
The Design
& Management
of Effective
Distance
Learning
Programs

TTTTT
he
he
he
he
he DD DDD

esign &
 M

ana
esign &

 M
ana

esign &
 M

ana
esign &

 M
ana

esign &
 M

anagg gggem
ent of E

ffectiv
em

ent of E
ffectiv

em
ent of E

ffectiv
em

ent of E
ffectiv

em
ent of E

ffectivee eee
D

istance L
earning

D
istance L

earning
D

istance L
earning

D
istance L

earning
D

istance L
earning PP PPP

rr rrroo ooogg gggram
s

ram
s

ram
s

ram
s

ram
s

Advanced Topics in Database Research
Volume 3

IDEA GROUP PUBLISHING
701 E. Chocolate Ave., Suite 200
Hershey, PA 17033-1240, USA
www.idea-group.com

Advanced Topics in

Database Research

Volume 3

Keng Siau

A
d

v
a

n
c
e
d
 T

o
p
ic

s
 in

 D
a
ta

b
a
s
e
 R

e
s
e
a
rc

h
 - V

o
lu

m
e
 3

K
e
n
g
 S

ia
u

The Advanced Topics in Database Research

Series presents the latest research ideas and topics

on how to enhance current database systems, improve

information storage, refine existing database models,

and develop advanced applications. It provides insights

into important developments in the field of database and

database management.

With an emphasis on theoretical issues regarding data-

bases and database management, Advanced Top-

ics in Database Research - Volume 3 de-

scribes the capabilities and features of new technolo-

gies and methodologies, and addresses the needs of

database researchers and practitioners.

$79.95

Hershey • London • Melbourne • Singapore
IDEA GROUP PUBLISHING

Advanced Topics in
Database Research

Volume 3

Keng Siau
University of Nebraska-Lincoln, USA

Acquisitions Editor: Mehdi Khosrow-Pour
Senior Managing Editor: Jan Travers
Managing Editor: Amanda Appicello
Development Editor: Michele Rossi
Copy Editor: Ingrid Widitz
Typesetter: Sara Reed
Cover Design: Idea Group Inc.
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2004 by Idea Group Inc. All rights reserved. No part of this book may be
reproduced in any form or by any means, electronic or mechanical, including photocopy-
ing, without written permission from the publisher.

Advanced Topics in Database Research, Volume 3 is part of the Idea Group Publishing
series named Advanced Topics in Database Research Advanced Topics in Database Research Advanced Topics in Databa (Series ISSN 1537-9299)

ISBN 1-59140-255-7
ISBN Paperback 1-59140-296-4
eISBN 1-59140-256-5

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views
expressed in this book are those of the authors, but not necessarily of the publisher.

Advanced Topics in
Database Research

Volume 3

Table of Contents

Preface ...vi

SECTION I: ANALYSIS OF DEVELOPMENT METHODOLOGIES

Chapter I
Agile Development Methods and Component-Orientation: A Review and
Analysis .. 1

Zoran Stojanovic, Delft University of Technology, The Netherlandsovic, Delft University of Technology, The Netherlandsovic, Delft U
 Ajantha Dahanayake, Delft University of Technology,
 The Netherlands
 Henk Sol, Delft University of Technology, The Netherlands

Chapter II
Comparing Metamodels for ER, ORM and UML Data Models 23

Terry Halpin, Northface University, USATerry Halpin, Northface University, USATerry Halpin, Northface University

Chapter III
An Evaluation Framework for Component-Based and Service-Oriented System
Development Methodologies .. 45

Zoran Stojanovic, Delft University of Technology, The Netherlands
 Ajantha Dahanayake, Delft University of Technology, The NetherlaUniversity of Technology, The NetherlaUniversity of T nds
 Henk Sol, Delft University of Technology, The Netherlands Henk Sol, Delft University of Technology, The Netherlands Henk Sol, Delft University of Technology, T

SECTION II: DATABASE DESIGN AND DEVELOPMENT: ISSUES AND SOLUTIONS

Chapter IV
Improving the Understandability of Dynamic Semantics: An Enhanced
Metamodel for UML State Machines .. 70

Eladio Domínguezínguezí , Universidad de Zaragonguez, Universidad de Zaragonguez za, Spain
 Angel Luis Rubio, Universidad de La Rioja, Spain
 María Antonia Zapata, Universidad de Zaragoza, Spainía Antonia Zapata, Universidad de Zaragoza, Spainí

Chapter V
Metrics for Workfl ow Design: How an Information Processing View on
Business Processes Helps to Make Good Designs .. 90

Hajo A. Reijers, Technische Universiteit Endhoven, The NetherlandsTechnische Universiteit Endhoven, The NetherlandsTechnische Universiteit End

Chapter VI
Fuzzy Aggregations and Fuzzy Specializations in Eindhoven Fuzzy
EER Model .. 106

JóJóJ se Galindo, Universidad de MáUniversidad de MáUniversidad de M laga, Spain
 Angélica Urrutia, Universidad Católica de Maule, Chile
 Mario Piattini, Universidad de Castilla-La Mancha, Spain Mario Piattini, Universidad de Castilla-La Mancha, Spain Mario Piattini, Universidad

Chapter VII
Normalization of Relations with Nulls in Candidate Keys: Traditional and
Domain Key Normal Forms ... 128

George C. Philip, University of Wisconsin Oshkosh, U Oshkosh, U Oshk Sosh, USosh, U ASAS

Chapter VIII
Regression Test Selection for Database Applications .. 141

Ramzi A. Haraty, Lebanese American University, Lebanon
 Nashat Mansour, Lebanese American University, Lebanon
 Bassel A. Daou, University of Ottawa, Canada

Chapter IX
An Attempt to Establish a Correspondence between Development Methods
and Problem Domains .. 166

Oscar Dieste, Universidad Complutense de Madrid, Spain
 Marcela Genero, Universidad de Castilla-La Mancha, Spain
 Natalia Juristo, Universidad Politecnica de Madrid, Spain
 Ana M. Moreno, Universidad Politecnica de Madrid, Spain M. Moreno, Universidad Politecnica de Madrid, Spain M. Moreno, Universidad

Chapter X
Toward an Extended Framework for Human Factors Research on Data
Modeling .. 188

Heikki Topi, Bentley College, USA
 V. Ramesh, Indiana University, USA

SECTION III: DATABASE DESIGN AND DEVELOPMENT: APPLICATIONS

Chapter XI
Using DEMO and ORM in Concert: A Case Study ... 218

Jan L.G. Dietz, Delft University of Te. Dietz, Delft University of Te. Dietz, Delft University of chnology, The Netherlandschnology, The Netherlandschnology, The N
 Terry Halpin, Northface University, USA

Chapter XII
Revisiting Workfl ow Modeling with Statecharts ... 237

Wai Yin Mok, University of Alabama in Huntsville, USA
 David Paper, Utah State University, USA

Chapter XIII
Framework for the Rapid Development of Modeling Environments 257

Akos Ledeczi, Vanderbilt University, USA
 Miklos Maroti, Vanderbilt University, USA
 Peter Volgyesi, Hungarian Academy of Sciences, Hungary

Chapter XIV
Federated Process Framework for Transparent Process Monitoring in
Business Process Outsourcing .. 272

Kyoung-Il Bae, IBM Business Consulting Services, Korea
 Soon-Young Huh, Korea Advanced Institute of Science and Technology,
 Korea

Chapter XV
Online Analytical Mining for Web Access Patterns ... 294

Joseph Fong, City University of Hong Kong, Hong Kong
 Hing Kwok Wong, City University of Hong Kong, Hong Kong
 Anthony Fong, City University of Hong Kong, Hong, Kong

Chapter XVI
Modeling Motion: Building Blocks of a Motion Database 327

Roy Gelbard, Bar Ilan University, IsraelBar Ilan University, IsraelBar Ilan University
Israel Spiegler, Tel Aviv University, Israel

About the Editor ...About the Editor ...About the Editor 347

About the Authors ... 348

Index .. 355

Preface

vi

The Advanced Topics in Database Research book series has been recognized as an
outstanding academic book series in the fi elds of database, software engineering, as well
as systems analysis and design. The goal of the book series is to provide researchers and
practitioners easy access to excellent chapters which address the latest research issues in
the fi eld of database (the term “database” is used here broadly).

This is the third volume of the Advanced Topics in Database Research book series. This
book consists of 16 excellent chapters ranging from theoretical database issues to practical
applications of database techniques. In terms of research methodology, the chapters vary from
meta-modeling to empirical case studies. Although the topics are broad, the book provides
a sample of some of the best research work done in the database area. The contributing
authors represent almost every part of the globe. We have authors from the USA, Canada,
The Netherlands, Spain, Chile, Hungary, Israel, Lebanon, Korea, and China.

The book is divided into three sections: (I) Analysis of Development Methodologies;
(II) Database Design and Development: Issues and Solutions; and (III) Database Design and
Development: Applications. In the following, we briefl y describe each chapter:

Section I: Analysis of Development Methodologies consists of three chapters.
Chapter I, “Agile Development Methods and Component-Orientation: A Review and

Analysis,” presents and analyzes the state-of-the-art agile methods used in the agile develop-
ment process. Different conceptual foundations and practical uses of these methods, as well
as their limitations, are listed and discussed. Service-based component concepts applied at
the level of modeling, architectural design, and development are proposed to ensure and
strengthen agile development principles and practices. The paper also introduces necessary
agility to more traditional development.

Chapter II, “Comparing Metamodels for ER, ORM and UML Data Models,” gives a
concrete metamodel analysis of the three main database modeling techniques used in the
industry — Entity Relationship (ER), Object Role Modeling (ORM), and Unifi ed Model-
ing Language (UML). ORM is used as the metamodeling language because of its great
expressibility and clarity. Discussions based on the metamodel analysis are detailed in the
chapter.

vii

Chapter III, “An Evaluation Framework for Component-Based and Service-Oriented
System Development Methodologies,” presents an evaluation framework that highlights the
extent to which a particular method is component-based and service-oriented. The frame-
work is then applied to evaluate a few popular Component-Based Development (CBD)
methods. Based on the evaluation, improvements to these methods are proposed to provide
a consistent, systematic, and integrated CBD and Web-Service (WS) methodology support
throughout the system life cycle.

Section II: Database Design and Development: Issues and Solutions consists of
seven chapters.

Chapter IV, “Improving the Understandability of Dynamic Semantics: An Enhanced
Metamodel for UML State Machines,” introduces an approach to improve the understand-
ability of the dynamic semantics of languages involved in the representation of behavior.
Using a two-layer architecture as the starting point, a metamodel of UML State Machines
is proposed.

Chapter V, “Metrics for Workfl ow Design: How an Information Processing View on
Business Processes Helps to Make Good Designs,” introduces a cohesion metric for the
identifi cation of weakly cohesive activities in a workfl ow design. A heuristic method based
on the cohesion metric is presented to decide between various workfl ow design alternatives.
Both theoretical and empirical evaluations positively support the soundness of the metric.

Chapter VI, “Fuzzy Aggregations and Fuzzy Specializations in Eindhoven Fuzzy EER
Model,” uses fuzzy quantifi ers and fuzzy degrees in the context of fuzzy sets and fuzzy query
systems for understanding semantic aspects in database concepts. The study is aimed to relax
some constraints and other aspects that have not been studied in previous works. The study
also extends the Enhanced Entity-Relationship (EER) model with fuzzy capabilities.

Chapter VII, “Normalization of Relations with Nulls in Candidate Keys: Traditional
and Domain Key Normal Forms,” discusses normalization of relations when the candidate
keys of a relation have missing information represented by nulls. The related limitations of
Boyce-Codd Normal Form (BCNF) and Domain Key Normal Form (DKNF) can be solved
by incorporating the concept of entity integrity rule into the respective defi nitions.

Chapter VIII, “Regression Test Selection for Database Applications,” discusses the
diffi culties caused by some database applications’ features during maintenance activities,
especially for regression testing that follows modifi cation to database applications. The
chapter proposes a two-phase regression testing methodology for selecting regression tests
and for further reduction in the number of these tests.

Chapter IX, “An Attempt to Establish a Correspondence between Development Meth-
ods and Problem Domains,” discusses the issue of development method adaptation. Then it
introduces a new approach to calculate the fi tness of methods to specifi c problems.

Chapter X, “Toward an Extended Framework for Human Factors Research on Data
Modeling,” summarizes the past human factors research on conceptual data modeling. In
addition to analyzing the variables used in earlier studies and summarizing the results of
this stream of research, the authors propose a new framework to help both scholars and
practitioners in this area.

Section III: Database Design and Development: Applications consists of six chap-
ters.

Chapter XI, “Using DEMO and ORM in Concert: A Case Study,” examines the role
of Demo Engineering Methodology for Organizations (DEMO) and Object-Role Modeling
(ORM) in conceptually modeling business processes. An exploratory case study of applying
the two methods in concert is provided.

viii

Chapter XII, “Revisiting Workfl ow Modeling with Statecharts,” proposes the use of
Harel’s statecharts in business workfl ows modeling. The authors developed algorithms that
link desirable properties of active database system—non-termination, non-confl uence, and
not-observable determinism—to problems in workfl ow management systems.

Chapter XIII, “Framework for the Rapid Development of Modeling Environments,”
presents Generic Modeling Environment (GME) as a framework for rapid development
of modeling environments. The chapter also compares GME with other tools in terms of
metamodeling, constraint management, visualization, and extensibility.

Chapter XIV, “Federated Process Framework for Transparent Process Monitoring in
Business Process Outsourcing,” proposes a federated process framework and its system
architecture. The architecture provides a conceptual design for effective implementation of
process information sharing that supports the autonomy and agility of insourcing companies.
The framework was developed using an object-oriented database and Extensible Markup
Language.

Chapter XV, “Online Analytical Mining for Web Access Patterns,” offers an architec-
ture to store the derived web user access paths in a data warehouse and to facilitate its view
maintainability by use of a metadata. The architecture of online analytical mining uses the
frame model metadata to study the user surfi ng behavior. Performance studies were done to
demonstrate the effectiveness and effi ciency of the proposed architecture.

Chapter XVI, “Modeling Motion: Building Blocks of a Motion Database,” introduces
a binary-based model for the representation and storage of motion data. The model enables
the communication, storage, and analysis of patterns of motion. The comparison with a
standard motion system that is based on key frames indicates a signifi cant advantage of the
proposed model.

These 16 chapters provide a sample of the state-of-the-art research in the fi eld of da-
tabase. We hope that both scholars and practitioners will fi nd the book a useful reference
for their work.

Keng Siau
University of Nebraska-Lincoln, USA
November 2003

SECTION I:

ANALYSIS OF
DEVELOPMENT METHODOLOGIES

Agile Development Methods and Component-Orientation: A Review and Analysis 1

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter I

Agile Development
Methods and

Component-Orientation:
A Review and Analysis

Zoran Stojanovic, Delft University of Technology, The Netherlands

Ajantha Dahanayake, Delft University of Technology, The Netherlands

Henk Sol, Delft University of Technology, The Netherlands

ABSTRACT
Agile software development methods have been proposed as the way to address the problem
of delivering high-quality software on time under constantly and rapidly changing require-
ments in business and IT environments. An agile development process is characterized by
extensive coding practice, intensive communication between stakeholders, fast iterative
cycles, small and fl exible teams, and minimal efforts in system modeling and architectural
design. This paper presents the state-of-the-art of agile methods and analyzes them along
the selected criteria that highlight different aspects of their theory and practice. Certain
limitations of agile methods are identifi ed. The chapter presents the component paradigm
as a way of balancing traditional (model-driven or plan-driven) and agile development,
depending on the project settings. Service-based component concepts applied at the level
of modeling, architectural design and development can ensure and strengthen agile devel-
opment principles and practices, and at the same time introduce necessary agility to more
traditional development. By using components, the software development process can easily
scale in size, robustness, and the level of details. This provides an effective balance between
the requirements for agility in software development and needs for a disciplined, design-
driven way of building complex software.

2 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

INTRODUCTION
EXtreme Programming (XP) and other Agile Methodologies (AMs) have started to

gain considerable interest in the IT community during the last several years. They have been
proposed as a way to build quality software systems fast and be able to easily adapt to rapidly
and frequently changing requirements in the environment. Agile processes are focused on
early, fast and frequent production of working code through the fast iterations and small
increments. The processes are characterized by intensive communication between partici-
pants, rapid feedback, simple design and frequent testing. By their proponents, the software
code is the main deliverable, while the role of system analysis, design and documentation in
software development and maintenance is de-emphasized and to some extent ignored.

A number of processes claiming to be “agile” have been proposed so far. The best
examples are eXtreme Programming (XP) (Beck, 2000), Scrum (Schwaber & Beedle,
2002), Feature-Driven Development (FDD) (Palmer & Felsing, 2002), Adaptive Software
Development (ASD) (Highsmith, 2000), Crystal methods family (Cockburn, 2002) and
DSDM (Stapleton, 2003). There have been attempts in applying agile values, principles
and practices in earlier phases of the software life cycle, such as analysis and design, under
the initiatives called Agile Modeling (Ambler, 2002) and eXtreme Modeling (Extreme,
2003). Efforts have been made to investigate how the Unifi ed Modeling Language (UML)
can be used in an agile process, as well as how to use the Rational Unifi ed Process (RUP)
(Jacobson, Booch & Rumbaugh, 1999) in an agile manner (Larman, 2001; Ambler, 2002).
The authors of the listed agile approaches have formed the Agile Alliance and published
the Agile Manifesto that represents a condensed defi nition of principles and goals of agile
software development (Agile Alliance, 2001). These principles are:

• Individuals and interactions over processes and tools,
• Working software over comprehensive documentation,
• Customer collaboration over contract negotiation, and
• Responding to change over following a plan.

Agile Development (AD) paradigm challenges many of the common assumptions in
software development. One of the most controversial is its rejection of signifi cant efforts in
up-front design in favor of a more evolutionary approach. According to its critics this is very
similar to the so-called code-and-fi x hacking strategy in software development. XP and other
AMs minimize the role of common design techniques in traditional software development
such as frameworks, design patterns, modeling tool support, modeling languages, model
repositories and reusability. On the other hand, AD supporters claim that their methodolo-
gies include just enough design efforts for the project to be successful, and AD design is
actually done in a different way than in traditional software processes. For example, in XP
simple metaphor-like design, refactoring, architecture prototypes, and test-based design are
used in an evolutionary way for software design purposes. These characteristics of XP and
other AMs are opposite to the current initiatives and paradigms in software development,
such as Model-Driven Development (MDD) (OMG, 2003). While both AD and MDD claim
to address the challenges of high change rates, short time-to-market, increased return-on-
investment and high quality software, their proposed solutions are actually very dissimilar.
The question is whether principles and practices of both development paradigms can be
combined in order to take the benefi ts of both approaches.

Agile Development Methods and Component-Orientation: A Review and Analysis 3

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The aim of this chapter is to present the state-of-the-art of agile methodologies and
analyze them according to the set of selected criteria. Special attention is paid on how
modeling and architectural design are addressed in the current agile methodology practice
as well as what kind of support to modeling and design activities exists in the selected set
of methodologies. The paper further proposes how concepts of component-based model-
ing, design and development can help in bridging the gap between model-driven and agile
development. The paper shows how components can ensure and strengthen AD principles
and practices, provide simple and fl exible component-oriented architectural design, as well
as help in overcoming the limitations of the agile methodologies, such as reusability, out-
sourcing, large teams and software, and safety critical software development.

THE STATE-OF-THE-ART
OF AGILE METHODS

In this section, different agile methodologies are presented and analyzed according to
the set of criteria. Although all agile methodologies share similar concepts, principles and
practice, their focus, scope and nature are varied. Some agile methodologies such as Scrum,
Adaptive Software Development, Crystal family and Dynamic Systems Development Method
are primarily focused on the project management and teamwork aspects. These methods do
not particularly treat any specifi c software development practice including any modeling
and design activities. These methods will be presented rather briefl y, while the methods
covering software modeling, design and development practice (XP, FDD, Agile Modeling
and Extreme Modeling) will be covered in more detail.

Extreme Programming
Extreme Programming (XP) is a lightweight development methodology defi ned by

Kent Beck (Beck, 1999; Jeffries, Anderson & Hendrickson, 2001) that has received much
attention during the last years. XP is the most documented, popular and widely used agile
methodology. XP empowers developers to confi dently respond to changing customer require-
ments, even late in the life cycle. XP also emphasizes teamwork. Managers, customers, and
developers are all part of a team dedicated to delivering quality software. The foundation
of XP represents the four values:

• Communication,
• Feedback,
• Simplicity, and
• Courage.

The fi ve basic XP principles are used as the guide for development: Rapid Feedback,
Assume Simplicity, Incremental Change, Embracing Change, and Quality Work. The four
basic XP activities are coding, testing, listening, and designing. Based on these values,
principles and activities the basic XP practices are derived:

• Planning Game: Quickly determine the scope of the next release by combining busi-
ness priorities and technical estimates.

4 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

• Small Releases: Put a simple system into production quickly, then release new ver-
sions on a very short cycle.

• Metaphor: Guide all development with a simple shared story of how the whole system
works.

• Simple Design: The system should be designed as simply as possible at any given
moment. Extra complexity is removed as soon as it is discovered.

• Testing: Programmers continually write unit tests, which must run fl awlessly for devel-
opment to continue. Customers write tests demonstrating that features are fi nished.

• Refactoring: Programmers restructure the system without changing its behavior to
remove duplication, improve communication, simplify, or add fl exibility.

• Pair Programming: All production code is written with two programmers at one
machine.

• Collective Ownership: Anyone can change any code anywhere in the system at any
time.

• Continuous Integration: Integrate and build the system many times a day, every time
a task is completed.

• 40-hour Week: Work no more than 40 hours a week as a rule. Never work overtime
a second week in a row.

• On-site Customer: Include a real, live user on the team, available full-time to answer
questions.

• Coding Standards: Programmers write all code in accordance with rules emphasizing
communication through code.

Many of these practices are old, tried and tested techniques, but often forgotten by
many, including most planned processes. XP integrates them into a synergistic whole where
each one is reinforced by the others.

XP defi nes the following lifecycle phases of an ideal project: Exploration, Planning,
Iterations to First Release, Productioning, Maintenance and Death. According to this, XP
defi nes the main human roles in a typical XP project: Programmer, Customer, Tester, Tracker,
Coach, Consultant and Big Boss. XP is perfect for small to medium teams; the team size
should be between two and 12 project members. Communication and coordination between
project members should be enabled at all times, so they should be even physically collocated.
However, the geographical distribution of teams is not necessarily outside the scope of XP
in the case it includes two teams working on related projects with limited interaction (Beck,
1999). Similar to other agile methodologies, XP minimizes the efforts invested in model-
ing and up-front architectural design. For exploration and planning purposes XP uses user
stories, which are the light, textual version of use cases, while for design purposes the XP
team uses Class-Responsibility-Collaborator (CRC) cards, sketches of, e.g., classes, prose
text and refactoring. For representing a system architecture XP uses a metaphor—a simple
textual representation of the basic elements of the system and their relationships. Along with
that XP can use so-called architecture spikes that provide quick explorations into the nature
of a potential solution. XP does not require any tool support, except a simple whiteboard
for drawing necessary sketches as well as Story and CRC cards.

Agile Development Methods and Component-Orientation: A Review and Analysis 5

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Feature-Driven Development
Feature-Driven Development (FDD) is a software development process for producing

frequent, tangible, working results (Coad, Lefebvre & DeLuca, 1999; Palmer & Felsing,
2002). FDD was used for the fi rst time in the development work of a large and complex
banking application project in the late 90’s. FDD consists of fi ve sequential processes during
which the design and building of the system is carried out: Develop an overall model, Build
a Feature list, Plan by Feature, Design by Feature, and Build by Feature. While the fi rst
three processes are sequential, the next two (Design and Build) are the iterative part of the
FDD. FDD concentrates on the concept of feature. A feature is a small, client-valued function
expressed in the form <action><result><object>. As there may be a lot of features, FDD
recommends that features are organized into a hierarchical list: major feature set, feature set,
and feature steps. Features are determined from the formal requirements specifi cation. FDD
suggests that each feature should take no more than two weeks to design and develop.

FDD defi nes the six key human roles and nine supporting roles. The main role is that
of Chief Programmer(s), who is responsible for planning the schedule of features, allocat-
ing the ownership of classes, delivering a feature set, ensuring quality of all products, and
leading the feature teams. The FDD development approach has been applied to projects of
various sizes (from 50 people up to 250), claming to contain just enough process to ensure
scalability. Unlike some other agile methodologies, FDD claims to be suitable for the de-
velopment of critical systems.

As following the classical object-oriented paradigm, all diagrams and notation in FDD
are based on the UML with supporting textual documents for representing, e.g., the feature
list. For domain object model, a class diagram is used, specifying operations and attributes
of the classes and associations between them. For the list of features a textual notation is
used. The features can be derived from use cases of the system. In designing the system a
sequence diagram can be used for associating features to particular objects/classes. FDD does
not suggest using any specifi c tool support, but it can be assumed that for object modeling
and sequence diagrams a UML-based tool can be used. The domain object model through
different levels of detail serves as an architecture blueprint of the system. When the features
are later listed it is natural to map them onto the existing domain classes. That is a data-
centric view of the domain and may not be the best structure for the solution.

Agile Modeling
Agile Modeling (AM) has been proposed as an attempt to apply AD and XP principles

to modeling and design activities (Ambler, 2002). As in the case of XP, Agile Modeling is
a collection of values, principles and practices for modeling software that can be applied
in an effective and lightweight manner. The agility and effectiveness of the modeling are
achieved by the fact that the models are as simple as possible, easily understandable, suf-
fi ciently detailed, accurate and consistent. AM is not a prescriptive process, i.e., it does not
defi ne detailed procedure to create a given type of model; instead it provides advice on how
to effectively model and produce a quality product that matches business needs. The focus
of AM is on effective modeling and documentation. It does not include programming and
testing activities, project management, and system deployment and maintenance. Therefore
AM should be used with another complete method such as XP, DSDM or RUP, where it can
provide a way of effective and agile modeling and design (Figure 1).

6 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The AM methodology is a collection of practices, guided principles and values. The
values of AM, similar to those of XP, are communication, simplicity, feedback, courage,
and humility. The keys to modeling success according to AM are to have effective com-
munication between all project stakeholders, to strive to develop the simplest solution
possible that meets all of your needs, to obtain feedback regarding your efforts often and
early, to have the courage to make and stick to your decisions, and to have the humility to
admit that you may not know everything. The core and supplementary AM principles are
derived from the XP (Table 1).

The heart of AM is its practices that are guided by the AM values and principles. AM
core practices are organized into four categories:

(1) Iterative and Incremental Modeling
 • Apply the right artifacts,
 • Create several models in parallel,
 • Iterate to another artifact,
 • Model in small increments.
(2) Teamwork
 • Model with others,
 • Active stakeholder participation,
 • Collective ownership,
 • Display models publicly.

Figure 1: AM enhances other software processes

Table 1: Core and supplementary principles of Agile Modeling

Agile Modeling (AM)

Base Software Process
(XP, RUP, DSDM, ...)

Custom-made
Process

Core AM principles Supplementary AM principles
Software is your primary goal Content is more important than presentation

Enabling the next effort is secondary goal Know your models

Travel light Everyone can learn from everyone else

Assume simplicity Local adaptation

Embrace change Open and honest communication

Incremental change Work with people’s instincts

Model with a purpose

Multiple models

Quality work

Rapid feedback

Maximize stakeholder investment

Agile Development Methods and Component-Orientation: A Review and Analysis 7

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

(3) Simplicity
 • Create simple content,
 • Depict models simply,
 • Use the simplest tools.
(4) Validation
 • Consider testability,
 • Prove it with code.

AM includes supplementary practices that support its core practices and that the team
can optionally adopt. They are also organized in categories:

(1) Productivity
 • Apply modeling standards,
 • Apply patterns gently,
 • Reuse existing resources.
(2) Documentation
 • Discard temporary models,
 • Formalize contract models,
 • Update only when it hurts.
(3) Motivation
 • Model to communicate,
 • Model to understand.

It is obvious that AM practices are not new; they are techniques that modelers have
been following for years, but Scott Ambler, the author of AM, claims that they have been
packaged for the fi rst time together and represented as a modeling framework. AM differenti-
ates between two types of modeling tools: simple tools (sheet paper, whiteboards and index
cards) and advanced CASE tools. Both of them have their advantages and disadvantages
in relation with the AM principles and practices. Generally agile modelers should select
the simplest tools that are best suited for the particular project regarding the added value
and investments in learning and working. AM does not precisely defi ne human roles, but
makes suggestions on how agile work areas should look and how to organize an effective
AM team.

Since many AM principles and practices are derived from the XP ones and map straight
to XP, there is a clear potential of AM to fi t well with XP and add value to an XP project.
AM can be applied throughout the XP life cycle, especially during Exploration, Planning
and Iteration to Release phases. For this purpose, the sketches (or CASE-made diagrams)
of use cases, architectural overviews, UI screens, data models, class diagrams and sequence
diagrams can be used. Regarding the RUP, it can be noticed that many of the AM principles
and practices are already a part of the RUP, although perhaps not as explicitly as stated in
AM. This is because the RUP is very fl exible, and can be tailored to meet particular needs,
making it easy to merge AM practices into the RUP. Both the RUP and AM are based on the
incremental and iterative strategy of software development. However, according to Ambler,
for the purpose of Agile Modeling the RUP and UML should be extended with other modeling
artifacts, e.g., for representing business concepts and processes, navigational fl ows within
the user interface, data models of the physical design of the database, user stories and CRC
cards. The agility in using AM on top of the RUP is not achieved by using fewer modeling

8 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

artifacts (the case is even opposite) but rather by focusing on the practices of Apply the right
artifacts, Use the simplest tools and Discard temporary models, among others.

Extreme Modeling
Extreme Modeling (XM) (Extreme, 2003) is a software development process that tries

to make a synthesis of model-based processes and Extreme Programming (XP), but in a dif-
ferent way than agile modeling. XM is still a subject of investigation and research. Several
papers are published on this topic, and there is a dedicated web site with basic information.
XM unites UML-based modeling principles and XP and combines their advantages by ap-
plying the tenets of XP to the modeling phase. For the successful integration of the two,
there are two basic requirements that have to be met: models need to be executable and they
must be testable. Therefore XM requires intensive support by an integrated tool that is able
to execute UML models, test models, support the transition from models to code and keep
the code and model in sync. According to the authors of XM, a critical set of the necessary
tools already exists. At the University of Hamburg, an implementation based on an open
source UML tool called Argo/UML and a Petri nets tool called Renew has been developed.
It is currently able to execute state, activity, collaboration and sequence diagrams. The
translation of these UML diagrams to the corresponding Petri nets representation works
for almost all complex diagram elements, including forks/joins, complex states, history
states, transition guards and actions. This allows the execution and visualization of UML
diagrams as well as to express tests on models. Recently, XM has stopped using Petri nets
as an intermediary step between UML models and code, and now translates directly from
models to code. XM represents a promising approach and has a close relationship to the
OMG’s MDA initiative (OMG, 2003). XM is strongly based on the required tool support,
which is the matter of further research and investigation.

XM tries to bridge the gap between traditional development and code-focused extreme
programming by introducing executable and testable models that are supported by advanced
tools. That includes transformations of models of different levels of abstractions, as well as
an extensive code generation based on these models. The approach of Extreme Modeling
is in line with some other approaches focused on the concept of executable models, such
as Executable UML (Mellor & Balcer, 2002). Executable models are the main products of
the development process, translated directly into bits using compilation software. In this
sense, the models are actually the code. The models are exact graphical representations of
the software structure. This will certainly represent one of the major research directions in
software engineering in the future.

Scrum
Scrum is an empirical approach applying the ideas of industrial process control theory

to systems development with the ideas of fl exibility, adaptability and productivity (Schwaber
& Beedle, 2002). It does not defi ne any specifi c software development techniques for the
design and implementation phase. Scrum concentrates on how the team members should
function in order to produce the system in a constantly changing environment. There have
been some efforts recently about integrating Scrum and XP, where Scrum should provide
the project management framework. Scrum process defi nes three main phases: pre-game,
development and post-game. Development phases should be done in seven to 30 days-long
iteration cycles called sprints. Scrum keeps two stacks of cards containing features that

Agile Development Methods and Component-Orientation: A Review and Analysis 9

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

should be developed. One stack has an ordered set of features for the whole system, and the
other has those features to be executed in the current 30-day sprint. Scrum involves frequent
management activities and daily meetings called scrums in order to identify and correct any
defi ciencies or obstacles in the development process. Scrum defi nes team members’ roles
and responsibilities and is suitable for small teams up to 10 people.

Adaptive Software Development
Adaptive Software Development (ASD) was developed by Jim Highsmith and published

in Higsmith (2000). Many of ASD principles are derived from Highsmith’s earlier research
on iterative development methods. ASD focuses mainly on the problems in developing
complex, large systems. The method strongly encourages incremental, iterative develop-
ment with constant prototyping. ASD suggests the importance of collaborating teams and
teamwork and building an adaptive organizational culture, but proposes very few practices
for day-to-day software development work. That is why there is a space for this method to
be accompanied with the development practice of XP, for example. ASD process includes
three phases—Speculatethree phases—Speculatethree phases— , Collaborate and Learn—performed in the cycles. ASD is explicitly
feature-based (or component-based) rather than task-oriented, which means that the focus
is on results and products rather than the tasks for producing them. ASD does not propose
the team structure in details, and does not enforce that the team member must be co-located
like most other agile methodologies.

Crystal Method Family
The Crystal family of methodologies includes a number of different methodologies, as

well as principles for tailoring them to fi t into the varying nature of different projects (Cock-
burn, 2002). The family consists of four methods—Clear, Yellow, Orange, and Red—with
the principle, ‘the darker the color, the heavier the methodology’. There are certain rules,
features and values that are common to all Crystal methods. The projects always use in-
cremental development cycles with a length between one and three months. The emphasis
is on communication and cooperation of people. Crystal methodologies do not limit any
development practices, and therefore can easily adopt XP practices. The Crystal methods
use the common work products from XP, such as stories/use cases, screen drafts and design
sketches. Crystal Clear is suited for small projects and small co-located teams (up to six
developers) with precisely defi ned roles. Cockburn’s Crystal Family is now merged with
Highsmith’s Adaptive Systems Development.

Dynamic Systems Development Method
Dynamic Systems Development Method (DSDM) was developed in 1994 in United

Kingdom as a framework for rapid application development (RAD) (Stapleton, 1997, 2003).
DSDM is a non-profi t and non-proprietary framework maintained by the DSDM Consor-
tium (DSDM, 2003). DSDM has underlying principles that include active user interaction,
frequent deliveries, empowered teams and testing throughout the life cycle. Three major
phases of DSDM—functional iteration, design-and-build iteration and implementation—are
themselves iterative processes. DSDM suggests making a series of prototypes in short cycles
to gradually solve the problems that are not precisely defi ned in advance, or not stable dur-
ing that time. DSDM does not offer detailed documentation of its work products; rather, a

10 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

brief description, list of purposes and several quality criteria. The DSDM process assumes
that the time is fi xed for the life of a project and project resources are fi xed as far as pos-
sible, while the requirements that will be satisfi ed are allowed to change, which is largely
opposite to traditional development processes. Although there is evidence (white papers)
about combining DSDM with UML and RUP, supporting materials and white papers are
available only for consortium partners for an annual cost. DSDM defi nes 15 roles for us-
ers and developers. The team consists of between two and six members, and several teams
can exist in the project. According to its authors and users, DSDM has proved to be one of
the most successful frameworks for agile software development. The new book on DSDM
(Stapleton, 2003) has been updated to refl ect recent changes in the framework, as well as
experiences and results in applying it in practice.

ANALYSIS OF AGILE METHODS
In this section we will summarize the main characteristics of presented agile meth-

odologies and provide their comparison. In the sequel, special attention will be put to ana-
lyzing the support of modeling and design activities that exist in XP, FDD, AM and XM,
while other methodologies are not taken into account because of the lack of a development
and modeling practice. According to Sol (1983) the analysis and comparison of software
development methods can be approached in fi ve different ways:

• Describe an idealized method and evaluate other methods against it.
• Distil a set of important features inductively from several methods and compare each

method against it.
• Formulate a priori hypotheses about the method’s requirements and derive a framework

from the empirical evidence in several methods.
• Defi ne a meta-language as a frame of reference against which you describe many

methods.
• Use a contingency approach and try to relate features of each method to specifi c

problems.

Our goal here is to identify differences and similarities between different agile software
development methods. Therefore, we will use the combination of the second and the fourth
approach in comparing the methods. The methods will be analyzed through the chosen set of
important features concerning the method, its usage and adoption, key process characteristics
as well as the support to modeling and architecture design activities.

Comparison of Basic Characteristics
Agile Methodologies will be analyzed and compared using several sets of criteria. Key

characteristics, special features and shortcomings of agile methodologies are shown in Table 2.
The current state of the methodologies, the level of documentation and their adoption in
practice are shown in Table 3, while Table 4 analyzes certain aspects of the development
processes of agile methodologies.

Agile Development Methods and Component-Orientation: A Review and Analysis 11

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Table 2: Characteristics, special features and shortcomings of AMs

Key characteristics Special features Shortcomings

XP Customer-driven, frequent releases,
pair programming, face-to-face
development

Refactoring, test-fi rst
development, constant
testing, simple design
through metaphors

Little about management
practice, not scalable, team
members must be co-
located

FDD Five basic process steps, short
iterations, feature-centered, use
UML diagrams, developing
features in up to two weeks

Combining features
and object modeling,
applicable to the
projects of various
sizes, applicable for
developing mission
critical systems

Management support
needed, not sophisticated,
more data-centric view on
system

Agile
Modeling

Applying agile principles and
practices to modeling, XP
with modeling and without
programming

Can fi t well into
different processes (XP,
DSDM or RUP), use
UML, ER, business
process modeling, etc.

Not complete process,
need other development
methods, basically
restatements of XP
principles for modeling

Extreme
Modeling

Integrating model-based and XP
principles, executable models,
models are code, in line with MDA

Tool support needed,
models testable and
executable, use UML
and translate it directly
to code (no more Petri
nets)

The method and tools under
development, promising but
needs more support

Scrum Small teams up to 10, iterations
(sprints) seven to 30 day cycles,
three main phases, widely
applicable

Daily meetings
(scrums), possible
integration with XP for
development practice,
easily customizable

Little about development
practice, not sophisticated

ASD Adaptive organizational culture,
collaborative teamwork, three main
phases, combined with Crystal
family

Non-linear overlapping
life cycle phases,
component-based,
rapid prototyping,
members need not be
co-located

Lack of software
development practice, not
detailed team structure

Crystal
family

Family of methods, adaptable
to different project size and
complexity, combined with ASD

Features and values
common to the whole
family, small teams,
1-3 month cycles, can
use XP development
practice

Not complete, not enough
supporting materials

DSDM Controlled RAD variant, supported
by consortium, represents a
framework for development, three
main iteration phases

Use of prototyping,
several small teams
(two to six people), can
be combined with RUP
and UML

Limited access to
supporting materials

12 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Table 3: Current state, documentation and practical experiences of AMs

Table 4: Development process characteristics of Agile Methodologies

Maturity Documented Adoption and Experience

XP Active Books, papers, web sites Applied in practice

FDD Active Books, papers, web sites Applied in practice

Agile Modeling Still under
development

Book, papers, web sites No evidence of applying

Extreme
Modeling

Still under
development

Web sites, papers Applied to some extent

Scrum Active Book, web sites Applied in practice

Adaptive SD Active Book, papers, web sites Applied to some extent

Crystal family Still under
development

Web sites, web documents Applied to some extent

DSDM Active Book, web sites, papers
(limited to DSDM members)

Applied in practice

Process Support Iterative and
Incremental

Scalability – Size
of teams

Defi ned
Member

Roles

Modeling
Activities

XP Development
practice

Yes Up to 12 Yes Minimized

FDD Development and
partly management
process

Design and
build phases

From 50 up to 250 Yes Minimized

Agile
Modeling

Modeling Yes No restrictions Not detailed Complete

Extreme
Modeling

Development process Yes No restrictions N/A Models are
executable and
testable

Scrum Management process Yes Up to 10 people Yes Not applicable

ASD Management process Yes No restrictions Not detailed Not applicable

Crystal
family

Partly development
and management
process

Yes From six (Clear) up
to 40 (Yellow)

Yes Not applicable

DSDM Management process Yes Possibly many
small teams (from
two to six)

Yes Not applicable

Modeling and Design in Agile Methods
In this section, the kind and nature of modeling and design support will be analyzed

in XP, FDD, Agile Modeling and Extreme Modeling, since they describe practices that are
related to modeling and architecture design, as shown in Table 5.

Agile Development Methods and Component-Orientation: A Review and Analysis 13

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Table 5: Modeling and design activities in the selected set of Agile Methodologies

XP FDD Agile Modeling Extreme Modeling

Scope Development
process

Development
process

Modeling and
design

Development process
(not detailed)

Amount of
modeling

Low Low Middle Middle

Tool support No Not specifi ed
(possible UML-
supportive)

The simplest
possible, e.g.,
whiteboard

Extensive support
(transfer model to code)

Notation User stories, CRC
cards, Sketches of
classes

Features, Objects/
Classes, Sequence
diagrams

UML + User
stories, UI
screens, Data
modeling, etc.

Formerly Petri nets,
now standard UML and
code

Architecture
design

Metaphor,
Architecture
Spikes, First
Release

Based on object
model

Domain
packages

Based on object
orientation

Requirements
elicitation

User stories Features Use cases + user
stories

Use cases

Using
components

No No To some extent To some extent

Business
modeling

No No Yes No

Model
repositories

No N/A No Yes

Designing large
systems

No To some extent Yes Yes

Incremental Yes Yes Yes Yes

Iterative Yes (very small
increments)

Yes, only two
phases

Yes, sequential
and iterative

Model and code
constantly in sync

Complexity Low Low Middle Middle – advanced tool
support

Model
reusability

No No No Yes

Agile vs. Traditional Methods
It is obvious that Agile Methodologies claim to address the challenges of high change

rates, short time-to-market, increased return-on-investment and high quality software by
emphasizing communication between project stakeholders, iterative and incremental develop-
ment with the focus on software code, as well as high response to changes in requirements.
On the other hand, traditional, more formal methodologies, such as Rational Unifi ed Process
(RUP) (Jacobson et al., 1999) and Catalysis (D’Souza & Wills, 1999) suggest rigorous
modeling and a clear plan to follow in transferring business requirements into working
software. The current Object Management Group initiative over Model-Driven Architecture
is in line with that way of thinking. MDA stresses the importance of a platform-independent
and platform-specifi c model to separate abstract domain knowledge from concrete imple-

14 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Table 6: Agile and traditional methods

Agile methods Plan-driven methods

Developers Agile, knowledgeable, co-located, and
collaborative

Plan-oriented, adequate skills, access
to external knowledge

Customers Dedicated, knowledgeable, co-located,
collaborative, representative and empowered

Access to knowledgeable,
collaborative, representative, and
empowered customers

Requirements Largely emergent, rapid change Knowable early; largely stable

Architecture Designed for current requirements Designed for current and foreseeable
requirements

Refactoring Inexpensive Expensive

Size Smaller teams and products Larger teams and products

Primary objective Rapid value High assurance

mentation environment. These are so-called plan-driven (or design-driven) methods, where
the requirements at the beginning of the project are largely stable so that the fi xed, well-
thought plan can be followed during the development process (Boehm, 2002). Both types
of methodologies, agile and traditional, have their advantages and shortcomings depending
on particular project settings. Making a decision of using a particular method in a software
development project is in strong relation with the project nature, project environment and
involved stakeholders (Boehm, 2002) (Table 6).

Both agile methods and more traditional methods try to handle the software development
process under the constant changes in the environment. However, their focus is different as
to what types of changes they primarily deal with. Agile methods are focused on potential
changes of business requirements that can evolve during the project up to the fi nal release.
Therefore, they propose mechanisms to fl exibly capture these requirements, while the
challenges in making technology choices are left implicit, and are under the responsibility
of developers. On the other hand, more traditional, model-driven methods try to preserve
efforts made in constructing software architecture and design under the changes in available
advanced technology solutions. For these methods, business requirements are more or less
fi xed, written down in the form of contract between business users and developers. In real-
ity, it is essential to provide an effective strategy and mechanisms for protecting software
solutions from possible changing requirements coming from both sides. In the sequel of the
paper, we propose an implementation-independent, component-based approach for creat-
ing fl exible system architecture in an agile way and therefore provide a way of balancing
between business needs and technology solutions. Components as design level artifacts, not
just implementation code packages as suggested by the UML, can become a central point
of a new agile, service-oriented development approach.

INTEGRATING COMPONENTS
AND AGILE DEVELOPMENT

Common to all agile methodologies that propose some development practice is that
they assume an object-oriented development paradigm. XP creates CRC cards and object
diagrams, FDD combines objects and features, Agile Modeling extends the standard UML

Agile Development Methods and Component-Orientation: A Review and Analysis 15

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

with additional diagrams, while Extreme Modeling follows standard UML and uses the
tools for creating executable and testable models. Interestingly, these methodologies do not
include or use any advanced concepts such as components (D’Souza & Wills, 1999) and
services (IBM, 2003). In our opinion, exactly components as providers of services represent-
ing concepts at a higher level of abstraction than traditional classes/objects can signifi cantly
support principles and practices of agile development. Component thinking can provide
mechanisms for effective and agile design up-front that can be straightforwardly mapped
to software code. We strongly believe that the implementation-independent, service-based
component concept can be used as the mechanism for balancing agility and discipline in a
software development project.

Service-Based Component Concept
Components have been so far used mainly as implementation artifacts. However, the

components are equally useful and important if used as modeling and design artifacts in
building the logical architecture of the system. The essence of the component approach is
the explicit separation between the outside and the inside of the component. This means that
only the question of WHAT is considered (what useful services are provided by the particular
building block to the context of its existence), not the HOW (how these services are actually
implemented). In the sequel, some important component properties used in architectural
design and development will be listed, while more details on a component-oriented design
and development approach can be found in Stojanovic and Dahanayake (2003a).

A component fulfi ls a particular role in the context by providing and requiring ser-
vices to/from it. A component has a hidden interior and exposed interface. It participates
in a composition with other components to form a higher-level behavior. At the same time
every component can be represented as a composition of lower-level components. Well-
defi ned behavioral dependencies and coordination of activities between components are of
great importance in achieving the common goal. The metamodel of the basic component
concepts is shown in Figure 2.

According to the role(s) a component plays in the given context, it exposes corre-
sponding behavior by providing and requiring services to/from its context, or by emitting
and receiving events. The services a component provides and requires are the basic part of
its contract. Services can be of different types, such as performing computation, providing
information, communication with the user, etc. They are fully specifi ed in a contract-based
manner using pre-conditions, post-conditions and other types of constraints. A component
must handle, use, create or simply be aware of certain information in order to provide its
services properly. In order to be used in a different context or to be adaptable to the changes
in its context, a component can possess so-called confi guration parameters that can adapt
the component according to new requirements coming from the outside. A component can
possess a set of so-called non-functional parameters that characterize the “quality” of its
behavior. Figure 3 shows the component specifi cation concepts.

Component-Orientation in Agile Development
In our opinion, component concepts presented above represent the clear case for ag-

ile design and development. They can support the most important principles of AD, such
as simplicity, good communication between stakeholders, rapid feedback, and effective
adoption of changes. By focusing on components in representing the problem and propos-

16 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

ing the solution, the effective “divide-and conquer”, separation-of-concerns strategy is
applied, which makes both the problem and solution simpler and easier to understand and
manage. Service-based component concepts are equally well understood by both business
and technical people because they are defi ned at a higher level of abstraction than, e.g., OO
objects and classes. In this way, the component-based architecture can provide a common
ground and the point of communication and negotiation between all involved stakeholders.
Higher-level component-based vocabulary can become a common language between domain
experts and software developers.

Figure 2: Basic component concepts

Figure 3: Component specifi cation concepts

Agile Development Methods and Component-Orientation: A Review and Analysis 17

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Components are by their nature an excellent way to manage changes. Changes are
not harmful for component-based software since they are localized inside the particular
component or on the interfaces between components, so they cannot be spread across the
system in an uncontrolled manner. By defi ning higher-level, business-driven component-
based architecture that balances business needs and software implementation, developers
protect their investments under changing requirements, and at the same time easily map
the architecture into software code using e.g., advanced model transformers and code gen-
erators. Components can support high quality work, which is one of the main targets in an
agile project, since, if used, COTS components or Web Services are usually pre-tested and
certifi ed through a number of previous usage cases.

Component and service concepts can add signifi cant value to the simple and easily
scalable architectural design in agile development. As stated earlier, agile methodologies do
assume certain design activities but they perform them in a different manner than traditional
methodologies. In our opinion, component concepts can play a signifi cant role in agile ar-
chitecture modeling, design and planning game. Since components are defi ned as providers
of business services at a higher level of abstraction and granularity than traditional objects,
they can be used as the main building blocks of a simple architectural design understand-
able for all involved project stakeholders. By its defi nition a component hides a complexity
of its interior so that components can help in more easily making an architecture metaphor
and architecture prototypes (spikes) as the main design-level artifacts in an agile project.
Components as a mechanism for organizing business requirements in cohesive business
service providers, and at the same time a blueprint of future implementation, can provide
bi-directional traceability between business needs and software artifacts. That certainly helps
in better understanding and communication across the project, and more straightforward
iterations and increments. Good business-driven, component-oriented architecture design
can reduce the need for refactoring (that can be also a time-consuming task), as well as
permanent customer presence, in the case it is not feasible.

The representation of the component in designing architecture can vary in the level of
details, which depends on the project nature. The component can be described through its
main properties defi ned briefl y above, as well as in Stojanovic and Dahanayake (2003a),
using different mechanisms at different levels of formality, such as natural language and
sketches on the whiteboard, business vocabulary on some kind of the cards, formal speci-
fi cation language and contract-based theory in a CASE tool, or software code. Hence, the
level of details in specifying components can be truly scalable, depending on the project
settings. In this way the same component-approach can fi t into really agile projects, as well
as large, safety-critical projects and teams, depending on particular needs.

Among the main issues in AD are test-driven design and the test-before-implementa-
tion principle. Since components are identifi ed and defi ned based on use cases they are
responsible for, as well as information types used by these use cases, it is easy to defi ne test
suite for components based on use cases and conditions related to them. These tests can
guide an effective implementation of components that fulfi ll given business needs. These
tests represent agile black-box unit tests. By putting components together in a plug-and-play
fashion, the whole release can be easily tested as well. Components are well suited for some
coding and implementation practices defi ned in AMs, such as continuous integration, using
coding standards and pair programming. The fi rst release as an important artifact in a XP
project can be easily constructed using components, where some or most of them have just
defi ned interfaces (so-called dummy interfaces) without real implementation. Components are

18 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

also well suited for incremental and iterative development and fast, small solution releases.
Each new iteration cycle adds more functionality to particular components and refi nes the
interfaces among them. Coding practice can be applied at the level of single components,
their sub-components, or a set of collaborative components.

Agility in Component-Based Development
Component-based development can also benefi t from certain principles and mechanisms

used in agile development processes. The main idea behind code refactoring—changing
interior while preserving exposed behavior and semantics—can be effectively applied in
designing fl exible component-based architecture. We propose here a process called component
refactoring, which aims at reallocating and rearranging sub-components of the component
being addressed, while preserving its contractual behavior. Component refactoring can be
performed at two levels. At the fi rst level, the high-level business components are identifi ed
and constructed based on business requirements they fulfi ll and business services they offer.
However, the decision of allocating use cases to particular business service components is not
straightforward, and other criteria, such as existing legacy, business rules, and information
placement must be taken into account. Furthermore, for every system being developed, a
number of so-called changing cases can be defi ned that can be modifi ed in the future. The
process of component refactoring should ensure that the business needs are fulfi lled by the
well-architected set of business components following the principles of lowest coupling
and highest cohesion. At the level of application architecture, the component refactoring
practice can support placing lower-level application components into higher-level business
components. This is especially important in the case when data or computation redundancy
must be avoided, i.e., when an application component is used by several business components
and it must be decided what business component is really responsible for it.

For representation components during the development process we can use standard
UML diagrams enriched with proper extensions (stereotypes and tagged values). For the
purpose of lightweight component modeling that can be easily understood by both business
people and software architects, we propose a new variant of well known Class-Responsibil-
ity-Collaborator (CRC) cards, called CRCC or CRC2 cards, which stands for Component-
Responsibility-Collaborator-Coordination (Figure 4). In this way the basic properties of each
business component (identifi er, responsibility, collaborating components and coordination)
are specifi ed without going too much into detail, according to AD principles and practice.
At this level, the system architect can communicate and negotiate with the business user
to see whether this initial business component architecture captures all user requirements.
Defi ned cards can provide fast and easy design of the initial business-driven component-
oriented architecture that can be understood by both business and IT sides, and can be
used according to XP principles of simple design, architecture metaphor, rapid feedback
and extensive user involvement. At the same time, the stack of CRC2 cards can be used for
planning future developments, as well as for delivering tasks (i.e., component development)
to particular developers.

Components and Agile Development Limitations
It is obvious that depending on the kind and nature of the system being developed, its

domain and environment, as well as involved stakeholders, an agile development process
can represent either the right or not proper solution. If short time-to-market and extreme

Agile Development Methods and Component-Orientation: A Review and Analysis 19

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

fl exibility of the system under the constantly and rapidly changing requirements are of the
highest importance, then that is the case for agile development. If the system being built
is rather complex, safety-critical and supposed to be stable over the longer period of time,
then the agile development process may not be the right solution (Turk, France & Rumpe,
2002). The following are the limitations of agile methodologies in terms of the types of
projects where they cannot potentially provide a full support:

• Limited support for projects with distributed development teams and resources.
• Limited support for outsourcing.
• Limited support for building or using reusable artifacts.
• Limited support for using legacy systems or Commercial-Off-The-Shelf (COTS)

components.
• Limited support for projects involving large teams.
• Limited support for the development of large software systems.
• Limited support for the development of safety-critical software systems.

In our opinion, using the component paradigm can help in overcoming or mitigating
these limitations of agile methodologies. Using the component way of thinking, the whole
problem can be divided into pieces according to cohesive sets of business functionality.
These functional units, called business components, can be specifi ed according to the
defi ned component properties, in an informal, semi-formal or formal way, depending on
a particular situation. The more formal specifi cation of component interfaces can help in
communication between team members and customers when customers are separated from
developers, or a development team is distributed over several locations. Components can
help in an agile project when a particular task should be outsourced to subcontractors. In
that case components related to the task can be specifi ed in a more formal way than in an
ordinary agile project, in order to provide a precisely defi ned subcontracted task. This actually
represents the specifi cation of the components that are outsourced. Additional fl exibility in
a sub-contract specifi cation can be achieved using confi guration context-aware parameters
of components in order to provide easier adoption of possible changing requirements.

Components are about reusability, so each component that normally encapsulates well-
defi ned business or technical functionality can be reused in a similar context in the future.
On the other hand, well-defi ned component-oriented architecture provides using third-party
components such as COTS components or wrapped legacy assets, as long as the interfaces
toward the other components are fulfi lled. In that case an agile project would be responsible
for the rest of the system and its interface to existing third-party solutions. By providing an
effective separation of concerns, the component paradigm can help in supporting the agile

Figure 4: Component-Responsibility-Collaborator-Coordination card

CollaboratorResponsibility

Component

Coordination

20 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

development that involves a larger team in building large software. Large problems can be
broken down into smaller units, and then parts of the team are responsible for developing
particular components in an agile manner. System made of components can scale and be
extended easily by defi ning additional components or by extending the scope of existing
components. Agile Development Processes produce high-quality software through constant
unit and functional testing. Using pre-tested COTS components can further increase the
quality of the safety-critical software.

CONCLUSIONS
In the past several years, Extreme Programming (XP) and other Agile Methodologies

(AMs) have started to gain considerable interest in the IT community. A number of processes
claiming to be “agile” have been proposed. The leading agile methodologists have formed
the Agile Alliance and published the Agile Manifesto. AMs are focused on communication
among project stakeholders, frequent delivery of software releases and an effective coding
practice. The role of modeling, design up-front and documentation is signifi cantly mini-
mized. One of the main assumptions in software development is that the requirements and
conditions from the environment are in constant change. The focus of Agile Development
is on effective mechanisms to adopt changes through iterative and incremental cycles, small
releases, frequent testing, and the constant feedback from the customer. The quality of soft-
ware solution is maintained through refactoring, pair programming, using coding standards
and continuous integration of software releases. Although agile methodologies differ in their
characteristics, mechanisms, scope and focus, they share similar concepts, principles and
practices that challenge many of the common assumptions in software development and
initiatives such as Model-Driven Development. While both Agile Development and Model
Driven Development claim to address the challenges of high change rates, short time-to-
market, increased return-on-investment and high quality software, their proposed solutions
are actually very dissimilar.

This chapter presents the state-of-the-art agile methodologies through their important
characteristics, main features and identifi ed shortcomings. Agile methodologies are further
analyzed and compared through the set of criteria, from their applicability through the aspects
of development practice. Special attention is made for highlighting the nature and kind of
the support to modeling and architectural activities found in the selected set of methodolo-
gies. Finally, the chapter presents how component concepts used at the level of modeling,
architectural design and implementation can effectively support the main principles and
practices of agile development. Modeling and specifying components as the main building
blocks of simple architecture design at a particular level of details can provide a bridge
between traditional model-driven and agile development. Using components can help in
overcoming certain limitations of agile methodologies in relation with the type and nature
of the project, such as reusability, outsourcing, large teams and building large safety-critical
software systems. On the other hand, using agile values, principles and practices in current
model-driven, rather heavyweight methodologies, such as RUP (Jacobson et al., 1999) and
Catalysis (D’Souza & Wills, 1999) can help in more fl exible processes and solutions, as
well as shorter time-to-market and products that better fulfi ll business needs. Integrating
certain aspects and principles of agile and model-driven development around the component
concept can lead to a new, highly fl exible and agile, service-oriented software development

Agile Development Methods and Component-Orientation: A Review and Analysis 21

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

approach of the future (Stojanovic & Dahanayake, 2003b). In this way, components can
become an effective mechanism for balancing agility and formal plan, depending on the
project settings and development team culture.

REFERENCES
Agile Alliance. (2001). Manifesto for agile software development. Available: http://www.

agilealliance.org
Ambler, S. (2002). Agile modeling: Effective practices for eXtreme programming and the

Unifi ed Process. New York: John Wiley & Sons.
Beck, K. (2000). Extreme programming explained – Embrace change. Reading, MA: Ad-

dison-Wesley Longman.
Coad, P., Lefebvre, E., & DeLuca, J. (1999). Java modeling in color with UML: Enterprise

components and process. Upper Saddle River, NJ: Prentice Hall.
Cockburn, A. (2002). Agile software development.gile software development.gile so Boston, MA: Addison-Wesley.
DSDM. (2003, September 1). Dynamic systems development modeling consortium. Avail-

able: http://www.dsdm.org
D’Souza, D.F., & Wills, A.C. (1999). Objects, components, and frameworks with UML: The

Catalysis approach. Boston, MA: Addison-Wesley.
Extreme Modeling. (2003, September 1). Available: http://www.extrememodeling.org
Highsmith, J.A. III (2000). Adaptive software development: A collaborative approach to

managing complex systems. New York: Dorset House Publishing.
IBM. (2003, September 1). Web Services. Available: http://www.ibm/com/webservices
Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unifi ed software development process.

Reading, MA: Addison-Wesley.
Jeffries, R., Anderson, A., & Hendrickson, C. (2001). Extreme programming installed. Extreme programming installed. Extreme programming installed

Boston, MA: Addison Wesley.
Larman, C. (2001). Applying UML and patterns. (2nd Edition). Prentice Hall.
Mellor, S., & Balcer, M. (2002). Executable UML: a Foundation for model-driven archi-

tecture. Boston, MA: Addison-Wesley.
OMG. (2003, September 1). Object Management Group, MDA- Model Driven Architecture.

Available: http://www.omg.org/mda/
Palmer, S.R., & Felsing, J.M. (2002). A practical guide to feature-driven development.

Prentice Hall.
Schwaber, K., & Beedle, M. (2001). Agile software development with Scrum. NJ: Prentice

Hall.
Sol, H.G. (1983). A feature analysis of information systems design methodologies: Meth-

odological considerations. In T.W. Olle, H.G. Sol and C.J. Tully (Eds.), Information
systems design methodologies: A feature analysis (pp. 1-8). Amsterdam, The Neth-
erlands: Elsevier.

Stapleton, J. (1997). DSDM: Dynamic Systems Development Method. DSDM: Dynamic Systems Development Method. DSDM: Dynamic Systems Development Method Harlow, London:
Addison Wesley.

Stapleton, J. (ed.) (2003). DDSDM: Business focused development. DSDM Consortium. (2nd

Edition). London: Addison Wesley.
Stojanovic, Z., & Dahanayake, A.N.W. (2003a). A service-based approach to components

for effective business-IT alignment. In Joan Peckam (Ed.), Practicing software engi-
neering in the 21st Centuryst Centuryst . Hershey, PA: Idea Group Publishing.

22 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Stojanovic, Z., & Dahanayake, A.N.W. (2003b). Component-oriented agile software develop-
ment. Fourth International Conference on eXtreme Programming and Agile Processes
in Software Engineering, May 26-29, 2003, Genova, Italy.

Turk, D., France, R., & Rumpe, B. (2002). Limitations of agile software processes. Third
International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Sardinia, Italy, (pp. 43-46).

Comparing Metamodels for ER, ORM and UML Data Models 23

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter II

Comparing Metamodels
for ER, ORM and
UML Data Models

Terry Halpin, Northface University, USA

ABSTRACT
This chapter provides metamodels for some of the main database modeling notations used
in industry. Two Entity Relationship (ER) notations (Information Engineering and Entity Relationship (ER) notations (Information Engineering and Entity Relationship (ER) notations (Barker
ER) are examined in detail, as well as Object Role Modeling (ORM) conceptual schema
diagrams. The discussion of optionality, cardinality and multiplicity is widened to include
Unifi ed Modeling Language (UML) class diagrams. Issues addressed in the metamodel
analysis include the normalization impact of non-derived constraints on derived associations,
the infl uence of orthogonality on language transparency, and trade-offs between simplicity
and expressibility. To facilitate comparison, the same modeling notation is used to display
each metamodel. For this purpose, ORM is used because of its greater expressibility and
clarity.

INTRODUCTION
To ensure the correctness and completeness of an information system being developed,

requirements analysis should precede its design and implementation. The analysis phase
leads to a conceptual schema that specifi es the structure of the universe of discourse (applica-
tion domain). This conceptual structure should be capable of being readily understood and
validated by the domain expert, without requiring this subject matter expert to understand
technical aspects of the internal structure used to actually implement the application. Once
validated, the conceptual schema can be mapped to logical/physical/external schemas using
procedures that are partly or fully automatable.

24 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

For industrial database work, the traditional approach for high level data modeling is
to use a version of Entity Relationship (ER) modeling (Chen, 1976), such as the Information
Engineering (IE) approach (Finkelstein, 1998), the Barker version of ER modeling (Barker,
1990), or IDEF1X (Integration Defi nition 1 extended). Although the original 1993 version
of IDEF1X has a standard metamodel (NIST, 1993), we ignore it here since it is actually a
hybrid of ER and relational modeling, and its successor, IDEF1X97, also known as IDEFobject
(IEEE, 1999), has so far been largely ignored by the marketplace.

More recently, Unifi ed Modeling Language (UML) class diagrams (OMG, 2003) and
the Object-Role Modeling (ORM) approach (Halpin, 2001a) have also gained popularity for
information modeling. Following its adoption by the Object Management Group (OMG),
the UML is now the de-facto standard in industry for object-oriented code design. ORM is
a fact-oriented approach that can be used as a conceptual front-end to attribute-based ap-
proaches such as ER and UML, and is currently being considered by the OMG’s Business
Rules Special Interest Group as a candidate for business rule modeling at the computation-
independent level.

A modeling language can be specifi ed by a metaschema, which is a schema that indicates
the grammatical structures to which any application schema formulated in the modeling
language must conform. Strictly, a model is the union of a schema (structure) and a popula-model is the union of a schema (structure) and a popula-model
tion of instances (e.g., objects or facts that instantiate the information-bearing structures in
the schema). A metaschema supplemented by structures to capture specifi c populations is a
metamodel. In practice, the term “metamodel” is sometimes loosely used as a synonym for
“metaschema”. While published metamodels for UML (OMG, 2001, 2003) have been widely
debated, and many suggestions have been made to improve UML (e.g., see Siau & Halpin,
2001), it is diffi cult to fi nd any in-depth analysis of metaschemas for the other approaches.
This paper provides new metaschemas for two ER approaches (IE and Barker) as well as
ORM to reveal their commonalities and differences, and to address modeling issues such
as the use of derived associations and the virtues of orthogonality. UML has been examined
previously (e.g., Halpin & Bloesch, 1999; Halpin, 2001b) and is quite complex; hence only
an incomplete analysis of its metamodel for data modeling is given here. For a detailed
comparative evaluation of all the methods, including IDEF1X, see Halpin (2001a).

The next section of this chapter provides a metaschema and related discussion of the
IE notation. The two sections after that metamodel the Barker ER and ORM approaches,
respectively. We then evaluate the different approaches to multiplicity in UML, ER and
ORM. Some other aspects of the UML metamodel are then discussed. The fi nal section
summarizes the main contributions, notes some advantages of an attribute-free modeling
approach, and lists references for further reading.

INFORMATION ENGINEERING
The Information Engineering approach was originated mainly by Clive Finkelstein, Information Engineering approach was originated mainly by Clive Finkelstein, Information Engineering

who developed a modeling procedure for the notation and extended IE to Enterprise En-
gineering (EE). Finkelstein (1998) provides an overview of IE with further details on his
website (www.ies.aust.com/~ieinfo/). The IE notation was later adapted by Martin (1993).
Although Martin’s recent books favor the UML notation, IE is still used far more exten-
sively for database design than UML, which is mostly used for object-oriented code design.
Different versions of IE exist, with no single standard. In one form or another, IE has long

Comparing Metamodels for ER, ORM and UML Data Models 25

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

been supported by many data modeling tools, and its simple, intuitive notation has helped
it become very popular for database design in industry.

The IE approach depicts entity types as named rectangles. Attributes are often displayed
in a compartment below the entity type name, but are sometimes displayed separately (e.g.,
bubble charts). Some versions support basic constraints on attributes. For example, an
attribute that is part of its entity type’s primary identifi er might be underlined, and manda-
tory attributes might be bolded. Although no standard notation exists for these constraints,
they are included in our metaschema. The Employee entity type in Figure 1(a) provides a
simple example.

Relationships are typically binary only, shown as named lines connecting the entity
types. IE usually allows only one reading per association, which must be read left-to-right or
top-to-bottom. The line itself corresponds to a binary, logical predicate, and the line reading
to predicate text (e.g., “occupies”). A relationship reading is formed by inserting the entity predicate text (e.g., “occupies”). A relationship reading is formed by inserting the entity predicate text
type names at the start and end of the predicate text (e.g., “Employee occupies Room”).
A half-line or line-end corresponds to a role in ORM (or association end in UML). In this
chapter, we use “role” exclusively to mean “association end”. To avoid confusion with other
kinds of relationships, we use “binary association” for a binary relationship type.

To indicate that a role is optional, a circle “” is placed at the other end of the line,
signifying a minimum multiplicity (participation frequency) of 0. To indicate that a role is
mandatory, a stroke “|” is placed at the other end of the line, signifying a minimum mul-
tiplicity of 1. A crow’s foot is used for a maximum multiplicity of “many”. In conjunction
with a minimum multiplicity of 0 or 1, a stroke “|” may be used to indicate a maximum
multiplicity of 1. So the combination “|” indicates “at most one” and the combination “| |”
indicates “exactly one”.

For example, in Figure 1 the constraints on the association Employee occupies Room
specify that each employee occupies exactly one room, and that each Room is occupied by
zero or more employees. Some IE notations assume a maximum cardinality of 1 if no crow’s

Figure 1: (a) A sample, incomplete IE model; (b) The 4 multiplicity patterns

26 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

foot is used, and hence use just a single “|” for “exactly one”. In contrast to our convention,
Finkelstein uses the combination “|” to mean “optional but will become mandatory”, which
is really a dynamic rather than static constraint—this is excluded from our metaschema.

Some IE versions support an exclusive-or constraint, shown as a black dot connecting
the alternatives. Figure 1 depicts the situations where each employee holds a citizenship card
or a work visa, but not both. Underlying this example, there are two associations: Employee
holds CitizenshipCard; Employee holds WorkVisa. The exclusive-or constraint applies to the fi rst
roles of these two associations. Although the roles spanned by this constraint are individu-
ally optional, their disjunction is collectively mandatory. This is misleadingly depicted by a
minimum multiplicity of 1 on the roles at the other end, where the pattern appears as “1 1”
or “1 n”, although it actually means “0 1” or “0 n” individually. This practice prevents the
use of the notation from being adapted to cover simple exclusion constraints.

Our metaschema (see later) assumes predicate readings are allowed after the dot. If
the predicate reading must be displayed before the dot, the xor constraint can apply only
to roles from associations with the same predicate text. In that case, we can’t express an
xor constraint such as: each Employee drives a Car or catches a Bus but not both. This
restriction does not apply to Barker ER, UML, or ORM. In IE (and Barker ER) the same
association role may be spanned by at most one exclusive-or constraint. This restriction
does not apply to ORM or to UML.

Subtyping schemes for IE vary. Sometimes Euler diagrams are used, adding a blank Subtyping schemes for IE vary. Sometimes Euler diagrams are used, adding a blank Subtyping
compartment for “Other”. Sometimes directed acyclic graphs are used, possibly including
subtype relationship names and multiplicity constraints (e.g., MaleEmployee and FemaleEm-
ployee in Figure 1). There is no formal support for subtype defi nitions. Multiple inheritance
may or may not be supported, depending on the version.

All our metaschemas use the notation of ORM, a conceptual modeling method that
views the world as a set of objects (entities or values) that play roles (parts in relationships,
which may be unary, binary or longer). For example, you are now playing the role of being
awake (a unary relationship involving just you), and also the role of reading this chapter (a
binary relationship between you and this chapter). An entity in ORM corresponds to a non-
lexical object (e.g., a country), and a value to a lexical object (e.g., a country code). A role
in ORM is a part played in an association, which may be unary, binary or n-ary. The main
structural difference between ORM and ER or UML is that ORM excludes attributes as a
base construct, treating them instead as a derived concept. For example, Person.birthdate is
modeled in ORM using the fact type: Person was born on Date. For an overview of ORM see
Halpin (1998a; 1998b), and for a detailed treatment see Halpin (2001a). For an in-depth
discussion of how ORM is implemented in a Microsoft tool, see Halpin, Evans, Hallock,
and MacLean (2003). Many technical discussions of ORM variants are available (e.g., De
Troyer & Meersman, 1995; ter Hofstede, 1993; ter Hofstede, Proper, & Weide, 1993).

An ORM metamodel for IE is shown in Figure 2. Entity types are shown as named ellipses,
and must have a reference scheme, i.e., a way for humans to refer to instances of that type.
Simple reference schemes may be shown in parenthesis (e.g., “(name)”), as an abbreviation
of the relevant injective association, e.g., EntityType has EntityTypeName. Value types need
no reference scheme, and are shown as named, dashed ellipses. A predicate is shown as an
ordered set of one or more role boxes, together with at least one predicate reading. Here we
have two unary associations (e.g., Attribute is mandatory) and several binary associations,
for which readings in both directions may be shown, separated by a slash “/”.

Comparing Metamodels for ER, ORM and UML Data Models 27

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

For each association, or fact type, a sample fact table may be added to help validate
the constraints. Each column in a fact table is associated with one role. The arrow-tipped
bars are internal uniqueness constraints, indicating which roles or role combinations must
have unique entries. A black dot on a role connector indicates the role is mandatory for
its object type. For example, the uniqueness and mandatory constraints on the association
Attribute has AttributeName in Figure 1 verbalizes respectively as: each Attribute has at
most one AttributeName; each Attribute has at least one AttributeName. ORM schemas
may be represented in diagrammatic or textual form, and tools such as Microsoft Visio for
Enterprise Architects provide automatic transformation between the two representations
(Halpin et al., 2003).

The metaschema in Figure 2 assumes a closed world approach for the unary predicates
(e.g., if an attribute is not recorded to be mandatory, then it is known to be optional). It also
assumes that primary identifi er attributes must be mandatory—this is captured by the subset
constraint (circled “⊆”), which indicates that the population of the lower role must be a
subset of the upper role (i.e., if an attribute is a primary identifi er component then it must
be mandatory). The external uniqueness constraint (circled “u”) indicates that an attribute
may be identifi ed by combining its unqualifi ed name with its entity type.

For convenience, roles (association ends) and associations are identifi ed by numbers
(whose display is normally suppressed). Roles could also be identifi ed by their position
within a standard ordering of an association. Association names are catered for by attaching

Figure 2: An ORM metaschema for IE

28 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

the predicate text to the role from which the association is read. Equality constraints shown
as a circled “=” may also be depicted by a dotted line with arrow-tips at both ends. The
fact types Role has minimum- Multiplicity and Role has maximum- Multiplicity use a hyphen
to bind the adjective to the object type term for constraint verbalization. So the uniqueness
and mandatory constraints verbalize as: each Role has exactly one minimum Multiplicity;
each Role has exactly one maximum Multiplicity.

In our metaschema, each association role must be annotated by one of the four frequency
patterns shown in Figure 1(b). The minimum frequency must be 0 or 1, and the maximum
frequency must be 1 or many (denoted here by “n”). These constraints are depicted here
as role value constraints {‘0’, ‘1’} and {‘1’, ‘n’} beside the relevant roles. Alternatively,
this situation may be modeled with object value constraints by using the fact types: Role
has MinimumMultiplicity {‘0’, ’1’}; Role has MaximumMultiplicity {‘1’,’n’}. But this alternative
makes it awkward to compare minimum and maximum multiplicities, since this must now
be done at the lexical level.

Each xor constraint is identifi ed by a constraint number. The “≥ 2” frequency constraint
on XorConstraint spans OptionalRole requires each xor constraint to span at least two roles.
The subtype OptionalRole is introduced to ensure that only optional roles may be spanned
by xor constraints. A role is optional if it is possible that some instances of its object type’s
population do not play the role—this is the same as an optional role in ORM. A formal sub-
type defi nition is specifi ed textually in FORML (an ORM formal constraint language): this
refers to the actual minimum multiplicity (0), not the multiplicity displayed (1). If relevant,
further restrictions on the constrained roles (e.g., they must belong to associations with the
same predicate text) may be formally specifi ed in an ORM textual language such as FORML
or ConQuer (Bloesch & Halpin, 1997).

Subtyping is modeled by the meta-association EntityType is a subtype of EntityType. This
allows for multiple inheritance, as well as incomplete sets of subtypes. Single inheritance
may be enforced by strengthening the uniqueness constraint to apply to just the fi rst role
(so the association becomes n:1). If more than one subtype must be introduced, this can be
enforced by adding the frequency constraint “≥ 2” to the second role. The Oac,it annotation
declares the subtyping association to be acyclic and intransitive, allowing only direct, proper
subtype connections.

The association XorConstraint is over EntityType is derived (as indicated in ORM by
an asterisk). By default, ORM predicates are read top-down or left-to-right. A “<<” symbol
reverses this reading direction. ORM allows derivation rules to be specifi ed graphically or
textually. Here, the derivation rule is expressed graphically by the equality constraint (circled
“=”) between the derived association and the indicated projection on the XorConstraint and
EntityType roles. The derivation rule verbalizes formally as: XorConstraint is over EntityType
if XorConstraint spans if XorConstraint spans if an OptionalRole that is a Role that is played by EntityType. Normally
all constraints on a derived association should themselves be derivable. However, in this
case, the uniqueness constraint on the derived association is not derivable. This is shown
by displaying the constraint in bold (and red for colored displays).

The uniqueness constraint on the derived association asserts: each XorConstraint is
over at most one EntityType (i.e., the roles governed by the constraint must be played by
the same entity type). Conceptually, extra constraints on derived associations are enforced
by fi rst materializing the association, and then applying the constraint as a base association.
Although this practice is unusual in most applications, it is quite common in metamodeling ap-
plications to encounter rules that are most conveniently expressed in derived associations.

Comparing Metamodels for ER, ORM and UML Data Models 29

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The use of non-derived uniqueness constraints on derived associations raises normal-
ization concerns, since any uniqueness constraint is equivalent to a functional dependency
(FD). For example, applying ORM’s Rmap relational mapping algorithm (Halpin, 2001a)
to the conceptual schema in Figure 2 leads to this relation scheme for Role:

Relation schemes for Attribute, Subtyping, and BinaryAssociation, and various inter-
relation constraints are also created by Rmap, but are omitted here. The primary key is
underlined, optional columns are enclosed in square brackets, attribute domain constraints
are listed in braces, and the subtyping and frequency constraints are expressed by numbered
qualifi cations.

The normalization issue in question is the functional dependency from the attribute
xorConstraintNr to the attribute entityTypeName, depicted by the arrow shown. Since xor-
ConstraintNr is optional, this FD means that each non-null value recorded for xorConstraintNr
determines exactly one value for entityTypeName. Since this embedded, partial FD is not
implied by the primary key constraint, this might be considered to violate normalization
principles. We could enforce the partial FD constraint by materializing a relation scheme
XorConstraint(xorConstraintNr, entityTypeName) and setting up a pair-equality constraint
between this and the projection Role[xorConstraintNr, entityTypeName]. But in practice it is
better to simply enforce the partial FD within the Role table itself. With today’s relational
DBMSs, this can be easily and effi ciently done. For example, the following general form
of the constraint can be simplifi ed further for individual inserts or updates (e.g., within an
insert/update trigger):

check(not exists
 (select xorConstraintNr from Role

where xorConstraintNr is not null
 group by xorConstraintNr

having count(distinct entityTypeName*) > 1))

Since the FD here is partial (applies only to non-null values within an optional attri-
bute), it is not covered by classical normalization theory. Moreover, no redundancy of base
facts is involved, and the derived redundancy for the derived fact type XorConstraint is over
EntityType is controlled by the above constraint, so no update anomaly can occur. Since
such constraints can also be effi ciently implemented, this licenses denormalization arising
from non-derived uniqueness constraints on derived fact types.

BARKER ER
The term “Barker ER notation” denotes the notation for Entity Relationship modeling

discussed in the classic treatment by Richard Barker (1990). Originating at CACI in the
United Kingdom, the notation was later adopted by Oracle Corporation in its CASE design

30 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

tools. Although Oracle now supports UML class diagrams as an alternative to the traditional
ER notation, for database applications many modelers still prefer the Barker notation. A
representative sample model is shown in Figure 3.

Entity types are shown as named, soft rectangles with their attributes listed inside.
A “*” or “o” before an attribute indicates that it is mandatory or optional, respectively. A
“#” before an attribute indicates that is the primary identifi er for the entity type, or at least
part of the primary identifi er. All associations are binary, and are denoted by named lines.
Forward and inverse predicate readings may be supplied at the line end from which they
are to be read.

Each line-half depicts one of the two roles in the association. Like ORM, Barker ER
separates the concepts of optionality and cardinality. If the line-half is solid, this usually
means the role is mandatory. If the line-half is broken, this always means the role is optional.
The cardinality of a role is assumed to be 1 unless a crow’s foot is used (indicating many).
In Figure 3, for example, each invoice is issued to exactly one person, and each person is
issued zero or more invoices.

The Barker notation uses an exclusive-arc to declare an exclusion constraint over a
set of roles played by the same object type. If the roles have solid lines, the roles are also
disjunctively mandatory. For example, in Figure 3 each line item is for a product or service
but not both (xor), and each person is allocated at most one of the bus pass and parking bay
options (possibly neither, so this is simple exclusion).

In a complete model, each entity type must have a primary identifi cation scheme in-
volving one or more attributes (marked #) or roles (marked by a stroke “|” across the role
line). For example, in Figure 3 a building is identifi ed by its building number, and a room is
identifi ed by combining its local room number with the fact that it is in a given building.

Figure 3: A sample model in Barker ER notation

Comparing Metamodels for ER, ORM and UML Data Models 31

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Barker ER also supports a restricted form of disjunctive reference, since the roles of a
mandatory exclusive arc can be used in an identifi cation scheme. In Figure 3, for example,
a line item is identifi ed by combining its invoice with either a product code or a service
code.

Subtyping is depicted by Euler diagrams. Only single-inheritance is allowed (each
subtype has only one supertype). Moreover, the union of the subtypes must equal the super-
type, even if this requires an artifi cial subtype such as “Other” to ensure this. In Figure 3,
MalePerson and FemalePerson form a partition of Person (i.e., they are mutually exclusive,
and also they collectively exhaust their supertype).

A dynamic constraint denoted by a diamond marks a role as “non-transferable”. For
example, the diamond in Figure 3 indicates that once a person is recorded as being born in
a given country, their birth-country cannot be changed to another country. Since we usually
wish to allow editing of mistaken entries, this constraint has limited practical use except
for tasks such as auditing.

Figure 4: An ORM metaschema for Barker ER

32 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

An ORM metamodel for Barker ER is shown in Figure 4. Entity types are identifi ed
by name, and attributes are identifi ed by combining their name with their entity type. Value
constraints on domains and attributes are specifi ed as shown. Here the subset constraint
(circled “⊆”) is applied between role-pairs, the fi rst pair being projected from a join path. This
constraint verbalizes thus: if a Domain hosts an Attribute that has a possible Value then that
Domain has that possible Value. ORM allows set-comparison constraints (subset, equality
or exclusion) to apply between sequences of compatible roles, where a role sequence can
be projected from a join path (the act of moving through an object type performs an object
join). For a detailed discussion of join constraints in ORM, see Halpin (2002).

Roles and associations are identifi ed by numbers (whose display is normally sup-
pressed). It is unclear whether the Barker notation allows both roles in the same association
to have the same predicate text (e.g., for a symmetric association). If it doesn’t allow this,
we could also identify a role by combining its predicate text with its association (add the
relevant external uniqueness constraint). Roles could also be identifi ed by their position
within a standard ordering of an association: this could be expressed as two binaries, as in
Figure 2 (Role starts BinaryAssocation, Role ends BinaryAssociation) or by co-referencing
Role has Position and Role is in BinaryAssociation.

Subtyping is specifi ed by the acyclic association EntityType is a subtype of EntityType.
The frequency constraint (≥ 2) ensures that each supertype has at least two subtypes. The
uniqueness constraint makes the association many-to one, so it enforces single inheritance.
This uniqueness constraint also implies that subtyping is intransitive, so an intransitivity
constraint is omitted.

All unary predicates satisfy the closed world assumption. Optionality of attributes, roles
and exclusive arcs is captured using the unary predicate “is mandatory”. Non-transferability
is modeled with the predicate “is non-transferable”.

The basic cardinalities are captured by the unary predicate “is multi-valued”: if true, the
cardinality is many (displayed as a crow’s foot); if false, the cardinality is 1. A cardinality of
many may be qualifi ed with a number and operator as shown. Further restrictions that apply
to number-operator combinations are omitted here (e.g., “=” requires a number > 1).

Primary identifi er components are specifi ed using an “is a primary id component”
predicate. The subset constraints between these unaries ensure that only mandatory elements
can be components of a primary identifi er. Barker ER allows both xor and simple exclusion
constraints. An xor constraint is modeled as an ExclusiveArc that is mandatory—its roles,
though optional, are depicted by solid lines. A simple exclusion constraint is an Exclu-
siveArc that is optional (not mandatory)—its roles are depicted by dashed lines. Applying
is mandatory and is a primary id component directly to ExclusiveArc ensures that solid lines is a primary id component directly to ExclusiveArc ensures that solid lines is a primary id component
and identifi cation strokes are distributed uniformly to the spanned roles (these properties
cannot apply to just some of the spanned roles). The subtype defi nition and additional notes
at the bottom of Figure 4 are self-explanatory.

For readers who prefer the Barker ER notation to ORM, Barker (1990, p. H-2) presents
a basic ER metamodel for Barker ER. Although mostly correct, it is substantially incomplete
(e.g., it ignores various features, constraints and identifi cation schemes), and also contains
errors (e.g., it allows alternate keys but not overlapping keys, and it forbids any value from
belonging to both a domain and an attribute population).

Comparing Metamodels for ER, ORM and UML Data Models 33

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ORM
Figure 5 shows part of a simplifi ed ORM metaschema for ORM. As for our metaschemas

for IE and Barker ER, we have simplifi ed naming schemes by assuming the metaschema
can be instantiated by just one model at a time (ignoring reuse of model components across
multiple models), and by ignoring namespaces within a model. The populatable types are
object types (e.g., Person, Country), fact types (e.g., Person was born in Country), and roles
(e.g., being born in a country). The main kinds of business rules are constraints (e.g., each
Person was born in at most one Country), derivation rules (e.g., FactType.arity = count
each Role that is in FactType), and subtype defi nitions (e.g., each MalePerson is a Person
who is of Gender ‘M’). In addition to having surrogate identifi ers, object types have names,
fact types have readings (verbalizations) derived by concatenating object type names with
predicate readings (see later), roles may have names (see later), and business rules have
names and verbalizations.

The subtype defi nitions below the diagram formally defi ne each subtype in terms of
roles played by their supertype. If subtypes collectively exhaust their supertype, this may
be displayed as a circled dot. If subtypes are mutually exclusive, this may be displayed as
a circled “X”. These subtyping completeness and exclusion constraints may be overlaid to
form a “lifebuoy” or partition symbol, as shown. In ORM, such subtyping constraints are
derivable from formal subtype defi nitions and other constraints. Subtypes and derived fact
types should be well defi ned by rules. To save space, some obvious subtype defi nitions may
be omitted from now on.

Figure 5: ORM metaschema fragment for ORM populatable types and business rules

34 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Figure 6 shows another fragment of the ORM metschema. An object type either is
primitive or is a subtype. A primitive object type is independent if its instances can exist
independently of playing any role in a fact type. Subtyping in ORM allows multiple inheri-
tance (e.g., AsianWoman may be a subtype of both AsianPerson and Woman, each of which
is a subtype of Person). Subtypehood is acyclic and intransitive.

An object type is also either non-lexical (entity type) or lexical (value type). A nested
entity type is an entity type constructed by objectifying a fact type. For example, the fact
type ObjectType is a subtype of ObjectType has been objectifi ed as SubtypeConnection.
Treating the nested object type as distinct from its source fact type allows a single inheri-
tance implementation of this part of the type hierarchy. Alternatively, a nested entity type

Figure 6: Metaschema fragment for main ORM object types and fact types

Comparing Metamodels for ER, ORM and UML Data Models 35

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

could be defi ned to be both an entity type and a fact type, or all fact types could be defi ned
to be object types. If an unnested entity type has a simple reference scheme (e.g., Country
has CountryCode), this may be abbreviated by displaying a reference mode (e.g., Code) in
parentheses the object type name. Reference modes may be classifi ed into different kinds to
control the automatic expansion of a reference mode to its underlying relationship type.

Figure 7 shows one way to metamodel naming of fact types, predicates, and roles in
ORM. To save space, derivation rules are omitted. The arity of a fact type is its number of
roles, so it is derivable. ORM fact types may be of any arity: unary (e.g., Person smokes),
binary (e.g., Person drives Car), ternary (e.g., Person imported Car from Country), and so
on. As in logic, a predicate corresponds to an ordered set of roles covering a single fact
type; hence each predicate provides one way to traverse the roles of a fact type. Fact types
themselves are essentially unordered, but must have at least one predicate defi ned. Each
predicate is identifi ed by a surrogate identifi er, not by a name, since different predicates may
have the same name (e.g., “has”). Each role is identifi ed by a surrogate identifi er, and also
has a unique position within its predicate. A role may also be given a name (e.g., “player”).
Within a given fact type, the same role name may apply to at most one role (unless the fact
type is declared symmetric; e.g., Person is sibling of Person). Globally the same role name
may appear in different fact types. Roles in the same fact type are co-roles of one another. A
role is a far role of an object type if and only if it has a co-role that is played by that object
type. To ensure that role path specifi cations are unambiguous, we require that for any given
object type, the names of its far roles must be distinct unless the fact type has been declared
symmetric (textual rule 1).

Each fact type may be regarded as an unordered set of roles, with one or more ways to
traverse its roles. For example, given the fact type comprised of the role set {r1, r2, r3}, we
might traverse its roles in the order (r1, r2, r3) or the order (r1, r3, r2), etc. Since a traversal
corresponds to a permutation (or ordered set) of the roles in the fact type, each fact type
with n roles (n > 0) may have up to n! traversals declared by the user. Each such traversal
has at least one reading (we allow multiple readings to cater for aliases). The join-equality
constraint (circled “=”) indicates that the sets of (role, predicate) pairs projected from the

Figure 7: Naming of roles, predicates, and fact types in ORM

36 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

two arguments of the constraint must be equal. This ensures that a fact type traversal includes
all and only those roles in the fact type.

A fact type reading may be derived by inserting the names of its object types into the
placeholders in one of its predicate readings. The non-derived uniqueness constraint on
FactTypeReading is of FactType ensures that a fact type reading provides a value-based
way to identify a fact type. Let p1 = (r1, r2, r3) denote the predicate underlying the fact
type read as Person has Rank in Sport when the roles are traversed in the order (r1, r2, r3). In
this case, the predicate reading is “… has … in …”. The alternative fact type reading Person
in Sport has Rank uses the predicate reading “in Sport has Rank uses the predicate reading “in Sport has Rank … in … has …” and traverses the roles in the
order (r1, r3, r2).

For modeling, one reading is enough for each fact type. For conceptual queries that
navigate via predicate readings, n readings are suffi cient (one staring at each role). This
metaschema goes well beyond what is suffi cient, allowing users complete freedom to express
fact types in as many ways as they wish. Although the metaschema for fact type readings
appears complex, the user experience is simple and fl exible, since users can specify any
convenient reading depending on how they want to navigate through n-aries. If a less-user
friendly approach is adopted, where only one reading per n-ary is allowed, the metaschema
can of course be drastically simplifi ed.

Figure 8: A basic metaschema for ORM constraints

Comparing Metamodels for ER, ORM and UML Data Models 37

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Figure 8 shows a basic metamodel for most of the ORM constraints. Space limitations
prevent a treatment of all ORM constraints. For simplicity, subtype defi nitions as well as
several textual constraints are omitted (e.g., each mandatory or ring constraint applies to
compatible roles).

The fact type UniquenessConstraint identifi es EntityType is required because ORM re-
quires each entity type to have a value-based identifi cation scheme for human communication.
In a complete model, each entity type has an identifi cation scheme based on a uniqueness
constraint that spans a far role of one of its binary associations. If the uniqueness constraint
is external, at least two associations are involved. For these reference associations, the
entity type’s near roles must be functional (simple uniqueness constraint) and disjunctively
mandatory. Hence ORM supports disjunctive reference in its most general form, going well
beyond the Barker ER notation in this regard. For a practical example based on botanical
naming, see Halpin (2001a).

Industry experience indicates that the additional constraints captured graphically in
ORM often occur in practical database application domains. ORM constraints are essentially
role-based, and so is the ORM constraint notation. Since each role of a fact type corresponds
to a column in a sample fact table, the constraints can easily be understood and validated
using sample populations. Moreover, tool support enables the constraints to be automati-
cally verbalized in a variety of natural languages, which also facilitates model validation
with the domain expert.

Figure 9 provides further details of constraints that involve role projections. A role
projection is a particular occurrence of a sequence of roles projected from a path through
the conceptual schema, for use in specifying a specifi c business rule. For pragmatic reasons,
metamodels often involve occurrences, rather than relying on extensional uniqueness for
identifi cation. For example, two different role projections involved in different constraints
may in fact project over the same roles, but will have different surrogate identifi ers because
they are different occurrences. This allows us to modify one of the occurrences without
impacting the other.

Figure 9: A more detailed look at constraints involving role projections

38 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

In the metamodel fragment of Figure 9, role occurrences are used for constraints that
may potentially involve a conceptual join. A conceptual join occurs when passing through
an object type while navigating a conceptual schema. The join requires that the object play-
ing the entry role to the object type is the same object playing the exit role when leaving
the object type, and may be an inner or outer join. Join constraints in ORM apply to role
projections over paths that may involve one or more conceptual joins, and special care is
needed to disambiguate the role paths, as discussed by Halpin (2002).

ORM constraints are orthogonal, both semantically and syntactically, making it easier to
master the constraint language. For example, Figure 10(a) shows a simple exclusion constraint
(circled “X”), indicating that nobody can be allocated both a bus pass and a parking bay (and
they might be allocated neither). Figure 10(b) shows an inclusive-or constraint (circled dot),
indicating that each employee must have a social security number or a passport number (or
perhaps both). Figure 10(c) shows an exclusive-or constraint, (circled dot superimposed on
X) obtained by orthogonally combining an inclusive-or constraint with a simple exclusion
constraint, indicating that each line item must be for a product or a service but not both. In
each of these three cases, the individual roles are clearly optional.

Contrast this with the Barker ER notation for exclusive arcs in Figure 3, where the
optional roles in the xor constraint on line item appear mandatory (solid line) if taken
individually. The Barker notation is not context-free, since a solid line for a role means dif-
ferent things in different contexts. This lack of orthogonality makes the notation harder to
understand. A similar comment applies to IE. Moreover, neither Barker ER nor IE supports
the concept of an inclusive-or constraint at all—in fact, their choice of notation for xor
prevents an intuitive extension to their constraint language for this case.

As another example of orthogonality, ORM constraints may be applied wherever they
make sense. For example, the notion of mutual exclusion applies between compatible roles,
or between compatible role-pairs, etc. As a simple example, Figure 10(d) shows an exclusion
constraint between Person-Book pairs (nobody who wrote a book may review that same
book). Although the exclusive arc in Barker ER does enable a simple exclusion constraint

Figure 10: Constraint orthogonality

Comparing Metamodels for ER, ORM and UML Data Models 39

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

between roles to be expressed, it does not allow exclusion between sequences of more than
one role. Again, the arc notation itself is not intuitively extensible for this case.

Recall that a model is a schema (structure) plus a population (set of instances). Figure
11 adds a metafragment to expand an ORM metaschema to an ORM metamodel. Sample
populations may be provided for object types (see top ternary) and roles (see bottom ternary).
Fact types are populated by populating all their roles with the same number of values. The
position indicates a row number of the instance table.

MULTIPLICITY IN ER, ORM AND UML
Earlier papers (Halpin & Bloesch, 1999; Halpin, 2001b) provided a detailed compari-

son between the data modeling constructs in ORM and UML, and indicated how the UML
metamodel (OMG, 2001; 2003) could be extended to capture some of ORM’s additional
graphical constraints. Like IE and Barker ER, UML’s graphic notation is far less expres-
sive for data modeling than ORM. In addition, the notion of multiplicity or cardinality in
UML and these two versions of ER is problematic when it comes to n-ary associations. As
background to this claim, let’s review the binary association case fi rst. Figure 12 depicts a
mandatory, n:1 association in all four notations. The UML multiplicity “*” is short for “0..*”
(zero or many) and “1” abbreviates “1..1” (exactly 1).

UML and IE specify minimum and maximum multiplicities at the far end in which the
association is read. Barker ER and ORM treat optionality (whether the role is mandatory or
optional for each population instance of its object type) as a separate concept. Barker ER
places maximum multiplicity on the far role, while ORM uses a uniqueness constraint (or
more generally a frequency constraint) on the immediate role(s) to indicate the number of
times an instance may occur, if it occurs there at all. ORM constraint notations are designed
to assist validation by population, so the uniqueness constraint entails that entries in its fact
column are unique, as in Figure 12(e).

Mandatory role constraints have global impact since they impact the object type,
whose population may be spread over roles in many predicates. Uniqueness and frequency
constraints have only local impact since they constrain the fact type population only. This
separation of local and global concerns leads to greater orthogonality and expressibility
once ternary or longer associations are used.

Given an n-ary association (n > 2), UML’s multiplicity notation cannot express a
mandatory role constraint on any association that has between 1 and n−2 mandatory roles,

Figure 11: Modeling instances in ORM

40 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

nor can it capture a minimum occurrence frequency above 1 for any sequence of fewer
than n−1 roles. This is because multiplicity on one role is defi ned in terms of the other n−1
roles. This is fi ne for binary associations, where n−1 = 1, but not for ternaries and beyond.
For example, none of the mandatory role or frequency constraints expressed in Figure 13
can be graphically expressed in UML (or IE or Barker ER, for that matter). For practical
examples of such constraint patterns, see Halpin (2001b). This weakness stems from plac-
ing multiplicities on a “far” end of an association rather than directly on the determining
roles, and confl ating global and local aspects in the same concept. Considerable care is
required in choosing constraint primitives if the modeling notation is to scale properly to
n-ary associations.

Figure 12: A mandatory n:1 association in (a) UML, (b) IE, (c) Barker ER, and (d) ORM

Figure 13: Some mandatory and frequency constraints with no graphic equivalent in IE,
Barker ER or UML

Comparing Metamodels for ER, ORM and UML Data Models 41

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

SOME OTHER ASPECTS OF
THE UML METAMODEL

UML class diagrams include many object-oriented implementation features, such as
attribute visibility and association navigability, and hence they surpass ER or ORM diagrams
for detailed design of object oriented code (e.g., Java or C# programs). However, UML class
diagrams currently lack standard notations for value-based identifi cation schemes (e.g.,
uniqueness constraints on attributes, and external uniqueness constraints between associa-
tion roles and/or attributes). This omission makes them less suitable for conceptual analysis,
because business people do communicate using such identifi cation schemes.

Figure 14 shows a fragment from the metamodel for the recently approved UML 2.0
(OMG, 2003). Roughly, a UML association corresponds to a fact type in ORM, and an
association end (here called “memberEnd”) corresponds to an ORM role. However, UML
associations must have at least two roles, so unary fact types need to be modeled in other
ways (e.g., using Booelan attributes or subtypes). This typically leads to formulations that
are less natural than unary sentences. For example, the fact instance that may be expressed
in ORM as “Person ‘Sam Spade’ smokes” would typically be rendered awkwardly in UML
as “SamSpade: PersonSamSpade: Person.isSmoker = true”. So while UML surpasses IE or Barker ER in its
ability to model n-ary associations directly, its lack of support for unaries still impedes
natural communication. Hopefully this restriction will be removed in some future version
of UML.

Figure 14: UML associations have two or more association roles

Figure 15: Exclusive-or constraints in ORM and UML

42 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The ORM constraint notation is unambiguous and orthogonal. UML constraints don’t
always meet these criteria. As a simple example, consider the exclusive-or constraint in
Figure 15(a). This verbalizes in ORM as: each Vehicle was purchased from a Company or
leased from a Company but not both. In ORM, an exclusive-or constraint is an orthogonal
combination of an inclusive-or constraint (circled dot) and an exclusion constraint (circled
X), and may even be displayed as these two separate constraints if desired, as shown in Figure
15(b). Although UML lacks both an inclusive-or constraint and an exclusion constraint, it
does include an exclusive-or constraint as a primitive constraint, using the notation “{xor}”.
Unfortunately, the UML metamodel defi nes the xor constraint to apply between associa-
tions, not association ends. This leads to ambiguity when two roles are played by the same
class. For example, the xor constraint in Figure 15(c) is ambiguous, because formally we
have no way of knowing whether it means the constraint verbalized earlier, or the constraint
that each Company sold a Vehicle or leased a Vehicle but not both. Such constraints may
be disambiguated by adding an OCL expression (Warmer & Kleppe, 1999), but clearly the
metamodel should be altered to avoid such ambiguity in the fi rst place.

There are several other aspects of the UML metamodel that need improving to make
it more suitable for conceptual analysis. For example, associations should allow multiple
readings, and association classes should be able to be named using noun phrases distinct
from the verb phrases used for their underlying association. In spite of such problems, UML
is clearly superior to both ER and ORM for the detailed design of object-oriented code. Each
of the methods discussed in this chapter has its own strengths and weaknesses.

CONCLUSIONS
The ORM metamodels provided for IE, Barker ER and ORM clarify commonalities

and differences between the different data modeling notations. The use of non-derived con-
straints on derived fact types can be convenient, especially for expressing complex rules,
so long as the usage is controlled. Exclusive-or constraint notations in IE and Barker ER
are unorthogonal. The UML, IE and Barker ER approaches use multiplicity notations that
do not scale properly for n-ary associations.

