
MSDN Home > ASP.NET Home > Headline Archive

Examining the skmMenu Server Control
Scott Mitchell
4GuysFromRolla.com

December 2003

Applies to:
 Microsoft® ASP.NET

Summary: Learn about the skmMenu ASP.NET menu server control source code
and about ASP.NET server control development. (28 printed pages)

Contents

Introduction
An Overview of skmMenu's Features and Object Model
Examining the Code for the MenuItemCollection and MenuItem Classes
Constructing the skmMenu Object Model with DataBinding
Specifying Style Information
The ASP.NET Server Control Life Cycle
Saving State: Examining the SaveViewState() Methods
Loading State: Examining the LoadViewState() Method
State Management of MenuItems and MenuItemCollection
Responding to a Client-Side Event with a Server-Side Event
Conclusion

Introduction

In a previous article, Building an ASP.NET Menu Server Control, we looked at using skmMenu, an open-source
Microsoft® ASP.NET menu server control. The complete source code is available at the skmMenu GotDotNet
Workspace. There are also some simple live demos of skmMenu in use:

A simple menu with no style settings specified

A demo illustrating styles

A demo illustrating a horizontally laid out menu

Building an ASP.NET Menu Server Control focused on examining the client-side CSS and JavaScript mix needed to
get interactive menus working, studying the object model used by skmMenu, and illustrating how to use
skmMenu in an ASP.NET Web page. This article serves as a continuation, focusing on the code for skmMenu. (If
you've yet to read Building an ASP.NET Menu Server Control, I highly recommend you do so before proceeding
with this article.)

Before examining the skmMenu source code, we'll first do a quick review of the features and the object model.
We'll then look at the code for the MenuItem and MenuItemCollection classes, which are the two key objects in
the skmMenu object model. We'll also study how skmMenu recursively constructs this object model through
databinding. Following this, we'll see how skmMenu provides ASP.NET page developers the ability to customize
the stylistic appearance (background colors, borders, fonts, and so on). Finally, we'll turn our attention to how
skmMenu maintains state between postbacks and how it ties server events to client-side events (namely, how
skmMenu fires a server-side MenuItemClick event when the Web visitor clicks on a menu item. To fully
understand these concepts, we'll take a high-level look at the life cycle all ASP.NET server controls go through
each time the ASP.NET Web page they reside in is visited.

This article should provide informative and useful to readers who are either not very experienced with ASP.NET

See This in MSDN Library

Page Options

Page 1 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

server control development, and wish to learn more, or for those who are interested in working with skmMenu.

An Overview of skmMenu's Features and Object Model

As discussed in Building an ASP.NET Menu Server Control, a menu can be defined recursively like so: a menu is a
set of menu items, where each menu item has a text, a specified action to perform when clicked, and an optional
menu itself (as a submenu). Therefore, a menu can have menu items with submenus, and each of these
submenus can have menu items with submenus, which themselves can have menu items with submenus, and on
and on.

The object model for skmMenu encapsulates this recursive nature. Specifically, skmMenu employs three classes,
as discussed in the previous article:

Menu—the actual server control class, an instance of this class concretely represents the top-level menu.

MenuItemCollection—represents a collection of menu items.

MenuItem—represents a menu item in a menu. It contains properties like Text, Url, CommandName, and
SubItems. Here, SubItems is a MenuItemCollection instance, and represents the menu item's (optional)
submenu.

The recursion is made possible by the MenuItem's SubMenu property. Figure 1 shows this object model.

Figure 1. The skmMenu Object Model

Page 2 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

To specify the menu's structure, the page developer can simply bind an XML document to skmMenu. When the
Menu class's DataBind() method is called the appropriate recursive object model is built up based on the XML
data provided in the DataSource property.

In addition to easily allowing the page developer to specify the menu's structure, skmMenu makes it easy to
customize the menu's appearance by offering a number of Style properties. Specifically, the Menu class provides
two TableItemStyle properties, UnselectedMenuItemStyle and SelectedMenuItemStyle, for specifying the

style for the menu items when they are not selected and selected, respectively, and a TableStyle MenuStyle,
for specifying the style for the HTML <table> element for the menu and its submenus. In addition to these Style

properties, the Menu class provides a Layout property that can be set to either MenuLayout.Vertical or
MenuLayout.Horizontal, specifying how the top-level menu should be laid out on the screen.

Finally, skmMenu allows developers to specify the behavior of a menu item when it is clicked. It may do nothing,
it may whisk the user to a specified URL, or it may cause a postback, thereby raising the server-side event
MenuItemClicked. An event handler can be associated with this event and when the event handler executes in
response to the event, it is passed information on the menu item that was clicked.

Examining the Code for the MenuItemCollection and MenuItem Classes

The MenuItemCollection and MenuItems are used to represent a collection of menu items and a menu item,
respectively. The MenuItemCollection class implements the System.Collections.ICollection interface, which

means MenuItemCollection must implement the GetEnumerator() and CopyTo() methods, as well as Count
and other properties. MenuItemCollection also provides a number of methods to add, remove, and edit the
contained MenuItem instances. These methods include:

Add(menuItem)

Insert(int, menuItem)

AddRange(menuItemCollection)

Clear()

Remove(menuItem)

RemoveAt(int)

MenuItemCollection contains a number of properties, the two germane ones being Count, which returns the
number of MenuItems in the collection, and an indexer, which allows the menu items to be accessed using the
familiar indexing notation:

// C#
menuItemCollectionInstance[i]

' VB.NET
menuItemCollectionInstance(i)

Internally, the MenuItemCollection uses an ArrayList to maintain its collection of MenuItem instances.

