d- do not
lead to generate any trigger.

Several propagation analysis technigques have been devised and developed: algebraic,
syntactical, and rule-based. Many of them have been incorporated in products for
automatic generation of constraint maintenance, especially for SQL database products.
Because these techniques are applied at design time, a certain degree of conservatismis
imposed, in the sense of considering the generation of more triggers than what is strictly
necessary. Study and improvements consider toward reducing conservatism.

DYNAMIC CONSTRAINTS ENFORCEMENT AND
ACTIVE RULES

A different situation arises when a constraint is to be imposed on the evolution of
database states, not on single states. Demand of support for dynamic constraint
enforcement thus arises. Again, as was the case of static constraints, several attempts
have been made to describe and formalize dynamic constraints, all aiming for capturing
accurately the meaning of such constraints, thus implementing mechanisms for checking
and enforcing the constraints properly. When the approach chosen is to support dynamic
constraints directly in the kernel of the database system, a certain modal temporal
formalism is needed to describe the meaning of the constraints. If the formalism implies
the existence of a user language, the developer would be able to express the constraints in
a declarative manner, so simplifying a good deployment of a complex system.

Declarative dynamic constraints are not supported in SQL-1999 at present, so conformant
products do not provide any help in the matter. However, a simple family of dynamic
constraints, transition or two-state constraints, can be easily emulated by means of
triggers, with amost no cost (Widom & Finkelstein, 1990). Let see how.

Transition Constraints

A transition constraint can be expressed in a declarative manner, associated to a
CREATE TABLE statement, by a construct of the form:

referencing old as T °¢
new as T "V
check C (T%9 T ") on [nodified rows | table]

where T denotes the state of the table, on which the constraint should be checked,
immediately before the transition event occurrence; T " denotes the state of the table,
immediately after the event has occurred; and Cisa SQL where condition on tuples from
T4 and T". <action> stands for an optional line of action to be followed in order to
enforce consistence when a violation has taken place. The on clause in the constraint
specification, the granularity, which shows to what extent the table must be checked
through (modified rows or the entire table). As it was the case with static check
constraints, the repairing action to be followed when the constraint is violated consists

-131-

Database Integrity: Challenges and Solutions

simply in undoing all changes introduced by the transition event. For example, suppose
we have atable SPEED _LIMIT with asingle column VALUE. We can assert atransition
constraint saying that the speed limit value must remain unchanged. The constraint for
table SPEED LIMIT in this case would be:

referencing old as old_sp
new as new_spl
check ol d_spl.VALUE = new_spl.VALUE on nodified rows

It is necessary to analyze first which kind of operations may potentially produce a
violation of the constraint, in order to check this constraint by means of triggers, as was
the case with static constraints. We do not treat the subject here. We ssmply assume that
all modification operations on the table SPEED_LIMIT excepting deletions, are
potentially dangerous for constraint preservation. Note that thisis an extremely
conservative position. In our case, insertions do not affect the result of the constraint
evaluation; only updates may imply a potential violation.

It is easy to see that the constraint check and enforcement process can be emulated by the
trigger:

after update on SPEED LIMT

referencing old_table as old_sp

new_t abl e as new_spl

for each statenent

when exists
(sel ect *
fromnew spl, old_sp

where ol d_spl.ROND = new_spl: RON D and

not ol d_spl.VALUE = new_spl . VALUE)

undo all changes

The reader may wonder why the granularity specified in the trigger is statement and not
row. The reason is that arow level trigger fires independently for each row present in the
transition tables, while arow change may violate the constraint, another row may satisfy
it, thus making it impossible to determine the precise point when the repairing action
specified in the constraint should start up.

Note that the trigger can be easily built upon atrigger template if the problem of deciding
which events should fire the trigger is solved.

A table granularity can be specified in the constraint, indicating that the constraint must
be checked against the entire table instead of the affected rows. A more involved
trandation is needed in this case. The trigger would be:

after update on SPEED LIMT

Database Integrity: Challenges and Solutions

referencing old_table as old_sp
for each statenent
when exists
(select *
fromSPEED LIMT new spl, old SPEED LIMT old_sp
where ol d_spl.ROND = new_spl: RON D and
not ol d_spl.VALUE = new_spl . VALUE)
undo all changes

with old_SPEED_LIMIT standing for:

(select * fromold_spl) union

(select * from SPEED LIMT where SPEED LIMT.
ROW D not in

(select ROND fromold_spl))

The reason for this apparently complicate query is that because of the granularity
specified in the constraint, we need to check the constraint on the entire table, not only on
the rows affected by the update. The rows not affected by the update, that is, not
satisfying the predicate in the update statement, remain unchanged. Thus, we must test
the constraint against them (recall that the constraints refer to transitions, not to states,
and some condition may violate them). Note that, in the example before, the constraint is
trivially satisfied on non-changing rows, but this is not the general case (note that if the
check condition would have been old_spl.VALUE > new_spl.VALUE, the constraint
would not have been satisfied in the entire table). Nevertheless, an optimization is only
possible if we are able to prove that the situation arising when no change is made on the
table aways entails the constraint satisfaction, asit is the case in the example. The
condition in the trigger becomes the same condition as was the case for arow level
granularity constraint. On the other hand, if a proof exists that the no change situation
always entails that the constraint is not satisfied, we can simplify the trigger by
eliminating the condition part. In this amost rare case, the trigger will aways be fired
after an update. Unfortunately, the implication problem is undecidable in genera, so the
technique of simplification shown above can be attempted only when the class of the
conditions involved guarantees decidability.

A More General Approach: Active Rulesas Temporal Logic Expressions

We have hitherto presented constructs expressing declarative transition constraints in a
rather intuitive manner. No formal meaning has been produced yet. Now, we must
consider the topic in a more formal manner. The semantics of declarative transition
constraints should be built upon some temporal formalism. Actually, a class of dynamic
constraints broader than transition constraints may be needed and methods for emulation
should be developed. We must warn the reader, though, that, because some of the
concepts involved are not quite well understood, and performance payoffs for these
emulating methods seem to be huge up to now, all these efforts have not entirely
succeeded in introducing products and solutions into the marketplace. Nevertheless, we

Database Integrity: Challenges and Solutions

choose to present an attempt in such a direction to serve as a good example of the
problem and the proposed solutions.

A good starting point is to think that every time a modification statement is executed, the
state produced by the statement execution is remembered. A history h is thus maintained,
defined as the sequence of pairs (E, S), i=0 (the t ransitionsin h), with E an event (the
name of a modification operation, for instance), and S the state of the database
immediately before the event occurrence has taken place. Then, we can use a language to
express conditions on h itself, rather than on states. Languages expressing conditions on
histories (linear discrete structures) have been extensively studied, asin Manna & Pnueli
(1992, 1995; Sistla, 1983; Wolper, 1983). We follow the language style of PTL (Sistla &
Wolfson, 19953,1995b) in the chapter, because it has been conceived with an active
database in mind and serves well the purpose to introduce the reader in the topic. Other
similar approaches can be found in Chomicki (1992) and Lipeck & Saake (1987). We
have augmented its constructs to support the specific events needed to modify datain a
SQL-like database, and the concept of transition tables.

In PTL, the syntax of afirst order language expressing conditions (SQL where clauses,
for instance) is augmented with two modal past temporal constructs: ? jsince ? », and

last time ? 1, and with an assignment construct ? ; providedqas X.? 1, ? » stand for
well formed formulae in the language, X stands for a query variable, and q stands for a
guery, a function on states in the history. A special query name is provided, modified
rows, such that, when evaluated on a state in position i of the history h, returns the
identification of al rows affected by the occurrence of E. A set of O-ary predicates, event
or location predicates such as inserting, updating, and deleting, optionally qualified
with a table name, is also supported. Variables appearing in a PTL formula are
considered bound, provided they appear in the leftmost part of an assignment subformula
or are table name aliases in afirst order subformula (table names in from clauses can be
regarded as the identity query). Otherwise, avariable is considered to be free. A
congtraint in PTL is aformula with no free variables.

The semantics for PTL formulas is defined with respect to a history and an evaluation
function r which maps variables appearing free in the formula into domain values of the
appropriate sort. Satisfaction of a PTL formulain ahistory h with respect to an evaluation
r is defined inductively as follows:

if ? isan event formula, then ? issatisfied by h with respect to ? if and only if
the event of the last transition in history h, agrees with the event formula.

if ? isanonevent atomic formula, then ? issatisfied by h with respect to ? if
and only if ? holds, in afirst order sense, in the database state of the last
transition in history h.

If aformulais built upon the usua first order connectives as not, and, or, and so
on, afirst order criteriafor satisfaction is applied.

Database Integrity: Challenges and Solutions

if ? isaformula of the form ? iprovidedqas X then h satisfies? with respect

torif and only if h satisfies? with respect to an evaluation ?; such that ?1(X) =
q(S), the query predicate evaluated over the state of the transition, and ?1(Y) =

?2(Y) for each variable Y ? X appearing freein ? ;.
if ? isaformulaof the form last time ? ; then h satisfies? with respect to ? if

and only if ? 1 satisfies h' with respect to ?, with h' resulting from deleting the last
transition from history h.

if ? isaformulaof the form ? i1since ? , then h satisfies? with respect to ? if

and only if there existsaj =i, such that history h up to position j satisfies ? , with
respect to ?, and for al positionsk > | up to the last position, history h up to k

satisfies? 1 with respect to ?.

Other useful modal constructs can be obtained, from the basic ones. For example, the
modal operator first can be obtained as a synonymous of not last timetrue. Hence, the
constraint studied in the previous section, can be expressed in PTL as follows:

first or
(last time not exists
(sel ect *
from SPEED LIMT ol d_spl, new_spl
where ol d_spl. ROND = new_spl. RON D
and not ol d_spl.VALUE = new_spl.VALUE))
provi ded nodi fied rows as new_spl

It is not easy to appreciate the real expressive power of thislanguage. It is sufficient to
say that it can express, not only transition predicates, but more powerful conditions on the
whole previous history of the database changes, as complex events and deadlines
(conditions on time). The problem here is not merely to determine the real power of a
language like the one presented here, but how to detect efficiently eventua violations,
and how to repair these violations accurately. The issue is not completely solved
nowadays, and is an interesting open area of research. We will postpone the treatment of
these problems to an upcoming section, and we will concentrate in presenting the sketch
of a correct algorithm that checks for constraint violations.

Checking for Satisfaction of Temporal Logic Constraints

An agorithm has been devised to enforce constraints expressed in PTL. The key ideais
to fire atrigger after each modification statement execution, so as to produce and
maintain sufficient auxiliary information to detect a constraint violation and react in
conseguence.

Database Integrity: Challenges and Solutions

The first step in the devising process of the method is to proceed to negate the temporal
formula, to obtain a monitoring formula. For example, the formulain the example above
is now presented by its opposite, the monitoring Formulaf:

not first and
(last time exists
(sel ect *
from SPEED LIMT ol d_spl, new_spl
where ol d_spl. ROND = new_spl. RON D
and not ol d_spl.VALUE = new_spl.VALUE))
provi ded nodi fied rows as new_spl

When a modification statement is executed, a trigger is fired and proceeds to compute,
for each subformula g in the main formula f, a Boolean expression Fg, i (a SQL where
clause), the firing formula, where i is the position in the history of the modification
transition. If the firing formula Fg, ; evaluates to false then the constraint is satisfied by
date S. If the state reached after the execution of the i-th modification. Fg, ; evaluates to
true then the constraint is violated, then a correcting action is fired. Note that the trivial
correcting action: "undo the last modification” actually works well as a correcting action.
It preserves the satisfaction of the constraint.

When the formula contains temporal past operators, as last time and since, Fg, ; must be
evauated inductively, referencing previous transitions in the history. To reduce the
potential huge amount of space needed to "remember” the whole previous history of the
evolution of the database to a minimum, a technique is needed: An auxiliary historic table
q" is maintained for each different query q appearing in the formula. The historic table
schema is formed by adding a timestamp column (a position number) and an event name
column to the query schema. In what follows, we denote by " ; the table containing the
result of query g at past state s, for any query q appearing in the formula. Tables ¢ ;
could be easily reconstructed by examining the content of historic tables g.

The idea in the computation is to proceed with the elimination of temporal operators, by
means of a careful rewriting process of Fyg, i. Fy, i is then evaluated inductively as follows:

If gisan event formulaandi > O, Fg, ; = trueif the event formula agrees the event
name firing the trigger, otherwise it evaluates to false.

If g isanonevent atomic formula (a SQL where clause), two cases must be
distinguished. If g has at least one free variable, Fg, i = g' where g' is a Boolean
expression involving free and bound variables. Otherwise, if al variables are
bound in g, Fy, i results the formula evaluated in the database state s (true or false).
If g=gland g2, gl or g2 or not g1, Fy, i must evaluateto Fo, i ? Fe, i, Fg1,i ?
ng, i, Or —IFg1, i

Database Integrity: Challenges and Solutions

If g =last time gl two cases arise: if i =0 then Fy, ; aways evaluates to false;
otherwise, if i >0, Fy, i = Fy, i [9 1/91"-1]... [qi/q«"i-1], for al queriesqg, 1= =
k,ing..e[X /Y] stands for the substitution of all free occurrences of variable X
inebyY.

If g =gl since g2, can be reduced to the case of last time. Fg, i = Fgp, i or (Fg1,
iand last time Fyg, ;.

If g =qprovidedqas X then Fg, ; turn out to be simply o [X / q].

If f isatempora formula, wheni > 0 and before any Fg, ; has been computed, rows
appearing in the old transition table ? T% ; are appended to the auxiliary historic tables,
timestamped with i - 1. Once any of the Fg, ; has been computed, all rows associated with
gueries on states up to the first state mentioned in the newly computed F, i are deleted
from the historic tables. Note that this case arises provided that no since operator appears
in the formula f.

We will continue with the constraint formula in the example, to see how the agorithm
works:

Suppose we have a sequence of two update statements on the table SPEED_LIMIT. The
first of these update statements actually happens to produce no change in the column
VALUE. The second update, however, changes the column value. The sequence is shown

graphically, as follows (Figure 1).
T

1=0
Figure 1: Sequence of two update statements on the table SPEED_LIMIT

U; and U, in the figure represent the updates. T; and T represent the transition tables,
with old and new values of modified rows. The current position in the history is indicated
by i (Inthisinitial case, we are placed in the situation before any update has been issued,
so i = 0). The syntactic structure of the formulaf is. gl and g2; gl is not g2; g2 is. first;
g3 is g4 provided modified rows as new_spl; g4 is. last time g5;

g5 is: exists (select * from SPEED LIMT old_spl, new_spl
where ol d_spl. ROND = new_spl. RON D
and not ol d_spl.VALUE = new_spl . VALUE).

-137-

Database Integrity: Challenges and Solutions

Variables appearing bound in f are old_spl and new_spl. Because both refer to the same
guery, the identity function applied on table SPEED_LIMIT, only one historic table is
needed. We will name this table SPEED_LIMIT". In what follows, we will denote the
state of rows in the query SPEED_LIMIT, relevant to state s, as SPEED_LIMIT ;. Asit
was pointed out before, this state can be reconstructed from table SPEED _LIMIT ",

Now, we advance the actual position to 1 (after the execution of update U;). Real firing
of the monitoring trigger is produced. We have the situation (Figure 2).

1=1
Figure 2: Situation after areal firing of the monitoring trigger is produced

T, i
— -
U, U, +

1=2

Figure 3: Position 2

All rowsin ? T%¢ ;are appended to the table SPEED_LIMIT ", with value 0 in the
timestamp column, and value update in the event name column.

Fr,i=Fq,1(S1)? Fgp,1(S)=fdse? fase=fdse
Fgl, 1= ﬂng, 1 =false

ng, 1 =true

Fg3, 1= Fg4, 1 [neW_spI [2T 1];

Foa, 1 = Fg,1 [SPEED_LIMIT / SPEED_LIMIT h ol;
and Fg5, 1= 0k,

Fg, 1 = true because i points to the first position in the sequence. Fg, 1 evaluates to false
in state §; because the rows modified by U; agree in the column VALUE with the

Database Integrity: Challenges and Solutions

contents of SPEED_LIMIT "o =2T%9 ;. Recall that update U; does not produce any
change in the column VALUE of the table SPEED_LIMIT at the initial state. The
formulaF, 1 evaluatesto falsein S;, then the constraint is not violated in state S;. The
rows in the table SPEED_LIMIT" corresponding to position O can be deleted safely. This
is the first position number mentioned in a query, present in Fg, 1 (SPEED_LIMIT)

Let's go on now with position 2 as the current position:

All rowsin ?T%? , are appended to the table SPEED_LIMIT ", with value 1 in the
timestamp column, and value update in the event name column.

Ft,2=Fq,2(S)? Fg,2(S)=true? true=true

Fg]_, 2= —ngz, 2 =true;

Fg, 2 = true,

S1'S Fg, 2= Foa, 2 [new_spl / 2T 5]; Fa, » = Fgs, 2 [SPEED_LIMIT /
SPEED_LIMIT "4];

and Fgs, 2 = G;

Fg, 1 = false because i does not point to the first position in the sequence Fg, » evaluates
to false in state S, because the rows modified by U, does not agree in the column
VALUE with the contents of SPEED_LIMIT " ;. Recall that update U, changes the
column VALUE of at least one row of the table SPEED _LIMIT at the previous state. The
formulaFy, > evaluates to true in S, then the constraint is violated in state S, and a
correcting action is needed. Note that, in the case we undo the changes introduced by the
last update, the state S; is reached again, and the constraint is satisfied at position 1.

Note also that, neither in the composition of Fg, » nor in Fyy, 2, areference to position 0 is
present. The rowsin the table SPEED _LIMIT ", corresponding to position 1 can be
deleted. Thisis the first position number mentioned in a query present in Fgs, 2
(SPEED_LIMIT " y).

It is clear that this deletion can be done because no since operator appears in the formula,
otherwise a reference to the deleted position would be present.

Applicability, Drawbacks and Partial Remedies

Severa drawbacks in the above techniques appear when the main issue is applicability.

1. Theprocessing effort paid off in each instantiation of a rule may compromise
serioudly the throughput and response time of the system. Recall that the

Database Integrity: Challenges and Solutions

monitoring for constraint satisfaction is accomplished every time a modification
operation is executed.

2. Theamount of space required to store auxiliary historic tables. Formulas with
constructs equivalent to since, are good examples of this.

3. The relationship between constraint satisfaction and transaction processing is not
quite clearly established. For example, if several transaction can run concurrently,
and some of them does not prevent the others from seeing uncommited data,
repeatable reads isolation level is not granted.

The question is not entirely solved. Partial remedies to the first problem have been
outlined: Monitoring of constraint satisfaction may be postponed up to specific event
occurrences, and only updating of historic tables is issued in the meantime. Deferring the
checking process to commit time or supporting extra-system time events is a possibility.
New event types are needed, such as attempting to commit, at time t, or pseudo queries
returning time values. Logica or net-effect modification operations may also be
supported, in opposition to physical operations. An automata based approach has been
devised to recognize such logical events from patterns of physica events. This approach
could be observed in the ODE object database system from AT& T Bell Laboratories
(Gehani & Jagadish, 1991) and in the prototype database rule oriented system Ariel
(Hanson, 1992), where so called Ariel- TREAT discrimination networks serve the purpose
of testing complex historic patterns. More recent works focused on the specification and
detection of complex events (Chakravarthy, Krishnaprasad, Anwar, Kim, 1994;
Chakravarthy & Mishra, 1994; Chakravarthy, 1997; Yang & Chakravarthy, 1999), but
constraints has not received special attention therein. The second problem has received
less attention than the first, but again attempts to solve the space problem has been
addressed. For example, in Ariel, some query results could be maintained intentionally,
especialy when the selection factor is low. The efforts paid in that direction in the early
nineties have not been reflected in the database marketplace, but increasing interest is
regained presently, specifically in the area of Web servers, and particularly when e-
commerce is the issue. The concept of elapsed time and expiration time serves, in this
area, to prevent histories from growing indefinitely.

The third problem is the most problematic. (Sistla & Wolfson, 1995) have been defined
the concepts of off-line and on-line satisfaction of a constraint with respect to transactions.
A congtraint is said to be off-line satisfied if it is satisfied at the commit point of all
transactions, considering, up to these points, al modification operations of committed
transactions. A constraint is said to be on-line satisfied if it is satisfied at the commit
point of all transactions, considering only modification operations of committed
transactions with commit point reached up to these points. These two notions of
satisfaction differ with respect to which modifications a transaction could see. Off-line
implies that a transaction sees al committed work, independently of the commit point.
This notion is closer to the notion of a transaction manager guaranteeing cursor stability.
On-line satisfaction implies that a transaction only sees all previously committed work.

- 140 -

Database Integrity: Challenges and Solutions

This last notion of satisfaction is closer to the notion of a system guaranteeing a
repeatable reads isolation level.

CONCLUDING REMARKS

In this chapter, we have presented a brief survey of the interaction between active rules
and integrity constraints. We have discussed the current proposed techniques to deal with
situations when both declarative static constraints and triggers are defined. We have
shown that the main problem consists in ensuring that the constraints are preserved in the
presence of cascade firing of before and after triggers. The perspective of our treatment
follows the SQL-1999 Standard Committee point of view, which constitutes the state of
the art in that matter. We have given a brief sketch on how to generate triggers for
integrity constraint maintenance, manually or automatically, for the static case when such
a constraint definition is not supported by database kernels. Then, we have addressed the
problem of ensuring satisfaction of dynamic constraints, and we review aformal
approach based on temporal logic formalism. We have shown that if the dynamic
constraints are simply two-state or transition constraints, the satisfaction problem can be
easily implemented by means of triggers. We have also seen that the approach, although
formal, can be implemented as well for the general case on actual systems. Some issues
concerning applicability related with the last techniques remain open to researchers and
practitioners, and improvements in these techniques are expected in the future.

REFERENCES

Aiken, A., Hellerstein, J., Widom, J. (1995). Satic Analysis Techniques for Predicting
the Behavior of Active Database Rules. ACM Transactions on Database Systems, 20:1,
341

Bardlis, E., Ceri, S., Paraboschi, S. (1996). Modularization Techniques for Active Rules
Design. ACM Transactions on Database Systems21:1, 1-29.

Bardis, E., Ceri, S., Widom, J. (1993). Better Termination Analysis for Active Databases.
Proc. Int'l Workshop on Rulesin Database Systems. 163-179.

Bardlis, E., Widom, J. (20004). Better Static Rule Analysis for Active Database Systems
Stanford Univ. Research Report 02/06/2000.

Bardis, E., Widom, J. (2000b). An Algebraic Approach to Static Analysis of Active
Database Rules. ACM Transactions on Database Systems 25:3, 269-332.

Ceri, S., Cochrane, R., Widom, J. (2000). Practical Applications of Triggers and
Constraints: Successes and Lingering Issues. Proc.Int'l Conf. on Very Large Databases.
Ceri, S., Widom, J. (1990). Deriving Production Rules for Constraint Maintenance. Proc.
Int'l Conf. On Very Large Databases, 566-577.

Ceri, S, Fraterndli, P., Paraboschi, S., Tanca, L. (1995). Automatic Generation of
Production Rules for Integrity Maintenance. ACM Transactions on Database Systems
19:3, 367—422.

Chakravarthy, S. (1989). Rule Management and Evaluation: An Active DBMS

Per spective. SGMOD Record 18:3, 20-28.

- 141-

Database Integrity: Challenges and Solutions

Chakravarthy, S. (1997). SENTINEL: An Object-Oriented DBMSwith Event-Based Rules.
Proc. ACM Int'l Conf. SGMOD. 572-575.

Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S. (1994) Composite Events for
Active Databases: Semantic Contexts and Detection. Proc. Int'| Conference on Very
Large Data Bases 606—617.

Chakravarthy, S., Mishra, D. (1994) Shoop: an Expressive Event Specification Language
for Active Databases. Data and Knowledge Engineering, 14:1, 1-26.

Chomicki, J. (1992) History-less Checking of Dynamic Constraints. Proc. Int'l Conf. on
Data Engineering. IEEE Computer Society Press

Gehani, N., Jagadish, H. (1991). ODE as an Active Database: Constraints and Triggers.
Proc. Int'l Conference on Very Large Databases. 327-336.

Dayd, U. et d. (1988). The HiPAC Project: Combining Active Databases and Timing
Constraints. SGMOD Record 17:1, 51-70.

Hanson, P. (1992). Rule Condition Testing and Action Execution in Ariel. Proc. ACM

Int'l Conf. SGMOD. 49-58.

Lipeck, U., Saake, G. (1987). Monitoring Dynamic Integrity Constraints Based on
Temporal Logic. Information Systems, 12:3, 255-266.

Manna, Z., Pnueli, A. (1992). The Temporal Logic of Reactive and Concurrent Systems:
Soecification. Springer-Verlag

Manna, Z., Pnueli, A. (1995). The Temporal Logic of Reactive Systems: Safety. Springer-
Verlag

Paton, N., Diaz, O. (1999). Active Database Systems. ACM Computing Surveys, 31:1, 63—
103.

Sistla, A.P. (1983). Theoretical I1ssuesin the Design of Distributed and Concurrent
Systems. Ph.D. Thesis, Harvard Univ., Cambridge, MA.

Sistla, A. P., Wolfson, O. (1995a). Temporal Triggersin Active Databases. IEEE Trans.
On Knowledge and Data Engineering. 7:471-486.

Sigtla, A. P., Wolfson, O. (1995b). Temporal Conditions and Integrity Constraintsin
Active Databases. Proc. ACM Int'l Conf. SGMOD. 269-280.

Stonebraker, M. (1986). "Triggers and Inference in Database Systems”, in On Knowledge
Base Management Systems Brodie, M. and Mylopoulos, J. Editors. Springer-Verlag
Widom, J., Ceri, S. (1996). Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Publishers.

Widom, J,, Finkelstein, S. (1990). Set-oriented Production Rules in Database
Management Systems. Proc. ACM Int'l Conf. SGMOD, 259-270.

Wolper, P. (1983). Temporal Logic Can Be More Expressive. Info. and Cont., 56:72-99
Yang, S., Chakravarthy, S. (1999). Formal Semantics of Composite Events for
Distributed Environment. Proc. Int'l Conf. on Data Engineering, 400-407. |IEEE
Computer Society Press.

Chapter V: Integrity Constraintsin
Spatial Databases

- 142-

Database Integrity: Challenges and Solutions

KarlaA. V. Borges, Federal University of Minas Gerais and Prodabel—Empresa de
I nformatica e I nformac&o do Municipio de Belo Horizonte,

Brazil

Clodoveu A. Davis, Jr., Prodabel—Empresa de | nformética e Informacéo do
Municipio de Belo Horizonte,

Brazil

Alberto H. F. Laender, Federal University of Minas Gerais,

Brazil

INTRODUCTION

A number of integrity constraints must be observed when updating a database, to
preserve the semantics and the quality of stored data (EImasri & Navathe, 2000).
Achieving and preserving the integrity of data is an established field in the database area
However, within the scope of geographic applications, special problems come up due to
the locational aspects of data (Plumber & Groger, 1997). Most geographical information
systems (GIS) use data that depend on topological relationships, and sometimes these
data must be explicitly represented in the database, requiring special attention for the
maintenance of the semantic integrity. Enforcing the integrity constraints must be
considered one of the main implementation goals (Borges et ., 1999). Thus, it is
convenient to explicitly specify on the geographic application schema the situations
where the constraints cannot be disregarded. Many mistakes in the data entry process
could be avoided if digitizing processes based on these constraints were implemented.

Even though there is a very active research areainterested in the design of robust and
efficient spatial databases, the inability of current GIS regarding the implementation and
management of spatial integrity constraintsis still evident (Plumber & Groger, 1997;
Worboys, 1994). A modification in a spatial database may cause simultaneous updates in
alarge number of records in multiple files, making it hard to manage all the environment.
A very sophisticated control is required to avoid redundancy and loss of integrity.

In the traditional database systems approach, there is a relationship between conceptual,
logical, and physical design, in which, through mapping operations, constraints that are
identified in the conceptua schema are inherited and transformed into implicit constraints
expressed by the data definition language (DDL) or into explicit constraints coded in the
application programs (ElImasri & Navathe, 2000). This relationship must also exist in
gpatia information systems, so that spatial constraints can be likewise identified and
implemented.

- 143 -

Database Integrity: Challenges and Solutions

Improvement of quality is one of the key objectives of establishing integrity constraints
in spatial databases (Cockroft, 1997). It is possible to improve data quality by enforcing
constraints upon data entered into a database. These constraints must be identified and
recorded at the database design level. However, it can be perceived that modeling
geographic data requires models that are more specific and capable of capturing the
semantics of geographic data, offering higher abstraction mechanisms and
implementation independence (Borges, 1997; Camara, 1995). There are particular
characteristics of geographic data that make modeling more complex than in the case of
conventional applications. Within the geographic context, topologic relations and other
gpatial relationships are fundamentally important to the definition of spatial integrity
rules. In geographic applications, topological and other spatial relationships are trandated
into topological integrity constraints among database entities, taking arelevant role in the
data entry/updating process. "The imposition of such constraints on data entry/update is
considered to have potential for the reduction of errors in data input and hence
improvement in data quality” (Cockroft, 1997, p. 341).

This chapter addresses the relationship that exists between the nature of spatial
information, spatial relationships, and atial integrity constraints, and proposes the use
of OMT-G (Borges et al., 1999; Borges et al., 2001), an object-oriented data model for
geographic applications, at an early stage in the specification of integrity constraints in
gpatial databases. OMT-G provides appropriate primitives for representing spatial data,
supports spatial relationships and alows the specification of spatial integrity rules
(topological, semantic and user integrity rules) through its spatial primitives and spatial
relationship constructs. Being an object-oriented data model, it also allows some spatial
constraints to be encapsulated as methods associated to specific georeferenced classes.
Once congtraints are explicitly documented in the conceptual modeling phase, and
methods to enforce the spatial integrity constraints are defined, the spatial database
management system and the application must implement such constraints.

This chapter does not cover integrity constraints associated to the representation of
simple objects, such as constraints implicit to the geometric description of a polygon.
Geometric constraints are related to the implementation, and are covered here in a higher
level view, considering only the shape of geographic objects. Consistency rules
associated with the representation of spatial objects are discussed in Laurini and
Thompson (1992).

CLASSIFICATION OF SPATIAL INTEGRITY
CONSTRAINTS

One important activity in the design of a schemafor a particular database application
consists of identifying the integrity constraints that must hold on the database. The main
types of integrity constraints that occur frequently in database modeling are domain
constraints key and relationship structural constraints and general semantic integrity
constraints (Elmasri & Navathe, 2000). Cockcroft (1997) extends that classification in

- 144 -

Database Integrity: Challenges and Solutions

order to encompass the peculiarities of spatial data. This classification is based on the
distinction between topological, semantic, and user rules, as follows.

Topological integrity constraints Topology is the study of geometrical properties and
gpatial relations. There has been some theoretical research into the principles of formally
defining spatial relationships (Egenhofer & Franzosa, 1991). These principles can be
applied to applicationspecific entities and relationships to provide a basis for integrity
control. Area subdivision is an example of this constraint. One city's administrative
regions must be contained within the city limits, and there must be no spot in the
municipal territory that belongs to more than one administrative region or to none.

Semantic integrity constraints These constraints are concerned with the meaning of
geographic features. Semantic integrity constraints apply to database states that are valid
by virtue of the properties of the objects that need to be stored. An example of this
constraint is the rule that does not allow a building to be intercepted by a street segment.

User defined integrity constraints User defined integrity constraints allow database
consistency to be maintained as defined by the equivalent of "business rules’ in non
gpatial DBMS. Thistype of constraint acts, for instance, on the location of a gas station,
which, for legal reasons, must lie farther than 200 meters from any existing school. The
municipal permitting process must consider this limitation in its anaysis. In another
example, engineering limitations regarding the minimum allowable slope must be
observed while installing sewer pipes. User-defined constraints may be stored and
enforced by an active repository.

According to EImasri and Navathe (2000), every data model has a set of built-in
constraints associated with its constructs. The OMT-G model allows several spatia
integrity rules to be derived from its primitives. These rules constitute a set of constraints
that must be observed in the operations that update a geographic database.

The GIS can include features that enforce the fulfillment of some spatial integrity rules,
but most require the definition of integrity control operations to be associated with the
classes. In most cases, such operations must be implemented by the application's
developer. Controlling the integrity constraints must be considered one of the main
implementation activities. It is convenient to have the geographic application schema to
reinforce at least the situations where this control cannot be disregarded. Many mistakes
in the data entry process could be avoided if digitizing procedures based on these
constrains are implemented. However, the approach usually employed by commercial
GIS productsis rather different, since rarely the integrity constraints are enforced by the
interactive data entry procedures. In general, inconsistent information is allowed to enter
the database, through import functions; later, a range of correction functionsis used to
"clean up" the data, verifying its consistency.

Both in the case of integrity constraints and consistency detection, there is the need for

some mechanism that will allow the relaxing of the constraints in special situations. For
instance, a semantic constraint could naturally establish that streets cannot cross buildings.

- 145 -

Database Integrity: Challenges and Solutions

However, there are some situations, such as blocks of buildings connected by overpasses,
in which this rule would need to be relaxed (Laurini, 2001).

Topological integrity constraints are achieved through spatial dependence, spatial
association, connectivity, and geo-fields rules. Likewise, semantic integrity constraints
are achieved through spatial association and digjunction rules. User-defined integrity
constraints are, in turn, obtained from methods that can be associated to the classes. The
implementation of any of these rules is dependent on the underlying GIS. Some of them
are available as internal functions, while others must be implemented by the developer of
the application, using the programming language provided with the GIS.

To adequately explain such integrity constraints, we must first present OMT-G in more
detail. Later, we will describe formally each integrity constraint that can be derived from
the OMT-G primitives.

THE OMT-G MODEL AND SPATIAL INTEGRITY
CONSTRAINTS

Modd Overview

Starting from the primitives of the UML class diagram, geographic primitives were
introduced with the objective of increasing its semantic capabilities, thereby reducing the
distance between the mental model of the space to be modeled and the usua
representation model. Therefore, OMT-G provides primitives to model the geometry and
topology of geographic data, providing support for "whole-part” topologic structures,
network structures, multiple views of objects, and spatial relationships. Besides, the
model allows for the specification of alphanumeric attributes and associated methods for
each class. The main strong points of the model are its graphic expressiveness ard its
representation capabilities, since textual annotations are replaced by the drawing of
explicit relationships, representing the dynamics of the interaction between the various
gpatial or non-spatial objects.

The OMT-G modéd is based on three main concepts: classes, relationships, and spatial
integrity constraints Classes and relationships are the basic primitives that are used to
create application schemas with OMT-G. For that purpose, OMT-G proposes the use of
three different diagrams in the process of designing a geographic application (Borges et
al., 2001; Davis, 2000). The first and more usua one is the class diagram, in which all
classes are specified, along with their representations and relationships. From this schema,
it is possible to derive a set of spatial integrity constraints that must be observed in the
implementation. When the class diagram indicates the need for multiple representations
of any class, or when the application involves the derivation of some class from others, a
transformation diagram must be built. In it, all transformation processes can be specified,
allowing for the identification of any required methods for the implementation. Finally, a
presentation diagram must be built to provide guidelines for the visual aspect of objects

- 146 -

Database Integrity: Challenges and Solutions

in the implementation. There can be several visual aspects for any given class, which
allows the definition of aview or set of views for each application or group of users.

The next sections cover the primitives used to build class diagrams, from which spatial
integrity constraints can be obtained. Transformation and presentation diagrams are not
covered here. For more information on the use of these tools for the specification of
geographic applications, including multiple representation and multiple presentation
aspects, see Borges et al. (2001).

Classes

The classes defined by the OMT-G model represent the three main groups of data
(continuous, discrete, and nortspatial) that can be found in geographic applications,
thereby allowing for an integrated view of the modeled space. The classes can be
georeferenced or conventional.

The distinction between georeferenced and conventional classes alows different
applications to share non-spatia data, therefore making it easier to develop integrated
applications and to reuse data (Oliveiraet al., 1997). A georeferenced class describes a
set of objects that have spatial representation and are associated to features on Earth
(Cémara, 1995), assuming the fields and objects view as proposed in Frank & Goodchild
(1990 andd Goodchild (1992). A conventional class describes a set of objects with
similar properties, behavior, relationships, and semantics, and which can have some sort
of relationship with spatial objects, but which do not have geometric or geographic
properties.

Georeferenced classes are specialized into geo-field and geo-object classes. Geo-field
classes represent objects and phenomena that are continuously distributed over the space,
corresponding to variables such as soil type, relief, and mineral contents (Camara, 1995).
Geo-object classes represent individual, particular geographic objects, which can usually
be traced back to real world elements, such as buildings, rivers, and trees. A
georeferenced class is symbolized by arectangle, subdivided in three sections (Figure 1a).
The top section carries a pictogram in its left side to indicate the geometry of the
representation. Adding pictograms to the primitive element used to portray geographic
classes (instead of using relationships to describe the geometry of the object) significantly
simplifies the final schema. The notation used for conventional classes corresponds to the
notation used in the UML (Rational, 1997). Objects may or may not have nonspatial
attributes, listed in the middle section of the complete representation. Associated methods
or operations are specified in the lower section. A simplified symbolization can be used
both for georeferenced and conventional classes, leaving out the bottom section and
listing only the main attributes in the middle section (Figure 1Db).

- 147 -

Database Integrity: Challenges and Solutions

Class name
| Class name
Georeferenced class Altnibules
Operations
Class name |
Conventional class Attributes Class name ‘
Cperations
(a) {b)
complete simiplified
rapresentation Fibpridse i ation

Figure 1. Graphic notation for the basic classes

OMT-G presents a fixed set of geometric types, using a symbolic representation that
distinguishes geo-object and geo-field classes within a georeferenced class (Figures 2 and
3). The next subsections present details on geo-field and geo-object classes.

Triangular
Irregular Netwark Iselings Planar subdivision
Tm“ﬁ*:am @ Contour lines m Padology

Figure 2: Geo-field classes
Geo-objects with geometry

Puaint Lime: Palygon
?jff' Tres —| Curb lina D Buildirg

Geo-objects with geometry and topology

Unidirectional line Bidirectional ine MNode
;) Slreet
==| Sewer pipe ==| Water pipe e crossing

Figure 3: Geo-object classes

Geo-fields

- 148 -

Database Integrity: Challenges and Solutions

OMT-G has five geo-field descendant classes: isoline, planar subdivision, tesselation,
sampling, and triangular irregular network (Figure 2). From the semantics involved in the
concept of geo-fields, and from the specific definition of these classes, some spatial
integrity rules can be deduced. These rules constitute a set of constraints that must be
observed in the operations that update the geographic database. In the case of the geo-
field primitives, the spatial integrity ruleslisted in Table 1 can be derived. These rules are
mostly derived from the semantics of the geo- field descendant classes.

Table 1. Geo-field integrity rules

Planar

Enfor cement

Rule 1. LetF beageo-field and let P be apoint such that P? F. Thena
value V(P) = (P, F), i.e, the value of F a P, can be univocally
determined.

|soline

2. LetF beageo-fidd. Let vo,v1,...,vy ben +1 pointsin the plane.

Let be n segments,
connecting the points. These segments form an isoline L if, and
only if, (1) the intersection of adjacent segmentsin L isonly the
extreme point shared by the segments (i. e.,, & N aj+1 = Vi+1), (2)
non-adjacent segments do not intercept (that is, a n &=> for all
I,j suchthatj ? i+ 1), and (3) the value of F at every point P
such that P ?a,0=i=n- 1, isconstant.

Tesselation

3. LetF beageo-fidd. Let C = {co, €1, Cy, ..., Cn} beaset of

regularly-shaped cells covering F. C isatesselation of F if and
only if for any point P? F, thereis exactly one corresponding
cdl ¢ ? C;i and, for each cell ¢;, the value of F is given.

Planar

Subdivision

4. LetF beageo-field. Let A= {Ao, A1, A, ..., A} beaset of
polygons such that A, F for all i suchthat 0=i=n-1. Aformsa
planar subdivision representing F if and only if for any point P

? F, thereis exactly one corresponding polygon A; ? A, for
which avalue of F is given (that is, the polygons are non

- 149-

Database Integrity: Challenges and Solutions

overlapping and cover F entirely).

Triangular

Irregular

Networ k 5. LetF beageo-fidd. Let T= {Top, Ty, To, ..., T} beaset of
trianglessuch that T;? F for all i suchthat O =i =n-1. T forms
antriangular irregular network representing F if and only if for
any point P ? F, thereis exactly one corresponding triangle T;?
T, and the value of F isknown at all of vertices of T.

Geo-objects

OMT-G has two geo-object descendant classes: geo-object with geometry and geo-object
with geometry and topol ogy.

A geo-object with geometry class represents objects that have only geometric properties
(points, lines, and polygons), and is specialized precisely in classes named Point, Line,
and Polygon. Examples include, respectively, bus stop, curb line, and municipal limits.

A geo-object with geometry and topology represents objects that have, in addition to
geometric properties, topological connectivity properties, and are specifically suited to
the representation of spatial network structures, such as water supply systems, e ectrical
distributionsystems, or road networks. These properties are present in objects that are
either nodes or arcs in a graphtheoretic approach. Unidirectional lines indicate that the
network has a definite flow direction, such as in sewage systems. Bidirectional lines
indicate that there is a flow and a connection. The direction of the flow, in this casg, is
deemed irrelevant, since it can occur in any direction, as in water or electrical networks.
The focus here is not on the implementation of the relationship, but rather on the
semantics of the connection among network elements, which is arelevant element for
gpatial integrity assurance procedures. The implementation will depend on specific
characteristics of the underlying GIS. This class specializes into subclasses Node,
Unidirectional Line, and Bidirectional Line (Figure 3). Geo-objects with geometry and
topology are not subject to a set of integrity constraints by themselves, but their useis
conditioned to the existence of network relationships, which are specified in "Simple
Association, Spatial Relations and Network Relations' (see Table 4 for the corresponding
integrity constraints).

Table 4: Connectivity rules

Arc-node Let G ={N, A} be anetwork structure, composed of a set of nodes N = {no,
sructure |ng, ..., N} and aset of arcsA = {ap, ay, ..., ag}. Members of N and
members of A are related according to the following constraints:

Database Integrity: Challenges and Solutions

1. For every node n; ? N there must be at least one arc ax ? A.
2. For every arc ax ? A there must be exactly two nodes n;, nj ? N.

Arc-arc Let G = {A} be anetwork structure, composed of a set of arcs A = {ay,
structure |y, ..., agt. Then the following constraint applies:

1. Every arc ax ? A must be related to at least one other arc a; ? A,
wherek ? .

The geometric concepts used in the definition of points, lines (including lines with a
topological role), and polygons lead to some integrity constraints. These constraints

should be intrinsically enforced by the GIS, but since thisis not always the case, this
matter will be discussed here.

In computational geometry, a polygonal line or a polygon are defined as simple whenever
there are no crossings between non-adjacent segments, and complex in the opposite case.
The formal conditions for aline to be considered simple correspond to the first two
conditions in the isoline constraint (Table 1). As a matter of fact, GIS software usualy
does not forbid the creation of complex lines, however, this type of line seldom occursin
nature. Furthermore, such lines raise difficulties for topological analysis and in operations
such as the creation of buffers. Actually, several GIS include data entry cleaning modules,
which are capable of finding and eliminating such situations, by displacing vertices

and/or dividing the lines into two or more ssimple parts.

The geometric definitions adopted in the OMT-G model admit the existence of geo-
objects that are formed by several polygons, establishing one of them as the "basic"
polygon and considering the others as islands or holes. These polygons which are
composed of multiple parts (or polygonal regions (Laurini & Thompson, 1992)) are
important, since there is no guarantee that the results of traditional operations, such as
buffer creation, union, intersection, and difference between ssmple polygons, is aways
formed with simple polygons. In this case, an important requirement is that the basic
polygon and the islands have their vertices stored in counterclockwise order, while the
holes are stored in clockwise order (Margalit & Knott, 1989). Constraints regarding lines
and polygons are presented in Table 2.

Table 2: Geo-aobject constraints

-151-

Line

Simple
Polygon

Polygonal
Region

Relationships

Database Integrity: Challenges and Solutions

. Letvp, vi,...,vn be ntl pointsin the plane. Let

be n segments,
connecting the points. These segments form a polygonal lineL if, and
only if, (1) the intersection of adjacent segmentsin L isonly the
extreme point shared by the segments (i. €., & N ai+1 = Vj+1), (2) non
adjacent segments do not intercept (i.e., & n & =@ for dl i, j such
thatj ? i+ 1), and (3) vo ? vn-1 that is, the polygonal lineis not
closed.

. Letvo, va,...,Vh-1 be n pointsin the plane, with n = 3. Let

be a sequenceof n
- 1 segments, connecting the points. These segments form asimple
polygon P if, and only if, (1) the intersection of adjacent segmentsin
P is only the extreme point shared by the segments (i.e.,, S N §+1=
Vis), (2) non-adjacent segments do not intercept (that is, s n § =0
foradlijsuchthatj ?i+1),and(3)vo=vpn1.thatis, the polygonis
closed.

. Let R={Po, P4, ..., Pn-1} beaset formed by n ssmple polygonsin

the plane, with n > 1. Considering P, to be abasic polygon, Rforms a
polygonal region if, and only if, (1) PinP; =@, for al i ? j, (2)
polygon Py has its vertices coded in a counterclockwise fashion, (3)

Pi digoint P; (see Table 3) for @l P; ? Po in which the vertices are
coded counterclockwisely, and (4) Py contains P; (see Table 3) for all
P; ? Py in which the vertices are coded clockwisely.

Considering the importance of spatial and non-spatia relations in the understanding of
the modeled space, OMT-G represents the three types of relationship that can occur
between its classes: simple associations, spatial relations, and topological network
relations. The discrimination of such relations has the objective of defining explicitly the
type of interaction that occurs between classes. There are some applications that do not

-152 -

Database Integrity: Challenges and Solutions

make use of spatial relations, but nevertheless there are applications on which spatial
relations have a very relevant meaning, and therefore should be explicitly included in the
application schema. Likewise, topologica network relations are of fundamental
importance for any applications that intend to employ geographic features in the
management of spatially-distributed facilities or in the management of flows, such as
those in the fields of transportation, energy, telecommunications, and sanitation.

Simple Associations, Spatial Relations, and Network Relations

Smple associations represent structural relationships between objects of different classes,
conventional as well as georeferenced. Spatial relations represent the topologic, metric,
ordinal, and fuzzy relationships. Some relations can be derived automatically from the
geometry of each object, during the execution of data entry or spatial analysis operations.
Geometric relations, such as contain and digoint, are an example of this. Others need to
be specified by the user, in order to alow the system to store and maintain that
information. The latter are called explicit relations (Peuquet, 1984).

In OMT-G, simple associations are indicated by continuous lines, whereas spatial
relations are indicated by dashed lines (Figure 4). Therefore, it is simple to distinguish
between simple associations (al phanumeric relationships) and spatial relations.

Database Integrity: Challenges and Solutions

[]| Building e
Owned by RN
(a) Simple association
Buildi - P I
T oo | g, [P

(b) Spatial relationship

Traffic Street
Gl segment [Foo--=-——==-- i crossi
Street network

(d) Arc-arc network relationship
Figure4: Relationships

Based on previous works (Camara, 1995; Clementini et al., 1993; Egenhofer & Franzosa,
1991; Egenhofer & Herring, 1990; Papadias & Theodoridis, 1997), OMT-G considers a
set of nine different spatial relations between georeferenced classes. Clementini et al.
(1993) identify a minimum set of spatial relation operators, comprising only five spatia
relations, from which all others can be specified: touch, in, cross, overlap, and digoint.
However, we consider that sometimes a larger set is required, due to cultural or semantic
concepts that are familiar to the users. These include relations such as adjacent to,
coincide, contain, and near, which are in fact special cases of one of the five basic
relations, but deserve special trestment because of their common use in practice. Spatial
integrity constraints for these relations are listed in Table 3, but additional constraints can
be formulated in case some additiona relation is required by the application. These
include any kind of directional or relative spatial relations, such as north of, left of, in
front of, or above

Table 3: Spatia relationship integrity rules
Basic relations

Database Integrity: Challenges and Solutions

Table 3: Spatia relationship integrity rules
Basicrelations

Touch 1. Let A, B be two geo-objects, where neither A nor B are members of the
Point class.
Then (AtouchB)=TRUE? (A°n B°=0)? (An B?0).

In 2. Let A, B be two geo-objects.

Then(AinB)=TRUE? (An B?A)? (A°n B°=0).
Cross 3. Let A be a geo-object of the Line class, and let B be a geo-object of either
the Line or the Polygon class. Then (A cross B) = TRUE ?
dim(A) = ((max(dim(A°), dim(B°))- 1)
? AnB?A)? (An B?B)
Overlap 4. Let A, B be two geo-objects, both members of the Line or of the Polygon
class.
Then (A overlap B) = TRUE ?
dim(A°) = dim(B°) = dim(A° n B°)
? AnB?A)? (An B?B).
Digoint |5. Let A, B be two geo-objects.
Then (Adisjoint B)=TRUE? An B=0

Special cases
Adjacent |6. Let A be ageo-object of the Polygon class and let B be a geo-object of
to either the Line or the Polygon class.

Then (A adjacentto B) = TRUE ? (AtouchB)? dim(An B)=1.

Coincide 7. Let A, B be two geo-objects.
Then (A coincide B)=TRUE? An B=A=B.