ORM was designed for orthogonality and expressibility from the ground-up. The most
debatable aspect of ORM is that it avoids attributes in its base conceptual models, though
attribute-based models can be automatically derived from ORM models when desired
(Campbell et al., 1996). Combined with its richer constraint language, this tends to make
ORM diagrams larger than corresponding models in the other notations. This disadvantage
is a price many modelers are willing to pay to see the extra detail and domain connected-
ness. One advantage of ORM’s role-based approach is that its small set of metaconcepts
and syntactical elements can specify a wide range of rules in a uniform way. In contrast,
attribute-based approaches often lose expressibility if fact types are modeled as attributes
instead of associations. For example, xor constraints in IE, Barker ER or UML can be ap-
plied only between association roles, not between attributes or between roles and attributes.
There is no reason in principle for this restriction, but pragmatically to remove such restric-
tions would add considerable complexity, requiring additional notations and metarules. The
same comment applies to the many additional kinds of constraint supported in ORM. This
suggests that the only effi cient way to achieve such expressibility without complexity is to
adopt an attribute-free approach, as in ORM.

Comparing Metamodels for ER, ORM and UML Data Models 43

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

On the other hand, attribute-based approaches lead to more compact diagrams. By
using ORM for the initial conceptual analysis and validation with the domain expert, and
then transforming the ORM model to an attribute-based model such as an ER model or
UML class diagram, modelers can reap the benefi ts of both attribute-free and attribute-
based approaches.

REFERENCES
Barker, R. (1990). CASE*Method: Entity relationship modelling. Wokingham: Addison-

Wesley.
Bloesch, A., & Halpin, T. (1997). Conceptual queries using ConQuer-II. In D. Embley &

R. Goldstein (Eds.), Proceedings of the 16th International Conference on Conceptual
Modeling ER’97 (pp. 113-126). Berlin: Springer. Modeling ER’97 (pp. 113-126). Berlin: Springer. Modeling ER’97

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unifi ed Modeling Language user
guide. Reading: Addison-Wesley.

Campbell, L.J, Halpin, T.A., & Proper, H.A. (1996). Conceptual schemas with abstrac-
tions: Making fl at conceptual schemas more comprehensible. Data and Knowledge
Engineering, 20(1), 39-85.

Chen, P.P. (1976). The entity-relationship model—towards a unifi ed view of data. ACM
Transactions on Database Systems, 1(1), 9-36.

De Troyer, O., & Meersman, R. (1995). A logic framework for a semantics of object oriented
data modeling. In M. Papazoglou (Ed.), Proc. OOER’95: Object-oriented and entity-
relationship modeling, (pp. 238-49). Berlin: Springer-Verlag.

Halpin, T., Evans, K., Hallock, P., & MacLean, B. (2003). Database modeling with Microsoft
Visio for enterprise architects. San Francisco: Morgan Kaufmann.

Halpin, T. A. (1998a). Object Role Modeling: an overview. [Online]. Available: http://www.
orm.net/overview.html

Halpin, T. A. (1998b). ORM/NIAM Object-Role Modeling. In P. Bernus, K. Mertins & G.
Schmidt (Eds.), Handbook on architectures of information systems, (pp. 81-101).
Berlin: Springer-Verlag.

Halpin, T. A. (2001a). Information modeling and relational databases. San Francisco:
Morgan Kaufmann.

Halpin, T. A. (2001b). Supplementing UML with concepts from ORM. In K. Siau & T.
Halpin (Eds.), Unifi ed Modeling Language: Systems analysis, design, and develop-
ment issues, (pp. 167-184). Hershey, PA: Idea Group Publishing.

Halpin, T.A. (2002). Join constraints. In T. Halpin, J. Krogstie & K. Siau (Eds.), Proc. Seventh
CAiSE/IFIP-WG8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design, Toronto, Canada (pp. 121-131).

Halpin, T. A., & Bloesch, A. C. (1999). Data modeling in UML and ORM: a comparison.
Journal of Database Management, 10(4), 4-13.

ter Hofstede, A.H.M. (1993). Information modeling in data intensive domains. PhD thesis,
University of Nijmegen.

ter Hofstede, A.H.M., Proper, H.A., & Weide, th.P. van der. (1993). Formal defi nition of
a conceptual language for the description and manipulation of information models.
Information Systems, 18(7), 489-523.

44 Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

IEEE (1999). IEEE standard for conceptual modeling language syntax and semantics for
IDEF1X97IDEF1X97IDEF1X (IDEFobject)97 (IDEFobject)97 . IEEE Std 1320.2-1998. New York: IEEE.

Finkelstein, C. (1998). Information engineering methodology. In P. Bernus, K. Mertins &
G. Schmidt (Eds.), Handbook on Architectures of Information Systems, (pp. 405-427).
Berlin: Springer-Verlag.

Martin, J. (1993). Principles of object oriented analysis and design. Englewood Cliffs:
Prentice Hall.

NIST. (1993). Integration defi nition for information modeling (IDEF1X). FIPS Publication
184, National Institute of Standards and Technology. [Online]. Available: http://www.
sdct.itl.nist.gov/~ftp/idef1x.trf

OMG. (2001). OMG Unifi ed Modeling Language Specifi cation, version 1.4. [Online]. Avail-
able: http://www.omg.org/uml

OMG (2003). UML 2.0 Infrastructure. [Online]. Available: http://www.omg.org/uml
Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unifi ed Modeling Language reference

manual. Reading, MA: Addison-Wesley.
Siau, K., & Halpin, T.A. (eds.). Unifi ed Modeling Language: Systems analysis, design, and

development issues. Hershey, PA: Idea Group Publishing.
Warmer, J., & Kleppe, A. (1999). The object constraint language: Precise modeling with

UML. Reading, MA: Addison-Wesley.

Component-Based and Service-Oriented System Development Methodologies 45

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter III

An Evaluation Framework
for Component-Based
and Service-Oriented
System Development

Methodologies
Zoran Stojanovic, Delft University of Technology, The Netherlands

Ajantha Dahanayake, Delft University of Technology, The Netherlands

Henk Sol, Delft University of Technology, The Netherlands

ABSTRACT
Components-Based Development (CBD) and Web Services (WS) nowadays are prominent
paradigms for implementing and deploying advanced distributed information systems. They
have been proposed as the ways to support effective business/IT alignment and produce high
quality and fl exible software solutions that fulfi ll business goals within short time-to-market.
However, current achievements in these areas at the level of methodology are much behind
the technology ones. CBD methods proposed so far lack a comprehensive support for com-
ponent and service concepts throughout the development process. By treating components
as packages of implementation artifacts during software deployment or as larger-grained
business objects during analysis and design, these methods are not well equipped for mod-
eling loosely coupled coarse-grained components that offer business meaningful services
organized in a Service-Oriented Architecture (SOA). This chapter presents an evaluation
framework that highlights the extent to which a particular method is component-based and

46 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

service-oriented. The CBD method sample is selected and evaluated using the framework’s
concepts and requirements. Based on the evaluation, the method improvements are proposed
in order to provide consistent, systematic, and integrated CBD and WS methodology sup-
port throughout the lifecycle.

INTRODUCTION
Modern enterprises are in the fl ux of rapid and often unpredictable changes in both

business and Information Technology (IT). New business demands caused by the enterprise’s
need to be competitive on the market require an immediate support of the advanced IT solu-
tions. At the same time, new IT opportunities and achievements are constantly emerging and
must be rapidly adopted to provide new and more effective ways of conducting business.
Therefore, today more than ever it is important to provide an effective business/IT alignment
in order to produce high quality and fl exible software solutions within short time-to-market,
that as close as possible support business goals and match business needs.

During the last years, new development paradigms and models have been proposed to
support these aims. First Component-Based Development (CBD) (Brown & Wallnau, 1998),
and then Web Services (WS) and Service-Oriented Architecture (SOA) (IBM, 2003; W3C,
2003) have been introduced as the ways to build complex enterprise systems and provide
effective enterprise application integration. The CBD platforms and technologies, such as
CORBA Components, Sun’s Enterprise Java Beans (EJB), and Microsoft’s COM+/.NET are
now de facto standards in web-based systems development. On the other hand, the growing
interest in Web Services has resulted in a number of industry standards and initiatives (XML,
WSDL, UDDI, SOAP, etc.) (W3C, 2003). What they have in common is that CBD and
WS have both been fi rst introduced through new technology standards and infrastructures,
and after that corresponding methods, tools and modeling techniques have been proposed.
While the technology is a necessary element of any solution, it is not suffi cient on its own.
Methods, techniques and tools for developing component-oriented applications based on
business requirements are equally important (Welke, 1994). Such development methods
need to incorporate the concepts of component and service as an integral part of the whole
system life cycle, from business to implementation.

While there is an established development methodology practice in the case of CBD, in
the fi eld of WS and SOA, current achievements in this respect are much behind the technology
ones. The former question of how to make use of object-oriented methods and techniques in
practicing CBD is now largely replaced by whether and in what ways CBD methods can be
used in developing WS applications. Therefore, of great importance is proposing an approach
for architecting the system that consists of collaborating components and services. Such an
approach should specify the way of capturing and organizing business requirements within
the platform-independent logical system architecture that closely maps business concepts
and goals. The approach should further provide mapping of the architecture to the particu-
lar technology settings that ensures bi-directional traceability between business concepts
and implementation artifacts. This is the main idea behind the current Object Management
Group’s (OMG) Model Driven Architecture (MDA) (OMG, 2003).

Current object-oriented and component-based development methods do not provide
a necessary support for designing and developing component-based and service-oriented
business applications. Methods that have evolved from pure object-oriented backgrounds

Component-Based and Service-Oriented System Development Methodologies 47

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

have diffi culties in recognizing the fundamental nature of components, considering the
componentization aspects at the level of code packaging. By treating components as
implementation artifacts during deployment and as larger-grained business objects during
analysis and design, these methods are not well equipped for modeling loosely coupled
coarse-grained components that offer business meaningful services organized in the service-
oriented architecture.

Therefore, the main objective of this chapter is to identify the current methodological
shortcomings of the CBD methods and to present a fi rst cut of a methodology framework
for designing improved and proper CBD and SOA methods. For this reason, the chapter
is organized as follows: fi rst, an account of the current state of the CBD methods and ap-
proaches is given by describing and comparing the most prominent and well documented
CBD-methods. Based on this analysis, a framework for defi ning necessary characteristics
and requirements for an advanced CBD/WS methodology is defi ned, and the chosen method
sample is evaluated accordingly. Finally, suggestions are made regarding the ways of im-
proving the methodology towards comprehensive component-based and service-oriented
systems development support.

THE CURRENT STATE OF CBD METHODS
CBD and WS are evolutionary rather than revolutionary approaches. CBD has evolved

from “divide-and-conquer” modularization ideas and concepts in systems development
(Gartner Group, 1997; Szyperski, 1998). During the last few years, due to the rapid devel-
opment of Internet technology and commercial applications, the CBD paradigm has been
seen as the main strategic imperative for time-to-market quality solutions (Gartner Group,
1997; Butler Group, 1998). Higher productivity, fl exibility, and quality, through reusability,
replaceability, effi cient maintainability, scalability and parallel work are among the claims
and benefi ts made for CBD (Butler Group, 1998; Allen & Frost, 1998).

From a technical perspective Web Services are essentially extended and enhanced
component interface constructs. Using standards for service interoperability, such as XML
and SOAP, Web Services can provide location independent business or technical service that
can be published, located and invoked across the Web regardless of underlying technology
(IBM, 2003). Besides technology, there is a need to architect service-oriented computing
systems. Service-Oriented Architecture (SOA) is an approach to distributed computing that
considers software resources as services available on the network. A basis of SOA is the
concept of a service as a functional representation of a real world business activity mean-
ingful to the end user and encapsulated in a software solution. Using the analogy between
the concept of service and business process, SOA provides that loosely coupled service
components are orchestrated into business processes that support business goals. Similar
initiatives were already proposed in the past, such as CORBA or Microsoft’s DCOM. What
is new about SOA is that it relies upon universally accepted standards like XML and SOAP
to provide broad interoperability among different vendors’ solutions. And what is more
important, the level of abstraction is further raised, so that the main building blocks of SOA
are now real world business activities encapsulating in the services that offer business value
to the user. Component-based and Web Services technology infrastructures are the ways of
implementing the SOA.

48 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

CBD Methods and Approaches
The CBD paradigm is seen by many as a further step above the OO paradigm, resulting

in many similar concepts, principles and ideas. The similarities of objects and components
have become the focus of many discussions and studies (Szyperski, 1998). This has caused
the present introduction of course-grained objects as components in object-oriented methods
and techniques. On the other hand, the natural fi rst candidate for WS and SOA methodol-
ogy practice is using CBD methods and techniques. The question is whether current CBD
methods provide necessary concepts and mechanisms to support that. Components have
been for a long time treated mainly as binary packages of code infl uenced by the versions
1.x of the standard Unifi ed Modeling Language (UML) (Booch, Rumbaugh & Jacobson,
1999). This suggests handling components at the implementation and deployment phases of
a development lifecycle, while still following classical object-oriented modeling, analysis
and design. During the last few years, advanced CBD approaches have been proposed that
provide more sophisticated support to component concepts and mechanisms. However,
the identifi cation and specifi cation of components are still done mainly in an entity-driven
fashion, by closely matching the underlying business entities such as Customer, Product,
and Order. In this way, components are treated more in the form of business objects than
business services. For the purpose of developing modern business-driven service-oriented
systems, it is necessary to defi ne coarser-grained business components that potentially en-
capsulate several business objects and provide real world business services of a measurable
and perceivable value to the user. After the original implementation defi nition of components,
a more logical view on components has been introduced in the UML standard 1.4 and the
latest version, 1.5. The major revision of the UML (version 2.0), which is scheduled for
this year, promises further improvements in representing components as both design-level
and implementation-level artifacts.

A sample of well-published and widely used CBD methods has been chosen for analy-
sis and evaluation of the state-of-the-art of CBD methodology practice. These methods are
documented in books, on web sites, and in companion papers, in parallel with opportunities
for training and consultancy. They have been already used in practical projects and are sup-
ported by software development tools. The methods show a clear structure and guidelines
for the development lifecycle through a sequence of process steps. The following methods
will be presented and analyzed:

• Rational Unifi ed Process (Jacobson, Booch & Rumbaugh, 1999);
• Select Perspective method (Allen & Frost, 1998; Apperly et al., 2003);
• Catalysis approach (D’Souza & Wills, 1999);
• KobrA approach (Atkinson et al., 2002);
• UML Components (Cheesman & Daniels, 2000);
• Business Component Factory (Herzum & Sims, 2000).

Rational Unifi ed Process
Rational Unifi ed Process (RUP) (Jacobson et al., 1999) is a software engineering pro-

cess developed by Rational Software (now part of IBM). RUP is the direct successor to the
Rational Objectory Process (version 4), which resulted from the integration of the Rational
Approach and the Objectory process (Jacobson, Christerson, Jonsson & Overgaard, 1992)
in 1995. RUP was the fi rst process to use UML from its origin (version 0.8). RUP includes

Component-Based and Service-Oriented System Development Methodologies 49

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

development and management of the process and covers the entire software life cycle. The
RUP is very well documented in books and companion papers, and is supported by a web-
based knowledge base that provides all team members with guidelines, templates and tool
mentors for all development activities. Many training and consultancy opportunities are
available. A family of tools, produced by IBM Rational Company, is available to support
the process.

The key concept of RUP is the defi nition of activities (workfl ow) throughout the
development life cycle, such as requirement elicitation, analysis, design, implementation,
and testing. Unlike the classical waterfall process, these activities can be overlapped and
performed in parallel. Within each of the activities, there are well-defi ned stages of incep-
tion, elaboration, construction, and transition. While they occur in sequence, there may be
iterations between them until a project is complete. During the design of the solution, the
CBD support is encouraged, but it is rather declarative and implicit. RUP promotes CBD
through the use of UML and it is heavily infl uenced by UML notations and its design ap-
proach. UML takes more of an implementation and deployment perspective on components
through component and deployment diagrams. Therefore, RUP’s view on the component
concept is still at the level of physical packaging. This is illustrated by RUP’s defi nition of a
component as “a non-trivial, nearly independent, and replaceable part of a system that fulfi ls
a clear function in the context of a well-defi ned architecture. A component conforms to,
and provides the physical realization of a set of interfaces.” RUP suggests the use of UML
subsystems for modeling components without detailed explanation. It is obvious that RUP
is not specifi cally focused on component-based development. It offers a general framework
for object-oriented design and construction that can be used as the basis for other methods.
Using the UML as the basic modeling notation provides a great deal of fl exibility in system
design, but specifi c support for key component modeling concepts is lacking and limited to
the UML notation. In the light of current improvements of the UML towards the new version
2.0, RUP may adapt more complete and consistent CBD mechanisms and principles. One of
the main advantages of RUP is that it provides an opportunity for iterative and incremental
system development, which is seen as the best development practice.

Select Perspective
The Select Perspective method (Allen & Frost, 1998; Apperly et al., 2003) was created

by combining Object Modeling Technique (OMT) (Rumbaugh, Blaha, Premerlani, Eddy &
Lorenson, 1991) and Use Case driven Objectory method (Jacobson et al., 1992). After the
standardization of UML as an object-oriented modeling language, the method adopted the
UML notation. The fi rst version of Select Perspective comprised the activities of business
modeling, use case modeling, class modeling, object interaction modeling and state modeling.
With the growing interest in CBD, Select Perspective was extended with activities related
to different aspects of components—business-oriented component modeling, component
modeling of legacy assets, and deployment modeling (Allen & Frost, 1998). The latest
version of Select Perspective published recently (Apperly, 2003) provides more compre-
hensive and sophisticated support for component-based and service-oriented development.
The method is well documented in the available books, companion papers, and technical
reports. Training and consultancy support are available. A family of component-based tools
includes Component Factory, Component Architect, Component Manager, code generations,
etc. that effectively support the various aspects of the method.

50 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The Select Perspective uses the standard UML enriched with the extensions to support
component modeling. For the purpose of business modeling, it uses the notations of the
Computer Science Corporations (CSC) Catalyst methodology (CSC, 1995). This notation and
technique help to link the business processes, associated use cases and classes. The method
also uses Entity-Relationship Diagrams (ERD) for mapping between the UML class model and
the relational data model. Components in Select Perspective are executables offering services
through published interfaces. The services can, but not necessarily, be implemented using
object technologies. Though based on the UML, the method uses a streamlined set of UML
modeling techniques, without introducing new concepts that require UML extensions.

The component concept is seen as the concept of package, defi ned in UML as “a general
purpose mechanism for organizing elements into groups” (Booch et al., 1999). Two basic
stereotypes of the package are distinguished: a service package used in business-oriented
component modeling and a component package used in component and system implemen-
tation. A service package contains classes that have a high level of interdependency, and
serve a common purpose by delivering a consistent set of services. A component package
represents an executable component, i.e., the actual code. When a service package is placed
on a node of the network, it effectively becomes a component package. Special attention is
paid to component modeling of the legacy assets, i.e.,on how to use the component principles
to effi ciently wrap and further integrate legacy systems.

The latest version of Select Perspective includes support for Web Services, as well as
for Model-Driven Architecture and Agile Software Development, as promising paradigms
in software development. The Select Perspective software development life cycle is a set
of workfl ows that are based on an iterative and incremental development approach. The
method defi nes three basic workfl ows: Consume, Supply, and Manage. Consume workfl ow
delivers the solution that uses components and services from the component suppliers, then
maintains and supports that solution. Supply workfl ow delivers and maintains components
based on the request for services from particular component and service consumers. Manage
workfl ow is concerned with the activities of acquiring, certifying, classifying and locating
components to serve the needs of both component consumers and suppliers. Select Per-
spective provides a comprehensive development lifecycle for component-based solutions
that supports business-aligned parallel development in order to reduce time-to-market. The
method defi nes project management features such as iterative working, incremental working
and planning, parallel working and monitoring. The method is derived from best practices
proven on real projects.

Catalysis
Catalysis (D’Souza & Wills, 1999) is a component-oriented approach with its origins

in object-oriented analysis and design. Catalysis began in 1991 as a formalization of OMT
(Rumbaugh et al., 1991), and was developed over several years of applying, consulting, and
training. It extends second-generation OO-methods such as Fusion (Coleman et al., 1993)
and Syntropy (Cook & Daniels, 1994), including support for framework-based development
and defi ning methodical refi nements from abstract specifi cation to implementation. Catalysis
is well documented in the corresponding book, technical papers, and by a dedicated website
(www.catalysis.org). Opportunities for training and consultancy are also provided. Catalysis
is effectively supported by the COOL family of tools such as COOL:Gen, COOL:Spex,
COOL:Joe, etc., originally developed by Sterling Software. After acquiring Select Software

Component-Based and Service-Oriented System Development Methodologies 51

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

by Computer Associates the tools have been renamed into Advantage Gen, Advantage Joe,
etc. (Computer Associates, 2003).

Catalysis is a methodology for modeling and constructing open systems from objects,
components and frameworks. Catalysis is mostly a development process, which means that
its main purpose is to provide software construction from high-level requirements. Unlike
RUP, Catalysis does not cover project management, process measures, tests, and team-task
management. Although the details of Catalysis are somewhat complex, the approach is based
on a small number of underlying concepts such as types, conformance, collaborations and
frameworks, used throughout the approach. Catalysis component development approach
encourages a strong separation of component specifi cation from implementation, using
an extended form of UML. This allows technology-neutral specifi cations to be developed
and then refi ned into implementation in a number of different implementation technolo-
gies. Although Catalysis covers the complete system lifecycle, “from business to code”,
the component concept is visible at the implementation level. It defi nes a component as a
“coherent package of software artifacts that can be independently developed and delivered,
as well as be composed and extended to build something larger”. Higher-level support for
the component concept is provided by the concept type, as a stereotype of a class. The type
is defi ned as a representation of some consistent behavior in the domain, while a class is an
implementation of the type. External behavior of the type is defi ned by its interface, which
is mapped to class operations. Refi nements from abstract to more detailed descriptions of a
system are recorded by capturing conformance between types. The interactions among types
are modeled as collaborations. This captures a set of actions involving multiple, typed objects
playing defi ned roles with respect to each other. A package is a larger-grained development
concept, and acts as the basic unit of a development product that can be separately created,
maintained, delivered, updated, assigned to a team, and generally managed as a unit. The
Catalysis approach is not a rigorous methodology. It is rather a semi-structured set of design
principles, advises and patterns throughout the system development life cycle. Therefore, a
systematic “roadmap” of the Catalysis way is lacking. The whole method tends to be vague,
with possible diffi culties for applying it in practice. However, Catalysis represents an excel-
lent foundation for supporting various CBD concepts, principles and techniques.

KobrA
KobrA is a software development method that uses and supports the component para-

digm in all phases of the software life cycle, following the product-line strategy (Atkinson
et al., 2002). It has developed as a result of the KobrA project from 1999 to 2001, funded
by the German government, and led by Softlab GmbH, Psipenta GmbH, GMD-FIRST and
Fraunhofer IESE. The KobrA approach is infl uenced by other leading software development
methods, such as Fusion (Coleman et al., 1993) and Catalysis (D’Souza & Wills, 1999). It is
also compatible with the Rational Unifi ed Process (Jacobson et al., 1999) and OPEN (Graham,
Henderson-Sellers & Younessi, 1997) process frameworks. The method is documented in
the dedicated book (Atkinson et al., 2002), scientifi c papers, and companion reports. The
method is well equipped to support practical software engineering projects and supported
by Softlab’s specially developed workbench based on the Enabler repository family. This
workbench allows organizations utilizing the KobrA method to assemble their own preferred
suite of tools to support KobrA development.

52 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Although product-line engineering is fully integrated within KobrA, it is not neces-
sary to develop a product-line when applying KobrA. KobrA extends the usual “binary”
view of components by providing a higher-level representation based on a suite of tightly
related UML diagrams. The method defi nes a component by two main parts: specifi cation,
which describes the externally visible characteristics of a component, and realization, which
describes how a component satisfi es the specifi cation in terms of interactions with lower-
level sub-components. The central artifact in KobrA is the framework, which represents
a collection of KobrA components organized in a tree-structure based on the composition
hierarchy. In KobrA, every behavior-rich element of a system is a Komponent, i.e., a KobrA
component. The method uses qualifi ers to distinguish between different kinds of compo-
nents: instance vs. type and specifi cation vs. realization. KobrA supports the principles of
architecture-centric and incremental development. KobrA also includes systematic, rigorous
quality assurance techniques, namely inspections, testing and quality modeling. A KobrA
component has at the same time properties of a class and a package. On the other hand the
role of component interface is not emphasized enough. The composition of components
is defi ned mainly through containment trees, instead of collaboration between component
interfaces. The KobrA approach does not offer strict rules about how to identify components.
The approach rather treats important business domain concepts as components and follows
OO analysis and design on them. The authors of the method are researchers describing a
theoretical approach that has not been extensively proven in practice. The authors propose
a notation that is not standard UML, but rather a custom notation loosely based on UML.
The KobrA method is a broad mix of software engineering guidance for CBD. Much of this
guidance is theoretical, without supporting tools or reports of commercial experience. The
method is based on a number of software engineering principles (parsimony, encapsulation,
and locality) that are often restatements of generally accepted principles for keeping things
simple, separating concerns, and minimizing coupling.

UML Components
Cheesman and Daniels (2000) propose a method called UML Components that is

strongly infl uenced by Catalysis, RUP, and Syntropy (Cook & Daniels, 1994). The method
focuses on the specifi cation of components using the UML. While the method is published
in the book form, there is no information of its application in practice. The method describes
how to architect and specify enterprise-scale, component-based systems using the UML.
The method gives a detailed explanation of the basic principles of software components and
component-based development, in a manner that establishes a precise set of foundational
defi nitions that are essential in practicing the method. The method discusses how core UML
diagrams such as the Use Case can be used in the context of components. Although, the
method defi nes the six main workfl ows (similar to RUP) as Requirements, Specifi cation,
Provisioning, Assembly, Test, and Deployment, it primarily focuses on the fi rst two. The
specifi cation workfl ow is the most interesting one from the perspective of CBD, and con-
sists of three main sub-workfl ows: component identifi cation, component interaction, and
component specifi cation. For the purpose of component-based design, the method uses the
UML notation enriched with proper extensions, stereotypes and modeling conventions.

The method stops with the activity of Component Specifi cation. It does not offer
the ways to translate the component specifi cation into implementation and verify that the
implementation complies with the specifi cation. The method proposes a number of exten-

Component-Based and Service-Oriented System Development Methodologies 53

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

sions that are outside the bounds of standard UML, which makes it diffi cult to apply one
of the existing UML-based modeling tools in practicing the method. The method provides
precise and detailed guidance on how to extend and customize the UML for the purpose of
component modeling and specifi cation. In essence, UML Components offer a subset of Ca-
talysis concepts together with a much simpler RUP-like process. Components are identifi ed
through identifying system interfaces that are related to use cases, and business interfaces
that are related to business entity types. Identifi ed components are further specifi ed through
the information types that represent the component state, as well as pre-conditions and post-
conditions on component operations that specify the component behavior.

The method lacks some of the key ideas of Catalysis, including the nesting of compo-
nents to arbitrary depths, the recursive application of development concepts, and the use of
frameworks to package larger-grained reusable structures. The UML components approach
does not take into account potential different levels of component granularity and importance
of using the separation of concerns in defi ning them. Despite some limitations, the UML
Components method contains important, practical advices for developers practicing CBD.

Business Component Factory
Herzum and Sims (2000) propose the Business Component Factory (BCF) approach

as a way to use components in enterprise system design. Both authors have been active in
the OMG’s business object development efforts. The approach is split into three parts: i)
conceptual framework that covers CBD and component concepts, ii) component factory set-
up for putting the factory itself in place and iii) manufacturing component-based software
through modeling and design considerations. The authors suggest a classifi cation of compo-
nents that refl ects granularity: language class, distributed component, business component,
business component system, and fi nally, federation of system-level components. The method
provides little coverage of commercial implementation platforms such as J2EE, CORBA
or COM+/.NET. The focus of the method is on the business components that are defi ned
as important business concepts that are relatively autonomous in the problem space. Busi-
ness components can be of the following types: entity, process, utility, and auxiliary. These
components are more related to business object theory, which is logical since the authors’
background is in business objects. By separating entities and behavior, this approach does
not provide a uniform view on components. On the other hand the role and importance of
service-based interfaces are diminished to some extent.

The method further presents the set-up of the component factory from the viewpoint
of the development process, technical architecture, and application architectures, as well as
the project management architecture. Finally, the method proposes a number of modeling
and design steps and activities by focusing on the functional architecture. There is a lack of
precise modeling of the dependency and relationship between components, the importance
of which is stressed by the method, but not covered in detail. The approach does not use
the standard UML notation, which makes it diffi cult to relate it to the current UML-based
development practice. There is no information about practical experience in using the
method. No particular tool support has been proposed. The method is based on practical
experience of the authors; it is written by practitioners for practitioners. The central element
of the approach is the concept of business component. For the purpose of service-oriented
computing, the focus should be moved above that to coarser-grained business components
that are by the method called system-level components. Although authors briefl y defi ne a

54 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

standard development process similar to RUP, Business Component Factory represents a
general, comprehensive CBD approach rather than a prescriptive method.

Summary
At the time of conducting this research the authors were not aware of other remark-

able and complimentary efforts in the area of CBD methods, and they do not claim that this
selected list is complete. This is, however, a reasonably representative subset on which to
conduct the research. The chosen CBD methods are compared based on the list of evalua-
tion criteria summarized in Table 1. The other CBD approaches and best practices, mainly
coming from the industry as proprietary company practices, are not considered for further
evaluation because of the following reasons. Although most of these approaches are well
supported by appropriate tool-sets and used in some practical projects, they lack structure
and tend to be incomprehensible in their presentation of the development process. They
combine best of breed OO and CBD concepts, elements and strategies in an ad-hoc man-

Table 1: Variety of CBD support provided by the methods

Rational
Unifi ed Pro-
cess (RUP)

Select
Perspective

Catalysis KobrA UML
Components

 Business
Compo-

nent
Factory

Availability Book,
website,
consultancy,
training

Book,
website,
consultancy,
training

Book,
website,
consultancy,
training

Book, papers Book, papers,
consultancy

Book,
papers, con-
sultancy

Back-
ground

Industry Industry Academic &
Industry

Academic &
Industry

Theoretical &
Practical

Theoretical
& Practical

Type of
methodol-
ogy

Develop-
ment +
management

Development
+ manage-
ment

Develop-
ment

Development
+ manage-
ment

Development Develop-
ment

Usage of
methodol-
ogy

Regularly
used in in-
dustry

Regularly
used in in-
dustry

Catalysis-
based meth-
ods used

Used by
KobrA con-
sortium

Potentially
used in in-
dustry

Potentially
used in
industry

Process
form

Workfl ows,
guidelines,
templates

Phases, guide-
lines

Rough
guidelines,
patterns

Phases,
activities,
guidelines

Workfl ows,
activities

 Phases,
guidelines,
patterns

Tool
support

Rational
product fam-
ily (Rational
Rose, etc.)

Select Com-
ponent Fac-
tory (Select
Architect,
Component
Manager)

COOL tools
(COOL:
Spex,
COOL:Gen,
etc.), now
Advantage
tool family

Enabler
Workbench
and Reposi-
tory

No specifi c
tool; UML-
based tools
can be used

No specifi c
tool; UML-
based tools
can be used

Modeling
techniques

UML BPM Catalyst,
UML, ERD

UML UML-based UML (with
extensions)

UML-based

View on
compo-
nents

Logical +
physical

Logical +
physical

Logical +
physical

Logical +
physical

Logical +
physical

Logical +
physical

Component-Based and Service-Oriented System Development Methodologies 55

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ner, often combining and using concepts from the selected methods. Their support for the
component concepts varies greatly in nature and extent. Therefore, these approaches were
not selected as representatives for the purpose of CBD method evaluation.

CBD METHODOLOGY
EVALUATION FRAMEWORK

Most visible high level categorization of the evaluation approaches for information
systems engineering methods fall into two main categories, namely the evaluation of the
whole methodology and the evaluation of the modeling approaches within a methodol-
ogy. A complete and a comprehensive review of the latter can be found in Siau and Rossi
(1998). In this study, a methodology as a whole entity is the subject of evaluation. Many
such evaluation approaches exist (see e.g., Hong et al., 1993; Blank & Krijger, 1983). All
these approaches present a framework with interest areas of concerns and recipes for con-
ducting the evaluation process. In this research, the evaluation of the whole methodology
is considered in terms of making a judgement as to whether a methodology truly supports
CBD and SOA. Kumar and Welke’s (1992) evaluation of shortcomings of methodologies
introduces the concept of methodology engineering and argues that the contingency factors
given within the analytical framework of Sol (1988) provide a promising way to identify the
content of a methodology. This fairly standard framework for method evaluation proposed
by Sol (1988) was chosen because of its generic character, which makes it suitable for adapt-
ing to CBD and SOA issues. The experiences of many methodology evaluation researchers

Compo-
nent repre-
sentation

UML sub-
system

Service pack-
age, UML
subsystem

Stereotype
type

Stereotype
of the UML
class

Stereotype of
the UML class

Not specifi c

Compo-
nent imple-
mentation

UML Com-
ponent and
Deployment
diagram

Component
package,
Deployment
diagram

Package,
Software
components

Realization
component

Not specifi c Software
components

Defi ned
design pat-
terns

No Yes Yes No No Yes

Com-
ponent
repository

No Yes No Yes No No

Reusability Software
components

Components,
patterns

Components,
patterns,
frameworks

Design-level
and software
components

Design-level
and software
components

Design-
level and
software
compo-
nents,
patterns

Incre-
mental &
Iterative

Yes Yes Yes Yes Yes Yes

Table 1: Variety of CBD support provided by the methods (continued)

56 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

such as Hofstede and Verhoef (1996), Dahanayake (1997) and of researchers within CBD
methodology evaluation community such as Boertien et al. (2001), and Stojanovic et al.
(2001) also contributed to this decision. For issues relevant to the methodology engineering
perspective, Dahanayake (1997), Kumar and Welke (1992), Rossi (1998), Tolvanen (1998),
and Hofstede and Verhoef (1996) were used to complement the generic framework and to
identify the appropriate requirements for CBD Methodology engineering.

Framework Foundation
Sol’s analytical framework pays explicit attention to all important aspects of a process,

and defi nes a set of contingency factors that characterizes the information systems develop-
ment process: a way of thinking, way of modeling, way of working, way of controlling and
way of supporting (Figure 1).

• Way of thinking: visualizes the essential philosophy of an information system devel-
opment method regarding the information system’s functionality and its role in the
environment.

• Way of modeling: a way to structure problems by distinguishing between types of
models required for problem specifi cation and solution fi nding.

• Way of controlling: includes a set of directives and guidelines for managing the
information systems development process, management of time, means, and quality
aspects.

• Way of working: is seen as a way to structure problems by distinguishing between
types of tasks to be performed for systems development process.

• Way of supporting: represents the tools that are used to support information systems
development process.

Figure 1: A framework for understanding information system development

Component-Based and Service-Oriented System Development Methodologies 57

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

To achieve the most from CBD, the nature and structure of the whole development
process have to be aligned with the fi ve contingency factors of the analytical framework.
This in turn means that entirely new development methods and tools that are aligned with
CBD and SOA principles are required. Therefore, the framework given above was used to
identify the required method and characteristics for each of the contingency perspectives to
provide a consistent and comprehensive CBD methodology. The requirements were deter-
mined by studying the CBD literature and visionary papers such as Welke (1994), Gartner
Group (1997), Butler Group (1998) and from methodology engineering approaches such
as Kumar and Welke (1992), Dahanayake (1997), Rossi (1998), and Tolvanen (1998). We
then looked at the trends in CBD methodologies and fi nally categorized the requirements
according to the contingencies of the analytical framework. We then presented the fi rst cut of
the evaluation framework with its requirements to a small number of practitioners involved
in CBD application development and incorporated their feedback to provide an improved
framework. The number of experts and the level of expertise at the time of the study was
limited due to the pace of adoption of CBD technology into the local (the Netherlands) sys-
tems and (Dutch) software industry. The analytical framework and its contingency factors
leading to the CBD methodology requirements evaluation framework is as follows:

Way of Thinking
The underlying philosophy of a CBD method should focus on:

• Components and services as the main focus of a development process.
 • The concepts of component and service should be the focus and the

main elements of a method consistently used throughout the system development
lifecycle.

• Clear, consistent, and technology-independent component and service concepts.
 • By defi ning a component as an encapsulated concept with specifi c roles and behavior

in the domain, and with hidden interior and exposed services through interfaces, it
can be easily understood by both business and IT worlds. The component concept
should enable business domain experts to model business processes and requirements
at a higher level, in a domain-specifi c, but implementation-independent way. On the
other hand, application developers retain control over how these component models
are turned into complete applications using advanced component-based technology.

• Semi-formal and/or formal defi nition of component and service concepts.
 • The semantics of the basic component and service concepts should be clearly and

precisely defi ned using the semi-formal way (by defi ning metamodels using e.g.,
the UML and MOF) and/or formal notation (by using Object Constraint Language
(OCL) grammar, mathematical set-theory expressions, or other formal specifi cation
techniques).

• Enriched contract-based interface construct.
 • The interface of a service-based component must be extended beyond simple op-

erations’ signatures to represent a real business contract between the provider and
consumer of the service. Complete and precise, implementation-independent service
specifi cation including confi guration and quality-of-service parameters provides ef-
fective mechanisms for service discovery and usage.

58 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

• Focus on behavior-driven rather than data-driven service and component concepts.
 • Services and components should not correspond to a single business object such

as Customer or Order; they should manage information across the set of objects in
providing required business value-added functionality.

• Defi ning different scope and granularity levels of components and services.
 • It is essential to defi ne different scopes and granularity levels of services fulfi lling

different roles in business/technical system architecture through recursive composition
and choreography. This means that each service can be realized through lower-level
services and at the same time is a part of a higher-level service.

Way of Modeling
The underlying way of modeling of a CBD method should focus on:

• Appropriate modeling notation for component and service concepts.
 • The method should provide proper textual and/or graphical notations for component

and service representation (human-understandable, machine-readable, or graphical
notation) that is uniquely understandable by all actors in the development process.

• Defi ning models at different levels of abstraction.
 • Techniques and mechanisms for defi ning component-based and service-oriented

computational independent models (CIM), platform independent models (PIM) and
platform specifi c models (PSM) of the system being developed are necessary elements
for achieving truly model-driven system development using components and services
(OMG, 2003).

• Modeling from various viewpoints using the concepts of component and service.
 • System should be modeled from different viewpoints in order to refl ect different

concerns in the development process, such as enterprise, information, computational,
engineering and technology (ODP, 1996; Stojanovic, Dahanayake & Sol, 2000). The
concepts of component and service should be integrating factors across the view-
points.

• Focus on collaboration, interaction and coordination of components and services.
 • Components and services should support particular steps of a business process and

should be chained and coordinated in a way to create a business process fl ow. The
modeling focus should be on representing service interaction, nesting, coordination
and mutual dependencies, rather than on component internal realization.

• Rigorous component specifi cation.
 • A precise, formal or semi-formal notation should be available to describe component

specifi cation. This should be suffi cient for a rigorous analysis of the specifi cation
against a user’s needs. Precise component specifi cation should be precise and complete
in order to provide easy, straightforward and effective component implementation. It
should also represent the main information support for browsing a COTS catalogue
or a Web Service registry.

• Reusability of modeling artifacts.
 • Single component or the whole patterns of component interactions can be explicitly

modeled, stored in the repository and subsequently reused in further system designs.
Thus, the models beside software code can represent valuable reusable artifacts.

Component-Based and Service-Oriented System Development Methodologies 59

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Way of Working
The underlying way of working of a CBD method should focus on:

• Full component/service lifecycle.
 • The full component lifecycle should be provided including the activities of business

component modeling, component architecture design and specifi cation, acquisition of
components, component discovering and identifi cation, modifi cation, binding, wrap-
ping, assembling, testing, execution and maintenance.

• Traceable component and service concepts.
 • Make a component concept traceable and consistent throughout the system develop-

ment life cycle, i.e., each phase in the component life cycle should transfer concepts
to the corresponding development process phase.

• Business-driven identifi cation of components and services.
 • Services and components must be identifi ed and defi ned in a business-driven way as

larger-grained, loosely coupled system units that can communicate synchronously, as
well as asynchronously. They should correspond to real business activities and add a
measurable business value to their consumers. In this way, business requirements and
needs are seamlessly mapped to fi rst-cut component-based, service-oriented system
architecture.

• Integration of different views and viewpoints.
 • The method should provide techniques for integrating multiple views and perspec-

tives on the component, e.g., specifi cation vs. implementation components, business
vs. technical components, and entity vs. process components in the context of different
phases in the development process.

• Providing model transformations and code generation.
 • The method should provide effective ways for transformation of Computational

Independent Model (CIM) into Platform Independent Model (PIM) and further into
Platform Specifi c Model (PSM) according to the chosen technology platform, as well
as software code generation for that platform from PSM (or directly from PIM) (OMG,
2003). The defi ned models should be kept in synchronization with the generated code,
according to the principles of round-trip engineering.

• Iterative and incremental development practice.
 • CBD naturally supports iterative and incremental development, by breaking the

complex problem down into smaller parts, and defi ning possible phases, increments
and opportunities for parallel work inside a development process. Furthermore, a rigor-
ous, repeatable refi nement process through all presented component-based lifecycle
phases should be provided to arrive at a software solution that meets original business
requirements using an easily traceable pathway.

Way of Controlling
The underlying way of controlling of a CBD method should focus on:

• Support for the measurement of non-functional process parameters.
 • The method should defi ne quantitative and qualitative measures based on non-func-

tional parameters and associating proper control points in the lifecycle phases. CBD
targets a market-driven application assembly model, where non-functional issues,

60 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

such as quality, fl exibility, security, scalability, availability, etc. are associated with
the methodology to measure the success of the development approach.

• Proper process management approach.
 • Process management within the CBD process should defi ne control points in each

process phase truly relating to a component concept. The management process has a
broader meaning, and in parallel with the software development process, it schedules
work, provides guidance for a team’s activities, plans deliveries of artifacts, allocates
resources, monitors and measures a project’s progress, and directs the tasks of indi-
vidual developers and the team as a whole.

Way of Supporting
The underlying way of support of a CBD method should focus on:

• Effective tool support.
 • CBD development method must be well supported throughout the system life cycle.

A family of tools must be provided and systematically integrated covering particular
aspects or parts of the development process. Tool support must be suffi ciently fl ex-
ible and tailorable to adapt to eventual changes in the particular method, and even to
provide integrated support for the whole spectrum of CBD-dedicated development
methods.

EVALUATION OF CBD METHODS
The CBD methodology requirements presented above were set against the documented

materials of the selected methods discussed above and assessed as to the extent of their sup-
port for truly component-based and service-oriented system development. Further, in some
instances the freely available demonstration and companion tools were used to identify the
availability of CBD requirements. We fi rst checked to see if the listed requirements were
available, and if so, the extent to which they were available was evaluated by assigning a
number from 1 to 5. The results of this assessment were sent to an expert panel familiar
with CBD methods and based on their comments we adjusted our evaluation to arrive at a
fi nal value for each CBD requirement.

The Evaluation Process
The evaluation of CBD methods was carried out in association with an expert panel set

up by a review group of experts in systems development. These experts were selected from
large and medium-size systems development organizations. Alongside with the experts from
the industry a group of academic researchers were chosen from the Masters level students
involved in studying CBD methods. The industry experts belonged to functions such as
project managers, systems architects, application designers, and delivery mangers. They
were chosen for their organization’s experience in OO application development and their
trend in initiating component-based and service-oriented architecture design. The selected
experts were from systems development branches of international banks, insurance com-
panies, and large software houses. They were selected on the basis of being able to identify
with one or more of the following:

Component-Based and Service-Oriented System Development Methodologies 61

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

1. They use a CBD approach.
2. They are in favor of using CBD and knowledgeable in CBD methods.
3. They are training their staff on CBD.
4. Their knowledge of CBD is based on a certain CBD method.
5. They have their own CBD approach developed on the basis of their OO methodol-

ogy.

The fi rst cut of the evaluation framework was presented to the industry expert panel
and refi ned based on their comments. The resulting framework has been used to evaluate
the selected six CBD methods.

The academic group was given the assignment to study two CBD methods from the
six selected methods, and based on their knowledge to assign a number between one and
fi ve for each requirement in the evaluation framework. The academic group of 42 students
was divided into six groups of seven members, while the industry expert panel consisted of
16 members. The evaluation was fi rst conducted by the authors of this paper and compared
with the evaluation of the academic group ratings. The majority of the ratings of the authors
and the academic groups were the same but there were some differences in few cases, with
maximum of two points of difference. In such cases the average was taken. Finally the evalu-
ation framework was presented to the industry expert panel and asked for their evaluation.
They were asked to evaluate only the methods they are familiar with. Their evaluations were
similar in most cases with some exceptions—as the difference was not greater than two
points the average was taken. A summary of the evaluation of CBD methods RUP, Select
Perspective, Catalysis, KobrA, UML Components and Business Component Factory based
on the requirements evaluation framework proposed above is presented in Table 2.

Findings
Summarizing our fi ndings, we see that the idea of CBD and SOA is not yet fully in-

tegrated in the investigated methods. Components and services do not yet become the real
focus of the methods. The concepts of component and service are not properly and clearly
defi ned and specifi ed yet. Components are often at the level of packaging of software code,
or old-fashioned business objects. However, during the last years there have been positive
signs in this direction together with the emerging of the new version of the UML 2.0 that
treats components at both a logical and implementation level. Semantics and character-
istics of components and services are mainly defi ned informally using prose text. More
recent CBD methods propose an extended version of the interface concept beyond simple
signatures of operations. They specify pre-conditions and post-conditions on operations, as
well as information type model of the interface, but they still lack, among other things, the
coordination aspects of operations, confi guration mechanisms, and non-functional param-
eters. The importance of defi ning different scope and granularity levels of components, as
well as their recursive composition, has been truly recognized only in Business Component
Factory approach.

Regarding the way of modeling, the investigated methods are based on the current
version of the UML, and based on that defi ne proper extensions to represent necessary
component and service concepts they utilize. Modeling from different viewpoints is an
important mechanism in Business Component Factory. Rigorous component specifi cation
is to some extent provided in Catalysis and UML Components, while model reusability is

62 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Table 2: Evaluation framework and the evaluation results of the CBD methods

Way of thinking RUP Select
Perspective

Catalysis KobrA UML
Components

Business
Component

Factory

Components and services
as the main focus of a
development process

2 4 3 4 4 4

Clear, consistent, and
technology-independent
component and service
concepts

1 4 3 3 4 4

Semi-formal and/or formal
defi nition of component
and service concepts

2 3 3 4 3 3

Enriched contract-based
interface construct

1 4 3 3 4 3

Focus on behavior-driven
rather than data-driven
service and component
concepts

2 3 2 2 3 3

Defi ning different scope
and granularity levels of
components and services

1 3 2 2 2 4

Way of modeling RUP Select
Perspective

Catalysis KobrA UML
Components

Business
Component

Factory

Appropriate modeling
notation for component
and service concepts

3 3 3 2 4 2

Defi ning models at differ-
ent levels of abstraction

3 3 3 3 3 4

Modeling from various
viewpoints using the
concepts of component
and service

2 2 2 2 2 4

Focus on collaboration,
interaction and coordina-
tion of components and
services

1 3 3 2 2 3

Rigorous component
specifi cation

2 4 4 2 4 3

Reusability of modeling
artifacts

2 4 4 3 2 2

Component-Based and Service-Oriented System Development Methodologies 63

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

an important aspect of Select Perspective. The collaboration and choreography between
components and services are not well specifi ed in the methods. Although the collaboration
concept is a fi rst-class citizen in Catalysis, that is still at a lower level of abstraction than
needed for the purpose of defi ning truly service-orientated architecture.

Regarding the way of working, the recent methods provide more a complete component
and service life cycle, as well as traceable component concepts from business to technology.

Table 2: Evaluation framework and the evaluation results of the CBD methods (contin-
ued)

Way of working RUP Select
Perspective

Catalysis KobrA UML
Components

Business
Component

Factory

Full component/
service lifecycle

1 3 2 3 4 4

Traceable compo-
nent and service
concepts

2 3 3 3 4 4

Business-driven
identifi cation of
components and
services

1 3 2 3 4 4

Integration of dif-
ferent views and
viewpoints

2 4 4 2 2 4

Providing model-
transformations and
code generation

3 3 2 2 3 3

Iterative and incre-
mental development
practice

4 4 4 4 4 4

Explanation of the marks: 1-no match, 2-poor match, 3-matching to some extent, 4-good match,
and 5and 5and -full match

Way of controlling RUP Select
Perspective

Catalysis KobrA UML
Components

Business
Component

Factory

Support for the
measurement of
non-functional
process parameters

2 3 2 4 2 3

Proper process man-
agement approach

3 4 2 2 2 3

Way of supporting RUP Select
Perspective

Catalysis KobrA UML
Components

Business
Component

Factory

Effective tool
support

4 5 4 4 2 2

64 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Business-driven and behavior-driven identifi cation of components and services are not yet
fully supported by the methods. Modeling from different viewpoints becomes an important
mechanism in managing system complexity by separating the concerns. The techniques
for the transformations of models that are at different levels of abstraction and their further
mapping to software code are not yet fully supported by the methods. All of the methods
provide an iterative and incremental development practice that becomes de facto standard
in software system development.

The way of controlling of the investigated methods should be further improved in the
spirit of CBD and WS. The ways of measurement of non-functional process parameters and
a proper process management approach must be defi ned in an improved way. Although most
of the investigated methods are accompanied with effective tools to support them, a more
sophisticated and comprehensive suite of tools is needed to support the variety of aspects of
component-based and service-oriented development process, defi ned well by the evaluation
framework’s ways of thinking, working, modeling and controlling.

CBD Method Improvements
Current CBD methods and approaches do not defi ne the concepts of component and

service in a precise and implementation-independent way. Instead of making components
the focal point of the complete development process in order to gain the huge benefi ts of
the component way of thinking, the methods handle components at the implementation
and deployment phases, or just as another form of old-fashioned business objects. Methods
that have evolved from pure object-oriented backgrounds inherit diffi culties in recognizing
the fundamental nature of components, considering the componentization as a way of code
packaging. A more formal and systematic approach to component-based and service-oriented
development is needed covering the whole system life cycle with the component concepts
and principles integrated into each of the phases. Integration between the phases, such as
business, information, application and technology issues must be provided. This can be
done using general well-grounded component theory as the means to bridge the different
perspectives and viewpoints. A common CBD “language” used throughout the life cycle for
the integration of different principles, concepts and perspectives, and a smooth transition
among them must be ensured. In the framework for effective CBD methodology support
presented above, we have proposed guidelines towards a systematic and integrated approach
to component-based development. It has the potential to provide comprehensive, theoretical
and practical methodological support for the CBD and WS paradigms. The framework can
be seen as a fi rst step in arriving at truly component-based and service-oriented systems
development methodology engineering.

By following the requirements defi ned in the framework through the ways of thinking,
modeling, working, controlling and supporting, we can create a method that can be fully
applied in the new SOA and WS world. The most important elements of the next-genera-
tion CBD method are:

• Standard defi nition of component and service concepts in consistent, contract-based,
and implementation-independent way.

• Specifi cation of different component scope and granularity levels that are mutually
related by composition and collaboration relationships and used throughout the system
design and development.

Business-driven and behavior-driven identifi cation of components and services are not yet •Business-driven and behavior-driven identifi cation of components and services are not yet

Component-Based and Service-Oriented System Development Methodologies 65

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Appropriate standard modeling notation for representing component and service
concepts—Different but isomorphic notation types can be proposed, such as textual
(human understandable), graphical (e.g., UML) or machine-readable (e.g., XML-based
grammar), that can serve the needs of different actors in the development process.

• The mechanisms for defi ning the system models at different levels of abstraction (from
business to code) as well as the rules for performing transformations between them.

• Traceability of the component and service concepts from business requirements to
software code and at the same time the integration of different viewpoints on the
system being developed using these concepts.

• Model transformations, code generation and model reusability through an iterative
and incremental development practice.

• A proper process management approach focused on components and their collabora-
tions as the main artifacts of the development process, together with measuring quality
parameters of the process.

• High-quality, effective component-based and service-oriented tools that should provide
the necessary support for all the elements of the CBD/WS method.

CONCLUSIONS
A framework for effective CBD methodology support is introduced as a fi rst step

towards arriving at truly component-oriented systems development methodology. The
framework is based on the fi ve aspects of the system development process, namely the way
of thinking, modeling, working, controlling and supporting, each of them capturing truly
component-oriented requirements. A methodology sample was evaluated using the concepts
and requirements of the evaluation framework. The framework can be used in practice to
evaluate the true nature of available CBD methodologies and to elicit requirements. It can
also be used to guide the development process to focus on CBD and SOA principles and
concepts consistently throughout the development phases. At the same time, the confusion
between the OO and the CBD way of systems engineering can be eliminated by referring
to the framework.

Current CBD methods and approaches, such as Rational Unifi ed Process, Select Per-
spective, Catalysis and so forth, do not include full support for the component and, specially,
service concept. They propose handling components mainly at the implementation and
deployment phase, instead of throughout the complete system life cycle. The methods are
signifi cantly infl uenced by their OO origins, while trying to introduce the CBD concepts
using standard UML concepts and notation. The research presented here is an early call for
researchers to re-think the fundamentals behind the whole research area of CBD. CBD is
not another way of using old methodology structures for getting OO software technology
to produce functionality. It is a paradigm shift and an opportunity to tighten the loose ends
left dangling from the OO era. CBD should be considered from a market-based production
platform that will bring the whole demand-supply chain in line with future developments,
able to deliver time-to-market units of functionality. This opens a number of new opportuni-
ties for researchers as well as for practitioners. These new opportunities will include taking
the challenge to determine what are truly CBD and SOA methodologies, techniques, and
tools, and how to develop further CBD-based market models. Researchers undertaking these

66 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

tasks have to consider the unlimited process power, and the “anywhere-anytime” informa-
tion retrieval capacity that has become available with the use of plug-and-play functional
components.

The research in CBD methods evaluations conducted so far has its limitations. One of
the main limitations of this research is that it covers a few well-documented and established
CBD methodologies. These methods have been evaluated using an average expert panel and
the authors’ knowledge and experience gathered through available literature. There were no
interviews conducted to access the experiences of those who have used these methodologies
in practice. As the CBD and WS fi elds are quite new, experienced practitioners are rare. The
framework was based on a limited number of expert opinions and feedback was generated
via questionnaires to fi nd the appropriateness of the evaluation criteria. The approach can
be improved by analyzing the evaluation criteria via interviews with expert users of the
methods. Evaluation of the methods and the methodology framework used for this purpose
led us to propose possible improvements in the CBD and WS methodology practice.

REFERENCES
Allen, P., & Frost, S. (1998). Component-Based Development for enterprise systems: Ap-

plying the select perspective. Cambridge University Press.
Apperly, H. et al. (2003). Service- and Component-Based Development: Using the select

perspective and UML. Addison-Wesley.
Atkinson, C., Bayer, J., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D., Paech, B.,

Wust, J., & Zettel, J. (2001). Component-based product line engineering with UML.
Addison-Wesley.

Blank, J., & Krijger, M.J. (1983). Evaluation of methods and techniques for the analysis,
design and implementation of information systems. Academic Service.

Boertien, N., Steen, M.W.A., & Jonkers, H. (2001). Evaluation of Component-Based De-
velopment methods. Proceedings of the 6thProceedings of the 6thProceedings of the 6 CAISE/IFIP8.1 International Workshop
on Evaluation of Modeling Methods in Systems Analysis and Design, Interlaken,
Switzerland.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unifi ed Modeling Language user
guide. Addisson-Wesley.

Brown, A.W., & Wallnau, K.C. (1998). The current state of component-based software
engineering. IEEE Software, September/October.

Butler Group. (1998). Component-Based Development. Management Guide, Researched by
D. Sprott and L. Wilkes. Available: http://www.butlergroup.com (September, 2001).

Cheesman, J., & Daniels, J. (2000). UML Components: A simple process for specifying
Component-Based Software. Addison-Wesley.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., & Jeremaes, P.
(1993). Object-oriented development: The fusion method. Prentice Hall.Object-oriented development: The fusion method. Prentice Hall.Object-oriented development: The fusion method

Computer Associates. (2003, September 1). Information available: http://www.ca.com/
products/

Cook, S., & Daniels, J. (1994). Designing object systems: Object-oriented modelling with
syntropy. Englewood Cliffs, NJ: Prentice Hall.

CSC. (1995). Catalyst methodology. (Internal Document). Computer Sciences Corpora-
tion.

Component-Based and Service-Oriented System Development Methodologies 67

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Dahanayake, A.N.W. (1997). An environment to support fl exible information systems model-
ing. (Dissertation), Delft University of Technology, The Netherlands.

DSDM Consortium. (2000). Dynamic Systems Development method. DSDM Consortium, Dynamic Systems Development method. DSDM Consortium, Dynamic Systems Development method
http://www.dsdm.org/ (September 2001).

D’Souza, D.F., & Wills, A.C. (1999). Objects, components, and frameworks with UML: The
Catalysis approach. Addison-Wesley.

Gartner Group. (1997). Componentware: Categorization and cataloging. Applications
Development and Management Strategies Research Note, by K. Loureiro and M.
Blechar. Available: http://www.gartnergroup.com (September 2001).

Graham, I., Henderson-Sellers, B., & Younessi, H. (1997). OPEN process specifi cation.
Addison-Wesley.

Herzum, P., & Sims, O. (2000). Business component factory: A comprehensive overview of
business component development for the enterprise. John Wiley & Sons.

Hofstede, ter A., & Verhoef, T. (1996). Feasibility of method engineering. Information
Systems Journal, 6, 41-68.

Hong, S., Goor, van den P., & Brinkkemper, S. (1993). A formal approach to the comparison
of object-oriented analysis and design methodologies. Proceedings of the 26thProceedings of the 26thProceedings of the 26 Hawaii
International Conference on System Sciences, Vol IV.

IBM Web Services. (2003, September 1). Available: http://www.ibm/com/webservices
Jacobson I., Booch, G., & Rumbaugh, J. (1999). The unifi ed software development process.

Reading, MA: Addison-Wesley.
Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-oriented software

engineering – a use case-driven approach. Reading, MA: Addison-Wesley.
Jacobson, I., Griss, M., & Jonsson, P. (1997). Software reuse – Architecture, process and

organisation for business success. ACM Press, Addison-Wesley Longman.
Kumar, K., & Welke, R.J. (1992). Methodology engineering: a proposal for situation-specifi c

methodology construction. In W.W. Cotterman & J.A. Senn (Eds.), Challenges and
strategies for research in systems development (pp. 257-269). John Wiley & Sons.

ODP. (1996). International Standard Organisation (ISO), information technology - Open
distributed processing - Reference model: Overview, foundations, architecture and
architecture semantics. ISO/IEC JTC1/SC07, 10746-1/4, ITU-T Recommendations
X.901/904.

OMG Object Management Group. (2003, September 1). MDA - Model Driven Architecture.
Available: http://www.omg.org/mda/

Rossi, M. (1998). Advanced computer support for method engineering- Implementation of
CAME environment in MetaEdit+. (Dissertation). University of Jyvaskyla.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorenson, W. (1991). Object-oriented
modeling and design. Prentice Hall.

Siau, K., & Rossi, M. (1998). Evaluating information modeling methods - a review. In D.
Dolk (Ed.), 31st Hawaii International conference on System Sciences (HICSS-31),st Hawaii International conference on System Sciences (HICSS-31),st

Vol. V, (pp. 314-322).
Siegel, J. (2000). CORBA 3: Fundamentals and programming. OMG Press, John Wiley

& Sons.
Sol, H.G. (1988). Information system development: A problem solving approach. Proceed-

ings of 1988 INTEC Symposium Systems Analysis and Design: A research strategy,
Atlanta, Georgia.

68 Stojanovic, Dahanayake and Sol

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Stojanovic, Z., Dahanayake, A., & Sol, H. (2001). A methodology framework for com-
ponent-based systems development support. Proceedings of the 6thProceedings of the 6thProceedings of the 6 CAISE/IFIP8.1
International Workshop on Evaluation of Modeling Methods in Systems Analysis and
Design, Interlaken, Switzerland, (pp. XIX-1 - XIX-14).

Stojanovic, Z., Dahanayake, A.N.W., & Sol, H.G. (2000). Integrated component-based
framework for effective and fl exible telematics application development. Technical
report. ISBN: 90-76412-13-8. Delft University of Technology.

Szyperski, C. (1998). Component software: Beyond object-oriented programming. ACM
Press, Addison-Wesley.

Tolvanen, J-P. (1998). Incremental method engineering with modeling tools. (Dissertation).
University of Jyvaskyla.

W3C World-Wide-Web Consortium. (2003, September 1). XML, SOAP, WSDL. Available:
http://www.w3c.org/

Welke, R.J. (1994). The shifting software development paradigm. Data Base, 25(4), 9-16.

Component-Based and Service-Oriented System Development Methodologies 69

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

SECTION II:

DATABASE DESIGN
AND DEVELOPMENT:

ISSUES AND SOLUTIONS

70 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter IV

Improving the
Understandability of
Dynamic Semantics:

An Enhanced Metamodel for
UML State Machines

Eladio Domínquez, Universidad de Zaragoza, Spain

Angel Luis Rubio, Universidad de La Rioja, Spain

María Antonia Zapata, Universidad de Zaragoza, Spain

ABSTRACT
A clear understanding of the dynamic semantics of languages involved in the representation
of behavior is essential for a large and varied audience such as fi nal users of these lan-
guages, CASE tool builders or method engineers. This chapter introduces a proposal aimed
at achieving such an understanding by suggesting a different metamodeling approach. This
approach is based on a two layer architecture which puts forward the explicit distinction
between the generic behavior represented in a dynamic model (Base Layer) and the behavior
represented in relation to a particular situation (Snapshot Layer). Using this architecture as
a starting point, a metamodel of UML State Machines is proposed, which consists basically
of two UML class diagrams (one diagram for each layer of the architecture) and two maps.
These maps represent, respectively, the determination of the initial status and the process
performed by a run to completion step as defi ned in the UML semantics.

Improving the Understandability of Dynamic Semantics 71

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

INTRODUCTION
The statechart technique is a visual formalism defi ned as an enhancement of fi nite-state

machines, originally developed by D. Harel (Harel, 1987) to specify complex reactive
systems. Much literature has been written on this topic in recent years and in particular, a
large number of variants of the technique have been proposed (Beek, 1994). More recently,
the success of the statechart formalism has received a major boost since an object-oriented
adaptation of the technique, namely State Machines1, has been adopted as part of the Unifi ed
Modeling Language (OMG, 2003; Rumbaugh, Jacobson & Booch, 1999).

There are many works which defi ne a complete formal semantics of Harel’s Statecharts
(see, for example, Ehrig, Geisler, Klar & Padberg, 1997; Harel, Pnueli, Schmidt & Sher-
man, 1987; Harel & Politi, 1998; Hong, Kim, Cha & Kwon, 1995; Hooman, Ramesh &
Roever, 1992; Beek, 1994; Maggiolo-Schettini, 2003). However, a known shortcoming of
UML State Machines is that in the UML specifi cation document (OMG, 2003), although the
syntax and static semantics of State Machines are precisely stated, the dynamic semantics
is not rigorously defi ned (Engels, Haussmann, Heckel & Sauer, 2000; Latella, Majzik &
Massink, 1999; Lilius & Paltor, 1999). Undoubtedly, a precise specifi cation of the behav-
ior of State Machines is essential for a large and varied audience. For instance, the fi nal
users of the language (such as system analysts and designers) need at least an overall but
accurate idea of how a state machine behaves. Secondly, CASE tool builders interested in
supporting State Machines greatly benefi t from having an unambiguous specifi cation of the
language. Finally, method engineers would use a precise specifi cation of State Machines to
analyze issues such as language adaptability, comparison with other behavioral approaches,
transformation, and so on. This complex situation has resulted in the defi nition of a precise
dynamic semantics of State Machines being the subject of recent intensive research (Borger,
Cavarra & Riccobene, 2000; Engels et al., 2000; Jin, Esser & Janneck, 2002; Latella et al.,
1999; Lilius & Paltor, 1999; Mann & Klar, 1998; Reggio, 2002; Reggio, Knapp, Rumpe,
Selic & Wieringa, 2000; Varro, 2002).

The problem is that the majority of approaches that try to establish a precise dynamic
semantics of State Machines make use of formal notations such as Rewrite Rules (Kwon,
2000; Lilius & Paltor, 1999), Hierarchical Automata (Latella et al., 1999), Abstract State
Machines (Borger et al., 2000) or Object Z (Mann & Klar, 1998). However, like other authors
(Engels et al., 2000; Reggio, 2002), we think that these approaches have the drawback of
being diffi cult to read and understand, and therefore they are not wholly suitable since dy-
namic semantics must be precisely established but in such a way that the understandability
and readability of the specifi cation is facilitated.

Without neglecting the need for formal notations when issues such as verifi cation or
model checking have to be dealt with, we propose to adopt a metamodeling approach which
is a widely accepted way of improving the properties of understandability and readability
(Hofstede & Verhoef, 1997; Verhoef, 1993). This proposal is based on a two-layer architec-
ture we outlined in Domínguez, Rubio and Zapata (2000a, 2000b). This architecture makes
explicit the distinction between the generic behavior represented in a dynamic model (Base
Layer) and the behavior represented in relation to a particular situation (Snapshot Layer). In
addition, the concept of movement from a current situation to another is captured by using
the notion of mapping. Using this architecture as a starting point, a metamodel of UML State
Machines is proposed, which consists basically of two UML class diagrams (one diagram
for each layer of the architecture) and two maps. These maps represent, respectively, the

72 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

determination of the initial status and the process performed by a run-to-completion step as
defi ned in the UML semantics.

The chapter is organized as follows. In the following section we compare our proposal
with other related works. This is followed with a section detailing our view of dealing with
the behavior of dynamic systems, presenting the architecture in which we base our approach.
Next, we show the metamodel of UML State Machines we propose. And, fi nally, conclusions
and plans for future work are presented.

RELATED WORK
There are several relevant aspects that must be outlined with regard to the compari-

son of the approach we propose in the present chapter with other works in the literature.
First of all, it must be noted that our proposal provides a complete formalization of State
Machines, whereas, Kwon (2000) and other works (Engels et al., 2000; Gnesi, Latella &
Massink, 1999; Latella et al., 1999) consider only some basic constructs, rendering their
proposals incomplete. Among these, it is worth comparing our approach with Engels et al.
(2000), since in this work a metamodeling approach is also proposed for representing the
dynamic semantics of State Machines. These authors propose to extend the UML State
Machines metamodel (OMG, 2003) with state information that can be viewed as providing
the metamodel with information of the Snapshot Layer of our proposed architecture. Apart
from this shared issue, the remaining aspects are quite different mainly because they adopt a
different way of metamodeling the run-to-completion step: they use collaboration diagrams
and we use the notion of map. Reggio (2002) also proposes a metamodeling approach which
can be interpreted according to the architecture we present. On the one hand, in Reggio
(2002), Labelled Transition Systems are used as the semantic domain of state machines, by
means of which aspects related with the Snapshot Layer are captured. On the other hand,
they propose the use of Labelled Transition Diagrams in order to represent the change of
state within the statechart, instead of mappings as in our proposal.

The notion of map or transformation has been claimed by several authors (see, e.g.,
Domínguez & Zapata, 2000; Domínguez, Zapata & Escario, 2000; Marttiin, Harmsen &
Rossi, 1996; Saeki, 2002; Hofstede & Verhoef, 1997; Verhoef, 1993) to be a necessary arti-
fact for solving similar problems within the fi eld of method engineering, problems such as
method interoperability or method adaptation. This necessity has been recently recognized
by the UML community with the advent of the Model Driven Architecture, MDA (Miller
& Mukerji, 2003). Within this architecture, models are leveraged to be primary artifacts
during software development, and so are transformations. MDA is based on several OMG
standards, such as UML or MOF — the Meta Object Facility (OMG, 2002a), considered as
the meta-metamodel of the UML metamodel (OMG, 2003, pp. 2-6). In particular, the ongo-
ing process of development of the new UML 2.0 and MOF 2.0 embodies the Request For
Proposals of the MOF Query/Views/Transformations (QVT) (OMG, 2002b), also known as
‘Unifi ed Transformation Language’. Other artifacts have been proposed in the literature for
specifying the sequence of steps of a procedure. For example, the value of process model-
ing for representing in a rigorous and explicit way this type of functional aspect is proved
in Song and Osterweil (1994). An objective, in-depth analysis of which artifact is the most
suitable for representing the procedures for calculating the initial status and the next status
in the context of representation of behavior remains an ongoing project.

Improving the Understandability of Dynamic Semantics 73

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Finally, unlike other approaches cited, our work has a broader scope, since the use of
a metamodeling perspective brings us to a level independent of the specifi c case of State
Machines. This perspective has the advantage of making our approach applicable to other
representation techniques for dynamic systems, such as Petri Nets (Peterson, 1981) or the
different variants of the statechart technique. Furthermore, our proposed architecture aims
to be also applicable within the method engineering context (Brinkkemper, 1996; Brink-
kemper, Lyytinen & Welke, 1996; Dietzsch, 2002; Hofstede & Verhoef, 1997). Method
engineering, as the engineering discipline for designing, constructing and adapting meth-
ods, techniques and tools, has to deal, in particular, with techniques intended to represent
some kind of behavior. Therefore, a method-independent way of representing the behavior
of models seems to be a valuable artifact for method engineers. However, as is claimed in
Saeki (2000), most of the existing metamodeling techniques used with this goal (see, e.g.,
Brinkkemper, Saeki & Harmsen, 1999; Kelly, Lyytinen & Rossi, 1996; Saeki, 1995) focus
their efforts on representing the structural artifacts provided by the methods, leaving out
essential aspects of the behavior. In this context, the architecture suggested in this chapter
can help to broaden the metamodel defi nition provided by any metamodeling technique,
taking into account behavioral aspects.

AN ARCHITECTURE FOR BEHAVIOR
The UML gathers several sub-languages that have been designed with the main aim of

representing some kind of system behavior, such as State Machine Diagrams or Sequence
Diagrams. More specifi cally, fi ve (out of nine) types of UML diagram are involved in the
representation of behavior, and State Machines in particular is the third most complex type
of UML diagram (after the much more complex core type Class Diagrams and the slightly
more complex Component Diagrams), as is shown in the complexity study in Siau and
Cao (2001).

The purpose of representing behavior is common to other modeling-related fi elds. For
instance, within the modeling of reactive systems, Palanque et al. (Palanque, Bastide, Dourte
& Sibertin-Blance, 1993) classify three approaches to represent this kind of system, namely
state-based, event-based and Petri Nets-based modeling approaches, and several techniques
(or variants of existing techniques) have been developed following each paradigm. This
diversity of languages and techniques suggests that it would be very valuable to have an
infrastructure for representing behavior aspects in a language-independent way.

In order to provide a sound support for the representation of the behavior features of
different languages, we describe in this chapter a full version of the architecture outlined
in Domínguez et al. (2000a). This architecture has been designed to serve as an abstract
framework, and it is not linked to any particular technique or formalism. The architecture
suggested consists of two layers, namely the Base Layer and the Snapshot Layer, and two
maps, denoted T0T0T and T (see Figure l).T (see Figure l).T

Overview of the Architecture
The Base Layer captures those aspects that appear to be independent from any par-

ticular situation, and the Snapshot Layer gathers the aspects characteristic of any particular
situation. If we consider the dynamics of a system as if it were a fi lm, the Snapshot Layer
describes each frame, that is to say, each one of the potential situations in which the system

74 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

can lie. The Base Layer describes those elements that are perceived as independent from
any particular situation; to some extent, this layer represents those base elements that we
would see permanently in each frame, provided that we were able to see the whole fi lm at
one glance. To clarify the meaning of these aspects, we now review a fragment of the sample
dynamic model shown in Rumbaugh, Blaha, Premerlani, Eddy and Lorensen (1991), which
represents a programmable thermostat. In this example, the comparison between the actual
room temperature and the programmed (desired) temperature is identifi ed permanently
and independently of which of these temperatures is higher. Therefore, the comparison is
a base (status-independent) feature. At any given moment, one of the temperatures will be
higher, but this situation will vary as the system develops: the status of the comparison is
a purely dynamic feature.

The differences between the two layers that we have shown with respect to the model
of a system can also be identifi ed at higher levels of abstraction. A detailed discussion
about modeling and metamodeling levels goes beyond the scope of this chapter; for such
a discussion, see for instance Smolander, Lyytinen, Tahvanainen and Marttiin (1991) or
Hofstede and Verhoef (1997). Henceforth, we will use the terminology of a particular ap-
proach to metamodeling, that of the Four Layer Metamodeling Architecture (OMG, 2003,
pp. 2-5). In this Architecture, the Metamodel Level “defi nes the language for specifying a
model.” At this level, the differences between the base (status-independent) features and the
snapshot (status-dependent) features are revealed in the modeling artifacts that each specifi c
language, technique or method provides to represent one or other feature. For example, in
Rumbaugh et al. (1991), the Statecharts formalism is used to create a model of the ther-
mostat. Under our perspective, Statecharts concepts such as state, transition, condition and
variable belong to the Base Layer, and so the ‘standard’ statechart (1) of Figure 2 would
become an instance belonging to this aspect (in particular, a condition is used to model the
comparison between the temperatures). On the other hand, concepts such as active state,
compound transition, enabled compound transition, true condition, etc., are related to the
Snapshot Layer. Therefore, diagrams (2), (3) and (4) of Figure 2, which represent several
consecutive situations of the thermostat by means of a widened notion of statechart, are
related to the Snapshot Layer (and thus, the value of the condition models the status of the
comparison). It must be noticed that the standard statechart notations do not offer graphical
representations for the concepts we have gathered in the Snapshot Layer, such as active state
or enabled transition. In spite of this, several authors and tool developers have represented
in a visual manner some of these purely dynamic aspects of the behavior of a statechart, and
they have chosen graphical representations for such dynamic aspects. For instance, several

Figure 1: A representation of the architecture

Improving the Understandability of Dynamic Semantics 75

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

illustrative examples in Harel and Naamad (1996) have been depicted using a shaded box
symbol to represent active states, and the Rhapsody tool by I-Logix uses a thicker line to
represent enabled transitions during the animation of statechart models. We have made use
of a similar approach for the specifi cation of the diagrams (2, 3, 4) of Figure 2. It is necessary
to note that we are not stating that this kind of notation must be used by the analyst during
modeling, but, in order to specify in detail the behavior of statecharts, a clear distinction
has to be made between the basic view and the snapshot view notions. It seems clear that
the support of graphical examples and specifi cations can be of great help in order to clarify
this subtle distinction.

The other fundamental elements of the architecture are the maps traced from the
Base Layer to the Snapshot Layer (map T0T0T) and from the Snapshot Layer to itself (map
T). On the one hand, map T). On the one hand, map T T0T0T starts from the information available at the Base Layer, and
determines one status that is fi xed as the representation of the initial status of the system.
In the case of the thermostat example we have mentioned, map T0T0T will specify the passage
from Diagram 1 to Diagram 2 as an initial status. In particular, the setting-up of the state
‘Furnace OFF’ as the initial active state (since, on sight of the model in Diagram 1, this is
the default situation) must be embedded in map T0T0T . On the other hand, map T, starting from T, starting from T
a current status, determines the next status the system will reach. In fact, map T refl ects the T refl ects the T
behavior of the system, enabling the representation of an execution trace of this behavior
by means of consecutive applications of the map. With regard to the thermostat, map T
will specify the passage from a current status (Diagram 2) to the next status (Diagram 4)
(as we show in the next subsection, Diagram 3 represents an intermediate situation). For
instance, map T embodies the dynamic principle stating that if ‘Furnace OFF’ state is active T embodies the dynamic principle stating that if ‘Furnace OFF’ state is active T
and ‘desired-temp’ is higher than ‘room-temp’ then ‘Furnace ON’ state must become active
(and of course ‘Furnace OFF’ inactive). Up to this point, the explanation of the maps of the
architecture lies in the Model Level of the Metamodeling Architecture. At the Metamodel
Level, maps T0T0T and T formalize respectively the processes of ‘fi xing the initial status’ and T formalize respectively the processes of ‘fi xing the initial status’ and T
‘moving from the current status to another’, which are common to every model at the Model
Level. These processes will be different according to the modeling language being described.
For example, as will be shown in the chapter, in the specifi c case of UML State Machines,
map T specifi es the T specifi es the T run-to-completion step.

Refi nement of the Architecture
The proposed architecture can be refi ned, adapting to our perspective the dimension

of granularity as stated for instance in Rolland, Souveyet and Moreno (1995), where it is
proposed that “a single process modeling formalism should accommodate a wide range of
model granularity in a homogeneous fashion”. In general, the highest levels of complexity

Figure 2: Statecharts diagrams for thermostat furnace relay

76 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

of representation of behavior are reached when dealing with the concepts we have gathered
in the maps of the architecture. In other words, the more sophisticated the behavior to be
modeled, the more complex and hard it is to specify maps T0T0T and especially T. Because of T. Because of T
this, we propose a kind of refi nement that facilitates the specifi cation of both maps, and that
allows the expression of the desired degree of detail. For instance, map T could be refi ned T could be refi ned T
by dividing it into several maps, specifying a chain of Intermediate Snapshot Stages start-
ing from the Snapshot Layer (see Figure 3). These stages represent intermediate situations
between two consecutive statuses, as they are necessary to detail the usually hard passage
from a current status to another. For instance, Diagram 3 of Figure 2 represents one of these
intermediate situations for the particular thermostat example. Our perspective has been
inspired by the literature: for instance, in the original fi rst Statecharts semantics (Harel et
al., 1987), the concept of micro-step was introduced to alleviate the diffi culties in defi ning
the noticeably more complex concept of step. With regard to how many intermediate stages
should be specifi ed, and therefore the number of maps, this decision is left to the discre-
tion of the analyst, who has to take into account that the greater the number of stages, the
greater the degree of detail. Whatever the number, the composite Tn+1 Tn+1 T ° Tn ° ... ° T2 T2 T ° T1 T1 T must
give map T as a result.

System Development Issues
The proposed architecture provides an interpretation of behavioral features that can help

in system development at different levels of abstraction, according to the different views that
several kinds of users (software engineers, tool developers, method engineers, etc.) have on
the subject. For instance, a system analyst or designer would use this approach to behavior
to get a more accurate interpretation of the system being modeled. In particular, this model-
ing task would be facilitated if the language chosen by the software engineer to model the
behavioral features was precisely described following the guidelines of the architecture.

In turn, such behavioral modeling languages can be supported by CASE tools, which
have been recognized as being of great value in software development. The consideration
of the proposed architecture can provide guidance for the analysis of existing CASE tools
and the development of new ones, according to the developers’ purposes. Focusing again
on the statecharts formalism, and as has been previously stated, a standard statechart model

Figure 3: Refi nement of map T of the architecture

Improving the Understandability of Dynamic Semantics 77

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

corresponds to the Base Layer of the architecture. Therefore, a statecharts drawing tool can
concentrate its efforts on this layer. However, a CASE shell developer interested in provid-
ing the tool with some simulation or animation features must be aware that the simulated
execution of a statechart model involves the combined application of the concepts related to
the T0 T0 T map, the Snapshot Layer and the T map, applied to the particular case of the statechart T map, applied to the particular case of the statechart T
formalism. Some up-to-date, commercial CASE tools supporting UML State Machines are
based on similar approaches since they have been provided with some animation features
(for example, the above-mentioned Rhapsody tool provides animated views of the modeled
application, and in particular, allows the observation of the behavior of a state machine using
a color scheme to differentiate between, for instance, active or inactive states). However,
it must be stressed that this kind of approach is one part of particular tools, and does not
belong to the standard State Machines defi nition. In any case, a system analyst or designer
would benefi t from the use of a CASE tool that follows the architecture, since such a tool
would provide, as a sub-product, a pattern to the modeling of behavior. In particular, a
software engineer should not be burdened with a detailed specifi cation of the maps of the
architecture, but he/she must be aware of their availability in the tool.

Furthermore, it is necessary to stress that the issues we are analyzing are not exclusive
to State Machines, although this language is our main example. For instance, with regard to
Petri Nets (Peterson, 1981), within our architecture, a non-marked Petri Net belongs to the
base view, whereas a Petri Net together with a particular marking belongs to the snapshot
view. The process of fi ring transitions and re-marking of places is equivalent to the change
of status in State Machines. Figure 4 illustrates this situation by means of a petri net model
of the thermostat, representing the base layer (1), two consecutive statuses of the snapshot
layer (2 and 4) and an intermediate situation (3). It is worth noting that we are not stating
here that the statechart model in Figure 2 and the petri net model in Figure 4 are (or are
not) equivalent (see Palanque et al., 1993, for a related discussion). What this example
shows is that the differences between the base and the snapshot aspects can be analyzed in
a language-independent way, and it is therefore of great value to be provided with a frame-
work that allows the analysis of the behavior of models of techniques in a general way. In
particular, as we have explained in the ‘Related Work’ section, the proposed architecture can
be a valuable artifact for method engineers in order to design, construct or adapt a method
to be used within a particular project.

Figure 4: Petri Nets diagrams for thermostat furnace relay

78 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

UML STATE MACHINES METAMODEL
In the next subsections we defi ne a metamodel which captures the syntax, static se-

mantics and dynamic semantics of UML State Machines, bringing into play the architecture
we have described in the previous section.

Base Layer
The Base Layer corresponds to the syntax and static semantics of State Machines since

they capture those aspects that appear to be independent from any particular situation. In
order to represent these features in a similar way as is proposed in the UML Specifi cation,
we propose to use a UML class diagram that we have called Base Diagram (see Figure 5),
and a set of Object Constraint Language (OCL) expressions. We have used the class diagram
proposed in the UML Specifi cation (OMG, 2003, pp. 2-141) as a starting point and we have
modifi ed it in several ways, with the main aim of making explicit some restrictions that
State Machines must hold and taking into account the Statecharts metamodel we proposed
in Domínguez et al. (2000a; 2000b) using the Noesis metamodeling technique (Domínguez,
Zapata & Rubio, 1997).

One of the main differences between the class diagram of Figure 5 and the class dia-
gram proposed in OMG (2003) is that we have interpreted the fact of being a simple or a
composite state not as an intrinsic property of the state but as a characteristic derived from

Figure 5: Base Diagram

Improving the Understandability of Dynamic Semantics 79

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the fact of whether the state is decomposed into substates or not. This interpretation has led
us to include in the Base Diagram a new class, Decomposition, which represents the existence
of a relationship between a state and a set of substates. The decomposition can be of two
kinds: concurrent or not concurrent. This new proposal solves a latent problem related to
simple and composite states. During the state machine construction process, a state which
initially was considered as simple can now be considered to be compound. According to the
version proposed in OMG (2003), this situation would entail an instance of the SimpleState
class becoming an instance of the CompositeState class, which leads to the problem known
as object reclassifi cation anomaly (Chu & Zhang, 1997; Drossopoulou, Damiani, Dezani-
Ciancaglini & Giannini, 2002). This problem does not arise in our proposed version since a
simple state becomes a composite state by adding an instance of decomposition (without it
being necessary to reclassify any object). Another possible solution for avoiding the object
reclassifi cation problem is based on the consideration of only one class State, in such a way
that the instances (objects) of that class could be either simple or composite. This solution
would entail the introduction of a recursive relationship between the class State and itself,
in order to represent the hierarchy of states inside a state machine. However, as is claimed
in Lee (1999), in the context of the entity-relationship model, “the semantics of recursive
relationships are quite diffi cult to grasp”. We have adopted the solution discussed above
that includes a Decomposition class, since we think this solution can improve understanding
of the metamodel.

The inclusion of the class Decomposition leads to the class State having only two sub-
classes: FinalState and SubmachineState. Two restrictions are stated in the Well-Formedness
Rules in OMG (2003) with regard to the SubmachineState class: (1) only stub states are
allowed as substates of a submachine state and (2) submachine states are never concurrent.
In our proposal, we have substituted the fi rst restriction including an association between
the StubState and SubmachineState classes (representing the relation of substate) and a
restriction which states that ‘submachine states must not take part in any decomposition as
parent’. From the restriction we consider it follows that a submachine state is never concur-
rent, so no other restrictions have to be stated.

Another modifi cation we propose is related to the classifi cation of the different types
of state vertices. We have considered it convenient to differentiate between, on the one
hand, the initial, deep history and shallow history state vertices (which remain considered
as Pseudostates) and, on the other hand, the join, fork and junction vertices (which are
considered as Connectors). The reason for this lies in the fact that initial, deep history and
shallow history state vertices have to be associated with a state (which will be their parent),
whereas join, fork and junction vertices are not associated with any state, and are strongly
related with the defi nition of compound transitions. Obviously they have to be represented
inside the graphic representation of a state but it does not matter what the state is. In this
sense we share the views of several authors of formalizations of Statecharts, as they do not
associate any parent to these connectors (Harel & Naamad, 1996). It must be assumed that
the inclusion of new classes increases the complexity of the metamodel. In this case, the
distinction between Pseudostates and Connectors has a conceptual nature, and therefore
we have considered it essential in order to get a better understanding of the State Machines
language.

The last change we propose is that we have specialized the Transition class into two
subclasses according to whether a transition is an internal transition associated to a state or

80 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

not. Our aim is to emphasize the fact that the source and target of an internal transition are
always the same and can only be a state (it can not be any other type of StateVertex).

The static semantics of the new proposed UML class diagram is defi ned by means of
OCL expressions. Basically they are the same rules proposed in OMG (2003), but with some
additional ones. We do not include them here because they do not represent any relevant
contribution.

Snapshot Layer
The dynamic (execution) semantics of State Machines is related to the Snapshot Layer

since this layer has to capture those aspects that are related to the status of a state machine
at a given moment. In order to specify the dynamic semantics, we take into account that the
actual behavior of a statechart “consists of a series of detailed snapshots (...). The fi rst in
the sequence is the initial status, and each subsequent one is obtained from its predecessor
by executing a step” (Harel & Naamad, 1996). This excerpt is taken from the semantics
defi nition source of a particular CASE tool (STATEMATE, (Harel & Politi, 1998)), but it can
be considered as a widely accepted elemental description of statecharts behavior. On the
other hand, in the UML Specifi cation the dynamic semantics is described in English prose,
and in these natural language explanations several concepts have to be introduced, as for
example ‘active state confi guration’.

In the same way that the base concepts are represented by means of a UML class dia-
gram, we propose to adopt an analogous approach with the snapshot concepts, by means of
the construction of another class diagram that we have called Snapshot Diagram (Figure 6). It

Figure 6: Snapshot Diagram

Improving the Understandability of Dynamic Semantics 81

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

must be noticed that, in order to help the reader to easily detect the differences between both
class diagrams, we have used discontinuous lines for depicting the classes and relationships
of the Snapshot Diagram that remain unchanged with regard to the Base Diagram2.

As an initial remark regarding the Snapshot Diagram and the notion of submachine
state, let us note that in OMG (2003, pp. 2-158), it is said that “a submachine state is a
convenience that does not introduce any additional dynamic semantics” and that “it is
semantically equivalent to a composite state.” For this reason, from now on, we are going
to suppose that the base state machine does not contain any submachine state (if this is not
the case, an equivalent state machine should be constructed previously). As a consequence
of this, we have not included in the Snapshot Diagram either the SubmachineState or the
StubState Classes.

Thus, the Snapshot Diagram belongs to the Snapshot Layer and captures, together
with the status-independent concepts, those concepts necessary to determine the status of a
state machine at a given moment. In particular, each one of the ‘snapshots’ of the sequence
described in the previous quotation would correspond to a model of the Snapshot Diagram
we propose. In other words, a ‘snapshot’ could be described by means of an UML Object
Diagram, which is an instance of the Snapshot Diagram. The way in which a snapshot is
obtained from its predecessor (i.e., the representation of a step) will be analyzed in the fol-
lowing subsection.

It can be observed in the Snapshot Diagram that the ActiveStateConfi guration class
is added, which represents the states which are active at a given moment. Furthermore, it
is necessary to capture the information relative to the history of the behavior of the state
machine. This has been done by incorporating information about the last active substate and
the basic confi guration relative to a state. Finally, the SynchState class has a new attribute
associated to it which represents, for each object of the class, the difference between the
number of times its incoming and outgoing transitions are fi red.

T0 and T maps
Once the Base and Snapshot Diagrams have been determined, the metamodel has to

be completed, following the proposed architecture, with two maps. On the one hand, the
procedure which must be followed in order to calculate the initial status has to be deter-
mined. This procedure (represented in the metamodel by means of a map T0 T0 T) calculates a
snapshot state machine (which has to be a model of the Snapshot Diagram) from a base state
machine (which has to be a model of the Base Diagram). On the other hand, it is necessary
to defi ne the procedure which has to be followed in order to calculate, from a snapshot state
machine representing the current status, that which represents the next status. This second
procedure (represented in the metamodel by means of a map T) captures the meaning of a T) captures the meaning of a T
run-to-completion step, and it allows the construction of a sequence of models of the Snap-
shot Diagram, representing an execution trace. Figure 7 can help to clarify the relationships
between the several kinds of models and mappings included in the metamodel. This fi gure
has been inspired by the philosophy of MDA (Miller & Mukerji, 2003), and in particular by
the MDA Metamodel Description, in which mappings (as well as models) are represented
by means of classes.

We propose to make use of a notion of map between class diagrams in order to formal-
ize the procedures represented by T0 T0 T and T. Since a precise and exhaustive defi nition of the
notion of map goes beyond the scope of this chapter, we will consider a very general defi ni-

82 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

tion of the concept. Given two class diagrams C and C and C C’ at the Metamodel Level, we defi ne C’ at the Metamodel Level, we defi ne C’
a map from C to C to C C’ as a method which allows a model of C’ as a method which allows a model of C’ C’ to be determined starting from C’ to be determined starting from C’
a model of C. In our particular case, the maps T0T0T and T that we have informally described T that we have informally described T
above have to be defi ned. More specifi cally, T0T0T has to be a map from the Base Diagram to
the Snapshot Diagram and T has to be a map from the Snapshot Diagram to itself.T has to be a map from the Snapshot Diagram to itself.T

The specifi cation of each map contains, fi rstly, its signature, which specifi es the name
of the map, its parameters and the specifi cation of the result that is obtained after the applica-
tion of the map. One of the parameters determines the model that will be modifi ed, and the
rest determine the specifi c information that each map needs to know in order to accomplish
its effect. In addition, a schematic algorithm of the map is given. We are going to comment
on those aspects we consider important in relation to T0T0T and T maps.T maps.T

The setting-up of the initial status of a state machine is modeled in our metamodel by
means of the application of map T0T0T (see Table 1), that starting from a basic state machine M
leads to a snapshot state machine MoMoM D. D. D Map T0T0T does not include in MoMoM D any information about
the history of the state machine since it represents the fi rst status. As for the initial active
state confi guration, this is obtained calculating the default state confi guration of the top state,
by means of the stateConfi guration operation of the State class (see Figure 6 and Table 1).
Map T0T0T should be specifi ed with a higher degree of detail, probably using a refi nement of
the map, but we have not analyzed it here for space reasons (note that in OMG (2003) this
matter is not studied in detail either).

The run-to-completion step is modeled through the map T that results in a snapshot T that results in a snapshot T
state machine M'D M'D M' starting from another MDMDM . An accurate description of a run-to-completion
step is a very complex task, which is likely to be unapproachable all at once. We have been
inspired by the algorithmic description of step in Harel and Naamad (1996), where three
subtasks (in turn non-trivial) are specifi ed to defi ne a step. This idea has led us to consider
a two-stage refi nement of the map T. These stages are represented in the metamodel by T. These stages are represented in the metamodel by T
means of two additional class diagrams (Figures 8 and 9), in which we have used the same
graphical notation previously explained (so that the elements of each class diagram that
remain unchanged with respect to the previous one are depicted using discontinuous lines).
As a consequence of the specifi cation of both class diagrams, three intermediate maps, TiTiT ,

Figure 7: Relationships between models and mappings

Improving the Understandability of Dynamic Semantics 83

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

i = 1, 2, 3 are also specifi ed (see Table 1). These maps do not correspond exactly with the
above-mentioned three subtasks in Harel and Naamad (1996), since we are dealing with UML
State Machines and Harel and Naamad (1996) deal with a different version of Statecharts.
More specifi cally, map T1T1T calculates the enabled compound transitions (ECTs) taking into
account the current event instance, the active state confi guration, the distinct connectors (in
order to compute the compound transitions), the values of variables and guards, and so on.
This is done by means of the computeEnabled operation of the lntermediateStateMachine1
class (see Figure 8 and Table 1). A step is calculated by means of T2T2T starting from the set of
ECTs, solving the possible confl icts between transitions in this set and taking into account
the fi ring priorities. The computeStep operation of the IntermediateStateMachine2 class is
used in this case (Figure 8 and Table 1). Finally, the step is executed by means of map T3T3T ,
which causes the execution of some actions and gives rise to a new snapshot state machine,
representing the new current status. The execute operation of class Step performs this task
(Figure 9 and Table 1). In turn, any of these intermediate maps could also be refi ned, with
new stages and maps being added until the desired degree of detail is reached. Further-
more, each one of the operations used in these maps must be implemented by means of a
method, but we do not include them here for space reasons. In this respect, it is important
to mention the detailed algorithm shown in Lilius and Paltor (1999), which specifi es the
run-to-completion step.

Figure 8: First Intermediate Snapshot Diagram

84 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Figure 9: Second Intermediate Snapshot Diagram

Table 1: Maps

T0 T0 T (M : StateMachine) ⇒ M0M0M D : SnapshotStateMachineSnapshotStateMachineSnapshot

 create M0M0M D as copy of M
 with M0M0M D do
 activeStateConfi guration.activeState←top.stateConfi guration()

T1T1T (MDMDM : SnapshotStateMachine, currentEvent : Event) ⇒ M1M1M : IntermediateStateMachine1
 create M1M1M 1 1 as copy of MDMDM
 with M1M1M do
 enabled.CompoundTransition←computeEnabled(currentEvent, MDMDM .activeStateConfi guration)

T2T2T (M1M1M : IntermediateStateMachine1) ⇒ M2M2M : IntermediateStateMachine2
 create M2M2M as copy of 2 as copy of 2 M1M1M
 with M2M2M2 2 do
 step←computeStep(M1M1M .enabledCompoundTransition)

T3T3T (M2M2M : IntermediateStateMachine2) ⇒ M '
D: SnapshotStSnapshotStSnapshotS ateMachine

 create M '
D as copy of D as copy of D M2M2M

 with M '
D do

 M2M2M .step.execute()

Improving the Understandability of Dynamic Semantics 85

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

CONCLUSIONS
In this chapter we have suggested a two-layer architecture which helps to represent

behavior features. This architecture has been used as a basis for defi ning a metamodel of
UML State Machines. This metamodel, which is an extension of the metamodel proposed
in OMG (2003), basically consists of two class diagrams (Base Diagram and Snapshot
Diagram) and two maps. The main contributions of our proposal, with respect to other ap-
proaches, are the distinction between Base and Snapshot Diagrams and the representation
of the run-to-completion step by means of a map.

From the vast literature on the subject it can be seen that the analysis of behavioral
aspects adds great complexity to modeling and metamodeling tasks. This level of complexity
is likely to be the reason why a widely accepted (neither formal nor metamodeling or other)
approach to behavior and behavioral languages has not yet been found. The perspective of
the present chapter aims to make a signifi cant contribution in this sense, although it has
its limitations. In particular, the high number of models (and metamodels) that have to be
created using this approach could lead to effi ciency issues. We think that future develop-
ment of automated tool support (CASE and MetaCASE tools) can be of great help to solve
such issues.

We have restricted our attention to an analysis of the dynamic semantics of a single
state machine. However, as pointed out in Jürjens (2002), in order to provide complete
executable UML specifi cations, message-passing between different diagrams must also be
formalized. For this reason, in future work, we will investigate how message-passing can be
captured within our approach. Furthermore, there is no general agreement on the meaning
of inheritance when considering the dynamic behavior of objects (Basten & Aalst, 2001),
so that aspects related with the refi nement of UML State Machines (subtyping, inheritance
and general refi nement) remain for future work. Finally, the improvement of the specifi ca-
tion language used for the transformations also remains an ongoing project. In this respect,
the Action Semantics proposed for UML (OMG, 2003) and QVT (OMG, 2002b) need to
be analyzed.

ACKNOWLEDGMENTS
We gratefully acknowledge the helpful discussions and comments of our colleague

Dr. Julio Rubio from Universidad de La Rioja, and the fruitful comments of reviewers on
a previous version of this work.

This work has been partially supported by DGES, projects TIC2000-1368-C03-01,
TIC2002-01626, and by Ibercaja-University of Zaragoza, project IB 2002-TEC-03.

ENDNOTES
1 We will use the term ‘State Machines’ whenever we want to refer to the UML version

of the statechart technique; in other cases we will use the term ‘Statecharts’.
2 There are several reasons why we have chosen to use this presentation option. On the

one hand, since a notion of comparison between class diagrams does not exist in the
UML, there is no UML standard notation that can fully satisfy our requirements. On
the other hand, we can not use italics or bold fonts because they are used in UML with

86 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

other purposes. Our preferred solution would be use a gray color for the classes and
relationships that remain unchanged from one diagram to another, but this solution
can be problematic from a technical, printing point of view. Taking all these facts into
account, we chose to use discontinuous lines in the notation.

REFERENCES
Basten, T., & Aalst, W. M. P. van der. (2001). Inheritance of behaviour. The Journal of Logic

and Algebraic Programming, 2, 47-149.
Beek, M. von der. (1994). A comparison of statechart variants. In L. de Roever & J. Vytopil

(Eds.), Formal techniques in real time and fault tolerant systems (Vol. 863 of LNCS,
pp. 128-148). Springer.

Borger, E., Cavarra, A., & Riccobene, E. (2000). Modeling the dynamics of UML state
machines. In Y. Gurevich, P. W. Kutter, M. Odersky, & L. Thiele (Eds.), Abstract state
machines 2000 (Vol. 1912 of LNCS, pp. 223-241). Springer.

Brinkkemper, S. (1996). Method engineering: Engineering of information systems develop-
ment methods and tools. Information and Software Technology, 38, 275-280.

Brinkkemper, S., Lyytinen, K., & Welke, R. J. (1996). Method engineering. Principles of
method construction and tool support. Champan & Hall.

Brinkkemper, S., Saeki, M., & Harmsen, A. F. (1999). Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems, 24(3), 209-228.

Chu, W., & Zhang, G. (1997). Associations and roles in object oriented modeling. In D.
Embley & R. Go1dstein (Eds.), Conceptual modeling ER’97 (Vol. 1331 of LNCS,
pp. 257-270). Springer.

Dietzsch, A. (2002). Adapting the UML to business modelling’s needs – Experiences in situ-
ational method engineering. In J. M. Jézéquel, H. Hußmann & S. Cook (Eds.), UML
2002 – the Unifi ed Modeling Language (Vol. 2460 of LNCS, pp. 73-83). Springer.

Domínguez, E., & Zapata, M. A. (2000). Mappings and interoperability: A meta-modelling
approach. In T. Yakhno (Ed.), Advances in information systems ADVIS 2000 (Vol.
1909 of LNCS, pp. 352-362). Springer.

Domínguez, E., Rubio, A. L., & Zapata, M. A. (2000a). Meta-modelling of dynamic aspects:
the NOESIS approach. In J. Bézivin & J. Ernst (Eds.), Proceedings of the ECOOP
2000 International Workshop on Model Engineering (pp. 28-35). Cannes, France.2000 International Workshop on Model Engineering (pp. 28-35). Cannes, France.2000 International Workshop on Model Engineering

Domínguez, E., Rubio, A. L., & Zapata, M. A. (2000b). A way of dealing with behaviour
of state machines. In G. Reggio, A. Knapp, B. Rumpe, B. Selic & R. Wieringa (Eds.),
Proceedings of the UML 2000 Workshop Dynamic Behaviour in UML Models: Se-
mantic questions (pp. 32-37). Institut für Informatik. Ludwig-Maximilians-Universität
München.

Domínguez, E., Zapata, M. A., & Escario, I. (2000). Meta-model transformations as a support
for method adaptation. In B. Sanchez, N. Nada, A. Rashid, T. Arndt & M. Sanchez
(Eds.), World multiconference on systemics, cybernetics and informatics SCI 2000
(Vol. II Information Systems Development, pp. 44-49).

Domínguez, E., Zapata, M. A., & Rubio, J. (1997). A conceptual approach to meta-modelling.
In A. Olivé & J. Pastor (Eds.), Advanced information systems engineering, CAISE’97
(Vol. 1250 of LNCS, pp. 319-332). Springer.