Note If you are currently examining the MenuItemCollection you may notice that
MenuItemCollection also implements the IStateManager interface, and therefore has methods like
SaveViewState(), LoadViewState(object), and so on. This interface and these methods are
needed for preserving changes to the MenuItemCollection during postback. We'll be discussing how
changed state is preserved across postbacks in The ASP.NET Server Control Life Cycle section.
(Note that the MenuItem class also implements IStateManager, which will also not be discussed
until the later section.)

The MenuItem class is fairly simple. It needs no methods, just a number of properties. The germane properties
are: Text, Url, CommandName, and SubItems. The Text property specifies the text to display in the menu
item. Both the Url and CommandName properties are optional. If Url is specified, then when the menu item is

Page 3 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

clicked the user is whisked to the specified URL. If CommandName is specified instead, then clicking the menu
item causes the Web Form to postback, and the Menu class's MenuItemClicked event to fire, passing along the
value of the menu item's CommandName property. Finally, if neither of these properties is set, then no action is
performed when the menu item is clicked. As discussed earlier in this article, SubItems is an optional

MenuItemCollection instance, and represents the menu item's submenu.

Constructing the skmMenu Object Model with DataBinding

skmMenu offers an easy interface for ASP.NET page developers to construct the menu system. Rather than
having to programmatically fiddle with the MenuItem and MenuItemCollection classes, an ASP.NET page
developer can simply build an XML file that represents the structure of the menu. The precise XML format was
discussed in detail in Building an ASP.NET Menu Server Control, so we won't bother discussing the format in this
article. As we saw in the previous article, like with binding data to one of the data Web controls, for the page
developer binding the XML data to skmMenu can be accomplished in just two lines of code:

menuID.DataSource = Server.MapPath(xmlFileName);
menuID.DataBind();

The Menu class has a DataSource property of type object, but in actuality the property only accepts values of
either one of two types: a string, which indicates the physical path to the XML file to use, or an XmlDocument

instance. The following property statement, found in the Menu class, illustrates this:

private object dataSource = null;
public object DataSource
{
 get
 {
 return this.dataSource;
 }
 set
 {
 if (value is string || value is XmlDocument)
 this.dataSource = value;
 else
 throw new ArgumentException("DataSource must be a string or
 XmlDocument instance.");
 }
}

The get accessor simply returns the value of the dataSource property, but the set accessor checks to make sure
the entered value is of type string or type XmlDocument by using the C# is statement. If the value is not of either
of these types, then an ArgumentException is thrown.

Realize that the Menu class is derived from the System.Web.UI.Control class, which all ASP.NET server controls

must be derived from either directly or indirectly. This class provides the base set of methods, properties, and
events needed for a server control. One such method is the DataBind() method, which calls the protected
method OnDataBinding(). The Menu class overrides the OnDataBinding() method (shown below, some
content omitted for brevity), which constructs the object model recursively.

protected override void OnDataBinding(EventArgs e)
{
 // Start by resetting the Control's state
 this.Controls.Clear();

 // load the datasource either as a string or XmlDocuemnt
 XmlDocument xmlDoc = new XmlDocument();

 if (this.DataSource is String)
 // Load the XML document specified by DataSource as a filepath
 xmlDoc.Load((string) this.DataSource);

Page 4 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

 else if (this.DataSource is XmlDocument)
 xmlDoc = (XmlDocument) DataSource;
 else
 throw new ArgumentException("DataSource either null or not of the
 correct type.");

 // Clear out the MenuItems and build them according to the
 XmlDocument
 this.items.Clear();
 this.items = GatherMenuItems(xmlDoc.SelectSingleNode("/menu"),
 this.ClientID);
 BuildMenu();

 this.ChildControlsCreated = true;
}

This method begins by clearing out all of the children controls. Recall from the previous article that skmMenu
constructs each menu as an HTML <table> element. Therefore, if there is a top-level menu with three menu
items, where one menu item has a submenu, there will be two <table> elements—one for the top-level menu
and one for the submenu. Next, an XmlDocument instance, xmlDoc, is created. If the DataSource is a string
(specifying the file location of the XML document), then xmlDoc's Load() method is called to load the XML file.
Otherwise, the DataSource is an XmlDocument instance, which is assigned to xmlDoc.

In the next two lines, the private member variable items is first cleared out, and then constructed. Recall from
Building an ASP.NET Menu Server Control and our discussions earlier in this article that the Menu class contains a
single MenuItemCollection that represents the top-level menu. This is precisely what items is—the

MenuItemCollection instance. The Clear() method clears out any menu items that may be present in items, while
the GatherMenuItems() method recursively populates the MenuItemCollection with the appropriate MenuItem
instances. Note that the GatherMenuItems() method (shown below), accepts as an input the XmlNode retrieved
by the XPath expression /menu and the control's ClientID. The XPath expression /menu will get the XmlNode
corresponding to the XML documents root node (recall that the root element for the XML document is <menu>).

private MenuItemCollection GatherMenuItems(XmlNode itemsNode, string
 parentID)
{
 // Make sure we have an XmlNode instance - it should never be null,
 else the
 // XML document does not have the expected structure
 if (itemsNode == null)
 throw new ArgumentException("The XML data for the Menu control is
 in an invalid format.");

 MenuItemCollection myItems = new MenuItemCollection();

 // iterate through each MenuItem
 XmlNodeList menuItems = itemsNode.SelectNodes("menuItem");
 for (int i = 0; i < menuItems.Count; i++)
 {
 XmlNode menuItem = menuItems[i];

 // Create the menu item
 myItems.Add(BuildMenuItem(menuItem, parentID, i));
}

 return myItems;
}

The GatherMenuItems() method's job is to take in an XmlNode and a parentID string and generate a set of

MenuItem instances, returned in a MenuItemCollection instance. This is accomplished in the following steps:

1. Check to ensure that the XmlNode instance is not null. If the XmlNode instance is null then the expected
element was not found in the XML document. This means that the XML document specified by the user is not
according to the specifications laid out previously. In such a case an ArgumentException is thrown.