Contain 8. Let A, B be two geo-objects, where A is a member of the Polygon class.
Then (A contain B)=TRUE ? ((BinA)=TRUE)? ((Acoincide B) =
FALSE)

Near(dist) 9. Let A, B be two geo-objects. Let C be a buffer, created at a distance dist
around A.
Then (A near(dist) B = TRUE ? (Bdigoint C) = FALSE

Some relationships are only allowed between specific classes, because they depend on
the geometric representation. For instance, the existence of a contain relationship
assumes that one of the classes involved is a polygon. In this aspect, traditiona
applications differ from geographic ones, where associations between conventional
classes can be freely built, being independent from factors such as geometric behavior.
The set of concepts the user has about each real world object strongly suggests a
particular representation, because there is an interdependence between the representation,
the type of interpretation, and the usage given to each object class. In OMT-G thisis
considered in order to allow the placement of relations involving georeferenced classes.

Database Integrity: Challenges and Solutions

Considering the previoudly listed spatial relationship types, some spatia integrity rules
can be established (Table 3). These rules are formulated using a notation commonly
found in computational geometry, in which objects are indicated by upper-case itaic
letters (e.g. A,B), their boundaries are denoted as ?A, and their interiors as A° (note that
A° =A- ?A). The boundary of apoint object is considered to be aways empty (therefore
the point is equivalent to its interior), and the boundary of alineis comprised of its two
endpoints. A function, called dim, is used to return the dimension of an object, and
returns O if the object isapoint, 1 if itisaline, or 2 if it is a polygon.

Thedigoint rule is very important to maintain the integrity of the data stored in the
database, and it must be used in order to check input data. For instance, if the classes
Street Segment and Building are digoint, it means that there can never be a street
segment overlapping a building. If it becomes necessary to draw a street ssgment over a
building, the building must first be deleted. The street segment and building creation
routines can enforce thisrule.

The near rule is the only one described in Table 3 that requires a parameter. Since the
notion of proximity varies according to the situation, a precise distance must be supplied
to allow for the correct evaluation of the relationship. As an example, consider the classes
Address and Bus Stop. To establish the relationship between instances of these classes,
the maximum distance at which the bus stop is still considered to be near some address
must be defined, for instance 500 meters.

In OMT-G, network relations are relationships among objects that are connected with
each other. As previously mentioned, a network relationship only shows the need for a
logical connection, not a requirement for the implementation of a particular structure.
Network relations are indicated by two parallel dashed lines, linking a node classto an
arc class. Network structures can be built without nodes, requiring arecursive
relationship on the class which represents graph segments. The name given to the
network is annotated between the two dashed lines (Figure 4c¢). The connectivity rules,
which apply to network relationship primitives, are listed in Table 4.

As an example of the usage of these rules, consider a sewage network which is an arc-
node logical structure. Nodes are used to represent network elements such as manholes,
sawage treatment stations, and discharges, and arcs are used to represent piping segments.
The system is required to ensure the connection between all types of nodes and segments.
Network relations can be maintained by the GIS using special data structures, and are
represented by connecting arcs and nodes. Connectivity rules are usually enforced by the
GIS itsalf.

Cardinality

Relationships are characterized by their cardinality. The notation for cardinality adopted
by OMT-G (Figure 5) is the same as that used by UML (Rational, 1997). Of course, the
cardinality of the relationships constitutes a form of integrity constraint, usually called

Database Integrity: Challenges and Solutions

structural constraints (Elmasri & Navathe, 2000), which exist regardless of the spatial
characteristics of the data.

Class name |2 Class name
Zero or more Exactly one
y ol 0.1
Class name —— Class name
One or more Zero or ane

Figure5: Cardinality
Generalization and Specialization

Generalization is the process of defining classes that are more general (superclasses) than
classes with similar characteristics (subclasses) (Elmasri & Navathe, 2000; Laender &
Flynn, 1994). Specialization is the inverse process in which more specific classes are
detailed from generic ones, adding new properties in the form of attributes. Each subclass
inherits attributes, operations, and associations from the superclass.

In the OMT-G model, the generalization and specialization abstractions apply to both
georeferenced classes and conventional classes, following the definitions and notation
proposed for UML, where a triangle connects a superclass to its subclasses (Figure 6a, b).
Each generalization can have an associated discriminator, indicating which property is
being abstracted by the generalization relationship.

- 157 -

Database Integrity: Challenges and Solutions

Taxable property

Z% Type of property

Parcel property Building property

(a) UML notation

D Parcel
Al

i Occupation

D Built parcel Unoccupied
. parce|

(b) Spatial generalization
Figure 6: Generalization

Generalizations (spatia or not) can be specified as total or partial (Laender & Flynn,
1994; Rational, 1997). A generalization is total when the union of al instances of the
subclasses is equivalent to the complete set of instances of the superclass. UML
represents the totality constraint by using the predefined constraint e ements complete
and incomplete, but in OMT-G we have adopted the notation presented by Laender and
Flynn (1994), in which a dot is placed in the upper vertex of the triangle that denotes
generalization (Figure 7). Additionally, OMT-G also adopts the original OMT notation
(Rumbaugh et a., 1991) for the UML predefined constraint elements disjoint and
overlapping, that is, in adigoint relation the triangle is left blank, and in a overlapping
relation the triangle is filled. Therefore, the combination of the digunction and totality
aspects of generalization generates four types of constraints that apply to
generalization/specialization. Figure 7 shows examples of each combination. Notice that
completeness and digointness are also specifications that force the implementation of
corresponding integrity constraints, regardless of the spatial characteristics of the data.

Database Integrity: Challenges and Solutions

77| Trafhc sign o e

A A
R I _ I .
I'\:L_:‘l Bus stop '3:{| Parking ']:fl Comrmarce "]::1" Industng
{a) Disjoint/partial () Overlapping/parial
j] School \P:-" Terrinal |
_— —
_ 1]
D! Pt schacl |:|| Private schaal }:‘| Subway ']:f| Bus
{c) Disjointtctal (d} Overiappingtotal

Figure 7: Spatial generalization examples
Aqggregation

Aggregation is a specia form of association between objects, where one is considered to
be assembled from others. The graphic notation used in OMT-G follows the one used by
UML (Figure 8). An aggregation can occur between conventional classes, between
georeferenced classes, and between georeferenced and conventional classes (Figure 9).
When the aggregation is between georeferenced classes, spatial aggregation must be
used.

Whole o Parts

Figure 8: UML aggregation

> | Segment
Thoroughfare

Figure 9: Aggregation between conventional and georeferenced classes

Spatial aggregation is a special case of aggregation in which topologica "whole-part"
relationships are made explicit (Abrantes & Carapuca, 1994; Kosters et al., 1997). The
usage of this kind of aggregation imposes spatial integrity constraints regarding the
existence of the aggregated object and the corresponding sub-objects. Beyond providing
more clarity and expressiveness to the model, the observation of these rules contributes to
the maintenance of the semantic integrity of the geographic database. In spatial
aggregation, also called topological "whole-part”, the geometry of each part is entirely
contained within the geometry of the whole. Also, no overlapping among the partsis
allowed and the geometry of the whole is fully covered by the geometry of the parts. The

- 159 -

Database Integrity: Challenges and Solutions

notation for this structure is presented in Figure 10, where it is specified that blocks are
composed of parcels, that is, blocks are geometrically equivalent to the union of adjacent
parcels. Thisimpliesthat (1) no area belonging to the block can exist outside of a parcel,
(2) no overlapping can occur among parcels that belong to a block, and (3) no area
belonging to a parcel can exist outside of a block. These three principles are stated in
Table 5 and correspond to the spatial integrity constraints associated with the spatial
aggregation primitive.

|:| Block D Parcel

Figure 10: Spatial aggregation ("whole part™)

Table 5: Spatial aggregation integrity rules
Spatial Let P = {Py, P1,..., Pn} be aset of geo-objects. Then P forms another
aggregation object W by spatia aggregation if and only if

1. Pbn W=P;foradlisuchthat0=i=n, and

2. ,and
3. ((Pitouch Pj) ? (P;digoint Pj)) = TRUE for all i, j suchthat i ?
J-

Notice that the class diagram does not specify whether the whole can be assembled from
individual partsin an automatic fashion, nor does it specify whether the parts can be
obtained automatically from the whole. If such automatic generation of instances can be
specified, then it is done in the transformation diagram (Davis, 2000) by specifying
exactly which transformation operation should be used. This transformation must ensure
the application of the integrity constraints for spatial aggregation, as stated in Table 5.

Conceptual Generalization

The spatial primitive conceptual generalization is used to record the need for different
representations for a given object (Davis & Laender, 1999). In this type of relationship,
the superclass does not need to have a specific representation. However, its subclasses are
represented by distinct geometric shapes, being alowed to inherit the superclass
alphanumeric attributes and to include specific attributes of their own. The objective of
the use of this primitive is to allow relationships involving each representation style to be
made explicit. As previously shown, the way a class is represented influences the spatial

- 160 -

Database Integrity: Challenges and Solutions

relationship types that can occur. The same representation alternative is allowed in more
than one subclass, because in each one the level of detail or resolution can vary.

Conceptual generalization can occur in two representation variations: according to
geometric shape and according to scale. The variation according to geometric shape is
used to record the simultaneous existence of multiple scale-independent representations
for aclass. For instance, ariver can be represented by its axis, asasingle line, as the
space between its margins, as a polygon covered by water, or as a set of flows (directed
arcs) within river sections, forming a hydrographic network (Figure 118). Variation
according to scale is used in the representation of different geometric aspects of a given
class, each corresponding to arange of scales. A city can be represented by its political
borders (apolygon) in alarger scale, and by a symbol (a point) in asmaller scale (Figure
11b).

Riwer exis Rhiar margins Rnoer area == | River sagmant

(a) Variation according to shape {overlapping)

City

1

e

City
boundanes |

(b} Variation according to scale (disjoint)

Figure 11: Conceptual generalization

The notation used for cartographic generalization uses a square to connect the superclass
to its subclasses. The subclass is connected to the square by a dashed line. Asa
discriminator, the word Scale is used to mean variation according to scale, and the word
Shape is used to determine variation according to geometric shape. The square is blank
when subclasses are digoint and filled if subclass overlapping is alowed (Figure 11). As
in the case of generalization and specialization, the disjointness defines an integrity
constraint, in which an instance of the superclass can only belong to one of the subclasses,
and therefore multiple representations for a single superclass instance are not allowed.

The variation according to geometric shape can also be used in the representation of

classes which ssmultaneously have georeferenced and conventional instances. For
instance, atraffic sign can exist in the database as a non georeferenced object, such as a

- 161 -

Database Integrity: Challenges and Solutions

warehouse item, but it becomes georeferenced when installed at a particular location
(Figure 12). Notice that the conceptual generalization in Figure 12 is also digoint, and
therefore a given traffic sign can either be in stock, or installed at a definite geographic
position — it cannot be both at the same time.

Traffic sign

1 1

w Installed sign | Traffic sign in

stock
Figure 12: Conceptual generalization with a conventional class

Except for the inheritance of superclass characteristics by subclasses, the conceptual
generalization primitive does not define any additional spatial integrity constraints.
Notice, however, that some generalization operations (particularly cartographic
generalization) can inadvertently cause modifications in spatial relationships. The
application must ensure that when a more general (less detailed) class is generated from a
more detailed one, the same topological relationships must hold (Egenhofer et a., 1994;
Paiva, 1998).

APPLICATION EXAMPLE

To illustrate the spatial integrity constraints derived from the primitives and spatial
relationships included in OMT-G, a sample model is presented in this section,
corresponding to part of afamily health application.

Figure 13 shows the class diagramfor the example application. The geographic space for
the application corresponds to a municipality. A set of digital orthophotos covers the
entire municipal territory, to be used as background information for the application. The
municipal space is subdivided into health districts, which are responsible for
decentralized health services. Each district employs health agents, who care for families
who live within the district's area. The districts contain blocks, which arein turn
subdivided into parcels. Blocks and parcels are represented by their polygonal boundary.
Parcels can be unoccupied or built, depending on whether one or more buildings have
been erected on them. Building addresses are formed by concatenating the thoroughfare
code to the street number. Each address is defined as a symbol, and is to be located inside
the parcel's boundary. Only built parcels can have addresses (a user defined integrity
constraint). A thoroughfare is represented by its segments, which take on the role of arcs

- 162 -

Database Integrity: Challenges and Solutions

in a street network. The nodes are thoroughfare intersections, at the crossings. Each
health agent is responsible for regularly visiting a number of families, applying
preventive medicine actions, such as newborn follow-up, pregnancy control, vaccination,
sanitary conditions inspection, and others. Family members are registered in the system,
along with their individual data and medical history. The agents have routes to follow,
going from home to home.

]
Boundsnes

k.
B
|
i L vt
[} 1 ;. * VEhng e b
[m - | Eas
ey bribas i o
i
Atributcs ; T
i 13 % 1
i i r
] . 3 ﬁT
1 H (X E & AEEpOrE bl 1 =
H : . -
: ;:’l‘t ‘frl Famity - - Heamn agent
1 -]
1 il 1.+¢ 1% Tg‘
1 ¥ 1 Famiy mgmber
R '] T i i
4J| OfCis. *-:'
B
1
s i
CIEs
RN
Ly
-1
-4
FE
]
-
al]
L. e —
"'"""1" _’l seoment | 1
o -
EIGRCE W

Thomughtare

Figure 13: Application example

From the class diagram, following the definitions of the spatial constraints provided
earlier, it can be observed that the integrity constraints listed in Table 6 apply.

Table 6: Spatia integrity constraints from the example

Class Description Constraint
Topologic Munici pal boundaries areaspatial aggregation of Spatial aggregation
Heal th District (Table5)

Bl ock isaspatial aggregation of Par cel
Heal th district contansFami |y Contain (Table 3)

Heal th district containsBl ock

- 163-

Class

Semantic

User
defined

Database Integrity: Challenges and Solutions

Table 6: Spatial integrity constraints from the example

Description
Bui It parcel containsAddress

The street network is composed of Street segnents

(arcs) and St reet crossi ngs (nodes)

Visiting routes are composed of Rout e segnent s
(arcs) and Vi sit sites (nodes)

Addr ess and Fani | y coincide

Family andVisit site coincide

Heal th districts must fill the modeled space
(municipal boundaries)

Di gi tal orthophot os must fill the modeled space

(municipal boundaries)
Heal th districts form aplanar subdivision

Di gi tal orthophot os aretessdations

Street segment andRoute segment are
unidirectional lines

Bl ock, Parcel, Unoccupied parcel, Built
parcel, Municipal boundaries arepolygons

Street segnments cannot Cross Bl ocks
Addr esses must be contained in Bl ocks

An Unoccupi ed parcel must not contain any
Addr ess

Constraint

Connectivity (Table
4)

Coincide (Table 3)

Planar enforcement

(Table 1)

Planar subdivision
(Table 1)

Tesselation (Table
1)

Line (Table 2)

Simple polygon
(Table 2)

Besides the spatia integrity constraints listed in Table 6, integrity constraints
corresponding to the simple associations included in the diagram must be specified.
There is aso the need to specify the integrity constraint on the specialization relationship
between Parcel, Unoccupied parcel and Built parcel. The cardinality of all simple
associations and spatial relationships must also be specified as structural constraints.

FUTURE DEVELOPMENTS

Current GIS products are the descendants of along line of verticalized software in which
all the relevant functions were implemented by the GIS devel opers and incorporated,
usualy in a proprietary fashion, to the software. It is very common to find GIS
implementations which incorporate primitive spatial database management functions,

-164 -

Database Integrity: Challenges and Solutions

while providing some sort of interface to standard relational database management
products. Only recently, after the release of the Open GIS Consortium's Simple Features
Specification, traditional Database Management Systems (DBMS) have begun to
incorporate more adequate support for spatial data, using object-relational tables and
gpatia indexing. GIS developers are lowly realizing that the possibility of using a spatial
DBMS underlying their products is a good alternative, and are therefore delivering
interfaces to them.

However, current spatial DBM Ss do not implement spatial integrity constraints in the
same way that they support relational integrity constraints. Rather, they assume that all
the spatia integrity checking will be made by the GIS, during the data entry process, and
prior to the storage in the database. We feel that, if clear rules can be formulated, spatial
integrity constraints can be translated from the conceptua schema to the implementation
schema, and could therefore be incorporated as a part of the spatial database's design. A
careful examination of the spatia integrity rules presented in this chapter shows that
every one of them can be implemented with the help of well-known computational
geometric algorithms, such as point-in-polygon (Preparata & Shamos, 1988), line
intersection (Cormen et al., 1990; Preparata & Shamos, 1988), polygon
intersection/union/difference (Margalit & Knott, 1989), or by locally building and using
well-known topological structures, such as winged-edge (Baumgart, 1975). Also, the user
must be allowed to formulate specific spatial integrity constraints, as required by the
application. This can be done by either providing a verification function, or by using a
combination of existing ones, algorithms that have been a part of commercial GIS for a
long time, such as divers and gaps detection, edge- matching, line smplification, and
others.

While these constraint verifications can be incorporated to the GIS, one of the strongest
arguments for installing a spatially-enabled DBMS in a corporate environment is to
enable the use of awide array of client products, each specializing in a specific aspect of
the use of spatial data in the organization: database maintenance, spatial analysis, map
production, integration with legacy systems, and so on. The only way to be sure that
every modification of the spatial data resultsin an integral database is to implement the
gpatial integrity constraints as a function of the DBMS, adapting the client applications to
reflect (and to benefit from) that functionality.

When the integration of gatial integrity constraints to spatially-enabled DBMSsis
implemented, GIS developers and users will be allowed to invest on other aspects of the
applications, such as multiple representations (Davis, 2000) and the use of ontologies to
bring the application closer to the user's mental model (Fonseca, 2001).

REFERENCES

Abrantes, G. & Carapuca, R. (1994) Explicit representation of data that depend on
topological relationships and control over data consistency. In Proc. Fifth European
Conference and Exhibition on Geographical Information Systems —EGISMARI'94,
1:869-877. (http://wwwsgi.ursus.maine.edu/gisweb/eqiseq94100.html).

- 165 -

Database Integrity: Challenges and Solutions

Baumgart, B. (1975) A polyhedron representation for computer vision. In Proceedings of
the AFIPS Conference, 589-596, Anaheim, California.

Borges, K. A. V, Laender, A. H. F. & Davis Jr., C. A. (1999) Spatial data integrity
constraints in object oriented geographic data modeling. In Proceedings of the 7th
International Symposium on Advances in Geographic Information Systems (ACM GIS99),
1-6, Kansas City, Missouri.

Borges, K. A. V. (1997) Geographic data modeling — an extension of the OMT model
for geographic applications. Master's thesis, Jodo Pinheiro Foundation, Minas Gerais
Government School. In Portuguese.

Borges, K. A. V., Davis Jr., C. A. & Laender, A. H. F. (2001) OMT-G: An Object-
Oriented Data Model for Geographic Applications. Geol nformatica 5(3):221-260.
Camara, G. (1995) Models, languages, and architectures for geographic databases. Ph.D.
Thesis, inpe. In Portuguese.

Clementini, E., DiFelice, P. & Oosterom, P. (1993) A small set of formal topological
relationships suitable for end-user interaction. In Proceedings of the 3rd Symposium on
Spatial Database Systems 277-295, Singapore.

Cockcroft, S. (1997) A taxonomy of spatial data integrity constraints. Geol nformatica
1(4): 327-343.

Cormen, T. H., Leiserson, C. E. & Rivest, R. L. (1990) Introduction to Algorithms.
McGraw-Hill and MIT Press, Cambridge, M assachusetts.

Davis Jr., C. A. (2000) Multiple representations in geographic information systems. Ph.D.
Thesis, Universidade Federal de Minas Gerais, Belo Horizonte. In Portuguese.

Davis Jr., C. A. & Laender, A. H. F. (1999) Multiple representationsin GIS
materialization through geometric, map generalization, and spatial analysis operations.
In Proceedings of the 7th International Symposium on Advances in Geographic
Information Systems (ACM GIS99), 6065, Kansas City, Missouri.

Egenhofer, M. J., Clemertini, E. & Di Felice, P. (1994) Evaluating Inconsistencies
among Multiple Representations. In Proceedings of the Sixth International Symposium on
Spatial Data Handling, 2:901-920, Edinburgh.

Egenhofer, M. J. & Franzosa, R. D. (1991) Point-set topological spatial relations.
International Journal of Geographical Information Systems 5(2):161-174.

Egenhofer, M. J. & Herring, J. (1990) A mathematical framework for the definition of
topological relationships. In Proc. 4th International Symposium on Spatial Data
Handling, 803-813, Zurich

Elmasri, R. & Navathe, S. (2000) Fundamentals of database systems. 3nd Edition
Addison-Wesley, Reading, Massachusetts.

Fonseca, F. T. (2001) Ontology-driven Geographic Information Systems. Ph.D. Thesis,
University of Maine.

Frank, A. U. & Goodchild, M. F. (1990) Two per spectives on geographical data
modeling. National Center for Geographic Information and Analysis (NCGIA). Technical
Report 90-11.

Goodchild, M. F. (1992) Geographical data modeling. Computers & Geosciences,
18(4):401-408.

Kosters, G., Pagel, B. & Six, H. (1997) Gl S-application development with GeoOOA.
International Journal of Geographical Information Science, 11(4):307-335.

- 166 -

Database Integrity: Challenges and Solutions

Laender, A. H. F. & Flynn, D. J. (1994) A semantic comparison of modelling capabilities
of the ER and NIAM models. In: R. Elmasri, V. Kouramagjian, and B. Thalheim (eds.)
Entity-Relationship approach — ER'93, 242-256, Springer-Verlag

Laurini, R. (2001) Information Systems for Urban Planning: a Hypermedia Co-operative
Approach. Taylor & Francis.

Laurini, R., Thompson, D. (1992) Fundamentals of spatial information systems.
Academic Press London

Margalit, A., Knott, G. D. (1989) An Algorithm for Computing the Union, Intersection or
Difference of Two Polygons. Computers & Graphics 13(2): 167-183.

Oliveira, J. L., Pires, F. &Medeiros, C. M. B. (1997) An environment for modeling and
design of geographic applications. Geolnformatica 1(1):29-58.

Papadias, D. & Theodoridis, Y. (1997) Spatial relations, minimum bounding rectangles,
and spatial data structures. International Journal of Geographical Information Science,
11(2):111-138.

Paiva, J. A. C. (1998) Topological consistency in geographic databases with multiple
representations. Ph.D. Thesis, University of Maine.

Peuquet, D. J. (1984) A conceptual framework and comparison of spatial data models.
Cartographica, 21:666-113.

Plumber, L. & Groger, G. (1997) Achieving integrity in geographic information systems:
maps and nested maps, Geol nformatica 1(4): 346-367.

Preparata, F. P. & Shamos, M. |. (1988) Computational Geometry: an Introduction,
Springer-Verlag, New York.

Rational Software Corporation (1997) The Unified Language: notation guide, version 1.1
July 1997. (http://www.rational.com).

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen W. (1991) Object-
Oriented Modeling and Design. Prentice-Hall.

Worboys, M. F. (1994) A unified model for spatial and temporal information. The
Computer Journal, 37(1):26-34.

Chapter VI: Consistent Queries Over
Databases With Integrity Constraints®

Sergio Greco, Ester Zumpano, Universita della Calabria,

Italy

INTRODUCTION

Integrity constraints represent an important source of information about the real world.
They are usually used to define constraints on data (functional dependencies, inclusion
dependencies, etc.). Nowadays integrity constraints have a wide applicability in several
contexts such as semantic query optimization, cooperative query answering, database
integration and view update.

- 167 -

Database Integrity: Challenges and Solutions

Often databases may be inconsistent with respect to integrity constraints, that is, one or
more integrity constraints are not satisfied. This may happen, for instance, when the
database is obtained from the integration of different information sources. The integration
of knowledge from multiple sources is an important aspect in several areas such as data
warehousing, database integration, automated reasoning systems and active reactive
databases.

Since the satisfaction of integrity constraints cannot generally be guaranteed, in the
evauation of queries, we must compute answers which are consistent with the integrity
constraints. Example 1 shows a case of inconsistency.

Example 1 Consider the following database schema consisting of the single binary
relation Teaches (Course, Professor) where the attribute Course is a key for the relation.
Assume there are two different instances for the relations Teaches as reported in Figure 1.

Cirurse Professor Conrse Pridessor
cl pl cl pl
o pl | cd p3

Fi gure- 1

The two instances satisfy the constraint that Course is akey but, from their union we
derive arelation which does not satisfy the constraint since there are two distinct tuples
with the same value for the attribute Course.

In the integration of two conflicting databases simple solutions could be based on the
definition of preference criteria such as a partial order on the source information or a
majority criteria (Lin and Mendelzon, 1996). However, these solutions are not generally
satisfactory and more useful solutions are those based on 1) the computation of repairs
for the database, 2) the computation of consistent answers (Arenas et al., 1999).

The computation of repairs is based on the definition of minimal sets of insertion and
deletion operations so that the resulting database satisfies all constraints. The
computation of consistent answers is based on the identification of tuples satisfying
integrity constraints and on the selection of tuples matching the goal.

For instance, for the integrated database of Example 1, we have two alternative repairs
consisting of the deletion of one of the tuples (c2,p2) and (c2,p3). The consistent answer
to aquery over the relation Teaches contains the unique tuple (c1,pl) so that we don't
know which professor teaches course c2.

Therefore, it is very important, in the presence of inconsistent data, not only to compute
the set of consistent answers, but also to know which facts are unknown and if there are
possible repairs for the database. In our approach it is possible to compute the tuples that
are consistent with the integrity constraints and answer queries by considering as true
facts—those contained in every repaired database, false facts-those that are not contained
in any repaired database and unknown-the remaining facts.

- 168 -

Database Integrity: Challenges and Solutions

Example 2 Consider the integrated relation of Example 1 containing the tuples (cl1, pl),
(c2, p2) and (c2, p3). The database is inconsistent and there are two possible repairs
which make it consistent: R1 = (@, { Teaches(c2, p2)}) and R2 = (@, { Teaches(c2, p3)})
which delete, respectively, the tuples (c2, p2) and (c2, p3), from the relation Teaches. The
set of consistent tuplesin the relation Teaches consists of the singleton (c1, pl).

This chapter illustrates recent techniques for computing consistent answers and repairs
for possibly inconsistent databases.

Wwork partially supported by MURST grants under the projects "Data- X" and D2I. The
first author is also supported by ISI-CNR.

ORGANIZATION OF THE CHAPTER

We first present some preliminaries on relational databases, digjunctive deductive
databases and integrity constraints and then we introduce the formal definition of repair,
consistent answer and the different techniques for querying and repairing inconsi stent
databases. In particular we present: 1) an extension of relational algebra, called flexible
relational algebra, for inconsistent relations; 2) the integrated relational calculus which
extends relations and algebra for querying inconsistent data; 3) a technique for merging
relations based on majority criteria; 4) atechnique for querying and repairing inconsistent
data based on the concept of residual; 5) a technique for querying inconsistent databases
based on the definition of alogic program for defining possible repairs and 6) atechnique
based on the rewriting of integrity constraints into digunctive Datalog rules.

Relational Databases

We assume there are finite sets of relation names R, attribute names A and attribute
values (also called database domain) V. A relation schema of arelation R? R is of the
form (Aq,...,An) Where Ag,...,An ? A. A relational database schemaisaset of relation
schemas. Each attribute A has associated a domain denoted by DOM(A). The null value
? isnot contained in DOM(A) and DOM, (A) =DOM(A) ? {? }.

A tuple for arelation R is a mapping assigning to each attribute A of R an element in
DOM, (A), i.e. alist of values (v1,...,Vn) Wherev; is the value of the attribute A;, for each
iin[1..n]. A relation (instance) is a set of tuples. In the following, atuple (v1,...,vn) of &
relation R, will also be denoted by R(vs,...,Vn).

The set of keys of arelation Rwill be denoted by keys(R) and the primary key is denoted
by pkey(R). We assume that the value of the attributes in the primary key is not null.

Digunctive Deductive Databases

A (digunctive Datalog) ruler is a clause of the form

- 169 -

Database Integrity: Challenges and Solutions

Av..v A4 «B,..,B_,not By ktm+n>0

L

where Ay, ..., A, By,..., B, are atoms of the form p(ts,..., ty), p isapredicate symbol of
arity h and the termstts,..., t, are constants or variables (Eiter et a.,1998). The digunction
A1? ...? Axisthehead of r, whilethe conjunction By,...,Bm, not By:1,..., not B, isthe
body of r. We also assume the existence of the binary built-in predicate symbols
(comparison operators) which can only be used in the body of rules.

The Herbrand Universe Up of a program P is the set of all constants appearing in P, and
its Herbrand Base B is the set of al ground atoms constructed from the predicates
appearing in P and the constants from Up. A term, (resp. an atom, aliteral, aruleor a
program) is ground if no variables occur init. A rule r' isaground instance of aruler, if
r' is obtained from r by replacing every variable in r with some constant in Up. We
denote by ground(P) the set of all ground instances of the rulesin P.

An interpretation of P isany subset of Bp. The value of aground atom L w.r.t. an
interpretation |, value (L), istrueif L ? | and false otherwise. The value of a ground
negated literal not L isnot value (L). The truth value of a conjunction of ground literals C
=L 1,...,Ln isthe minimum over the values of the L;, i.e. valug (C)=min({ valug (L;) | 1=
i=n}), whilethevauevalug (D) of adigunctionD =L;? ... ? Lyistheir maximum,
i.e., valug= (D) = max({ valug(D) (L;) | 1 =i = n}); if n=0, then valug (C) = true and
valueg (D) = false.

A ground ruler is satisfied by | if value (Head(r)) = value (Body(r)). Thus, arule r with
empty body is satisfied by | if valug (Head(r)) = true. In the following we also assume
the existence of rules with empty head which define denials (under total semantics), i.e.,
rules which are satisfied only if the body is fase (valug (Body(r)) = false). An
interpretation M for P isamodel of P if M satisfies each rule in ground(P). The (model-
theoretic) semantics for a positive program, say P, assignsto P the set of its minimal
models MM(P), where amodel M for P is minimal, if no proper subset of M is a model
for P (Minker, 1982). The more general disjunctive stable model semantics aso appliesto
programs with (unstratified) negation (Gelfond and Lifschitz, 1991). For any
interpretation |, denote with P the ground positive program derived from ground(P) 1)
by removing al rules that contain a negative litera not a in the body and a ? I, and 2) by
removing al negative literals from the remaining rules. An interpretation M isa
(disunctive) stable model of P if and only if M ? MM(P™).

For genera P, the stable model semantics assignsto P the set SM(P) of its stable models.

It is well known that stable models are minimal models (i.e. SM(P) ? MM(P)) and that
for negation free programs minimal and stable model semantics coincide (i.e. , SM(P) =
MM(P)). Observe that stable models are minimal models which are "supported", i.e., their
atoms can be derived from the program. An alternative semantics which overcomes some
problems of stable model semantics has been recently proposed in Greco (1999).

Extended Digunctive Databases

- 170-

Database Integrity: Challenges and Solutions

An extended atom is either an atom, say A or its negation —=A. An extended Datalog
program is a set of rules of the form

where Aq,..., Ay, By,..., B, are extended atoms.

A (2-valued) interpretation | for an extended program P isapair <T,F>where T and F
define apartitionof Bp ? - Bp and - Bp ={ -A | A ?Bp}. The semantics of an extended
program P is defined by considering each negated predicate symbol, say, —p, as anew
symbol syntactically different from p and by adding to the program, for each predicate
symbol p with arity nthe constraint ? p(Xi,...,Xn), 7"p(X4,...,Xn) (Gelfond and Lifschitz,
1991, Greco and Sacca, 1990; Kowalski and Sadri, 1991). The existence of a (2-valued)
model for an extended program is not guaranteed, also in the case of negation (as-failure)
free programs. In the following, for the sake of ssimplicity, we shall aso use rules whose
bodies may contain digunctions. Such rules, called generalized digunctive rules, are used
as shorthand for multiple standard digunctive rules.

Digunctive Queries

Predicate symbols are partitioned into two distinct sets: base predicates (also called EDB
predicates) and derived predicates (also called IDB predicates). Base predicates
correspond to database relations defined over a given domain and they do not appear in
the head of any rule whereas derived predicates are defined by means of rules.

Given adatabase D, a predicate symbol r and a program P, D(r) denotes the set of r-
tuplesin D whereas Pp denotes the program derived from the union of P with the tuples
inD,i.e. Po=Pn{r(t)? |t?D(r) }. Inthefollowing atuplet of arelation r will also
be denoted as afact r(t). The semantics of Pp is given by the set of its stable models by
considering either their union (possible semantics or brave reasoning) or their
intersection (certain semantics or cautious reasoning). A query Qisapair (g,P) where g
is apredicate symbol, called the query goal, and P is a program. The answer to a query
Q=(g,P) over adatabase D, under the possible (resp. certain) semanticsis given by D'(g)
whereD'=? M2 SV (PD) M (r%p. D'=n M2 SM (PD) M).

INTEGRITY CONSTRAINTS

Integrity constraints express information that is not directly derivable from the database
data. They are introduced to provide information on the relationships among data and to
restrict the state a database can take, i.e., to prevent the insertion or deletion of data which
could produce incorrect states. A database D has associated a schema DS= (Rs,| C) which
defines the intentional properties of D : Rs denotes the set of relation schemas whereas IC
contains the set of integrity constraints.

-171-

Database Integrity: Challenges and Solutions

Integrity constraints express semantic information over data, i.e., relationships that must
hold among data in the theory. Generally, integrity constraints represent the interaction
among data and define properties which are supposed to be explicitly satisfied by all
instances over a given database schema. Therefore, they are mainly used to validate
database transactions.

Definition 1

An integrity constraint (or embedded dependency) is aformula of the first order predicate
calculus of the form:

O Xt B[R %) [s) W ilYawyw) |

whereF (Xq, ..., Xn) and ? (yi,....ym) aretwo conjunctions of literals such that
X1,..Xn@nd y1,...,.ym are the distinct variables appearing in F and ? respectively and
{z1,...,2¢ = {Y1,.--¥Ym} —{X1,..., Xn} isthe set of variables existentially quantified.

In the definition above, conjunction F is called the body and conjunction ? the head of
the integrity constraint. Moreover, an integrity constraint is said to be positive if no
negated literals occur in it (classical definitions of integrity constraints only consider
positive nondisjunctive constraints, called embedded dependencies (Kanellakis, 1991)).

Six common restrictions on embedded dependencies that give us six classes of
dependencies have been defined in the literature (Kanellakis, 1991):

Thefull (or universal) are those not containing existential quantified variables.
The unirelational are those with one relation symbol only; dependencies with
more than one relation symbols are called multirelational.

The single-head are those with a single atom in the head; dependencies with more
than one atom in the head are called multi-head.

The tuple-generating are those without the equality symbol.

The equality-generating are full, single-head, with an equality atom in the head.
The typed are those whose variables are assigned to fixed positions of base atoms
and every equality atom involves a pair of variables assigned to the same position
of the same base atom; dependencies which are not typed will be called untyped.

Most of the dependencies developed in database theory are restricted cases of some of the
above classes. For instance, functional dependencies are positive, full, single- head,
unirelational, equality- generating constraints.

In the rest of this section we concentrate on full (or universal) digunctive constraints,
where Y is apossibly empty digunction of literals and aliteral can be either a base literal

-172-

Database Integrity: Challenges and Solutions

or aconjunction of built-in literals (i.e., literals using as predicate symbols comparison
operators).

Therefore, an integrity constraint is a formula of the form:

(W X)[BAwA BAQPDAVLIVA VIV ..VY]

where Ay,..., Am, Bi,..., B, are base positive literals, ? , ?1,..., 7k are built-in literals, X
denotes the list of all variables appearing in B,...,Bhand it is supposed that variables

appearing in As,..., Am,? , ?1,..., ?x also appear in By,...,Bn.

Often we shall write our constraints in a different format by moving literals from the head
to the body and vice versa. For instance, the above constraint could be rewritten as

where? '=? ? not?1? ...7 not?yisaconjunction of built-in atoms or in the form
of rule with empty head, called denial:

which is satisfied only if the body is fase.

Example 3 The integrity constraint

called inclusion dependency states that the relation p must be contained in the union of
therelationsg and r. It could be rewritten as

We now introduce some basic notions including what we understand as a consistent
database, a consistent set of integrity constraints, a database repair and a consistent
answer.

Definition 2
Given a database schema DS = (Rs,|C) we say that IC is consistent if there exists a
database instance D over DSsuch that D |= |C. Moreover, we say that a database

instance D over DSisconsistent if D |=IC, i.e. if all integrity constraintsin IC are
satisfied by D, otherwise it is inconsistent.

- 173-

Database Integrity: Challenges and Solutions

Example 4 The set of integrity constraint

is not consistent since there is no instance of relation p satisfying both constraints.

Intuitively, arepair for a (possibly inconsistent) database D is a minimal consistent set of
insert and delete operations which makes D consistent, whereas a consistent answer for a
guery consists of two sets containing, respectively, the maximal set of true and undefined
atoms which match the query goal; atoms which are neither true nor undefined can be
assumed to be false.

QUERYING AND REPAIRING RELATIONS

Databases contain, other than data, intentional knowledge expressed by means of
integrity constraints. Database schemata contain the knowledge on the structure of data,
I.e., they put constraints on the form the data must have.

The relationships among data are usually defined by constraints such as functional
dependencies, inclusion dependencies, referential constraints, etc. Integrity constraints
and relation schemata are introduced to prevent the insertion or deletion of data which
could produce incorrect states. Generally, databases contain explicit representation of
intentional knowledge.

Definition 3

Given a database schema DS = <Rs,|C> and a database D over DS arepair for D isa
pair of sets of atoms (R", R) suchthat 1) R"' n R =@, 2) D? R -R |=ICand 3) there
isnopair (S,S)?(R,R)suchthatR"? SR ? SandD? S-S |=IC.The
databaseD ? R'- R~ will be called the repaired database.

Thus, repaired databases are consistent databases which are derived from the source
database by means of aminimal (under total semantics) set of insertion and deletion of
tuples. Given arepair R for D, R" denotes the set of tuples which will be added to the
database whereas R denotes the set of tuples of D which will be canceled. In the

following, for a given repair R and adatabase D, R(D) =D ? R'-R denotesthe
application of R to D.

Example 5 Assume we have a database D = {p(a),p(b),q(a),q(c)} with the inclusion
dependency (? X) [p(X)? q(X)]. The database D is inconsistent since the constraint
p(X)? q(X)is not satisfied. The repairs for D are R1 = ({ q(b)}, @) and R2= (@, { p(b) })

- 174-

Database Integrity: Challenges and Solutions

producing, respectively, the repaired databases R1(D)={ p(a), p(b), q(a), q(c), q(b) } and
R2(D) ={ p(a), a(a), q(c) }-

A (relational) query over a database defines a function from the database to arelation. It
can be expressed by means of alternative equivalent languages such as relational algebra,
‘safe’ relational calculus or ‘safe’ non recursive Datalog (Abiteboul et al., 1995, Ullman,
1988). In the following, we shall use Datalog. Thus, aquery isapair (g,P) where P isa
safe nonrecursive Datalog program and g is a predicate symbol specifying the output
(derived) relation. Observe that relational queries define arestricted case of digunctive
gueries. The reason for considering relational and digunctive queriesis that, as we shall
show in the next section, relational queries over databases with constraints can be
rewritten into extended disjunctive queries over databases without constraints.

Definition 4

The set of repairs for a database D with respect to |C will be denoted by Repair(D,IC). A
tuplet over DSis consistent with respect toD if t belongsto all repaired databases, i.e. t

? Np'; Repairs (0,ic) D'
Definition 5

Given a database schema DS = (Rs,IC) and a database D over DS an atom A istrue
(resp. fase) with respect to (D,IC) if A belongsto all repaired databases (resp. thereis
no repaired database containing A). The set of atoms which are neither true nor false are
undefined.

Thus, true atoms appear in all repaired databases whereas undefined atoms appear in a
proper subset of repaired databases. Given a database D and a set of integrity constraints
IC, the application of 1C to D, denoted by 1C(D), defines three distinct sets of atoms: the
set of true atoms IC(D)", the set of undefined atoms IC(D)" and the set of false atoms
IC(D) .

Definition 6

Given a database schema DS= <Rs,|C>, a database D over DS, and a query Q = (g,P),
the consistent answer to the query Q on the database D, denoted as Q(D,IC), givesthree
sets, denoted as Q(D,IC)", Q(D,IC) and Q(D,IC)". These contain, respectively, the sets
of g-tuples which aretrue (i.e. belonging to Q(D') for all repaired databases D'), false
(i.e. not belonging to Q(D") for all repaired databases D) and undefined (i.e. the set of
tuples which are neither true nor false).

TECHNIQUES FOR QUERYING AND REPAIRING
DATABASES

- 175-

Database Integrity: Challenges and Solutions

Recently, there have been several proposals considering the integration of databases as
well as the computation of queries over inconsistent databases (Agarwal, 1992; Agarwal
et a., 1995; Arenas et a., 1999; Bry, 1997; Dung, 1996; Greco and Zumpano, 2000;
Greco and Zumpano, 2000b; Greco et a., 2001; Lin, 1996; Lin, 1996b; Lin and
Mendelzon, 1996; Lin and Mendelzon,1999). Techniques for the integration of
knowledge bases, expressed by means of first order formulas, have been proposed as well
(Bardl et al., 1991; Barad et al., 1991b; Subrahmanian, 1994; Grant and Subrahmanian,
1995). Most of the techniques for computing queries over inconsistent databases work for
restricted cases and only recently have there been proposals to consider more genera
congtraints. In this chapter we give an informal description of the main techniques
proposed in the literature.

Flexible Algebra (Agarwal-K eller-Wieder hold-Sar aswat)

The flexible algebra extends relational agebra through the introduction of flexible
relations, i.e. non INF relations that contain sets of non-key attributes, to provide
semantics for database operations in the presence of potentialy inconsistent data
(Agarwal et a., 1995).

A flexible relation is obtained by applying the flexify (~) operator to arelation R with
schema (K,Z), where K denotes the set of attributes in the primary key and Z is the set of
remaining attributes. The schema of ~(R) is (K,Z,Cons,Sdl,Src), where Cons is the
consistent status attribute, Sel is the selection status attribute and Src is the source
attribute Thus, aflexible relation is derived from a classical relation by extending its
schema with the ancilliary attributes and assigning values for these attributes for each of
the tuples. Obviowsly a classical relation is consistent by definition. Inconsistencies may
ariseif the integration of a set of consistent and autonomous databases is performed. In
order to represent inconsistent data in a flexible relation the method introduces the notion
of ctuple.

A ctupleis defined as a cluster of tuples having the same values for the key attributes. A
flexible relation is a set of ctuples. Two tuples t; and t, in the same ctuple are conflicting
if there is some non key attribute Asuchthat ? ?t; [A] ? t2[A] ? ? , where the
interpretation given to the null value consists in no information (Zaniolo, 1984). A ctuple
isconsistent if it contains non conflicting pairs of tuples. Note that a ctuple containing
exactly atupleis consistent by definition.

Example 6 Consider the following three relations R1, R2 and R3 coming, respectively,
from the sources sl1, s2 and s3 (Figure 2).

[l K2 [[FE]
k)

[Ray [21 [23 [73 Koy [71 | 22 | 43 Moy [71 | 72 |43
o
1 .t

1 % 10 % ¥ F 11} % W Z
The integrated relation R consists of two ctuples (c1 and c2) (Figure 3) where the ctuple
c2 is consistent whereas the ctuple cl is not consistent.

Figure

- 176 -

Database Integrity: Challenges and Solutions

R
Key Z1 Z2 Z3
10
cl 10
10
c2 20
2()

b ol bl - =
&< |
=ALILEEERE

Figure 3

As previoudly stated, in addition to the original attributes, the flexible operator extends
the schema of the flexible relation with three ancillary attributes: Cons, Sel and Src.
These attributes are instantiated by the application of the flexify operator. Each tuple of a
flexible relation has a value for each ancillary attribute and the managing of these
attributes is performed by the system.

The Cons attribute defines the consistency status of the ctuple; its domain is {true,
false} and all tuples in the same ctuple have the same vaue.

The S attribute denotes the selection status of the ctuples. It contains
information about possible restrictions on the selection of tuplesin ctuples and its
domain is {true, false, maybe}; all tuples in the same ctuple have the same value.
For flexible relations derived from source relations through the application of the
flexify operator, its value is true whereas for relations derived from other flexible
relations its value can aso be false or maybe.

The Sc attribute refers to the source relation from which a particular tuple has
been derived. Thusif we define a primary key for each ctuple it would be

(Key,Sc).

Example 7 The flexible relation derived from the relation of Example 6 is shown in
Figure 4.

- 177 -

Database Integrity: Challenges and Solutions

~R

Key A 22 23 Cons Sel Sre

111 X 1 z false true sl

cl| 10 X y z false | true s2
10 X W : false | true 53

c2 | 20 ¥ I z true trug |
20 ¥ L true | true 52

Figure4

In the above relation ~R the value of the attribute S&l equal to true means that if
the selection operator is applied to the tuples of the same ctuple,

the resulting set is ‘ correct’.

Take, for instance, the relation Rwith attributes (A,B,C) with key attribute A and three
tuplestl=(al,b,10), t2 = (al,c,10) and t3 = (a2,b,20) where t1 and t2 are conflicting
(they belong to the same ctuple with key "al"). The sdection sg-p (R) givesa
(consistent) relation consisting of the tuplestl and t3. Moreover this result is not correct
since the tuple t1 is conflicting with t2 in the source relation whereas in the resulting
relation it is not conflicting with any tuple. This means that the attribute Sel for the ctuple
with key value al must be false (these tuples cannot be selected).

Flexible Relational Algebra

The Flexible Algebra defines a set of operation on the Flexible Relations. These
operations are defined in order to perform meaningful operation in the presence of
conflicting data. The full algebrafor flexible relation is defined in (Agarwal et al., 1992).
In this section we briefly describe some of the operation in this algebra. The set of ctuple
operation includes merging, equivalence, selection, union, cartesian product and
projection.

The merge operator merges the tuples in a ctuple in order to obtain a single nested tuple
referred to as merged ctuple. An attribute, say A, of the merged ctuple will be null if and
only if thisis the unique vaue the attribute A assumes in the ctuple.

Example 8 The merged relation derived from the relation of Example 7 is shown in
Figure 5.

key £l £2 L3 Cons Sel Sre
cl 10 X {vawl F false true is].52 53}
c2 20 ¥ 1 Fi true Irue fal,s2}
Figure 5

Two merged ctuples X(cl) and X(c2) associated with the schema (K,Z,Cons,Sa,S¢) are
equivalent (X(cl) ? X(c2)) if they do not conflict in any attribute but the Src attribute.
More formally, X(cl1) ? X(c2) if X(c1)[K] = X(c2)[K] and for each A inZ is: i)

- 178-

Database Integrity: Challenges and Solutions

X(c1)[Cong] = X(c2)[Cong]; ii) X(c1)[Sel] = X(c2)[Sel]; and iii) either X(c1)[A] =
X(c2)[A]or? ?{ X(cD[A], X(c2)[A] }.

Two ctuples ¢l and c2 are considered equivalent if the corresponding merged ctuples are
equivalent.

Selection Oper ator

The S attribute will be modified after the application of selection operations. In
particular, for a give ctuple ¢, and a given selection condition g, the attribute Sel will be: i)
trueif ? is satisfied by al tuplesin c; ii) false if thereis no tuplein c satisfying ? and iii)
maybe otherwise.

In classical relational algebrathe select operator determines the selection status of atuple
for a given selection condition, thus the selection status over a tuple can be either true or
false. In order to apply the selection predicate to a ctuple c, the selection predicate is
applied to a nested ctuple X(c). The semantics of the selection operator, in the flexible
relational algebra, has to be extended to operate over non-1NF tuples; in fact, the
attributes of a ctuple may be associated with more than one value due to data conflicts.

Given aflexible relational schema (K, Z, Cons, Sel, Sr¢), asimple partial predicateis of
theform (Aop ?)or (AopB), where AB?K ? Z,op?{=7?,>?,<,=}and?isa
singlevaue, i.e. ?? DOM(A) ? ? .

The predicate (A op B) evaluates to true, false or maybe as follows:

true, if ? ai?A,? Rj?B]|(a ophj)istrue.
fase if ? ai?A,? [§?B]|(aoph))isfdse.
maybe, otherwise.

The predicate (A op ?) is equivaent to (A op {?}).
Obvioudly, since the semantics given to null is that of no information, any comparisons

with null values evaluates to false. Hence predicate (aop ?) evaluatesto faseif aor ?is
null, and predicate (Al op A2) evaluates to false if Al or A2 is null.

Union Oper ator
The union operator combines the tuples of two source ctuples in order to obtain a new

ctuple. Note that this operation is meaningful if and only if the two ctuples represent data
of the same concept, and so their schema coincide and the value of the selection attribute

-179-

Database Integrity: Challenges and Solutions

istrue. The union operation has to be applied before any selection operation, because the
selection operation can lead to aloss of information.

A union of two ctuples c1 and c2 associated with schema (K,Z,Cons,Sal,S¢) where
c1[K]= c2[K],denoted by c= c1? c2, issuch that for each tuplet ? ceithert ?clort ?
c2.

Integrated Relational Calculus (Dung)

An extension of flexible algebrafor other key functional dependencies, called Integrated
Relational Calculus was proposed by Dung (1996). The integrated relational calculusis
based on the definition of maximal consistent subsetsfor a possible inconsistent database.
Dung proposed extending relations by also considering null values denoting the absence
of information with the restriction that tuples cannot have null values for the key
attributes. The integrated relational calculus overcomes some drawbacks of the flexible
relational algebra:

flexible relational algebrais not able to integrate possibly inconsistent relations if
the associated relation schema has more than one key;

flexible relational model provides arather weak query language. The following
two examples show two cases where the flexible algebra fails.