Improving the Understandability of Dynamic Semantics 87

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Drossopoulou, S., Damiani, F., Dezani-Ciancaglini, M., & Giannini, P. (2002). More dy-
namic object reclassifi cation: FickleII. ACM Transactions Programming Languages
and Systems, 24(2), 153-191.

Ehrig, H., Geisler, R., Klar, M., & Padberg, J. (1997). Horizontal and vertical structuring
techniques for statecharts. In A. W. Mazurkiewicz & J. Winkowski (Eds.), CONCUR’97
concurrency theory (Vol. 1243 of LNCS, pp. 181-195). Springer.

Engels, C., Haussmann, J. H., Heckel, R., & Sauer, S. (2000). Dynamic meta-modeling: a
graphical approach to the operational semantics of behavioral diagrams in UML. In
A. Evans, S. Kent & B. Selic (Eds.), UML 2000 the Unifi ed Modeling Language (Vol.
1939 of LNCS, pp. 323-337). Springer.

Gnesi, S., Latella, D., & Massink, M. (1999). Model checking UML statechart diagrams
using JACK. In Proceedings of the IEEE International symposium on high assurance
systems engineering.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8, 231-274.

Harel, D., & Naamad, A. (1996). The STATEMATE semantics of statecharts. ACM Transac-
tions on Software Engineering and Methodology, 5(4), 293-333.

Harel, D., & Politi, M. (1998). Modeling reactive systems with statecharts: The STATEMATE
approach. McGraw Hill.

Harel, D., Pnueli, A., Schmidt, J. P., & Sherman, R. (1987). On the formal semantics of
statecharts. In Proceedings of the 2nd IEEE Symposium on logic in computer science
(pp. 54-64). IEEE Press.

Hofstede, A. H. M. ter, & Verhoef, T. F. (1997). On the feasibility of situational method
engineering. Information Systems, 22(6/7), 401-422.

Hong, H. S., Kim, J. H., Cha, S. D., & Kwon, Y. R. (1995). Static semantics and priority
schemes for statecharts. In 9th Annual International Computer Software and Applica-
tions Conference COMPSAC’95 (pp. 114-120). IEEE Press.

Hooman, J., Ramesh, S., & Roever, W. de. (1992). A compositional axiomatization of stat-
echarts. Theoretical Computer Science, 101, 289-335.

Jin, Y., Esser, R., & Janneck, J.W. (2002). Describing the syntax and semantics of UML stat-
echarts in a heterogeneous modelling environment. In M. Hegarty, B. Meyer & N. H.
Narayanan (Eds.), Diagrammatic Representation and Inference, Second International
Conference, Diagrams 2002 (Vol. 2317 of LNAI, pp. 320-334). Springer.

Jürjens, J. (2002). A UML statecharts semantics with message-passing. Proceedings of the
2002 ACM Symposium on Applied Computing (pp. 1009-1013). ACM.2002 ACM Symposium on Applied Computing (pp. 1009-1013). ACM.2002 ACM Symposium on Applied Computing

Kelly, S., Lyytinen, K., & Rossi, M. (1996). MetaEdit+: a fully confi gurable multi-user and
multi-tool CASE and CAME environment. In P. Constantopoulos, J. Mylopoulos & Y.
Vassiliou (Eds.), Advanced Information Systems Engineering, CAISE’96 (Vol. 1080 Advanced Information Systems Engineering, CAISE’96 (Vol. 1080 Advanced Information Systems Engineering, CAISE’96
of LNCS, pp. 1-21). Springer.

Kwon, G. (2000). Rewrite rules and operational semantics for model checking UML stat-
echarts. In A. Evans, S. Kent & B. Selic (Eds.), UML 2000 the Unifi ed Modeling
Language (Vol. 1939 of LNCS, pp. 528-540). Springer.

Latella, D., Majzik, L, & Massink, M. (1999). Towards a formal operational semantics of
UML statechart diagrams. In 3rd International Conference on Formal Methods for Open
Object Oriented Distributed Systems (pp. 331-344). Kluwer Academic Publishers.

88 Domínguez, Rubio and Zapata

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Lee, H. K. (1999). Semantics of recursive relationships in entity-relationship model. Infor-
mation and Software Technology, 41(13), 877-886.

Lilius, J., & Paltor, I. P. (1999). Formalising UML state machines for model checking. In
R. France & B. Rumpe (Eds.), UML’99 the Unifi ed Modeling Language (Vol. 1723
of LNCS, pp. 430-445). Springer.

Maggiolo-Schettini, A., Peron, A., & Tini, S. (2003). A comparison of statecharts step se-
mantics. Theoretical Computer Science, 290(1), 465-498.

Mann, S., & Klar, M. (1998). A metamodel for object oriented statecharts. In The Second
Workshop on Rigorous Object Oriented Methods, ROOM 2.

Marttiin, P., Harmsen, F., & Rossi, M. (1996). A functional framework for evaluating method
engineering environments: the case of Maestro II/Decamerone and MetaEdit+. In S.
Brinkkemper, K. Lyytinen & R. J. Welke (Eds.), Method engineering. Principles of
method construction and tool suppport (pp. 63-86). Champan & Hall.method construction and tool suppport (pp. 63-86). Champan & Hall.method construction and tool suppport

Miller, J., & Mukerji, J. (2003). MDA Guide version 1.0 omg/03-05-01. Available: http://
www.omg.org

OMG. (2002a, April). MOF specifi cation version 1.4 formal/2002-04-03. Available: http://
www.omg.org

OMG. (2002b, April). MOF 2.0 Query/Views/Transformations RFP ad/2002-04-10. Avail-
able: http://www.omg.org

OMG. (2003, March). UML specifi cation version 1.5 formal/2003-03-01. Available: http://
www.omg.org

Palanque, P., Bastide, R., Dourte, L., & Sibertin Blance, C. (1993). Design of user driven
interfaces using petri nets and objects. In C. Rolland, F. Bodart & C. Cauret (Eds.),
Advanced Information Systems Engineering, CAISE’93 (Vol. 685 of LNCS, pp. 569-
585). Springer.

Peterson, J. L. (1981). Petri net theory and the modelling of systems. Prentice Hall.
Reggio, G. (2002). Metamodelling behavioural aspects: The case of UML State Machines.

In H. Ehrig, B. J. Kramer & A. Erta (Eds.), Proceedings of Integrated Design and
Process Technology, IDPT-2002. Society for Design and Process Science.

Reggio, G., Knapp, A., Rumpe, B., Selic, B., & Wieringa, R. (Eds.). (2000). Proceedings of
the UML 2000 Workshop Dynamic Behaviour in UML models: Semantic Questions.
Institut für Informatik. Ludwig-Maximilians-Universität München.

Rolland, C., Souveyet, C., & Moreno, M. (1995). An approach for defi ning ways of work-
ing. Information Systems, 20(4), 337-359.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991). Object oriented
modeling and design. Prentice Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unifi ed Modeling Language reference
manual. Addison Wesley.

Saeki, M. (1995). Object-oriented meta modelling. In M. P. Papazoglou (Ed.), Proceedings
of the OOER’95, 14th International Object Oriented and Entity Relationship Model-
ling Conference (Vol. 1021 of LNCS, pp. 250-259). Springer.

Saeki, M. (2000). Towards formal semantics of meta-models. In J. Bézivin & J. Ernst (Eds.),
Proceedings of the ECOOP 2000 International Workshop on Model Engineering (pp. Proceedings of the ECOOP 2000 International Workshop on Model Engineering (pp. Proceedings of the ECOOP 2000 International Workshop on Model Engineering
2-9). Cannes, France.

Saeki, M. (2002). Role of model transformation in method engineering. In A. B. Pidduck,
J. Mylopoulos, C. C. Woo & M. T. Ozsu (Eds.), Advanced information systems engi-
neering, CAISE 2002 (Vol. 2348 of LNCS, pp. 626-642). Springer.

Improving the Understandability of Dynamic Semantics 89

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Siau, K., & Cao, Q. (2001). Unifi ed Modeling Language (UML): A complexity analysis.
Journal of Database Management, 12(1), 26-34.

Smolander, K., Lyytinen, K., Tahvanamen, V. P., & Marttiin, P. (1991). Metaedit: A fl exible
graphical environment for methodology modelling. In R. Andersen, J. Bubenko Jr. &
A. Solvberg (Eds.), Advanced information systems engineering, CAISE’91 (Vol. 498
of LNCS, p. 168-193). Springer.

Song, X., & Osterweil, L. J. (1994). Experience with an approach to comparing software
design methodologies. IEEE Transactions on Software Engineering, 20, 364-384.

Varro, D. (2002). A formal semantics of UML Statecharts by Model Transition Systems. In
A. Corradini, H. Ehrig, H.-J. Kreowski & G. Rozenberg (Eds.), Graph Transforma-
tions: First International Conference, ICGT 2002 (Vol. 2505 of LNCS, pp. 378-392).
Springer.

Verhoef, T. F. (1993). Effective information modelling support. Unpublished doctoral dis-
sertation, Delft University of Technology, Delft, The Netherlands.

90 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter V

Metrics for
Workfl ow Design:
How an Information
Processing View on

Business Processes Helps
to Make Good Designs

Hajo A. Reijers, Technische Universiteit Eindhoven, The Netherlands

ABSTRACT
On the way to process automation, an important issue is the defi nition of the various ac-
tivities or work tasks within the respective business process. Design decisions on this issue
considerably affect business performance. Several guidelines known in the area of workfl ow
management exist, but do not give the inexperienced workfl ow designer much to hold on to.
This chapter introduces a cohesion metric that can be used for the identifi cation of weakly
cohesive activities in a workfl ow design. Also, a heuristic is presented that is based on this
cohesion metric to decide between various workfl ow design alternatives. A theoretical and
an empirical evaluation are included in this chapter, both positively supporting the sound-
ness of the metric. The inspiration for the introduced notion is derived from similar cohesion
metrics in software engineering.

INTRODUCTION
Workfl ow management projects typically start with the design of a business process.

This usually results in a model of the process as a network of related activities. After the

Metrics for Workfl ow Design 91

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

design phase, a formal version of the model can be used to confi gure a workfl ow manage-
ment system. One of the functions of such a system is that it can allocate activity instances
to the workers in that process at run-time (Jablonski & Bussler, 1996; Van der Aalst &
Van Hee, 2002). However central the activity concept may be within such a setting, it is
the author’s experience in various workfl ow projects (De Crom & Reijers, 2001; Reijers,
2003) that the knowledge of identifying activities within a business process is limited and
can result in ill-defi ned activities.

The results of ill-defi ned activities on the operational performance of a process may
be substantial. One may think of activities that are needlessly small. This increases the
number of hand-offs between activities, with a corresponding increase of errors (Seidmann
& Sundararajan, 1997). Activities that are too large may cause infl exibility within a business
process, since its underlying operations must be performed regardless of their merits under
the circumstances (Van der Aalst, 2000).

The aim of this chapter is to provide some tangible guidance for activity defi nition
in the form of a heuristic, by making the intuitively appealing notion of a ‘logical unit of
work’ operational. The application area is the design of workfl ow processes. The heuristic
we propose is based upon a cohesion metric for activities, as inspired by similar notions
in software engineering. In this way, insights from computer science are transferred to the
business area, which in this case seems to be a successful undertaking.

The structure of this chapter is as follows. First, we will introduce some basic concepts
and give a short overview of existing activity defi nition heuristics in the workfl ow manage-
ment fi eld. Next, we will present the cohesion notion we mentioned earlier, as well as a
heuristic for its use. After its introduction and the presentation of some examples, we will
subject the cohesion notion to both a theoretical and empirical evaluation. Some concluding
remarks and directions for further research form the fi nal part of this chapter.

ACTIVITY DESIGN IN
WORKFLOW MANAGEMENT

Terminology
An activity is a specifi cation of a part of work to be accomplished. We use ‘workfl ow

process’ as a synonym for a specifi c type of business process. A business process itself
is a conceptual way of organizing work and resources by distinguishing a set of related
activities. Workfl ow processes are usually found in administrative contexts (e.g., banking,
insurance, government, etc.). They are particularly suitable to be supported by workfl ow
management systems.

Each single activity that is distinguished within a workfl ow process may be divided
into a number of operations. Operations are used to identify small parts of work in a way
that is still useful within the business context. In general, it is also possible to distinguish
an activity without mentioning the operations it comprises (non-determinism).

We interpret the matter of activity defi nition as the formulation of a goal and/or the
assignment of operations to an activity within the context of a single workfl ow process.
Part of the work in defi ning activities involves an evaluation of its properties, such as its
size, its workability, its performance, etc. Although a broader view on an activity defi nition
may also include matters such as the development of work instructions, various views and

92 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

abstraction levels, supporting information systems, interfaces, etc., these are outside the
scope of this chapter.

In choosing the respective terminology, we aspired consistency with the standards of
the Workfl ow Management Coalition (Fischer, 2001).

Workfl ow Management
When taking the perspective of an organization, it immediately becomes clear that there

are many factors that determine—or at least infl uence—how activities should be defi ned. One
can think of regulations and considerations that emerge from human resource management,
ergonomics, quality management, social sciences, accountancy, and various other fi elds.

One specifi c view is that of workfl ow management (WfM), which produces relatively
pragmatic directions on activity defi nition, aimed at process automation. Sharp and McDer-
mott (2001), for example, allow on each of the three to fi ve hierarchic levels of a workfl ow
process a number of fi ve to seven activities. In other words, no matter what the operations
are, they should be fi tted in somewhere.

Van der Aalst and Van Hee (2002) note that to prevent problems in supporting processes
by WfM systems it is necessary to only regard as an activity a logical unit of work (LUW).
This means that the so-called ACID properties known from transaction processing apply:
Atomicity, Consistency, Isolation, and Durability (Harder & Reuter, 1983). The authors
also state their decomposition criterion for distinguishing a LUW: There must exist unity
of time, place, and operation.

The unity of time, place, and operation criterion often does not act as an imperative,
but rather as a fi rst step for activity decomposition, according to Van der Aalst and Van Hee
(2002). They give the following additional decomposition criteria:

• The recognizability of an activity by the members of the organization that must perform
it is important, with a clear function and objective.

• Sensible interim states: All resulting interim states in the process caused by activity
decomposition should be sensible.

• Acceptable “commit work” for each of the process activities: Violations of the ACID
properties should be acceptable, especially with respect to possible rollback and the
split up of tasks.

Van der Aalst and Van Hee (2002) admit that in practice it is not easy to address the
ACID properties, because of the properties and limitations of current workfl ow systems. A
partial solution to this problem is given by Grefen et al. (2001), who distinguish high-level
(long-living) and low-level (relatively short-living) processes. The latter are subprocesses of
the former, but both have different requirements. The low-level requires strict execution of
the ACID properties. The high-level needs relaxation of the atomicity and isolation require-
ments. Their WIDE model for WfMS’s supports this view (Grefen et al., 1999).

In conclusion, in the WfM fi eld heuristics and rules of thumb are used to identify op-
erations that more or less naturally belong together. Characteristically, decisions on splitting
up or combining activities are context-sensitive. All the given rules provide a considerable
degree of design freedom.

Metrics for Workfl ow Design 93

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

A COHESION METRIC FOR
WORKFLOW ACTIVITIES

Introduction
In software engineering, manipulations (declarations, assignments, invocations, etc.)

that are strongly related are preferably grouped together within the same module or class
(Stevens et al., 1974). There are clear implications for the maintainability and re-usability
of programs by using this approach and there is also considerable empirical evidence that
the resulting computer programs contain fewer errors (Card et al., 1986; Selby & Basili,
1991).

Workfl ow processes are in some sense similar to computer programs, as they primarily
involve information processing steps: checks, decisions, computations, copying, etc. Also,
in workfl ow processes the administration of information is often vital (customer data, order
information, etc.). Furthermore, workfl ow processes consist of activities, where computer
programs are divided into modules or classes. And where modules contain statements and
classes methods, activities consist of operations. For more information on the characteriza-
tion of workfl ow processes, we refer the reader to Reijers (2003).

Because of the advantages of cohesion metrics in software design and the rough simi-
larities between programs and workfl ow processes, it seems both fruitful and plausible to
pursue something similar to a software cohesion metric for the sake of activity defi nition
in workfl ow processes.

Activity Cohesion Metric
Prior to the formulation of the cohesion metric and the discussion of some examples,

we introduce its supporting notions. For the sake of clarity, we do not consider an entire
workfl ow process. Instead we directly zoom in on a part of the process for which it is unclear
how to defi ne activities, a so-called operations structure. We assume as given a sense of
operations that take place within this part. Operations in our view can be seen as information
functions, which take as inputs zero or more pieces of information and produce one new
piece of information, its output. Consider, for example, a workfl ow that handles insurance
claims. The decision whether or not a claim is acceptable to be processed could be given
form in the following operation: Only when the claimant has not issued a claim earlier in
the same year (input 1) and the damage is covered according to the policy (input 2), then the
claim would be acceptable (output). Inputs 1 and 2 and the mentioned output can be seen as
information elements being inspected and manipulated by executing operations.

The above view on the elementary operations is also used in the workfl ow design
methodology Product-based Workfl ow Design (Reijers, 2003; Reijers et al., 2003), which
is tried and tested in several cases (De Crom & Reijers, 2001; Reijers, 2003).

The formal defi nition of an operations structure is now as follows.

Defi nition 1. (Operations Structure). An operations structure is a tuple (DAn operations structure is a tuple (DAn operations structure is a tuple (, O) with:

• D: the set of information elements that are being processed,
• O = {(p = {(p = {(, cs) ∈ D × Π(D(D()} is a set of operations on the information elements, such that

there are no ‘dangling’ information elements and no value of an information element
depends on itself:

94 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

R = {(p= {(p= {(, c)∈ D×D | ∃(p(p(, cs)∈ O : c ∈ cs} is connected and acyclic.

Using the example introduced already, examples of data elements are ‘claimant has not
issued a claim earlier in the same year’ (i1), ‘damage is covered according to the policy’ (i2),
and ‘claim is acceptable’ (i3). An example of an operation is (i3, {i1, i2}). As said, the issue
we consider is how to fi nd a set of activities that partition the total set of operations. For a
proper division, we introduce the notion of a valid activity and a valid activity ordering.

Defi nition 2. (Valid activity). Given an operations structure (DGiven an operations structure (DGiven an operations structure (, O), any subset t ⊆ O
is a valid activity on the operations structure, or simply an activity.

Defi nition 3. (Valid activity ordering). Given an operations structure (DGiven an operations structure (DGiven an operations structure (, O), the tuple
(T, T, T F) is a valid activity ordering on that operations structure if:F) is a valid activity ordering on that operations structure if:F

• T is a set of valid activities, T ⊆ Π(O), such that:
 1. ∀o∈O : (∃t ∈ T : o∈t}.
• F is a partial ordering on F is a partial ordering on F F, F, F F ⊆ T × T, such that for each T, such that for each T t ∈ T:T:T
 2. ∀t, u∈T : ((T : ((T ∃(p(p(, cs) ∈ t, (q, ds) ∈ u : q ∈ cs)⇒(u, t) ∈ F').F').F'

Within this defi nition it is expressed by 1 that all operations from the operation struc-
ture should appear at least once in one activity. This seems a reasonable requirement if we
assume that in an earlier stage it has been decided that all remaining operations are essential
to be performed. Condition 2 of Defi nition 3 enforces that when one operation depends on
the output of another, then the respective tasks they are part of are ordered such that they
respect this dependency. In other words, all information that is produced by an operation
can only be consumed by a later activity.

The defi nition of our cohesion metric, then, depends on two important parts: the rela-
tion cohesion and the information cohesion. The relation cohesion gives a measure on how
much the different operations within one activity are related. We will fi rst give the formal
defi nitions, after which we explain these notions with some examples.

Defi nition 4. (Activity relation cohesion). For a valid activity t on an operation t on an operation t
structure (Dstructure (Dstructure (, O), its relation cohesion λ(t) is defi ned as follows:

To compute the activity relation cohesion, for each operation it should be determined
with how many other operations it overlaps, i.e., it shares an input or output. The average
overlap per operation over all operations within an activity is then divided by the maximal
overlap, i.e., the number of operations minus 1, to get a relative measure between 0 and 1.

The other component of our cohesion metric, the activity information cohesion, focuses
on the sharing of information elements.

Metrics for Workfl ow Design 95

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Defi nition 5. (Activity information cohesion). For a valid activity t on an operation t on an operation t
structure (Dstructure (Dstructure (, O), its information cohesion µ(t) is defi ned as follows:

The activity information cohesion focuses on all information elements that are used
either as input or output by any operation within the respective activity. It determines how
many information elements are used more than once in proportion to all the information
elements used, which is a relative measure between 0 and 1.

The total cohesion of an activity is now given as the product of both the relation and
information cohesion. An activity has to score high on both cohesion metrics to say it is
cohesive in total. Clearly, an extreme score on one coeffi cient may outweigh a mediocre
result on the other, which is seen as satisfactory.

Defi nition 6. (Activity cohesion). For a valid activity t on an operation structure (t on an operation structure (t D on an operation structure (D on an operation structure (,
O), its (general) cohesion c(t) is defi ned as follows:

c(t) = λ(t)⋅ µ(t)

In the following subsection, we will incorporate the cohesion metric in an overall
strategy for its application and explore two examples where we apply the introduced cohe-
sion metrics.

Application of the Cohesion Metric
Let us assume that there is an activity X, which is relatively incohesive in an overall

workfl ow design on the basis of the presented cohesion metric. It is subsequently considered
to be split up into validly ordered activities A and B. An evaluation that could take place on
the basis of the same activity cohesion is then as follows:

1. Determine the cohesion of A and B (the cohesion of X is already known).
2. If both cohesion coeffi cients of A and B are higher than that of X, then the division

into A and B is preferable.
3. If the cohesion coeffi cient of X is higher than both cohesion coeffi cients of A and B,

then the larger activity X is preferable.
4. In all other cases, the heuristic is indecisive.

Note that our heuristic does not describe how the candidates A and B can be determined. does not describe how the candidates A and B can be determined. does not describe how the candidates A and B can be determined
Obviously, in small enough cases it is feasible to generate a great number of partitions, but
it grows exponentially in the number of operations that are considered. Also note that a
similar approach could be taken when activity X is considered to be integrated with another
activity Y, resulting in activity C.

Consider the example in Figure 1. We totally abstract at this place from the content
of the information elements and operations within the operations structure. The example is

96 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

based on the operations structure (Dbased on the operations structure (Dbased on the operations structure (1, O1) with D1 = {a, b,…, p} and O1 ={ (c, {a, b}), (f}), (f}), (, f, f
{d, d, d e}), (g}), (g}), (, {c, f}), (f}), (f h, {g}), (p}), (p}), (, {m, n}), (l, {h, i, j, k}), (o, {m, n}), (p}), (p}), (, {o, l}). It represents
two alternatives. Alternative X consists of one activity that comprises all these operations.
The other alternative consists of a valid ordering of activities A and B. Note that an arrow
leading from one information element to another signifi es that the former is needed as an
input for the other in some operation. Also note that the ordering of activities A and B is
valid, in accordance with Defi nition 3.

If we consider operation (c, {a, b}) we see that it has a relation with just one other
operation, namely (goperation, namely (goperation, namely (, {c, f}). After all, output f}). After all, output f c of the former operation is an input of the
latter. On average for activity X, each of its operations has a relation with 12/7 other rela-
tions, being the quotient of the summed number of relations over all operations and the
total number of relations. The maximum number of pair-wise relations that any element
within a set of 7 could have equals 6. Therefore, the relation cohesion of activity X equals
12/(7*6) = 2/7.

Furthermore, there are 6 information elements—c, f, f, f g, h, o, and p—that are shared
among several operations within X. The rest of the 16 elements are in use by exactly one
operation at a time. Therefore, the information cohesion of activity X equals 6/16. The total
cohesion of activity X is the product of its relation and information cohesion: 2/7 * 6/16
= 12/112. Similarly, we can compute the cohesion coeffi cients of activities A and B. The
results of this exercise are given in Table 1.

If we apply our heuristic to this example, then the division of the operations structure
into A and B is preferable over the single activity X. This appeals to the intuition that activ-
ity X is divided into two parts that are only related to each other through operation (h, {g}).

Figure 1

Metrics for Workfl ow Design 97

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Somebody who is to perform this task may easily wonder what the processing of a, b, c, d, d, d
e, f has to do with the processing of f has to do with the processing of f m, n, i, j, k. Obviously, we cannot say anything at this
point about, e.g., the semantical resemblances between the various operations.

To appreciate the heuristic’s opposite discrimination consider the example as given in
Figure 2, based on the operations structure (DFigure 2, based on the operations structure (DFigure 2, based on the operations structure (2, O2) with D2 = {a, b,…, i} and Oand Oand 2 ={(a, {g, h}),
(d, {d, {d i}), (c, {a, b}), (e, {b, d}), (f}), (f}), (, {f, {f c, e})}. It again represents two alternatives in the fashion
of the fi rst example. The various cohesion coeffi cients are given in Table 2.

Perhaps the reader may be under the impression that the relation cohesion and infor-
mation cohesion coeffi cients are highly related. However, it is possible to think of various
activities with very different distributions of the respective metric. It is, for example, possible
to think of an activity with one type of cohesion that equals 1, while the other almost equals
0. Because of limitations of space, actual examples are not given here.

Table 1: Cohesion Coeffi cients for Figure 1

Figure 2

X A B
relation cohesion 2/7 5/12 2/3
information cohesion 6/16 3/8 2/9
total cohesion 12/112 (≈ 0.1) 15/96 (≈ 0.2) 4/27 (≈ 0.2)

98 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

EVALUATION
Theoretical Perspective

One could wonder if the introduced cohesion metric has a sound theoretical basis. For
the sake of comparison: In computing science many metrics exist to express the quality
of some piece of software, but many of these metrics have been subject to wide criticism
because of the lack of such a theoretical basis (e.g., Vessey & Weber, 1984).

To the author’s knowledge, design quality criteria are lacking so far in the area of
workfl ow design, aside from correctness notions (e.g., Aalst, 1998). Therefore, we consider
a set of principles as defi ned by Chidamber and Kemerer (1994), which in turn have been
derived from Weyuker (1988). These principles specifi cally aim at providing support when
specifying cohesion metrics in objected oriented software design. Although the differences
between this area and that of process design are clear, we refer to it in lack of more specifi c
support.

The principles of Chidamber and Kemerer (1994) are defi ned on classes, which in
Object-Oriented Design (OOD) can be seen as abstractions of the problem space. They are
the following:
1. Noncoarseness: Given a class P and a metric P and a metric P µ, another class Q can always be found

such that µ(P(P() ≠ µ(Q). This implies that not every class can have the same value for
a metric; otherwise it has lost its value as a measurement.

2. Nonuniqueness (Notion of Equivalence): There can exist distinct classes P and P and P Q such
that µ(P(P() = µ(Q). This implies that two classes can have the same metric value, i.e.,
the two classes are equally complex.

3. Design Details are Important: Given two class designs, P and P and P Q, which provide the
same functionality, this does not imply that µ(P(P() = µ(Q). The specifi cs of the class
must infl uence the metric value. The intuition behind the property is that even though
two class designs perform the same function, the details of the design matter in deter-
mining the metric for the class.

4. Monotonicity: For all classes P and P and P Q, the following must hold µ(P(P() ≤ µ(P(P(+Q) and
µ(Q) ≤ µ(P(P(+Q) where P+Q implies combination of P and P and P Q. This implies that the
metric for the combination of two classes can never be less than the metric for either
of the component classes.

5. Nonequivalence of Interaction: ∃ P, ∃ Q, ∃ R, such that µ(P(P() = µ(Q) does not imply
that µ(P(P(+R+R+) = µ(Q+R+R+). This suggests that interaction between P and P and P R can be differ-
ent from interaction between Q and R, resulting in different complexity values for P
+ R and Q + R.

Table 2: Cohesion Coeffi cients for Figure 2

X A B
relation cohesion 1/2 1 2/3
information cohesion 5/9 1/5 1/3

total cohesion 5/18 (≈ 0.3) 1/5 (= 0.2) 2/9 (≈ 0.2)

Metrics for Workfl ow Design 99

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

6. Interaction increases Complexity: ∃ P, ∃ Q, such that µ(P(P() + µ(Q) < µ(P(P(+Q). The
principle behind this property is that when two classes are combined, the interaction
between classes can increase the complexity metric value.

We will now consider each of these requirements on our cohesion metric, interchanging
the class notion for that of an activity. For this evaluation, we will assume that in general an
operations structure will contain a non-trivial number of operations which are not totally un-
related (i.e., there are at least two operations that share at least one information element).

Noncoarseness
With respect to the fi rst property, noncoarseness, suppose that there is an activity t

defi ned on a certain operations structure. If c(t) equals zero, it is always possible to add two
related operations such that c(t) increases. If c(t) is unequal to zero, it is possible to take op-
erations away from it until its cohesion equals zero. Therefore, noncoarseness is guaranteed
on theoretical grounds. More practically, taking away or adding an operation will mostly
affect both the relation cohesion and the information cohesion of that activity.

Nonuniqueness
If we consider the second property, nonuniqueness, it is immediately clear that each

activity with only one operation—regardless which one—has a cohesion of 0. So on theo-
retical grounds this property is satisfi ed. Practically, it will often be possible to defi ne two
activities with the same cohesion if an operations structure is suffi ciently large. For instance,
it will then be possible to fi nd two sets (activities) of two operations each, such that both
sets involve an equal number of information elements of which only one information ele-
ment is shared among the two operations it consists of. Both these activities will exactly
have the same cohesion.

Design Details are Important
An evaluation of the third property, design details are important, requires us to evaluate

the notion of functionality within the context of process design. We assume that two activities
are functionally the same when they share the same outputs, i.e., they contain operations
with equal outputs (which are not used as inputs by other operations within these activi-
ties). In practical operations structures it will often be the case that there are two operations
with the same output, but with different inputs, e.g., determining somebody’s suitability
for a job by an interview or by means of a psychological test. The specifi c choice for one
of the alternatives to include in an activity will very likely be of infl uence on its cohesion,
satisfying the property in question.

Monotonicity
The fourth property of monotonicity is in general not satisfi ed by our notion of co-not satisfi ed by our notion of co-not

hesion. There is a very good explanation for this: The explicit intention of the cohesion
metric is to decide whether it is wise to combine activities or not. If cohesion would have
been a monotonic property, combining activities always results in a higher cohesion. This
would have made the criterion worthless for our purpose. The original thought behind this
monotonicity property may be inspired by such simple complexity metrics as ‘number of

100 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

lines in code’ and ‘number of methods in a class’. It is interesting to note that this property
is neither satisfi ed by the suite of cohesion metrics that Chidamber and Kemerer (1994)
themselves propose.

Nonequivalence of Interaction
It is easy to see that the fi fth property, nonequivalence of interaction, will be satisfi ed in

most practical cases. We only have to consider two different activities with equal cohesion
and an operation that is related to one or more activities within the fi rst, but to none of the
activities in the other activity. In adding the operation to both activities, the cohesion may
respectively increase in the fi rst case and will always decrease in the second.

Interaction Increases Complexity
Finally, the sixth property, interaction increases complexity, can be satisfi ed by choosing

any two operations from an operations structure that share an input or output. Two separate
activities with only one of these operations will have a cohesion that equals zero; one activity
that includes both operations will have a positive cohesion, so that the property is satisfi ed.
Although it will be not very common that µ(P(P() + µ(Q) < µ(P(P(+Q) in a practical case, our
criterion is specifi cally intended to identify cases where µ(P(P() < µ(P(P(+Q) and µ(Q) < µ(P(P(+Q).
After all, in this situation we would prefer to combine P and P and P Q (see example 2).

Discussion
On the basis of the above evaluation, the cohesion metric we presented could be said to

satisfy all relevant theoretical requirements of Chidamber and Kemerer (1994). Obviously,
there are many reservations to be made, for example the absence of more context-specifi c
theoretical requirements. As this is really a best effort, it is interesting to take a look at an
empirical evaluation of the heuristic as well.

EMPIRICAL PERSPECTIVE
Web-Based Survey

The approach we followed for the empirical evaluation is to test the heuristic by ap-
plying it to a set of design dilemmas and compare its outcomes to the judgment of human
experts. For this purpose, we used a digital web-based survey, which contained ten design
dilemmas in the same spirit as the examples of Figures 1 and 2. A respondent must choose
for each of the dilemmas on a three-point Likert scale whether he or she:

• prefers to combine the operations in one large activity,
• has no preference for combining or splitting up these activities, or
• supports the split-up of the same operations in the two given activities.

The respondent is instructed to follow his intuition whether the operations as depicted
seem to “belong together” or not. The only thing that is explained to the respondent is the
meaning of the used symbols in each fi gure and the context of workfl ow design. A screen-
shot of one of the presented dilemmas in the web-based survey is given in Figure 3.

Metrics for Workfl ow Design 101

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Fifteen Dutch workfl ow designers working for management consulting companies,
one large bank, and one utilities provider, were asked to cooperate in this survey. Fourteen
of them actually responded before the deadline. The average number of workfl ow design
projects they participated in ranged from two to 25, with an average of 10.

For the analysis of the results we used statistical methods for rater agreement, as often
used in medical settings to compare experts’ opinions on the same data. For more background
on rater agreement statistics, see Uebersax (1992, 2001). We computed the Pearson cor-
relation between the respondents’ average score and the heuristic outcome. In Table 3, we
have represented the outcomes of the web survey for each of the respondents (R1…R14)
for each of the dilemmas (D1…D10). The average score for each dilemma is given in the
column labeled ‘R_avg’; the heuristic’s outcome column with ‘H’.

The correlation between the average respondent score and the heuristic outcome ap-
proximately turned out to be 0.810. This is a signifi cant result, assuming a two-tailed 99%
confi dence interval.

In addition to this fi rst analysis, we examined the relation between the average respon-
dent score and each individual correspondent (Corr R_avg), as well as the relation between
the heuristic outcome and each individual respondent (Corr H). The respective correlation
coeffi cients are shown in Table 4.

In addition to this analysis, we interviewed respondents R2, R5, R7, R11 and R13 the
day following their survey. Of particular interest was the opinion of respondent R11. He
explained that in general he is in favor of splitting up activities in a workfl ow design in the
smallest possible parts. His consideration is that at run-time execution of a workfl ow process,
activities may be dynamically combined to be allocated to workers if this looks like a good
idea under the circumstances. Taking a look at the results in Table 3 for respondent R11,

Figure 3: Screenshot of the web-survey

102 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

this explains the almost monotonic choice for splitting up activities. Correspondent R7 had
different considerations, but could also explicitly support his deviating score.

Correspondents R2, R5 and R13—of whom the individual scores signifi cantly cor-
responded with our cohesion metric—were much less outspoken about their considerations.
They considered the dilemmas one by one, without a general design motive. Correspondent
R5 admitted that she was highly intrigued by the relation between her opinion and the cohe-
sion metric, while at the same time she could not explicitly support most of her decisions
in retrospect.

Discussion
From the second part of the analysis it follows that the opinion of each individual

correspondent reasonably well corresponds with the group’s average (Corr R_avg): The
opinion of 11 out of 14 respondents signifi cantly corresponds with this average; for half of the
correspondents this signifi cance is high. This gives us some reassurance that comparing the
average respondent’s score is a good measure for refl ecting the group’s opinion. Combined

Table 3: Data and Analysis of the Web Survey (1 = combine, 2 = combine/split, 3 = split)

R1 R2 R3 R4 R5 R6 R7 R8
D1 3 3 3 3 3 3 1 3
D2 1 1 1 1 1 1 1 1
D3 3 3 2 3 3 3 2 3
D4 3 3 3 2 3 3 3 3
D5 1 1 1 1 1 1 1 3
D6 1 1 1 1 1 1 3 1
D7 3 3 3 3 3 3 1 3
D8 3 1 3 1 3 3 1 1
D9 3 1 3 2 3 3 1 3
D10 1 1 1 1 1 2 1 3

R9 R10 R11 R12 R13 R14 R_avg H
D1 2 3 3 3 3 3 2.8 3
D2 1 1 3 1 1 1 1.1 1
D3 1 3 3 2 3 1 2.5 3
D4 2 3 3 1 3 3 2.7 3
D5 1 1 3 1 1 1 1.3 1
D6 1 1 3 2 1 3 1.5 1
D7 1 3 3 2 1 3 2.5 2
D8 1 3 3 1 3 1 2.0 3
D9 2 3 1 2 1 1 2.1 3
D10 1 1 3 1 1 1 1.4 2

Metrics for Workfl ow Design 103

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

with the highly signifi cant correlation between the heuristic and the group’s average opinion
of 0.810, we cautiously conclude a positive relation between our cohesion metric and the
corresponding intuition of experts on this matter. Obviously, the set of respondents and
questions is very small. Furthermore, we have no hard evidence that the presented dilemmas
look like real practical problems; it is based on the author’s personal experiences only.

The considerations of the respondents give us some insight into the limits of a cohesion
metric like the one we defi ned. When a design consideration is very specifi c, the cohesion
metric may be a bad implementation. However, when these considerations are less explicit
or mixed, then the cohesion metric seems like an attractive and valid quantifi cation thereof.
An expert group’s opinion is then reasonably well refl ected by the metric.

CONCLUSIONS
On the basis of our evaluation, the author is positive about the value of the cohesion

metric for both distinguishing weakly cohesive activities and the support it can offer to
decide between design alternatives. Obviously, these results must be interpreted with cau-
tion, as discussed earlier. In particular, the interviews with workfl ow designers showed that
very specifi c design considerations are not well implemented by the cohesion metric. The
presented cohesion metric should be used when more explicit considerations do not lead to a
decisive result. In this sense, it can be used as the ‘fi nishing touch’ for a workfl ow design.

The possibilities to extend this research are many. A following step may be the use of
the cohesion metric in question in an actual project, which involves the design of a work-
fl ow process in a real setting. Several of the respondents have indicated their willingness to
cooperate within such a practical test. It would be a good opportunity to test the heuristic
on real design dilemmas.

As stated before, the introduced cohesion metric only supports the designer in making
a decision with respect to activity defi nition. It does not suggest any clustering or ordering
itself. An extension of the heuristic so that it effi ciently generates optimal activity defi ni-
tions itself is the ultimate but challenging next step of this research. One interesting idea is

Table 4: Additional Analysis of the WebSurvey (*** = sign. 99 %, ** = sign. 95 %, * = sign. 90 %)

R1 R2 R3 R4 R5 R6 R7
Corr
R_avg

0.912
(***)

0.877
(***)

0.855
(***)

0.862
(***)

0.912
(***)

0.875
(***)

0.209

Corr H 0.890
(***)

0.515 (*) 0.827
(***)

0.579
(**)

0.890
(***)

0.943
(***)

0.000

R8 R9 R10 R11 R12 R13 R14
Corr
R_avg

0.482 0.592 (**) 0.912
(***)

-0.048 0.565 (*) 0.706 (**) 0.534
(*)

Corr H 0.401 0.601 (**) 0.890
(***)

-0.306 0.311 0.749
(***)

0.047

104 Reijers

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

to evaluate the cohesion of activities in existing workfl ow design which are considered by
their owners as ‘well-designed’. This could result in an accumulation of empirical metrics
scores on cohesive activities. These particular scores could then be used as a sort of ‘stop
criterion’ when generating alternative workfl ow designs: As soon as all activities satisfy a
minimal, empirically determined quality score, the search for yet more alternatives could be
terminated. The gathering of these empirical data and experimentation with such a quality
score must point out whether this approach suffi ciently prunes the search tree for alternative
workfl ow designs, which grows exponentially in the number of available operations.

Finally, we would like to extend the cohesion metric as described with notions for
the ‘coupling’ degree between several activities. In software engineering, this is another
important construct. It gives an indication how modules or classes incorporate a sense of
mutual independence. The higher the exchange of calls and information exchange between
modules or classes, the lower their independence. Clearly, the notions of coupling and co-
hesion are related to some level. We suspect that the translation of the concept of coupling
to workfl ow processes may be less straightforward than it was the case for cohesion. After
all, the drawbacks of highly dependent activities seem less severe than tightly coupled
software modules.

ACKNOWLEDGMENTS
The author would like to thank Eric Verbeek of the Technische Universiteit Eindhoven

for his assistance in preparing and carrying out the web-based survey. The author is also
indebted to all consultant respondents.

REFERENCES
Aalst, W.M.P. van der. (2000). The application of Petri nets to workfl ow management. The

Journal of Circuits, Systems and Computers, 8(1), 21-66.
Aalst, W.M.P. van der. (2000). Reengineering knock-out processes. Decision Support Sys-

tems, 30(4), 451-468.
Aalst, W.M.P. van der, & Hee, K.M. van. (2002). Workfl ow management: Models, methods,

and systems. Cambridge: MIT Press.
Chidamber, S.R., & Kemerer, C.F. (1994). A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20(6), 476-493.
Crom, P.J.N. de, & Reijers, H.A. (2001). Using prototyping in a product-driven design of

business processes. In A. D’Atri, A. Solvberg, & L. Wilcocks, (Eds.), Proceedings of
the Open Enterprise Solutions: Systems, Experiences, and Organizations Conference
(pp. 41-47). Rome: Luiss Edizioni.

Fischer, L. (Ed.). (2001). Workfl ow handbook 2001. Lighthouse Point: Future Strategies.
Grefen, P., Pernici, B., & Sanchez, G. (Eds.). (1999). Database support for workfl ow man-

agement: the Wide Project. Dordrecht: Kluwer.
Grefen, P., Vonk, J., & Apers, P. (2001). Global transaction support for workfl ow manage-

ment systems: from formal specifi cation to practical implementation. VLDB Journal,
10(4), 316-333.

Metrics for Workfl ow Design 105

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Harder, T., & Reuter, A. (1983). Principles of transaction-oriented database recovery. Com-
puting Surveys, 15(4), 287-317.

Jablonski, S., & Bussler, C. (1996). Workfl ow management: Modeling concepts, architecture,
and implementation. London: International Thomson Computer Press.

Reijers, H.A. (2003). Design and control of workfl ow processes: Business process manage-
ment for the service industry. Berlin: Springer Verlag.

Reijers, H.A., Limam, S., & Aalst, W.M.P. van der. (2003). Product-based workfl ow design.
Journal of Management Information Systems, 20(1), 229-262.

Seidmann, A., & Sundararajan, A. (1997). The effects of task and information asymmetry
on business process redesign. International Journal of Production Economics, 50(2-
3), 117-128.

Selby, R.W., & Basili, V.R. (1991). Analyzing error-prone system structure. IEEE Transac-
tions on Software Engineering, 17(2), 141-152.

Sharp, A., & McDermott, P. (2001). Workfl ow modeling: Tools for process improvement and
application development. Boston: Artech House Publishers.

Stevens, W., Myers, G., & Constantine, L. (1974). Structured design. IBM Systems Journal,
13(2), 115-139.

Uebersax, J. S. (1992). A review of modeling approaches for the analysis of observer agree-
ment. Investigative Radiology, 27, 738-743.

Uebersax, J. S. (2001). Statistical methods for rater agreement. [Online]. Available: http://
ourworld.compuserve.com/homepages/jsuebersax/agree.htm

Vessey, I., & Weber, R. (1984). Research on structured programming: an empiricist’s evalu-
ation. IEEE Transactions on Software Engineering, 10(4), 394-407.

Weyuker, E. (1988). Evaluating software complexity measures. IEEE Transactions on
Software Engineering, 14(9), 1357-1365.

106 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter VI

Fuzzy Aggregations and
Fuzzy Specializations in

Fuzzy EER Model
Jóse Galindo, Universidad de Málaga, Spain

Angélica Urrutia, Universidad Católica de Maule, Chile

Mario Piattini, Universidad de Castilla-La Mancha, Spain

ABSTRACT
Some approaches about fuzzy ER/EER model have been published recently. Few of these works
study how to relax constraints and other aspects expressed in the model. In this chapter our
aim is to relax some semantic aspects which have not been studied in previous works and to
extend the EER model with fuzzy capabilities. We use fuzzy quantifi ers and fuzzy degrees which
have been widely studied in the context of fuzzy sets and fuzzy query systems for databases.
We will also examine the representation of these new features in an EER model and their
practical repercussions. The studied extensions are: fuzzy aggregations and fuzzy aspects
on specializations, such as fuzzy degrees, fuzzy completeness constraint, fuzzy cardinality
constraint on overlapping specializations, fuzzy disjointed or overlapping constraints, fuzzy
attribute defi ned specializations, fuzzy constraints in union types or categories and fuzzy
constraints in shared subclasses (or intersection types). All these fuzzy extensions have a
new meaning and offer greater expressiveness in conceptual design.

INTRODUCTION
Conceptual modeling or design is a fundamental phase in the design of any database

(Elmasri & Navathe, 2000). In this phase of conceptual design the aim is to obtain the
so-called conceptual schema, which is a concise description of the data required by users,
including detailed description of the types of entities involved, the interrelationships existing
between them and also some important constraints in these relationships.

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 107

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The Enhanced Entity-Relationship Model (EER) (Connolly & Begg, 1998; Elmasri et
al., 2000; Hammer & McLeod, 1981) is an extension of the Entity-Relationship Model (ER)
(Chen, 1976). This study is based on the EER model published in Connolly et al. (1998),
and Elmasri et al. (1985, 2000), which is one of the most modern, versatile and complete
versions.

Fuzzy databases (Galindo, 1999; Medina et al., 1994; Petry, 1996) have also been widely
studied with scant attention being paid to the problem of conceptual modeling. At the same
time, the extension of the ER model for the treatment of fuzzy data (with vagueness) has
been studied in some publications (Chaudhry et al., 1994, 1999; Chen & Kerre, 1998; Ma
et al., 2001; Zvieli & Chen, 1986), but none of them refer to the possibility of expressing
constraints fl exibly by using the tools offered by fuzzy sets theory. Besides, these approaches
are not exhaustive in other senses. Perhaps the most exhaustive fuzzy modeling tool is the
FuzzyEER model (Galindo et al., 2001b, 2003, 2004; Urrutia et al., 2002a, 2002b, 2003)
and in this chapter we expose some of its advantages.

Zvieli and Chen (1986) allow fuzzy attributes in entities and relationships and they
introduced three levels of fuzziness in the ER model:

1. At the fi rst level, entity sets, relationships and attribute sets may be fuzzy; namely,
they have a membership degree to the model. For example, the fuzzy entity Radio
may have a 0.7 importance degree as an integrating part of a car.

2. The second level is related to the fuzzy occurrences of entities and relationships.
For example, an entity Young Employees must be fuzzy, because its instances, its
employees, belong to the entity with different membership degrees.

3. The third level concerns the fuzzy values of attributes of special entities and relation-
ships. For example, attribute Quality of a basketball player may be fuzzy.

The fi rst level may be useful, but at the end we must decide whether such an entity,
relationship or attribute will appear or will not appear in the implementation. The second
level is useful too, but it is important to consider different degree meanings (membership
degree, importance degree, fulfi llment degree...). A list of authors using different meanings
is included in Galindo et al. (2001a). The third level is useful, but it is similar to writing the
data type of some attributes, because fuzzy values belong to fuzzy data types.

Chaudhry et al. (1994; 1999) propose a method for designing Fuzzy Relational Da-
tabases (FRDB) following the extension of the ER model of Zvieli et al. (1986), taking
special interest in converting crisp databases into fuzzy ones. The way to do so is to defi ne
linguistic labels as fuzzy sets and to obtain the membership degree to each of them of the
crisp value existing in the database.

In 1998, Chen et al. introduced the fuzzy extension of several major EER concepts
(superclass, subclass, generalization, specialization, category and subclass with multiple
superclasses) without including graphical representations. The proposal of Vert et al.
(2000) is based on the notation used by Oracle and uses fuzzy sets theory to treat data sets
as a collection of fuzzy objects, applying the result to the area of Geospatial Information
Systems (GIS).

Finally, Ma et al. (2001) work with the three levels of Zvieli and Chen (1986) and they
introduce a Fuzzy Extended Entity-Relationship (FEER) model to cope with imperfect as
well as complex objects in the real world at a conceptual level. However, their defi nitions
(of generalization, specialization, category and aggregation) impose very restrictive condi-

108 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

tions. In addition, they also provided an approach to mapping an FEER model to a fuzzy
object-oriented database schema.

All these works do not study how to relax the constraints expressed in the ER/EER
model so that they can be made more fl exible, because the constraints of the traditional
model are either too restrictive or too permissive. Perhaps the fi rst work relaxing constraint
was recently published in Galindo et al. (2001b), studying, for example, fuzzy participation
constraint and fuzzy cardinality constraint in a relationship.

Firstly, we will summarize the basic concepts of fuzzy logic, paying particular attention
to fuzzy quantifi ers. After it, we formalize how we will use fuzzy concepts in the following
sections. Then, we will study each of the FuzzyEER extensions separately: fuzzy aggrega-
tions, fuzzy degrees in specializations, fuzzy completeness constraint on specializations,
fuzzy cardinality constraint on overlapping specializations, fuzzy disjointed or overlapping
constraints on specializations, fuzzy attribute defi ned specializations, fuzzy constraints in
union types or categories and fuzzy constraints in shared subclasses. Finally, we outline
some conclusions and suggest some research lines for the future.

FUZZY SETS: FUZZY QUANTIFIERS
In 1965, Lotfi A. Zadeh defi ned the concept of fuzzy set based on the idea that there are

sets in which it is not totally clear whether an element belongs to the set or not. Sometimes
an element belongs to the set to a certain degree, which is called membership degree. For
example, the set of tall people is a fuzzy set because there is no height limit establishing the
minimum height for a person to be considered tall.

A fuzzy set A is defi ned as a function of belonging µAµAµ which connects or pairs up the
elements of a domain or discourse Universe U with elements of the interval [0,1]:

µAµAµ (u): U → [0, 1] (1)

The closer µAµAµ (u) to the value 1, the greater the membership of the object u ∈ U to the
fuzzy set A. The values of membership vary between 0 (does not belong at all) and 1 (total
belonging). A fuzzy set A can be represented as a set of pairs of values: each element u with
its membership degree µAµAµ (u):

A = {µAµAµ (u) /u : u ∈ U} (2)U} (2)U

A fuzzy number is a fuzzy set, where U is a numerical domain (normally the real U is a numerical domain (normally the real U
numbers R). Figure 1 shows the membership function of the fuzzy number “Approximately
n”. The margin value m indicates the limits of the fuzzy set. It is easy to observe that the
nearer a number is to the value n, the greater its membership to “approximately n”. U is U is U
called “underlying domain” of the fuzzy set. The underlying domain may be ordered or
non-ordered, and continuous or non-continuous (discrete).

From this simple concept a complete mathematical and computing theory has been
developed which facilitates the solution of certain problems (Pedrycz et al., 1998). Fuzzy
logic has been applied to a multitude of objectives such as: control systems, modeling,
simulation, patterns recognition, information or knowledge systems (databases, expert
systems...), computer vision, artifi cial intelligence, artifi cial life....

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 109

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Fuzzy Quantifi ers
Fuzzy or linguistic quantifi ers (Galindo, 1999; Galindo et al., 2001a, Yager, 1983;

Zadeh, 1983) allow us to express fuzzy quantities or proportions in order to provide an ap-
proximate idea of the number of elements of a subset (or fulfi lling a certain condition) or of
the proportion of this number in relation to the total of possible elements. Fuzzy quantifi ers
can be absolute or relative:

• Absolute quantifi ers express quantities over the total number of elements of a par-
ticular set, stating whether this number is, for example, “large”, “small”, “many”,
“few”, “very many”.... Generalizing this concept, we can consider fuzzy numbers as
absolute fuzzy quantifi ers, in order to use expressions like “approximately between
5 and 10”, “approximately_8”.... Note that the expressed value may be positive or
negative.

 In this case, we observe that the truth of the quantifi er depends on a single quantity.
For this reason, the defi nition of absolute fuzzy quantifi ers is, as we will see, very
similar to that of fuzzy numbers.

• Relative quantifi ers express measurements over the total number of elements which
fulfi l a certain condition depending on the total of possible elements, so that the truth
of the quantifi er depends on two quantities. This type of quantifi ers is used in expres-
sions like “the majority”, “the minority”, “approximately half”....

 In this case, to evaluate the truth of the quantifi er we need to fi nd the total quantity of
elements which fulfi l the condition and consider this value with respect to the total
quantity of elements which could fulfi l it (including those which fulfi l it and those
which do not fulfi l it).

In Zadeh (1983), absolute fuzzy quantifi ers are defi ned as fuzzy sets in the interval [0, +∞)
and relative quantifi ers as fuzzy sets in the interval [0,1]. We have extended the defi nition
of absolute fuzzy quantifi ers to the interval (-∞,+∞). That is to say that a quantifi er Q is
represented as a function Q whose domain depends on whether it is absolute or relative:

Figure 1: Function “Approximately n” (n(+-)m, where m is a margin)

110 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Qabs : R → [0, 1]
Qrel : [0, 1] → [0, 1] (3)

where the domain of Qrel is [0,1] because the division a/b ∈ [0,1], where a is the number of
elements fulfi lling a certain condition and b is the total number of elements in existence.

In order to know the fulfi llment degree of the quantifi er over the elements which fulfi l a
certain condition, we apply the function Q of the quantifi er to the value of quantifi cation Q of the quantifi er to the value of quantifi cation Q Φ:

 a si Q = Qabs
Φ = (4)
 a/b si Q = Qrel

Thus, the fulfi llment degree is Q(Φ). If Q(Φ)=1, it indicates that this quantifi er is com-
pletely satisfi ed. The value 0 indicates, on the other hand, that the quantifi er is not fulfi lled at
all. Any intermediate value indicates an intermediate fulfi llment degree for the quantifi er.

Example 1. “Approximately_8” is an absolute fuzzy quantifi er, defi ned as shown
in Figure 1, with n=8, and the margin m=3, for example. “Almost_all” is a relative fuzzy
quantifi er, defi ned as shown in Figure 2.

THRESHOLDS, FUZZY QUANTIFIERS AND
DEGREES FOR OUR APPLICATION

Applied in the context of databases, the usefulness of fuzzy quantifi ers is shown by
the fl exibility it offers to carry out queries which involve these quantifi ers, as for example
in the division operation of relational algebra in fuzzy or classical databases (Galindo et al.,
2001a). Applied in the context of conceptual data models, fuzzy quantifi ers allow expres-
sions about the number of instances which satisfy a given condition, or the proportion with

Figure 2: Relative fuzzy quantifi er “almost all”: Φ [0.4, 0.9] ↔ Q(Φ Q(Φ Q() = 2(Φ) = 2(Φ Φ) = 2(Φ) = 2(- 0.4)

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 111

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

respect to the total. We will study this in next sections. Of course, the quantifi er Q must be
previously defi ned in the data dictionary of the model.

In this context, we need a threshold γ ∈ [0,1] indicating the minimum fulfi llment degree
that must be satisfi ed. This threshold will be written in square brackets: Q[γ]. For example,
we may use “almost_all [0.2]”, indicating that this fuzzy quantifi er must be satisfi ed in a
minimum degree of 0.2. Consequently, the underlining constraint requires that:

Q(Φ) ≥ γ (5)

Every time the database is modifi ed, the DBMS (DataBase Management System) com-
putes Φ and checks whether Equation 5 is satisfi ed. The meaning of Φ will be defi ned in the
next sections because it depends on where the fuzzy quantifi er is used. In order to simplify
the expression, we can set a default value for γ at 0.5, for example. If Q is an increasing
function, then we can change Equation 5 because we obtain that:

Φ ≥ Q-1 (γ) (6)

Similarly, if Q is a decreasing function, then what we get is:

Φ ≤ Q-1 (γ) (7)

The last two equations may be useful because Q and γ are constants, whereas Φ is
a varying value. Value Φ may change with every DML sentence (INSERT, DELETE or
UPDATE).

In addition, another optional value δ can be established, which is greater than the
threshold γ of minimum fulfi llment degree, in the following way: Q[γ,δ] such that γ<δ. The
value δ is more restrictive than γ and it establishes that when the constraint is unfulfi lled
with this higher value, the DBMS will inform the user, but it will permit the modifi cation of
the database which is underway. Thus, if the quantifi er is unfulfi lled with a value between
γ and δ, then the DBMS must warn the user (or only the database administrator). Therefore
the warning message is generated when

δ ≥ Q(Φ) ≥ γ (8)

Figure 3 depicts a fuzzy quantifi er with the thresholds γ and δ. Note that these thresh-
olds divide the domain of Φ in three areas: the allowed area, the not allowed area and the
warning area. The warning area is included in the allowed area. Note that the not allowed
area is defi ned when Equation 5 is false.

Therefore, a fuzzy quantifi er can be written in three ways:

1. Quantifi er without threshold γ: Default threshold is γ = 0.5. For example, approx_2.
For the purpose of simplicity we will use this form in the examples.

2. Quantifi er with a threshold γ: For example, approx_8[0.25].
3. Quantifi er with two thresholds γ and δ, with γ<δ: For example, approx_3[0.5,0.6].

Both values would be close, in order to avoid too much warnings by the DBMS.

112 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Formalization of Quantifi ers for Fuzzy Constraints
Fuzzy constraints may be used in two ways, and in both of them the constraint is de-

noted with an arc crossing the line where the constraint has effect. Besides, the arc is labeled
with the quantifi er or quantifi ers according to the constraint type:

1. If the arc is labeled with the quantifi er Q, this constraint establishes Equation 5, with
Φ defi ned by Equation 4.

2. If the arc is labeled with the fuzzy (min,max) notation (Qmin;Qmax) this constraint
establishes the minimum and maximum number or proportion of elements fulfi lling
a certain constraint. In other words, fuzzy (min,max) notation (Qmin;Qmax) establishes
that:

 λmin ≤ Φmin ∧ λmax ≥ ϕmax (9)
where
λmin = min{α : α = (Qmin)

-1(γmin)} (10)
λmax = max{β : β = (Qmax)

-1(γmax)} (11)

where, γmin and γmax are the minimum thresholds for Qmin y Qmax respectively, and

 a si Qmin is absolute
Φmin = (12)
 a/b si Qmin is relative

Figure 3: Thresholds γ and δ in a fuzzy quantifi er “approximately between a and b”, and
its generated areas

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 113

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

 a si Qmax is absolute
Φmax = (13)
 a/b si Qmax is relative

with a and b being the same values defi ned in previous case. To compute the warning area
is easy, because we must use δmin and δmax.

Fuzzy Degrees
Sometimes, fuzzy information is expressed with a degree. The domain of these degrees

is usually limited to the interval [0,1], but other values can be allowed, as for example pos-
sibility distributions. We will use these degrees for measuring certain fuzzy components in
aggregations and specializations.

Besides, the meaning of those degrees varies. Depending on this meaning the treatment
of the data will be possibly different. The most important meanings of the grades are the
following, and in Galindo (1999) and Galindo et al. (2001a), we found some authors who
used these different meanings: fulfi lment (a property can be complied with a certain degree
between two ends), membership (which measures the level of membership or ownership
of an object to a set), importance (different objects can have different importance, so that
there are objects more important than others) and uncertainty (the degree expresses the
security with which we know a specifi c data).

FUZZY AGGREGATIONS
This approach is an extension of the fi rst level by Zvieli and Chen (1986) applied to

aggregations. De Miguel et al. (1999) defi ne an aggregation like an entity which is composed
of one set of different elements. They defi ne two kinds of aggregations and we add a fuzzy
degree to each element:

1. Fuzzy aggregation of attributes: This is the most common type of aggregation and it
expresses that an entity is a set of attributes. Fuzzy aggregation of attributes is repre-
sented using circles with dashed lines for the graded attributes, indicating the degree
of each one with: Gm=<degree>, where m is the meaning of this degree.

2. Fuzzy aggregation of entities: This aggregation expresses that each instance of an ag-
gregated entity is composed of others’ instances of others’ entities. This aggregation is
denoted by a rhombus with dashed line close to the aggregated entity. The other entities
join the rhombus with a line labeled with: Gm=<degree>, where m is the meaning of
this degree.

Example 2. Figure 4 models that a car has some attributes: serial number (the primary
key), color, year, potency, etc. On the other hand, a car is composed of a chassis, an engine,
radio and specialized computer, cylinder and other entities. Some of these elements (attri-
butes and entities) have a membership degree to the model.

Thus, if we want a detailed model we can use all elements, but if we do not need
such a detailed model we can get only elements with membership degree greater to 0.7,

114 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

for example. In this case, the model does not use some attributes (color and potency), and
some entities (computer).

Fuzzy aggregation of attributes and fuzzy aggregation of entities are studied by Chen
and Kerre (1998), and Ma et al. (2001) respectively, but their approaches are more limited.
Besides, as we will see bellow we can use fuzzy cardinality constraints in aggregation.

FUZZY DEGREES IN SPECIALIZATIONS
This approach is an extension of the fi rst level by Zvieli and Chen too. We can assign

a degree to a specialization in two ways, and the meaning of this degree may be expressed
in the model:

1. Degree in the subclasses: This degree expresses a fuzzy degree of one subclass in the
specialization. It is denoted by Gm=<degree> labeling the line joining the subclass with
the circle referred to as specialization circle, where m is the meaning of this degree.

2. Degree in the specializations: This degree expresses a fuzzy degree of all the special-
ization. It is denoted by Gm=<degree> labeling the specialization circle.

Example 3. Let us consider an entity Employee which is a superclass with various
subclasses defi ning the abilities of the employees: Management Programmer, Systems
Programmer, Internet Programmer, Analyst, Graphic Designer, Accountant, etc., just like
Figure 5. These abilities have different importance denoted by the different degrees expressed
in the model.

FUZZY COMPLETENESS
CONSTRAINT ON SPECIALIZATIONS

The relationship between a class and all its subclasses can be total, if each member of
the class (or superclass) must compulsorily be a member of one (or some) of the subclasses,

Figure 4: Example 2. Fuzzy aggregations

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 115

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

or partial if this condition is not necessary. The inverse is not possible since, by defi nition, partial if this condition is not necessary. The inverse is not possible since, by defi nition, partial
each member of a subclass must be a member of the superclass.

Total participation is represented by a double line joining the superclass with the
specialization circle, to which all the subclasses are joined using a single line. Partial par-
ticipation is represented by a single line.

For our fuzzy model, this constraint can be fuzzy using a relative fuzzy quantifi er
(mainly, although they can also be absolute fuzzy quantifi ers). This will be represented by
an arc labeled with its fuzzy quantifi er, crossing the line which joins the selected superclass
with the circle.

Example 4. Let us consider the model in Figure 6 depicting an entity Employee which
is a superclass with two subclasses defi ned by the attribute Contract Type: Permanent and
Temporary. The arc and the relative fuzzy quantifi er “almost all” (Figure 2) indicate that
“Almost all employees must have a Permanent or Temporary contract, but other minority
contract types may exist (work experience, grants...)”. These other contract types are not in-
cluded in the model for various reasons (unknown types, types without own attributes...).

In the previous example, the specialization is disjointed (with a “d” in the circle) since
there cannot be an employee with various types of contracts. However, fuzzy completeness
constraints can also be applied to overlapping specializations (with an “o” in the circle) as
shown in the following example.

Example 5. Let us consider an entity Employee which is a superclass with various
subclasses defi ning the abilities of the employees: Management Programmer, Systems
Programmer, Internet Programmer, Analyst, Graphic Designer, Accountant, etc., just like
Figure 7. The relative fuzzy quantifi er like “almost all” indicates that “Almost all employees
must have one or some of the abilities expressed in the subclasses.”

Figure 5: Example 3. Fuzzy degrees in a specialization

116 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

In a new expression for fuzzy completeness constraints, we can use a fuzzy (min,max)
notation instead of one quantifi er. These minimum and maximum values restrict the quantity
of superclass instances which belong to “any” subclass. This extension is not very useful.

FUZZY CARDINALITY CONSTRAINT ON
OVERLAPPING SPECIALIZATIONS

In an overlapping specialization under the FuzzyEER model, we can also establish the
minimum and maximum number of subclasses to which each member of the superclass can
belong in a fl exible manner. This can easily be expressed using the fuzzy (min,max) nota-

Figure 6: Example 4. Fuzzy completeness constraint on an attribute-defi ned specialization
with the defi ning attribute Contract_Type

Figure 7: Examples 5 and 6. Fuzzy completeness constraint and fuzzy cardinality constraint
on an overlapping specialization

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 117

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

tion. The expression arising from this notation will be placed next to the circle containing
the letter “o” (overlapping).

This fuzzy constraint has an effect on each superclass instance and must be satisfi ed
by each one. In general, both min and max should be absolute quantifi ers, although relative
quantifi ers will also be accepted (with regard to the total number of subclasses, value b).

Example 6. Continuing with Example 5, we can establish a fuzzy cardinality constraint
on the overlapping specialization, such as: (approx_2, approx_half). This establishes the
constraint whereby each employee must appear in a minimum of “approximately 2” skills
and in a maximum of “approximately half” of existing skills (or subclasses).

This schema is depicted in Figure 7, too. Note that fuzzy quantifi er almost always is
a fuzzy completeness constraint and the (min,max) notation is used for a fuzzy cardinality
constraint.

Finally, observe that the quantifi ers can be of any type (absolute or relative) and each
quantifi er can also be followed, optionally of course, by one or two fulfi llment degrees in
square brackets [γ,δ], as explained previously.

The fuzzy cardinality constraint may be used also in the aggregation of entities. The
fuzzy quantifi er or the fuzzy (min,max) notation may label an arc crossing the line which
joins one entity with the rhombus in the aggregation. Notice that the aggregated entity may
be composed of some instances of one entity. For example, we can use fuzzy quantifi er ap-
prox_6 constraining the number of cylinders of a car (see Example 2 and Figure 4).

FUZZY DISJOINTED OR OVERLAPPING
CONSTRAINTS ON SPECIALIZATIONS

In specializations, the disjointed constraint specifi es that the subclasses of the spe-
cialization must be disjointed. This means that an entity can be a member of at most one
of the subclasses. If the subclasses are not constrained to be disjointed, it is an overlapping
specialization.

Thus, it can be interesting to include to what extent the superclass instance belongs to
each of the subclasses using linguistic labels (“a lot”, “a little”...) or, more simply, member-
ship degrees in the interval [0,1]. Note that it is to consider each subclass as a fuzzy subset
of the superclass. Just like all fuzzy sets, its elements are not clearly defi ned, since each
element can belong to the fuzzy set with a certain degree.

This extension can be applied on disjointed or overlapping specializations and such
specializations will be represented with letter “f” (fuzzy) before the other letter in the circle,
i.e., “fd” for fuzzy disjointed specializations and “fo” for fuzzy overlapping specializations.
However, it does not force all subclasses to be fuzzy subsets: fuzzy subclasses are repre-
sented with dashed rectangles.

This defi nition has two points of view:

1. From the point of view of subclasses: Subclasses are fuzzy sets and their underlying
domain is all superclass instances, i.e., each superclass instance has a membership
degree to each subclass (including the value zero). Let A be a subclass of S. Then
the fuzzy set of A is represented by the following equation (using the Equation 2
format):

118 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

{µA(u1)/u1,µA(u2)/u2,... µAn(un)/un} (14)

 where ui, with i = 1, 2,…, n, are all instances of superclass S, and µA(u1) is the mem-
bership degree of ui to subclass A.

2. From the point of view of superclass instances: Each superclass instance may belong
to some subclasses. This membership is measured with a fuzzy set. The underlying
domain of this fuzzy set is the set of all subclasses names. Let Ajdomain of this fuzzy set is the set of all subclasses names. Let Ajdomain of this fuzzy set is the set of all subclasses names. Let A , with j = 1,2,… j = 1,2,… j m
be the m subclasses of S. Then the fuzzy set of instance ui is:

{µA1(u1)/A1,µA2(u2)/A2,... µAn(un)/An} (15)

 where µAj(u1), with j = 1,2,… j = 1,2,… j m, is the membership degree of ui to subclass Aj to subclass Aj to subclass A . Note
that in disjointed specializations the number of subclasses for a superclass instance is
one.

Observe that both points of view work with fuzzy sets with a different discrete un-
derlying domain.

Example 7. Figure 8 indicates that our conceptual schema is also concerned with
storing to what extent each employee belongs to each of the subclasses. Thus, the system’s
programmers set is a fuzzy set (an employee can belong to this set with a certain member-
ship degree), whereas the set of accountant is not a fuzzy set (an employee can or cannot
belong to this set). This is the fi rst point of view.

The second point of view starts with a particular employee: an employee who is an
expert at programming management applications, although he may also be skilled in other
types of applications and less skilled as an analyst, could be represented in the database by
the following fuzzy set: {1/Management Programmer, 0.8/Systems Programmer, 0.3/Ana-
lyst}. Note that the underlying domain is the set of all subclasses names.

This will allow us to make selections of the type: “Find the name of the best manage-
ment applications programmer amongst those who are not assigned to many projects and
who is at least a regular analyst.”

This constraint does not prevent the use of other fuzzy constraints (completeness or
cardinality). However, when they are mixed with a fuzzy disjointed or overlapping con-
straint, they must be studied in order to defi ne the method with which the DBMS ensures
the fulfi llment of these constraints:

1. If a fuzzy completeness constraint exists then the DBMS must compute whether each
superclass instance belongs to some subclass; for example, in order to decide if “almost
all” superclass instances belong to some subclass. The problem is that membership
is now fuzzy. Membership degree of an instance to the subclasses may be computed
in various manners: a) By using the maximum membership degree of this instance to
any subclass, i.e., the height (Pedrycz et al., 1998) of the second point of view fuzzy
set, b) By using the fuzzy set cardinality (Pedrycz et al., 1998) of the second point of
view fuzzy set (adding all membership degrees) or by using generalized measures,
like the fuzzy set energy (De Luca et al., 1974). We can, certainly, set a minimum
threshold in order to decide whether an instance belongs to some subclass.

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 119

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

2. If a fuzzy cardinality constraint exists then the DBMS must compute the number of
subclasses to which each superclass instance belongs to; for example, in order to decide
if the number of subclasses of a superclass instance is between “approximately_2”
and “approximately_half” of existing subclasses. However, this number is not simple,
because membership is now fuzzy. This problem may be solved in two ways: a) By
using the fuzzy set cardinality (Pedrycz et al., 1998) of the second point of view fuzzy
set or by using generalized measures, like the fuzzy set energy (De Luca et al., 1974),
b) By counting the number of subclasses with a membership degree greater than a
minimum value (usually zero). Once the DBMS has computed this number, the system
must check if this number satisfi es the fuzzy cardinality constraint.

FUZZY ATTRIBUTE DEFINED
SPECIALIZATIONS

There are some kinds of fuzzy attributes, summarized in (Galindo et al., 2001a). Some
models (Medina et al., 1994) and applications (Galindo et al., 1998; Galindo, 1999) use the
following ones. The so-called fuzzy attributes Type 1 are totally crisp (traditional), but they
have some linguistic trapezoidal labels defi ned on them, which allow us to make the query
conditions for these attributes more fl exible (cold, warm...). With these attributes we can use
fuzzy queries in classic databases. Fuzzy attributes Type 2 admit crisp or fuzzy data over
an ordered underlying domain. Fuzzy attributes Type 3 do not have an ordered underlying
domain, for instance the hair color. On these attributes some labels are defi ned (fair, brown,
red-haired...) and on these labels a similarity relation has yet to be defi ned. Thus, each two
labels are equal (or similar) with a similarity degree in [0,1]. Besides fuzzy attributes, Type
3 admits fuzzy sets (or possibility distributions) on its underlying domain. An example of
these fuzzy sets is {1/brown, 0.5/red haired, 0.2/fair}. In some contexts a fuzzy attribute

Figure 8: Example 7. Fuzzy overlapping specialization

120 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Type 3 does not have a similarity relation defi ned in its domain. We name these attributes
as fuzzy attributes Type 4.

We defi ne a fuzzy attribute defi ned specialization just like an attribute defi ned special-
ization (Elmasri et al., 2000) where this attribute is a fuzzy attribute. It is represented with
an angled line joining the superclass with the circle. This line will be labeled with the name
of the fuzzy attribute Type n, preceded by the text “Tn:”. This defi nition is independent of
all constraints like fuzzy or crisp disjointed or overlapping specializations.

The following example shows two fuzzy attribute defi ned specialization (disjointed
and overlapping). In one specialization, each pair of subclasses has a fuzzy similarity degree
between them (Type 3). This property is useful to compare them and to search the more
important instances in some queries. In the other specialization, the similarity relation does
not exist (Type 4).

Example 8. The conceptual model represented in Figure 9 expresses that in a real
estate agency, every landed property belongs to one subclass, which has its own attributes.
Thus, this is a total disjointed specialization (double line and “d” inside the circle). At-
tribute Kind is a fuzzy attribute Type 3, because if one person is looking for a chalet, for
example, then this customer is, possibly, interested in semi-detached houses because these
two types are similar. Thus, this is taken into account in order to show to our customer all
the relevant properties. In this sense, fuzzy queries are studied in Galindo et al. (1998, 1999)
and Galindo (1999). Observe that subclasses are not fuzzy, because every landed property
belongs only to one subclass.

Every landed property has an owner, which is a customer. Another kind of customer
is a claimant who is looking for a landed property. The overlapping specialization makes
it such that one customer may be owner and claimant at the same time. The fuzzy attribute
Type 4, Kind, makes it possible to store a possibility distribution about the subclasses in
order to express any fuzzy concept. In this example we are interested in measuring the
urgency of the customer. Thus, a customer with the value {0.4/Owner, 1/Claimantg} is a
customer who is looking for a landed property urgently and who is offering some property

Figure 9: Example 8. Two fuzzy attribute defi ned specializations

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 121

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

without urgency. Note that subclasses are not fuzzy, because a customer is or is not owner
and/or claimant.

Example 9. Figure 11 includes another three examples of fuzzy attribute defi ned
specializations using two fuzzy overlapping specializations and one disjointed specializa-
tion. The fi rst one is a specialization with a total participation constraint (double line) and
it establishes that all employees must belong to one or more categories. Besides, Category
is a fuzzy attribute Type 3.

The second one is a specialization with a fuzzy participation constraint with the fuzzy
quantifi er almost all in the labeled arc: Almost all researches must belong to one or more
research lines. Besides, Research Line is a fuzzy attribute Type 3.

The third one is a disjointed specialization with a total participation constraint and
it establishes that all temporary employees are beginners or seniors, according to the an-
tiquity. Subclasses are not fuzzy because we do not want to store the membership degree.
Besides, a temporary employee cannot belong to both subclasses. The antiquity is a crisp
and known value but we can make fl exible queries using this attribute, i.e., it is a fuzzy
attribute Type 1.

FUZZY CONSTRAINTS IN UNION
TYPES OR CATEGORIES:

PARTICIPATION AND COMPLETENESS
In the EER model we can also fi nd the union types or categories (Elmasri et al., 1985;

2000). It represents the case when some different superclasses may be members of a special
subclass (called category) or not. By defi nition, each member of the subclass or category
must be a member of at least one of the superclasses. Furthermore, in partial categories it
is possible that superclass instances do not belong to the category, because the category is
a subset of the union of all superclasses.

Union types are represented with the union symbol inside a circle. Superclasses are
joined to that circle by a line. Subclass or category is joined to that circle using a single
line with the inclusion symbol. In this type of specialization it is possible to apply fuzzy
constraints in two ways:

1. Fuzzy participation constraint in one or more superclasses: This constraint restricts
the number of instances, in the union of any group of superclasses, which belong to the
category. This is represented by an arc labeled with its fuzzy quantifi er, crossing the line
which joins the selected superclass with the circle. Normally, this fuzzy quantifi er will
be relative. For example, with the quantifi er “almost all” on a superclass the constraint
expresses that: “almost all superclass elements belong to the category”. Another option
is to join two or more superclasses with an arc indicating that the union of instances
of those superclasses is constrained in participation. This constraint allows the use of
the (min,max) notation indicating the minimum and maximum number of instances
which belong to the category (using absolute or relative fuzzy quantifi ers).

122 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

2. Fuzzy completeness constraints in the category (on the union of all superclasses):
This constraint restricts the number of instances, of all superclasses (the union), which
belong to the category. This is represented by an arc labeled with its fuzzy quantifi er,
crossing the line which joins the category with the circle. Normally, this fuzzy quan-
tifi er will be relative. For example, with the quantifi er “almost all” on the category
the constraint expresses that: “almost all elements of all superclasses belong to the
category”. This constraint allows the use of the fuzzy (min,max) notation too, indicat-
ing the minimum and maximum number of all superclasses instances which belong
to the category. Notice that this second way is always referred to as all superclasses
instances, i.e., to the union of all superclasses. This reason makes it such that relative
fuzzy quantifi ers are preferred in this constraint.

Example 10. Let us consider four entity types for vehicles: Car, Truck, Motorbike
and Bicycle. Some vehicles may belong to the Registered Vehicle entity. Figure 10 depicts
this model with some participation constraints: Almost all cars and all trucks must be reg-
istered vehicles. Besides, the model allows a maximum of approximately fi ve bicycles to
be registered vehicles. The arc labeled with the fuzzy quantifi er Most indicates that most
motorbikes or bicycles (its union) must be registered.

On the other hand, fuzzy completeness constraint establishes that approximately half
of the existing vehicles must be registered vehicles.

FUZZY CONSTRAINTS IN
SHARED SUBCLASSES:

PARTICIPATION AND COMPLETENESS
A shared subclass (or intersection type) is a subclass with several superclasses (Elmasri

et al., 2000). Each member of the subclass must be a member of all of the superclasses,
i.e., the subclass is a subset of the intersection of all of the superclasses. A shared subclass

Figure 10: Example 10. Fuzzy constraints on a union type or category

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 123

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

is represented by joining it with all of its superclasses by a single line with the inclusion
symbol. Another representation utilizes the intersection symbol inside a circle: Superclasses
are joined to that circle by a line and the subclass is joined to that circle using a single line
with the inclusion symbol.

Just as with union types, in this type of specialization it is possible to apply fuzzy
constraints in two ways:

1. Fuzzy participation constraint in one or more superclasses: This constraint restricts
the number of instances, in the intersection of any group of superclasses, which
belong to the shared subclass. This is represented by an arc labeled with its fuzzy
quantifi er crossing the line which joins the selected superclass with the circle. This
fuzzy quantifi er would be relative. For example, with the quantifi er “almost all” on
a superclass the constraint expresses that: “almost all superclass elements belong to
the shared subclass”. Another option is to join two or more superclasses with the arc
indicating that the intersection of instances of those superclasses is constrained in
participation. This constraint allows the use of the fuzzy (min,max) notation indicating
the minimum and maximum number of instances which belong to the shared subclass
(using absolute or relative fuzzy quantifi ers). Generally, the participation constraint
is not useful, because one constraint on one superclass (or on several superclasses)
depends on the membership of its instances to the other superclasses (remember that
the subclass is a subset of the intersection).

2. Fuzzy completeness constraints in the shared subclass (on the intersection of all
superclasses): This constraint restricts the number of instances, in the intersection of
all superclasses, which belong to the shared subclass. This is represented by an arc
labeled with its fuzzy quantifi er, crossing the line which joins the shared subclass
with the circle. Normally, this fuzzy quantifi er will be relative. For example, with the
quantifi er “almost all” on the shared subclass the constraint expresses that: “almost
all elements of the intersection of all superclasses belong to the shared subclass”.
This constraint allows the use of the fuzzy (min,max) notation too, indicating the
minimum and maximum number of instances in the intersection (of all superclasses)
which belong to the shared subclass. Notice that this constraint is always referred to
as the intersection of all superclasses.

Example 11. Let us consider an entity for Special Employees with its own attributes
(extra, payment, number of awards, motive...). A member of this shared subclass must be
engineer, chief and a permanent employee. Figure 11 depicts this model with the follow-
ing participation constraint: Almost all chiefs and permanent employees must be special
employees. It is interesting to note how this constraint enforces that almost all chiefs and
permanent employees must be engineers, too. It must be remembered that all special em-
ployees belong to Engineer superclass.

On the other hand, fuzzy completeness constraint establishes that approximately
half of employees who are engineers, chiefs and permanent employees must be special
employees.

In real models fuzzy constraints in the same specialization must be mixed with care.
Observe that a fuzzy participation constraint embracing all superclasses is a fuzzy complete-
ness constraint (both in union types and in intersection types).

124 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

CONCLUSIONS AND FURTHER RESEARCH
Fuzzy logic allows us to bring the operation of information systems closer to the work-

ing methods of humans. People control fuzzy concepts very often (terms like “almost all”,
“the majority”, “approximately 8”...), which include a certain vagueness or uncertainty and
which traditional information systems do not understand, and therefore cannot use.

Fuzzy databases (Galindo, 1999; Medina et al., 1994; Petry, 1996) have also been
widely studied with the following main objectives: fi rstly, to allow the storage of imprecise
or fuzzy data, and secondly, to allow the possibility of imprecise or fuzzy queries, using
the existing data (whether imprecise or not). Traditionally, the application of fuzzy logic to
databases has paid scant attention to the problem of conceptual modeling.

The extension of the EER model (Connolly et al., 1998; Elmasri et al., 2000) for
dealing with fuzzy data has been studied in some publications (Chaudhry et al., 1994,
1999; Chen & Kerre, 1998; Ma et al., 2001; Zvieli & Chen, 1986), but these approaches
are partial: They study or extend only some aspects or, in some cases only one aspect of
EER model. For example, none of them refers to the possibility of extending constraints
by using the tools offered by fuzzy sets theory. In this context, FuzzyEER model (Galindo
et al., 2001b, 2003, 2004; Urrutia et al., 2002a, 2002b, 2003) is a tool for fuzzy modeling,
based on EER model.

In this chapter, we have defi ned the FuzzyEER aspects related with aggregations and
specializations: fuzzy aggregations, fuzzy degrees in specializations, fuzzy completeness
constraint on specializations, fuzzy cardinality constraint on overlapping specializations,
fuzzy disjointed or overlapping constraints on specializations, fuzzy attribute defi ned spe-
cializations, fuzzy constraints in union types or categories and fuzzy constraints in shared
subclasses (or intersection types). The defi ned constraints can be represented using fuzzy

Figure 11: Examples 9 and 11. Three fuzzy attribute defi ned specializations, two fuzzy
overlapping specializations and fuzzy constraints in a shared subclass

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 125

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

quantifi ers (Galindo, 1999; Galindo et al., 2001a; Yager, 1983; Zadeh, 1983) and the fuzzy
(min,max) notation.

These fuzzy extensions have a novel meaning and offer great expressiveness to the
conceptual model. However, we think that FuzzyEER can be extended even more. Besides,
we must study possible problems and improvements in the implementation of the resulting
model.

An interesting study to facilitate the task of using fuzzy quantifi ers on the part of
designers would be to classify the quantifi ers which can be used in natural language, and
study the relationship between them.

The next step will be the automatic implementation of the model, including the neces-
sary triggers to activate the fuzzy constraints described, and the study of different tools to
facilitate the query of stored data, especially with regard to the fuzzy belonging of a super-
class to different subclasses. For this last objective we can use and extend the fuzzy query
language FSQL (FuzzySQL), an extension of the popular SQL which allows dealing with
imprecise data (Galindo et al., 1998; Galindo, 1999). We are now studying how subclasses
can inherit properties of their superclasses with such fuzzy extensions.

Another research line is to achieve notational constructs to allow a greater selection
of other fuzzy integrity constraints; for example, relaxing the constraints proposed in Davis
et al. (1989).

Anther target is the modeling of a real application for a real estate agency, using all
these ideas and some new ones. We started with the defi nition presented in Galindo et al.
(1999) and one fi rst approach is in Urrutia et al. (2002) and Urrutia (2003). Another research
line was published in Aranda et al. (2002).

REFERENCES
Aranda, M.C., Galindo, J., & Urrutia, A. (2002). Museos digitales en Internet: Modelo EER

difuso y recuperación de imágenes basada en contenido. IV Turismo y tecnologías de ías de í
la información y las comunicaciones (TuriTec’2002) (pp. 411-425). Málaga (Spain),
ISBN: 84-600-9813-3.

Chaudhry, N., Moyne, J., & Rundensteiner, E.A. (1994). A design methodology for data-
bases with uncertain data. 7th International Working Conference on Scientifi c and
Statistical Database Management (pp. 32-41). Charlottesville, VA. Available: www.Statistical Database Management (pp. 32-41). Charlottesville, VA. Available: www.Statistical Database Management
mitexsolutions.com

Chaudhry, N., Moyne, J., & Rundensteiner, E.A. (1999). An extended database design
methodology for uncertain data management. Information Sciences, 121, 83-112.

Chen, G.Q., & Kerre, E.E. (1998). Extending ER/EER concepts towards fuzzy conceptual
data modeling. IEEE International Conference on Fuzzy Systems, 2, 1320-1325.

Chen, P. (1976). The Entity-Relationship Model-Toward a unifi ed view of data. ACM Trans-
actions on Database Systems (TODS), 1(1), 9-36.

Connolly, T., Begg, C., & Strachon, A. (2001). Data bases system, a practical approach to
design, implementation and management (2nd Edition). Addison Wesley.design, implementation and management (2nd Edition). Addison Wesley.design, implementation and management

Davis, J.P., & Bonnell, R.D. (1989). Modeling semantic constraints with logic in the EARL data
model. Proc. Fifth International Conference on Data Engineering (pp. 226-233).Proc. Fifth International Conference on Data Engineering (pp. 226-233).Proc. Fifth International Conference on Data Engineering

De Luca A., & Termini S. (1974). Entropy of L-Fuzzy Sets. Information and Control, 24,
55-73.

126 Galindo, Urrutia and Piattini

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

De Miguel, A., Piattini, M., & Marcos, E. (1999). Diseño de bases de datos relacionales.
Rama.

Elmasri, R., & Navathe, S.B. (2000). Fundamentals of database systems. (3rd Edition).
Addison-Wesley.

Elmasri, R., Weeldreyer, J., & Hevner, A. (1985). The category concept: an extension to the
Entity-Relationship Model. International Journal on Data and Knowledge Engineer-
ing, 1(1), May.

Galindo, J. (1999). Tratamiento de la imprecisión en bases de satos eelacionales: Extensión
del modelo y adaptación de los SGBD actuales. Ph. Doctoral Thesis, University of
Granada (Spain). Available: www.lcc.uma.es

Galindo J., & Urrutia, A. (2003). Fuzzy extensions to EER specializations. Eighth CAiSE/
IFIP8, International Workshop on Evaluation of Modeling Methods in Systems Analysis
and Design (EMMSAD’03), Velden, Austria (pp. 218-227).

Galindo, J., Medina, J.M., Cubero J.C., & García, M.T. (2001a). Relaxing the universal
quantifi er of the division in fuzzy relational databases. International Journal of Intel-
ligent Systems, 16(6), 713-742.

Galindo, J., Medina, J.M., Cubero, J.C., & Pons, O. (1999). Management of an estate agency
allowing fuzzy data and fl exible queries. EUSFLAT-ESTYLF Joint Conference, Palma
de Mallorca (Spain) (pp. 485-488).

Galindo, J., Medina, J.M., Pons, O., & Cubero, J.C. (1998). A server for fuzzy SQL queries.
In T. Andreason, H. Christiansen & H.L. Larsen (Eds.), Flexible query answering
systems lecture notes in artifi cial intelligence (LNAI) 1495 (pp. 164-174). Springer.

Galindo, J., Urrutia, A., & Piattini, M. (2004). Fuzzy databases: Modeling, design and
implementation. Hershey, PA: Idea Group Publishing (forthcoming).

Galindo, J., Urrutia, A., Carrasco, R., & Piattini, M. (2001b). Fuzzy constraints using the
enhanced Entity-Relationship Model. Proceedings published by IEEE-CS Press of
XXI International Conference of the Chilean Computer Science Society (SCCC 2001),
Punta Arenas (Chile) (pp. 86-94). ISBN: 0-7695-1396-4. ISSN: 1522-4902. Available:
http://computer.org/proceedings/sccc/1396/13960086abs.htm

Hammer M., & McLeod D. (1981). Database Description with SDM: A Semantic Data
Model. ACM Transactions on Database Systems (TODS) 6, 3.

Ma, Z.M., Zhang, W.J., Ma, W.Y., & Chen Q. (2001). Conceptual design of Fuzzy Object-
Oriented Databases Using Extended Entity-Relationship Model. International Journal
of Intelligent System, 16(6), 697-711.

Medina J.M., Pons O., & Vila M.A. (1994). GEFRED. A Generalized Model of Fuzzy
Relational Databases. Information Sciences, 76(1/2), 87-109.

Pedrycz, W., & Gomide, F. (1998). An Introduction to Fuzzy Sets: Analysis and Design. A
Bradford Book. ISBN 0-262-16171-0. MA: MIT Press.

Petry, F. E. (1996). Fuzzy Databases: Principles and Applications (with chapter contribu-
tion by Patrick Bosc). In H.J. Zimmerman (Ed.), International Series in Intelligent
Technologies. Kluwer Academic Publ. (KAP).

Urrutia, A. (2003). Defi nición de un Modelo Conceptual para Bases de Datos Difusas.
Ph.D. Thesis, University of Castilla-La Mancha (Spain).

Urrutia, A., & Galindo, J. (2002a). Algunos Aspectos del Modelo Conceptual EER Difuso:
Aplicación al Caso de una Agencia Inmobiliaria, XI Congreso Español sobre Tec-
nologías y Lógica Fuzzy (ESTYLF’2002) (pp. 359-364). León (Spain).

Fuzzy Aggregations and Fuzzy Specializations in Fuzzy EER Model 127

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Urrutia, A., Galindo, J., & Piattini, M. (2002b). Modeling Data Using Fuzzy Attributes. IEEE
Computer Society Press, XXII International Conference of the Chilean Computer Science
Society (SCCC 2002) (pp. 117-123). Copiapo (Chile). ISBN: O-7695-1867-2 ISSN:
1522-4902. Available: http://computer.org/proceedings/sccc/1867/18670117abs.htm

Vert, G., Morris, A., Stock, M., & Jankowski, P. (2000). Extending Entity-Relationship
Modelling Notation to Manage Fuzzy Datasets. 8th International Conference on In-
formation Processing and Management of Uncertainty in Knowledge-Based Systems,
IPMU2000, (pp. 1131-1138). Madrid, Spain.

Yager, R.R. (1983). Quantifi ed Propositions of a Linguistic Logic. International Journal of
Man-Machine Studies, 19, 195-227.

Zadeh, L.A. (1965). Fuzzy Sets. Information and Control, 8, 338-353.
Zadeh, L.A. (1983). A Computational Approach to Fuzzy Quantifi ers in Natural Languages.

Computer Mathematics with Applications, 9, 149-183.
Zvieli, A., & Chen, P. (1986). ER Modeling and Fuzzy Databases. 2nd International Confer-

ence on Data Engineering, 320-327.

128 Philip

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter VII

Normalization of
Relations with Nulls in

Candidate Keys:
Traditional and Domain

Key Normal Forms
George C. Philip, University of Wisconsin Oshkosh, USA

ABSTRACT
This chapter discusses normalization of relations when the candidate keys of a relation have
missing information represented by nulls. The chapter shows that problems and confusion
can arise in normalizing relations with nulls in candidate keys. Candidate keys with miss-
ing information commonly are found in relations that represent information on two entities
with a one-to-one relationship between them. The current defi nition of Boyce-Codd Normal one-to-one relationship between them. The current defi nition of Boyce-Codd Normal one-to-one relationship between them. The current defi nition of
Form (BCNF) is ineffective in identifying poor designs in such relations that may have in-
sertion/deletion anomalies. Domain Key Normal Form (DKNF) also suffers from the same
problem. It is shown that the above problem can be corrected by incorporating the concept
of entity integrity rule into the defi nitions of BCNF and of entity integrity rule into the defi nitions of BCNF and of entity integrity rule into the defi nitions of DKNF. This chapter also shows that
incorporating the entity integrity rule into the defi nition of either a relation or a candidate
key does not provide a satisfactory solution to the problem.

Normalization of Relations with Nulls in Candidate Keys 129

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

INTRODUCTION
The relational database design concepts were developed without considering missing

information in relations (Codd, 1986; Levene, 1999; Date 2000). Value of an attribute in a
tuple may be missing for several reasons: 1) Value is applicable but it is unknown, 2) Value
is not applicable, 3) Value does not exist, or 4) Other reasons, such as value is undefi ned
(Date 2000). An example of value that is not applicable is the attribute driver license number
for a ten-year-old child. If an adult does not have a driver license number, then the value
does not exist. If an adult has a driver license number, but it is unknown, then the value is
applicable but unknown.

A common method of representing missing values is using nulls (Codd, 1986). Other
methods include using default values (Date, 1990), using a subset of the attribute domain
(Lipski, 1979), and using variables or many different “null values” (Imielinski & Lipski,
1984). Missing information can create problems in querying data from relations (Imielinski
& Lipski, 1984; Date, 1990). Several methods have been proposed to extend the relational
operators to deal with missing values (Codd, 1986; Reiter, 1986; Sutton & King, 1995).
Another group of studies examined the effect of nulls on the concept of functional depen-
dency (Vassiliou, 1980; Vardi, 1986; Levene & Loizou, 1999). These studies have focussed
primarily on missing values of the type “applicable but unknown”.

The current paper examines the effect of nulls in candidate keys on normalizing a
relational schema. The nulls considered in this paper are of the type “not applicable” or
“does not exist”. Specifi cally, this paper examines the effectiveness of Boyce-Codd Normal
Form (BCNF) and Domain Key Normal Form (DKNF) in identifying insertion/deletion
anomalies if missing values in candidate keys are represented by nulls. Candidate keys
with nulls commonly are found in relations that represent information on two entities with
a one-to-one relationship between them. It is shown that the current defi nition of Boyce-
Codd Normal Form is ineffective in identifying poor designs in such relations. Domain Key
Normal Form (DKNF) also suffers from the same problem. The paper identifi es the source
of the problem and offers a solution by incorporating the concept of entity integrity rule
into the defi nitions of BCNF and DKNF. This paper also shows that incorporating the entity
integrity rule into the defi nition of either a relation or a candidate key does not provide a
satisfactory solution to the problem.

DESCRIPTION OF THE PROBLEM
To help explain the problem, we consider two entities, EMPLOYEE and COMPUTER,

that have a (zero-or-one)-to-(zero-or-one) relationship between them. Thus, a computer has
zero or one employee assigned to it at any given time. Similarly, an employee is assigned
to zero or one computer at any time. Consider a relation:

ASSIGNMENT (ID, NAME, TITLE, COMPUTER_NO, MODEL, RAM).

In the above relation, ID, NAME, and TITLE represent the identifi cation number,
the name, and the title of the employee, respectively. ID is the only unique identifi er of
the employee. COMPUTER_NO is the only unique identifi er of the computer assigned to
the employee. MODEL and RAM represent the model, and the amount of memory of the
employee’s computer, respectively. Figure 1 shows a sample state of the relation.

130 Philip

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Since some employees may not have a computer, the corresponding tuples in AS-
SIGNMENT do not have any value for COMPUTER_NO, MODEL, and RAM. Similarly,
since some computers do not have employees assigned to them, the corresponding tuples
do not have any value for ID, NAME and TITLE. Here, null may represent value that does
not exist or value that is not applicable. For example, one employee may not be eligible for
a computer (not applicable), while another employee may be eligible, but no computer was
assigned (does not exist).

The above design is not a good one. The relation suffers from insertion and deletion
anomalies. If ID is selected as the primary key, then information on a computer cannot
be inserted if the computer is not assigned to an employee, as in the case of the computer
identifi ed by C4. By assumption, if an employee leaves the organization, the employee’s
computer may not be assigned to anyone. In such cases, deleting the tuple for an employee
will result in losing the information on the corresponding computer. However, deleting
tuples of employees who do not have a computer does not result in losing information on
any computer. Similar problems exist if COMPUTER_NO or COMPUTER_NO+ID is
selected as the primary key. Thus, ASSIGNMENT in its current form suffers from insertion
and deletion anomalies. These anomalies could be removed by decomposing the relation
into two relations by taking projections:

1) EMPLOYEE (ID, NAME, TITLE, COMPUTER_NO),
2) COMPUTER (COMPUTER_NO, MODEL, RAM).

Or,
1) EMPLOYEE (ID, NAME, TITLE),
2) COMPUTER (COMPUTER_NO, MODEL, RAM, ID).

Though ASSIGNMENT has insertion and deletion anomalies that can be removed by
decomposition, applying the current popularly-used defi nitions of relation, determinant,
candidate key, and BCNF leads to the conclusion that the above relation is in BCNF (and
also in 4th and 5th normal forms), as explained in the next section.

Before analyzing ASSIGNMENT further, we discuss the relevance of relations such as
ASSIGNMENT that combine information on multiple entities, and the practical importance
of one-to-one relationships. Database design based on the popular top-down approach uses
three steps (Elmasri & Navathe, 2000): 1) identify the entities and their relationships, 2)
apply the mapping rules to create relations from entities, and 3) perform the normalization
procedure to validate the design. Ideally, the designer should identify the entities and their

Figure 1: A state of the relation ASSIGNMENT

ID NAME TITLE COMPUTER_NO MODEL RAM

E1 A. Adams Manager null null null

E2 B. Brown V.P. null null null

E3 C. Carlos Manager C1 Model1 128

E4 J. Jones Sales Rep C2 Model1 64

E5 J. Jones Accountant C3 Model2 64

null null null C4 Model2 128

Normalization of Relations with Nulls in Candidate Keys 131

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

relationships correctly, and hence, should not create relations that combine information on
multiple entities. Under this ideal condition, step 3 (normalization) may not be necessary.
However, in practice, all designers may not identify entities correctly. For example, an inex-
perienced designer might view an order as one entity with attributes Order Id, Order Date,
Customer Id, Item Id, and Quantity. Similarly, the attributes Id, Name, Title, Computer_No,
Model and RAM might be viewed as part of a single entity that represents the assignment of
employees to computers. Applying the mapping rules to such entities would result in relations
that represent information on multiple entities, similar to ASSIGNMENT. Normalization
is important in identifying such cases. In the bottom-up approach that typically starts with
a collection of attributes belonging to multiple entities, it is even more likely to produce
relations like ASSIGNMENT. Normalization rules are viewed as a formal framework to
minimize insertion, deletion, and update anomalies. Hence, it would be desirable for these
rules to stand on their own without depending on the ability of the designer to identify the
entities correctly.

How important are one-to-one relationships in the real world? Relationships that are
identifi ed in business applications as one-to-one often may not be “pure” one-to-one rela-
tionships, if all possible current and future exceptions are considered. Many relationships
identifi ed as one-to-one might be one-to-many or many-to-many relationships, in theory.
However, if the number of instances that are exceptions to the one-to-one relationship are
small enough, or the chances of having to store such exceptions in the database is small, it
might be desirable to treat such relationships as one-to-one, to better meet the objectives
of physical design like improving performance and resource requirements. For example,
consider the entities FACULTY and OFFICE in the database for a large university. Only
one or two offi ces have more than one faculty. Similarly, it is very uncommon for a faculty
to have more than one offi ce. If the current situation is expected to continue, treating the
relationship as one-to-one could provide certain benefi ts without making signifi cant sacrifi ces
on data redundancy: 1) Compared to treating the relationship as many-to-many, treating it as
one-to-one doesn’t require an associative entity to represent the relationship, 2) Compared
to treating the relationship as one-to-many, treating it as one-to-one gives more fl exibility in
placing the foreign key on FACULTY or OFFICE based on search patterns and/or presence
of nulls in foreign keys. Thus, one-to-one relationships become important in the practice of
database design, though the number of “pure” one-to-one relationships may be small.

TEST FOR BOYCE-CODD
NORMAL FORM (BCNF)

A commonly accepted defi nition is that a relation is in BCNF if and only if every
determinant is a candidate key (Connolly & Begg, 2002; Date, 2000; Hoffer, Prescott &
McFadden, 2002; Kroenke, 2002; Rob & Coronel, 2002; Watson, 1999). The actual word-
ing of the defi nitions presented in this section may vary among different authors, but the
meaning remains the same. The properties of a relation are: 1) There are no duplicate tuples,
2) Tuples are unordered, 3) Attributes are unordered, and 4) All attributes are atomic. A
determinant is any set of attributes on which another set of attributes is fully functionally determinant is any set of attributes on which another set of attributes is fully functionally determinant
dependent. A set of attributes Y is fully functionally dependent on another set of attributes X functionally dependent on another set of attributes X functionally dependent
if it is functionally dependent on X and not functionally dependent on any subset of X. A set

132 Philip

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

of attributes Y is functionally dependent on another set of attributes X, that is, X -> Y, if for functionally dependent on another set of attributes X, that is, X -> Y, if for functionally dependent
every valid instance of X, the values of X uniquely determine the values of Y (Codd, 1972;
Connolly & Begg, 2002; Dutka & Hanson, 1989; Hoffer, Prescott & McFadden, 2002). Or,
for any two tuples, t1 and t2, if t1[X] = t2[X], then t1[Y] = t2[Y], where t[X] represents the
projection of t on X (Date, 2000; Elmasri & Navathe, 2000; Rob & Coronel, 2002). That
is, whenever two tuples agree on their X values, they also agree on their Y values. A set of
attributes X is a candidate key if all other attributes of the relation are fully functionally
dependent on X (Codd, 1972; Hoffer, Prescott & McFadden, 2002; Rob & Coronel, 2002;
Ullman & Widom, 1997).