Page 5 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

2. Create a new MenuItemCollections instance.

3. Iterate through each of the current <menuItem> child element of the passed-in XmlNode. For each such
element, the BuildMenuItem() method is called, passing in the XmlNode corresponding to the <menuItem>
element, the parentID, and the node's ordinal position in the node list. The BuildMenuItem() method
returns a MenuItem instance, which is then added (Add()) to the MenuItemCollection.

The BuilddMenuItem(), shown below, parses through the XmlNode instance corresponding to the <menuItem>

element, building and returning a MenuItem instance.

private MenuItem BuildMenuItem(XmlNode menuItem, string parentID, int
 indexValue)
{
 MenuItem mi = new MenuItem();

 XmlNode textTextNode = menuItem.SelectSingleNode("text/text()");
 XmlNode urlTextNode = menuItem.SelectSingleNode("url/text()");
 XmlNode commandNameTextNode =
 menuItem.SelectSingleNode("commandName/text()");

// Format the indexValue so its three-digits (allows for 1,000 menu
 items per (sub)menu
 mi.ID = parentID + "-menuItem" + indexValue.ToString("d3");

 if (textTextNode == null)
 // whoops, the <text> element is required
 throw new ArgumentException("The XML data for the Menu control is
 in an invalid format: missing the <text> element for a
 <menuItem>.");

 mi.Text = textTextNode.Value;

 if (urlTextNode != null)
 mi.Url = urlTextNode.Value;

 if (commandNameTextNode != null)
 mi.CommandName = commandNameTextNode.Value;

 // see if there is a submenu
 XmlNode subMenu = menuItem.SelectSingleNode("subMenu");
 if (subMenu != null)
 {
 // Recursively processes the <menuItem>'s <subMenu> node, if
 present
 mi.SubItems.AddRange(GatherMenuItems(subMenu, mi.ID + "-
 subMenu"));
 }

 return mi;
}

Note that the ID property of the created MenuItem instance mi is set to the passed-in parentID concatenated
with the string –menuItem, and then concatenated with the passed-in ordinal value of the XmlNode in the node
list. This constructs the ID according to the specifications discussed in the previous article. For example, for a
Menu class with a ClientID of Menu1, the first top-level menu item will have an ID value of Menu1-
menuItem000, while the second top-level menu item will have an ID value of Menu1-menuItem001.

Next, the <text>, <url>, and <commandName> XML elements' text values are read and assigned to the MenuItem's
properties, as needed. Finally, a check is made to see if the <menuItem> element has a <subMenu> element. If it

does, the MenuItem's SubItems property's AddRange() method is called, adding the items in the
MenuItemCollection instance returned by GatherMenuItems(). When GatherMenuItems() is called from this
method, the parentID passed in is the current MenuItem's ID concatenated with the string –subMenu. Therefore,
if the first top-level menu item has a submenu, the first menu item in the submenu will have an ID of Menu1-
menuItem000-subMenu-menuItem000.

Page 6 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

Notice that this algorithm for building the menu's structure is recursive in nature, allowing for an arbitrary
number of submenus. Specifically, the menu is constructed using a depth-first traversal.

The GatherMenuItems() and BuildMenuItem() methods work together to construct the object model from the
XML document specified by the ASP.NET page developer. Two other methods—BuildMenu() and AddMenu()—
actually add the <table>, <tr>, and <td> elements to the Menu class's Controls collection based upon the object

model. BuildMenu() is called from the OnDataBinding() method and constructs the menu for either a
horizontal or vertically laid out top-level menu. AddMenu() is called to create the submenu, if needed, for each
MenuItem in the top-level menu. AddMenu() is quite similar to BuildMenu(), but only concerns itself with
laying out the menu in a vertical orientation, since only the top-level menu can have a horizontal orientation. The
code in these methods is fairly straightforward, so we'll bypass an in-depth examination.

Specifying Style Information

Most often ASP.NET server controls are rendered as a single HTML element or a series of HTML elements. For
example, skmMenu renders as a series of HTML <table> elements, one for each submenu, with each <table>
element having inner <td> elements for each menu item. As server control developers, we are tasked with

making it easy for the user to specify the style for the HTML element(s) generated by our control.

The .NET Framework provides a number of classes especially designed to specify style information, starting with
the Style class. The Style class contains the minimum set of stylistic information that can be specified for a Web
control. This includes properties like BackColor, ForeColor, Font, Width, Height, and so on. The Style class
serves as a base class for two other classes: TableStyle and TableItemStyle. These classes represent the style
information for an HTML <table> element and a <td> element, respectively. They extend the functionality of
Style by adding <table>-specific style properties, such as HorizontalAlign, VerticalAlign, and Wrap.

For skmMenu, then, it makes sense to allow the page developer to specify information both about the <table>
elements and the <td> elements. Furthermore, when specifying style information for the <td> elements, the page

designer should be able to specify information for when the menu item is selected (that is, the mouse is currently
hovering over the menu item), and when the menu item is unselected (when the mouse is not over the menu
item). To accomplish this, we'll need three private member variable style properties:

// styles for the Menu, and unselected & selected menu items...
private TableItemStyle unselectedMenuItemStyle = new TableItemStyle();
private TableItemStyle selectedMenuItemStyle = new TableItemStyle();
private TableStyle menuStyle = new TableStyle();

Now, to let the page developer specify these values, we need to provide public properties for each of the three
styles. These public properties should only expose a get accessor. Additionally, these properties can include
optional attributes that inform the Microsoft Visual Studio® .NET Designer how to display the property settings in
the Web control. These attributes are optional, and skmMenu will work without specifying them. However,
omitting them will greatly reduce the design-time experience in Visual Studio .NET. The three public properties
are shown below:

[
 PersistenceMode(PersistenceMode.InnerProperty),
 DesignerSerializationVisibility(DesignerSerializationVisibility.
 Content),
]
public TableItemStyle SelectedMenuItemStyle
{
 get
 {
 return this.selectedMenuItemStyle;
 }
}

Page 7 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

[
 PersistenceMode(PersistenceMode.InnerProperty),
 DesignerSerializationVisibility(DesignerSerializationVisibility.
 Content),
]
public TableItemStyle UnselectedMenuItemStyle
{
 get
 {
 return this.unselectedMenuItemStyle;
 }
}

[
 PersistenceMode(PersistenceMode.InnerProperty),
 DesignerSerializationVisibility(DesignerSerializationVisibility.
 Content),
]
public TableStyle MenuStyle
{
 get
 {
 return this.menuStyle;
 }
}

Each style property here specifies two attributes, PersistenceMode and DesignerSerializationVisibility. The
first attribute specifies how the property should be rendered in the control's syntax. The options here are
PersistenceMode.InnerProperty or PersistenceMode.Attribute. With PersistenceMode.InnerProperty, the
style information is specified in a nested tag within the control's outer tag. With PersistenceMode.Attribute,

the style information is specified as an attribute of the control's tag using hyphenation. For example, consider the
case where the MenuStyle's BackColor property is set to Silver in the Visual Studio .NET Designer. Since
MenuStyle's PersistenceMode attribute is set to PersistenceMode.InnerProperty, Visual Studio .NET will

render the style information like so in the control's syntax:

<skm:Menu runat="server" ...>
 <MenuStyle BackColor="Silver"></MenuStyle>
</skm:Menu>

However, had the PersistenceMode attribute been set to PersistenceMode.InnerProperty, the output would

be:

<skm:Menu runat="server" MenuStyle-BackColor="Silver" ...>
</skm:Menu>

The DesignerSerializationVisibility attribute tells the designer to step into the subproperties of the style
property and serialize their values in the control's tag. Omitting this attribute setting will not cause changes in the
Visual Studio .NET Designer to be reflected in the control's syntax.

With these three style properties and attribute settings, page developers can specify style information in the
Visual Studio .NET Designer via the Properties pane, as shown in Figure 2.

Page 8 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

Figure 2. The Style properties can be set in the Visual Studio .NET Designer, and are persisted to the
skmMenu control's syntax in the HTML portion.

The ASP.NET Server Control Life Cycle

All ASP.NET server controls go through a similar sequence of steps each time the ASP.NET Web page they reside
on is requested. These steps are important to understand when developing controls, especially when building
controls that can have server-side events fire in response to client-side events (for example, having the
MenuItemClicked event fire when the Web visitor clicks a menu item that has a CommandName property
value).

Before we delve into the various stages, let's take a moment to describe how a control's life cycle gets started in
the first place. First, realize that each ASP.NET Web page is represented by a class instance that derives either
directly or indirectly from System.Web.UI.Page. The Page class contains a method called ProcessRequest(),

which is called when a page is requested. This method (and the methods it calls) adds the list of page controls to
the Page class' Controls collection, and starts off the control life cycle for each control in the page. For more

information on the Page class and its life cycle, refer to Dino Esposito's article, The ASP.NET Page Object Model or
Solomon Shaffer's The ASP.NET Page Life Cycle.

The control stages occur in the order outlined below:

Initialize—Each control in the Page class's Controls collection has its OnInit method called, which fires its
Init event. Any properties that were declared in the control's syntax in the HTML portion of the ASP.NET Web
page are set during this stage. That is, if you have a Label Web control defined like so:

<asp:Label runat="server" ForeColor="Navy" Text="Foo"></asp:Label>

In this stage the Label Web control instance will have its ForeColor property set to Color.Navy and its Text
property set to "Foo."

Page 9 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

ViewState Tracking Begins—The last thing performed in the Initialize stage is the control's
TrackViewState() method is called. The TrackViewState() method simply serves as a notification to the
control that any changes to its state must be tracked.

LoadViewState()—Next, the control's LoadViewState() method is called. This method's task is to restore
the state of the control from the end of the previous page request.

Load Postback Data—This stage only occurs if there has been a postback. During this stage the control
must process the postback data to determine if any of its properties have been changed by user interaction.
A typical example is the TextBox Web control—upon postback it must inspect the postback data to see if the
user entered a value into its corresponding textbox HTML element, and set its Text property accordingly.
Since skmMenu does not collect any user input, we do not need to add any code to handle this stage.

Load—The control's OnLoad() method is called in this stage. At this point in the life cycle, all controls in the
Page class's Controls collection can be accessed, and all of the state from the previous Web page request
has been restored.

Raise Changed Events—This stage only happens during postback and only if the Load Postback Data stage
is also used. Essentially, it offers an opportunity for controls to raise an event signifying its state has changed
across postback due to user input. Returning to the TextBox Web control example, in this stage the TextBox
would raise the TextChanged event if the Text property had changed across postback due to the user
entering a different value.

Raise Postback Event—During this stage the control can fire an event based on some client-side action.
With skmMenu, this stage only executes if the user has clicked a menu item that causes a postback. If this is
the case, during this stage the MenuItemClicked event is raised.

PreRender—This stage is useful for performing any tasks that need to be completed before the control is
rendered. skmMenu uses this stage to build the client-side JavaScript that is needed for the interactive
menus (specifics of the client-side JavaScript were discussed in Building an ASP.NET Menu Server Control).

SaveViewState()—In this stage, the control's SaveViewState() method is called, which provides an
opportunity for the control to store its state in the Web Form's hidden VIEWSTATE form field. This is the same
data that, if the Web Form is posted back, will be loaded and parsed in the control's LoadViewState()
method.

