

http://www.ddj.com

#370 MARCH 2005

PROGRAMMER

SOFTWARE
TOOLS FOR THE
PROFESSIONALDr Dobbs,

 .Dr.Dobbs,
O U R N A LJ

SOFTWARE
TOOLS FOR THE
PROFESSIONAL
PROGRAMMER

64-BIT COMPUTING64-BIT COMPUTING
64-Bit Computing & JVM Performance

Windows &
The World of 64-Bit Computing

Integer 64-Bit Optimizations
64-Bit Computing & DSPs

Moving Toward
Concurrency in
Software

High-Performance
Math Libraries

64-Bit Computing & JVM Performance
Windows &
The World of 64-Bit Computing

Integer 64-Bit Optimizations
64-Bit Computing & DSPs

Moving Toward
Concurrency in
Software

High-Performance
Math Libraries

TiVo’s Home
Media Engine

Adding
Diagnostics

to .NET Code
Reducing the
Size of .NET
Applications

TiVo’s Home
Media Engine

Adding
Diagnostics

to .NET Code
Reducing the
Size of .NET
ApplicationsA Sound File Editor for Netbeans

Resource Management & Python
A Sound File Editor for Netbeans
Resource Management & Python

Programming with
Contracts in C++

Java3D Graphics

Programming with
Contracts in C++

Java3D Graphics

DR. DOBB’S JOURNAL (ISSN 1044-789X) is published monthly by CMP Media LLC., 600 Harrison Street, San Francisco, CA 94017; 415-947-6000. Periodicals Postage Paid at San Francisco and at
additional mailing offices. SUBSCRIPTION: $34.95 for 1 year; $69.90 for 2 years. International orders must be prepaid. Payment may be made via Mastercard, Visa, or American Express; or via U.S.
funds drawn on a U.S. bank. Canada and Mexico: $45.00 per year. All other foreign: $70.00 per year. U.K. subscribers contact Jill Sutcliffe at Parkway Gordon 01-49-1875-386. POSTMASTER: Send
address changes to Dr. Dobb’s Journal, P.O. Box 56188, Boulder, CO 80328-6188. Registered for GST as CMP Media LLC, GST #13288078, Customer #2116057, Agreement #40011901. INTERNATIONAL
NEWSSTAND DISTRIBUTOR: Worldwide Media Service Inc., 30 Montgomery St., Jersey City, NJ 07302; 212-332-7100. Entire contents © 2005 CMP Media LLC.
Dr. Dobb’s Journal is a registered trademark of CMP Media LLC. All rights reserved.

http://www.ddj.com Dr. Dobb’s Journal, March 2005 5

C O N T E N T S
MARCH 2005 VOLUME 30, ISSUE 3

NEXT MONTH: We’ll be
focusing on Internet and
web development in the
April issue.

F E A T U R E S
A Fundamental Turn Toward Concurrency in Software 16
by Herb Sutter
The face of hardware is changing, impacting the way you’ll be writing software in the future.

64-Bit Computing & JVM Performance 24
by Sergiy Kyrylkov
Sergiy turns to a pair of 64-bit platforms— the AMD64 and PowerPC64— to gauge the performance of 32- and 64-bit JVMs.

Windows & the World of 64-Bit Computing 30
by Vikram Srivatsa
Windows 64-bit Edition and the 64-bit version of the CLR will be major players in the 64-bit software world.
Integer 64-Bit Optimizations 36
by Anatoliy Kuznetsov
To fully utilize the power of 64-bit CPUs, applications need to exploit wider machine words.
High-Performance Math Libraries 39
by Mick Pont
The AMD Core Math Library is a freely available toolset that provides core math functionality for the AMD64 64-bit processor.

Programming with Contracts in C++ 42
by Christopher Diggins
Programming with Contracts is a method of developing software using contracts to explicitly state and test design requirements.

Making a Scene with Java3D 44
by Michael Pilone
Java3D is a free library that provides a scenegraph and 3D rendering context for creating graphics applications.

A Sound File Editor for Netbeans 48
by Rich Unger
Here’s a full-featured Java IDE built on top of the Netbeans Platform— an open-source framework for building Java
client applications.
Resource Management in Python 54
by Oliver Schoenborn
Python does a good job of resource management, but there are subtleties that affect the portability, robustness, and performance.

The StatiC Compiler & Language 58
by Pete Gray
StatiC is a dual-methodology language that’s easy to learn, yet advanced enough for multitasking in embedded environments.
Building on TiVo 64
by Arthur van Hoff and Adam Doppelt
The Home Media Engine lets you build TiVo applications that integrate seamlessly with the familiar TiVo user experience.

Adding Diagnostics to .NET Code 68
by Richard Grimes
The .NET Framework library includes the Debug and Trace classes, which are important in debug builds.

Reducing the Size of .NET Applications 74
by Vasian Cepa
Here’s a technique for reducing the size of .NET executables without using native code or modifying the PE format.

E M B E D D E D S Y S T E M S
64-Bit Computing & DSPs 78
by Shehrzad Qureshi
Shehrzad examines how the 64-bit features of the C6416 DSP can lead to performance boosts in image processing.

C O L U M N S
Programming Paradigms 84
by Michael Swaine

Embedded Space 87
by Ed Nisley

Chaos Manor 90
by Jerry Pournelle

Programmer’s Bookshelf 95
by Douglas Reilly

F O R U M
EDITORIAL 8
by Jonathan Erickson

LETTERS 10
by you

Dr. Ecco's
Omniheurist Corner 12
by Dennis E. Shasha

NEWS & VIEWS 14
by Shannon Cochran

OF INTEREST 96
by Shannon Cochran

SWAINE’S FLAMES 98
by Michael Swaine

R E S O U R C E
C E N T E R
As a service to our readers,
source code, related files, and
author guidelines are available at
http://www.ddj.com/. Letters to
the editor, article proposals and
submissions, and inquiries can
be sent to editors@ddj.com, faxed
to 650-513-4618, or mailed to Dr.
Dobb’s Journal, 2800 Campus
Drive, San Mateo CA 94403.

For subscription questions, call
800-456-1215 (U.S. or Canada). For
all other countries, call 902-563-
4753 or fax 902-563-4807. E-mail
subscription questions to ddj@
neodata .com or write to Dr. Dobb’s
Journal, P.O. Box 56188, Boulder,
CO 80322-6188. If you want to
change the information you
receive from CMP and others
about products and services, go to
http://www.cmp.com/feedback/
permission.html or contact Custo-
mer Service at the address/number
noted on this page.

Back issues may be pur-
chased for $9.00 per copy
(which includes shipping and
handling). For issue availability,
send e-mail to orders@cmp.com,
fax to 785-838-7566, or call 800-
444-4881 (U.S. and Canada) or
785-838-7500 (all other coun-
tries). Back issue orders must
be prepaid. Please send pay-
ment to Dr. Dobb’s Journal, 4601
West 6th Street, Suite B,
Lawrence, KS 66049-4189.
Individual back articles may be
purchased electronically at http://
www.ddj.com/.

P U B L I S H E R E D I T O R - I N - C H I E F
Michael Goodman Jonathan Erickson

E D I T O R I A L
MANAGING EDITOR
Deirdre Blake
MANAGING EDITOR, DIGITAL MEDIA
Kevin Carlson
SENIOR PRODUCTION EDITOR
Monica E. Berg
NEWS EDITOR
Shannon Cochran
ASSOCIATE EDITOR
Della Wyser
ART DIRECTOR
Margaret A. Anderson
SENIOR CONTRIBUTING EDITOR
Al Stevens
CONTRIBUTING EDITORS
Bruce Schneier, Ray Duncan, Jack Woehr, Jon Bentley,
Tim Kientzle, Gregory V. Wilson, Mark Nelson, Ed Nisley,
Jerry Pournelle, Dennis E. Shasha
EDITOR-AT-LARGE
Michael Swaine
PRODUCTION MANAGER
Douglas Ausejo

I N T E R N E T O P E R A T I O N S
DIRECTOR
Michael Calderon
SENIOR WEB DEVELOPER
Steve Goyette
WEBMASTERS
Sean Coady, Joe Lucca

A U D I E N C E D E V E L O P M E N T
AUDIENCE DEVELOPMENT DIRECTOR
Kevin Regan
AUDIENCE DEVELOPMENT MANAGER
Karina Medina
AUDIENCE DEVELOPMENT ASSISTANT MANAGER
Shomari Hines
AUDIENCE DEVELOPMENT ASSISTANT
Melani Benedetto-Valente
M A R K E T I N G / A D V E R T I S I N G
MARKETING DIRECTOR
Jessica Hamilton
ACCOUNT MANAGERS see page 97
Michael Beasley, Cassandra Clark, Ron Cordek,
Mike Kelleher, Andrew Mintz, Erin Rhea
SENIOR ART DIRECTOR OF MARKETING
Carey Perez

DR. DOBB’S JOURNAL
2800 Campus Drive, San Mateo, CA 94403
650-513-4300. http://www.ddj.com/

CMP MEDIA LLC
Gary Marshall President and CEO
John Day Executive Vice President and CFO
Steve Weitzner Executive Vice President and COO
Jeff Patterson Executive Vice President, Corporate Sales &
Marketing
Mike Mikos Chief Information Officer
William Amstutz Senior Vice President, Operations
Leah Landro Senior Vice President, Human Resources
Mike Azzara Vice President/Group Director Internet Business
Sandra Grayson Vice President & General Counsel
Alexandra Raine Vice President Communications
Robert Faletra President, Channel Group
Vicki Masseria President CMP Healthcare Media
Philip Chapnick Vice President, Group Publisher Applied
Technologies
Michael Friedenberg Vice President, Group Publisher
InformationWeek Media Network
Paul Miller Vice President, Group Publisher Electronics
Fritz Nelson Vice President, Group Publisher Network
Computing Enterprise Architecture Group
Peter Westerman Vice President, Group Publisher Software
Development Media
Joeseph Braue Vice President, Director of Custom Integrated
Media Solutions
Shannon Aronson Corporate Director, Audience Development
Michael Zane Corporate Director, Audience Development
Marie Myers Corporate Director, Publishing Services

PROGRAMMER

SOFTWARE
TOOLS FOR THE
PROFESSIONALDr.Dobbs,

O U R N A LJ

American Buisness Press

Printed in the
USA

6 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

W hen it comes to marketing, the smart thing to do seems to be to prefix “smart” to
whatever is being pitched. Let’s see, there are smart cards, smart phones, smart cars, smart
growth, smart dust, smart architectures, and smart yada yada yada. In our neck of the

woods, you can get smart compilers, smart debuggers, and smart linkers. The only thing you can’t
get, at least according to what my boss recently told me, is smart editors. But ha, ha— the joke
was on him, as I quickly pointed to Smart Editor Professional 3.0 at http://tucows.tr.net/preview/
362587.html. Then there’s Gene Smarte, my old boss at BYTE magazine, and of course, Maxwell
Smart, who moved from TV reruns to CIA archives (http://www.cia.gov/spy_fi/item15.html).

Smart houses seem to be the coming thing. A lab/house created by Eneo Labs (http://www
.eneo.com/eng/), for instance, can clean itself via baseboard automatic vacuum cleaners, adjust to
weather changes thanks to a roof-top weather station, and cut energy consumption as needed.
And, as you might expect, security and entertainment are central to the home. Electronic keys let
you open doors and security cameras help you keep an eye on the kids. Large-screen TV displays
throughout the house allow you to watch TV or interact with the central server, which stores
movies, TV shows, MP3 files, and the like.

At the heart of the “Connected House” is Eneo’s IPbox, an embedded computer that serves as
the residential gateway with broadband access and eight Ethernet ports, Wi-Fi access, audiovisual
interface, and universal remote control. The OSGi-based network software is called “eNeo NET”
and, among other things, it takes care of incompatibilities between devices. The browser-based
interface makes it possible for inhabitants to access and manage services from a TV set, PDA, cell
phone, or PC.

But if projects like Eneo’s Connected House were nothing more than toy-houses for the rich
and famous, they wouldn’t be worth wasting the space. However, smart houses do have practical
purposes, especially when enabling assistive care for disabled and/or elderly inhabitants. Domotic
systems that use PDAs, cell phones, sensors, and Internet access are being used for everything
from alerting emergency services to unlocking the front door, making it possible for all of us to
live fuller lives. In this context, a smart house is a smart idea.

To my mind, another smart idea is that of smart guns. Of course, there are few public health
issues that are more controversial than the hint of firearm regulation. Shoot, my e-mail box is
already overflowing from just that sentence alone. But every year, according to the Centers for
Disease Control, more than 30,000 people in the U.S. die from firearms-related deaths. Of that
number, about two people a day are killed by accidental gun discharges. Smart guns, which involve
an electronic means of authenticating the user, are one approach to addressing this problem.

The latest in smart-gun technology was recently demonstrated at the New Jersey Institute of
Technology (http://www.njit.edu/). In this case, “dynamic grip recognition,” a technology
invented by NJIT professor Michael Recce, was implemented by NJIT professor Timothy Chang
who embedded 20 small electronic sensors in the handle of a gun. The gun is then “trained” as to
who is authorized to use the firearm— and there can be dozens of user profiles stored in the
gun— by “learning” the physical markers and behavior of authorized users. The biometric
technique measures not only the size, strength, and structure of a person’s hand, but also the
reflexive way in which the person acts. For smart guns, the observed actions are how the person
squeezes something, such as a trigger, to produce a unique and measurable pattern. Sensors in
the experimental gun then can read and record the size and force of the users’ hand during the
first second when the trigger is squeezed. The sensors currently being used are off-the-shelf
4.5mm-diameter discrete piezoelectric ceramic-disk sensors. NJIT is working with a sensor
company to put custom conformal capacitive sensor arrays into the grips. Profile patterns that
execute recognition algorithms are stored in SRAM. For the time being, a standard serial port
interfaces to the PC because the DSP system is a standalone unit. However, the next version will
be untethered and use a Bluetooth interface.

It’s worth noting that Recce’s dynamic grip-recognition technology is not limited just to guns,
but might also be applied to, say, a car’s steering wheel to prevent theft or other misuse. NJIT will
now turn over the prototype to Metal Storm (http://www.metalstorm.com/), which will
incorporate NJIT technology into its patented electronic handgun.

Of course, you can go too far with the “smart” moniker. There’s smart government, smart
drugs, smart bombs, McDonald’s smart meals, smart parents (according to teenagers), and smart
beer. For me, the smart thing to do now is sign off.

Smart Stuff

Jonathan Erickson
editor-in-chief
jerickson@ddj.com

E D I T O R I A L

8 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Licensing & Such
Dear DDJ,
The same day I read Jan Galkowski’s let-
ter in the January 2005 issue of DDJ, I
watched a TV news story that included
the following information:

When the Insurance Institute for Traf-
fic Safety crash-tested the 2005 Hyundai
Elantra, the driver’s air bag failed to de-
ploy. According to their press release,
“Hyundai engineers will modify the soft-
ware that determines whether and when
to fire the airbags in 2005 models built af-
ter December 2004. The company also
will recall cars manufactured earlier to fix
this problem.” (To refresh my memory, I
looked this up at http://www.hwysafety
.org/news_releases/2004/pr121904.htm.)

Why do you suppose the Hyundai
“engineers” didn’t get the software right
the first time? I suspect they wrote it the
same way most software is written, wait-
ing for (to use Jan’s words) “end-user
critiques, complaints, and bug reports”
to reveal “incorrect expectations or doc-
umentation.”

I agree with Jan that this typical software-
development process is not desirable, but I
don’t think we necessarily have to tolerate
it. I think we can make the case that there
are times when software-development stan-
dards should take precedence over our
employers’ need to be successful. I also
believe that adopting standards will, iron-
ically, make many businesses more suc-
cessful in the long run.

Software that is intended to help peo-
ple make decisions usually comes with a
disclaimer that the vendor is not liable for
the users’ bad decisions. However, soft-
ware that actually makes decisions, such
as when to deploy an airbag, should be
held to a higher standard. The owner of
a construction company would expect a
building engineer to refuse to proceed if
appropriate specifications weren’t avail-
able. Otherwise, they both might get sued
for violating well-established standards,
i.e., building codes. I agree with Brent Ful-
gham (DDJ, August 2004. “Letters”) that

the public will eventually demand stan-
dards for the development of software that
affects public safety. I don’t think these
standards should be required for other
software, but they should be strongly rec-
ommended.

I agree that we would have to grand-
father existing software. Automakers, for
example, would not be required to recall
every car that uses old software, just those
that turned out to be defective using cur-
rent testing methods. However, I don’t
think it is ridiculous to expect them to
start using standards to write or rewrite
any software used in new cars. As for
outsourcing, it wouldn’t matter where
the software was written. If the car were
driven in the U.S. (or any country that
adopted standards), the standards would
apply.

There is a precedent for holding com-
panies accountable for their software-
development process. In my June 2004 DDJ
letter to the editor, I noted that the FDA in-
spects the software specification and doc-
umentation procedures of medical equip-
ment manufacturers. (See http://www
.eweek.com/article2/0,1759,1543652,00
.asp?kc=EWNWS030804DTX1K0000599 for
more information.) However, as Jan points
out, there’s not much hope of finding ac-
ceptable procedures as long as the peo-
ple who are supposed to know what the
software is expected to do cannot describe
these expectations in sufficient detail.

I have colleagues who believe that
users are so stupid that they deserve the
lousy software they get. I disagree. It has
been my experience that business peo-
ple can be taught how to create suffi-
ciently detailed specifications. Accurate
and complete specifications not only lead
to better software, but often lead to busi-
ness improvements that have nothing to
do with software. However, accurate and
complete specifications are time con-
suming to create and have little short-
term benefit. Since decision makers are
usually unwilling to wait for long-term
benefits, I don’t expect most of them to
adopt this approach unless they are
forced to (which they should be if they
produce products that affect public safe-
ty). Once standards have been estab-
lished, however, some businesses that
have nothing to do with public safety will
realize the long-term financial benefits of
standards-based software development.
Unfortunately, many will continue to be
short-sighted; and I will continue to point
this out whenever I encounter them. My
long-term goal, by the way, is that some-
day I will be able to say, “my code is up
to code.”

Jim Wiggins
jwiggins@ifbf.org

Dynamic Caching
Dear DDJ,
I enjoyed the article “Dynamic Caching &
ADO DataSet” by John Cheng and Hong
Rong (DDJ, December 2004), which was
a useful introduction to smart caching of
larger datasets and pointed out some of
the drawbacks of the relatively simple de-
fault behavior of ADO.

However, I would like to pick up on an
error in the example in the text for an in-
cremental query. If a partial set of em-
ployee data ordered by fname and lname
is retrieved and the last record is “Joe
Smith,” then it is incorrect to request in-
cremental data by adding the clause where
fname > 'Joe' and lname > 'Smith' to the
original query.

Alas, a few seconds thought should
demonstrate that neither the original query
nor the subsequent one would locate my
record, given my first name is “Roger” and
my last name is “Orr.” The incremental
query needs to be more carefully thought
through if more than one column is used
for the ordering: one solution would be:
where (fname = 'Joe' and lname > 'Smith')
or fname > 'Joe').

Roger Orr
rogero@howzatt.demon.co.uk

Strange Bedfellows
Dear DDJ,
I enjoy Dr. Dobb’s Journal a great deal. In
particular, I read Jonathan Erickson’s
“Strange Bedfellows” editorial (DDJ, De-
cember 2004) and I don’t get what he
doesn’t get.

IBM and Open Source are not an un-
likely pair— they are the most likely pair.
IBM, according to publicly disclosed fi-
nancial results, is now about 75 percent
services and hardware, making it the
largest hardware and the largest services
company in the world rolled into one.
Based on this profile, IBM is the most like-
ly company to ally itself with open-source
software. Joel Spolsky expounded on this
more than two years ago (http://www
.joelonsoftware.com/articles/StrategyLetterV
.html) and what he wrote then is still ba-
sically true now: IBM is commoditizing
the complement to its core business.

Imagine a hypothetical future world, 15
years from now, where through twists of
fate, there is no software except open-
source software. Which of IBM’s com-
petitors of 2004 remain in that hypothet-
ical world? Come on, IBM has every
reason to embrace and endorse open-
source software today. That this fact still
surprises people surprises me.