An alternate defi nition of BCNF using the term superkey is that a relation, R, is in
BCNF if whenever a nontrivial functional dependency X -> Y holds, then X is a superkey
of R (Elmasri & Navathe, 2000; Dutka & Hanson, 1989; Ullman & Widom, 1997). A set
of attributes is a superkey of a relation if those attributes functionally determine all other
attributes of the relation (Rob & Coronel, 2002; Ullman & Widom, 1997). The functional
dependency X -> Y is nontrivial if Y is not a subset of X. This paper uses the earlier defi ni-
tion of BCNF that is simpler to apply. As shown later in this section, the results would be
the same using both defi nitions since they state the same concept.

Is ASSIGNMENT in BCNF? To answer this question, we check whether ASSIGN-
MENT qualifi es as a relation, and if it does, whether every determinant of ASSIGNMENT
is a candidate key. First, ASSIGNMENT is a relation since it has all the properties of a
relation. In particular, it meets the important requirement that there are no duplicate tuples,
since every tuple has a unique value for ID or COMPUTER_NO.

Second, both ID and COMPUTER_NO are determinants. Attribute ID is a determi-
nant since the functional dependency ID -> {NAME, TITLE} holds. By assumption, every
employee has a unique identifi cation number represented by ID that determines the name
and title. The left hand side of the dependency, ID -> {NAME, TITLE}, is null only in the
trivial case when the right hand side also is null. Attribute COMPUTER_NO is another de-
terminant since the functional dependency, COMPUTER_NO -> {MODEL, RAM}, holds.
There are no other determinants.

If ID and COMPUTER_NO are determinants, are they also candidate keys? ID is a
candidate key if all other attributes of ASSIGNEMNT are fully functionally dependent on
ID. We already established that ID -> {NAME, TITLE}. Does the functional dependency
ID -> {COMPUTER_NO, MODEL, RAM} hold when ID may be null in some tuples in
which the attributes on the right hand side, COMPUTER_NO, MODEL, and RAM, are
not null? For every valid instance of ID, the value of ID uniquely determines the values of
COMPUTER_NO, MODEL, and RAM. That is, every employee has a unique computer,
if the employee has one. Further, ASSIGNMENT satisfi es the requirement that whenever
two tuples agree on their ID values they also agree on their values of COMPUTER_NO,
MODEL, and RAM. Thus, ID -> {COMPUTER_NO, MODEL, RAM} holds even though
ID may be null in certain tuples. Hence, ID is a candidate key of ASSIGNMENT. Whether
a functional dependency holds when the left-hand side may be null but the right hand side
is not is discussed in more detail in the section entitled “The Solution”.

If ID is a candidate key, for similar reasons, COMPUTER_NO also is a candidate key.
Thus, all the determinants of ASSIGNMENT are candidate keys. Hence, ASSIGNMENT is
in BCNF. The same result is obtained if the alternate defi nition of BCNF based on the term
superkey is used. Since ID and COMPUTER_NO are the only determinants, for every non-

Normalization of Relations with Nulls in Candidate Keys 133

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

trivial functional dependency, X->Y, the left-hand side X includes ID or COMPUTER_NO.
But, ID and COMPUTER_NO also are candidate keys. Thus X is a superkey, leading again
to the conclusion that ASSIGNMENT is in BCNF though it suffers from insertion and dele-
tion anomalies that can be removed by decomposition. Third normal form (3NF) and BCNF
were introduced to eliminate such anomalies.

To determine whether ASSIGNMENT is also in 4th and 5th normal forms (4NF and
5NF), we will use simple criteria developed by Date and Fagin (1992). These state that a
relation is in 4NF if it is in BCNF and it contains some simple keys, and it is in 5NF if it is
in BCNF and every key is simple. Using these criteria, ASSIGNMENT is in 5NF since it
is in BCNF and every key is simple.

THE SOURCE OF THE PROBLEM
A root cause for the insertion and deletion problems is that ASSIGNMENT violates

one of the necessary conditions to satisfy the entity integrity rule, which specifi es that no
component of the primary key should have nulls. A necessary condition to meet this require-
ment is that at least one candidate key of a relation should not have nulls. However, the
defi nitions of BCNF, relation, functional dependency, determinant, or candidate key do not
require the database designer to apply the principle of the entity integrity rule in determining
whether a relation is in BCNF.

This example is not an isolated case. A suffi cient condition under which a relation in
BCNF suffers from insertion/deletion anomalies can be stated as follows:

A relation, R, that is in BCNF would suffer from insertion/deletion anomalies if the relation
contains information on two entities, E1 and E2 and E2 and E , including their identifi ers, and their relation-
ship when the relationship between the two entities is (zero-or-one)-to-(zero-or-one).

The reasoning presented earlier using ASSIGNMENT can be summarized for the
general case. Let {A1,A2,…,An, B1,B2,…,Bn} be the schema of R where {A1,A2,…,An}
represents attributes of E1, and {B1,B2,…,Bn} represents attributes of E2. Let X be the
identifi er of E1. Let Y be the identifi er of E2. Since the relationship between E1 and E2 is
(zero-or-one)-to-(zero-or-one), the functional dependencies X->{ A1,A2,…,An, B1,B2,…,Bn
} and Y->{A1,A2,…,An, B1,B2,…,Bn } hold. Thus, X and Y are candidate keys and there are
no other candidate keys. The (zero-or-one)-to-(zero-or-one) relationship between E1 and E2
means that both X and Y may have nulls, resulting in insertion/deletion anomalies irrespec-
tive of whether X, Y, or the combination of X and Y is selected as the primary key. However,
relation R would be in BCNF when there are no additional functional dependencies among
the non-key attributes of R, since X and Y are the only determinants. Thus, whether R is in
BCNF or not in BCNF, it suffers from insertion/deletion anomalies when the relationship
between E1 and E2 is (zero-or-one)-to-(zero-or-one). The above reasoning holds true even
when entities E1 and E2 may have more than one identifi er. The problem also exists in the
more general case when a relation contains information on two or more entities, including
their identifi ers and their relationships when the relationships between each pair of entities
is (zero-or-one)-to-(zero-or-one).

134 Philip

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

THE SOLUTION
To help detect the violation of the requirement that at least one candidate key should not

have nulls, the database designer needs to consider this requirement explicitly in applying the
defi nition of BCNF. It is tempting to suggest that the entity integrity rule be incorporated into
the defi nition of either a relation or a candidate key. We fi rst consider these two cases.

Entity Integrity Rule, Relations, and Candidate Keys
One way to ensure that a relation that is in BCNF will have at least one candidate key

without nulls is to modify the properties of a relation by adding a new requirement that a
relation should have at least one candidate key that does not have nulls. Based on this require-
ment, ASSIGNMENT and similar “relations” would not qualify as relations, indicating that
they are not good designs. However, in many cases, only relations that are in 3NF or BCNF
will meet the new requirement for a relation. For example, ASSIGNMENT would have to
be decomposed to two normalized relations (EMPLOYEE, COMPUTER) before it meets
the new requirement. As a second example, consider a relation, CUST_ORDER:

CUST_ORDER (ORDER_ID, ORDER_DATE, CUST_ID, CUST_NAME, CUST_PHONE)

A customer may have zero, one, or many orders. An order belongs to exactly one cus-
tomer. Here, ORDER_ID is the only candidate key. Since a customer may not have an order,
the candidate key may have nulls in some tuples. Thus, CUST_ORDER is not a relation,
based on the new requirement that at least one candidate key of a relation must not have
nulls. If CUST_ORDER is not a relation, then the designer cannot apply the defi nition of
BCNF to normalize it. Obviously, decomposing CUST_ORDER into two normalized rela-
tions, ORDER_HEADER (ORDER_ID, ORDER_DATE, CUSTR_ID) and CUSTOMER
(CUSTR_ID, CUST_NAME, CUST_PHONE), would make both relations meet the new
requirement for a relation. But that would mean normalizing the database before applying
the normalization rules. Hence, incorporating the entity integrity rule into the defi nition of
a relation is not a satisfactory solution.

A second way to ensure that a relation that is in BCNF will have at least one candidate
key without nulls is to modify the defi nition of candidate key by adding the requirement that
no component of a candidate key should have nulls. To be consistent, this requirement also
should apply to determinants; that is, no component of a determinant should have nulls. This
would mean that in the functional dependency X->Y, required for X to be a determinant or
candidate key, no component of X can be null, except in the trivial case when Y is null. That
is, for every valid instance of X, the value of X uniquely determines the value of Y, and for
every valid instance of Y, there is a corresponding value of X. Under this requirement, ID
and COMPUTER_NO still are determinants. However, ID is not a candidate key. In some
tuples, ID may be null when {COMPUTER_NO, MODEL, RAM} is not null. Hence, under
the new defi nition of candidate key, ASSIGNMENT is not in BCNF, consistent with the
fact that it suffers from insertion/deletion anomalies. However, the additional requirement
for candidate keys results in inconsistencies in applying BCNF in certain cases as discussed
below.

Consider two relations, ASSIGNMENT_1, and ASSIGNMENT_2, both of which have
the same attributes as ASSIGNMENT, but differ in a basic assumption regarding the rela-
tionship between employees and computers. For ASSIGNMENT_1, it is assumed that every

Normalization of Relations with Nulls in Candidate Keys 135

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

computer is assigned to an employee, but an employee may not have a computer. Thus, ID
does not contain any nulls, but COMPUTER_NO may be null in certain tuples. For ASSIGN-
MENT_2, it is assumed that every computer is assigned to an employee, and every employee
has a computer. Hence, ID and COMUPTER_NO do not contain any nulls. In both relations,
if ID is selected as the primary key, then there is no insertion anomaly. The result of deleting
an employee’s information also is the same in both relations. The corresponding computer
has to be re-assigned to another employee, since, by assumption, every computer is assigned
to an employee. If candidate keys are not allowed to have nulls, then COMPUTER_NO in
ASSIGNMENT_1 is not a candidate key, while it is a candidate key in ASSIGNMENT_2.
This means that ASSIGNMENT_1 is not in BCNF while ASSIGNMENT_2 is in BCNF,
though insertion and deletion are identical in both relations. Thus, requiring that candidate
keys should not have nulls, or that the left-hand side of the functional dependency should
not be null when the right hand side is not null, leads to inconsistent results in applying
BCNF. Hence, candidate keys may have nulls. This is in agreement with the popular view
in the literature that candidate keys can have nulls, as pointed out by Date (2000, p. 595):
“…alternate keys can apparently have nulls allowed”. This conclusion supports our earlier
determination that ID -> COMPUTR_NO, MODEL, RAM holds though ID may be null in
certain tuples where COMPUTR_NO, MODEL, and RAM are not null.

Incorporate Entity Integrity Rule into BCNF
A third and recommended option is to apply the requirement that at least one candidate

key of the relation should not have nulls, as part of checking whether a relation is in BCNF.
To help the designer do this, this requirement is incorporated into the defi nition of BCNF.
The modifi ed defi nition of BCNF is:

A relation is in BCNF if, and only if, 1) every determinant is a candidate key, and 2) at least
one of the candidate keys does not have any nulls.

The additional requirement that at least one of the candidate keys does not have any
nulls is an essential pre-requisite to satisfy the entity integrity rule. Incorporating this require-
ment into BCNF forces the designer to explicitly apply the essence of the entity integrity
rule without selecting a primary key.

Now we examine the effect of modifying the defi nition of BCNF on normalization
of different relations. Applying the modifi ed defi nition of BCNF leads to the conclusion
that ASSIGNMENT is not in BCNF, since both candidate keys, ID and COMPUTER_NO,
contain nulls. This conclusion is consistent with the fact that ASSIGNMENT suffers from
insertion/deletion anomalies that can be removed by decomposition. Under the new defi ni-
tion, both ASSIGNMENT_1 and ASSIGNMENT_2 are in BCNF since the candidate key
ID does not contain any nulls. This is consistent with the fact that both relations do not
suffer from insertion and deletion anomalies, as discussed earlier. The designs of ASSIGN-
MENT_1 and ASSIGNMENT_2, of course, may not be desirable. Combining two entities
into a single relation lacks intuitive appeal. Deleting an employee’s information results in
the consistently cumbersome process of reassigning the computer to another employee.
These areas, however, are not meant to be covered by normalization.

Next, we examine whether the additional requirement incorporated into BCNF falsely
classifi es a relation as not in BCNF when it does not have any insertion, deletion, or update

136 Philip

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

anomalies. The additional requirement that at least one candidate key of a relation should not
have nulls affects the normalization of only those relations that have nulls in all candidate
keys. Such relations will have nulls in the primary key, resulting in problems in inserting
and possibly in deleting certain tuples. Thus the additional requirement affects only those
relations that have at least insertion problems.

It should be noted that current decomposition algorithms that split relations into BCNF
may not handle nulls adequately. Dealing with such cases is an area of further research.

Other Relations with Nulls in Candidate Keys
Relations that represent only one entity also may have nulls in all candidate keys and

suffer from insertion problems. These relations will be classifi ed as not in BCNF if the new
defi nition of BCNF is applied. Two examples illustrate the two cases: 1) A relation has
multiple candidate keys; 2) A relation has a composite candidate key.

 The fi rst example involves a relation that represents a single entity, and has multiple
candidate keys. A relation, VISITOR, represents visitors to a country from a neighboring
country:

VISITOR(PASSPORT_NO, NATIONAL_ID, NAME, ADDRESS).

Each visitor is required to have a unique passport number or a unique national iden-
tifi cation number. Thus, a visitor may have a PASSPORT_NO, or a NATIONAL_ID, or
both. NAME, ADDRESS, or a combination of the two, is not unique. VISITOR qualifi es
as a relation, since no two tuples can be identical. However, in its current form, VISITOR
is not a good design. If PASSPORT_NO is selected as the primary key, then information
on visitors without PASSPORT_NO cannot be inserted. Selecting NATIONAL_ID or the
combination PASSPORT_NO + NATIONAL_ID as the primary key also has similar insertion
problems. However, unlike ASSIGNMENT, this insertion problem cannot be eliminated by
decomposition of VISITOR by taking projections. Hence, BCNF is not expected to iden-
tify this problem, but there is no harm if it does. Applying the current defi nition of BCNF,
VISITOR is in BCNF. Under the modifi ed defi nition of BCNF, VISITOR is not in BCNF.
Thus, in such relations, the modifi ed defi nition would result in identifying some insertion
anomalies that cannot be removed by decomposition. Once the insertion problem is identi-
fi ed, the problem may be fi xed by adding a new attribute VISITOR_ID, for example, as a
surrogate key. A second option that merits further investigation is preventing the creation
of relations like VISITOR by modifying the mapping rules.

The second example uses a relation that represents a single entity, and has a single
composite candidate key. The relation, COURSE, represents different courses offered by
an organization: COURSE (COURSE_NAME, DATE, INSTRUCTOR).

There are two types of courses: 1) one-day traditional classroom courses, and 2) Internet
courses. COURSE_NAME represents the unique name for a course, and DATE represents
offering date of the course. Internet courses are available all the time. Hence, the attribute,
DATE, is not applicable for Internet courses. By assumption, COURSE_NAME + DATE
is the only candidate key. VISITOR is not a good design. If COURSE_NAME + DATE
is selected as the primary key, then information on Internet courses, which do not have a
value for DATE, cannot be inserted. Again, this insertion problem cannot be removed by
decomposition of COURSE by taking projections. Under the modifi ed defi nition of BCNF,
COURSE is not in BCNF since it does not have a candidate key without nulls.

Normalization of Relations with Nulls in Candidate Keys 137

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Thus, a somewhat harmless and potentially benefi cial side effect of the additional re-
quirement in the modifi ed BCNF is that it identifi es certain insertion anomalies that cannot
be removed by decomposition. The major benefi t of incorporating the additional requirement
is that in relations that represent two entities with a one-to-one relationship between them,
the modifi ed defi nition helps to identify insertion/deletion anomalies that can be eliminated
by decomposition, while the current defi nition may not help to identify them.

THIRD NORMAL FORM
A relation that is in BCNF also should be in third normal form (3NF). Using the current

defi nition of BCNF, ASSIGNMENT is in BCNF. Is it also in 3NF? One group of defi nitions
uses the term primary key. An example is: A relation is in 3NF if it is in second normal and
no nonprime attribute is transitively dependent on the primary key (Elmasri & Navathe,
2000). Applying this group of defi nitions leads to the conclusion that ASSIGNMENT is not
in 3NF, or at least it is not possible to determine whether it is in 3NF, since it does not have
a valid primary key. Thus, this defi nition of 3NF is able to identify the insertion/deletion
anomaly problems that are not detected by BCNF. Hence, these defi nitions of 3NF do not
require any change.

A more general defi nition that does not use the term primary key is: A relation is in 3NF
if whenever a nontrivial functional dependency X -> A holds, then either X is a superkey
of R, or A is a prime attribute (Elmasri & Navathe, 2000). An attribute is a prime attribute
if it is part of a candidate key. Thus, the only difference between 3NF and BCNF is that in
3NF, the right hand side of the functional dependency is allowed to be a prime attribute.
Since ASSIGNMENT is in BCNF, it is also in 3NF under the relaxed requirements. Hence,
this defi nition of 3NF needs to be modifi ed:

A relation is in 3NF if whenever a nontrivial functional dependency X -> A holds, then 1)
either X is a super key of R, or A is a prime attribute, and 2) at least one of the candidate
keys does not have any nulls.

DOMAIN KEY NORMAL FORM
An alternative or a supplement to using the traditional normal forms is the Domain-Key

Normal Form (DKNF) proposed by Fagin (1981) as the ideal or ultimate normal form. A
relation is in DKNF if every constraint (including dependencies) can be inferred by simply
knowing the attributes and their domains, and the set of keys. Thus, if a relation schema is
in DKNF, then the DBMS should be able to enforce all constraints of the relation schema
by enforcing the domain and key constraints. A relation schema is defi ned to be a set of at-
tributes, along with their constraints. DKNF has the conceptual superiority that it is based
on the primitive concepts of domains and keys, whereas traditional normal forms are based
on functional, multivalued, or join dependencies. However, DKNF is not popularly used by
practitioners due to practical limitations, including the lack of simple well-defi ned methods
to achieve DKNF. Hence, it is important that the traditional normal forms be able to cor-
rectly identify design problems, irrespective of whether DKNF can identify them. Next, we
examine whether DKNF identifi es the problems with the design of ASSIGNMENT.

138 Philip

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Is ASSIGNMENT in DKNF? It is assumed that the relation schema of ASSIGNMENT
has only simple constraints: Attribute RAM must be an integer, and all other attributes are
character strings with a specifi ed limit on length. These constraints can be enforced by en-
forcing the domain constraints that can be imposed by the DBMS on individual attributes.

The schema of ASSIGNMENT also includes the constraints represented by the two
functional dependencies:

ID -> {NAME, TITLE, COMPUTER_NO, MODEL, RAM} and
COMPUTER_NO -> {ID, NAME, TITLE, MODEL, RAM}.

These constraints can be enforced by the DBMS by enforcing the key constraints on
ID and COMPUTER_NO. A key is defi ned as an attribute such that no two tuples have the
same value for the attribute. Thus, if there are no other constraints, all constraints can be
enforced by domains and keys, implying that ASSIGNMENT is in DKNF.

An additional real-world constraint that may not be evident could be that, for each
tuple, either ID or COMPTER_NO must not be null. Since each employee has an ID and
each computer has a COMPUTER_NO, it would be unrealistic to have a tuple that has nulls
in ID and COMPUTER_NO. Furthermore, if ID and COMPUTER_NO can be null in the
same tuple, then there could be two or more such tuples with identical values for the rest
of the fi elds which are not required to be unique. Under such conditions, it is not clear that
ASSIGNMENT meets the requirement for a relation that there are no duplicate tuples, since
comparison of two nulls evaluate to the “unknown” truth value (Date, 2000). The constraint
that either ID or COMPUTER_NO must not be null cannot be enforced by specifying the
domain for individual attributes, or, by enforcing key constraints on ID, COMPUTER_NO,
or ID+COMPUTER_NO, implying that ASSIGNMENT is not in DKNF.

The reason why ASSIGNMENT appears to be not in BKNF is the existence of a
single constraint involving two attributes (ID and COMPUTER_NO cannot be null in the
same tuple). It is not the existence of any functional dependency that cannot be implied by
a key. The constraint involving ID and COMPUTER_NO may not be readily evident to the
designer, making it diffi cult to identify the design problem in ASSIGNMENT by applying
DKNF. If the DBMS can enforce the constraint that either ID or COMPUTER_NO must not
be null in each tuple, then ASSIGNMENT would be in a weaker normal form that is based
on the concept of DKNF, though ASSIGNMENT is not a good design.

Applying DKNF to the relation COURSE (COURSE_NAME, DATE, INSTRUCTOR)
presented earlier yields the result that COURSE is in DKNF, though COURSE has insertion
problems. Here, the only constraint is the functional dependency, COURSE_NAMEA+DATE
-> INSTRUCTOR. This constraint can be enforced by specifying COURSE_NAMEA+DATE as
a key.

In order to make it easy to identify design problems in relations like ASSIGNEMNT
and COURSE it would be desirable to incorporate into the defi nition of DKNF the principle
implied by the entity integrity rule that at least one candidate key must not have nulls:

A relation is in DKNF if 1) every constraint (including dependencies) can be inferred by
simply knowing the attributes and their domains and the set of keys, and 2) at least one of
the keys does not have any nulls.

Normalization of Relations with Nulls in Candidate Keys 139

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

With the above defi nition, it is easy to see that all three relations ASSIGNMENT,
VISITOR, and COURSE presented earlier do not meet the modifi ed requirement for DKNF.
This result is consistent with the fact that they are not good designs since they suffer from
at least insertion anomaly as defi ned by Codd (1972).

SUMMARY
This chapter has shown some of the problems in applying the normalization theory when

all the candidate keys of a relation have nulls, but in each tuple, at least one candidate key
has a unique value. Applying the current defi nitions of BCNF or DKNF to such relations may
not help the designer to detect insertion and/or deletion anomalies that are associated with
poor designs. A basic problem is that there is nothing in the defi nition of a relation, BCNF
or DKNF, that guarantees that a normalized relation satisfi es the entity integrity rule. Three
possible solutions to the problem were considered: 1) Modify the defi nition of candidate
key to include the requirement that a candidate key should not have nulls; 2) Incorporate
the essence of the entity integrity rule into the defi nition of a relation; 3) Incorporate the
essence of the entity integrity rule into the defi nitions of BCNF and DKNF. It is shown that
the fi rst two solutions have negative side effects. The third method provides a solution to the
problem without creating such side effects. In essence, the modifi ed defi nition guarantees
that a relation that is in BCNF or DKNF will have at least one candidate key that does not
have nulls. This, in turn, helps to eliminate the insertion/deletion anomalies caused by nulls
in the primary key.

REFERENCES
Codd, E.F. (1972). Further normalization of the database relational model. Database sys-

tems, Courant Computer Science Symposia series, 6, 34-64. Englewood Cliffs, NJ:
Prentice Hall.

Codd, E.F. (1986). Missing information (applicable and inapplicable) in relational databases.
SIGMOD Record, SIGMOD Record, SIGMOD Record 15(4), 53-74.

Connolly, T., & Begg, C. (2002). Database systems. Reading, MA: Addison-Wesley.
Date, C.J. (1990). NOT is not “Not”! (Notes on three-valued logic and related matters.

In C.J. Date. Relational database writings, 1985 – 1989 (427– 450). Reading, MA:
Addison-Wesley.

Date, C.J. (2000). An introduction to database systems. Reading, MA: Addison-Wesley.
Date, C.J., & Fagin, R. (1992). Simple conditions for guaranteeing higher normal forms

in relational database systems. ACM Transactions on Database Systems, 17(3), 465-
476.

Dutka, A.F., & Hanson, H.H. (1989). Fundamentals of data normalization. Reading, MA:
Addison-Wesley.

Elmasri, R., & Navathe, S. (2000). Fundamentals of database systems. Reading, MA: Ad-
dison-Wesley.

Fagin, R. (1981). A normal form for relational databases that is based on domains and keys.
ACM Transactions on Database Systems, 6(3), 387-415.

Hoffer, J.A., Prescott, M.B., & McFadden, F.R. (2002). Modern database management.
Reading, MA: Addison-Wesley.

140 Philip

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Imielinski, T., & Lipski, W. (1984). Incomplete information in relational databases. Journal
of the ACM, of the ACM, of the ACM 31(4), 761-791.

Kroenke, D.M. (2002). Database processing. Upper Saddle River, NJ: Prentice-Hall.
Levene, M., & Loizou, G. (1999). Database design for incomplete relations. ACM Transac-

tions on Database Systems, 24(1), 80-126.
Lipski, W. (1979). On semantic issues connected with incomplete information databases.

ACM Transactions on Database Systems, 4(3), 262-296.
Reiter, R. (1986). A sound and sometimes complete query evaluation algorithm for relational

databases with null values. Journal of the ACM, 33(2), 349-370.
Sutton, D., & King, P. (1995). Incomplete information and the functional model. The Com-

puter Journal, 38(1), 31-41.
Ullman, J.D., & Widom, J. (1997). A fi rst course in database systems. Upper Saddle River,

NJ: Prentice Hall.
Vardi, M.Y. (1986). On the integrity of databases with incomplete information. Proceedings

of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
252-256.

Vassiliou, Y. (1980). Functional dependencies and incomplete information. Proceedings of
the International Conference On Very Large Databases, 260-269.

Watson, R.T. (2002). Data management. New York: Prentice Hall.

Regression Test Selection for Database Applications 141

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter VIII

Regression Test Selection
for Database Applications

Ramzi A. Haraty, Lebanese American University, Lebanon

Nashat Mansour, Labanese American University, Lebanon

Bassel A. Daou, University of Ottawa, Canada

ABSTRACT
Database applications features such as Structured Query Language programming, excep-
tion handling, integrity constraints, and table triggers pose diffi culties for maintenance
activities, especially for regression testing that follows modifying database applications.
In this chapter, we address these diffi culties and propose a two-phase regression testing
methodology. In phase 1, we explore control fl ow and data fl ow analysis issues of database
applications. Then, we propose an impact analysis technique that is based on dependencies
that exist among the components of database applications. This analysis leads to selecting
test cases from the initial test suite for regression testing the modifi ed application. In phase
2, we propose two algorithms for reducing the number of regression test cases. The Graph
Walk algorithm walks through the control fl ow graph of database modules and selects a
safe set of test cases to retest. The Call Graph Firewall algorithm uses a fi rewall for the
inter-procedural level. Our experience with this regression testing methodology shows that
the impact analysis technique is adequate for selecting regression tests and that phase 2
techniques can be used for further reduction in the number of these tests.

INTRODUCTION
Software maintenance involves changing programs due to errors, alterations in user

requirements or changes in the hardware/software environment. Regression testing is an
important activity of software maintenance, which ensures that the modifi ed software still
satisfi es its intended requirements (Hartmann & Robson, 1989). It attempts to revalidate
modifi ed software and ensure that new errors are not introduced into the previously tested

142 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

code. Regression testing involves four issues: change impact identifi cation, test suite main-
tenance, test strategy, and test case selection. Change impact identifi cation involves locating
all the modules and other program segments that are affected by the modifi cation. Test suite
maintenance attempts to keep the test suite status current and reusable for future revalidation.
Test strategy involves fi nding a test sequence for retesting the software. Test case selection
attempts to reduce the cost of regression testing by selecting a subset of the test suite that
has been used during the application development. This subset of tests is then used to test
modifi ed programs (Rothermel & Harold, 1998).

In database applications a number of new features are supported, such as Structured
Query Language (SQL) statements, table constraints, exception handling, and table triggers.
These features introduce new diffi culties that hinder regression test selection. In this work,
we concentrate on impact analysis and test selection for SQL-based systems. Regression
testing is necessary for assuring the quality of a system after modifying it. Ad hoc regres-
sion testing involves either rerunning all the test cases that are included in the test suite
determined during the initial development of software (Select-All approach) or selecting a
random subset of this initial test suite (Select-Random approach). But, the Select-Random
approach is unreliable, since it might miss selecting test cases that reveal adverse effects
of modifi cations. Hence, the Select-Random approach might compromise the quality of
the modifi ed system. On the other hand, the Select-All approach is expensive in terms of
time and cost, since it usually includes many test cases that do not reveal the impact of the
modifi cation made to the system. Therefore, it is important to use regression testing methods
that reduce the number of selected test cases in order to save time and money, especially for
large software systems, while maintaining the quality of the system (Wong et al., 1997).

SQL, the standard query language, is a declarative language used for the manipulation
of table data in database applications. It stands as the heart of database applications mod-
ules (ISO/IEC 9075, 1992). The usage of SQL in a procedural context has its implications.
We categorize these implications into three categories: control dependencies, data fl ow
dependencies, and component dependencies. The nature of SQL and the existence of table
constraints lead to using exception handling techniques in database modules. Exception
handling complicates control fl ow dependencies between statements in database modules.
This complexity should be handled in the process of applying control fl ow-based regression
testing techniques. Moreover, table triggers fi rings because of modifying SQL statements
create implicit inter-modular control fl ow dependencies between modules. These dependen-
cies should be explored for performing inter-module regression testing.

The manipulation of database tables by different modules, using SQL, leads to a state-
based behavior of modules. It also creates data fl ow dependencies between the modules.
The dynamic behavior of SQL, in which the exact table rows manipulated is not known
until run-time, makes it very diffi cult to trace such data dependencies. Furthermore, SQL
manipulates database components such as tables and views. These facts create component
dependencies between the various components handled by SQL statements and the modules
in which the statements are located. These component dependency relations are transitive.
Whenever a change is made to one component, this transitivity introduces a ripple effect
of change.

In this chapter, we propose a new two-phase methodology for regression testing SQL-
based database applications. Phase 1 involves detecting modifi cations and performing change
impact analysis. The impact analysis technique localizes the effects of change, identifi es all
the affected components, and selects a preliminary set of test cases that traverse modifi ed

Regression Test Selection for Database Applications 143

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

components. Phase 2 involves running a test case reduction algorithm to further reduce the
regression test cases selected in phase 1. We present two such algorithms. The fi rst algorithm,
Graph Walk, is a control fl ow-based regression testing technique that utilizes control fl ow
information, component dependencies, and impact analysis results. The second algorithm,
Call Graph Firewall, utilizes data fl ow dependencies and is an adaptation of fi rewall-based
regression testing techniques at the inter-procedural level. Furthermore, we develop a pro-
totype maintenance tool and use it to empirically validate our proposed methodology.

The remainder of this chapter is organized as follows: The next section includes a
discussion of the structure of database applications and control fl ow issues of database
modules. This is followed with a section addressing the data-fl ow dependencies due to the
manipulation of data stored in database tables. Next, we present the impact analysis. We then
present the test case reduction algorithms and empirically investigate the applicability of the
methodology using the tool. Finally, we present related work and conclude the chapter.

CONTROL FLOW MODELING
Background

Database systems have been accepted as a vital part of the information system infra-
structure. They can be considered a mature technology whose characteristics have been
covered in past manifestos. Although there are different variations of database systems
implementation, we will limit our scope to relational database systems because relational
database systems are widespread and the relational concepts are standardized.

SQL remains the most accepted and implemented interface language for relational
database systems. SQL is designed to be a comprehensive language that includes statements
for data defi nition, queries, updates, and view defi nition.

Lately, extensions to the SQL language were introduced. These extensions allow client
(application program) requests to the server to perform lengthy, complex operations, with
only the fi nal results returned to the client. These SQL extensions were in the form of stored
procedures and procedural language constructs that allowed signifi cant application logic
to be stored and executed on the server instead of on the client. Persistent Stored Modules
(PSMs) were published as an international standard in the form of a new part to the SQL-
92 standard. This standard—ISO/IEC 9075-4 (which appeared in 1995)—was an extension
to standard SQL for procedural language constructs, based on the best language concepts.
Control fl ow analysis of PSM code is different from that of conventional programming
languages. Building control fl ow graphs for database modules differs from building control
fl ow graphs for conventional software. This difference results from the extensive usage of
exceptions and condition handlers and the nature of the SQL language that is a key feature
of database modules. Therefore, we should devise new modeling techniques to model the
control transfers that are available in database modules.

The semantics of all SQL statements make them behave like micro-transactions in that
they either execute successfully, or they have no effects at all on the stored data, as described
in the ISO/IEC 9075 standard of 1992.

The SQL-PSM standard allows specifying one or more condition handlers for any
given compound statement, as mentioned in the ISO/IEC 9075-4 standard of 1995. In gen-
eral the handler action either handles the condition—in which case, the type of the handler
determines the subsequent behavior of the compound statement containing the condition

144 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

handler—or it leaves the condition unhandled, causing it to be propagated outward, either
to another compound statement in which the compound statement containing the condition
is nested or to the application that invoked the routine.

A database module consists of one compound statement in which other compound
statements are nested. Each compound statement has its exception handler. Each condi-
tion has its compound statement. During execution, if an exception is raised from an SQL
statement then the control is transferred from the current statement to the exception handler
according to the type of the exception raised.

Suggested Technique
A node in the control fl ow graph should represent each statement. These statements

are either SQL statements, control statements or others. Each node, especially those repre-
senting SQL statements, has two possible outcomes—either a success or a failure, with an
exception raised. Nodes containing control statements have more than one success outcome
(most of the time two outcomes, as in the case of if statements). The exceptions raised be-if statements). The exceptions raised be-if
long to a large list of possible exceptions that might be raised in the database environment,
like duplicate value on index, value could not be null, or others. Because we cannot limit
or predict the type of exception that could be raised by a statement, we prefer to represent
the control transfers due to exceptions with one link. This link is later routed to the proper
destination according to the type of the exception.

A compound statement contains a list of statements with one exception handler for all
of these statements. A node represents each of these statements. The compound statement

Figure 1: Flow graph modeling of compound statements

Regression Test Selection for Database Applications 145

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

contains two end statements: one for successful endings, and the other for unhandled ex-
ception results. If exception handling is not available, then all the exception links of these
nodes will be linked to the unhandled exception end node. If exception handling is avail-
able then a primary handler switch node to which all the exception links of the compound
statement nodes are linked models the exception handler. A predicate node that checks for
the type of the exception models each specifi c exception handler. The exception predicate
has two links: the fi rst one to the start node of the exception handler block and the second
to the next handled exception. The primary handler switch is mainly the predicate node of
the fi rst exception handler. If the handler is the last in the block then the second link is made
to the unhandled exception end node of the compound statement. Statements inside the
handler block of each exception handler are modeled like other statements in the compound
block. However, the exception link is directly linked to the unhandled exception end node
of the compound statement. The end nodes of the exception handlers’ blocks are linked to
the successful end node. Figure 1 further explains modeling of control fl ow transfers of a
compound statement.

The inner block is treated by the outer block like a single node with two outcomes
expected. The nodes that have been linked to the success end should be linked to the node
of the next statement in the outer block. Similarly, nodes that have been linked to the
unhandled exception end node should now be linked to the primary handler switch of the
outer block.

DATA FLOW MODELING
Background

Data fl ow testing methods focus on the occurrences of variables within the program.
Each variable occurrence is classifi ed as either defi nition occurrence or use occurrence. A
defi nition occurrence of a variable is where a value is bound to the variable. A use occur-
rence to a variable is where the value of the variable is referenced. Each use occurrence
is classifi ed as being a computational use or predicate use. If the value of the variable is
used to decide whether a predicate is true for selecting execution paths, the occurrence is a
predicate use. Otherwise, it is used to compute a value for defi ning other variables or as an
output value (Rapps & Weyuker, 1985).

The database plays an important role in holding the state of computation in database
modules. Other statements in the same module or other modules use the data generated by a
statement; thus creating data fl ow relations. The main source of data in a relational database
is tables. The data in these tables are created, deleted, updated, or retrieved. The manipulation
of this data is done through the use of SQL statements. Each table is composed of a fi xed
number of named fi elds or columns. A table consists of a set of records; each record has its
own values in each column. The SQL data manipulation language handles in one statement
a particular column value in a given row, some columns of a given row, or all the column
values of a row. It can also handle, in one statement, a given column, a group of column
values, or all the column values of a group of rows. It can also handle all the columns of
all the rows in the table.

Traditionally, data fl ow dependencies are created through the manipulation of variables
in which each variable is defi ned with a value that could be used later or rewritten. However,

146 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

in database applications we are dealing with a set of tables with multi-columns and multi-
rows. To defi ne the data fl ow relations created from the database usage we should decide
on a level of granularity of the database variables in which we can trace their defi nition,
and subsequently, their use.

Suggested Technique
One choice of the level of granularity is to consider each table in the database as a

variable and handle all types of table usages as either a defi nition of the table or a retrieval of
values. However, most of the time only parts of a table are handled in a given SQL statement.
Another level of granularity is to consider each row in the table as a separate variable and
trace the data fl ow relations that exist from the usage of each row separately. This situation
is similar to the problem of defi ning the control fl ow relations created by linked lists, where
each node in the linked list is dynamically created, modifi ed, and deleted. In the case of
database tables each row is dynamically created, deleted, modifi ed, or retrieved. This implies
that we cannot statically identify the possible data fl ow relations that could exist between
rows. This is because the row usage is determined by evaluating the restricting conditions
of the SQL statement performing the data manipulation.

A more moderate solution between the table and row level of granularity is the column
level. Since the number of columns is fi xed and columns are used in SQL statements us-
ing their unique names, we can determine the column usage statically. A drawback of this
choice is the fact that it does not discriminate between the usage of one particular column
value belonging to some row and the usage of the same column but of a different row.
Discriminating between such usages leads us back to the problem of row-level data fl ow
dependencies.

SQL statements use columns directly and indirectly or, in other words, explicitly and
implicitly. These usages are either defi nition or retrieval. A table participating in master detail
relations has a group of its columns referencing the primary key columns of the master table.
Whenever these columns are defi ned the database implicitly checks that the master table
contains a record that has its primary key column values matching the foreign key column
values of the newly added record. So, whenever a new record is created the primary key
columns of the master table are used. Conversely, whenever a master record is deleted the
detail tables are checked to see whether there exist records with foreign key column values
matching with the primary key column values of the master record being deleted.

We differentiate between fi ve main usages of database columns. They are: delete, insert,
reference, select, and update. Reference and select usages are computational usages and
are denoted as c-use. Update, delete, and insert usages are defi ne usages and are denoted as
d-use. However, notice that in all of the previous defi ne categories the result of the defi ni-
tion is dependent on the initial values of the columns defi ned, because the columns contain
multi-values and zero or more of its values retain their initial values. Therefore, whenever
there is a defi ne usage of a column there is also a computation usage.

The list of various cases of column usages includes:

1. Explicit usage
 a. Explicit retrieval
 i. In the selection list of SELECT SQL statements and SELECT

 sub-queries.

Regression Test Selection for Database Applications 147

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

 ii. In the condition of the SQL statements and SELECT sub-que
 ries.

 b. Explicit defi nition
 i. INSERT column list.
 ii. Columns to set in UPDATE statement.
2. Implicit usage
 a. Implicit retrieval
 i. Usage of * abbreviations to indicate whole table columns.
 ii. Reference of master key column.
 iii. Reference of detail foreign key column.
 b. Implicit defi nition
 i. Column of table used in DELETE statements.
 ii. Columns not listed in the INSERT statement set to null value or

 given a default value if it is available.

IMPACT ANALYSIS
Software impact analysis estimates what will be affected in software or related docu-

mentation if a proposed software change is made (Arnold & Bohner, 1996). Impact analysis
information can be used for planning changes, making changes, accommodating certain types
of software changes, and tracing through the effects of changes. Impact analysis provides
visibility into the potential effects of changes before the changes are implemented.

Although it is relatively easy to understand most of the database structures and
modules, understanding their combined effect or combined functionality is diffi cult. The
complex relationships between database objects make it diffi cult to anticipate and identify
the ripple effects of changes. Data dependencies, control dependencies, and component
dependencies make it diffi cult to generate tests to adequately retest the affected elements.
Our impact analysis technique is based on a reverse engineering approach designed to extract
the database components and their relationships. This information is used to automatically
identify the changes and the effects of those changes. In this section, we present phase 1
of our regression testing methodology, which includes modifi cation detection and impact
analysis. In this phase we localize the effects of change, identify all affected components,
and select a preliminary set of test cases that traverse modifi ed components.

Change Identifi cation
Change identifi cation is the fi rst step in change impact analysis. We differentiate be-

tween two types of changes in the database application environment:

(a) Code Change: This involves changes that can be made to the code of the database
modules. This is similar to any change made to any module written in any other lan-
guage. Addition, deletion, and modifi cation to particular statements inside a module
are examples of code change.

(b) Database Component Change: This change involves the changes that could be made
to the defi nition of the database components in general. It also includes the changes
that could be made to the defi nition of database modules.

148 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Code change identifi cation can be made at different levels. The more details we want,
the more sophisticated the change identifi cation tool should be. With more details, identify-
ing change impact will be easier and more informative.

Change Impact Identifi cation
A change made to one component affects other database components due to component

dependencies. Therefore, to identify the impact of change, we should identify the dependen-
cies that exist between database application components and then fi nd the ripple effect of
change due to the transitivity of the dependency relations. The Component Firewall technique
presented below is used to determine all the affected database components.

Component Dependency
Each type of database objects is handled separately to determine the dependencies it

creates. In Table 1, we give an example of the dependencies that exist between database
components.

Component Firewall
A Component Firewall is a set of affected modules when some changes are made to any

of the database components. A database component is marked as modifi ed and is included
in the Component Firewall if one of the following conditions is satisfi ed:

(a) Its defi nition is modifi ed.
(b) It is deleted.
(c) It is dependent on a modifi ed or deleted component.

Table 1: An example of database components dependency

Database Component Dependent Component
Table Primary key constraint

Foreign key constraint
Check constraint
Index
View
Synonyms
Trigger
SQL-PSM code
SELECT statement
INSERT statement
UPDATE statement
DELETE statement

Regression Test Selection for Database Applications 149

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

(d) It became dependent on new or modifi ed components in the new system, such as
triggers and constraints.

The requirements of implementation of the Component Firewall technique are:

(a) Modeling the dependency relations of both old and new schemas, and
(b) Determining the modifi ed, deleted, and new components.

All database components selected by the Component Firewall algorithm are marked
as affected components. Affected module components are determined in order to select the
test cases that traverse them, which make up the results of phase 1.

In Figure 2, we sketch an outline of the Component Firewall building algorithm. This
algorithm takes the old and new schemas and returns a list of components that construct
the Component Firewall.

Module Compare is responsible for performing change identifi cation. It takes the old
and new database schemas and returns two lists of components: one for the modifi ed and
deleted components and the other for the newly added ones. Module Transitive_Closure
takes a list of components and the database schema and returns the transitive closure of the
dependent components. If the dependency relation is modeled using a directed graph, then
the transitive closure could be computed through fi nding the components reachable from
modifi ed components using depth fi rst search.

As an example, we present part of a database application used in a commercial bank
to pay checks drawn on accounts maintained by the bank. The bank keeps track of customer

Figure 2: The Component Firewall algorithm

Component_Firewall(old_schema, new_schema)

Denote L to be the list of components in the fi rewall.
Denote ML to be the list of modifi ed and deleted components.
Denote NL to be the list of new components.

Compare(old_schema, new_schema, ML, NL)
For each modifi ed component C in ML
 Add C to L
 For each component X dependent on C in new_schema
 If X belongs to old_schema then
 Add X to L

For each new component C in NL
 For each dependent component pendent component pendent X on C in new_schema
 If X belongs to old_schema then
 Add X to L

L := Transitive_Closure(L, old_schema)

Return L

150 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

accounts and ensures that issued checks are not reported stolen. Modules Pay_Check, Sto-
len_Check, and Update_Balance are used to implement this functionality.

The tables used in this example are:

• ACCOUNTS (acc_number, acc_name, balance, status): holds the accounts’ informa-
tion.

• TRANSACTIONS (trans_num, account, doc_num, amount, t_entry_date, value_date):
used to keep track of paid checks.

• STOLEN_CHECKS (check_num, s_entry_date): used to register the numbers of the
checks reported stolen.

Figure 3 depicts module Pay_Check and its control fl ow graph. The code is written Pay_Check and its control fl ow graph. The code is written Pay_Check
in PL/SQL Oracle’s implementation of SQL-PSM. The circles denote nodes in the control
fl ow, and arrows denote possible control transfer. This control fl ow analysis is statement
based, where a node represents each statement.

In this control fl ow analysis, the inter-module extensions are not presented, although in
this module there are implicit and explicit calls to other modules. Statement 1 calls function
Stolen_Check, and statement 3 triggers the fi ring of Update_Balance trigger, which is set
on the TRANSACTIONS table. The component usages are not shown as well. Statement 3
explicitly uses table TRANSACTIONS and columns trans_num, account, doc_num, amount,
and t_entry_date. Statement 3 implicitly uses column value_date that is not present in the
insert list. It implicitly uses table ACCOUNTS by reference since column account is part
of a foreign key referencing table ACCOUNTS. This usage implies that table ACCOUNT
is checked to see whether the account record being used exists.

Figures 4 and 5 list trigger Update_Balance and function Stolen_Check respectively Stolen_Check respectively Stolen_Check
and the control fl ow graph of each module.

Figure 3: Function Pay_Check and its corresponding control fl ow graph

Regression Test Selection for Database Applications 151

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Figure 4: Trigger Update_Balance and its corresponding fl ow graph

Figure 5: Function Stolen_Check and its corresponding control fl ow graph

Figure 6: Component dependency graph

152 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Figure 6 summarizes the dependency relations existing between the various components.
Next, we demonstrate how the Component Firewall algorithm works by proposing a set of
changes to the system. In Table 2 we defi ne part of the testing scenarios and test cases that
have been used during the testing of the modules in this example.

Case 1
Change the defi nition of trigger Update_Balance. Instead of “after insert”, change it

to “after delete”. As a result of this modifi cation, component Pay_Check is not any more Pay_Check is not any more Pay_Check
dependent on component Update_Balance. Consequently, all the test cases passing through
it are included in the retest list in addition to the test cases passing through component Up-
date_Balance. Thus, the retest list will consist of test cases T1, T2, T3, T4, T6, and T8.

Case 2
Add a not-null constraint to value_date column in table TRANSACTIONS. This column

is not listed within the insert list of the insert statement in module Pay_Check. However,
in our impact analysis we include this column as an implicit usage since it is set to null. By
adding not-null constraint to this column, the insert statement is using implicitly a modifi ed
component. Therefore, component Pay_Check will be affected because it is dependent on Pay_Check will be affected because it is dependent on Pay_Check
a modifi ed component. Consequently, all test cases passing through it are included in the
retest list. These are test cases T1, T2, T3, and T4.

Case 3
Statement 2 in function Stolen_Check is to be modifi ed. The statement, return(true), Stolen_Check is to be modifi ed. The statement, return(true), Stolen_Check

becomes return(false). Therefore, component Stolen_Check is affected and component Stolen_Check is affected and component Stolen_Check
Pay_Check that is dependent on it is marked as affected, and consequently all test cases Pay_Check that is dependent on it is marked as affected, and consequently all test cases Pay_Check
passing through these affected components are included in the retest list. These are test cases
T1, T2, T3, T4, T5, and T7.

Table 2: Test cases and the statement test trace

Test Cases Statement Trace
Pay_Check Stolen_Check Update_Balance

T1 1, 2, 8 1, 2, 5
T2 1, 3, 7, 8 1, 3, 4, 5 1, 2
T3 1, 3, 4, 5, 8 1, 3, 4, 5
T4 1, 3, 4, 5, 6, 8 1, 3, 4, 5 1, 2
T5 1, 2, 5
T6 1, 2
T7 1, 3, 4, 5
T8 1, 2

Regression Test Selection for Database Applications 153

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

TEST CASE REDUCTION ALGORITHMS
In the impact analysis phase (phase 1), the test cases traversing the modules that are

included in the fi rewall are selected for regression testing. However, this results in a rela-
tively large number of selected test cases, since the Component Firewall does not distinguish
between the modifi cation-revealing test cases and the non-modifi cation revealing ones.
Therefore, it is useful to explore new techniques to reduce the number of test cases selected
in phase 1 by concentrating on modifi cation revealing tests. In this section, we discuss two
such techniques. The fi rst technique is the Graph Walk technique. This technique works
when statement trace and statement components usages are available. In addition, it works
at both the inter-module level and intra-module level. The second technique is Call Graph
Firewall. It is an adaptation of the fi rewall regression testing technique proposed by Leung
and White for procedural programs (Leung & White, 1990a, 1990b). It works at the inter-
module level, utilizing the Call Graph of the database application and selecting test cases
based on the data fl ow dependency resulting from the various usages of database tables.

Graph Walk Technique
In the Graph Walk technique, we use control fl ow graphs of all modules in the applica-

tion and its modifi ed version, and trace-information linked to control fl ow nodes. We also
utilize the dependency created between statements and various database components.

Applying this technique to a module, we traverse the control fl ow of the module and
its modifi ed version. When a pair of nodes N and N* in the graphs of the original module
and its modifi ed version are discovered (i.e., the statements associated with N and N* are
different), this technique selects all tests from the test suite that reach N in the original
program. For two nodes N and N* to be different, at least one of the following conditions
must be satisfi ed:

(a) N and N* are lexically different,
(b) N uses a modifi ed component,
(c) N uses a component that is not used by N*, or
(d) N* uses a component that is not used by N.

To extend the technique to the inter-module level, we should change condition (b) to
become: N uses a modifi ed non-module component. Moreover, for each module call linked
to a control fl ow graph node N we should perform the Graph Walk algorithm recursively on
this module and intersect the result with the test cases passing through node N.

In Figure 7 we give the Graph Walk algorithm. It takes two modules as parameters Graph Walk algorithm. It takes two modules as parameters Graph Walk
and returns a list of test cases to retest. This algorithm is based on the Compare algorithm
that works on the control fl ow graph nodes. The Compare algorithm takes two control fl ow
nodes: one from the original module and the other from the modifi ed version, and it returns
the test cases passing through the original node that should be retested. The Compare algo-
rithm is presented in Figure 8. It calls the Is_Different algorithm that checks whether two Is_Different algorithm that checks whether two Is_Different
control fl ow nodes satisfy one of the four conditions listed earlier. Figure 9 gives the details
of the Is_Different algorithm.Is_Different algorithm.Is_Different

To optimize the performance of the Graph Walk in the inter-module level, we save
the results of the Graph Walk algorithm for each module. This will prevent performing the Graph Walk algorithm for each module. This will prevent performing the Graph Walk

154 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

algorithm more than once in case there was more than one call to the same module in the
module Call Graph.

The Compare algorithm recursively calls itself on the successor nodes of the current
nodes to traverse all the graph nodes of the original and modifi ed modules. It also collects test
cases that should be called due to module calls. Term Test(N) denotes the test cases that reach
node N. To prevent the algorithm from running endlessly we mark the visited nodes.

Function Component(N) in the Is_Different algorithm returns the database components
used by node N. In the fi rst step of the Is_Different algorithm, we check whether the nodes Is_Different algorithm, we check whether the nodes Is_Different
are lexically different. In the next steps, we check for differences resulting from the usage
of database components.

Next, we discuss the results of applying the Graph Walk reduction algorithm on the Graph Walk reduction algorithm on the Graph Walk
previous example for each modifi cation case.

Figure 7: The Graph Walk algorithm

Figure 8: The Compare algorithm

Graph Walk (Graph Walk (Graph Walk M, M1) : T

if module M is not visited thenvisited thenvisited
 mark M as visited
 S := Start_Node(M)
 S1 := Start_Node(M1)
 Retest(M) := Compare(S, S1)

T := Retest(M)

return T

Compare (N1, N2) : T

mark node N1 as visited

if Is_Different(N1, N2) then
 return test(N1)

for each module M1 in CALL(N1)
 let M2 be the corresponding module in the modifi ed application
 T := T U (test(N1) ∩ Graph Walk(Graph Walk(Graph Walk M1, M2))

for each successor node s1 of N1 and corresponding node s2 in N2
 if s is not visited then
 T := T U Compare(s1, s2)

return T

Regression Test Selection for Database Applications 155

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Case 1
Change the defi nition of trigger Update_Balance. Instead of “after insert”, change it to

“after delete”. This modifi cation makes the trigger refrain from fi ring when statement 3 in
Pay_Check module is executed, and thus the statement 3 is affected and all test cases execut-Pay_Check module is executed, and thus the statement 3 is affected and all test cases execut-Pay_Check
ing this statement are included in the retest list. These test cases are T2, T3, and T4.

Case 2
Add a not-null constraint to value_date column in table TRANSACTIONS. This column

is not listed within the insert list of the insert statement in module Pay_Check. However,
in our impact analysis we include this column as an implicit usage since it is set to null. By
adding not-null constraint to this column, the insert statement is using implicitly a modifi ed
component. Thus, all test cases executing this statement should be executed. Similar to case
1, statement 3 in module Pay_Check is affected and the same test cases are selected. These Pay_Check is affected and the same test cases are selected. These Pay_Check
test cases are T2, T3, and T4.

Case 3
Statement 2 in function Stolen_Check is to be modifi ed. The statement, return(true), Stolen_Check is to be modifi ed. The statement, return(true), Stolen_Check

becomes return(false). This modifi cation implies that all test cases executing statement 2
should be added to the retest list, which are test cases T1 and T5.

Call Graph Firewall
Leung and White (1990a) present a selective regression testing technique for inter-

procedural testing that deals with both code and specifi cation changes. Their technique
determines where to place a fi rewall around modifi ed code modules. Then, it selects unit

Figure 9: The Is_Different algorithm

Is_Different(N1, N2) :

if N1 != N2 then
 return true

for each component C in Component(N1)
 if C is modifi ed then
 if C is a module then
 if C does not belong Component(N2)
 return true
 else
 return true

for each component C in Component(N2)
 if C does not belong Component(N1)
 return true

return false

156 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

tests for modifi ed modules that lie within the fi rewall and integration tests for groups of
interfacing modules that lie within the fi rewall. Leung and White (1992) extend their tech-
nique to handle interactions involving global variables.

The fi rewall technique selects all units and integration tests of modules that lie within
the fi rewall. Because not all of these tests necessarily execute modifi ed code, the technique
selects non-modifi cation-traversing tests. It handles multiple modifi cations in a single pass
of its algorithm.

Implementing the fi rewall concepts for database applications requires three elements:

(a) Database application Call Graph.
(b) Data fl ow dependencies between interfacing modules resulting from database tables

usages.
(c) List of modifi ed database modules.

Call Graph links a database module to all the modules that it calls. It should include
links to table triggers modules in case the module contains statements that cause these trig-
gers to execute. In order to fi nd the data fl ow dependencies between interfacing database
modules, we fi rst have to fi nd the table usages in each module and then use Call Graph to
fi nd defi ne-use associations between table usages.

To fi nd modifi ed database modules, we perform impact analysis using the Component
Firewall impact analysis technique. However, not all the modules selected by impact analysis
are selected. We divide these modules into two sets. The fi rst set of modules contains the
modules that have been included because of modifi cations made to their code, or because
they use modifi ed non-module components. All modules in this set are considered by the
Call Graph Firewall regression testing technique as modifi ed. The rest of the modules are
included in the second set and are not considered modifi ed.

The new version of the database application is used only to determine the list of
modifi ed modules. If such a list is available from other sources then the new version of the
database application is not needed.

Call Graph Firewall deals with two types of test cases: integration tests and unit tests.
It determines which interfacing module couples need integration testing, so all the test cases
passing through a selected couple should be selected. The table data fl ow information is
used to determine:

(a) Modules in need of unit testing other than the directly modifi ed modules.
(b) Interfacing module couples in need of integration testing to limit propagation of

modifi cation effects.

For example, consider the Call Graph of Figure 10. Suppose that a modifi cation on
column X has been done at module 7. Let set E be the set of nodes constituting the fi rewall,
and let set W be the set of node couples that need integration testing as a result of change.
Applying the algorithm leads to the following: the backward walk identifi es module 4 where
a defi nition of column X is found. Then, modules 2 and 3 with their arcs (2, 4) and (3, 4), to
the defi nition in module 4 are added to W. Module 1 with its arcs (1, 2) and (1, 3) is added
to the fi rewall E. Next, a depth fi rst search procedure is applied, leading to the addition of
module 7 to W because a c-use of column X is found. Also, the predecessor of module 7,
module 5, is added to W. Therefore, the fi rewall is composed of the components 1, 2 and

Regression Test Selection for Database Applications 157

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

3 and W is the component composed of (2, 4), (3, 4) and (5, 7), for which every test case
passing through these pairs must be retested.

EMPIRICAL RESULTS
Support System

We have implemented a database applications maintenance tool as a support system
for the empirical work. The tool helps database application maintainers understand these
applications, identify code changes, support software updates, and enhance and detect
change effects. It mainly helps create a test environment and select regression test cases to
be rerun when a change is made to the application using our two-phase regression testing
methodology. The system is implemented for Oracle database applications programmed
using PL/SQL language. Our maintenance tool is composed of fi ve parts: module analysis,
database analysis, test environment setup, Impact Analysis and regression test selection, and
test case reduction. Test case reduction simply refers to including phase 2 algorithms.

Module Analysis
Module analysis involves building syntax trees for a module and then using these syntax

trees to gather control fl ow information and database components usage information. The
module information gathered is displayed to help in understanding the module’s functional-
ity. Performing all these tasks requires a mechanism of storing the results in one step and

Figure 10: Call Graph example

158 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

passing them to the succeeding steps. Our tool is built using the object-oriented paradigm.
Thus, the mechanism used to store information is based on object-oriented structures.

In Figure 11 we show part of the object model used to hold the information gathered
while performing the module analysis.

Database Application Analysis
A database application is analyzed to determine component dependencies, call dependen-

cies, and data fl ow dependencies that exist between its components. All gathered information
is then displayed to help the maintainer visualize the features of the application.

The tool performs module analysis on all the application’s modules. Database com-
ponent usages are summarized for each module. Figure 12 shows the object model used to
model database components and their relations and dependencies. After the analysis of all
modules, we obtain a call graph of the database application in which we know the modules
called by a certain module and all the modules calling it as well. Then, the tool displays all
the gathered information in a hierarchical fashion.

Figure 11: Part of the object model for the syntax tree and control fl ow information

Regression Test Selection for Database Applications 159

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Having the call graph and the component usages, which include column usages, we
can now perform inter-procedural data fl ow analysis. The result of this analysis is used later
for the call graph fi rewall regression testing technique.

Test Environment Setup
The tool also supports testing efforts. It creates a new version of the database applica-

tion that generates module and statement test traces when the test cases are executed. The
tool tackles the problem of documenting database applications test cases by adding to the
application input and output logging capabilities. The tool also uses its module and database
application display utilities to display statement and module test coverage.

Change Impact Analysis
The tool is capable of performing change impact analysis by handling two database

applications concurrently. It fi rst connects to the original database application and then it
connects to its modifi ed version. It performs analysis on both versions of the application.

Figure 12: The object model of the database components

160 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The results of this analysis are used in fi nding the modifi ed database components and the
effects of this modifi cation on other database components.

Experimental Design and Procedure
To empirically investigate the use of our regression testing methodology, we use a

prototype of a payroll database application with an initial suite number of test cases used to
test its various modules and constructs. We propose random modifi cations to the application,
thus creating ten (modifi ed) versions of the application, M1 – M10. Then, we study each
version using our maintenance tool and report the affected modules and the test cases that
should be rerun for regression testing. The test suite used to test this application contains
fi fty test cases determined using a specifi cation-based test adequacy criterion.

For evaluating and comparing the regression test selection techniques, we use two
metrics: (i) the (percentage) number of tests (ST) selected by a technique from the initial
test suite for rerunning, and (ii) the (percentage) number of modifi cation-revealing tests
missed by a technique (MMRT). Obviously, the underlying assumption is that a good regres-
sion testing technique selects a small number of tests (ST) to reduce the time of regression
testing, and yet does not miss selecting the tests that reveal the modifi cations made to the
database application.

The experiment is made of two parts. In the fi rst part, we analyze the database applica-
tion and prepare the test trace information. This part involves the following steps:

(a) Use the tool to construct syntax trees, control fl ow graphs, component dependency
information, and data fl ow information.

(b) Use the tool to create a new version of the application and generate a test trace.
(c) Run all tests on the new version and collect trace information.

In the second part, a new copy of the application for each proposed modifi cation is
created. For each modifi ed version of the application:

(a) Perform database application analysis.
(b) Perform Impact Analysis.
(c) Run Graph Walk regression testing.
(d) Run Call Graph Firewall regression testing.

Results
In Table 3, we present the results of applying our regression testing methodology on

the ten program versions, M1 – M10. For each version, we show: (a) the number of test
cases in the initial test suite (selected by the Select-All approach), (i.e., 50) and the number
of tests that reveal the modifi cations (MRT) made to the application, (b) the ST and MMRT
values due to the use of a Select-Random technique, (c) the ST and MMRT values due to
the use of our proposed phase 1 – Impact Analysis technique, and (d) the ST and MMRT
values due to the use of the phase 2 techniques for further test reduction, Graph Walk and
Call Graph Firewall. All ST values are normalized with respect to 50, whereas MMRT
values are normalized with respect to MRT. The ST value of Select-Random is set to be
28% after observing that all ST values (except for M1) of our proposed techniques are less

Regression Test Selection for Database Applications 161

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

than or equal to 28%. This choice is made to facilitate the comparison of the MMRT values
between the Select-Random and the three proposed techniques.

Discussion of the Results
Table 3 clearly shows that the Impact Analysis, Graph Walk, and Call Graph Firewall

techniques provide signifi cant reduction in the number of selected tests in comparison with

Table 3: Summary of results

Ve
rs

io
ns

Se
le

ct
-A

ll
Se

le
ct

-R
an

do
m

Ph

as
e

1
Im

pa
ct

 A
na

ly
si

s
Ph

as
e

2
Te

st
R

ed
uc

tio
n

N
um

be
r

of

Te
st

s
M

R
T

ST
M

M
R

T
ST

M
M

R
T

G
ra

ph
 W

al
k

C
al

l G
ra

ph

Fi

re
w

al
l

ST
M

M
R

T
ST

M
M

R
T

M
1

50
10

28
%

60
%

36
%

0%
36

%
0%

22
%

20
%

M
2

50
5

28
%

60
%

28
%

0%
28

%
0%

16
%

20
%

M
3

50
4

28
%

75
%

8%
0%

8%
0%

8%
0%

M
4

50
4

28
%

10
0%

8%
0%

8%
0%

8%
0%

M
5

50
8

28
%

62
%

28
%

0%
28

%
0%

14
%

25
%

M
6

50
12

28
%

58
%

28
%

0%
28

%
0%

14
%

8%
M

7
50

2
28

%
10

0%
8%

0%
8%

0%
8%

50
%

M
8

50
10

28
%

70
%

28
%

0%
24

%
0%

24
%

10
%

M
9

50
5

28
%

60
%

28
%

0%
10

%
0%

10
%

40
%

M
10

50
2

28
%

10
0%

28
%

0%
4%

0%
10

%
50

%

162 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

the Select-All approach. For example, Impact Analysis provides an average reduction of
77% with a minimum of 64% and a maximum of 92%. Graph Walk and Call Graph Firewall
provide average reductions of 82% and 87%, respectively. Therefore, the three proposed
techniques are certainly useful for saving regression testing time.

In addition to their test reduction capabilities, both the Impact Analysis and Graph
Walk are safe. That is, they do not miss modifi cation-revealing tests. However, Graph
Walk produces further reduction in ST where the modifi cation affects modules that involve
selection and branching. When faced with simple code modules, Graph Walk and Impact
Analysis have similar reduction capabilities. But, since the Graph Walk technique works at
the statement level, it offers more reduction in ST as the code becomes larger and involves
deep branching hierarchy of modules. Versions M8-M10 are examples in which the modi-
fi cations made affect branching parts of the code.

The Call Graph Firewall technique is not safe. It produces the best reduction in ST,
but at the expense of the MMRT value. Call Graph Firewall uses data fl ow information to
further reduce the tests selected by Impact Analysis. This may be advantageous for fast
regression testing in the case where Impact Analysis provides high values of ST. But, it is
not recommended for relatively small ST values as it might miss 50% of the modifi cation
revealing tests.

Comparing Impact Analysis, Graph Walk, and Call Graph Firewall with Select-Random
shows that the three proposed techniques are defi nitely better. They offer less ST values
and are certainly more reliable, as Select-Random misses 58-100% of the modifi cation
revealing tests. These high MMRT values occur despite allowing Select-Random to select
28% of the initial tests. This ST value is comparable to the three proposed techniques for
some versions (e.g., M2, M5, and M8) or has advantage over them for other versions (e.g.,
M3 and M7). In particular, Select-Random might miss all modifi cation-revealing tests for
small MRT values.

RELATED WORK
Numerous regression testing algorithms and approaches have been proposed for pro-

cedural and object-oriented programs. Rothermel, Harrold, and Dedhia (2000) provide a
regression testing method for C++ software based on control fl ow analysis of C++ source
code. The method handles some object-oriented and C++ features such as polymorphism,
dynamic binding, and passing objects as parameters. Rothermel, Yntect, Chu, and Harrold
(2001) use test case prioritization in regression testing. They provide a survey of test case
prioritization techniques and perform empirical studies with some of these techniques to
evaluate how effective they are in improving fault detection. In case safe regression testing
techniques proved not feasible, prioritization is chosen as a cost effective substitute. Bible,
Rothermel, and Rosenblum (2001) provide a comparitive empirical study of two safe regres-
sion test selection techniques implemented in two regression testing tools: the TestCube
(Chen, Rosenblum& Vo, 1994) and the DejaVu (Rothermal & Harrold, 1997). The precision
and relative cost effectiveness of these techniques are evaluated and compared to the cost of
retesting using other techniques. Harrold, Jones, Li, and Liang (2001) present a safe regres-
sion testing selection technique for Java applications. The technique handles Java language
features such as polymorphism, dynamic binding, and exception handling. The authors also
described a tool for implementing their technique. The tool provides empirical results for

Regression Test Selection for Database Applications 163

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

checking the effectiveness of their technique in test case reduction. Beydeda and Gruhn
(2001) present a black box based regression testing technique. They represent a software
system by a domain model and test case selection is based on changes to the model. Their
approach is divided into two phases. In phase one, test case selection is performed on old
test cases. In phase two new test cases are generated to test newly added parts.

Other algorithms invloving regression testing include: incremental slicing algorithm
(Agrawal, Horgan & Krauser, 1993), slicing algorithms based on data fl ow testing and in-
cremental data fl ow analysis described by Gupta, Harrold, and Soffa (1996) and Harrold and
Soffa(1988), fi rewall-based approaches presented by Hsia et al., (1997), Kung et al. (1995),
Leung and White (1990a, 1990b), and Leung and White (1992), stochastic search algorithms
(Mansour & El-Fakih, 1999), safe algorithm based on module dependence graph described
by Rothermel and Harrold (1997, 1998), semantic differencing approach (Binkley, 1997),
and textual differencing approach (Vokolos & Frankl, 1998). However, to the best of our
knowledge, database programs have not been specifi cally dealt with in regression testing
research. SQL-based database programs support a number of features that do not exactly
apply in the cases of procedural and object-oriented programs. Examples of these features
are: SQL statements, table constraints, exception programming, and table triggers. These
features introduce new diffi culties that hinder regression test selection.

CONCLUSIONS AND FURTHER WORK
We presented a two-phase regression testing methodology for SQL-based systems.

In phase 1, we suggested techniques for modifi cation detection and modifi cation Impact
Analysis, in which we determined affected modules and test cases traversing them. In phase
2, we presented two alternative algorithms for reducing the test cases selected in phase 1.
The Graph Walk algorithm is statement-based and extends to the inter-procedural level. The
Call Graph Firewall algorithm is based on fi rewalls for database applications. In addition,
we developed a support system and used it for the experimental work.

In phase 1, we showed that exceptions could be modeled using existing control fl ow
constructs with some alteration. We presented control fl ow modeling techniques that take
into consideration nested compound statements with exception handling. Also, we proposed
a data fl ow analysis method that uses database interactions and is based on identifying the
usage of table columns. Furthermore, we provided a detailed analysis of the component
dependencies that exist between various database components. We found that control fl ow
analysis, Call Graph modeling, data fl ow analysis, dependency analysis and Impact Analysis
are useful for regression test selection.

From the empirical results, we conclude that: (i) the proposed techniques are better
than the Select-All approach in saving regression testing time and are more reliable than
the Select-Random approach in selecting modifi cation revealing tests; (ii) Impact Analysis
is very effective in localizing the effects of modifi cations and is useful in a preliminary
selection of regression test cases; (iii) the Graph Walk technique is particularly successful
in reducing the number of selected tests for code modifi cations while ensuring the selection
of modifi cation revealing tests; (iv) the Call Graph Firewall technique for test reduction is
most useful when applied to modular applications that include a hierarchy of module calls.
However, it may miss some modifi cation revealing tests.

164 Haraty, Mansour and Daou

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Based on the work presented in this chapter, further research tasks can be pursued.
We tackled the database application part that resides fully on the server. Ideas presented
can be extended to include client programs interfacing with the database components using
SQL and PSM calls. These client programs could be visual interfaces or part of three-tier
applications. Moreover, complexities created by cursors like data fl ow and component de-
pendencies need further research. In addition, dynamic analysis of table row usage by SQL
statements can be used to perform row level dynamic data fl ow analysis.

REFERENCES
Agrawal, H., Horgan, J.R., & Krauser, E.W. (1993). Incremental regression testing. Proceed-

ings of International Conference on Software Maintenance, 348-357.
Arnold, R.S., & Bohner, S. A. (1996). Software change impact analysis. IEEE Press.
Beydeda, S., & Gruhn, F. (2001). An integrated testing technique for component-based

software. Proceedings of the ACS/IEEE International Conference on Computer Sys-
tems and Applications.

Bible, J., Rothermel, G., & Rosenblum, D.S. (2001). A comparative study of coarse and
fi ne-grained safe regression test selection techniques. ACM Transactions on Software
Engineering and Methodology, 10(2), 149-183.

Binkley, D. (1997). Semantics guided regression test cost reduction. IEEE Transactions on
Software Engineering, 23(8), 498-516.

Chen, Y., Rosenblum, D., & Vo, K.P. (1994). TestCube: a System for selective regression
testing. Proceedings of the 16thProceedings of the 16thProceedings of the 16 International Conference on Software Engineeringg,
211-220.

Gupta, R., Harrold, M.J., & Soffa, M.L. (1996). Program slicing-based regression testing
techniques. Journal of Software Testing, Verifi cation and Reliability, 6(2), 83-111.

Harrold, M.J., & Soffa, M.L. (1988). An incremental approach to unit testing during
maintenance. Proceedings of International Conference on Software Maintenance,
362-367.

Harrold, M.J., Jones, J.A., Li, T., & Liang, D. (2001). Regression test selection for Java
software. Proceedings of the ACM Conference on Object Oriented Programming,
Systems, Languages, and Applications.

Hartmann, J., & Robson, D.J. (1989). Revalidation during the software maintenance phase.
Proceedings of International Conference on Software Maintenance, 70-79.

Hsia, P., Li, X., Kung, D.C., Hsu, C-T., Li, L., Toyoshima, Y., & Chen, C. (1997). A tech-
nique for the selective revalidation of OO software. Journal of Software Maintenance,
9, 217-233.

ISO/IEC 9075. (1992). Information Technology – database languages – SQL.
ISO/IEC 9075-4. (1995). Information Technology – database language – SQL Part 4:

Persistent Stored Modules (SQL/PSM).
Kung, D.C., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., & Chen, C. (1995). Class fi rewall, test

order, and regression testing of object-oriented programs. Journal of Object-Oriented
Programming, 8(2), 51-56.

Leung, H.K.N., & White, L. (1990a). A study of integration testing and software regres-
sion at the integration level. Proceedings of International Conference on Software
Maintenance, 290-300.

Regression Test Selection for Database Applications 165

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Leung, H.K.N., & White, L. (1990b). Insights into testing and regression testing global
variables. Journal of Software Maintenance, 2, 209-221.

Leung, H.K.N., & White, L. (1992). A fi rewall concept for both control-fl ow and data-fl ow
in regression integration testing. Proceedings of International Conference on Software
Maintenance, 262-271.

Mansour, N., & El-Fakih, K. (1999). Simulated annealing and genetic algorithms for optimal
regression testing. Journal of Software Maintenance, 11, 19-34.

Rapps, S., & Weyuker, E.J. (1985). Selecting software test data using data fl ow information.
IEEE Transactions on Software Engineering, 24(6), June, 401-419.

Rothermel, G., & Harrold, M.J. (1997). A safe, effi cient regression test selection technique.
ACM Transactions on Software Engineering and Methodology, 6(2), 173-210.

Rothermel, G., & Harrold, M.J. (1998). Empirical studies of a safe regression test selection
technique. IEEE Transactions on Software Engineering, 24(6), June, 401-419.

Rothermel, G., Harrold, M.J., & Dedhia, J. (2000). Regression test selection for C++ Soft-
ware. Journal of Software Testing, Verifi cation, and Reliability, 10(2), June.

Rothermel, G., Untech, R.H., Chu, C., & Harrold, M.J. (2001). Prioritizing test cases for
regression testing. IEEE Transactions on Software Engineering, 27(10), 929-948.

Vokolos, F.I., & Frankl, P.G. (1998). Empirical evaluation of the textual differencing re-
gression testing technique. Proceedings of the International Conference on Software
Maintenance, 44-53.

Wong, W.E., Horgan, J.R., London, S., & Agrawal, H. (1997). A study of effective regression
testing in practice. Proceedings of the 8th IEEE International Symposium on Software
Reliability Engineering (ISSRE’97).

166 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter IX

An Attempt to Establish a
Correspondence between

Development Methods and
Problem Domains

Oscar Dieste, Universidad Complutense de Madrid, Spain

Marcela Genero, Universidad de Castilla-La Mancha, Spain

Natalia Juristo, Universidad Politecnica de Madrid, Spain

Ana M. Moreno, Universidad Politecnica de Madrid, Spain

ABSTRACT
Most development methods need to be adapted before they can be used in a specifi c devel-
opment project. This is because each method can be applied to a series of paradigmatic
problems, but, as a problem moves further away from the ideal, the effectiveness of each
method gradually decreases. Although development method adaptation has been a recur-
rent theme in the literature, no work has been published that proposes any sort of criterion
or metric that can be used to assess the fi tness of any one method to a particular problem.
Therefore, in this chapter, we propose a new approach that can be used to calculate the
fi tness of methods to particular problems.

INTRODUCTION
There are now a wide variety of software development methods and techniques

(Bubenko, 1986). Although it is chancy to generalize, most of these methods and techniques
are considered to be general-purpose and, therefore, are specifi cally designed to operate in
a wide range of domains and to deal with an ample variety of different problems (Glass &
Vessey, 1995).

Correspondence between Development Methods and Problem Domains 167

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

For some years now, however, results have been published that contradict the supposed
universality of development methods and techniques. Accordingly, the survey by Hardy,
Thompson and Edwards (1995) concerning the use of structured methods and techniques
in the UK, indicates that 88% of methods and techniques undergo some sort of adaptation
before being used in each particular development project. Russo, Wynekoop and Walz
(1995) offer similar fi gures (88.6%) for the likewise structured methods and techniques in
use in the USA. Things do not appear to be much different as regards object orientation, as
notation adaptation is routine practice. Accordingly, UML, the most popular object-oriented
modeling language today, has three built-in extension mechanisms—stereotypes, tag defi ni-
tions and constraints (Fowler & Scott, 1999)—which can be used to adapt the representation
capabilities of the language to better represent particular domains and problems (Fowler
& Kobryn, 2002).

From percentages like the above, we can deduce that almost all the methods and tech-
niques should be adapted before being used in practice, which means that the generality of
these methods and techniques is merely a guise. The need for method and technique adaptation
refl ects the fact that they are in some measure specifi c for particular problems. Specifi city
should be taken to mean that the methods and techniques are primarily oriented to solving
a paradigmatic problem type, namely, the problems for which they were designed. As the
problems addressed in practice move away from the paradigmatic problem, the methods
and techniques become less effective and need to be adapted before being used.

Method and technique adaptation is a fi eld in which various results have been published
over the last ten years, as indicated. However, no criterion has yet been proposed that can be
used to decide to how well suited a method or technique is for a given problem P (Glass &
Vessey, 1998). Subjective assessment by developers usually fi lls in for the missing formal
criteria. However, this procedure is neither systematic nor repeatable, and therefore can be
qualifi ed as not very engineering-like.

Moreover, such a criterion could be used to establish a methods and techniques hierar-
chy with respect to their fi tness for a problem P, making it possible to identify and select the
best-suited method or technique. Additionally, a fi tness measure would be equally important
for adapting the method or technique, as it could be used to formally assess the situation
before and after adaptation.

Therefore, in this chapter, we propose a method that can be used to assess how well
suited a method or technique is to a given problem P. For this purpose, we will proceed as
follows. The following section will review the different alternatives that have been proposed
in this respect in the scientifi c literature. This is followed with a description of the proposed
assessment method. Next, the chapter will discuss possible extensions and future improve-
ments. The chapter will end with some conclusions.

BACKGROUND
There are two factors that lead to method and technique specifi city: (1) the process;

that is, the prescribed procedural steps for their use and (2) the conceptual models used
by the methods and techniques (Glass & Vessey, 1998). The process is usually adapted to
particular problems on the basis of experience (Hardy et al., 1995), although work on the
systemization of this type of adaptation has been published over the last ten years, leading

168 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

to the creation of the fi eld known as Method Engineering (Brinkkemper & Joosten, 1996;
Hofstede & Verhoef, 1997).

Conceptual models, however, can be said to cause greater method and technique
specifi city. This is because the conceptual models defi ne the problem domain aspect on
which the methods and techniques focus (Davis, 1993). Accordingly, for example, the basic
conceptual model of the structured methods and techniques is the data fl ow diagram, which
can record transformations that occur in the problem domain through its basic constructors:
processes, data fl ows, etc. On the other hand, the dominant model in the object-oriented
methods and techniques is the class diagram, which has constructors that can account for
objects, classes, attributes, etc., related to the problem to be solved.

When a particular problem does not fi t the conceptual model used by a method and
technique, this model should be adapted. Two main, partially overlapping, lines of research
have been pursued in this respect. The fi rst is characterized by the conception of increas-
ingly richer conceptual models, which can express a greater diversity of problem domain
aspects and are, therefore, less specifi c. Models like i* (Yu, 1995), KAOS (Lamsweerde,
Dardenne, Delcourt & Dubisy, 19991) or EM (Kirikova & Bubenko, 1994) are within this
line. A second line of research is characterized by the explicit defi nition of metamodels,
which, in some cases, can extend the representation capabilities of the conceptual models.
One of the most signifi cant examples of this line of work is the ConceptBase tool (Nissen,
Jeusfeld, Jarke, Zemanek & Huber, 1996), based on the TELOS knowledge representation
language (Mylopoulos, Borgida, Jarke & Koubarakis, 1990).

It is clear then that there is profound interest in adapting the different methods and
techniques to each particular problem addressed. As yet, however, no criterion or formal
metric has been defi ned that can be used to identify when a method or technique is suitable
for a particular problem (Glass & Vessey, 1998). This is largely due to the diffi culty of
comparing problems with methods and techniques. This comparison is equivalent to estab-
lishing a correspondence between two sets: a set P of problems and a set M of methods and
techniques, as shown in Figure 1.

There are two main problems that need to be solved to be able to establish the above-
mentioned correspondence:

Figure 1: Procedure for determining method and technique fi tness

Correspondence between Development Methods and Problem Domains 169

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Methods and techniques have not been characterized and classifi ed beyond the typi-
cal division into structured, real-time and object-oriented methods and techniques,
although the particularities (prescribed process, models used, stakeholders involved,
etc.) of each individual method and technique are usually well known. Some papers
that attempt to undertake a classifi cation are Webster (1988), Zave (1990) and Firth,
Pethia, Roberts, Mosley and Dolce (1987). However, these papers do not agree on
either the classifi cation criteria or the methods and techniques considered, which
means that they are only partially useful. There being no satisfactory classifi cation, it
is enormously diffi cult to identify the fi tness of methods and techniques to problems,
as each method and technique has to be worked on individually, which is not very
systematic, diffi cult to extrapolate and very costly in terms of time and effort. There
is no categorization and classifi cation of problems. This means that the problem do-
main aspects that are relevant for examining fi tness are not known (Glass & Vessey,
1995).

Because of the above-mentioned diffi culties, that is, the absence of satisfactory cata-
logues of methods and techniques and of problems, it is far from easy to identify criteria of
correspondence that can be used to relate methods and techniques to problem domains. With
some simplifi cations, however, it is possible to come up with a strategy that can be used to
establish the correspondence between methods and techniques and problems. The strategy
proposed here has been formalized as a method for calculating method and technique fi tness,
as discussed in the following section.

PROPOSAL FOR DETERMINING
METHOD AND TECHNIQUE FITNESS

Due to the diffi culties discussed in the preceding section, some simplifi cations need to be
made with regard to how to establish a correspondence between a set P of problems and a set
M of methods and techniques. These simplifi cations, as shown in Figure 2, are as follows:

1. Rather than working on the set M, opt to use the set of conceptual models (CM) used
by the methods and techniques in set M. This means that much fewer elements need to
be considered, as many of the methods and techniques use the same, or very similar,
conceptual models, which means that the number of elements is smaller in set CM
than in set M (Dieste, Moreno & López, 1999).

2. Identify the fundamental elements of the problems belonging to P. Fundamental ele-
ments should be taken to mean the aspects that characterize each problem, that is,
partially or totally differentiate one problem from another. To identify the fundamental
elements of a problem, the problem needs to be examined and understood or, in other
words, modeled. Ordinary modeling is no good, however. Indeed, we would be going
around in circles, as explained later on, if we used the classical conceptual models,
like the data fl ow diagram, the class diagram or the state transition diagram to model
a problem P. Therefore, we need a new model type, which has been termed generic
conceptual model and which can model the problem without overlooking any of its
characteristics or forcing it to fi t any particular conceptual model. Using the generic
conceptual model, the problems in P can be mapped to a set of models of P (PM).

170 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The strategy that we will follow to examine method and technique fi tness is to establish
a criterion of correspondence between PM and CM, based on the comparison of the generic
conceptual model of each problem P and the conceptual models used by the methods and
techniques. This correspondence to be established between PM and CM is precisely what
stipulates that the set PM should not be constructed on the basis of classical conceptual
models, like the class diagram or the data fl ow diagram. If this were the case, the problem P
modeled in PM would be biased towards the conceptual model used, which means that the
correspondence between PM and CM would be predetermined by the modeling process; that
is, PM and CM would be the same set. On the other hand, the generic conceptual model can
be used to compare, as will be shown in section 3.1, the characteristics of the problems mod-
eled in PM with the models in CM that can express these characteristics, thus establishing,
therefore, the correspondence between PM and CM and, ultimately, between P and M.

Accordingly, it is possible to come up with a method for determining the fi tness of
conceptual models and, ultimately, methods and techniques for a given problem. This method,
called problem-oriented analysis method (POAM), uses a generic conceptual model to map
the set P to the set PM, as well as to compare the sets PM and CM. The use of the generic
conceptual model has been formalized in a well-defi ned procedure, which can be used to
systematically determine conceptual model fi tness. The association of methods and techniques
and conceptual models, which can be used to pass from the set M to the set CM.

Figure 2: Simplifi ed procedure for determining method and technique fi tness

Correspondence between Development Methods and Problem Domains 171

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Generic Conceptual Model
The generic conceptual model (GCM) is a set of representation formalisms that can

record relevant information about the problem from a neutral viewpoint, that is, not in any
way linked to the future implementation. Specifi cally, the GCM is composed of four dif-
ferent representation formalisms:

• Concept map: This is the principal representation formalism of the GCM. It is a
graphic formalism, inspired by conceptual maps, derived from the work of Ausubel on
Learning Theory and Psychology and later formalized by Novak and Gowin (1984).
The concept map can set out and describe concepts and associations between concepts
present in the problem domain. From the viewpoint of form, concept maps are, as shown
in Figure 3, quite similar to semantic nets. However, there are profound differences
of substance between the two model types. Specifi cally, concept maps and semantic
nets differ with regard to the way that the two formalisms are designed to represent
the knowledge. Semantic nets are designed to describe knowledge non-ambiguously;
that is, it should be possible to ascribe a well-defi ned meaning to any node and link,
although this is not possible in some cases (Woods, 1975). On the other hand, concept
maps are intrinsically ambiguous; that is, it is neither possible nor desirable a priori
to ascribe any particular conceptual or computational meaning to concepts and as-
sociations. Additionally, concept maps can be used to build combinations of concepts
and associations (called propositions) of varying complexity, with an expressiveness
approximating natural language. Finally, concept maps can be structured hierarchi-
cally, similarly, albeit founded on different theoretical principles, to data fl ow diagram
hierarchies (Dieste, 2003).

• Identifi cative dictionary: This is a tabular representation formalism that can record,
during the early phases of analysis, concepts and associations, and is designed to make
the concept map easier to use. Table 1 shows an example.

The apparent duplication in recorded information in Table 1 (two different entries for
room, ward and complaint) is due to a GCM technicality: Two different elements in the
concept map are considered different even if they bear the same name. This rule prevents

Figure 3: Example of a concept map

172 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

information loss, primarily in the early stages of analysis, as information that appears to be
similar may turn out to be very different later.

• Descriptive dictionary: This is a likewise tabular representation formalism, which
is used, unlike the identifi cative dictionary, during the later phases of analysis. Its
function is to record refi ned information about the problem domain, which will later
enable the identifi cation of which CM and, therefore, which method and technique
are best suited for solving the problem under analysis. Table 2 shows an example.

• Narrative text: This is a textual representation formalism that can be used to transcribe
the information recorded in the concept map and the dictionaries. The narrative de-
scription can be automatically derived from the concept map and dictionaries, which
has some clear benefi ts for model validation. The text is very understandable for end
users, and, as there is a direct relationship between the narrative description and the
other representation formalisms, the comments and corrections made by the users can
be fed back into the concept map and the dictionaries. Table 3 shows an example.

Of these formalisms, the principal one is the concept map, as it supports problem ex-
amination and understanding. Additionally, transformation rules have been defi ned between
the different GCM representation formalisms (Dieste, 2003), which means that the concept
map, dictionaries and narrative text can represent the same information in different ways
(graphs, tables and text). Tables 1, 2 and 3 actually do represent the same information as
the concept map in Figure 4.

Table 1: Identifi cative dictionary

Element Description
Hospital 123 Admits patients
Patients From waiting list

From emergency department
Waiting list patient Is assigned a room

Suffers complaint
Is admitted from waiting list

Emergency department patient Is assigned a room
Suffers complaint
Is admitted from emergency department

Doctor Is reference physician of waiting list patient
Is specialized in complaint

Emergency doctor Is reference physician of emergency depart-
ment patient
Is specialized in complaint
Treats patient in emergency department

Room Belongs to ward
Ward Is assigned to a complaint
Complaint

Correspondence between Development Methods and Problem Domains 173

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Table 3: Narrative text

Table 2: Descriptive dictionary

Hospital 123 admits patients from the waiting list or from the emergency department.
Waiting list patients are assigned a room and suffer a complaint and are admitted from
the waiting list.
Emergency department patients are assigned a room and suffer a complaint and are admit-
ted from the emergency department.
Doctor is the reference physician of the waiting list patient and is specialized in the
complaint.
Emergency doctor is the reference physician of the emergency department patient and is
specialized in the complaint and treats the emergency patient in the emergency depart-
ment.
Room belongs to ward.
Ward is assigned to complaint.

174 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Note that each representation is similar to, while at the same time, slightly different
from, the others. This is due to the fact that each GCM representation mechanism focuses
on different aspects of the information acquired. The concept map highlights, primarily, the
associations between the different elements, whereas the identifi cative dictionary emphasizes
the meaning of each element. Finally, the narrative text locates elements and associations
at the same level, easing communication with the less technically competent participants
in the analysis.

Because of its intrinsic ambiguousness, the GCM, and the concept map in particular,
can record the problem domain information without any sort of conceptual or computational
constraint such as those imposed by the traditional conceptual models (Dieste, Genero,
Juristo, Maté & Moreno, 2003), thus enabling the set P of problems to be mapped to the
set PM of problem models. As mentioned, all conceptual models categorize the domain of
discourse using constructors with a well-defi ned, that is, non-ambiguous, meaning. Therefore,
the problem domain is fi ltered from the very start of analysis according to the viewpoint
permitted by the conceptual model.

Accordingly, for example, the information recorded in the concept map shown in
Figure 3 can be paraphrased as, “Patient is assigned to Room. Room belongs to Ward.” If
this same information were recorded in a class diagram or a data fl ow diagram, the result
would be as shown in Figure 5(a) and (b), respectively: only the domain aspects that each
conceptual model is capable of recording are considered during analysis. Specifi cally, in
Figure 5(a), information related to the manual or automatic process of assigning a patient

Figure 4: Concept map

Correspondence between Development Methods and Problem Domains 175

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

to a room (the phrase “is assigned to”) has been lost, and this has been replaced by an as-
sociation class, rewriting the problem in static code. In Figure 5(b), on the other hand, the
relationship between patients and rooms is lost, and the information gathered is transcribed
functionally, which, ultimately, indicates merely that the patients have some kind of attribute
that is updated on the basis of wards and rooms.

Moreover, the intrinsic ambiguousness of the concept map enables the categorization
to be carried at the end of the analysis, when all the relevant information has been acquired
and correctly conceptualized. Accordingly, in the concept map shown in Figure 3, there
is no constraint that demands that “patient” be modeled in advance as a class or external
entity or “is assigned to” as a relationship or a process. This decision is postponed until the
problem domain is well enough understood and the best-suited development paradigm has
been selected. This view of analysis is vaguely similar to the one proposed by Ceri (1983)
and Mayr and Kop (1998), who also use generic representation formalisms to record the
problem domain information before going on to create the conceptual models.

By modeling the problem according to the concept map representation schemes, we
have mapped set P to set PM. It remains, therefore, to defi ne the correspondence between
the sets PM and CM.

Determining Conceptual Model Fitness
As mentioned above, the correspondence between PM and CM is established by compar-

ing the generic conceptual model of each problem P (or the respective concept map) with the
conceptual models used by the methods and techniques. Being based on distinct theoretical
foundations, however, the concept map and the classical conceptual models, such as the
class diagram or the data fl ow diagram, cannot be compared directly. On the one hand, the
concept map records ambiguous information, which is, therefore, susceptible to different
interpretations. On the other, the conceptual models, albeit to different extents, record the
information on the problem using a strict semantics and, therefore, a single meaning.

Owing to this impedance mismatch, the theoretical foundations of the concept map
and the conceptual models need to be approximated, that is, assimilated. This is achieved by
disambiguating the concept map. The ambiguity of the concept map is removed by ascrib-
ing a given interpretation to each concept and association in the concept map; that is, each

Figure 5: Information represented by means of a class diagram and a data fl ow diagram
for the sentence, “Patient is assigned to Room. Room belongs to Ward.”

176 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

concept and association is ascribed to the aspect (classes, relationships, processes, states,
etc.) of the real world to which it refers. For this purpose, an interpretation procedure has to
be applied to the GCM. The interpretation procedure can be used to assign an interpretation,
that is, a well-defi ned meaning or semantics, to all the elements recorded in the GCM. The
interpretation procedure is based on a requirements representation formalism proposed by
Davis, Jordan and Nakajima (1997). This formalism, termed “Canonical Model”, provides
a set of building blocks (called “elements” and “links”) that can be used to represent the
information contained in a wide range of conceptual models. This means that it can be used
as a lingua franca, which averts having to deal with each conceptual model separately.

From the Canonical Model, which was profoundly restructured to meet the objectives
of our research, we have been able to defi ne a set of tables of interpretation that operate on
the information gathered in the concept map (Dieste, 2003). An example of these tables is
shown in Table 4, which states all the possible combinations among elements and links.
There are other additional tables that are used to consider propositions (Dieste, 2003), but
are not included here for reasons of space.

The interpretation tables are used according to a set of interpretation rules, which are
completely formalized in an algorithm and are highly independent of the analyst who is
doing the interpreting. However, it is not always possible to achieve full independence, and
the analyst should decide, depending on his/her knowledge of the GCM, which particular
interpretation is the best suited. This happens when two or more elements of the Canonical
Model can be assigned to any given GCM element, where the ambiguity cannot be eliminated
algorithmically. After interpretation, the GCM is called the Requirements Canonical Model
(RCM), as the GCM can now be read unambiguously, as a description of what should be
future software system operation. An example is given in Table 5.

Having removed the ambiguity of the concept map, this has a well-defi ned meaning;
that is, each concept and association can be read as a constructor (classes, relationships,
processes, states, etc.) of one or more conceptual models. As each concept and association
can be understood as constructor of one or more conceptual models, the concept map and the
conceptual models can be directly compared, which means that the correspondence between
the PM and CM sets is established. This many-to-many correspondence, viewed from the
CM set side, indicates which problem domain aspects refl ected in the concept map each
conceptual model is capable of representing. The number of these aspects can be considered
as a measure of the suitability of the conceptual models to problems insofar as it refers to
the expressiveness, for a given problem P, of a set CM of conceptual models.

This number, which has been called fi tness, is defi ned as the ratio between the proposi-
tions that a given conceptual model can represent and the total number of RCM propositions.
A series of identifi cation tables are used to identify how many RCM propositions a given
conceptual model can represent. The identifi cation tables are complementary to Table 4, as
they identify which conceptual models can express each element-link-element combina-
tion in Table 4. By way of an example, Table 6 shows the identifi cation table for the class
diagram, although there are additional tables, approximately three for each conceptual
model (Dieste, 2003).

The identifi cation tables can relate each CRM proposition to the conceptual models
that can express this proposition. Once all the propositions have been considered, fi tness is
calculated as the weighted sum of the propositions each conceptual model can express. For
example, Table 7 shows the fi tness calculation for the most popular conceptual models, such

Correspondence between Development Methods and Problem Domains 177

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

en
tit

y
[r

ep
l]

en
tit

y
[n

ot
re

pl
]

pr
oc

es
s

pr
ed

ic
at

e
tra

ns
iti

on
m

es
sa

ge
co

ns
tra

in
t

va
lu

e
st

at
es

pa
ce

E
n

t i
t y

[r

ep
l]

sp
ec

su
bs

po
f

re
l

ac
tiv

at
e

e
n

t
i

t
y

[n
ot

re
pl

]
sp

ec
po

f
re

l
be

l
ac

tiv
at

e

sp
ec

po
f

re
l

ac
tiv

at
e

Pr
oc

es
s

po
f

se
nd

s
re

ce
iv

es

po
f

se
nd

s
re

ce
iv

es
- a

ct
iv

at
e

sp
ec

po
f

ac
tiv

at
e

Pr
ed

ic
at

e
op

er
an

d
op

er
an

d
- s

im
ul

at
e

op
er

an
d

Tr
an

si
tio

n
st

im
ul

us
re

sp
on

se
st

im
ul

us
re

sp
on

se
st

im
ul

us
re

sp
on

se
st

im
ul

us
re

sp
on

se
st

im
ul

us
re

sp
on

se

M
es

sa
ge

- s
en

ds
- r

ec
ei

ve
s

- s
en

ds
- r

ec
ei

ve
s

- s
en

ds
- r

ec
ei

ve
s

- o
pe

ra
nd

- s
tim

ul
us

- r
es

po
ns

e
 p

of

C
on

st
ra

in
t

- o
pe

ra
nd

- o
pe

ra
nd

- p
of

- o
pe

ra
nd

- s
tim

ul
us

- r
es

po
ns

e
- o

pe
ra

nd
op

er
an

d

Va
lu

e
po

f
po

f
af

fe
ct

- s
en

ds
-r

ec
ei

ve
s

po
f

- o
pe

ra
nd

- s
tim

ul
us

- r
es

po
ns

e
- o

pe
ra

nd
- o

pe
ra

nd
sp

ec
po

f

St
at

es
pa

ce
po

f
po

f
- s

en
ds

- r
ec

ei
ve

s
po

f

- o
pe

ra
nd

- s
tim

ul
us

- r
es

po
ns

e
- o

pe
ra

nd
- o

pe
ra

nd
hv

al
Po

f

Table 4: Possible combinations among elements and links when applying the interpretation
procedure (This table is symetrical.)

178 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

as the data fl ow diagram (DFD), the entity-relationship diagram (ER), the class diagram
(CD), the state transition diagram (STD), the statechart (SCT) and use cases (UC).

Table 7 shows that the best-suited conceptual model is the class diagram, as its fi tness
is greater than all the other conceptual models (or, at least, of all the ones that have been
considered in the calculation). The fi tness value of the class diagram is 0.71, which means
that it can express 71% of all the RCM propositions.

Determining Method and Technique Fitness
As mentioned above, different methods and techniques employ different conceptual

models, such as data fl ow diagrams, entity-relationship diagrams, use cases, state transition
diagrams, etc. This means that, once we have determined the fi tness of a model, this fi tness
can be extrapolated to the methods and techniques that use this model. For example, after
determining the fi tness of a data fl ow diagram, we can consider that all the methods and tech-
niques that use this model, that is, all the structured methods and techniques, will be equally
fi t. The same could be said for the other models, such as use cases or state transition diagrams
with respect to object-oriented and real-time methods and techniques, respectively.

But the situation is not as simple as this, because most methods and techniques use
more than one conceptual model, with the aim of expressing different viewpoints about the
problem domain. Accordingly, for example, the structured methods and techniques use, for
example, DFD and ER, whereas the object-oriented methods and techniques use, among
others, CD and UC. This means that we will have to consider all the conceptual models used
jointly rather than each one separately to determine the fi tness of a method or technique.

Table 5: Requirements Canonical Model

Correspondence between Development Methods and Problem Domains 179

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Apart from the fi tness of the individual models, Table 7 can be slightly modifi ed to
calculate the fi tness of the methods and techniques considered as sets of models. For this
purpose, we use the same conceptual model identifi cation tables as described. However, the
fi tness calculation for methods and techniques differs in that the weighted sum is calculated
considering all the conceptual models used by a given method or technique. For example,
Table 8 shows the fi tness calculation for two generic, structured and object-oriented methods,
characterized by the DFD-ER and CD-CU models, respectively.

Table 8 indicates that the best-suited method, with a fi tness of 0.71, is the object-oriented
method. This matches the results of Table 7, where the best-suited conceptual model was the
class diagram. Note, however, that this will not necessarily be true in every case.

Table 6: Identifi cation table for the class diagram

en
tit

y
[r

ep
l]

en
tit

y
[n

ot
re

pl
]

pr
oc

es
s

pr
ed

i-
ca

te
tra

ns
i-

tio
n

m
es

sa
ge

co
ns

tra
in

t
va

lu
e

st
at

es
pa

ce

En
tit

y
[r

ep
l]

sp
ec

su
bs

po
f

re
l

en
tit

y
[n

ot
re

pl
]

sp
ec

po
f

re
l

be
l

sp
ec

po
f

re
l

Pr
oc

es
s

po
f

po
f

Pr
ed

ic
at

e

Tr
an

si
tio

n

M
es

sa
ge

- r
ec

ei
ve

s
- r

ec
ei

ve
s

C
on

st
ra

in
t

Va
lu

e
po

f
po

f

St
at

es
pa

ce
po

f
po

f

180 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Table 7: Determination of conceptual model fi tness

Models DFD ER CD DTE STC UC

Entity[repl]: Rooms X X X X

Entity[repl]: Wards X X X X

Entity[repl]: Complaints X X X X

Entity[repl]: Patients X X X X

Entity[repl]: Doctors_1 X X X X

Entity[repl]: Doctors_2 X X X X

Entity[repl]: Doctors X X X X

Entity[repl]: Waiting list Subs:
subs

Entity[repl]:
Patient

X

Entity[repl]: Emergency dept. Subs:
subs

Entity[repl]:
Patients

X

Entity[repl]: Doctors_2 Subs:
subs

Entity[repl]:
Doctors_1

X

Entity[repl]: Emergency doc-
tors

Subs:
subs

Entity[repl]:
Doctors_1

X

Entity[notrepl]: Complaint Bel: bel Entity[repl]:
Complaints

Entity[notrepl]: Room Bel: bel Entity[repl]:
Rooms

Entity[notrepl]: Patient_1 Bel: bel Entity[repl]:
Waiting list

Entity[notrepl]: Patient_2 Bel: bel Entity[repl]:
Emergency dept.