Example 9 Consider the database containing the single binary relation Rwhose schema
is (employee,wife) with two keys{ employee} (primary key) and { wife} (secondary
key). Assume there are two different instances for R, R1 ={(Terry,Lisa)} and R2 =

{ (Peter,Lisa) }. Integrating RL and R2 using the flexible model we obtain the relation D
= { (Terry,Lisa), (Peter,Lisa) }. Now asking "Whose wifeisLisa ?* the flexible algebra
will return the incorrect answer { Terry, Peter}. In this example it is evident that flexible
algebrafails in detecting the inconsistency in the data in R1L and R2, due to the fact that
wifeisakey. A correct answer would have been that it is undetermined who is the
husband of Lisa

Example 10 Consider the database schema consisting of the single binary relation Rwith
two attributes{ employee, department } and{ employee} being the primary key. Assume
there are two different instances of R, Rl= {(Terry, CS)} and R2={(Terry, Math) }. By
integrating RL and R2 using the flexible model we obtain the relation D = { (Terry, {CS
Math}) }. Now asking the question 'who is employed in CSor Math ?* the expected
answer is{ Terry }, but flexible model will give @, that is, it does not know who is
working in CSor Math. Thus the flexible relational algebrais not able to express the
selection formula (department = CS? department = Math) ; moreover there is not even
away to ask aquery like 'who is possibly employed in Math?"

Database Integrity: Challenges and Solutions

The mode proposed by Dung generalizes the model of flexible relational algebra. He
argues that the semantics of integrating possibly inconsistent data is naturally captured by
the maximal consistent subsets of the set of all information contained in the collection
data.

The assumption in the Integrated Relational Calculusis that the values of the attributesin
the primary key are correct.

Let Rbe ardation with schema (K,Z), where K is the set of attributes in the primary key
and Z the set of remaining attributes. Given two tuplest and t' over Rwe say

tandt' arerelated if t[K] = t'[K], i.e. they agree on the key attributes,

t and t' are conflicting if there exists akey K' of R such that i) for each B? K', {[B]
=t[B] ?? andii)thereisanattribute A ? K ? Zsuchthat ? ? t[A] ?t[A]?? .
t isless informativethan t', denoted by t ? t'if and only if for each attribute A ?
K? Zist[A]'? ort[A] =t[A].

A set of tuples T over Ris said to be joinableif there exists atuplet' such that for each t ?
T, t islessinformative than t'.

The notion of less informative can be extended to relations. Given two relation instances
R1 and R2 over R, we say that R2 is less informative than R1 (and write R2 ? R1) if for
each tuple t2 ? R2 there exists arelated tuple t1 ? R1 (t1[K] = t2[K]) which is more
informative than t2 (12 ? t1).

The Integrated Relational M odel

The Integrated Relational Model integrates data contained in autonomous information
sources by a collecting step consisting in the union of the relations.

Let R1, R2 be two relations over arelation R with schema (K,2). If the information
collected from R1 and R2, represented by R = R1? R2, is consistent, R represents the
integration of information in R1 and R2. Moreover, if R=R1? R2isinconsistent, a

maximal consistent subset of the information contained in R would be one possible
admissible collection of information a user could extract from the integration.

Given arelation instance R, and two tuplestl, t2 in R with t1[K] =t2[K], the extension

of t1 w.r.t. t2, denoted by ext(t1,t2) is the tuple derived from t1 by replacing every null
value t1[a] with t2[4].

-181-

Database Integrity: Challenges and Solutions

The extension of arelation R, denoted Ext(R), is the relation derived from R by first
adding to R all possible extensions of tuplesin R made with other tuples of R and next
deleting tuples which are subsumed by other tuples. More formally,

EX(R=R—-{tinR|? tl1?Rst.t?tlandt ? t1}

where:

R =R? {ext(tlt2)|? t1,t2?R}

Example 11 Consider the inconsistent relation R below. The relation R' is obtained from

R by adding a tuple obtained by extending the tuple containing a null value. The relation
Ext(R) is obtained from R’ by deleting the tuple with a null value (Figure 6).

R R’ Exi{R)
cimp _Il.'|_ 1Mt_|:l;l': |_emp tel ular}l cmp il _\al:r}'
Temry | 5709 | 35 Termy | 5709 35 Terry | 5709 i5
Terry 2 | Temry 1 all Temy | STOR
[Temy | 5705 | 20|
Figure 6

Let Ry,...,R, be n relation instances over the same relational schema (K,Z2).

A possibleintegration of Ry, ..., R, isdefined as the relational representation of a
maximal consistent subset of Ext(R; ? ... ? Ry).

The collection of all possible integrations of R1,..., Rn is defined as the semantics
of integrating Ry,..., R, denoted by Integ(Ry,..., Ry) (i.e. the set of maximal
subsets of Ext(R1 ? ... 2 Ry)).

Example 12 The maximal consistent subsets of relation Ext(R) in the above examples are
shownin Figure 7.

Ext{R) Ext{R)
cmp tel | salary cmp tel | salary
Terry | 570% [35 Terry | 5709 | 2
Figure7

Querying Integrated Relations

Queries over integrated data are formulated by means of alanguage derived by relational
calculus, caled integrated relational calculus, through the insertion of quantifiers which
refer to the possible integrations.

Database Integrity: Challenges and Solutions

Example 13 Consider the inconsistent relation D = {(Frank, Ann), (Carl, Ann)} over the
schema (employee, wife) with the two alternative keys { employee} and {wife}. Integ(D)
consists of two possible integrations: { (Frank,Ann)} and { (Carl, Ann)}. The query
"Whose wifeis Ann ?' can be formulated in the Integrated Relational Calculus by

Q1 =? employee.R(employeewife) ? wife = Ann which can be stated as
"Whose wife is Ann in a possible scenario?”.

Q2=K (? employee.R(employeewife) ? wife = Ann) which can be stated as
"Whose wife is Annin every scenario?" (here the modal quantifier K refersto all
possible integrations).

In the first case the answer to the query QL1 is given by taking the union of the tuples
matching the goal in al possible scenarios (brave reasoning), that is Ans(Q1) = { Frank,
Carl}. The answer to the Query Q2 is obtained by considering the intersection of the

tuples matching the goal in each possible scenario (cautious reasoning), thus Ans(Q2) = @.
Knowledge Base Merging by Majority (Lin-Mendelzon)

In the integration of different databases, an alternative approach, taking the digunction of
the maximal consistent subsets of the union of the databases, has been proposed in Baral
et al. (1991). A refinement of this technique has been presented in Lin and Mendelzon
(1996), which proposed taking into account the majority view of the knowledge basesin
order to obtain a new relation which is consistent with the integrity constraint. The
technique proposes a formal semantics to merge first-order theories under a set of
constraints.

Semantics of Theory Merging

The basic ideais that given a set of theories to merge Ty,..., T and a set of constraints IC
the models of the resulting theory, Merge({T1,...,T, },1C), have to be those worlds
‘closest’ to the original theories, that is the worlds that have a minimal distance from
{T1,...,Tn }. The distance between two worlds w and w', denoted by dist(w,w') isthe
cardinality of the symmetric difference of w and w', that is

dist(w,w) = [w?wW| = (w-w') ? (W-w).

Then the distance between apossibleworldw and {T1,...,T, } is:

Database Integrity: Challenges and Solutions

Merge {T1,...,Tn }, IC) = {w|wisamodel of IC and dist(w{T1,...,Tn}) iS minimum}

Example 14 Consider the three relation instances which collect information regarding
author, title and year of publication of papers (Figure 8).

[Bibl [“Eib2 [Bib3

| Awthor | Title | Year Author | Titke | Year Auther | Title | Year

| John TI 1980 lahn I'l 1581 L John T1 | S8
Mary | T2 | 1990 Mary | T2 | 1980 | Frank | T3 [1990

Figure 8

From the integration of the three databases Bib1, Bib2 and Bib3 we obtain the database
Bib (Figure 9).

Bib
Author | Title Year
John Tl 1980
Mary 12 1990
Frank T3 1980

Figure 9

The value of Merge(Bib, {Bib1,Bib2,Bib3}) is equal to Merge(Bib, Bibl) + Merge(Bib,
Bib2) = Merge(Bib, Bib3) = 1 + 3+ 1= 5 which is the minimun distance (among the
relations satisfying |C) from the relations Bibl,Bib2,Bib3.

Thus, the technique proposed by Lin and Mendelson, removes the conflict about the year
of publication of the paper T1 written by the author John observing that two of the three
source databases, that have to be integrated, store the value 1980; thus the information
that is maintained is the one which is present in the majority of the knowledge bases.

However, the *merging by majority’ technique does not resolve conflictsin all cases
since information is not always present in the majority of the databases and, therefore, it
is not always possible to choose between aternative values. In this case the integrated
database contains digunctive information. Thisis obtained by considering generalized
tuples, i.e. tuples where each attribute value can be either a simple value or a set.

Example 15 Suppose now that in relation R3 the first tuple (John, T1, 1980) is replaced
by the tuple (John, T1, 1982). The merged database contains now digunctive information
sinceit is not possible to decide the year of the book written by John (Figure 10).

Database Integrity: Challenges and Solutions

Author | Title Year
John Tl 11980,1981,1982}
Mary T2 1990
Frank T3 1980
Figure 10

Here the first tuple states that the year of publication of the book written by John with
title T1 can be one of the values belonging to the set { 1980, 1981, 1982} .

In the absence of integrity constraints the merge operation reduces to the union of the
databases, i.e., Merge({T1,...,Tn}, {}) =T1? ... ? Ty, whereasif IC isaset of functional
dependencies Merge({T4,...,Tn}, 1IC)=T1? ...? T,? IC.

Computing Repairs (Arenas-Bertossi-Chomicki)

An interesting technique has recently been proposed in (Arenas et al.,1999). The
technique introduces a logical characterization of the notion of consistent answer in a
possibly inconsistent database. Queries are assumed to be given in prefix digunctive
normal form.

A query Q(X) is aprenex digunctive first order formula of the form:

where K is a sequence of quantifiers, ?; contains only built-in predicates and X denotes
the list of variables in the formula.

Given aquery Q(X) and a set of integrity constraints IC atuplet isaconsistent answer to
the query Q(X) over a database instance D, written (Q,D) | =, if t isa substitution for the
variables in X such that for each repair D' of D, (Q,D’) |=t.

Example 16 Consider the relation Sudent with schema (Code, Name, Faculty) with the

attribute Code as key. The functional dependencies Code ? Nameand Code ? Address
can be expressed by the following two constraints.

Assume there is an inconsistent instance of Student as reported in Figure 11.

The inconsistent database has two repairs Repairl and Repair2 (Figure 12).

Database Integrity: Challenges and Solutions

Student
Code Name Faculty
sl Mary Engineering
52 John Science
s2 Frank Engineering
Figure 11
Repairl [Repair2
Code | Name Faculiy Code | Name Faculiy
sl Mary Enginecring 5l Mary Engineering
2 [John | Seiene | [2| Frank | Engincerng |
Figure 12

The consistent answersto the query ? z Sudent(sl,y,2) is "Engineering”, while there is
no consistent answer to the query ? z (Student(s2,y,2).

General Approach

The technique is based on the computation of an equivalent query T- (Q) derived from the
source query Q. The definition of T, (Q) is based on the notion of residue developed in
the context of semantic query optimization.

More specificaly, for each literal B appearing in some integrity constraint, a residue
Res(B) is computed. Intuitively, Res(B) is a universal quantified first order formula that
must be true, because of the constraints, if B is true. Universal constraints can be
rewritten as denials, i.e. logic rules with empty heads of theform ? By ? ... ? B

Let Abealiterd, r adenia of theform? B; ? ... ? BB (for somel=i=n)alitera
unifying with A and ? the most genera unifier for A and B; such that variablesin A are
used to subgtitute variables in B; but they are not substituted by other variables. Then, the
residue of A with respecttor and B; is

Res(A,r,B)=not((B,A...AB_AB_ A...AB)B)
=notBBv..vnotB 8 v notB, 0 v..vnotB8.

Theresidue of A with respect to r is Res(A,r) = ? gi|a=gi 2Res(A,r,B) consisting of the
conjunction of all the possible residues of A in r whereas the residue of A with respect to
a set of integrity constraints IC is Res(A) =, r,ic Res(Ar).

Thus, the residue of aliteral A isafirst order formula which must be true if A istrue.

The operator T, (Q) is defined as follows:

Database Integrity: Challenges and Solutions

To(Q =Q;
Ti(Q =T.1 (Q ? Rwhere Risaresidue of some literal in T;.1.

The operator T, represents the fixpoint of T.

It has been shown that the operator T has a fixpoint for universal quantified queries and
universal binary integrity constraints, i.e. constraints, which when written in digunctive
format, are of theform: ? X (B1? By? ?)where By, B, areliteralsand ? isa
conjunctive formula with built-in operators. Moreover, it has also been shown that the
technique is complete for universal binary integrity constraints and universal quantified
queries.

Example 17 Consider a database D consisting of the two relations (Figure 13) with the
integrity constraint, defined by the following first order formula

|_Supplier | Depariment | Ttem Ttem Type
cl dl il il [
2 d2 i2 i2 1
Figure 13

stating that only supplier c1 can supply items of typet.

The database D = { Supply(cl, di, i1), Supply(c2, d2, i2), Class(il, t), Class(i2, t) } is
inconsistent because the integrity constraint is not satisfied (an item of typet isaso
supplied by supplier c2).

This constraint can be rewrittenas ? Supply(X,Y,2) ? Class(Z,t) ? X ? c1, where all

variables are (implicitly) universally quantified. The residue of the literals appearing in
the constraint are

The iteration of the operator T to the query goal Class(Z,t) gives

To (Class(z,t)) = Class(Z,t),
T1(Class(Z,t)) = Class(Z,t) ? (not Supply(X,Y,2)? X=cl),
T, (Class(Z,t)) = Class(Z,t) ? (not Supply(X,Y,2)? X = cl).

-187-

Database Integrity: Challenges and Solutions

At Step 2 afixpoint is reached since the literal Class(Z,t) has been ‘expanded’ and the
literal not Supply(X,Y,Z) does not have a residue associated to it. Thus, to answer the
query Q = Class(Z,t) with the above integrity constraint, the query T (Q)=Class(Z,t) ?
(‘not Supply(X,Y,2) ? X = cl) isevaluated. The computation of T, (Q) over the above
database gives the result Z=i1.

The following example shows a case where the technique proposed is not complete.

Example 18 Consider the integrity constraint (X,Y,2) [p(X,Y) ? p(X,2) ? Y=Z],the
database D = { p(a,b), p(a,c) } andthequery Q="? U p(a,U) (we are using the
formalism used in (Arenas et al., 1999)). The technique proposed generates the new
query T, (Q)==? U[p(aU)? Z(-p(az ? Z=U)] whichisnot satisfied
contradicting the expected answer which istrue.

This technique is complete for universal binary integrity constraints and universal
guantified queries. Moreover the detection of fixpoint conditionsis, generaly, not easy.

Querying Database using L ogic Programs with Exceptions (Arenas-
Bertossi-Chomicki)

The new approach proposed by Arenas-Bertossi-Chomicki in Arenas et al. (2000)
consists in the use of a Logic Program with Exceptions (LPe) for obtaining consistent
guery answers. An LPe is a program with the syntax of an extended logic program (ELP),
that is, in it we may find both logical (or strong) negation (-) and procedural negation
(not). In this program, rules with a positive literal in the head represent a sort of general
default, whereas rules with alogically negated head represent exceptions. The semantic
of an LPeis obtained from the semantics for ELPs, by adding extra conditions that assign
higher priority to exceptions. The method, given a set of integrity constraints ICs and an
inconsistent database instance, consists in the direct specification of database repairsin a
logic programming formalism. The resulting program will have both negative and
positive exceptions, strong and procedural negations, and digunctions of literalsin the
head of some of the clauses; that isit will be a disunctive extended logic program with
exceptions. Asin Arenas et al. (1999) the method considers a set of integrity constraints,

IC, written in the standard format ? "1 Pi(x;)) ? ? ™=1 (-Qi(y;) ? ? where? isa
formula containing only built-in predicates, and there is an implicit universal
quantification in front. This method specifies the repairs of the database, D, that violate
IC, by means of alogical program with exceptions ?°. In ?° for each predicate P anew
predicate P isintroduced and each occurrence of P isreplaced by P'. More specifically,
2P is obtained by introducing:

1. Persistence Defaults. For each base predicate P, the method introduces the
persistence defaults:

Database Integrity: Challenges and Solutions

The predicate P' is the repaired version of the predicate P, so it contains the tuples
corresponding to P in arepair of the original database.

2. Stabilizing Exceptions. From each IC and for each negative litera not Qo in IC,
the negative exception clause is introduced:

where? 'isaformulathat is logically equivalent to the logical negation of ? .
Similarly, for each positive literal P;j; in the constraint the positive exception
clause

is generated. The meaning of the Stabilizing Exceptions is to make the ICs be
satisfied by the new predicates. These exceptions are necessary but not sufficient
to ensure that the changes the original subject should be subject to, in order to
restore consistency, are propagated to the new predicates.

3. Triggering Exceptions. From the IC in standard form the digunctive exception
clause

Vr'—f..!r'P,f(xl') W Vr._,"mQ,;l'j.’) = Ai’— L. not Pn'(xi'./l' ﬁf—;..m Qf(y}j' (P?

is produced.

The program ?° constructed as shown above is a ‘ disjunctive extended repair logic
program with exceptions for the database instance D’. In ? P positive defaults are blocked
by negative conclusions, and negative defaults, by positive conclusions.

Example 19 Consider the database D = {p(a), q(b)} with the inclusion dependency ID:

In order to specify the database repairs the new predicates p' and ' are introduced. The
resulting repair program has four default rules expressing that p' and q' contain exactly
what p and g contain, resp.:

Database Integrity: Challenges and Solutions

P'(X)? p(Xx);

qe)? q(x);
=p'(x) ? not p(x) and
= q'(x)? notq(x);

two stabilizing exceptions:

q()? p:;
“pP()? ~gX);

and the triggering exception:

“pP()? q()? p(x), not q(x).

The e-answer setsare { p(a), q(b), p'(a), '(b), = p'(a) } and { p(a), a(b), p'(a).a'(b), a'(b) }
that correspond to the two expected database repairs.

The method can be applied to a set of domain independent binary integrity constraints I1C,
that is the constraint can be checked w.r.t. satisfaction by looking to the active domain,
and in each 1C appear at most two literals.

Rewriting into Digunctive queries (Greco-Zumpano)

In (Greco and Zumpano, 2000) a general framework for computing repairs and consistent
answers over inconsistent databases with universally quantified variables was proposed.
The technique is based on the rewriting of constraints into extended digunctive rules with
two different forms of negation (negation as failure and classical negation). The
digunctive program can be used for two different purposes. compute ‘repairs for the
database, and produce consistent answers, i.e. a maximal set of atoms which do not
violate the constraints. The technique is sound and complete (each stable model defines a
repair and each repair is derived from a stable model) and more general than techniques
previously proposed.

Database Integrity: Challenges and Solutions

More specifically, the technique is based on the generation of an extended digunctive
program LP derived from the set of integrity constraints. The repairs for the database can
be generated from the stable models of LP whereas the computation of the consistent
answers of aquery (g,P) can be derived by considering the stable models of the program

P ? LP over the database D.
Let c be auniversally quantified constraint of the form

VX [BA..AB AnotB, A..anot B Atb>DB]
then, dj(c) denotes the extended digunctive rule

BN VB B VB B BN B BN B,
(not B, v =B’), ... (motBv =B’) ¢,

k+]

(not By —B'),

where B’ denotes the atom derived from B;, by replacing the predicate symbol p with the
new symbol pq if B; is abase atom otherwiseis equal to false. Let IC be a set of
universally quantified integrity constraints, then DP(IC) = { dj(c) | ¢ ? IC } whereas
LP(I1C) isthe set of standard digunctive rules derived from DP(IC) by rewriting the body
disunctions.

Clearly, given a database D and a set of constraints IC, LP(1C)p denotes the program
derived from the union of the rules LP(IC) with the factsin D whereas SM(LP(I1C)p)
denotes the set of stable models of LP(IC)p and every stable model is consistent since it
cannot contain two atoms of the form A and — A. The following example shows how
constraints are rewritten.

Example 20 Consider the following integrity constraints:
? X[p(X)? nots(X)? q(X)]
? X[a(X)? r(X)]

and the database D containing the facts p(a), p(b), s(a) and q(a).

The derived generalized extended digunctive program is defined as follows:

-191 -

Database Integrity: Challenges and Solutions

= p X)) Vs (X) v qX) (p(X) v p X)) A (not s(X) v —5,X)) A (not q(X)
v = qX).
=g X) vr(X) — (X)) v q,X) A (not r(X) v —r(X).

The above rules can now be rewritten in standard form. Let P be the corresponding
extended digunctive Datalog program. The computation of the program Pp gives the
following stable models:

M, =Du{=p b))} M,=Dw{=p,b) rfa)}
M_f =Duy !r_hqﬁd. sgfb)!t- MJ =Dv {}'__!(a)r ijb,}}‘
M,=Dwv{q,b),~qfa)r(b)}and M, =D {qb) rfa), r(}

A (generalized) extended digunctive Datalog program can be simplified by eliminating
from the body rules al literals whose predicate symbols are derived and do not appear in
the head of any rule (these literals cannot be true). For instance, the generalized rules of
the above example can be rewritten as

= p X)) v s (X) v q(X) < p(X), not 5(X), (not q(X) v —q (X))
ﬁ'qﬂllfkjl V"J(XJ & (—Q(X) v ‘?ﬂll{/‘j) not r(X)

because the predicate symbols p, =S4 and —rg do not appear in the head of any rule. As
mentioned before, the rewriting of constraints into digunctive rules is useful for both i)
making the database consistent through the insertion and deletion of tuples, and ii)
computing consistent answers leaving the database inconsistent.

Computing Database Repairs

Every stable model can be used to define a possible repair for the database by interpreting
new derived atoms (denoted by the subscript "d") as insertions and deletions of tuples.
Thus, if a stable model M contains two atoms —py (t) (derived atom) and p(t) (base atom)
we deduce that the atom p(t) violates some constraints and, therefore, it must be deleted.
Analogoudly, if M contains the derived atoms pq (t) and does not contain p(t) (i.e. p(t) is
not in the database) we deduce that the atom p(t) should be inserted in the database. We
now formalize the definition of repaired database.

Given a database schema DS = (Rs,IC) and a database D over DS. Let M be astable
model of LP(IC)p, then, arepair for D isapair

RM) = ({p) [p,() € MApt) & D} (p(t) [—p, () € MApt)e D}).

Database Integrity: Challenges and Solutions

Given a database schema DS = (Rs,IC) and a database D over DS arepair for D isapair
of setsof atoms (R', R) suchthat 1) R'n R =@,2) D? R - R |=IC and 3) thereisno
pair (S,S)? (R, R)suchthat S'? R, S ? RandD? S-S |=IC. The database
D? R'-R will becalled the repaired database.

Thus, repaired databases are consistent databases which are derived from the source
database by means of a minimal set of insertion and deletion of tuples. Given arepair R
for D, R" denotes the set of tuples which will be added to the database whereas R
denotes the set of tuples of D which will be canceled. In the following, for a given repair
R and adatabase D, R(D)=D ? R'- R denotesthe application of Rto D.

Example 21 Assume we are given a database D = { p(a), p(b), g(a), g(c)} with the
inclusion dependency (? X) [p(X) ? q(X)].D isinconsistent since p(X) ? q(X) is not
satisfied. The repairsfor D are Ry = ({q(b)}, @) and R = (@, {p(b)}) producing,
respectively, the repaired databases R; (D)={p(a),p(b), a(a), q(c), q(b)} and R, (D) =
{p(a), a(a), a(c)}-

Example 22 Consider the integrity constraint IC={ (? (X,Y,2)) [Teaches(X)Y),
Teaches (X,Y) ? Y=Z]} over the database D of Example 1. The associated digunctive
program DP(IC) is

which can be smplified as follows

since the predicate symbol Teaches; does not appear in any positive head atom.

The program LP(IC)p has two stable models My = { - Teaches (c2,p2)} ? D and Mz =
{ = Teachesy (c2,p3)} ? D. The associated repairs are R(M1) = ({}, { Teaches (c2,p2)})
and are R(M2) = ({}, {Teachesy (c2,p3)}) denoting, respectively, the deletion of tuples
Teachesy (€c2,p2) and Teachesy (€2,p3).

The technique is sound and complete:

(Soundness) for every stable model M of LP(IC)p, R(M) isarepair for D;
(Completeness) for every database repair Sfor D there exists a stable model M for
LP(IC)p such that S= R(M).

Database Integrity: Challenges and Solutions

Example 23 Consider the database of Example 5. The rewriting of the integrity
constraint (? X) [p(X) ? q(X)], produces the digunctive rule

which can be rewritten into the smpler ruler’

The program Pp, where P is the program consisting of the digunctive ruler’, has two
stable modelsM1 =D ? {-pq(b)}andM,=D? {qq (b)}. The derived repairs are
RM1) = ({}, {p(b)}) and R(M2) = ({q(b)}, {}) corresponding, respectively, to the deletion
of p(b) and the insertion of q(b).

Computing Consistent Answer

We now consider the problem of computing a consistent answer without modifying the
(possibly inconsistent) database. We assume the truth value of tuples, contained in the
database or implied by the constraints, may be either true or false or undefined.

Given a database schema DS = (Rs,| C) and a database D over DS, an atom A is true (resp.
false) with respect to (D,IC) if A belongsto al repaired databases (resp. thereis no
repaired database containing A). The set of atoms which are neither true nor false are
undefined.

Thus, true atoms appear in all repaired databases whereas undefined atoms appear in a
proper subset of repaired databases. Given a database D and a set of integrity constraints
IC, the application of 1C to D, denoted by IC(D), defines the three distinct sets of atoms:
IC(D)" (true atoms), IC(D)" (undefined atoms) and IC(D)" (false atoms).

IC(D)" = {p(t) | p(t) ? D and M ? SM(LP(IC)p) is— pa (1) ? M} ? {p(t) | p(t) ? D
and M ? SM(LP(IC)p) is pg (t) ? M}

IC(D) ={p(t) | p(t) ? Dand M ? SM(LP(IC)p) is—pa () ? M} ? {p(t) | p(t) ? D
andM ? SM(LP(IC)p) ispq (1) ? M }

ICD)" ={p(t) | p(t) ? Dand? My, M2 ? SM(LP(IC)p)) s.t. = pg (t) ? My and = pg
®-M2}? {pt)|pt)? Dand? M1, M2 ? SM(LP(IC)p)) s.t. pq (t) ? M1 and pqg
(t)? M}

Database Integrity: Challenges and Solutions

The consistent answer of aquery Q on the database D, denoted as Q(D,IC), gives three
sets, denoted as Q(D,IC)", Q(D,IC) and Q(D,IC)". These contain, respectively, the sets
of gtupleswhich aretrue (i.e. belonging to Q(D’) for al repaired databases D'), false (i.e.
not belonging to Q(D') for all repaired databases D*) and undefined (i.e. set of tuples
which are neither true nor false) and are defined as follows:

Q(D,IC)" ={g(t) | g(t) ? D and M? SM((P ? LP(IC))p) is=ga(t) ? M} ? {g(®) |
gt)?DandM ? M((P ? LP(IC))p) isgq (t) ? M}

Q(D,IC) ={g(®) | g(t) ? Dand M? SM((P ? LP(IC))p) is—ga () ? M} ? {g(t) |
gt)?DandM ? SM((P ? LP(IC))p) isgd (t) ? M}

QMD,IC)={g(t) |gt)? Dand? Mz, Mz? SM((P? LP(IC))p) s.t.~gq (t) ? M
and-gq (1)?M2}? {g(t)|g(t)?Dand? Mz, M2? SM((P? LP(IC))p)s.t.gq (1)
? My and gq (t) ? My}

For instance, in Example 21 the set of true tuples are those belonging to the intersection
of the two models, that is p(a), g(a) and g(c), whereas the set of undefined tuples are
those belonging to the union of the two models and not belonging to their intersection.

Example 24 Consider the database of Example 17. To answer a query it is necessary to
define, first, the atoms which are true, undefined and false:

IC(D)" = {Supply(cl,dL,i1), Class(il,t) }, the set of true atoms
IC(D)" = {Supply(c2,d2,i2), Class(i2,t)}, the set of undefined atoms.

The atoms not belonging to IC(D)* and IC(D)" are false.
The answer to the query (Class, {}) givesthe tuple (i1,t).

Observe that for every database D over a given schema DS = (Rs,IC), for every query Q=
(9,P) and for every repaired database D'

each atom A ? Q(D,IC)" belongs to the stable model of Pp (soundness)
eachatom A ? Q(D,IC)" does not belong to any stable model of Pp:
(compl eteness).

Database Integrity: Challenges and Solutions

Example 25 Consider the integrated database D = {Teaches(c1,pl), Teaches(c2,p2),
Teaches(c2,p3)} of Example 1 and the functional dependency defined by the key of
relation Teaches which can be defined as

The digunctive program LPp has two stable models: M1 =D ? { = Teaches; (c2, p2)}
andM,=D? {-Teaches (c2, p3)}. Therefore, the set of facts which can be assumed to
be true contains the single element Teaches(cl,pl).

We conclude by mentioning that the technique above proposed has been further extended
by considering constraints and priorities on the alternative repairs (Greco and Zumpano,
2000b; Greco et a., 2001).

CONCLUSION

The technique proposed in (Agarwal et a., 1995) only considers constraints defining
functional dependencies and it is sound only for the class of databases having
dependencies determined by the primary key consisting of a single attribute. The
technique proposed by Dung considers alarger class of functional dependencies where
the left parts of the functional dependencies are keys. Both techniques consider restricted
cases but the computation of answers can be done efficiently (in polynomial time).

The technique proposed in (Lin and Mendelzon, 1996), generally, stores digunctive
information. This makes the computation of answers more complex, although the
computation becomes efficient if the ‘merging by majority’ technique can be applied.
However, the use of the mgjority criteria involves discarding inconsistent data, and hence
the loss of potentially useful information.

Regarding to the technique proposed in (Arenas et a., 1999), it has been shown to be
complete for universal binary integrity constraints and universal quantified queries. This
technique is more general than the previous ones. However, the rewriting of queriesis
complex since the termination conditions are not easy to detect and the computation of
answers generaly is not guaranteed to be polynomial. The technique proposed by Greco
and Zumpano is the most general but the computation of answers is also more complex.

ENDNOTE

1. Work partialy supported by MURST grants under the projects "Data-X" and D2I.
The first author is also supported by ISI-CNR.

Database Integrity: Challenges and Solutions

REFERENCES

Abiteboul, S., Hull, R., Vianu, V. (1995). Foundations of Databases Addison-Wesley.
Arenas, M., Bertoss, L., Chomicki, J. (1999). Consistent Query Answers in Inconsistent
Databases. Proc. Int. Conf. on Principles of Database Systems 68—79.

Arenas, M., Bertoss, L., Chomicki, J. (2000). Specifying and querying Database repairs
using logic Programs with Exceptions. Proc .Int. Conf. On Flexible Query Answering,
27-41.

Argawal, S. S. (1992). Flexible Relation: A model for Data in Distributed, Autonomous
and Heterogeneous Databases PhD Thesis, Department of Electrical Engineering,
Stanford University, June.

Argarwal, S., Keller, A.M., Wiederhold, G. and K. Saraswat. (1995). Flexible Relation:
an Approach for Integrating Data from Multiple, Possibly Inconsistent Databases. Proc.
of the IEEE Int. Conf. on Data Engineering, 495-504.

Bard, C., Kraus, S., Minker, J. (1991). Combining Multiple Knowledge Bases. |EEE-
Trans. on Knowledge and Data Engineering, 3(2), 208-220, 1991.

Bardl, C., Kraus, S., Minker, J., Subrahmanian, V. S., Combining Knowledge Bases
Consisting of First Order Theories. Proc. Int. Symp. on Methodologies for Intelligent
Sistems, pp. 92-101, 1991.

Bry, F. (1997). Query Answering in Information System with Integrity Constraints In
IFIP WG 11.5 Working Conf. on Integrity and Control in Inform. System.

Dung, P. M. (1996). Integrating Data from Possibly Inconsistent Databases. Proc. Int.
Conf. on Cooperative Information Systems 58—65.

Eiter, T., Gottlob, G. and Mannila, H. (1997). Digunctive Datalog, ACM Transactions on
Database Systems, 22(3), 364—418.

Gefond, M, Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 3(4), 365-386.

Grant, J., Subrahmanian, V. S. (1995). Reasoning in Inconsistent Knowledge Bases.

| EEE-Transaction on Knowledge and Data Engineering, 7(1), 177-189.

Greco, S., Sacca, D. (1990). Negative Logic Programs. In Proc. North American
Conference on Logic Programming, 480-497.

Greco, S. (1999). Minimal founded semantics for digunctive logic programming, Int.
Conf. on Logic Programming and Nonmonotonic Reasoning, 221-235.

Greco, S., Zumpano, E. (2000). Querying Inconsistent Databases, Proc. Int. Conf. on
Logic Programming and Automated Reasoning, 308—325.

Greco, S., Zumpano, E. (2000). Computing Repairs for Inconsistent Data-bases, Proc.
Int. Symp. on Cooper ative Database System for Advanced Applications, 33—40.

Greco, G., Greco, S., Zumpano, E. (2001). A Logic Programming Approach to the
Integration, Repairing and Querying of Inconsistent Databases, Proc. Int. Conf. on Logic
Programming.

Kanellakis, P. C. (1991). Elements of Relational Database Theory. Handbook of
Theoretical Computer Science, Vol. 2, J. van Leewen (ed.), North-Holland.

Kowalski, R. A., Sadri, F. (1991). Logic Programs with Exceptions. New Generation
Computing, 9(3/4), 387-400.

Lin, J. (1996). Integration of Weighted Knowledge Bases. Artificial Intelligence, 83(2),
363-378.

- 197 -

Database Integrity: Challenges and Solutions

Lin, J. (1996). A Semantics for Reasoning Consistently in the Presence of Inconsistency.
Artificial Intelligence 86(1), 75-95.

Lin, J., Mendelzon, A. O. (1996). Merging Databases Under Constraints. Int. Journal of
Cooperative Information Systems 7(1), 55-76.

Lin, J., Mendelzon, A. O., (1999). Knowledge Base Merging by Majority, in R. Pareschi
and B. Fronhoefer (eds.), Dynamic Worlds: From the Frame Problem to Knowledge
Management, Kluwer.

Minker, J. (1982). On Indefinite Data Bases and the Closed World Assumption, Proc. 6-
th Conf. on Automated Deduction, 292—-308.

Subrahmanian, V.S. (1994). Amalgamating Knowledge Bases. ACM Transaction on
Database Systems, 19(2), 291-331.

Ullman, J.K. (1988). Principles of Database and Knowledge-Base Systems Val. 1,
Computer Science Press Rockville, Md.

Zaniolo, C. (1984). Database Relations with Null Values. Journal of Computer and
System Sciences, 142-166.

Chapter VII: Trandating Advanced
|ntegrity Checking Technology to SQL

Hendrik Decker, Instituto Tecnolégico de Informdtica,
Spain
INTRODUCTION

The main goa of this chapter isto arrive at a coherent technology for deriving efficient
SQL triggers from declarative specifications of arbitrary integrity constraints. The user
may specify integrity constraints declaratively as closed queries in predicate calculus
syntax (i.e., sentences in the language of first-order logic, abbr. FOL), as datalog denials,
as query conditionsin SQL WHERE clauses, or in some other, possibly more user-friendly
manner (e.g., viaadialog-driven graphical or natural language interface which internally
trandates to equivalent WHERE clause conditions). As we are going to see, the triggers
derived from such specifications behave such that whenever some update event would
violate any of the integrity constraints, one or severa of the triggers derived from that
constraint are activated in order to enforce the constraint. That is, the violation is either
prevented by rolling back the update or repaired instantly by subsequent further updates.

In this chapter, we describe how to implement advanced datalog technology for integrity
checking in the framework of SQL. That is, we show how to represent and evaluate
arbitrarily complex constraints in SQL without incurring major disadvantages usually
associated to integrity checking in knowledge-rich applications. Error-prone procedural
specification and laborious maintenance of integrity constraints is avoided by the
declarativity of datalog. The cost of evaluation is considerably reduced by an automated
trandation of declarative specificationsto SQL triggers. That way, the advantages of

Database Integrity: Challenges and Solutions

declarativity of specification and efficiency of execution can be combined, while the
performance disadvantage of CHECK clausesin ASSERTI ON statements, as well as the
disadvantage of procedura specifications by the user, is avoided.

As aready indicated, three different, though mutually related declarative languages for
specifying integrity constraints are addressed in this chapter: FOL, datalog (i.e., Horn
clauses with negation-as-failure) and SQL. Datalog is primarily of historical interest, but
it fits well into our presentation since most of the techniques discussed in this chapter
have been developed in the datalog framework of deductive database systems (cf.
(Ramakrishnan & Ullman, 1995) for a survey). For representing arbitrarily complex
integrity constraintsin datalog, an extended first-order syntax is needed in the body of
datalog queries. Thus, FOL is a natural choice for expressing integrity constraints.

In the first section, we survey the history and the state of the art of integrity constraint
checking. In ‘Principles of Simplified Integrity Checking,” we recapitulate common
principles of simplifying integrity checking. In* An SQL Syntax for Integrity
Constraints,” we first define a syntax for integrity constraints as a subset of standard SQL.
In ‘Tranglating Principles of Simplified Integrity Checking to SOL,” we discuss the
applicability of the principlesin ‘Principles of Simplified Integrity Checking’ inan SQL
framework. In ‘First-Order Logic Representation of Integrity Constraints’ we discuss a
FOL syntax for integrity constraints which is sufficiently expressive and lends itself well
toward a straightforward trandlation into SQL. In ‘Tranglating Integrity Constraints to
SQL Conditions,” we describe a trandlation of constraints in this syntax to WHERE clause
conditions. In ‘ Identifying and Specializing Relevant Integrity Constraints’ we describe
how constraints represented as such conditions can be smplified for the purpose of
improving the efficiency of integrity checking. In‘ Trandating Integrity Constraints to
Optimized SQL Triggers,” we describe a trandation of ssimplified SQL conditions into
equivalent triggers. They closely correspond to what is called "update constraints” in
(Decker, 1987). The syntactic transformations, rewritings and simplifications described in
‘First-Order L ogic Representation of Integrity Constraints' to ‘ Trandating Integrity
Constraints to Optimized SQL Triggers' are easily automated. In the conclusion, we
summarize the chapter, address related work and point out directions for future work. For
simplicity, we assume that updates are single tuple insertions or deletions in base tables.
An extension to more general transactions does not pose essential new problems, but
dealing with SQL transaction semantics (which are not yet standardized) would become
too sumptuous. However, we do address implicit updates of views caused by explicit
updates of underlying tables, as well as imposing integrity constraints on views.

In this chapter, we only deal with static integrity, i.e., with database properties that are
invariant across all states. In other words, we are not dealing with dynamic integrity, i.e.,
with properties applying to particular states or particular state transitions. Typicaly,
dynamic integrity constraints are inherently nondeclarative. In general, a purely
declarative treatment of dynamic integrity would be possible only if database states are
included as a proper domain into the query language, such that they would become
ordinary attributes, rather than meta data. To some extent, that might be achievable in
SQL implementations which offer BEFORE and AFTER constructs, for specifying database

Database Integrity: Challenges and Solutions

states before and after a given update. However, such constructs are usually allowed to be
used only within non-declarative triggers. In general, a declarative amalgamation of meta
data and application data is out of scope of standard SQL.

We assume the reader is acquainted with SQL as well as with basic notions of datalog

and predicate calculus, i.e., FOL. For an introduction to SQL, we suggest to consult Date
& Darwen (1997), Melton & Simon (1993) or some appropriate links in Ocelot (2001).
For datalog, we recommend to see any of Ullman (1988), Abiteboul, Hull & Vianu (1995)
or Date (1995). Also, several texts on deductive database systems provide thorough
introductions to datalog, in the form of functionfree Horn clause syntax as used in logic
programming, e.g., Galaire, Minker & Nicolas, 1984; Das, 1992; Ceri, Gottlob & Tanca,
1989. All of these references for datalog also contain a good deal of background material
for predicate logic, as appropriate for the topic of this chapter. Further basic material is
provided in Gallaire & Minker (1978) and Kowalski (1979).

HISTORY AND STATE OF THE ART

In thisinitial section, we are going to outline how declarative database theory and
practice evolved together, with regard to the issue of integrity constraint specification and
evaluation.

Early and Prime Time History

Arguably, the data description and query facility SQL has become the most successful
declarative language worldwide. (For more detailed accounts, cf. Melton & Simon, 1993,
McJones, 1997.) Y et, no constructs (and certainly no declarative ones) for expressing
database integrity appeared in any of the early (pre-1990) implementations of SQL. This
is remarkable since integrity has aways been regarded as an important conceptual issue
for database management systems, as withessed by many related publications in the field
(early ones are, e.g., Fraser, 1969; Wilkes, 1972; Eswaran & Chamberlin, 1975; Hammer
& McLeod, 1975; Nicolas, 1978, 1982; Hammer & Sarin, 1978; Codd, 1979; Bernstein,
Blaustein & Clarke, 1980; Bernstein & Blaustein, 1982. Later ones are too humerous to
mention). The need to express part of the semantics of databases as invariants, i.e.,
properties persisting across updates, had been pointed out early on in Minsky (1974).
Apparently, the first to propose that integrity constraints should be expressed in first-
order predicate calculus (indeed, the most declarative language there is), was Florentin
(1974). Perhaps, Stonebraker was the first to come up with the idea to formulate and
check integrity constraints declaratively as SQL- like database queries (Stonebraker,
1975).

Referential integrity (a specia case of Armstrong's functional dependencies (Armstrong,
1974)) was first included in the 1989 SQL ANSI and ISO standards (cf. (McJones, 1997)).
The SQL2 standard of 1992 introduced the ASSERTI ON construct and the CHECK option as
the most general means to express boolean integrity constraint conditions (cf. Melton &
Simon, 1993; Date & Darwen, 1997). In the 1990s, uniqueness constraints, foreign keys,
subqueries as well asthe Exi STS and the NOT construct (sometimes also constructs SOvVE

Database Integrity: Challenges and Solutions

and ANY) became fairly common features in most commercial DBMS. Finadly, with the
addition of recursive query traversal of hierarchically nested view definitions around the
turn of the century, the expressiveness of SQL approached Turing-completeness. In other
words, arbitrarily general query conditions, and thus arbitrarily general integrity
constraints, can now be formulated and evaluated in most relational DBM Ss.

State of the Art in Commercial DBM Ss

In the previous section, we have seen that, conceptually speaking, SQL has the capacity
of unrestricted declarative expressiveness in general, and in particular for avoiding
procedural specifications of arbitrarily general integrity constraints. However, until this
day, the manuals of most SQL engines still recommend to implement user-defined
conditions for semantic data integrity non-declaratively, namely by triggers or stored
procedures, for reason of efficiency. In fact, integrity constraints which go beyond the
limitations of standard SQL entry level expressiveness typically involve several tables,
potentialy huge joins, full table scans, nested subqueries, nested negation and the like.
Thus, their evaluation easily becomes prohibitively expensive, in terms of computation
time, storage and CPU resources. In particular, standard OL TP applications as well as
time-critical data warehousing processes for extracting, cleansing, transforming,
homogenizing and uploading business data typically cannot afford voluminous
expenditures for integrity checking. And indeed, even those DBMS, which do have an
ASSERTI ON statement in their repertoire (e.g., Ocelot, 2001), do not really encourage its
use, because evaluating such constraints after each update (or at least after each cowm T
of atransaction) would fatally hamper their performance. As a consequence, most of the
DBMS in practical use are contented with supporting only the following kinds of
declarative integrity constraints:

Domain constraints (i.e., user-defined data types defined by restrictions on the
range of standard scalar SQL data types, including options for permitting default
and null values),

Uniqueness constraints (such as enforced by primary keys or unique indices),
Foreign key constraints.

In other words, commercial implementations of SQL typically offer declarative
constructs to express constraints on permitted attribute values (i.e., domain and
uniqueness constraints), and to express a smple (though most frequent) kind of
functional dependencies (viz., referential integrity, as expressed by foreign keys). The
expressive power of these three constructs is quite limited. For example, it is not possible
to express, with any combination of the three constructs, that, for each row R1 in some
table T1 with a column c1, there must be arow R2 in some table T2 with a column c2
such that the value of R1 at C1 is the same as the value of R2 at 2, aslong as no primary
key constraint isimposed on R2. In general, domain constraints are tied to single columns

-201-

Database Integrity: Challenges and Solutions

only, while uniqueness constraints may apply to a combination of columns, but only
within asingle table. Foreign key constraints relate columns in at most two tables, where
referenced columns additionally have to satisfy a uniqueness condition. That is, foreign
key constraints capture total 1: n relationships, but neither partial 1: n nor n: m
relationships, as in the example above.

The failure of expressing n: mrelationships between tables declaratively in SQL isjust the
tip of an iceberg. For semantic integrity constraints that are less common or just dightly
more general than the standard ones above, no declarative formalism is available in
industrial-strength DBMS. For instance, it is commonplace in datawarehousing and other
applications with knowledge-rich data models that users do not want certain
constellations of data to occur. Such kind of negative information, which typically
encompasses several columns, possibly in different tables, can be expressed very
conveniently by so-called "denials’ in datalog. (A denial isaHorn clause the head of
which is either empty or signals inconsistency or violation of integrity in case the body of
the clause is satisfied.) Already a straightforward declarative expression of ssmple denials,
e.g., that a person must not be married to more than one other person and cannot be
married to him/herself, is out of scope of SQL. In datalog, this knowledge is described by
the two denials

In SQL-based DBMS products, there are essentially three choices of expression for
constraints which are more general than the standard ones mentioned above: either as
SQL triggers which take action ("fire") upon predefined updates of particular tables, or as
stored procedures which usually are activated by predefined transaction events, or
directly embedded in the code of applications which interoperate with the DBMS.

Each of the three options severely compromises the ideal of database declarativity, by
dynamically tying the specification of constraintsto procedura events. Procedurality of
constraint specification entails the known hazards of aggravated maintenance of the
database schema and the application programs. On the other hand, SQL manuals usually
point out that triggers, stored procedures and dedicated encodings of constraint
enforcement within application programs tend to be much less resource-consumptive and
much faster than general CHECK clauses or ASSERTI ON statements. However, each
procedural implementation of integrity conditions has the additional disadvantage of
thwarting a possibly large potential of simplification which would speed up their
evauation. In this chapter, we are going to have a closer ook at such ssimplifications and
the way they can be enabled and made useful.

History, Continued

Database Integrity: Challenges and Solutions

Thorough methodologies for simplifying the evaluation of arbitrary integrity constraints
in relational databases had been devised in Nicolas (1982), Bernstein & Blaustein (1982)
and others (cf. Decker, 1998) for more references). Surprisingly, they never have been
taken up by implementors of marketable relational DBM Ss. An implementation of the
method in Nicolas (1982) for arelationa database prototype is reported in Homeier
(1981).

In Decker (1985, 1987), this author devel oped a generalization of the approach in Nicolas
(1982) to the deductive case. The resulting research prototype was called soundcheck.
Similar methods were proposed in Lloyd, Sonenberg & Topor (1987), Sadri & Kowalski
(1988) and by many other authors (Celma, Garcia, Mota & Decker, 1994 contains a
comparison). Orthogonal approaches to simplify and optimize integrity checking in terms
of conjunctive query optimization have been discussed in Elkan (1990); Levy & Sagiv
(1993); Gupta, Sagiv, Ullman & Widom (1994); ard Ross, Srivastava & Sudarshan (1996)
and others. Common to all of them is the declarativity of integrity constraint specification.

Early implementations of soundcheck and variants thereof were operational in severa
versions of prototype knowledge base systems at ECRC (cf., e.g., Bocca, Decker, Nicolas,
Vieille & Wallace,1986; Bocca, 1986; Vieille, Bayer, Kiichenhoff & Lefebvre, 1999;
Bocca, Dahmen & Freeston, 1992). However, none of these systems ever went
commercial. After all, the language of choice on the database market has not been
relational algebra nor FOL nor datalog, but SQL. In fact, many visions, concepts and
achievements of the theoretical databases community have found their way into SQL
database systems. As a striking example, materialized views in data warehouses as back-
ends of systems for business information management, decision support, enterprise
resource planning and customer relationship management come to mind (cf. Ullman's
foreword in Gupta & Mumick (1999)). And, with the introductionof recursive queriesin
the SQL 3 standard proposal, nothing much seems to be left which would still distinguish
deductive from relational DBMS, from a practical point of view. However, beyond
commonplace kinds of constraints, more advanced declarative integrity checking has
remained a rather theoretical issue which seems to have never really found its way into
practical DBMSs. Rather than trying to explain why that is so, this chapter sets out to
show how deductive database technology for integrity checking can be trandated to
practice just as well as materialized views or complex queries.

State of the Art, Continued

While no major vendor's DBMS product sports advanced declarative integrity checking
features, most of them offer triggers, stored procedures and other procedural extensions
of SQL with which it is possible to implement constraints (or, more generally, business
rules) and their enforcement. In the literature, various combinations of commonplace
declarative and procedural SQL constructs for implementing business rule applications
have been proposed, e.g., Cochrane, Pirahesh & Mattos, 1996; Martin & Perrin, 1997;
Liu & Ong, 1999), but none of them goes beyond the rudimentary declarativeness of
standard SQL implementations.