Render—In this stage the control generates the markup that will be emitted to the Web visitor's browser.

Note The Unload and Dispose stages in the control life cycle have been omitted for brevity.

The server control life cycle is important to understand when working with controls with complex properties and
controls that allow user interaction in the form of either user input or responding to client-side actions. In the
remaining sections we'll see how skmMenu progresses through these steps, playing particularly close attention to
the LoadViewState(), SaveViewState(), and Raise Changed Events stages.

Saving State: Examining the SaveViewState() Methods

Near the end of the control's life cycle, it is imperative that it save the state specified programmatically so that
this information can be reloaded if the Web Form the control resides on is posted back. State that is specified
declaratively in the control's tag syntax need not be saved as this information will be automatically reloaded in
the Init stage upon postback. To make this concept clearer, consider a TextBox Web control on an ASP.NET Web
page with the following declaration:

<asp:TextBox runat="server" id="myTextBox"></asp:TextBox>

When the ASP.NET page is visited, a TextBox control is added to the Page's Controls collection and the ID

property of the control is set to myTextBox. Now, image in that Page_Load event handler you have the following
lines of code:

if (!Page.IsPostBack)
 myTextBox.Columns = 3;

This sets the TextBox's Columns property to 3. Later, in the Render stage, the TextBox will be rendered as an
<input type="text"> HTML element with the attribute size="3". Imagine also that there is a Button Web

Page 10 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

control on the page. Now, if the TextBox does not save its programmatically added state—namely that its
Columns property has been assigned the value 3—then when the user clicks the button and posts back the Web
Form, this Columns value will have been lost. To see why it would be lost, simply step through the sequence of
events again:

When the ASP.NET page is visited, a TextBox control is added to the Page's Controls collection and the ID
property of the control is set to myTextBox. Now, the Columns property in the Page_Load event handler is not
set this time (since Page.IsPostBack is true), so the TextBox has the default Columns property value, 0. So the
TextBox will be rendered without the attribute size="3".

Controls allow information to be saved across postbacks by providing a StateBag object named ViewState. In
ASP.NET page development, you may have used the Page class's ViewState to save simple values across

postbacks. The ViewState is optimized to store scalar values of type Int32, Boolean, String, Unit, and Color
and non-scalar values of type Array, ArrayList, and Hashtable.

In order to maintain state across postbacks, it is vital that the control uses the ViewState object to store the
value in the set accessors for properties, and to access the stored value from the ViewState in the get accessors.

Consider the Menu class's Layout property, which has the following code:

public MenuLayout Layout
{
 get
 {
 object o = ViewState["MenuLayout"];
 if (o == null)
 return MenuLayout.Vertical;
 else
 return (MenuLayout) o;
 }
 set
 {
 ViewState["MenuLayout"] = value;
 }
}

The Layout property specifies if the top-level menu is laid out horizontally or vertically. MenuLayout is an

enumeration with the following definition:

public enum MenuLayout { Horizontal, Vertical }

Note that in the Layout property's get accessor, the ViewState is consulted to retrieve the value of the property.
If the ViewState does not contain a value, then the property has not been specified, so the default is returned
(MenuLayout.Vertical). Else, the value in the ViewState is cast to a MenuLayout and returned. In the set

accessor, the appropriate ViewState value is assigned the value specified.

This template needs to be used for all properties whose value can be easily expressed as a simple string. For
complex properties, such as properties that are class instances like MenuStyle and Items, the task of state
saving is left to these classes. The property syntax for such complex properties provides just a get accessor. In
the get accessor, simply check to see if the control's IsTrackingViewState variable is true—if it is, call the
TrackViewState() method of the complex property. The code for the MenuStyle property shown below
illustrates this:

public TableStyle MenuStyle
{
 get
 {
 if (this.IsTrackingViewState)
 ((IStateManager) this.menuStyle).TrackViewState();

 return this.menuStyle;

Page 11 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

 }
}

Note This if statement was omitted for brevity when we earlier examined the MenuStyle
property.

The Control class has a protected IsTrackingViewState Boolean property that indicates whether or not the
control's ViewState is being tracked. This property is false by default, and made true when the control's

TrackViewState() method is called. Recall from the previous section that TrackViewState() is called at the
end of the Init stage, and indicates to the control that any changes to its properties henceforth need to be stored
in the ViewState. The purpose for this is so that the declaratively specified properties are not needlessly stored in
the ViewState.

So, if the control's ViewState is being tracked, then we want to make sure that the complex property's
ViewState is also being tracked. That's what this if statement in the get accessor accomplishes.

By default, in the SaveViewState() cycle a control will save just the items in its ViewState. This means that if
our control's properties are all simple properties that can be stored in the ViewState, then we don't need to

bother overriding the SaveViewState() method. However, the Menu class has complex properties—MenuStyle,
SelectedMenuItemStyle, UnselectedMenuItemStyle, and Items—and therefore we need to override this
method and ensure not only the ViewState is saved, but also the ViewStates of these complex properties.

The SaveViewState() method has no input parameters, but needs to return an object that represents the state.
When overriding this method, typically you'll want to return an object array, storing into the various indices of
the array the base ViewState along with the complex properties' ViewStates. Each index of the array can be

populated via a call to the appropriate SaveViewState() method, as shown below:

protected override object SaveViewState()
{
 Object [] state = new object[5];
 state[0] = base.SaveViewState();
 state[1] = ((IStateManager)
 this.selectedMenuItemStyle).SaveViewState();
 state[2] = ((IStateManager)
 this.unselectedMenuItemStyle).SaveViewState();
 state[3] = ((IStateManager) this.menuStyle).SaveViewState();
 state[4] = ((IStateManager) this.items).SaveViewState();

 return state;
}

Here a five-element array is used because we need to store the base ViewState and the ViewState of the four

complex properties.