Entity[notrepl]: Ward Bel: bel Entity[repl]:
Wards

Entity[notrepl]: Doctor_1 Bel: bel Entity[repl]:
Doctors

Entity[notrepl]: Doctor_2 Bel: bel Entity[repl]:
Emergency
doctors

p1 Entity[notrepl]: Hospital 123 Rel:
admits

Entity[repl]:
Patients

X X

p2 Entity[repl]: Doctors_2 Rel: are
special-
ized in

Entity[notrepl]:
Complaint

X X

p3 Entity[notrepl]: Patient_1 Rel:
suffers

Entity[notrepl]:
Complaint

X X

p4 Entity[notrepl]: Patient_1 Rel: is
as-
signed

Entity[notrepl]:
Room

X X

p5 Entity[notrepl]: Ward -Pof:
has

Entity[repl]:
Rooms

X

p6 Entity[notrepl]: Ward Rel: is
as-
signed
to

Entity[notrepl]:
Complaint

X X

Correspondence between Development Methods and Problem Domains 181

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Finally, it should be mentioned that it is possible, although not strictly necessary from
the viewpoint of method and technique fi tness calculation, to derive the conceptual models
(such as the class diagram or data fl ow diagram) from the information contained in the GCM.
This derivation is a fully deterministic task, because the RCM has a well-defi ned meaning
in terms of constructors like classes, processes, states, etc., which are the same constructors
as used by the conceptual models.

A derivation procedure based on the use of a set of derivation tables and rules has
been defi ned to get the conceptual models used by the different development methods and
techniques. There are as many tables as there are possible target conceptual models (Dieste,
2003). Each derivation table contains all the possible combinations of Canonical Model ele-
ments that can be expressed in a given conceptual model, along with the expression of this
combination in the particular format used by the conceptual model in question (graphs, text,
tables, etc.). These tables and rules can be used to get fragments of the desired conceptual
model from the propositions it expresses. For example, Table 9 shows a fragment of the
derivation table for the class diagram.

For example, from the proposition Entity[notrepl]: Hospital 123 Rel: admits Entity[repl]:
Patients, we can get the fragment shown in Table 10, as the derivation table contains an
entry Entity[repl] Rel Entity[repl]”.

The different fragments can then be assembled, unambiguously, to get the fi nal version
of the desired conceptual model. The diagram output for the case examined in the example
given in Table 9 is shown in Figure 6.

The diagram shown in Figure 6 can be later modifi ed to improve or add to diagram
aspects and make the resultant class diagram clearer and simpler.

p7 Entity[notrepl]: Doctor_1 Rel: is
refer-
ence
physi-
cian of

Entity[notrepl]:
Patient_1

X X

p8 Entity[notrepl]: Doctor_2 Rel:
treats in
emer-
gency
dept.

Entity[notrepl]:
Patient_2

X X

p9 Entity[notrepl]: Doctor_2 Rel: is
refer-
ence
physi-
cian of

Entity[notrepl]:
Patient_2

X X

P10 Entity[notrepl]: Patient_2 Rel: is
as-
signed

Entity[notrepl]:
Room

X X

P11 Entity[notrepl]: Patient_2 Rel:
suffers

Entity[notrepl]:
Complaint

X X

P12-1 Constraint: no later than Oper-
and:

P10

P12-2 Constraint: no later than Oper-
and:

Value: 3 hours

Fitness .23 .55 .71 .0 .0 .23

Table 7: Determination of conceptual model fi tness (continued)

182 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Table 8: Determination of method and technique fi tness

MT
Models

Structured Object Oriented

DFD ER CD UC

Entity[repl]: Rooms X X X X

Entity[repl]: Wards X X X X

Entity[repl]: Complaints X X X X

Entity[repl]: Patients X X X X

Entity[repl]: Doctors_1 X X X X

Entity[repl]: Doctors_2 X X X X

Entity[repl]: Doctors X X X X

Entity[repl]:
Waiting list

Subs: subs Entity[repl]:
Patient

X

Entity[repl]:
Emergency dept.

Subs: subs Entity[repl]:
Patients

X

Entity[repl]:
Doctors_2

Subs: subs Entity[repl]:
Doctors_1

X

Entity[repl]:
Emergency
doctors

Subs: subs Entity[repl]:
Doctors_1

X

Entity[notrepl]:
Complaint

Bel: bel Entity[repl]:
Complaints

Entity[notrepl]:
Room

Bel: bel Entity[repl]:
Rooms

Entity[notrepl]:
Patient_1

Bel: bel Entity[repl]:
Waiting list

Entity[notrepl]:
Patient_2

Bel: bel Entity[repl]:
Emergency
dept.

Entity[notrepl]:
Ward

Bel: bel Entity[repl]:
Wards

Entity[notrepl]:
Doctor_1

Bel: bel Entity[repl]:
Doctors

Entity[notrepl]:
Doctor_2

Bel: bel Entity[repl]:
Emergency
doctors

p1 Entity[notrepl]:
Hospital 123

Rel: admits Entity[repl]:
Patients

X X

p2 Entity[repl]:
Doctors_2

Rel: are spe-
cialized in

Entity[notrepl]:
Complaint

X X

p3 Entity[notrepl]:
Patient_1

Rel: suffers Entity[notrepl]:
Complaint

X X

p4 Entity[notrepl]:
Patient_1

Rel: is as-
signed

Entity[notrepl]:
Room

X X

p5 Entity[notrepl]:
Ward

-Pof: has Entity[repl]:
Rooms

X

p6 Entity[notrepl]:
Ward

Rel: is as-
signed to

Entity[notrepl]:
Complaint

X X

p7 Entity[notrepl]:
Doctor_1

Rel: is refer-
ence physi-
cian of

Entity[notrepl]:
Patient_1

X X

Correspondence between Development Methods and Problem Domains 183

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Table 9: Derivation table for the class diagram

p8 Entity[notrepl]:
Doctor_2

Rel: treats in
emergency
dept.

Entity[notrepl]:
Patient_2

X X

p9 Entity[notrepl]:
Doctor_2

Rel: is refer-
ence physi-
cian of

Entity[notrepl]:
Patient_2

X X

P10 Entity[notrepl]:
Patient_2

Rel: is as-
signed

Entity[notrepl]:
Room

X X

P11 Entity[notrepl]:
Patient_2

Rel: suffers Entity[notrepl]:
Complaint

X X

P12-1 Constraint: no
later than

Operand: P10

P12-2 Constraint: no
later than

Operand: Value: 3 hours

Sum
Fitness

17 22

.55 .71

Table 8: Determination of method and technique fi tness (continued)

184 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Table 10: Derivation of a fragment of the SCM from the proposition Entity[notrepl]: Hospital
123 Rel: admits Entity[repl]: Patients. Note that the class diagram Derivation Rule (3) has
been applied, considering Entity[notrepl]: Hospital 123 as Entity[repl]: Hospital 123

FUTURE TRENDS
The proposed method paves the way for achieving a range of results. The most im-

mediate is unquestionably the application of POAM to method and technique selection and
adaptation to specifi c development projects. As indicated, this is possible because POAM
provides a quantitative assessment of the fi tness of the conceptual models and methods and
techniques. However, the proposed fi tness metric is far from perfect. On the contrary, this
metric only refers to quasi-syntactic aspects of the model (how much information about the
problem the model represents), and not to other quality criteria like functionality, maintain-
ability, portability, reliability, effi ciency and usability (ISO, 1999). Further investigation of
conceptual model quality and their correspondence with particular problems is, therefore,
required.

Additionally, given POAM’s capability for deriving the conceptual models used by
the methods and techniques, a second line of research would be to integrate POAM into
the software development process as a previous step to the use of methods and techniques
(Dieste et al., 2003). This line of research is particularly interesting because the use of
POAM in the early stages of the development process separates analysis from later design,
permitting greater freedom of choice of methods and techniques and, even, thanks to the
ease with which the conceptual models are derived, changes of method or technique during
the software development process.

CONCLUSIONS
Most software development techniques need to be adapted before they can be used

in a particular software development project. This is because the methods and techniques
can be applied to an indeterminate series of paradigmatic problems, but, as each problem
moves further away from the ideal, their effectiveness falls.

Although method and technique adaptation is a recurrent theme in the literature, no
papers that propose any sort of criterion or metric to assess method and technique fi tness for
a given problem have been published. Therefore, in this chapter, we have proposed a method
that can be used to calculate method and technique fi tness for specifi c problems

To calculate method and technique fi tness, it is necessary to identify what makes a
method and technique specifi cally oriented to a given class of problems. One of the reasons

Correspondence between Development Methods and Problem Domains 185

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

for this bias is the use, by the methods and techniques, of conceptual models. Because of their
particular representation capabilities, conceptual models limit the problem domain aspects
that a method and technique is capable of considering. The result is method and technique
specifi city for given problem types, particularly for the ones that have characteristics that can
be adequately represented in the conceptual models proper to each method and technique.
As it is the conceptual models that produce method and technique specifi city, it is suffi cient
to determine the fi tness of one or several conceptual models of a problem to determine the
fi tness of the methods and techniques.

The method proposed (POAM) can calculate the fi tness of the conceptual models
for particular problems. For this purpose, it uses a set of representation formalisms, called
together generic conceptual model, which can represent the problem domain information
without a previous categorization of the information on the basis of the standard concepts
of conceptual models, like classes, objects, relationships process or states.

The generic conceptual model can, therefore, record the same information as a vari-
ety of conceptual models. This means that, instead of comparing conceptual models and
problems to get a measure of fi tness, it is possible to compare conceptual models with a
representation of the problem recorded in the generic conceptual model. This comparison
is made using a series of procedures that yield:

• A measure, termed fi tness, which determines how suited each conceptual model is to
the problem under analysis.

• If appropriate, the conceptual models required to pursue the remainder of the software
development process.

The proposed method suggests a line of research that could lead to promising results.
Specifi cally, a fi tness measure of the conceptual models can improve method and technique
adaptation procedures. Also, as POAM is capable of deriving the conceptual models used
by the methods and techniques, the proposed method can be used as a prior step in the ap-
plication of methods and techniques in software development projects.

REFERENCES
Brinkkemper, S., & Joosten, S. (1996). Special Issue on Method Engineering and Meta-

Modeling. Information and Software Technology, 38(4).
Bubenko, J.A. (1986). Information system methodologies - a research view. In T.W. Olle,

H.G. Sol & A.A. Verrijn Stuart (Eds.). Information System Design Methodologies:
Improving the practice (pp. 289-318). North-Holland.

Ceri, S. (Ed.). (1983). Methodology and tools for database design. North Holland.
Davis, A.M. (1993). Software requirements: Objects, functions and states. Prentice-Hall

International.
Davis, A.M., Jordan, K., & Nakajima, T. (1997). Elements underlying the specifi cation of

requirements. Annals of Software Engineering, 3, 63-100.
Dieste, O. (2003). POAM: Un método de análisis orientado a la necesidad. Unpublished POAM: Un método de análisis orientado a la necesidad. Unpublished POAM: Un método de análisis orientado a la necesidad

doctoral dissertation. Departamento de Informática, Universidad de Castilla-La
Mancha.

186 Dieste, Genero, Juristo and Moreno

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Dieste, O., Genero, M., Juristo, N., Maté, J.L., & Moreno, A.M. (2003). A conceptual model
completely independent of the implementation paradigm. Journal of Systems and
Software (in press).

Dieste, O., Lopez, M., & Moreno, A.M. (1999). On the capability of analysis techniques in
requirements engineering. 4th CAiSE/IFIP8.1 International Workshop on Evaluation
of Modeling Methods in Systems Analysis and Design. Heidelberg, Germany.

Firth, R., Wood, W., Pethia, R., Roberts Gold, L., Mosley, V., & Dolce, T. (1987). A classi-
fi cation scheme for software development methods. (CMU/SEI-87-TR-041). Software
Engineering Institute, Carnegie Mellon University, Pennsylvania, USA.

Fowler, M., & Kobryn, C. (2002). Customizing UML for fun and profi t. Software Develop-
ment, 10(7), July.

Fowler, M., & Scott, K. (1999). UML distilled: a Brief guide to the standard object modeling
language (2nd Edition)nd Edition)nd . Addison-Wesley.

Glass, R.L., & Vessey, I. (1995). Contemporary application-domain taxonomies. IEEE
Software 12(4), 63-76.

Hardy, C., Thompson, J., & Edwards, H. (1995). The use, limitations and customization of
structured systems development methods in the United Kingdom. Information and
Software Technology, 37(9), 467-477.

ter Hofstede, A.H.M., & Verhoef, T.F. (1997). On the feasibility of situational method en-
gineering. Information Systems, 22(6/7), 401-422.

ISO. (1999). ISO/IEC 9126 - Information Technology - Software product evaluation – Qual-
ity characteristics and guidelines for their use.

Kirikova, M., & Bubenko, J.A. (1994). Enterprise modelling: Improving the quality of
requirements specifi cation. Information systems research seminar in Scandinavia,
IRIS-17, Oulu, Finland.

Mayr, H.C., & Kop, C. (1998). Conceptual predesign - Bridging the gap between requirements
and conceptual design. Proceedings of the International Conference on Requirements
Engineering, IEEE Computer Society Press, Engineering, IEEE Computer Society Press, Engineering (pp. 90-98).

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). TELOS: Representing
knowledge about information systems. ACM Transactions on Offi ce Information
Systems, 8(4), 325-362.

Nissen, H.W., Jeusfeld, M.A., Jarke, M., Zemanek, G.V., & Huber, H. (1996). Managing
multiple requirements perspectives with metamodels. IEEE Software, 13(2), 37-48.

Novak, D., & Gowin, D.B. (1984). Learning to learn. Cambridge University Press.
Russo, N., Wynekoop, J., & Walz, D. (1995). The use and adaptation of system develop-

ment methodologies. Proceedings of International Conference of IRMA (International
Resources Management Association, Atlanta, Georgia, USA.

van Lamsweerde, A., Dardenne, A., Delcourt, B., & Dubisy, F. (1991). The KAOS Project:
Knowledge acquisition in automated specifi cation of software. Proceedings AAAI
Spring Symposium Series. University of Stanford.

Webster, D.E. (1988). Mapping the design information representation terrain. IEEE Com-
puter, 21(12), 8-23.

Woods, W. (1975). What’s in a link: Foundations for semantic networks. In D.G. Bobrow
& A. Collins (Eds.). Representation and understanding: Studies in cognitive science
(pp. 35-82). Academic Press.

Correspondence between Development Methods and Problem Domains 187

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Yu, E. (1995). Modelling strategic relationships for process reengineering. PhD Dissertation,
Dept. of Computer Science, Univ. of TorontoZave, P. (1990). A comparison of the
major approaches to software specifi cation and design. In R.H. Thayer & M. Dorf-
man (Eds.). System and software requirements engineering (pp. 197-199). Computer System and software requirements engineering (pp. 197-199). Computer System and software requirements engineering
Society Press.

188 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter X

Toward an Extended
Framework for

Human Factors Research
on Data Modeling

Heikki Topi, Bentley College, USA

V. Ramesh, Indiana University, USA

ABSTRACT
This study reviews and synthesizes over 15 years of research on human factors issues in
conceptual data modeling. In addition to analyzing the variables used in earlier studies and
summarizing the results of this stream of research, we propose a new framework to help
with future efforts in this area. We also identify several key areas for future research and
highlight the importance of building a strong theoretical foundation and using it to guide
future empirical studies. It is our hope that this chapter allows both scholars and practi-
tioners to utilize the results of existing research better and encourages continued work on
conceptual data modeling.

INTRODUCTION
Conceptual data modeling continues to be an integral part of the foundation on which

information systems are built. Depending on the development methodologies that are used
for a particular project, the terms and methods used for conceptual data modeling vary, but
in practice, a clear majority of methodologies used for systems development include a set of
tools and methods for modeling data at the conceptual level. Therefore, it is not surprising
that research in IS and its reference disciplines has shown a signifi cant interest in various
aspects of data modeling for the past 20 years. The focus of this chapter is on research that

Toward an Extended Framework for Human Factors Research on Data Modeling 189

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

examines the usability of various conceptual data modeling approaches, that is, research
that investigates human factors issues in conceptual data modeling. We review and analyze
this literature and suggest several new directions for further research.

BACKGROUND
The concept of data modeling has been used with a variety of different meanings data modeling has been used with a variety of different meanings data modeling

within various areas of study and practice. However, within the organizational context the
core idea underlying all the defi nitions is the same: A data model is used for describing
entities1 and their relationships within a real world domain. For example, McFadden, Hof-
fer, and Prescott (1999) defi ne a data model as “an abstract representation of the data about
entities, events, activities, and their associations within an organization”. A data model is
an abstraction and a simplifi cation of the domain it describes and thus, it always represents
a limited part of reality.

The main focus of this chapter, conceptual data modeling, requires further clarifi ca-conceptual data modeling, requires further clarifi ca-conceptual
tion. Based on the ANSI/SPARC defi nition, a conceptual data model is any model that is
independent of the underlying hardware and software. This means that using this defi nition,
models created using formalisms ranging from the relational model to the semantically rich
variants (Teorey, Yang & Fry, 1986) of Entity-Relationship modeling (Chen, 1976; Hull &
King, 1987) can be considered to be at the conceptual level. A more restrictive defi nition
of a conceptual model can be found in Batra and Davis (1992). They defi ne a conceptual
model as one that is capable of capturing the structure of the database along with the se-
mantic constraints into a model that is easy to understand, does not contain implementation
details, and can be used to communicate with users. A key criterion in the above defi nition
is the independence of modeling from the implementation technology. This means that in
order to be categorized as a conceptual model the representation must not be dependent on
the characteristics of the database technologies available (e.g., relational, object-oriented,
object-relational, network, or hierarchical).

We believe that both of the defi nitions presented above are, however, somewhat mis-
leading because a true conceptual data model should capture the essential data characteristics
of the domain of interest, and not necessarily the structure of the database. Thus, we defi ne
a conceptual data model as a set of constructs that can be used to create an abstraction of
reality, that is, a representation capable of capturing the data-oriented (as opposed to pro-
cess-oriented) aspects of a domain of interest in a manner that is unambiguous and easy to
understand for analysts, designers, and users alike. Note that this defi nition does not have any
references to a database structure. This is because we believe that not everything captured
in a representation created using a conceptual data model will (or needs to) be refl ected in
a database or the eventual system being developed.

Based on the above defi nition of conceptual data modeling, one can synthesize at least
fi ve different uses for conceptual data models (Batra, Hoffer & Bostrom, 1990; Cambell,
1992; Juhn & Naumann, 1985; Kung & Solvberg, 1986): 1) a communication tool between
analysts and users for the discovery (elicitation and representation) and validation stages
of the systems analysis process, 2) a mechanism that helps analysts understand the domain
of interest, 3) a formal conceptual foundation for organizational information systems at
various levels (a common accepted model of reality and a communication tool between IS
professionals, e.g., analysts and developers), 4) a foundation for applications developed by

190 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

end users, and 5) an essential part of the system documentation for the maintenance of the
system.

The main focus of this chapter is to examine research on the human factors issues
in data modeling, that is, research that employs social science methods such as laboratory
experiments, observations, and interviews to evaluate and improve the usability of the sys-
tems. Batra and Srinivasan defi ne usability as “the ability of the user to represent a problem
in a computing environment and effectively work with that representation” (1992, p. 395).
Thus, two important research questions of human factors research on data modeling have
traditionally been as follows: 1) How do the characteristics of the available tools affect us-
ers’ ability to succeed in their tasks (i.e., what is the level of usability of the tools?), and 2)
how satisfi ed are the users with the tools?

REVIEW OF PRIOR RESEARCH
In this section, we review the previous human factors research on data modeling. This

review is based on a careful analysis of existing studies published in academic journals or in
the Proceedings of the ICIS conference2 that have empirically evaluated some aspect of the
usability of conceptual data modeling tools and methods3. After a comprehensive search, we
identifi ed 31 articles published after (and including) Brosey and Shneiderman’s early work
in 1978 (Brosey & Shneiderman, 1978). A summary table of these studies is presented in
Appendix A. The table includes a description of the independent variables (IV), dependent
variables (DV), research tasks, and the most important results.

First, we will discuss the typical research variables used in these studies, and then,
review the most important empirical fi ndings.

Figure 1: Widely used framework for human factors research on data modeling (see, for
example, Batra et al., 1990)

Toward an Extended Framework for Human Factors Research on Data Modeling 191

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Variables of Interest in Empirical Studies
Research framework. Figure 1 includes a schematic representation of the research

framework that has been used either explicitly (as by Batra et al., 1990) or implicitly in many
of the earlier studies. Human refers to the individual level factors related to the character-
istics of the individuals who perform the data modeling tasks, Data Model is used in this
context to describe the differences between the data modeling formalisms, and Task refers Task refers Task
to the characteristics of the tasks of interest related to data models, such as model creation,
comprehension, or validation. The model indicates a reciprocal relationship between Hu-
man, Data Model, and Task, which all, in turn, have an impact on the quality of the result-
ing data model, that is, (human) Performance in the data modeling task. Variables in the
Human, Data Model, and Task categories have been used in earlier studies as independent
and control variables, as indicated in the discussion below, and Performance is a natural
dependent variable in the studies.

Independent variables. The most frequently used independent variable in the earlier
studies has been the data modeling approach or data model,data model,data model as it is called by, for example,
Batra and Davis (1992) and Navathe (1992) and in the research framework in Figure 1.
In early research, Brosey and Shneiderman (1978) compared hierarchical and relational
data models, whereas several later studies have compared different types of semantic and
relational data models (Amer, 1993; Batra & Antony, 1994; Batra et al., 1990; Jarvenpaa
& Machesky, 1989; Juhn & Naumann, 1985; Liao & Palvia, 2000; Sinha & Vessey, 1999)
and/or two different semantic data models (Kim & March, 1995; Lee & Choi, 1998; Liao
& Palvia, 2000; Nordbotten & Crosby, 1999; Palvia, Liao & To, 1992). Several of the most
recent studies have compared semantic data models to object-oriented data models (Bock
& Ryan, 1993; Hardgrave & Dalal, 1995; Lee & Choi, 1998; Liao & Palvia, 2000; Palvia et
al., 1992; Shoval & Frumermann, 1994; Shoval & Shiran, 1997; Sinha & Vessey, 1999).

The next category of independent variables consists of user characteristics (Human (Human (
in the research framework in Figure 1). The most commonly used independent variable is
experience: The level of general MIS or programming experience was used as an independent
variable in studies by Brosey and Shneiderman (1978) and Hoffer (1982), whereas Batra
and Davis (1992), Weber (1996), and Lee and Choi (1998) analyzed the differences between
subjects with various levels of data modeling experience. Ramesh and Browne (1999) dif-
ferentiated between “database-knowledgeable” and “database novice” based on the subjects’
understanding of basic ER concepts. Agarwal, Sinha, and Tanniru (1996) investigated the
impact of the type of design experience on modelers’ ability to use different formalisms for
different tasks. In addition to programming expertise, Hoffer (1982) studied the effects of
cognitive style, another category of individual differences. Finally, Siau, Wand, and Ben-
basat (1995) and Burton-Jones and Weber (1999) have explored the effects of the subjects’
familiarity with the problem domain or the problem domain expertise.

A set of task characteristics (Task in the research framework in Figure 1) has also been
used as an independent variable in the studies: Brosey and Shneiderman (1978) manipulated
the task type (comprehension, problem solving, memorization), as did Batra and Antony
(2001) (task’s compatibility with a support tool). Hoffer (1982) varied the description of
the situation on which the data model was based so that the situation was either related to
a specifi c task or to the entire organization. Task complexity was used as an independent
variable in Shoval and Even-Chaime (1987), Hardgrave and Dalal (1995), Weber (1996),

192 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

and Liao and Palvia (2000). Jarvenpaa and Machesky (1989) investigated the effects of
learning by using a within-subjects design and administering four data modeling tasks to
each subject.

Dependent variables. The dependent variables can be divided into two broad catego-
ries: user performance and user attitudes. As seen earlier, the two main research questions
of this area are related to modeling performance and user satisfaction, and, therefore, the
widespread use of these dependent variables is understandable.

Performance has been divided into three subcategories: model correctness (also referred
to as procedural or skill knowledge of the user by Jarvenpaa and Machesky (1989), measured
by the characteristics of the end result of the modeling process), time used to create the
solution, and declarative knowledge (understanding of the notation (Jarvenpaa & Machesky,
1989)). In most cases, the correctness of the model has been measured with the degree to
which it corresponds to a predefi ned “correct” solution. Batra et al. (1990) were the fi rst to
refi ne the concept of correctness by measuring the correctness of various facets or structural
elements of the model (entities, identifi ers, descriptors, categories, and fi ve different types
of relationships: unary, binary one-to-many (1:M), binary many-to-many (M:N), ternary
one-to-many-to-many (1:M:N), and ternary many-to-many-to-many (M:N:O)). The same
facet structure was used later by Bock and Ryan (1993), Shoval and Shiran (1997), Lee
and Choi (1998), and Liao and Palvia (2000). Kim and March (1995) divided the analysis
of model correctness into syntactic and semantic categories: Syntactic correctness refers
to users’ ability to understand and use the constructs of the modeling formalism, whereas
semantic correctness is the extent to which the data model corresponds to the underlying
semantics of the problem domain. Another widely used measure of performance has been
the time it takes to fi nish a modeling or model comprehension task (Hardgrave & Dalal,
1995; Jarvenpaa & Machesky, 1989; Lee & Choi, 1998; Liao & Palvia, 2000; Palvia et al.,
1992; Shoval & Even-Chaime, 1987; Shoval & Shiran, 1997).

The user attitudes measured within this area of research are confi dence (Hoffer, 1982),
preference to use a certain model (Shoval & Even-Chaime, 1987; Shoval & Shiran, 1997),
perceived value of the modeling formalism (Kim & March, 1995), and perceived ease-of-
use (Batra et al., 1990; Hardgrave & Dalal, 1995; Kim & March, 1995).

In a study in which the dependent variable does not belong to either one of the main
categories, data model characteristics were the main point of interest for Hoffer (1982). His
study focused on the nature of the data models which the subjects created when they were
able to freely choose the way to describe a structure of a database. The two characteristics
of the model in his study were “image architecture” and “image size”, that is, the modeling
approach chosen and the number of entities.

Identifi ed control variables. By investigating the nature of the explicitly identifi ed
control variables in previous research, it is possible to fi nd potential independent vari-
ables of interest for future research, as well as summarize the variables that have to be
controlled in future studies. User characteristics (Human (Human (in the framework in Figure 1)
is the fi rst category of specifi c control variables in the earlier studies. The most common
individual variable in the user characteristics category is experience. The most common
types of experience discussed in prior research are general work experience (Batra et al.,
1990; Batra & Kirs, 1993; Jarvenpaa & Machesky, 1989; Juhn & Naumann, 1985; Liao
& Palvia, 2000), general computer/IS experience (Batra et al., 1990; Batra & Kirs, 1993;
Jarvenpaa & Machesky, 1989; Juhn & Naumann, 1985; Liao & Palvia, 2000), and database
experience (Batra et al., 1990; Batra & Kirs, 1993; Jarvenpaa & Machesky, 1989; Juhn &

Toward an Extended Framework for Human Factors Research on Data Modeling 193

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Naumann, 1985; Liao & Palvia, 2000). Age (Liao & Palvia, 2000), education (Jarvenpaa &
Machesky, 1989; Liao & Palvia, 2000), intellectual ability (Juhn & Naumann, 1985), and
cognitive style measured with LSI (Jarvenpaa & Machesky, 1989) have been other types
of individual differences which have been controlled. In most studies, user characteristics
have been controlled by selecting subjects from a homogenous population and by random
assignment to experimental conditions.

Controlling for task characteristics (Task in the framework in Figure 1) by keeping
them the same across the treatments is a natural approach and not very interesting at the
category level. Jarvenpaa and Machesky (1989) and Batra and Kirs (1993) both list spe-
cifi c characteristics of the task which were kept constant; these were complexity, structure,
diffi culty, and time, which are all related to a more general concept of diffi culty. Kim and
March (1995) specifi cally mentioned task complexity and time as task characteristics that
were controlled. Training was also identifi ed as a signifi cant control variable by Batra and Training was also identifi ed as a signifi cant control variable by Batra and Training

Table 1: Variables identifi ed in human factors research on conceptual data modeling

Variable Type Variable Category Representative Examples

Independent variables Data modeling formalism
(Data Model)

User characteristics (Human)

Task characteristics (Task)

Hierarchical vs. relational
Relational vs. semantic
Semantic vs. semantic
Semantic vs. object-oriented

General MIS experience
 Programming experience
Data modeling experience
 Other modeling experience
 Cognitive style

Task type
Task complexity

Dependent variables Performance

User attitudes

Model correctness
(facets, syntactic vs. semantic)
Time
Knowledge of the formalism

Confi dence
Preference
Perceived value
Ease-of-use

Control variables User characteristics (Human)

Task characteristics

Work experience
General IS/computer experience
Database experience
Age
Education
Intellectual ability
Cognitive style

Complexity
Time
Structure
Diffi culty

194 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Kirs (1993) and Kim and March (1995); details controlled in these experiments include
trainer characteristics and instructional examples. Table 1 summarizes the variables used
in prior research.

Key Findings from Prior Studies
The results from the empirical studies reviewed can be categorized as follows: a)

Effects of data modeling formalism on user performance and attitudes, b) Effects of user
characteristics on user performance and attitudes, and c) Effects of task characteristics on
user performance and attitudes. Most of the studies have focused on the fi rst category. In
addition to the associations between research variables, we will review the results for various
task components (facets) and the main lessons from the studies with a process focus.

Effects of data modeling formalism on user performance and attitudes. The studies that
have investigated the effects of the data modeling formalism on performance and attitudes
can be divided into the following subcategories: a) those comparing a semantic model to
the relational model, b) those comparing two semantic models to each other, and c) those
comparing a semantic model with object-oriented models.

In the fi rst subcategory, the seven studies (Amer, 1993; Batra & Antony, 1994; Batra et
al., 1990; Jarvenpaa & Machesky, 1989; Juhn & Naumann, 1985; Liao & Palvia, 2000; Sinha
& Vessey, 1999) that have investigated the differences between the ER/EER and relational
modeling formalisms have all found support for the positive effect of the use of the ER/EER
model on one or several aspects of modeling performance. The studies provide strongest
support to ER/EER’s advantage in modeling binary 1:M and binary M:N relationships; four
of the studies (Amer, 1993; Batra et al., 1990; Liao & Palvia, 2000; Sinha & Vessey, 1999)
support this fi nding, whereas the other fi ndings related to the identifi cation of relationships
and cardinalities, faster learning, understanding the notation, modeling ternary 1:M:N and
unary relationships, and generalization modeling are all based on only one of the studies.
For the binary relationships, these results are in line with those of Cao, Nah, and Siau’s
(2000) meta-analysis, which included both modeling and query writing studies; our analy-
sis did not fi nd the same strong support for ER/EER’s advantage over relational model in
modeling ternary 1:M:N relationships as theirs did. The one study (Shoval & Even-Chaime,
1987) that focused on the relationship between the relational model and a non-ER semantic
model, NIAM, found the relational model to lead to better user performance and to require
less time. As to the effects of the modeling formalism choice between semantic and rela-
tional models and the user attitudes, the results are scarce and inconclusive: Jarvenpaa and
Machesky (1989) found that subjects perceived the ER/EER model to be easier to use than
the relational model, but Shoval and Even-Chaime (1987) found that the subjects preferred
the relational model over NIAM.

Six studies (Hardgrave & Dalal, 1995; Lee & Choi, 1998; Liao & Palvia, 2000; Shoval
& Frumermann, 1994; Shoval & Shiran, 1997; Sinha & Vessey, 1999) have investigated
the effects of the choice between object-oriented models (although not consistently the
same ones) and ER/EER. The lack of consistency between the studies makes it diffi cult to
draw any general conclusions, but the direction of the studies seems to suggest that using
the ER/EER model leads to better performance in modeling tasks. The studies together
indicate that the use of ER/EER has a positive effect on modeling performance in fi ve of
the modeling facets (unary 1:1, binary 1:1 and 1:M, and ternary 1:M:N, and M:N:O), but,
unfortunately, the fi ndings come from different studies that do not provide support for

Toward an Extended Framework for Human Factors Research on Data Modeling 195

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

each other’s fi ndings. The only result related to user attitudes in these studies was made by
Shoval and Shiran (1997), who found that ER/EER users’ quality perceptions were higher
than those of OO users.

Effects of user characteristics on performance and attitudes. Seven empirical studies
have signifi cant results regarding the effects of user characteristics on performance and at-
titudes, and all of them have focused on some type of task-related experience. The results
do not, unfortunately, build a highly consistent image because every study has investigated
a different aspect of experience. Therefore, the studies will be discussed here in chronologi-
cal order. Batra and Davis (1992) confi rmed that well-known process differences between
novices and experts could be observed also within this domain. Siau et al. (1995) found out
that domain familiarity did not have an impact on the choice between optional and manda-
tory relationships; subjects (experts) almost invariably chose to use an optional relationship
construct. According to Agarwal et al. (1996), subjects with experience in modeling with a
process focus are able to utilize this experience when they are modeling behavior but not
with data structures. Weber’s (1996) results in his experiment using a recall task suggest
that although NIAM experts’ ability to recall model elements was slightly better than that
of novices, their memory structures and recall strategies were the same. Lee and Choi’s
(1998) results regarding the differences between experienced ER modelers and novices are
somewhat diffi cult to interpret, but it appears that in most respects ER experience led to
higher performance with the other methods, too, although experienced modelers used more
time. In all cases but one (ORM), experienced ER modelers perceived the methods to be
easier to use than inexperienced modelers did. According to Ramesh and Browne (1999),
“database-naive” subjects were better able to express causal relationships than “database-
knowledgeable” subjects, and they attribute this to the inability of commonly used modeling
formalisms to support the expression of causal relationships. Finally, Burton-Jones and Weber
(1999) studied the effects of domain knowledge and ontological clarity of a representation
on the subjects’ ability to answer problem-solving questions. Their results provide limited
support to the claim that ontological clarity is particularly important in cases when domain
knowledge is low.

Effects of task characteristics on user performance and attitudes. None of the studies
have directly focused on the effects of task characteristics on the main dependent variables,
although four of them (Hardgrave & Dalal, 1995; Liao & Palvia, 2000; Shoval & Even-
Chaime, 1987; Weber, 1996) used task complexity as an independent variable and all of
them found a main effect for complexity on performance (in practice, this means that the
experimental manipulation worked). This is understandable because in most cases, the fo-
cus is on the moderating effects of task characteristics on the effects of other variables on
performance, particularly the model formalism and user characteristics.

Differences between facets. As discussed above, most of the studies have used some
version of the facet structure for analyzing user performance since Batra et al. (1990) origi-
nally presented it. Five of them have analyzed user performance in one or several of these
facets with measures that are similar to each other and give us an opportunity to review users’
relative performance with various facets. The performance data per facet from these studies
are included in Table 2; no aggregate data is presented here because it is not in all cases
clear whether or not the methods have been similar enough to justify the use of composite
measures. This data does, however, lead to the following observations: 1) Identifying and
modeling ternary relationships correctly is diffi cult for novice users, and even in the relatively
simple experimental tasks users’ average performance level is often below 50%. The range

196 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

of performance levels is, however, very large, varying from 8.3% for 1:M:N relationships
in Batra et al. (1990) to 94% for M:N:O relationships in Shoval and Shiran (1997). 2) Re-
sults are weak (below 70%) also for unary relationships, except with a semantic formalism
(ER/EER) in Bock and Ryan (1993) and Shoval and Shiran (1997). The range is large also
with this facet (from 40% to 96%). 3) With semantic and object-oriented modeling formal-
isms, users’ average performance in modeling the binary relationships is consistently at a
high level (above 80%), with the exception of binary M:N relationships in Liao and Palvia
(2000). 4) Modeling identifi ers, a seemingly simple task, appears to cause diffi culties with
all modeling formalisms, with typical performance levels around 70%.

Findings related to the data modeling process. Five of the studies included in this
review analyzed some aspect of the process that subjects followed while creating a data
model. As discussed earlier, Jarvenpaa and Machesky (1989) investigated whether the
subjects chose a top-down or a bottom-up approach when constructing data models and
whether the choice of the approach was dependent on the modeling formalism. They found
that users of the ER-based Logical Data Structure model were more likely to use a top-down
approach than the users of the relational model. Batra and Davis (1992) studied the protocol
differences between novices and experienced data modelers and found broad support for
several fi ndings from prior research regarding the differences between these two groups:
Experts had richer concept vocabulary and were better able to categorize constructs and
automate processes, whereas novices were more likely to make a range of modeling errors.
Batra and Sein (1994) analyzed at the individual level users’ ability to improve the quality
of their data modeling solutions based on feedback and found out that feedback can help
users avoid errors in modeling ternary relationships. Srinivasan and Te’eni (1995) focused
entirely on the results of the process analysis of a specifi c modeling behavior. Using verbal-
ized protocols, they analyzed the use of several heuristics at various levels of abstraction to
manage the complexity of the data modeling process. The most important results reported
in Srinivasan and Te’eni (1995) were that effi cient data modelers use specifi c heuristics to
reduce the complexity of the problem, test models at regular intervals, and make orderly

Table 2: User modeling performance by facet in empirical studies

Batra et al.,
1990

Batra & Kirs,
1993

Bock & Ryan,
1993

Shoval &
Shiran,
1997

Liao & Palvia,
2000

Rel. ER/
EER

Rel. ER/
EER

ER/
EER

OO ER/
EER

OO Rel. ER/
EER

OO

Entity 98.0 96.0 99.0 99.0

Identifi er 72.4 73.9 96.0 80.0 62.8 69.7 77.3

Descriptor 95.0 94.0

Category 92.0 82.0 99.0 99.0

Unary 68.3 55.2 96.0 64.0 88.0 70.0 59.9 40.0 50.0

Binary 1:M 54.4 84.9 50.6 81.2 89.0 88.0 83.0 89.0 54.2 83.8 73.9

Binary M:N 57.1 92.9 67.5 92.5 100.0 63.0 81.0 79.0 41.2 74.4 65.3

Ternary 1:M:N 8.3 41.3 46.9 60.0 47.0 44.0 85.0 68.0

Ternary M:N:O 33.3 45.2 40.6 45.6 79.0 72.0 94.0 76.0 35.4 57.5 47.7

Toward an Extended Framework for Human Factors Research on Data Modeling 197

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

transitions from one level of abstraction of problem representation to another. In general, the
study provides an important example of a research approach that makes it possible to evaluate
data modeling at a detailed level as a problem solving process. Building on an important line
of research, Batra and Antony (2001) investigated the effectiveness of a consulting system
that is designed to reduce data modeling errors and found out that individuals with a low
initial knowledge level benefi ted from the consulting system.

Effects of specifi c characteristics of conceptual modeling grammars. Several studies have
been conducted building on the foundation of Wand and Weber’s theoretical work (Wand,
Monarchi, Parsons & Woo, 1995; Weber, 1997) on the use of ontology as a conceptual basis
for constructing and evaluating conceptual modeling grammars. These theory-testing studies
have focused on specifi c characteristics of the grammars and their impact on user performance
in specifi c types of tasks. Weber (1996) utilized a strong theoretical foundation in cognitive
psychology and philosophy to evaluate whether or not humans tend to see entities and at-
tributes as distinct constructs, and his conclusion based on a memory recall experiment is
that these, indeed, are separate elements. In another study building on the same theoretical
foundation discussed already above in the context of domain familiarity, Burton-Jones and
Weber (1999) confi rmed their theory-based predictions that using relationships with attributes
would have a negative impact on problem-solving performance in unfamiliar domains, but
they also found out that this result did not hold in familiar domains. Finally, Bodart, Patel,
Sim, and Weber (2001) studied the use of optional properties (attributes and relationships)
in conceptual modeling. Their three-experiment study found that models with optional
properties serve well when the purpose is to help users gain a surface-level understanding,
but that optional properties should not be used if the users need a deep-level understanding.
Building on a different theoretical foundation, Siau, Wand, and Benbasat (1997) investigated
the effects of the use of structural constraints (such as explicit cardinality constraints); their
results reveal that modeling experts pay much more attention to the structural constraints
than to the surface semantics conveyed in textual descriptions.

Having reviewed the results of prior usability research on conceptual data modeling,
we continue by evaluating the implications of these results and suggesting several new
avenues for future research.

POTENTIAL FOR FUTURE RESEARCH
Given the maturity of data modeling in practice and the results summarized above, it

would be easy to conclude that further human factors research related to conceptual data
modeling may not add substantially to the existing body of knowledge. In the next section
we hope, however, to demonstrate that because it has focused on a relatively narrow part
of conceptual data modeling, prior research has left several potentially important questions
still unanswered.

Most of the empirical studies reported above that have investigated conceptual data
modeling from the human factors perspective are based on the same relatively simple model:
in a controlled laboratory study, subjects with only modest experience complete one or
several modeling tasks in which they create a graphical representation of an organizational
situation based on a narrative using one or several conceptual data modeling formalisms.
The results are typically evaluated by grading the models using a solution created by the
researcher as a baseline; results achieved with different formalisms are then compared to

198 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

each other with standard statistical techniques. This approach has defi nitely improved our
understanding of the factors that affect subjects’ ability to represent a case situation with
graphical tools, and a controlled experiment is a perfectly valid methodology for investigat-
ing specifi c aspects of a cognitively complex task such as conceptual data modeling. Future
research should, however, utilize the opportunities created by a richer set of background
theories and research methodologies.

 We present two key ideas that can help with future research efforts:

a) First, we note that because almost all of the research to date has focused on the techni-
cal characteristics of the modeling formalisms, we know very little about the effects
of users’ individual characteristics, task characteristics, or the interaction between
the modeling formalism, user, and task. Below, we discuss a new framework that we
hope will provide additional clarity to future research efforts.

b) Second, we observe that we do not have yet a good understanding of why certain
formalisms work well in some situations and not in others; the mechanisms mediat-
ing the relationships between the main research variables are not clear. We provide
several suggestions for research that can be used to strengthen our understanding in
this area.

An Expanded Framework for Human Factors Research in
Data Modeling

Our review of prior literature and additional conceptual analysis of this stream of
research leads us to believe that the traditional framework that has been used to guide hu-
man factors research on data modeling (see Figure 1) can be improved and clarifi ed. In
this section, we present and justify the suggested changes, which have been incorporated
into a new framework presented in Figure 2. We supplement the framework in Figure 2 by
using the fi ndings from the studies reviewed earlier as well as our theoretical understand-
ing of the domain. It is, however, worth noting that the theoretical basis for this expanded
framework as well as the Batra et al. (1990) framework lies in the classical general MIS
task-technology-human research framework, which, in turn, is a derivation of Leavitt’s
(1965) organizational system model.

This framework was developed independently from Wand and Weber’s general
framework for research on conceptual modeling (Wand & Weber, 2002), and its context and
intended uses are not as broad as those of Wand and Weber’s framework. Our framework is
specifi cally intended for guiding human factors/usability research on data modeling, whereas
the Wand and Weber framework provides a comprehensive overall model for conceptual
modeling research. For example, Wand and Weber include Social Agenda Factors as one
of the critical conceptual factors; we have not included it in our framework because of our
more narrow focus on usability. However, we fully acknowledge the potential importance
of Social Agenda Factors as a broader contextual factor. Our Human category corresponds
directly to Wand and Weber’s Individual Difference Factors, and our Task category is similar
to Wand and Weber’s Task Factors. Most notably, Wand and Weber elegantly separate re-
search issues related to Conceptual-Modeling Grammar and Conceptual-Modeling Method;
in our framework, these are included in the Data Modeling Formalism category. We strongly
encourage readers to consult Wand and Weber (2002) for a more elaborate categorization

Toward an Extended Framework for Human Factors Research on Data Modeling 199

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

of research issues related to conceptual modeling grammars and methods. In particular, we
feel that the two frameworks used in tandem can help foster productive research streams in
the data modeling arena for many years.

As we have seen in the review of prior literature and summary of the results above
and will discuss below, many of the relevant relationships are between specifi c components
of the framework elements (see also Table 1). Hence, it is important to elaborate on the
broad construct categories Task, Data Model, Human, and Performance. Task Complexity
and Task Type should be presented as separate concepts, because these dimensions of the
task are largely independent and their effects should be investigated separately from each
other. For example, it is understandably possible to have various levels of complexity for
comprehension, validation, and modeling tasks and both could be used separately as inde-
pendent variables in the same study at the same time. As to Human, we can differentiate
between multiple categories of individual characteristics which are independent from each
other. Underlying all other aspects of an individual’s performance are general individual
characteristics such as intelligence, cognitive style, and problem-solving approach, which
affect a particular individual’s performance in all cognitive tasks. The only data modeling
study so far that has explicitly used a variable from this category is Hoffer (1982). An indi-
vidual also has experience in a variety of areas, many of which are potentially relevant to
their performance in the task of interest (general problem-solving experience, programming
experience, general modeling experience, modeling experience with specifi c formalism(s),

Figure 2: Proposed framework for human factors research on data modeling

200 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

etc.). This category of variables has been utilized widely in earlier research, as discussed in
the review above (Agarwal et al., 1996; Batra & Srinivasan, 1992; Brosey & Shneiderman,
1978; Burton-Jones & Weber, 1999; Hoffer, 1982; Lee & Choi, 1998; Ramesh & Browne,
1999; Weber, 1996). Finally, an individual’s technical skills in the use of a specifi c data
modeling formalism should be conceptually separated as a factor affecting the user’s per-
formance. One of the reasons why it is essential to differentiate technical skills from other
aspects is that this is the only subcategory of individual differences in this framework that
can be affected by training (other factors that could be infl uenced by training include confi -training (other factors that could be infl uenced by training include confi -training
dence, self-effi cacy, task motivation, etc). Technical skills have been used as an independent
variable in several studies (Batra & Antony, 2001; Weber, 1996). In general, the division
of the framework elements into components forces us to specify the nature of the relation-
ships of interest at a signifi cantly more detailed level. This, in turn, will lead us closer to
true theoretical models at least in part based on applicable theories from relevant reference
disciplines, such as Anderson’s ACT theory with its variants (Anderson, 1993), which was
suggested as an important theoretical basis for research on information modeling (including
conceptual data modeling) by Siau (1999).

Second, the framework should incorporate two different types of dependent variables
to acknowledge the fact that we are not only interested in objective performance but also
users’ attitudes towards the tools, the tasks, and their own performance. The most often
used non-performance dependent variables are ease-of-use perceptions (Batra et al., 1990;
Hardgrave & Dalal, 1995; Kim & March, 1995; Lee & Choi, 1998) and modeling formal-
ism preference (Batra & Sein, 1994; Kim & March, 1995; Shoval & Even-Chaime, 1987;
Shoval & Shiran, 1997).

Third, the framework should acknowledge and explicitly incorporate the potentially
complex moderating effects of other variables on the relationship between the data modeling
formalism and user performance and attitudes. The direct effect of task complexity on the
dependent variables, particularly performance, is seldom the main point of interest; in most
cases, we are interested in the way different formalisms support users at various task com-
plexity levels. The same is true with task type: a relevant research question is the suitability
of various modeling formalisms for specifi c task types and thus, we should explicitly express
in our research model that task type moderates the relationship between the data modeling
formalism and the dependent variables. The best examples of this are the experiments by
Kim and March (1995), who studied the use of two formalisms for user (validation) and
analyst (modeling) tasks, and Lee and Choi (1998), who compared four different formalisms
in two task types. The commonly used analysis of performance by facets (Batra et al., 1990;
Bock & Ryan, 1993; Lee & Choi, 1998; Liao & Palvia, 2000; Shoval & Shiran, 1997) is, in
fact, a form of analysis of the moderating effects of task type, because modeling a specifi c
facet can be seen as a subtask. As discussed above in the summary of results, the facet being
modeled often moderates the impact of a specifi c modeling formalism on performance.

Finally, the research framework should explicitly acknowledge that various individual
characteristics have differential effects on user performance and attitudes and that many of
the effects of individual differences moderate the relationship between the data modeling
formalism and the dependent variables. In addition, some of the relationships between the
categories of individual characteristics affect each other in a signifi cant way: Task-related
experience affects an individual’s technical data modeling skills (in addition to training), and
the general individual differences (such as intelligence) moderate the relationship between
the training an individual receives and the individual’s skills.

Toward an Extended Framework for Human Factors Research on Data Modeling 201

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

We believe that the use of the framework in Figure 2 and any extensions of it (par-
ticularly when used together with Wand and Weber’s (2002) broader framework) would
provide future human factors research on conceptual data modeling a stronger foundation
and give the researchers an incentive to specify the relationships between the variables
of interest at a more detailed level and present them better in relation to other, potentially
signifi cant variables.

New Areas of Focus
Finally, we would like to propose two additional foci for conceptual data modeling

research: a) basic research on concept formulation, categorization, and usage, and b) applied
research on data modeling processes.

First, as Wand and Weber (2002) point out, we need a better understanding of the
psychological processes in data modeling and the ways the tools affect these processes.
This will enable us to fi nd a fi rm theoretical basis for human factors research on data mod-
eling. Researchers in this area should be interested not only in the characteristics of the
current models, but the reasons underlying the potential performance differences between
various approaches to data modeling. Batra’s (1993) framework of error behaviors and the
introduction of the GEMS model to this domain by Batra and Antony (2001) are excellent
steps in the right direction. As Siau (1999) points out, cognitive science is potentially a very
useful reference discipline, especially the research in cognitive science that has its roots
in cognitive psychology or in artifi cial intelligence (Batra, 1993; Henderson & Peterson,
1992; Rosch & Mervis, 1975; Rosch, Mervis, Gray, Johnson & Boyes-Braem, 1976; Smith
& Medlin, 1981). Applied research in this fi eld has been done, for example, in marketing
and organizational behavior (for representative examples see Day & Lord, 1992; Fiol &
Huff, 1992; Ozanne, Brucks & Grewal, 1992).

It is essential to point out here the very signifi cant general theoretical foundation work
Wand and Weber have done on several dimensions of conceptual modeling, particularly in
demonstrating how ontology can be used as a basis for conceptual analysis. This research
has been published in journal articles (Wand et al., 1995; Wand, Storey & Weber, 1999;
Wand & Weber, 1993, 1995, 2002) and as a monograph (Weber, 1997). We believe that
their work is an invaluable foundation for future conceptual and empirical work in this area,
including the work on usability.

The essence of all modeling is in the identifi cation of concepts and categorization of
them (Booch, 1994, Chapters 1-4; Coad & Yourdon, 1991, Chapter 1). The links between
theoretical research on categorization and data modeling are still somewhat weakly defi ned,
although Parsons and Wand’s (Parsons, 2003; Parsons & Wand, 1997, 2000) work is a very
important contribution and an excellent example of the type of research that is needed in
this area. An additional important contribution would be a conceptual analysis of the char-
acteristics of various data modeling techniques compared with categorization theories (see
Henderson and Peterson (1992) for a concise introduction) and an empirical verifi cation of
the results of this research. The central focus of this research should be on the relationships
between individual abilities, individuals’ histories, situation characteristics, perceptions of
reality, and categorization behavior. On the other hand, it is very important to note that data
models are not (or at least should not be) created in a social vacuum; a data model describes
a collective cognitive view about an organization. If reality is socially constructed (Berger
& Luckmann, 1967) and information processing is greatly affected by social structures and

202 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

forces (Salancik & Pfeffer, 1978; Weick, 1979), a closer analysis of the impact of social
forces on data modeling (Ram & Ramesh, 1998) is warranted, as was also suggested in
Wand and Weber (2002).

Second, and in addition to research focusing on fundamental psychological and social
psychological processes, rigorous applied empirical research and theory development is
also needed. It is important that this work collectively covers all uses of conceptual data
modeling (see, for example, the Background section of this chapter); much of prior research
has focused on issues most closely associated with the communication between analysts
and designers. In applied research, two important characteristics of the real world modeling
tasks have to be taken into account. First, the process of model building, validation, and
implementation is almost always iterative. Models are not built in a very limited amount
of time and accepted without conceptual and empirical testing, or if they are, at least the
implementation (and the implicit, but not the documented, data model) will be changed if
modeling errors lead to application errors. Second, the elicitation, representation, and vali-
dation phases of the modeling process are normally closely integrated, and the separation
of them in research environments is often artifi cial.

In addition to broader tasks, a richer set of methodologies is also needed. A quantitative
analysis of results obtained in a laboratory environment is not enough. In addition, qualitative
techniques and fi eld data are needed. For example, Batra and Davis (1992) and Srinivasan and
Te’eni (1995) used protocol analysis (Ericsson & Simon, 1993) to gain a deeper understand-
ing of the modeling process. In-depth case studies, observations, and other methods that can
be applied in fi eld environments—for exploratory and later for theory testing purposes—are
also necessary to analyze the real effects of data modeling in organizational environments.
It is also important to continue research that studies how conceptual data modeling is, in
practice, used in the broader context of systems development (see, for example, Batra and
Marakas, 1995; Hitchman, 1995).

CONCLUSIONS
Conceptual data modeling forms an important foundation for systems development.

In this chapter, we have reviewed the existing human factors research on conceptual data
modeling. In addition, we proposed an extended framework and described avenues for
further work in this area. Also, we emphasized the importance of continuing to build a
stronger theoretical foundation based on the work in cognitive science and other relevant
reference disciplines.

ACKNOWLEDGMENTS
Earlier versions of this chapter were published in the Proceedings of the Sixth CAiSE/

IFIP8.1 Intl. Workshop on Evaluation of Modeling Methods in Systems Analysis and Design
(EMMSAD’01) and in the Journal of Database Management (Topi & Ramesh, 2002). We
gratefully acknowledge the highly valuable comments by the EMMSAD’01 participants
and the reviewers and editors of all versions of this chapter.

Toward an Extended Framework for Human Factors Research on Data Modeling 203

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ENDNOTES
1 The concept of “entity” refers in this context not only to static objects but also to

relevant activities and events within the domain of interest.
2 We acknowledge that our sample may not include some relevant papers published in

the proceedings of specialized conferences.
3 Only those studies on object-oriented modeling have been included that have data

modeling as their primary focus.

REFERENCES
Agarwal, R., Sinha, A.P., & Tanniru, M. (1996). The role of prior experience and task char-

acteristics in object-oriented modeling: An empirical study. International Journal Of
Human-Computer Studies, 45, 639-667.

Amer, T. (1993). Entity-relationship and relational database modeling representations for the
audit review of accounting applications: An experimental examination of effectiveness.
Journal of Information Systems, 7(1), 1-15.

Anderson, J.R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum Associates.Rules of the mind
Batra, D. (1993). A framework for studying human error behavior in conceptual database

modeling. Information and Management, 25(3), 121-131.
Batra, D., & Antony, S.R. (1994). Effects of data model and task characteristics on designer

performance - a laboratory study. International Journal Of Human-Computer Studies,
41(4), 481-508.

Batra, D., & Antony, S.R. (2001). Consulting support during conceptual database design
in the presence of redundancy in requirements specifi cations: an empirical study.
International Journal Of Human-Computer Studies, 54(1), 25-51.

Batra, D., & Davis, J.G. (1992). Conceptual data modeling in database design - Similarities
and differences between expert and novice designers. International Journal Of Man-
Machine Studies, 37(1), 83-101.

Batra, D., & Kirs, P.J. (1993). The quality of data representations developed by nonexpert
designers: An experimental study. Journal of Database Management, 4(4), 17-29.

Batra, D., & Marakas, G.M. (1995). Conceptual data modelling in theory and practice.
European Journal of Information Systems, 4(3), 185-193.

Batra, D., & Sein, M.K. (1994). Improving conceptual database design through feedback.
International Journal Of Human-Computer Studies, 40(4), 653-676.

Batra, D., & Srinivasan, A. (1992). A review and analysis of the usability of data management
environments. International Journal Of Man-Machine Studies, 36(3), 395-417.

Batra, D., Hoffer, J.A., & Bostrom, R.P. (1990). Comparing representations with relational
and EER models. Communications of the ACM, 33(2), 126-139.

Berger, P., & Luckmann, T. (1967). The social construction of reality. New York: Double-
day.

Bock, D.B., & Ryan, T. (1993). Accuracy in modeling with extended entity relationship and
object oriented data models. Journal of Database Management, 4(4), 30-39.

Bodart, F., Patel, A., Sim, M., & Weber, R. (2001). Should optional properties be used in
conceptual modelling? A theory and three empirical tests. Information Systems Re-
search, 12(4), 384-405.

204 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Booch, G. (1994). Object oriented analysis and design with applications (2nd ed.). Redwood
City, CA: Benjamin/Cummings.

Brosey, M., & Shneiderman, B. (1978). Two experimental comparisons of relational and
hierarchical database models. International Journal Of Man-Machine Studies, 10,
625-637.

Burton-Jones, A., & Weber, R. (1999). Understanding relationships with attributes in en-
tity-relationship diagrams. Proceedings of Twentieth International Conference on
Information Systems, Charlotte, NC.

Cambell, D. (1992). Entity-relationship modeling: One style suits all. Data Base, 23(5),
12-18.

Cao, Q., Nah, F., & Siau, K. (2000). A meta-analysis of relationship modeling accuracy:
Comparing relational and semantic models. Proceedings of the 6th Americas Confer-
ence on Information Systems, Long Beach, CA.

Chen, P. (1976). The entity-relationship model - Toward the unifi ed view of data. ACM
Transactions On Database Systems, 1(1), 9-36.

Coad, P., & Yourdon, E. (1991). Object-oriented analysis (2nd ed.). Englewood Cliffs, NJ:
Prentice-Hall.

Day, D.V., & Lord, R.G. (1992). Expertise and problem categorization: The role of expert
processing in organizational sense-making. Journal of Management Studies, 29(1),
35-47.

Ericsson, K.A., & Simon, H.A. (1993). Protocol analysis. Verbal reports as data. Cambridge,
MA: The MIT Press.

Fiol, C.M., & Huff, A.S. (1992). Maps for managers: Where are we? Where do we go from
here? Journal of Management Studies, 29(3), 267-285.

Hardgrave, B.C., & Dalal, N.P. (1995). Comparing object-oriented and extended-entity-
relationship data models. Journal of Database Management, 6(3), 15-21.

Henderson, P.W., & Peterson, R.A. (1992). Mental accounting and categorization. Organi-
zational Behavior and Human Decision Processes, 51(1), 92-117.

Hitchman, S. (1995). Practitioner perceptions on the use of some semantic concepts in the
entity-relationship model. European Journal of Information Systems, 4(1), 31-40.

Hoffer, J.A. (1982). An empirical investigation into individual differences in database
models. Proceedings of the Third International Conference of Information Systems,
Ann Arbor, MI.

Hull, R., & King, R. (1987). Semantic database modeling: Survey, applications, and research
issues. ACM Computing Surveys, 19(3), 201-260.

Jarvenpaa, S.L., & Machesky, J.J. (1989). Data analysis and learning: An experimental
study of data modeling tools. International Journal Of Man-Machine Studies, 31,
367-391.

Juhn, S., & Naumann, J.D. (1985). The effectiveness of data representation characteristics
on user validation. Proceedings of the Sixth International Conference on Information
Systems, Indianapolis, IN.

Kim, Y.G., & March, S.T. (1995). Comparing data modeling formalisms. Communications
of the ACM, 38(6), 103-115.

Kung, C.H., & Solvberg, A. (1986). Activity modeling and behaviour modeling. In T. W.
Olle, H. G. Sol & A. A. Verrijn-Stuart (Eds.), Information system design methodologies:
Improving the practice (pp. 145-171). Amsterdam, the Netherlands: North-Holland.

Toward an Extended Framework for Human Factors Research on Data Modeling 205

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Leavitt, H.J. (1965). Applied organizational change in industry: Structural, technological,
and humanistic approaches. In J.G. March (Ed.). Handbook of organizations (pp.
1144-1140). Chicago: Rand McNally.

Lee, H., & Choi, B.G. (1998). A comparative study of conceptual data modeling techniques.
Journal of Database Management, 9, 26-35.

Liao, C.C., & Palvia, P.C. (2000). The impact of data models and task complexity on end-
user performance: An experimental investigation. International Journal Of Human-
Computer Studies, 52(5), 831-845.

McFadden, F.R., Hoffer, J.A., & Prescott, M. (1999). Modern database management. Read-
ing, MA: Addison-Wesley.

Navathe, S.B. (1992). Evolution of data modeling for databases. Communications of the
ACM, 35(9), 112-123.

Nordbotten, J.C., & Crosby, M.E. (1999). The effect of graphic style on data model inter-
pretation. Information System Journal, 9(2), 139-155.

Ozanne, J.L., Brucks, M., & Grewal, D. (1992). A study of information search behavior
during the categorization of new products. Journal of Consumer Research, 18(4),
452-463.

Palvia, P.C., Liao, C.C., & To, P.-L. (1992). The impact of conceptual data models on end-
user performance. Journal of Database Management, 3(4), 4-15.

Parsons, J. (2003). Effects of local versus global schema diagrams on verifi cation and
communication in conceptual data modeling. Journal of Management Information
Systems, 19(3), 155-183.

Parsons, J., & Wand, Y. (1997). Choosing classes in conceptual modeling. Communications
of the ACM, 40(6), 63-69.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in in-
formation modeling. ACM Transactions On Database Systems, 25(2), 228-268.

Ram, S., & Ramesh, V. (1998). Collaborative conceptual schema design: A process model
and prototype system. ACM Transactions On Information Systems, 16(4), 347-371.

Ramesh, V., & Browne, G.J. (1999). Expressing causal relationships in conceptual database
schemas. Journal of Systems and Software, 45(3), 225-232.

Rosch, E., & Mervis, C. (1975). Family resemblances: Studies in the internal structure of
categories. Cognitive Psychology, 7, 573-605.

Rosch, E., Mervis, C., Gray, W., Johnson, D., & Boyes-Braem, P. (1976). Basic objects in
natural categories. Cognitive Psychology, 8, 382-439.

Salancik, G.R., & Pfeffer, J. (1978). A social information processing approach to job attitudes
and task design. Administrative Science Quarterly, 23, 427-456.

Shoval, P., & Even-Chaime, M. (1987). Data base schema design: An experimental com-
parison between normalization and information analysis. Data Base, 18(3), 30-39.

Shoval, P., & Frumermann, I. (1994). OO and EER conceptual schemas: A comparison of
user comprehension. Journal of Database Management, 5(4), 28-38.

Shoval, P., & Shiran, S. (1997). Entity-relationship and object-oriented data modeling - An
experimental comparison of design quality. Data & Knowledge Engineering, 21(3),
297-315.

Siau, K. (1999). Information modeling and method engineering. Journal of Database
Management, 10(4), 44-50.

Siau, K., Wand, Y., & Benbasat, I. (1995). A psychological study on the use of relationship
concept -- Some preliminary fi ndings. In J. Iivari, K. Lyytinen & M. Rossi (Eds.),

206 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Lecture notes in computer science - Advanced information systems engineering, Vol.
932 (pp. 341-354). Springer-Verlag.

Siau, K., Wand, Y., & Benbasat, I. (1997). The relative importance of structural constraints and
surface semantics in information modeling. Information Systems, 22(2-3), 155-170.

Sinha, A.P., & Vessey, I. (1999). An empirical investigation of entity-based and object-ori-
ented data modeling: A development life cycle approach. Proceedings of the Twentieth
International Conference on Information Systems, Charlotte, NC.

Smith, E.R., & Medlin, D.L. (1981). Categories and concepts. Cambridge, MA: Harvard
University Press.

Srinivasan, A., & Te’eni, D. (1995). Modeling as constrained problem solving: An empirical
study of the data modeling process. Management Science, 41(3), 419-434.

Teorey, T.J., Yang, D., & Fry, J.P. (1986). A logical design methodology for relational
databases using the extended entity-relationship model. ACM Computing Surveys,
18(2), 197-222.

Topi, H., & Ramesh, V. (2002). Human factors research on data modeling: A review of prior
research, an extended framework and future research directions. Journal of Database
Management, 13(2), 3-19.

Wand, Y., Monarchi, D.E., Parsons, J., & Woo, C.C. (1995). Theoretical foundations for
conceptual modeling in information systems development. Decision Support Systems,
15, 285-304.

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information systems
analysis and design grammars. Journal of Information Systems, 3, 217-237.

Wand, Y., & Weber, R. (1995). On the deep structure of information systems. Information
Systems Journal, 5, 203-223.

Wand, Y., & Weber, R. (2002). Research commentary: Information systems and conceptual
modeling - A research agenda. Information Systems Research, 13(4), 363-376.

Wand, Y., Storey, V., & Weber, R. (1999). An ontological analysis of the relationship construct
in conceptual modeling. ACM Transactions On Database Systems, 24(4), 494-528.

Weber, R. (1996). Are attributes entities? A study of database designers’ memory structures.
Information Systems Research, 7(2), 137-162.

Weber, R. (1997). Ontological foundations of information systems. Melbourne, Australia:
Coopers & Lybrand.

Weick, K.E. (1979). Cognitive processes in organizations. Research in Organizational
Behavior, 1, 41-47.

Toward an Extended Framework for Human Factors Research on Data Modeling 207

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

APPENDIX A: EMPIRICAL HUMAN FACTORS
RESEARCH ON CONCEPTUAL DATA MODELING

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t V

ar
ia

bl
e(

s)
D

ep
en

de
nt

 V
ar

ia
bl

e(
s)

R
es

ea
rc

h
Ta

sk
(s

)
R

es
ul

ts

B
ro

se
y

&
 S

hn
ei

de
rm

an
19

78
a)

 D
at

a
m

od
el

in
g

fo
rm

al
-

is
m

 (H
ie

ra
rc

hi
ca

l v
s.

re
la

tio
na

l);
 b

) P
ro

gr
am

-
m

in
g

ex
pe

rie
nc

e

M
od

el
 c

om
pr

eh
en

si
on

1)
 C

om
pr

eh
en

si
on

ba

se
d

on
 th

e
su

bj
ec

ts
’

ab
ili

ty
 to

 a
ns

w
er

 q
ue

s-
tio

ns
. 2

) R
ec

al
l o

f a

da
ta

ba
se

 sc
he

m
a

fr
om

m

em
or

y.

H
ie

ra
rc

hi
ca

l s
ch

em
as

 a
p-

pe
ar

ed
 to

 b
e

ea
si

er
 to

 re
ca

ll
th

an
 th

e
re

la
tio

na
l s

ch
em

a.

Th
e

hi
er

ar
ch

ic
al

 sc
he

m
a

w
as

 e
as

ie
r t

o
un

de
rs

ta
nd

(p

ar
tic

ul
ar

ly
 fo

r b
eg

in
ni

ng

us
er

s)
 th

an
 th

e
re

la
tio

na
l

sc
he

m
a.

H
of

fe
r

19
82

a)
 P

ro
gr

am
m

in
g

ex
pe

ri-
en

ce
; b

) C
og

ni
tiv

e
st

yl
e;

c)

 T
as

k
fo

cu
s

D
at

a
m

od
el

 c
ha

ra
ct

er
is

tic
s

D
ev

el
op

m
en

t o
f d

at
a

m
od

el
s b

as
ed

 o
n

fo
ur

di

ffe
re

nt
 c

as
e

de
sc

rip
-

tio
ns

: 1
) o

rd
er

 p
ro

ce
ss

-
in

g/
in

qu
iry

; 2
) c

us
-

to
m

er
 a

nd
 sa

le
sp

er
so

n
tra

ck
in

g;
 3

) p
ro

du
ct

sa

le
s a

nd
 in

ve
nt

or
y

tra
ck

in
g;

 a
nd

 4
) t

as
k

no
t s

pe
ci

fi e
d.

D
at

a
fl o

w
 m

od
el

s w
er

e
by

fa

r t
he

 m
os

t c
om

m
on

 w
ay

of

 m
od

el
in

g
da

ta
. D

ec
re

as
ed

si

tu
at

io
n

fo
cu

s l
ea

ds
 to

de

cr
ea

si
ng

 c
on

fi d
en

ce
.

Ju
hn

 &
 N

au
m

an
n

19
85

D
at

a
m

od
el

in
g

fo
rm

al
is

m

(E
R

 v
s.

re
la

tio
na

l (
R

D
M

)
vs

. L
D

S
vs

. D
A

D
)

a)
 T

hr
ee

 a
sp

ec
ts

 o
f c

om
pr

e-
he

ns
io

n
an

d
b)

 A
bi

lit
y

to

id
en

tif
y

da
ta

ba
se

 e
le

m
en

ts

ne
ed

ed
 fo

r a
 se

ar
ch

To
 a

ns
w

er
 se

ve
nt

ee
n

qu
es

tio
ns

 b
as

ed
 o

n
di

ffe
re

nt
 re

pr
es

en
ta

-
tio

ns
 o

f t
he

 sa
m

e
da

ta

m
od

el
. M

od
el

s n
ot

gi

ve
n.

Th
e

su
bj

ec
ts

 u
si

ng
 se

m
an

tic

m
od

el
s (

ER
, L

D
S)

 id
en

ti-
fi e

d
re

la
tio

ns
hi

ps
 a

nd
 th

ei
r

ca
rd

in
al

iti
es

 b
et

te
r t

ha
n

th
os

e
us

in
g

re
la

tio
na

l m
od

-
el

s (
R

D
M

, D
A

D
).

208 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t V

ar
ia

bl
e(

s)
D

ep
en

de
nt

 V
ar

ia
bl

e(
s)

R
es

ea
rc

h
Ta

sk
(s

)
R

es
ul

ts

Sh
ov

al
 &

Ev

en
-C

ha
im

e
19

87
a)

 D
at

a
m

od
el

in
g

fo
rm

al
is

m

(N
or

m
al

iz
at

io
n

vs
. I

nf
or

m
a-

tio
n

A
na

ly
si

s (
N

IA
M

))
; b

)
Ta

sk
 c

om
pl

ex
ity

 (S
im

pl
e

vs
.

co
m

pl
ex

)

a)
 M

od
el

in
g

pe
rf

or
m

an
ce

m

ea
su

re
d

w
ith

 m
od

el
 q

ua
l-

ity
; b

) T
im

e
re

qu
ire

d
to

 fi
n-

is
h

th
e

m
od

el
in

g
ta

sk
; a

nd
 c

)
Pr

ef
er

en
ce

 o
ve

r a
 m

od
el

in
g

fo
rm

al
is

m

To
 d

ev
el

op
 tw

o
lo

gi
ca

l
da

ta
 m

od
el

s (
on

e
w

ith

N
IA

M
, t

he
 o

th
er

 w
ith

no

rm
al

iz
at

io
n)

 b
as

ed
 o

n
D

FD
s a

nd
 re

la
te

d
na

rr
a-

tiv
es

. N
o

sp
ec

ifi
c

in
fo

 o
n

ca
se

s.

Th
e

su
bj

ec
ts

 p
er

fo
rm

ed
 b

et
te

r i
n

bo
th

 si
m

pl
e

an
d

co
m

pl
ex

 ta
sk

s
an

d
ne

ed
ed

 le
ss

 ti
m

e
w

he
n

us
in

g
no

rm
al

iz
at

io
n;

 in
 a

dd
iti

on
, t

he

su
bj

ec
ts

 p
re

fe
rr

ed
 n

or
m

al
iz

at
io

n
ov

er
 N

IA
M

.

Ja
rv

en
pa

a
&

M

ac
he

sk
y

19
89

D
at

a
m

od
el

in
g

fo
rm

al
is

m

(E
ER

 v
s.

re
la

tio
na

l)
a)

 D
at

a
m

od
el

 a
cc

ur
ac

y,
 b

)
D

at
a

m
od

el
in

g
tim

e,
 c

) U
n-

de
rs

ta
nd

in
g

of
 n

ot
at

io
n,

 a
nd

d)

 T
op

-d
ow

n
vs

. b
ot

to
m

-u
p

ap
pr

oa
ch

To
 d

ev
el

op
 a

 lo
gi

ca
l

(a
cc

or
di

ng
 to

 th
e

au
th

or
s)

da

ta
 m

od
el

 b
as

ed
 o

n
a

na
rr

at
iv

e.
 O

nl
y

on
e

of
 th

e
fo

ur
 c

as
es

 in
cl

ud
ed

.

EE
R

 m
od

el
er

s l
ea

rn
ed

 fa
st

er
,

pe
rc

ei
ve

d
th

e
ta

sk
 to

 b
e

ea
si

er
,

un
de

rs
to

od
 th

e
no

ta
tio

n
be

tte
r,

an
d

us
ed

 th
e

to
p-

do
w

n
ap

pr
oa

ch
 m

or
e

of
te

n.

B
at

ra
, H

of
fe

r,
&

 B
os

tro
m

19
90

D
at

a
m

od
el

in
g

fo
rm

al
is

m

(E
ER

 v
s.

re
la

tio
na

l)
a)

 P
er

fo
rm

an
ce

 m
ea

su
re

d
w

ith
 m

od
el

in
g

co
rr

ec
tn

es
s

fo
r n

in
e

di
ffe

re
nt

 fa
ce

ts
; b

)
Pe

rc
ei

ve
d

ea
se

-o
f-

us
e

To
 d

ev
el

op
 a

 re
pr

es
en

ta
-

tio
n

ba
se

d
on

 a
 n

ar
ra

tiv
e

us
in

g
ei

th
er

 E
ER

 o
r

re
la

tio
na

l m
et

ho
d.

 C
as

e:

Pr
oj

ec
ts

, I
nc

.,
ad

ap
te

d
fr

om
 T

eo
re

y
et

 a
l.,

 1
98

6.

M
od

el
in

g
pe

rf
or

m
an

ce
 o

f E
ER

 u
s-

er
s w

as
 b

et
te

r t
ha

n
th

at
 o

f r
el

at
io

na
l

m
od

el
 u

se
rs

 w
ith

 b
in

ar
y

1:
M

, b
in

ar
y

N
:M

, a
nd

 te
rn

ar
y

1:
M

:M
 re

la
tio

n-
sh

ip
s.

Pa
lv

ia
, L

ia
o,

&

 T
o

19
92

D
at

a
m

od
el

in
g

fo
rm

al
is

m

(D
at

a
St

ru
ct

ur
e

D
ia

gr
am

s
(D

SD
) v

s.
ER

 v
s.

O
O

/K
ro

en
-

ke
)

a)
 P

er
fo

rm
an

ce
 m

ea
su

re
d

w
ith

 c
om

pr
eh

en
si

on
 o

f t
he

m

ea
ni

ng
 o

f t
he

 d
at

ab
as

e
(a

ut
ho

rs
’ t

er
m

in
ol

og
y)

; b
)

Ti
m

e

To
 a

ns
w

er
 q

ue
st

io
ns

ba

se
d

on
 a

 “
ve

rs
io

n
of

th

e
da

ta
ba

se
”

co
rr

e-
sp

on
di

ng
 to

 th
e

da
ta

ba
se

m

od
el

.

C
om

pr
eh

en
si

on
 p

er
fo

rm
an

ce
 w

as

si
gn

ifi
ca

nt
ly

 b
et

te
r a

nd
 c

om
pr

e-
he

ns
io

n
tim

e
fa

st
er

 w
ith

 a
n

O
O

da

ta
ba

se
 th

an
 w

ith
 th

e
ot

he
r t

w
o.

Toward an Extended Framework for Human Factors Research on Data Modeling 209

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t

Va
ri

ab
le

(s
)

D
ep

en
de

nt

Va
ri

ab
le

(s
)

R
es

ea
rc

h
Ta

sk
(s

)
R

es
ul

ts

B
at

ra
 &

D

av
is

19
92

Ex
pe

rie
nc

e
(N

ov
ic

e
vs

. e
xp

er
t)

Pr
ot

oc
ol

 a
na

ly
si

s;

no
 c

le
ar

ly
 d

efi
 n

ed

D
V.

To
 p

re
pa

re
 a

n
ER

 m
od

el

ba
se

d
on

 a
 n

ar
ra

tiv
e

an
d

ve
rb

al
iz

e
th

ei
r t

ho
ug

ht
s

w
he

n
pr

ep
ar

in
g

th
e

m
od

el
.

C
as

e:
 F

ar
-E

as
te

rn
 R

ep
ai

r
C

en
te

r.

N
o

cl
ea

r q
ua

nt
ita

tiv
e

re
su

lts
; s

up
po

rt
ob

ta
in

ed
 fo

r fi
 v

e
fi n

di
ng

s f
ro

m
 p

rio
r r

e-
se

ar
ch

 re
ga

rd
in

g
th

e
di

ffe
re

nc
e

be
tw

ee
n

no
vi

ce
s a

nd
 e

xp
er

ts
 (d

iff
er

en
t p

ro
ce

ss

m
od

el
s,

ex
pe

rts
 h

av
e

ric
he

r v
oc

ab
ul

ar
y

an
d

be
tte

r a
bi

lit
y

to
 c

at
eg

or
iz

e;
 e

xp
er

ts
’

ab
ili

ty
 to

 a
ut

om
at

e;
 n

ov
ic

es
’ t

en
de

nc
y

to

m
ak

e
m

is
ta

ke
s)

.

A
m

er
19

93
D

at
a

m
od

el
in

g
fo

rm
al

is
m

 (E
R

 v
s.

re
la

tio
na

l)

Pe
rf

or
m

an
ce

m

ea
su

re
d

w
ith

 th
e

nu
m

be
r o

f e
rr

or
s i

n
an

 e
rr

or
 id

en
tifi

 c
a-

tio
n

ta
sk

To
 id

en
tif

y
er

ro
rs

 in
 a

 “
co

n-
ce

pt
ua

l d
at

ab
as

e”
 (a

ut
ho

r’s

de
sc

rip
tio

n)
 m

od
el

 b
as

ed

on
 a

 n
ar

ra
tiv

e
de

sc
rip

tio
n

of

an
 a

cc
ou

nt
in

g
tra

ns
ac

tio
n

pr
oc

es
si

ng
 c

yc
le

.

Th
e

pe
rf

or
m

an
ce

 o
f t

he
 u

se
rs

 o
f t

he

ER
 m

od
el

 w
as

 si
gn

ifi
ca

nt
ly

 b
et

te
r i

n
id

en
tif

yi
ng

 a
ll

bi
na

ry
 1

:M
, b

in
ar

y
M

:N
,

un
ar

y,
 a

nd
 c

la
ss

-s
ub

cl
as

s r
el

at
io

ns
hi

ps

(n
ot

 te
rn

ar
y)

.

210 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t V

ar
ia

bl
e(

s)
D

ep
en

de
nt

 V
ar

ia
bl

e(
s)

R
es

ea
rc

h
Ta

sk
(s

)
R

es
ul

ts

B
at

ra
 &

K

irs
19

93
D

at
a

m
od

el
in

g
fo

rm
al

is
m

(E

ER
 v

s.
D

at
a

ag
gr

eg
a-

tio
n)

Pe
rf

or
m

an
ce

 m
ea

su
re

d
w

ith

th
e

co
rr

ec
tn

es
s o

f a
 re

la
tio

na
l

re
pr

es
en

ta
tio

n
of

 th
e

co
nc

ep
tu

al

da
ta

 m
od

el
s

To
 d

ev
el

op
 a

 c
on

ce
pt

ua
l r

ep
re

-
se

nt
at

io
n

(e
ith

er
 E

ER
 o

r D
A

)
ba

se
d

on
 a

 n
ar

ra
tiv

e
an

d
co

n-
ve

rti
ng

 th
at

 in
to

 a
 lo

gi
ca

l (
re

la
-

tio
na

l)
de

si
gn

. C
as

e:
 A

da
pt

ed

fr
om

 T
eo

re
y

et
 a

l.
(1

98
6)

.

Th
er

e
w

as
 n

o
di

ffe
re

nc
e

be
tw

ee
n

th
e

re
la

tio
na

l r
ep

re
se

nt
at

io
ns

 (t
he

y
w

er
e

eq
ua

lly
 p

oo
r)

. E
ER

-r
ep

re
se

nt
a-

tio
ns

 w
er

e,
 in

 g
en

er
al

, g
oo

d,
 a

nd
 th

e
de

gr
ad

at
io

n
of

 q
ua

lit
y

fr
om

 E
ER

 to

re
la

tio
na

l w
as

 c
le

ar
. W

ith
 D

A
 u

se
rs

,
al

re
ad

y
th

e
qu

al
ity

 o
f t

he
 D

A
 m

od
el

s
se

em
ed

 to
 b

e
po

or
 (t

hi
s w

as
 n

ot

fo
rm

al
ly

 e
va

lu
at

ed
).

B
oc

k
&

Ry

an
19

93
D

at
a

m
od

el
in

g
fo

rm
al

is
m

(E

ER
 v

s.
O

O
/K

ro
en

ke
)

M
od

el
in

g
co

rr
ec

tn
es

s m
ea

su
re

d
fo

r e
ig

ht
 d

iff
er

en
t f

ac
et

s
To

 d
ev

el
op

 a
 c

on
ce

pt
ua

l r
ep

-
re

se
nt

at
io

n
(e

ith
er

 E
ER

 o
r O

O

- K
ro

en
ke

) b
as

ed
 o

n
a

na
rr

at
iv

e.

C
as

e:
 B

at
ra

 e
t a

l.
(1

99
0)

.

EE
R

 m
od

el
er

s p
er

fo
rm

ed
 si

g-
ni

fi c
an

tly
 b

et
te

r i
n

th
re

e
of

 th
e

ei
gh

t
fa

ce
ts

: i
de

nt
ifi

er
 a

ttr
ib

ut
e,

 u
na

ry
 1

:1

an
d

 b
in

ar
y

M
:N

.

B
at

ra
 &

Se

in
19

94
N

o
IV

: e
xa

m
in

at
io

n
of

re

sp
on

se
 to

 fe
ed

ba
ck

R
ed

uc
tio

n
in

 th
e

nu
m

be
r o

f e
r-

ro
rs

 a
fte

r f
ee

db
ac

k
w

as
 p

ro
vi

de
d

To
 d

ev
el

op
 a

 re
la

tio
na

l r
ep

re
-

se
nt

at
io

n
ba

se
d

on
 a

 n
ar

ra
tiv

e
(in

te
rm

ed
ia

te
 c

on
ce

pt
ua

l
re

pr
es

en
ta

tio
n

w
as

 o
k

bu
t n

ot

re
qu

ire
d)

. C
as

e:
 G

ol
de

n
Pa

nt
he

r
R

ar
e A

ni
m

al
 Z

oo
.

Th
ro

ug
h

fe
ed

ba
ck

, t
he

 su
bj

ec
ts

 w
er

e
ab

le
 to

 c
or

re
ct

 1
9

of
 in

iti
al

 5
3

er
ro

rs
.

Tw
el

ve
 o

f t
he

se
 w

er
e

in
 th

e
ca

te
go

-
rie

s o
f t

er
na

ry
 a

nd
 u

na
ry

 a
ss

oc
ia

tio
n

re
la

tio
ns

hi
ps

.

Toward an Extended Framework for Human Factors Research on Data Modeling 211

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t

Va
ri

ab
le

(s
)

D
ep

en
de

nt
 V

ar
ia

bl
e(

s)
R

es
ea

rc
h

Ta
sk

(s
)

R
es

ul
ts

B
at

ra
 &

 A
nt

on
y

19
94

D
at

a
m

od
el

in
g

fo
rm

al
is

m
 (E

R

vs
. r

el
at

io
na

l)

Pe
rf

or
m

an
ce

 (m
ea

su
re

d
w

ith

th
e

co
rr

ec
tn

es
s o

f t
he

 so
lu

tio
n)

in

 a
 u

se
r v

ie
w

 m
od

el
in

g
ta

sk

To
 c

on
ve

rt
us

er
 v

ie
w

s (
fo

rm
s

an
d

re
po

rts
) s

up
pl

em
en

te
d

w
ith

a

na
rr

at
iv

e
in

to
 e

ith
er

 a
n

ER
 o

r
a

re
la

tio
na

l m
od

el
. C

as
e:

 B
es

t
Fu

rn
itu

re
 C

om
pa

ny
 (M

cF
ad

-
de

n,
 H

of
fe

r &
 S

rin
iv

as
an

).

Th
e

ov
er

al
l p

er
fo

rm
an

ce
 o

f E
R

 m
od

el
er

s
w

as
 b

et
te

r.
In

cr
ea

se
d

nu
m

be
r o

f n
es

tin
g

le
ve

ls
 h

ad
 a

 n
eg

at
iv

e
im

pa
ct

 o
n

pe
rf

or
-

m
an

ce
.

Sh
ov

al
 &

 F
ru

-
m

er
m

an
n

19
94

D
at

a
m

od
el

in
g

fo
rm

al
is

m
 (E

ER

vs
 O

O
 (g

en
er

ic
))

U
se

r c
om

pr
eh

en
si

on
 m

ea
su

re
d

w
ith

 a
 tr

ue
-f

al
se

 in
st

ru
m

en
t

(5
 fa

ce
ts

)

To
 a

ns
w

er
 a

 se
t o

f 4
8

Tr
ue

-
Fa

ls
e

st
at

em
en

ts
 b

as
ed

 o
n

a
co

nc
ep

tu
al

 d
at

a
m

od
el

. C
as

e
ad

ap
te

d
fr

om
 B

at
ra

 e
t a

l.
(1

99
0)

.

Su
bj

ec
ts

 u
si

ng
 E

ER
 w

er
e

ab
le

 to
 in

te
rp

re
t

te
rn

ar
y

re
la

tio
ns

hi
ps

 m
or

e
co

rr
ec

tly
. O

O

us
er

s w
er

e
be

tte
r w

ith
 a

 v
ag

ue
 “

ot
he

r f
ac

ts
”

ca
te

go
ry

.

H
ar

dg
ra

ve
 &

D

al
al

19
95

a)
 D

at
a

m
od

el
-

in
g

fo
rm

al
is

m

(E
ER

 v
s O

M
T)

;
b)

 T
as

k
co

m
-

pl
ex

ity
 (S

im
pl

e
vs

. c
om

pl
ex

)

a)
 A

bi
lit

y
to

 u
nd

er
st

an
d

a
co

nc
ep

tu
al

 d
at

a
m

od
el

 m
ea

-
su

re
d

w
ith

 a
 m

ul
tip

le
 c

ho
ic

e
in

st
ru

m
en

t (
on

e
ite

m
 p

er

fa
ce

t);
 b

) T
im

e
to

 u
nd

er
st

an
d;

c)

 P
er

ce
iv

ed
 e

as
e-

of
-u

se

To
 a

ns
w

er
 5

 (s
im

pl
e

co
nd

i-
tio

n)
 o

r 1
0

(c
om

pl
ex

 c
on

di
tio

n)

m
ul

tip
le

-c
ho

ic
e

qu
es

tio
ns

 b
as

ed

on
 a

 c
on

ce
pt

ua
l d

at
a

m
od

el
.

N
o

in
fo

rm
at

io
n

gi
ve

n
ab

ou
t

th
e

ca
se

.

Su
bj

ec
ts

 e
va

lu
at

in
g

O
M

T
m

od
el

s w
er

e
si

gn
ifi

ca
nt

ly
 (1

0-
20

%
) f

as
te

r t
ha

n
su

bj
ec

ts

ev
al

ua
tin

g
EE

R
 m

od
el

s.

212 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t

Va
ri

ab
le

(s
)

D
ep

en
de

nt
 V

ar
ia

bl
e(

s)
R

es
ea

rc
h

Ta
sk

(s
)

R
es

ul
ts

K
im

 &

M
ar

ch
19

95
D

at
a

m
od

el
-

in
g

fo
rm

al
is

m

(E
ER

 v
s.

N
IA

M
)

Se
m

an
tic

 (e
nt

iti
es

, a
ttr

ib
ut

es
,

re
la

tio
ns

hi
ps

, d
ep

en
de

nc
ie

s,
an

d
id

en
tifi

 e
rs

) a
nd

 sy
nt

ac
tic

ta

sk
 p

er
fo

rm
an

ce
, P

er
ce

iv
ed

di

ffi
cu

lty
 o

f f
or

m
al

is
m

, P
er

-
ce

iv
ed

 v
al

ue
 o

f f
or

m
al

is
m

.

U
se

r e
xp

er
im

en
t:

To
 a

ns
w

er
 a

 li
st

 o
f

qu
es

tio
ns

 b
as

ed
 o

n
th

e
co

nc
ep

tu
al

m

od
el

 a
nd

 to
 id

en
tif

y
di

sc
re

pa
nc

ie
s

be
tw

ee
n

a
na

rr
at

iv
e

an
d

a
co

nc
ep

tu
al

m

od
el

; A
na

ly
st

 e
xp

er
im

en
t:

To
 d

ev
el

op

a
co

nc
ep

tu
al

 d
at

a
m

od
el

 b
as

ed
 o

n
a

na
r-

ra
tiv

e.
 C

as
e:

 T
w

o
op

er
at

io
ns

 m
an

ag
e-

m
en

t c
as

es
: Y

B
C

L
an

d
A

ir
K

in
g.

EE
R

 u
se

rs
 p

er
fo

rm
ed

 si
gn

ifi
ca

nt
ly

 b
et

te
r i

n
al

l
as

pe
ct

s o
f s

em
an

tic
 c

or
re

ct
ne

ss
, a

nd
 p

er
ce

iv
ed

EE

R
 to

 b
e

le
ss

 d
iffi

 c
ul

t a
nd

 m
or

e
va

lu
ab

le

th
an

 N
IA

M
.

Si
au

,
W

an
d,

 &

B
en

ba
sa

t

19
95

D
om

ai
n

fa
m

ili
ar

ity
In

te
rp

re
ta

tio
n

re
ga

rd
in

g
th

e
na

tu
re

 o
f a

 re
la

tio
ns

hi
p

(o
pt

io
na

l v
s.

m
an

da
to

ry
);

co
nfi

 d
en

ce

To
 e

va
lu

at
e

a
se

t o
f r

el
at

io
ns

hi
ps

an

d
de

te
rm

in
e

w
he

th
er

 th
ey

 a
re

op

tio
na

l o
r m

an
da

to
ry

Su
bj

ec
ts

 c
ho

se
 o

ve
rw

he
lm

in
gl

y
th

e
in

te
rp

re
ta

tio
n

th
at

 th
e

re
la

tio
ns

hi
ps

 a
re

op

tio
na

l r
eg

ar
dl

es
s o

f d
om

ai
n.

 S
ub

je
ct

s’
co

nfi
 d

en
ce

 le
ve

l w
as

 si
gn

ifi
ca

nt
ly

 h
ig

he
r

w
ith

 a
 fa

m
ili

ar
 d

om
ai

n.
Sr

in
iv

as
an

&

 T
e’

en
i

19
95

N
o

m
an

ip
u-

la
tio

n;
 a

n
an

al
ys

is
 o

f
he

ur
is

tic
s

us
ed

 b
y

th
e

m
od

el
er

.

M
od

el
in

g
co

rr
ec

tn
es

s (
bu

t
m

ai
n

fo
cu

s w
as

 o
n

pr
o-

ce
ss

/h
eu

ris
tic

 a
na

ly
si

s)
.

To
 d

ev
el

op
 a

 lo
gi

ca
l d

at
a

m
od

el

ba
se

d
on

 a
 n

ar
ra

tiv
e

an
d

pe
rf

or
m

qu

er
ie

s a
ga

in
st

 it
 (t

as
k

de
sc

rip
tio

n
va

gu
e)

.

A
 se

t o
f fi

 n
di

ng
s r

eg
ar

di
ng

 e
ffe

ct
iv

e
he

u-
ris

tic
s a

nd
 tr

an
si

tio
ns

 b
et

w
ee

n
th

em
.

Toward an Extended Framework for Human Factors Research on Data Modeling 213

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)
A

ut
ho

rs
Ye

ar
In

de
pe

nd
en

t
Va

ri
ab

le
(s

)
D

ep
en

de
nt

Va

ri
ab

le
(s

)
R

es
ea

rc
h

Ta
sk

(s
)

R
es

ul
ts

A
ga

rw
al

,
Si

nh
a,

 &

Ta
nn

iru

19
96

a)
 P

rio
r e

xp
er

ie
nc

e
(w

he
th

er
 o

r n
ot

 th
e

us
er

 h
as

 p
ro

ce
ss

-o
ri-

en
te

d
de

si
gn

 e
xp

er
i-

en
ce

);
b)

 T
as

k
ty

pe

(p
ro

ce
ss

-o
rie

nt
ed

 v
s.

ob
je

ct
-o

rie
nt

ed
).

Pe
rf

or
m

an
ce

(m

ea
su

re
d

w
ith

th

e
nu

m
be

r o
f

co
rr

ec
t e

le
m

en
ts

) i
n

m
od

el
in

g
st

ru
ct

ur
e,

be

ha
vi

or
, a

nd
 a

co

m
bi

na
tio

n
of

 th
e

tw
o

ab
ov

e

To
 d

ev
el

op
 o

bj
ec

t-o
rie

nt
ed

m

od
el

s b
as

ed
 o

n
na

rr
at

iv
e

de
sc

rip
tio

ns
 o

f b
us

in
es

s
pr

ob
le

m
s (

ac
co

un
ts

 p
ay

ab
le

sy

st
em

 (p
ro

ce
ss

-o
rie

nt
ed

)
an

d
em

pl
oy

ee
 b

en
efi

 ts
 sy

st
em

(o

bj
ec

t-o
rie

nt
ed

))
.

Su
bj

ec
ts

 w
ith

 e
xp

er
ie

nc
e

in
 p

ro
ce

ss
-o

rie
nt

ed
 m

od
el

-
in

g
pe

rf
or

m
ed

 b
et

te
r i

n
m

od
el

in
g

be
ha

vi
or

 b
ut

 n
ot

 in

m
od

el
in

g
st

ru
ct

ur
e.

W
eb

er
19

96
a)

 E
xp

er
ie

nc
e

(N
IA

M
 e

xp
er

t v
s.

no
vi

ce
);

b)
 T

as
k

co
m

pl
ex

ity
 (S

im
pl

e
vs

. c
om

pl
ex

)

A
bi

lit
y

to
 re

ca
ll

ite
m

s i
n

a
N

IA
M

di

ag
ra

m
; r

ec
al

l
se

qu
en

ce

To
 d

ra
w

 N
IA

M
 d

ia
gr

am
s

fr
om

 m
em

or
y

in
 a

 fi
ve

-tr
ia

l
se

qu
en

ce
.

Th
e

re
su

lts
 su

gg
es

t t
he

 e
xi

st
en

ce
 o

f e
nt

iti
es

 a
s s

ep
ar

at
e

st
ru

ct
ur

es
 fr

om
 a

ttr
ib

ut
es

 a
s a

 m
ec

ha
ni

sm
 to

 su
pp

or
t

lo
ng

-te
rm

 re
ca

ll.

Sh
ov

al
 &

Sh

ira
n

19
97

D
at

a
m

od
el

in
g

fo
rm

al
is

m
 (E

ER
 v

s.
O

O
(O

2/
O

D
E)

)

a)
 M

od
el

in
g

pe
r-

fo
rm

an
ce

 m
ea

su
re

d
w

ith
 m

od
el

 q
ua

lit
y

(9
 fa

ce
ts

);
b)

 T
im

e
re

qu
ire

d
to

 fi
ni

sh

th
e

m
od

el
in

g
ta

sk
;

an
d

c)
 P

re
fe

re
nc

e
ov

er
 a

 m
od

el
in

g
fo

rm
al

is
m

To
 d

ev
el

op
 tw

o
co

nc
ep

tu
al

 d
at

a
m

od
el

s (
on

e
w

ith
 E

ER
, t

he

ot
he

r w
ith

 O
O

) b
as

ed
 o

n
a

na
r-

ra
tiv

e.
 C

as
es

: E
xt

en
de

d
B

at
ra

et

 a
l.

(1
99

0)
 a

nd
 a

 h
os

pi
ta

l
ca

se
.

Th
e

su
bj

ec
ts

 p
er

fo
rm

ed
 b

et
te

r i
n

m
od

el
in

g
un

ar
y

1:
1

re
la

tio
ns

hi
ps

 a
nd

 te
rn

ar
y

re
la

tio
ns

hi
ps

 w
he

n
us

in
g

EE
R

; t
he

 su
bj

ec
ts

 n
ee

de
d

le
ss

 ti
m

e
w

ith
 E

ER
; t

he

su
bj

ec
ts

 p
re

fe
rr

ed
 E

ER
 o

ve
r O

O
.

Si
au

, W
an

d,

&
 B

en
ba

sa
t

19
97

Th
e

ex
is

te
nc

e
of

a

co
nfl

 ic
t b

et
w

ee
n

st
ru

ct
ur

al
 c

on
st

ra
in

ts

an
d

su
rf

ac
e

se
m

an
-

tic
s i

n
ER

 d
ia

gr
am

s

In
te

rp
re

ta
tio

n
re

-
ga

rd
in

g
th

e
na

tu
re

of

 th
e

re
la

tio
ns

hi
p

(o
pt

io
na

l/m
an

da
-

to
ry

),
co

nfi
 d

en
ce

,
an

d
pe

rc
ei

ve
d

fa
m

ili
ar

ity
 w

ith

do
m

ai
n

To
 e

va
lu

at
e

a
se

t o
f r

el
at

io
n-

sh
ip

s a
nd

 d
et

er
m

in
e

w
he

th
er

th

ey
 a

re
 o

pt
io

na
l o

r m
an

da
-

to
ry

 a
nd

 to
 in

di
ca

te
 d

om
ai

n
fa

m
ili

ar
ity

Su
bj

ec
ts

 st
ru

ct
ur

al
 c

on
st

ra
in

ts
 in

st
ea

d
of

 su
rf

ac
e

se
m

an
tic

s.
C

on
fl i

ct
in

g
st

ru
ct

ur
al

 c
on

st
ra

in
ts

 in
cr

ea
se

d
co

nfi
 d

en
ce

 a
nd

 p
er

ce
iv

ed
 d

om
ai

n
fa

m
ili

ar
ity

214 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t V

ar
ia

bl
e(

s)
D

ep
en

de
nt

 V
ar

ia
bl

e(
s)

R
es

ea
rc

h
Ta

sk
(s

)
R

es
ul

ts

Le
e

&
 C

ho
i

19
98

a)
 D

at
a

m
od

el
in

g
fo

rm
al

is
m

(E

ER
 v

s.
SO

M
 v

s.
O

R
M

 v
s.

O
M

T)
, b

) E
xp

er
ie

nc
e

(T
ra

in
-

in
g

in
 E

R
),

an
d

c)
 T

as
k

ty
pe

(la

ng
ua

ge
 v

s.
fo

rm
s)

a)
 M

od
el

in
g

pe
rf

or
m

an
ce

m

ea
su

re
d

w
ith

 c
or

re
ct

ne
ss

 o
f

ei
gh

t d
iff

er
en

t f
ac

et
s;

 b
) T

im
e

re
qu

ire
d

to
 fi

ni
sh

 th
e

m
od

el
-

in
g

tim
e;

 a
nd

 c
) P

er
ce

iv
ed

ea

se
-o

f-
us

e

To
 d

ev
el

op
 a

 c
on

ce
pt

ua
l d

at
a

m
od

el
 b

as
ed

 o
n

ei
th

er
 a

 n
ar

ra
-

tiv
e

or
 a

 se
t o

f f
or

m
s.

N
ov

ic
e

su
bj

ec
ts

 p
er

fo
rm

ed

be
tte

r w
ith

 E
ER

 a
nd

 O
M

T
th

an

w
ith

 S
O

M
 a

nd
 O

R
M

; E
xp

er
ts

pe

rf
or

m
ed

 fa
st

er
 a

nd
 p

er
ce

iv
ed

hi

gh
er

 e
as

e-
of

-u
se

 w
ith

 E
ER

an

d
O

M
T

th
an

 w
ith

 S
O

M
 a

nd

O
R

M
.

R
am

es
h

&

B
ro

w
ne

19
99

D
at

ab
as

e-
kn

ow
le

dg
ea

bl
e

vs
.

D
at

ab
as

e-
no

vi
ce

 (k
no

w
le

dg
e

of
 E

R
)

A
bi

lit
y

to
 m

od
el

/id
en

tif
y

ca
us

al
 re

la
tio

ns
hi

ps
To

 sk
et

ch
 a

 g
ra

ph
ic

al
 d

es
cr

ip
-

tio
n

of
 a

 c
as

e
si

tu
at

io
n

ba
se

d
on

 a
 n

ar
ra

tiv
e

(n
o

fo
rm

al
is

m

sp
ec

ifi
ed

).
C

as
e:

 M
ou

nt
ai

n
V

ie
w

C

om
m

un
ity

 H
os

pi
ta

l.

D
at

ab
as

e-
no

vi
ce

 su
bj

ec
ts

id

en
tifi

 e
d

ca
us

al
 re

la
tio

ns
hi

ps

m
or

e
fr

eq
ue

nt
ly

 th
an

 d
at

ab
as

e-
kn

ow
le

dg
ea

bl
e.