Dino Chiesa
dinoch@microsoft.com

DDJ

L E T T E R S

,

D

C E N T S

2
2

2
2

OBB S POS T

10 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

D R . E C C O ’ S O M N I H E U R I S T C O R N E R

S
ince I have a key to Dr. Ecco’s apart-
ment, I walked in one day but found
it empty. Ecco had been asked by
Baskerhound to solve a seemingly

difficult two-person game as part of a
code-breaking investigation. Ecco had tak-
en his niece and nephew to a casino that
was somehow involved. I was therefore
left with this letter from Liane.

Dear Professor Scarlet,
Grab Bag is a simple game to play but dif-
ficult to win. The first player is given an
empty “seed” collection Aseed and a “grab
bag” Agrab. The second player is given an
empty seed collection Bseed and a grab
bag Bgrab. The players agree on a posi-
tive number n. Here is the general idea:
The players alternate moves, where a move
consists of inserting a whole number to
one’s own seed collection (the same num-
ber can be inserted several times). When
a player does so, he or she puts into
his/her grab bag any number k between
1 and n resulting from adding the just in-
serted number to an element of the op-
ponent’s seed collection, provided k hasn’t
been previously “grabbed” (that is, put into
a grab bag) by either player. When all the
numbers between 1 and n are grabbed,
the game is over and the player with the
most numbers in his/her grab bag wins.

The first move consists of inserting a
number between 0 and n. Subsequently,

every move consists of inserting a non-
negative number less than or equal to n
to the player’s seed bag, and results in
putting at least one ungrabbed number
between 1 and n in his/her grab bag, if it
is possible for the player to do so. If not
possible, but there are ungrabbed num-
bers left, then the player may use a seed
number between –n and –1 to grab a
number. You can prove that it is always
possible to grab a number if there are any
ungrabbed ones left; the player is obli-
gated to grab on every move.

Warm-up: Who wins when n=3?

Solution Idea:
a. In A’s first move, A cannot grab any-

thing but must choose one of 1, 2, or
3 as a seed.

b. B can respond by grabbing one.
c. A can then grab at most one other

number, because B has only one seed.
d. B can then grab the last.

But life is not always so straightfor-
ward. For example, A can force a draw

when n=4, but only if he/she prevents
B from grabbing two numbers in B’s sec-
ond move.

Now here are the questions, Professor:

1. Can either player force a win when
n=5?

2. Is there a winning strategy for either
player, depending on the value of n?

3. Do any of these answers change if the
players could use negative seed num-
bers on any turn, including when it is
possible to grab a number with a non-
negative seed? For this scenario, we’ll
add a new rule: If a player blocks the
game (that is, makes a move that pre-
vents the opponent from grabbing a
number when there are ungrabbed
numbers left), then the blocking play-
er loses.”

For the solution to last month’s
puzzle, see page 86.

DDJ

Grab Bag

Dennis E. Shasha

Dennis is a professor of computer science
at the Courant Institute, New York Uni-
versity. His latest books include Dr. Ecco’s
Cyberpuzzles: 36 Puzzles for Hackers
and Other Mathematical Detectives
(W.W. Norton, 2002) and Database Tun-
ing: Principles, Experiments, and Trou-
bleshooting Techniques (Morgan Kauf-
man, 2002). He can be contacted at
DrEcco@ddj.com.

12 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 1: Warm-up example: Grabbable numbers are 1, 2, 3.

(a) A seeds with 2.

Aseed: {2}
Agrab: {}

(b) B seeds with 1,
 grabbing 3.

(c) A seeds with 1,
 grabbing 2.

Bseed: {1}
Bgrab: {3}

Aseed: {1, 2}
Agrab: {2}

(d) B seeds with 0,
 grabbing 1.

Bseed: {0, 1}
Bgrab: {1, 3}

14 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Assistive Technologies
Researchers at the University of Califor-
nia, Santa Cruz (http://www.ucsc.edu/),
are developing new assistive technologies
for the blind based on advances in com-
puter vision that have emerged from re-
search in robotics. A “virtual white cane”
is one of several prototype tools for the
visually impaired developed by Roberto
Manduchi, an assistant professor of com-
puter engineering, and his students.

Manduchi’s alternative to the traditional
white cane is a laser-based range-sensing
device about the size of a flashlight. A laser
is combined with a digital camera and CPU
that analyzes and integrates spatial infor-
mation as users move the device back and
forth over a scene. Users receive feedback
about the scene in the form of audio sig-
nals, and an additional tactile interface is
being developed for future prototypes.

Dan Yuan, a graduate student working
with Manduchi on the virtual white cane
project, built the initial prototype. The
UCSC researchers are collaborating with
the Smith-Kettlewell Eye Research Insti-
tute, a nonprofit research institute in San
Francisco (http://www.ski.org/), on the
virtual white cane and other projects, such
as a project Manduchi refers to as
“MapQuest for the blind.” The project
hopes to create a feedback environment
so that blind people can explore maps on
the computer. The feedback would be
provided by a “force-feedback mouse,”
which vibrates to produce a variety of
physical sensations users can feel as the
pointer moves across features on a com-
puter screen. These devices are readily
available, so the project involves creating
software that will enable the blind to use
a force-feedback mouse to “feel” their way
through a map.

Python 2.4 Released
The Python Software Foundation has an-
nounced the release of Python 2.4 (from
http://www.python.org/2.4/). New lan-
guage features include multiline imports;
failed import cleanup; function/method
decorators; and an -m command-line op-
tion, which invokes a module in the stan-
dard library. Additionally, Python no
longer generates Overflow warnings, and
the compiler now treats assigning to None
as a SyntaxError.

New language features, however, are
not the focus of the release. Instead,
Python 2.4 concentrates on performance

enhancements and ease-of-use improve-
ments. Several optimizations have been
added to the interpreter, and some mod-
ules new in Python 2.3— including sets
and heapq— have been recoded in C.
Python 2.4 runs the pystone benchmark
5 percent faster than Version 2.3, and 35
percent faster than Python 2.2.

The Web According to TAG
The W3C’s Technical Architecture Group
(TAG) has completed an ambitious Rec-
ommendation titled “Architecture of the
World Wide Web, Volume One” (pub-
lished at http://www.w3.org/TR/2004/
REC-webarch-20041215/#app-principles).
The document sets out “core-design com-
ponents, constraints, and good prac-
tices…by software developers, content au-
thors, site managers, users, and specification
designers.”

Tim Berners-Lee is cochair of the TAG,
along with HP’s Stuart Williams; other
participants in the group are drawn from
Microsoft, IBM, Sun, Day Software, and
the W3C.

Those Blooming Cell Phones
Motorola, the University of Warwick, and
the manufacturing company PVAXX Re-
search & Development say they have
jointly developed a mobile phone cov-
er that sprouts into a sunflower if it ends
up in a landfill. A special biodegradable
polymer that looks like ordinary plastic
was used for the case, and it was em-
bedded with a small transparent window
containing a dwarf sunflower (http://
www2.warwick.ac.uk/newsandevents/
pressreleases/NE1000000097300/).

Motorola has not officially committed
to bringing the cell phone cover into pro-
duction, but said that products using the
new polyvinylalcohol polymer could be
on the market as early as midsummer.
PVAXX says the biodegradable material
can be made rigid or flexible in shape.

While the U.S. Environmental Protection
Agency estimates that discarded electronic
equipment now comprises only 1 or 2 per-
cent of the 210 million tons of solid waste
the U.S. produces annually, that number is
expected to rise dramatically over the next
few years. The European Union requires
mobile handset manufacturers to eliminate
toxic substances (mercury, lead, and bromi-
nated flame retardants) from their mobile
handsets by 2006, and has set a cell phone
recycling/reuse target of 65 percent.

Neural-Based Sensor
System Identifies Gun Shots
The Smart Sensor Enabled Threat Recog-
nition and Identification (Sentri) system
combines video cameras, microphones,
computers, and software modeled after
neural sound processing to identify gun-
shots, pinpoint their location, and relay
the coordinates to a command center. De-
veloped by Theodore Berger at the Uni-
versity of Southern California’s Center for
Neural Engineering (http://www.usc.edu/
dept/engineering/CNE/), the software uses
wavelet analysis to divide sound into frag-
ments, then match fragments to established
audio-wave patterns, while still analyzing
the incoming noise. Sentri uses acoustic
recognizers, posted in groupings on util-
ity poles, which are tuned to certain spe-
cific warning sounds with extremely high
accuracy. A directional analyzer calculates
any authenticated gunshot’s location, using
the difference in the time the sound arrives
at the different microphones on a Sentri
acoustic unit. Field tests with real weapons
have shown 95 percent accuracy with re-
spect to gunshot recognition. Chicago is in-
stalling the first five of a planned 80 devices
in high-crime neighborhoods.

Firefox Browser Blazes On
Internet Explorer’s total market share
has dipped below 90 percent for the first
time in years, according to one web an-
alytics firm, while the open-source
browser Firefox is accelerating in pop-
ularity. OneStat.com reports that Mozil-
la’s browsers now have a total global us-
age share of 7.35 percent— up from 2.1
percent at the end of May— while In-
ternet Explorer has slipped five points
to 88.9 percent.

What’s more, the two browsers devel-
oped by the Mozilla Foundation, Mozilla
and Firefox, don’t appear to be compet-
ing with each other. OneStat.com noted
a small uptick in the number of Mozilla
users at the same time that the new Fire-
fox user base appeared. Instead, it ap-
pears that most new Firefox users are pre-
vious Internet Explorer users.

While the exact numbers are disput-
ed— OneStat.com’s rival WebSideStory
pegs Internet Explorer’s market share at
91.8 percent— analysts agree that Fire-
fox’s momentum is continuing. According
to WebSideStory, Firefox’s usage share
grew by 13 percent in October and 34 per-
cent in November.

News & Views
Dr. Dobb’s

News & Views
SECTION

A
MAIN NEWS

DR. DOBB’S
JOURNAL

March 1, 2005

Y
our free lunch will soon be over. What can you do about
it? What are you doing about it. The major processor man-
ufacturers and architectures, from Intel and AMD to Sparc
and PowerPC, have run out of room with most of their tra-

ditional approaches to boosting CPU performance. Instead of
driving clock speeds and straight-line instruction throughput
ever higher, they are instead turning en masse to hyperthread-
ing and multicore architectures. Both of these features are avail-
able on chips today; in particular, multicore is available on cur-
rent PowerPC and Sparc IV processors, and is coming in 2005
from Intel and AMD. Indeed, the big theme of the 2004 In-
Stat/MDR Fall Processor Forum (http://www.mdronline.com/
fpf04/index.html) was multicore devices, with many companies
showing new or updated multicore processors. Looking back,
it’s not much of a stretch to call 2004 the year of multicore.

And that puts us at a fundamental turning point in software
development, at least for the next few years and for applications
targeting general-purpose desktop computers and low-end servers
(which happens to account for the vast bulk of the dollar val-
ue of software sold today). In this article, I describe the chang-
ing face of hardware, why it suddenly does matter to software,
and how it specifically matters to you and changes the way you’ll
likely be writing software in the future.

Arguably, the free lunch has already been over for a year or
two, only we’re just now noticing.

The Free Performance Lunch
There’s an interesting phenomenon known as “Andy giveth,
and Bill taketh away.” No matter how fast processors get, soft-
ware consistently finds new ways to eat up the extra speed.
Make a CPU 10 times as fast, and software usually finds 10
times as much to do (or in some cases, will feel at liberty to do
it 10 times less efficiently). Most classes of applications have en-
joyed free and regular performance gains for several decades,
even without releasing new versions or doing anything special
because the CPU manufacturers (primarily) and memory and

disk manufacturers (secondarily) have reliably enabled ever-
newer and ever-faster mainstream systems. Clock speed isn’t
the only measure of performance, or even necessarily a good
one, but it’s an instructive one: We’re used to seeing 500MHz
CPUs give way to 1GHz CPUs, which give way to 2GHz CPUs,
and so on. Today, we’re in the 3GHz range on mainstream
computers.

The key question is: When will it end? After all, Moore’s Law
predicts exponential growth, and clearly exponential growth
can’t continue forever before we reach hard physical limits; light
isn’t getting any faster. The growth must eventually slow down
and even end. (Caveat: Yes, Moore’s Law applies principally to
transistor densities, but the same kind of exponential growth has
occurred in related areas such as clock speeds. There’s even
faster growth in other spaces, most notably the data storage ex-
plosion, but that important trend belongs in a different article.)

If you’re a software developer, chances are you have already
been riding the “free lunch” wave of desktop computer perfor-
mance. Is your application’s performance borderline for some
local operations? “Not to worry,” the conventional (if suspicious)
wisdom goes, “tomorrow’s processors will have even more
throughput, and anyway, today’s applications are increasingly
throttled by factors other than CPU throughput and memory speed
(for instance, they’re often I/O-bound, network-bound, or
database-bound).” Right?

Right enough, in the past. But dead wrong for the foresee-
able future.

The good news is that processors are going to continue to be-
come more powerful. The bad news is that, at least in the short
term, the growth will come mostly in directions that do not take
most current applications along for their customary free ride.

Herb Sutter (http://www.gotw.ca/) chairs the ISO C++ Standards
committee and is an architect in Microsoft’s Developer Division.
His most recent books are Exceptional C++ Style and C++ Cod-
ing Standards (Addison-Wesley).

HERB SUTTER

Your free lunch will soon be over. What can you do about it?

A Fundamental
Turn Toward
Concurrency in Software

16 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“Concurrency is the next major
revolution in how we write
software”

Over the past 30 years, CPU designers have achieved perfor-
mance gains in three main areas, the first two of which focus
on straight-line execution flow:

• Clock speed.
• Execution optimization.
• Cache.

Increasing clock speed is about getting more cycles. Running the
CPU faster more or less directly means doing the same work faster.

Optimizing execution flow is about doing more work per cy-
cle. Today’s CPUs sport some more powerful instructions, and
they perform optimizations that range from the pedestrian to
the exotic, including pipelining, branch prediction, executing
multiple instructions in the same clock cycle(s), and even re-
ordering the instruction stream for out-of-order execution. These
techniques are all designed to make the instructions flow bet-
ter and/or execute faster, and to squeeze the most work out of
each clock cycle by reducing latency and maximizing the work
accomplished per clock cycle.

Note that some of what I just called “optimizations” are actu-
ally far more than optimizations, in that they can change the
meanings of programs and cause visible effects that can break
reasonable programmer expectations. This is significant. CPU de-
signers are generally sane and well-adjusted folks who normal-
ly wouldn’t hurt a fly and wouldn’t think of hurting your
code…normally. But in recent years, they have been willing to
pursue aggressive optimizations just to wring yet more speed out
of each cycle, even knowing full well that these aggressive re-
arrangements could endanger the semantics of your code. Is this
Mr. Hyde making an appearance? Not at all. That willingness is
simply a clear indicator of the extreme pressure the chip de-
signers face to deliver ever-faster CPUs; they’re under so much
pressure that they’ll risk changing the meaning of your program,
and possibly break it, to make it run faster. Two noteworthy ex-
amples in this respect are write reordering and read reordering:
Allowing a processor to reorder write operations has conse-
quences that are so surprising, and break so many programmer
expectations, that the feature generally has to be turned off be-
cause it’s too difficult for programmers to reason correctly about
the meaning of their programs in the presence of arbitrary write
reordering. Reordering read operations can also yield surprising
visible effects, but that is more commonly left enabled anyway
because it isn’t quite as hard on programmers (and the demands
for performance cause designers of operating systems and op-
erating environments to compromise and choose models that
place a greater burden on programmers because that is viewed
as a lesser evil than giving up the optimization opportunities).

Finally, increasing the size of on-chip cache is about staying
away from RAM. Main memory continues to be so much slow-
er than the CPU that it makes sense to put the data closer to the
processor— and you can’t get much closer than being right on
the die. On-die cache sizes have soared, and today most major
chip vendors will sell you CPUs that have 2MB of on-board L2
cache. (Of these three major historical approaches to boosting
CPU performance, increasing cache is the only one that will
continue in the near term.)

Okay. So what does this mean?
A fundamentally important thing to recognize about this list

is that all of these areas are concurrency agnostic. Speedups
in any of these areas directly lead to speedups in sequential
(nonparallel, single-threaded, single-process) applications, as
well as applications that do make use of concurrency. That’s
important because the vast majority of today’s applications are
single-threaded— and for good reasons.

Of course, compilers have had to keep up; sometimes, you
need to recompile your application, and target a specific mini-

mum level of CPU, to benefit from new instructions (MMX, SSE,
and the like) and some new CPU features and characteristics.
But, by and large, even old applications have always run sig-
nificantly faster— even without being recompiled to take ad-
vantage of all the new instructions and features offered by the
latest CPUs.

That world was a nice place to be. Unfortunately, it has al-
ready disappeared.

Why You Don’t Have 10GHz Today
You can get similar graphs for other chips, but I’m going to use
Intel data here. Figure 1 graphs the history of Intel chip intro-
ductions by clock speed and number of transistors. The num-
ber of transistors continues to climb, at least for now. Clock
speed, however, is a different story.

Around the beginning of 2003, you’ll note a disturbing sharp
turn in the previous trend toward ever-faster CPU clock speeds.
I’ve added lines to show the limit trends in maximum clock speed;
instead of continuing on the previous path, as indicated by the
thin dotted line, there is a sharp flattening. It has become harder
and harder to exploit higher clock speeds due to several physi-
cal issues, notably heat (too much of it and too hard to dissipate),
power consumption (too high), and current leakage problems.

In short, CPU performance growth as we have known it hit
a wall two years ago. Most people have only recently started to
notice.

Quick: What’s the clock speed on the CPU(s) in your current
workstation? Are you running at 10GHz? On Intel chips, we
reached 2GHz a long time ago (August 2001), and according to
CPU trends before 2003, we now should have the first 10GHz
Pentium-family chips. A quick look around shows that, well, ac-
tually, we don’t. What’s more, such chips are not even on the
horizon—we have no good idea at all about when we might
see them appear.

Well, then, what about 4GHz? We’re at 3.4GHz already— sure-
ly 4GHz can’t be far away? Alas, even 4GHz seems to be remote
indeed. In mid-2004, as you probably know, Intel first delayed its
planned introduction of a 4GHz chip until 2005, and then in fall

http://www.ddj.com Dr. Dobb’s Journal, March 2005 17

Figure 1: Intel CPU introductions (sources: Intel, Wikipedia).

2004, it officially abandoned its 4GHz plans entirely. As of this
writing, Intel is planning to ramp up a little further to 3.73GHz
early this year (already included in Figure 1 as the upper-right-
most dot), but the clock race really is over, at least for now; Intel’s
and most processor vendors’ futures lie elsewhere as chip com-
panies aggressively pursue the same new multicore directions.

We’ll probably see 4GHz CPUs in our mainstream desktop
machines someday, but it won’t be in 2005. Sure, Intel has sam-
ples of their chips running at even higher speeds in the lab—
but only by heroic efforts, such as attaching hideously imprac-
tical quantities of cooling equipment. You won’t have that kind
of cooling hardware in your office any day soon, let alone on
your lap while computing on the plane.

TANSTAAFL: Moore’s Law and The Next Generation(s)
TANSTAAFL=There ain’t no such thing as a free lunch.

—R.A. Heinlein,
The Moon Is a Harsh Mistress

Does this mean Moore’s Law is over? Interestingly, the answer
in general seems to be “no.” Of course, like all exponential pro-
gressions, Moore’s Law must end someday, but it does not seem
to be in danger for a few more years. Despite the wall that chip
engineers have hit in juicing up raw clock cycles, transistor counts
continue to explode, and it seems CPUs will continue to follow
Moore’s Law-like throughput gains for some years to come.

The key difference, which is the heart of this article, is that
the performance gains are going to be accomplished in funda-
mentally different ways for at least the next couple of proces-
sor generations. And most current applications will no longer
benefit from the free ride without significant redesign.

For the near-term future, meaning for the next few years, the
performance gains in new chips will be fueled by three main
approaches, only one of which is the same as in the past. The
near-term future performance growth drivers are:

• Hyperthreading.
• Multicore.
• Cache.

Hyperthreading is about running two or more threads in par-
allel inside a single CPU. Hyperthreaded CPUs are already avail-
able today, and they do allow some instructions to run in par-
allel. A limiting factor, however, is that although a hyperthreaded
CPU has some extra hardware (including extra registers), it still
has just one cache, one integer math unit, one FPU, and in gen-
eral, just one each of most basic CPU features. Hyperthreading
is sometimes cited as offering a 5 to 15 percent performance
boost for reasonably well-written multithreaded applications, or
even as much as 40 percent under ideal conditions for carefully
written multithreaded applications. That’s good, but it’s hardly
double, and it doesn’t help single-threaded applications.