The TableStyle and TableItemStyle classes provide SaveViewState() methods, so we can simply delegate

that saving of the state of these style properties to these classes' SaveViewState() methods. For the Items
property, however, which is of type MenuItemCollection, we need to provide a SaveViewState() method. The
MenuItemCollection's SaveViewState() method will in turn call the SaveViewState() method of (potentially)
each of its MenuItem instances, so we'll need to provide a SaveViewState() method for the MenuItem class as
well. We'll examine adding this method to both the MenuItemCollection and MenuItem classes later on in this
article.

Loading State: Examining the LoadViewState() Method

One of the stages a control goes through when the page is reside on has been posted back is the LoadViewState
() stage. The LoadViewState() method serves as an inverse to the SaveViewState() method—its job is to
take the state saved by SaveViewState() and reload the state of the control. Not surprisingly, LoadViewState()

returns no parameters, but accepts a single input parameter of type object. This passed-in object parameter is

Page 12 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

precisely the state saved in the SaveViewState() method on the previous page visit.

Like with SaveViewState(), if all of your control's properties are simple properties, you don't need to override
LoadViewState(). If you have complex properties then you need to override SaveViewState() (as we saw in
the previous section) and LoadViewState() as well. The code for LoadViewState() for the Menu class is fairly
straightforward—we simply cast the passed-in object parameter to an array of objects and then pass in the
appropriate array elements into the appropriate LoadViewState() methods of the Control class and complex

properties:

protected override void LoadViewState(object savedState)
{
 object [] state = null;

 if (savedState != null)
 {
 state = (object[]) savedState;

 base.LoadViewState(state[0]);
 ((IStateManager)
 this.selectedMenuItemStyle).LoadViewState(state[1]);
 ((IStateManager)
 this.unselectedMenuItemStyle).LoadViewState(state[2]);
 ((IStateManager) this.menuStyle).LoadViewState(state[3]);
 ((IStateManager) this.items).LoadViewState(state[4]);
 }
}

As aforementioned, the TableStyle and TableItemStyle classes already implement the LoadViewState() method,
but we'll need to add the LoadViewState() method to the MenuItemsCollection class ourselves, which we'll see
in the next section.

State Management of MenuItems and MenuItemCollection

In the Menu class we stored the state of our various simple properties by using the ViewState object, which is a
protected member variable of the Control class. Since the Menu class is derived from the Control class, it has
access to ViewState. For complex properties, we needed to delegate saving and loading of their state to the

objects themselves, by calling their SaveViewState() and LoadViewState() methods, respectively.

In addition to the Menu class, the MenuItemCollection and MenuItems need to store and load their state as well.
To accomplish this they must implement the IStateManager interface, which requires them to provide an
IsTrackingViewState property and three methods: SaveViewState(), LoadViewState(), and
TrackingViewState(). Both MenuItem and MenuItemCollection will need to implement this interface and provide
this property and these methods.

Ideally, we'd like to handle state management in the MenuItem class in the exact same way handled it in the
Menu class. The problem is that MenuItem doesn't have a ViewState property. The solution? Add one manually.
The ViewState in the Control class is of type StateBag, so we create a private StateBag class instance in

MenuItem and provide a protected property named ViewState, as shown below:

protected StateBag stateBag = new StateBag();
protected StateBag ViewState
{
 get
 {
 return this.stateBag;
 }
}

Then, in MenuItem's simple properties—ID, Text, Url, CommandName, and Layout—we read the value from
the ViewState in the get accessor and write it to the ViewState in the set accessor. Below the Text property is

Page 13 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

shown (the other simple properties are omitted for brevity):

public string Text
{
 get
 {
 object o = ViewState["MenuItemText"];
 if (o != null)
 return (string) o;
 else
 return String.Empty;
 }
 set
 {
 ViewState["MenuItemText"] = value;
 }
}

The MenuItem contains a complex property in addition to its simple properties. This complex property,
SubItems, is a MenuItemCollection instance. Again, as with the Menu class, with complex properties we simply
delegate the management of state information to the property's class itself. The MenuItem's SaveViewState()
and LoadViewState() methods, shown below, simply store and load the ViewState and the SubItems state in
and from a Pair object.

object IStateManager.SaveViewState()
{
 object baseState = ((IStateManager) this.ViewState).SaveViewState();
 object subItemsState = ((IStateManager)
 this.subItems).SaveViewState();

 if (baseState == null && subItemsState == null)
 return null;
 else
 return new Pair(baseState, subItemsState);
}

void IStateManager.LoadViewState(object savedState)
{
 if (savedState != null)
 {
 Pair p = (Pair) savedState;
 if (p.First != null)
 ((IStateManager) this.ViewState).LoadViewState(p.First);
 if (p.Second != null)
 ((IStateManager) this.subItems).LoadViewState(p.Second);
 }
}

Note The Pair class is designed specifically to hold two items in an ASP.NET server control's view
state. For more information refer to the .NET Framework Class Library: Pair Class. Also, there is a
Triplet class handy for storing three items.

MenuItem also needs to implement the TrackingViewState() method. Recall that this method is used to inform
the class that it should store any changes made to its properties henceforth. The TrackingViewState() method
simply sets a flag to true (the private isTrackingViewState member variable), and then calls the

TrackingViewState() method of the ViewState and SubItems properties.

private bool isTrackingViewState = false;
void IStateManager.TrackViewState()
{
 isTrackingViewState = true;

 if (this.stateBag != null)

Page 14 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

 ((IStateManager) this.stateBag).TrackViewState();

 if (subItems != null)
 ((IStateManager) subItems).TrackViewState();
}

MenuItem needs an additional state management helper function, one that indicates that all of the MenuItem's
properties should be saved into the ViewState. This scenario can arise in the following sequence of steps

transpire:

An ASP.NET Web page is created with a skmMenu control and a Button Web control.