N
or

bo
tte

n
&

 C
ro

sb
y

19
99

D
at

a
m

od
el

in
g

fo
rm

al
is

m

(I
D

EF
1X

 v
s.

SS
M

 v
s.

N
IA

M
 v

s.
O

O
D

M
 (C

at
te

ll)
)

a)
 M

od
el

 c
om

pr
eh

en
si

on

m
ea

su
re

d
by

 a
n

ab
ili

ty
 to

re

co
gn

iz
e

a
m

od
el

in
g

co
n-

st
ru

ct
 b

as
ed

 o
n

a
m

od
el

; b
)

A
tte

nt
io

n
pa

id
 to

 c
on

st
ru

ct
s;

c)

 R
ea

di
ng

 st
ra

te
gi

es

To
 id

en
tif

y
m

od
el

in
g

co
ns

tru
ct

s
in

 a
 d

at
a

m
od

el
 p

re
se

nt
ed

 to
 th

e
us

er
 o

n
a

co
m

pu
te

r s
cr

ee
n.

Fa
m

ili
ar

 n
ot

at
io

n
im

pr
ov

es

co
m

pr
eh

en
si

on
. I

de
nt

ify
in

g
re

la
tio

ns
hi

ps
 is

 m
or

e
di

ffi
cu

lt
w

ith
 h

ig
hl

y
gr

ap
hi

ca
l m

od
el

s
(s

pe
ci

fi c
al

ly
 N

IA
M

).

B
ur

to
n-

Jo
ne

s &

W
eb

er

19
99

a)
 O

nt
ol

og
ic

al
 c

la
rit

y
(r

el
at

io
n-

sh
ip

s w
ith

 v
s.

w
ith

ou
t a

ttr
ib

ut
es

),
an

d
b)

 D
om

ai
n

kn
ow

le
dg

e
(h

ig
h

vs
. l

ow
)

a)
 P

ro
bl

em
-s

ol
vi

ng
 p

er
fo

r-
m

an
ce

 b
as

ed
 o

n
th

e
m

od
el

;
b)

 A
bi

lit
y

to
 u

nd
er

st
an

d
th

e
m

od
el

To
 a

ns
w

er
 c

om
pr

eh
en

si
on

qu

es
tio

ns
 a

nd
 to

 so
lv

e
pr

ob
le

m
s

ba
se

d
on

 th
e

da
ta

 m
od

el
.

In
 u

nf
am

ili
ar

 d
om

ai
ns

, u
si

ng

re
la

tio
ns

hi
ps

 w
ith

 a
ttr

ib
ut

es
 a

f-
fe

ct
s p

er
fo

rm
an

ce
 h

ar
m

fu
lly

.

Toward an Extended Framework for Human Factors Research on Data Modeling 215

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t

Va
ri

ab
le

(s
)

D
ep

en
de

nt
 V

ar
ia

bl
e(

s)
R

es
ea

rc
h

Ta
sk

(s
)

R
es

ul
ts

Si
nh

a
&

 V
es

se
y

19
99

a)
 C

on
ce

pt
ua

l (
EE

R

an
d

O
O

D
/C

oa
d

&

Yo
ur

do
n)

 v
s.

lo
gi

ca
l

(R
D

M
 a

nd
 O

O
T)

;
b)

 E
ER

 v
s.

O
O

D
; c

)
R

D
M

 v
s.

O
O

T;
 d

)
EE

R
 --

>
R

D
M

 v
s.

O
O

D
 --

>
O

O
T

M
od

el
in

g
pe

rf
or

m
an

ce

m
ea

su
re

d
w

ith
 a

cc
ur

ac
y

of

m
od

el
in

g
en

tit
ie

s/
cl

as
se

s
an

d
at

tri
bu

te
s,

as
so

ci
at

io
n

re
la

tio
ns

hi
ps

, a
nd

 g
en

er
al

-
iz

at
io

n
re

la
tio

ns
hi

ps
.

To
 d

ev
el

op
 fo

ur
 c

on
ce

p-
tu

al
 d

at
a

m
od

el
s (

R
D

M
,

EE
R

, O
O

T,
 O

O
D

) b
as

ed

on
 a

 c
as

e
re

pr
es

en
tin

g
a

un
iv

er
si

ty
.

Th
e

su
bj

ec
ts

 p
er

fo
rm

ed
 b

et
te

r w
ith

 c
on

ce
pt

ua
l

th
an

 lo
gi

ca
l d

at
a

m
od

el
in

g
w

ith
 b

in
ar

y
1:

M
 a

nd

M
:N

 re
la

tio
ns

hi
ps

; O
O

D
 w

as
 b

et
te

r t
ha

n
EE

R

fo
r r

ep
re

se
nt

in
g

en
tit

ie
s/

cl
as

se
s a

nd
 a

ttr
ib

ut
es

;
O

O
T

w
as

 b
et

te
r t

ha
n

R
D

M
 fo

r r
ep

re
se

nt
in

g
ge

ne
ra

liz
at

io
n;

 O
O

D
 --

>
O

O
T

w
as

 b
et

te
r f

or

co
nc

ep
tu

al
 --

>
lo

gi
ca

l m
ap

pi
ng

 th
an

 E
ER

 --
>

R
D

M
.

Li
ao

 &
 P

al
vi

a
20

00
a)

 D
at

a
m

od
el

in
g

fo
rm

al
is

m
 (R

el
at

io
na

l
vs

. E
ER

M
 v

s.
O

O
M

(K

im
))

; b
) T

as
k

co
m

-
pl

ex
ity

a)
 M

od
el

in
g

pe
rf

or
m

an
ce

m

ea
su

re
d

w
ith

 m
od

el
 q

ua
lit

y
(8

 fa
ce

ts
);

b)
 T

im
e

a)
 T

o
de

ve
lo

p
a

da
ta

 m
od

el

ba
se

d
on

 a
 n

ar
ra

tiv
e;

 b
) t

o
co

nv
er

t a
 c

on
ce

pt
ua

l d
at

a
m

od
el

 to
 a

 lo
gi

ca
l d

at
a

m
od

el
.

Th
e

su
bj

ec
t u

si
ng

 re
la

tio
na

l a
nd

 O
O

M
 p

er
-

fo
rm

ed
 b

et
te

r t
ha

n
th

os
e

us
in

g
EE

R
M

 in
 m

od
-

el
in

g
un

ar
y

on
e-

to
-o

ne
 re

la
tio

ns
hi

ps
; E

ER
M

us

er
s p

er
fo

rm
ed

 b
et

te
r t

ha
n

re
la

tio
na

l u
se

rs
 fo

r
m

od
el

in
g

bi
na

ry
 o

ne
-to

-m
an

y
an

d
m

an
y-

to
-

m
an

y
re

la
tio

ns
hi

ps
. E

ER
M

 u
se

rs
 re

qu
ire

d
m

or
e

tim
e

th
an

 re
la

tio
na

l a
nd

 O
O

M
 u

se
rs

.

216 Topi and Ramesh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

APPENDIX A (CONTINUED)

A
ut

ho
rs

Ye
ar

In
de

pe
nd

en
t V

ar
ia

bl
e(

s)
D

ep
en

de
nt

 V
ar

ia
bl

e(
s)

R
es

ea
rc

h
Ta

sk
(s

)
R

es
ul

ts

B
at

ra
 &

 A
nt

on
y

20
01

a)
 C

on
su

lti
ng

 sy
st

em
 v

s.
no

co

ns
ul

tin
g

sy
st

em
; b

) K
no

w
le

dg
e

le
ve

l;
c)

 T
as

k
ty

pe
 (r

el
at

io
ns

hi
p

ty
pe

s)

M
od

el
in

g
pe

rf
or

m
an

ce
 m

ea
-

su
re

d
w

ith
 m

od
el

 q
ua

lit
y

To
 d

ev
el

op
 a

 c
on

ce
pt

ua
l

da
ta

 m
od

el
 b

as
ed

 o
n

a
na

r-
ra

tiv
e.

Th
e

co
ns

ul
tin

g
sy

st
em

 im
-

pr
ov

ed
 p

er
fo

rm
an

ce
 o

f t
he

 lo
w

kn

ow
le

dg
e-

le
ve

l s
ub

je
ct

s.

B
od

ar
t,

Pa
te

l,
Si

m
, a

nd
 W

eb
er

20
01

E1
: a

) T
yp

e
of

 re
pr

es
en

ta
tio

n
(o

p-
tio

na
l p

ro
pe

rti
es

 v
s.

su
bt

yp
in

g)
;

b)
 D

om
ai

n
co

m
pl

ex
ity

; c
) T

ria
l

E2
: a

) T
yp

e
of

 re
pr

es
en

ta
tio

n;

b)
 T

ria
l

E3
: a

) T
yp

e
of

 re
pr

es
en

ta
tio

n

E1
: R

ec
al

l a
cc

ur
ac

y;
E2

: A
cc

ur
ac

y
an

d
tim

e
E3

: P
ro

bl
em

-s
ol

vi
ng

 p
er

-
fo

rm
an

ce

E1
: F

re
e

re
ca

ll
te

st
 (r

ev
ie

w

di
ag

ra
m

 a
nd

 d
ra

w
 it

 fr
om

m

em
or

y)
; E

2:
 C

om
pr

eh
en

-
si

on
 te

st
 (y

es
/n

o
qu

es
tio

ns
);

E3
: P

ro
bl

em
-s

ol
vi

ng
 te

st

w
ith

 o
pe

n-
en

de
d

qu
es

tio
ns

ba

se
d

on
 a

n
ER

-m
od

el
.

O
pt

io
na

l a
ttr

ib
ut

es
 a

nd
 re

la
tio

n-
sh

ip
s s

ho
ul

d
be

 u
se

d
on

ly
 w

he
n

th
e

go
al

 is
 to

 o
bt

ai
n

su
rf

ac
e-

le
v-

el
 u

nd
er

st
an

di
ng

 o
f t

he
 d

om
ai

n
an

d
sh

ou
ld

 n
ot

 b
e

us
ed

 w
he

n
a

de
ep

-le
ve

l u
nd

er
st

an
di

ng
 is

ne

ed
ed

.

Pa
rs

on
s

20
03

Fo
rm

 o
f r

ep
re

se
nt

at
io

n:
 a

 si
ng

le

gl
ob

al
 sc

he
m

a
vs

. t
w

o
lo

ca
l

sc
he

m
as

A
bi

lit
y

to
 in

te
rp

re
t i

nf
or

m
a-

tio
n

fr
om

 a
 c

on
ce

pt
ua

l
sc

he
m

a
co

rr
ec

tly

A
ns

w
er

 q
ue

st
io

ns
 b

as
ed

 o
n

a
sc

he
m

a/
sc

he
m

as
Lo

ca
l s

ch
em

as
 b

et
te

r f
or

 lo
ca

l
ve

rifi
 c

at
io

n;
 G

lo
ba

l s
ch

em
a

be
t-

te
r i

f n
ec

es
sa

ry
 to

 u
nd

er
st

an
d

a
co

m
pl

ex
 c

la
ss

ifi
ca

tio
n

st
ru

ct
ur

e
w

ith
 c

om
pl

em
en

ta
ry

 v
ie

w
s;

Lo

ca
l s

ch
em

as
 b

et
te

r i
f c

on
fl i

ct

be
tw

ee
n

sc
he

m
as

Toward an Extended Framework for Human Factors Research on Data Modeling 217

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

SECTION III:

DATABASE DESIGN
AND DEVELOPMENT: APPLICATIONS

218 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter XI

Using DEMO and
ORM in Concert:

A Case Study
Jan L.G. Dietz, Delft University of Technology, The Netherlands

Terry Halpin, Northface University, USA

ABSTRACT
The Demo Engineering Methodology for Organizations (DEMO) enables business processes of or-
ganizations to be modeled at a conceptual level, independent of how the processes are implemented.
DEMO focuses on the communication acts that take place between human actors in the organization.
The Object-Role Modeling (ORM) approach enables business information to be modeled conceptually,
in terms of fact types as well as the business rules that constrain how the fact types may be populated
for any given state of the information system and how derived facts may be inferred from other facts.
ORM also includes procedures to map conceptual data models to physical database schemas. Both
DEMO and ORM treat fact types as fundamental, and require that their models be expressible in natural
language sentences. This suggests that the approaches may be synthesized in a natural way, resulting
in a more powerful method for business modeling. This chapter discusses an exploratory case study
in which both methods were used in concert, and identifi es some lessons learned.

INTRODUCTION
Demo Engineering Methodology for Organizations (DEMO) is a method for orga-

nization engineering, an emerging discipline concerning the design and implementation
of organizations (Dietz, 1994, 1999, 2003a, 2003b; Van Reijswoud, Mulder & Dietz, 1999).
Traditional organization science is based on a teleological system defi nition, which is con-
cerned with the function and the behavior of a system in its environment. The corresponding
dominant paradigm for studying organizations is the IPO-paradigm (Input-Process-Output).
The matching model type is the black-box-model. Organization engineering is based on an Organization engineering is based on an Organization engineering
ontological system defi nition, which is concerned with the construction and operation of a ontological system defi nition, which is concerned with the construction and operation of a ontological

Using DEMO and ORM in Concert: A Case Study 219

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

system. Its dominant paradigm for studying organizations is the PSI-paradigm (Performance
in Social Interaction). The matching model type is the white-box-model.

Organization science and organization engineering are complementary fi elds. The
former is particularly useful for managing organizations (strategic, tactic and operational managing organizations (strategic, tactic and operational managing
management), while the latter is especially useful for changing organizations (redesign/re-changing organizations (redesign/re-changing
engineering of business processes, forming networks of organizations, etc.).

The PSI-paradigm states that an organization consists of people who, while communicat-
ing, enter into and comply with commitments (social interaction) about the things they bring
about in reality (performance). This reality therefore is to a large extent an inter-subjective
reality. Put differently, in their social interaction people engage in obligations about actions
to take, and reach agreement about the results of those actions. The PSI-paradigm is made
more specifi c and operational in DEMO as described later. DEMO belongs to a group of
modeling approaches that are all based on the Language/Action Perspective (e.g., Goldkuhl,
1996; Medina-Mora, Winograd, Flores & Flores, 1992). Van Reijswoud and Dietz (1999)
provide a detailed description of DEMO.

Object-Role Modeling (ORM) is a fact-oriented approach for modeling information at a Object-Role Modeling (ORM) is a fact-oriented approach for modeling information at a Object-Role Modeling
conceptual level. An overview of ORM is given in Halpin (1998a), and a detailed treatment
in Halpin (2001a). ORM includes a family of closely related variants, including Natural
Information Analysis Method (NIAM) (Wintraecken, 1990), Natural Object Relationship
Method (NORM) (De Troyer & Meersman, 1995), Predicator Set Model (PSM) (ter Hofstede,
Proper & van der Weide, 1993), and Fully Communication Oriented Information Model-
ing (FCO-IM) (Bakema, Zwart & van der Lek, 1994). Unlike Entity-Relationship (ER)
modeling (Chen, 1976) and the class diagram technique of the Unifi ed Modeling Language
(UML) (OMG UML RTF, 2003), ORM makes no use of attributes as a base construct, in-
stead expressing all fact types as relationships. This attribute-free approach leads to greater
semantic stability in conceptual models and conceptual queries (Bloesch & Halpin, 1997;
Halpin, 1998b) and enables ORM fact structures to be directly verbalized and populated
using natural language sentences.

ORM supports mixfi x predicates of any arity (unary, binary, ternary, etc.), so its con-
straints and derivation rules can also be directly verbalized in sentential form. For details
on business fact and rule verbalization in ORM, see the series of articles initiated by Halpin
(2003). Moreover, ORM’s graphic constraint notation is far more expressive than that of
UML class diagrams or industrial ER versions. ORM is now supported by a number of
modeling tools, which can automatically transform ORM schemas into physical database
schemas (e.g., see Halpin, Evans, Hallock & MacLean, 2003). For such reasons, ORM is
being increasingly used for conceptual analysis of information, as well as ontology specifi -
cation (Spyns, Meersman & Jarrar, 2002), and is currently being considered as a candidate
for a standard business rule modeling language within the Object Management Group.

Both DEMO and ORM treat fact types as fundamental, and require that their models
be expressible in natural language sentences. This suggests that the approaches may be
synthesized in a natural way, resulting in a more powerful method for business modeling.
This chapter discusses the fi rst attempts to explore the feasibility of this synthesis, and
identifi es some lessons learned, using a running example of a library application to illustrate
the main ideas.

The following section summarizes the essential concepts and model types underlying
the DEMO approach, and discusses how the library application is modeled using DEMO.
Next, the chapter explains the main concepts and notations of ORM, and shows how the

220 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

library application may be modeled in ORM. Then, the chapter identifi es some ways in which
ORM supplements DEMO by providing additional constructs and techniques for modeling
the information. The result of successfully performing a P-act is a production fact or P-fact. production fact or P-fact. production fact
P-facts in our library example include “membership M has started to exist” and “the late
return fi ne for loan L is paid”. The variables M and L denote an instance of membership
and loan, respectively. All realization issues are fully abstracted out. Only the facts as such
are relevant, not how they are achieved. Examples of C-acts are requesting and promising
a P-fact (e.g., requesting to become a member of the library).

The result of successfully performing a C-act is a coordination fact or C-fact (e.g., coordination fact or C-fact (e.g., coordination fact
being requested of the production fact “membership #387 has started to exist”). Again, all
realization issues are ignored (e.g., whether the request is made by a letter or e-mail or via
a web site). Just as we distinguish between P-acts and C-acts, we also distinguish the two
worlds in which these kinds of acts have effect: the production world or P-world and the production world or P-world and the production world
coordination world or C-world, respectively. Both the P-world and the C-world are at any coordination world or C-world, respectively. Both the P-world and the C-world are at any coordination world
moment in a particular state. A state is simply defi ned as a set of facts. So, a state of the
P-world is a set of P-facts and a state of the C-world is a set of C-facts. State changes, also
called transitions, take place instantaneously. The occurrence of a transition at a particular
point in time is called an event. An example of an event is the creation of the P-fact “mem-
bership #387 has started to exist”. Events occur at discrete points in time, and the number
of events in any fi nite time interval is fi nite.

P-acts and their related C-acts appear to occur in generic recurrent patterns, called
transactions. A transaction has three phases: the order phase, the execution phase, and the
result phase. It is carried out by two actors, who alternately perform acts. The actor who
starts the transaction and eventually completes it is called the initiator. The other, who
actually performs the production act, is called the executor. The order phase is a conversa-
tion that starts with a request by the initiator and ends (if successful) with a promise by the
executor. The result phase is a conversation that starts with a statement by the executor and
ends (if successful) with an acceptance by the initiator. In between these two conversations,
there is the execution phase, in which the executor performs the P-act. The process of a
transaction can be more complicated but its complexity is always limited (Dietz, 2003b).

Figure 1: The white-box model of an organization

C-World

Using DEMO and ORM in Concert: A Case Study 221

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Transactions are the molecules of business processes (Dietz, 2003a), the C-acts and P-acts
being the atoms. A business process is defi ned as a (arbitrarily large) structure of causally
linked transactions. A transaction T02 is causally linked to a transaction T01 if and only
if T02 is initiated during the course of T01 by either the initiator or the executor of T01.
Usually, T01 has to wait for the completion of T02 before proceeding.

Concerning production acts, and hence actors, three levels of abstraction are distinguished
(see Figure 2). These levels may be understood as ‘glasses’ for viewing an organization.
Looking through the essential glasses, one observes the core business actors, who perform sential glasses, one observes the core business actors, who perform sential
production acts that result in original (non-derivable) facts, and who directly contribute
to the organization’s function (e.g., approving a membership application, or diagnosing a
patient’s medical problems). These essential acts and facts are collectively called B-things
(from Business). Looking through the informational glasses, one observes intellectual ac-informational glasses, one observes intellectual ac-informational
tors, who execute informational acts like collecting, providing, recalling and computing
knowledge about business acts and their results. Informational acts and facts are collectively
called I-things (from Information and Intellect). Looking through the documental glasses, documental glasses, documental
one observes documental actors, who execute documental acts like gathering, distributing,
storing, copying, and destroying documents containing the aforementioned knowledge.
Documental acts and facts are collectively called D-things (from Documents and Data).

The three kinds of actors are called B-actors, I-actors and D-actors. They are elements
of three corresponding aspect systems of an organization: the B-system, the I-system, and the
D-system. The starting point and emphasis in DEMO is the B-system. Only in the B-system
may new original facts be created to contribute to fulfi lling the organization’s mission. The
corresponding I-system and D-system are part of the realization of the B-system, and so can
be designed only after the B-system is designed. Information and communication technology
can be applied without any risk or harm to the I-system and the D-system. However, one
must be cautious in applying it to the B-system, to prevent machines from taking over the
responsibility of B-actors. One can only mimic or simulate B-systems. The triangular shape
of the levels in Figure 3 shows that there is nothing ‘above’ the B-system, and that generally
the amount of D-things in an organization is much more than the amount of I-things, and
that the amount of I-things is much more than the amount of B-things.

Figure 2: The three levels of abstraction

222 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The complete model of the B-system of an organization in DEMO is called the es-
sential model of the organization. It consists of an integrated set of four aspect models: the sential model of the organization. It consists of an integrated set of four aspect models: the sential model
Construction Model (CM), the Construction Model (CM), the Construction Model Process Model (PM), the Process Model (PM), the Process Model State Model (SM), and the State Model (SM), and the State Model Action
Model (AM). The CM shows the actor roles and the transaction types in which they play (as Model (AM). The CM shows the actor roles and the transaction types in which they play (as Model
initiator and/or executor). The AM specifi es the action rules that the actors apply in carrying
out their transactions. Based on the AM, the PM shows how the transaction types are causally
and conditionally related, and the SM models the fact types that are created and/or used in
carrying out the transactions. Only the CM and the SM are elaborated in this chapter.

Figure 3 shows the CM of the library case. The diagram (an Actor Transaction Diagram)
shows the actor roles, transaction types, and the relationships between them (i.e., which actor
roles are initiator and/or executor of which transaction types). An actor role is represented
by a box; the transaction symbol is a diamond (production) in a disk (coordination). The
small black box denotes which actor role is the executor of a transaction type. The boundary
of the considered part of the library is represented by the gray-lined open box. Actor roles
inside the boundary are elementary actor roles—they execute exactly one transaction type.
Actor roles outside the boundary are (by defi nition) non-elementary, so-called system actor

Figure 3: DEMO Construction Model (CM) of the library

Using DEMO and ORM in Concert: A Case Study 223

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

roles; they are colored gray. Actually, what is inside the boundary is the ‘uncovering’ of the
system actor role S01 (Library).

The table below the diagram (called a Transaction Result Table) lists all transaction
types and specifi es for each the resulting P-event type. Actor roles A09 and A10 are self-
activating actors: they are both initiator and executor of the same transaction. This is how
DEMO models periodic activities.

Figure 4 shows the SM corresponding to the CM of Figure 4. The diagram (an Ob-
ject Fact Diagram), plus the table below it (an Object Property Table) may be viewed as
a variant of the ORM model discussed in this chapter. They specify all object types and
fact types occurring in the action rules of the AM (of the B-system). The SM of (a part of)
an organization is an ontological conceptual schema—it describes the types of things and ontological conceptual schema—it describes the types of things and ontological
facts (relationships) that can be observed, as well as the laws that appear to hold for the co-

Figure 4: DEMO State Model (SM) of the library

224 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

existence of these things and facts. The gray-colored boxes depict external object classes.
They contain objects that play a role in the business processes, but their existence is deter-
mined by transactions other than those in the CM. The white-colored boxes depict internal
object classes. The objects in these classes are created in the mentioned transactions. For
the classes Membership, Loan, and Shipment, this is obvious. For BookCopy, these are the
books delivered in shipments to the library.

The diamond shaped fact types are the production fact types that also appear in the
Transaction Result Table of Figure 3. These fact types link the conceptual schema of the
production world to the transactions that change the state of the production world. Consider
the creation and termination of loans. There are two ‘normal’ fact types: “the membership
of L is M” and, “the book copy of L is C”. A uniqueness constraint holds for the role of the
loan in both fact types: a loan always relates to at most one membership and one book copy.
A mandatory constraint also holds for Loan in both fact types. Hence a loan always relates
to exactly one membership and one book copy. Therefore, the fact types “the membership
of L is M” and “the book copy of L is C” are existentially dependent on Loan. existentially dependent on Loan. existentially dependent

A new loan can be conceived of (and in a simulation game be generated), but that
doesn’t mean that it actually exists yet. In order to come into being, an event of type PE04
is needed. This event has a time stamp (the point in time at which it occurs). By defi nition
this is the point in time at which the transaction T04 concerning L has successfully been
completed (Dietz, 2003a). The loan ends its existence by an event of type PE06. During the
lifetime of the loan, an event of type PE07 may occur (late return fi ne payment).

ORM
This section briefl y explains the basic ORM graphical symbols, and then provides an

ORM model for the library application. Object-Role Modeling is so-called because it views
the universe of discourse (application domain) as a set of objects (non-lexical entities or
lexical values) that play roles (parts in relationships). ORM stores all data in simple fact
types, catering for unary, binary, and longer relationships, and allowing all fact structures to
be easily populated with sample data to help validate business rules. Unlike ER and UML,
ORM makes no use of attributes.

Graphically, object types are depicted as named ellipses (solid for entity types, and
dotted for value types). As in logic, a predicate is a proposition with object-holes in it. In
ORM, a predicate is treated as an ordered set of one or more roles, each of which is depicted
as a box, which may optionally be named. A fact type is formed by applying a predicate to
the object types that play its roles. Fact types in ORM must be given one or more readings.
The arity of a predicate is its number of roles. For discussion purposes, each fact type may
be populated by entries in a sample fact table that includes one column for each role of the
fact type.

The ORM model in Figure 5 includes three object types (Movie, Person and Sex)
and fi ve fact types: Movie is banned; Movie is based on Movie; Movie was directed
by Person; Movie was reviewed by Person; Person is of Sex. Inverse readings are
supplied for two associations: Person directed Movie; Person reviewed Movie. One role
is named (“director”). Simple identifi cation schemes may be abbreviated in parentheses. For
example, Movie(Nr) abbreviates the injective (1:1 into) association Movie has MovieNr.
For simplicity, we assume that persons in this domain may be identifi ed by name. In this

Using DEMO and ORM in Concert: A Case Study 225

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

example, all fact types are unary or binary. We could add Movie was released in Country
in Year as a ternary fact type.

ORM classifi es business rules into constraints and derivation rules. The ORM model in
Figure 5 includes constraints but no derivations. The value constraint {‘M’, ‘F’} indicates value constraint {‘M’, ‘F’} indicates value constraint
the possible sex codes. Arrow-tipped lines across one or more roles denote uniqueness con-
straints, indicating that instantiations of that role sequence must be unique. For example, the
uniqueness constraint on the fi rst role of Person is of Sex indicates that entries in the fact
column for that role must be unique. The English version of ORM’s formal textual language
verbalizes this constraint as: each Person is of at most one Sex.

A solid dot (possibly circled) connected to a set of one or more roles denotes a man-
datory constraint over that role set. For example, the mandatory dot connected to the fi rst datory constraint over that role set. For example, the mandatory dot connected to the fi rst datory constraint
role of Person is of Sex indicates that each Person is of some Sex. The mandatory dot
connected to the other two roles played by Person depicts an inclusive-or constraint: each
Person directed some Movie or reviewed some Movie (possibly both).

The Oir symbol connected to the roles of the fact type Movie is based on Movie
denotes the irrefl exive ring constraint: no Movie is based on itself. The circled subset
symbol “⊆” connected by an arrow from the fi rst role of Movie was reviewed by Person
to the fi rst role of Movie was directed by Person denotes a subset constraint, indicating
that the population of the fi rst role must always be a subset of the population of the second
role. In English: each Movie that was reviewed by some Persons also was directed
by some Person.

A subset constraint is one kind of set-comparison constraint. In general a set-comparison
constraint applies across sequences of compatible role sequences (of one or more roles).
Other varieties of set-comparison constraints are exclusion and equality constraints. For
example, the circled “X” in Figure 5 denotes an eXclusion constraint between the role-pairs eXclusion constraint between the role-pairs eXclusion constraint
that comprise the direction and review predicates. In English: no Movie was directed by
and reviewed by the same Person.

Figure 5: An ORM model including an ORM schema and sample fact populations

226 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

We now turn to the library application. For convenience, we divide the ORM schema
into four subject areas: membership, loan, book, and book shipment. Figure 7 shows the
main aspects of the membership subschema. The reference mode “Id” for Person indicates
that each person has a value-based identifi er, called PersonId, used in human communica-
tion. Each person also has a name, not necessarily unique. A library year is a calendar year,
at some time during which the library was in operation. The reference mode “CE” denotes
“Common Era”, indicating calendar years are based on the Gregorian calendar.

The association Membership covers Year is bership covers Year is bership covers Year objectifi ed as the entity type Annual-objectifi ed as the entity type Annual-objectifi ed
Membership. Its association with FeeType indicates whether or not a given member has
been granted a reduced membership fee for a given year. If desired, a derived fact type may
be added to infer the fee paid for a given annual membership, based on the fee type and the
membership fee of that type for the given year. For simplicity we assume that a member
pays the full annual fee regardless of when he/she began or renewed the annual membership.
In practice, it would be more commom to apply a pro-rated fee or extend the membership
to a year after the date paid.

By default, predicates are read left to right and top to bottom. A reversed reading
direction is indicated by a back arrow “<<”. The fi rst role of the fact type Person was
born on Date is optional. This means it is optional whether we record a person’s birth date
(even though in the real world each person has a birth date). An ORM model refl ects the
universe of discourse (i.e., those aspects of the application world that we wish to discuss,
and the rules that we wish to enforce), so the model need not agree in every respect with the
real world. In this aspect, ORM differs from DEMO, where birth date is mandatory simply
because each person in the real world has a birth date.

The life-buoy symbol (combination of inclusive-or and exclusion symbols) denotes an
exclusive-or constraint: each Person was born on a Date or had alternative minimum

Figure 6: ORM subschema for library membership

Using DEMO and ORM in Concert: A Case Study 227

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

age approval, but not both. Here the unary fact type caters for the case where a person
does not supply his/her birth date, (e.g., he/she may not wish to divulge it, or might not
know it) but can have the minimum age requirement approved by authorized library staff
(e.g., visual inspection of a person who is obviously old).

Notice the use of hyphens in the fact types Year has minimum-member Age and Year
has normal-loan Period. This causes the hyphenated and any subsequent words before
the following term for the object type to be bound to that term for verbalization purposes.
For example, the uniqueness constraint on the fi rst of these fact types verbalizes as, “each
Year has at most one minimum member Age” instead of, “each Yeas has minimum
member at most one Age”.

As discussed later, role names displayed in square brackets are used to provide func-
tion names for derivation rules that make use of attribute-style notation. The second role of
predicates with the reading “has” is assumed to have the name of the second object type,
with the fi rst letter in lower-case, unless an explicit role name overrides this. For example,
the second role of Person has PersonName is named “personName”. For binary predi-
cates with a reading comprised of “has” followed by a hyphenated phrase, the second role
has a default name obtained by prepending the hyphenated phrase to the right-hand object
type term. For example, the second role of the fact type Year has normal-loan Period is
“normalLoanPeriod”.

The superscript “1” on the fact type Membership was issued to Person indicates the
existence of a textual constraint on this fact type. The asterisk “*” on the fact type Person
has Age indicates that this fact type is derived. In a complete ORM model, all constraints derived. In a complete ORM model, all constraints derived
that cannot be expressed in graphical notation as well as all derivation rules (to indicate
how derived fact types are derived from other fact types) should be specifi ed in a formal,
textual language. For example, the derivation rule for Person has Age may be specifi ed
in attribute-style as shown below. Here, dayOfYearNr denotes the sequential position of the
day in its year (e.g., 2003 September 14 has dayOfYearNr 257).

Person.age = today.year – Person.birthdate.year if today.dayOfYearNr >= Person.birthdate.dayOf-if today.dayOfYearNr >= Person.birthdate.dayOf-if
YearNr else = today.year – Person.birthdate.year + 1

This formulation makes use of various operations (e.g., date subtraction) and functions
(e.g., year) that are predefi ned for Date. Figure 8 summarizes some of the main underly-
ing semantics from an ORM perspective. Each circled “u” depicts an external uniqueness
constraint, indicating that each Year, DayOfYearNr combination and each Year, MonthNr,
DayNr combination refers to only one Date. While the mdy (month-day-year) format for
dates is used for communication purposes, internally dates may be implemented otherwise
(e.g., as Julian dates). Fundamentally, ORM uses relational-style, over which an attribute-
style may be defi ned. The nullary function “today” is defi ned as the result of the query !Date
is today (using “!” to prepend each desired projection). The role names “dayOfYearNr”,
“year”, “monthNr”, “dayNr” on the right-hand roles of the derived predicates may be used
as function names in attribute-style rules.

As a small extension to the current age rule shown earlier, a derivation rule may also
be specifi ed for the derived fact type Person on Date had Age. Using this fact type, the
function “age of … on …” may now be specifi ed over the parameter list (Person, Date).
The textual constraint indicated by the subscript “1” in Figure 7 may now be specifi ed as
follows:

228 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Figure 7: Some predefi ned semantics underlying Date

Figure 8: ORM subschema for library loans

Using DEMO and ORM in Concert: A Case Study 229

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Membership.person.[age of Person on Membership.startDate] >= Membership.startDate.year.mini-
mumMemberAge

If a person’s birth date is not recorded, the age function returns null, and the whole
expression evaluates to unknown. As in SQL, the constraint is violated if and only if it
evaluates to false.

Figure 8 shows an ORM subschema for the main details about library loans. The circled
“u” depicts an external uniqueness constraint, indicating that a particular copy (physical
instance) of a book can be identifi ed by combining the call number for the book with the
copy number. As well as this composite identifi cation scheme, a book copy also has a simple
identifi cation scheme (its barcode). The circled “=” depicts an equality constraint (a loan equality constraint (a loan equality constraint
has a paid fi ne if and only if it had its fi ne paid on some date).

Each loan is for exactly one book copy. The subset constraint between the loan-return
and loan-end associations declares that each loan that was returned on a date also ended on
the same date. The superscripts “2” and “3” on fact types indicate that a textual constraint
applies to them. In this case, the textual constraints are listed below the diagram. For each
derived fact type (asterisked), a formal derivation rule declares how instances of the fact
type may be derived from other facts. This example includes four derivation rules displayed
below the diagram. ORM rules and queries (Bloesch & Halpin, 1997) may be formally speci-
fi ed in relational style and/or attribute-style (using role names and/or defi ned functions).
The fi rst derivation rule is expressed in relational style, the second rule in a combination of
relational and attribute styles, and the last two rules in attribute style. The derivation rule
for unpaid fi nes determines the fi ne currently accrued for an overdue loan—this amount
may vary over time. The derivation rule for paid fi nes enables the system to compute the
fi ne amount actually paid. The predefi ned nrUnits function converts a unit-based amount
(e.g., three days) into a pure number (e.g., 3). This function may apply to any expression
that returns a unit-based type, and enhances semantic stability by protecting rules against
changes to choice of units.

Figure 9: ORM subschemas for details about Books and Shipments

230 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Usually, constraints on derived fact types are themselves derivable. However, further
constraints can be explicitly added to them (e.g., the value constraint on NrOnLoanItems).
This provides a convenient and powerful way to declare various business rules that are
awkward to express on base fact types.

Figure 9 shows basic subschemas for the book and shipment areas. If a book has an
International Standard Book Number (ISBN), the library records this as well. These sub-
schemas are straightforward, so should need no further explanation.

POSSIBLE BENEFITS OF ORM FOR DEMO
As explained earlier, the DEMO approach uses a state model to declare the “essential”

fact types and rules pertaining to the real world objects in the application domain. A state
model is specifi ed using an object-fact diagram supplemented by an object property table.
Figure 4 shows the state model for the library application. Collectively, Figure 6, Figure
8 and Figure 9 provide an ORM model for the library application. A comparison between
these two models reveals some important differences.

An ORM model is intended to capture all the fact types that are of interest in the ap-
plication domain, as well as all static business rules (constraints and derivation rules that
apply to each individual state of the information system) that need to be enforced. ORM
models are also formal, so that they can be automatically transformed into implementation
models. For these reasons, ORM models tend to be more complete and precise than cor-
responding DEMO state models.

The fi rst major addition provided by ORM models is their inclusion of at least one
identifi cation scheme for each entity type. For example, in Figure 6 we see that each loan
is identifi ed by a loan number, and each book copy is identifi ed by a barcode. In addition,
we see that each book copy can be identifi ed by combining the call number of its book with
a copy number. Any reference scheme that is to be used in the application is considered
relevant. Apart from being needed for the operation of the information system, such iden-
tifi cation schemes enable the modeler to use real examples when populating fact types for
validation purposes (as shown in Figure 5). This makes it much easier to decide whether
the model accurately refl ects the application domain. As DEMO considers the choice of any
identifi cation scheme as non-essential, this kind of information is ignored.

The second major difference is that ORM models typically capture more constraints.
For example, the DEMO-SM ignores any dependency between the unary fact types PE05
(BookCopy has been returned) and PE04 (Loan has ended to exist) because this is
captured in the OM (and consequently in the PM). To enforce the dependency, the ORM
model includes a subset constraint between the loan-return and loan-end fact types to ensure
that each returned loan is classifi ed as ended. In general, ORM’s constraint language is more
powerful (e.g., see Halpin, 2002b).

A third addition provided by ORM models is that all temporal aspects are declared
explicitly. For example, consider the DEMO unary fact type PE04: Loan has started to
exist. Like any other DEMO fact type, this has an implicit time stamp. In ORM, this is
explicitly modeled using the fact type: Loan was issued on Date. This goes beyond the
DEMO representation by including the granularity of the time stamp—in this case, day,
rather than, for example, minute or second. This granularity choice is uncovered by inspec-
tion of sample requirements or by discussion with the domain expert. One of the design

Using DEMO and ORM in Concert: A Case Study 231

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

heuristics in ORM is to consider each fact type, and ask whether it needs to be treated in a
snapshot or historical way. For example, consider the fact type: BookCopy has CopyNr.
Although in the real world, instances of this fact type come into being at a given time (e.g.,
when assigned by the librarian), the recording of time stamp information for this fact type
is not of interest to the users of the library application (as confi rmed in interview sessions).
Hence the ORM model excludes any temporal information about this fact type. In contrast,
DEMO’s ontological approach includes time stamps for all production events.

A fourth difference is that ORM provides formal derivation rules for relevant derived
fact types. This makes it possible to automatically generate application code to enforce the
rules. For example, consider the four derived properties listed at the bottom of the DEMO
state model in Figure 4. Although precise, they are not expressed in a formal language, so
are not executable. Although a derivation rule for computing a person’s age is included in
the ORM model, this applies only to those members who supply their birth dates. The library
decided not to require all applicants to provide their birth date (this is left optional), allow-
ing other ways to establish age (e.g., by visual inspection of the applicant). In contrast, the
DEMO model assumes that birth dates are always known, and its derivation rule is based
on this assumption.

 Unlike a person’s age, the determination of fi nes for overdue loans is always con-
sidered to be of interest to the system, as is the recording that such fi nes were paid. Unlike
the DEMO model’s single derivation rule for incurred fi nes, the ORM model includes two
derivation rules, one to allow the computation at any instant for unpaid fi nes, and one to
record fi nes that were actually paid (see Figure 8). The ORM model captures explicitly all
decisions about what history to record in the information system.

In addition to enabling the formal capture of more information than DEMO state
models, ORM provides modeling procedures and formal transformation theorems to assist
modelers to create conceptual models and map them to implementation code. Details on
ORM’s conceptual schema design procedure and transformation theorems may be found in
Halpin (2001a). Of particular interest in this regard is ORM’s use of data use cases (samples
of required information) to seed the model. For example, concrete instances of data required
from an as-is or to-be library system can be extremely helpful for specifying an initial model.
But this practice requires the use of value-based identifi cation schemes (at least tentative
ones) for the entities involved, an aspect ignored by DEMO.

For the above reasons, ORM appears to provide a useful supplement to DEMO, of-
fering ways to fl esh out state models to complete, executable data models, and providing
further procedures to help in the modeling process itself.

POSSIBLE BENEFITS OF DEMO FOR ORM
ORM is a method for information modeling, in particular for developing conceptual

database schemas. Although ORM can be used to model manual and/or automated informa-
tion systems, it is especially useful for specifying an executable schema for a fully automated
information system (AIS). Because of its data-oriented focus, ORM covers only part of the
scope of a business system (BS). This section investigates what DEMO can add to ORM
in this respect.

The fi rst addition provided by DEMO is the distinction between a BS and an AIS,
which DEMO treats as an automated realization of the I-system discussed earlier (see

232 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Figure 2). This I-system supports the B-system, which represents the abstracted essence
of the organization. The kinds of support are purely informational: collecting, providing,
recalling and computing knowledge about business acts and their results. The AIS and the
BS can each be modeled as a discrete dynamic system (or discrete event system) (Hee, van
Houben & Dietz, 1989), but of a different category—a BS is a social system, whereas an
AIS is a rational system.

An AIS is a software system, so the only support it can offer is to provide information
to the BS that is modeled in the AIS. Only in the BS may original facts be created (which
can then be entered in the AIS). For example, the replenishment orders generated by an
automated stock control system are just (computed) output information as far as the AIS is
concerned. At the I-system level they are not business orders. Only by virtue of the declara-
tion by the B-system do these information items count as replenishment orders.

The second contribution offered by DEMO to the design of an IS is a full account of
the possible actions to be supported. The operating principle of a BS is the ability of human
beings (in their role of social individuals) to enter into and comply with commitments and
agreements. This was called coordination in this chapter. The standard pattern of C-acts and
resulting C-facts of a transaction is shown in Figure 10. An open or white box represents a
C-act type and an open or white disk represents a C-fact type. A gray box represents a P-act
type and a gray diamond a P-fact type.

The initial C-act is drawn with a bold line, as is every terminal C-fact. The gray
colored frames denoted by “initiator” and “executor” represent the responsibilities of the
two partaking actor roles. The steps in the transaction process are ideal candidates for the
functions (use cases) of the AIS. These are the atomic components of business processes;

Figure 10: The standard pattern of a transaction

Using DEMO and ORM in Concert: A Case Study 233

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

there is nothing more to support. Using ORM, one (only) has to decide which actions will
be supported and how, and which will not.

As a third contribution to ORM, DEMO distinguishes between the dynamics of the
BS and AIS. Every C-fact may serve as an agendum (singular of agenda) to be dealt with
by an actor. Typically, an actor disposes of a set of agendums, or agenda. In dealing with
an agendum, one or more new agendums may be generated. This constitutes the dynamics
of a BS. The dynamics of the AIS are basically asynchronous with respect to the dynamics
of the BS. They coincide only when products of the AIS are declared to count as acts in the
BS (like we have seen for an automated stock control system). In all other cases, the C-acts
must be made known to the AIS.

Consider for example the borrowing of a library book. This transaction of type T04
starts with a member request. The resulting C-fact “requested” is entered in the AIS. At the
same time, a new instance of Loan is created by the AIS, including the facts that existen-
tially depend on it (“the membership of L is M” and “the book copy of L is C”). Ideally, the
recorded time stamp of the C-fact is the real time (valid time) at which it was created in the
BS. It is, however, common practice to take the time of entering into the AIS (transaction
time) as the time stamp. This usually causes no problems since the order in which the steps
of Figure 10 are entered in the AIS is easily controlled by the AIS. For example, a promise
fact is rejected by the AIS if there is no corresponding request fact. If the transaction suc-
ceeds, the terminal state is the C-fact “ac” (accepted). At the time of establishing this fact,
the production fact becomes existent. From that time on, the loan really exists in the BS.
This defi nition is easily implemented in the AIS: as soon as the accepted fact is entered, the
loan exists (there is only the unavoidable time delay with the BS).

CONCLUSIONS
This chapter outlined the essential features of the DEMO and ORM approaches to

conceptual modeling, then explored various potential benefi ts of synthesizing both methods
to achieve a more complete and productive approach to business and information system
modeling. As both methods treat fact types as fundamental, it seemed judicious to use their
fact models as a basis for integration. With this in mind, a basic library application was
modeled in both DEMO and ORM, and then commonalities and differences between these
models were examined.

As regards the benefi ts of supplementing DEMO with ORM, it seems clear that ORM
offers several advantages for fl eshing out DEMO state models into more comprehensive,
formal data models that can be automatically transformed into application code. In particular,
ORM models can extend DEMO state models by providing identifi cation schemes, addi-
tional constraints, explicit and granular coverage of relevant temporal aspects, and formal
derivation rules, as well as focusing on those features of actual interest to the automated
information system. In addition, various ORM modeling procedures may provide additional
assistance in the task of constructing models.

On the other hand, using DEMO in conjunction with ORM provides a more compre-
hensive modeling approach that goes beyond ORM’s data-oriented perspective. In particular,
DEMO provides a clean integration of static and dynamic aspects of business modeling,
offering high level, implementation-independent ways of modeling the essential business

234 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

processes in terms of the communication acts being performed by the business actors. Because
communication acts may be modeled in terms of propositions (facts) and associated illocu-
tionary forces, a clean integration with ORM’s fact-based approach becomes feasible.

While our initial fi ndings indicate positive benefi ts for synthesizing the DEMO and
ORM approaches, a number of research problems require further analysis. In particular,
the role of identifi cation schemes in modeling needs further study. ORM mandates the use
of such reference schemes early in the modeling process, while DEMO deliberately avoids
them. The pragmatic consequences of this difference needs closer examination, as does the
decision process involved in specifying automation boundaries to scope those aspects of the
business that are to be implemented in an automated information system.

REFERENCES
Bakema, G., Zwart, J., & van der Lek, H. (1994). Fully communication oriented NIAM.

In G. M. Nijssen & J. Sharp (Eds.), NIAM-ISDM 1994 Conf. Working Papers (pp.
L1-35). Albuquerque, NM.

Bloesch, A.C., & Halpin, T.A. (1997). Conceptual queries using ConQuer-II. Proceedings
of the 16th International Conference on Conceptual Modeling ER’97 (pp. 113-126). of the 16th International Conference on Conceptual Modeling ER’97 (pp. 113-126). of the 16th International Conference on Conceptual Modeling ER’97
Los Angeles: Springer LNCS 1331.

Chen, P. P. (1976). The entity-relationship model—Towards a unifi ed view of data. ACM
Transactions on Database Systems, 1(1), 9-36.

De Troyer, O., & Meersman, R. (1995). A logic framework for a semantics of object oriented
data modeling. OOER’95, Proceedings of the 14th International ER Conference (pp.
238-249). Gold Coast, Australia: Springer LNCS 1021.

Dietz, J.L.G. (1994). Modeling business processes for the purpose of redesign. Proceedings
of the IFIP TC8 Open Conference on BPR. Amsterdam: North-Holland.

Dietz, J.L.G. (1999). Understanding and modeling business processes with DEMO. Pro-
ceedings of the 18th International Conference on Conceptual Modeling ER’99. Paris:
Springer LNCS.

 Dietz, J.L.G. (2003a). The atoms, molecules and fi bers of organizations. Data &
Knowledge Engineering.

Dietz, J.L.G. (2003b). Generic recurrent patterns in business processes. In W. van der Aalst,
A. ter Hofstede & M. Weske. (Eds.), Business Process Management, LNCS 2678.
Springer-Verlag.

 Goldkuhl, G. (1996). Generic business frameworks and action modelling. In F. Dig-
num, J. Dietz, E. Verharen & H. Weigand (Eds.), Communication modeling - The
language/action perspective. Proceedings of the First International Workshop on
Communication Modeling. Electronic Workshops in Computing Springer. [Online]
Available: http://www.springer.co.uk/ewic/workshops/CM96/

Halpin, T.A. (1998a). ORM/NIAM Object-Role Modeling. In P. Bernus, K. Mertins & G.
Schmidt (Eds.), Handbook on information systems architectures (pp. 81-101). Berlin:
Springer-Verlag.

Halpin, T.A. (1998b). Conceptual queries. Database Newsletter, 26(2). Boston, MA: Da-
tabase Research Group.

Halpin, T.A. (2001a). Information modeling and relational databases. San Francisco:
Morgan Kaufmann.

Using DEMO and ORM in Concert: A Case Study 235

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Halpin, T.A. (2001b). Supplementing UML with concepts from ORM. In K. Siau & T. A.
Halpin (Eds.), Unifi ed Modeling Language: Systems analysis, design, and develop-
ment issues. Hershey, PA: Idea Group Publishing.

Halpin, T.A. (2002a). Metaschemas for ER, ORM and UML: A comparison. Journal of
Database Management, 4-13. Hershey, PA: Idea Group Publishing.

Halpin, T.A. (2002b). Join constraints. In T. Halpin, J. Krogstie & K. Siau (Eds.). Proceedings
of the Seventh CAiSE/IFIP-WG8.1 International Workshop on Evaluation of Modeling
Methods in Systems Analysis and Design (pp. 121-131). Toronto, Canada.

Halpin, T.A. (2003). Verbalizing business rules: Part 1. Business Rules Journal, 4(4). [On-
line]. Available: http://www.BRCommunity.com/a2003/b138.html

Halpin, T.A., Evans, K., Hallock, P., & MacLean, B. (2003). Database modeling with Mi-
crosoft Visio for enterprise architects. San Francisco: Morgan Kaufmann.

Hee, K.M. van, Houben, G.-J., & Dietz, J.L.G. (1989). Modelling of discrete dynamic
systems; framework and examples. Information Systems, 14.

Hofstede, A.H.M. ter, Proper, H.A., & Weide, th. P. van der (1993). Formal defi nition of
a conceptual language for the description and manipulation of information models.
Information Systems, 18(7), 489-523.

Medina-Mora, R., Winograd, T., Flores, R., & Flores, F. (1992). The action workfl ow ap-
proach to workfl ow management technology. In J. Turner & R. Kraut (Eds.). Proceed-
ings of the 4th Conference on Computer Supported Cooperative Work. New York:
ACM Press.

OMG UML RTF. (2003). Unifi ed Modeling Language (UML), Version 2.0. [Online]. Avail-
able: www.omg.org/uml

Spyns, P., Meersman, R., & Jarrar, M. (2002). Data modeling versus Ontology engineering.
ACM SIGMOD Record, ACM SIGMOD Record, ACM SIGMOD Record 31(4), 12-17.

Van Reijswoud, V.E, & Dietz, J.L.G. (1999). The DEMO modeling handbook. [Online].
Available: http://www.demo.nl

Van Reijswoud, V.E., Mulder, J.B.F., & Dietz, J.L.G. (1999). Speech act based business
process and information modeling with DEMO. Information Systems Journal.

Wintraecken, J. (1990). The NIAM information analysis method: Theory and practice.
Deventer, The Netherlands: Kluwer.

APPENDIX: BASIC DESCRIPTION OF
THE LIBRARY CASE

The library described hereafter is one of the branches of the public library of Delftown.
In the building in which it is located is a desk for lending books (the out-desk) and a desk
for returning books (the in-desk). The in-desk is occupied by Louise and the out-desk by
Tim and Kevin on turn. There is a third desk, called the information desk, which is occupied
by Lisa. The books that may be borrowed are put on shelves, sorted on the category of the
title. Every (copy of a) book is identifi ed by a bar code.

At the information desk one can get information such as opening hours, loan rules, and
membership fees, and of course about the books. There is a binder on Lisa’s desk, which
contains the complete library catalog, sorted in several ways (on author, on category and
on title). One can freely browse through the binder to fi nd the book one is looking for. Next
to that, one can ask Lisa about the books in the catalog.

236 Dietz and Halpin

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The information desk also serves as the registration desk. Anyone who wants to be
registered as a member of the library has to apply with Lisa. She writes the data needed
on a registration form. These forms are collected daily by someone from the central offi ce.
Within a few days, the new member receives a letter welcoming him/her as a new member
and informing him/her about the library rules. The letter also contains the fee to be paid,
and the message that the membership card can be collected at the branch offi ce. By default,
this fee is the standard annual fee as determined by the library board. Exceptions may be
made for people without means. In that case, Lisa applies in writing to the library board for
the reduced fee. Of course, she has to wait for the board’s decision, which she also gets in
writing, before the membership can be registered. One gets the membership card after cash
payment of the fee. The membership card has a bar code on it representing the membership
number.

If one wants to borrow a book, one has to take (a copy of) the book from the shelves
and take it to the out-desk. Tim or Kevin will then scan the bar code on the membership card,
as well as the bar code on the book. These data are automatically entered into the library
information system (LIS). The book is now considered to be lent to the member. No more
than fi ve books may be lent simultaneously to the same member.

When one returns a book, one goes to the in-desk and hands the book to Louise. She
scans the book code, which is automatically entered into LIS. On the screen of her com-
puter, she sees whether the loan period is exceeded or not. If it is, she also sees the fi ne
that has to be paid. The person who returns the book has to pay the fi ne right away and in
cash. After payment, Louise marks the book in her computer as returned. If the loan period
is not exceeded, she only enters that the book has been returned. Returned books are piled
on a table next to Louise. About every hour Lisa collects the pile and puts the books back
on the shelves.

Every month, the librarian (Maria) decides which titles should be added and how many
copies per title have to be ordered. She does so on the basis of the announcements of new
books she knows of (by means of fl yers of publishers but also by surfi ng on the web).

At the start of a new calendar year, Lisa sends out invoices to all current members for
the annual membership fee. Fees have to be paid in cash at the branch offi ce. If applicable,
she also sends renewal requests for the reduced fee to the library boards.

Revisiting Workfl ow Modeling with Statecharts 237

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter XII

Revisiting Workfl ow
Modeling with Statecharts

Wai Yin Mok, University of Alabama in Huntsville, USA

David Paper, Utah State University, USA

ABSTRACT
In this chapter, we model business workfl ows using Harel’s statecharts. We demonstrate that
mapping to statecharts allows one to systematically identify potential workfl ow problems.
Moreover, it also allows one to investigate specifi c properties inherent in actual business
workfl ows. Our research focuses on three desirable properties of active database systems
— termination, confl uence, and observable determinism. As a theoretical lens for termination
and confl uence, we develop algorithms linking desirable active database system properties
to workfl ow management systems problems. Preliminary validation of our algorithms is ac-
complished by mapping business workfl ows from a case study. Our research thus generates
preliminary theory by developing a systematic method for identifying workfl ow problems.

INTRODUCTION
Business workfl ows can be well defi ned, predictable, and frequently executed. We

thereby refer to these as structured business workfl ows. Such workfl ows can be automated
by machines to reduce clerical tasks and potential human intervention errors. Workfl ow
management systems (WMS) are a tested vehicle to facilitate automation of structured busi-
ness workfl ows. WMS, which are new generations of computerized systems, are designed to
manage automated parts of business workfl ows (Brunwin, 1994). By separating workfl ow
defi nitions from application software, WMS provide process and knowledge independence,
much like data independence provided by database management systems.

In this research, we use Harel’s statecharts to model structured business workfl ows
(Harel, 1987) for three reasons. First, Harel’s statecharts are used in the Unifi ed Modeling
Language (UML) as a means for modeling behavior (Object Management Group, 1999).

238 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Since the UML is the standard modeling language of the Object Management Group1,
Harel’s statecharts will soon become common. Second, statecharts are easy to understand
and they do not have the problem of exponential growth of states that plague ordinary state
transition diagrams (Harel, 1988). We shall elaborate on this point in the Related Work sec-
tion. Third, their semantics are rigorous enough for formal analysis on various aspects of
structured business workfl ows (Harel & Naamad, 1996).

Within the framework of statecharts, we will show how to model workfl ow concepts
and present algorithms that determine whether a given business workfl ow has certain
predefi ned properties. We will then use a case study with Moore BCS (recently recast as
Moore Wallace Incorporated) to explore the characteristics of a business workfl ow. The
algorithms we develop in this study will become part of a software design tool that we will
develop in the future.

RELATED WORK
An overview of workfl ow management using the latest technology can be found in

Georgakopoulos, Hornick, and Sheth (1995). Specifi cation and implementation of excep-
tions in workfl ow management systems are discussed in Casati, Ceri, Paraboschi, and Pozzi
(1999) and workfl ow evolution in Casati, Ceri, Pernici, and Pozzi (1998).

Active database systems have been studied extensively (Paton & Diaz, 1999). Active
database systems and workfl ow management systems are related since both types of systems
employ triggers to respond to external and internal events and exceptions. We are interested
in three important properties of active database systems in this research, namely termination,
confl uence, and observable determinism, which are formally defi ned in Allen, Hellerstein,
and Widom (1995). More discussion on active database systems, which includes several
research prototypes and commercial products, can be found in Zaniolo (1997).

The statemate approach, which uses statecharts in modeling reactive systems, is de-
scribed in Harel and Politi (1998) and its semantics in Harel and Naamad (1996). By far,
the statemate semantics of statecharts is the most rigorous and precise execution semantics
defi ned for statecharts and it has been in use for more than ten years (Harel & Naamad,
1996). Here we point out the most signifi cant aspects of the execution semantics. The reader
may consult Harel and Politi (1998) and Harel and Naamad (1996) for details.

The behavior of a system described in statemate semantics is a set of possible runs,
each representing the responses of the system to a sequence of external stimuli generated by
its environment2. A run consists of a series of detailed snapshots of the system’s situation;
such a snapshot is called a status. The fi rst in the sequence is the initial status, and each
subsequent one is obtained from its predecessor by executing a step (see Figure 1).

Figure 1: Status and step

Revisiting Workfl ow Modeling with Statecharts 239

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Some of the general principles of statemate semantics are as follows:

1. Reactions to external and internal events, and changes that occur in a step, can be
sensed only after completion of the step.

2. Events are “live” for the duration of one step only, the one following that in which
they occur, and are not “remembered” in subsequent steps.

3. Calculations in one step are based on the situation at the beginning of the step (e.g.,
 the states the system was in, the activities that were active, and the values of conditions

and data-items at that time). Updates of data items only occur at the end of a step.
4. A maximal subset of non-confl icting transitions is always executed.

Item 3 deserves more explanation. As an example, suppose there is an action:

“X := X + 1; Y := X * 5”, which is executed in a step. Further suppose that X is equal to
4 at the beginning of the step. Because of Item 3, after executing the step, X becomes 5 and
Y becomes 20. Note that every computation of the action does not infl uence any other com-
putation of the action. The semicolon separating the actions means, “do this too” rather
than “and then do” in statemate semantics.

Using activity diagrams to model workfl ows is discussed in Chapter 19 in Booch, Rum-
baugh, and Jacobson (1999). Note that activity diagrams are special statecharts in which all

Figure 2: Exponential growth of states

240 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

of the state transitions are triggered by completion of activities in the source states. Activity
diagrams are not designed to handle events. Since exceptions may happen during the execu-
tion of a workfl ow instance and exceptions are best modeled as events, activity diagrams
can only model very simple workfl ows. In this sense, statecharts are more appropriate for
modeling realistic workfl ows.

Before we show how to use statecharts to model workfl ow concepts, we present an
example, adapted from Harel (1987), that shows the problem of exponential growth of states
that plague ordinary state transition diagrams. In Figure 2, a statechart and its equivalent state
transition diagram are presented. Note that by making use of an and-state in the statechart,
we can easily model concurrency in a system by orthogonal components in the and-state.
On the other hand, to perform the same modeling in the equivalent state transition diagram,
we require six states. Using the same reasoning, for an and-state with two orthogonal
components with a thousand states in each of them, the equivalent state transition diagram
would require a million states. It is easy to see that it is diffi cult, if not impossible, to model
concurrency in ordinary state transition diagrams because of the problem of exponential
growth of states.

BASIC CONCEPTS AND TERMINOLOGY
The Workfl ow Management Coalition3 (WfMC) has published numerous documents

on various aspects of business workfl ow. We now introduce some basic concepts and termi-
nology defi ned by WfMC. A business workfl ow, or simply a workfl ow, is a set of activities
which collectively realize a business objective. An insurance claims process is an example.
A workfl ow is defi ned in a workfl ow defi nition that consists of a network of activities. Usu-
ally a workfl ow defi nition is a formal representation of a business workfl ow. An activity is
a logical step within a workfl ow. As such, it is usually the smallest unit of work within a
workfl ow. Further, an activity can be manual or automated. A workfl ow management system
is used to manage automated activities, but not manual activities. A workfl ow instance is the
representation of a single execution of a workfl ow. It has its own workfl ow instance data
and is capable of independent control as it progresses towards completion. The processing
of an insurance claim for a particular customer is thus an example of a workfl ow instance
of the insurance claims process.

Similarly, an activity instance is the representation of a single invocation of an activity
within a workfl ow instance. Several activity instances may be associated with a workfl ow
instance, but one activity instance cannot be associated with more than one workfl ow in-
stance.

MODELING WORKFLOW CONCEPTS
A business workfl ow can be formally represented by a statechart. Each workfl ow in-

stance has its own copy of the statechart. An activity of a workfl ow, whether it is manual or
automated, is represented by a state in the statechart. An activity is being carried out only
if the system resides in the state that corresponds to that activity.

Transitions between activities are thus modeled as transitions between states in the
statechart, which are triggered by events and guarded by conditions. Events can be external

Revisiting Workfl ow Modeling with Statecharts 241

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

(generated by elements outside the statechart) or internal (generated by elements inside the
statechart). A transition between a source state and a target state will take place if and only
if the system currently resides in the source state, and the event of the transition occurs,
and the conditions that guard the transition are true. In other words, the system must be in
the source state, the event must occur and the conditions must be true for the transition to
take place.

The four possible types of routing in workfl ows are sequential, parallel, conditional,
and iterative (van der Aalst, 1998). In the following subsections, we show how to model
these four types of routing in statecharts, and illustrate several statechart concepts that are
relevant in modeling workfl ows.

Sequential Routing
Activities are executed one after the other in sequential routing. In Figure 3, E1 is the

event, C1 is the condition, and A1 is the action of the transition between state A and state
B. In Figure 3, the system may still reside in state A unless at the instant E1 occurs, C1 is
true. Events are instantaneous. A transition between a source state and a target state will
take place if and only if the system currently resides in the source state, and the event of
the transition occurs, and the conditions that guard the transition are true. In other words,
the system must be in the source state, the event must occur and the conditions must be true
for the transition to take place.

An action can be sending an event, but the event can be lost if the system is not in the
proper state. As an example, suppose the transition between state B and state C fi res and A2
is the action “sending event E1”. Since the system is not in state A, E1 is simply lost.

Parallel Routing
In contrast to sequential routing, activities can be executed concurrently in paral-

lel routing. This is exactly why several activity instances may associate with a workfl ow
instance. We do not specify conditions in Figure 4. By default, they are assumed to be the
completion of the activities represented by the source states. If additional conditions are
given for a transition, then the actual guarding condition of the transition is the conjunction
of the additional conditions and the completion of the activity represented by the source
state, unless otherwise stated. As an example, in Figure 3, the actual guarding condition of
the transition from state A to state B is the completion of the activity represented by state
A and the additional condition C1. Events and actions are also omitted. If the event of a
transition is omitted, then the system will check the condition continuously. Thus, whether

Figure 3: Sequential routing

242 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

the transition will take place may depend solely on the condition of the transition (Harel &
Politi, 1998). Hence, transitions do not have to depend on any particular events and actions
do not have to be performed during transitions. In Figure 4, E is an and-state, which has two
orthogonal components. Being in E means being in these two components simultaneously.
The fork construct specifi es that when the system exits state A, it will enter states B and C fork construct specifi es that when the system exits state A, it will enter states B and C fork construct
simultaneously. The merge construct specifi es that the system will leave state E only if it merge construct specifi es that the system will leave state E only if it merge construct
resides in states D and C simultaneously. However, because of the default conditions, this
transition will only take place if activities D and C are both completed. Thus, synchronization
occurs at merge constructs. Fork and merge constructs can be used to model the and-split
and and-join defi ned by WfMC (Workfl ow Management Coalition, 1999).

Conditional Routing
The system will choose one activity among several target activities to execute in

conditional routing. The decision depends on the truth or the falsity of the conditions of the
transitions. In Figure 5, C1 and C2 are two mutually exclusive conditions and the system can
only enter either state B or state C but not both. Conditions in statecharts can be used to model
the or-split and or-join defi ned by WfMC (Workfl ow Management Coalition, 1999).

Figure 4: Parallel routing

Figure 5: Conditional routing

Revisiting Workfl ow Modeling with Statecharts 243

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Iterative Routing
Iterative routing is similar to conditional routing. Again, C1 and C2 are two mutually

exclusive conditions. Whether or not the system stays in state B in Figure 6 depends on the
truth or falsity of the iterative condition C1.

DESIRABLE PROPERTIES
Workfl ow management systems and active database systems both employ triggers to

respond to exceptions and events. Thus desirable properties of active database systems are
also applicable to workfl ow management systems. We chose to examine three salient desir-
able properties of active database systems, namely, termination, confl uence, and observable
determinism. Given a statechart of a business workfl ow, we present several procedures to
determine whether the given statechart has these properties.

Termination
As discussed in the Modeling Workfl ow Concepts section, external events are generated

by elements outside the given statechart. Internal events, on the other hand, are generated
by elements inside the statechart. Sometimes events can be generated both externally and
internally. For example, consider the statechart of a machine. The event “power off” can
be generated externally by an operator when he shuts down the machine or the event may
be generated internally by the machine itself when it is overheated. Generation of events
may lead to infi nite execution of a statechart. In Figure 7, which is adapted from Figure
47 in Harel (1987), once the event E1 occurs externally, events E2, E3, E4, and E1 will be
generated in this order internally, forever, meaning that the statechart will never terminate.
A workfl ow design tool should be able to detect cycles of this sort before the actual deploy-
ment of the system. In this way, termination problems can be detected and corrected during
modeling rather than in production.

There are certain distinguishing features in Figure 7. First, it leads to infi nite execution
and second, it contains cycles. In fact, a statechart that leads to infi nite execution always
has a cycle even though having a cycle in a statechart does not mean that the statechart will
always lead to infi nite execution. Third, in Figure 7, the transitions on the cycles are triggered
by internally generated events or conditions that will never run out or never be false.

Note that in the third point above, the condition that the “internally generated events or
conditions that will never run out or never be false” is important since internally generated
events may eventually run out or conditions of transitions may eventually become false, as
shown in the following example.

Figure 6: Iterative routing

244 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

In Figure 8, if x is equal to 5 initially, we will only go through the loop 5 times. However,
detecting transitions of this kind requires complicated analysis of the actions of the transitions.
In the literature, Baralis, Ceri, and Paraboschi (1996) contain complicated algorithms for
this kind of analysis, which may lead to a long execution time. Our techniques, on the other
hand, are only based on reading the values of and writing values to data items. Admittedly,
our techniques do not have the precision of those in Baralis et al. (1996).

We now introduce Algorithm 1. Algorithm 1 provides a mathematical procedure that
determines whether or not a given statechart terminates. The proof of Algorithm 1 theoreti-
cally validates the viability of termination as a critical property of business workfl ows.

Algorithm 1

Input: A statechart.
Output: Yes or no. (Yes means the statechart may have non-termination problems. Note

that our analysis is very conservative in the sense that if our algorithm says “yes”, the
statechart may still terminate because events may run out or conditions may become
false on a transition. However, as we have just mentioned, detecting situations of this
kind must be done by careful analysis of the actual computations of the transitions,
which we do not perform here. As an example, in Figure 8, after examining the
computation of the transition, we can conclude that the loop will eventually terminate.

Figure 7: A statechart that will not terminate

Figure 8: A statechart that will terminate

Revisiting Workfl ow Modeling with Statecharts 245

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Nevertheless, for much more complicated transitions which may have hundreds or
thousands of lines of codes, analysis could be hard, if not impossible, to perform.)

1. If there is no direct cycle constructed from states and transitions in the statechart, the
statechart will terminate and we may stop and say “no”; otherwise let S be the set of
such cycles. For each cycle s in S, if s contains a transition whose event can only be
generated externally or whose condition can only be set to true externally, s will not
cause non-termination and we may remove s from S.

2. If there is no cycle constructed from internally generated events or conditions in the
statechart, the statechart will terminate and we may stop and say “no”; otherwise let
E be the set of such cycles.

3. If there exists an element s in S and an element e in E such that the events that take
the system from one state to the other in s is a subsequence of e, then the statechart
will never terminate and we say “yes”; otherwise the statechart will terminate and we
say “no”.

Theorem 1. Algorithm 1 specifi es suffi cient conditions for a statechart to terminate.
Proof: In Step 1, if there is no direct cycle constructed from the states and transitions

in a statechart, the statechart will terminate since the activity associated with a state will
terminate and each state in the statechart will only be visited once. In case there is such
a cycle s, and there is a transition of s whose event can only be generated externally or
whose condition can only be set to true externally, the completion of s depends on external
interventions. Thus, s will eventually be stopped by external means. In Step 2, if there is no
cycle constructed from internally generated events or conditions in a statechart, the events
and conditions are not “self-feeding”, which means the events will eventually run out and
the conditions will eventually become false. On the other hand, in Step 3, if we can fi nd
such a cycle s and a self-feeding cycle e of events and conditions, then s will never stop
once s is started.

As an example, in Figure 7, S is {[A, B, A], [C, D, C]} and E is {[E1, E2, E3, E4,
E1]}. Let s be [A, B, A] and e be [E1, E2, E3, E4, E1]. The events that take the system
from one state to the other in s is [E1, E3], which is a subsequence of e. Thus the statechart
will never terminate.

In the Statechart Analysis section, we will use Algorithm1 to demonstrate its ability
to detect a non-termination problem from the actual workfl ow scenario illustrated in Figure
10. In the next section, we discuss confl uence.

Confl uence
Consider a set of non-prioritized transitions that are fi red at the same time. If the

fi nal status of the system does not depend on their order of execution, then the system is
confl uent.

Whether a system is deterministic or not has a great impact on the confl uence of the
system. For example, in Figure 5, if C1 and C2 are not mutually exclusive, then both of them
could be true at the same time and thus the system needs to non-deterministically choose
either state B or state C to enter. To avoid situations like this, for each conditional routing,
we require the user to prioritize the alternatives so that in case there is a tie, a tiebreaker is
provided.

246 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Two transitions are in confl ict if there is some common state that would be exited
if any one of them were to be taken (Harel & Naamad, 1996). Nonconfl uent statecharts,
or systems, are caused by non-determinism of execution and confl icting transitions in the
statecharts. In other words, when a statechart encounters non-determinism (that is, when
there is more than one possible execution sequence of the confl icting transitions in a step),
the fi nal database state may be different due to a different order of execution of the confl ict-
ing transitions. However, for some confl icting transitions, a different order of execution
may still lead to the same fi nal database state after the statechart becomes stabilized. This
is because they do not have a read-write racing problem or a write-write racing problem,
which are defi ned as follows:

Two transitions t1 and t2 and t2 and t have a read-write racing problem if t1 reads the value of a data item
x and t2x and t2x and t writes a value to x.

Two transitions t1 and t2and t2and t have a write-write racing problem if both t1 and t2and t2and t write values to
a common data item x.

The two racing problems mentioned above are related to concurrency control problems
inherent in database management systems (Bhargava, 1999). In this research, however, we
adhere to the terminology used in the statechart literature. That is, we will keep using the
terms read-write racing problems and write-write racing problems.

Figure 9 demonstrates a read-write racing situation. In this example, when the event
“New Year” occurs, two transitions take place at the same time. Whether the new payment
will be based on the new interest rate or the old interest rate depends on which transition is
executed fi rst. In this case, the statechart is not confl uent.

We now introduce Algorithm 2, whose purpose is to identify a set of concurrently
executed transitions that may lead to non-confl uence.

Figure 9: A read-write racing problem

Revisiting Workfl ow Modeling with Statecharts 247

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Algorithm 2

Input: A set T of concurrently executed transitions.
Output: A partition of the transitions in T such that each partition class may lead to non-

confl uence.

 (Note that once again our analysis is very conservative in the sense that theset N out-
putted by Algorithm 2 may not lead to non-confl uence. As in Algorithm 1, to conclude
that there is non-confl uence, we must carefully study the actual computations of the
transitions, which we do not perform here.)

1. We fi rst create a graph G with each transition in T as a vertex in G. However, G has
no edge in this stage.

2. If two distinct transitions t1 and t2 have a read-write racing problem or a write-
write racing problem, we add an edge to the two corresponding vertices in G.
We continue this step until no more edges can be added to G. Note that at most
n(n-1)/2 edges are added to G if n is the number of transitions in T.

3. The transitions in each connected component of G with at least two transitions may
lead to non-confl uence.

Theorem 2. Algorithm 2 correctly identifi es sets of transitions that potentially lead
to non-confl uence.

Proof: Note that Algorithm 2 partitions the set T into disjoint subsets of T. Consider a
partition class C where C is a connected component in G. If C has at least two transitions,
then a transition in C has either a read-write racing problem or a write-write racing problem
with another transition in C. Switching the order of execution of these two transitions will
cause different fi nal states of the system.

We may repeat Algorithm 2 until the set T becomes empty. At that time, there are no
more transitions to be removed from T. Note that all the sets of transitions outputted by
Algorithm 2 that may potentially lead to non-confl uence have at least two transitions.

For any such set N and for any transition in N, there is another transition in N such that
they have either a read-write racing problem or a write-write racing problem. In this way,
Algorithm 2 points out the set of transitions that may potentially lead to non-confl uence to
the analyst and the analyst may consult with the client to devise a solution to the problem.
The next theorem is interesting in the sense that the statemate semantics of statecharts avoid
certain problems.

Theorem 3. If a statechart S implements the statemate semantics, then read-write
racing problems will not cause non-confl uence.

Proof: Since each transition is prioritized and calculations in one step are based on
the situation at the beginning of the step, and updates of data values only occur at the end
of a step, the data values read during the execution of a step are all produced in the previ-
ous step. Thus any data values produced during the execution of a step will not be read by
any transitions executed in the same step. Therefore, read-write racing problems will not
cause non-confl uence.

As an example, if the statechart in Figure 9 implements the statemate semantics, then
the calculation of the payment will be based on the old interest rate rather than on the new

248 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

interest rate. The calculation of the new interest rate, of course, is also based on the old
interest rate. However, the new interest rate is not available to the other calculations that
occur in the same step.

In the Statechart Analysis section, we will use Algorithm 2 to identify the set of transi-
tions in Figure 10 that may lead to non-confl uence.

Observable Determinism
A transition is observable if its action is visible to the environment. A good example

would be “print Profi t” where Profi t is a variable. Consider a set of non-prioritized and ob-
servable transitions that are fi red at the same time. If the order of the output of the system
does not depend on their order of execution, then the set is observably deterministic.

Theorem 4. If a statechart S implements the statemate semantics, then S is observably
deterministic.

Proof: In the statemate semantics of statecharts, all actual updates of data items (or
variables) are done at the end of a step (Harel & Naamad, 1996). Thus, any values that are
displayed or printed out during the execution of a step are updated at the end of the previ-
ous step. Hence, displaying values to the environment cannot interleave with updating of
values within the system. Therefore, if a system implements the statemate semantics, then
it is observably deterministic.

The next theorem shows the relationship between the properties Observable Determin-
ism and Confl uence.

Theorem 5. If a statechart S is observably deterministic, then S is confl uent.
Proof: For each transition in S, we add the action “show the entire current status of

S”. Thus if S is observably deterministic, then the printout of the status of S will be deter-
ministic, which means S is confl uent.

By Theorem 5, if a statechart is not confl uent and its outputs are visible, then it is
not observably deterministic. In the Statechart Analysis section, we will identify the set of
transitions in Figure 10 that may lead to non-observable determinism.

 CASE STUDY
We introduce a case study to theoretically validate our algorithms within a real-life

context. Benbasat, Goldstein and Mead (1987) and Yin (1994) endorse the use of case stud-
ies to capture knowledge from practice. Our study generates theory with the assistance of
algorithms. These algorithms prove that statecharts are valuable in determining termination,
confl uence, and observable determinism in workfl ows. Therefore, the results of the algo-
rithms provide validated theory related to workfl ow properties. We also extend our theory
by testing these properties in a real-life context (the case study). The case study approach
offers a vehicle to construct applied theory from scholarly theory.

The case study was with Moore Business Communication Services (BCS), located
in Logan, UT. Since the case study was administered in 1999-2000, Moore BCS has been
recast as Moore Wallace Incorporated (MWI). From this point forward, we will use the
MWI name when we refer to the case. MWI is a large company with approximately 2.32
billion dollars in 2003 revenue. MWI helps large corporations increase their competitive-

Revisiting Workfl ow Modeling with Statecharts 249

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ness by improving the effectiveness of important business-to-customer communications. It
provides consulting, project management, reengineering and distribution of high volume,
customized communications to its clients. MWI delivers personalized, easy-to-read docu-
ments that facilitate a positive impression on an organization’s customers. Its reengineering
and redesign services help to ensure that the client organization’s business communications
have high quality and clarity.

By outsourcing with MWI, clients can divert their internal resources to other priorities
because the dedicated production facilities can be trusted to help ensure faster cycle times,
ultimately reducing overall costs. Equipped with the latest print and digital technologies,
MWI has become a market leader in managing critical business communications.

MWI offers products and services that include statement/billing, cards (e.g., phone
cards, credit cards, etc.), government noticing, policyholder and plan member communica-
tion, and database marketing. The technology environment at MWI paces, and in many areas
leads, the marketplace in its industry.

Case Study Methodology
In the spring of 1999, we embarked on a case study of the card recovery system at

MWI. The goal of the research was to map the existing state of the card recovery system
process. Once mapped, we were charged with redesigning the process to remove redundancies
and improve the overall effectiveness of the system. However, we were not responsible for
implementing suggested changes. Our job was to examine the overall process of the system
and devise a set of recommendations for management. The study began in January 1999
and was completed in December 2000. We were able to speak with several BCS employees,
but our main contacts were Ferris Jorgensen, Phone Card Project Manager, Dennis Elwood,
National Manufacturing Systems Project Manager, and Harvey Black, Project Manager.

Our last meeting with Dennis was on December 4, 2000 to discuss future research
and refi ne our theoretical assumptions. We have built a solid relationship with MWI over
the past several years. As a result, we have a trusting relationship and are able to gather
additional data when needed.

Analysis of the card recovery process was conducted in four distinct phases. Phase
one consisted of the problem defi nition. The problem was within the context of a problem
statement. The problem statement was agreed upon by all parties involved and signed on
February 24, 1999. The problem statement reads as follows: “MWI has a phone card divi-
sion. During production, cards may become damaged or lost. The company has a need for a
system that will track missing and replacement cards through the production cycle.” A phone
card recovery system existed prior to the research, but was not fully automated. During a
meeting on March 3, 1999 with Ferris Jorgensen, it was decided that an updated system was
needed to track missing and replacement cards through the production cycle because it was
becoming an unacceptable cost to the organization. We worked closely with a small team
of systems analysts and programmers to develop an accurate map of the existing system.
Once the map was refi ned by us and the other team members, we redesigned the system as
a working prototype. MWI can use this working prototype to integrate into their existing
information systems infrastructure. We developed a prototype system because we didn’t
have the charge to implement a new system in accordance with existing systems. Phase two
consisted of studying the current physical system. This involved building entity relationship
diagrams, data fl ow diagrams, statechart diagrams, and completing a feasibility study. Phase

250 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

three consisted of defi ning end-user requirements. End-user requirements are the functional
and technical needs of the logical new system. Phase four consisted of clearly defi ning the
possible alternatives and selecting a feasible solution. After careful analysis and several
meetings with our team and key managers, it was decided that the prototype would be built
using MS Access, MS Excel, and MS Visual Basic. This choice allowed us to develop a
fully functional prototype without having to build the necessary error-checking routines. In
addition, our choice of platform can be integrated with existing BCS systems.

A meeting on March 3, 1999 revealed the specifi cs of the existing process. An excerpt
from the meeting follows: “When a card is found missing or damaged, the operator fi lls out
a missing slip form and turns it in to a central processor, who then enters the information
into a spreadsheet and forwards the request for replacement cards to the programmers. A
replacement card is then produced and inserted into the proper bundle to be shipped.” As
can be seen from this narrative, the process is not very well automated because it requires
several people to communicate process changes on a continuous basis. As such, process
accuracy is suspect because of the tremendous potential for human error, and effi ciency
is low because of the large amount of human observation needed to continuously moni-
tor the process. The meeting also revealed the specifi c purpose of the redesigned system:
“The purpose of the new application is to automate the card recovery process in an attempt
to increase effi ciency and accuracy. The new system should reduce the need for entering
the original data several times. It should also make the entire process nearly ‘paperless’ by
eliminating several iterations of the same forms and information.”

A meeting on March 23, 1999 revealed the system requirements — system inputs and
functions, general system requirements, attributes to track, system outputs, and reports.
Detailed system requirements are too vast to mention here, but we thought it prudent to
include a few to give the reader a sense of the project’s scope. Some of the system inputs
and functions included start number, end number, and enter missing number. Some of the
general system requirements included implementing a virtually ‘paperless’ process, elimi-
nating forms, and building capability to determine where problems occur most frequently.
Some of the attributes to track included programmer ID, project manager, client number,
and workstation. System outputs included missing card ‘slip’. System reports included error
occurrence and orders sent to programmers for replacement cards.

The design phase included acquisition and design of the newly mapped system. A
request for proposal (RFP) was written to communicate to vendors the desired features and
requirements. The primary intent of the RFP was to solicit specifi c confi gurations, prices,
maintenance agreements, conditions regarding changes made by buyers, and servicing. The
RFP also conveys proposals for evaluating criteria, closure, postmark dates, and constraints.
Meetings were held in early April to refi ne the RFP. The design specifi cations were agreed
upon during April 1999. The design specifi cations explained the physical system require-
ments and the proposed prototype of the new system. The document included design of
computer outputs, database and computer fi les, computer inputs, terminal dialogues and
user interfaces, and methods and procedures.

The implementation phase included construction of the new system (prototype) and
delivery of the new system. Meetings during April and May 1999 were conducted to fa-
cilitate this phase of the project. Construction of the prototype included building, testing,
recording data, and developing integrated databases for the network of connected comput-
ers. Construction of the prototype also included installation and testing of new software
packages, and writing and testing new programs. Delivery included developing conversion

Revisiting Workfl ow Modeling with Statecharts 251

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

plans including database installations, end-user training, and physical conversion. Delivery
also included the writing and delivery of the User Manual.

To provide a sense of how the process actually works, we now briefl y describe the
basic steps involved in the MWI workfl ow. A graphic of the workfl ow is depicted in Figure
10. Manufacturing (Manufacturing Card) receives an order for cards. At this point, an op-
erator is responsible for checking whether the cards are in raw form or already laminated.
If the cards are not laminated, the operator creates an image through a copy process. From
this copied image, the cards can now be accurately cut and laminated. The cards are then
either sent for gluing (the image must be glued to a rigid backing for stability) or sent to
be bundled in a larger package and then glued. If the cards are already laminated, they are
either sent for gluing or sent to be bundled in a larger package and then glued. Once bundled
by another team of operators, cards can be sent directly to the Packing-Out stage for fi nal
delivery if the order requests this action. The same is true at the Gluing Card stage. Once
glued, the cards can be sent directly to Packing-Out. However, this is not the norm because
cards sent directly to Packing-Out are never scanned and therefore are not tracked properly
in the system. As a result, we recommend that all bundled and glued cards be sent to the

Figure 10: MWI workfl ow

252 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Scan/Bundle Card stage prior to Packing-Out. Unfortunately the existing process does not
‘force’ this recommendation, resulting in potential losses in effi ciency. An operator is then
responsible for checking for misplaced cards and defects at the end of the Manufacturing
Card stage (if the normal process fl ow is followed). As such, any cards suspected of being
misplaced or damaged are replaced. Data on misplaced and damaged cards are sent to the
Recovering

Missing Card stage so that the data can be analyzed and appropriate action taken. From
this point, all glued cards (if the normal process fl ow is followed) are sent to the Scan/Bundle
Card stage. Barcodes for cards are then scanned so that this data can be properly stored in
the database. Cards can be in either a single package or a bundle, depending on the order
request. Packages or bundles are then labeled and scanned. Scanning is done twice because
bundles and packages have distinct barcodes from an individual card. Finally, bundles and
packages are sent to the Package-Out stage for shipment to customers.

Statechart Analysis
This research focuses on the statechart we generated from our analysis of the card

recovery process. We analyzed the statechart in terms of the three properties defi ned earlier.
With the aid of algorithms, we examined the workfl ow within the context of statecharts to
determine potential problems with the workfl ow. From our analysis and algorithmic genera-
tion, we were able to build preliminary applied theory that we believe can assist systems
designers in their attempt to design effective and accurate workfl ows.

In addition to the default conditions, additional conditions are shown in Figure 10.
According to Harvey Black, those 14 extra conditions in Figure 10 (C1 – C14) are provided
by the user. However, these conditions must satisfy the following rules:

1. (C1 xor C2) = True,
2. (C3 xor C4) = True,
3. (C5 xor C6) = True,
4. (C7 xor C8 xor C9) = True,
5. (C10 xor C11 xor C12) = True,
6. (C13 xor C14) = True.

These rules specify that for the conditions in each rule, one and only one can be true
at any given time. For example, in Rule 4, at any moment in time, there are only three pos-
sibilities, namely, either C7 = True, C8 = False, and C9 = False; or C7 = False, C8 = True,
and C9 = False; or C7 = False, C8 = False, and C9 = True.

Analysis of the statechart we developed revealed some potential problematic structures
in the same. Note that there are two cycles. One is from the high-level state Manufacturing
Card to the high-level state Recovering Missing Card and back to Manufacturing Card. The
other one is from the basic state Cello Wrapping Bundle to the basic state Gluing Card and
back to Cello Wrapping Bundle. However, the event on the transition from Manufacturing
Card to Recovering Missing Card is external. Therefore, the transition from Manufactur-
ing Card to Recovering Missing Card will only take place when the event Missing Card
information happens. We do not believe this event will happen all the time and thus the
fi rst cycle does not cause any critical problem. For the second one, since the transitions do
not depend on external events and it is possible that C7 and C12 are both true, it is possible

Revisiting Workfl ow Modeling with Statecharts 253

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

that non-termination may occur. We therefore advise the user that either C7 or C12 must
eventually become false in the specifi cation. Otherwise, there is a fundamental fl aw in the
workfl ow; that is, the cycle may never terminate.

Algorithm 1 provides a means to detect and correct non-terminating cycles. However,
it provides much more. It forces us to analyze the statechart in a systematic manner. Our fi rst
analytical action after we fi nished design of the MWI workfl ow statechart was to identify
cycles in the workfl ow. Once all of the cycles were identifi ed, we then began to look closely
at each cycle for possible non-termination. Without Algorithm 1, we would never detect or
even suspect non-termination problems. Thus, Algorithm 1 acts as a high-level analytical
tool to systematically identify and correct non-termination problems within a given stat-
echart. System designers can identify, discuss, and correct potential cycle non-termination
problems during design rather than attempt to correct problems in production. Of course,
system designers can also correct non-termination problems for existing systems in the
manner discussed in the MWI case.

Another potential workfl ow problem is confl uence. Algorithm 2 provides a means to
identify a set of transitions that may lead to non-confl uence. In Figure 10, we identifi ed an
and-state in the sub-state Labeling contained in the high-level state Scan/Bundle card. Ac-
cording to Harvey Black, sometimes package labels are put on bundles or bundle labels are
put on packages. Thus, the and-state Labeling may have a write-write racing problem.

Notice that we spoke with Mr. Black once we noticed the and-state. After Mr. Black was
made aware of the and-state, he was able to better understand where the workfl ow problems
were occurring. Of course, we didn’t explain the details of statecharts to Mr. Black. We
instead explained to him the situation in business language. As a result of our intervention,
MWI is attempting to rethink the labeling process.

Hence, Algorithm 2 provided a systematic basis for redesign. By using the principles
developed in Algorithm 2, we were able to fl ag the and-state structure as a source of potential
problems and inform the user about it.

Another potential workfl ow problem is observable determinism. As Theorem 5 in-
dicates, if a statechart is not confl uent and its outputs are visible, then it is not observably
deterministic. Since the and-state Labeling has a write-write racing problem and its outputs
are visible to the environment, the outputs of the and-state Labeling are not observably
deterministic. After explaining to Mr. Black the concept of observable determinism, he was
able to identify a potential workfl ow problem. During label printing, there is a real danger
that package labels and bundle labels can be switched. Although it is easy to distinguish by
eye the difference between a bundle (a set of packages) and a package, it is very possible
that an operator will accidentally place a bundle label on a package and vice-versa. Keep
in mind that the labels are both plain white and the bar codes are not easy to see with the
naked eye. As a result of this analysis, Mr. Black has suggested to management that bundle
and package labels be made different colors. Although color printing is more expensive, the
reduction in errors should more than justify the investment.

Algorithms 1 and 2 offer a systematic means to identify problems in complex busi-
ness workfl ows. By using the principles developed in this study, one can scan any statechart
quickly and effi ciently to fl ag potential workfl ow problems. Process improvement and
redesign has tended to focus on correcting, streamlining, and/or completely rethinking ex-
isting business workfl ows to reap vast improvements in performance and signifi cant costs
savings. However, this study pioneers the use of statechart analysis to identify workfl ow
problems during redesign.

254 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

FUTURE WORK AND CHALLENGES
We are in the process of developing a workfl ow design tool that incorporates the ideas

we developed in this research with the notion of automating statechart analysis. The idea of
developing this tool is to allow the user to develop sophisticated workfl ow models without
having to be concerned with the underlying formalisms and algorithms we developed. In
theory, the tool will automatically fl ag potential workfl ow problems for the user to aid in
workfl ow redesign efforts. Here, we point out some of the challenges that we might face
and obstacles that we must overcome to realize such a goal.

Workfl ow verifi cation and validation are important topics in academia and industry
alike. Given a workfl ow design and a specifi cation, it is important to see if the workfl ow
design fulfi lls the requirements in the specifi cation. Similarly, the output of a workfl ow design
needs to be validated for the workfl ow to be ready for production. Considering the complex-
ity of today’s business workfl ows, it would be extremely useful if the process of verifying
and validating workfl ow designs could be automated, or less-ambitiously, semi-automated.
However, the computer has certain limitations, particularly with algorithms, which must
be understood. The Church-Turing Thesis states that Turing machines precisely capture the
intuitive notions of algorithms. Turing machines, or any equivalent forms of computation,
have limitations, however. A well-known problem that does not have an algorithmic solution
is the halting problem of a Turing machine, which can be stated as follows: Given a Turing
machine and an input text string, it is not algorithmic to determine if the Turing machine
will halt on that input string. This important result in the theory of computation has serious
consequences. One of the consequences of the halting problem is that it does not have a
computer-based solution to determine if an algorithm possesses certain properties. Thus,
in general, it is hopeless to develop an automated software to accept a workfl ow design as
input and determine if the workfl ow design possesses certain nontrivial properties. However,
if we put certain constraints on the given workfl ow, then it would be possible to develop
an automated solution. Therefore, it is our job, as researchers, to determine the constraints,
or the bounds, that we must impose on the workfl ows for such an automated solution to be
feasible. This research, therefore, is a step in such a direction.

Of course we are speculating about the potential of our design tool until we can empiri-
cally validate it in the fi eld. As such, we intend to conduct an extensive case study of MWI
once our workfl ow design tool has been prototyped. It is hoped that additional case study
iteration will reveal the tool’s capabilities in a more granular manner.

We intend to further explore business workfl ows at MWI and other organizations to
validate and extend our fi ndings. We recently visited (May 2001) an executive at MWI who
was not part of this study. The purpose of the visit was to initially verify the fi ndings that
we obtained from this study and discuss future work possibilities with MWI. The executive
we interviewed was very positive about our current fi ndings and has agreed to participate
in an extension of this study.

Our next study will focus on developing the prototype and further testing our theory
on a new workfl ow mutually agreed upon by us and the MWI contact. If we can replicate
the fi ndings we obtained in this study, it will greatly enrich context and theoretical validity.
As such, we hope to build a cumulative tradition over time.

Of course we realize that in-depth case studies tend to uncover many ideas, constructs,
and concepts that are unanticipated. Therefore, we will try to keep our study somewhat within
the scope of theory we have already generated to enable rigorous replication.

Revisiting Workfl ow Modeling with Statecharts 255

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ENDNOTES
1 Available: http://www.omg.org
2 See page 298 in Harel and Naamad (1996).
3 Available: http://www.aiim.org/wfmc/mainframe.htm

REFERENCES
Aiken, A., Hellerstein, J.M., & Widom, J. (1995). Static analysis techniques for predict-

ing the behavior of active database rules. ACM Transactions on Database Systems,
20(1), 3-41.

Baralis, E., Ceri, S., & Paraboschi, S. (1996). Modularization techniques for active rules
design. ACM Transactions on Database Systems, 21(1), 1-29.

Benbasat, I., Goldstein, D.K., & Mead, M. (1987). The case study research strategy in stud-
ies of information systems. MIS Quarterly, 11(3), 368-386.

Bhargava, B. (1999). Concurrency control in database systems. IEEE Transactions on
Knowledge and Data Engineering, 11(1), 3-16.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unifi ed Modeling Language: User
guide. Reading, Massachusetts: Addison-Wesley.

Brunwin, V. (1994). A survivor’s guide to workfl ow. Management Development Review,
7(4), 27-29.

Casati, F., Ceri, S., Paraboschi, S., & Pozzi, G. (1999). Specifi cation and implementation
of exceptions in workfl ow management systems. ACM Transactions on Database
Systems, 24(3), 405-451.

Casati, F., Ceri, S., Pernici, B., & Pozzi, G. (1998). Workfl ow evolution. Data & Knowledge
Engineering, 24, 211-238.

Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An overview of workfl ow manage-
ment: From process modeling to workfl ow automation infrastructure. Distributed and
Parallel Databases, 3, 119-153.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8, 231-274.

Harel, D. (1988). On visual formalisms. Communications of the ACM, Communications of the ACM, Communications of the ACM 31(5), 514-530.
Harel, D., & Naamad, A. (1996). The statemate semantics of statecharts. ACM Transactions

on Software Engineering and Methodology, 5(4), 293-333.
Harel, D., & Politi, M. (1998). Modeling reactive systems with Statecharts: The STATEMATE

approach. New York: McGraw-Hill.
Object Management Group, Inc. (1999). OMG Unifi ed Modeling Language specifi cation.

Version 1.3.
Paton, N.W., & Diaz, O. (1999). Active database systems. ACM Computing Surveys, 31(1),

63-103.
Van der Aalst, W.M.P. (1998). The application of petri nets to workfl ow management. The

Journal of Circuits Systems and Computers, 8(1), 21-66.
Workfl ow Management Coalition. (1999). Workfl ow management coalition – Terminology

& glossary. Document Number WFMC-TC-1101, Document Status – Issue 3.0. Avail-
able: http://www.aiim.org/wfmc/mainframe.htm

256 Mok and Paper

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Yin, R.K. (1994). Case study research (2nd editon). London: Sage Publications. nd editon). London: Sage Publications. nd

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass, R.T., Subrahmanian, V.S., & Zicari, R. (1997).
Advanced database systems. San Francisco: Morgan Kaufmann Publishers, Inc.

Framework for the Rapid Development of Modeling Environments 257

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter XIII

Framework for the Rapid
Development of Modeling

Environments
Akos Ledeczi, Vanderbilt University, USA

Miklos Maroti, Vanderbilt University, USA

Peter Volgyesi, Hungarian Academy of Sciences, Hungary

ABSTRACT
This chapter introduces the concepts and techniques required for developing graphical,
domain-specifi c modeling and program synthesis environments. It argues that a fully func-
tional modeling environment can be quickly developed for a wide variety of engineering
domains using a confi gurable and extensible toolset with a limited set of generic concepts.
The confi guration is accomplished through metamodels specifying the modeling language
and methodology containing all syntactic, semantic and presentation information of the
domain. The authors applied this approach to several real-world systems.

INTRODUCTION
Graphical modeling environments for system development are integrated sets of

modeling, model analysis, simulation and code generation tools that aid the design of sys-
tems in a particular, well-defi ned engineering fi eld. These toolsets capture specifi cations
in the form of domain models, support the design process by automated systems analysis
and simulation and automatically generate, confi gure or integrate components of the target
applications. Examples for such domain-specifi c environments are Rational Rose for ob-
ject-oriented software development, Matlab/Simulink for signal processing and LabView
for instrumentation.

258 Ledeczi, Maroti and Volgyesi

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Advantages of such environments are the result of their domain specifi city. Domain-
specifi c modeling methodologies enable the concise representation of essential design
views, the formal expression and automated enforcement of integrity constraints and model
composition that is synergistic with the design process in the domain.

While these benefi ts of domain-specifi c development environments are well understood
and documented, their high cost represents a signifi cant roadblock against their wider appli-
cation. Consequently, domain specifi c toolsets are available commercially only for domains
with large markets, where the signifi cant initial investment is offset by high volume. For the
rest of the application areas, one solution is to create confi gurable tools that readily provide
the generic functionality of graphical development environments (creating and manag-
ing design projects, editing and combining diagrams, translating information into output
formats), and let them easily be tailored to use the concepts of a given domain. Such tools
can approach, albeit never fully reach, the features of an environment directly developed
for a given domain. Their key advantage is that effort needed for customizing them for the
domain is orders of magnitude less than developing a custom-made toolset.

Furthermore, these tools ease the development and evaluation of new or modifi ed
modeling methodologies. As we will show, the development of a fully functional modeling
environment using a confi gurable toolset can take from hours to days, depending on the
complexity of the given modeling methodology. On the other hand, the development of a
custom environment from scratch is measured in man-years.

The Generic Modeling Environment (GME) (Ledeczi et al., 2001), developed at the
Institute for Software Integrated Systems at Vanderbilt University (freely available at http://
www.isis.vanderbilt.edu/projects/gme), is one of the more prominent confi gurable model-
ing environments. Its confi guration is accomplished through metamodels specifying the
modeling paradigm (modeling language, modeling methodology) of the application domain.
The modeling paradigm contains all the syntactic, semantic, and presentation information
regarding the domain — which concepts will be used to construct models, what relationships
may exist among those concepts, how the concepts may be organized and viewed by the
modeler, and rules governing the construction of models. The modeling paradigm defi nes
the family of models that can be created using the resultant modeling environment.

Metamodeling is the primary method for specializing a GME instance. The metamodel-
ing language is based on the UML class diagram notation. Metamodels also contain OCL
constraints specifying the static semantics of the modeling language. These constraints are
automatically enforced in the target GME instance. Additional methods for customizing GME
include decorators, interpreters, and add-ons. Decorators are simple software components
that can be attached to a GME instance. They are used for domain-specifi c visualization of
the models. Interpreters and add-ons are external software components that interface with
GME and provide additional domain-specifi c functionality including, but not limited to,
code generation.

The rest of this chapter is organized as follows. In the next several sections the different
methods for providing native support for different modeling methodologies are described
in detail. Then examples are presented that illustrate these techniques. Finally, we compare
two other well-known confi gurable modeling environments to our approach and present
our conclusions.

Framework for the Rapid Development of Modeling Environments 259

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

METAMODELING
The metamodeling language is not used for defi ning domain models, but rather for

defi ning domain-modeling languages. Thus, “sentences” in the meta-language defi ne specifi c
domain languages, while “sentences” of the domain language defi ne specifi c systems. GME
follows the standard four-layer modeling architecture.

The GME metamodeling methodology is implemented with GME itself. The meta-
modeling language is just another domain language. The metaspecifi cations that confi g-
ure the GME are generated by the metamodeling interpreter from the metamodels. The
metamodeling language itself is generated by the same interpreter when translating the
meta-metamodels.

At the metamodeling level, GME provides generic modeling primitives that assist an
environment designer in the specifi cation of new modeling environments. These concepts
are directly supported by the framework as stereotypes of the specifi c classes. Elementary
types that do not contain other objects are defi ned as atoms, while models are composite
classes. Associations between these classes are modeled using the connection primitive
that is visualized by the modeling tool as a line between the objects. Connections can only
express relationships between objects at the same hierarchy level or one level deeper with
the help of ports on composite models. References help to overcome this limitation by
enabling the user to associate objects in different model hierarchies. A reference always
refers to exactly one object, which can be of any kind except connection; this establishes a
relationship between the model that contains the reference and the referred object. Connec-
tions and references model relationships between at most two objects. Sets can be used to
specify the relationship among a group of objects. Atoms, models, connections, references
and sets are the fi rst class objects (FCOand sets are the fi rst class objects (FCOand sets are the fi rst class objects () of the modeling framework.

The language designer can assign different attributes to fi rst class objects. Attributes
are values of predefi ned simple types, such as integer, string, boolean and enumeration. The
meta-attribute defi nes the name, the value type and the default value of the attribute. The
attribute value of an instantiated object is user-changeable at the modeling level.