Database Integrity: Challenges and Solutions

The author of Date (2000) makes an emphatic case for a declarative understanding of
business rules and their deployment in the framework of relational database technology.
However, he gives little guidance for how it could actually be done. A number of
enterprises offer proprietary tools for supporting SQL-based business rule applications
(e.g., USoft, 2001; Knowledge Partners Inc., 2001; Omnibuilder, 2001; Ross & Lam,
2001). Similar to active database systems, most of them have to cope with the potential
unpredictability of mutually dependent triggers designed by the user (cf., e.g., Widom &
Ceri, 1996; Ceri, Cochrane & Widom, 2000). Some of these business rule tools support
the use of declarative SQL WHERE clause conditions for generating from them event-
driven business rules. But the logic of the rule generation process remains opague, i.e.,
there is no way to assure by a proof of correctness that the outcome is going to behave
exactly as intended by the declarative specification. Likewise, any systematics for
making time and storage consumption of generated triggers more efficient than
evauating the original WHERE clauses remains hidden and inscrutable in such business
rule systems.

In (Decker, 2001), we described a detailed method for generating provably correct
triggers from declarative integrity constraints specified as first-order predicate calculus
sentences. The method essentially consists of atrandation of the results of the
soundcheck approach (Decker, 1987) to SQL. In this chapter, we elaborate on some
aspects which, due to space limitation, have received only scant treatment in Decker
(2001). We put some more emphasis on existing implementations of SQL and their
provision of means to express and support user-defined integrity contraints. In a sense,
this chapter can be taken as a technical addendum to Date (2000) that has been sorely
missed by several reviewers of the latter (cf. the customers reviews for Date, 2000 at
Amazon, 2001).

Related Trandations

A large share of this chapter deals with trandations from one formof representation of
integrity constraints into another. The ultimate goal is to automatically trandate integrity
congtraints into simplified SQL conditions, as characterized in more detail in ‘ Principles
of Simplified Integrity Checking.” Thus, the question arises if we could take advantage of
any aready existing trandlations in the literature. In this subsection, we shortly discuss
this question.

In Ullman (1988), trandations of specifications from relational algebrato "logical rules’
(i.e., datalog) and vice-versa are sketched. Ullman is mainly interested in demonstrating
that both representation formalisms are equivalent in terms of expressive power.
However, he is not concerned about the efficiency of evaluating the results of the
sketched trandations, while efficiency is an essential concern of the trandlations
described in this chapter. We are going to describe a trandation from FOL (which is
neither relational algebra nor datalog) to SQL. As far as the author of this chapter is
aware, there is no text of comparable generadlity in the literature which would deal with a
trandation of FOL to SQL, let alone an efficiency-conscious one. Our translation exploits
the structural properties of a specific FOL normal form syntax (called "range form" in

Database Integrity: Challenges and Solutions

‘Definition of the Range Form Syntax), which requires alevel of attention to detail as
we have tried to achieve in ‘First-Order Logic Representation of Integrity Constraints
and ‘ Trandating Integrity Constraints to SOL Conditions.’

In Van Gelder & Topor (1991), atrandation of queries and integrity constraints in
relational calculus syntax to a specific normal form in relational algebrais described. In
fact, it would be possible to trandate FOL to relational calculus, then apply the
trandation in Van Gelder & Topor (1991), and then trandate from relational algebrato
SQL, aong the lines described in Ullman (1988). However, rather than taking a detour
viarelationa calculus and algebra, we prefer to specify a direct trandation from FOL to
SQL. Aswe are going to see in more detail later on, the FOL syntax used in this chapter
is an extension of the usual datalog syntax of conjunctive queries, in order to achieve the
generality of expressive power needed for arbitrary integrity constraints. In SQL, this
extension essentially corresponds to using the constructs Exi STS and NOT EXI STS in
nested WHERE clauses.

PRINCIPLESOF SIMPLIFIED INTEGRITY
CHECKING

Typically, integrity constraints involve universal quantifications, i.e., generalizations over
large extents of one or severa tables, such that their evaluation can become critically
costly. SQL engines are optimized for checking simple domain constraints, uniqueness
constraints and referential constraints that are readily expressible in standard SQL, but in
order to make more general constraints behave efficiently, the designer is usually asked
to resort to triggers and stored procedures. However, as aready mentioned in * History
and State of the Art,’ it is known since a long time to the logic & databases community
that the declarativity of integrity constraint specification does not need to be sacrificed in
order to obtain an efficient evaluation. One approach devel oped to that end was
soundcheck (cf. ‘History, continued’).

In this section, we are going to outline the soundcheck approach for simplifying integrity
congtraints. The purpose of simplifying the general form of constraints to more simple
ones is to improve the efficiency of evaluating them. We present the approach as a
succession of six phases. Except phase |, this approach has originally been used in
(Nicolas, 1982), and al or part of it is effectively used in one way or another (possibly
with different sequencing or interleaving of phases) in most known methods for integrity
checking. In later sections, we show how it can also be made available to SQL databases.
The six phases are listed below. The example discussed in the following section
illustrates what the headings I-VI mean. In ‘Principles for Simplified Integrity Checking,
continued,” we discuss the six phases in general and present criteria for their effective
application.

I. Generate the difference between the old and the new state

Database Integrity: Challenges and Solutions

1. Sipidle updates
[1l. Focuson relevant integrity constraints
IV. Specialize relevant constraints

V. Optimize specialized constraints
VI. Evaluate optimized constraints

An Example of Simplified Integrity Checking

For illustrating phases | — VI above, let us consider an update of an SQL database with
relations for workers and managers, defined as follows:

CREATE TABLE(wor ker (CHAR[] nane, CHAR[] departnent, DATE start))
CREATE TABLE(manager (CHAR[] nane)).

The start attribute is supposed to contain the date when the worker was employed. The
other attributes are self- explaining. Now, suppose there is an integrity constraint
requiring that no worker is a manager. That can be expressed by the SQL condition

NOT EXI STS (SELECT * FROM wor ker, nmanager WHERE wor ker. nane =
manager . name) .

If the number of workers and managersis large (e.g., in the database of a large company
with possibly hundreds of thousands of workers and a huge management hierarchy), then
checking whether this constraint is violated or not can be very costly. The number of
facts to be retrieved and compared from the two relationsis in the order of the product of
thelr respective sizes (i.e., the cardinality of their Cartesian product), whenever the
congtraint is checked. However, we are going to see that the frequency and the amount of
accessing stored facts can be significantly reduced by taking steps | — V1. But before we
go through them, let us briefly deal with a possible objection at this stage.

SQL programmers might feel compelled to point out that the constraint above is probably
much easier checked by atrigger such as

CREATE TRI GGER ON wor ker FOR | NSERT :
| F EXI STS
(SELECT * FROM i nserted, manager WHERE i nserted. nane =
manager . nane)
ROLLBACK

which needs to be evaluated only for each attempt to insert arow into wor ker . Evaluation
only needs to access the stored manager relation and a singleton (or, in general, small-
sized) built-in cached relation i nser t ed of rows to be inserted to wor ker , but not the

Database Integrity: Challenges and Solutions

stored part of the wor ker relation. And indeed, the automatic trandation of the SQL
condition above into equivalent triggers as described later on produces a trigger which is
essentially the same as the one above. However, things are less straightforward than this
easy example might suggest. Integrity constraints can be much more complicated. It is
well known that triggers may bring about unforeseen effects that are hard to control. In
general, we argue that using correct mechanisms for trandating declarative specifications
into more efficient procedural code is preferable to a more error-prone hand-coding of
triggers. This point of view is of course in line with the general philosophy of declarative
languages. For instance, it is easy to overlook that the integrity constraint above is
"symmetric" for wor ker and manager , since it also requires implicitly that somebody
who is promoted to a manager is not a worker, which thus necessitates a second trigger
for insertions into manager . If only asingle trigger for wor ker Or manager is present,
then updates of the other relation which violate the constraint will go unnoticed. However,
the trandation of soundcheck to SQL also produces the second trigger, as we are going to
See later on.

Now, back to the six phases. Let | NSERT wor ker (Fred, sales, 01/01/2001) bean
update. Then, going from | through VI means the following:

I. Generate the difference between the old and the new state

In case there are database views the definition of which involves worker, the
explicit update | NSERT wor ker (Fred, sal es, 01/12/2001) may have implicit
update consequences on such views. Thus, al implicit updates which are
consequences of the explicit update must be generated, and for each of them, dl
stepsin phases |1 — VI need to be considered. For example, suppose thereisa
view pension which contains all workers who are entitled to obtain a pension (e.g.,
if their start date is at least five years ago), and a constraint on that view (e.g.,
expressing an exceptiona condition under which pension is not granted). Then,
that constraint needs to be evaluated only if Fred is entitled for pension;

otherwise, no additional constraint needs to be checked.

Il. Skipidleupdates
If Fr ed already has beenaworker (possibly in some other department) before the
| NSERT statement was launched, then it clearly is not necessary to check again the
constraint that he must not be a manager, because it has already been known to
the database that Fr ed is not a manager (since he has been a worker and because
the constraint has been required to be satisfied in each database state).

[1l. Focuson relevant integrity constraints

- 207 -

Database Integrity: Challenges and Solutions

Unless I applies, the constraint that no worker must be a manager is clearly
relevant and must be checked. However, any integrity constraint which does not
involvetherelation wor ker needs not be checked. More precisely, each constraint
which is not relevant for the insertion of rows into the worker table needs not be
checked. For instance, a constraint which requires that in each department, there
must be some least number of workers, is not relevant for insertions but only for
deletions in the wor ker table. A genera rule for identifying relevant constraints
according to (Nicolas, 1982) is discussed in ‘Principles for Simplified Integrity
Checking, continued.’

IV. Specialize relevant constraints

For the given | NSERT statement, the WHERE clause of the SQL condition

EXI STS (SELECT * FROM wor ker, manager WHERE wor ker. nane =
manager . nane)
can be specialized to a nuch | ess expensive form

EXI STS (SELECT * FROM wor ker, manager WHERE
wor ker . name = 'Fred'" AND worker.nane = manager. nane)

Specializing constraints in general is discussed in ‘Principles for Simplified
Integrity Checking, continued.’

V. Optimize specialized constraints

Clearly, the specialized condition in 1V can be optimized to the statement

EXI STS (SELECT * FROM rmanager WHERE nanme = 'Fred')

V1. Evaluate optimized constraints

After having gone through | to V, evaluation of the resulting query whether Fred
isamanager is easy. Looking up asingle fact in a stored relation is, of course,
much less costly than having to evaluate the origina integrity constraint in its full
generality (not to mention other constraints that might be unnecessarily checked if
phase |11 has been ignored).

The example above is an extremely simple one. (Even the checking of referential
congtraints is more involved; cf. example 4 in ‘ Trandating Integrity Constraints to
Optimized SQL Triggers'). However, we are going to see that the same proportions of

Database Integrity: Challenges and Solutions

simplification and reduction of necessary work can be obtained systematically for
arbitrarily complex integrity constraints. Moreover, for integrity constraints involving
nested ExI STS and NOT constructs in their representation as an SQL WHERE clause
condition, analyzing and trandating such constraints into equivalent triggers is more
intricate than in the example above.

Principles for Simplified Integrity Checking, Continued

In this section, we walk again through the six phases of smplified integrity checking,
generalizing the lessons learned from the example in the previous section into principles
that apply to arbitrary cases.

Let D be arelational database. Suppose that views in D, if any, are defined asin datal og,
i.e., as conjunctions of literals where each variable in a negative literal occursin at least
one nortnegated literal. Further, let | C be afirst-order predicate calculus sentence
representing some integrity constraint in D, and UPDATE fact be an update request, where
UPDATE stands for either | NSERT or DELETE, and fact be a ground base fact with a
predicate, say, p, i.e., fact isarow of values to be inserted to or deleted from atable
named p where p is not aview but a basic table. Then, going from | through VI means the
following:

I. Generate the difference between the old and the new state

For each view v in D and each occurrence A of an atom in the definition of v
which matches fact (i.e., fact and A have the same predicate and their column
values can be unified), inserting or deleting fact may implicitly update v. More
precisely: The insertion of fact may cause an implicit insertion in v if A isnot
negated, and an implicit deletion in v if A is negated. The deletion of fact may
cause an implicit deletion in v if A is not negated, and an implicit insertion in v if
A is negated. In general, the existence of an implicit update of v depends not only
on the explicitly updated fact but also on other conditions in the view's definition.
That possibly makes the generation of all consequences of the explicit update
quite intricate. This problem has been studied more in-depth in, e.g., Kiichenhoff,
1991; Celma & Decker, 1994; Decker & Celma, 1994; for the very closely related
problem of materializing views upon updates (cf. Ross, Srivastava & Sudarshan,
1996; Gupta & Mumick, 1999). Anyway, each implicitly updated fact which isa
consequence of the original update has to be run through phases Il —VI.

Il. Skipidleupdates

Asusud in datalog implementations, there must never be two identical tuplesin a
base relation. However, there may be a redundancy of facts defined by views. So,
we say an insertion isidle if the fact to be inserted is aready present in the table
or derivable from a view definition, and a deletion isidle if a second (explicit or

Database Integrity: Challenges and Solutions

view-defined) copy of that fact will persist after the update. For each such idle
update, all of phases 11l — V1 can be skipped, and no further potential
consequences according to phase | need to be considered. However, depending on
the average degree of redundancy in a given database and the complexity of view
definitions, the checking for idleness of updates may bring along a considerable
overhead. That overhead may even outweigh the gains obtained by avoiding
unnecessary integrity checks for idle updates. Therefore, depending on the
application, it might be advisable to "skip the skip" of integrity checking for
potentially idle updates.

Focus on relevant integrity constraints

For an explicit update of atable or an implicit update of a view, the generd rule
for focusing the checking of integrity on those constraints that are potentially
relevant at al, is asfollows. According to Nicolas (1982), | C is potentialy
relevant for the insertion (resp., deletion) of fact, and thus needs to be checked,
only if there is an atom A with negative (resp., positive) polarity in | c which
unifies with fact. Otherwise, | C is not relevant and thus needs not be checked.

Polarity can be defined as follows: A has positive polarity in A; for formulae B, C,
if an occurrence of A has positive (or, resp., negative) polarity in B, then that
occurrence has positive (resp., negative) polarity in A2 B, A? B, B?A,andasoin
the universal and the existential closure of B; A has negative (resp., positive)
polarity in - Aand in A 2 B. In this context, it is interesting to note that neither
the number of occurrences of an atom nor their polarity is aways the same for
logically equivalent formulae. For instance, f act ? -f act isequivalenttotrue,
i.e., there may be both negative and positive occurrences in one formula and none
in an equivaent one. Thus, for minimizing the amount of necessary integrity
checking, it should pay off to care for representations with a minimum number of
occurrences of atoms. Thisis reinforced by the circumstance that each relevant
constraint has to be checked anew for each matching occurrence of an atom, as
we are going to see in point IV. (The observation about the number of
occurrences of atoms has been made by D.S. Warren, during the conference
presentation of Decker (2001).)

Specialize relevant constraints

The focus obtained in phase |11 can be further narrowed, by specializing variables
in constraints that have been identified as relevant in to ground values occurring
in facts to be updated. According to Nicolas (1982), the general rule for
specializing an integrity constraint which is relevant with regard to the insertion
or deletion of afact isasfollows. For | c and fact asin |1, suppose that A isan
occurrence of an atom in | C with negative or, resp., positive polarity which
unifies with fact. Let f bean mgu, i.e.,, amost general unifying substitution of fact
and A. Then, I € can be specialized to | c?, where the substitution ? is obtained
fromf by restricting the latter to those variablesin A that are universally

-210-

VI.

Database Integrity: Challenges and Solutions

quantified in 1 c without being dominated by an exists-quantifier ? (i.e, no ?
occurson theleft of ? x in1 C). Thus, ? grounds each such variable x to the
matching constant value in fact.

Note that, by definition, the quantification of a variable in aformula can be
obtained either by moving all negations innermost or by moving all quantifiers
outermost, such that logical equivalence is preserved. That is, negations are

moved immediately in front of predicate symbols and eliminating double negation,
or by moving al quantifiers outermost, while respecting the equivalences

=? x (F)? ?x(-F)and=? x(F) ? ? x (-F) and de Morgan's law.Also
note that, in most cases, moving a universal quantifier which is dominated by an

? infrontof ? usually does not preserve the semantics of the formula. However,
should it be possibletodo so (eg.,in? x 2y (p(x)? -q(y)? q(x)), then that
is beneficial for the efficiency of evaluating the resulting formula, because the
more grounded aformulais, the easier it is evaluated.

Optimize specialized constraints

For optimizing specialized constraints, it is useful to distinguish equivalence-
preserving syntactic rewrite optimization, such as described in Nicolas (1982) and
Demolombe & Illarramendi (1989), from operational optimization by revising
access plans at compile time or even at run time, sich as it may be built into a
DBMS. The latter is addressed under point V1. Here, we only deal with syntactic
rewrites. In fact, they may already be applied beneficialy at earlier stages of the
simplification process, as indicated in points 11 and IV, above. However, some
particular issues should be observed for generalizing the optimization which is
exemplified in point V of * An Example of Simplified Integrity Checking.” If f act
isto beinserted and if all variablesin the occurrence of the atom A which unifies
withfact are? -quantified and not dominated by ? in 1 C, then that occurrence
can be replaced by t r ue. Then, the usual rewrite optimizations can be applied.
For example, -t rue isreplaced by fal se,eachof true ? B,true ? B,false

? Bisreplacedby B,true ? Bisreplacedby true;false ? Bisreplaced by
f al se, etc. More care needs to be taken for the symmetric case. That is, if f act is
to be deleted and all variablesin A are quantified as above, then A can be replaced
by f al se only if phase Il has been applied and has confirmed that the deletion of
fact isnotidle, i.e, that fact isredly f al se after the update.

Evaluate optimized constraints

It goes without saying that, for evaluating the queries resulting from having gone
though 1-V, available built-in query optimization facilities should of course be
exploited. It should also be advisable to upgrade them, if possible, with semantic
guery optimization techniques developed for deductive databases (cf., e.g.,
Chakravarthy, Grant & Minker, 1990; Godfrey, Gryz & Minker, 1996; Wetzel &

-211-

Database Integrity: Challenges and Solutions

Toni, 1998). In particular, it should pay off to use semantic query optimization
techniques which specifically apply to querying integrity constraints, as described,
e.g., in Godfrey, Gryz & Zuzarte (2001).

AN SQL SYNTAX FOR INTEGRITY CONSTRAINTS

In Nicolas (1982), most of the principles outlined in * Principles for Simplified Integrity
Checking, continued’ are formalized in the language of first-order predicate calculus. In
Decker (1987), we showed how those principles can be trandated to so-called "update
congtraints' in datalog. In Decker (2001), we showed how update constraints can be
trandated to specific SQL WHERE clause conditions. In this section, we discuss how
integrity constraints that are directly expressed in SQL can be ssimplified according to the
phased approach discussed in ‘ Principles of Simplified Integrity Checking.” In this
section, we define a sufficiently general SQL syntax of integrity constraints in BNF.

To say that integrity constraints can be expressed as WHERE clause conditions is not yet
precise enough. In the language of fird-order logic, integrity constraints are closed well-
formed predicate calculus formulae. Since they express properties which express
properties to be satisfied by each database state, they are quantified over certain attributes
in specific relations. In terms of relational databases, they require or forbid the existence
of certain rows, i.e., of certain column values, in specific tables and/or views, depending
on conditions which depend on the current database state. Thus, it is convenient to
express them as EXI STS or NOT EXI STS conditions, as they may occur in ordinary WHERE
clauses of SQL SELECT statements. In fact, it can be shown that each first-order logic
sentence, with predicates corresponding to tables and views, can be expressed by
(possibly nested) EXI STS or NOT EXI STS conditions, as defined below. For reason of
simplicity, the syntax of such conditions is somewhat less involved than in the original
SQL 2 standard definitions of SELECT statements and WHERE clauses. However, its
expressive power is essentialy as high as afull-fledged version. A careful extension to
the full standard is possible, but the elaboration of all details would require
disproportionate length with which we do not want to burden our presentation.

We have oriented the BNF rules below at the SQL ANSI/ISO standard of 1992 (cf.
(Mélton & Simon, 1993)). Instead of the usual list of column names or the ALL symbol in
SELECT clauses, we use the ANY construct. Intentionally, it provides a chance for an
intelligent query optimizer to search efficiently for just a single tuple which satisfies the
subsequent WHERE clause condition. If there is one, the condition is satisfied, and it is not
if there is none. Since no more general form of SELECT statements is needed, we have
baptized this particular form "boolean select”. We have not detailed the syntax of table
and view names, which is understood. Also, we have not spent any effort in
distinguishing between different types of expressions nor of operators with which
numeric or character string values are connected. As usual in SQL, column names are
supposed to be unambiguous references to specific attribute positions. In general, table
names will have to be prefixed in front of column name identifiers in order to avoid name
clashes. After al, our integrity constraint conditions may involve severa tablesin the

Database Integrity: Challenges and Solutions

schema and also several instances of the same table. Aggregate functions comprise AVG,
MAX, M N, SUM, COUNT, as usual.

<condi ti on>

<integrity constraint>
| <integrity constraint>
OR <condi tion>

<condi tion> ::= <quantified condition>
| <condition> AND
<quantified condition>

<quantified condition> ;= [NOT] EXISTS <bool ean sel ect>
| (<integrity constraint>)
<bool ean sel ect> ;.= SELECT ANY FROM <l i st> WHERE
<subcondi ti on>
<list> ::= <relation name> {, <relation name> }*
<rel ation nanme> ::= <table nanme> | <view nanme>
<subcondi ti on> ::= <bool ean terne

| <subcondition> OR
<bool ean ternp

<bool ean ternp ::= <bool ean factor>
| <bool ean term> AND
<bool ean factor>

<bool ean factor> .. = <conparison> | (<subcondition>)
| [NOT] EXI STS <bool ean
sel ect >
<conpari son> ::= <expression>{ =] ? | <| =| >]| =}
<expressi on>
<expressi on> ::= <expression>{ + | - | * | [/}

<expressi on>
| <prinme expression>

<prine expression> .= <constant> | <colum name>
| <aggregate function
term> | (<expression>)

TRANSLATING PRINCIPLESOF SIMPLIFIED
INTEGRITY CHECKING TO SQL

In this section, we walk through the six phases of ssimplified integrity checking yet
another time. In *Principles of Simplified Integrity Checking,” the framework of
representation was datalog and first-order logic, but now it is SQL, according to the
syntax defined in ‘An SQOL Syntax for Integrity Constraints’ The basic SELECT- FROW
WHERE structure of SQL tends to appeal to an operational understanding of searching joins

-213-

Database Integrity: Challenges and Solutions

of tables, rather than to suggest a purely declarative reading. Several difficulties arising
from the idiosyncrasies of SQL's syntax are going to be addressed in the discussion of
points I-V1 below.

Again, let D be arelational database, | C be an integrity constraint in D, expressed in the
syntax of * An SQL Syntax for Integrity Constraints,” and UPDATE fact be an update
request, asin ‘Principles for Simplified Integrity Checking, continued.” Then, going from
| through VI means the following:

Generate the difference between the old and the new stae

We suppose that views in D, if any, are defined using join operations on tables and
views, expressed using SELECT- FROM WHERE syntax. |n most of the contemporary
commercial DBMSs, integrity constraints involving views are not expressible.
However, future versions of products by several mgor vendors envisage the
incorporation of constraints on views. Implicit updates of views caused by explicit
updates of base tables essentially obey the same rules as outlined in point | of
‘Principles for Simplified Integrity Checking, continued.” However, the
identification of the polarity of occurrences of table names seemsto be less
transparent in SQL than in FOL. Rather than dealing at length with the intricacies
of SQL syntax, we refer to related work in Gupta & Mumick (1999) on the
problem of incremental view maintenance in SQL.

Another interesting thing with views is that they can be used to express denial
integrity constraints. Then, integrity checking means to check if each denial
representing a constraint is an empty view, in which case integrity is satisfied.
That way, update propagation through views, view maintenance and integrity
checking coincide and thus can be uniformly handled. However, the problem of
correctly expressing a complex constraint as a denial view which recurs
hierarchically or even recursively on other views and base relations must not be
underestimated. A possible solution to this problem would be to express the
constraint directly as a quantified EXI STS or NOT EXI STS condition, typically
involving nested subconditions, deny that by prefixing or, resp., dropping NOT,
and use the resulting query as the definition of a view. However, a simplified
evaluation or materialization of such views according to phases Il — V1, below,
may then turn out to be quite difficult. Another solution would be, e.g., to use a
natural language interface for specifying complex constraints, have these specs
trandated into the syntax introduced in ‘First-Order L ogic Representation of
Integrity Constraints' and then use the translations described in * Trandating
Integrity Constraints to SQL Conditions’ and ‘Identifying and Specializing
Relevant Integrity Constraints.’

ip idle updates

- 214 -

Database Integrity: Challenges and Solutions

In commercial DBMSs, redundancy, i.e., multiple copies of the samerow in a
table, is usually permitted (unless prohibited by appropriate uniqueness
congtraints). Also, asin datalog, some facts may be defined redundantly by views,
i.e., there may be several derivation paths for the same fact. In any case, an
insertion isidle if the fact to be inserted is already present in the table or derivable
from aview definition, and a deletion isidle if a second copy or view definition
of that fact will persist after the update. (We here leave aside further
complications arising from different semantics or different behavior of insert and
delete statements in different RDBM Ss.) For each such idle update, skipping of
phases |l — V1 can be done, or renounced, as described in ‘ Principles for
Simplified Integrity Checking, continued.’

A nice nonstandard feature in the data manipulation part of SQL in severa
commercial RDBMSsisto offer constructs such as BEFORE and AFTER, with
which both the old state (before the update) and the new state (after) can be
gueried in conjunction with an update request. Since integrity is supposed to be
satisfied in the old state and an update may violate it, integrity checking needs to
be done by evaluating integrity conditions on the new state (which may be
simulated on the old state by taking built-ini nsert ed and del et ed relations into
account, such as they exist, e.g., in the Microsoft SQL Server). However, for
some update requests and constraints, an evaluation of conditions on the old state
may be sufficient. In general, sufficient (but not always necessary) conditions for
checking integrity have been studied, e.g., in Kobayashi (1984) and Gupta, Sagiv,
Ullman & Widom (1994). In any case, care should be taken when using BEFORE
for checking static integrity constraints, since that tends to introduce a nor
declarative element. And indeed, these constructs are used best for checking
dynamic integrity constraints.

Focus on relevant integrity constraints

For a given base table or view update in SQL, the general rule for focusing on
relevant constraints is essentially the same asin ‘Principles for Simplified
Integrity Checking, continued.” Again, representationsin datalog tend to be more
transparent than in SQL. In any case, however, a solution for correctly identifying
the polarity of occurrences of table names, which already was desirable for point I,
would basically solve as well the problem of focusing on relevant constraints.
Clearly, a sufficient condition for leaving a constraint unchecked is that it
contains no occurrence of the name of an updated table or view at all. Otherwise,
in case of doubt, it is advisable to consider a constraint as relevant and check it
anyway, rather than to speculate that the polarity of an occurrence is such that it
could be ignored.

Soecialize relevant constraints

Specializing relevant constraints represented in SQL, i.e. figuring out its
guantification structure, may be as fishy as getting clear about polaritiesin SQL.

-215-

VI.

Database Integrity: Challenges and Solutions

However, using an original first-order logic or datalog representation for applying
points |-V as described in ‘ Principles of Simplified Integrity Checking,” and only
then trandate the result to SQL for the final evaluation (point V1), avoids any
hasse of having to figure out the logic of SQL. In ‘ Trandating Principles of
Simplified Integrity Checking to SQL’ and the rest of the chapter, we give a
detailed description of such atrandation, which can be fully automated. Here, we
just mention that cached built-in SQL tablesi nsert ed and del et ed (already
mentioned in * An Example of Simplified Integrity Checking’ and under point |1,
above) can be used conveniently to support phases 11 and I1V. Thisis going to be
described in detail in *Identifying and Specializing Relevant Integrity
Constraints.’

Optimize specialized constraints

Syntactic rewrite query optimizers remain to be a desideratum rather than areality
in commercial RDBM Ss. System manuals sometimes give useful hints to write
efficient queries, but in the end, they leave that to the user (and thus tacitly blame
him/her for writing declarative queries which turn out to behave sub-optimally).
So, rather than to prefigure the specialized forms of SQL constraints for certain
update patterns and then figure out syntactic optimizations, it seems more
advisable to use predicate logic for |11 —V, and only then trandlate the results to
SQL, as described in ‘Trandating Static Conditions to Dynamic Triggers’

Evaluate optimized constraints

At query specification time, the built-in query optimizers of commercial DBMSs
can be activated to figure out clever access plans for searching answers. Access
plan optimizations typically decides about questions such as"isit preferable to
search the cross-product of tables p, q by taking advantage of a user-defined index,
or use to use a hashed join instead?’, and "which extent of severa candidate table
spaces should preferably be cached so that an overhead of swapping is avoided?’
However, no matter if the original specification of constraintsis in predicate logic,
datalog or SQL, access plans for constraints in their original form may not be

very helpful because their specialized and rewritten form is likely to suggest
completely different evaluation strategies. But, fortunately, all of phases I11-V

can be done already at specification time, such that also access plans for

improving the efficiency of phase VI can in principle be determined aready ahead
of evaluation time. The same applies to semantic query optimizations, as
mentioned in ‘Principles for Simplified Integrity Checking, continued,” point V1.
And, for integrity constraints represented by intentionally empty views (i.e.,
denials, which often necessitates the use of additiona auxiliary views), it should
also be useful to look into Afrati, Li & Ullman (2001) for further possibilities of
optimizing access plans.

- 216 -

Database Integrity: Challenges and Solutions

FIRST-ORDER LOGIC REPRESENTATION OF
INTEGRITY CONSTRAINTS

In Nicolas (1982), integrity constraints are expressed as range-restricted first-order
predicate calculus sentences, i.e., closed well-formed formulae which obey the range-
restricted property. This property is decidable and ensures the essential but undecidable
property of domain-independence (di Paola, 1969), and thus the evaluability of queries,
as shown in Nicolas (1982) and Demolombe (1992). It has been generalized, preserving
evaluability, in Decker (1987, 1989, 2001) and Van Gelder & Topor (1991), in order to
also cover built-in predicates corresponding to comparisons =, ?, <, =, >, =. Interms of
relational databases, "range-restricted" guarantees that, for each variable in a query for
which answers are sought, there always exists a table column in which these values will
be found. In fact, that is nothing special for SQL, because the lists of columns and tables
specified in SELECT- FROM clauses precisely determine where to look for possible values
as answers. Thus, for enabling a straightforward translation of integrity constraints into
SQL conditions, the "range form" syntax defined in ‘Definition of the Range Form
Syntax’ provides a specific column range for each variable. These ranges can then be
trandated easily into corresponding table and column namesin SQL. Also, a genera
mapping of arbitrary (but range-restricted) integrity constraints to logically equivalent
representations in range form can be easily automated. Such mappings have been
specified in Decker (1987) and Van Gelder & Topor (1991).

Actually, there are some seemingly superficial differences in the range form definitions
of Decker (1987) and ‘Definition of the Range Form Syntax,” below. In fact, the variant
in Decker (1987) had been developed for supporting an efficient evaluation of arbitrary
integrity constraints by Prolog interpreters. In turn, the range form in * Definition of the
Range Form Syntax lends itself particularly well toward evaluation with an SQL engine.
However, from a conceptua point of view, the differences are just on the "syntactic
sugar” level. The syntax defined in the following section is discussed in ‘ Discussion of
the Range Form’ There, we aso sketch a proof that each range-restricted integrity
constraint can be expressed in this syntax.

Definition of the Range Form Syntax

The only connectors used in the range form defined below are conjunction ? , digunction
? and negation -, the only quantifier is? . That precisely corresponds to the connectors
AND, OR, NOT and the quantifier Exi STS in our SQL syntax. In the BNF rules for aformula
RF in range form, below, we distinguish built- in system predicates such as comparisons =,
?, =, etc from user-defined predicates, which correspond in SQL to relations declared by
CREATE TABLE statements. For compatibility with SQL, we implicitly assume that each
term which occurs in the position of some argument of a predicate has an appropriate
type. We denote the identity of formulae by =.

RF ::= RF ? where additional brackets can be used to establish or override
RF | RF ? RF precedences of connectors.

- 17-

Database Integrity: Challenges and Solutions

RF ::= PRF | wherePRF and NRF stand for positive and negative range form,

NRF respectively. An expansion of RF by PRF or NRF is called a top-level
range form.

NRF ::= -PRF

PRF ::= ? X whereXisavector of m distinct variables (m = 1); the range expression

(Range(X) ? Range(X) isaconjunction of n positive literals (n = 1) called range

SF) literals, with user-defined predicatespy, ... pn. Eachpi (1 = i = n)is

of arity = 1, the sum of their aritiesis m each argument of p; isa
variable and each variable in X occurs in Range(X). For convenience,
each variable in X which does not occur in the subformula SF may be
represented by an anonymous symbol. For avariable x in X, each
occurrence of x in SF is said to be covered by Range(X).

PRF ::= ? X where, for X and Range(X) , the same as in the preceding rule applies.

(Range(X))

SF ::= SF ? where additional brackets can be used to establish or override

SF | SF ? SF precedences of connectors.

SF ::= PRF | whereLs isaliteral with a system predicate, and each variablein Ls

NRF | LS must be covered by some range ex-pression, according to the first rule
for PRF.

Discussion of the Range Form

It can be shown that the range form syntax defined above shares all essential advantages
of the range form in Decker (1987) and Van Gelder & Topor (1991). In fact, its
evaluation is even more efficient than the latter, since the range form above permits
minimization of the scope of quantifiers, thus avoiding multiple occurrences of literals
dueto the distribution of ? over ? (asrequired in Decker (1987) and Van Gelder &

Topor (1991)), or of ? over ? asrequired in Nicolas (1982).

Note that no negative literals with user-defined predicate occur in the range form syntax
of ‘Definition of the Range Form Syntax’ However, there is no loss of generadlity, since a
negative literal of form -p(t,, .., ty) can be expressed equivalently by the negative
range form

wherex, .., xy arefresh variable symbols and each variable in ty,..., tx is supposed to be
covered by some range expression. In general, equalities must be used, according to the
syntax of ‘ Definition of the Range Form Syntax,” for expressing the unification of
variables among each other or with ground (constant) terms. For example, the range form
of

-218 -

Database Integrity: Challenges and Solutions

is

=%, X, (PX, K) A X =X, A (=Y, Y (Al V) A Y, =X, Ay, =) vsTz(n(z,)
AZ=X))

Also note that, in each formulain range form, at least one literal with user-defined
predicate must occur in its range expression. Moreover, the syntax in * Definition of the
Range Form Syntax does not allow for user-defined O-place predicates. Analogoudly,
SQL only admits constraints on user-defined tables, not on system tables. Also, the range
form does not admit formulae consisting of nothing but ground literals with system
predicates and/or O-place predicates, e.g., -((max(2 x 3, 4) = 5) ? flag).Clearly,
such ground expressions have a constant value which does not depend on the database
state. Thus, it would make no sense to consider them as conditions for expressing
database integrity. Analogously, SQL does not permit the creation of tables without
columns.

It is easy to verify that, by its context-sensitive requirements, the definition in * Definition
of the Range Form Syntax effectively imposes a closure condition on each formulain
range form, i.e., each variable in aformulain range form occurs in the scope of an ?
guantifier such that it is covered by the adjacent range expression. Related to that, it can
be shown that each well-formed formula which complies with the syntax above is
allowed (Van Gelder & Topor, 1991). And, except trivial ground boolean sub-formulae
as those mentioned above, each closed formula which is range-restricted (Decker, 1987)
can be equivaently represented in the range form syntax defined above. A sketch of a
proof of this statement follows.

It has been shown in Decker (1987, 1989) and Van Gelder & Topor (1991) that each
range-restricted formula (and thus each integrity constraint) can be equivalently
represented in the range form syntax defined in Decker (1987). Moreover, each formula
in that syntax can be equivalently represented in what may be called existential range
form: The latter is obtained from the former by exhaustively replacing each quantifier ? x
by -2 x- (plus additional brackets as needed to avoid ambiguities of scope) and moving
the right hand side negation in -? x- innermost (i.e., each such - is distributed over
guantifiers and connectors to its right, and adjacent -~ are dropped). Next, we argue that
each formulain existential range form can be represented in what may be called
normalized existential range form. The latter is obtained from the former by replacing the
argument terms of each range literal by distinguished fresh variable symbols and equality
conjuncts, as sketched above. Moreover, each negative literal needs to be replaced by an
equivalent negative range form, as described above. Then, it can be easily shown that the
set of al such formulae in normalized existential range form is a subset of the set of
formulae in range form. Thus, except trivial ground boolean sub-formulae, each range-
restricted formula can be represented by a logically equivalent formulain range form, i.e.,
the syntax in * Definition of the Range Form Syntax practically incurs no loss of
generality. Along the lines of Decker (1987, 1989) and Van Gelder & Topor (1991), it

-219-

Database Integrity: Challenges and Solutions

can be argued that, without a sophisticated syntactic device such as the range form, the
evaluation of many integrity constraints in datalog would be much more complicated or
even impossible. The following example illustrates this case.

Example

The integrity constraint

expresses that there must be an individual x who is superior of all employeesin the sales
department. | Cisnot "safe" in the usua sense, but it is range-restricted and hence
domain-independent. While a query which would ask for all values of x that satisfy | Cis
not domain-independent, | C aways returns a boolean truth value (rather than a possibly
infinite relation) and thus can aways be evaluated safely. A representation of 1 C in the
range form of (Decker, 1987) is

I x (suplx, _) A VY {(empl(y, sales) — sup(x, y))) v =3 y (empl(y, sales)).

A representation of | C in the range form of ‘ Definition of the Range Form Syntax is

Ix (sup(x, _) A3y, ¥, (empl(y,, y,) Ay, = sales A =3 x,, X, (Sup(x,, X,) AX,
=X AX,=Y,)) v =3y (empl(_,y) ny=sales).

Maybe, this example is a bit contrived, because normally, database designers might
prefer to simply state an SQL equivalent of the first of the two diguncts above, i.e.,

for defining the intended constraint. However, leaving away the second digunct

would mean to ignore the border case that both the extents of sup and enpl are empty. In
that case, | c would still be satisfied, while1 ¢ would be violated.

TRANSLATING INTEGRITY CONSTRAINTSTO
SQL CONDITIONS

In this section, we specify an easily automated tranglation of constraintsin range form
into equivalent SQL conditions. To begin with, we are going to show the result of the

Database Integrity: Challenges and Solutions

trandation of the integrity constraint | C in the previous example, as an example which
conveys ataste of things to come. We assume that relations enpl and sup have been
defined by appropriate CREATE TABLE statements. For convenience, let the argument in
thei -th column of arelation rel bedenoted by rel : i, from now on. It is easy to see that
the SQL version of | C, below, reflects very closely the structure of | C in range form,
above.

EXI STS (SELECT ANY FROM sup s1 WHERE NOT EXI STS
(SELECT ANY FROM enpl WHERE enpl:2 = sal es AND NOT
EXI STS

(SELECT ANY FROM sup s2 WHERE s2:1 = sl1:1 AND
s2:2 = enpl:1)))
OR NOT EXI STS (SELECT ANY FROM enpl WHERE enpl:2 = sal es)

In general, multiple occurrences of relation names in SQL statements need to be kept
apart by postfixed alias names, as usual in SQL. In the example above, two occurrences
of sup are distinguished by aliases s1 and s2. For convenience, we may loosely speak,
from now on, of a"relation” or "predicate”, say, p in some SQL statement when we really
mean to identify with p the alias name of a particular occurrence of the relation
corresponding to p.

The BNF rules for trandating a formula in range form into an equivalent SQL condition
below recur on the grammar defined in * Definition of the Range Form Syntax.” For
convenience, multiple occurrences of grammar variables RF and SF in the samerule are
identified by different subscripts, to keep them apart.

BNF rulefor sgl(F) istheresult of thetranslationof F to SQL

formulaF

RF::= RF, 2 sal (RF) =sql (RF) ANDsql (RFy)

RF,

RF::= RF; ? sql (RF) =sql (RF) ORsql (RFy)

RF,

RF::= PRF | sql (RF) =sql (PRF); sql (RF) =sql (NRF)
NRF

NRF: : = -PRF sql (NRF) = NOT sql (PRF)

PRF::= ? X sql(PRF) =
(Range(x)? EXI STS (SELECT ANY FROM py, .., pa WHERE sql (SF))
SF) wherep;, ..., p, are the relation names corresponding to the predicates of

then literals in Range(X). Multiple occurrences of p; (1=i =n) inrange
expressions of PRF (including nested ones in SF) need to be consistently
postfixed with distinguished alias namesin sql (RF) (which, for
simplicity, is not denoted explicitly here).

PRF::= 2 X sql (PRF) = EXISTS (SELECT ANY FROM p1, ..., Pn)

(Range (X)) where, for X and Range(X), the same as in the pre-ceding rule applies.

SF::= SF; 2 sdl (SF) =sql (SF1) ANDsql (SFo)

-221-

Database Integrity: Challenges and Solutions

BNF rulefor sgl(F) istheresult of thetranslationof F to SQL

formulaF

SF2

SF::= SF; ? sql (SF) =sql (SF) ORsql (SF2)

SF,

SF::= PRF | sql (SF) =sql (PRF); sqgl (SF) =sqgl (NRF)
NRF

SF::= LS sql (SF) =sql (LS)
wheresql (LS) isdefined as follows. each variable x in LS is covered
and thus uniquely occurs in the, say, i -th position of a literal with user-
defined predicate, say, p in the range expression which covers x. So,
sql (LS) isobtained by replacing each occurrence of x inLSwithp:i .

IDENTIFYING AND SPECIALIZING RELEVANT
INTEGRITY CONSTRAINTS

Up to this point, it should be fairly obvious that the evaluation of an integrity constraint
| c asafirg-order logic query precisely corresponds to evaluating the SQL query

sql (1 ©) . However, any potential for improving the efficiency of evaluation according to
phases| - VI discussed in ‘Principles of Simplified Integrity Checking’ and ‘Trandating
Principles of Simplified Integrity Checking to SQL’ still remains to be exploited.
Precisely that is the purpose of this section, in which we describe how to trandate an
SQL condition obtained as specified in ‘ Trandating Integrity Constraints to SOL
Conditions’ into a set of equivalent SQL triggers, the firing of which is more efficient
that the evaluation of the original condition. Equivaence here is meant in the following
sense. Let us assume an update request of a database state which satisfies a given
constraint.

a. If the update does not violate the constraint, then the execution of the update is
not prohibited by the triggers obtained from the constraint.

b. If the update would violate the constraint, then at |east one of the triggers will be
fired upon an attempt to execute the update, will detect violation and will take
appropriate action (e.g, aroll-back).

Efficiency of firing triggers and evaluating SQL conditions can reasonably be measured
in terms of the number of facts retrieved from stored relations, or as well of the number
of times that stored relations have to be accessed. We assume that all of the current state
is stored and that the factsto bei nsert ed or del et ed are accessible in cached system
tables with relation names inserted and deleted, respectively, as usual in commercial
DBMSs.

Database Integrity: Challenges and Solutions

In ‘Identifying Relevant Constraints,’ we outline how to represent constraints identified
according to phase |11 in aform which eventually will enable SQL to focus on relevant
constraints. In ‘ Specializing Relevant Constraints,” we describe how to specialize the
formulae obtained in ‘Identifying Relevant Constraints’ according to phase V. In order
to have sufficient syntactic flexibility, we alow any first-order logic representation of
integrity constraints at this stage, i.e., we do not require a representation in range form, at
this point (although we do not rule it out either). Phases V and VI are going to be catered
for in ‘ Trandating Integrity Constraints to Optimized SQL Triggers.” For limiting the
length of this chapter, we do not work out the issue of how also phase Il can be
incorporated into SQL (e.g., with BEFORE- AFTER constructs, as mentioned in point 11 of
that section, or with atrandation of related techniques described in Bry, Decker &
Manthey (1988) to SQL).

I dentifying Relevant Constraints

In this subsection, we elaborate on phase 11 (cf. ‘ Principles of Simplified Integrity
Checking' and ‘ Trandlating Principles of Simplified Integrity Checking to SQL’). We
show, for a given update, how to partition the set of constraints imposed on a database
into a (typically large) subset of constraints which can be ignored, and a (typically small)
set of constraints which could be violated by the update and thus have to be checked. The
latter kind of constraints are called relevant, with regard to the update. Since the
identification of relevant constraints is based on purely syntactic criteria (cf. ‘ Principles
of Simplified Integrity Checking’), it can be accomplished already at constraint
specification time, for update patterns corresponding to predicate symbolsin the
underlying language, i.e., to table names in the corresponding DBMS.

As aready indicated in ‘Principles for Simplified Integrity Checking, continued,” an
integrity constraint | C is defined to be relevant for the insertion (resp., deletion) of fact if
there is an atom A with negative (resp., positive) polarity in | ¢ which unifies with fact.
Otherwise, | Cis not relevant and can be ignored. We recall that there need to be as many
checks of specialized forms of | C as there are occurrences of facts matching the update
argument in 1 C with the respective polarity. For example, the constraint | C=? X ~p(x, b)
? ~p(a, x) isrelevant for insertions of facts about p, but not for any deletions.

Similar to aformalism called "update constraint” in soundcheck (Decker, 1987), we are
going to incorporate the principle of relevance into the constraints to be checked yoon a
given update pattern. Similar to what is common in the standard SQL extensions of
several DBMS vendors, we assume the existence of two distinguished predicates

i nsert ed and del et ed (cf. * An Example of Simplified Integrity Checking and section
‘Tranglating Principles of Simplified Integrity Checking to SQL,” point IV). They are
cached at update time until commit time and are not accessible to the user. For an update
which requests the insertion or the deletion of some fact p(c;, .., ck) wherecs, .., cx ae
constants, querying i nsert ed or, resp., del et ed returnsthe answer c, .., c. (Asusud in
SQL DBM Ss which feature inserted and deleted as built-in tables, the arity of these
relations adapts to he arity of the update relation proper.) With that, it is possible to
incorporate the identification of relevancy into constraints, as follows.

Database Integrity: Challenges and Solutions

Let 1 c be an integrity constraint, p a user-defined (i.e., updatable) predicate with arity k=
1andp(t,, .., ty) anoccurrenceof anatomini c, whereeachtermt; (1 = i =k) is
either a constant or a variable. For convenience, let updat ed stand for i nsert ed if the
polarity of p is negative, and for del et ed if it is positive. Further, for some h, 0< h=k, let
x1, .., Xn be the variables among the t ;. Then, one of the two formulae (*) below identifies
the relevance of | C with regard to requests for inserting or, resp., deleting facts which
unify with p(tq, .., ty) .

If h=0(i.e, thereareno variablesamong t 1, .., t), then

dse

Notice the negation of 1 Cin (*). Negating constraints corresponds to the good practice of
representing integrity constraints in denial form, as introduced in Sadri & Kowalski
(1988). Denia form is convenient for declaring what should not be the casg, i.e., for
stating conditions that should not hold. If such a condition becomes true in a database, it
means that integrity is violated.

An integrity constraint | C islogically equivaent to its denia form ? -iI C. Thus, the
formula-i cin (*) is the condition which, when satisfied, signals integrity violation. So,
if (*) returnst rue (Or, asin many systems, yes) upon updating a ground instance of
p(ty, .., ty), thenintegrity isviolated. Conversely, an evaluation of (*) in case | Cisnot
relevant for a given update would immediately return false (resp., no) because of the
cached conjunct on the left- hand side of (*), without evaluating | C.

For example, the following two instances of the second formula (*) are obtained for the
integrity constrainti C=? X~p(x, b) ? ~p(a, x).

This example also illustrates that update constraints of form (*) act as a relevance filter,
not just on the level of relation names, but also on the level of attribute values. For
instance, no integrity checking for 1 C is needed for insertions of facts about p that neither
matchp(x, b) norp(a, x),eg.,p(c, c).Examplesfor update constraints for
deletions are given in ‘Tranglating Integrity Constraints to Optimized SQL Triggers.’

Specializing Relevant Constraints

- 224 -

Database Integrity: Challenges and Solutions

In this section, we show how formulae of form (*) above can be specialized, in the sense
of phase 1V (cf. sections * Principles of Simplified Integrity Checking,” ‘ Translating
Principles of Simplified Integrity Checking to SQL’).

Again, let | ¢ be an integrity constraint, p an updatable predicate with arity k = 1and F a
fact about p to be inserted or deleted such that | C is relevant for this update request. That
is, F matches with some occurrence of an atom p(t ., .., ty) in1 C with negative or, resp.,
positive polarity. Again, let updat ed stand for i nsert ed if the polarity is negative, and
for del et ed if it is positive. Further, let f beanmguof Fandp(t4, .., ty).Accordingto
Nicolas (1982), 1 € can then be speciaized to IC?, where the substitution ? is obtained
fromf by restricting the latter to those variablesin p(t 4, .., t) thatare? -quantified in
the negation-innermost form of 1 ¢ without being dominated by an ? . Thus, ? grounds
each such variable to the corresponding constant value in F.

Now, we are prepared to trand ate this principle of specialization to the conditions of
form (*) in ‘1dentifying Relevant Constraints’ For convenience, let us designate a
variablein 1 cas? _-quantified when it is? -quantified and not dominated by an ? inits
negation-innermost form.

Again, forsomeh, 0 < h = k,letx;, .., x,bethevariablesamongthet, .., ty.
Without loss of generality, let, for someg, 0 = g = h, x5, ., xqbethe? -quantified
variables, and x 4.4, .., xn be the remaining variablesin p(t ., ... ty) , if any. Further, leti C
denote the formula obtained by dropping the quantifiersof each x; (1 =j = g) inIC.
(Recall that, in general, avariable x which is ?_-quantified in I ¢ may be quantified by
eitheroneof ? and? inI C, since the latter is not required to be in negation innermost
form.) Then, instead of costly conditions of form (*), it suffices to evaluate one of the
following speciaized conditions).