Multicore is about running two or more actual CPUs on one
chip. Some chips, including Sparc and PowerPC, have multi-
core versions available already. The initial Intel and AMD de-
signs, both due this year, vary in their level of integration but
are functionally similar. AMD’s seems to have some initial per-
formance design advantages, such as better integration of sup-
port functions on the same die; whereas Intel’s initial entry ba-
sically just glues together two Xeons on a single die. The
performance gains should initially be about the same as hav-
ing a dual-CPU system (only the system will be cheaper be-
cause the motherboard doesn’t have to have two sockets and
associated “glue” chippery), which means something less than
double the speed even in the ideal case. Just like today, it will
boost reasonably well-written multithreaded applications— not
single-threaded ones.

Finally, on-die cache sizes can be expected to continue to
grow, at least in the near term. Of these three areas, only this
one will broadly benefit most existing applications. The contin-
uing growth in on-die cache sizes is an incredibly important and
highly applicable benefit for many applications, simply because
space is speed. Accessing main memory is expensive, and you
really don’t want to touch RAM if you can help it. On today’s
systems, a cache miss that goes out to main memory typically
costs about 10 to 50 times as much as getting the information
from the cache; this, incidentally, continues to surprise people
because we all think of memory as fast, and it is fast compared
to disks and networks, but not compared to on-board cache,
which runs at faster speeds. If an application’s working set fits
into cache, we’re golden; and if it doesn’t, we’re not. That is
why increased cache sizes will save some existing applications
and breathe life into them for a few more years without requiring
significant redesign: As existing applications manipulate more
and more data, and as they are incrementally updated to include
more code for new features, performance-sensitive operations
need to continue to fit into cache. As the Depression-era old-
timers will be quick to remind you, “Cache is king.”

(Aside: Here’s an anecdote to demonstrate “space is speed” that
recently hit my compiler team. The compiler uses the same source
base for 32-bit and 64-bit compilers; the code is just compiled as
either a 32-bit process or a 64-bit one. The 64-bit compiler gained
a great deal of baseline performance by running on a 64-bit CPU,
principally because the 64-bit CPU had many more registers to
work with and had other code performance features. All well and
good. But what about data? Going to 64 bits didn’t change the
size of most of the data in memory, except that (of course) point-
ers in particular were now twice the size they were before. As it
happens, our compiler uses pointers much more heavily in its in-
ternal data structures than most other kinds of applications ever
would. Because pointers were now 8 bytes instead of 4 bytes, a
pure data size increase, we saw a significant increase in the 64-
bit compiler’s working set. That bigger working set caused a per-
formance penalty that almost exactly offset the code execution
performance increase we’d gained from going to the faster pro-
cessor with more registers. As of this writing, the 64-bit compil-
er runs at the same speed as the 32-bit compiler, even though
the source base is the same for both and the 64-bit processor of-
fers better raw processing throughput. Space is speed.)

But cache is it. Hyperthreading and multicore CPUs will have
nearly no impact on most current applications.

So what does this change in hardware mean for the way we
write software? By now, you’ve probably noticed the basic an-
swer, so let’s consider it and its consequences.

What This Means for Software: The Next Revolution
In the 1990s, we learned to grok objects. The revolution in main-
stream software development from structured programming to
object-oriented programming was the greatest such change in
the past 20 years, and arguably in the past 30 years. There have
been other changes, including the most recent (and genuinely
interesting) nascence of web services, but nothing that most of
us have seen during our careers has been as fundamental and
as far reaching a change in the way we write software as the
object revolution.

Until now. Starting today, the performance lunch isn’t free
any more. Sure, there will continue to be generally applicable
performance gains that everyone can pick up, thanks mainly to
cache size improvements. But if you want your application to ben-
efit from the continued exponential throughput advances in new
processors, it will need to be a well-written, concurrent (usually
multithreaded) application. And that’s easier said than done, be-
cause not all problems are inherently parallelizable and because
concurrent programming is hard.

18 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

I can hear the howls of protest: “Concurrency? That’s not news!
People are already writing concurrent applications.” That’s true.
Of a small fraction of developers.

Remember that people have been doing object-oriented pro-
gramming since at least the days of Simula in the late 1960s. But
OOP didn’t become a revolution, and dominant in the main-
stream, until the 1990s. Why then? The reason the revolution
happened was primarily because our industry was driven by re-
quirements to write larger and larger systems that solved larger
and larger problems and exploited the greater and greater CPU
and storage resources that were becoming available. OOP’s
strengths in abstraction and dependency management made it
a necessity for achieving large-scale software development that
is economical, reliable, and repeatable.

Similarly, we’ve been doing concurrent programming since
those same dark ages, writing coroutines and monitors and sim-
ilar jazzy stuff. And for the past decade or so, we’ve witnessed
incrementally more and more programmers writing concurrent
(multithreaded, multiprocess) systems. But an actual revolution
marked by a major turning point toward concurrency has been
slow to materialize. Today, the vast majority of applications are
single-threaded, and for good reason.

By the way, on the matter of hype: People have always been
quick to announce “the next software development revolution,”
usually about their own brand-new technology. Don’t believe
it. New technologies are often genuinely interesting and some-
times beneficial, but the biggest revolutions in the way we write
software generally come from technologies that have already
been around for some years and have already experienced grad-
ual growth before they transition to explosive growth. This is
necessary: You can only base a software development revolu-
tion on a technology that’s mature enough to build on (includ-
ing having solid vendor and tool support), and it generally takes
any new software technology at least seven years before it’s sol-
id enough to be broadly usable without performance cliffs and
other gotchas. As a result, true software development revolu-
tions like OOP happen around technologies that have already
been undergoing refinement for years, often decades. Even in
Hollywood, most genuine “overnight successes” have really been
performing for many years before their big break.

Concurrency is the next major revolution in how we write
software. Different experts still have different opinions on whether
it will be bigger than OO, but that kind of conversation is best
left to pundits. For technologists, the interesting thing is that
concurrency is of the same order as OOP both in the (expect-
ed) scale of the revolution and in the complexity and learning
curve of the technology.

Benefits and Costs of Concurrency
There are two major reasons for which concurrency, especially
multithreading, is already used in mainstream software. The first
is to logically separate naturally independent control flows; for
example, in a database replication server I designed, it was nat-
ural to put each replication session on its own thread because
each session worked completely independently of any others
that might be active (as long as they weren’t working on the
same database row). The second and less common reason to
write concurrent code in the past has been for performance, ei-
ther to scalably take advantage of multiple physical CPUs or to
easily take advantage of latency in other parts of the applica-
tion; in my database replication server, this factor applied as
well, and the separate threads were able to scale well on mul-
tiple CPUs as our server handled more and more concurrent
replication sessions with many other servers.

There are, however, real costs to concurrency.
Some of the obvious costs are actually relatively unimportant.

For example, yes, locks can be expensive to acquire, but when

http://www.ddj.com Dr. Dobb’s Journal, March 2005 19

used judiciously and properly, you gain much more from the
concurrent execution than you lose on the synchronization, if
you can find a sensible way to parallelize the operation and
minimize or eliminate shared state.

Perhaps the second-greatest cost of concurrency is that not
all applications are amenable to parallelization.

Probably the greatest cost of concurrency is that concurrency
really is hard: The programming model, meaning the model in
programmers’ heads that they need to reason reliably about their
program, is much harder than it is for sequential control flow.

Everybody who learns concurrency thinks he understands it,
but ends up finding mysterious races he thought weren’t possi-
ble and discovers that he didn’t actually understand it after all.
As developers learn to reason about concurrency, they find that
usually those races can be caught by reasonable in-house test-
ing, and they reach a new plateau of knowledge and comfort.
What usually doesn’t get caught in testing, however, except in
shops that understand why and how to do real stress testing,

are those latent concurrency bugs that surface only on true mul-
tiprocessor systems, where the threads aren’t just being switched
around on a single processor but really do execute truly simul-
taneously and thus expose new classes of errors. This is the next
jolt for developers who thought that, surely now, they know
how to write concurrent code: I’ve come across many teams
whose application worked fine even under heavy and extend-
ed stress testing, and ran perfectly at many customer sites, un-
til the day that a customer actually had a real multiprocessor
machine— and then deeply mysterious races and corruptions
started to manifest intermittently. In the context of today’s CPU
landscape, then, redesigning your application to run multithreaded
on a multicore machine is a little like learning to swim by jump-
ing into the deep end— going straight to the least forgiving, tru-
ly parallel environment that is most likely to expose the things
you got wrong. Even when you have a team that can reliably
write safe concurrent code, there are other pitfalls; for example,
concurrent code that is completely safe but isn’t any faster than
it was on a single-core machine, typically because the threads
aren’t independent enough and share a dependency on a sin-
gle resource that reserializes the program’s execution. This stuff
gets pretty subtle.

Just as it is a leap for a structured programmer to learn OOP
(“what’s an object?” “what’s a virtual function?” “how should I
use inheritance?” and beyond the “whats” and “hows,” “why are
the correct design practices actually correct?”), it’s a leap of about
the same magnitude for a sequential programmer to learn con-
currency (“what’s a race?” “what’s a deadlock?” “how can it come
up, and how do I avoid it?” “what constructs actually serialize
the program that I thought was parallel?” and beyond the “whats”
and “hows,” “why are the correct design practices actually cor-
rect?”). The vast majority of programmers aren’t there today, just
as the vast majority of programmers 15 years ago didn’t yet grok
objects. But the concurrent programming model is learnable,
particularly if we stick to lock-based programming, and once
grokked, it isn’t that much harder than OOP and hopefully can
become just as natural. Just be ready and allow for the invest-
ment in training and time, for you and for your team.

(I deliberately limit the aforementioned discussion to lock-
based concurrent programming models. There is also lock-free
programming, supported most directly at the language level in
Java 5 and in at least one popular C++ compiler. But concur-
rent lock-free programming is known to be very much harder
for programmers to understand and reason about than even con-
current lock-based programming. Most of the time, only systems
and library writers should have to understand lock-free pro-
gramming, although virtually everybody should be able to take
advantage of the lock-free systems and libraries those people
produce.)

What it Means for Us
Okay, back to what it means for us.

• The clear primary consequence we’ve already covered is that
applications will increasingly need to be concurrent if they
want to fully exploit CPU throughput gains that have now
started becoming available and will continue to materialize
over the next several years. “Oh, performance doesn’t matter
so much, computers just keep getting faster” has always been
a naïve statement to be viewed with suspicion, and for the
near future, it will almost always be simply wrong.

Now, not all applications (or more precisely, important op-
erations of an application) are amenable to parallelization.
Some problems, such as compilation, are almost ideally par-
allelizable. Others aren’t; the usual counterexample here is
that just because it takes one woman nine months to produce
a baby doesn’t imply that nine women could produce one

20 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

So, a dual-core CPU that combines two 3GHz cores
practically offers 6GHz of processing power. Right?
Wrong. Even having two threads running on two physi-

cal processors doesn’t mean getting two times the perfor-
mance. True, there are some kinds of problems that are in-
herently parallelizable and can approach linear throughput
gains; a typical example is compilation, which can run close
to twice as fast on a carefully managed dual-CPU dual-disk
system.

Similarly, most multithreaded applications won’t run twice
as fast on a dual-core box, although they should run faster
than on a single-core CPU. The performance gain just isn’t
linear, that’s all.

Why not? First, there is coordination overhead between
the cores to ensure cache coherency (a consistent view of
cache and of main memory) and to perform other hand-
shaking. Today, a two- or four-processor machine isn’t re-
ally two or four times as fast as a single CPU even for mul-
tithreaded applications. The problem remains essentially the
same even when the CPUs in question sit on the same die.

Second, unless the two cores are running different pro-
cesses, or different threads of a single process that are well-
written to run independently and almost never wait for each
other, they won’t be well utilized. (Despite this, I will spec-
ulate that today’s single-threaded applications as actually used
in the field could see a performance boost for most users by
going to a dual-core chip, not because the extra core is ac-
tually doing anything useful, but because it is running the ad-
ware and spyware that infest many users’ systems and are
otherwise slowing down the single CPU that user has today.
I leave it up to you to decide whether adding a CPU to run
your spyware is the best solution to that problem.)

If you’re running a single-threaded application, then the
application can only make use of one core. There should be
some speedup as the operating system and the application
can run on separate cores, but typically, the OS isn’t going
to be maxing out the CPU anyway, so one of the cores will
be mostly idle. (Again, the spyware can share the OS’s core
most of the time.)

—H.S.

Myths and Realities:
2×3GHz≠6GHz

baby in one month. You’ve probably come across that ana-
logy before. But did you notice the problem with leaving the
analogy at that? Here’s the trick question to ask the next per-
son who uses it on you: Can you conclude from this that the
Human Baby Problem is inherently not amenable to paral-
lelization? Usually, people relating this analogy err in quickly
concluding that it demonstrates an inherently nonparallel prob-
lem, but that’s actually not necessarily correct at all. It is in-
deed an inherently nonparallel problem if the goal is to pro-
duce one child. It is actually an ideally parallelizable problem
if the goal is to produce many children! Knowing the real goals
can make all the difference. This basic goal-oriented princi-
ple is something to keep in mind when considering whether
and how to parallelize your software.

• Perhaps a less obvious consequence is that applications are
likely to become increasingly CPU-bound. Of course, not ev-
ery application operation will be CPU-bound, and even those
that will be affected won’t become CPU-bound overnight if
they aren’t already, but we seem to have reached the end of
the “applications are increasingly I/O-bound or network-bound
or database-bound” trend, because performance in those ar-
eas is still improving rapidly (gigabit Wi-Fi, anyone?) while
traditional CPU performance-enhancing techniques have
maxed out. Consider: We’re stopping in the 3GHz range for
now. Therefore, single-threaded programs are likely not go-
ing to get much faster any more for now except for benefits
from further cache size growth (which is the main good news).
Other gains are likely to be incremental and much smaller
than we’ve been used to seeing in the past; for example, as
chip designers find new ways to keep pipelines full and avoid
stalls, which are areas where the low-hanging fruit has already

been harvested. The demand for new application features is
unlikely to abate, and even more so the demand to handle
vastly growing quantities of application data is unlikely to stop
accelerating. As we continue to demand that programs do
more, they will increasingly often find that they run out of
CPU to do it unless they can code for concurrency.

There are two ways to deal with this sea change toward con-
currency. One is to redesign your applications for concurrency.
The other is frugality, or writing code that is more efficient and
less wasteful. This leads to the third interesting consequence:

• Efficiency and performance optimization will get more— not
less— important. Those languages that already lend them-
selves to heavy optimization will find new life; those that
don’t will need to find ways to compete and become more
efficient and optimizable. Expect long-term increased demand
for performance-oriented languages and systems.

• Finally, programming languages and systems will increasingly
be forced to deal well with concurrency. Java has included sup-
port for concurrency since its beginning, although mistakes were
made that later had to be corrected over several releases to do
concurrent programming more correctly and efficiently. C++
has long been used to write heavy-duty multithreaded systems
well, but it has no standardized support for concurrency at all
(the ISO C++ standard doesn’t even mention threads, and does
so intentionally), and so typically, the concurrency is of neces-
sity accomplished by using nonportable platform-specific con-
currency features and libraries. (It’s also often incomplete; for
example, static variables must be initialized only once, which
typically requires that the compiler wrap them with a lock, but
many C++ implementations do not generate the lock.) Finally,
there are a few concurrency standards, including pthreads and
OpenMP, and some of these support implicit as well as explic-
it parallelization. Having the compiler look at your single-
threaded program and automatically figure out how to paral-
lelize it implicitly is fine and dandy, but those automatic
transformation tools are limited and don’t yield nearly the gains
of explicit concurrency control that you code yourself.

Conclusion
If you haven’t done so already, now is the time to take a hard
look at the design of your application, determine what opera-
tions are CPU-sensitive now or are likely to become so soon,
and identify how those places could benefit from concurrency.
Now is also the time for you and your team to grok concurrent
programming’s requirements, pitfalls, styles, and idioms.

A few rare classes of applications are naturally parallelizable,
but most aren’t. Even when you know exactly where you’re
CPU-bound, you may well find it difficult to figure out how to
parallelize those operations; all the more reason to start think-
ing about it now. Implicitly parallelizing compilers can help a
little, but don’t expect much; they can’t do nearly as good a job
of parallelizing your sequential program as you could do by
turning it into an explicitly parallel and threaded version.

Thanks to continued cache growth and probably a few more
incremental straight-line control flow optimizations, the free lunch
will continue a little while longer; but starting today, the buffet
will only be serving that one entrée and that one dessert. The
filet mignon of throughput gains is still on the menu, but now
it costs extra-extra development effort, extra code complexity,
and extra testing effort. The good news is that for many class-
es of applications the extra effort will be worthwhile because it
will let them fully exploit the continuing exponential gains in
processor throughput.

DDJ

(continued from page 20)

22 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

T
he era of 64-bit computing started with
the release of the Alpha processor by
Digital Equipment Corp. in 1992. Lat-
er, several other major computer hard-

ware companies, namely Hewlett-Packard,
Fujitsu, Sun Microsystems, and IBM, moved
into the 64-bit market with their offerings.
In 1995, the Fujitsu-owned HAL Comput-
er launched the industry’s first workstations
based on a 64-bit SPARC CPU, SPARC64.
Shortly after HAL’s announcement, Sun
launched the long expected Ultra 1 and 2
workstations, which used Sun’s 64-bit Ul-
traSPARC processor. In 1997, IBM released
RS64, the first 64-bit PowerPC RISC chip.
In 1998, IBM supplemented RS64 with a
64-bit SMP chip, POWER3. It took anoth-
er five years for the 64-bit computing to
come to mass market.

In this article, I examine two modern
64-bit platforms widely available in the
sub-$5000 range— the AMD64 and Pow-
erPC64. In the process, I evaluate the per-
formance of 32- and 64-bit Java Virtual
Machines from two major JVM vendors,
Sun Microsystems and IBM, using the
SPECjvm98 and SPECjbb2000 benchmarks
from Standard Performance Evaluation
Corp. (http://www.spec.org/).

The AMD64 is a 64-bit platform from
Advanced Micro Devices (AMD) that ex-
tends the industry-standard x86 instruc-
tion set architecture. It was designed to
deliver full compatibility with existing x86
applications and operating systems with-
out paying performance penalties when
working in 32-bit mode. In April 2003,
AMD announced the availability of

Opteron, the first processor supporting
AMD64 architecture.

In 2003, IBM introduced PowerPC 970,
a single-core processor that was derived
from IBM’s POWER4 dual-core CPU and
brought processing power of the 64-bit
PowerPC architecture to desktops and low-
end servers. Additionally, the PowerPC
970, like the POWER4, was also able to
process 32-bit instructions natively with-
out any performance penalty. Soon after
this, in August 2003, Apple Computer start-
ed shipping Power Mac G5 computers fea-
turing PowerPC 970.

Java Backgrounder
Around the time when the first 64-bit pro-
cessor came to life, the history of Java tech-
nology started. Java is a robust, general-
purpose, object-oriented, architecture-
neutral, portable, secure, multithreaded
programming language, with implicit mem-
ory management. Java’s object-oriented
features are mostly the same as C++, with
the addition of interfaces and extensions
for more dynamic method resolution. Un-
like C++, Java does not support operator
overloading, multiple inheritance, or au-
tomatic type coercion. Robustness is most-
ly achieved by extensive dynamic (runtime)
checking and a built-in exception-handling
mechanism. The Java compiler generates
bytecode instructions that are indepen-
dent of any specific architecture, and thus
provides architecture neutrality. Addition-
al portability is achieved by specifying the
sizes of the primitive data types and the
behavior of arithmetic operators on these
types. For example, int always means a
signed two’s complement 32-bit integer,
and float always means a 32-bit IEEE 754
floating-point number. Java also has a set
of synchronization primitives that are
based on the widely used monitor and
condition variable paradigm. Automatic
garbage collection (GC) simplifies the task
of Java programming and dramatically de-
creases the number of bugs, but makes
the system somewhat more complicated.