The framework provides various techniques for managing the complexity of large-
scale models; the most notable concept is the introduction of aspects enabling the domain
users to focus on selected parts of a design. At the metamodeling level, a set of aspects are
assigned to every composite type and the visibility of each contained class can be defi ned
for a given aspect. This powerful construct assisting the modeler in separating the concerns
of multi-perspectives is similar to views in the world of rational databases.

The modeling concepts above can be used only if the environment designer precisely
defi ned them in the metamodel of the paradigm. In our experience, it is often necessary
to associate information chunks without real semantic meaning or strict syntax to objects.
This includes, for example, the specifi cation of visualization information, such as color,
style and icon for an object. Therefore we have added an extensible storage to every FCO,
called the registry. The registry is a tree data structure containing the auxiliary data in the
nodes of the tree. The shape and node names of the tree are not fi xed, in order to provide
extensibility for external tools.

The metamodeling environment provides a powerful set of inheritance operators to
describe specialization and to support metamodel composition. The common inheritance
operator implements the semantics of the standard UML specialization; thus the specialized
child type inherits all of the parent’s attributes and can participate in any association the

260 Ledeczi, Maroti and Volgyesi

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

parent can participate in. Two additional operators are available to provide fi ner-grained
control over the inheritance relation. These were specifi cally designed to support metamodel
composition. Implementation inheritance propagates all of the parent’s attributes, but only
the containment association — where the parent functions as the container — to the child
type. No other associations are inherited in this case. Interface inheritance allows no attribute
inheritance, but does allow full association inheritance, with one exception: containment
relations where the parent functions as the container are not inherited. Note that the union
of the two special inheritance operators gives the common inheritance, and their intersec-
tion is null.

Just as the reusability of domain models from application to application is essential,
the reusability of meta-models from domain to domain is also an important consideration.
In GME, a library of meta-models of important sub-domains is made available to the meta-
modeler, who then can pick and choose from them, extend and compose them together
to specify new domain languages. The extension and composition mechanisms must not
modify the original meta-models for two reasons. First, changes in the meta-model libraries,
refl ecting a better understanding of the given domain, for example, should propagate to the
meta-models that utilize them. Second, by precisely specifying the extension and composi-
tion rules, using inheritance and equivalence operators, for instance, models specifi ed in the
original domain language can be automatically translated to comply with the new, extended
and composed, modeling language. This is a simple and elegant solution to the well-known
model migration problem. (For more detail on metamodel composition please see Ledeczi,
Nordstrom, Karsai, Volgyesi & Maroti, 2001).

TYPES AND INSTANCES
Model reuse and tools for information maintenance between similar models is a natural

requirement in large-scale models or where model composition is heavily used. The provided
solutions in GME — types and instances — resemble those of object-oriented programming
languages. The only signifi cant difference is that in GME, model types are similar in appear-
ance to model instances; they too are graphical, have attributes and contain parts.

By default, a model created from scratch — based on a meta-type — is a type. A subtype
or an instance of a model can be created with a simple operation, and both will depend on
the type they are created from. There is one signifi cant rule that differentiates subtypes from
instances. New parts are allowed in a subtype, but not in an instance. Otherwise, contained
children can be renamed, set membership can be changed and references can be redirected
in both subtypes and instances. However, objects in the containment hierarchy cannot be
removed in either subtypes or instances.

The advantage of using types is clear: any modifi cation in a type model propagates
down the inheritance hierarchy. For example, if a part is deleted in a type, the same part
will be automatically removed in all of its instances and subtypes — even in instances of
the subtypes — all the way down the inheritance tree.

Types can contain other types as well as instances as parts. The mixture of aggrega-
tion and type inheritance introduces another kind of relationship between objects. This is
best illustrated through an example. In Figure 1, there are two root type models: the Engine
and the Car. The car contains an instance of an engine, V6, and an ABS type model. V6 is ABS type model. V6 is ABS
an instance of the Engine; this relationship is indicated by the dashed line. Aggregation is
indicated by solid lines.

Framework for the Rapid Development of Modeling Environments 261

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

When a subtype of the Car is created, e.g., Cool Car above, we indirectly create another Cool Car above, we indirectly create another Cool Car
instance of the Engine (V6) and a subtype of the ABS type. This is the expected behavior,
as a subtype without any modifi cation should look exactly like its base type. Notice the ar-
row that points from V6 in Cool Car to V6 in Car. Both of these are instances, but there is
dependency between the two objects. If we modify V6 in Car, V6 in Cool Car should also be
modifi ed automatically for the same reason: If we do not modify Cool Car it should always
look like Car itself. The same logic applies if we create an instance of Cool Car – My Car
in Figure 1. It introduces a dependency between V6 in My Car and V6 in Cool Car. As the
fi gure shows, this forms a dependency chain from V6 in My Car through V6 in Cool Car
and V6 in Car all the way to the Engine type model.

An interesting situation arises if we modify V6 in Cool Car by changing an attribute.
The question is whether an attribute change in V6 in Car should propagate down to V6
in Cool Car and below. Since the attribute has been overridden, the dependency chain is
broken up with respect to that attribute. However, if the same attribute is changed in V6 in
Cool Car, that should propagate down to V6 in My Car unless it has already been overrid-
den there. Figure 2 shows the same set of models, but only from the pure type inheritance
perspective.

The real strength of types and instances can be exploited with the use of model librar-
ies. Based on predefi ned and verifi ed models residing in these libraries, the modeler is able
to create new instances in his or her project without losing the connection to the prototype
model; thus further enhancements and corrections in the original model can be easily propa-
gated to all of its subtypes and instances automatically.

The type and instance feature of GME is sometimes confused with the inheritance
relation in the meta-modeling environment. While the meta-inheritance implements the

Figure 1: Model dependency chains

262 Ledeczi, Maroti and Volgyesi

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

semantic of the UML specialization — and is handled by the meta-interpreter, types and
instances are supported by the modeling engine, and their primary goal is to support model
reuse independently of the meta-model.

CONSTRAINT MANAGEMENT
One can consider the UML class diagram-based meta-model as syntax specifi cations.

It determines what concepts are used in the modeling language and specifi es relations and
attributes. It does not say much about what constitutes a correct model. We use the Object
Constraint Language (OCL) for the specifi cation of the static semantics of the modeling
language. Constraints are attached to the meta-models specifying well-formedness rules.

In addition to the OCL expression, a GME constraint has a priority attached to it speci-
fying the action the built-in constraint manager should take upon its violation. The highest
priority results in an error message and the abortion of the current transaction. Lower priority
violations only cause warning messages.

Constraints can be attached to editing events specifying when they must be checked.
For example, the “on connect” event should be specifi ed for a constraint that restricts the
kind or number of connections a given model can be attached to. Furthermore, all constraints
can be checked on-demand at any time.

Certain pieces of information captured in the meta-model cannot be compiled directly
into the paradigm confi guration because of the limitations of that format. In such cases,
such as the multiplicity information of containment, membership and connection cardinality
defi nitions, the meta-interpreter automatically generates OCL constraints.

Figure 2: Type inheritance hierarchy

Framework for the Rapid Development of Modeling Environments 263

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Complex and reusable constraints can be defi ned in constraint functions that can be
called from constraints or other functions. They even support recursion. Function parameters
enable the constraint developer to formalize reoccurring defi nitions in a generic form.

One of the most powerful facilities of the constraint system is the browser that provides
an interactive window to the constraint database. The browser displays the defi nition, state
and other attributes of each available constraint. Selected constraints can be evaluated on
demand or can be disabled temporarily by the user. In addition to the constraints defi ned
in the meta-model, the model builder is able to add and remove custom constraints at the
modeling level.

The constraint debugger assists the modeler in discovering erroneous constraint defi -
nitions. The stack of evaluated expressions, along with the current values of all variables,
are displayed in the debugger. The evaluation tracking facility can be turned off when the
designer is confi dent in the correctness of the constraint defi nitions.

VISUALIZATION
The modeling framework provides different kinds of graphical interfaces to the model

database. The primary display area represents models as separate windows showing contained
objects as icons and lines. The physical position of these objects can be arranged arbitrarily
and independently in each aspect of the model. The connection paths are controlled by a
powerful real-time autorouter. The object positions in different aspects can be selectively
synchronized to help clean up large models.

The model browser uses a different visualization approach, displaying the model hier-
archy as a tree where non-leaf (composite) nodes can be collapsed or expanded on demand.
While this method provides less control and information on a specifi c node, it reveals the
whole model hierarchy.

The third interface displays model information in tabular format, similar to a spread-
sheet, which supports batch editing and consistency checking nicely.

Finally, it is the main editing window where most of the model creation and modifi cation
takes place. Model visualization can be customized to fi t the target modeling methodology.
All object drawing and mouse handling operations are assigned to a software component,
called a decorator, outside of the regular user interface. Whenever these operations need to
be executed the GME editor calls the decorator registered for the current modeling language
through a predefi ned interface. GME comes with a default decorator and some samples. Any
modeling paradigm can have a custom decorator implementing domain-specifi c visualiza-
tion. Decorators have full access to the model database to be able to provide context-based
visualization for the decorated objects. The graphical framework may send update requests
to a specifi c decorator with a given frequency, if animated visualization is requested.

EXTENSIBILITY
GME was designed with extensibility as one of the most important goals. The tool

has a modular component architecture, shown in Figure 3. At the bottom, different storage
formats, ranging from relational databases through a fast proprietary binary fi le format to
XML, are supported. Two key components of the GME are GMeta and GModel. The GMeta
component defi nes the modeling paradigm, while GModel implements the GME modeling

264 Ledeczi, Maroti and Volgyesi

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

concepts for the given paradigm. GMeta confi gures itself by reading the meta-specifi cations
(generated from the metamodels), while GModel uses the services of GMeta for self-con-
fi guration. The GModel component exposes its services through a set of public interfaces
as well. The architecture is based on Microsoft COM technology.

The user interacts with the components at the top of the architecture: the GME User
Interface, the Model Browser, the Constraint Manager, Interpreters and Add-ons. Add-ons are
event-driven interpreters. The GModel component exposes a set of events, such as “Object
Deleted” or “Attribute Changed”, etc. External components can register to receive some
or all of these events. They are automatically invoked by GModel when the events occur.
Add-ons are extremely useful for extending the capabilities of the GME User Interface, for
example. When a particular domain calls for some special operations, these can be supported
by add-ons without modifying any GME components.

Since the event dispatching mechanism is a vital part of the architecture, its performance
has a signifi cant impact on the usability of the overall framework. All external components
own a so-called territory that keeps track of all objects that the component may be interested
in. This repository is automatically maintained based on the object references that GModel
ever handed over to the component. A specifi c event will be propagated to the component
only if the affected object is in the component’s territory. This technique reduces the number
of redundant event messages dramatically.

The performance and reliability of the overall system is further improved with the help
of transactions. Model operations — even read-only actions — on the GModel level must
be encapsulated in transactions. Components are receiving events when a transaction begins
and fi nishes; thus they are able to aggregate multiple changes and react to those changes at
the end of the whole transaction. In the case of a read-only transaction, they may discard
all notifi cations.

The framework keeps track of all registered external components and integrates them
into the user interface. Add-ons are automatically started when a project in a supported

Figure 3: GME architecture

Framework for the Rapid Development of Modeling Environments 265

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

paradigm is opened. Interpreters are integrated into the menus and toolbars of the user in-
terface after successful registration. Information on the registered components is retained
across invocations of the tool.

COM technology enables the seamless integration of additional components. Moreover,
components can be implemented using any programming language that supports COM, such
as C++, Visual Basic, Python, Java or C#.

The different standard technologies applied throughout the environment, such as UML,
OCL, XML, and COM ensure maximum fl exibility. The modeling tool also provides a C++
programming framework along with a code wizard to help in developing external components
without understanding COM or working on infrastructural code. The framework, called the
Builder Object Framework, is a hierarchy of classes that represents and mirrors the model
database in the form of C++ objects. It enables the developer to focus on the domain-specifi c
part of the program immediately, thus implementing simple but useful components that can
take as little time as a few hours.

EXAMPLE
As a fi rst example, consider the meta-modeling language itself. Figure 4 shows the

meta-model of a simple hierarchical fi nite state machine modeling paradigm (HFSM) in
GME confi gured for meta-modeling. In the lower right corner of the GME window you
can see the currently active modeling language; in this case it is MetaGME. The window
in the lower left corner is the partbrowser. It contains the kind of parts that can be inserted
in the current aspect of the currently open model. The tabs in the bottom show all available
aspects. For the meta-modeling language these are: ClassDiagram, Visualization, Constraints
and Attributes. Aspects help manage model complexity by separating orthogonal concerns.
Aspects are captured in the Visualization aspect of the meta-model (not shown).

Figure 4: HFSM metamodel

266 Ledeczi, Maroti and Volgyesi

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The window in the lower right corner shows the attributes, preferences and properties
of the selected object or objects. The window on the top right is the model browser. It shows
the hierarchy of the whole project. Notice that in this case it shows parts GuardCondition,
Main or UniqueName, which are not shown in the main window. The reason is that those
parts are shown in different aspects of the Main model. GuardCondition is an attribute of
Transition captured in the Attributes aspect, Main is the single aspect in our HFSM modeling
language modeled in the Visualization aspect, while UniqueName is a constraint specifi ed
in the Constraint aspect. This constraint specifi es that no two substates of a state can have
the same name:

self.parts(State)->forAll(x, y | x.name = y.name implies x = y)

For this particular constraint the Close Model event seems to be the best candidate for
enforcement. Whenever the parent model is closed the constraint will be checked.

The meta-modeling environment has its own decorator. It is capable of visualizing the
UML class diagram notation. It displays the names, stereotypes and attributes of all classes.
It shrinks or expands the box to fi t the displayed text. This particular decorator is about 1500
lines of C++ code, most of which is the baseline code shared among all decorators.

The meta-modeling environment has a good example for an add-on. OCL syntax
checking is a very specifi c functionality that is not part of the baseline GME program.

Figure 5: Example HFSM model

Framework for the Rapid Development of Modeling Environments 267

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

However, its function is very important to meta-modeling; the user does not want to wait
to catch syntax errors in her constraints until a constraint is checked in the target environ-
ment. Therefore, we provide an add-on to the meta-modeling environment that checks the
OCL syntax of the constraint that is currently being edited. The OCL expression is a textual
attribute of the constraint object. The OCL syntax checker add-on is registered to catch
attribute change events. Whenever it is fi red it parses the OCL expression and provides
immediate feedback to the user.

As do most meaningful modeling paradigms, the meta-modeling environment has its
own interpreter. It parses all the class diagrams (in the HFSM case there is only a single
one) and generates an XML representation of the modeling language. GME can read this
fi le and confi gure itself to support the new language. Figure 5 shows an example model
captured in the resulting HFSM modeling environment.

The name of the modeling language is shown in the lower right corner again. Notice
that the only part shown in the part browser is State and the only aspect is Main. The attribute
window shows the GuardCondition attribute of one of the transitions. Our simple HFSM
environment uses the standard, built-in decorator that is able to display boxes, icons, names,
etc. Notice that the state Second has two substates with the same name “A”. When trying to
close the model or explicitly requesting constraint checking, the violation is caught by the
constraint manager. The error message displayed is shown in Figure 6.

PRACTICAL APPLICATIONS
Three practical applications of GME are presented below:
MILAN, the Model-based Integrated simuLAtioN framework, is a GME-based

extensible environment that facilitates rapid evaluation of different performance metrics,
such as power, latency and throughput, at multiple levels of granularity, of a large class of
embedded systems by seamlessly integrating different widely-used simulators into a uni-
fi ed environment (Ledeczi, Davis, Neema & Agrawal, 2003). The MILAN framework is
aimed at the design of embedded high-performance computing platforms, of System-on-
Chip (SoC) architectures for embedded systems, and for the hardware/software co-design
of heterogeneous systems.

MILAN provides an integrated environment where existing development and analysis
tools, primarily simulators, can work seamlessly together. MILAN defi nes an integrated

Figure 6: Constraint violation

268 Ledeczi, Maroti and Volgyesi

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

data model that captures the shared semantics of all the tools integrated and a bi-directional
semantic translator for each of them. This is an elegant solution to tool integration that also
avoids the scalability problem associated with pair-wise translation; i.e., the integration
of a new tool requires only a single new translator (and possibly modifi cations to existing
ones) and not N, i.e., the number of integrated tools. This is a key advantage since one of
the design goals of MILAN is to provide an open environment so that users can integrate
additional tools on their own.

The complex modeling language allows for the specifi cation of the desired application
functionality in the form of an extended datafl ow representation with strong data-typing and
parametric modeling, provides the means to specify the available hardware resources and
enables the user to defi ne mapping information between the two. Finally, application require-
ments can also be captured by explicit constraints in the models. Instead of specifying a point
solution, however, MILAN enables capturing the whole design-space of the application. At
any point in the hierarchical datafl ow, explicit design or implementation alternatives can be
specifi ed. For example, different algorithm choices optimized for speed, memory require-
ments or power consumption can be captured this way or optimized implementations can be
provided for different hardware targets. Similarly, multiple hardware resource options can
also be supplied. Finally, hardware/software allocation need not be fully specifi ed. These
techniques make it possible to describe a large — potentially exponential — set of solutions
forming the design space of the application. Our symbolic design-space exploration and
pruning technology rapidly narrows it down to the subset that satisfi es all requirements of
the system that are captured as constraints (Neema, 2001).

Tools currently integrated into the MILAN framework include such functional simula-
tors as Matlab, SystemC and ActiveHDL (a VHDL simulator) and a high-level performance
estimator, HiPerE (Mohatny & Prassana, 2002). These tools are not aware of which parts
of the system are to be implemented in hardware and which parts in software. This makes
MILAN a true system-level hardware/software co-design environment. Of course, lower-level
integrated tools, such as such cycle-accurate simulators as SimpleScalar, are already tied to
a specifi c hardware technology. Note that the different tools only communicate through the
integrated system models. This eliminates the need for each tool to be interfaced directly
to all others.

SSPF, a predecessor of GME was used to create the Saturn Site Production Flow
(SSPF) system that monitors the car manufacturing process at GM’s Saturn Corporation,
providing key production measures to managers in real-time (Long, Misra & Sztipanovits,
1998). The system models describe the manufacturing processes down to the machine level,
the buffers between the processes (e.g., conveyor belts), the instrumentation (i.e., PLCs),
and how the information is to be presented to the user. The interpreters generate various
confi guration fi les and SQL database schema to confi gure the SSPF client-server applica-
tion. The program gathers the production information, stores it in a real-time database and
makes it available to any user in the plant.

GRATIS, a graphical development environment for TinyOS, provides an intuitive
visual interface and automatic code generation capability for the development of TinyOS-
based sensor network applications (Volgyesi & Ledeczi, 2002). With the original TinyOS
tools (Hill, 2000) working with textual confi guration fi les while developing non-trivial
applications could quickly become an error-prone and tedious process. Function-like enti-
ties have two or more names in the fi nal application; this characteristic is inherent in the
fl exible design, enabling the creation of countless different applications without touching

Framework for the Rapid Development of Modeling Environments 269

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the implementation of the individual components. However, as a side effect, it has notable
impact on the maintainability of the applications. GRATIS replaces the textual representa-
tion of the interface and confi guration specifi cations. Even with a simple application, a more
expressive representation of components and interconnections between them can help design
better applications and increase their readability. With more sophisticated components and
especially with hierarchical composition, this becomes an absolute requirement. There are
cases where components might impose additional complex restrictions on their use — like
mutual exclusion or maximum fan-out — in addition to the normal rules of composition in
TinyOS. These additional requirements can be easily captured by the constraint language
provided by the GME modeling framework.

Since all practical applications use system components from the TinyOS distribu-
tion, GRATIS also provides a mapping from the existing large code base to the graphical
environment. Therefore, the interpreter not only generates text fi les from graphical models,
but it is also capable of parsing existing fi les and building the corresponding GME models
from them. The main use of this parsing feature is to automatically generate the graphical
equivalent of the TinyOS system components and to provide them as a library to the user in
the GRATIS environment. An indisputable benefi t of the parsing and model building process
is an exhaustive testing, since the parser — with the help of the predefi ned constraints in the
meta-model — builds and validates all components and applications found in the source tree.
Since scripting languages are generally superior to compiled languages in the fi eld of text
processing, we have implemented GRATIS using GME and the Python language exclusively,
which also demonstrates an extension alternative to our C++ interpreter framework.

Other experimental modeling languages have also been implemented to describe not
only the type requirements, but temporal dependencies and the implementation details also.
These languages comprise our further work to understand compatibility and composability
issues better in the fi eld of embedded systems. GME proves to be an effi cient tool and ap-
proach to build such environments.

COMPARISON TO OTHER TOOLS
In terms of supported features, maturity, and the number of real-world applications,

three confi gurable environments stand out: Dome by Honeywell Laboratories (Honeywell,
2000), MetaEdit+ by MetaCASE Consulting of Finland (MetaCase, 2000) and our own
Generic Modeling Environment (GME) (Institute for Software Integrated Systems, 2002).
The four key areas that enable true support for widely different modeling methodologies
are meta-modeling, constraint management, visualization and extensibility.

Meta-modeling: Meta-modeling may be regarded as just another type of modeling;
therefore, Dome and GME use the tools themselves to implement this functionality. Me-
taEdit+ has a more conservative approach; a series of dialog boxes are used to specify the
meta-model in a non-graphical way. Meta-models typically evolve while being used, and
modifi cations in the meta-model often break the validity of models. These concerns are just
partially handled in Dome and MetaEdit+. GME is the only tool that demonstrates a strict
discipline: meta-models are versioned, and new versions of meta-models do not affect exist-
ing models until they are explicitly upgraded to the new version. Such an upgrade implies
extensive validity checking. This is somewhat cumbersome, but essential for warranting the
correctness of models, especially if they are beyond the usual demo application size.

270 Ledeczi, Maroti and Volgyesi

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

GME is the only environment that provides support for meta-model composition and
meta-model libraries.

Constraint management: Dome and MetaEdit+ have some built-in support for certain
types of frequently used constraints. GME, on the other hand, has a full-featured constraint
manager supporting OCL, a standard constraint language. Constraints can also be associated
with editing events and priorities, making constraint management interactive and fl exible.

Visualization: While MetaEdit+ provides an impressive built-in symbol editor, GME
and Dome provide only the choice of simple built-in symbols and bitmap fi les provided by
the user, and rely on user-defi ned drawing routines for more complex visualization. While
this user-defi ned visualization can be very powerful and fl exible, their implementation obvi-
ously requires some traditional programming skills from the user.

Extensibility: The interface to Dome models is primarily through its Alter language,
a Scheme variant. MetaEdit+ only supports a proprietary scripting language to access the
models. On the other hand, the component-based architecture of GME makes it easily exten-
sible. Meta and model information are all available through public COM interfaces. Events
are also exposed through COM. When any component makes a change to the models, all
other interested components are notifi ed. The toolset can be extended using any program-
ming language that supports COM (e.g., C++, VB, Python). Furthermore, GME supports
XML export/import for both model and meta-information.

CONCLUSIONS
We presented GME, a framework that enables the rapid development of modeling envi-

ronments. Its powerful meta-modeling capabilities make it possible to create a full-featured
modeling environment in hours. For example, an experienced user could easily create the
simple HFSM environment presented above as an example in well under an hour. Hence,
GME supports the rapid design of modeling languages enabling immediate hands-on experi-
ence with the language. It supports an iterative design method of modeling methodologies;
users can quickly evolve their language design by iteratively modifying the corresponding
meta-model. When the modeling methodology becomes satisfactory then the effort to cre-
ate decorators, add-ons and interpreters is much better justifi ed. Note, however, that typical
domain-specifi c components for GME are relatively small; hence the effort to create the
additional software modules is not prohibitive, even for small projects. For example, an
HFSM simulator that animates the automaton within the GME user interface was written
by a graduate student in a couple of weeks.

The HFSM example presented here is very simplistic for clarity. In our experience,
GME scales very well. The modeling language of MILAN, for example, has hundreds of
modeling concepts. Both MILAN and GRATIS support large model databases. Other large-
scale, real-world applications of the technology are presented in Ledeczi et al. (2001).

The research in confi gurable modeling environments, meta-modeling methodologies
and model visualization continues at our institute. GME is just a refl ection of the current
state-of-the-art of our research. New versions of the software are regularly released multiple
times a year. Ongoing work includes research on generative modeling, automatic interpreter
generation using graph transformations (Agrawal & Karsai, 2003) and integrating GME
into the popular Eclipse framework (Eclipse.org Consortium, 2001).

Framework for the Rapid Development of Modeling Environments 271

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ACKNOWLEDGMENTS
The authors would like to express their gratitude to DARPA and the Boeing Company

for the generous sponsorship of the research described here.

REFERENCES
Agrawal, A., & Karsai, G. (2003). A UML-based graph transformation approach for imple-

menting domain-specifi c model transformations. International Journal on Software
and Systems Modeling (Submitted).and Systems Modeling (Submitted).and Systems Modeling

Eclipse.org Consortium. (2001). Eclipse offi cial web site. Retrieved from: http://eclipse.
org

Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture
directions for networked sensors. Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS)
2000, Cambridge, MA, USA.

Honeywell. (2000). Dome offi cial web site. Retrieved from: http://www.htc.honeywell.
com/dome

Institute for Software Integrated Systems. (2002). GME offi cial web site. Retrieved from:
www.isis.vanderbilt.edu/projects/gme

Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G.
(2001). Composing domain-specifi c design Environments.(2001). Composing domain-specifi c design Environments.(2001). Com IEEE Computer, 34(11),
44-51.

Ledeczi, A., Davis, J., Neema, S., & Agrawal, A. (2003). Modeling methodology for inte-
grated simulation of embedded systems. ACM Transactions on Modeling and Computer
Simulation, 13(1), 82-103.

Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., & Maroti, M. (2001). On metamodel
composition. IEEE Conference on Control Applications 2001, Mexico City, Mexico,
CD-ROM.

Long, E., Misra, A., & Sztipanovits, J. (1998). Increasing productivity at Saturn. IEEE
Computer, 31(8), 35-43.

MetaCase Consulting. (2000). MetaEdit+ offi cial web site. Retrieved from: www.metacase.
com

Mohatny, S., & Prassana, V.K. (2002). HiPerE: A framework for rapid system level power
and performance estimation of embedded applications on SoC/SoP Architectures.
Design, Automation, and Test in Europe.

Neema, S. (2001). System level synthesis of adaptive computing systems. Ph.D. Dissertation,
Vanderbilt University, Department of Electrical and Computer Engineering.

Volgyesi, P., & Ledeczi, A. (2002). Component-based development of networked embedded
applications. 28th Euromicro Conference, Component-Based Software Engineering
Track, Dortmund, Germany.

272 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter XIV

Federated Process
Framework for

Transparent Process
Monitoring in Business

Process Outsourcing
Kyoung-Il Bae, IBM Business Consulting Services, Korea

Soon-Young Huh, Korea Advanced Institute of Science and Technology, Korea

ABSTRACT
Process information sharing is a benefi cial tool through which a company can monitor and
control its outsourced business process transparently, as if the outsourced business process
is performed locally. However, autonomy and agility of insourcing companies providing
outsourcing services have placed limitations in the development of process information
sharing, which the previous research has not satisfactorily addressed. This chapter proposes
a federated process framework and its system architecture that provide a conceptual design
for effective implementation of process information sharing supporting the autonomy and
agility of the insourcing companies. First, in terms of autonomy, the federated process
framework supports a fl exible sharing policy to control the amount of shared data so that
the framework can be applied to a wide variety of practical situations, from loosely-coupled
cases to tightly-coupled cases. Second, in terms of agility, the system architecture based on
the federated process framework supports the entire life cycle of business process outsourcing
by allowing suffi cient adaptability to the changes of business environments. We develop the
framework using an object-oriented database and Extensible Markup Language to accom-
modate all the constructs and their interactions within object-oriented message exchange
model in a distributed computing environment.

Federated Process Framework for Transparent Process Monitoring 273

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

INTRODUCTION
Researchers and business consulting fi rms increasingly emphasize the importance of

effective outsourcing in terms of revenue increase and cost reduction (Gartner, 2002; Hafeez,
2002). To accommodate such goals effectively, the outsourcing target requires including
the business processes as well as IT infrastructure (Berfi eld, 2002), and such a type of an
outsourcing model is called business process outsourcing. Specifi cally, by outsourcing a
part of local business processes with its supporting systems, a company could reduce the
cost related to human resource and system development, while focusing on its core busi-
ness without bothering about the outsourced part. However, Gartner’s recent survey (2003)
of corporate executives across Asia/Pacifi c shows that the fear of loss of control is one of
the most prominent reasons for not outsourcing. To remove the concern for the control, a
company should be able to monitor its outsourced business process transparently, as if the
outsourced one is executed internally. By enabling this transparent process monitoring, the
company could streamline and coordinate the internally-executed business processes with
the outsourced one in its value chain. The key technique for achieving the transparent pro-
cess monitoring is process information sharing (Alonso, 1999; Ball, 2002; Georgakopoulos,
1999).Process information sharing means that participating organizations in business process
outsourcing provide visibility of their internal process information to each other in order to
enhance process monitoring capabilities.

In the example of an online store case, most online stores outsource their delivery
operations to external transportation companies for the purpose of cost effi ciency, and
then focus on their core business functions, such as marketing and order processing. Then,
if an on-line store receives detailed delivery process information from its collaborating
transportation company, it can effectively carry out and monitor full steps of order fulfi ll-
ment processes, from order capturing through picking and packing, and fi nally to product
delivery. In terms of the customer satisfaction, such process information sharing allows the
online store to provide customers an extended order tracking service to monitor the overall
process status for their orders. In terms of the service quality control, the online store can
check the quality of the transportation company’s services by monitoring the status of the
delivery process.

Most of the previous research on process information sharing has focused on demon-
strating such benefi ts (Ball, 2002; Lee, 1997; D’Amours, 1999; Zhou, 1998) and providing
appropriate underlying system architecture or design for process information sharing (Alonso,
1999; Georgakopoulos, 1999; Kuechler, 2001; Mori, 1999; Workfl ow Management Coalition,
2000). However, research efforts considering the issues caused from the autonomy and agility
that are the inherent properties of modern organizations are few, even though these issues
make it diffi cult to accommodate process information sharing in many real situations.

Motivation and Research Questions
Autonomy means that an outsourcing service provider, called an insourcing company,

can decide whether to and how much of its local data to share with an outsourcing service
requester, called an outsourcing company. In spite of outsourcing agreements, most insourcing
companies are usually reluctant to expose their core business information on their internal
business logic and full process status to outsourcing companies (Bolcer, 1999; Georgako-
poulos, 1999; Merz, 1999). Such unwillingness often confl icts with the need to share data,

274 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

and therefore these two confl icting factors determine the degree of autonomy for the amount
of shared data. When the degree of autonomy is determined, the insourcing and outsourc-
ing companies establish a sharing policy on the amount of shared data in their outsourcing
contract. Regarding the autonomy issue, existing studies on process information sharing
have addressed little about the mechanisms to establish a sharing policy and how to control
the amount of shared process information according to the sharing policy. Specifi cally, the
autonomy problem can be further articulated by the following questions:

(i) How can the amount of shared process information be systematically represented as
a sharing policy concerning the determined degree of autonomy between insourcing
and outsourcing companies?

(ii) How can the system for process information sharing restrict and control the amount
of shared process information according to the sharing policy, while accommodating
seamless process information sharing?

On the other hand, agility means that companies constantly refi ne their business strategies
and information systems in order to meet both customer needs and environmental changes or
to take new opportunities (Goranson, 1999; Ramamurthy, 2003). For example, an insourcing
company needs to refi ne its business to meet the changing needs of outsourcing companies
and to widen its customer base. It is well recognized that agility is one of core competencies
in the fast-changing modern business environment (Scott-Morton, 1994). In terms of process
information sharing, we specifi cally consider that an insourcing company adopts either of
the following two methods in response to the changes of business environments: First,
the internal business process is amended to meet newly proposed market or organizational
constraints or to improve business operations from the advent of new technologies (Casati,
1998; Mangan, 2002). Second, the business relationships with outsourcing companies are
modifi ed due to the changes of mutual dependencies or external environments, and cor-
responding sharing policies are changed accordingly (Bakos, 1998; Chircu, 2000). These
methods change the schema and amount of shared process information; accordingly, the
system for process information sharing should also be modifi ed and recompiled to refl ect
the changes incurred in the system procedures for data sharing. The more frequently such a
change arises, the more seriously the maintenance cost is to be considered. Such an agility
problem can be further delineated by the following questions:

(i) How can the system for process information sharing adapt itself to the change of in-
ternal business process or sharing policy of an insourcing company without causing
serious maintenance cost?

(ii) In developing the system, which system components are suitable or necessary to ac-
commodate such adaptability?

Research Objective and Adopted Technologies
The main objective of this chapter is to propose a federated process framework as

a conceptual design to support effective implementation of process information sharing
between insourcing and outsourcing companies, while resolving the autonomy and agility
problems in the outsourcing environment. In the actual development of process information
sharing, implementation issues such as security control and data confl ict resolution should

Federated Process Framework for Transparent Process Monitoring 275

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

be under consideration. However, with a conceptual perspective, this chapter focuses on
providing answers to the foregoing four research questions related to the autonomy and
agility problems.

We employ a federated database system approach (Heimbigner, 1985; Sheth, 1990)
and extend it with an Internet-based system architecture. As base technologies, an Object-
oriented Database (OODB) (Kim, 1995) and Extensible Markup Language (XML) (Carter,
2000) are adopted. The OODB allows fl exible and natural modeling of business processes
and sharing policies while ensuring effi cient object persistency with transaction capabilities.
Furthermore, classes constituting the object data model entirely or partially generate applica-
tion programs with object-oriented programming languages. The object data model therefore
serves as building blocks both to design a persistent database schema in the OODB and to
develop application programs. The XML has been widely adopted as a standard language
for communication among distributed software programs (Herring, 2001; Sundaram, 2001;
UN/CEFACT, 2001) due to its fl exibility and Internet-based architecture. In addition, it pro-
vides extensive data manipulation capabilities in the distributed computing environment, such
as data integration and granular update from multiple data sources (Böhm, 2000). Because
of the resurging popularity and data manipulation capabilities, the XML is adopted in the
study as the most appropriate tool for vendor and platform-independent data sharing in the
distributed environment. To evaluate the effectiveness of the federated process framework,
a prototype system has been implemented on a commercial OODB Management System
called OBJECTSTORE (Progress Software, 2003) with the JAVA programming language
(Arnold, 2000).

The chapter is organized as follows: The next section introduces the basic concepts of
an inter-organizational process model with an order fulfi llment example. Then, the chapter
describes the federated process framework and presents detailed data designs, including an
object data model and XML document structure. This is followed with a presentaation of
an Internet-based system architecture with its prototype system. The chapter then discusses
the results, and the fi nal section summarizes contributions of this chapter and also provides
future research directions.

INTER-ORGANIZATIONAL PROCESS MODEL
This section briefl y introduces basic concepts of an inter-organizational process model

and looks at an order fulfi llment example to provide the perspective on the research prob-
lems of the chapter.

Basic Concepts of an Inter-organizational Process Model
A process model is the structure of a business process and all internal work sequences

in various conditions. In terms of an object-oriented paradigm, it is a template from which a
business process instance is created and executed. The process status specifi es the status of
a particular business process instance. An inter-organizational process model is composed
of multiple collaborating local process models with their interactions. The process status
on the inter-organizational process model, called a global process status, is obtained by
merging multiple process statuses from the local process models.

Most previous studies consider an activity and work transition as the most fundamen-
tal constructs to represent a process model (Cichocki, 1998; Leymann, 2000; Workfl ow

276 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Management Coalition, 1998). The activity is a logical and independent piece of work and
the work transition represents a fl ow of a business process among activities. To support
process enactment and role assignment, additional constructs such as an execution rule and
organization structure need to be defi ned (Amghar, 2000; Workfl ow Management Coalition,
1998). However, since the goal of this chapter is process information sharing among different
organizations that focuses on the monitoring of a global process status, we view a process
model as consisting of a number of activities and their associating work transitions.

Figure 1 graphically represents the basic concepts of an inter-organizational process
model. As notations to depict an inter-organizational process model, PMi denotes the i-th
participating local process model and Ai,j denotes the j-th activity of PMi. In the two local
process models, PM1 and PM2, constituting the inter-organizational process, the circle denotes
an activity and the solid arrow between circles denotes a trigger that represents the order of
a work transition. The dotted arrow denotes message movement, representing an interaction
between different process models. In addition, PM1 considers PM2 as a remote sub-process
and uses a local activity, A1,3, to represent the activities of PM2. Such an activity is called a
process activity. The message from A1,3 causes the start of PM2; A1,3 is suspended during
the execution of PM2; after receiving the returned message from PM2, A1,3 terminates.

Figure 1 also shows fi ve kinds of work transitions, including AND-SPLIT, AND-JOIN,
OR-SPLIT, OR-JOIN, and SERIAL (Leymann, 2000; Workfl ow Management Coalition,
1998). The black dot between solid arrows denotes a discriminator to distinguish AND-JOIN
from OR-JOIN, and AND-SPLIT from OR-SPLIT. Consider the activity A1,1 as an example
in Figure 1. When A1,1 terminates, both A1,2 and A1,3 follow in parallel (we denote this as
AND-SPLIT); when both A1,2 and A1,3 terminate, A1,4 follows (AND-JOIN). On the other
hand, when A2,1 terminates, only one activity among A2,2 and A2,3 follows (OR-SPLIT); when
either A2,2 or A2,3 terminates, A2,4 follows (OR-JOIN). When A2,4 terminates, A2,5 follows
without any other splitting or joining activities (SERIAL).

Figure 1: Graphical representation of an inter-organizational process model

Federated Process Framework for Transparent Process Monitoring 277

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

An Order Fulfi llment Example
Figure 2 provides an order fulfi llment process as an example of an inter-organiza-

tional process. Participating organizations include an online store (outsourcing company)
and a transportation company (insourcing company), which respectively operate an order
handling process model and product delivery process model. PM1 and PM2 denote these
process models.

In what follows, the overall order fulfi llment process is described. When a customer
places an order to purchase a product from the online store using her credit card (A1,1), order
handling process PM1 checks the credit card (A1,2). If the credit card is valid, PM1 notifi es
the customer that the product will be shipped (A1,3) while it sends a delivery request to the
transportation company (A1,4). Note that A1,4 in PM1 is a process activity that stands for remote
process model PM2 and thus A1,4 is suspended until PM2 returns a delivery result.

Meanwhile, upon receiving the delivery request (A2,1), product delivery process PM2
picks up the ordered product at the online store’s warehouse (A2,2), ships it to a branch near
the shipping address (A2,3), and fi nally delivers it to the customer (A2,4). As shown in Figure
2, A2,3 can be omitted (as shown in the solid arrow from A2,2 to A2,4) or iteratively executed
(the solid arrow from A2,3 to A2,3), depending on the shipping address and the company’s
transportation network. If the product cannot be delivered at A2,4 because of the customer’s
absence, PM2 rearranges the delivery plan to execute A2,4 again (A2,5). When the product
is damaged during transportation at A2,3 or A2,4, the transportation company reimburses the
cost (A2,6) and exchanges the damaged product with a new one (A2,2). After successfully
delivering the product to the customer, a delivery result is sent to PM1 (A2,7) and then PM1
completes the order (A1,5).

If the transportation company provides the online store its detailed process status for
product delivery, the online store can improve the operational effi ciency and customer ser-

Figure 2: Order fulfi llment example

278 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

vices by accommodating extended order tracking capabilities, including both the internal
order handling process and external product delivery process. To do so, the online store is
to fi rst integrate the two local process models into one inter-organizational process model.
If the local process models and their interactions are specifi ed explicitly and coordinated
by one organization, it is possible to integrate the two local process models (van der Aalst,
1999). However, such an assumption of full information sharing is hardly accepted in the
modern business environment because of the autonomy problem stated in section 1. For
example, when the transportation company does not want its operational mistakes to be
known to customers, it wants to hide the process information related to A2,6 (reimburse-
ment for the damaged product). Thus, the transportation company should construct a partial
process model by removing A2,6 from its product delivery process PM2, so that the online
store uses the partial process model instead of full PM2 to compose an inter-organizational
process model. However, such a process information sharing scheme that supports sharing
policies among participants has been rarely dealt with in the existing research on inter-or-
ganizational processes.

The process information sharing system of the online store constantly captures and
merges the process statuses of the order handling and product delivery processes in order to
provide customers the dynamically changing global process status. In doing so, the system
refers to the inter-organizational process model, including the two process models, PM1 and
PM2, and their interactions at the run time, and thus the details of the inter-organizational
process model should be encoded in the system. However, achieving agility in companies
often causes a change of a process model or sharing policy. When such a change arises, the
system should be re-implemented and newly created to refl ect the change with maintenance
cost and time.

The following sections propose the federated process framework and show how the
framework overcomes these problems while facilitating effective implementation of process
information sharing.

FEDERATED PROCESS FRAMEWORK
The federated database system approach is referred to in the development of the feder-

ated process framework. A federated database system was originally proposed to facilitate
information sharing among cooperating but autonomous local database systems (Heimbigner,
1985; Sheth, 1990). While the local database systems independently perform local opera-
tions, they only provide partial and controlled data for the requests of the federated database
system. Typical development process of the federated database system is composed of the
following four steps:

(i) Standardizing local database schemas;
(ii) Controlling and restricting the schemas;
(iii) Integrating the multiple schemas into one schema;
(iv) Customizing the integrated schema for end users’ needs.

In this chapter, the federated database approach is adopted and extended as a framework
for the process information sharing among collaborating but autonomous business processes.
Specifi cally, this section proposes the four steps of the federated process framework in detail.

Federated Process Framework for Transparent Process Monitoring 279

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

By providing an object data model and XML document structure, we also show how process
models and process statuses are represented and manipulated in each step.

First Step: Transformation of Local Process Models
The fi rst step of the federated process framework is to transform each of the local pro-

cess models represented by diverse process modeling methods into a semantically equivalent
one represented by a canonical standard method. Typically, the process modeling method
representing a participant’s process model varies depending on the software toolkit or process
designer that has been employed to develop the participant’s business process system. This
diversity of the process modeling methods makes it diffi cult to integrate different process
models (Dabke, 1999; Georgakopoulos, 1999). To address this problem and accommodate
seamless integration of different business process models, many standard organizations and
researchers have proposed the canonical standard methods for process modeling (Workfl ow
Management Coalition, 1998; Object Management Group, 2000; Bolcer, 1999). As a canoni-
cal standard method, this chapter uses concepts and notations (e.g., the graphical notations
in Figures 1 and 2) of the workfl ow reference model (Workfl ow Management Coalition,
1998) proposed by the Workfl ow Management Coalition because of its popularity among
commercial software vendors, and interoperability with other standards.

In Figure 3(a), using the class diagram of the Unifi ed Modeling Language (UML)
(Booch, 1999), we defi ne an object data model that acts as a dedicated database schema to
manage process models in the OODB. In the UML, a class is represented by a rectangle,
containing a class name on the upper side and attributes on the lower side. An association
between classes is represented by a line that has an association name and multiplicities on

Figure 3: Representation of a process model and process status using the UML and XML

280 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

both sides of the connected classes. The Participant, Activity, and WorkTransition classes
respectively stand for participants, activities, and work transitions of a process model. The
ProcessData class stands for process data as a set of data that is referenced or modifi ed by
activities of a process model. Note that the Participant class has an one-to-many associa-Participant class has an one-to-many associa-Participant
tion, “belong to,” with the Activity class; the WorkTransition class has two many-to-many
associations, “is pre-activity” and “is post-activity,” with the Activity class to respectively
indicate its preceding and following activities; the Activity class has a many-to-many as-
sociation, “use,” with the ProcessData class to indicate process data referenced or modifi ed
by the activity.

Using the object diagram of the UML, Figure 3(b) shows an object data example that
represents the order handling process, PM1, in the form of the presented object data model.
An object is represented by a rectangle that has an object name on the upper side and attri-
bute values on the lower side. An association is represented by a line. In particular, a solid
line and dashed line are used to distinguish “is pre-activity” and “is post-activity” associa-
tions between WorkTransition and Activity objects. For example, WorkTransition object
w3 represents the AND-SPLIT work transition from A1,2 to both A1,3 and A1,4 in Figure 2.
As an “is pre-activity” association, the activity object, a2, is linked with a solid line, while
objects a3 and a4 are linked with two dashed lines as “is post-activity” associations. In
this way, the object data example in Figure 3(b) represents the whole structure of the order
handling process, PM1.

The process status is defi ned as a set of ongoing activities’ states and a set of process
data used by the activities. In PM1, suppose that A1,3 has notifi ed a customer that an ordered
product is being shipped, while A1,4 is in the midst of delivering the product. Then, A1,3 and
A1,4 are ongoing activities in the process instance and they use three process data – product,
shipping address, and sales amount – according to the object data example in Figure 3(b).
Figure 3(c) shows an XML representation of this process status on the basis of the following
XML Document Type Declaration (XML DTD) that is a generic XML document structure
representing a process status:

<! ELEMENT WfMessage (WfMessageBody)>
<! ATTLIST WfMessage Version CDATA #REQUIRED>
<! ELEMENT WfMessageBody (ActivitySet(ActivitySet(, ProcessDataSet)>
<! ELEMENT ActivitySet (ActivitySet (ActivitySet Activity (Activity (*) >
<! ELEMENT Activity (AID(AID(, State)>
<! ELEMENT AID (#PCDATA)>
<! ELEMENT State (#PCDATA)>
<! ELEMENT ProcessDataSet (ProcessData(ProcessData(*) >
<! ELEMENT ProcessData (Key (Key (, Value)>
<! ELEMENT Key (#PCDATA)>
<! ELEMENT Value (#PCDATA)>

In the beginning, the XML DTD borrows the Wf-XML specifi cation that the Workfl ow
Management Coalition (2000) proposed as a standard XML-based representation of a pro-
cess status, and thus it defi nes the root element, WfMessage, to identify a Wf-XML message
and its child element, WfMessageBody, to indicate a message body section. In representing
a process status, however, the Wf-XML covers only the state of a process instance itself,
such as “running,” “suspended,” “terminated,” etc., and does not support the activity-level

Federated Process Framework for Transparent Process Monitoring 281

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

process status, though an activity is a logical and independent unit of work within a business
process. Thus, the proposed XML document structure extends the Wf-XML by taking an
activity as a unit of process information sharing. More specifi cally, an ActivitySet element and ActivitySet element and ActivitySet
a ProcessDataSet element are defi ned inside the ProcessDataSet element are defi ned inside the ProcessDataSet WfMessageBody element. The ActivitySet
element is to contain all the ongoing activities currently involved (Activityelement is to contain all the ongoing activities currently involved (Activityelement is to contain all the ongoing activities currently involved (element), and
every Activity element has its identity (AID element has its identity (AID element has its identity (element) and state (State element). Similarly,
the ProcessDataSet element is to contain all the process data used by the ongoing activi-ProcessDataSet element is to contain all the process data used by the ongoing activi-ProcessDataSet
ties (ProcessData ties (ProcessData ties (element), and every ProcessData element has its identity (Key element has its identity (Key element has its identity (element)
and value (Value element). In this way, the tree-structured XML DTD represents activities’
states and associated process data systematically. Moreover, it serves as a generic message
specifi cation to facilitate data transfer between different business processes.

In brief, the fi rst step introduces systematic representations of a process model and
process status by providing an object data model and XML document structure. Using these
representations, the following steps will describe how local process models can be restricted
and integrated according to local sharing policies.

Second Step: Construction of an External Process Model
The second step is to establish a sharing policy and to extract a partial process model

from a local process model according to the established sharing policy. Since an activity is a
logical unit of process information sharing, the sharing policy is defi ned as a set of activities
shared with other participants. For example, when the transportation company in Figure 2
wants to hide the process information related to A2,5 and A2,6 from the online store, the shared
activities are A2,1, A2,2, A2,3, A2,4, and A2,7. In doing so, the transportation company constructs

Figure 4: Rules for removing a hidden activity

282 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

a partial process model from its original process model, PM2, by removing A2,5 and A2,6,
and provides the online store with it instead of PM2. To distinguish the newly constructed
process model from the original one, we call it an external process model and the original
one an internal process model.

Figure 4 presents nine rules to remove a hidden activity for all the possible combina-
tions of a preceding work transition (SERIAL, OR-JOIN, or AND-JOIN) and following
one (SERIAL, OR-SPLIT, or AND-SPLIT) of the hidden activity. In each cell of Figure 4,
by removing a hidden activity, Ah, from the left internal process model, the right external
process model is generated. The presented rules preserve possible work paths and thus do
not distort business logic even though the hidden activity is removed. For example, the left
internal process model in RULE 6 has two possible work paths (i.e., after both Ai,1 and Ai,2
terminate, Ai,3 or Ai,4 follows them through Ah). After Ah is removed, RULE 6 creates two
AND-JOINs (i.e., from both Ai,1 and Ai,2 to Ai,3; from both Ai,1 and Ai,2 to Ai,4) in the right
external process model and consequently preserves the existing two work paths.

By applying these rules to each of hidden activities iteratively, an external process
model can be constructed from an internal process model. Suppose that, in Figure 2, the
transportation company hides A2,5 and A2,6 from the online store. Then, Figure 5(a) shows
the procedure that constructs the right external process model from the left internal process
model, PM2, of the transportation company. A2,5 is fi rst removed according to RULE 1 and
a trigger for self-iteration of A2,4 is created. Next, A2,6 is removed according to RULE 2 and
two triggers, one from A2,3 to A2,2 and one from A2,4 to A2,2, are created.

Figure 5: Construction of an external process model and corresponding object data ex-
ample

Federated Process Framework for Transparent Process Monitoring 283

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Figure 5(b) presents an object data example that represents both the internal and ex-
ternal process models in Figure 5(a). Note that the WorkTransition objects with PMType =
“INTERNAL” (w1 to w11) denote the work transitions in the internal process model and
the WorkTransition objects with PMType = “EXTERNAL” (w12 to w20) denote the work
transitions in the external process model. Using the WorkTransition.PMType attribute, we
can extract shared activities from the object data example, and thus this object data example
shows how to represent the transportation company’s sharing policy toward the online store.
In terms of the XML document, an XML document based on the internal process model
can be easily transformed into an XML document based on the external process model by
removing Activity elements corresponding to hidden activities.

To accommodate the activity-level sharing policy, this step introduces the concept
of an external process model and its construction method, and furthermore describes how
to represent the sharing policy and corresponding external process model in the presented
object data model. As a result, this step provides an answer to the fi rst question of the au-
tonomy problem.

Third Step: Composition of an Integrated Process Model
This step describes a method for a participant to merge its internal process model and

an external process model provided by another participant. Such a merged process model is
called an integrated process model. The method to compose the integrated process model
is to substitute the process activity in the internal process model with the corresponding
external process model. Earlier in the chapter, it states that the internal process model uses a
process activity to represent the activities of the external process model. Figure 6(a) shows
that the process activity A1,4 of PM1 represents the activities of the external process model
of the transportation company. A1,4 sends a request message to the starting activity, A2,1, of
the external process model, and receives a result message from the ending activity, A2,7, of
the external process model.

Figure 6: Integrated process model composed by the online store

284 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The substitution of the process activity with the corresponding external process model
is performed in the following ways: fi rst, the process activity’s incoming trigger changes its
destination from the process activity to the starting activity of the external process model.
Second, the process activity’s outgoing trigger changes its origin from the process activity
to the ending activity of the external process model. Finally, the process activity is removed
from the internal process model. For example, t1 and t2 in Figure 6(a) are A1,4’s incoming
and outgoing triggers, respectively. To constitute the integrated process model from the two
process models in Figure 6(a), we change t1’s destination from A1,4 to A2,1 and t2’s origin from
A1,4 to A2,7, and fi nally, remove A1,4 from PM1. Figure 6(b) shows the resultant integrated
process model.

Using the PMType attributes of the WorkTransition objects, the object data example
in Figure 5(b) showed how the external process model could be represented with the object
data model in Figure 3(a). Similarly, the integrated process model can be represented with
the object data model by assigning “INTEGRATED” to the PMType attributes of the Work-
Transition objects related to the integrated process model. Then, an interaction between
different process models (e.g., the work transition between A1,4 and A2,1) is represented in
the same way as a work transition within a process model (e.g., one between A2,1 and A2,2).
However, since two different organizations participate in the interaction, the interaction
has special features such as a distributed transaction and a separated role and responsibility
model. The ebXML Business Process Specifi cation Schema (BPSS) (UN/CEFACT, 2001)
that provides a detailed UML class diagram to design an interaction between collaborating
business entities supports a distributed transaction and a separated role and responsibility
model by considering an interaction as a business transaction between activities. Thus, the
object data model in Figure 3(a) can be extended by inheriting a specialized interaction
class from the WorkTransition class and connecting the interaction class and the UML class
diagram of the ebXML BPSS; consequently, the extended data model would describe the
interactions more precisely in terms of a distributed transaction and a separated role and
responsibility model. However, to simplify the federated process framework and focus
on the research questions, this chapter will use the object data model in Figure 3(a) in the
remaining parts without extending it.

Meanwhile, the XML document based on an integrated process model can be derived
by merging XML documents based on internal or external process models comprising the
integrated process model. To merge XML documents based on different process models, each
of their ActivitySet elements and ActivitySet elements and ActivitySet ProcessDataSet elements is merged separately. Particularly, ProcessDataSet elements is merged separately. Particularly, ProcessDataSet
an Activity element corresponding to a process activity should be deleted since the process
activity does not exist in the integrated process model. Figure 7 shows an example of merg-
ing the left XML document representing the online store’s order handling process status
and the right XML document representing the transportation company’s product delivery
process status. The resultant XML document in the middle of Figure 7 represents the global
process status that means, “the online store has notifi ed a customer that the product is being
shipped, and the transportation company is fulfi lling the delivery by moving the product to
a nearby branch.” Note that the Activity element corresponding to the process activity, A1,4,
disappears in the XML document based on the integrated process model.

The second and third steps present the detailed methods that restrict and seamlessly
integrate local process models according to participants’ sharing policies, and thus these
methods provide an answer to the second question of the autonomy problem. Furthermore,
when a participant’s process model or sharing policy is changed, these methods support

Federated Process Framework for Transparent Process Monitoring 285

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

automatic generation of external and integrated process models. Thus, the second and third
steps also provide base algorithms to solve the agility problem.

Fourth Step: Construction of a Customized Process Model
The fi nal step of the federated process framework is to construct a partial process

model from an integrated process model. The integrated process model can be quite large
and complex, and thus it may need to be reduced into a partial process model to support
access control for user-level securities or to provide a smaller process model appropriate
to a specifi c task of a user or user group. Such a partial process model constructed from an
integrated process model is called a customized process model. When a customized process
model is constructed, users’ needs for customization are fi rst identifi ed, and activities that are
unnecessary for the needs are removed. To remove the unnecessary activities, the nine rules
presented in the second step are iteratively applied to the integrated process model. Figure 8
exemplifi es a customized process model for the online store’s customer support staff, which
is constructed by removing messaging activities, A2,1 and A2,7, from the integrated process
model in Figure 6(b). This customized process model helps the customer support staff to
focus only on the process information necessary for customer services.

The existing object data example can be easily extended in order to manage the cus-
tomized process model by adding new WorkTransition objects for the customized process
model and assigning “CUSTOMIZED” to its PMType attributes. On the other hand, in the
same way as in the second step, an XML document based on the integrated process model
can be transformed into one based on the customized process model by eliminating the
Activity elements corresponding to the removed activities.

This section presents the federated process framework to facilitate process informa-
tion sharing among collaborating but autonomous organizations. Specifi cally, the four steps
of the framework facilitate seamless integration of multiple collaborating process models
while accommodating fl exible activity-level sharing policies. To support these features of

Figure 7: XML document based on the integrated process model in Figure 6(b)

286 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

the framework systematically, this section also presents the object data model to manage
a process model and the XML document structure to represent process status. Therefore,
the proposed federated process framework provides answers to the two questions of the
autonomy problem and consequently addresses the autonomy problem.

SYSTEM ARCHITECTURE
AND ITS PROTOTYPE SYSTEM

This section presents a system architecture based on the federated process framework
with its prototype system. The system architecture is composed of the following two types
of system components: a repository and an agent. Figure 9 shows the components and their
interactions. In terms of the repository, the system architecture contains process model
repositories and an XML document repository. Employing the object data model in Figure
3(a), the process model repository manages internal, integrated, and customized process
models on the information-receiving side, and it manages internal and external process
models on the information-providing side. The XML document repository resides only
on the information-receiving side and manages a set of XML documents that represents the
execution history of global process instances.

In terms of the agent, the system architecture contains publisher agents and a subscriber
agent. On both sides, the publisher agent detects the change of a local process status and
sends the XML document representing the changed local process status to the subscriber
agent that resides on the information-receiving side. The subscriber agent manages the XML
document repository and broadcasts it to relevant user views. When the subscriber agent
receives an XML document from a publisher agent, it fi rst refers to the latest XML docu-
ment based on the integrated process model from the XML document repository, modifi es
it according to the received XML document, and inserts the modifi ed XML document based
on the integrated process model into the XML document repository. Then, the subscriber

Figure 8: Customized process model for the online store’s customer support staff

Federated Process Framework for Transparent Process Monitoring 287

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

agent sends the modifi ed XML document to the relevant user views that visually provide
end users current global process status.

The numbered arrows in Figure 9 show the change notifi cation procedure ((1) to (5))
in detail. In the proposed system architecture, the change notifi cation procedure is encoded
in the application programs such as the agents and user view, but participants’ process
models and sharing policies are managed in the process model repository. Thus, the system
procedures in the application programs are independent of contents of the process model
repository. When a participant’s process model or sharing policy is changed, the associated
external and integrated process models are automatically generated through the second and
third steps of the federated process framework. Then, the proposed system architecture can
adapt itself to the change just by revising the contents of the process model repository. This
adaptability of the system architecture provides the answer to the fi rst question of the agility
problem; in addition, the system components comprising the system architecture provide the
answer to the second question of the agility problem. Consequently, the system architecture
based on the federated process framework addresses the agility problem.

Using the system architecture, a prototype system was also developed based on a
commercial OODB called OBJECTSTORE with the JAVA programming language. In the
prototype system, we employed a real inter-organizational process model that is composed
of three collaborating internal process models, including the online store’s order handling
process, the transportation company’s delivery process, and the credit card company’s card
verifi cation process. The internal process models are managed separately in different process
model repositories that were built up in the OBJECTSTORE as the form of the object dia-
gram in Figure 3(b). The agents and a user view, which were implemented using the JAVA
programming language, access the process model repositories and interact with each other
through the TCP/IP network. The lower part of Figure 10(a) shows a test bed that imitates
the executions of the three business processes to evaluate the prototype system. The adopted
test bed contains three workfl ow simulators corresponding to the three participating internal
process models. According to the internal process models and their interactions, these work-

Figure 9: System architecture based on the federated process framework

288 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

fl ow simulators proceed simultaneously as independent software processes while interacting
with each other. Whenever a workfl ow simulator’s state is changed, the workfl ow simulator
sends an event to a publish agent and then the change notifi cation procedure is performed
according to the change. Figure 10(b) shows the JAVA applet-based user view that provides
real-time process status on the online store’s customized process model.

All the system components of the prototype system were tested for accuracy and
completeness by changing the sharing policy for the amount of shared process information
(i.e., changing the external and integrated process models in the process model repositories).
Furthermore, by performing scenario experiments for the change of an internal process
model or a sharing policy, the prototype system was evaluated in terms of the adaptability.
Consequently, the prototype system shows that it is both possible and feasible to develop
the federated process framework while solving the autonomy and agility problems.

DISCUSSION
Most supporting business processes (e.g., delivery process of an online store) rarely

contribute to the improvement of core competencies even though they are indispensable
for steady enterprise business operations. In some cases, they even burden companies with
excessive cost for human resource and system maintenance, and consequently make it dif-
fi cult for the companies to focus on their core business. Then, outsourcing the supporting
business processes to external partners often helps the companies accommodate cost ef-
fi ciency and core business focusing.

However, an outsourcing company still needs to monitor and control the outsourced
business processes, while an insourcing company wants to keep the autonomy and agility as
an independent business unit. The main contribution of the chapter is to suggest a conceptual
design that satisfi es these two confl icting needs of insourcing and outsourcing companies
by providing the federated process framework and its system architecture.

Figure 10: Evaluation of the prototype system

Federated Process Framework for Transparent Process Monitoring 289

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

In reality, the framework supports the practical implementation of business pro-
cess outsourcing and then contributes to accelerating effective business collaboration in
contemporary business environments. In particular, it can be applied to a wide variety
of practical circumstances such as the following two cases in which tightly-coupled and
loosely-coupled business process outsourcing take place respectively: a holding company
and virtual enterprise.

First, a holding company is formed to buy shares in other companies, which it then
controls. The regulatory change and the desire for a large customer base have increased the
number of large holding companies through tremendous industry consolidation recently.
However, companies inside a holding company typically perform similar business functions
such as logistics and IT system management redundantly, which impedes the economy of
scale. Then, if the redundant business functions are transferred from the companies to one
of them or an external insourcing company, overall cost effi ciency of the holding company
could be improved by virtue of the sharing of human resource and system infrastructure.
Second, a virtual enterprise outsources multiple business functions and then controls them
as if they were performed locally. As the online store in Figure 10 collaborates with a
transportation company and a credit card company, a virtual enterprise works together
with multiple insourcing companies since it may choose different insourcing companies
by business functions. In doing so, a virtual enterprise tends to incline to best-of-breed
virtual integration without any preferences or dependencies on specifi c partners; therefore,
the most infl uential criterions to select external partners are service quality and customized
service fulfi llment.

These two cases show that the goals of business process outsourcing vary from
global optimization of the cost structure to local optimization, depending on the governance
structure and business relationship of insourcing and outsourcing companies. On the other
hand, in both the cases, insourcing companies want to keep autonomy and agility, and thus
hesitate about the full information sharing with an outsourcing company. To support such
various cases of business process outsourcing, the federated process framework presents
the mechanism to control shared process data with the shared policy.

CONCLUSIONS AND FUTURE RESEARCH
Recall that the initial goal of the chapter was to provide a system framework to facili-

tate process information sharing in the modern business environment. Specifi cally, at the
beginning of the chapter, we issued the autonomy and agility problems. These two problems
have not been previously addressed in the literature, though they are crucial obstacles to
developing process information sharing. To achieve an effi cient and applicable framework,
this chapter makes efforts to address these problems in the following ways:

First, to solve the autonomy problem, we proposed the federated process framework.
Specifi cally, the fi rst step of the framework provides an object data model and XML docu-
ment structure as systematic representations of a process model and process status. The
second step distinguishes the external process model from the internal process model and
provides the detailed rules to automatically generate the external process model. The third
step presents the method to seamlessly integrate multiple process models according to
participants’ sharing policies. The fourth step tailors the integrated process model for the
purposes of customization and user-level access control. In this way, the four steps facilitate

290 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

the activity-level sharing policy and seamless process model integration. Consequently,
the federated process framework overcomes the autonomy problem by supporting fl exible
sharing policies, and accommodates wide applicability to various practical situations, from
loosely-coupled cases to tightly-coupled cases.

Second, to solve the agility problem, we proposed the system architecture based on the
federated process framework. In this architecture, process models and sharing policies are
separated from the application programs and are managed in the process model repository.
When a participant’s process model or sharing policy is changed, associated external and
integrated process models are automatically generated through the second and third steps
of the federated process framework. Then, the system architecture can adapt itself to the
change just by revising the contents of the process model repository. The presented object
data model and XML document structure make it possible to achieve such adaptability by
providing conceptual designs that can be extended for the actual development of the process
model repository and change notifi cation procedure. As a result, the system architecture ad-
dresses the agility problem and allows suffi cient adaptability to support the entire life cycle
of process information sharing. By adding physical system capabilities such as security
control and data confl ict resolution, the proposed system architecture can be extended as a
fully-fl edged physical system design for process information sharing.

In future research, fi rst, we are extending the federated process framework to cover
the peer-to-peer model (Workfl ow Management Coalition, 1998) of the inter-organizational
process, in which local processes exchange asynchronous messages at their runtime. In
presenting the federated process framework, this chapter focuses on the hierarchical model
(Workfl ow Management Coalition, 1998), in which a local process uses a process activity
to represent other collaborating process. The hierarchical model is the most typical form
of the inter-organizational process, but the peer-to-peer model is more suitable to represent
complex business collaboration than the hierarchical model. To cover the peer-to-peer
model, the third step of the federated process framework needs to be redeveloped due to its
underlying assumption about the process activity.

Second, we plan to extend the system architecture in order to improve its applicability
in a modern business-to-business computing environment. Particularly, the service-oriented
architecture (Arsanjani, 2002) and web services (Kreger, 2003) provide underlying system
framework and platform for the actual implementation of the business process outsourcing.
In the service-oriented architecture, if a company outsources its business process, a corre-
sponding insourcing company encapsulates the outsourced business process into a service.
The outsourcing company invokes the service to communicate and collaborate with the
outsourced business process. Thus, these technologies largely simplify the system design
and implementation of the business process outsourcing. By engaging the service-oriented
architecture and the web services standard in extending the federated process framework,
we expect to make the framework more practical and widely used for the actual system
development for business process outsourcing in a modern business-to-business computing
environment.

Federated Process Framework for Transparent Process Monitoring 291

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

ENDNOTES
* This research is supported by the Information Technology Research Center (ITRC)

and sponsored by the Ministry of Information and Communication, the Republic of
Korea.

REFERENCES
Alonso, G. et al. (1999). WISE: Business to business E-commerce. Proceedings of the 9th

IEEE International Workshop on Research Issues on Data Engineering. Information
Technology for Virtual Enterprises (RIDE-VE 1999), Sydney, Australia, 23-24.

Amghar, Y. et al. (2000). Using business rules within a design process of active databases.
Journal of Database Management, 11(3), 3-15.

Arnold, K. et al. (2000). The Java programming language. California: Addison-Wesley.
Arsanjani, A. (2002). Developing and integrating enterprise components and services. Com-

munications of the ACM, munications of the ACM, munications of the ACM 45(10), 31-34.
Bakos, Y. (1998). The emerging role of electronic marketplaces on the Internet. Communi-

cations of the ACM, cations of the ACM, cations of the ACM 41(8), 35-42.
Ball, M.O. et al. (2002). Supply chain infrastructures: System integration and information

sharing. SIGMOD Record, SIGMOD Record, SIGMOD Record 31(1), 61-66.
Berfi eld, A. et al. (2002). A scheme for integrating E-services in establishing virtual enterprises.

Proceedings of the 12th International Workshop on Research Issues in Data Engineer-
ing e-Commerce/e-Business Systems (RIDE’02), California, USA, 134-142.

Böhm, K. (2000). On extending the XML engine with query-processing capabilities. Pro-
ceedings of Advances in Digital Libraries (ADL), Bethesda, Maryland, 127-138.

Bolcer, G.A., & Kaiser, G. (1999). SWAP: Leveraging the web to manage workfl ow. IEEE
Internet Computing, 3(1), 85-88.

Booch, G. et al. (1999). The Unifi ed Modeling Language user guide. Massachusetts: Ad-
dison-Wesley.

Carter, B. (2000). XML: Filling a data-description gap, Part II. Journal of Database Man-
agement, 11(2), 30-33.

Casati, F. et al. (1998). Workfl ow evolution. Data & Knowledge Engineering, 24(3), 211-
238.

Chircu, A.M., & Kauffman, R.J. (2000). Reintermediation strategies in business-to-business
electronic commerce. International Journal of Electronic Commerce, 4(4), 7-42.

Cichocki, A. et al. (1998). Workfl ow and process: Concepts and technology. Massachusetts:
Kluwer Academic Publishers.

D’Amours, S. et al. (1999). Networked manufacturing: The impact of information sharing.
International Journal of Production Economics, 58, 63-79.

Dabke, P. (1999). Enterprise integration via CORBA-based information agents. IEEE In-
ternet Computing, 3(5), 49-57.

Gartner. (2002). Finance sector seeks IT outsourcing to meet business goals. ITSV-WW-
DP-0315.

Gartner. (2003). Why Asia/Pacifi c enterprises outsource, and why they don’t. ITSC-AP-
UW-0109.

292 Bae and Huh

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Georgakopoulos, D. et al. (1999). Managing process and service fusion in virtual enterprises.
Information Systems, 24(6), 429-456.

Goranson, H.T. (1999). The agile virtual enterprise: Cases, metrics, tools. London: Quorum
Books.

Hafeez, K. et al. (2002). Core competence for sustainable competitive advantage: A structured
methodology for identifying core competence. IEEE Transactions on Engineering
Management, 49(1), 28-35.

Heimbigner, D., & McLeod, D. (1985). A federated architecture for information manage-
ment. ACM Transactions of Offi ce Information Systems, 3(3), 253-278.

Herring, C., & Milosevic, Z. (2001). Implementing B2B contracts using BizTalk. Proceed-
ings of the 34th Hawaii International Conference on System Sciences, Hawaii, USA,
4078-4087.

Kim, W. (1995). Modern database systems: The object model, interoperability, and beyond. Modern database systems: The object model, interoperability, and beyond. Modern database systems: The object model, interoperability, and beyond
New York: Addison-Wesley.

Kreger, H. (2003). Fulfi lling the web services promise. Communications of the ACM, Communications of the ACM, Communications of the ACM 46(6),
29-34.

Kuechler, W. et al. (2001). Supporting optimization of business-to-business E-commerce
relationships. Decision Support Systems, 31, 363-377.

Lee, H.L. et al. (1997). The bullwhip effect in supply chains. Sloan Management Review,
38, 93-102.

Leymann, F., & Roller, D. (2000). Production workfl ow: Concepts and techniques. New
Jersey: Prentice Hall.

Mangan, P., & Sadiq, S. (2002). On building workfl ow models for fl exible processes.
Proceedings of the 13th Australasian Database Conference ADC2002, Melbourne,
Australia.

Merz, M., & Lamersdorf, W. (1999). Crossing organizational boundaries with mobile agents
in electronic service markets. International Journal on Computer-Aided Engineering,
6(2), 91-104.

Mori, M. et al. (1999). Proposal of application architecture in electronic commerce service
between companies. Proceedings of the International Workshop on Advance Issues
of E-Commerce and Web-Based Information Systems (WECWIS), Santa Clara, USA,
46-49.

Object Management Group. (2000, April). Workfl ow management facility specifi cation V1.2.
[Online]. Available: http://www.omg.org/.

Progress Software. (2003). ObjectStore. http://www.objectstore.net/.
Ramamurthy, S., & Robinson, M.S. (2003). Simplify to succeed – Optimize the customer

franchise and achieve operational scale: Retail fi nancial institutions in 2005. IBM
Business Consulting Services Point of View Series. Available: http://www.ibm.com/.

Scott-Morton, M.S. (1994). The 1990s research program: Implications for management and
the emerging organization. Decision Support Systems, 12(2), 251-256.

Sheth, A.P., & Larson, J.A. (1990). Federated database systems for managing distributed, het-
erogeneous, and autonomous databases. ACM Computing Surveys, 22(3), 183-236.

Sundaram, M., & Shim, S.S.Y. (2001). Infrastructure for B2B exchanges with RosettaNet.
Proceedings of the International Workshop on Advance Issues of E-Commerce and
Web-Based Information Systems (WECWIS), California, USA, 110-119.

Tuma, A. (1998). Confi guration and coordination of virtual production networks. Interna-
tional Journal of Production Economics, 56, 641-648.

Federated Process Framework for Transparent Process Monitoring 293

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

UN/CEFACT & OASIS. (2001, May 11). Business process specifi cation schema V1.01.
[Online]. Available: http://www.ebxml.org/.

van der Aalst, W.M.P. (1999). Process-oriented architectures for electronic commerce and
interorganizational workfl ow. Information Systems, 24(8), 639-671.

Workfl ow Management Coalition. (1998, August 5). Interface 1: Process defi nition inter-
change process model, Document Number WfMC-TC-1016-P. [Online]. Available:
http://www.wfmc.org/.

Workfl ow Management Coalition. (2000, May 1). Workfl ow standard – Interoperability Wf-
XML binding, Document Number WFMC-TC-1023. [Online]. Available: http://www.
wfmc.org/.

Zhou, Q. et al. (1998). An information management system for production planning in virtual
enterprises. Computers & Industrial Engineering, 35(1-2), 153-156.

294 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Chapter XV

Online Analytical Mining
for Web Access Patterns

Joseph Fong, City University of Hong Kong, Hong Kong

Hing Kwok Wong, City University of Hong Kong, Hong Kong

Anthony Fong, City University of Hong Kong, Hong Kong

ABSTRACT
The WWW and its associated distributed information services provide rich world-wide on-
line information services, where objects are linked together to facilitate interactive access.
Users seeking information from the Internet traverse from one object via links to another.
It is important to analyze user access patterns, which helps improve web page design by
providing an effi cient access between highly correlated objects, and also assists in better
marketing decisions by placing advertisements in frequently visited documents. We need to
study the user surfi ng behavior through examining the web access log, browsing frequency
of web pages and computing the average duration of visitors. This chapter offers an ar-
chitecture to store the derived web user access paths in a data warehouse, and facilitates
its view maintainability by use of metadata. The system will update the user access paths
pattern with the data warehouse by the data operation functions in the metadata. Whenever
a new user access path occurs, the view maintainability is triggered by a constraint class
in the metadata. The data warehouse can be analyzed on the frequent pattern tree of user
access paths on the web site within a period and duration. The result is an online analyti-
cal mining path traversal pattern. Performance studies have been done to demonstrate the
effectiveness and effi ciency of the system with the following contributions: an architecture
of online analytical mining using frame model metadata, a methodology of implementing
the online analytical mining, and the resultant cluster of web pages frequently visited by
users for marketing use.

Online Analytical Mining for Web Access Patterns 295

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

INTRODUCTION
Today, with the advent of the web and electronic commerce, nearly every organization

has a web site where tremendous amounts of customer data have been generated and collected.
These customer data contain a wealth of potentially accessible information. However, the
explosive growth of data will inevitably lead to a situation such that it is increasingly diffi cult
to access the desired information. As a result, there are great demands for analyzing data and
transforming them into useful information and knowledge. Therefore, Knowledge Discovery
and Data Mining (KDD) has become an important fi eld in recent years to address the need
for analyzing data in very large data repositories.

KDD is the process of automatic extraction of implicit, novel, useful, and understandable
patterns in large databases. There are many steps in the KDD process, which include data
selection, data cleaning, enrichment, coding, data-mining task, algorithm selection, and
interpretation of discovered knowledge (Adriaans & Zantinge, 1996). This process tends
to be interactive, incremental and iterative. Figure 1 illustrates the steps of the knowledge
discovery process.

There is a relationship between the activities of data mining and data warehouse – the
architecture foundation of decision support systems. The data warehouse sets the stage for
effective data mining. The data mining can be done without data warehouse, but the data
warehouse can improve the chances of success in data mining (Inmon, 1996).

Background
As the usage of the World Wide Web explodes, a massive amount of data is generated

by web servers in the form of web access logs. It is a rich source of information for
understanding web user surfi ng behavior. Web usage mining is one type of web mining
activity that involves the automatic discovery of user access patterns on one or more web
servers. Also, it applies data mining algorithms to web access logs to locate the regularities
in web users’ access patterns.

Analysis of these access data provides useful information for server performance
enhancements, restructuring web sites, and direct marketing in electronic commerce. As a
result, web usage mining has been used in improving web site design, business and marketing
decision support, user profi ling, and web server system performance, etc.

Among methods of discovering various knowledge in large databases, the association
rule has attracted great attention in database research communities in recent years (Agrawal,

Figure 1: The Knowledge Discovery and Data Mining process

296 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Imielinski & Swami, 1993; Agrawal & Srikant, 1994; Brin, Motwani & Silverstein, 1997;
Han & Fu, 1995; Klemettinen, Mannila, Ronkainen, Toivonen & Verkamo, 1994; Miller &
Yang, 1997; Ng, Lakshmanan, Han & Pang, 1998; Park, Chen & Yu, 1995; Srikant & Agrawal,
1995; Srikant & Agrawal, 1996; Savasere, Omiecinski & Navathe, 1995; Srikant, Vu &
Agrawal, 1997; Toivonen, 1996). The association rule is a form of data mining to discover
interesting relationships among attributes in data. The discovered rules help decision support
and business management. An example is that 98% of customers who purchase a computer
and printer also buy a scanner. Since rules are simple, easy to understand, explain and catch
important relationships among data in large databases. No wonder mining association rules
from large data sets has been a popular topic in the recent research of data mining.

The association rule involves several major issues, including effi ciency, scalability,
usability and understandability. In the real world applications, data mining tasks are applied
to data consisting of millions of tuples. Consequently, our fi rst concern is the effi ciency and
scalability of association rules in large databases to reduce the computational complexity
of the intensive data processing. Thus an essential issue in the association rule is to locate
its effective algorithms.

The Frequent Pattern Growth (FP-growth) algorithm is one of the association rule
algorithms which locates frequent itemsets, but unlike Apriori, it avoids the expense of
generating only candidate itemsets. Because FP-growth does not need to examine both
candidate and non-candidate sets and requires only two scans of the database, it is a fast
algorithm for mining association patterns. We will investigate this algorithm in depth in the
algorithm of Sequential FP-growth.

We propose and develop an interesting method, called online analytical mining of
path traversal patterns, which integrates the recently developed data warehouse technology
with an effi cient association mining method. The system stores the derived web user access
paths in a data warehouse and facilitates its view maintainability by frame metadata (Fong
& Huang, 1997). The system updates user access paths patterns with the data warehouse
by the data operation functions in the frame metadata. Whenever a user access path occurs,
the view maintainability is triggered by a constraint class in the frame metadata. The data
warehouse is analyzed on the frequent pattern tree of user access paths on the web site within
a period. The developed method achieves incremental, extensible, and multi-dimensional
association rule mining with high performance.

Association Rules
Association rules are like classifi cation rules. Mining association rule is a form of

data mining used to discover interesting relationships among attributes in those data. This
methodology discovers interesting associations or correlation relationships among a large
set of data, i.e., identifi es sets of attribute-values (predicate or item) that frequently occur
together, and then formulates rules that characterize these relationships. In general, an
association rule indicates that the data occurrences of A1, A2, …, Ai will most likely associate
with the data occurrences of B1, B2, …, Bj.

A1, A2, …, Ai → B1, B2, …, Bj

where Ai and Bj are predicates or items. Such rules are usually interpreted as, “ When items
A1, A2, …, Ai occur, items B1, B2, …, Bj will occur as well in the same transaction.”

Online Analytical Mining for Web Access Patterns 297

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Association rules have two important measurements: Support and Confi dence. Support
is an argument that decides whether the candidate is frequent or not. The frequent path
patterns are identifi ed by their support values. Confi dence is an argument that describes the
believable degree of association rules.

An example of an association rule is, “90% of transactions that contain beer also contain
diapers; 5% of all transactions contain both of these items.” Here 90% and 5% are called the
confi dence level and support level, respectively. The objective is to fi nd association rules
that satifsfy user-specifed minimum support and minimum confi dence threshold. A strong
association rule will have a large support and high confi dence level.

Web Mining
The World Wide Web serves as a huge, widely distributed, global information service

center for news, advertisements, consumer information, fi nancial management, education,
government, e-commerce, and many other information services. The web contains a rich and
dynamic collection of hyperlink information and web page access and usage information,
providing rich sources for data mining (Han & Kamber, 2001). Naturally, a combination of
the data mining and the World Wide Web are referred to as web mining.

Web mining is broadly defi ned as the discovery and analysis of useful information Web mining is broadly defi ned as the discovery and analysis of useful information Web mining
from the World Wide Web. It describes the automatic search and retrieval of information
and resources available from online databases or web servers. In general, there are three
knowledge discovery domains pertaining to web mining, which are classifi ed into the

Figure 2: Taxonomy of web mining

298 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

following categories: (1) web content mining, (2) web structure mining, and (3) web usage
mining. The taxonomy of web mining is depicted in Figure 2.

Briefl y, web content mining is the process of extracting knowledge from the contents of
documents or their descriptions. Web structure mining is the process of inferring knowledge
and links between references and referents in the web. Finally, web usage mining is the
process of extracting interesting patterns in web server logs (Cooley, Mobasher & Srivastava,
1999). Alternatively, web mining can be classifi ed into web content mining and web usage
mining, because web structures can be treated as a part of web contents mining.

Frame Model Metadata
A frame model is an object-oriented-like database that structures an application domain

into classes and its data into relational tables. These classes are organized via generalization,
aggregation and user-defi ned relationships. The frame model is signifi cant as it consists of

Figure 3: The logical schema of the frame model in class format

Header Class {
 Class_name
 Parents
 Operation
 Class_type
}

// an unique name in all system
// a list of superclass names
// program call for operations
// active or static class

Attribute Class {
 Attributes_name
 Class_name
 Method_name
 Attributes_type
 Association attribute
 Default_value
 Cardinality
 Description
}

// an attribute in this class
// reference to header class
// a method in this class
// attribute data type// attribute data type//
// pointer to another class
// predefi ned value
// single or multi-valued
// description of the attributes

Method Class {
 Method_name
 Class_name
 Parameters
 Method_type
 Condition
 Action
}

// a method component in this class
// reference to header class
// number of arguments for the method
// return type of method
// the rule conditions
// the rule actions

Constraint Class {
 Constraint_nameConstraint_nameConstraint
 Class_name
 Method_name
 Parameters
 Ownership
 Event
 Sequence
 Timing

// a constraint component of this class
// reference the header class
// constraint method name
// number of argument for the method
// the class name of method owner
// triggered event: create update or delete
// method action time: before or after
// the method action timer

Online Analytical Mining for Web Access Patterns 299

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

a set of data, as well as the active and dynamic data structure of the legacy data models,
with the constraints structures to resolve their synonyms and homonyms confl icts. These
constraints include integrity constraint enforcement, derived data maintenance, triggers,
protection, version control, etc. The frame model unifi es data and rules, allowing these
advanced features to be implemented effectively.

The frame model performs in the object-oriented paradigm. All the conceptual entities
are modeled as objects. The same attribute and behavior objects are classifi ed as a class.
Besides, both facts and rules are viewed as objects in the frame model design. The frame
model logical schema in a class format is shown in Figure 3 (Fong & Huang, 1997).

The frame model consists of two classes: static classes and active (dynamic) classes.
Static classes represent factual data entities and active classes represent rule entities. An
active class is event driven, obtaining data from the database when it is invoked by a certain
event. The static class stores data in its own database. The two classes use the same structure.
Combining these two types of objects within the inheritance hierarchy structure enables the
frame model to represent hybrid knowledge.

 Fong and Huang (1997) translated existing data models into a frame model of the
universal database. The structure of the frame model consisted of several classes such as
Header, Attributes, Methods, and Constraints classes. According to the frame model, a
universal database could be formed. Therefore, old and new database systems could coexist
to form a data warehouse for a decision support system.

Fong and Huang (1999) investigated architecture of universal data warehousing for the
connectivity of relational and OO data model using an ORDBMS. A frame model metadata
was chosen to represent the conceptual and logical schema of the universal data warehouse,
which structures an application domain into classes, and its data in relational tables. The
universal data warehouse, using an ORDBMS, offers a relational and an OO view for the
data warehouse to accommodate different types of queries effi ciently. Fong & Pang (1999)
proposed a frame metadata model approach to integrate existing databases and evolve them
to support new database applications. This facilitates an evolutionary approach to integrating
existing databases to support new applications.

Data Warehousing and Star Schema
A data warehouse is a database specifi cally created to facilitate decision-making. A

data warehouse retrieves data from operational and Online Transaction Processing (OLTP)
system, but the data are transformed and optimized for analysis.

Nowadays, the demand for information continues to increase as companies realize that
information generates revenues, reduces cost and enlarges market shares. Keen competition
in rapidly changing business environments is expected and these conditions will generate
increasing demand for reliable, easy-to-access decision-making information.

A star schema is a simple structure with relatively few tables and well-defi ned join
paths. This design provides fast query response time and a simple schema that is understood
by the analysts and end users. A star schema contains two types of tables: fact tables and
dimension tables. Fact tables contain the quantitative or factual data about a business, the
information being queried. This information is often numerical measurements and consists
of many columns and millions of rows. Dimension tables are usually small verse fact tables
and contain more descriptive information. Dimension tables contain the data needed to place
transactions along a particular dimension.

300 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The advantage of the star schema is the queries that it can handle in an effi cient way.
For example, analyzing the sales data by year, quarter, or month is possible on the time
dimension without resorting to a table scan. Similar varieties of analysis are possible on the
other dimensions. Furthermore, the star schema matches well to the way that users perceive
and use the data, making it easier to be understood.

Online Analytical Mining
Online analytical mining (OLAM) is an architecture that integrates online analytical

processing (data warehouse) with data mining. Using OLAM can preserve high quality of data
in data warehouse, since most data mining tools need to work on integrated, consistent, and
cleaned data, which requires costly data cleaning, data transformation and data integration as
preprocessing steps. A data warehouse constructed by such preprocessing serves as a valuable
source of high-quality data for data mining. Also, comprehensive information processing
and data analysis can be systematically constructed surrounding data warehouses, which
includes accessing, integration, ODBC DB connections, web accessing and reporting. Finally,
OLAM provides facilities for data mining on different subsets of data and at different levels
of abstraction, by roll-up and drill-down. This, together with visualization tools, greatly
enhances the power and fl exibility of exploratory data mining.

Nowadays, most web usage analysis tools lack the ability to provide true business
insights about visitors’ online behavior. Tools like Accrued, NetTracker and WebTrends
provide only high-level predefi ned reports about frequent count. The reports predefi ned by
the tools are the summary of hits, bytes transferred, a list of top requested URLs, hits per
hour/day/week/month report, etc. These reports aim at providing information on the activity
of the server rather than the user. Also, they do not concern the incoming and up-to-date log
data. Therefore, the derived information will be outdated soon.

Keen competition in rapidly changing business environments is expected, and these
conditions will generate increasing demand for reliable, up-to-date and easy to access
decision-making information. Therefore, we propose a web usage mining system of OLAM
of path traversal patterns for web measurement, which provides an online and up-to-date
browsing capacity of user access behavior in a web site. It provides insight into the user
behavior, detects and analyzes user access paths for a better understanding of how users
visit a web site.

OLAM provides the basic summary reports. It integrates data mining with data
warehouse, which provide online capture of the user access patterns. We choose frame
metadata to implement the online feature because it can be used to develop an event-driven
active data warehouse. When an event occurs, it triggers a process in the constraint class,
which calls for the operations in the method class for action. Since the up-to-date view
maintenance of the data warehouse is very important, by using frame metadata, data can be
actively updated to maintain the view for decision support systems. The result is an active
data warehousing view maintenance.

The following covers OLAM of path traversal patterns for web measurement, which
includes scalable and continuous/incremental data mining and integration of data mining
with database systems and data warehouse systems:

1. Architecture of OLAM using frame model metadata, which utilizes up-to-date view
maintenance by continuously updating the data warehouse to interactively extract
implicit knowledge from the web access log.

Online Analytical Mining for Web Access Patterns 301

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

2. Methodology of implementing OLAM, which includes integration of data mining and
data warehousing techniques into a unifi ed framework that ensures data availability,
fl exibility, and integrated information-processing environment for data analysis.

3. The resultant cluster of web pages frequently visited by users for marketing use,
which includes identifying potential customers for e-commerce, evolving the web
sites to achieve the business objectives, enhancing the quality and delivery of Internet
information services to the end user, and helping web design to improve the web site
topology.

RELATED WORK
Association Rules Discovery

The concept of association rules was fi rst introduced in Agrawal, Imielinski and
Swami (1993). The problem of data mining for association rule has been studied extensively
(Harinarayan, Rajaraman & Ullman, 1996; Agrawal & Srikant, 1994; Bayardo, 1998;
Cheung, Han, Ng & Wong, 1996; Han, Karypis & Kumar, 1997; Park, Chen & Yu, 1995b;
Savasere, Omiecinski & Navathe, 1995; Fukuda, Morimoto, Morishita & Tokuyama, 1996;
Svawagi, Thomas & Agrawal, 1998). These studies covered a broad range of topics and its
variations have been studied, aimed for further improvements of the performance of the
algorithm. These are fast algorithms based on the Apriori Algorithm (Agrawal & Srikant,
1994), incremental updating and parallel algorithms (Cheung, Han, Ng & Wong, 1996; Park,
Chen & Yu, 1995b; Han, Karypis & Kumar, 1997), and mining of generalized, multi-level
rules, and multi-dimensional rules (Han & Fu, 1995; Zhao, Deshpande & Naughton, 1997). A
hash-based technique was used to reduce the size of the candidate k-itemsets; a scan reduction
technique was used to reduce the number of database scans; and a transaction reduction
technique was used to reduce the number of transactions scanned in future iteration (Park,
Chen & Yu, 1995a). Recently, a strategy based on partitioning the data showed a stronger
effect than the other scan reduction methods to reduce the number of scans required to two
(Savasere, Omiecinski & Navathe, 1995).

Sequential Patterns Mining
The problem of discovering sequential patterns mining is to fi nd inter-transaction

patterns such that the presence of a set of items is followed by another item in the time-
stamp ordered transaction set. It was fi rst introduced by Agrawal and Srikant (1995). The
algorithm AprioriAll was to fi nd all frequent patterns. Later, the same authors (Srikant &
Agrawal, 1996a) presented the GSP algorithm that outperforms AprioriAll by up to 20 times.
The GSP algorithm was a variation of the Apriori algorithm.

Mannila, Toivonen and Verkamo (1995) presented the problem of fi nding frequent
episodes in only one long sequence of events. An episode is defi ned as a set of events occurring
with a partially defi ned order and within a given time bound. They generalized their work
to allow one to express arbitrary unary conditions on the individual event attributes, or to
give binary conditions on the pairs of event attributes. Their experiments were performed
using a web server-level log fi le.

Oates and Cohen (1996) introduced the problem of detecting strong dependencies among
multiple streams of data. Their measure of dependency strength is based on the statistical

302 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

measure of non-independence. An unexpectedly frequent or infrequent pattern was detected,
and the algorithm generated rules only rather than frequent sequences.

Another important data dependency that can be discovered, using the temporal
characteristics of the data, are similar time sequences (Mannila, Toivonen & Verkamo,
1995; Srikant & Agrawal, 1996b). For example, we may be interested in fi nding common
characteristics of all clients that visited a particular fi le within the time period [t1, t2]. On
the contrary, we may be interested in a time interval (within a day or within a week, etc.) in
which a particular fi le is most accessed.

Much work has been done in user behavior analysis. Chen, Park and Yu (1998) explored
to mine path traversal patterns in a distributed information environment, but only one ordered
dimension, the forward referenced pages/URLs accessed, was considered.

Web Usage Mining
In the recent years, there has been an increasing number of research work done in

web usage mining (Yan, Jacobsen, Molina & Dayal, 1996; Cooley, Mobasher & Srivastava,
1997; Chen, Park & Yu, 1998; Wu, Yu & Ballman, 1998; Buchner, Baumgarten, Anand,
Mulvenna & Hughes, 1999; Cooley, Mobasher & Srivastava, 1999; Masseglia, Poncelet &
Cicchetti, 1999; Masseglia, Poncelet & Teisseire, 1999; Masseglia, Poncelet & Teisseire,
2000; Srivastava, Cooley, Deshpande & Tan, 2000).

Most of the existing web analysis tools (Open market web reporter, 1996; Software Inc.
Webtrends, 1995; net.Genesis, 1996) provided mechanisms for reporting user activity in the
servers and various forms of data fi ltering. By using such tools, it is possible to determine
the number of accesses to the server and the individual fi les within the organization’s web
space, the times or time intervals of visits, and domain names and the URLs of users of the
web server. However, these tools are designed to deal with low to moderate traffi c servers.
Furthermore, they provide little or no analysis of data relationships among the accessed fi les
and directories within the web space.

More sophisticated systems and techniques for discovery and analysis of patterns are
now emerging. The emerging tools for user pattern discovery use sophisticated techniques
from AI, data mining, psychology, and information theory to mine for knowledge from
collected data. For example, the WEBMINER system (Mobasher, Jain, Han & Srivastava,
1996; Cooley, Mobasher & Srivastava, 1997) introduced a general architecture for web usage
mining. WEBMINER automatically discovered association rules and sequential patterns from
server access logs. Chen, Park and Yu (1996) introduced fi nding maximal forward referencesmaximal forward referencesmaximal
and large reference sequences. These can be used to perform various types of user traversal
path analysis such as identifying the most traversed paths thorough a web locality.

Once access patterns have been discovered, analysts need the appropriate tools and
techniques to understand, visualize, and interpret these patterns. Examples of such tools include
a WebViz system (Pitkow & Bharat, 1994) for visualizing path traversal patterns. Others have
proposed using OLAP techniques such as data cubes for simplifying the analysis of usage
statistics from server access logs (Dyreson, 1997). The WEBMINER system (Mobasher,
Jain, Han & Srivastava, 1996) proposes an SQL-like query mechanism for querying the
discovered knowledge in association rules and sequential patterns.

Online Analytical Mining for Web Access Patterns 303

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Data Warehousing
A data warehouse is a subject-oriented, integrated, time-variant, and non-volatile

collection of data for decision support applications. The construction of a data warehouse
with data cleaning and data integration is viewed as an important preprocessing step for
knowledge discovery tasks.

The proposal of the construction of a large data warehouse for multi-dimensional
analysis is from Codd, who coined the term OLAP for online analytical processing (Codd,
Codd & Salley, 1993). Portions of data warehouses were pre-computed and materialized
for effi cient processing, and such a materialized multidimensional database is called a data
cube (Gray et al., 1997). From the data structure point of view, a data cube is viewed as
a large multi-dimensional array which consists of a set of dimensions with respect to the
analyzed data, and a set of values in each cell called measures (Chaudhuri & Dayal, 1997).
From the operational point of view, a data cube is referred to as a relational operator, which
computes group-by aggregations over all possible subsets of the specifi ed dimensions (Gray
et al., 1997). It treats each of the n aggregated attributes as an n-dimensional sub-cube, or
cuboids. The aggregation of a particular set of attribute values is a point in this space. The
rapid acceptance of this operator has led to a variant of the CUBE being proposed for the
SQL standard.

View Maintenance
The view maintenance problem has been studied extensively (Mohania, Madria &

Kambayashi, 1999; Zhuge, Molina, Hammer & Widom, 1995; Griffi n & Libkin, 1995;
Roussopoulos, 1997; Yang, Karlapalem & Li, 1997) and the recent survey of view maintenance
literature can be found (Gupta & Mumick, 1995). Ross, Srivastava and Sudarshan (1996)
proposed an exhaustive enumerative algorithm for maintaining a view used for any relational
algebraic expression, and have shown that the maintenance cost of view is reduced by
maintaining a set of additional views along with the original view. Blakeley, Coburn and
Larson (1989) found out whether an update to a base relation can affect a derived relation
or not. They determined when a derived relation could be updated or not. Segev and Park
(1989) considered a problem of maintaining a collection of simple Select-Project views.
They developed a screen test procedure to fi lter out the tuples sent to remote sites. Fong
and Zeng (1997) presented a life cycle of developing a data warehouse as: planning,
data requirement analyzing and modeling, analytical database design, data mapping and
transformation, data extraction and load, automating data management procedures and data
validation and testing.

GENERAL ARCHITECTURE OF OLAM
In this section, we present the design and implementation of the online analytical

mining of path traversal patterns. It is a simple, scalable and effective method for analysis
of web usage. We integrate data mining techniques, and the Sequential FP-growth algorithm
with the following aspects: data warehouse, frame model metadata, view maintainability
and automated/incremental discovery-driven method for data exploration.

304 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Overview
We have developed a general architecture for OLAM of Path Traversal Pattern on web

usage (Fong, Wong & Fong, 2000a, 2000b). The architecture divides the web usage mining
process into two main parts. The fi rst part includes the processes of transforming the web
data into suitable transaction form. This includes preprocessing, user identifi cation, session
identifi cation and data integration components. The second part includes the generic data
mining and pattern matching techniques such as the discovery of path traversal patterns as
part of the system’s online analytical mining engine. The overall architecture for the web
usage mining process is depicted in Figure 4.

Firstly, the data collected from the web log goes through two steps. In the fi rst step
of data preprocessing, data loading and cleansing, the data is fi ltered to remove irrelevant
information (i.e., server request failures, authentication failures, etc.). All entries of the log

Figure 4: General architecture of OLAM on user access patterns

Table 1: Services provided by the system

Services Explanations

Executive summary General statistics results for the entire time period of the log data.

Path traversal patterns To mine web user navigation paths to fi nd patterns in the user behav-
ior when traversing a web site.

Requested page summary Pages access summary such as the most and least frequently re-
quested pages by visitors of a web site.

Date/time summary Pages access statistics information of the total number of pages
viewed for the month, week and day time-intervals.

Entry/exit summary Pages access statistics information of the entry and exit pages viewed
by visitors of a web site.

Online Analytical Mining for Web Access Patterns 305

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

fi les are mapped into a relational database. After the data is cleansed, the web log is loaded
into a data warehouse (relational database) and new implicit data, like frequency occurrence
of access paths and the time spent by each visitor on each page, are calculated. Also the
database facilitates information extraction and data summarization based on individual
attributes. In the second step, web mining techniques predict and discover interesting user
access paths. After the initialization of loading web log into the data warehouse, whenever
a user access path is recorded in the web log fi le, a corresponding update is made to the
frame metadata, which triggers the update of user access patterns of web pages online, and
generates path traversal patterns. In summary, the system provides the following services
as given in Table 1.

Web Access Log
An important source of information about web site visitors is the server transfer log

fi le, known as the access log (web log fi le). This is where every transaction between the
server and browser is recorded with a date and time, the IP address (domain name) of the
server making the request for each page on the site, the status of that request, and the number
of bytes transferred to that requester, etc. We analyze users’ activities on a web site using
server log fi les (access log). There are several kinds of log formats. The most popular one
is the Common Log Format (CLF), which was used by most web servers. The common log
format appears in Figure 5.

Example: Raw Data of the Access Log
144.214.121.52 - - [31/Mar/2001:20:38:11 +0800] “GET /an_cityu.gif HTTP/1.1” 200 90713

 144.214.121.52 - - [31/Mar/2001:20:39:31 +0800] “GET /Courses.htm HTTP/1.1” 200 1213

Step 1: Date Preprocessing
An important step of knowledge discovery is data preprocessing. Since not all the

materials within the log fi le are useful for the mining process, a data preparation process must
be performed fi rst. Here we focus on techniques used to preprocess server-level web access
log fi les, namely Common Log Format access log. After the data cleaning, the log entries
must be partitioned into logical clusters using one or a series of transaction identifi cation
modules, which include user and session identifi cations.

Figure 5: Common log format

306 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Step 1.1: Data Loading and Cleaning
Web access log is a plain text fi le. Therefore it is necessary to identify each fi eld in this

fi le. Each fi eld is separated by a space. Also, some fi elds are enclosed with special characters
such as the double quotation marks, slash or open and close square brackets. Therefore these
characters are used to identify what these fi elds are.

A large proportion of the log fi le is related to graphics, pictures that constitute the
pages and provide no information on the usage of the web site. Data cleaning is the fi rst
step performed in the web usage mining process. As web usage mining is investigating the
access path sequence made by visitors, all log entries with the picture fi lename suffi x such
as “.jpg”, “.JPG”, “.gif” or “.GIF” in the access path fi eld are removed. Likewise, those
records with the fi lename suffi x as “counter.cgi” are also eliminated. Moreover, for those
records with the methods other than using “GET” (i.e., “PUT”, “POST”, “HEAD”) in the
access method fi eld to access the specifi ed fi le are eliminated. It needs to separate the access

Figure 6: Pseudo-code for data preprocessing

Online Analytical Mining for Web Access Patterns 307

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

time fi eld because separating them makes it easier to compute the time for staying on each
page. For the access time fi eld, it contains both the access date and access time, separated
by a colon signal (:).

When the web server cannot retrieve those fi les successfully, the situation is refl ected
on the value of the status. The value of the status for the successful fi le retrieval is 200, while
that of the unsuccessful retrieval is larger than 400. When the fi le is reloaded from the web
server, the status will be 304. Therefore, those records with the status value other than 200
are eliminated. Moreover, there are some special characters enclosed at the beginning or
end of each fi eld. There such characters must be removed before storing the records in the
database. Figure 6 shows the pseudo-code for data preprocessing.

After removal of all the irrelevant records from the web log fi le, the valid records are
stored in the main table, as shown in Table 2.