The ASP.NET Web page's Page_Load event handler binds an XML file to skmMenu when Page.IsPostBack is
false.

The Button's Click event handler creates and adds a new MenuItem to the menu.

Now, when the page is first visited, the SaveViewState() method runs and saves the state of the menu control
correctly. When the Button is clicked, the Web Form posts back. First, the LoadViewState() method runs, which
loads the object model back from the preserved state correctly. Then, a new MenuItem is created and added.
Since this was added after the LoadViewState() method, the MenuItemCollection has had its TrackViewState
() method called. But this newly created MenuItem has not had its TrackViewState() method called, so its state
won't be preserved when SaveViewState() is called later.

In order to forcibly require that this new MenuItem's state be saved, we need to create a helper method in the
MenuItem class that, when called, marks all of the items in the ViewState as dirty. Then, this method needs to
be called from the MenuItemCollection's methods that allow for a MenuItem to be added to the collection (Add()
and Insert(), specifically). This helper method is named SetDirty(), and is shown below:

internal void SetDirty()
{
 if (this.stateBag != null)
 {
 ICollection keys = stateBag.Keys;
 foreach (string key in keys)
 stateBag.SetItemDirty(key, true);
 }
}

Like the MenuItem class, the MenuItemCollections class also implements the IStateManager interface.

MenuItemCollections, however, does not have any simple properties, so it does not need to add a ViewState
property. Rather, its only property whose state we're interested in is the private ArrayList that stores the set of
MenuItem instances.

The SaveViewState() method saves the state of the MenuItems by creating an object array and, for each

element in the MenuItemCollection, the item's SaveViewState() method is called and stored in the
corresponding object array element. The LoadViewState() method simply performs the inverse of this task,
looping through the passed-in object array, creating a new MenuItem for each element, adding it to the private

ArrayList, and loading the MenuItem's state with a call to LoadViewState().

object IStateManager.SaveViewState()
{
 bool isAllNulls = true;
 object [] state = new object[this.menuItems.Count];
 for (int i = 0; i < this.menuItems.Count; i++)
 {
 // Save each item's viewstate...
 state[i] = ((IStateManager) this.menuItems[i]).SaveViewState();
 if (state[i] != null)
 isAllNulls = false;
 }

Page 15 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

 // If all items returned null, simply return a null rather than the
 object array
 if (isAllNulls)
 return null;
 else
 return state;
}

void IStateManager.LoadViewState(object savedState)
{
 if (savedState != null)
 {
 object [] state = (object[]) savedState;

 // Create an ArrayList of the precise size
 menuItems = new ArrayList(state.Length);

 for (int i = 0; i < state.Length; i++)
 {
 MenuItem mi = new MenuItem();
 ((IStateManager) mi).TrackViewState();

// Add the MenuItem to the collection
 menuItems.Add(mi);

 if (state[i] != null)
 {
 // Load its state via LoadViewState()
 ((IStateManager) menuItems[i]).LoadViewState(state[i]);
 }
 }
 }
}

Looking at the MenuItemCollection's Add() method you can see that Add() not only adds the MenuItem to the
collection, but also, if the view state is being tracked, starts tracking the MenuItem's view state and calls the
MenuItem's SetDirty() method.

public int Add(MenuItem item)
{
 int result = menuItems.Add(item);

 if (this.isTrackingViewState)
 {
 ((IStateManager) item).TrackViewState();
 item.SetDirty();
 }

 return result;
}

Responding to a Client-Side Event with a Server-Side Event

ASP.NET server controls are much more powerful and useful to page developers when a server control can raise a
server-side event in response to a client-side action. For example, the Button Web control renders as a submit
button in the user's browser. When clicked, it causes a postback and raises the Button Web control's Click event,
to which page developers can create a server-side event handler.

skmMenu provides similar functionality. A menu item with its CommandName property set is marked to raise a
server-side event when clicked. When a user clicks such a menu item, the Web Form containing the menu item
causes a postback and the MenuItemClicked event is fired. As we'll see in this section, firing a server-side event
in response to a client-side event is accomplished in the Raise Postback Event stage of a control's life cycle,
and takes only a few lines of code.

Page 16 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

There are five steps to adding a server-side event and having it fire when an associated client-side event
executes. These five steps, in summary, are:

1. Create an appropriate delegate. This might entail creating a custom class derived from EventArgs if there
does not already exist such a class with the properties needed.

2. Create the event in the server control.

3. Create an OnEventName protected method that raises the event.

4. Create the IPostBackEventHandler.RaisePostBackEvent method in your server control, and have it call
the appropriate OnEventName method.

5. Add the appropriate JavaScript code to the ASP.NET server control to cause a postback when the desired
client-side event transpires.

The first step in associating a server-side event with a client-side action is to create the delegate for the event. A
thorough discussion on delegates and event firing and processing is beyond the scope of this article; for more
information refer to Events and Event Handling in C#. Essentially a delegate allows a function to be passed as a
parameter to a method. The delegate indicates the signature the function that is passed must implement.

Our delegate, MenuItemClickedEventHandler, specifies the signature for the Menu class's MenuItemClicked

event. Like all event delegates in the .NET Framework, the MenuItemClicked event delegate needs to define
two parameters: an object, representing the control that raised the event, and a class derived from EventArgs,

which specifies information about the event.

public delegate void MenuItemClickedEventHandler(object sender,
 MenuItemClickEventArgs e);

Notice that this delegate defines a function signature that accepts two parameters: an object and a
MenuItemClickEventArgs. The MenuItemClickEventArgs class, shown below, provides a single string property,

CommandName. When a menu item that causes a postback is clicked, the MenuItemClickEventArgs's
CommandName property is set to the CommandName property of the clicked menu item. Therefore, the page
developer can determine what menu item was clicked in skmMenu's MenuItemClicked event handler.

public class MenuItemClickEventArgs : EventArgs
{
 private string commandName;

 public MenuItemClickEventArgs(string name)
 {
 commandName = name;
 }

 /// <summary>
 /// Readonly access to commandName parameter of EventArgs class
 /// </summary>
 public string CommandName
 {
 get
 {
 return commandName;
 }
 }
}

The second step in associating a server-side event with a client-side event is to add a public event to the server
control class of the delegate type defined in the first step, as shown below:

public event MenuItemClickedEventHandler MenuItemClick;

With this step completed, your control now has an event.