In 1991, one year before Digital Equip-
ment Corp. introduced the first 64-bit pro-
cessor, Sun Microsystems initiated “the
Green Project.” The goal of the project was

to anticipate and plan for the “next wave”
of computing. The initial conclusion of the
project was that the world would soon see
the fusion of mobile digital devices and
computers. In the summer of 1992, the
Green Team presented ∗ 7 (“StarSeven”), a
working demo of an interactive handheld
entertainment device controller with an an-
imated touch-screen user interface. The
device was able to control a number of
different platforms by using Oak, an en-
tirely new programming language. The

main feature of Oak, developed by James
Gosling, was that it was a completely pro-
cessor-independent language. During the
next several years, the language was re-
targeted for the Internet and later became
known as “Java.” The name “Oak” was dis-
missed because of the copyright issues.

In May 1995, Sun formally announced
Java, a programming language that lets
developers write a program once and run
it on multiple operating systems and hard-
ware platforms (“write once, run any-
where”). In 1996, Sun released the Java
Development Kit (JDK 1.0), and shortly
thereafter, 10 major operating-system ven-
dors announced their plan to distribute
Java technology with their products— in-
cluding Microsoft, which licensed Java
from Sun for five years at a cost of ap-
proximately $3.75 million per year. In Oc-
tober 1996, Sun announced the first Just-
in-Time compiler for the Java platform.
JDK 1.1, shipped in February 1997, was
downloaded more than 220,000 times
within the next three weeks after its re-
lease. By the beginning of the next year,
this number reached 2 million.

64-Bit Computing
& JVM Performance
More horsepower
doesn’t always mean
better performance

SERGIY KYRYLKOV

Sergiy is CTO of SA Consulting and can
be contacted at mail@sergiy.kyrylkov.name.

24 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“The benefits of
64-bit computing
show up in a
number of
applications”

At the end of 1998, the Java 2 platform
was released. Roughly half a year later, in
the middle of 1999, Sun announced the
three editions of the Java platform: J2ME
(Java 2 Micro Edition), for mobile, wire-
less, and other resource-constrained en-
vironments; J2SE (Java 2 Standard Edition),
for desktop environments; and J2EE (Java
2 Enterprise Edition), for Java-based ap-
plication servers. J2EE laid out a frame-
work for a number of Java development
technologies that have already gained
widespread use, such as Enterprise Java-
Beans (EJB) and JavaServer Pages (JSP).
The next upgrade to Java technology, J2SE
1.3, appeared in May 2000 and several
weeks later it gained industry support from
Apple with Mac OS X.

J2SE 1.4 was released in February 2002
and was a major new release of the Java
platform. It contained 62 percent more
classes and interfaces than J2SE 13. Among
other features, it provided extensive XML
support, support for secure sockets (using
the SSL and TLS protocols), new I/O API,
logging, regular expressions, and assertions.

In September 2004, the most recent re-
lease of Java, J2SE 5.0 (internal version
number 1.5.0) codename “Tiger,” became
publicly available. Tiger contains the first
significant updates to Java since its 1.0 re-
lease in 1996, including support for gener-
ics, autoboxing and autoboxing of primi-
tive types, enhanced for loops, enumerated
types, formatted I/O, and varargs.

The Java Virtual Machine (JVM) is a
specification for software responsible for
running Java programs compiled into a
special instruction set—Java bytecode.
The JVM is an abstract computing machine
and is responsible for Java hardware and
OS independence, the small size of Java
compiled code, and has the ability to pre-
vent malicious programs from executing.
The Java Virtual Machine does not assume
any particular implementation technolo-
gy, hardware, or operating system. There
are several JVM components, whose 32-
bit and 64-bit version performance may
differ, adding to the general performance
difference between 32-bit and 64-bit bi-
naries. Among other things, for example,
they include the Just-in-Time (JIT) com-
piler and garbage collection (GC).

The JIT compiler has been a part of JVM
since JDK 1.0.2, when Java was viewed
only as a client-side technology. The JIT
compiler implements dynamic translation
of Java bytecode to hardware machine
code before execution. The idea behind
JIT is that Java bytecode is smaller and eas-
ier to compile than the original Java source
code. The result is that the time spent com-
piling Java bytecode on any platform to
machine code is much less than the time
to compile machine code straight from the
Java source. In addition, JITed code can

run as fast as statically compiled code. In
32-bit and 64-bit JVMs, the corresponding
JITs take somewhat different time to com-
pile Java bytecode to the final actual ma-
chine code and can apply different opti-
mizations, affecting the total performance
difference between the two versions both
in client- and server-side applications.

Garbage collection is an automatic
memory-management system, which re-
claims memory no longer needed by ob-
jects. From the point of view of software
engineering, this provides one of the
biggest advantages of Java— program-
mers can forget about low-level memo-
ry-management details. Garbage collec-
tion also removes the two big sources of
bugs: incomplete deallocation (memory
leaks) and premature deallocation (cor-
rupted pointers). Garbage collection ac-
counts for a significant portion of the run-
ning time of the Java application, since it
has to be performed regularly to free the
Java heap of inaccessible objects. Since
the size of data in the Java heap in 32-bit
and 64-bit differs in one way or another,
the garbage collection performance dif-
ference also contributes to the general per-
formance difference between 32-bit and
64-bit JVMs.

64-Bit Backgrounder
64-bit computing comprises several key el-
ements, most importantly 64-bit address-
ing. In practical terms, 64-bit addressing is
achieved with 64-bit integer registers (or
general-purpose registers in RISC terms).
64-bit registers let 64-bit pointers fit into a
single register. The advantage of 64-bit
pointers is that they make it possible to ad-
dress huge (as for present times) amounts
of memory. While a 32-bit processor is ca-
pable of utilizing only 232 bytes or about
4GB of memory, a 64-bit processor theo-
retically can address 264 bytes or about 18
billion GB of memory. The practical limit
of addressable memory in modern 64-bit
systems is usually lower, depending on spe-
cific hardware architecture and operating
systems. For example, in Linux-based op-
erating systems, the addressable memory
is limited to 242 bytes or 4096GB due to
the current design of internal Linux kernel
data structures. Obviously, this is still good
enough to break space limitations of the
current 32-bit systems.

The second important aspect of 64-bit
computing is 64-bit integer arithmetic.
Again, this is a simple consequence of hav-
ing 64-bit wide integer registers capable of
storing much larger integer quantities. The
direct result of this may be a significant
performance improvement for certain types
of applications dealing with intensive inte-
ger computations of large data.

The third, but equally important char-
acteristic of 64-bit computing is the use

of 64-bit operating systems and applica-
tions. Such software must support all 64-
bit features of the hardware, including 64-
bit addressing and arithmetic. Usually it
comes with some extra benefits, such as
the ability to operate on more files and
larger files (although this also may be a
feature of certain 32-bit software).

The benefits of 64-bit computing show
up in a number of applications. Database
servers use a large address space for scal-
ability, maintaining larger buffer pools,
caches, and sort heaps in memory to re-
duce the volume of I/O they perform. They
can also allocate more per-user memory,
support many more users, and work with
much larger files. Simulation and other com-
putationally intensive programs benefit from
keeping much larger arrays of data entire-
ly in memory. Finally, a large group of Java
programs—J2EE application servers—have
been enjoying the benefits of 64-bit com-
puting for some time now, utilizing mod-
ern 64-bit Java implementations.

The major drawback of 64-bit comput-
ing comes from the fact that 64-bit bina-
ries are typically larger than their 32-bit
counterparts. As a consequence, with a
larger final machine code size and a giv-
en size of cache and translation lookaside
buffer (TLB), the chances of both cache
and TLB misses increase. This, in turn,
may decrease the performance and negate
the 64-bit benefits.

Performance Evaluation
The test systems I used to examine the
performance of the 32- and 64-bit JVMs
from Sun and IBM are two 64-bit dual-
CPU workstations — an AMD64-based
Opteron system and the PowerPC64-based
Apple Power Mac G5. Both workstations
run Linux-based 64-bit operating systems,
Fedora Core 2, and a beta version of Ter-
ra Soft Solutions Y-HPC accordingly, fea-
turing Linux kernel 2.6.x.

I used the SPECjvm98 and SPECjbb2000
benchmarks from SPEC to gauge the per-
formance of the JVMs. SPECjvm98 measures
the client-side performance of Java Virtual
Machines using these seven applications:

• _201_compress, a popular compression
program.

• _202_ jess, a Java version of NASA’s
CLIPS rule-based expert system.

• _209_db, data management bench-
marking software.

• _213_ javac, the JDK Java compiler.
• _222_mpegaudio, an MPEG-3 audio de-

coder.
• _227_mtrt, a dual-threaded program that

ray traces an image file.
• _228_ jack, a real parser-generator.

SPECjbb2000 (the Java Business Bench-
mark) is a benchmark for evaluating the

http://www.ddj.com Dr. Dobb’s Journal, March 2005 25

performance of server-side Java, which
emulates a three-tier system, a common
type of server-side Java applications.

With the SPECjvm98 benchmark, I
measured the total execution time of ev-
ery benchmark application in seconds,

where the lower value is better. The heap
size for all SPECjvm98 benchmarks is var-
ied by the JVM between a minimum
heap size of 16MB and maximum heap
size of 32MB. In the SPECjbb2000 bench-
mark, I measured the number of opera-
tions per second for three different heap
sizes. Here, the higher value corresponds
to the higher performance. Each bench-
mark application was run three times.
For final results, the best runs are re-
ported.

Figures 1 and 2 show the performance
of 32-bit and 64-bit Linux versions of the
Sun Java 2 Standard Edition Development
Kit 5.0 (J2SE 1.5.0) in SPECjvm98 and
SPECjbb2000 benchmarks on the AMD64
platform. In three SPECjvm98 benchmark
applications out of seven—_201_compress,
_222_mpegaudio, and _228_ jack— the 64-
bit version of the JVM shows a better per-
formance than its 32-bit counterpart. In
SPECjbb2000, the performance of the 64-
bit version is higher only for large enough
heap sizes. In the case of 256MB heap
size, the fact that the total amount of live
data is larger in the 64-bit version of the
JVM causes more frequent garbage col-
lections, which decreases the application
throughput.

Figures 3 and 4 show the performance
of 32-bit and 64-bit versions of the IBM
Developer Kit for Linux, Java 2 Tech-
nology Edition, Version 1.4.2 GA in SPEC-
jvm98 and SPECjbb2000 benchmarks on
the AMD64 platform. For this JVM, a dif-
ferent set of three out of seven bench-
mark applications—_209_db, _213_ javac,
and again _228_ jack— shows better
performance in the 64-bit environment.
In the SPECjbb2000 benchmark, the 64-
bit version of IBM’s JVM does not show
better performance than its 32-bit coun-
terpart in any of the three tested heap
sizes.

Figures 5 and 6 illustrate the perfor-
mance of 32-bit and 64-bit versions of the
IBM Developer Kit for Linux, Java 2 Tech-
nology Edition, Version 1.4.2 GA in
SPECjvm98 and SPECjbb2000 benchmarks
on the PowerPC64 platform. Here, in all
SPECjvm98 benchmark applications and
in SPECjbb2000, performance of the 64-
bit JVM is worse than the performance of
its 32-bit counterpart.

Conclusion
Based on the benchmark results for the
PowerPC64 platform running a Linux-based
operating system (the only 64-bit OS avail-
able for Apple Power Mac G5 today) and
IBM JVM, you can conclude that on this
platform, any application that does not re-
quire 64-bit features should be used on a
32-bit JVM because, in all cases, perfor-
mance of the 64-bit JVM here is lower than
the performance of its 32-bit counterpart.

26 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 1: Performance of 32-bit and 64-bit Linux versions of the Sun Java 2
Standard Edition Development Kit 5.0 (J2SE 1.5.0) in SPECjvm98 benchmarks on
the AMD64 platform.

Figure 2: Performance of 32-bit and 64-bit Linux versions of Sun Java 2 Standard
Edition Development Kit 5.0 (J2SE 1.5.0) in SPECjbb2000 benchmarks on the
AMD64 platform.

Figure 3: Performance of 32-bit and 64-bit versions of IBM Developer Kit for Linux,
Java 2 Technology Edition, Version 1.4.2 GA in SPECjvm98 benchmarks on the
AMD64 platform.

Figure 4: Performance of 32-bit and 64-bit versions of IBM Developer Kit for Linux,
Java 2 Technology Edition, Version 1.4.2 GA in SPECjbb2000 benchmarks on the
AMD64 platform.

On the AMD64 platform running a Linux-
based OS and both Sun and IBM JVMs, you
see that (in the general case) it is hard to
predict performance difference for Java apps
run on the 32-bit JVMs and their 64-bit coun-
terparts. The performance benefits here are
both application and JVM dependent. In a
case when maximum performance is re-
quired, it is necessary to benchmark a spe-
cific application in its specific execution en-
vironment to be able to evaluate potential
benefits of switching to 64-bit computing.

There are several important things worth
noting here. First, although both SPECjvm98
and SPECjbb2000 are industry-standard
benchmarks, they are limited in scope.
Thus, the obtained results may hold for a
large set of Java applications, but not for
the whole range. Second, with more and
more widespread adoption of 64-bit com-
puting, we can expect continuous im-
provement of the 64-bit tools, including the
64-bit JVMs, which may further improve
their performance. Third, we tested only
several specific combinations of hardware
platforms, operating systems, and JVMs.
Thus, the results of the JVM benchmarks
on the 64-bit edition of Windows XP/2003
or the upcoming 64-bit Mac OS X may pro-
vide quite different insights.

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 27

Figure 5: Performance of 32-bit and 64-bit versions of IBM Developer Kit for Linux,
Java 2 Technology Edition, Version 1.4.2 GA in SPECjvm98 benchmarks on the
PowerPC64 platform.

Figure 6: Performance of 32-bit and 64-bit versions of IBM Developer Kit for Linux,
Java 2 Technology Edition, Version 1.4.2 GA in SPECjbb2000 benchmarks on the
PowerPC64 platform.

6
4-bit computing is moving into the
mainstream and will gradually re-
place 32-bit computing. This shift
will have a major impact on software

in its current form. Among other things,
the shift will require porting applications
and rewriting system software, including
the operating system. In this article, I ex-
amine the structure of what will likely be
major players in the 64-bit software
world—64-bit Windows and the 64-bit
version of the Common Language Run-
time (CLR). Along the way, I point out
some of the advantages of moving to 64-
bit platforms.

While 64-bit processors have been
around for some time, their adoption has
been gradual, mainly due to the lack of
software to run on them. To take full ad-
vantage of 64-bit processors, the software
needs to be built for 64-bit microproces-
sors— this cannot happen overnight. More
recently, however, 64-bit processors are

picking up momentum because of a com-
bined effort on the part of both software
and hardware vendors.

Early last year, for instance, we saw the
arrival of 64-bit processors from Intel and
Advanced Micro Devices (AMD)— the In-
tel Itanium based on IA-64 architecture
from Intel, and AMD Opteron and AMD
Athlon64 based on x86-64 architecture
from AMD, respectively. Moreover, addi-
tional developments have occurred since
the beginning of last year. For one thing,
AMD has emerged a leader in 64-bit mi-
croprocessor sales. Second, Hewlett-
Packard has also embraced the AMD pro-
cessors and the AMD Opteron-based HP
ProLiant Servers are now available. Also,
Intel has announced its own equivalent of
x86-64 in the form of Intel EM64T (Ex-
tended Memory 64 Technology).

Microsoft Windows 64-Bit Edition
On the software side, Microsoft has been
working on a 64-bit version of Win-
dows —Windows XP Professional x64
Edition for the desktop (http://www
.microsoft.com/windowsxp/64bit/evalu-
ation/upgrade.mspx), and Windows Serv-
er 2003 x64 Edition and Windows Serv-
er 2003 for servers (http://www.microsoft
.com/windowsserver2003/64bit/x64/trial/
default.mspx).

The advantages of 64-bit Windows over
32-bit Windows include an increase in
performance and scalability (since the 64-
bit processor is capable of processing
more data per clock cycle), faster perfor-

mance and better accuracy of numeric cal-
culations, and the capability to address
more memory. Addressing more memory
means that a single machine can support
more users than its 32-bit counterpart. This

means that the total cost of ownership re-
duces because a single machine supports
more users and more applications than
before, which reduces the number of
servers required for an organization to run
its business.

However, for Windows 64-bit to be suc-
cessful, it needs to ensure that current 32-
bit applications are supported. Conse-
quently, the migration from 32-bit to 64-bit

Windows
& the World of
64-Bit Computing

Greater performance
and more memory

VIKRAM SRIVATSA

Vikram is a software designer/specialist for
Hewlett-Packard GDIC. He can be con-
tacted at vikram404@gmail.com.

30 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“For Windows
64-bit to be
successful, it needs
to ensure that
current 32-bit
applications are
supported”

will take time, during which both 32-bit
and 64-bit applications need to work side
by side. To support this shift, Windows
64-bit edition includes a subsystem known
as “WOW64.”

WOW64
WOW64, short for “Windows-32-on-
Windows-64,” is responsible for provid-
ing two levels of support for 32-bit lega-
cy applications.

First, the system files in Windows x64
Edition are not present on just the Win-
dows\System32 folder, but split into two
folders to separate the 32-bit applications
from the 64-bit applications. The WOW64
subsystem intercepts calls from a 32-bit
legacy application and redirects it to the
Windows\SysWow64 folder; see Figure 1.
If the call is from a 64-bit application, then
the call is routed to the Windows\Sys-
tem32 folder and does not involve the
WOW64. What’s notable here is that Mi-
crosoft has retained the name System32
for the folder, which hosts the 64-bit sys-
tem files. Figure 2, a snapshot from a sys-
tem running Windows Server 2003 x64
Edition, highlights the classification of the
Program Files folder into Program Files,
which stores 64-bit applications and Pro-
gram Files(x86), which stores 32-bit lega-
cy applications.

Second, the WOW64 subsystem also
provides redirection at the Registry lev-
el; see Figure 3. If the call is from a 32-
bit application, then the call to access
the HKLM\Software registry hive is in-
tercepted by the WOW64 subsystem and
redirected to the HKLM\Software\Wow-
6432Node. If the call is from a 64-bit ap-
plication, then it is routed to the HKLM\
Software node. Figure 4, the Registry
from a system running Windows 2003
Server x64 Edition, shows the Wow-
6432Node.

Although the compatibility has been
achieved with respect to 32-bit applica-
tions, the same is not true regarding de-
vice drivers. The 64-bit edition requires
64-bit native drivers for all devices that
are part of the system.

64-Bit Common Language Runtime
For 64-bit platforms to gain widespread ac-
ceptance, there must be widespread avail-
ability of developer tools and developer
platforms. Microsoft’s approach has been
to add 64-bit support for its core develop-
ment platform— the .NET Framework.

The .NET Framework 2.0 is currently in
Beta 1 and codenamed “Whidbey.” This
release has two versions of the Frame-
work— one for 32-bit applications and
one for 64-bit applications (http://msdn
.microsoft.com/netframework/downloads/
updates/default.aspx) means that the 64-
bit edition of Windows will have two

copies of the runtime. The .NET Frame-
work coupled with Visual Studio 2005 pro-
vides a platform for developing 64-bit ap-
plications. The 32-bit version of the .NET
Framework will reside in the \Win-
dows\Microsoft.NET\Framework folder,
while the 64-bit version of the .NET
Framework resides in the \Windows\Mi-
crosoft.NET\Framework64 Folder; see Fig-
ure 5. The configuration options for these
two versions of the Framework are also
listed separately in the Administrative Tools
Menu; see Figure 6.

Why two frameworks? One of the wide-
ly claimed advantages of compiling to
MSIL is that the Just-In-Time compilation
takes care of hardware-related specifics.
In this case, however, there are other fac-
tors that have to be considered, such as
PInvoke (Platform Invocation Services)
and COM Interop, which need special
handling. It is also possible to write as-
semblies using Visual C++ .NET, which
contains both managed and unmanaged
sections. Such assemblies are referred to
as “mixed-mode” assemblies or “IJW” as-
semblies, where IJW stands for “It Just
Works.” Whenever such scenarios are in-

volved, there needs to be platform-specific
code; hence the need for two frameworks,
each specific to the particular platform
that arises. Consequently, Microsoft ships
two versions of the Framework. This con-
cept becomes clearer when you consider
the Global Assembly Cache (Figure 7).
The key column to look at in Figure 7 is
the one entitled “Processor Architecture,”
of which there are three types — x86,
AMD64, and MSIL. “AMD64” is shown
since this snapshot is from a machine run-
ning Windows x64 Edition. In the case of
Intel Itanium-based systems, the Proces-
sor Architecture “Itanium” would replace
AMD64. Processor architecture denotes
the platform for which the assembly has
been built.