Step 1.2: User Identifi cation and Session Identifi cation
The cleaning techniques discussed earlier are used to preprocess a given web server

log. After the data cleaning, the log entries must be partitioned into logical clusters using one
or a series of transaction identifi cation modules. In the best case, we rely on the values in
fi elds rfcname and/or logname to accurately identify a user. But in most cases, fi elds rfcname
and logname are empty. In the absence of such information, host name/IP information are
the only available choices to identify a user. In an ideal scenario, each user is allocated a
unique IP address when accessing a web site. However, this is not necessarily correct. For
example, some Internet Service Providers (ISPs) randomly assign an IP address to each
user’s request (dynamic IP assignment); some repeat users access the web each time from
a different machine or web browser.

Thus, we use the host name incorporated with user navigation session/user session to
identify a user. A user session is all of the pages’ references made by a user during a single
visit to a web site. Identifying user sessions is similar to the problem of identifying individual

Table 2: Cleaned web log data stored in main table

IP Address Date Time URL Request

144.214.36.91 07/May/2001 22:42:04 A.htm

144.214.36.91 07/May/2001 22:45:06 B.htm

144.214.36.91 07/May/2001 22:49:15 D.htm

144.214.36.91 07/May/2001 22:52:44 E.htm

144.214.36.91 07/May/2001 23:40:00 B.htm

144.214.36.91 07/May/2001 23:42:00 A.htm

144.214.36.92 07/May/2001 23:43:05 A.htm

144.214.36.92 07/May/2001 23:46:06 B.htm

144.214.36.92 07/May/2001 23:47:30 C.htm

144.214.36.93 07/May/2001 23:47:50 E.htm

144.214.36.93 07/May/2001 23:48:15 C.htm

308 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

users. User interaction within a web site is a collection of user navigation sessions or user
sessions whose information is logged in a web server log. A user session is inferred from
a web log, which represents a sequence of requests made by the user within a defi ned time
interval.

A user session is therefore defi ned as a sequence of requests from the same IP address
such that no two consecutive requests are separated by more than X minutes, where X minutes, where X X is a X is a X

Figure 7: User navigation session inferred from cleaned web log

Figure 8: Algorithm for recording user access paths into data warehouse

Given: materialized view V. auxiliary relations V1, ..., Vn, data to be updated δR into
data warehouse view and data warehouse view V' after update.

begin
 for record added in log
 extract desired data fi elds and map into main table;
 if access path exists
 then increment the frequency pattern by 1;
 else
 add the new user access path into fact table;
 end if
 end for

 // V' = V + Applied Group by δR' with Aggregate
 // count by re-computing total and aggregate count
 if δR comes from updates to fact table destination relation
 then V' = V ∪ δR';
 end if
end

Online Analytical Mining for Web Access Patterns 309

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

given parameter. Catledge and Pitkow (1995) have studied user page view time over WWW
and have recommended thirty minutes as a reasonable time interval between requests within
a user session. Figure 7 illustrates the inferred user sessions from log data.

Step 1.3: Data Warehousing
After fi nishing the data preprocessing, with the removal of all the irrelevant records

from the web log, all the cleaned data are stored in the main table for further process. We
store the web usage in a data warehouse such that the log of accessing the target web page
and its previous web pages are analyzed as traversal patterns. The possibility of these pages
being accessed together is very likely. These web pages of user access paths records are
stored in the fact table of the data warehouse, with their dates stored in the dimension table.
The algorithm for recording user access paths into data warehouse is shown in Figure 8.

Figure 9 shows the star schema of web usage in access path for an interval in a period.
For any user with an UID or IP address, there are many navigation paths for the user browsing
the web site. For example, if the access path is P1, P2 and P3 in sequential order, its web
page access path becomes from P1 to P2 to P3. (Note: Frequency pattern count is the number
of browsed frequency of the path.)

We apply the attribute event in the constraint class of the frame model metadata to
automate the data warehouse data cube continuously and incrementally. For example, the
dimension table and the fact table are as follows:

Dimension table Time relation RTIMEDimension table Time relation RTIMEDimension table Time relation R

Year Month Day

Year1 Month1 Day1

Dimension table Time Page relation RTARGETDimension table Time Page relation RTARGETDimension table Time Page relation R

Target Page Count

T1 C1

Fact table destination relation RFact table destination relation RFact FACT (Date)

Target Page Date CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Date1 Path 1 Path 2 Path 3 C1 C2 C3 D1

Fact table destination relation RFact table destination relation RFact FACT (Month)

Target Page Month CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Month1 Path 1 Path 2 Path 3 C1 C2 C3 D1

To be updated dimension table tuple δR (data to be updated to data warehouse)

Fact table destination relation RFact table destination relation RFact FACT (Year)

Target Page Year CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Year1 Path 1 Path 2 Path 3 C1 C2 C3 D1

Dimension table Time relation R'TIME

Year Month Day

Year2 Month2 Day2

Dimension table Time Page relation R'TARGET

Target Page Count

T2 C2

310 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Target Page Date CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T2 Date2 Path 4 Path 5 Path 6 C4 C5 C6 D2

To be updated fact table update δR (data to be updated to RFACT)

Target Page Month CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T2 Month2 Path 4 Path 5 Path 6 C4 C5 C6 D2

Target Page Year CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T2 Year2 Path 4 Path 5 Path 6 C4 C5 C6 D2

If T1 = T2, DateIf T1 = T2, DateIf 1 = Date2, Path 1 = Path 4, Path 2 = Path 5, and Path 3 = Path 6, then RFACT become:

Updated fact table R'Updated fact table R'Updated fact FACT (RFACT after updated) (Date)

Target Page Date CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Date1 Path 1 Path 2 Path 3 C1 + C4 C2 + C5 C3 + C6 D1 + D2

If they are not equal, it can be simply inserted the new records in the fact table directly.

Target Page Date CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Date1 Path 1 Path 2 Path 3 C1 C2 C3 D1

T2 Date2 Path 4 Path 5 Path 6 C4 C5 C6 D2

If T1 = T2, If T1 = T2, If Month1 = Month2, Path 1 = Path 4, Path 2 = Path 5, and Path 3 = Path 6, then RFACT become:

Updated fact table R'Updated fact table R'Updated fact FACT (RFACT after updated) (Month)

Target Page Month CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Month1 Path 1 Path 2 Path 3 C1 + C4 C2 + C5 C3 + C6 D1 + D2

If they are not equal, it can be simply inserted the new records in the fact table directly.

Target Page Month CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Month1 Path 1 Path 2 Path 3 C1 C2 C3 D1

T2 Month2 Path 4 Path 5 Path 6 C4 C5 C6 D2

If T1 = T2, If T1 = T2, If YearYearY 1 = Year2, Path 1 = Path 4, Path 2 = Path 5, and Path 3 = Path 6, then RFACT become:

Updated fact table R'Updated fact table R'Updated fact FACT (RFACT after updated) (Year)

Target Page Year CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 Year1 Path 1 Path 2 Path 3 C1 + C4 C2 + C5 C3 + C6 D1 + D2

If they are not equal, it can be simply inserted the new records in the fact table directly.

Target Page Year CPB CFP FP Count(CPB) Count(CFP) Count(FP) Duration

T1 YearYearY 1 Path 1 Path 2 Path 3 C1 C2 C3 D1

T2 Year2 Path 4 Path 5 Path 6 C4 C5 C6 D2

Online Analytical Mining for Web Access Patterns 311

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

To get sequential patterns, if the analyzer wants to analyze the web usage within an
interval, he/she repeats the analysis on different dates. After accumulating the navigation
paths of the analysis, the result is sequential patterns within a period.

Step 2: Online Analytical Mining Engine
Online analytical mining engine is a major component of the path traversal patterns

mining system. Next, we will introduce the general framework of online analytical mining
engine. The detailed algorithm is discussed in the following sub-section.

Step 2.1: Sequential Frequent Pattern Growth
Given a web access pattern database, Figure 10 contains a set of pages visited in

sequential order. We assume the minimum support threshold is 2. First, the database is
scanned to derive a list of frequent items and the occurrences of these items. Remove all

Figure 10: The web log used for FP-tree construction

Figure 9: Star schema of frequency pattern count

312 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Figure 11: A FP-tree built from the web log

Figure 12: Pseudo-code of sequential frequent pattern growth algorithm

Online Analytical Mining for Web Access Patterns 313

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

items that do not satisfy the minimum support threshold. The resulting set or list is denoted
L. Thus, we have L = [P1:7, P2:6, P3:6, P4:2, P5:2]. Then, the algorithm creates a tree with
a root named ‘null’. Next, it scans the database again. The items in each transaction are
processed in L order and a branch is created for each transaction.

For example, the scan of the fi rst transaction, “144.214.36.101: P2, P1, P5”, contains
three visited pages (P2, P1, P5), and leads to the construction of the fi rst branch of the tree
with three nodes: <(P2:1), (P1:1), (P5:1)>, where P2 is linked as a child of the root, P1 is
linked to P2, and P5 is linked to P1. The second transaction, “144.214.36.102”, contains
the visited pages P1 and P4, which lead to the construction of the second branch with two
nodes: <(P1:1), (P4:1)>, where P1 is linked as a child of the root and P4 is linked to P1.
The third transaction, “144.214.36.103”, contains the visited pages P2, P1 and P4, which
would result in a branch where P2 is linked to the root. P1 is linked to P2, and P4 is linked
to P1. However, this branch shares a common prefi x, <P2>, with the existing path for
“144.214.36.101”. Therefore, we increment the count of the P2 node by 1, and create a new
node, (P1:1), which is linked as a child of (P2:2). Also we create another new node, (P4:1),
which is linked as a child of (P1:1). In general, when considering the branch to be added
for a transaction, the count of each node along a common prefi x is incremented by 1, and
nodes for the items following the prefi x are created and linked accordingly. The action in
reading transactions and tree construction are iterative processed until the last transaction.
The tree obtained after scanning all of the transactions is shown in Figure 11. To facilitate
tree traversal, an item header table is built so that each item points to its occurrences in the
tree via a chain of node-links. Therefore, the problem of mining frequent patterns in web log
is transformed to that of mining the FP-tree. Figure 12 shows the pseudo-code for sequential
frequent pattern growth algorithm.

Figure 13: Data fl ow of frame metadata model agent

314 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Step 2.2: Data Warehouse Maintainability using Frame
Model Metadata

The frame metadata (Fong & Huang, 1997) consists of two classes: static classes and
active. The static class stores data in its own database. It captures the semantics of heterogeneous
relational schemas after schema translation. With an object frame metadata model agent
as shown in Figure 13, frame metadata can be processed with an object-oriented view and
data operation functions. When an event occurs, it triggers a process in the constraint class,
which calls for the operations in the method class for action. Data can be actively updated
to maintain the view for decision support systems. The result is an active data warehousing
view maintenance.

To implement the web usage mining for maintaining user access patterns online, we
use frame metadata to update user access paths continuously as follows:

Consequently, the minimum support and confi dence thresholds value must be specifi ed
by the analyst as input parameter to build the frequent tree patterns of user access paths,
which will derive the user access patterns (path traversal patterns) after data mining. Support
and Confi dence are two measures of rule interestingness. They refl ect the usefulness of
certainty of discovered rules. Each measure is associated with a threshold controlled by
users or domain experts. Rules that do not meet the threshold are considered uninteresting,
and hence are not presented to the user as knowledge. A strong association rule has a large
Support and high Confi dence level.

APPLICATIONS OF OLAM OF PATH
TRAVERSAL PATTERNS

Each query to a web usage mining system returns a set of user navigation paths/patterns.
Then the analyst faces the nontrivial problem of evaluating these patterns and deriving
reliable conclusions from them. A navigation pattern describes one or more routes among

Header class

Class Name Parents Operation Class Type

V O Call Insert_path Active

Constraint classraint classraint

Constraint_
Name

Method_
Name

Class_
Name

Parameter Ownership Event Sequence Timing

Insert_path Insert_path V δR Self Insert After Repeat

Method classMethod classMethod

Method_Name Class_ Name Parameter Method_
type

Condition Action

Insert_path V RS, δR Tuple If Code =
“GET”

Insert δR into RS

Online Analytical Mining for Web Access Patterns 315

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

given web pages, along with statistics on how often each page of each route has been
accessed. The patterns and statistics provide rules with which the analyst can determine the
output of coincidence. By studying this route more closely and comparing it to other routes
crossing it, the web designer can detect pages that are not properly designed or linked and
redesign them.

Restructuring a Web Site According to the Mining Results
Path traversal patterns discovery helps the web designer in improving the design of web

sites. Detecting user navigation paths and analyzing them results in a better understanding
of how users visit a site, identifi es users with similar information needs, or even improves
the quality of information delivery in WWW using personalized web pages.

Also, the sequence of requests by visitors helps predict next requests or popular requests
for given days, and thus improves the network traffi c by caching those resources, or by
allowing the clustering of resources in a site based on user motivation.

Improving Customization
Customization involves learning about an individual user’s preferences or interests based

on user access patterns. Thus, customization aids in providing users with pages, sites and
advertisements that are of interest to them. It may also be possible for web sites to automatically
optimize their design and organization based on observed user access patterns.

The Impact of Web Advertisements using OLAM
The openness is one of the WWW’s biggest advantages. It introduces risk for information

security but is also a huge issue in users analysis; not because of its vast volume in eyeball
count but its random and extreme pattern of click and tick sequence on the company/
institution’s web site. We have therefore embedded the value of Confi dence and Support
level to accommodate these issues of boundary-lessness in our OLAM approach. Although
the user of the prototype sets these two values solely based on heuristics, the criterion of
optimality in different business domains must always associate with their expertise knowledge.
As such, we restrict the user type of our prototype within the Sales Management team of
a company or the Public Relation team of an institution whose web site is undergoing the
mining process for increasing sales or promoting company images.

We believe that any e-customer can come to the web site and complete an e-service
process from beginning to end in a user-friendly and intuitively correct manner. We need to
encapsulate all our web site surfers’ online experience to discover the knowledge of customer
behavior. OLAM creates a list of association rules for each targeted web page determined
by the user. The web pages tick sequences are represented in path traversal patterns. These
patterns are analyzed to discover users’ preferences. The preferred web page(s) can be
identifi ed and categorized by Internet surfers and/or e-customers, as shown in Figure 14.

In Figure 14, web page #1 is the most frequently accessed web page. Web advertisement
then considers placing on this page. This is the most straightforward way without much need
of data mining technique. The OLAM approach offers more. Assume web page #8 is the
function page for registration as clients. All UIDs identifi ed in their tick sequence with the
visit to web page #8 are grouped as targeted e-customers. There may have been many routes
that could link to web page #8. Some users may have sent their registration and placed an
order/enquiry, whereas some may have skipped away. The unsuccessful cases are the target

316 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

groups that need to be extracted and identifi ed by their UIDs. Their specifi c path traversal
patterns are required for further study. The common web page(s) in all these path traversal
patterns that lead to unsuccessful registration are the critical web page(s) that required web
advertisement to infl uence the user behavior and be targeted to change their subsequent
path traversal patterns to stay on the web page #8 long enough for registration. Those web
pages that never led to page #8 could be considered to be contracted by revision in the
web content, merging, consolidation or even elimination, depending on individual cases
and further studies on the web page content. Many web pages impressed web surfers with
non-focused content or overwhelmed the surfers or e-customers with too much advertising
information. The OLAM method could assist in fi ltering only mission-critical web pages
to survive in the ultimate web site infrastructure. As our targeted result is a list of potential
e-customers for a certain product or service on a web site, with the associated rules derived,
we could trace this related knowledge by further analyzing the main tables in conjunction
with the discovered associate rules. We could classify those UIDs by web page sequence. As
the key of the main table — identifi cation code tells the UID (User ID), we could identify
the target e-customers further. We can even segment the target e-customers not only by their
web page preference, but also by their gender, occupation type, income range and age group.
As such, more customer-oriented web advertisement(s) could be placed in their preferred
web page(s) for more effective marketing.

PROTOTYPE
Here we demonstrate the process of online web usage mining. A university has a home

page that contains a lot of useful information (for example, course information, facilities
provided, etc.), which is distributed over several sub-pages. The person in charge wants to
know which sub-page is more popular and the whether the users who visited a particular
sub-page intended to visit other sub-pages. Then the person in-charge can post relevant
information or advertisements on the sub-pages more effectively.

The web log fi le was collected from the Computer Science Laboratory’s web sites of City
University of Hong Kong. The site hosts a variety of information, ranging from department
information and department courses to individual web sites. We are only interested in fi ve
pages for analysis, as follows:

Figure 14: Identify target customers by categorization

Online Analytical Mining for Web Access Patterns 317

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Page 1: Department history, facilities and message from department head
Page 2: News, events and seminars notifi cations
Page 3: Listing of academic staff details
Page 4: Listing of programmes available by department
Page 5: Research groups, research projects, publications, etc.

For simplifi cation, the above fi ve pages are classifi ed as A, B, C, D, and E
respectively.

Figure 15 shows the main menu of the OLAM of path traversal patterns. It consists of
three parts: initialization, switch to automatic update web log periodically and path traversal
patterns. After ‘initialization’ is executed, a set of potential user navigation paths and user
access statistics summary are generated for analysis.

Initialization
The initialization consists of three major components, including: Open Log File, step

1 of data loading and cleansing and step 2 of extracting and rule generation. We can simply
click the buttons sequentially and follow the instruction to complete the process.

Figure 16 shows the screen layout of access path patterns. The program will ask
users to select/specify several parameters before building the potential user access paths
and statistics summary. First, users should select the target web page and time dimension
that they are interested in. Also, the two thresholds values, Support and Confi dence, can
be set according to the user preference. Then by clicking the button, “Build Path Traversal
Patterns”, a set of potential access paths are generated. There are two windows in the screen.
Both show the same information of user navigation paths. One is in graphic form, say FP-
tree, while the other one is in text form for easy readability. As a result, analysts can obtain
their desired knowledge.

Figure 15: Main menu of online analytical mining of path traversal patterns

318 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Example 1
The target page ‘d_progm’ and time dimension “Date” are selected and the confi dence

and support thresholds were set to 80% and 3% respectively. Then a set of access patterns
was generated if its confi dence and support levels were greater than or equal to the values
inputted by the user. Figure 16 displays the result of the query.

Time Scheduling
Figure 17 shows the time scheduling menu where a user sets the time in which the user

accessed path is recorded in the web log fi le. A corresponding update is made to the frame
metadata, which triggers the update of the user access patterns on the data warehouse. As
a result, an up-to-date user access patterns is maintained. The system provides four options
for time scheduling.

Figure 17: Time scheduling

Figure 16: All signifi cant access paths (Confi dence = 80% and Support = 3%)

Online Analytical Mining for Web Access Patterns 319

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Online Analytical Mining of Path Traversal Patterns
In web usage, users activities on web sites are recorded into server log fi les continuously,

even though path traversal patterns have been derived before. As a result, the derived path
traversal patterns are outdated soon. To maintain the current status of the path traversal
pattern, we update the user access patterns continuously or periodically, whenever the log
fi le is being updated. This is accomplished by time scheduling.

Suppose the access log is being updated after a period according to the time set in the time
scheduling part. As a result, an up-to-date user accessed pattern has been maintained.

The system provided some Online Analytical Processing (OLAP) functions, including
roll up and drill down. The following fi gures show the up-to-date user access patterns and
statistics summary.

Example 2
The target web page ‘d_resrch’ and time dimension “Date” are selected and the

Confi dence and Support thresholds were set to 50% and 3% respectively. Then a set of access
patterns were generated if their confi dence and support levels were greater than or equal to
the values inputted by the user. Figure 18 displays the result of the query.

Example 3
The target web page ‘d_resrch’ and time dimension “Month” were selected and the

Confi dence and Support thresholds were set to 50% and 3% respectively. Then a set of access
patterns was generated if its Confi dence and Support levels were greater than or equal to the
values inputted by the user. Figure 19 displays the result of the query.

Besides the user navigation paths, useful statistics are also provided for analysis. By
clicking the button “Statistics”, a screen appears. Specifi cally, the main module of OLAM
provides four difference statistics. Executive summary provides a general statistic result for

Figure 18: All signifi cant access paths

320 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

the entire time period of the log data. On the other hand, it specifi es the time period of the
log involved in the system. Requested page summary presents the most and least frequently
requested pages by visitors of a web site. Date/Time summary summarizes information about
the total number of pages viewed for the month, week and day. Entry page summary presents
information about the entry pages viewed by visitors of a web site. Exit page summary
presents information about the exit pages viewed by visitors of a web site.

Figure 20 shows the statistics Summary of the web usage mining from the access
log.

Figure 20: Statistics summary

Figure 19: All signifi cant access paths

Online Analytical Mining for Web Access Patterns 321

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Performance Evaluation
To access the relative performance of the algorithm for discovering path traversal

patterns, we performed several experiments on an IBM compatible computer with a Mobile
Intel Pentium III CPU clock rate of 750 MHz, 128 Megabytes of main memory, and running
Windows 2000 Professional. The data resided in the FAT 32 fi le system and were stored
on a 20 Gigabytes Ultra-ATA hard disk. The relational database is Sybase SQL Anywhere
5.0 for data storage. All programs are written in Microsoft Visual Basic 6.0. The web log
covers the year of 2001 and its size is 102 MB.

The experimental result is shown in Figure 21. The FP-tree shows linear scalability with
the number of access sequences in the databases. In large databases, it is a good candidate
to use for access patterns discovery. In the case study, we are interested in fi ve web pages.
The total number of combinations of the traversal patterns is (5C5C5C + 5C4 C4 C + 5C3 C3 C +5C2 C2 C + 5C1 =
325) and the maximum depth of the FP-tree is 5. The FP-tree can be constructed within
several seconds even though the numbers of transactions are greater than 10K. Thus, it is
very effi cient for online analysis purposes. The cost of FP-tree construction is O (| number
of frequent items in Transaction| = 5). In general, FP-tree is an effective structure facilitating
web path traversal patterns mining.

With certain extensions, the methodology of FP-tree can be applied to perform many
web usage mining tasks effi ciently, such as web user path traversal patterns mining.

SUMMARY
In summary, an OLAM methodology is proposed to provide the means for management

investigation on e-customers’ click behavior, so as to further analyze their scale of preference
and habit on web site surfi ng for the web advertisement planning and design. A mechanism
of automating the view of the data warehousing has been introduced. The view is provided

Figure 21: Experimental results

322 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

by joining a dimension table and a fact table, and keeps record of user access paths in a
fact table. As the click sequence and path traversal patterns represent the customer’s theme,
these fi ndings could be translated into web site design and utilized to refi ne the web site
infrastructure. The refi nement of the web site design could generate much different patterns
of e-customer web pages click sequence. This phenomenon is a cyclic circle. To ensure
timeliness, our OLAM method takes a dynamic mining approach for most updated analysis,
by providing continued refi nement according to the change of the web site environment.
However, the problem exists of how to synchronize the update of the based relations with
the update of the view. This chapter offers a frame model metadata to facilitate the trigger
event, which is invoked whenever an incremental update occurs in the based relation, i.e.,
access log. The frame model metadata consist of data operation, which is used to update
the user access path. As a result, with OLAM, we can transform the data warehousing into
an active data warehousing which can activate the incremental data update from the based
relation into an existing view, after update during time interval.

The discovery of e-customer click sequence and profi le can help in designing a cus-
tomer-focused web site in the following ways:

1. Make web site functionality intuitive by restructuring it around e-customers’ preferred
surfi ng routes and processes. The popular web pages with the most diversifi ed pre-
requisite sequences and longest surfi ng time can be identifi ed and refi ned appropriately
with their page content and infrastructure.

2. The isolated and inactive web pages imply that browsers are either incapable of access
to it or simply not interested enough to arouse a click. Further analysis on these web
page content and their dynamic links are necessary to decide upon whether metaphor
on web sites is necessary.

3. Relate utilities1 to relevant customer actions by easily accessible and visible utilitarian
components.

The future direction is to enhance our methodology with association rules established
between the UID in the end result click sequence patterns and the UID associated attributes
such as the user’s personal particulars, for more association semantics discovery. The discov-
ery of targeted customers’ personal online preference and offl ine particulars is an important
source for Customer Relationship Management (CRM) to build customer-oriented web sites
in the future as follows:

1. Since web log data provide information about what kind of users will access what
kind of web pages, web log information can be integrated with web content and web
linkage structure mining to help web page ranking, web document classifi cation, and
the construction of a multi-layered web information base as well.

2. Sequential pattern mining algorithms tend to generate a huge number of sequences.
At any given time, not all of those are of interest to the user. For example, a market-
ing analyst may only be interested in the activity of those online customers who have
visited certain pages in a specifi c time period. In general, discovered patterns must
meet certain rules and conditions. As a result, certain constraints must be integrated
with the web mining techniques to get a more reasonable and desired knowledge.

Online Analytical Mining for Web Access Patterns 323

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

In conclusion, the importance of web usage mining will continue to grow with the
popularity of the WWW and undoubtedly will have a signifi cant impact on the study of the
online users’ behaviors.

(Note 1: Web site functionality allowsWeb site functionality allowsWeb site functionality allow browsers to do something useful to serve them
better and faster. They normally addresses common areas of customer frustration or desire
of new/extended activities.)

REFERENCES
Adriaans, P., & Zantinge, D. (1996). Data mining. Addison-Wesley.
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proc. 1994

Int. Conf. Very Large Databases (pp. 487-499).
Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. Proc. 1995 Int. Conf. Data

Engineering (pp. 3-14).Engineering (pp. 3-14).Engineering
Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of

items in large databases. Proc. 1993 ACM SIGMOD Int. Conf. Management of Data
(pp. 207- 216).

Bayardo, R. J. (1998). Effi ciently mining long patterns from databases. Proc. 1998 ACM
SIGMOD Int. Conf. Management of Data (pp. 85-93).

Blakeley, J., Coburn, N., & Larson, P. (1989). Updating derived relations: Detecting ir-
relevant and autonomously computable updates. ACM Transactions on Database
Systems, 14(3), 369-400.

Brin, S., Motwani, R., & Silverstein, C. (1997). Beyond market basket: Generalizing as-
sociation rules to correlations. Proc. 1997 ACM-SIGMOD Int. Conf. Management of
Data (pp. 265-276).

Buchner, A.G., Baumgarten, M., Anand, S.S., Mulvenna, M.D., & Hughes, J.G. (1999).
Navigation pattern discovery from Internet data. KDD Workshop on Web Usage
Analysis and User Profi ling (WebKDD’99), 25-30.Analysis and User Profi ling (WebKDD’99), 25-30.Analysis and User Profi ling

Catledge, L., & Pitkow, J. (1995). Characterizing browsing behaviors on the World Wide
Web. Computer Networks and ISDN Systems, 27(6).

Chaudhuri, S., & Dayal, U. (1997). An overview of data warehousing and OLAP technol-
ogy. ACM SIGMOD Record, 26, 65-74.

Chen, M.S., Park, J.S., & Yu, P.S. (1996). Data mining for path traversal patterns in a web
environment. Proc. of the 16th International Conference on Distributed Computing
Systems (pp. 385-392).

Chen, M.S., Park, J.S., & Yu, P.S. (1998). Effi cient data mining for path traversal patterns.
IEEE Trans. on Knowledge and Data Engineering, 10(2), 209-221.

Cheung, D.W., Han, J., Ng, V., & Wong, C.Y. (1996). Maintenance of discovered association
rules in large databases: An incremental updating technique. Proc. 1996 Int. Conf.
Data Engineering (pp. 106-114).Data Engineering (pp. 106-114).Data Engineering

Codd, E.F., Codd, S.B., & Salley, C.T. (1993). Beyond decision support. Computer
World.World.World

Cooley, R., Mobasher, B., & Srivastava, J. (1997). Web mining: Information and pattern
discovery on the World Wide Web. Proc. of the 9th IEEE International Conference
on Tools with Artifi cial Intelligence (ICTAI’97).

324 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Cooley, R., Mobasher, B., & Srivastava, J. (1999). Data preparation for mining World Wide
Web browsing patterns. Journal of Knowledge and Information Systems, 1(1), 5-32.

Dyreson, C. (1997). Using an incomplete data cube as a summary data sieve. Bulletin of the
IEEE Technical Committee on Data Engineering, 19-26.

Fong, J., & Huang, S. (1997). Information systems reengineering. Springer Verlag, 79-
212.

Fong, J., & Huang, S. (1999). Architecture of a universal database: A frame model approach.
International Journal of Cooperative Information Systems, 8(1), 47-82.

Fong, J., & Pang, F. (1999). Schema evolution for new database applications: A frame
metadata model approach. Proc. of Systems, Cybernetics and Informatics (Vol. 5,
pp. 104-111).

Fong, J., & Zeng, X. (1997). Data warehouse for decision support. Proc. of the 8th Inter-
national Database Workshop (pp. 195-207).

Fong, J., Wong, H.K., & Fong, A. (2000a). Online analytical mining web-pages tick se-
quences. Journal of Data Warehousing, 5(4), 59-68.

Fong, J., Wong, H.K., & Fong, A. (2000b). Online analytical mining association rules on
web-pages tick sequences. The Second International Workshop on Information Inte-
gration and Web-based Applications & Services, 81-94.

Fukuda, T., Morimoto, Y., Morishita, S., & Tokuyama T. (1996). Data mining using two-
dimensional optimized association rules: Scheme, algorithms, and visualization.
ACM, 13-23.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., &
Pirahesh, H. (1997). Data cube: A relational aggregation operator generalizing group-
by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1, 29-54.

Griffi n, T., & Libkin, L. (1995). Incremental maintenance of views with duplicates. Proc.
of the International Conference on Management of Data.

Gupta, A., & Mumick, I. (1995). Maintenance of materialized views: Problems, techniques,
and applications. IEEE Data Engineering Bulletin, Special Issues on Materialized
Views and Warehousing, 18(2).

Han, E.H., Karypis, G., & Kumar, V. (1997). Scalable parallel data mining for association
rules. ACM, 277-288.

Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large databases.
Proc. 1995 Int. Conf. Very Large Databases (pp. 420-431).

Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques. Morgan Kaufmann
Publishers.

Harinarayan, V., Rajaraman, A., & Ullman, J.D. (1996). Implementing data cubes effi ciently.
Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (pp. 205-216).

Inmon, W.H. (1996). The data warehouse and data mining. Communication of the ACM,
39(11).

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., & Verkamo, A.I. (1994). Finding
interesting rules from large sets of discovered association rules. Proc. 3rd Int. Conf.
Information and Knowledge Management (pp. 401-408).Information and Knowledge Management (pp. 401-408).Information and Knowledge Management

Mannila, H., Toivonen, H., & Verkamo, A.I. (1995). Discovering frequent episodes in se-
quences. Proc. 1995 Int. Conf. on Knowledge Discovery and Data Mining (KDD’95)
(pp. 210-215).

Masseglia, F., Poncelet, P., & Cicchetti, R. (1999). An effi cient algorithm for web usage
mining. Networking and Information Systems Journal, 2(5-6), 571-603.

Online Analytical Mining for Web Access Patterns 325

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Masseglia, F., Poncelet, P., & Teisseire, M. (1999). Using data mining techniques on web
access logs to dynamically improve hypertext structure. ACM SigWeb Letters, 8(3),
13-19.

Masseglia, F., Poncelet, P., & Teisseire, M. (2000). Web usage mining: How to effi ciently
manage new transactions and new clients. Proc. of the 4th European Conference on
Principles of Data Mining and Knowledge Discovery (PKDD’00) (pp. 530-535).

Miller, R.J., & Yang, Y. (1997). Association rules over interval data. Proc. 1997 ACMSIG-
MOD Int. Conf. Management of Data (pp. 452-461).

Mobasher, B., Jain, N., Han, E., & Srivastava, J. (1996). Web mining: Pattern discovery
from world wide web transactions. Technical Report TR 96-050, Dept. of Computer
Science, University of Minnesota.

Mohania, M., Madria, S., & Kambayashi, Y. (1999). Self-maintainable aggregate views.
Proc. of the 9th International Database Conference (pp. 306-317).

net.Genesis. (1996). [Online]. Available: http://www.netgen.com
Ng, R., Lakshmanan, L.V.S., Han, J., & Pang, A. (1998). Exploratory mining and pruning

optimizations of constrained association rules. Proc. 1998 ACM-SIGMOD Int. Conf.
Management of Data (pp. 13-24).

Oates, T., & Cohen, P.R. (1996). Searching for structure in multiple streams of data. Proc.
of 13th Int. Conference on Machine Learning (ICML’96) (pp. 346-354).

Open Market Inc. (1996). Open market web reporter. [Online]. Available: http://www.
openmarket.com.

Park, J.S., Chen, M.S., & Yu, P.S. (1995a). An effective hash-based algorithm for mining
association rules. Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data (pp.
175-186).

Park, J.S., Chen, M.S., & Yu, P.S. (1995b). Effi cient parallel mining for association rules.
Proc. 4th Int. Conf. Information and Knowledge Management (pp. 31-36).Proc. 4th Int. Conf. Information and Knowledge Management (pp. 31-36).Proc. 4th Int. Conf. Information and Knowledge Management

Pitkow, J., & Bharat, K.K. (1994). Webviz: A tool for world-wide web access log analysis.
First International WWW Conference.

Ross, K., Srivastava, D., & Sudarshan, S. (1996). Materialized view maintenance and integ-
rity constraint checking: Trading space for time. Proc. of the International Conference
on Management of Data.

Roussopoulos, N. (1997). Materialized views and data warehouses. KRDB, SIGMOD
Conference, 316-327.

Savasere, A., Omiecinski, E., & Navathe, S. (1995). An effi cient algorithm for mining as-
sociation rules in large databases. Proc. 1995 Int. Conf. Very Large Databases (pp.
32-443).

Segev, A., & Park, J. (1989). Maintaining materialized views in distributed materialized
views. Proceedings of the IEEE International Conference on Data Engineering.

Software Inc. Webtrends. (1995). [Online]. Available: http://www.webtrends.com
Srikant, R., & Agrawal, R. (1995). Mining generalized association rules. Proc. 1995 Int.

Conf. Very Large Data Bases (pp. 407-419).
Srikant, R., & Agrawal, R. (1996a). Mining quantitative association rules in large relational

tables. Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data (pp. 1-12).
Srikant, R., & Agrawal, R. (1996b). Mining sequential patterns: Generalizations and per-

formance improvements. Proc. 5th Int. Conf. Extending Database Technology (pp.
3-17).

326 Fong, Wong and Fong

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Srikant, R., Vu, Q., & Agrawal, R. (1997). Mining association rules with item constraints.
Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining (KDD’97) (pp. 67-73).

Srivastava, J., Cooley, R., Deshpande, M., & Tan, P.N. (2000). Web usage mining: Discov-
ery and application of usage patterns from web data. SIGKDD Explorations, 1(2),
12-23.

Svawagi, S., Thomas, S., & Agrawal, R. (1998). Integrating association rule mining with
relational database systems: Alternatives and implications. ACM, 343-354.ACM, 343-354.ACM

Toivonen, H. (1996). Sampling large databases for association rules. Proc. 1996 Int. Conf.
Very Large Databases (pp. 134-145).

Wu, K., Yu, P.S., & Ballman, A. (1998). Speedtracer: A web usage mining and analysis tool.
IBM Systems Journal, 37(1), 89-105.

Yan, T.W., Jacobsen, M., Molina, H.G., & Dayal, U. (1996). From user access patterns to
dynamic hypertext linking. Proc. of the 5th International World-Wide Web Confer-
ence (pp. 7-11).

Yang, J., Karlapalem, K., & Li, Q. (1997). Algorithms for materialized view design in data
warehousing environment. VLDB Conference, 136-145.

Zhao, Y., Deshpande, P.M., & Naughton, J.F. (1997). An array-based algorithm for simultane-
ous multidimensional aggregates. Proc. 1997 ACM-SIGMOD Int. Conf. Management
of Data (pp. 159-170).

Zhuge, T., Molina, H.G., Hammer, J., & Widom, J. (1995). View maintenance in a ware-
housing environment. Proc. of the International Conference on Management of Data
(pp. 316-327).

Modeling Motion: Building Blocks of a Motion Database 327

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Chapter XVI

Modeling Motion:
Building Blocks

of a Motion Database
Roy Gelbard, Bar Ilan University, Israel

Israel Spiegler, Tel Aviv University, Israel

ABSTRACT
The research proposes a model for the representation and storage of motion data that enables The research proposes a model for the representation and storage of motion data that enables The research proposes a model for the representation and storage of
the communication, storage, and analysis of patterns of motion, as with spoken and written
languages. The basic problem is the lack of a machine-readable motion alphabet. We thus
set out to defi ne the elemental components and building blocks of motion, coming up with
what we call the motion byte as the basis for a motion language that has words, phrases,
and sentences. The binary-based model we develop, which is signifi cantly different from
the common “key frames” approach, is also a method of storing motion data. Comparison
with a standard motion system, based on key frames, indicates a signifi cant advantage for
our binary model.

INTRODUCTION
In presenting a model for the representation of motion data, our goal is to create and

defi ne elemental motion building blocks that enable effi cient, precise, and modular repre-
sentation of the facets of motion, and also serve as a basis for the storage of raw motion data
in a way that makes them accessible for future analysis and processing. The constraint on
such a form as a channel of communication is the lack of a machine-readable alphabet for
motion. The two channels commonly used to express and represent linguistic perceptions
are the vocal channel of speech and the graphic channel of script. However, communication
by language is not restricted to these two channels, and often uses the motion channel, in

328 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

which expression is represented by patterns outlined in space by various moving parts of
the body.

The motion channel, like the graphic one, is also a visual channel. But, while the graphic
channel is expressed in two dimensions, the motion channel is characterized by four: three
space dimensions and a time dimension. Moreover, while in the graphic channel features
components appear in sequence and an expression can be saved for further processing, in the
motion channel components appear in parallel and the expression disappears immediately
after communication. Table 1 summarizes the characteristics of the channels.

General building blocks like phonemes, in the vocal channel, or alphabetic signs in
the graphic channel, have few parallels in the motion channel. Exceptions are ad-hoc sign
systems, such as sign languages for the deaf, some movement notations, robot programming
languages and graphic simulation languages.

We aim to model the motion channel by defi ning a fi nite set of building blocks to
represent the motion space. These building blocks and movement patterns will, we hope, be
the basis of a motion language that will lead to computerized “understanding” and analysis
of motion texts such as sign languages for the deaf or musical conducting signs. It may
also give rise to a natural and convenient dialog on the use of robots and computer graphic
animation applications.

The chapter has the following parts. The chapter outlines the problem and surveys
other attempts at defi ning a motion language. Then, it defi nes the binary-based model and
building blocks of motion. A motion database is also discussed. The next section provides
a comparison of storage parameters of our model as compared to Life Forms, a key frames
animation system. The chapter goes on to outline the prospects and possibilities of a mo-
tion language. The fi nal section gives the conclusions and direction for further study of this
rich area of enterprise.

THE PROBLEM
To achieve the purpose of this research of representing raw motion data, we identify

and formally defi ne the basic building blocks of motion. These must meet the following
criteria:

• Refi nement, generality and modularity — to enable accurate and fl exible expression
of the motion channel,

Table 1: Channels of expression

Vocal Channel
(single speaker)

Graphic Channel
(reduced visual channel)

Motion Channel
(wide visual channel)

Two dimensions Two dimensions Four dimensions

Components appear in sequence Components appear in parallel Components appear in
parallel

Expression disappears Expression preserved Expression disappears

Building blocks = phonemes Building blocks = script Building blocks = ?

Modeling Motion: Building Blocks of a Motion Database 329

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Economic and feasible storage of motion data by a computer,
• Recognition of a sequence of motion coordinates,
• Defi nition, orthography and morphology of motion dialects.

Movement notation and sign languages for the deaf constitute fi rst attempts at “motion
reading.” The fl exible notation system called the Laban Notation (LN), invented in 1928 by
Rudolf Laban, was at fi rst applicable only to musical partita, but later, it was improved into
what is today labeled the “Cinematography Laban”. In 1958 Noah Eshkol and Abraham
Wachman published a notation for describing movement based on a geometric concept
(Eshkol & Wachmann, 1958; Hutchinson, 1960).

Further developments came about during efforts to make use of notations for the purpose
of representing motion on the computer. Badler and Smoliar (1979) adopted parameters from
Laban’s notation in developing a motion simulation system using the “key frames” approach.
However, neither the key frames approach nor indeed any model based on key positions,
including the LN notation, fully refl ects the phenomenon of motion. These approaches are
all based on the following assumptions:

1. Motion is a derivative of positions. The transition between two sequential positions
proceeds at a uniform rate, and through the shortest possible route.

2. Every change of position in space made by a limb refl ects movement performed by that
same limb. In other words, no distinction is made between movements and dragging
and between movements and compensations. Dragging is a passive motion that occurs
when a given limb changes its position without changing the internal geometric rela-
tion with adjacent links, e.g., the arm moves as a result of motion by the forearm.

We question these assumptions and suggest that they may be relaxed in defi ning the
basic building blocks of motion.

Among the limitations of the present motion notations are a lack of tools for storing and
processing the motion “text” and limited accuracy in expressing time and space (Bruderlin &
Williams, 1995; Calvert & Chapman, 1982; Earnshaw, Mangnenat-Thalmann, Terzopoulos
& Thalmann, 1998; Hodgins, Wooten, Brogan & O’Brien, 1995; Ko & Badler, 1996; van de
Pannw, 1996). These limitations stem from the fact these notations are basically documenta-
tion rather than storage and analysis tools.

These limitations make it diffi cult to effi ciently store and process motion signs and
symbols, and to analyze them by means of computer systems. To do this we need to defi ne
basic motion building blocks that can pave the way to a comprehensive motion language that
has an internal consistency as is common in any language. Recent work focuses on linguistic
aspects of the control of robots by means of a motion description language (Egerstedt, 2001).
A survey of issues and challenges in motion modeling is given in Agarwal et al. (2002).

In addition to the problem of representation, there is the issue of storage. Motion
data is usually attained through a “tracking system” that chooses single motion units at a
frequency of up to 5 Khz. Such a database very quickly becomes intolerably large. Thus,
for example, the data required to store the movement of 22 links (as with the Life Forms
system; see below) takes approximately 1.21 MBits per second, and this is for representing
a fi gures frame only:

330 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

22 (space coordinates) * 23 (edge cursors) * 48 (fl oating representations) * 50 (sampling
frequencies) = 1.21 MBits per second!

Clearly, an alternative representation is needed for more economic storage. These two
aspects of our study, the building blocks for representation and the storage of motion, are
now presented, suggesting a new model for motion representation.

THE MODEL
Our theoretical-conceptual model for the representation of motion data defi nes motion

variables using a binary approach (Spiegler & Maayan, 1985). It is the basis for a storage
scheme of a motion database.

Building Blocks
Motion is defi ned as the alteration of geometric relations between two adjacent links,

or between a body’s links and the ground surface with which it comes into contact. The
alteration of the geometric relations between two adjacent links can be measure by three
angles referring to three spatial axes: pitch, roll, and spin axes.

• Pitch angle: the extent of rotation of the limb/body on a vertical plane.
• Roll angle: the extent of rotation about the longitudinal axis of the limb/body. This

determines the rotational state of the body.
• Spin: (turn) angle — the extent of rotation about the vertical axis of the limb/body.

This determines the direction the body turns on a horizontal plane.horizontal plane.horizontal

Figure 1 illustrates these terms graphically over a three-dimensional motion space.

Figure 1: Motion axes in three-dimensional space

Modeling Motion: Building Blocks of a Motion Database 331

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Conceptually, we assume a virtual globe at each link connecting a joint. We treat a joint,
located at the base of every limb, as a permanent motion center. Thus, movement made by
a limb takes place on the surface of a sphere, i.e., every movement outlines an imaginary
shoreline on the sphere’s surface. This is shown in Figure 2.

A totally different representation approach is based on indicating the location of every
joint in the external space, rather than on relative changes of geometric relations, that is, on
the absolute position of the body’s links. This so-called key frames approach to motion
representation is very common in computer graphics, as well as in robotics.

Using the defi nition of motion above, it is possible to represent and store the basic data
required for executing motion performed by any vertebrate body using seven bits per joint
per time unit. This is defi ned as the motion byte. Table 2 depicts this basic 7-bit structure
of the motion byte, showing all possible combinations of motion states.

Generally, the motion byte does not need to use all of the 7-bit binary combinations.
The “not relevant” cells in Table 2 represent the unused combinations. Moreover, on certain
occasions there is no need to use all seven bits of the motion byte, as follows:

• To represent motion between two limbs with a joint that has only one degree of free-
dom, the motion byte consists of only three bits: one bit for the coordination aspect,
and two more bits to represent the space aspect (Space 1st D).st D).st

• To represent motion between two limbs with a joint that has only two degrees of
freedom, the motion byte needs only fi ve bits: one bit for the coordination aspect, and
four more bits to represent the space aspect (Space 1st D and Space 2st D and Space 2st nd D).nd D).nd

Thus, the number of bits in the motion byte according to the motion degrees of free-
dom used by the represented body may be reduced. A creature such as an anthropomorphic

Figure 2: Virtual globes and globographic motion

332 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

robot, that is, a robot with joints that have only one degree of freedom, can be represented
by a 3-bit motion byte only.

The two bits representing the time aspect are in fact superfl uous since the time aspect
can be computed on the basis of the time unit rate (sampling frequency). It is possible,
however, to extend information on the time aspect (acceleration and deceleration of ve-
locity) as redundancy data. In this case the motion byte will need nine bits per limb per
time unit. Bits 8 and 9 will represent acceleration (1 0), deceleration (0 1) and no change
in velocity (0 0).

Motion Components
Space

The space component of motion with its dimensions and axes is as described above.

Time
While the time component is redundant data, as mentioned above, because it can be

computed based on the time unit rate (sampling frequency) by the formula V * T = S, it can
be represented by two bits (bits 8-9), as follows:

• Bits 8-9 represent the velocity of the motion performed. They express a single unit
change in the velocity at which the limb is moving, representing three possible situ-
ations: acceleration, deceleration, and maintaining current velocity.

Coordination
The coordination component defi nes the state change from rest to motion, and vice

versa; that is, it deals with a body’s “entering or exiting” an active category. The one-bit
coordination component is thus used to express two states: motion and rest. Here, it is
necessary to pinpoint precisely the beginning and end of each movement, according to the
following guidelines.

• Movement ends (“exit”) when velocity goes from any value to zero, and the joint’s
opening angle freezes in place.

Table 2: The 7-bit motion byte

Coordination Space 1st D Space 2nd D Space 3rd D

Bits 1 Bits 2 + 3 Bits 4 + 5 Bits 6 + 7

1 = motion 1 0 = pitch angle
 increasing

1 0 = roll angle
 increasing

1 0 = spin angle
 increasing

0 = rest 0 1 = pitch angle
 decreasing

0 1 = roll angle
 decreasing

0 1 = spin angle
 decreasing

0 0 = no change
 in pitch angle

0 0 = no change
 in roll angle

0 0 = no change
 in spin angle

1 1 = not relevant 1 1 = not relevant 1 1 = not relevant

Modeling Motion: Building Blocks of a Motion Database 333

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Movement begins (“enter”) when velocity goes from zero to any other value (even
if it is smaller than the basic velocity unit) and the opening angle goes from fi xed to
any other size.

Thus, in sum, in the representation and storage of motion, there is no need to actually
have the time bits, since we can compute time from sampling frequency. That is, using
either 3, 5, or 7 bits is suffi cient for the motion byte to store motion in accordance with the
relevant joint degrees of freedom.

Motion Storage
We view the motion database as a three-dimensional cube. This view is not new and

is found in the temporal oriented model of data (TOMOD) (Ariav, 1986; Ozsoyoglu &
Snodgrass, 1995; Tansel et al., 1993; Etzion, 1998). Applying this view, the sets of the seven
motion bits defi ned above may be seen as a series of two-dimensional tables (a cube) giving
a motion database. The cube’s measurements are as follows:

• Objects axis - the creature’s limbs axis.
• Characteristics/ features axis - the 7-bit axis.
• Time axis - points on this axis represent the different moments at which motion was

sampled, producing the basic motion data.

It is therefore possible to view such a cube as a collection of seven two-dimensional
tables, each table depicting the current state of one particular characteristic (the state of
one of the seven bits), all through the time axis (i.e., the sampling process), for each of the
objects (i.e., the creature’s limbs). This is illustrated in Figure 3.

Figure 4 illustrates four motion databases built from 3-bit motion bytes. All examples
assume the following constants:

Figure 3: Motion database cube

334 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

• Unit scale of 45 degrees.
• Sampling frequency of 12 samples per second.

The bold, underlined and italic notations, as well as the text, are used to emphasize
the 3-bit motion bytes representing motion time units.

• Example I: a 180 degree movement of the forearm (over the shoulder). The move-
ment takes one second and it is performed at constant velocity.

• Example II: The same movement, but this time the velocity changes with accelera-
tion.

• Example III: In addition to the constant velocity of the movement of the forearm,
as shown in example I, here not only is the forearm moving (over the shoulder), but
also the arm moves (over the forearm — at the elbow). The movement of the forearm
and the movement of the arm start and end at the same time, i.e., the arm performs a
movement of 90 degrees at half the speed of the forearm.

• Example IV:IV:IV The forearm and the arm start to move at the same time, and with equal
velocity. Since the arm performs a movement of 90 degrees, while the forearm performs
a movement of 180 degrees, the arm motion ends before that of the forearm.

Constants
In addition to the database, we assume the header of every motion “text” to have

global parameters that remain constant during the execution of the motion data. Among the
constants are the following:

1. Anatomy: the hierarchy and order of limbs, their attributes, measurements, structure
and weight, mechanical features, and constraints of movement on joints at the base
of each limb.

Figure 4: Motion databases built with 3-bit motion bytes

I Forearm 000 100 100 101 100 100 101 100 100 101 100 100 101 000

 Start 45o 90o 135o 180o End

II Forearm 000 100 101 100 101 100 100 101 100 100 100 100 101 000

 Start 45o 90o 135o 180o End

III Forearm 000 100 100 101 100 100 101 100 100 101 100 100 101 000

Arm 000 100 100 100 100 100 101 100 100 100 100 100 101 000

IV Forearm 000 100 100 101 100 100 101 100 100 101 100 100 101 000

Arm 000 100 100 101 100 100 101 000 000 000 000 000 000 000

Modeling Motion: Building Blocks of a Motion Database 335

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

2. Starting position: among these are the initial, starting position of the limbs, i.e., the
geometrical relationship between limb positions prior to the start of active move-
ments.

3. Unit scales: among these are the unit of change in the angle of every joint’s fi rst and
second degrees of freedom (measured in partial degree units), the value of the unit
of change in the motion velocity of each joint (measured in percentage units), and
velocity measurement units (km/hr, cm/min., etc.).

4. Sampling frequency: the number of samplings per second.
5. Motion constants: i.e., constants, constraints and relationships that remain consistent

throughout motion performed by a number of limbs, as for example in the synergistic
movements of the fi nger joints of the hands. These are in addition to various parameters
contained in the “creature’s anatomy” category, which relate separately to each of the
creature’s individual limbs.

As in any process where analog signals are converted into digital signals (the Nyquist
Law (Casavant & Mukesh, 1994; Stallings, 1988) for sampling for the purpose of A/D
conversion), the accuracy and sensitivity of the represented motion depend on the rate of
sampling used for producing data. Thus, a high sampling rate makes it possible to use very
small units of change, and at the same time produce quick movements. For example, a sam-
pling frequency of 5 Khz (5000 samplings per second, as is common in motion simulating
systems), allows us to defi ne an angular unit of change with a magnitude of 1.08 degree-
minutes, at a rate of 90 degrees per second. It also supports using a unit of velocity change
at a rate of 0.1% to facilitate an acceleration value, for which the velocity increases by a
factor of 150 in the span of one second.

Motion Patterns
In the representation and storage of motion, our model make use of partitas and mea-

sures (borrowed from the “language” of music), which employ the binary building blocks
to defi ne motion patterns, i.e., a beginning of a motion text.

Partitas and Measures
A partita is a special structure of motion data with one of the following four formats,

each of which comprises the coordination aspect and one space dimension or time dimen-
sion (see Figure 5):

1. The space component’s fi rst dimension partita - composed of bits 1+2+3
2. The space component’s second dimension partita - composed of bits 1+4+5
3. The space component’s third dimension partita - composed of bits 1+6+7
4. The time component partita - composed of bits 1+8+9

Despite its redundancy, it is still worthwhile storing the time component. The gener-
ality of each partita structure is achieved by using the 9-bit structure of the motion byte,
even though not all the binary combinations are fully used. As mentioned previously, the
coordination component represents the precise moment at which a given limb goes from
rest to motion, and vice versa. It delineates starting and ending points of every movement
(“enter”-”exit”). This piece of information is necessary in each and every partita.

336 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

As partitas have a common general structure and operate independently on separate
components of motion, we can use the same method to examine all of them. Indeed, the
partita examination aims to detect motion patterns. For this purpose there is an advantage
to using partitas over the 9-bit motion byte, because they make it relatively easy to detect
repeating structures. These repeating structures are called measures in our model.

As already noted, each partita is made up of bit fi les (rows of three bits). When a
certain bit fi le is repeated over the time axis of a certain link (for example: 001 001 001) it
can represent a relevant movement related to the certain link. This is called an elementary
measure.

Similarly, a certain array of bit fi les, that is, the relevant links of a given limb (or its link
to the whole body) may repeat over the time axis, representing motion using a motion pattern.
This is called a composed measure. We can relate to a partita as a collection of measures,
with no necessity for symmetry in the occurrence of measures in different partitas.

Figure 6 demonstrates the partita of a limb composed of two links (i & j), where:

• Motion of link i contains fi ve elementary measures (letters A - E).
• Motion of link j contains seven elementary measures (numerals I - VII).
 The lowest “common denominator” of the fi ve elementary measures of link i and the

seven elementary measures of link j represents the composed measures of the two
links. These composed measures are denoted by the numerals 1 - 10, where:

 • A continuous vertical line, at a link’s row, represents an edge between two elementary
measures.

 • A vertical line, across the rows of the two links (whether a continuous or a broken
line), represents an edge between composed measures.

Figure 7 illustrates a partita of a limb composed of two links — forearm and arm, that
perform the same movement as that demonstrated in Figure 4, line IV, where:IV, where:IV

Figure 5: The partita database cube

Modeling Motion: Building Blocks of a Motion Database 337

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

• Motion of forearm contains three elementary measures (between two continuous
lines).

• Motion of arm contains three elementary measures (between two continuous lines).

The lowest “common denominator” of the forearm’s three elementary measures and
the arm’s three elementary measures produces four composed measures of the two links.
These composed measures are denoted by the numerals 1 - 4.

Each partita can be seen as a collection of measures, where each measure is actually
an ordered structure, made up of sets of three bits. As already noted, due to the general
nature of their structure, each partita can be independently examined.

Figure 8 illustrates fi ve composed measures:

• Measure 1: ascending structure. The relevant limb’s dimension (velocity or any space
dimension) changes in a gradual manner, according to the limb hierarchy, starting
with the lightest limb, the one borne by all the other limbs, and concluding with the
heaviest limb, the one that lies at the base of the limb structure.

• Measure 2: a vertical structure, where all limbs change their positions simultane-
ously.

• Measure 3: descending structure, where the change begins at the base limb, and
continues at a steady pace up the hierarchy to the lightest limb.

• Measure 4: descending graded structure, which is very similar to the descending
messenger structure, except that the time lapse within which changes occur are not
uniform.

Figure 6: Elementary and composed measures

Figure 7: Binary composed measures

338 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

• Measure 5: random structure. This structure should be regarded as a composed
measure only if it appears several times in the “motion text”; otherwise it should be
regarded as a quasi measure.

An elementary measure is an ordered vector, made of repeated identical bit fi les. A
composed measure is an ordered matrix, in which the matrix rows are elementary measures.
The number of matrix rows is equal to the number of relevant links, and the length of the
elementary measure is according to the lowest “common denominator”.

STORAGE COMPARISON
To learn more about motion storage and performance, we conducted several compari-

sons between our binary model and a common system. Life Forms, a desktop application
developed at Simon Fraser University (Calvert, Bruderlin, Dill, Schiphorst & Welman, 1993),
is a representative system based on the key frames approach. A collection of convenient
tools for the development of multiple human fi gure animation, it runs on platforms ranging
from a low-end Macintosh up to a high-end Silicon Graphics Iris.

The Key Frames Approach
In the key frames approach, motion is represented by the absolute position of every

limb while in the binary model storage is based on the internal geometric relations between
the creature links, i.e., on relative changes. Position in our model is a derivative of motion.
This difference is more than conceptual; it affects storage in terms of data redundancy, as
described below.

Movement and Dragging
The key frames approach does not distinguish between movement and dragging. Drag-

ging occurs when a given limb changes its location in space; i.e., it is a change in position,
without changing the internal geometric relation with adjacent links. Consider for example

Figure 8: Motion ptterns — Composed measure structures

Modeling Motion: Building Blocks of a Motion Database 339

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

the case of the arm in Figure 9, which changes its position in the absolute space, due to
movement of the forearm over the shoulder. Here, the forearm moves while the arm is just
dragged, without changing the internal geometric relation with the adjacent link, i.e., with
the forearm.

Intermediate Position
The key frames approach “moves” the creature’s limbs along the shortest route between

any two sequential positions. Thus, in addition to extreme positions, we are bound to defi ne
every intermediate position that contributes to the goal of directing the system along the
desired path of motion.

Consider for example an upward movement of the forearm of more than 180 degrees
along the vertical axis, beginning behind the back and ending behind the head (Figure 9).
Using the key frames approach, we need to represent this movement by means of at least
three positions. Describing it by means of the two extreme positions only would cause the
animation to fl ow in the opposite direction, using the shortest path. In other words, the
hand would be raised from behind the back, instead of the front!

In addition, the key frames approach requires an intermediate position of the whole
image, not only in order to direct the movement through the right path (as discussed above),
but also in the following cases:

• During the course of movements carried out at varying velocities with respect to dif-
ferent sections.

• During the course of movements in which there is a beginning or ending of move-
ment by any of the limbs involved to allow timing of the movements of the various
limbs.

Figure 9: Intermediate position

340 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

The Life Forms system consists of many variables designed to represent key positions
as frame series, in accordance with the number of frames per second that the user stipulates.
Among them are the fi gure’s physical dimensions, presentation mode, stage measurements, user
standpoint, location in relation to stage location, position relative to other fi gures, etc.

The human fi gure in the Life Forms application is composed of 22 limbs. The physical
position is characterized by indicating the location of a reference point in space, and the
position of each of the 22 limbs. The reference point represents three coordinates (X,Y,Z)
in the spatial region of the stage, applying to the pelvic region of the fi gure, or alternatively,
to the fi gure’s lowest point, i.e., the limb or part of a limb that possesses the smallest Z
component. Furthermore, each of the limb positions is defi ned by means of three angles on
the Y, X and Z axes, indicative of the Pitch, Roll and Spin angles.

The Life Forms application uses 69 basic variables to represent the position of an im-
age consisting of 22 limbs, that is, 69 fl oating point variables whose storage volume varies
according to the computer platform used.

Life Forms Storage Volume
Table 3 presents Life Forms variables in a Macintosh environment. The volume of raw

data relating to fi gure animation variables (not including the fi gure environment) is compared
to the volume of raw data required by our binary model by means of sets of 7 bits per joint
per time unit of the database cube.

Lines 4 - 7 show the components for defi ning a position. Their total volume range
is 424 - 442 bytes, i.e., 3392 - 3536 bits. It should be noted that these volumes underwent
compression by the program. Even if we do not include all the possible location variation,
the volumes of all the 69 fl oating parameters for representation of the fi gure’s limbs in the
position can alone reach 4416 bits (69*64 bits per fl oating variable). Adding 56 bytes to
represent the rest of the components (4 - 6) results in 4864 total bits for image position.

Note that the storage volume of the Life Forms application does not vary in accordance
with the situations indicated above; it depends on the number of positions defi ned, rather
than on the sampling frequency, motion type, or number of limbs that actually perform the
movement. The advantages of the binary model become even more evident when we compare
the volume consumed for motion storage, whose representation by means of the key frames
approach demands the defi nition and representation of an intermediate position.

Examples
1. To represent and store one second of an arm movement through an angle of more than

180 degrees (as illustrated in Figure 9), three positions are required. Thus, the Life
Forms application requires 14,592 bits (4,864 *3). The binary model, on the other
hand, requires between 324 and 1,540 bits (depending on the sampling frequency),
an advantage factor of 9.5 to 45.

2. To represent motion where the forearm starts slightly after the arm and fi nishes the
movement slightly earlier, the Life Forms application requires fi ve key frames, that is,
24,320 bits. The binary model, on the other hand, takes only 324 - 1540 bits (depend-
ing on frequency of sampling), giving a comparative factor of 15.8 to 75.

3. Defi ning three different motion velocities, e.g., starting with acceleration, continu-
ing at constant velocity, and coming to a stop, means added storage. The Life Forms
application requires seven positions (key frames), or 34,048 bits. The binary model

Modeling Motion: Building Blocks of a Motion Database 341

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

takes only 324 - 1540 bits (depending on sampling frequency), a factor of 22.1 to 105
in storage saving.

We should note, however, that this velocity defi nition is limited and distorted, since
it ascribes a velocity profi le of motion as a whole, instead of a specifi c velocity profi le for
each limb separately.

Thus, in a worst-case analysis with a sampling frequency of 10 frames per second
(FPS) (most animation programs use a 3 FPS default, an animation suffi ciently smooth
for the human eye), our model needs 1,540 bits per second (10 samplings per second *
7 bits per limb * 22 limbs). Note that there is no need to use all seven bits for each of the
22 limbs, because few limbs have more than one degree of freedom; that is, most limbs
can be represented by a 3-bit byte per time unit. In the examples we used the full 7-bit
motion byte in volume consumption calculations, to be on the safe side. In a best-case
analysis, given a sampling frequency of three frames per second, eight limbs with one
degree of freedom (i.e., representation by a 3-bit motion byte), seven limbs with two de-
grees of freedom (represented by a 5-bit motion byte), and seven limbs with three degrees
of freedom (represented by a 7-bit motion byte), our model requires 324 bits per second
(3 samplings per second * [8 limbs * 3 bits + 7 limbs * 5 bits + 7 limbs * 7 bits]).

In contrast, to represent and store one second of an arm movement through an angle of
more than 180 degrees (as illustrated in Figure 9), the Life Forms application requires 14,592
bits. This gives a ratio of 1:45 in favor of our model (depending on sampling frequency).

These examples, and others performed for the comparison, clearly demonstrate that in
the key frames approach storage volume grows signifi cantly in accordance with the number
of moving limbs and the velocity of each limb participating in the motion. The binary model,
on the other hand, is virtually independent of motion and velocity of the various limbs. The
only signifi cant parameters are the number of limbs and the desired sampling frequency.
The advantages of the binary model become more evident when we compare the volumes
needed for motion storage, whose representation by means of the key frames approach
demands the defi nition and representation of an intermediate position.

MOTION LANGUAGE
While the design of a motion language is beyond the scope of this paper, our work

provides some guidelines for producing the “letters”, “words”, and “sentences” leading to a
motion text. The examples in this paper show some initial steps: the 7-bit motion byte defi nes

Table 3: Life forms application variables

1 The image environment 2620 bytes Stage, time line, fi gure editor, panel

2 Every image 1492 bytes

3 Frame per second variation 20 bytes To defi ne motion velocity

4 Change of location 20 bytes Location change on the horizontal plane

5 Change of altitude 18 bytes Location change on the vertical plane

6 Change of facing - rotation 18-36 bytes The rate of change dictates the volume

7 Limb representation in every position 368 bytes

342 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

a letter, motion words and sentences are shown in Figures 4, 5, and 6 using the concept of
partita, a measure used in music. Note the complex expression shown in Figure 6 describ-
ing the motion of two links (arm and forearm) moving in parallel and coordination. The
equivalent description in verbal language would hardly reach that level of effi ciency.

We illustrate a simple sign language for forearm direction. Two expressions are defi ned,
HALT and SLOW, by means of a single limb motion in the vertical plane only (e.g., right
forearm). A 3-bit building block is needed to defi ne this rudimentary language, where:

 Bit 1 defi nes motion (1), and rest (0)
Bits 2+3 defi nes increase (10), decrease (01), and no change (00) in forearm angle.

Given a base position in which the forearm is at rest, hanging down along the side of
the body, we assume:

• A sampling frequency of two samples per second.
• A basic measuring unit of 90 degrees, i.e., a motion change of 90 degrees takes ½

sec.
• H = a HALT message is discharged by a motion of 180 degrees (decrease angle rela-

tive to arm), and staying at this position for at least ½ second.
• S = a SLOW message is given by moving the arm 90 degrees (decreasing angle rela-

tive to arm), and staying at this position for at least ½ second.
• B = back to base position takes place either from H or S (increasing angle).
• SH = moving the forearm from SLOW to HALT (decrease angle relative to arm).
• Remaining at a certain position (S, H, or Base position) is denoted by a (.).
 There is no meaning to any other motion, e.g., transition from HALT to SLOW.

Table 4 depicts the different levels of the forearm motion language.

Time Scale - Sets the time in elapsed seconds.
Bit Level - Describes the binary building blocks stored in the database.
Motion Level - Shows motion quantities and directions (increase/decrease).
Pattern Level - Shows information patterns in the motion database.
Language Level - Gives a linguistic meaning to the motion patterns.

Given a motion language and database, we can begin to look at a “motion query lan-
guage” (MQL) by defi ning a two-term component of the movement message (H, S, base)
and a number that represents motion duration in time units. The data in Table 4 may be
viewed as:

Slow-5
Halt-3
Base-1
And queries may take the form:
 Select “Slow”
 From database-name
 Where time is between 0 and 8.

Modeling Motion: Building Blocks of a Motion Database 343

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

The query will return the specifi c limb in which “Slow” was found. In the example,
the reply will be: Forearm, 1,5 where motion took 1 sec. to complete, and that position was
held for 5 units, i.e., 5 half seconds.

This is a very rudimentary example and is used only to illustrate the direction and fi rst
steps of a full motion language, which is beyond the scope of our current study.

When looking at the sequence of building blocks within the raw motion data, it is
possible to identify “measures”, i.e., recurring structures. In fact, these structures repre-
sent motion words. Every motion word can be recursively split into its original building
blocks. Moreover, it is possible to write motion economically by ascribing a code to each
measure, while noting the proportions and magnitudes of its components. In a well-defi ned

Table 4: Illustrating a motion language

La
ng

ua
ge

 L
ev

el
S

.
.

.
.

.
S

H
.

.
.

B
.

P
at

te
rn

 L
ev

el
P

1
P

1
P

2

M
ot

io
n

Le
ve

l
+9

0
+9

0
+9

0
+9

0

B
it

Le
ve

l
00

0
10

1
00

0
00

0
00

0
00

0
00

0
00

0
10

1
00

0
00

0
00

0
00

0
11

0
11

0
00

0
00

0

Ti
m

e
Ta

bl
e

0
1

2
3

4
5

6
7

8

344 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

“motion world” it is possible to characterize a fi nite number of motion building blocks.
The diversity of forms that can be realized using binary bits to represents building blocks
of motion is quite high. These building blocks are thus fi ne, precise, as well as general,
modular and generative.

The importance of such motion building blocks and motion words lies in the ability to
defi ne a motion language around them. Such a language will enable a signifi cant reduction
in the storage volume needed for raw motion data and improve the processing and query
capabilities once the data is stored on computer media. It will also enable a natural man-
machine interface (by using words, sentences and paragraphs), and computerized pattern
recognition algorithms, i.e., recognition of patterns, to be applied to the “motion text”. These
capabilities are useful and important in many fi elds: robotics, animation, graphics, athletics,
and more (Rose, Cohen & Bodenheimer, 1998).

A full-scale motion language will facilitate the following possibilities:

• A signifi cant reduction in storage volume of raw motion data.
• Improved processing capabilities, as a binary form fi ts computer internal storage well

and can utilize bit-maps in the search and retrieval process.
• Defi nition of any movement, not only in a fi ne and modular way, but also in a natural

and user-friendly way (using words, sentences, and paragraphs).
• Application of computerized techniques from artifi cial intelligence, pattern recogni-

tion, information retrieval, and database management.
• Ability to make “syntactic” and “semantic” analyses, and to discover the inner rules

of a motion text.
• Ability to represent informatively and achieve an artifi cial understanding of the lin-

guistic perceptions represented by motion text.

SUMMARY AND CONCLUSIONS
A model for the representation and storage of motion data has been presented. The

model uses a binary framework by which the various components of motion are identifi ed
and represented. In this framework, a 7-bit motion byte is defi ned in its general form, cov-
ering space, time, and coordination components.

The motion model also handles the issue of storage, i.e., the ability to store movement
data of an object in an effi cient and economic way such that the data can be accessed and
processed. A comparison between storage requirements of our model and a key frames system
suggests signifi cant storage saving, and hence a performance lead by the binary model.

The binary format used for representing and storing motion has several obvious advan-
tages. First, it is a simple and easy way to represent motion over the four dimensions of space
and time. Such a representation method is both user-friendly and appropriate for computer
storage and processing. Second, we show the economy and effi ciency of the model in terms
of the volume needed for storing motion data. This is important in light of the high level of
storage required by common animation tools that use position and sampling frequencies.
Third, the model is informative in the sense that there is no loss of information due to any
mathematical or other operations performed on the data. Stored in a binary form, motion
data is amenable to future computerized retrieval and manipulation. As such, the binary

Modeling Motion: Building Blocks of a Motion Database 345

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

representation is a fi rst step in defi ning a full motion language, relating to the movement of
bodies as in the vocal channel of speech and the graphic channel of script.

The research contributes to several fi elds, such as knowledge representation and da-
tabases. It presents a formal and general model for the representation of raw motion data
that can be extended to the imitation of linguistic perceptions expressed through the motion
channel.

Several areas are suggested for further study. Since the motion model is represented
only by binary parameters, it has substantial raw data compression possibilities (Spiegler &
Maayan, 1985; Samet, 1984; Samet & Webber, 1988a; Samet & Webber, 1988b). A detailed
analogy between optical character recognition (OCR) and motion processing is needed
to extend the pattern recognition discipline to the fi eld of motion. Similarly, an analogy
between natural language processing (NLP) and motion processing will provide means
of recognizing and understanding motion words. We have shown a direction to defi ne a
motion building block. A fi nite number of precise, general, and generative building blocks
can be characterized in a well-defi ned motion world such as a robot motion environment
(Egerstedt, 2001), enabling the construction of words, sentences, and motion text about the
said motion world.

Binary representation of motion also opens the way to studies in diagnosis and measure-
ment of physiological phenomenon, such as motor disorders, changes in motor capabilities
under the effect of different medical treatments or drugs, athletic training, comparative
variations in motor capabilities of different individuals, as well as ways in which they carry
out motor tasks.

REFERENCES
Agarwal, P.K. et al. (2002). Algorimic issues in modeling motion. ACM Computing Surveys,

34(4), December.
Ariav, G. (1986). A temporally oriented data model. ACM Trans. on Database Systems,

11(4), December, 449-527.
Badler, N.I., & Smoliar, S.W. (1979). Digital representations of human movements. ACM

Computing Surveys, 11(1), March, 19-38.
Bruderlin, A., & Williams, L. (1995). Motion signal processing. Computer Graphics Pro-

ceedings - SIGGRAPH95, August, 97-104.
Calvert, T.W., & Chapman, J. (1982). Aspects of the cinematic simulation of human move-

ment. IEEE CG&A, November, 41-50.
Casavant, T.L., & Mukesh, S. (1994). Readings in distributed computing systems. USA:

IEEE Computer Society Press.
Calvert, T.W., Bruderlin, A., Dill, J., Schiphorst, T., & Welman, C. (1993). Desktop anima-

tion of multiple human fi gures. IEEE CG&A, May, 18-26.
Earnshaw, R., Mangnenat-Thalmann, N., Terzopoulos, D., & Thalmann, D. (1998). Computer

animation for virtual humans. IEEE CG&A, September/October, 20-23.
Egerstedt, M. (2001). Linguistic control of mobile robots. Proceedings of IEEE Conference

on Intelligent Robots and Systems, 2001, Maui, Hawaii, 877-882.
Eshkol, N., & Wachmann, A. (1958). Movement notation. Weidenfeld and Nicolson.
Etzion, O. et al. (Ed.). (1998). Temporal databases: Research and practice. Springer.

346 Gelbard and Spiegler

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

Hodgins, J.K., Wooten, W.L., Brogan, D.C., & O’Brien, J.F. (1995). Animation human
athletics. Computer Graphics Proceedings – SIGGRAPH95, August, 71-78.

Hutchinson, A. (1960). Labanotation, second edition. New York: Theater Arts Books.
Ko, H., & Badler, N.I. (1996). Animation human locomotion with inverse dynamics. IEEE

CG&A, March, 50-59.
Ozsoyoglu, G., & Snodgrass, R.T. (1995). Temporal and real-time database: A survey. IEEE

Transactions on Knowledge and Data Engineering, 7(4), August, 513-532.
Rose, C., Cohen, M.F., & Bodenheimer, B. (1998). Verbs and adverbs: Multidimentional

motion interpolation. IEEE CG&A, September/October, 32-40.
Samet, H. (1984). The Quadtree and related hierarchical structures. ACM Computing Sur-

veys, 16(2), June, 187-260.
Samet, H., & Webber, R.E. (1988). Hierarchical data structures and algorithms for computer

graphics - Part I. IEEE CG&A, May, 48-68.
Samet, H., & Webber, R.E. (1988). Hierarchical data structures and algorithms for computer

graphics - Part II. IEEE CG&A, July, 59-75
Spiegler, I., & Maayan, R. (1985). Storage and retrieval considerations of binary databases.

Information Processing & Management, 21Information Processing & Management, 21Information Processing & Management , 233-254.
Stallings, W. (1988). Data and computer communication, second edition. Macmillan.
Tansel, C., Gadia, Jajodia, Segev, & Snodgrass. (1993). Temporal databases: Theory, design

and implementation. USA: Benjamin Cummings.
van de Pannw, M. (1996). Parameterized gait synthesis. IEEE CG&A, March, 40-49.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

About the Editor 347Editor 347Editor

About the Editor

Keng Siau is Associate Professor of Management Information Systems (MIS) at the Univer-
sity of Nebraska, Lincoln (UNL) (USA). He is currently serving as the Editor-in-Chief of
the Journal of Database Management and as the Book Series Editor for Advanced Topics in
Database Research. He received his Ph.D. from the University of British Columbia (UBC),
where he majored in Management Information Systems and minored in Cognitive Psychol-
ogy. His master and bachelor degrees are in Computer and Information Sciences from the
National University of Singapore. Dr. Siau has more than 150 academic publications. He
has published more than 55 refereed journal articles, and these articles have appeared in
journals such as Management Information Systems Quarterly, Communications of the ACM,
IEEE Computer, Information Systems, ACM-SIGMIS’s Data Base, IEEE Transactions on
Systems, Man, and Cybernetics, IEEE Transactions on Information Technology in Biomedi-
cine, IEICE Transactions on Information and Systems, Journal of Database Management,
Journal of Information Technology, International Journal of Human-Computer Studies,
International Journal of Human-Computer Interaction, Behaviour and Information Technol-
ogy, Quarterly Journal of Electronic Commerce, and others. In addition, he has published
more than 65 refereed conference papers, edited/co-edited nine books, edited/co-edited
nine proceedings, and written more than 15 book chapters. He served as the Organizing
and Program Chairs of the International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD) (1996-2004). He also co-chaired a number of
minitracks at AMCIS and HICSS. For more information, please visit his web site at URL:
http://www.ait.unl.edu/siau/.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

348 About the Authors

About the Authors

Kyoung-Il Bae is a Senior Consultant at the IBM Business Consulting Services, Korea. He
received a Ph.D. in Management Information Systems at the Korea Advanced Institute of
Science and Technology (KAIST), Seoul. His research includes synchronous collaboration
in groupware/virtual enterprise, system integration in the heterogeneous computing
environments, component-based business modeling & development, and customer
relationship management. His e-mail address is kibae@kr.ibm.com.

Ajantha Dahanayake is an Associate Professor in the Department of Information and
Communication Technology at the faculty of Technology, Policy and Management, Delft
University of Technology, The Netherlands. She previously served as an Associate Professor
in the Department of Information Systems and Algorithms at the Faculty of Information
Technology and Systems. She received her B.Sc. and M.Sc. in Computer Science from
the University of Leiden, and Ph.D. in Information Systems from Delft University of
Technology. She has served in a number of Dutch research and academic institutions. Her
research interests are distributed Web-enabled systems, CASE, methodology engineering,
component-based development and m-business. She is Research Director of the research
program Building Blocks for Telematic Applications Development and Evaluation
(BETADE).

Bassel A. Daou is a Ph.D. student at the University of Ottawa, Canada. He received his
B.S. degree in Computer Science from the American University of Beirut, Lebanon, and
his M.S. degree in Computer Science from the Lebanese American University - Beirut,
Lebanon. His research interests include software engineering and database management
systems.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

About the Authors 349

Oscar Dieste is Assistant Professor with the School of Computing at the Universidad
Complutense de Madrid, Spain. Dr. Dieste has a B.S. and a Ph.D. in Computing. He has
been guest editor of the International Journal of Software Engineering and Knowledge
Engineering, and reviewer of journals such as IEEE Computer or IEEE Computer or IEEE Computer IEEE Software.

Jan L.G. Dietz is Professor in Information Systems Design at Delft University of
Technology (The Netherlands) since 1994, after having been professor in MIS at the
University of Maastricht for six years. He holds an M.Sc. in Electrical Engineering and a
Ph.D. in Computer Science, and has practices business automation for 10 years. His current
research interests are in organization engineering, enterprise architectures and systems
ontology.

Eladio Domínguez is a Full Professor of Computer Science at the University of Zaragoza,
Spain, and academician of the Royal Academy of Sciences of Zaragoza. He was previously
Associate Professor of Topology at Zaragoza University and the Polytechnical University
of Madrid. He has taught Mathematics at the Universities of Sevilla and Valencia. Dr.
Dominguez received his Ph.D. in 1974 from the University of Zaragoza. His main research
interests are in digital topology, information systems and phenomenology.

Anthony Fong received his B.E.E. degree from Villanova University, Pennsylvania
(1969). He received his M.Sc. in Computer Science from the State University of New
York at Buffalo in 1973. He was awarded a Ph.D. degree from University of Sunderland
in 2003. At present he is Associate Professor and the Director of the EDA Centre in the
Department of Electronic Engineering at the City University of Hong Kong. Dr. Fong
has been awarded six United States patents, all on computer architecture and design. He
has published more than 40 papers on computer architecture and design, and database. At
present he is working on a computer system project called HISC (High-level Instruction
Set Computer) for object-oriented computing. There is a U.S. patent issued and several
others pending on HISC.

Joseph Fong is an Associate Professor in the Computer Science Department at City
University of Hong Kong. He was Chair of the Hong Kong Computer Society Database
Special Interest Group, and is Founder Chair of Sybase Hong Kong User Group, Hong
Kong Web Society, and an annual International Conference on Web-based Learning. He
has published many research journal papers in database, data warehousing and data mining,
a monograph on Information Systems Reengineering by Springer Verlag in 1997, and two
patents on Universal Database. Fong received his B.Sc. from State University of New York
at Buffalo in Electrical Engineering (1976), M.Sc. from State University of New York at
Stony Brook in Electronic Engineering (1977), M.B.A. from Golden Gate University in
1985, and Ph.D. from University of Sunderland in Computing (1993).

José Galindo has a Ph.D. in Computer Science by the University of Granada (Spain) and is
a Professor of Computer Science on School of Engineering at University of Málaga (Spain).
He is author of several books and papers on computer science, databases, information
systems and fuzzy logic. His research interests include fuzzy logic, fuzzy databases and
ethical issues in the technological age. He is a member of IDBIS research group and
RITOS-2 ibero-american research net.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

350 About the Authors

Roy Gelbard is a Lecturer at the Information Systems Department, Bar Ilan University,
Israel. He held a faculty position at the Industrial Engineering and Management of Ben
Gurion University, Beer Sheva, and Tel Aviv University. He received his Ph.D. and M.Sc.
degrees in Information Systems from Tel Aviv University. He holds also degrees in Biology,
Philosophy and Economics. His work involves systems analysis and design, modeling of
motion, clustering and data mining.

Marcela Genero is Assistant Professor at the Department of Computer Science at the
University of Castilla-La Mancha, Ciudad Real, Spain. Dr. Genero has an M.Sc. and a
Ph.D. in Computing. She has published several papers in prestigious conferences and
journals, and in 2002 she co-edited the book Information and Database Quality.

Terry Halpin, B.Sc., DipEd, B.A., MLitStud, Ph.D., is Distinguished Professor and
Vice President (Conceptual Modeling) at Northface University, USA. His doctoral thesis
formalized Object-Role Modeling (ORM/NIAM). After leaving academia to work on data
modeling technology at Asymetrix Corporation, InfoModelers Inc., Visio Corporation, and
Microsoft Corporation, he returned to academia, specializing in software development using
a business rules approach to informatics. With a research focus on conceptual modeling
and conceptual query technology, he has authored more than 100 technical publications
and fi ve books, including Information Modeling and Relational Databases and Database
Modeling with Microsoft Visio for Enterprise Architects. He is a member of IFIP WG 8.1
(Information Systems) and is Editor or Reviewer for several academic journals.

Ramzi A. Haraty is an Associate Professor of Computer Science at the Lebanese American
University - Beirut, Lebanon. He received his B.S. and M.S. degrees in Computer Science
from Minnesota State University - Mankato, Minnesota, and his Ph.D. in Computer Science
from North Dakota State University - Fargo, North Dakota. His research interests include
database management systems, artifi cial intelligence, and multilevel secure systems
engineering. He has more than 50 book, journal and conference paper publications. He
is a member of the Association of Computing Machinery, Arab Computer Society, and
International Society for Computers and their Applications.

Soonyoung Huh is an Associate Professor of Management Information Systems at the
Korea Advanced Institute of Science and Technology (KAIST). He received a Ph.D. from
the University of California, Los Angeles. Dr. Huh has published articles in such journals
as Decision Sciences, International Journal of Intelligent Systems in Accounting, Finance
and Management, Omega, and Journal of Systems and Software.and Journal of Systems and Software.and His research deals with
abstraction database application to business systems, model management, object-oriented
database approach to decision support systems, and intelligent approaches in fi nancial
trading systems. His e-mail address is syhuh@kgsm.kaist.ac.kr.

Natalia Juristo is a Professor of Software Engineering with the School of Computing
at the Universidad Politecnica de Madrid, Spain. Since 1992 she has been the Director
of the M.Sc. in Software Engineering. Dr. Juristo has a B.S. and a Ph.D. in Computing.
She was fellow of the European Centre for Nuclear Research (CERN) in Switzerland in
1988, and staff of the European Space Agency (ESA) in Italy in 1989 and 1990. During
1992 she was resident affi liate of the Software Engineering Institute at Carnegie Mellon

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

About the Authors 351

University. She was Program Chair for SEKE97 and General Chair for SEKE01 and
SNPD02. Professor Juristo has been key speaker for CSEET03. She has been Guest Editor
of special issues in several journals, including the Journal of Software and Systems, Data
and Knowledge Engineering and the International Journal of Software Engineering and
Knowledge Engineering. Dr. Juristo has been member of several editorial boards, including
IEEE Software and the Journal of Empirial Software Engineering. She is senior member
of IEEE.

Akos Ledeczi s a Senior Research Scientist at the Institute for Software Integrated Systems,
Vanderbilt University, USA. His current research interests include model-based synthesis
and simulation of embedded systems, network embedded systems and sensor networks. He
received an M.Sc. from the Technical University of Budapest in 1989. He received a Ph.D.
in Electrical Engineering from Vanderbilt University in 1995. He can be reached at akos.
ledeczi@vanderbilt.edu.

Nashat Mansour is an Associate Professor of Computer Science at the Lebanese American
University - Beirut, Lebanon. He received his B.E. and M.S. degrees in Electrical
Engineering from the University of New South Wales, Australia, and M.S. in Computer
Engineering and Ph.D. in Computer Science from Syracuse University, New York. His
research interests include software testing and maintenance, and natural computation
algorithms. He is a member of IEEE Computer Society and Arab Computer Society.

Miklos Maroti is a Research Assistant Professor at the Institute of Software Integrated
Systems, Vanderbilt University, USA. His current research interest includes formal
specifi cation and analysis of embedded systems, active libraries of middleware components,
and the constraint satisfaction problem. He received a Ph.D. in Mathematics from Vanderbilt
University. He can be contacted at miklos.maroti@vanderbilt.edu.

Wai Yin Mok is an Assistant Professor of Management Information Systems at the
University of Alabama in Huntsville, USA. His papers appear in ACM Transactions on
Database Systems (TODS), IEEE Transactions on Knowledge & Data Engineering (TKDE),
Data & Knowledge Engineering (DKE), Information Processing Letters and Journal and Journal and
of Database Management (JDM). He referees papers for TODS, TKDE, DKE and other DKE and other DKE
journals. Currently he is on the Editorial Review Boards of JDM and Informing Science and Informing Science and
Journal (ISJ). He is a program committee member of ER2003 International Conference
on Conceptual Modeling and a track chair of 5th Annual Global Information Technology
Management (GITM) World Conference in San Diego. He received a B.S., an M.S., and
a Ph.D. in Computer Science from Brigham Young University in 1990, 1992, and 1996
respectively.

Ana M. Moreno is Associate Professor with the School of Computing at the Universidad
Politecnica de Madrid, Spain. Dr. Moreno has a B.S. and a Ph.D. in Computing. Since
2001 she has been Director of the M.Sc. in Software Engineering. Dr. Moreno has been
Visiting Scholar at the Vrije Unviersiteit (Amsterdam, The Netherlands) and Visiting
Professor at the Unviersity of Colorado at Colorado Springs (USA). She was Program
Chair for NLDB’01 and SNPD’02 and General Chair for CSEET03. She has been Guest
Editor of special issues in several journals including Data & Knowledge Engineering and Engineering and Engineering

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

352 About the Authors

International Journal of Software Engineering and Knowledge Engineering, and reviewer
of journals like ACM Computing Reviews, IEEE Transactions on Software Engineering,
IEEE Computer and IEEE Computer and IEEE Computer IEEE Software. In 2001, she published a book titled Basics on Software
Engineering Experimentation.

David Paper is an Associate Professor at Utah State University in the Business
Information Systems Department, USA. He has several refereed publications appearing
in journals such as Information & Management, Journal of Information Technology
Cases and Applications, Information Resource Management Journal, Communications of
the AIS, Long Range Planning, Creativity and Innovation, Accounting Management and
Information Technologies, Journal of Managerial Issues, Business Process Management
Journal, Journal of Computer Information Systems, and Information Strategy: The
Executive’s Journal. He has worked for Texas Instruments, DLS, Inc., and the Phoenix Small
Business Administration. He has performed IS consulting work for the Utah Department
of Transportation (Salt Lake City, UT) and the Space Dynamics Laboratory (Logan, UT).
His teaching and research interests include change management, process reengineering,
database management, e-commerce, and enterprise integration.

George C. Philip is a Professor in Information Systems and director of the M.S. in
Information Systems program in the College of Business Administration at the University
of Wisconsin Oshkosh, USA. His areas of publications and teaching include software
design and development, database design, and expert systems. He teaches seminars and
provides consulting services in these areas.

Mario Piattini holds an M.Sc. and Ph.D. in Computer Science from the Politechnical
University of Madrid. He is Certifi ed Information System Auditor by ISACA (Information
System Audit and Control Association). He is also Full Professor at the Department of
Computer Science at the University of Castilla-La Mancha in Ciudad Real (Spain). He has
authored several books and papers on databases, software engineering and information
systems. He leads the ALARCOS Research Group of the Department of Computer Science
at the University of Castilla-La Mancha in Ciudad Real. His research interests are advanced
database design, database quality, software metrics, object-oriented metrics, and software
maintenance.

V. Ramesh, Ph.D., is an Associate Professor, Ford Teaching Fellow, and the Director of the
M.S. in Information Systems at the Kelley School of Business, Indiana University, USA.
His research focuses on database design, collaborative technologies, software design and
technology implementation. He has also conducted studies on usability of mobile devices
and has been a consultant to software engineering fi rms. He has published more than 40
research articles in leading journals and conferences such as Communications of the ACM, Communications of the ACM, Communications of the ACM
ACM Transactions on Information Systems, the Journal of Management Information
Systems, and Information and Management, among others. He completed his Ph.D. in
Information Systems from the University of Arizona, his M.S. in Computer Science from
the University of Iowa and his B.E. in Computer Science from Birla Institute of Technology
(Mesra), India.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

About the Authors 353

Hajo A. Reijers is an Assistant Professor in Business Process Management at the Faculty
of Technology Management of Eindhoven University of Technology, The Netherlands. He
holds a Ph.D. in Computing Science from the same university. In the past eight years he
has worked for several management consultancy fi rms, most recently as a manager within
the Deloitte & Touche consultancy practice. He has published in various scientifi c journals,
such as the Journal of Management Information Systems and the International Journal
of Cooperative Information Systems. His main research interests are business process
management, workfl ow management systems, Petri nets, and simulation.

Angel Luis Rubio is a Lecturer in Computer Science at the University of La Rioja, Spain.
He received his B.Sc. in Mathematics from the University of Zaragoza, Spain (1994),
and his Ph.D. in Computer Science from the University of La Rioja (2002). His current
research interests are focused on metamodeling and method engineering.

Henk Sol is Dean of the Faculty of Technology, Policy and Management at Delft
University of Technology, The Netherlands, and the Chair of Systems Engineering. He
previously served as Chairman of the Department of Information Systems of the Faculty
of Information Technology and Systems. He is Founder of the Faculty of Technology,
Policy and Management as well as Founder of the Delft Institute for Service Engineering
(DITSE). He is a pioneer in simulation and decision support research.

Israel Spiegler is a Professor and past chair of the Information Systems department at Tel
Aviv University, Israel. He holds an M.Sc. and Ph.D. in Computers and Information from
UCLA. His work included data sharing on computer network, a project of the ARPANET,
a forerunner of the Internet. He held faculty positions at Boston University, School of
Information Science at Claremont Graduate University, and UCLA. His main areas of
interest are data modeling, databases, artifi cial intelligence and knowledge management in
which he has published extensively.

Zoran Stojanovic is currently a Researcher for the Faculty of Technology, Policy and
Management, at Delft University of Technology, The Netherlands. His research interests
are in the areas of component-based development, Web services, enterprise and system
modeling, Geographic Information Systems (GIS) and location-based services. He received
his graduate engineering degree and Master of Philosophy in Computer Science and GIS
from the Faculty of Electronic Engineering, University of Nis (Yugoslavia)(1993 and 1998
respectively). Since 1993, he has been working as a Researcher and Teaching Assistant in
the fi elds of Computer Science, Software and System Engineering, fi rst with the University
of Nis (Yugoslavia) and after February 2000 with the Delft University of Technology (The
Netherlands). During this period he has been an author of a number of publications.

Heikki Topi, Ph.D., is an Associate Professor of Computer Information Systems at Bentley
College, USA. His research focuses on usability issues in the fi elds of data management
and systems analysis and design, management and commercial utilization of advanced
telecommunications technologies with a special emphasis on mobile solutions, and the
effects of time availability constraints on human-computer interaction. He is Co-editor

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

354 About the Authors

of Auerbach’s IS Management Handbook and has published in a number of journals Auerbach’s IS Management Handbook and has published in a number of journals Auerbach’s IS Management Handbook
and conferences in Information Systems and Information Science such as the Journal
of Database Management, Journal of the American Society for Information Science and
Technology, Information Processing & Management, Small Group Research, and the
Communications of AIS. He has a Ph.D. from Indiana University and an M.Sc. from the
Helsinki School of Economics (Finland), both in Management Information Systems.

Angélica Urrutia, Ph.D., is Associate Professor at the Maule Catholic University, Chile,
in the Computer Science Department. She is a member of the Chilean Computer Science
Society and RITOS-2 (Red iberoamericana de tecnologías del software para la década del
2000), working group of CYTED. She is Founder and President of the Chilean Workshop
on Data Base. In 2003, she obtained with Sobresaliente Cum Laude por unanimidad her
Ph.D. in Computer Science at the Castilla-La Mancha University, Spain. The Master and
Engineer Degrees in Computer Science were obtained respectively from the Concepcion
University and Santiago University, Chile. Her major research topics are fuzzy database and
information systems. In these arenas she has authored several original scientifi c papers.

Peter Volgyesi is a Research Assistant at the Budapest University of Technology and
Economics. He participated in the development of the Generic Modeling Environment
(GME) at ISIS, Vanderbilt University. Recently he worked on domain specifi c modeling
environments for networked embedded systems as part of the DARPA NEST project. His
current research interests center on design and modeling of embedded real-time systems.
He received an M.Sc. in Technical Informatics from the Budapest University of Technology
and Economics. He can be contacted at volgyesi@mit.bme.hu.

Hing Kwok Wong is a full-time Ph.D. student in the Department of Computer Science
at City University of Hong Kong. He received a Bachelor of Science in Information
Technology, with First Class Honors, from the Electronic Engineering Department, and
a Master of Philosophy in Computer Science, from the Computer Science Department at
City University of Hong Kong (1999 and 2001, respectively). He has published several
research journal and conference papers in data mining and XML databases. His current
research interests are XML database system and XML-enabled database.

María Antonia Zapata is an Associate Professor in Computer Science at the University
of Zaragoza, Spain. She received her B.Sc. in Mathematics (1988) and her Ph.D. in
Computer Science (1994) from the University of Zaragoza. Her main research interests are
in metamodeling, behavior modelling and method engineering.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Index 355

Index

A
access patterns 294
activity defi nition 91
agile development 1
agile methodologies 2
agile methods 1
agility 274
association 25
attributes 25
autonomy 273

B
Barker ER 23
BCNF 128
binary relationships 194
Boyce-Codd normal form 128
business process outsourcing 273
business rules 225

C
call graph 156
code generation 258
cohesion metrics 93

cohesion notion 91
communication 327
component 1
component-based 3
components-based development 45
component fi rewall 148
conceptual data modeling 188
conceptual model 167, 189
conceptual schema 23
constraints 27,107,258
control fl ow 143

D
database applications 142
data fl ow 145
data modeling 188
data modeling process 196
data warehouse 294
derivation rules 28,225
discovery 189
DKNF 128
domain-specifi c modeling 257
domain familiarity 195
domain key normal form 128

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of
Idea Group Inc. is prohibited.

356 Index

domain knowledge 195
dynamic semantics 71

E
entity-relationship modeling 189
entity relationship (ER) 23
entity types 25
evaluation 45
experts 195
extensible markup language 275

F
fact type 27,224
federated database system 278
fi tness 168
FSQL (FuzzySQL) 125
fuzzy aggregation 106, 113
fuzzy attributes 119
fuzzy attribute defi ned specializations

119
fuzzy cardinality constraint on overlap-

ping specializations 116
fuzzy completeness constraint on spe-

cializations 114
fuzzy constraints in shared subclasses

122
fuzzy degrees 113
fuzzy EER model 106
fuzzy quantifi ers 109
fuzzy set 108
fuzzy set cardinality 118
fuzzy set energy 118
fuzzy specializations 106

G
generic modeling environment (GME)

258

H
human factors 189

I
impact analysis 147
information engineering 23

information system modeling 233
inter-organizational process model

275
interpreters 258

K
“key frames” approach 327

L
logical unit of work 91
lexical object 26

M
machine-readable motion alphabet

327
metadata 294
metamodel 23, 71, 257
metaschema 24
method 46
missing information 128
model 24
model-driven development 2
model composition 258
motion byte 327
motion data 327
multiplicity 39

N
non-lexical object 26
normalization 128
novices 195
nulls 128

O
object-oriented database 275
object-oriented models 194
object-oriented software 257
object role modeling (ORM) 23
OCL OCL OCL 258
one-to-one relationship 128
online analytical mining 294
ontology 197

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Index 357

P
predicate 26
problems 166
process analysis 196
process information sharing 273
process model 275
product-based workfl ow design 93

R
rater agreement 101
regression testing 141
relationships 25

S
service-oriented architecture 45
software development methods 166
state machines 71
storage 327
subtype defi nitions 33
subtyping 26
systems analysis 189

T
transparent process monitoring 273

U
UML UML UML 258
unary relationships 194
unifi ed modeling language (UML) 23
universe of discourse 23,224
usability 189
user surfi ng behavior user surfi ng behavior user surfi ng behavior 294

V
validation 189
view maintainability 294
virtual enterprise 289

W
web-based survey 100
web services 45
workfl ow management 92

workfl ow management system 91
workfl ow process 91

An excellent addition to your library

It’s Easy to Order! Order online at www.idea-group.com

or call 717/533-8845 x10!
Mon-Fri 8:30 am-5:00 pm (est) or fax 24 hours a day 717/533-8661

Just Released!

Idea Group Publishing
Hershey • London • Melbourne • Singapore • Beijing

ISBN 1-59140-035-X (h/c)• eISBN 1-59140-092-9• US$89.95 • 340 pages • © 2003

Web-Powered Databases

David Taniar, PhD
Monash University, Australia

Johanna Wenny Rahayu, PhD
La Trobe University, Australia

Web-Powered Databases provides an excellent snapshot of
current research and development activities in the area of Web
or Internet databases. Its content supplies
potential answers to many questions that
have been raised regarding database
accesses through the Web. This book also
provides a number of case studies of
successful Web database applications,
including multiple-choice assessment
through the Web, an online pay claim, a
product catalogue, and content management
and dynamic Web pages.

“With the increasing use and development of Internet technology, it makes
sense to have a database system implemented on the Web, so that information

stored in the database can be more accessible.”
– David Taniar, Monash University

701 E. Chocolate Avenue, Hershey, PA 17033-1240 USA
Tel: (800) 345-4332 • Fax: (717)533-8661 • cust@idea-group.com

IDEA GROUP PUBLISHING

See the complete catalog of IGP publications at http://www.idea-group.com

Hershey • London • Melbourne • Singapore • Beijing

New Titles from IGP!

ISBN 1-878289-88-8 (s/c); eISBN 1-930708-82-3 • US$74.95; 374 pages •
Copyright © 2001

Developing Quality Complex

Database Systems: Practices,

Techniques and Technologies
Shirley Becker
Florida Institute of Technology, USA
Developing Quality Complex Database Systems: Practices,
Techniques and Technologies provides opportunities for im-
proving today’s database systems using innovative develop-
ment practices, tools, and techniques. It shares innovative and
groundbreaking database concepts from database profession-
als.

ISBN 1-878289-93-4(s/c); eISBN 1-930708-98-X • US$69.95; 256 pages •
Copyright © 2001

Text Databases and Document

Management: Theory and Practice
Amita Goyal Chin
Virginia Commonwealth University, USA

Text Database and Document Management: Theory and
Practice brings insight to the multifaceted and inter-related
challenges of the effectively utilized textual data and provides
a focal point for researchers and professionals helping to create
solutions for textual data management.

	Advanced Topics in Database Research, Vol 3
	Cover

	Table of Contents
	Preface
	SECTION I: ANALYSIS OF DEVELOPMENT ME METHODOLOGIES THODOLOGIES
	Chapter I Agile Development Methods and Component-Orientation: A Review and Analysis
	Chapter II Comparing Metamodels for ER, ORM and UML Data Models
	Chapter III An Evaluation Framework for Component-Based and Service-Oriented System Development Methodologies

	SECTION II: DATA DATABASE DESIGN AND DEVELOPMENT: ISSUES AND SOL BASE SOLUTIONS UTIONS
	Chapter IV Improving the Understandability of Dynamic Semantics: An Enhanced Metamodel for UML State Machines
	Chapter V Metrics for Work. ow Design: How an Information Processing View on Business Processes Helps to Make Good Designs
	Chapter VI Fuzzy Aggregations and Fuzzy Specializations in Eindhoven Fuzzy EER Model
	Chapter VII Normalization of Relations with Nulls in Candidate Keys: Traditional and Domain Key Normal Forms
	Chapter VIII Regression Test Selection for Database Applications
	Chapter IX An Attempt to Establish a Correspondence between Development Methods and Problem Domains
	Chapter X Toward an Extended Framework for Human Factors Research on Data Modeling

	SECTION III: DATABASE DESIGN AND DEVELOPMENT DEVELOPMENT: APPLICATIONS
	Chapter XI Using DEMO and ORM in Concert: A Case Study
	Chapter XII Revisiting Work. ow Modeling with Statecharts
	Chapter XIII Framework for the Rapid Development of Modeling Environments
	Chapter XIV Federated Process Framework for Transparent Process Monitoring in Business Process Outsourcing
	Chapter XV Online Analytical Mining for Web Access Patterns
	Chapter XVI Modeling Motion: Building Blocks of a Motion Database

	About the Editor
	About the Authors
	Index