Ifh = o (i.e, thereare no variablesamong t , .., ty),then

(**) updated(t,, ..., t) A =IC

dse

Clearly, the first case is the same as (*), since there are no variables which could be

specidized. But if g > 0, i.e, if there are ?_-quantified variables, then an instantiation of
the variables in updated with ground values of afact to be inserted or, resp., deleted, also
groundseach ?_-quantified variablex;, .., xginicC.

For convenience, let us call formulae of form (**) "update constraints.” More precisely,
let | C be an integrity constraint, p a user-defined predicate and A an atom in | C with

-225-

Database Integrity: Challenges and Solutions

predicate p. Then, for each occurrence, say, p(t 4, ...t) of AinIC, precisely one of the
formulae (**) is obtained as described above, and thet formula is called the update
constraint of | Cfor p(tq, .., ty) .

For the sample constraint 1 C=7? x ~p(x, b) ? ~p(a, x) in‘ldentifying Relevant
Constraints,” the following two specialized update constraints are obtained.

In general, further optimizations of simplified update constraint formulae are possible.
But we leave that to the following section, where phase V (cf. ‘ Principles of Simplified
Integrity Checking,” ‘ Trandating Principles of Simplified Integrity Checking to SQL’) is
going to be addressed again.

TRANSLATING INTEGRITY CONSTRAINTSTO
OPTIMIZED SQL TRIGGERS

In this section, we describe how the specialized relevant constraints of form (**) in
‘Specidizing Relevant Constraints’ are trandated into SQL triggers. In ‘ Trandating
Static Conditions to Dynamic Triggers,” we specify how to trandate static SQL
conditions (as obtained in * Trangdlating Integrity Constraints to SQL Conditions’ from
integrity constraints represented as first-order logic formulae) into dynamic SQL triggers.
In ‘Examples,” we illustrate the results obtained so far by some examples, and indicate
some possibilities of optimization.

Trandating Static Conditionsto Dynamic Triggers

For convenience, let us assume that SQL triggers are of the following form (which
essentially is a common denominator of the usual appearance of triggers in commercial
SQL database systems):

CREATE TRI GGER ON <rel ation> FOR {I NSERT | DELETE}:
| F <condi tion> <action>

where <r el at i on> names the table which is updated by an insertion or deletion, resp.;
<condi ti on>isan SQL condition which, when its evaluation in the updated state returns
true, signifies violation of integrity; <act i on> is a statement which, in practice, usualy
isaROLLBACK command for reinstalling the database state as it has been before the
update attempt, and the output of a warning text or a reject message. In principle, it may
also involve an explanation for the update failure, or even arepair action. However, we
are not concerned in this chapter about what a DBM S does when an update would lead to

Database Integrity: Challenges and Solutions

integrity violation. In particular, we would make little sense to take into account any
potential access to stored relations caused by <act i on>, for measuring the efficiency of
the trigger, because the very same action would be taken if integrity violation is detected
by evaluating the original SQL condition, instead of associated triggers.

According to ‘ Specializing Relevant Constraints,” it suffices to evaluate update
constraints of form (**), for integrity checking upon the insertion or deletion of some fact
which matches the occurrence of some atom in some integrity constraint. Thus, it suffices
to have a suitable SQL representation of update constraints as conditions of SQL triggers,
which are fired upon such updates. In *Tranglating Integrity Constraints to SOL
Conditions,” we have described how to trandate arbitrary (but range-restricted)
conditions, represented as first-order predicate calculus sentences in range form, into
equivalent SQL conditions. However, since we have not required range form syntax in
‘Identifying and Specializing Relevant Integrity Constraints’ the update constraints of
form (**) must first be transformed into range form.

S0, let us suppose that rf is a mapping which transforms a first-order predicate calculus
sentence into a representation in the range form syntax of ‘ Definition of the Range Form
Syntax.” Further, for an integrity constraint | ¢ and the occurrence A of an atom with user-
defined predicate, say, p in1 C, let up(1 C, A) denote the update constraint (**) obtained
as described in * I dentifying and Specializing Relevant Integrity Constraints.” Then,
according to what we have seen in ‘Speciaizing Relevant Constraints,” triggers of the
following form (one for each occurrence A of an updatable atom in | C) are sufficient for a
sound integrity check of | C.

(***) CREATE TRIGGER ON p FOR {I NSERT | DELETE}:
IF sqgl(rf(up(1C, A))) ROLLBACK

For convenience, we call sql(rf(up(i ¢, A))) the body of update triggers of form (***).
In terms of integrity checking, such triggers are equivalent to the original integrity
constraint, but more efficient than the evaluation of the latter. Equivalence here is meant
in the sense of the definition at the beginning of ‘Translating Integrity Constraints to SQL
Conditions.” A formal proof of equivalence would essentially rely on the equivalence
preservation of trandations rf and sql.

From what we have seen already in *Principles of Simplified Integrity Checking,’ it
should be obvious that the firing of these triggers, which is controlled by update attempts
of facts which match A, is more efficient than evaluating each constraint for each update,
or even only each relevant constraint in its original, non-specialized form.

At this point, it should be interesting to recall that, in ‘Identifying Relevant Constraints
and Speciaizing Relevant Constraints,” we have not required that integrity constraints be

- 227-

Database Integrity: Challenges and Solutions

represented in range form or in SQL. In fact, the main reason for that was to be able to
apply specialization as described in ‘ Specializing Relevant Constraints' to update
constraints of form (*) (‘Identifying Relevant Constraints and Specializing Relevant
Constraints') and a transformation into range form before the trandation to SQL

(‘ Translating Integrity Constraints to SOL Conditions') is done, because experience has
shown that it is much easier (or, at least, less messy) to apply syntactic transformations
and optimizations on formulae in a pure logic syntax than to do so on SQL expressions.
In principle, operationssql , r f, up in the body of update triggers could be applied in any
sequence, but the one proposed in (***) has turned out to be the most convenient one.

In this context, another interesting issue is that syntactic transformationssql andrf do
not just preserve semantic equivalence, but also the vaidity of the method itself. In fact,
that may not be self-evident, since, e.g., the number of occurrences of atomsin an
integrity constraint formula may vary under some transformations, and their polarity is
not invariant under arbitrary eguivalence transformations. However, it can be shown that
our transformations can do no harm to the validity of any of the six phases addressed
throughout the chapter. Also, syntactic rewrites used in further syntactic optimizations for
implementing phase V, as discussed in Nicolas (1982), Van Gelder & Topor (1991) and
Demolombe & Illarramendi (1989), can be shown to preserve the required properties.

Examples

In this section, we feature some examples of triggers obtained by applying the method
outlined in this chapter. For triggers of form (***) above, a suitable SQL query optimizer
may recognize plenty of possibilities for optimizing them, such that their evaluation
becomes even more efficient, according to phase V of simplified integrity checking (cf.
‘Principles of Simplified Integrity Checking,” ‘ Trandating Principles of Simplified
Integrity Checking to SQL’). In general, optimization can take place already at an early
stage, e.g., aready when update constraints of form (**) (‘Specializing Relevant
Constraints') are obtained, or in fact at any point between the initial constraint
specification time and anywhere in phases | through V (recall that all of | - V can be done
ahead of update time). However, at any time before phase V, an optimizer for first-order
predicate calculus sentences, such as the one described in Demolombe & Illarramendi
(1989), should be used, rather than an SQL optimizer.

Examples 1 — 4 are deliberately chosen because of the multiple occurrences of the same
relation and because of their mutual similarities. The subtle syntactic differences contrast
with considerably large semantic differences, which become more apparent in the triggers.
Because of the semantic intricacies, hand-crafting these triggers, even by experts, has
continuously proven to be pretty cumbersome and exceedingly error-prone. This
experience, of course, confirms the advantage of having a method for deriving triggers
automatically from the original integrity constraints.

Example 1

The integrity constraint

Database Integrity: Challenges and Solutions

trandates into the following two triggers.

CREATE TRI GGER ON p FOR | NSERT:

| F EXI STS (SELECT ANY FROM i nserted WHERE inserted:2 = b AND
EXI STS (SELECT ANY FROM p WHERE p: 1 = a))
ROLLBACK
CREATE TRI GGER ON p FOR | NSERT:
I F EXI STS (SELECT ANY FROM i nserted WHERE inserted: 1 = a AND

EXI STS (SELECT ANY FROM p WHERE p: 2

b))
ROLLBACK.

Example 2

The integrity constraint

has already been used as an example in ‘ Identifying Relevant Constraints’ and
‘Specidlizing Relevant Constraints.” It trandates into the two triggers

CREATE TRI GGER ON p FOR | NSERT:
I F EXI STS (SELECT ANY FROM i nserted WHERE i nserted:2 = b AND
EXI STS (SELECT ANY FROM p WHERE p: 1 = a AND p:2 =
i nserted: 1))
ROLLBACK

CREATE TRI GGER ON p FOR | NSERT:
| F EXI STS (SELECT ANY FROM i nserted WHERE inserted:1 = a AND
EXI STS (SELECT ANY FROM p WHERE p: 1 = inserted: 2
AND p: 2 = b))
ROLLBACK.

By analogy to asimilar example in (Nicolas, 1982), an optimization of the bodies of the
two triggers above is possible. For arequest to insert the fact p(a, b), only one of the
two update constraints needs to be checked, i.e., only one of the two triggers needs to be
fired, the other can remain passive. Detecting this or similar possibilities, however, isin
general only reasonable at update time, and might be hardly less costly than doing an
unnecessary check. In general, there is a trade-off between the effort invested in
optimization at update time and the returned gains in efficiency.

Example 3

The trand ation of the constraint

Database Integrity: Challenges and Solutions

results in two triggers which turn out to be equivalent variants of each other. Thus, we
obtain the following single optimized trigger.

CREATE TRI GGER ON p FOR | NSERT:
| F EXI STS (SELECT ANY FROM i nserted WHERE
EXI STS (SELECT ANY FROM p WHERE p: 1 = inserted: 2
AND p: 2 = inserted: 1))
ROLLBACK.

Example 4

The integrity constraint

expresses a referential relationship between the first and the second columns of p.
However, notice that this constraint is not expressible with standard SQL key constructs.
Indeed, a FOREI GN KEY constraint on p: 2 which would reference p: 1 would require that
an additional unigueness constraint be imposed on the referenced column. The trandation
of this constraint requires aias names p1 and p2 for the two occurrences of p. It yields the
following two triggers.

CREATE TRI GGER ON p FOR | NSERT:
| F EXI STS (SELECT ANY FROM i nserted WHERE
NOT EXI STS (SELECT ANY FROM p WHERE p:1 = inserted:2))
ROLLBACK

CREATE TRI GGER ON p FOR DELETE:
| F EXI STS (SELECT ANY FROM del et ed WHERE
EXI STS (SELECT ANY FROM p pl WHERE pl:2 = deleted:1 AND
NOT EXI STS (SELECT ANY FROM p p2 WHERE p2:1 =
deleted: 1)))
ROLLBACK.

So far, we have dealt only with insertions and deletions of facts; an update is treated as a
transaction consisting of a deletion, followed by an insertion. Moreover, the identification
of relevant constraints, as described in ‘Principles of Simplified Integrity Checking,’
‘Trandating Principles of Simplified Integrity Checking to SQL’ and ‘ Identifying
Relevant Constraints,” focuses on the occurrence of relation names, but is not as fine-
grained as to take a selective updating of particular columns into account. However, there
is a natural way to automatically incorporate such a fine-tuning into triggers. For instance,
let D be a database which satisfies | C above, containing, say, thefactsp(a, b), p(b, a),
p(c, c). Further, consider an update for modifying p(a, b) top(d, b).Processingthis

Database Integrity: Challenges and Solutions

update request as atransaction { del etep(a, b),insert p(d, b)} accordingto the
approach outlined so far will identify | C as relevant with regard toi nsert p(d, b), while
| cisnot relevant and thus ignored with regard to del et e p(a, b) . Consequently, the
simplified constraintic = ? z (p(b, z)) then hasto be evaluated. It will succeed and
thus indicate that integrity remains satisfied. However, it is easy to see that no constraint
needs to be checked at al aslong as the second attribute of p is not updated and no
existing value of the first attribute of p is deleted. Datalog does not seem flexible enough
to easily accommodate such a fine degree of relevance, but an appropriate extension of
SQL such as the following seems to be natural. In general, triggers of the following form
are conceivable in SQL.

CREATE TRI GGER ON <rel ati on> FOR UPDATE{: <posi tion>}™":
| F <condition> <action>

where{: <posi ti on>}*isalist of natural numbers, separated by :, which indicate the
positions of the attribute in <relation> to be updated. Thus, the specification of the
position of updated attributes acts as an additional fine-grained relevance filter.
Anaogousto (***) in ‘ Specializing Relevant Constraints,” such triggers could then serve
to accommodate automatically generated triggers of the form

CREATE TRI GGER ON p FOR UPDATE{: <posi tion>}"
IF sql(rf(up(IC, A))) ROLLBACK

where, asin (***), up(1 C, A) standsforinserted or, resp., del et ed, for negative or,
resp., positive polarity of A in1 C. In our example, the following additional update trigger
is then generated:

CREATE TRI GGER ON p FOR UPDATE: 2 :
| F EXI STS (SELECT ANY FROM i nserted WHERE NOT EXI STS
(SELECT ANY FROM q WHERE inserted:2 = q:1))
ROLLBACK.

Example 5

The integrity constraint

has already been discussed in the example in ‘ First-Order Logic Representation of
Integrity Constraints.” According to ‘Identifying Relevant Constraints’ it trandates into
two triggers, one for sup and one for enpl . The optimized trigger for sup is

CREATE TRI GGER ON sup FOR DELETE:
| F NOT C AND EXI STS (SELECT ANY FROM enpl WHERE
enpl : 2 = sal es)

ROLLBACK

-231-

Database Integrity: Challenges and Solutions

where C stands for the condition

EXI STS (SELECT ANY FROM sup s1 WHERE NOT EXI STS
(SELECT ANY FROM enpl WHERE enpl:2 = sales
AND NOT EXI STS
(SELECT ANY FROM sup s2 WHERE s2:1 = sl1:1 AND s2:2 =enpl:1))).

Notice that C corresponds to the first of the two diguncts of the representation of 1 Cin
range form (cf. the example in *First-Order Logic Representation of Integrity
Constraints'). Because of the denia of | C as effected by the transformation (*) (cf.
‘Identifying Relevant Constraints’), the diguncts turn into conjuncts, the second of which
corresponds to the expression EXI STS (SELECT ANY FROM enpl WHERE enpl:2 =

sal es) above. Also notice that the body of the DELETE trigger above would have to be
prefixed with the conjunct EXI STS SELECT ANY FROMdel et ed, according to (**) and
(***). However, because of the quantification structure of | ¢ (with adominant ?), that
conjunct would contribute nothing in terms of specializing the rest of the body. Thus, it
can be dropped, similar to the example for phase V in * An Example of Simplified
Integrity Checking.’

The optimized trigger for enpl is

CREATE TRI GGER ON enpl FOR | NSERT:
| F EXI STS (SELECT ANY FROM i nserted WHERE inserted: 2 = sal es
AND NOT C)

ROLLBACK

where C is again the condition above.

As opposed to the optimization of the DELETE trigger mentioned above, the analogous
conjunct SELECT ANY FROMi nserted WHERE i nserted: 2 = sal es inthe body of the
| NSERT trigger is not dropped, since the WHERE clause acts as arelevance filter which
prevents the rest of the body to be evaluated in case the second attribute of the inserted
enpl tupleisnot saes.

Notice that, according to (***), the full form of the | NSERT trigger above is

CREATE TRI GGER ON enpl FOR | NSERT:
| F EXI STS (SELECT ANY FROM i nserted WHERE inserted: 2 = sal es
AND NOT C AND EXI STS (SELECT ANY FROM enpl WHERE
enpl : 2 = sal es))

ROLLBACK.

Database Integrity: Challenges and Solutions

As in the DELETE trigger above, the additional conjunct corresponds to the second
digunct in the range form of | C. It is dropped in the optimized version above because the
only kind of update for which this trigger firesis insert requests for enpl where enpl : 2
= sal es. S0, that conjunct is known in advance to always be satisfied, and hence it is
dispensable.

Towards the end of ‘ Tranglating Static Conditions to Dynamic Triggers,” we mentioned
that operationsup and r f should be applied before applying sql , i.e., before mapping
predicate logic syntax into SQL. Example 5 illustrates nicely that it is aso advisable to
determine all expressionsup(1 C, A), one for each occurrence A of some atom with user-
defined predicatein | C, before application of r f . That is because the range form tends to
increase the number of occurrences of atoms. To see an example of this, supposerf was
applied before up, for | ¢ above. Then, we would obtain atotal of four update constraints
and hence four triggers, two for empl and two for sup, because each of the two relation
names occurstwiceinrf (I C), aswe have seen in the example in ‘First-Order Logic
Representation of Integrity Constraints.” Not surprisingly, each of those triggers for empl
turns out to be equivalent to the one obtained above. But trying to find out about the
equivalence of the triggers in phase V would be less than straightforward, for this
example, and undecidable in general. So, it is better to apply up to arepresentation with a
presumably minimal length, as indicated aready in point 111 of ‘Principles for Simplified
Integrity Checking, continued,” rather than to apply r f before up.

CONCLUSION

We have described how to translate the soundcheck approach for integrity checking in
deductive databases to SQL-based databases. Our results provide the grounds for an
implementation of this methodology in commercial DBMSs. In particular, we have
specified a declarative syntax for expressing arbitrarily quantified integrity constraints,
which lends itself well toward an efficient evaluation by SQL engines. Also, we have
trandated to SQL the approach originally described in Nicolas (1982) to ssmplify
integrity checking. Essentialy, it focuses attention on constraints that are relevant for a
given update, and specializes them to update values. To our knowledge, no such
trandations have yet been implemented in SQL databases. Rather, most DBM Ss on the
marketplace do not support declarative specifications of arbitrary constraints, but require
hand-crafting of procedural triggers or stored procedures. Proposals such as Cochrane,
Pirahesh & Mattos (1996) which by now have found their way into standard relational
databases, amount, in one way or another, to a combination of disparate declarative and
procedural mechanisms. As opposed to that, our approach is uniformly declarative. It
does not sacrifice the advantages of efficiency that otherwise may only be obtained less
systematically and less reliably, by compromising declarativity at an early stage.
Evaluation of optimized triggers according to our approach is much less expensive than
evaluating unsimplified SQL conditions, in terms of the costs of accessing stored facts.

In continuation of the ideas presented in this chapter, we intend to transpose the SLIC
approach (Decker & Celma, 1994) for efficient integrity checking of constraints on views
to SQL. An integrity constraint then would itself be represented as a denial view, which

Database Integrity: Challenges and Solutions

materializes to the empty relation if and only if the constraint is not violated.
Representing an arbitrary first-order predicate logic sentence | C asadenial view is
achieved by applying the transformation in LIoyd & Topor (1984) to the generalized
clause? rf (-1 C), wherer f (-1 C) isthe negation of | C represented in range form (cf.
Decker, Teniente & Urpi, 1996). In genera, that transformation results in several
additional view definitions on which the denial view recurs. (Applying thet
transformation directly to ? -1 C typically yields floundering queries (cf. Decker, 1989).
We also envisage a transposition of the approach described in Bry, Decker & Manthey
(1988) for checking the mutual consistency of integrity constraints to SQL. Moreover, we
intend to trandate techniques for integrity-preserving view updating in logic databases
(e.g., Decker, 1990, 1996) to SQL, aong the lines of this chapter and their continuation
in terms of SLIC.

In general, much more of the theoretica state of the art than what we have just mentioned
can be brought to bear on practical implementations of relational databases. In fact, many
other sources can be tapped. For instance, further optimizations of simplified triggersin
terms of conjunctive query optimization and semantic query optimization should be
investigated. Potentia synergies of data mining, rule discovery, semantic query
optimization and CHECK constraints are outlined in Gryz, Schiefer, Zheng & Zuzarte
(2001). Also, trandating partial evaluation techniques for specializing integrity
constraints in Leuschel & De Schreye (1998) to SQL would be a tempting challenge.

ACKNOWLEDGMENTS

Thiswork originated in a project at the Database Competence Center at Siemens
Corporate Research (Decker, 1997). Large portions of its contents were elaborated at the
Institute of Computer Science of the University of Munich (Germany), where the author
has been hosted as a guest scientist at the teaching and research unit "Programming and
Modelling Languages'. Earlier versions of this chapter have been circulating since 1999.
| should like to acknowledge the many bits and pieces of feedback received along the
way to its present form. In particular, I'd like to thank Irina Kogan from Y ork University,
Toronto, for her very careful proof reading and useful suggestions.

REFERENCES

Abiteboul, S., R. Hull, V. Vianu (1995). Foundations of Databases. AddisonWesley.
Afrati, F., C. Li, J. Ullman (2001). Generating Efficient Plans for Queries Using Views.
Proc. SGMaD '01. On-line, available at:
http://www.acm.org/sigs/sigmod/sigmod01/eproceedings/.

Amazon: Books Search site, 2001. On-line, available at: http://www.amazon.com
Armstrong, W. (1974). Dependency Structures of Data Base Relationships. Proc. |FIP
‘74, 580-583. North-Holland.

Bernstein, P., B. Blaustein (1982). Fast Methods for Testing Quantified Relational
Calculus Assertions. Proc. SGMoD ‘82, 39-50. ACM Press,.

Database Integrity: Challenges and Solutions

Berngtein, P., B. Blaustein, & E. Clarke (1980). Fast Maintenance of Semantic Integrity
Assertions Using Redundant Aggregate Data. Proc. 6""VLDB, 126-136. | EEE-CS.
Bocca, J. (1986). EDUCE: A Marriage of Convenience: Prolog and a Relational DBMS.
Proc. Symp. Logic Programming, 36-45. |IEEE-CS.

Bocca, J., M., Dahmen & M. Freeston (1992). Megalog: A Platform for Developing
Knowledge Base Management Systems. Proc. 3“LPAR 457-459. Springer LNCS, Vol.
624.

Bocca, J., H. Decker, J-M. Nicolas, L. Vielle, M. Wallace (1986). Some Steps towards a
DBMS-based KBMS Proc.10"IFIP, 1061-1067. North-Holland, 36—45.

Bry, F., H. Decker, & R.Manthey (1988). A Uniform Approach to Constraint Satisfaction
and Constraint Satisfiability in Deductive Databases. Proc. EDBT * 88, 488-505.
Springer LNCS, Vol. 303.

Celma, M. & H. Decker (1994). Integrity Checking in Deductive Databases - The
Ultimate Method? Proc. 5" Australasian Database Conference, 136-146. World
Scientific.

Celma, M., C. Garcia, L. Mota, H. Decker (1994). Comparing and Synthesizing Integrity
Checking Methods for Deductive Databases. Proc. ICDE ‘94, 214-222, IEEE CS.

Ceri, S, R. Cochrane, & J. Widom (2000). Practical AEpIications of Triggersand
Constraints: Successes and Lingering Issues. Proc. 26"VLDB, 254-262. Morgan
Kaufmann. On-line, available at: http://www.acm.org/sigmod/vidb/conf/2000/P254.pdf.
Cerni, S., G. Gottlob, & L. Tanca (1989). Logic Programming and Databases. Springer.
Chakravarthy, U., J. Grant, & J. Minker (1990). Logic-based Approach to Semantic
Query Optimization, ACM Transactions on Database Systems 15(2): 162—207.
Cochrane, R., H. Pirahesh, & N. Mattos (1996). Integrating Triggers and Declarative
Constraintsin SQL Database Systems. Proc. 22"%VLDB, 567-578. Morgan Kaufmann.
On-line, available: http://www.acm.org/sigmod/vldb/conf/1996/P567.pdf

Codd, E. Extending the Data Base Relational Model to Capture More Meaning. ACM
Transactions on Database Systems4(4): 397-434, 1979.

Das (1992). Deductive Databases and Logic Programming. Addison-Wesley.

Date, C. (1999). An Introduction to Database Systems, 7" edition AddisonWesley.
Date, C. (2000). What, Not How: The Business Rules Approach to Application
Development. AddisonWesley.

Date, C. & H. Darwen (1997). A Guide to the SQL Standard. Addison-Wesley.

Decker, H. (1985). Expression and Enforcement of Integrity Constraints in Prolog KB,
Version 0. ECRC Technical Report KB-3.

Decker, H. (1987). Integrity Enforcement on Deductive Databases. In L. Kerschberg,
(ed): Experts Database Systems. Benjamin Cummings.

Decker, H. (1989). The Range Form of Databases and Queries, or: How to Avoid
Floundering. Proc. 5. OGAI, 114-123. Springer Informatik - Fachberichte 208.

Decker, H. (1990). Drawing Updates from Derivations. ECRC Technical Report KB-65,
1989. Short version in Proc. 3"ICDT, 437-451. Springer LNCS, Vol. 470.

Decker, H. (1996). An Extension of SLD by Abduction and Integrity Maintenance for
View Updating in Deductive Databases. Proc. JICSLP ‘96, 157-169. MIT Press.
Decker, H. (1997). Moglichkeiten der Konsistenzsicherung im MS SQL Server, internal
report, Database Competence Center, Siemens ZT SE 2.

Database Integrity: Challenges and Solutions

Decker, H. (1998). Some Notes on Knowledge Assimilation in Deductive Databases, in B.
Freitag et a (eds), Transactions and Change in Logic Databases, 249-286. Springer
LNCS, Vol. 1472.

Decker, H. (2001). Soundcheck for SQL. Proc. PADL ’'01, 214-228. Springer LNCS, Val.
1990.

Decker, H., M. Celma: (1994). A Sick Procedure for Integrity Checking in Deductive
Databases. Proc. ICLP 94, 456-469. MIT Press, 1994,

Decker, H., E. Teniente, & T. Urpi (1996). How to Tackle Schema Validation by View
Updating. Proc. 5"EDBT, 535-549. Springer LNCS, Vol. 1057.

Demolombe, R. (1992). Syntactical Characterization of a Subset of Domain-Independent
Formulas. Journal of the ACM 39(1): 71-94.

Demolombe, R. (1989). A. Illarramendi: Heuristics for Syntactical Optimization of
Relational Queries. Information Processing Letters 39(6):313-316.

di Paola, R. (1969). The Recursive Unsolvability of the Decision Problem for the Class of
Definite Formulas. Journal of the ACM 16(2): 324-327,.

Elkan, C. (1990). Independence of Logic Database Queries and Updates. Proc. 9""PoDS,
154-160. ACM Press.

Eswaran, K. & D. Chamberlin (1975). Functional Specifications of a Subsystem for
Database I ntegrity. Proc. 1¥VLDB, 48-68. ACM Press.

Florentin, J. (1974). Consistency Auditing of Databases. The Computer Journal 17(1),
52-58.

Fraser, A. (1969). Integrity of a Mass Storage Filing System. The Computer Jour nal
12(1): 1-5.

Gallaire, H. & J. Minker (eds) (1978). Logic and Data Bases. Plenum Press,.

Gallaire, H. & J. Minker, J-M. Nicolas (1984). Logic and Databases: A Deductive
Approach. ACM Computing Surveys 16(2): 153-185.

Godfrey, P., J. Gryz, & J. Minker (1996). Semantic Query Optimization for Bottom-Up
Evaluation, Proc. ISVIIS* 96, 561-571. Springer LNCS Vol. 1079.

Godfrey, P., J. Gryz & C.Zuzarte (2001). Exploiting Constraint-like Data
Characterizations in Query Optimization, Proc. SGMoD ’'01. On-line, available at
http://www.acm.org/si gs/'sigmod/sigmod01/eproceedings/.

Gryz, J., B. Schiefer, J. Zheng, & C. Zuzarte (2001). Discovery and Application of Check
Congtraintsin DB2. Proc. 17"'ICDE, 551-556. IEEE CS,.

Gupta, A., |.Mumick, (eds) (1999). Materialized Views: Techniques, |mplementations,
and Applications. MIT Press.

Gupta, A., Y. Sagiv, J. Ullman, & JWidom (1994). Constraint Checking with Partial
Information. Proc. 13""PoDS, 45-55. ACM Press.

Hammer, M. & D. McLeod (1975). Semantic Integrity in Relational Data Base Systems.
Proc. 1¥VLDB, 25-47. ACM Press

Hammer, M. & S. Sarin (1978). Efficient Monitoring of Database Assertions (Abstract).
Proc. SGMaoD ‘78, 159. ACM Press 1978.

Homeier, P. V. (1981). Smplifying Integrity Constraints in a Relational Data Base: An
Implementation. Master Thesis, Comp. Sci. Dep't, UCLA.

Knowledge Partners Inc.: Homepage (2001). On-line, available at:
http://www.kpiusa.com/Service Offerings/Business Rules.htm.

Kobayashi, I. (1984). Validating Database Updates. Information Systems9(1): 1-17.

Database Integrity: Challenges and Solutions

Kowalski, R. (1979). Logic for Problem Solving. North-Holland.

Kuchenhoff, V. (1991). On the Efficient Computation of the Difference between
Consecutive Database States. Proc. DOOD ‘91, 478-502. Sringer LNCS, Vol. 566.
Leuschel, M. & D. De Schreye (1998). Creating Specialised Integrity Checks through
Partial Evaluation of Meta-Interpreters. J. Logic Programming 36(2): 149-193.

Levy, A. & Y.Sagiv, (1993). Queries Independent of Updates. Proc. 19" VLDB, 171-181.
Morgan Kaufmann.

Liu, K. & T. Ong (1999). A Modelling Approach for Handling Business Rules and
Exceptions. The Computer Journal 42(3):221-231.

Lloyd, J, L.Sonenberg & R. Topor (1987). Integrity Constraint Checking in Stratified
Databases. J. Logic Programming 4(4): 331-343.

Lloyd, J. & R. Topor (1984). Making Prolog More Expressive. J. Logic Programming
1(3): 225-240.

Martin, O. & J. F. Perrin (1997). A Generic Business Rule Validation System for
ORACLE Applications. Presented at European Oracle User Group Conf., 1997. On-line,
available at: http://www.fors.com/eoug97/papers/0230.htm

McJones, P. (ed) (1997). The 1995 SQL Reunion: People, Projects, and Politics (2™
edition). On-line, available at: http://www.mcjones.org/System R/SQL Reunion 95/.
Méelton, J. & A. R. Simon (1993). Understanding The New SQL: A Complete Guide.
Morgan Kaufmann.

Minsky, N. (1974). On Interaction with Data Bases. Proc. SGMaoD ‘74, Val. 1, 51-62.
ACM Press.

Nicolas, J.-M. (1978). First Order Logic Formalization for Functional, Multivalued and
Mutual Dependencies. Proc. SGMoD ‘78, 40-46, ACM Press

Nicolas, J.-M. (1982). Logic for Improving Integrity Checking in Relational Databases.
Acta Informatica 18: 227-253.

Ocelot: OCELOTSQL Homepage (2001). On-line, available at:
http://ourworld.compuserve.com/homepages’ OCEL OTSOL /.

Omnibuilder: Busines Rules (Overview) (2001). On-line, available at:
http://www.omnibuilder.com/overview/bus rule.htm

Ramakrishnan, R. & J. Ullman(1995). A Survey of Deductive Database Systems. J. Logic
Programming 23(2): 125-149.

Ross, K., D. Srivastava & S. Sudarshan (1996). Materialized View Maintenance and
Integrity Constraint Checking: Trading Space for Time. Proc. SGMoD 96, 447-458.
ACM Press.

Ross, K. & G. Lam(2001). Capturing Business Rules. Business Analysis and
Requirements Wor kshop. Online description available at
http://www.dci.com/events/rules/.

Sadri, F. & R. Kowalski (1988). A Theorem-Proving Approach to Database Integrity, in J.
Minker, (ed), Foundations of Deductive Databases and Logic Programming, 313-36.
Morgan Kaufmann.

Stonebraker, M. (1975). Implementation of Integrity Constraints and Views by Query
Modification. Proc. SGMoD 75, 65-78. ACM Press.

Ullman, J. (1988). Principles of Database and Knowledge-Base Systems Volume
Computer Science Press

USoft: Homepage (2001). On-line, available at: http://www.ness-europe.com

- 237-

Database Integrity: Challenges and Solutions

Van Gelder, A. & R. Topor (1991). Safety and Trandlation of Relational Calculus
Queries. ACM Transactions on Database Systems 16(2): 235-278.

Vieillg, L., P. Bayer, V. Kichenhoff & A. Lefebvre, (1999). Integrity Checking and
Materializing Views by Update Propagation in the EKS Systan. In (Gupta & Mumick),
421-440.

Wetzdl, F. & F. Toni (1998). Semantic Query Optimization through Abduction and
Constraint Handling. Proc. FQAS 98, 366—-381. Springer LNAI, Vol. 1495.

Widom, J. & S.Ceri, (eds) (1996). Active Database Systems. Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann, 1996.

Wilkes, M. L. (1972). On Preserving the Integrity of Data Bases. The Computer Journal
15(3): 191194, 1972.

Chapter VIII: Functional Dependencies
for Value Based Identification in Object-
Oriented Databases

Jochen Rasch, SAP AG,
Germany

Hans-Joachim Klein, Universitat Kidl,

Germany

INTRODUCTION

The Entity-Relationship (ER) model (Chen, 1976) is frequently used for the specification
of conceptual database schemas. Entity types and relationship types are the building
blocks provided by this data model. A major objective of conceptual database design (see
e.g. Batini, Ceri, & Navathe, 1992) isto define entity types and relationship typesin such
away that they represent meaningful units of information with respect to the semantics of
the modeled application domain. Object types in object-oriented data models are
comparable to entity types as far as structural aspects are concerned. However, the ER
model explicitly supports relationship types, whereas different approaches are found in
object-oriented data models: On the one hand, relationship types may be represented by
reference attributes, which means that they are part of the object type itself. This
approach, for example, is often found in programming languages. On the other hand, they
may be represented explicitly by means of a separate concept as in the ER model. In the
latter case there is a close resemblance between entity types and object types. Object
types represent sets of objects whichare of relevance in the application domain, while
relationship types represent relationships between objects.

Database Integrity: Challenges and Solutions

One of the fundamental concepts of the object-oriented approach is object identity
(Koshafian & Copeland, 1986). Objects are distinguishable evenif they coincide in all
their externally visible properties. In conceptual data models, this abstract concept is
usually realized by abstract object identifiers or surrogates (see e.g. Hall, Owlett, & Todd,
1976; Codd, 1979; Abiteboul & Kanellakis, 1989), i.e. by internal identifiers to which the
guery language of a data model does not provide direct access. The only operation which
usualy is available, is the test whether two given objects are identical or not. Thus, a
realization of identity does not necessarily support identification, i.e. external accessto a
single object. Hence, in general, objects have to be addressed by their properties.

In a database state it should be possible to address every object of an object type by
specifying some of its properties at the level of values and relationships according to the
semantic units which are specified by the conceptual schema. Therefore the access to an
object by starting with a value or some combination of valuesis of importance.

| dentifying values either give direct access to a single object, or they determine objects as
starting points for the retrieval of an object by navigating along relationships in the given
state. This navigational view, i.e. entering a database state via values and following
references among objects, is related to the functionality provided typicaly by visual
interfaces for browsing object databases.

Application domains often suggest natural value based identification criteria (VBICs).
From the user's point of view these criteria are preferable to any artificial identifier
attributes since they carry semantics of the modeled domain. The significance of value
based identification mechanisms for objects has been emphasized by several authors (e.g.
Abiteboul & Van den Bussche, 1995; Beeri, 1993; Gogolla, 1995; Kim, 1993; Schewe &
Thalheim, 1993; a comparison of different mechanisms for distinguishing objects can be
found in Beeri & Thalheim, 1993). However, less work has been done in characterizing
and investigating reasonable forms of VBICs together with their interaction.

In the relational data model (Codd, 1970) with the relation as single data- modeling
concept, value based identification is connected with the notion of key. A key of a
relation typeisaset ? of attributes such that in every meaningful relation of this type no
two entries exist having identical values on ?. Keys are a special form of functional
dependencies. Thiskind of static integrity constraint allows to formulate conditions for
relations of a given type, requiring that identical values on one specified set of attributes
imply identical values on another specified set of attributes for every pair of entries. The
theory of constraints in general and of functional dependencies and keys in particular is
well-established for the relational data model (Maier, 1983). In data models with more
than one data- modeling concept, the formal foundations of constraints are less devel oped
and there are a number of open problems especially in connection with reasonable forms
of functional dependencies and VBICs.

Some examples of VBICsto be covered by a more general theory of constraints on both
object and value level are given in Figure 1 and Figure 2: Hotels offer rooms in different
categories, single and double rooms (Figure 1(a)). The values of Accommodation
attributes cannot be used as entry values to access a single Accommodation object

Database Integrity: Challenges and Solutions

because different hotels may offer rooms in the same category. A Hotel object together
with a value for Room_category, however, uniquely identifies an Accommodation object.
If Nameis akey for Hotd, i.e. Hotel objects are identified by their Name value,

Room _category and Name can serve as a VBIC for Accommodation. Consider the
schemain Figure 1(b), representing information about different branches of a bank. A
customer may have accounts at different branches. At each branch, one clerk is assigned
to her or him as investment consultant. Therefore Branch and Customer objects together
determine Clerk objects. If Street and C_no are keys for Branch and Customer,
respectively, a VBIC for Clerk is given. This provides an additiona identification
criterion besides the obvious identification of Clerk by Emp_no, which may be useful for
some applications. Neither Street nor C_no aone is sufficient to identify Clerk objects.

m Mersmrodaban Fuanch Cherk i Cusdormes
tame (1 17| Room cegery] A7 Emp._ra fr o C_po
e oitecs, ; Siget srpics | St porsl

L [y HeTady
{ay B
e
p—
Frantsl | Apammers_Uni i Purchase
— ;
A conirect_na | O 1| g 1 {81 P cosect_na
e Price
wried | wokd
——
=
Figure 1. Some examples of VBICs
H ; :]
i Buyer Rerta!_ i Subcompany :
"""""" 1 Institution i
Buyer_no * Com pany_no
[
¥

A A
A A
A Fo
L A RS] SN il
i H H
H i
| H H
| H [
] I3
-------- . . =m 1
Cccupying_ Irvestor Administering_
Buyer Comgpany

Figure 2: VBIC by inheritance

Figure 1(c) shows an example of a different form of identification: Apartmentsin a
building are either rented or condominium apartments. Therefore the number of the lease
or the sales contract can be used to distinguish Apartment_Unit objects by value, leading
to a‘digunctive identification’ of apartments either by Rental or by Purchase. The
exclusive-or constraint between the relationships rented and sold is expressed by the
dotted line with constraint type specified as {xor} (cf. Booch, Rumbaugh, & Jacobson,
1998).

Assume that a building contractor runs, via subcompanies, some of the apartments he

builds. He offers this service also to private investors who bought an apartment but do not
occupy it themselves. So a Rental _Institution is specialized either to Investor or to

- 240 -

Database Integrity: Challenges and Solutions

Administering_Company, as shown by the mandatory inheritance hierarchy in Figure 2.
Investor is a specialization of type Buyer and Administering_Company an optional
specialization of type Subcompany (not every subcompany is an owner of apartments).
Buyer and Subcompany objects are distinguishable by their Buyer_no and Company_no
value, respectively. The attributes are inherited to the specialized types therefore also
providing VBICs for Investor and Administering_Company, respectively. In this scenario,
value based identification of Rental |Institution objects becomes possible since every
Rental _Institution object is specialized. This leads to ‘identification by
generalization/specialization’, similar to the digunctive criteria presented in Figure 1(c).

One simple approach to provide value based identification of objects (especialy in the
frequent case of object-oriented database design and relational implementation) isto
introduce an artificial identifier attribute (Hull & Y oshikawa, 1991; Rumbaugh, Blaha,
Premerlani et a., 1991), i.e. to make the abstract identifier visible. This approach should
not be regarded as value based identification in the original sense because it does not
refer to the values and relationships of the objects themselves. The other extreme is to use
the complete object value for identification, including references to other objects
recursively (Abiteboul & Kanellakis, 1989; Abiteboul & Van den Bussche, 1995;
Denninghoff & Vianu, 1993), leading to the notion of deep equality of objects. Thisisa
very general way to identify objects by values. However, deep equality takes into account
only references starting from an object and therefore does not consider the complete
‘relationship environment’ of an object, since references directed towards the object are
ignored. From a practical point of view, the use of the complete object value asa VBIC,
including al relationships to other objects, is inappropriate. Thus, the question is raised
how to determine VBICs similar to the key concept of the relationa data model. A
reasonable solution should lie between these two extremes by exploiting all features of
the object-oriented data model. In Chen (1976) a relationship with cardinality restricted
to 1, i.e. representing a function between entity sets, may contribute to obtain akey for an
entity type (so-called weak entity type, similar to the example in Figure 1(a)) by using the
key of another entity type related to it. The idea of using relationships to find VBICs was
applied in Zaniolo (1979) to determine keys for records in a network schema. There not
only record types of a single set type were taken into account but also record types
reachable via a sequence of set types. In Schewe and Thalheim (1993) this proceeding
was applied to object-oriented schemas using a sequence of relationships between classes,
including inheritance. More general approaches to determine keys are presented by
observation formulas and object termsin Abiteboul and Van den Bussche (1995) and
Gogolla (1995), respectively. However, there is no further consideration how to
determine the proposed terms and how to distinguish different kinds of identification
terms. This chapter presents an approach to this matter by generalizing the well-known
functional dependencies to object schemas. Like functional dependencies provide a
foundation for the specification and derivation of key constraints, these generalized
constraints—denoted as object functional dependencies—provide a framework for the
specification of VBICs.

We first introduce some basic notions of the object model we use, including a
formalization of the terms object schema and schema graph, as well as some concepts of

- 241-

Database Integrity: Challenges and Solutions

the relational data model. Then we describe an approach to generalize functional
dependencies to object functional dependencies. These graph based constraints are
spanning trees of subgraphs of a given schema graph, labeled appropriately with types of
the schema. Different semantics for object functional dependencies are presented based
on arelational representation of relevant parts of states. The proposal is compared to
related approaches and some interesting challenges for future research are pointed out in
the conclusions.

SYNTAX OF OBJECT FUNCTIONAL
DEPENDENCIES

Basics and Notation

The object-oriented data model used in the following is similar to the static part of the
Object Modeling Technique and the Unified Modeling Language (Rumbaugh, Blaha,
Premerlani et a., 1991; Booch, Rumbaugh & Jacobson, 1998) and covers their basic
structural modeling constructs: object types supporting object identity and tuple-
structured object values, binary relationships and inheritance hierarchies between object
types; for relationships and inheritance hierarchies cardinality constraints can be
specified.

An object schema S consists of afinite number of object typesand binary relationship
types (relationships for short) between them, including inheritance. An object type O
has afinite set attrs(O) of attributes with adomain assigned to each attribute.
Relationships may have car dinalities as additional constraints. Object types, attributes,
and relationships are assumed to be unique within a schema. Inheritance hierarchies are
considered as a set of binary relationships with additional constraints for optional and
mandatory hierarchies,

Object identity is covered by introducing a countably infinite set | of object identifiers.
An object o of type Oisapair o= (i, v) withi ? | and v being a tuple with attribute set
attrs(O), called the object value.

The separation of identifiers and values reflects the requirement that object identity has to
be independent of object values. An extensionext(O) of an object typeO is afinite set of
objects of type O such that the identifiers are unique within ext(O). Uniquenessis
necessary in order to guarantee distinguishability of objects independent of their values.

An extensionext(r) of a relationshipr between object types O, O' with extersions ext(O),
ext(O) isafinite set of links (i, j) withi ? ext(O),] ? ext(O'). If acardinality constraint is
specified for r then each extension of r has to comply with the constraint. As an example,
consider the relationship offersin Figure 1(a). In an extension of offers, every
Accommodation object must participate in exactly one link whereas Hotel objects must be
present in one or more links.

- 242-

Database Integrity: Challenges and Solutions

A states(S) of an object schema S consists of an extension for every object type and every
relationship of S with the sets of object identifiers occurring in the extensions being
digoint for each pair of different objectstypes O, O' of S.

For the handling of object schemata a graph representation is appropriate. The schema
graphGs of an object schema Sis an edge-labeled graph (Vs, Es, %). The set of nodes Vs
corresponds to the object types of Sand the set of edges Es represents the relationships of
S The edge- labeling function ?s is given by the names of the relationships.

In the following, some notions from the relational data model are compiled which are
subsequently used:

Let B3={B,...,Bn} beafinite set of attributes with domain function dom: 3? {Dy,...,
D«}, where each D; is a non-empty domain of atomic values. A tuple over 3 isafunction

t:R? ? i="Djwith t(B) ? dom(B) for each B? B. For B ? R, t|z denotesthe restriction
of t to attribute set 3'. A partial tuplet over Risatuple over R with t(B) ? dom(B) or t(B)
undefined. An undefined value (or null value) is represented by special symbol ‘—'. A
tuplet over Bistotalon ?? Riff t(C)? ‘—" for each C ? 2 t isundefinedon ? iff t(C) =
‘" for each attribute C ? 2. A (partial) relationover Bisafinite set of (partial) tuples
over 3. For arelation R, ar denotes the set of attributesof R If Risarelation and 3?
aR, then R[3]:= {t|zt ? R} denotes the projectionof Ronto 3.

In examples, tuples and relations will be written in the usua tuple and table notation
assuming an arbitrary but fixed order on 3 to be given.

For an attribute set 3? ag, the strong null filter SNF(R, 3) denotes the set of &l tuples
of Rwhich aretotal on 3. The weak null filter WNF (R, 3) denotes the set of all tuples of
Rwhich are not undefined on 3. The total projection R3] Of relation Ronto R is the set
SNF(R 3], R) of all tuplesfrom R3] which aretotal on 3.

Consider the following relations:

R, R, R, R

ABC ABC ABC A B
1 2 3 1 3.3 I 2 3 1 2
1 3 1 3 1 3 1 3
-3 4 34

4 -4 4 = 1

- =5

Ry is the result of applying the strong null filter on attribute set ?= {A, B} to Ry, whereas
Rs is obtained by applying the weak null filter on ?to R;. Ry isthe result of the total
projection Ry[?]io: of Ry onto 2.

- 243 -

Database Integrity: Challenges and Solutions

Lett and t' be partial tuples over 3. t' subsumest on ?? 3 (in symbols: t' =,t, t =1") iff
foreach C? 2 t'(C) or t(C) =‘— holds. To give an example, consider tupelst; = (1, 2, 3),
to=(1,2,-),t3=(1,— 3),andts = (— 2, -) over an attribute set 3 = {A, B, C}. Then t;
subsumes ty, to, ts, and t4 on [3; t, subsumest, and t4 on [3; t, subsumest;, t3, and t4 on {A,
C}; but neither doest, subsume t3 nor does tz subsumest; on 3.

For an extension ext(O) of an onbject type O, the relational representationrel(ext(O)) is
therdation Rwith agr = {ldo} ? attrs(O) and R being the set of tuplest such that for each
t an object (i, ?) ? ext(O) with i = t(Ido) and ? = tlawrs0)- o iscalled identifier attribute.
For every relationship r between object types O and O', the set of links ext(r) can be
considered as arelation over attribute set {Ido, Ido}. Thisrelational representationof r
is denoted by rel(ext(r)) .

Relationships in hierarchies can be treated analogoudly. Here, the relational
representation of arelationship consists of pairs (i, i) of identifiers being elements of the
extensions of both object types involved in the relationship.

Functional Dependencies Generalized

A straightforward approach to the specification of integrity constraints for object typesis
the generalization of functional dependencies (FDs) known from the relational model.
This proceeding allows to take advantage of the well-founded theory of FDs.
Furthermore, such ‘extended FDS provide a more general framework for the
specification of integrity constraints for object schemas, with VBICs being a specia form
of these constraints.

Consider arelation Rwith attribute set arandan FD f: 3? ?with 3, ?? ar.f refersonly
to attributes of ar, and whether f is satisfied in a given relational database solely depends
on Rand not on any further relations in the database. A straightforward application of this
concept to object schemas leads to a constraint on the level of object types, i.e. left-hand
and right- hand side of an FD f' may not only refer to attributes of O but also to the object
type itself, by regarding the object identifier as the value of a specid attribute: f':37? ?
with @', 7 ? attr {(O)? {O}, for some object type O of aschema S. This allowsto
express constraints stating that objects of O are identifiable by their value or a part
thereof in the same way as tuples in arelation can be distinguished by looking at their
values in key attributes. f' is restricted to local identification of O solely by itsown
attributes, like it is known from common FDs as intra-relational integrity constraints on a
single relation type. However, if the attribute values of an object are not sufficient to
identify it in the extension of O in a state S(S), relationships to other objects and the
values of these objects can be taken into account. The smplest example for this kind of
identification is the weak entity concept of the ER model (Chen, 1976). Generalizing this
approach leads to FDs of the form 2. ? ? Gwith sets ? and G where several object
types O of Smay contributeto ? ? Gi.e, B? attrss(O) or 3={0} foreechR??? G
and some O ? Os. Object types, between which a dependency of this kind exists, do not
have to be directly connected inthe schema graph Geg, i.e., they do not have to be

- 244 -

Database Integrity: Challenges and Solutions

connected by a single relationship as it is the case for weak entity types. A path between
them is sufficient.