There is only a single copy of the as-
semblies compiled to MSIL because MSIL
is neutral to processor architecture and
the same assembly works on either x86
or the AMD64 platforms without modifi-
cations. These MSIL assemblies are also
referred to as “portable assemblies.” For
example, the System.Xml in Figure 7 has
only one copy of the System.Xml, which
has the Processor Architecture of MSIL.

http://www.ddj.com Dr. Dobb’s Journal, March 2005 31

Figure 1: Filesystem redirection.

32-Bit
Process

64-Bit
Process

Windows\System32

Windows\SysWow64

Windows\System32

Windows\System32

WOW64

Figure 2: A system running Windows Server 2003 x64 Edition.

However, assemblies that are built tar-
geting particular processor architectures
(such as x86 architecture or the AMD64
architecture) need to be present separately,
with one assembly built specifically for
the AMD64 architecture and one assem-
bly built specifically for the x86 architec-
ture. These assemblies are referred to as
“platform-specific assemblies.” For exam-
ple, take a look at the “System.Enterprise-
Services” assembly in Figure 7. There is a
separate assembly for AMD64 and x86.

The Whidbey team has tried to have as
many MSIL-based assemblies as possible,
so that there is only one copy on disk.
However, in some scenarios, it is neces-
sary to write code that utilizes COM In-
terop or that is written based on some
platform-specific feature, such as a point-
er size. These assemblies would get into
the platform-specific section of the Glob-
al Assembly Cache (GAC).

Internally, in fact, there are multiple
folders maintained for storing these as-
semblies separately. A look at the \Win-
dows\Assembly folder from the com-
mand line (Figure 8) shows the
organization of the GAC. Table 1 de-
scribes these folders.

Common Language Runtime Changes
The Common Language Runtime (CLR)
has undergone internal changes to sup-
port the move to 64-bit computing. For
the most part, the changes are related to
code generation, garbage collection, ex-
ception handling, and debugging.

• Code generation. The 64-bit version of
the CLR needs to support development
of 64-bit native applications. This means
that a new Just-In-Time (JIT) Compiler
had to be built for each of the new plat-
forms, namely the IA64 and the x64 plat-
forms for generating native code for the
specific platforms.

• Garbage collection. A 64-bit processor
can support more memory and break
the 4-GB memory barrier that existed
with 32-bit systems. Hence, the garbage
collector has been tuned to support larg-
er memory.

• Exception handling. Exception handling
for 64-bit systems has been completely
revamped and rewritten, while retaining
the end-user experience to be the same.

• Debugging. The debugger is dependent
on the code-generation and exception-
handling subsystems. Because of the
changes to these two subsystems, the
debugger also had to undergo changes.

Development Tools
Visual Studio 2005 supports development
of 64-bit applications using Visual C++
.NET, Visual C#, and Visual Basic .NET.
Visual J# will not support development of

32 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 3: Registry redirection.

32-Bit
Process

64-Bit
Process

HKLM\Software

HKLM\Software\Wow432Node

HKLM\Software

HKLM\Software

WOW64

Figure 4: Wow6432Node.

Figure 5: .NET Framework 32-bit resides in the \Windows\Microsoft.NET\
Framework folder, while the 64-bit version resides in the \Windows\
Microsoft.NET\Framework64 folder.

64-bit applications as part of Visual Stu-
dio 2005. Figure 9 depicts the various lan-
guages supported on Visual Studio 2005
and platforms supported by these man-
aged languages.

The Visual Studio 2005 development en-
vironment will ship as a 32-bit application
that makes use of the WOW64 system.
Most features provided on the 32-bit plat-
form are available on the 64-bit platform.
A notable exception is the lack of the Edit
and Continue features, which have been
reintroduced for the 32-bit versions of C#
and VB.NET.

Apart from Visual Studio 2005, the Win-
dows Platform SDK contains a 64-bit com-
piler toolset, which includes a Visual C++
compiler for developing 64-bit applications.

Precautionary Measures
Before looking at what’s involved in de-
veloping 64-bit native applications, it is
worth asking, “What steps can I take to-
day in my application to ensure that the
code will be portable to 64-bit?”

It is possible to take some precaution-
ary measures and the toolset also provides
some support. For instance, the Visual C++
compiler supports the /Wp64 switch that
detects portability issues that may arise
from the source code being compiled.

A similar facility is being built for Vi-
sual Studio 2005 by adding support for
detecting these compatibility issues at
compilation. This is being achieved by
adding rules to FxCop, which is now in-
tegrated with the Visual Studio 2005 IDE.
Although not part of Beta 1, the final re-
lease of Visual Studio 2005 will have Fx-
Cop-based rules that cover aspects in
code that could affect portability of the
application.

In the case of the managed languages,
these features create issues with porta-
bility:

• Interop-related code that involves COM
Interop and Platform Invoke: Native 64-
bit applications cannot load 32-bit COM
DLLs. That is, a 64-bit process cannot
transition into 32-bit code and host a
32-bit DLL within the same process. In-
terop between processor architectures
is not possible within the same process.
Consequently, when 64-bit applications
have to utilize any COM DLLs, a 64-bit
version of the COM DLL is required.

In many cases, however, these COM
DLLs may be third-party code to which
you do not have access. In such cases,
the application needs to be built to tar-
get x86 architecture, in which case it
runs using the WOW64 subsystem. The
other option is to host the 32-bit DLL
in a separate 32-bit process and make
RPC calls to this host from the 64-bit
application.

• Equality comparison of floating-point
numbers. It is not guaranteed that the
same IL will produce the same results
on 32-bit and 64-bit platforms. Hence,
it is recommended that the equality
comparison not be made directly on
floating-point numbers. Floating-point
representation on 64-bit computers is
based on the IEEE-754 Standard, which
allows for differences. The major im-
pact of this is on financial applications
and graphics-based applications where
precision is important. Algorithms
should be designed in such a way that
it can handle the skewed values. (For
more information, see David Gold-
berg’s paper “What Every Computer
Scientist Should Know about Floating-
Point Arithmetic,” http://docs.sun.com/
source/806-3568/ncg_ goldberg.html.)

• Explicit control of layout of a structure
using the StructLayout attribute. The
StructLayoutAttribute is applied to
structures and classes. When it is spec-
ified as Explicit, the precise position
of each member of an object in un-
managed memory is explicitly con-
trolled. Compared to a 32-bit platform,
the packing of structures is different
on a 64-bit platform due to the data
types used in the structure. Conse-
quently, the use of explicit control of
the layout of a structure should be
avoided.

• Bitwise operations on numbers. C# pro-
vides bitwise operators, which include
the bitwise AND, bitwise OR, left-shift,
and right-shift operators. Bitwise oper-
ations on data types vary from 32-bit to
64-bit computers since the internal rep-
resentation of the data types vary across
the platforms.

• Custom Serialization. The .NET Frame-
work provides two options for serial-
ization— an automatic serialization that
can be achieved by using the Serializ-
able attribute, and a custom serializa-
tion that can be achieved by getting

http://www.ddj.com Dr. Dobb’s Journal, March 2005 33

Figure 6: Administrative Tools menu.

Folder Description

GAC Stores the assemblies built for the .NET Framework 1.0/1.1
GAC_32 Stores the 32-bit assemblies built using .NET Framework 2.0.
GAC_64 Stores the 64-bit assemblies built using .NET Framework 2.0.
GAC_MSIL Stores the portable assemblies; that is, those that have the

Processor architecture set as MSIL.

Table 1: Organization of the GAC.

Figure 7: Global Assembly Cache.

the type to implement the ISerializ-
able interface. When the underlying
serialization mechanism provided by
the .NET Framework is utilized, you
will not face any problems. However,
when custom serialization has been

implemented via ISerializable, then
there’s a chance that the results might
vary from 32-bit platform to 64-bit
platform, depending on the custom
approach adopted to achieve the se-
rialization.

Of course, there may be times when
the application demands use of some of
these features. In such scenarios, it is nec-
essary to build and test a 32-bit version
and 64-bit version separately.

Development Using
Visual Studio 2005
Again, Visual Studio 2005 supports the de-
velopment of 64-bit applications that tar-
get the platforms in Table 2. You get the
same user experience with the IDE and
build the application as you would any
normal application, keeping in mind the
previously presented guidelines.

While compiling the application, the tar-
get platform can be set on the Property
Pages for the Project. The property pages
include a Build tab, which lets you spec-
ify the platform. In Figure 10, for instance,
the options map the compiler switch for
C# and VB.NET called “/platform.” For

34 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 8: The \Windows\Assembly folder from the command line.

Figure 9: Languages/platforms supported on Visual Studio 2005.

.NET FRAMEWORK

32-BIT

VISUAL STUDIO.NET 2005

C++ C# VB.NET J#

64-BIT

Figure 12: OS loaders loading an
executable.

32-BIT
REQUIRED

ILONLY

PE32

MAP TO PE32{+}
LAUNCH 64-BIT

LAUNCH IN
WOW64

PE32{+}
LAUNCH 64-BIT

LAUNCH IN
WOW64

Y

Y

Y

N

N

N

Figure 11: Target CPU combobox.

Figure 10: Options that map compiler switches.

Platform Description

AnyCPU Generates a platform-agnostic assembly. Also known as “portable assembly.”
x86 Generates a 32-bit assembly targeting the x86 platform.
x64 Generates a 64-bit assembly targeting the x64 platform.
Itanium Generates a 64-bit assembly targeting the Itanium platform.

Table 2: Visual Studio 2005 supports the development of 64-bit applications that
target these platforms.

VB.NET, the same option is available in
the Compile Menu on the Advanced Com-
piler Settings Dialog Box. The Target CPU
combobox in Figure 11 allows for setting
the specific CPU that the application re-
quires.

Of course, use of a specific setting de-
pends on the specific scenario:

• AnyCPU generates an assembly that is
platform agnostic. This is the IDE’s de-
fault option. An assembly compiled with
the AnyCPU option can run on x86-,
x64-, and Itanium-based systems with-
out problems. The output assembly gen-
erated is based on the PE32 (Portable
Executable 32-bit) format. (PE32 is the
file format defining the structure that all
EXEs and DLLs must use.)

• x86 is used to generate code specific
for a 32-bit Intel x86-compatible pro-
cessor. The generated output assembly
is based on the PE32 (Portable Exe-
cutable) format. The executables gen-
erated by setting this option use the
WOW64 subsystem.

• x64 is used to generate code specific
to 64-bit native application, which tar-
gets the x86-processor architecture. The
generated output assembly is based on
the PE32 {+} (Portable Executable Plus)
format (this is an extension to the ex-
isting PE32 file format). These exe-
cutables will run natively on a 64-bit
x64 machine.

• Itanium is used to generate code spe-
cific to 64-bit native applications, which
target the Itanium (IA-64) processor ar-
chitecture. The generated output as-
sembly is based on the PE32 {+}
(Portable Executable Plus) format. These
executables will run natively on a 64-
bit Itanium machine.

Another important aspect to consider
is that the application being developed
may need to work on all platforms; con-
sequently, it may not be possible to build
a platform-agnostic application. In such
cases, the development strategy would
be to make use of preprocessor direc-
tives such as #define and #if, along with
conditional compilation constants. The
code that is specific to a particular target
platform is wrapped by preprocessor di-
rectives along with conditional compila-
tion constants for the particular platform;
the compilation is performed specifying
the particular conditional compilation
constant.

The recommended conditional compi-
lation constants are:

• _AMD64_ for code that is specific to the
AMD64 platform.

• _IA64_ for code that is specific to the
IA64 platform.

•_WIN64- for code that is specific to ei-
ther of the 64-bit platforms.

Under the Hood:
Loading a .NET Executable
Switch settings specified are embedded in
the PE32 or the PE32 {+} executable gen-
erated. The PE32 {+} format is an exten-
sion to the PE32 format and has informa-
tion regarding the machine type.

With the PE32, the CLR Header contains
additional flags, such as ILOnly and 32Bit-
Required. The ILOnly flag is set when an
assembly is built with the platform set to
AnyCpu. The 32BitRequired flag is set
when the assembly is compiled with the
platform set as x86. When the platform is
set to x64 or Itanium, a PE32 {+} exe-
cutable is created with information re-
garding machine type embedded in the
output file.

The operating-system loader loads an
executable based on these settings. The
control flow is used by the OS Loader in
loading an executable; see Figure 12.

When the executable is found to be a
PE32 {+}, then the EXE is launched as a
64-bit process. If not, then the ILOnly flag
is verified. If this flag is not set, then the
executable is determined to be a 32-bit
executable and launched using the
WOW64 subsystem.

When the ILOnly flag is set, a further
check is made to see if the 32bitRequired
flag is set. When it is set, then the exe-
cutable is launched in the WOW64 sub-
system; otherwise, it is remapped as
PE32+ and launched as a 64-bit appli-
cation.

So Is It Faster?
A question that most people often ask
with 64-bit computing is “Are 64-bit ap-
plications faster compared to 32-bit ap-
plications?” This is a common myth sur-
rounding 64-bit technology. The answer
to this question is “maybe.” The reason
for this answer is that the performance of
applications depends on many factors, and
it is not possible to make a statement
claiming that 64-bit applications are faster.
Computing in 64-bit technology enables
newer software designs, which can ex-
ploit the larger memory that 64-bit pro-
cessors support. An application that has
been designed to take advantage of this
larger memory will be able to outperform
a similar 32-bit application.

64-Bit Momentum in the Industry
Many vendors who have products for Win-
dows have started releasing products for
the 64-bit version of Windows:

• AMD has released a performance ana-
lyzer for Windows called “AMD Code
Analyst.” See http://www.amd.com/
us-en/Processors/DevelopWithAMD/
0,,30_2252_869_3604,00.html.

• InstallShield 10.5 supports installation of
64-bit applications. See http://www
.installshield.com/downloads/installshield/
aag.pdf.

• Compuware has released its DevPartner
Studio in its 64-bit form entitled “Dev-
Partner64.” See http://www.compuware
.com/products/devpartner/64.htm.

• The Java 2 Platform Standard Edition 5.0
(J2SE) for the AMD64 platform is cur-
rently available as Release Candidate.
See http://javashoplm.sun.com/ECom/
docs/Welcome.jsp?StoreId=22&PartDetailId
=jdk-1.5.0-rc-windows-amd64-JPR&SiteId
=JSC&TransactionId=noreg.

• Hardware manufacturers are releasing
64-bit native drivers for their products.
A complete listing can be found at http://
www.amd.com/us- en/Processors/
DevelopWithAMD/0,,30_2252_875_
10454,00.html.

• Games have always utilized the latest
and greatest hardware; for instance: Un-
real Tournament (http://www.amd.com/
us-en/Processors/ProductInformation/
0,,30_118_10220_9486%5E9621~75301,00
.html), Far Cry (http://www.amd.com
/us-en/Processors/DevelopWithAMD/
0,,30_2252_875_10543,00.html), and
Shadow Ops: Red Mercury (http://
www.amd.com/us- en/Processors/
ComputingSolutions/0,,30_288_11054_
11705,00.html). (The 64-bit enhanced
version of Shadow Ops is showcased at
http://www.atari.com/shadowops/us/
amd.html.)

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 35

“With the PE32, the
CLR Header

contains additional
flags, such as
ILOnly and

32BitRequired”

A
ddressing and 64-bit operations are
useful in applications that deal with
large amounts of data, such as sci-
entific and engineering applications,

large databases, and the like. There are a
number of CPUs and operating systems
that natively support 64-bit computing.
Probably the biggest advantage they pro-
vide is a huge available address space, in
which applications can allocate more than
4GB of memory, easily maintain large files,
and more. But to fully utilize the power
of 64-bit CPUs, applications need to ex-
ploit the wider machine word. In this ar-
ticle, I focus on performance optimization
techniques that take advantage of that
power in this way.

64-Bit Safety
Unfortunately, much of today’s software
doesn’t take advantage of 64-bit micro-
processors and often can’t even be com-
piled and operated in 64-bit mode. Con-
sequently, software runs in 32-bit
compatibility mode— a clear waste of
silicon. Moreover, there are a number of
common C coding “malpractices” when
coding for 32-bit systems with a hypo-
thetical 64-bit CPU in mind:

• Reliance on the fact that the size of point-
er is equal to the size of int. For 64-bit
systems, sizeof(void*) == 8 and sizeof(int)
usually remains 4. Ignoring this can re-
sult in an incorrect assignment and crash.

• Reliance on a particular byteorder in the
machine word.

• Using type long and presuming that it
always has the same size as int. Direct

assignment of this type causes value
truncation and leads to a rare and
difficult-to-detect problem.

• Alignment of stack variables. In some
cases, stack variables can have addresses
not aligned on 8-byte boundaries. If you
typecast these variables to 64-bit vari-
ables, you can get into trouble on some
systems. But if you place a 64-bit vari-
able (long or double) on the stack, it is
guaranteed to be aligned. Heap allocat-
ed memory is aligned, too.

• Different alignment rules in structures
and classes. For 64-bit architectures,
structure members are often aligned on
64-bit boundaries. This leads to prob-
lems in sharing binary data through IPC,
network, or disk. Packing data struc-
tures to save resources can cause prob-
lems if alignment is not taken into con-
sideration.

• Pointer arithmetic. When a 64-bit point-
er is incremented as a 32-bit pointer,
and vice versa. The 64-bit pointer is in-
cremented by 8 bytes and the 32-bit
pointer by 4 bytes.

• In the absence of function prototypes,
the return value is considered to be int,
which can cause value truncation.

Parallel Programming: Getting the
Most From Each Cycle
The key to high-performance 64-bit C pro-
gramming is wide integer and FPU regis-
ters. CPU registers are at the top of the
food chain— the most expensive type of
computer memory there is. In 64-bit CPUs,
registers are 8-bytes wide, although a cor-
responding 128- or 256-bits wide memo-
ry bus is also common.

Figure 1 illustrates typical operation on
a 32-bit system. The CPU crunches data
coming from memory 4 bytes at a time.
Figure 2 shows that a 64-bit system hav-
ing wide registers can process 8 bytes at
a time.

Listing One performs a bit XOR oper-
ation on a block of memory, representing
an integer-based bitset. You can optimize
this code for 64-bit mode. Listing Two,
for instance, relies on the long long C type,
which is not supported by some compil-
ers. As you can see, I did not change the
total size of the bit set block, although it
now takes twice fewer operations to re-

combine vectors. Listing Two reduces the
loop overhead and equivalent to the loop
unrolling with coefficient 2. The disad-
vantage of this code, of course, is its pure
64-bitness. Being compiled on a 32-bit
system gives a wrong result because of
the different long size.

You can make further modifications, as
in Listing Three, which uses wide regis-
ters to do the job on 32-bit and 64-bit

CPUs. When typecasting like this, re-
member pointer alignment. If you blind-
ly typecast int pointers to 64-bit long
pointers, the address might not be 8-bytes
aligned. On some architectures, this caus-
es a bus error and crash; on others, it leads
to performance penalties. Listing Three is
not safe because it is possible that the 32-
bit int variable placed on the stack will
be 4-bytes aligned and the program will
crash. Heap allocation (malloc) is a guar-
antee against this occurring.

Bit Counting
One of the most important operations in
bit set arithmetic is counting the number
of 1-bits in bit strings. The default method
splits each integer into four characters and
looks up a table containing precalculated
bit counts. This linear approach can be
improved by using 16-bit-wide tables, but
at the cost of a much larger table. More-
over, larger tables will likely introduce
some additional memory fetch operations,
interfere with a CPU cache, and won’t de-
liver a significant performance boost.

As an alternative, I present code inspired
by “Exploiting 64-Bit Parallelism” by Ron
Gutman (DDJ, September 2000). Listing

Integer 64-Bit Optimizations

Exploiting the power
of 64-bit platforms

ANATOLIY KUZNETSOV

Anatoliy is currently working on projects
with the National Center for Biotechnolo-
gy Information and National Institutes of
Health. He can be contacted at anatoliy_
kuznetsov@yahoo.com.

36 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“The key to
high-performance
64-bit C
programming is
wide integer and
FPU registers”

Four does not use lookup tables, but com-
putes the two ints in parallel.