Page 17 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

Step three is adding an OnEventName method that, when called, will raise the event. This method should accept
a single input parameter, a MenuItemClickEventArgs instance, and raise the event passing along this passed-in
instance.

protected virtual void OnMenuItemClick(MenuItemClickEventArgs e)
{
 if (MenuItemClick != null)
 MenuItemClick(this, e);
}

The fourth step is to add the IPostBackEventHandler.RaisePostBackEvent method to the control. This
method is executed in the Raise Postback Event stage of the control's life cycle if. Realize that this stage only
occurs if the page the control resides upon has been posted back and the control implements the
IPostBackEventHandler interface. The IPostBackEventHandler.RaisePostBackEvent method accepts a string

input, which is an optional event argument that can be specified by a client-side event. For our purposes, we'll
have the menu item, when clicked, pass in through the event argument the value of its CommandName
property. Therefore, the IPostBackEventHandler.RaisePostBackEvent method will receive the
CommandName property to assign to the MenuItemClickEventArgs instance through its sole input parameter.

void IPostBackEventHandler.RaisePostBackEvent(string eventArgument)
{
 OnMenuItemClick(new MenuItemClickEventArgs(eventArgument));
}

All the IPostBackEventHandler.RaisePostBackEvent method does is call the OnMenuItemClick event
passing in a new MenuItemClickEventArgs instance. Note that the eventArgument input parameter—which,
again, contains the CommandName of the menu item clicked—is passed into the MenuItemClickEventArgs
constructor, which sets the MenuItemClickEventArgs's CommandName property.

The fifth and final step is to add the JavaScript code needed to the desired client-side event to trigger a postback.
Specifically, when the menu item is clicked, we want to cause a postback and pass in the menu item's
CommandName value.

Fortunately, we do not have to author any client-side JavaScript ourselves to cause a postback. Rather, we can
simply use the Page.GetPostBackClientHyperlink() method, which takes in two parameters: the control
causing the postback and the string event argument to pass along. Realize that the value of this second
parameter is the value that is passed into the IPostBackEventHandler.RaisePostBackEvent method.

Recall that skmMenu can have menu items that, when clicked, either do nothing, redirect the user to a specified
URL, or cause a postback. Which course of action depends upon the values of the Url and CommandName
properties of the MenuItem instance. Furthermore, recall that each menu item is rendered as a <td> element.
Based on what properties are set, the menu item's <td> element has its client-side onclick event set to take the

appropriate course of action, as the following code snippet from the BuildMenu() method illustrates:

if (mi.Url != String.Empty)
 td.Attributes.Add("onclick", "javascript:location.href='" + mi.Url +
 "'");
else if (mi.CommandName != String.Empty)
 td.Attributes.Add("onclick", Page.GetPostBackClientHyperlink(this,
 mi.CommandName));

Here mi is a MenuItem instance and td is a TableCell instance. First, if the MenuItem's Url property is not an
empty string, then the td has its onclick attribute set to client-side JavaScript code that will redirect the user to

the specified URL. If the Url property is an empty string and the CommandName property is not, then the
onclick event is set to cause a postback, passing in the CommandName property value. Finally, if both Url and
CommandName are empty strings, then no onclick event is associated with this td.

Page 18 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

 Top of Page

Note If your server control can raise many events, the five steps discussed above can be fine
tuned to provide better performance. Refer to Developing Microsoft ASP.NET Server Controls and
Components (ISBN – 0735615829) for more information.

Conclusion

In this article we examined the source code of the classes that make up skmMenu: Menu, MenuItemCollection,
and MenuItem. We saw how these classes worked in tandem to provide databinding, state management, and
responding to client-side events. More importantly, we examined a number of common issues facing ASP.NET
server control developers, and looked at various solutions to these problems.

As mentioned earlier, the most up to date version of skmMenu can be found at the skmMenu GotDotNet
Workspace. You are more than welcome to download the compiled assemblies and complete source code, or work
on the code base to help improve skmMenu.

Finally, I would like to heartily recommend Nikhil Kothari and Vandana Datye's book Developing Microsoft
ASP.NET Server Controls and Components (ISBN – 0735615829). This book is a definite must have for all
ASP.NET server control developers.

Happy Programming!

About the Author

Scott Mitchell, author of five ASP/ASP.NET books and founder of 4GuysFromRolla.com, has been working with
Microsoft Web technologies for the past five years. An active member in the ASP and ASP.NET community, Scott
is passionate about ASP and ASP.NET and enjoys helping others learn more about these exciting technologies. For
more on the DataGrid, DataList, and Repeater controls check out Scott's book ASP.NET Data Web Controls Kick
Start (ISBN: 0672325012).

How would you rate the quality of this content?

1 2 3 4 5 6 7 8 9

Poor Outstanding

Tell us why you rated the content this way. (optional)

Submit

Average rating:
8 out of 9

1 2 3 4 5 6 7 8 9

34 people have rated this page

Manage Your Profile | Legal | Contact Us | MSDN Flash Newsletter

©2004 Microsoft Corporation. All rights reserved. Terms of Use | Privacy Statement

Page 19 of 19Headline Archive: Examining the skmMenu Server Control (ASP.NET Technical Artic...

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/as...