Between any two object types contributing to ?, or between atype contributing to ? and
atype contributing to G more than one path may exist in Gs. In schema (a) from Figure 3,
for example, there are two different paths of relationships (viap, g and viar, s, t) for an
FD { O} ? {Os}, connecting O; and Os. For schema (b) and FD { Oy, D} ? {L}, two paths
connecting Os with Og and two paths between O; and Os can be found. Usually, different
paths correspond to different semantics and a database modeler has one of these pathsin
mind when specifying a dependency (cf. Lien, 1982). This ambiguity is also known from
the universal relation approach (cf. Maier, Ullman & Vardi, 1984). Moreover, it is
possible for an FD to be satisfied with respect to one path and not with respect to another
one. A state for the schema inFigure 3(b) illustrating this can easily be constructed.

(a) 1]

Figure 3: Ambiguity of an FDI at object schema level

For a generalization dealing with the mentioned aspects, a graph-based approach seems
to be appropriate. We concentrate on dependencies with tree structure, i.e. subgraphs of
the schema graph that are trees. Every leaf node of such atree corresponds to an object
type that provides an ‘entry’ to ‘targets and/or whose objects or attribute values thereof
are determined by some *entry values'. Non-leaf nodes can be entries and/or targets, too,
but they may also play none of these roles, representing merely a connecting condition.
The next two definitions present the notion of generalized FDs, called object functional
dependencies.

Definition 1 Let Sbe an object schema. For an object type O ? Os, setss(O) denotes the
label set consisting of the set {O} and al attribute subsets of O. Ls denotes the union of
all label sets of object types belonging to S.

Definition 2 Let Sbe an object schema with schema graph Gs = (Vs, Es, %). An object
functional dependency (OFD) of Sisan edge- and node-labeled graph f = (G, vr) with
the following properties:

i. TheOFD graph G; = (V;, E;, %) is an edge- labeled spanning tree of node set V; ?
Vsin Gswith Vi ? @. % istherestriction of ?sto E:.

. 2% Vf? LsxLsisapartial node-labeling function such that for each O ? Vi with
? defined and 2 (O) = (d, ?) holds:

- 245 -

Database Integrity: Challenges and Solutions

o d ??setss(O)and d? ?? 0
o 7 hasto be defined at least for every leaf node.

A sour ce (object) type isanode O with ?(O)=(d, 7 and d? @. A sink (object) type isa
node Owith ?(O) = (d, ? and ?? @. A node O for which ? is undefined is called
connecting (object) type.

Figure 4 shows the OFDs corresponding to the examples from Figure 1(a) and (b). The
graph in (a) represents the corstraint that a Hotel object together with a value for
Room_category in one of the Accommodation objects related by offers to the Hotel object
uniquely identifies one of these Accommodation objects. The graph in (b) represents the
constraint that the valuesin attributes Street and C_no of Branch and Customer objects,
respectively, uniquely determine an object among the Clerk objects which are connected
to them via employs and consults.

Halel Foom_saksgorplocommodalon) [Steeet) o)

Hotal Accommodatian Brarch Clark Cusiome

lors ST

(a) i)

Figure 4: Examples of OFDs

The specification of OFDs by spanning trees of nodes of the schema graph guarantees
that there are no ambiguities with respect to the connections between source and sink
types. Since an object type can be a source as well as a sink type (e.g. object type
Accommodation in Figure 4(a)), the node labels are chosen to be pairs. For an object type
O, attributes are not mixed together with the type in a node label from setss(O) since the
object identifier uniquely determines an object and therefore its value, too.

A set oriented FD-like notation is often sufficient and more convenient to denote OFDs.
It can be derived from the node labdls of an OFD as follows:

Definition 3 Let Sbe a schema with schema graph Gs and f = (Gy, ?r) bean OFD of S
with node set V. The set notation?-G; ? Gof 2 is obtained by collecting the first (?)
and the second (G non-empty components of node labels separately. ? is cdled the left-
hand side, Gthe right-hand side of f. d? ? iscalled an entry and ?? Gis called a tar get
(of f). A combination of values for d (or object, if dis an object type) is denoted as entry
unit. Analogously, a combination of values for ?is called target unit. For a given state,
the terms sour ce object and sink object will be used to denote objects belonging to the
extension of an object type involved in the left-hand and right-hand side of an OFD,
respectively.

An object type O isreferredto by the OFD or involved in the OFD iff Oitself or any
subset of its attribute set occurs in the left-hand or right-hand side of f. O isinvolved in f

- 246 -

Database Integrity: Challenges and Solutions

a type-level iff {O} ?? ? G fiscdled canonical iff only one object typeisinvolved in
G

?-Gi? Goramply ? ? G, if Gsisuniquely determined by ?, G and the underlying
schema graph, will be used as a shorthand notation for an OFD

f= (Gy, vi) with OFD graph Gy and set rotation ? ? Gof vi. We occasionally omit set
braces, especially for singletons, in order to simplify notation.

fa: {Hotel,Room category} ? {Accommodation} and
fp: {Sreet, C_no} ? {Clerk}
are the set notations for the OFDs from Figure 4.

The following example demonstrates that, in general, the OFD graph is necessary to
represent the subgraph of G referenced by an OFD f, i.e,, the set notation alone is not
sufficient.

Example 1 Figure 5 shows two OFDs f4, f» of the schema from Figure 3(b), with Vi;={ O,
O3, O4, Os} and Vo= {04, Oy, O3, O4, Os}. Both OFDs have the set notation {A, Os, F}
? {B, O4}.

s) {Fia,)

fy (R,
i o, o
‘]

\Dl’ﬂ--" m/ \\ar

Figure5: Different OFDs with identical set notation

For the identification of objects by attribute values, the key concept of the relational data
model can be generalized for object schemas using OFDs as follows:

Definition 4 A vaue-based identification criterion (VBIC) for an object type Oisan
OFD f: ?? {O} with each d ? ? containing only attributes.

For example, OFD f, from Figure 4 isaVBIC, whereas OFD f, isno VBIC since it
contains object type Hotdl in its left-hand side.

Remark With a more restrictive meaning the notion of an ‘object functional dependency’
was used by Lee (1995) to denote functional dependencies specified with respect to a
single class. The object identifier is treated as a specia attribute and may be used in
dependencies.

- 247 -

Database Integrity: Challenges and Solutions

SEMANTICSOF OBJECT FUNCTIONAL
DEPENDENCIES

To capture its intuitive meaning and to understand the restriction imposed by an OFD on
states of a schema, aformal semanticsis needed. Since OFDs are a generalization of FDs,
it is an obvious choice to define semantics for OFDs in the style of FD semantics. For this,
an equivalent of arelation, i.e., the part of a state that is of relevance for checking the
satisfaction of an OFD, is needed.

For astate §(S) and an OFD f: ?-Gs? Gof schema S we can specify which objects and
which links between them are of relevance with respect to f. Such ‘units' of relevant
objects connected by links are denoted as linkages. A linkage is a connected maximal
subtree of the state graph which structurally corresponds to the OFD graph G;. It consists
of objects of types occurring in the node set of Gy and of links connecting them. The
relevant objects are source or sink objects.

Depending on the extensions and cardinalities of the relationships participating in G, sink
objects may exist which are connected to objects of some but not all of the source types
of f. In such a case the linkage corresponds to a connected, proper subgraph of Gy and is
called partial linkage. If alinkage contains an object for each of the source types of G, it
iscalled total linkage.

Furthermore, sink objects can exist which are not connected to any sourceobject. They
arerepresented by insufficient linkages that contain no source object. These have to be
considered, too, because the existence of such objects in a state might indicate that f is
invalid.

Linkages provide information about entry combinations by which objects of sink types
can be accessed. A total linkage | corresponds to atotal entry combination by which the
sink objects or a combination of sink objects occurring in | can be reached. Analogously,
apartial linkage of a sink object corresponds to a partial entry combination. Sink objects
that occur only in insufficient linkages of a state cannot be accessed from the entries
specified by an OFD via any total or partial entry combination, i.e. they are not reachable
from any entry provided by the OFD.

Base Relation and Validation Relations

Intuitively speaking, the basis for checking whether an OFD f= (Gy,vs) does hold or does
not hold in astate S(S) isthe set of al linkages of f. This set can be represented by a base
relation baser gs). Then the validity of an OFD can be defined similar to the validity of an
FD with respect to arelation. If f isaloca OFD, i.e., referring to exactly one object type
O, the base relation is determined uniquely by rel(ext(O)) , the relation representing
ext(O). If f isnonlocal, such arelation is built by joining the relations that represent the
extensions of all object types and relationships occuring in Gy. Linkages are represented
by tuples in the resulting relation.

- 248 -

Database Integrity: Challenges and Solutions

For anon-local OFD with an object type O involved in the right-hand side, it has to be
ensured that every object of ext(O) appears in the base relation in order to be able to
check whether every object of a sink type can be accessed by an entry combination, i.e. a
combination of source objects or attribute values thereof. The construction of the base
relation baser g) has to take into account the possible existence of partia or insufficient
linkages. Thus, baser «s) will in general be a partial relation, although the extensions of a
state are total, and the natural join (see e.g. Codd, 1970) cannot be used to combine
relations due to the well-known effect of discarding ‘dangling tuples’. To appropriately
represent the part of S(S) referenced by f, the full outer join (Lacroix & Pirotte, 1976) has
to be used, modified to operate on partial relations. Because the symbol ‘—’ represents
nonexisting links, ‘—’ isanull value in the sense of ‘value does not exist’ and partial
relations represent complete information about the underlying extensions. Moreover, this
null value does not affect the evaluation of f on baser «s): Asin the case of an FD,
checking f is done by checking equality of attribute values in bases «s). In this context, a
comparison ¢ = ‘—' can be evaluated to false, and ‘" =‘—' to truefor every domain value
or object identifier ¢ since two objects, one with, the other without link of the same
relationship, can obviously be distinguished. For this reason, the issues which in genera
have to be taken into account if FDs are extended to partia relations can be ignored in
this case.

The full outer join operation, modified to handle objects without links, i.e., dangling
tuples which are undefined on the intersection attributes, is presented in the next
definition.

Definition 5 Let R Sbe partial relations over attribute sets ar, as, respectively, with |ag
n ag| = 1. The full outer join (FOJ) R/, Sof Rand Sis defined as

Rmfﬂ 8=
{t |t tuple over o, U OIg A
((r total onatg Morg At Lhe Rm|ﬂ_‘_e S)
V(l|q,€ Rattotalonoy, Nog A=(3t" e S)(t loryrars = ”Ia,ms:'
At undefined onog \0ry)
V(t]g € Sattotalonag Nag A€ RNt g, ma, =1 |ayrar,)
» t undefined on o, \atg)
V(t]g, € RAT undefined on &)
V(g € S AL undefined on &))}

By thefirst three join conditions of the digunction, the outer join is built for tuples total
on the intersection agr n as. They correspond to the definition of the full outer natural join
for total relations, preserving dangling tuples from both operands. Because it is sufficient
for our purposes, the intersection is restricted to a single join attribute. Thus, tuples are
either total or undefined on ag n as. By the last two conditions, tuples undefined on the
join attribute are added to the result. They guarantee that partia tuples in intermediate
relations are not lost during further join operations.

- 249-

Database Integrity: Challenges and Solutions

reflexi(O)) rellext(r)y reflexd0L)) rellexi(r)) rellexi(O))

I, A ldg, Idy Id, B ly, Tdy Io, C
il i i i 2 i i, 3
L 1 i i f. 3 f i, 4
I i i i 4 i i fg 9

I, 4 i ! Iy, ©

Example 2 Consider the schema S and the state S(S) in Figure 6. The relational
representations of the extensions from S(S) are listed below the state graph. Applying the
FOJto re(ext(0y)) and rel(ext(r1)) yieldsrelation Ry, and joining Ry with rel (ext(Oy))
resultsin Ry:

R, = relext(Q)) = reflextr)) R,:= R, = relexi0.))

fdy A g, My A M, B

i Lo,] () i 1 i 2 (1)

i 1 i | (D i, | i 3 (1

i, 1 i | i | i 4 (1

i 2 -] (2 i, 2 - - (4)

- - i 4 (3)
8] Q5 04
0.* (1 0. iy
A 3 B o L

iy 's 'y
'-2 IE \\\ I1U
A 7 11

Figure 6: Simple schema with state and relational representations (object values, edge
and node labels are omitted from the state graph)

Here each join attribute is an identifier attribute. The number listed for each tuple of a
relation refers to one of the five join conditions. For example, the fourth tuplein Ry isa
dangling tuple from the left operand while the fifth tuple in R, is a dangling tuple from
the right operand. Condition (4) guarantees that the fourth tuple from Ry is represented in
Ry, too. All other tuplesin Ry and R, stem from the natural join condition of the FOJ.
Analogoudly, relations R; and R4 are constructed:

Here, the fifth tuple of Rs, being undefined on attribute Idop, is represented in the final
relation Ry due to the fifth join condition.

Database Integrity: Challenges and Solutions

R, = rel{exiir.)) e, rellexi((,)) Ro=R = K
Mo, Mo © Ity A Mg B My C
I, i 4 | (1) i, 1 i 2 (2}
'} o S 1N i, 1 i 3 i (11
i i 6 |1 i 1 L 4 1, 3 1(1)
i [a6 | (1) i, | i -+ [6 (1)
— i, 3| (3 I 2 - - - - | ($H
i 4 i 6 | (1)
- om e we L 318

Using the FOJ, arelation for checking anOFD f can be constructed. It contains a tuple
for each linkage of f and is built by joining successively the relational representations of
the extensions of all object types and relationships occurring in the OFD graph. The
sequence of FOJ operations pays regard to the structure of the OFD graph.

Definition 6 Let Sbe an object schema, s(S) beastateof Sand let f: {dy,...,d} -
G? {2, ...,7m} bean OFD with graph G = (V;, E, %) and node-labeling function v;. Let

The base relationbaser gs) of f under (S) is defined as follows:

I. Iffisalocal OFD referring to object type O, base g5 istherelational
representation rel (ext((O)) of ext(O).
ii. If fisnonlocal OFD,baser s is obtained as follows:

Let {O,...,On} ? Vsbethe set of al sink object types and ?={Idoz,...,Idom} the

set of their identifier attributes. For anode O ? V; let the set f ¢ of attributes
contributed by O to baser gs) be defined as

-251-

Database Integrity: Challenges and Solutions

e duyulld,} if nodelabel v (0)=(8,7)
i {ld,} if nodelabel v, (O)is undefined

()selectastart node Oe ¥y, B =rel(ext(0))[¢o]

for all edges e€ £, incident on O with A (e)=r:
B := B o<, rel(ext(r)); remove e from £,
remove O from V,
while f/} # O
selectanode O'e V, withld . € o
B:=Bw, ref(exr{O/' e,
for all edges e’ e E incident on O' with 4 (e")=r":
B =B v rel(ext(r')), remove e’ from f f
remove O' from V
(2) right-hand side normalization (rs-normalization):

If 1 #@, remove all tuples undefined on 1.
base, .. = WNF(B,1)

?'(G) iscaled the set of source (sink) attributes. WNF denotes, as previously
introduced, the weak null filter.

The base relation base s is unique and independent of the choice of nodes in step (ii)(1)
of Definition 6, because no tuples are lost during ajoin operation and in each step a
single join attribute exists, provided by an identifier attribute. Furthermore, each
relational representation is used exactly once during the construction of baser gs). Thus,
the join operationsin (ii)(1) are always applicable.

The rs-normalization step removes tuples which are undefined on all identifier attributes
that belong to a sink type. Such tuples represent no linkages and by discarding them no
information about sink objectsis lost.

Example 3 Consider OFD f: {A,O3}-Gs? {Oy} of schema S and the state from Figure 6.
The base relation base gs) can be computed by the FOJ sequence implied by Gf when
starting at node Os:

(((rellext(O))[Hdp,] |, rellexir.))) |, rellex(O))[Idg,]) >,

rel(exi(r,))) e rel(ext(O) Id, " A]
The result of the FOJ sequenceis relation Rwhich corresponds to relation Ry from
Example 2, projected onto attribute set {ldo1, A,Idoz, Idog} . Oz isthe sole sink type of f.

Thus, rs-normalization deletes the fifth and seventh tuple from R since both are undefined
on the identifier attribute 1do;.

-252 -

Database Integrity: Challenges and Solutions

M, A M, M, I, A WM, s M, A M. B

i T

| R T T g
oy oy ey gy
e A e

-
BB B oW R

—m me m my
Il bl e oo ot e

baser «s) IS the base relation obtained for f?: {A, Os}-Gr? {B} under the same state.

Although the base relation baser gs) corresponds to the set of all linkages of s(S) with
respect to f, baser) may contain ‘redundant’ linkages or linkages that possibly interfere
with the evaluation of f on baser gs). If partial linkages exist in a state, different linkages
for the same sink object may exist, where the combination of source objectsin one
linkage is less specific than in another linkage. In this case, one linkage—and thus the
respective tuples in the base relation—subsumes the other. Such linkages represent
redundant information and they would interfere with the evaluation of an OFD if
additional partial linkages are to be taken into account for OFD semantics (cf.
Rasch,1998). They are removed from the base relation by a second normalization step,
called subsumption normalization. Only objects (or object values) of the source and sink
types are taken into account for this step. Objects of connecting types are not considered.

Definition 7 Let t and t' be partial tuples over attribute set 2. t' properly subsumest on 3
? ?(insymbols: t <gt") iff t =" and t|z ? t'|z. Let Rbe apartial relation over attribute set
arand3? ar. The subsumption normalization (sub-normalization)snorm (RR3) of R
on 3 isdefined as

snorm(R,B) ={1|t € Randno " € Rexists with7 <1’}

For arelation Rand an attribute set 3 the result of sub-normalization is uniquely
determined. Applied to a base relation, sub-normalization discards al linkages of a sink
object whose source object combinations are properly subsumed by another source object
combination for the same sink object. This resultsin a validation relation that can be
used to check the validity of an OFD.

Two sets can be used for sub-normalization, corresponding to the difference between
objects and values in object-oriented data models: On the one hand, sink types can be
taken into account like they are involved in theright-hand side of an OFD, i.e., either on
object level or on value level. On the other hand, the sink types may be used aways on
object level during normalization. In the first case, information about different sink
objects having identical values may be discarded. This loss of possibly relevant
information from the base relation is avoided in the second case (cf. Rasch, 1998).

Database Integrity: Challenges and Solutions

Definition 8 Let She an object schema, s(S) be astate of S, and ?-Gy? Gbe an OFD with
?being the set of identifier attributes of the sink types of f. vals qs) := snorm(baser «s), ?"

? Q) isthevalidation relation of f under S(S). valigs™ := snorm(basey g, ?'? 9 is
the strict validation relationof f under s(S).

The validation relation is obtained by applying the normalization step to the source and
sink attributes of baser). Thus, if atarget of f isan attribute set of atype O, the
normalization step towards the validation relation uses only value attributes of the sink
type. Information about different O-objects with identical values may be lost, because the
identifier attribute is ignored in the normalization step. However, with respect to the
constraint stated by f no information is lost since at least one O-object with this common
‘sink value’ occurs in alinkage of the validation relation. The strict validation relation
avoids this by including the identifier attributes of all sink types of f in the normalization
step. Following from the definition, the validation relation valt gs) of an OFD f isaways a
subset of the strict validation relation val™'s gs, of f.

Example 4 Consider the base relations basex 5s) and baser,gg for OFDsf and f ** from
Example 3. To obtain valtgs), sub-normalization has to be applied to baser 5(s) on attribute
set {A, ldoz,Idoz }. No subsuming tuples exist and thus, valtgs = basergg . Since sink
type O isinvolved in f at type-level, valtgs and val™'t g5 coincide. For 2, however, this
is not the case. To determine valfys), sub-normalization on {A, B, 1dos} hasto be applied
to baser, 5. By thisthe last tuple is discarded from baser g9:

.":..r_«..:-lI vl = vl ...-' " vel oo e varl os

! 5y = hase -

=
=
&

da el KD

R R ma
tw, S, Em, Sm
o fad 3
et T |
T, e R, e

e, s, s,

e B, L T T |
T TN

= =

i TP A

The strict validation relation for f'*, however, is obtained by subnormalization on (A, 1do2,
|dos} . Therefore, the last tuple is not deleted and val™', gs) coincides with baser gs). In
general, the base relation and the strict validation relation do not coincide.

Transferring Semantics of Functional Dependencies

Using the concept of a validation relation, a semantics for OFDs can be defined. The
most obvious way to do thisisto simply adopt the meaning of an FD g:3? ?for OFDs:
Each combination of values in the attributes of (3 in a given relation determines at most
one combination, i.e., g is a function mapping [3-combinations to >combinations, with
tuples being total. In the context of an OFD f : ?-G¢? Gthis meanslooking only at ?"' and

Database Integrity: Challenges and Solutions

G, the source and sink attributes of vals gs) or val¥'t gg), i.€., total linkages are taken into
account and every target unit has to be reachable by using them. For each entry of ?,
exactly one entry unit is specified. Only source- and sink-objects are considered, but not
the connecting objects in linkages and the links between them although they are
represented by the validation relations, too. This view corresponds to the following
notions:

Definition 9: Let Sbe an object schema with state S(S) and let ?-G? Gbean OFD of S
Let G={72,...,7n} and {ldoy,...,Idom} bethe set of identifier attributes of the sink object
typesof f. ?'(G) denotes the set of source (sink) attributes. f isstrongly O-satisfied by
(S iff the following conditions hold:

fisstrongly satisfiedby s(S) iff the following conditions hold:

with SNF denoting the strong null filter.

The uniqueness requirement (i) of strong O-satisfaction states that f induces a function,
mapping each total combination of ? '-values of val™'; g5, to exactly one G-combination.
The surjectivity requirement (ii) guarantees reachability or, regarding f as a function,
surjectivity of each sink object solely by such total linkages: For each sink object at |east
one total combination of entry units has to exist viawhich it can be accessed.

For strong satisfaction, similar conditions have to hold. Both uniqueness and surjectivity
requirement are defined with respect to the validation relation. In contrast to strong O-
satisfactionthe focus is on the target and not on the object type providing the target.
Hence, condition (iv) does not necessarily guarantee reachability of each sink object in
the given state but reachability of each target unit: If the target is an attribute set ??
attrs(O) of asink type O, not every O-object may be reachable by atotal entry
combination. However, for every target unit, i.e., for every combination of ?-values
occurring in the extension of O, at least one O-object with these ?-values is reachable;
and surjectivity is given with respect to the set of all ?-values occurring in the values of
O-objects. A surjectivity requirement in the sense of condition (ii), i.e., checking

Database Integrity: Challenges and Solutions

reachability at object-level, would not be suited for strong satisfactionsince information
about some objects of asink type O may have been discarded during the construction of
the validation relation.

For FDs and local OFDs, surjectivity as introduced previoudly is given implicitly. If
relationships are involved in an OFD, i.e, if the OFD is nonlocal, thisis usualy not the
case.

Example 5 The state graph in Figure 7 shows a state s;(S) of schema S, similar to state
(S in Figure 6. The object values are listed next to the nodes. Consider OFD f :

{A,03}? {O;} from Example 3and OFDs g; : {O3}? {A} andg : {O} ? {A} of S
For f and g» the following validation relations are obtained from s;(S). They coincide with
the base relations of f and gy, respectively:

3

/id
14 1 5

1

15 fg
2. 9. -8
'z '8 10
2 4
g iy
bases sy =vali iy =valy o base, o =valll o =val
Wy A I i, I, A I,
i 1 i = i 1 i,
i | i, i, i | i,
i, 2 i, Fio i, 2 I,
i i i - i 2 [

Figure 7: Exarﬁpl e of adate

For f to be strongly O-satisfied, t|{A, 1do3} = t'|{A,|d03} ? t|{A,|d02} = t'l{A,IdOS} has to hold for
every t,t' ? SNF(val™’t «(g,{A,Idos}). The two tuples of val™' 4(s) which are total on {A,
ldos} satisfy this condition. However, surjectivity requirement (ii) is violated since two
tuples are discarded from val ™'t 4 () by the strong null filter on {A, ldog}. These tuples are
the only ones in which sink objectsis and iz occur. Thus, f is not strongly O-satisfied by
s1(S). Analogoudly, f is not strongly satisfied by s;(S): Surjectivity requirement (iv) is
violated. OFD g, gives an example of anOFD that is both strongly O-satisfied and
strongly satisfied: Requirements (i) and (iii) are obviously satisfied. No tuples are deleted
by the strong null filter on attribute Ido, and thus, (ii) and (iv) hold aswell. OFD g'; : { B}
? {A}, obtained by aleft-hand side change of g, to attribute-level, is neither strongly O-
satisfied nor strongly satisfied since O,-objectsis and ig with identical B-values are
connected to Oy-objects with different A-values. Finally, dependency g; is strongly
satisfied but not strongly O-satisfied. The following validation relations are obtained for
01 under s1(S). The base relation basey «(s) coincides with the base relation baser «(s) for f.

Database Integrity: Challenges and Solutions

The ldos -values in val g1 51(s) determine the A-values and both tuples are total on 1dos.
Thus, no tuples are removed by the strong null filter and g; is strongly satisfied.

val¥ g1 <1(5, however, contains a tuple which is undefined on Idoz and therefore is deleted
by the strong null filter. Because of this, g; is not strongly O-satisfied.

In general, the validation relation and the strict validation relation of an OFD which is
neither strongly satisfied nor strongly O-satisfied or which is both strongly satisfied and
strongly O-satisfied do not coincide. It can be shown that strong O-satisfaction of an
OFD f implies strong satisfaction of f. Strong satisfaction, however, does not imply strong
O-satisfaction as demonstrated in the example above.

Beyond Semantics of Functional Dependencies

The notions of strong satisfaction require unique reachability of each sink object or value
thereof, respectively, by total entry combinations. Less restrictive semantics for OFDs are
of interest, too. For example, uniqueness of entry combinations with respect to the
reachable sink objects may be sufficient, ignoring sink objects which cannot be reached
from any total entry combination.

Definition 10 Let Sbe an object schemawith state s(S) and f : ?-G¢? Gbean OFD of S

f isweakly O-satisfiedby s(S) iff condition (i) from Definition 9 holds. f is weakly
satisfied by s(S) iff condition (iii) from Definition 9 holds. Because surjectivity
requirements are discarded, these semantics impose a restriction only on the reachable
sink objects.

Strong (O-)satisfaction implies weak (O-)satisfaction and weak O-satisfaction implies
weak satisfaction. The converse implications to not hold in general. Figure 8 summarizes
the relationships between the OFD semantics that regard total linkages, with strong O-
satisfaction as the most restrictive notion of satisfaction.

- 257 -

Database Integrity: Challenges and Solutions

weakly satisfied

/\

strongly satisfied weakly O-satisfied

\//'

strongly O-satisfied
Figure 8: Implications between OFD semantics

Partia linkages can be taken into account for an OFD as well. In this case, total aswell as
partial entry combinations are considered for the access to sink objects. Sink objects
which are not reachable from any total combination of entry values may be uniquely
reachable from a partial entry combination. From this observation, four more semantics
for OFDs result which are counterparts of the semantics presented previously (Rasch,
1998; Klein & Rasch, 1997).

Asin the case of functional dependenciesin the relational data model, inference rules are
of interest for OFDs in order to derive dependencies implied by a given set of OFDs. In
addition to generalizations of the well-known rules for FDs, more sophisticated rules are
needed for OFDs. Such rules have to take into account the possible change between
object level and value level, modifications of OFD graphs, and information given by the
schema itsalf, like inheritance hierarchies or cardinality constraints, restricting
numerically the participation of objects in relationships. Obvioudly, surjectivity may be
too restrictive arequirement to maintain if an OFD graph is extended by applying an
inference rule or if two OFD graphs are merged. To enforce the uniqueness requirement,
restrictions on the OFD graphs or aweakening of the OFD semantics may be necessary,
especialy if partial linkages or OFDs with more than one sink type are considered.

RELATED APPROACHES

Key and Uniqueness Constraintsin Semantic Data M odels

Almost every semantic data model allows the specification of key constraints for object
types. In a number of approaches they are restricted to local attributes. But even if non
local keys are allowed, a one-to-one assignment between objects and value combinations
of keys s frequently assumed. Concerning value based identification of objectsthisisan
unnecessary restriction. Often it arises from the intention to replace internal object
identifiers by value combinations of keys, for example, as a preparation for an
implementation of an object schemain arelational database system. In the following,
some of these approaches are discussed.

Obviously any identifier key or object key, i.e. primary keys for object types, can be
expressed by alocal OFD. The simplest kind of non-local identification constraints found

Database Integrity: Challenges and Solutions

in semantical data models like the ER model are weak entity types (Chen, 1976). A weak
entity type Wis connected by arelationship type Rto a strong entity type S i.e.,, for Sa
local key consisting of attributes of Sexists. In every state each W-entity is connected to
exactly one S-entity. Hence the combinations of key values of an S-entity can be used to
identify the associated W-entity. If more than one W-entity is related to a single entity of
S the key provided by Shas to be extended with one or more attributes of W, whose
values are unique with respect to the W-entities associated to the same S-entity. If Wis
related to another weak entity type, the weak entity constraint may consist of a sequence
of relationship types until an entity type is reached for which alocd key is given. Batini,
Ceri, and Navathe(1992) generalize this kind of nortlocal identification of entities by
linear congtraints to identifiers, non-local constraints which correspond to trees of depth
one, if the type for which a key is desired, is regarded as root: An identifier for an entity
type E isaminimal, nonempty set {As,...,AnE1,...,.En} withn,m=0and n+tm= 1. A;,...,
A, are attributes of E with domains of atomic values. No null values may occur in an
entity of E with respect to these attributes. Es,...,En, are entity types which are connected
to E by binary relationships Ry, ...,Rn. The cardinality constraint for E in each Ris
restricted to (1,1), i.e. for each E-entity in a state exactly one combination of values and
entities from {Aq,...,AnEz1,...,En} exists. This one-to-one assignment between identifying
combinations of values on the one hand and entities on the other hand arises naturally in
the context of local keys. For nortlocal identification constraints this is not required.
OFDs do not limit the number of entry combinations which lead to a single target unit.

An identifier of an entity typeis called internal if m=0; it isexternal if n =0 holds and it
ismixed if m>0and n > 0 hold. Using these notions, aweak entity type as discussed
previoudly is atype for which only external or mixed identifiers are given. An identifier
for an entity type corresponds to a strongly satisfied, canonical OFD f, where E is the sink
type, involved in f at type-level. If n> 0 holds, E is also a sourcetype. Otherwise, only
types Ej,...,Em occur as sources of f. Inthis case, f is a purely object-based OFD and
provides an identification criterion for E. If the restriction of cardinalities is not waived,
OFDs like the one shown in Figure 4(a) cannot be expressed by means of identifiers.
Moreover, dependencies that involve partial entry combinations are not covered by
identifiers. Batini et a. (1992) note that circularity in the definition of identifiers has to
be avoided. They argue that for an entity type E which has only external identifiers,
identifiers can be obtained by replacing types in the external identifiers with internal
identifiers, if such exist.

A similar approach is made in the context of the functional data model FDM (Shipman,
1981) by P/FDM (Paton & Gray, 1988), a Prolog-based implementation of the functional
data model. The building blocks of P/FDM are classes and functions. The latter are used
to represent attributes as well as relationships between classes. A key for aclass C
consists of a non-empty set of single-valued functions of the class, i.e. the concept of a
key in PIFDM corresponds to the concept of an identifier in the ER model: A one-to-one
assignment of combinations of key values to objectsis required, and the key of C consists
of attributes of C or classes which are connected to C by relationships, or both. Again,
classesin akey definition have to be replaced to obtain a purely attribute-based key, once

- 250 -

Database Integrity: Challenges and Solutions

more leading to keys of tree structure. Hence the remarks on OFDs and identifiersin the
ER model apply for keysin PIFDM as well.

Nienhuys-Cheng (1990) introduces key constraints for nolotsin binary semantical
networks, which are conceptual database schemes specified by means of the Nijssen
Information Analysis Method (NIAM, see e.g., Verheijen & van Bekkum, 1982). Nolots
(non-lexical object types) correspond to object types and are connected by binary
relationships called relations. A key constraint f for anolot A is given by n =1 paths that
start with A and lead to nolots or lots (lexical object types) By,...,Bn. f isatree with root A
and leafs By,...,B,. Every instance of A hasto be reachable from a (B, ...,Bn)-combination.
Moreover at most one combination may exist for a single instance, i.e. exactly one key
combination is assigned to each instance. Since only binary relationships are considered,
abinary semantical network can be regarded as an object schema and a key constraint
can be expressed by an OFD with entries B, ...,B, and target A. If {Ba,...,By} containsa
nolot, f corresponds to an identification criterion, otherwise it isaVBIC for A. Asin the
case of identifiers, OFDs in which relationships with cardinalities different from (1,1)
occur, cannot be expressed by these key constraints. Only total key combinations are
taken into account.

Van Bommel, ter Hofstede, and van der Weide (1991) introduce the Predicator Model as
aformalization for object-role models. The authors point out the ER model, NIAM, and
functional data models like FDM as examples for data models of this family. The
building blocks of the Predicator Model are predicators, which are pairs consisting of an
object type and arole. Relationships are modeled as sets of predicators and may have an
arity greater than two. Moreover, complex objects, i.e., nested types, are supported. For
the Predicator Model, the notion of a uniqueness constraint unique(s) is introduced as a
set s of predicatorsin a Predicator Model schema. Let s’ be the remaining predicators of
the relationships from which s is taken. Then, intuitively speaking, unique(s) is satisfied
by a state, if each combination of objects belonging to the types addressed by s
functionally determines the combination of objects belonging to the types addressed by s'.
The predicatorsin s have to satisfy conditions concerning connectivity in order to be
valid constraints. The semantics of such a uniqueness constraint is given by arelation
obtained by joining relations that represent the object types participating in s (van der
Weide, ter Hofstede, and van Bommel, 1992). However, in general only those objects are
taken into account which participate in a relationship, whereas a base relation of an OFD
f considers all objects of the sink types of f. The semantics of unique(s) is related to the
notion of weak identification with only total entry combinations and total combinations
of target units being considered. This corresponds to a ‘link-centered’ view of a state
where only reachable objects are considered. Thus, if we ignore relationships of higher
arity, only weakly satisfied OFDs can be specified by uniqueness constraints. An
example for such a congtraint is the dependency from Figure 4(b) with respect to weak
satisfaction: Assume the constraint represents information about the actual daily
assignment of consultants to customers. For a customer of a branch, his assigned
consultant may change temporarily if his primary consultant is unavailable. Thus, Clerk
objects may exist in a state which are not reachable by any total or partial entry
combination, and wesak satisfaction as OFD semantics would be a suitable choice.

- 260 -

Database Integrity: Challenges and Solutions

Employees which are not assigned to any customer are not of interest in this context.
Partial entry combinations are not considered by van Bommel et al. (1991). The OFD
approach can be extended to cover relationships of higher arity as well.

Ter Hofstede and vander Weide (1993) introduce the Predicator Set Model to extend
NIAM and the Predicator Model with set types. Identification constraints analogously to
those of Nienhuys-Cheng (1990) and van Bommel et a. (1991) are considered, where
set-valued attributes are allowed. Object types with cyclic, i.e. recursive, type structures
are alowed but they are not identifiable by afixed set of properties.

Mok and Embley (1996) and Embley (1998) use co-occurrence constraintsin the context
of Object-oriented Systems Analysis (OSA, see e.g., Embley, Kurtz & Woodfield, 1992)
and the Object-oriented Systems Model (OSM, cf. Embley, 1998). OSA, too, belongs to
the family of object-role models and is the predecessor of OSM. The building blocks of
OSM schemas are object setsand relationship setswhich connect object types and may
be binary or of higher arity. Object sets are either non-lexical sets representing objects, or
lexical sets representing atomic values. Co-occurrence constraints are related to
unigueness constraints of the Predicator Model. In contrast to these they refer only to a
single relationship set. A co-occurrence constraint with respect to arelationship set Risa

dependency withn,m=1, k; >0, {A1,....Bn} =0,
where each A;, Bj denotes an object set participating in R It indicates that in each state a
single {A1,...,An}-combination can occur in at least ky and most k; instances of Rwith
different {B;,...,Bn}-combinations. For (ki,k2) = (1,1) the constraint corresponds to a
generalized FD and the previous remarks on OFDs as well as the remarks on uniqueness
constraints in object-role models and the link-centered view of a state apply.

The idea of using relationships to determine keys for record types in a network schema
was applied by Zaniolo (1979). For arecord type T, aset of synonymsis determined by
taking set types into account. Each synonym of T may consist solely of data items i.e.,
attributes, of T itself. If the local data items provide no unique identification of T-records,
anortcyclic sequence of set types, i.e., relationships starting with T and leading to a
record type T' may be used. T' as well as any other record type of the sequence may
contribute data items for the identification of T-records. Optional set types may
participate in the sequence and thus missing links are taken into account, too. In this case,
the sequence provides a pseudo synonym for T. A synonym of T corresponds to a
canonical, strongly satisfied OFD f where the OFD graph is a path. Since only asingle
path emerging from T is considered, OFDs like the dependency f from Example 3 cannot
be expressed by a synonym. In G; the source types are not nodes of the same path starting
at the sink type.

Schewe and Thalheim (1993) apply the use of non-local dependencies with path structure
to an object-oriented data model in order to obtain aVBIC for aclass. Similar to the
functional data model, a relationship from a class C;to aclass C, is represented by an
attribute of C; with type C.. It is denoted as a reference from C; to Cs. A class C isvalue
identifiable, if a set of attributes with basic typesis given for C, by which C-objectscan
be identified, i.e., aloca VBIC for C exists. Nortlocal identification is considered, too. A

- 261 -

Database Integrity: Challenges and Solutions

class C isweakly value identifiableif a value identifiable class C' and a sequence of
classes Cy,...,Ch, N> 0, exists such that C' = Cy, C = G, holds, and either areference from
Ci-1 10 C; exigts, or Cj isasubclass of C;.1. Moreover, each of the references has to
comply with a surjectivity requirement: In every state, each object of class C; hasto be
referenced by an object of C;.4, i.e, al C;-objects have to be reachable from C;. ;-objects.
Under these prerequisites, every C-object is reachable from at least one C'-abject, and the
combinations of key values of C'-objects can be used to uniquely access C-objects. The
local VBIC of C' provides anon-loca VBIC for C. Moreover, a single C-object o may be
reachable from several C'-objects and thus, more than just one combination of key values
may exist for 0. The VBIC for C may not be composed, and solely consists of the VBIC
of C’. In contrast to the previoudly discussed synonyms in a network schema, neither
other types involved in the sequence nor C itself may contribute attributes to it. Hence,
dependencies like the OFD from Figure 4(a) or the OFDs from Figure 5 are not covered.
Partial entry combinations are not addressed because only a single entry is considered.

Demanding the surjectivity requirement to hold for every reference occurring in the
sequence imposes an additional restriction on identification. For C to be weakly value
identifiable it is sufficient that all C-objects are reachable from C'. The existence of
additional objects of the classes Cy,...,Cn.1, Which are not reachable from any C'-object,
does not interfere with the identification of C-objects. For this reason, the notion of
strong satisfaction of OFDs requires surjectivity only withrespect to the sinks of an OFD
but not with respect to all connecting types. As far as identification is concerned,
permitting only surjective references imposes an unnecessary restriction. If the
differences in the data models and the surjectivity requirement for connecting types are
ignored, aclass C which is weakly value identifiable by a class C' is comparable to a
strongly satisfied OFD f with asingle sink type C and asingle entry d that constitutes the
entry for thelocal VBIC of C’. The graph of f isa path connecting nodes C and C'.

Generalizations of Functional Dependencies

Occasionally, generalizations of FDs are introduced which allow not only the
specification of keys but also of other dependencies between object types and attributes,
or, as adirect application of relational FDs, between attributes of a single type. In the
following, some of these approaches which often aim at the development of normal forms
for object types or schemas, are compared with OFDs. In principle, al these key
specifications and dependencies are expressible in the framework of OFDs. A proposal
deviating from this common framework is discussed at the end of this section.

The normalization of entity types and relationship types of an ER schema has been
addressed, for example, by Chung, Nakamura, and Chen (1981), Ling (1985) and Ling
and Teo (1994). Rauh and Stickel (1996) define normal forms for entity types and
relationship types by simply transforming them into canonical relation types, which are
induced by the attributes of the entity types or, in the case of areationship type R by the
local attributes of Rand the key attributes of entity types participating in R The normal
forms for entity types and relationship types are obtained by requiring the relational
normal forms for the canonical relation types. By this, FDs are implicitly generalized to

- 262 -

Database Integrity: Challenges and Solutions

entity types and relationship types. This corresponds to strongly satisfied local OFDs. For
binary relationships thisis similar to simple nortlocal OFDs. However, only entities
participating in the relationship are taken into account, i.e. the link-centered view of a
state has to be employed. Hence, strongly satisfied OFDs like dependencies g;, g» from
Example 5 cannot be expressed. The sketched approach illustrates that the normalization
of ER schemas or of types thereof often is guided primarily by the principles of the
relational normalization. Ling (1985), for example, defines normal forms for entity types
and relationship typesin away similar to Rauh and Stickel (1996), but takes nested
attributes and multi- valued dependencies into account, too.

Lee (1995) introduces a restricted generalization of FDs to object classes, denoted as
object functional dependencies. Note that for the following the abbreviation ‘OFD’ will
refer to the notion of dependency introduced previously, whereas ‘ object functional
dependency’ will refer to the notion introduced by Lee. An object class is specified by a
class name and a set of attributes. An attribute may be of basic type, of collection type
(e.g. aset type or array type), or it may be of classtype, i.e. it represents a reference to an
object of another object class. An object functional dependency A;e? A; isdefined with
respect to a single object class C by two attributes A; and A; of the attribute set of C. The
dependency is satisfied by a state if for each object o of C the A;-value of o determines
the Ax-value of 0 asit is known from FDs. The object identifier may be one of the
attributes occurring in an object functional dependency. Except for the involvement of
attributes of collection type and the representation of relationships by reference attributes,
the dependency introduced by Lee corresponds to a strongly satisfied local OFD or, if Az
is an attribute of classtype C', is comparable to a simple nonlocal OFD consisting of two
nodes for the object classes, with C' as sink type, and an edge representing the reference
between them. In this case, the OFD would have to be weakly satisfied since not every
C'-object may be referenced by an object of C. More general weakly satisfied
dependencies, as discussed above for the OFD from Figure 4(b), are not covered by this
approach. Lee uses object functional dependencies to introduce an object normal form for
object classes. The examples for violations of the object normal form which Lee states,
correspond to violations of normal forms as known from the relational model. As
mentioned, Leetakes the internal identifier attribute, i.e. the object class itself, into
account, analogous to the use of object types in OFDs. The normalization approaches for
the ER model use externaly visible keys. Of course, both approaches provide uniqueness.
However, the use of the object type in dependencies emphasi zes the difference between
objects and values.

Wijsen, Vendenbulcke, and Olivie (1994) investigate FDs for an object oriented temporal
data model and introduce snapshot functional dependencies for this purpose. A snapshot
functional dependency (SFD) C(X?) is defined with respect to asingle class C and is
comparable to an object functional dependency as used by Lee (1995): Attributes of class
type are allowed. Both X and Y are subsets of the attribute set of C and the identifier
attribute may occur in the dependency. X and Y, however, are not restricted to singletons.
The semantics of an SFD is analogous to that of an FD; a single state is considered and
the equality of two C-objectson X implies the equality on Y. Hence, asin the case of
object functiona dependencies, an SFD corresponds to alocal OFD or a simple nort loca

- 263 -

Database Integrity: Challenges and Solutions

OFD with two types being involved. Furthermore, dynamic and temporal functional
dependencies are considered. The satisfaction of these constraints is defined regarding
two or more subsequent database states.

An approach to normalization completely different from those discussed previously,
which intend to avoid anomalies, is made by Tari, Stokes, and Spaccapietra (1997). They
introduce path dependencies, local dependencies, and global dependenciesfor an object-
oriented data model which includes classes, object identity, inheritance, relationships by
means of bidirectional, class-typed attributes, and complex objects, i.e. classes with
attributes of set type or tuple type in arbitrary nestings. The model combines the features
of an extended ER model and nested relations as known from the NF, data model (non
first normal form, see e.g. Scholl & Schek, 1986). Asin the previous two approaches and
in the OFD approach, the identifiers of objects are taken into account by the
dependencies. The three kinds of dependencies are al defined with respect to paths or
walks of aschema, i.e. cycles are allowed. Local and global dependencies are constraints
on single classes and consider paths within a class C, having a complex nested type. The
first oneis used to specify FD-like restrictions on the nested value of each single object
of C in astate: For two attribute sets X and Y of C, connected by a given path within the
complex type of C, exactly one combination of Y-valuesis reachable from each
combination of X-values within the object value of an object o of C. Global dependencies
extend local dependencies to hold not only for each single instance, but also with respect
to all instances of C: The local dependency between X and Y has to hold and additionally
for any two objects of C which coincide in their X-values, the Y-values have to coincide.
To some extent, OFDs are related to path dependencies which state constraints between
classes C; and C; of aschema, connected by a path ?. Unlike OFDs or FDs, a path
dependency specifies a constraint on every single object and not on pairs of objects: For
each C;-object the C,-objects (or attribute values thereof, if specified so by the
dependency) which are reachable via ? have to coincide. Because only reachable Co-
objects are considered, thisis similar to the notion of weak satisfaction of OFDs.

In the context of an object-oriented data model that supports object identity, tuple-vaued
objects, and class-typed attributes for directed references between objects, Weddell (1990,
1992) introduces path functional dependenciesas a generalization of functional
dependencies and key constraints. Path functional dependencies, like OFDs, allow the
specification of non-local constraints. Since a sound and complete set of inference rulesis
given for these dependencies, we will discuss this approach in more detail. A path
functional dependency is defined with respect to a class schemeof aschema S. Sis given
by afinite set of class schemes, where each class schemeis of the form
C{P1:Cy,...,Pn:Cp}. Each P; isaproperty, i.e. attribute, of C and each C; is the name of
another class scheme of S, the type of P;. Cyclic references among class schemes are
allowed. Basic types are considered to be ‘trivial’ class schemeswith n=0, e.g.

Integer{}. A state s for Sis adirected, edge and node-labeled graph, where the nodes,
labeled by their class name, correspond to objects, i.e. identifiers thereof, or basic values.
Edges are labeled with property names and connect an identifier with the components of
its object value. Schema S too, can be read as a directed graph G(S). Thisis similar to the
notions of state graph and schema graph used above. Under this view, a set of path

-264 -

Database Integrity: Challenges and Solutions

functions is associated with S. It consists of al finite directed walks, i.e. sequences of
properties, in G(S). Every state s has to comply with the following restrictions:

i. property valueintegrity: If (u,v) isan edgein s, labeled with property P, thenu is
labeled with a class rame C such that P is a property of C, and v is labeled with
thetypeof P in C. This guarantees that s corresponds to the structure of S,

li. property functionality: If (u,v) and (u,w) are edgesin s, both labeled with property
P, then v = w holds, i.e., properties are single- valued.

iii. property value completeness: If u isanode of s, with C being the label of u, then
an edge (u,v) labeled with P existsin sfor each property P of C, i.e,, no missing
values are allowed.

Especially the last two requirements enforce atight relationship between paths in G(S)
and pathsin s: If pf is apath function connecting class schemes C; and C,, andif uisan
object node in srepresenting an object of C;, then exactly one path existsin swhich
connects u to an object node belonging to C,. Otherwise, one of the requirements would
be violated. As Weddell notes, the data model corresponds to a restricted nested
relational model.

A path functional dependency (PFD) over schema S, denoted by,

refers to a single class scheme C and path functions of it. Each pfi, i ? {1,...,n}, isapath
function starting at C. We will denote C as the center class of the PFD. A key PFD is
denoted by C(pf;...pfm? Id), where Id is the path function of length zero, referring to C
itself. A PFD is satisfied by astate sof S if for any two nodesu, v in slabeled with C, i.e.
u and v are both objects of C, the following condition holds: if u.pf; = v.pf; for each i ?
{1,...,m} then u.pf; = v.pfifor each i ? {m+1,...,n}. Here u.pf;, for example, denotes the
object or vaue which is reachable from u by following the path pf;j in s. Analogously, u.ld
refersto u itself. Note that due to the restrictions exactly one object or value node its
reachable for each C-node and each path function.

Weddedll (1990, 1992) does not consider different notions of identification. If we ignore
for amoment the characteristics of the data model and the restrictions on states, the
guestion israised how PFDs and OFDs are related. To check the satisfaction of a PFD
with respect to a state s, all objects of the center class C are inspected. This can be
regarded as a surjectivity requirement with respect to C. Hence akey PFD C(X? 1d), with
X being a set of path functions, is comparable to a strongly satisfied OFD X? {C} which
states an identification criterion for C. The path functions in the left-hand side of akey

- 265-

Database Integrity: Challenges and Solutions

PFD may lead to properties which are not of basic type. Because of this, akey PFD isno
VBIC for its center classin general. Analogoudly, aPFD C(X? Y) where Yisasubset of
the propertiesof C, is comparable to an OFD f: X? Y. Since every object of C is
considered by the PFD, f has to be strongly O-satisfied. In the same way, any strongly
satisfied, canonical OFD can be simulated by aPFD. A PFD C(X? Y) where Y contains
‘non-local path functions', i.e., path functions which do not represent properties of C,
cannot be expressed by an OFD. For thisa‘mixed semantics’ is necessary that takes
every C-object into account, i.e. enforces surjectivity regarding C but requires uniqueness
only with respect to the reachable Y-combinations. Note, however, that under the
restrictions imposed on s, reachability of C-objects from X-combinations is always given.
Roughly speaking, a PFD demands that each total X-combination in s leads via C-objects
to a most one Y-combination. A (strongly satisfied) OFD X? Y demands uniqueness, too,
but additionally requires reachability of all Y-combinationsin s. None of the connecting
types is emphasized by it. In the same way, certain kinds of OFDs cannot be simulated by
PFDs. Consider, for example, a noncanonical OFD ?? G Since G-combinations are to
be determined, G has to become the right-hand side of a corresponding PFD.C(?? G).
This raises the question how to choose the center class C for the PFD. Because
surjectivity is requested with respect to it and because an OFD imposes no restriction on
connecting types, it has to be asink type of f. This, however, results in an imbalanced
treatment of sink types. For C, reachability of every object is given independent of an
attribute- level involvement of C in G whereas for any other sink type only the reachable
target units are considered. Due to the prerequisites for states, it is evident that PFDs
cannot ssmulate any OFD under any notion of identification which considers partial
linkages. Analogously, no partial sink combinations are allowed. However, the examples
from Figure 1(c) and Figure 2 illustrate that in the context of inheritance hierarchies or
exclusive-or constraints partia linkages have to be taken into account for the
identification of objects.