Bit String Lexicographical Comparison
Another application for 64-bit optimiza-
tion is lexicographical comparison of bit-
sets. The straightforward implementation
takes two words out of the bit sequence
and performs bit-over-bit shifting with
comparison. This is an iterative algorithm
with O(N/2) complexity. N here is the to-
tal number of bits. Listing Five illustrates
iterative comparison of two words. This
algorithm cannot be significantly improved
by 64-bit parallelization. However, Listing
Six, an alternative numerical algorithm with
complexity proportional to half the num-
ber of machine words (not bits), has good
64-bit potential.

The Challenge
The $64,000 question here is whether 64-
bit is worth the trouble. Contemporary 32-
bit CPUs are superscalar, speculative ex-
ecution machines that often provide
several execution blocks that can execute
several commands in parallel and out-of-
order, without intervention from pro-
grammers. The truth is that 64-bit pro-
cessors exhibit the same properties and
can run code in parallel— but only in 64
bits. Plus, some architectures, such as In-
tel Itanium, specifically emphasize paral-
lel programming and concentrate efforts
on explicit optimization on the compiler
level. Making code 64-bit ready and op-
timized is a necessity in this case.

Another objection is that performance is
often limited not by the raw MHz-based
CPU performance, but by CPU-memory
bandwidth, which is bus limited; our algo-
rithms are not going to show the top per-
formance, anyway. This is a fact of life and
hardware designers know it. We all see im-
plementation of high-performance dual-
channel memory controllers and steady
hikes in the memory speed. This effort cer-
tainly makes bus bottlenecks less critical,
and optimized 64-bit algorithms are going
to be better prepared for modern hardware.

Algorithmic Optimization,
Binary Distances
One candidate for 64-bit optimization is
the computing of binary distances between

bit strings. Binary distances are used in
data mining and AI applications doing
clustering and finding similarities between
objects, which are described by binary de-
scriptors (bit strings). The optimization
hotspot here is a distance algorithm, which
can be repeated for every pair of objects
in the system.

The most-known distance metric is the
Hamming distance, which is a minimum
number of bits that must be changed to
convert one bit string into another. In oth-
er words, you combine bit strings using
bitwise XOR and compute the number of
bits ON in the result.

The starting point for the analysis is
code like Listing Seven. The obvious op-
timization here is to get rid of the tem-
porary bitset and compute both XOR and
population count in parallel. The creation
of temporaries is a “favorite in-house
sport” of C++ compilers and wastes per-
formance on reallocations and memory
copying; see Listing Eight.

This optimization immediately achieves
several goals: reduction of memory traf-
fic, better register reuse, and, of course,
64-bit parallelism (see Figure 3). The es-
sential goal here is to improve the balance
between CPU operations and memory
loads. The objective has been achieved by
combining the algorithms in Listings Three
and Four.

This optimization technique can be fur-
ther extended on any distance metric that
can be described in terms of logical op-
erations and bit counting. What’s inter-
esting is that the effect of optimization of
more complex metrics like the Tversky In-
dex, Tanamoto, Dice, Cosine function, and
others, is more pronounced.

To understand why this is happening,
consider the Tversky Index:

TI = BITCOUNT(A & B) /
[a*(BITCOUNT(A-B) +
b*BITCOUNT(B-A) + BITCOUNT(A & B)]

The formula includes three operations:
BITCOUNT_AND(A, B), BITCOUNT_SUB(A,
B) and BITCOUNT_SUB(B, A). All three
can be combined into one pipeline; see
Figure 4. This technique improves data lo-
cality and better reuses CPU caches. It also
means fewer CPU stalls and better per-
formance; see Listing Nine.

Is There Life After 64-Bits?
Many of the algorithms I’ve described can
be coded using vector-based instructions,
single instruction, multiple data (SIMD).
CPUs that are SIMD-enabled include spe-
cial, extended (64- or 128-bits) registers
and execution units capable of loading
several machine words and performing
operations on all of them in parallel. The
most popular SIMD engines are SSE by In-
tel, 3DNow! by AMD, and AltiVec by Mo-
torola, Apple, and IBM. SIMD registers are
different from general-purpose registers;
they do not let you execute flow-control
operations such as IF. This makes SIMD
programming rather difficult. Needless to
say, portability of SIMD-based code is lim-
ited. However, a parallel 64-bit optimized
algorithm conceptually can be easily con-
verted to a 128-bit SIMD-based algorithm.
For instance, in Listing Ten, an XOR algo-
rithm is implemented using the SSE2 in-
struction set; I used compiler intrinsics
compatible with the Intel C++ compiler.

For More Information
Ron Gutman. “Exploiting 64-Bit Paral-
lelism.” DDJ, September 2000.

Brian T. Luke. “Clustering Binary Ob-
jects” (http:://fconnyx.ncifcrf.gov/~lukeb/
binclus.html).

http://www.ddj.com Dr. Dobb’s Journal, March 2005 37

Figure 3: 64-bit parallelism.

CPU

XOR
BitCount

A:1011000001000011100010101011000101010

B:1011000001000011100010101011000101010

Figure 1: 32-bit CPUs.

Figure 2: 64-bit CPUs.

32-Bit CPU
Reg1

Reg2

64-Bit CPU
Reg1

Reg2

Figure 4: Combining operations into a
single pipeline.

CPU

BitCount(A&B)
BitCount(A–B)
BitCount(B–A)

A:1011000001000011100010101011000101010

B:1011000001000011100010101011000101010

Listing One
{

int a1[2048];
int a2[2048];
int a3[2048];

for (int i = 0; i < 2048; ++i)
{

a3[i] = a1[i] ^ a2[i];
}

}

Listing Two
{

long long a1[1024];
long long a2[1024];
long long a3[1024];

for (int i = 0; i < 1024; ++i)
{

a3[i] = a1[i] ^ a2[i];
}

}

Listing Three
{

int a1[2048];
int a2[2048];
int a3[2048];

long long* pa1 = (long long*) a1;
long long* pa2 = (long long*) a2;
long long* pa3 = (long long*) a3;

for (int i = 0; i < sizeof(a1) / sizeof(long long); ++i)
{

pa3[i] = pa1[i] ^ pa2[i];
}

}

Listing Four
int popcount(long long b)
{

b = (b & 0x5555555555555555LU) + (b >> 1 & 0x5555555555555555LU);
b = (b & 0x3333333333333333LU) + (b >> 2 & 0x3333333333333333LU);
b = b + (b >> 4) & 0x0F0F0F0F0F0F0F0FLU;
b = b + (b >> 8);
b = b + (b >> 16);
b = b + (b >> 32) & 0x0000007F;

return (int) b;
}

Listing Five
int bitcmp(int w1, int w2)
{

while (w1 != w2)
{

int res = (w1 & 1) - (w2 & 1);
if (res != 0)

return res;
w1 >>= 1;
w2 >>= 1;

}
return 0;

}

Listing Six
int compare_bit_string(int a1[2048], int a2[2048])
{

long long* pa1 = (long long*) a1;
long long* pa2 = (long long*) a2;

for (int i = 0; i < sizeof(a1) / sizeof(long long); ++i)
{

long long w1, w2, diff;
w1 = a1[i];
w2 = a2[i];
diff = w1 ^ w2;
if (diff)
{

return (w1 & diff & -diff) ? 1 : -1;
}

}
return 0;

}

Listing Seven
#include <bitset>
using namespace std;

const unsigned BSIZE = 1000;
typedef bitset<BSIZE> bset;

unsigned int humming_distance(const bset& set1, const bset& set2)
{

bset xor_result = set1 ^ set2;
return xor_result.count();

}

Listing Eight
{

unsigned int hamming;
int a1[2048];
int a2[2048];
long long* pa1;
long long* pa2;

pa1 = (long long*) a1; pa2 = (long long*) a2;
hamming = 0;

for (int i = 0; i < sizeof(a1) / sizeof(long long); ++i)
{

long long b;
b = pa1[i] ^ pa2[i];

b = (b & 0x5555555555555555LU) + (b >> 1 & 0x5555555555555555LU);
b = (b & 0x3333333333333333LU) + (b >> 2 & 0x3333333333333333LU);
b = b + (b >> 4) & 0x0F0F0F0F0F0F0F0FLU;
b = b + (b >> 8);
b = b + (b >> 16);
b = b + (b >> 32) & 0x0000007F;

hamming += b;
}

}

Listing Nine
{

double ti;
int a1[2048];
int a2[2048];
long long* pa1;
long long* pa2;

pa1 = (long long*) a1; pa2 = (long long*) a2;
ti = 0;

for (int i = 0; i < sizeof(a1) / sizeof(long long); ++i)
{

long long b1, b2, b3;
b1 = pa1[i] & pa2[i];
b2 = pa1[i] & ~pa2[i];
b3 = pa2[i] & ~pa1[i];

b1 = popcount(b1);
b2 = popcount(b2);
b3 = popcount(b3);

ti += double(b1) / double(0.4 * b2 + 0.5 * b3 + b1);

}
}

Listing Ten
void bit_xor(unsigned* dst, const unsigned* src, unsigned block_size)
{

const __m128i* wrd_ptr = (__m128i*)src;
const __m128i* wrd_end = (__m128i*)(src + block_size);
__m128i* dst_ptr = (__m128i*)dst;

do
{

__m128i xmm1 = _mm_load_si128(wrd_ptr);
__m128i xmm2 = _mm_load_si128(dst_ptr);

__m128i xmm1 = _mm_xor_si128(xmm1, xmm2);
__mm_store_si128(dst_ptr, xmm1);
++dst_ptr;
++wrd_ptr;

} while (wrd_ptr < wrd_end);
}

DDJ

Ian Witten, Alistair Moffat, and Timothy
Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images. Mor-
gan Kaufmann, 1999. ISBN 1558605703.

Wi-Fen Lin and Steven K. Reinhardt.
“Reducing DRAM Latencies with an Inte-

grated Memory Hierarchy Design.” Sev-
enth International Symposium on High-
Performance Computer Architecture
(HPCA’01).

Intel Corp. “Intel Pentium 4 and Intel
Xeon Processor Optimization.”

Henry S. Warren, Jr. Hacker’s Delight.
Addison-Wesley Professional, 2002. ISBN
0201914654.

DDJ

38 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

T
he AMD Core Math Library (ACML)
is a freely available toolset that pro-
vides core math functionality for Ad-
vanced Micro Devices’ AMD64 64-bit

processor (http://www.amd.com/amd64/).
Developed by AMD and the Numerical Al-
gorithms Group (http://www.nag.com/),
the highly optimized ACML is supported
on both Linux and Windows and incor-
porates BLAS, LAPACK, and FFT routines
for use in mathematical, engineering, sci-
entific, and financial applications.

In this article, I examine how you can
use high-performance math libraries to
speed-up application code, and present
tricks used to achieve excellent perfor-
mance, while still maintaining accuracy.
Although I concentrate on ACML, the ben-
efits discussed apply just as much to li-
braries from other hardware and software
vendors.

BLAS
The ACML contains the full range of Ba-
sic Linear Algebra Subprograms (BLAS) to
deal with basic matrix and vector opera-
tions. Level 1 BLAS deal with vector op-
erations, level 2 with matrix/vector oper-
ations, and level 3 BLAS with matrix/matrix
operations. Since a surprising amount of

mathematics and statistics rely at some lev-
el on these operations, NAG in the 1980s
became part of an international team that
designed a standard set of interfaces for
these operations. The result was the netlib
suite of BLAS reference source code
(http://www.netlib.org/blas/).

Although you can compile the netlib
code, that is probably not the best way to
get optimum performance. Many key
BLAS routines— double-precision gener-
alized matrix-matrix multiply (DGEMM),
for instance— can benefit massively from
tuning to a specific hardware platform, as
is the case with the ACML.

For instance, Figure 1 illustrates the dif-
ference in performance between using the
DGEMM code from netlib compiled with
full optimization and the ACML code tuned
for the AMD64— both running on a single-
processor 2000MHz AMD Athlon64 ma-
chine. (The netlib DGEMM was compiled
using the GNU Fortran compiler g77 with
-O3 optimization level.) Performance is
measured in megaflops — millions of
double-precision floating-point operations
per second. The theoretical peak speed of
the processor used for this graph is 4000
megaflops.

Speedups such as this were not gained
by using purely high-level languages like
Fortran. In fact, for the ACML version of
DGEMM, the performance was gained by
a heavy dose of assembly language using
blocked algorithms designed to take ad-
vantage of the processor’s cache memory.
Fortran wrapper code was then used to set
up blocking and handle “cleanup” cases.

The ACML assembly kernels use (and
for best performance you or your com-
piler will want to use) Streaming SIMD
Extension (SSE) instructions. Single In-
struction Multiple Data (SIMD) lets the
processor work on several floating-point
numbers, packed into a long 128-bit reg-
ister, at the same time.

In Figure 2, the 128-bit registers xmm1
and xmm2 each contain four packed 32-
bit floating-point numbers. Multiplying
xmm1 by xmm2 returns the four prod-
ucts, again in packed format. This opera-
tion can be performed significantly faster

than four separate 32-bit products. (It’s
worth noting that SSE instructions don’t
just appear on 64-bit processors. Newer
AMD and Intel 32-bit chips also have
them, so the aforementioned comments
don’t apply just to the 64-bit world.)

In general, programming in assembly
language is not recommended because
the frustration and general maintenance
overheads tend to outweigh performance
gains. However, in this case, significant
performance gains can be achieved in a
truly core routine, which can be used by
a great deal of other code. The good news
is that hardware vendors take on all the
pain, so that we high-level developers
don’t have to — so long as we remember
to take advantage of it!

High-Performance
Math Libraries
Who says you can’t get
performance and
accuracy for free?

MICK PONT

Mick is a senior technical consultant for
the Numerical Algorithms Group. He can
be contacted at mick@nag.co.uk.

“The LAPACK
routines gain their
speed by proper
choice of blocking
factor and calls of
BLAS assembly
kernels”

http://www.ddj.com Dr. Dobb’s Journal, March 2005 39

LAPACK
The Linear Algebra Package (LAPACK)
is a standard set of routines for solving
simultaneous linear equations, least-
squares solutions of linear systems of
equations, eigenvalue problems, singu-
lar value problems, and the like. LAPACK
3.0 (http://www.netlib.org/lapack/) is
available across almost all of the vendor
math libraries. LAPACK is designed us-
ing blocked algorithms, in which large
problems are broken down into smaller

blocks wherever possible, to take ad-
vantage of level 3 BLAS operations.
LAPACK routines cover higher level lin-
ear algebra tasks, such as factorizing a
matrix or solving a set of linear equa-
tions. You can tune many LAPACK rou-
tines by choosing a block size that fits
in well with the machine architecture. A
good choice of block size can lead to
many times better performance than a
poor choice.

Within the ACML, the LAPACK routines
gain their speed by proper choice of
blocking factor and calls of BLAS as-
sembly kernels, rather than by using their
own dedicated assembly. Many key
ACML LAPACK routines, such as the ma-
trix factorization routine DGETRF, have
also been redesigned internally to take
best advantage of the hierarchically cached

memory of modern systems like the
AMD64. (This matrix factorization is the
most important mathematical ingredient
of solving a set of simultaneous linear
equations.)

Although they maintain identical user
interfaces to standard LAPACK, ACML rou-
tines have been improved by identifying
two kinds of bottleneck:

• Code that must be executed serially,
even on a parallel machine.

• Memory access bottlenecks. Sometimes
if computations are performed in the
natural order, they are required to use
data not held in cache, which is slow to
operate on.

By rewriting the algorithm used, bot-
tlenecks can often either be removed al-
together (perhaps by doing some work
earlier than the intermediate results are
actually required) or hidden (by post-
poning work until such time that more
can be done with memory-cached data,
thus reducing access times).

In addition, ACML LAPACK routines make
use of multithreading to achieve extra per-
formance on multiprocessor-shared mem-
ory systems. ACML uses OpenMP (http://
www.openmp.org/) as a portable way for
application programmers to control such
shared memory parallelism. (For more in-
formation on OpenMP, see “Faster Image
Processing with OpenMP,” by Henry A.
Gabb and Bill Magro; DDJ, March 2004.)

Figure 3 shows the performance gain
on a multiprocessor system using the LU
factorization DGETRF compared to the
same code from netlib. The machine used
to generate the timing results was a 64-
bit 1800MHz four-processor AMD Opteron
system. All Fortran code was compiled
with the Portland Group (http://www
.pgroup.com/) Fortran compiler pgf77, us-
ing high-level optimization flags. (Although
Opteron is a 64-bit processor, it also runs
32-bit code natively.)

The version of DGETRF compiled from
netlib code was built using the vanilla For-
tran BLAS code that comes with netlib
LAPACK, whereas the ACML version of
DGETRF takes advantage of highly tuned
ACML BLAS assembly kernels. No addi-
tional tuning of netlib DGETRF was per-
formed (knowledgeable users might im-
prove the performance of DGETRF by
changing blocking sizes supplied by
LAPACK routine ILAENV). The netlib
DGETRF is not parallelized, so running
on a one-processor or a four-processor
machine makes no difference.

In Figure 3, notice that:

• On a single processor, ACML runs over
three times as fast as the vanilla netlib
Fortran code.

40 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 1: Timing DGEMM (2.0GHz AMD Athlon64 processor).

Figure 2: The 128-bit registers xmm1
and xmm2 each contain four packed
32-bit floating-point numbers.

Figure 3: Timing DGETRF (1.8GHz four-processor AMD Opteron).

• ACML scales well. Using four proces-
sors, DGETRF performs almost four
times as fast as using one processor.

• 64-bit code shows a significant advan-
tage. Running both 64-bit and 32-bit
versions of DGETRF on four processors,
the 64-bit DGETRF runs about 15 per-
cent faster than the 32-bit DGETRF.

In fact, performance gains of the or-
der of 15 percent for 64-bit code over 32-
bit code can be seen in a variety of ap-
plications. This includes when running
on multiple processors or just a single
one, despite the fact that AMD64s run
32-bit code at least as fast as 32-bit AMD
chips of the same clock speed. This is a
very good reason to upgrade to 64-bit
code if you can!

Fast Fourier Transforms
Fast Fourier Transforms (FFTs) are the
third common suite of routines in vendor
math libraries. FFTs can be used in
analysis of unsteady signal measure-
ments — the frequency spectrum com-
puted by the FFT tells you something
about the frequency content of the sig-
nal. For example, an FFT can help you
remove periodic background noise from
signals without damaging the part of the
signal (such as a music recording) that
you are interested in.

Unfortunately, FFT routines do not have
a common interface, so extra work is nec-
essary when moving between various ven-
dor math libraries. However, given the
high-performance gains possible with
FFTs, that exercise should be well worth
the effort. This is another area where ven-
dors tend to aggressively tune their code.
As with the BLAS, ACML makes extensive
use of assembly kernels to achieve high
performance.

Because of the way FFT algorithms
work, much of the performance that can
be got from an FFT implementation de-
pends on the size of the FFT to be per-
formed. For any FFT suite, a data se-
quence with a length that is an exact
power of 2 will likely be transformed
faster than a sequence of a slightly dif-
ferent size— sometimes many times faster.
This is so much the case that some FFT
implementations only work on such se-
quences, and force you to adapt your data
to the FFT routine. With ACML, howev-
er, FFTs work on any problem size,
though it is always best to have a size
that is a product of small prime numbers
if possible. That is because, in ACML, the
code that deals with these small prime
factors has been aggressively tuned with
assembly code to take advantage of the
64-bit chip, ensuring that data streams
into cache memory in the right order to
maximize performance.

ACML comes with FFT routines to han-
dle single- and multidimensional data. The
multidimensional routines also benefit from
the use of OpenMP for good scalability
on SMP machines.

Conclusion
When developing code, it is important
to build on the work of others and not
try to build everything from scratch. Of
course, we do it all the time. We do not
work in machine code, we program in
higher level languages or use packages
to insulate us from the boring and
mundane!

Sometimes though, we forget to extend
those principles of reusing others’ tried
and tested work as far as possible to gain
maximum benefit.

With all this in mind, if in your work
you already make use of routines that fea-
ture in ACML, why not try linking to
ACML? It won’t cost you anything, and
you just might be pleasantly surprised at
the speedup you see in your application.
And while this article has concentrated on
64-bit AMD processors, the same concepts
apply to 64-bit chips from Intel and oth-
ers, and high-performance math libraries
should be available for most of them.