There are substantial differencesin the ‘PFD approach’ and the ‘ OFD approach’. They
result from the difference in the structure of dependencies (PFDs being grouped around a
center class), and from the tight coupling of schema paths and state paths in the case of
PFDs. Both have far-reaching implications on inference rules. The specification of a
sound and complete rule set for PFDs relies on these requirements. They are notable
restrictions which alow to obtain inference rules that do not hold for OFDs in general. If
similar restrictions are required to hold for an admissible state of an object schema, the
use of partial entry combinations for identification would be excluded, athough they
arise, for example, naturally in the context of inheritance hierarchies. Thalheim (2000)
outlines an extension of PFDs to the ER model, where paths in a state are considered that
fit to the schema paths.

I dentification and Distinguishability
The focus of value based object identification is on the unique access to single objects. A
different view is employed by value based distinguishability of objects. Here the focusis

to decide whether two given objects are the same or not. This usualy is done by
inspecting the value of an object, its links, and the values of objects reachable along links.

- 266 -

Database Integrity: Challenges and Solutions

In the following, afew approaches are discussed which are primarily concerned with
property-based distinguishability of objects.

Abiteboul and Van den Bussche (1995) investigate the distinguishability of objects for an
object-oriented data model with object values being basic values or object idertifiers, or
tuples of these. Thus, an object value may contain references to other objects of a state.
Object identifiers as employed by Abiteboul and Van den Bussche correspond to abstract
identifiers, i.e., they are not visible. Hence, two given objects can be distinguished only
by the basic values occurring in their object value and by recursively dereferencing object
identifiers in the object values and looking at the basic values of objects which are
reachable by this. For an object o, this unfolded complex object value can be regarded as
atreetree(o) which may be infinite if cyclic references occur between objects of a state.
In any case, atree is obtained where the leafs correspond to basic values. Two objects 01
and o, are indistinguishable, or deep equal, if tree(o;) = tree(o,) holds. Abiteboul and
Van den Bussche show this notion of distinguishability to be equivalent to the coar sest
value based equivalence relation on object identifiers and to distinguishability by
observation formulas which are queries of avalue based calculus language, called
observation calculus. Under the first notion, a given equivalence relation on identifiersis
extended to object values inductively in the following way: Each basic value is
equivalent to itself and tuple values of the same arity are equivaent if they are equivalent
with respect to each component. Using this notion, two identifiers are equivalent if and
only if their object values are equivalent. This corresponds to the notion of similarity of
objects, used by Denninghoff and Vianu (1993). The second notion of distinguishability
relies on the observation calculus, avalue based query language where equality
comparisons on identifiers are not permitted. Variables in observation formulas range
over basic values and identifiers. The only comparison operator is the equality of basic
values. Queries are built inductively from these simple comparisons by conjunctive
combination and negation. Moreover, existential quantification is allowed which aso
takes the dereferencing of identifiers into account. Details are given in Abiteboul and Van
den Bussche (1995). All three notions are defined with respect to the complete unfolded
value of an object and hence do not consider afixed entry set for the value based access
to object. The latter is one of the main motives for introducing OFDs. Due to this, these
notions in general are neither suited nor intended for the support of identifying access to
objects.

A related approach is presented by Kosky (1995, 1996). He addresses distinguishability
in an object-oriented data model which supports object identifiers and reference attributes,
including possibly cyclic references between objects of a state. Kosky focuses on the
distinguishability of two different database states, not on the distinguishability of objects
within asingle state. For this, isomorphisms between states and an equivalence relation
between states, called bisimulation correspondence, which corresponds to the value
based equivalerce relation employed by Abiteboul and Van den Bussche (1995), are
investigated. Two states s; and s, are isomorphic if they differ only in object identifiers,
i.e., 5 can be obtained from s, by renaming the object identifiers of s, and vice versa.
Bisimulation of statesis defined analogously to the value based equiva ence among
object identifiers used by Abiteboul and Van den Bussche (1995). Two states s; and s,

- 267 -

Database Integrity: Challenges and Solutions

are bisimilar if for each class C and each object identifier which belongs to the extension
of C in s, an equivaent object identifier existsin the extension of C in s; and vice versa
Distinguishability of states can also be viewed in terms of query languages. Kosky shows
that isomorphism of states is equivalent to the indistinguishability of states by means of a
guery language which alows equality tests on object identifiers, i.e. intuitively speaking
two states are isomorphic if and only if every query of the considered languages yields
the same result for both states. Bisimilarity correspondsto indistinguishability of states
by the same query language without allowing equality tests on identifiers.

Isomorphism and bisimulation are the finest and coarsest, respectively, levels of
distinguishability of objects. In addition to this, Kosky considers local and nortlocal keys
for classes. Using these, two objects of a class are taken to be equivalent if and only if
they coincide in their key values. In this context, acyclic keys, i.e., VBICs as introduced
by OFDs, are considered since in genera these provide an efficient means to compare
nested object values without examining object identifiers directly or unfolding the
complete object value.

Beeri and Thalheim (1999) introduce severa notions of distinguishability for objects by
regarding a state as a graph given by the objects, the object values and directed references
between them. In this framework, notions of identification based upon homomorphisms
(H-identifiability), and automorphisms (A-identifiability) of graphs, bisimulations (B-
identifiability), values (V-identifiability), equations (E-identifiability), and queries (Q-
identifiability) are investigated. It is shown that some of the notions coincide (e.g. &
identifiability and V-identifiability) or imply other ones (e.g. Q-identifiability implies V-
identifiability). The various notions exploit differences in the graph structures of objects
or the existence of different basic values in object values. This does not necessarily
provide identifying access to objects, especially not access via the same set of entries for
each state asit is proposed by OFDs and similar approaches. The attributes providing
those different values or ‘ structural aspects’ of the graph of o which allow a distinction,
may vary from state to state. Beeri and Thalheim, like Abiteboul and Van den Bussche
(1995), and Kosky (1995, 1996) do not consider inheritance hierarchies.

CONCLUSIONS AND FUTURE RESEARCH

In the relational data model, real world objects and their relationships are modeled by
data values using a single concept, the relation. The set-oriention of this model allowsto
identify facts stored in a database by keys which are explicitly given or which can be
derived from a set of functional dependencies by applying inference rules. In data models
offering aricher set of modeling constructs such as object-oriented data models,
identification is a much more involved problem which is not solved at the conceptual
level by the concept of object identifiers (cf. Beeri, 1990). From a practical point of view,
value based identification of objects should be possible independent of their identifiers.
To tackle this problem, a framework for the specification of so-called object functional
dependencies between attributes and object types was presented in the context of asimple
object-oriented data model. Different identification mechanisms can be defined using
these constraints. We concentrated on the unigque access by means of total entry

- 268 -

Database Integrity: Challenges and Solutions

combinations and reachability of all target units. By modification of this ‘fundamental
view’ on the identification of objects, severa notions of identification are obtained,
arising from the use of partial entry combinations and from ignoring objects which are
not reachable by entry combinations. These notions are of particular relevance if
inheritance hierarchies or exclusive-or constraints are taken into account as demonstrated
by examples in the introduction.

For the notion of strong satisfaction, inference rules have been given in Rasch (1998).
However, the rule set presented there is not complete and it seems to be a non-trivial task
to achieve completeness. What has to be taken into account is that the structure of a given
schema, especialy inheritance hierarchies and cardinality constraints for relationships,
may have influence on the set of dependencies derivable from a given set of OFDs. These
interactions are far more complicated than what is known for functional dependenciesin
the relational data model. Furthermore, both kinds of satisfaction, strong and weak, must
be considered even if only dependencies with respect to strong satisfaction shall be
derived: It may be possible to derive a strongly satisfied OFD f3: ?? F from aweakly
satisfied OFD f;: ?? Gand astrongly satisfied OFD f,: G? F because for f3 reachability
isonly required with respect to F but not with respect to G

In the definition of OFDs, cycles have been excluded in order to keep things simple.
Nevertheless, cyclic dependencies are of interest in practice and should be covered in the
framework. They also have to be considered for a complete set of inference rules since
cycles may result from the application of inference rules. As an example, consider two
OFDsf1:?? G fy: G? F for the same schemawith f; (f2) having more than one sink
(source) object type. Then a new cyclic dependency could be derived from f; and f, by
transitivity.

From a practical point of view, the topics of efficiently checking and enforcing OFDsin
object-oriented (and object-relational) databases become a major issue. Integrity
constraints arising from the structure of an object schema, e.g., from relationships
between types, or constraints implied by an inheritance hierarchy are maintained
automatically by the type system of an object-oriented database system since the schema
can be directly represented by features of the system. Any further constraints, e.g.,
additional cardinality constraints, key constraints, or functional dependencies, are often
specified by means of a declarative language or in a semi-procedural style, and are coded
directly by methods of the respective object types. Another possibility is given by
rewriting those methods of an object type, which realize insert or update operations. In
most cases, only local or simple nontlocal constraints, similar to the weak entity concept,
are considered. Hence the question is raised, how to check more genera non-local
dependencies like OFDs, and which kind of OFDs can be efficiently maintained in
available object-oriented database systems. Kemper and Moerkotte (1992) propose
access support relations for the support of query processing in object-oriented databases.
An access support relation materializes chains of links between objects in order to
support a path in a schema which is frequently addressed in queries. Thisis related to the
approach of Bernstein, Blaustein, and Clarke (1980), where in arelational database

- 269 -

Database Integrity: Challenges and Solutions

redundant data is materialized to support the efficient checking of integrity constraints,
and hence may be helpful for the maintenance of OFDs, too.

A freguent case is the object-oriented design of a database schema combined with the use
of arelationa database system for implementation. An interesting question is how OFDs
and value based identification criteria derived from them can be taken into account for
the transformation of an object schema into arelational schema. It is a challenge to
develop methods for generating relational implementations which reflect the given
constraints in such away that their maintenance is well supported.

REFERENCES

Abiteboul, S. & Kanellakis, P. C. (1989). Object identity as a query language primitive.
In J. Clifford, B. G. Lindsay & D. Maier (Eds.), Proceedings of the 1989 ACM SGMOD
International Conference on Management of Data, ACM SGMOD Record, 18(2), 159—
173.

Abiteboul, S. & Van den Bussche, J. (1995). Deep equality revisited. In Proceedings
Deductive and Object-Oriented Databases, Fourth International Conference, DOOD’, 95
Singapore, Lecture Notes in Computer Science: Vol. 1013 (pp. 213-228). Springer-
Verlag

Batini, C., Ceri, S. & Navathe, S. B. (1992). Conceptual database design: An entity-
relationship approach. Redwood City, USA: Benjamin/Cummings Publishing Company.
Beeri, C. (1990). A formal approach to object-oriented databases. Data & Knowledge
Engineering, 5, 353-382.

Beeri, C. (1993). Some thoughts on the future evolution of object-oriented database
concepts. InW. Stucky & A. Oberweis (Eds.), Datenbanksysteme in Buero, Technik und
Wissenschafty, 5. Gl-Fachtagung, Braunschweig, Germany (pp. 18-32). Springer-Verlag
Beeri, C. & Thalheim, B. (1999). Identification as a primitive of database models. In T.
Polle, T. Ripke & K.-D. Schewe (Eds.), Proceedings Fundamentals of Information
Systems —FoMLaDO ‘98, Timmel, Germany (pp. 19-36). Kluwer.

Bernstein, P. A., Blaustein, B. & Clarke, E. M. (1980). Fast maintenance of semantic
integrity assertions using redundant aggregate data. In Proceedings Sxth Inter national
Conference on Very Large Databases, Montreal, Canada (pp. 126-136). |EEE Computer
Society Press.

Booch, G., Rumbaugh, J. & Jacobson, I. (1998). The unified modeling language user
guide. Reading, USA: Addison-Wesley Longman

Chen, P. P.-S. (1976). The entity-relationship model—toward a unified view of data.
ACM Transactions on Database Systems 1(1), 9-36.

Chung, 1., Nakamura, F. & Chen, P. P.-S. (1981).A decomposition of relations using the
entity-relationship approach. In P. P.-S. Chen (Ed.), Proceedings of the Second
International Conference on the Enity Relationship Approach (ER 81) (pp. 149-172).
North-Holland.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM, 13(6), 377-387.

Codd, E. F. (1979). Extending the database relational model to capture more meaning.
ACM Transactions on Database Systems 4(4), 397-434.

- 270-

Database Integrity: Challenges and Solutions

Denninghoff, K. & Vianu, V. (1993). Database method schemas and object creation. In
Proceedings of the Twelfth ACM Symposium on Principles of Database Systems (PoDS),
Washington, D.C., USA (pp. 265-275).

Embley, D. W. (1998). Object database devel opment: Concepts and principles. Reading,
USA: Addison-Wesley.

Embley, D. W., Kurtz, B. D. & Woodfield, S. N. (1992). Object-oriented systems
analysis: A model-driven approach. Englewood Cliffs, USA: Prentice-Hall

Gogolla, M. (1995). A declarative query approach to object identification. In M. P.
Papazoglou (Ed.), Proceedings OOER 95: Object-Oriented and Entity-Relationship
Modelling, Fourteenth International Conference, Gold Coast, Queensland, Australia,
Lecture Notes in Computer Science: Vol. 1021 (pp. 65-76). Springer-Verlag

Hall, P., Owlett, J. & Todd, S. (1976). Relations and entities. In G. M. Nijssen(Ed.),
Modelling in Database Systems (pp. 201-220). North Holland Publishing Company.
Hull, R. & Yoshikawa, M. (1991). On the equivalence of database restructurings
involving object identifiers. In Proceedings of the Tenth ACM Symposium on Principles
of Database Systems (PoDS), Denver, Colorado, USA (pp. 328-340).

Kemper, A. & Moerkotte, G. (1990). Access support relations: An indexing method for
object bases. Information Systems, 17(2), 117-145.

Khoshafian, S. N. & Copeland, G. P. (1986). Object identity. In N. K. Meyrowitz (Ed.),
Proceedings OOPS_A 1986, Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, Portland, Oregon, USA. ACM SIGPLAN Notices,
21(11), 406-416.

Kim, W. (1993). Object-oriented database systems. Promises, reality, and future. In R.
Agrawal, S. Baker & D. A. Bell (Eds.), Proceedings Nineteenth International Conference
on Very Large Databases, Dublin, Ireland (pp. 676-687). San Francisco, USA: Morgan
Kaufmann Publishers.

Klein, H.-J. & Rasch, J. (1997). Value based identification and functional dependencies
for object databases. In Data Management Systems—Proceedings of the Third
International Basgue Workshop on Information Technology (BIWIT 97), Biarritz, France
(pp. 22—32). IEEE Computer Society Press.

Kosky, A. S. (1995). Observational distinguishability of databases with object identity. In
P. Atzeni and V. Tannen (Eds.), Proceedings of the Fifth International Workshop on
Database Programming Languages (DBPL-5), Gubbio, Italy, Electronic Workshopsin
Computing. Springer Verlag

Kosky, A. S. (1996). Transforming Databases with recursive data structures. Doctoral
dissertation, Department of Computer and Information Science, University of
Pennsylvania, Philadelphia, USA.

Lacroix, M. & Pirotte, A. (1976). Generalized joins. ACM SGMOD Record, 8(3), 15-16.
Lee, B. S. (1995). Normalization in OODB design. ACM S GMOD Record, 24(3), 23-27.
Lien, Y. E. (1982). On the equivalence of database models. Journal of the ACM, 29(2),
333-362.

Ling, T. W. (1985). A normal formfor entity-relationship diagrams. In P. P.- S. Chen
(Ed.), Entity-Relationship Approach: The Use of ER Concept in Knowledge
Representation Proceedings of the Fourth International Conference on Entity-
Relationship Approach, Chicago, Illinois, USA (pp. 149-172). North-Holland.

- 271-

Database Integrity: Challenges and Solutions

Ling, T. W. & Teo, P. K. (1994). A normal form object-oriented entity relationship
diagram. In P. Loucopoulos (Ed.), Entity-Relationship Approach—ER’ 94, Business
Modelling and Re-Engineering, Proceedings Thirteenth International Conference on the
Entity-Relationship Approach, Manchester, U. K., Lecture Notes in Computer Science:
Vol. 881 (pp. 241-258). Springer-Verlag

Maier, D. (1983). The Theory of Relational Databases. Rockville, USA: Computer
Science Press

Maier, D., Ullman, J. D. & Vardi, M. Y. (1984). On the foundations of the universal
relation model. ACM Transactions on Database Systems, 9(2), 283-308.

Mok, W. Y. & Embley, D. W. (1996). Transforming conceptual models to object-
oriented database designs. Practicalities, properties, and pecularities. In B. Thalheim
(Ed.), Conceptual Modeling—ER' 96, Fifteenth International Conference on Conceptual
Modeling, Cottbus, Germany, Lecture Notes in Computer Science: Vol. 1157 (pp. 309—
324). Springer-Verlag

Nienhuys-Cheng, S.-H. (1990). Classification and syntax of constraintsin binary
semantical networks. Information Systems 15(5), 497-513.

Paton, N. W. & Gray, P. M. D. (1988). Identification of database objects by key. InK. R.
Dittrich(Ed.), Advances in Object-Oriented Database Systems, Proceedings Second
International Workshop on Object-Oriented Database Systems Bad Muenster, Germany,
Lecture Notes in Computer Science: Vol. 334. (pp. 280-285). Springer-Verlag

Rasch, J. (1998). On value-based identification in object-oriented data models. Doctoral
dissertation Institut fir Informatik und Praktische Mathematik, Universitéat Kiel,
Germany. Report 9815.

Rauh, O. & Stickel, E. (1996). Standard transformations for the normalization of ER
schemata. Information Systems, 21(2), 187—208.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. (1991). Object-
oriented modeling and design. Prentice-Hall International (UK).

Schewe, K.-D. & Thaheim, B. (1993). Fundamental concepts of object oriented
databases. Acta Cybernetica, 11(1-2), 49-83.

Scholl, M. H. & Schek, H.-J. (1986). The relational model with relation-valued attributes.
Information Systems, 11(2), 137-147.

Shipman, D. W. (1981). The functional data model and the data language DAPLEX.
ACM Transactions on Database Systems 6(1), 140-173.

Tari, Z., Stokes, J. & Spaccapietra, S. (1997). Object normal forms and dependency
constraints for object-oriented schemata. ACM Transactions on Database Systems 22(4),
513-569.

ter Hofstede, A. H. M. & van der Weide, T. P. (1993). Expressiveness in conceptual data
modelling. Data & Knowledge Engineering, 10, 65-100.

Thalheim, B. (2000). Entity-Relationship Modeling. Berlin, Germany: Springer-Verlag
van Bommel, P., ter Hofstede, A. H. M. & van der Weide, T. (1991). Semantics and
verification of object-role models. Information Systems, 16(5), 471-495.

van der Weide, T. P., ter Hofstede, A. H. M. & van Bommel, P. (1992). Uniquest:
Determining the semantics of complex uniqueness constraints. The Computer Journal
35(2), 148-156.

-272-

Database Integrity: Challenges and Solutions

Verhejen, G. M. A. & van Bekkum, J. (1982). NIAM: an information analysis method. In
T.W.Olle, H. G. Sol & A. A. VerrijnStuart (Eds.), Information Systems Design
Methodologies: A Comparative Review (pp. 537-590). North-Holland.

Weddéll, G. E. (1990). A theory of functional dependencies for object-oriented data
models. In W. Kim, J-M. Nicolas & S. Nishio (Eds.), Proceedings of the First
International Conference on Deductive and Object-Oriented Databases (DOOD89),
Kyoto, Japan 1989 (pp. 165-184). Elsevier Science Publisher B.V ..

Weddell, G. E. (1992). Reasoning about functional dependencies generalized for
semantic data models. ACM Transactions on Database Systems 17(1), 32-64.

Wijsen, J., Vendenbulcke, J. & Olivie, H. (1994). Functional dependencies generalized
for temporal databases that include object-identity. In R. Elmasri, V. Kouramgjian & B.
Thalheim (Eds.), Entity-Relationship Approach- ER 93, Twelfth International Conference
on the Entity Relationship Approach, Arlington, Texas, USA, 1993, Lecture Notesin
Computer Science: Vol. 823 (pp. 99-109). Springer-Verlag

Zaniolo, C. (1979). Design of relational views over network schemas. In P. A. Bernstein
(Ed.), Proceedings of the 1979 ACM SSGMOD International Conference on Management
of Data, Boston, Massachusetts, USA (pp. 179-190).

Chapter 1 X: Integrity Issuesin the Web—
Beyond Distributed Databases

José F. Aldana Montes, Mariemma |. Yague del Valle, Antonio C. Gémez L ora,
Universidad de Méalaga,

Spain
INTRODUCTION

Issues related to integrity in databases and distributed databases have been introduced in
previous chapters. Therefore, the integrity problem in databases and how it can be
managed in several data models (relational, active, temporal, geographical, and object-
relational databases) are well known to the reader. The focus of this chapter is on
introducing a new paradigm: The Web as the database, and its implications regarding
integrity, i.e., the progressive adaptation of database techniques to Web usage. We
consider that this will be done in a quite similar way to the evolution from integrated file
management systems to database management systems.

In any case, thiswill be a much more difficult goal and quite alot of work is till to be
done. The specia features of the Web make things which are necessary on a database
system just optional in this environment. On the other hand, some other things which are
usually considered as essential parts of any database, are now disassembled into its
building blocks and used as needed (Silberschatz & Zdonik, 1996; Bernstein et a., 1998).

- 273-

Database Integrity: Challenges and Solutions

At first glance, the Web is a huge repository of information without any structure
whatsoever. Nowadays, this is changing quickly. The consolidation of the Extensible
Markup Language (XML,1998) as a new standard adopted by the World Wide Web
Consortium (W3C) has made the publication of electronic data easier. With asimple
syntax for data, XML is, at the same time, human and machine understandable. XML has
important advantages over HTML (HyperText Markup Language). While HTML isa
data visualization language for the Web (this was not its initial intended purpose), with
XML, data structure and rendering are orthogonal. We can represent meta- information
about data through user-defined tags. No rendering information isincluded in an XML
document.

It could be considered that the main feature of XML is that of being a data exchange
format, but we will show that it is much more than this in this chapter.

Thinking about the Web as a huge, highly distributed database, we may consider different
dimensions to conceptually describe it. Ozsu and Valduriez (1999) defines a
classification of database systems with respect to: 1) their distribution; 2) the autonomy

of loca systems; and 3) the heterogeneity of database systems. The autonomy concept is
considered as the distribution of control, not of data. This indicates the degree to which
individual DBM Ss can operate independently. Whereas autonomy refers to the
distribution of control, the distribution dimension deals with the physical distribution of
data over multiple sites. With respect to heterogeneity, this can range from hardware
heterogeneity, differences in networking protocols, variationsin DBMSs, etc., to the data
model or the policy for managing integrity on the database.

Obviously, the Web is on the distribution plane, and, as shown in figure 1, we think that
"it falls out" of the cube because it presents the highest degree of distribution,
heterogeneity, and autonomy, and therefore, traditional distributed database techniques
must be further extended to deal with this new environment. It is within this context that
we are going to study the different issues related to integrity and its maintenance on the
Web. We are a'so going to introduce the reader to other related and open issues, such as
the query problem and query optimisation on the Web, since the special features of the
Web environment make techniques for querying or maintaining the Web, different to
those of traditional databases.

i i 'd-ﬂ-
Distribarisn et — __K The [Fndribiion

Pl

sgics S MultiDH Systcm
rs D Syxlcmms
Heterogeneiny

Figure 1. Extending the cube

Frderatal Msterigamainm

M3 Syslems

- 274-

Database Integrity: Challenges and Solutions

SEMISTRUCTURED DATA AND XML: AN
OVERVIEW

With respect to the informationavailable on the Web, we can distinguish between data
which is completely unstructured, such as images, sounds, and raw text, and highly
structured data, such as data from atraditional database (relational, object-oriented or
object-relational).

However, we can aso find many documents on the Web that fall in between these two
extremes. Such kinds of data have become relevant during the last few years and have
been denominated semistructured data. A good introduction to this topic is found in
(Buneman, 1997). In semistructured data, the information normally associated with a
schemais contained within the data (self-describing data). In some cases there is no
separate schema, whereas in others it exists but only places |oose constraints on the data.

Therefore, semistructured data is characterized by the lack of any fixed and rigid schema,
although typically the data has some implicit structure. The most immediate example of
data that cannot be constrained by a schema is the Web itself.

One approach to providing database- like querying for semistructured WWW sourcesis to
build wrappers for such sources. Ashish and Knoblock (1997) present an approach for
semi-automatically generating wrappers through a wrapper- generation toolkit. The key
ideais to exploit the formatting information in pages from the source to hypothesize the
underlying structure of a page. From this structure the system generates a wrapper that
facilitates querying a source and possibly integrating it with other sources.

Semistructured data may be irregular and incomplete and does not necessarily conform to
afixed schema. Aswith structured data, it is often desirable to maintain a history of
changes to data, and to run queries over both the data and the changes. Representing and
guerying changes in semistructured data is more difficult than in structured data due to
the irregularity and lack of schema. In Chawathe, Abiteboul & Widom (1998) a model
for representing changes in semistructured data and a language for querying these
changes is presented.

Several languages, such as Lorel (Abiteboul, Quass, McHugh, Widom & Wiener, 1997)
and UnQL (Fernandez, 1996), support querying semistructured data. Others, such as
WebSQL (Mihaila, 1996) and WebL og (L akshmanan, Sadri & Subramanian,1996), query
Web sites. All these languages model data as labelled graphs and use regular path
expressions to express queries that traverse arbitrary paths in graphs. As the data model is
an edge- labelled directed graph, a path expression is a sequence of edge labels hly, ... |n.
Abiteboul, Buneman, and Suciu (2000) consider a path expression as a simple query
whose result, for a given data graph, is a set of nodes. In general, the result of the path
expression lil,...1, on adata graph is the set of nodes v, such that there exist edges
(r,0i,v1), (va,l2,v2),..., (V-1,In,Vn), Where r is the root. Thus, path expressions result in set of
nodes and not in pieces of semistructured data. In (Fernandez & Suciu, 1998) two

- 275-

Database Integrity: Challenges and Solutions

optimisation techniques for queries with regular path expressions are described, both of
them relying on graph schemas which specify partial knowledge of a graph's structure.

All semistructured data models have converged around a graphbased data representation
that combines data and structure into one simple data format. Some works (Nestorov,
Abiteboul & Motwani, 1998) on typing semistructured data have been proposed based on
labelled, directed graphs as a general form of semistructured data. XML (XML,1998) has
thiskind of representation based on labelled and directed graphs, athough some minor
differences exist between them, since the semistructured data model is based on
unordered collections, whereas XML is ordered. The close similarity of both models
(figures 2 and 3) made systems like LORE (Goldman, McHugh & Widom, 1999),
initialy built for a semistructured model, migrate from semistructured data to XML data.

l '.Ilnf'.-.x- .@- :

Pemcn "

Person Taper

’ drthor oo -
. . 5 S - "
D Person-"s101") § e TR @
10="alin]®,
Swmame /Tirsina meh,
@i)

8 @aé"

Texl Texl

BOS 2 @ P T

a 1 Ir
AT
CUTERY e LORE
L SELECT 1. Titke, 8 Firstmame, & Suraame
FROM IATTY 1:>| L Ausher a
WIHERE & Affilia Tesa="hialaps Umivercis™

Figure 2: Data model in LORE

Adfiliaee

l q-\--'h -
PEFS O e e P
____Fﬂ'ﬂ""d—“--r- e .‘.-H“‘“n- -
. e o
- mathds - - R . .
A ‘E*- e 7
N S| Naubor e/
mim .—|_-__,|"-. \\ .l"'-._-II = l."-.“'-x J-I__.l' Lithe
¥ e bl] LS,]
i |-.|+ mae ST ,-"' * o Tilialsom P
¥ LY ¥ .
Aldana I.F hlalaga N %A 1 hlalaga Chricrniag the Wb wath Diataleg

Lmmveraile University

Figure 3: Data model in XML

XML (eXtensible Markup Language) was designed specifically to describe content,
rather than presentation. XML is a textual representation of data that allows usersto
define new tags to indicate structure. In Figure 4, we can see that the textual structure
enclosed by <Publication>...</Publication> is used to describe a publication tuple (the
prefix of the tag names is relative to the namespace where the e ements are going to be
defined). An XML document does not provide any instructions on how it isto be
displayed, and you can include such kind of information in a separate stylesheet. With the

- 276 -

Database Integrity: Challenges and Solutions

use of XSL stylesheets (XSL, 1999) you can trandate XML datato HTML for
visualization by standard browsers.

« Tl varaicn="1. 0" enceding="1 S0-E555-17 slandaslane="ng" T»
Ty atyied Rt types eyl hial=" ¢ 005L-Shylsthasts Pubiiemisn ol F T
<o P MO ST [T ke I P B TR e N e Wl oo | BRI ML S inslanc ™

< cTithe Uri="rempoii 28 253 154 SPopieta il DocaPubieamions iaems oni=Cusrying the Web with
Datalog</pric Tila>

wpr Lhuthor aectypa="pri Siafllember_Type">
=i Bl maeJowd Franciico Aldana Mortes <pri Mama>
it idmrt s o JF AR <priderd ficators
e A hers
wgr rALERSF Ty paspri EAsTliamber_ Typa"s
< puri B ma > Maria Ismaculada Yagie del Vale< piteras
=put hdenificalo=h W </priddentifcalor>
ipriduthor>
g | Pl oY s RO pn Y
wgr t Becpo s nbernacicnal Vpri Seopes
et Cangr o
gl Conglassiurme:
It erraionl Vitorkanon on sdss b Applcations. of Datsbase Techmog
wigr i Conghedahiamar
g AR age e A= Sl P age>
<pali E nedPRag a > 504 <pes EddPage >
i b § DE- BRSSP iane
<pi PubkeatioaPiace=Bariin, Ganmaryoips | PublcatiorPlace>

=pei Congrasss
afpric Publcabion=

Figure 4: Example of XML document representing a publication page

XML Related Technology

A Document Type Definition (DTD) is a context-free grammar which defines the
structure for an XML document type. DTDs are part of the XML language. A DTD can
also serve as the "schema' for the data represented by an XML document. Thisis not as
close as we would like to a database schema language, because it lacks semantics. Other
limitations we find are that a DTD imposes order and lacks the notion of atomic types.
That is, we cannot express that a ‘weight’ element has to be a non negative integer, and
moreover, we cannot express a range for constraining the weight between 0 and a
maximum value. These and other limitations make DTDs inadequate from a database
viewpoint. Therefore, new XML-based standards for representing structural and semantic
information about the data have arisen. One of these proposals is the Resource
Description Framework (RDF, 1999) and the RDF Schema (RDF Schema, 2000).
However, and above al, we are going to place emphasis on the XML Schema (XML
Schema, 2001), a new technologica standard which enables us to represent data
semantics like a database does.

RDF is afoundation for processing metadata, providing a ssimple data model and a
standardized syntax for metadata. Basically, it provides the language for writing down
factual statements. Its intended applications are mainly: 1) providing better search engine
capabilities for resource discovery; 2) cataloging for describing the content and content
relationships available at a particular Web site; and 3) allowing intelligent software
agents to share and exchange knowledge (Abiteboul et al., 2000). RDF consists of a data

- 277 -

Database Integrity: Challenges and Solutions

model (an edge-labeled graph with nodes called resources and edge labels called
properties) and a syntax for representing this model in XML.

On top of RDF, the ssimple schema language RDFS, Resource Description Framework
Schema (RDF Schema, 2000) has been defined to offer a specific vocabulary to model
class and property hierarchies and other basic schema primitives that can be referred to
from RDF models. The RDF Schema provides a means to define vocabulary, structure,
and integrity constraints for expressing metadata about Web resources. Once again, the
main problem with RDF isits lack of a standard semantics and, therefore, this semantics
must be defined in each of its instances. An RDF Schema instance alows for the
standardization of the metadata defined over Web resources, and the specification of
predicates and integrity constraints on these resources. In knowledge engineering
terminology, the RDF Schema defines a smple ontology that particular RDF documents
may be checked against to determine consistency. In addition, the RDF Schemais a type
system for RDF since it provides a mechanism to define classes of resources and property
types which restrict the domain and range of a property.

The RDF and RDF Schema specifications use XML as an interchange format to
exchange RDF and RDF Schema triples (Bowers & Delcambre, 2000).

As mentioned, some schema languages for describing XML data structures and
constraints have been proposed.

XML DTD isthe de facto standard XML schema language but has limited capabilities
compared to other schema languages, such as its successor XML Schema. Its main
building block consists of an element and an attribute and it uses hierarchical element
structures. Other schema languages have been proposed, such as Schematron, DSD, SOX,
XDR, among others. A comparative analysis of the more representative XML schema
languagesis found in Lee & Chu (2000). In this chapter, the focus will be on XML
Schema because the XML Schema is an ongoing effort by the W3C for replacing DTD
with a more expressive language.

The XML Schemaiswritten in XML enabling the use of XML tools. It presents arich set
of datatypes, capabilities for declaring user-defined datatypes, mechanisms such as
inheritance, and so on. In fact, XML Schemas are object-oriented.

Although the XML Schema identifies many commonly recurring schema constraints and
incorporates them into the language specification, it will be interesting to see how
constraint support will evolve in XML Schema in the future.

THE INTEGRITY PROBLEM ON THE WEB

A part of the semantics of a database is expressed as integrity constraints. Constraints are
properties that the data of a database are required to satisfy and they are expected to be
satisfied after each transaction performed on the database. The verification of constraints
in a database is often quite expensive in terms of time as well as being complex. Some

- 278-

Database Integrity: Challenges and Solutions

important factors related to this issue include the structure of the underlying database
upon which the constraints are imposed, the nature of the imposed constraints, and the
method adopted for their evauation.

Using the notation of previous chapters we are going to consider Domain Restrictions
and Relationships Restrictions and their representation in a Web data model.

Integrity Constraintsand XML Standard Technology. Declaration and
Enfor cement

XML is adata model which can not only represent semantic information through
descriptive tags, but thanks to other related technologies, also through certain types of
database- like schemes.

In this section, we are going to focus on the XML Schema as the most appropriate related
technology for representing such kinds of information as integrity constraints.

XML Schemas are selected because:

1. they provide enhanced data types (more than 41), user-defined data types, and the
extension or restriction of atype (derivation of new type definitions on the basis
of old ones).

it is possible to define the lexical representation. For example, "This element can
contain strings of this form: ddd-dddd, where ‘d’ isadigit".

being written in XML, they enable the use of XML tools.

they are object-oriented.

they can express sets (the child elements may occur in any order).

they can specify the element content as being unique (keys on content) and
uniqueness within aregion.

they can define multiple elements with the same name but different content.

they can define elements with null content.

they can create equivalent elements. For example, the "publication™ element is
equivalent to the "paper" element.

N

oUW

© oo N

This last feature means that the XML Schema enables the use of different vocabularies
while remaining understandable by every XML application which validates that XML
Schema.

- 209-

Database Integrity: Challenges and Solutions

<Twml version="10" ¢encoding="150-8859-1" standalone="no"7>
<xsd:schema xmins:xsd="http://waw. w3 org 2000/ 1V XMLSchema”
targetNamespace="Tittp./foraw lec uma es”

xmins pri="http/'www lcc uma.es”

xmins: typ="httpwaww w3 org 200071 0XMLSchema-dataty pes™=

<include schemalocation = “Saff xsd” /=

<xsd complex Type name=sPublication_Types=
<xsdelement ref="pri: Title"/>
<xsd:clement ref=""pri: Author” minCeccurs="1"
maxDccurs="unbounded ">
<xsd-element ref="pn:Publication Y ear™ />
<xsdelement ref="pri:Scope”/>
<!— choice allows o include one of the edemems referenced —=
<xsdchoice>
<element ref="pn: BookChapler™ =
<glement ref="pn: Book"/>
<glement ref="pn:Journal Article™/>
<element ref="pri: Journal />
<glement ref="pn: Thesis"/>
<glement ref="pn; Conference” />
<glement ref="pri; ResearchReport™/>
<glement ref="pn:Congress"/>
</xsd.choice>
<!— Element declared in Staff.xsd —=
<xsdelement ret="pri:Research™ minCocurs="0"
maxDecurs="unbounded "=
<xsd-alement ref="pn: KeyWord” minDoours="0" maxQccurs="15"/>
<xsdelement ref="pri:Abstract” minCocurs="0" maxCcours="1">
=xsdelemen ref="pri:Format™ minCccurs="0" maxOcecurs="1%/=
</wad:complexType=

</schema>
Figure 5. Example of XML schema for a publication page

Domain Restrictions
A domain restriction defines the set of values that an attribute may have.

For example: the age of a person is a non-negative integer number.

<si npl eType name= "age" base="integer">
<m nl ncl usi ve val ue="0"/>
<max| ncl usi ve val ue="150"/>

</ si npl eType>

This XML-Schema code defines an element named ‘age’, of type ‘integer’, and whose
values are restricted to the range [0..150].

The following code in XML-Schema declares a new data type called
‘PhoneNumber_Type" which represents values for valid Spanish phone numbers.
Elements of this type must have string values, its length has to be exactly 9 characters,
and values have to match the following pattern: the first digit can be 6 or 9, followed by

Database Integrity: Challenges and Solutions

another 8 digits (0..9). The pattern is represented with a regular expression where ‘d’
represents a digit.

<xsd: si npl eType nane="PhoneNunber_Type" >
<xsd:restriction base="typ:string">
<xsd: | ength val ue="9"/>
<xsd: pattern value="[6]9]\d{8}"/>
</ xsd:restriction>
</ xsd: si npl eType>

The following declaration in XML-Schema defines a type supporting correct e- mail
addresses:

<l— E-mail_Type contains the e-mail address of a member of the department. This type
is expressed with aregular expression indicating the template to follow for a correct e-
mail address. —>

<xsd: si npl eType name="E-nmail _Type">
<xsd:restriction base="typ:string">

<xsd: pattern value="([A-Z]|][a-
z IV INd]) @[A-Z] [[a-z] [\ [\d]) *" />
</ xsd:restriction>
</ xsd: si npl eType>

As mentioned, XML-Schemas provide enhanced data types (more than 41 different basic
data types), and user-defined data types. They include predefined types such as integer,
float, double, uriReference, etc. Furthermore, we can create new data types from base
data types specifying values for one or more facets for the base data type.

For example, for the primitive data type string we have new optional facets (some of
them used in the examples above):

pattern
enumeration
length
maxlength
maxInclusive
maxExclusive
minlength
mininclusive
minExclusive

-281-

Database Integrity: Challenges and Solutions

For more information about primitive types and their facets for the derivation of new type
definitions, the reader can visit the W3C Consortium web page regarding this standard

(XML Schema, 2001).

Moreover, on XM L-Schema we can define subclasses and superclasses of types aswe

can see in the following.

Generalization as Restriction: we can restrict some of the elements of a more genera type
making them only accept a more restricted range of values or a minor number of

instances

If we have defined the following data type:

<conpl exType nanme="Publication">

<sequence>
<el ement
maxQOccurs="1"/>
<el ement nane=" Aut hor"

nane="Title" type="string" m nCccurs="1"

type="string" m nQOccurs="1"

maxQOccur s="unbounded"/ >

<el enent
m nCccurs="1"
</ sequence>
</ conpl exType>

name="Publ i cati onYear"
maxQOccur s="1"/>

type="year"

then we can derive for extension a type for a Publication, such as:

<conpl exType name="Proceedi ngs"

deri vedBy="ext ensi on" >

base="Publication"

<sequence>
<el enment nane="1SBN' type="string" m nOccurs="1"
maxOccurs="1"/ >
<el ement nane="Publisher" type="string"
m nOccurs="1" maxCccurs="1"/>
<el ement nanme="Pl aceMeeting" type="string"
m nOccurs="1" maxCccurs="1"/>
<el ement nane="Dat eMeeti ng" type="date"

m nCccur s="1"

maxQOccurs="1"/>

</ sequence>
</ conpl exType>

or we can derive for restriction a type for a Publication:

<conpl exType nanme= "Si ngl eAut hor"
derivedBy="restriction">

<sequence>
<el ement
m nCccurs="1"
<el ement
m nCccur s="1"
<el ement
m nCccur s="1"

</ sequence>

nane=

nane=

name=

base="Publ i cation"

"Title" type="string"
maxQOccur s="unbounded"/ >
"Aut hor" type="string"
maxQOccurs="1"/>
"PublicationYear"
maxQOccur s="1"/>

type="year"

Database Integrity: Challenges and Solutions

</ conpl exType>
Sometimes we want to create a data type and disable any kind of derivation from it.
For example, we can specify that Publication cannot be extended or restricted:

<conpl exType name="Publication" final="#all" ...>

Or we can disable the restriction of the type Publication:

<conpl exType name="Publication" final="restriction" ...>
Similarly, to disable the extension:

<conpl exType nanme="Publication" final ="extension" ...>
Relationships

With respect to structural restrictions which express semantic properties implicit in a

model, such as unique keys on the relational model or one—to-many associations on the

network model, in this schema language we can represent:

1. Uniqueness for attribute: XML Schemas support this feature using <Unique>,

where the scope and target object of the uniqueness are specified by <Selector>

and <Field> constructs, respectively. Moreover, XML Schemas specify
unigueness not only for attributes but also for arbitrary elements or even

composite objects (attribute + element) in a portion of the document or the whole

document using the same construct <Unique>.

For instance, the following schema ensures there exists a unique PhoneNumber

eement under office sub-&ements of the teacher e ement.

<uni que><sel ect or >t eacher/ of fi ce</ sel ect or >
<fi el d>PhoneNunber </ fi el d></ uni que>

2. Key for attribute: In databases, being a key requires being unique as well as not

being null. A similar concept is defined in XML Schemeas.

3. Foreign key for attribute: Foreign key states. a) who is areferencing key; and b)

who is being referenced by the referencing key.

The XML Schema uses <Keyref> for this purpose. In addition to this, XML

Schemas support a method to specify whom the foreign key actually points to

using constructs <Refer> and <PointsTo>, respectively.

Database Integrity: Challenges and Solutions

Using syntax almost identical to <Unique>, a construct <Key> can specify an attribute as
akey in XML Schemas.

<key nanme="dNunKey" >
<sel ect or >depart nent s/ depart nent </ sel ect or >
<field>@unber</field>

</ key>

<keyref refer="dNunKey">
<sel ect or>subj ect/ depart nent </ sel ect or>
<fiel d>@unber</fiel d>

</ keyr ef >

Similar to specifying uniqueness for non-attributes, XML Schemas can specify foreign
keysfor arbitrary elements or composite objects using the same <Keyref> construct.

In the XML data model, entity and referential constraint types have significant
differences with respect to the relational and object-oriented data model, generating great
research activity and discussion (Fan & Siméon 2000; Buneman, Davidson, Fan, Hara &
Tan, 2001; Buneman, Fan & Siméon, 2000). Nowadays, XML is mainly being used in
data interchange between relational databases and applications over the Web and it seems
that this situation will not change in the near future (Fan, Kuper & Siméon, 2001; Lee &
Chu, 2000). This means that XML integrity semantics must be at least as expressive as
relational integrity semantics, including referential aspects.

Entity and referential integrity are commonly used close terms. There are two possible
and noncontradictory implementations: logical or physical pointers. The relational model
uses logical pointers and object-oriented models typically use physical ones. Asthe
reader knows, in relational models primary and alternative keys implement entity
integrity, and foreign keys implement referential integrity. In object-oriented systems a
built-in physical pointer, usualy called ID, that is present on every object, isin general
used. In these systems, the reference and inverse reference clauses specify the existence
of referential integrity. On the other hand, in earlier XML Schema drafts, the XML entity
and referential mechanisms were close to the object-oriented solution, introducing a
mechanism that is called id/idref. Later studies showed semantic anomalies betweenthis
and the relational one. The id/idref mechanism is defined as the way of referencing
explicit datainto an XML document; this means, it is closer to pointers in a programming
language than to keysin arelational or object-oriented model. Another interesting aspect
of referencesin XML isthat they are generic pointers, with no associated type. Thus, we
have no information, and we cannot maintain any control, on what the reference is
pointing to.

The latest versions (XML Schema, 2001) have increased the capability of expressing
integrity constraints. The new key/keyref mechanism complements the id/idref one and
solves its associated problems. It also allows us to define complex types as keys,
generating new interesting practical problems. Thisis just one example of how quickly
this new technology is evolving.

Database Integrity: Challenges and Solutions

Referential integrity implements relationships in the data model. The magjority of complex
gueries involve one or more relationship computation, that is, keys are commonly
processed in query evaluation. Keys, both primary and aternative or foreign ones,
generally support any type of implicit index optimisation technique in relational database
management systems.

Behavior Restrictions

These can express associations between objects, such as the inclusion dependency in the
relational model, or can describe object properties and structures. At the moment, they
cannot be expressed in XML Schemas but we hope this will change in the future.
However, we can construct an XM L-validating application which can enforce this kind of
additional restriction over the data.

Integrity Control For Distributed XML-Validating Applications and the
Web

Nowadays, with the use of XML as alogica model - and not just a standardized
document markup language and a data exchange format (a physical data model) -,
modern database technology has become practical for the storage and retrieval of dataon
the Web. In fact, we can automatically process the information represented in the XML
Schema (it is important to note that all this technology is built over XML). This can be
done by using an API, such as the Document Object Model (DOM, 2000). DOM enables
us to compile an XML document and construct a tree representation for it. It offers an
object-oriented view of the XML document, that is, each document component defines an
interface specifying its behavior. The data (or state) can be accessed only viathis
interface. Thus, an application can completely restructure the document viathis interface.
It can manage the different elementsin it in an "intelligent way", because of the semantic
information which is present in the document.

An XML parser is code which reads a document and analyses its structure. We can find
validating parsers vs. non-validating ones, DOM-compliant parsers, SAX-compliant
(SAX, Simple API for XML) parsers, parsers written in Java, C++, Perl, etc.

On the one hand, we can represent integrity constraints for data which could be
distributed all over the Web by means of the XML Schema. On the other hand, we can
develop XML applications (figure 6) using DOM and standard XML Schema-validating
parsers for checking integrity at each updating operation.

Database Integrity: Challenges and Solutions

—F—, ML Application

A B .
)
e “ |l evraal

I stion XML

Hapresen

W W
Wrkpper
Tace

-

= e =] JE] =]

EAl
Figure 6: XML application

For example, if we have an XML Schema for a "publications’ document type at a
University Department we can easily think of some integrity constraints. For example: "a
publication has at least one author". Now, this can be represented in XML Schemas. An
XML Schema-validating parser could be responsible for accepting or rejecting an XML
document enforcing a non-null attribute integrity constraint. In addition, it might be
interesting to add another constraint to this. "at least one of the authors of a publication
has to be a member of the department”. This kind of restriction is much more difficult to
validate, as you have to check for the different XML documents representing the
Department staff looking for a publication's author. If this search is successful (one of the
authors is a member of the Department), then the integrity constraint is not violated and
the updating operation that adds a new publication page can be carried out, and in this
way the database (the part of the Web which we are dealing with) attains a consistent
state. In case of the search not being successful, the publication could not be added, if we
want to enforce the integrity. The cost of this checking is not too high, as every XML
document is going to be locally checked by means of a standard XML Schema-validating
parser.

Query Optimisation in the Web

Although in XML column integrity would be called element or attribute constraints we
will preserve the traditional name. Column and domain constraints do not present
additional problems like entity and referential integrity does. Nevertheless, the processing
of XML documents is computationally more expensive than the processing of relations.
More generally, the computational management of semistructured data is more complex
and expensive than the management of structured data. This means that semistructured
data management requires more and better optimisations than relational database
management systems. XML optimisation techniques are till quasi- unexplored, due to the
absence of a definitive and stable query language and algebra specification. However,
there is much work in specific areas and many optimisation techniques devel oped under
different paradigms that could be adapted to XML.

Optimisation on regular path queries (Grahne & Thomo, 2000; Grahne & Thomo 2001)
and indexing techniques over semistructured information (McHugh & Widom, 1999)
have already been studied. However, other relevant aspects, such as composition
reordering and restriction propagations, have still not been analyzed under the XML data

Database Integrity: Challenges and Solutions

model, although they can be performed in this new model with relatively less effort.
These techniques are well known and used in relational data models. More complex and
sophisticated techniques, such as magic rewriting (Bancilhon, Maier, Sagiv & Ullman,
1986), which have demonstrated goods results, have yet to be tested in the XML context.

Some algorithms require less effort; others will require more complex and refined
trandation. Thus, semantic query optimisation via residue computation (Chakravarthy,
Grant & Minker, 1990) could be complex in XML, because it would require a complete
redesign of the origina technique. However, if we introduce domain restrictions in the
query graph, predicate move around (Levy, Mumick & Sagiv, 1994), which could be
easily adapted to XML, would yield a similar optimisation level.

One of the most important studies on XML and semistructured data optimisation
(McHugh & Widom, 1999) has been developed for the LOREL system (Abiteboul, Quass,
McHugh, Widom & Wiener, 1997), which defines several index structures over XML

data and schema, yielding efficient data management. In the physical query plan, LORE
not only supports the traditional value index, but also label, edge, and path indexes.

Domain and Column Constraint Propagation techniques have the same basis as selection
propagation techniques; they are based on query algebra laws.

Traditional selection propagation methods are based on the axioms and properties of the
guery algebra, especially on those defining the commutation of selection with the rest of
the operators. They use these algebra equivalences as rewriting rules, but each algorithm
determine how these ones must be applied (when, where and how many times). Some
good examples for the Relational Algebra can be found in traditional database literature
(Ullman, 1989; Abiteboul et al., 1995). Predicate Move Around (Levy et a., 1994) is an
extension of the selection propagation algorithm that yields better results and,
furthermore, those constraints that could be expressed as selections in the query could be
used in the optimisation process.

Constraint propagation must follow the laws defined in XML algebra. There are three
basic groups of rules (figures 7a, 7b and 7¢) than can be used for query optimisation,
including constraint propagation.

for v in el doe2 e2lv = el
for v in e do v - E
forvZin{forvl inel doeljdoed = forviimel dof{forvZineZ doed)
Figure 7ac Monad laws
ea — Forv]inedo
for w2 in nodes(vl) do
match v2

case v o alAnyComplex Type| do w3

else ()
Figure 7b: Equivalence between projection and iteration

- 287 -

Database Integrity: Challenges and Solutions

forvini{ bdoe
forvimiel, e2ydo 3
for v im el do e2

for v in & do v

el : fel}. e {e2}. vl frocined
for vl in ¢l do for v2 in ¢2 do ¢3

—3
—3
=k
=k

E[if ¢l then ¢2 clse c3] —
E[let v =&l do 2] =¥
E| for v in ._:Il;‘l-:‘1;'.?| —%
E|] match el —r

casc v Ldo e

casey | L do ene|
clse em |

()
(forvimel doe3), (for v inc2 do ¢3)
E2{el/ v}, ifel ;u

E

for v2 in¢2 do for v in ¢l do a3

if ¢l then E[c2] clse E[c3]
let v =¢l do E[e2
for v in el do E|e2)
maich el

case v tdo E| g2 |

casc v : Ldo E[en=1 |
else Elen |

Figure 7c. Optimisation laws

As mentioned, constraint propagation and selection propagation are similar in the
relational algebra context. In XML algebra, selection is not defined explicitly, but we can
use the WHEN algebra element to define it, which is semantically defined as a particular
case of the IF-THEN-EL SE structure. This construction is more generic than selection; it
implements both filters and complex compositions. WHEN or |F-THEN-EL SE structures
act like filters and can implement any derived condition from known constraints, at least

in the simplest algorithms.

Example 1 Let's see a single example of constraint propagation in XML. Let's assume

the following Schema:

<xsd: si npl eType nane="di stance" type="xs:integer"

m nl ncl uded="0"/>

<xsd: si npl eType name="aut onony"” type="xs:integer"
m nl ncl uded="0" maxl ncl uded="900"/ >

<xsd: el enent nanme="car">

<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent

name="nodel " type="xs:string

use="required"/>

<xsd: el enent

aut onony"

</ xsd: el enent >

nanme="ki |l oneters"type="xs:
use="required"/ >

</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el enent name="road"

<xsd: conpl exType>
<xsd: sequence>

<xsd: el enent

name="sourcecity"type="xs:

string"” use="required"/>

<xsd: el enent

name="targetcity" type="xs:

string" use="required"/>

<xsd: el enent

name="ki | ometers" type="xs:

di stance" use="required"/>

Database Integrity: Challenges and Solutions

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

In the following, the W3C query algebra (XML Forma Semantics, 2001) is used. This
algebrais based on the for iteration operator, as SQL is based on the select statement.

And now, for the query

for r in base/road do

where r/sourcecity/data() = "Madrid" do
for ¢ in base/car do
where c/ nodel /data = "nobndeo" do

where c/kilometres/data() <= r/kilonmetres/data() do
possi bl eroad[r/targetcity, r/kilonetres]

with the derived type

<xsd: el ement nanme="possi bl er oad"
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="targetcity" type="xs:string"
use="required"/>
<xsd: el emrent name="kil onmeters" type="xs:
di stance" use="required"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

An adapted version of the predicate move around technique (Levy et a., 1994)
propagates the constraint "car/kilometres/data() < 900". We indicate this constraint
propagation using C comments (/*...*/).

for r in base/road do
where r/sourcecity/data() = "Madrid" do
for ¢ in base/car /* base/car/kilometres/data() < 900 */ do
where c/ nodel /data = "nondeo" do
where and c/kilometres/data() >= r/kilometres/data() do
possi bl eroad[r/targetcity, r/kilonetres]

?
for r in base/road do
where r/sourcecity/data() = "Madrid" do
for ¢ /* c/kilonmetres/data() < 900 */ in base/car do
where c/ nodel /data = "nondeo" do
where and c/kilometres/data() >= r/kilonmetres/data() do
possi bl eroad[r/targetcity, r/kilonetres]
?
for r in base/road do
where r/sourcecity/data() = "Madrid" do
for ¢ in base/car do
where c/ nodel /data = ">nondeo" /* c/kilonetres/data() <
900 */ do

Database Integrity: Challenges and Solutions

where and c/kilometres/data() >= r/kilonmetres/data()do
possi bl eroad[r/targetcity, r/kilonetres]

2
for r in base/road do
where r/sourcecity/data() = "Madrid" do
for ¢ in base/car do
where c/ nodel /data = "nondeo" do
where and c/kilometres/data() /* c/kilometres/
data() < 900 */ >= r/kilonmetres/data() do
possi bl eroad[r/targetcity, r/kilonetres]
2
for r in base/road do
where r/sourcecity/data() = "Madrid" do
for ¢ in base/car do
where c/ nodel /data = "nondeo" do

where and c/ kil onetres/data() >= r/kilometres/
data() /* r/kilonetres/data() < 900 */ do
possi bl eroad[r/targetcity, r/kilonetres]

Here, the restriction can take two ways: upwards (towards the inner do) and downwards
(towards the outer for).

for r in base/road do
where r/sourcecity/data() = "Madrid" /* r/kilonetres/
data() < 900 */ do
for ¢ in base/car do

where c/ nodel /data = "nmondeo” do
where and c/ kil ometres/data() >= r/ kil ometres/data()
do

possi bl eroad[r/targetcity, r/kilometres] /* r/
kil ometres/data() < 900 */

Finally no more propagation can be done.

for r in base/road do
where r/sourcecity/data() = "Madrid" and r/kil onmetres/
data() < 900 do
for ¢ in base/car do

where c/ nodel /data = "nondeo" do
where and c/ kil onmetres/data() >= r/kilonetres/data()
do

possi bl eroad[r/targetcity, r/kilonetres]

We can observe that not only the query is more efficient, but the query derived typeis
now:

<xsd: el enent name="possi bl er oad"
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="targetcity" type="xs:string" use=
"required"/>
<xsd: el ement nanme="kil ometers" type="xs:di stance"
use="requi red" maxExcl uded="900"/>
</ xsd: sequence>

Database Integrity: Challenges and Solutions

</ xsd: conpl exType>
</ xsd: el enent >

The propagation can be viewed graphicaly in Figure 8.

From the XML perspective, constraint propagation cannot be used exclusively for query
optimisation, but it can and must be used during new type derivation or inference (Fan et
al., 2001). Thisis generically caled subtyping. One of the main characteristics of XML is
that it allows new type extensions and restrictions through inheritance. When a new type
is defined or derived from an existing one, it not only inherits its members, but also a new
set of associated constraints. Some of these new restrictions will be explicitly defined, but
others will be inherited from the base type. The computation of this new set of constraints
is fundamental in object-oriented systems, and very important in preventing integrity
constraints violations in our schema. There are two basic ways to implement and validate
aparticular object of a known type: on the one hand, verifying each of the defined
constraints for the object type and al its ancestors; and, on the other hand, deriving and
making explicit all the constraints that must be validated during type definition, allowing
us to verify each object exclusively using the set of constraints previously computed.
From an optimisation point of view, the second choice is better, because it can detect
inconsistencies at type definition time, and not at query time.

poreai bl rogads b v e 'l o' p < W

ekibometerstilstn

rikilometersdatad

WIHERE chrodelidmiad)

Mandan

praorcenibvidntal)
“Whadrad’

Figure 8: Constraint propagation

Constraint derivation in subtyping is useful with domain and column constraints, but it is
also useful with entity and referential constraints (Fan et al., 2001). The existence of
physical index associated with keys and references in order to accelerate relationship
composition is common.

-291-

Database Integrity: Challenges and Solutions

PRACTICAL IMPLICATIONS

Before starting this section, we have to note that when this chapter was being written, the
World Wide Web Consortium (W3C) was still developing the XML Schema, XML
Algebra, and XML Query recommendations. These are not definitive, but just drafts (the
latest version was published on February 16™, 2001). The number and relevancy of the
still open issues has made future significant changes possible. On the other hand, in the
last six months, two new draft versions have been published, which introduce new and
important changes with respect to previous rel eases.

The paradigm of distribution in databases is a well-known problem in both the research
and industry communities. Nowadays, many commercial databases support certain
degrees of parallelism and distribution in both data and control. Nevertheless, ailmost all
of them are based on the relational model. The relational model manages structured
information in a formal data model using a simple and well-defined algebra. However,
even in this well-known and extended model, the distribution paradigm has no trivia
solution.

In summary, the representation of meta-information along with data opens up a new way
to automatically process Web information because of the use of explicit semantic
information. The goal of this chapter is to show how the amalgamation of Web and
Database technology appears to be very promising. The focus has been on semantic
integrity issues. A semantic integrity subsystem has two main components: a language
for expressing and manipulating integrity assertions and an enforcement mechanism that
performs specific actions to enforce database integrity between state changes. We have
proposed XML Schemas as the basis for solving the semantic integrity problem in the
Web. We have showed how integrity constraints can be represented by means of the
XML Schema and how this integrity can be maintained using XML applications and
standard XML Schema- validating parsers. We have aso mentioned how XML Schema
may "understand” different vocabularies, which has important implications with respect
to schema integration.

The Web environment is not equivalent to a traditional distributed environment for a
relationa database, the problem of managing semistructured information in such an
environment being significantly more complex. It is generally accepted that XML and its
associated recommendations will be the future model for Web query processing.
However, XML introduces new additional problems to the paradigm of semistructured
information management in the Web environment.

In any case, alot of work has still to be carried out in the database community to resolve
al the issues related to such a kind of distributed and heterogeneous database, which is
what the Web actually is.

Since Codd formally defined the relational model in the early 1970s, it has proved its
expressiveness and efficiency, but also has presented limitations. This has motivated the
definition of many extensions. Among these, two have shown an unusually high degree

Database Integrity: Challenges and Solutions

of success. Deductive and object-oriented database paradigms are attempts to introduce
recursion and object-orientation in databases. XML is a standard based on a
semistructured model that alows structural recursion. Its future algebra has functional
language characteristics that support both static and dynamic type inference. This means
that XML includes and extends the problems of distribution, recursion, and object-
orientation in relational models.

Although XML isin its early stages, its genera acceptance is focusing much research and
development in both the industry and research communities. Even though not completely
mature, it is being successfully used in the e-commerce field, B2B, data interchange and
integration, etc.

Obvioudly, XML has inherited not only the advantages from its ancestors, but also many
still open problems at both theoretical and practical levels, which affect many aspects,
including constraints management.

It has been shown that there exist several ways to specify integrity constraints in XML,
using DTDs or XML Schema, among others. To avoid multiple fetching of constraints
expressed in different formats during data management, it would be desirable to choose a
unique format of constraints specification. The XML Schema seemsto be the best
candidate due to its expressiveness, asis shown in recent studies (Lee & Chu, 2000).
Nevertheless, other standards, like RDF and RDF Schemas, are complementary and can
be used together in a higher abstraction level, as proposed in the Semantic Web.

In akeynote session at XML 2000, the Director of the World Wide Web Consortium,
Tim Berners-Lee, outlined his vision for the Semantic Web: "in the context of the
Semantic Web, the word semantic means machine processable. For data, the semantics
convey what a machine can do with that data." He described the "semantic test,” whichis
passed if, when you give data to a machine, it will do the right thing with it. He also
underlined that the Semantic Web is, like XML, a declarative environment, where you
say what you mean by some data, and not what you want to do with it.

Having outlined its scope, Berners-L ee explained each of the elements in the Semantic
Web architecture. He explained the importance of RDF/RDF Schema as a language for
the description of "things" (resources) and their types. Above this, he described the
ontology layer. An ontology is capable of describing relationships between types of
things, such as "thisis a transitive property”, but does not convey any information about
how to use those relationships computationally. On top of the ontology layer sits the logic
layer. Thisis the point at which assertions from around the Web can be used to derive
new knowledge. The problem here is that deduction systems are not terribly interoperable.
Rather than design one overarching reasoning system, Berners-L ee suggests a universal
language for representing proofs. Systems can then digitally sign and export these proofs
for other systems to use and possibly incorporate into the Semantic Web.

Most of the new work today is happening regarding ontologies. Practical solutions
include the use of XSLT to derive RDF from XML sources, work on topic maps and

Database Integrity: Challenges and Solutions

RDF convergence, the emergence of general-purpose RDF databases and engines, and
general and specific GUIs for RDF data.

Almost al of the aspects related to maintenance and query optimisation via integrity
constraints are open in XML, because of its recent development. The effort and
collaboration of many and different disciplines is necessary for the development of future
XML database management systems with the same features as current commercial
relationa systems, such as Oracle, Informix, DB2, etc.

Proaf

Logic

Ominlogy v ocahulary

RIOF + RDFachema

AML + N5+ XMLSchema

Unlesde URI

Figure 9: Semantic Web

Many frontiers are open to research and devel opment. Moreover, we still cannot ensure
that the W3C XML query language and algebra recommendations, in its current status,
would be valid as a practical query language for data intensive processing. Alternative
proposals exist, see the comparative analysis of Bonifati and Ceri (2000), athough many
of them conform to the W3C's one. A good example is the proposal (Beech, Malhotra &
Rys, 1999) developed by three important W3C members: Oracle, IBM, and Microsoft.
Together, they have developed a query language and algebra very close to SQL and
relational algebrawhose results are compatible with X Query's although these are
especially oriented to data intensive processing.

An update semantic model is still undefined revealing the amount of work yet to do. For
a complete definition of the data manipulation language, it will be necessary to define
new recommendations including the given update commands. Having completed the
process of complete formalization of the language, the devel opment of a transactional
system for XML would be necessary. It would maintain data integrity under multiple
concurrent accesses.

Thiswork is mainly related to the logical data schema. Improvements in the physica
model will begin later on.

The current commercial interest and pressure for XML technology development will
make almost all computer science disciplines converge. An interesting example of this
can be observed in the XML query algebradraft. This agebrais defined on a
mathematical modal concept, which is usua in functional languages. This concept has
been exhaustively studied for languages like Haskell, and has been applied to generate
optimisation mechanisms based on binding propagation. Magic rewriting techniques have

Database Integrity: Challenges and Solutions

proved their good results in query optimisation on both deductive and relational databases.
They are also based on binding strategies, called Sideway Information Passing, or sip
strategies. The most sophisticated versions of these algorithms use integrity constraints to
determine the binding strategy. Thus, optimisation based on binding strategies could be
approached in XML by both Datalog and Haskell developers.

As aresult, we may note how many aspects of XML query processing, including integrity
constraints management, would have to receive serious attention from the database
community. New fields of research are open and in-depth research on all aspects related
to this new data model on the Web are of vital interest regarding its application to
industry.

REFERENCES

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. AddisorWesley.
Abiteboul, S. ,Quass, D., McHugh, J., Widom, J., & Wiener, J. (1997). The Lorel query
language for Semistructured Data. Journal of Digital Libraries., 1(1), 68-88.

Abiteboul, S., Buneman, P., & Suciu, D. (2000). Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., & Wiener, J. (1997). The Lorel query
language for semistructured data. International Journal on Digital Libraries 1(1), 68-88.
Ashish, N., & Knoblock, C. A. (1997). Wrapper Generation for Semi-structured Internet
Sources. SGMOD RECORD, 26(4), 8-15.

Bancilhon, F., Maier, D., Sagiv, Y., & Ullman, J.D. (1986). Magic Sets and other strange
ways to implement logic programs. ACM Symposium on Principles of Database Systems
(PODS86), 1-15.

Beech, D., Mahotra, A., & Rys, M. (1999). A formal data model and algebra for XML.
Communication to the W3C. [On-Line]. Available: http://www-
db.stanford.edu/dbseminar/Archive/Fall Y 99/mal hotra-slides/mal hotra. pdf

Bernstein, P. A., Brodie, M. L., Ceri, S., DeWitt, D. J., Franklin, M. J., Garcia-Molina, H.,
Gray, J.,, Hdld, G, Hellerstein, J. M., Jagadish, H. V., Lesk, M., Maier, D., Naughton, J.
F., Pirahesh, H., Stonebraker, M., & Ullman, J. D. (1998). The Asilomar Report on
Database Research. SGMOD Record 27(4), 74-80.

Bonifati, A., & Ceri, S. (2000). Compar ative Analysis of Five XML Query Languages.

S GMOD Record 29(1): 68-79.

Bowers, S., & Delcambre, L. (2000). Representing and Transforming Model Based
Information. ECDL 2000, Workshop on the Semantic Web.

Buneman P. (1997). Semistructured Data. Proceedings of the 16th ACM Symposium on
Principles of Database Systems (PODS97), 117-121.

Buneman, P., Davidson, S., Fan, W., Hara, C., & Tan, W. (2001). Keys for XML. The 10"
International World Wide Web Conference (WWW'10).

Buneman, P., Fan, W., & Siméon, J. (2001). Constraint for semistructured data and XML.
S GMOD Record, 30(1).

Chakravarthy, U. S, Grant, J., & Minker, J. (1990). Logic-based approach to semantic
guery optimisation. ACM Transactions on Database Systems 15, 2, 162—207.

Database Integrity: Challenges and Solutions

Chawathe, S., Abiteboul, S., & Widom, J. (1998). Representing and Querying Changes
in Semistructured Data. International Conference on Data Engineering, 4-13.
Document Object Model (DOM) Level 1 Specification (Second Edition), 2000. (2000).
[On-Ling]. Available: http://www.w3.0rg/TR/2000/WD-DOM:- L evel- 1-20000929/

Fan, W., & Siméon, S. (2000). Integrity constraints for XML. Nineteeth ACM Symposium
on Principles of Database Systems (PODS 2000), 23-34.

Fan, W., Kuper, G. M., & Siméon, J. (2001). A unified constraint model for XML. The
10" International World Wide Web Conference (WWW'10).

Ferndndez M. (1996). UnQL Project. [On-Line]. Available:
http://www.research.att.com/projects/ungl/

Fernandez, M., & Suciu, D. (1998). Optimising Regular Path Expressions Using Graph
Schemas. 14th International Conference on Data Engineering, 14-23.

Goldman, R., McHugh, J., & Widom, J. (1999). From Semistructured Data to XML
Migrating the Lore Data Model and Query Language. Workshop on the Web and
Databases (WebDB '99), 25-30.

Grahne, G., & Thomo, A. (2000). An optimisation technique for answering regular path
gueries. International Workshop on the Web and Databases (WebDB 2000 Informal
Proceedings), 99-104.

Grahne, G., & Thomo, A. (2001). Algebraic rewritings for optimising regular path
gueries. International Conference on Database Theory (ICDT 2001), 301-315.
Lakshmanan, L.V.S,, Sadri, F., & Subramanian, I.N. (1996). A declarative language for
guerying and restructuring the WEB. Sixth International Workshop on Research Issuesin
Data Engineering (RIDE'96), 12-21.

Lee D., & Chu W. W. (2000). Comparative Analysis of Sx XML Schema Languages.

S GMOD Record, 29(3), 76-87.

Lee, D., & Chu, W. W. (2000). Constraints-preserving transformation from XML
document type definition to relational schema. International Conference on Conceptual
Modeling (ER 2000), 323-338.

Levy, A. Y., Mumick, I. S, & Sagiv, Y. (1994). Query optimisation by predicate move
around. Proceedings of the 20" Very Large Data Base Conference (VLDB 1994), 96—
107.

McHugh, J., & Widom, J. (1999). Query optimisation for XML. Proceedings of the 25™
Very Large Data Bases Conference (VLDB 1999), 315-326.

Mihaila, G. (1996). WebSQL: an QL -like query language for the WWW. M Sc. Thesis,
University of Toronto, 1996. [On-Line]. Available: http://www.cs.toronto.edu/~websgl/
Nestorov, S., Abiteboul, S., & Motwani, R. (1998). Extracting Schema from
Semistructured Data. ACM SGMOD International Conference on Management of Data
(COMAD98), 295-306.

Ozsu, M. T. & Valduriez, P. (1999). Principles of Distributed Database Systems. Second
Edition Prentice Hall.

Resource Description Framework (RDF) model and syntax specification. (1999). [On
Ling]. Available: http://www.w3.0rg/TR/REC-rdf-syntax.

Resource Description Framework (RDF) Schema Specification 1.0. W3C Candidate
Recommendation 27 March 2000. (2000). [On-Lineg]. Available:
http://www.w3.0rg/TR/2000/CR-rdf- schema-20000327

Database Integrity: Challenges and Solutions

Silberschatz, A., & Zdonik, S. B. (1996). Srategic Directions in Database Systems -
Breaking Out of the Box. Computing Surveys 28(4): 764—778.

Ullman, J. (1989). Principles of Database and Knowledge-Base Systems. Volumes 1 and
2. Computer Science Press New York.

XML 1.0 W3C Recommendation February 1998. (1998). [On-Line]. Available:
http://www.w3.0rg/ XML/.

XML Formal Semantics W3C Working Draft 7 June 2001. (2001). [On-Line]. Available:
http://www.w3.0rg/TR/query-semantics/

XML Schema W3C Proposed Recommendation 30 March 2001. (2001). [OntLine].
Available: http://www.w3.org/XML/Schema#dev

X3L. The eXtensible Sylesheet Language. W3C Recommendation 16 November 1999.
(1999). [On-Line]. Available: http://www.w3.org/Style/X SL

Chapter X: Integrity Maintenancein
Extensible Databases

Ulrich Schidl, Universidade Federal da Paraiba,

Brazil

INTRODUCTION

The use of databases for advanced applications is a rapidly growing and changing field,
due to the continuous incorporation of new technologies and mediain current systems.
Whereas in the near past Database Management Systems (DBMS) mainly use to store
and manage tabular data, now they need to model complex structured objects, multimedia
data, semi-structured and unstructured documents. Each of these improvements has its
own semantics and complexity.

In order to allow an adequate description of database applications, data models are used
to describe the conceptual schema of the database. If new categories of applications need
to be incorporated or created, and the data model does not fit well with these applications,
the model itself must be expanded. The semantics of the new constructs must be defined
and the integrity of objects in the new constructs must be guaranteed.

Since aDBMSisin general not expandable, except for future versions of the same
product, there are two alternatives: (i) to move the whole application to another system
that is capable to adequately process the new structures, or (ii) to develop specific
routines, probably with its own storage systems, in order to incorporate the new
application. Clearly both solutions are unsatisfactory.

The first solution is only applicable if there exists a DBMS that considers the new

structures. Even if it exists, moving to the new environment means reimplementation of
the application, and this is very traumatic and demands a lot of time and money. The

- 297 -

Database Integrity: Challenges and Solutions

other solution, to expand existing applications by special modules is more straightforward,
but creates an unbalanced heterogeneous system, combining a databases with afile
system. This generates problems of integration and does not allow a unified view of the
data of the application.

Despite actual existing DBMS consider many modern database concepts, such as object-
orientation and triggers, there are alot of applications needing more. Concepts of
temporal databases, geographic databases, hypertext (Web-) databases are not well
attended.

In this chapter we introduce an approach of defining the semantics of a complex data
model by means of general (schema:) integrity constraints integrated to the system as
rules. This approach allows an easy way to define the semantics of complex data models.
The rules systems can, at any time, be expanded in order to incorporate concepts of new
applications and can also be used to add application specific integrity constraints.
Therefore, data model specific constraints and application specific constraints are treated
in a unified manner.

INTEGRITY IN DATABASES

Integrity maintenance in a database is achieved with two kinds of integrity constraints:
implicit integrity constraintsand explicit integrity constraints (Elmasri & Navathe, 1999).

Implicit integrity constraints, also denoted as schema constraints, are constraints defined
in the conceptual database schema using the language of a data model, including attribue
types, keys, null values, relationship cardinalities, generalizations, and aggregations. If
we use a complex semantic data model to describe the conceptual schema, several
implicit constraints are built in the schema, which reflects the expressiveness of the
underlying data model.

Schema constraint satisfaction can be achieved mainly by three distinct approaches: (1)
the DBMS supports the data model completely, and therefore its semantics is embedded
in the software of the DBMS; (2) with the mapping of the conceptual schemainto an
internal schema, supported by the DBMS, the implicit constraints are implemented in the
structure of the internal schema and, for features not foreseen in the model of the internal
schema, create some controlling procedures; (3) the semantics of the data model is
described in form of rules which are able to guarantee full semantic integrity and may be
achieved in the DBMS. Since the rules are model dependent, and not application
dependent, they are mapped only once to the interral schema. If solution (1) can be
applied, it is the most straightforward and efficient one. If we do not have the adequate
DBMS, solutions (2) or (3) may be applied. Solution (3) is better than (1) and (2) with
regard to generality and flexibility. It is generic since it appliesto all data models to be
considered, and flexible because we can, at any time, add new rules in order to capture
changes in the data model itself.

Database Integrity: Challenges and Solutions

Instead of the richness of a semantic data model, it remains constraints, which cannot be
expressed in the structure of the conceptual schema. These are the explicit integrity
constraints. A constraint language must be used for this case. Actually, the importance of
this topic has been recognized, and special databases, containing constraints as ordinal
data, so called Constraint Databases are under investigation (Ramakrishnan & Stuckey,
1997) (Kupfer, Libkin & Paradaens, 2000). For systems using the relational language
SQL, the typical language elements for expressing explicit constrains are the
ASSERTION and TRIGGER commands. Also expressions of the relational algebra can
be used to create predicates as integrity constraints (Ullman & Widom, 1997). For
instance, if E1 and E2 are two relational expressions, we can state a constraint as E1=¢
orE1? E2

The most complete language for expressing constraints in object-oriented databases is
OCL - Object Constraint Language (UML, 1997). OCL is part of the UML - Unified
Modeling Language specification. It is a very rich formal language able to specify
implicit constraints of applications modeled with the UML language. OCL allows the
statement of invariants on classes and types, describe pre- and post-conditions on
operations, guards, and so on. An OCL expression can refer to types, classes, properties,
and datatypes. For instance, the constraint that "Married people are of age >= 18" is
attached to the class Person as

Per son
self.wife -> notEnpty inplies self.w fe.age >= 18 and
sel f. husband ->. notEnpty inplies self.husband.age >= 18

OCL isapure expression or declarative language. This means that if an OCL expression
is evaluated it always returns a value and has no direct side-effect in the system. The user
must program his side-effects based on the value returned. Another restriction is that it
only acts at the application level. It is not possible to state generic constraints about
classes, generalizations, associations, or other constructs of a data model. Even at the
application level, there is no explicit reference to UML stereotypes such as generalization,
aggregation and composition.

This chapter presents a formalism, which enables the specification and enforcement of
both implicit and explicit integrity constraints. Considering the intension/extension
dimension of the ANSI/SPARC DBMS architecture proposal (Burns, 1986), which
divides a database description into four levels (Metadata Model, Data Model, Application
Model and Application Data), the formalism is intended to allow the specification of the
semantics at the Data Model level aswell as at the Application Model level.

Implicit constraints are located at the Data Model level and explicit constraints are
located at the Conceptual schema/Application Model level. Using this approach it is also
easy to extend the data model itself, in order to incorporate new technologies and
concepts into the model. This update is done adding new rules at the Data Model level.

Database Integrity: Challenges and Solutions

The new concepts are defined at the Metadata Model level and their semantics
established by the creation of new implicit constraints at the Data Model level.

The formalism described in this chapter uses a rules model, based on the well-known
ECA-Rules (event-condition-action) (Dayal, 1988). Two kinds of rules are distinguished:
Dynamic Axioms and Side Effects. Dynamic Axioms (DAS) inhibit operations that violate
the semantic integrity and Side Effects (SES) react on potentia integrity violations and
trigger actions to recompose the integrity. A side effect of an implicit integrity constraint
is called a System Side-Effect (SSE), whereas application dependent side-effects are
caled User Side-Effects (USE).

Despite the formalism can be used or adapted for any data model we will use arelatively
complex object-oriented data model, in order to prove its generality.

The data model we consider is based on the notions of class as a collection of objects.
Relationships are defined between classes with two directions and for each direction
minimum and maximum cardinalities are associated. The well-known abstractions of
generalization/specialization aggregation and grouping can hold between classes.
Generalization and aggregation has been defined first in (Smith & Smith, 1977) asan
extension of the relational data model. It has been considered in the most semantic data
models, such as SDM (Hammer & McLeod, 1981), THM (Schiel, 1983) and ACM/PCM
(Brodie & Silva, 1984). Also object-oriented models, such as ODMG (Catell, 2000) and
UML (Jacobson et a., 2000) use generalization and aggregation. The abstraction we call
grouping is also contained in SDM, THM and ACM/PCM (here called association), and
isdiscussed in (Odell, 1998) as power type. In the UML world it is considered as
composition by some authors (Page-Jones, 1999). The main difference between
aggregation and grouping is that the first one is heteromeous, with a fixed number of
components, and grouping is homeomeous with a variable number of components (Page-
Jones, 1999). Details of these concepts will become clear during the text.

The system presented in this chapter is based on the data model TOM (Schiel, 1991),
which is richer than ODMG and UML, whereas UML has some concepts not included in
TOM. Therefore, its use for ODMG based applications, the exceeding DAs and SSEs
must be excluded and for UML an adaptation is necessary.

ELEMENTARY OPERATIONSAND STRUCTURAL
PREDICATES

We define some primitive operations and predicates over objects, relationships and
classes. The notation for operations follows the notion of message in object-oriented
systems, and has the form: <receptor> <message (parameters)>.

Operations

C create (€): creates object ein class C.

Database Integrity: Challenges and Solutions

e delete (C): deletes object e from class C.
erestablish (r, e): establishes relationship r between objects e; and e,.
erremove (r, e): removes relationship r between objects e; and e.

There are two special operations for the insertion and removal of elements of groups. The
effect is similar to the creation and deletion of objects, only that they act on group objects
and not on classes:

g gr-insert (0): insarts o as a new element of the group g.
g gr-delete (0): eliminates o of the group g.

In order to verify facts in the database, several predicates are defined. We divide them
into basic predicates and hierarchies.

Basic Predicates

in(e, C): object e is an instance of class C.
istel (e, 1, &): objectse; and e, arerelated by .
min,, max,

Each relationship r has associated with it a cardinality expressed by a pair (min;, max;),
which means that each instance of the starting class is associated at least to min, and at
most to max;, instances of the target class.

Hierarchies
Generalization/Specialization

Means the creation of more specific subclasses of a given generic class. We can apply
several specializations, characterized by several roles. Each role is given by a predicate
p(e) that establishes to which subclass a specific object can be associated. For instance,
we can have sex(PERSON) = MALE, FEMALE and age(PERSON) = Y OUNG,
MIDDLE, OLD. For agiven person p the predicate ageyouna(p) istrueif p isayoung
person.

isa(Cs, Cy, p): class Cy isasubclass of C, by rolep.
Pc(€)

-301-

Database Integrity: Challenges and Solutions

The speciaization role is a digunctive predicate pc(€) = pci(€) V...V pxm(€) where
eisan object of ageneric class G and pci(e) istrue iff eis an instance of the
subclass C; of G.

digunctive (D, Cy,...,Cp)

D isadigunctive generaization of Cy,...,C,, i.e., each instance of D can be
contained in only one subclass C; of D.

covering (D, Cy,...,Cy)

G isacovering generaization of C;,...,Cy, i.e., each instance of D must occur in
at least one subclass C; of D.

Aggregation

Means the creation of new object as combination of several distinct parts.

is-part(e1, &): object e; is one component of the aggregate e,.
aggregation(A, Ci,...,Cp): classAis an aggregation of classes Cy,...,Cy.
aggregation-r(A, C1,Cy, 1)

Class A is an aggregation of classes C; e C; by reationship r iff the related objects
are just the elements of the aggregated class A.

agg-inherit(A, C4,...,Cy, 1)

A isan aggregation of Cy,...,C, and the component classes inherit the relationship
r.

agg-comp-inherit(A, Cy,...,Cq,r, 9

Aisan aggregation of C,...,Cy and the inheritance is determined by afunction s.

Grouping

Several objects of aclass are grouped together to form higher order objects.

Database Integrity: Challenges and Solutions

iselem(ey, €): €1 isan dement of the group object e,.

iselem(C, G, p) G isaclass of groups of elements of C and group containment is
governed by predicate p, i.e. p(e,g) holdsiff eisan element of g.

digoint-gr(C, D)

D isagrouping of C and each instance of C occursin at most one group of D.
covering-gr(C, D)

D isagrouping of C and each instance of C occursin at least one group of D.

DYNAMIC AXIOMSAND SIDE-EFFECTS

The semantic integrity of an application is maintained by two kinds of rules: Dynamic
Axioms and Side Effects. The dynamic axioms are integrity restrictions that avoid that
the user realizes updates that are not consistent with the conceptual schema, whereas the
side effects execute auxiliary operations in order to recompose the integrity of the
database. A set of System-Sde-Effects, which guarantee the structural components of the
data model, are presented. The application designer can add application dependent rules,
called User-Sde-Effects All rules are of the form ON <event> IF <condition> DO
<action>.

Dynamic Axioms

The action abort in arule characterizes an integrity rule and avoids the execution of the
operation on the event part.

DA1? An establish may not violate the maximal cardinality

ON x establish(r, y) IF #{<x,z> [is-rel(x,r,z)}= max,_ DO abort

DA27? A remove may not violate the minimal cardinality

ON x remove (r, y) IF #{<x,z>/is-rel(x,r,z)} = min_ DO abort

DA3? Theinsertion of a new instance in a subclass must respect the role
ON (create (x) IF is-a (C, D, p) anotp (x) DO Abort

DA4? Inacovering generadization an object cannot remain only in the generic class

Database Integrity: Challenges and Solutions

ON x delete (C) IFis-a(C,D,p)n DO Abort
covering (D, C,..,C) A
(C,<>C=notxinC)

DA5? Group elements must satisfy the grouping predicate

DAG6? For a covering grouping, a new instance of the element class must be in a group

System Side Effects

For system side effects the action part of the rule, given in the DO clause, contains a
primitive operation necessary to maintain the integrity of the database.

Generalization
SSE1? Aninstance of asubclass must be also in the superclass

ON C create (x) IF is-a (C, D) anotxinD DO D create (x)

SSE2 ? A create may not violate the digoint generalization

SSE3? A delete may not violate the covering generalization

SSE4? A new instance of a generic class must be inserted in the compatible subclasses

SSE5? An object deleted from a generic class must be deleted from all its subclasses

Database Integrity: Challenges and Solutions

SSE6 ? If, as consequence of the change in arelationship, an object cannot remainin its
subclass, it must be removed to the compatible new subclass

ON x establish (r, y) IF xin C A DO x delete (C)
v X remove(r,y) is-a(C, D, p) ais-a(C’, D, p) A
P (x) ~ofnot p (x)
c c

ON x remove (r,)) IFxinC DO ' create (x)
v x establish (<r, y=) is-a (C, D, p) Ais-a (C', D, p)
not p () Aofp_(x)
Aggregation

SSE7 ? An aggregate cannot lose one of its components

ON x delere (C) IF is-part (C, D) DO y delete (D)

aggregate(y, x ,..x) A
yinDaxe {x},...,x"}
n

SSE8 ? For an aggregation by relationship, the removal of arelationship eliminates the
corresponding aggregate

ON x remove(r,y) IF aggregate-r(D, C ,C 5
A .\‘HIC!A y:’nd‘_}

r) DO <xy= delete(D)

SSE9 ? For an aggregation by relationship, the establishing of a relationship creates the
corresponding aggregate

ON r establish(<x,y>) 1F aggregate-r (D, C ;'C 4 1 DO D create(<x,y=)

A Xin (,-;A yin (_2

SSE10? The creation of an aggregate creates also its parts

ON D create (y) TF aggregate (D, (,“,,...,(") DO C create (x)
is-part (x,) " i *
i

SSE117? The creation of an aggregate defined by a relationship, aso the relationship
must be established

ON D create (y) TF aggregate-r (D, C ,C ,r} DOC create (x R A
7 \ oy & .
is-rel (C / r, C J ' create (x) A
is-part (x‘__, Y Rispart (x,) X, es!%:bﬁsh(‘ir.'x’?)

Database Integrity: Challenges and Solutions

Grouping
SSE12 ? If p(x,g) holdsand x isinserted in the element class, it must also be added to g

ON C creaie(x) IF is-elem(C, G) DO g gr-insert(x)
gin (G Apfx, g

SSE13? Inacovering grouping, if an object is eliminated from a group, it must also be
eliminated from the elements class

ON x gr-delete(g) IF gr-covering(C, G) nxinC DO x delete(C)

SSE14 ? If an object is deleted from the elements class, it must also be removed from
the groups

ON x delete(C) IF is-elem(C, G, p) nxing DO x gr-delete(g)

SSE15? The elements of a new group must be on the element class

ON G create(g) IF is-elem(C, () A DO C create(x)
px.g) anotxinC

SSE16? Inacovering grouping, the removal of a group removes aso its elements from
the element class

ON g delete(G) IF is-elem{C,) DO x delete(C)
gr-covering(C, G) axing
htxinhAahinGah<>g)

SSE17? Inadigoint grouping, a new element of a group must be eliminated from other
groups

ON g gr-inseri(x) IF disjoint(C, G) DO x gr-delete(h)
Jhfxinhah<>g

Relationships

SSE187? Thedelete of an object must remove al its relationships
ON x delete(C) IF is-rel (x,r,y) DO x remove(r,y)
SSE19? Each relationships has an inverse

ON r establish (<x,y=) IF not is-relfy,invir),x) DOyestablish(inv(r}.x)

Database Integrity: Challenges and Solutions

EXTENSION

In this section we show how the system can be expanded in order to include new
functionalities.

Suppose we want to expand the existing data model with two new concepts. First, we
would be able to model applications who needs valid-time temporal objects (Tansel et al.,
1993). In order to consider Tempora Databases, the following additions are needed.

Classes and relationships may be defined as temporal, by the predicates:

t-Class(C', C) ? aggregation(C', C, I)

A temporal class C' is obtained aggregating a ordinal class C with the class of time
intervas|.

t-Rel(r', C1, Cp) ? aggregation(r, Cq, Cy, 1)

A temporal relationship r* between two classes C; e C, aggregates these two classes with
I

Now we define a dynamic axiom that avoids the creation of objects with valid time
intersecting the valid time of this object in the database.

DA7? Inatempora classit is nhot alowed to create instances with valid-time
intersecting with its existing time

ON '’ create (<x, (rf..f J=) IF -Class (C°, C, I) A DO Abort

<X, (15)= inC’ A
overldp ﬁ"-’f. t): ‘(“; '--‘3:))

As side effects we consider the following. The first one alows the user to define an
object without considering if it is temporal or not. He just creates the object and the side
effect attaches the default valid time.

SSE20 ? If atempora object is created, its creation time must be established

- 307 -

Database Integrity: Challenges and Solutions

ON Cereatefx) IFi-Class(C', C) at=now DO C'create(<x, (1, now)>)

SSE21? Inatemporal class, adeleted object is moved to the past

ON x delete(C) TF i-Class(C", C) n t=now DO <x, (1, now)> delete(C")
<x, (I, now)> inC* C'Create (<x, (i, 1)>
1]]

SSE22 ? On the creation of atemporal relationship, the time must also be created

ONxestablishi<r,y=) WFt-Rel(r, C ,C) at=now DOr create(=xy, (1, now)=)
i 2

SSE237? The removal of atempora relationship must be moved to the past

ON <x, r, y= remove 1F -Relfr, C ,(.', at=now DO<x,v, (1 ,now)=delete
<X N, m‘l}wji’* inRk’ R’ create ? Xy (1, 0=)
[#] [+]

Suppose how that the user has an application with classes EMPLOY EE, SALARY and
STATUS and with the relationships EMPLOY EEhas-salarySALARY and

EMPLOY EEhas statusSTATUS. We want to state a User Side Effect (USE) which
guarantees that, ever when the salary of an employee becomes greater that $100,000 his
status must be fixed to be "4". Therefore we have:

USE]: ON ¢ establish(has-salary, s) IF s > 100,000 » DO ¢ remove(has-status, s) A
¢.has-status=s ¢ establish(has-status, “4")
A E
i}

CONCLUSION

In this chapter a system for the enforcement of implicit and explicit integrity constraints
for a complex object oriented data model has been presented. This system is flexible
enough to be used for extensible data models, aso known as open data models, which
allows the incorporation of new capabilities in the data model, in order to facilitate the
modelling of new application categories.

The idea of system side effects has first been developed together with the Temporal
Hierarchic Modd - THM (Schiel, 1983), later improved to the Temporal Object Model-
TOM (Schiel, 1991). A running prototype of the dynamic axioms and side effects for the
TOM model has been implemented together with a mapping module, which transforms
an Object Schemato the relational DBMS Oracle (daSilva, 2000). According to the
relational schema generated by this mapping, the rules are converted to adequate triggers
of the DBM S and are executed on the database.

REFERENCES

Database Integrity: Challenges and Solutions

Burns, T. (1986) Reference Model for DBMS Standar dization, ACM SGMOD RECORD,
15(1), 19-58

Brodie, M. and Silva, E. (1982). Active and Passive Component Modelling: ACM/PCM,
in Information Systems Design Methodologies. A Compar ative Review, W.Olle, H.Sol
and A.Verrijn-Stuart (eds), North Holland.

Catell et al. (2000). Object Database Standard: Odmg 3.0. Morgan Kaufman

Dayad, U., Buchanan, A. P. and McCarthy, D. R. (1988). Rules are Objects Too: A
Knowledge Model for Active Object Oriented Database Systems, in Proceedings of the
2nd International Workshop on Object Oriented DataBase Systems LNCS 334, Springer
Verlag 129-143.

Elmasri, R. and Navathe, S. (1999). Fundamentals of Database Systems. 3rd ed.,
Benjamin Cummings.

Hammer, M. and McLeod, D. (1981). Database Descriptions with SDM: A Semantic
Database Model ACM TODS, 6(3).

Jacobson, 1., Booch, G. and Rumbaugh, J. (1998). The Unified Modeling Language -
User Guide, Addison Wesley.

Kupfer, G, Libkin, L. and Paradaens, J. (2000). Constraint Databases, Springer Verlag
Odédll, J. (1998). Advanced Object-Oriented Analysis & Design using UML, Cambridge
University Press.

Page-Jones, M. (1999). Fundamentals of Object-Oriented Design in UML, Addisornt
Wesley.

Ramakrishnan, R. and Stuckey, P. (1997). Constraints and Databases, Kluwer Academic.
Schidl, U. (1983). An Abstract Introduction to the Temporal-Hierarchic Data Model
(THM). In Proceedings of the 9th International Conference on Very Large Data Bases,
Florence, p. 322—-330.

Schiel, U. (1991). An Open Environment for Objects with Time and Versioning. In
Proceedings East Europe, Bratislava, p. 116-125.

Smith, J. M. and Smith, D. (1977). Database abstractions. Aggregation and
Generalization. ACM TODS Vol. 2, no. 2.

daSilva, M. N. (2000). Um sistema de Controle de Integridade para um Modelo de
Dados Aberto, Master thesis, COPIN/UFPB, August.

Tansd, A., Clifford, J., GadiaS., Jgjodia S. e Segev A., and Snodgrass, R. (1993)
Temporal Databases, Benjamin/Cummings Publishing Company, Inc.

UML (1997). Object Constraint Language Specification - version 1.1. On line, available
at: http://www-4.ibm.com/software/ad/library/standards/ocl.html.

Ullman, J. and Widom, J. (1997). A First Course in Database Systems, Prentice Hall.

List of Figures

Chapter |1: Database I ntegrity—Fundamentals and
Current Implementations

Figure 1: Restriction Mapping
Figure 2: EER of the MO components

Database Integrity: Challenges and Solutions

Figure 3: Physical model of the MO components
Figure 4: The medicare organization example

Chapter I11: Preserving Relationship Cardinality
Constraintsin Relational Schemata

Figure 1a Binary relationship example

Figure 1b: All possible occurrences of relationship | of Figure 1a

Figure 2: Calculus of different cardinality values from Figure 1b

Figure 3a Ternary relationship example

Figure 3b: All possible occurrences of relationship | of Figure 3a

Figure 4: Cardinality constraints using UML

Figure 5: Cardinality constraints using MERISE

Figure 6: Cardinality constraints using ER model

Figure 7: Cardinality constraints using Teorey model

Figure 8: Ternary relationships versus binary relationships (first solution)
Figure 9: Ternary relationsips versus binary relationships (second solution)
Figure 10: ER cardinality constraints using Chen's style

Figure 11: ER cardinality constraints using MERISE approach

Figure 12: An example of functional integrity constraint in MERISE
Figure 13: Ternary relationship using MERISE cardinality constraints
Figure 14: Ternary relationship using Chen's style (first solution)

Figure 15: Ternary relationship using Chen's style (second solution)
Figure 16: A N:M relationship

Figure 17: Relational model transformatoin of Figure 16

Figure 18: A 1.N relationship

Figure 19: Relational model standard transformation of Figure 18
Figure 20: A 1:1 relationship

Figure 21: Relational model transformation of Figure 20

Figure 22: A 1:1 relationship

Figure 24: Standard transformation of an ternary relationsihp (Figure 23)
Figure 23: A ternary relationship

Figure 25: A ternary relationship with minimum cardinality O

Figure 26: Relational model transformation of Figure 25

Figure 27: N-ary relationship n>2

Figure 28: N-ary relationship standard transformation into the relational model
Figure 29a: Ternary relationship example

Figure 29Db: | relationship occurances, at time t

Chapter 1V: Integrity Constraintsin an Active
Database Environment

Figure 1: Sequence of two update statements on the table SPEED_LIMIT
Figure 2: Situation after areal firing of the monitoring trigger is produced

- 310-

Database Integrity: Challenges and Solutions

Figure 3: Position 2

Chapter V: Integrity Constraintsin Spatial Databases

Figure 1: Graphic notation for the basic classes

Figure 2: Geo-field classes

Figure 3: Geo-object classes

Figure 4: Relationships

Figure 5: Cardinality

Figure 6: Generalization

Figure 7: Spatial generalization examples

Figure 8: UML aggregation

Figure 9: Aggregation between conventional and georeferenced classes
Figure 10: Spatial aggregation ("whole part")

Figure 11: Conceptual generalization

Figure 12: Conceptual generalization with a conventional class
Figure 13: Application example

Chapter VI: Consistent Queries Over Databases With
Integrity Constraints

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure9
Figure 10
Figure 11
Figure 12
Figure 13

Chapter VIII: Functional Dependenciesfor Value
Based Identification in Object-Oriented Databases

Figure 1: Some examples of VBICs

Figure 2: VBIC by inheritance

Figure 3: Ambiguity of an FDI at object schemalevel
Figure 4: Examples of OFDs

Figure 5: Different OFDs with identical set notation

- 311-

Database Integrity: Challenges and Solutions

Figure 6: Simple schema with state and relational representations (object values, edge
and node labels are omitted from the state graph)

Figure 7: Example of a state

Figure 8: Implications between OFD semantics

Chapter | X: Integrity Issuesin the Web—Beyond
Distributed Databases

Figure 1: Extending the cube

Figure 2: Data moddl in LORE

Figure 3: Data model in XML

Figure 4: Example of XML document representing a publication page
Figure 5: Example of XML schema for a publication page
Figure 6: XML application

Figure 7a: Monad laws

Figure 7b: Equivalence between projection and iteration
Figure 7c: Optimisation laws

Figure 8: Constraint propagation

Figure 9: Semantic Web

List of Tables

Chapter |1: Database | ntegrity—Fundamentals and
Current Implementations

Table 1: Real world restrictions and their correlates in the database world

Chapter 111: Preserving Relationship Cardinality
Constraintsin Relational Schemata

Table 1: Cardinality constraints summary

Table 2: Summary of the differences among cardinality constraints
Table 3: Semantic loss in cardinality (o, n) updating transactions
Table 4: Semantic loss in cardinality (1,n) updating transactions

Table 6: Semantic loss in cardinality (1,n) updating transactions

Table 5: Semantic loss in cardinality (o,n) updating transactions

Table 7: Semantic loss in cardinality (0,1) updating transactions

Table 8: Semantic loss in cardinality (1,1) updating transactions

Table 9: Semantic loss in cardinality (0,1) (0,1) updating transactions
Table 10: Semantic loss in cardinality (1,1) (0,1) updating transactions
Table 11: Semantic loss in cardinality (1,1) (1,1) updating transactions
Table 12: Ternary relationship classification

-312-

Database Integrity: Challenges and Solutions

Chapter V: Integrity Constraintsin Spatial Databases

Table 1: Geo-field integrity rules

Table 4. Connectivity rules

Table 2: Geo-object constraints

Table 3: Spatia relationship integrity rules

Table 5: Spatial aggregation integrity rules

Table 6: Spatial integrity constraints from the example

- 313-