Finally, if you’re keen to work in as-
sembly language, a good resource is the
AMD64 Software Optimization Guide
(http://www.amd.com/us- en/assets/
content_type/white_papers_and_tech_docs/
25112.PDF).

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 41

P
rogramming with Contracts (PwC) is
a method of developing software us-
ing contracts to explicitly state and
test design requirements. The con-

tract is used to define the obligations and
benefits of program elements such as sub-
routines and classes. In this article, I ex-
plain contracts and present a technique
for defining contracts in separate classes
safely hidden away from implementation
details.

Design by Contract (DbC) is often con-
fused with PwC. Conceived by Bertrand
Meyer, DbC is a formal software-design
methodology, whereas PwC is the pro-
gramming technique of using a contrac-
tual representation in code to verify that
preconditions, postconditions, and in-
variants are satisfied. The differences can
be equated to the relationship between
object-oriented programming and object-
oriented design. (For more information,
http://www.artima.com/intv/contracts.html.)

Contracts
Contracts are made up of three major el-
ements, referred to as “clauses”: precon-
ditions, postconditions, and class invari-
ants. Preconditions and postconditions are
clauses that are evaluated at the begin-

ning and end of specific routines, re-
spectively. From a design standpoint, a
precondition represents the obligations on
the context invoking the routine. An ex-
ample can be found using the C file read-
ing function fscanf:

int fscanf(FILE∗ stream,const char ∗ format
[, argument , …]);

The function fscanf operates with the
precondition that stream must be a point-
er to an open file. There is also another
precondition that there must be the same
number of type specifiers in the format
string as the number of arguments passed.
Postconditions, however, represent both
the obligations and benefits of a given sub-
routine. In the case of fscanf, the implic-
it postconditions are:

• The return value is EOF if an error oc-
curs; otherwise, it is the number of items
successfully read not including any ig-
nored fields.

• The FILE∗ argument is updated.

From a theoretical standpoint a pre/
postcondition should be evaluated at
compile time when appropriate. This can
be done using BOOST_STATIC_ASSERT
found in the Boost C++ library (http://
boost/static_assert.hpp). Pre/postcondi-
tions conceptually are also language in-
dependent. In fact, some pre/postcondi-
tions are difficult and even impossible to
express in a formal language. In these cas-
es, the pre/postcondition is best expressed
as a natural language comment.

A class invariant is a property of each
instance of a class that is required to eval-
uate to True before and after every ex-
ternal call to a public function. One way
to think of a class invariant is as a clause
that is ANDed with the pre- and post-
condition of each public method. Check-
ing class invariants in C++ is beyond the
scope of this article, but the same effect
can be achieved more verbosely with pre/
postconditions.

Peppering Code with Assertions:
Good, but Good Enough?
Most modern C++ programmers have
adopted the good habit of (usually) check-
ing their preconditions and postconditions
in their code by placing assertions through-
out their routines. This is fine for simple
single-expression assertions, as the code

generated can be completely removed by
turning off assertion compilation.

Simply using assertions is somewhat un-
satisfying as the set of preconditions and
postconditions is buried deep in the code
and is hard to extract. Automated tools
can extract preconditions and postcondi-
tions, assuming they follow a consistent
naming convention, but for a human pe-
rusing the code, the contracts of nontriv-
ial functions and classes are not easily
parsed.

The other drawback of assertions is that
they only apply to code— if you have
nontrivial clauses, then this approach starts
to spill into noncontract code. Consider
this example:

template<typename T>
class Stack {

void Push(T x) {
int nOldCount = Count()
// implementation here
assert(Count() == nOldCount + 1);

}
...

}

Programming with
Contracts in C++
Explicitly stating
and testing design
requirements

CHRISTOPHER DIGGINS

Christopher is a freelance computer pro-
grammer and developer of Heron, a
modern, general-purpose, open-source
language inspired by C++, Pascal, and
Java. He can be contacted at http://
www.heron-language.com/.

42 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“Contracts are made
up of three major
elements”

Listing One
template <typename T>
struct SortableIntArray_contract : public T {
bool SortRange(int i, int j) {
// preconditions
assert(i >= 0);
assert(i < size());
assert(j >= i);
assert(j < size());
// implementation
T::SortRange(i, j);
// postconditions
// in essence, is this array sorted
for (int n=i; n < j; n++) {
assert(get_at(n) <= get_at(n=1));

}
}
int GetAt(int i) {
// preconditions
assert(i >= 0);
assert(i <= size());
return T::GetAt(i);

}
void SetAt(int i, int x);
// preconditions
assert(i >= 0);
assert(i <= size());
T::SetAt(i, x);
// postcondition
assert(T::GetAt(i) == x);

}
};

Listing Two
#ifdef CONTRACT_CHECKING_ON

typedef SortableIntArray_contract<SortableIntArray_impl> SortableIntArray;
#else

typedef SortableIntArray_impl SortableIntArray;
#endif

DDJ

Notice that the code for allocating
space and initializing nOldCount will
possibly remain in your executable, re-
gardless of whether assertions are
turned off.

Perhaps in this case, a compiler might
optimize it away, but for nontrivial ex-
amples, it is virtually impossible for op-
timizers to remove all unreachable code.
In this case, the simplest thing to do
would be to wrap the nOldCount decla-
ration in a #ifdef/#endif pair.

template<typename T>
class Stack {

void Push(T x) {
#ifdef CONTRACT_CHECKING_ON
int nOldCount = Count()
#endif // CONTRACT_CHECKING_ON
// implementation here
assert(Count() == nOldCount + 1);

}
...

}

This may appear verbose, but the ad-
vantage that this code is effectively em-
bedded with a test case that disappears
entirely during release builds should be
quite clear.

Writing code in this manner assures that
the code is continually tested every time
the code is executed. Retrofitting compa-
rable test cases after code is already writ-

ten is harder and almost invariably not as
effective.

However, I have good news if you
find this overly complex— there is a bet-
ter way.

Using
Contract Classes
The contract clearly needs to be separat-
ed from the implementation details. To
separate it, you can define it in its own
class. This makes the contract more easi-
ly parsed, and makes it reusable. The way
I implement PwC in Heron— and which
applies equally well to C++— is to define
the contract as a template class that in-
herits from its primary type parameter,
which you then use to wrap an imple-
mentation class. Consider this implemen-
tation class:

struct SortableIntArray_impl {
bool SortRange(int i, int j);
int GetAt(int i);
void SetAt(int i, int x);

};

You can define the contract of the
three public functions in code as in List-
ing One. Despite being conceptually sim-
ple, this contract required a significant
amount of code to express. If this had
been embedded directly in the imple-

mentation itself, it would become messy
and confusing.

The contract can now be applied easi-
ly to the object conditionally as in Listing
Two. The same effect can also be achieved
using metatemplate programming tech-
niques involving type selectors such as
the STLSoft library compile-time function
stlsoft::select_ first_type or the Boost library
compile-time function mpl::if_c.

Conclusion
Using assertions does allow the imple-
mentation of PwC, but using contract
classes is better. Contract classes express
and validate significantly complex con-
tracts without obfuscating the implemen-
tation. Contract classes make design in-
tentions explicit and improve the
readability of code. Contract classes can
also often be reused for classes with dif-
ferent implementations but with similar
interfaces.

Acknowledgment
Thanks to Matthew Wilson for reviewing
the article and pointing out that writing
contracts that involve system conditions
is a bad idea.

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 43

G
o ahead, admit it— you’ve wasted
way too many hours playing the lat-
est first-person-shooter game to hit
the shelves. Don’t worry, you aren’t

alone. The realistic environments, quick
action, and competitive play make the
games irresistible. This is due in part to
a wonderful use of three-dimensional
(3D) graphics (but mostly due to the love
of fragging your friends, which is an ar-
ticle for another time). However, 3D
graphics are not just limited to the gam-
ing world. Many industries now rely heav-
ily on 3D graphics for data visualization,
building and component design, medical
research, virtual tours, and so on. Adver-
tising, especially TV commercials, is also
making heavy use of 3D animation and
special effects.

Over the past few years computer
graphics hardware has made incredible
strides with faster CPUs and Graphical Pro-
cessing Units (GPU) at constantly de-
creasing prices. On the software front,
OpenGL, officially introduced in 1992, has
become the standard API for high-speed
3D graphics programming. As a proce-
dural interface developed in C, OpenGL
is incredibly powerful, robust, and stable.
However, learning OpenGL can be time
consuming and, as with all procedural lan-
guages, code maintenance and extension
can be difficult on large projects. Enter
the 3D scenegraph.

A scenegraph provides an object-oriented
and logical representation of a 3D scene.
Scenegraphs are implemented in many lan-
guages and many scenegraphs are simply
abstraction layers above the OpenGL ren-
dering library. This abstraction is the foun-
dation of Java3D, a scenegraph API de-
signed and developed by Sun Microsystems
for the Java platform. Java3D offers a large
3D API and scenegraph structure to help
you write maintainable, scalable 3D appli-
cations quickly. In this article, I examine
scenegraphs in detail and present an ex-
ample of a Java3D application.

Java3D is a free library for the Java
platform (http://java.sun.com/products/
java-media/3D/). At its most basic level,
Java3D provides a scenegraph and 3D
rendering context for creating graphics
applications. However, that description
doesn’t give nearly enough information.
Some of the top Java3D features include:

• Multithreaded scenegraph rendering and
stimulus processing.

• Fog, lighting, level of detail (LOD), and
sound support.

• Geometry and texture processing and
serialization.

• Low-level API abstraction (supporting
both OpenGL and Microsoft’s DirectX).

• Vector math operations and full Java
Foundation Class (JFC) library support.

As with any Java application, Java3D ap-
plications are cross platform to Solaris, Win-
dows, Linux, and Apple OS X. (Java3D is
available on OS X in a limited fashion
through Apple’s developer program. More
information can be found at Apple’s web
site, not Sun’s.) Also, Java3D applications
are web deployable using Sun’s Webstart
technology (https://j3d-webstart.dev.java
.net/). Backed by OpenGL or DirectX,
Java3D boasts impressive rendering speed
by allowing these highly optimized libraries
to do the rendering work and making use
of the native graphics hardware and soft-
ware drivers. All of these features packed
into a free API create a powerful tool.

Understanding the Scenegraph
To understand scenegraphs, it is impor-
tant to know how a scenegraph differs

from the procedural or “pipeline” model
of 3D programming. Using a library like
OpenGL, the application procedurally de-
fines all of the triangles, textures, and oth-
er graphics primitives to draw one after
another for each drawing cycle. All of this
information is pushed into the graphics
pipeline and to the graphics card. Unfor-
tunately, the procedural model can force
the application to either send a lot of wast-
ed data into the pipeline, because it is not
visible in the current view. Likewise, the
application may be forced to perform

complex math operations to cull (or re-
move) unseen information before send-
ing it to the card. The procedural model
also requires that the application maintain
the state of the scene so that it can be re-
drawn whenever required.

To solve some of the pipeline render-
ing limitations and to make developing
graphics applications friendlier, the scene-
graph paradigm was introduced. A scene-
graph is a hierarchical graph of a scene
or virtual world. The scenegraph is com-
posed of nodes, which represent mathe-
matical transformations, lighting, shapes,
and views. On each rendering cycle, a
renderer walks this graph from the top to
the bottom, performing many optimiza-
tions such as culling nodes that cannot be
seen, collapsing nodes that can be com-
bined, and compiling nodes for future ren-
dering. By performing these optimizations,
the renderer can limit the number of prim-
itives that get sent to the underlying ren-
dering library and hardware. A scenegraph

Making a Scene with Java3D

Creating realistic
graphics in 3D

MICHAEL PILONE

Michael is a software engineer and re-
searcher for the Department of Defense at
the Naval Research Laboratory in Wash-
ington, D.C. Michael also founded and
functions as CTO of Zizworks Inc. (http://
www.zizworks.com/), a web-application
and custom software development com-
pany. He can be contacted at mpilone@
botch.com.

44 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“A scenegraph
provides an
object-oriented
and logical
representation of a
3D scene”

also provides a logical representation of
where objects are in the virtual world and
lets you interact with nodes directly in a
more object-oriented fashion. On the
downside, a scenegraph can introduce
larger memory requirements to an appli-
cation, as well as the time and CPU cy-
cles required to continually traverse the
graph.

Java3D is an implementation of the
scenegraph paradigm. In Java3D, the
scenegraph is encapsulated in a Virtu-
alUniverse, which contains a directed,
acyclic graph (DAG) of Nodes, either
leaves or groups, such as: BranchGroups,
TransformGroups, Shape3Ds, Lights, and
ViewingPlatforms. Each node has a spe-
cific purpose in the tree and because the
graph is a DAG, there is only one possi-
ble path to any node in the scene. Nodes
may in turn contain NodeComponents to
represent items such as appearance and
geometry. NodeComponents are not con-
sidered part of the graph; therefore, they
may be shared between nodes. Figure 1,
a simple Java3D scenegraph, contains one
branch that defines the viewer of the
scene, and one branch from the root that
defines the content of the scene. More
branches can be added, but this simple
scenegraph presents all of the basic con-
cepts. The Java3D renderer is continually
rendering the scene, starting at the root
node, and traversing down the scene with
each TransformGroup applied as it is en-
countered and each node rendered. Again,
the Java3D renderer is able to perform
simple view-frustum culling at this stage
of the rendering process, far before the
data is pushed to the video card.

Getting Your 3D Feet Wet
The first step in creating a Java3D appli-
cation is to create the virtual universe,
which contains the entire scene. Sun pro-
vides the utility class SimpleUniverse to
make this process straightforward, al-
though a custom universe can be con-
structed with the VirtualUniverse, View,
PhysicalBody, and PhysicalEnvironment
classes, but they are beyond the scope of
this article. Listing One creates the Sim-
pleUniverse object with the default settings
of the utility class. The SimpleUniverse re-
quires a canvas for the renderer to draw
into. Similar to the Advanced Windowing
Toolkit (AWT) Canvas class, the Java3D
Canvas3D class provides a rendering con-
text that can be added to any AWT or
Swing container and it behaves as a heavy-
weight component. The SimpleUniverse
class automatically builds the view side of
the scenegraph for you with a standard lay-
out that will work for simple applications.

Once the universe has been created, it
is time for the fun stuff— creating the
scene content. The content needs to at-

tach to a root group node. The basic
group node in Java3D is the Branch-
Group, which can have any number of
children and serves as merely a branch-
ing point in the tree. Listing Two is the
root group along with another type of
group node, a TransformGroup— a node
containing a 3D transform matrix that ap-
plies to the rendering pipeline as the ren-
derer encounters the group in the tree
traversal. As with all 3D graphics pro-
gramming, the placement and orientation
of objects in Java3D is determined by the
application of matrices to objects. Two
transforms are defined in Listing Two —
one to scale the content to fit in the can-
vas, another to rotate any of its children
(anything attached to this group) by 35
degrees around the x-axis. In this appli-
cation, the rotation is simply done to show
that the object in the scene truly is 3D. In
more complex applications, you make use
of many transformations to move the view-
er, position objects, simulate animation,
and so on. Once the transform group is
created, it must be added to the root
group as a child. This addition of children
is how the graph is built to represent the
scene.

At this point there is nothing in the
scene for the renderer to actually draw,
such as a shape. Java3D defines a
Shape3D class as the root for almost all
renderable objects in a scene. A Shape3D
object contains an Appearance and one
or more Geometry components that may
be shared between shapes. The Appear-
ance component of a shape defines ele-
ments such as color, material, transparen-
cy, and drawing attributes. The Geometry
component of a shape defines the actual
3D points and lines that are drawn by the
underlying graphics library, if the render-
er determines that the given shape should
be rendered. Once again, to simplify the
task of creating shapes, appearances, and
geometry, Sun has provided a few utility
classes that neatly and efficiently define
some common shapes: Box, Cone, Sphere,
and ColorCube. To add a ColorCube shape
to the scene, add:

ColorCube cube = new ColorCube(.5);
objRoll.addChild(cube);

The cube is created with an edge length
of 0.5 units and it is added as a child of
the rotation transform that was added to
the scene previously. Now, add the root
group to the universe to assemble the fi-
nal scene:

universe.addBranchGraph(rootBG);

Once the scene is assembled and the
canvas is displayed, the Java3D renderer
immediately begins rendering in a sepa-
rate thread. The result is the rendered 3D
cube, like that in Figure 2.

Behaviors & Interactions
Although an impressive result for such lit-
tle code, a static 3D scene is not very use-
ful. At some point you are going to re-
quire elements such as user interaction,
animation, effects, and movement. To ac-
complish these tasks, Java3D provides a
behavior system that works alongside the
renderer to provide hooks that allow the
application to be notified of events in the
scene. Behavior objects are scenegraph
nodes like many of the nodes you have
already seen and can be added to the
scenegraph to perform many functions in
response to a large range of stimuli. A
small sample of possible stimuli includes:

• A desired number of frames elapsing.
• Collision of 3D objects.
• Mouse and keyboard events.
• A desired amount of time elapsing.

These stimuli are defined by subclass-
es of the WakeupCondition class, which
has many other useful extensions.

Built on top of the behavior system are
Interpolator classes that can be used to
smoothly move or transform an object in
the scene, which is useful for view tran-
sitions, morphing, or animation. Listing
Three presents modifications to the scene-
graph that was constructed above to add

http://www.ddj.com Dr. Dobb’s Journal, March 2005 45

Figure 1: Simple Java3D scenegraph.

Figure 2: 3D cube rotated around the
x-axis.

another transform group, which will ro-
tate its children about the y-axis. When
combined with a RotationInterpolator, the
cube appears as a spinning cube in the
scene, updated each frame by the inter-
polator (which, remember, is a Behavior).
The effect of the spinning is visible in Fig-
ure 3. (A Java3D application demonstrat-
ing scenegraph creation using transforms,
a predefined shape, and an interpolator
behavior is available electronically; see
“Resource Center,” page 5.)

Tips & Tricks
So far, I have only presented some of the
core Java3D concepts. Once you get go-
ing with Java3D programming, you may
find some tips and tricks useful. These tips
may also help you to avoid some of the
traps that many new Java3D developers
fall into.

Java3D supports complex canvas con-
figurations including multiple canvases and
views for the same scene. This means it is
possible to render a single scenegraph (a
single universe) in many windows simulta-
neously, either from the same viewpoint in

the scene or from many different view
points. Combine multiple canvases with a
canvas configured for off-screen rendering
and it is possible to create dynamic 3D
snapshots for web pages. Be aware that the
Canvas3D class does have peculiarities. A
common problem many developers have
with the Canvas3D class is that it is a heavy-
weight Swing component. This can cause
some problems in applications that mix
heavyweight and lightweight components,
such as JPopupMenus. Be sure to read up
on the limitations of mixing these compo-
nents at http://java.sun.com/products/
jfc/tsc/articles/mixing/index.html.

3D applications have a tendency to re-
quire a lot of memory due to the geome-
try definitions and textures required. The
-X command-line options of your JVM may
let you increase the heap size for the ap-
plication. In Sun’s JVM, the -Xmx and -Xms
flags perform wonders. Before undertak-
ing any large Java3D application, be sure
to think about the overall design of the ap-
plication. Because the renderer is continu-
ously rendering in a separate thread, any
scenegraph modifications may become im-
mediately visible. If this is not the desired
effect (say, you require atomic updates),
consider using a Behavior object. Sun, with
the help of community developers (http://
www.j3d.org/), has composed a document
describing items for performance tuning:
http://www.j3d.org/tutorials/quick_fix/
perf_guide_1_3.html.

Conclusion
Java3D is a powerful library; however, it is
not the only 3D API for Java. Numerous low-
er level APIs are available to provide direct
access to the OpenGL rendering library such
as JOGL (https://jogl.dev.java.net/) and
LWJGL (http://java-game-lib.sourceforge.net/).
Also, competitor scenegraph implementations
exist, with the most popular and stable be-
ing Xith3D (http://xith.org/). Currently, it ap-
pears that the Sun Java3D developers are rec-
ognizing and encouraging Xith3D as a
high-speed, gaming-oriented scenegraph,
while Java3D takes a more user-friendly,
thread-safe, visualization approach. Luckily,
the Xith3D developers have kept the API gen-
erally similar to Java3D, so knowledge in one
can be easily transferred. Each 3D API has
advantages and disadvantages, so review
them all before starting a major project.

It seems that Sun is once again behind
Java3D, allocating resources toward its de-
velopment and integration into widely pub-
licized projects, such as its own Project
Looking Glass (https://lg3d.dev.java.net/).
Many Java3D developers have also released
free applications and games that give a
glimpse of what is possible with Java3D.
Commercial products using Java3D can be
found, such as the “Law and Order” game
from Legacy Interactive (http://www

46 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 4: Collection of available
Java3D applications, from top to
bottom: Builder RF Visualization Tool,
Cassos, CazaPool3D, FlyingGuns, Law
and Order II.

Figure 3: 3D cube rotating around
the y-axis.

.lawandordergame.com/). There also ap-
pears to be a number of scientific research
applications using Java3D that never get
public attention; however, discussion com-
monly occurs on the mailing lists. Figure
4 is a collection of screenshots from a few
applications written in Java3D. Sun has re-
cently released Java3D as an open-source
project, inviting developers to contribute

patches and new frameworks to the API
for consideration, which has brought new
life and energy to the project.

Java3D is a large API, containing more
than 100 core classes and many more util-
ity classes. Learning the entire package is
a hefty undertaking. Luckily there are
many resources available for more infor-
mation, such as the Java3D mailing lists

and forums, a great tutorial at the Java3D
web site, and a few books. Combining
Java and Java3D with some of the other
powerful Java APIs such as Java Advanced
Imaging (JAI), Java2D, and the Java Me-
dia Framework (JMF), it is possible to cre-
ate robust cross-platform applications.

DDJ

Listing One
// The canvas needs some information about the graphics environment. This
// information could be custom built if desired, but a utility method
// exists to make this easier.
GraphicsConfiguration gc = SimpleUniverse.getPreferredConfiguration();

// Create the canvas which will serve as the rendering surface. The
// canvas is a component like any AWT component, therefore it can
// be added to a JFrame to be displayed.
Canvas3D canvas = new Canvas3D(gc);

// A SimpleUniverse is a utility class that wraps some of the VirtualUniverse
// configuration options and sets up a basic universe that is useful for
// simple demonstrations. The universe serves as the root of the scenegraph.
SimpleUniverse universe = new SimpleUniverse(canvas);

// Get the viewing platform from the universe and set a nominal
// transform. This will move the viewer slightly back from the
// center so you can see the nodes in the scene.
universe.getViewingPlatform().setNominalViewingTransform();

Listing Two
// Root group of scene graph. Everything is created as a child of this group.
BranchGroup rootBg = new BranchGroup();

// Create a simple transform to scale scene down so it fits in the view.
Transform3D scaleTrans = new Transform3D();
scaleTrans.setScale(0.6);
TransformGroup objScale = new TransformGroup(scaleTrans);
rootBg.addChild(objScale);

// Create a simple transform to rotate around the x

// axis to show that the cube really is 3 dimensional.
Transform3D rollTrans = new Transform3D();
rollTrans.rotX(Math.toRadians(35));
TransformGroup objRoll = new TransformGroup(rollTrans);
objScale.addChild(objRoll);

Listing Three
// Create a transform to rotate the shape using an interpolator. Once the
// transform group is added to the scene, Java3D won't allow modifications
// unless you tell it that you want that capability, therefore you set the
// ALLOW_TRANSFORM_WRITE.
TransformGroup objRotate = new TransformGroup();
objRotate.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);
objRoll.addChild(objRotate);

// Create an interpolator behavior object that will rotate the cube
// by modifying the rotation transform at runtime.
Transform3D yAxis = new Transform3D();
Alpha rotationAlpha = new Alpha(-1, Alpha.INCREASING_ENABLE,

0, 0, 8000, 0, 0, 0, 0, 0);
// Setup the scheduling bounds of the behavior so it runs indefinitely.
Bounds bounds = new BoundingSphere(new Point3d(0, 0, 0), 100.0);

// Create the interpolator that will rotate the given transform
// around the y axis as the alpha value changes.
RotationInterpolator rotator =

new RotationInterpolator(rotationAlpha, objRotate, yAxis,
0.0f, (float) Math.PI*2.0f);

rotator.setSchedulingBounds(bounds);
objRotate.addChild(rotator);

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 47

I
am on the development team for V-
Builder, an IDE for building VoiceXML-
based speech applications. Among oth-
er features, we had to provide V-Builder

with the ability to edit several file types
you don’t normally associate with IDEs—
call flows, VoiceXML files, linguistic gram-
mars, recorded prompts, and the like. To
implement these features, we turned to
Netbeans, an open-source framework for
building Java client applications (http://
www.netbeans.org/), mainly because
much of the necessary functionality for
IDEs is already implemented in Netbeans.
It has a windowing system, JavaHelp in-

tegration, source control, syntax coloring
and completion, generic XML editing, and
lots of other goodies. Consequently, we
decided to implement our application as
a set of Netbeans plug-in modules.

For instance, one of our modules is a
prompt editor. In the context of a speech
application, a prompt is a file containing
information about questions the applica-
tion may ask users. The information in-
cludes:

• A transcript.
• Instructions for the voice talent record-

ing the prompt (optional).
• The recorded .wav file (optional).

The first two items are stored in a Java
properties file with the extension
“prompt.” An important design consider-
ation is that, because applications are de-
signed before the voice talent records the
prompts, it is possible to have the prompt
file without the .wav file. So, our Net-
beans module must be able to recognize
prompt files by themselves, and associ-
ate them with sibling .wav files in a seam-
less fashion.

The Anatomy of a Module
A Netbeans module is a jar file with an
enhanced manifest. To turn any existing

jar file into a Netbeans module, you add
two lines to the jar’s manifest:

OpenIDE-Module: org.netbeans.modules
.mymodule/1

OpenIDE-Module-Specification-Version: 1.0

This is sufficient for Netbeans to install,
recognize the code in that jar file, and as-
sign a class loader to create instances of
the classes defined there. Of course, I
needed to do more than this to get my
code to integrate into the Netbeans UI.
The prompt editor’s manifest (Listing One)
declares a few more fields that affect the
runtime behavior of the module. All

A Sound File
Editor for Netbeans

A full-featured Java
IDE built on top of the
Netbeans Platform

RICH UNGER

Rich is a software engineer at Nuance
Communications, and a member of the
Netbeans Governance Board. He can be
reached at richunger@netbeans.org.

48 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“A Netbeans module
is a jar file with an
enhanced manifest”

Netbeans-specific entries in the manifest
begin with “OpenIDE-Module.”

The OpenIDE-Module-IDE-Dependencies
field indicates that the module requires
Version 4.41 of the core framework
(which corresponds to Netbeans 4.0).
The OpenIDE-Module-Module-Dependencies
field declares dependencies on classes
from other modules. For example, I use
the org.openide.io module to print in-
formation to the output window. The
OpenIDE-Module-Localizing-Bundle
field points to a properties file contain-
ing manifest entries that may be trans-
lated into different languages, such as
the title, description, and category of this
module (Listing Two). The Class-Path
entry adds jar files to the module’s class
loader. In this case, the only declared
jar file contains a JavaHelp help set,
which can be loaded from menu items
or Netbeans’ context- sensitive help
system.

The OpenIDE-Module-Layer field in-
dicates the location of the layer file, an
XML document that declares how the UI
components integrate with the rest of
the framework. Netbeans treats its UI
like a filesystem. For example, the
Menus folder contains a folder for each
top-level menu. These can, in turn, con-
tain folders (submenus) or files (menu
items). The prompt editor’s layer file
(Listing Three) is an XML representation
of part of this filesystem. At startup, Net-
beans takes all the modules’ layers and
merges them together to create the com-
plete picture.

The final two lines of my manifest de-
clare a DataLoader class, which describes
a file type. Netbeans maintains a loader
pool, which scans files in a given direc-
tory, grouping the files into logical chunks,
or just determining what type of data each
represents. Most DataLoaders extend
UniFileLoader, and recognize individual
files based on their extensions or MIME
types. The PromptLoader (Listing Four) is
a MultiFileLoader, because I want a .wav
file and prompt file to appear as a single
item in the file explorer. The findPrima-
ryFile() method knows how to pair the
files together. The createMultiObject()
method knows how to create a DataOb-
ject from a prompt file.

A DataObject represents a particular
instance of a file or group of files. A
PromptDataObject (Listing Five, available
electronically; see “Resource Center,”
page 5) represents a single prompt file
and its associated .wav file. The DataOb-
ject is responsible for encapsulating the
relevant data, as well as creating node
representations of the DataObject, track-
ing whether the data has been modified
since the last save, and maintaining a set
of cookies.

Cookies are capabilities (open, save,
edit, print, and so on) that are different
from actions. A cookie represents the ca-
pability to perform an operation. The ac-
tion represents the UI component for per-
forming the operation. For example, a
PromptNode always has a SaveAction as-
sociated with it. The SaveCookie, howev-
er, is added or removed from the Prompt-
DataObject when it is modified or saved.
This is because users should not be able
to save files that have not been modified.
The action remains, even when the cook-
ie is gone. The result is that the action is
disabled (grayed-out).

Prompts are edited using a Prompt-
Editor (Listing Six, available electronical-
ly), which is an instance of TopCompo-
nent. A TopComponent is a JComponent

that is managed by the Netbeans window
manager. Most top components in Net-
beans actually subclass CloneableTop-
Component, which adds the ability to cre-
ate more than one view of the same
DataObject.

The PromptEditor has a single member
variable— an EditorPanel. This is the ac-
tual implementation of the editor, which
could be referenced from a JFrame in a
standalone Swing application, or (in my
case) from the PromptEditor. The impor-
tant things to override in a TopComponent
are the open/close behavior and serial-
ization routines. The open() hook in
PromptEditor simply defers to the open
behavior in EditorPanel, which renders
the audio waveform, transcript, and in-
structions. The canClose() hook is the

http://www.ddj.com Dr. Dobb’s Journal, March 2005 49

usual place to check if the underlying data
was modified, and save (or ask to save)
as necessary.

Serialization is controlled with three
hooks. The readExternal() and writeEx-
ternal() hooks are not specific to Net-

beans, and should be familiar to anyone
writing Java GUI applications. The third,
getPersistenceType(), controls whether Net-
beans should bother to serialize a Top-
Component on shutdown. There are three
possible values: PERSISTENCE_NEVER in-

dicates that this component should not be
restored upon restarting Netbeans; PER-
SISTENCE_ONLY_OPENED indicates that
the component should only be restored
if it was visible when Netbeans was shut
down; PERSISTENCE_ALWAYS indicates
that the component should always re-
member where the window was docked,
even if it was closed at the time Netbeans
exited.

Testing the
Prompt Editor
By creating a jar file from this source code,
layer file, and manifest, you have a com-
plete, integrated Netbeans module. The
quickest way to test this module is from
within Netbeans. The Tools|Options menu
item displays a tree view of configuration
options. In this tree, under IDE Configu-
ration|System, there is a node called
“Modules.” Right-click this node and se-
lect Add|Module, then select the jar file
in the resulting file dialog.

Now you can select File|New File from
the menu and see Prompt as one of the
templates (Figure 1). Create a prompt this
way, and you should be able to edit it by
double-clicking it (Figure 2). Also note
the help set referred to in the layer file
(Figure 3).

To package the prompt editor for dis-
tribution, the usual method is to create a
Netbeans module package. This is es-
sentially a signed jar with the extension
“nbm,” which contains the module jar file
and any associated resources to be dis-
tributed along with the code. The prompt
editor includes the JavaHelp help set this
way. Netbeans provides an Ant task
called “<makenbm>” that packages ev-
erything for you.

Conclusion
The prompt module exercises just a few
of the many integration points modules
can make with the Netbeans framework.
Building client applications on top of
Netbeans lets you concentrate on writ-
ing the functionality necessary to ad-
dress your core competencies, rather
than reinventing the GUI application
wheel.

V-Builder is a good example of lever-
aging the entire Netbeans IDE to create
an IDE for building something besides
Java applications. However, the Net-
beans Platform is also an excellent
framework for building applications that
are not IDEs.

DDJ
(Listings begin on page 52.)

50 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 2: Double-click to edit.

Figure 1: Selecting File|New File from the menu.

Figure 3: Help set.

Listing One
Manifest-Version: 1.0
OpenIDE-Module: com.nuance.tools.prompt/1

OpenIDE-Module-Specification-Version: 1.0
OpenIDE-Module-IDE-Dependencies: IDE/1 > 4.41
OpenIDE-Module-Module-Dependencies: org.openide.io
OpenIDE-Module-Localizing-Bundle:

com/nuance/tools/prompt/resources/Bundle.properties
OpenIDE-Module-Layer: com/nuance/tools/prompt/resources/mf-layer.xml
Class-Path: docs/com-nuance-tools-prompt-edit.jar

Name: com/nuance/tools/prompt/PromptLoader.class
OpenIDE-Module-Class: Loader

Listing Two
Bundle.properties
moved from the module manifest, so they can be localized

OpenIDE-Module-Name=Prompt Editor
OpenIDE-Module-Short-Description=Prompt Editor
OpenIDE-Module-Long-Description=

Use this module to record, play, crop and normalize audio files.
OpenIDE-Module-Implementation-Title=V-Builder
OpenIDE-Module-Implementation-Vendor=Nuance
OpenIDE-Module-Display-Category=V-Builder

Listing Three
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC '-//NetBeans//DTD Filesystem 1.0//EN'

'http://www.netbeans.org/dtds/filesystem-1_0.dtd'>
<filesystem>
<!-- The "File...New File" templates -->
<folder name="Templates">
<folder name="V-Builder">
<!-- empty.prompt is a file in the same directory as this layer file -->
<file name="untitled.prompt" url="empty.prompt">
<attr name="template"

boolvalue="true"/>
<attr name="SystemFileSystem.localizingBundle"

stringvalue="com.nuance.tools.prompt.Bundle" />
<attr name="SystemFileSystem.icon" urlvalue=

"nbresloc:/com/nuance/tools/prompt/resources/wavIconSmall.gif"/>
<attr name="templateWizardURL" urlvalue=

"nbresloc:/com/nuance/tools/prompt/resources/templatesWav.html"/>
</file>

</folder>
</folder>
<!-- register the JavaHelp help set -->
<folder name="Services">
<folder name="JavaHelp">

<file name="com-nuance-tools-prompt-edit-helpset.xml">
<![CDATA[<?xml version="1.0"?>

<!DOCTYPE helpsetref PUBLIC
"-//NetBeans//DTD JavaHelp Help Set Reference 1.0//EN"
"http://www.netbeans.org/dtds/helpsetref-1_0.dtd">
<helpsetref url="nbdocs:/com-nuance-tools-prompt-edit/

com-nuance-tools-prompt-edit.hs"/>
]]>
</file>

</folder>
</folder>
<!-- make a menu item for the help set -->
<folder name="Menu">
<folder name="Help">
<!-- Put "V-Builder" sub-menu before the "Help Contents" sub-menu -->
<attr name="V-Builder/HelpShortcuts" boolvalue="true"/>
<folder name="V-Builder">
<attr name="SystemFileSystem.icon" urlvalue=

"nbresloc:/org/netbeans/modules/javahelp/resources/help.gif"/>
<file name="com-nuance-tools-prompt-edit-help-menu.xml">
<![CDATA[<?xml version="1.0"?>
<!DOCTYPE helpctx PUBLIC "-//NetBeans//DTD Help Context 1.0//EN"
"http://www.netbeans.org/dtds/helpcontext-1_0.dtd">
<helpctx id="com.nuance.tools.prompt.edit" showmaster="false"/>
]]>
<attr name="SystemFileSystem.localizingBundle"

stringvalue="com.nuance.tools.prompt.resources.Bundle"/>
<attr name="SystemFileSystem.icon" urlvalue=

"nbresloc:/com/nuance/tools/prompt/resources/wavIconSmall.gif"/>
</file>

</folder>
</folder>

</folder>
</filesystem>

Listing Four
package com.nuance.tools.prompt;

import java.io.IOException;

import org.openide.actions.*;
import org.openide.filesystems.FileObject;
import org.openide.filesystems.FileUtil;
import org.openide.loaders.DataObjectExistsException;
import org.openide.loaders.ExtensionList;
import org.openide.loaders.FileEntry;
import org.openide.loaders.MultiDataObject;
import org.openide.loaders.MultiFileLoader;
import org.openide.util.NbBundle;

import org.openide.util.actions.SystemAction;

/** Recognizes .prompt and .wav files as a single DataObject.
* .prompt files are the primary file objects. @author Rich Unger
*/
public class PromptLoader extends MultiFileLoader {

public static final String PROP_EXTENSIONS = "extensions"; // NOI18N
public static final String WAV_EXTENSION = "wav";
public static final String INFO_FILE_EXTENSION = "prompt";
private static final long serialVersionUID = -4579746482156153693L;
public PromptLoader() {

super("com.nuance.tools.prompt.PromptDataObject");
}
protected String defaultDisplayName () {

return NbBundle.getMessage(PromptLoader.class, "LBL_loaderName");
}
protected SystemAction[] defaultActions () {

return new SystemAction[] {
SystemAction.get (OpenAction.class),
SystemAction.get (FileSystemAction.class), null,
SystemAction.get (CutAction.class),
SystemAction.get (CopyAction.class),
SystemAction.get (PasteAction.class), null,
SystemAction.get (DeleteAction.class),
SystemAction.get (RenameAction.class), null,
SystemAction.get (PropertiesAction.class),

};
}
protected MultiDataObject createMultiObject (FileObject primaryFile)
throws DataObjectExistsException, IOException {

return new PromptDataObject(primaryFile, this);
}
/** For a given file find the primary file. @param fo the file to find
* the primary file for @return the primary file for this file or null
* if this file is not recognized by this loader.
*/
protected FileObject findPrimaryFile(FileObject fo) {

// never recognize folders.
if (fo.isFolder()) return null;
String ext = fo.getExt();
if (ext.equalsIgnoreCase(WAV_EXTENSION)) {

FileObject info = FileUtil.findBrother(fo, INFO_FILE_EXTENSION);
if(info != null) {

return info;
}
else {

try {
info = fo.getParent().createData(

fo.getName(), INFO_FILE_EXTENSION);
return info;

} catch(IOException ioe) {
// could not create .prompt file,
// so cannot recognize .wav file
return null;

}
}

}
if (getExtensions().isRegistered(fo)) {

return fo;
}
return null;

}
/** Create the primary file entry. Primary files are the property files
* (which contain the prompt's * description and recording instructions).
* @param primaryFile primary file recognized by this loader
* @return primary entry for that file
*/
protected MultiDataObject.Entry createPrimaryEntry(

MultiDataObject obj, FileObject primaryFile) {
return new FileEntry(obj, primaryFile);

}
/** Create a secondary file entry.
* Secondary files are wav files, which should also be retained (so, not a
* FileEntry.Numb object)
* @param secondaryFile secondary file to create entry for
* @return the entry
*/
protected MultiDataObject.Entry createSecondaryEntry(

MultiDataObject obj, FileObject secondaryFile) {
return new FileEntry(obj, secondaryFile);

}
/** @return The list of extensions this loader recognizes. */
public ExtensionList getExtensions() {

ExtensionList extensions =(ExtensionList)getProperty(PROP_EXTENSIONS);
if (extensions == null) {

extensions = new ExtensionList();
extensions.addExtension(INFO_FILE_EXTENSION);
extensions.addExtension(WAV_EXTENSION);
putProperty(PROP_EXTENSIONS, extensions, false);

}
return extensions;

}
/** Sets the extension list for this data loader.
* @param ext new list of extensions.
*/
public void setExtensions(ExtensionList ext) {

putProperty(PROP_EXTENSIONS, ext, true);
}

}

DDJ

52 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

A resource is something that is useful
and in limited supply. This includes
everything from computer memory
and disk space, to filehandles/sock-

ets and threads, mutexes, and semaphores.
It is therefore important that resources be
returned to the system when they are no
longer in use. Failure to do so eventually
results in poor performance and ultimately
in “starvation”— insufficient memory for
the next operation, insufficient disk space,
inability to create new threads, and the
like. More often, however, it leads to nasty
bugs, such as lost data and deadlocks.

Python does a good job of making re-
source management almost trivial. How-
ever, there are some important subtleties
that can have a serious effect on the porta-
bility, robustness, performance, or even
correctness of your Python programs. In
this article, I discuss those subtleties and
some of the modules and techniques you
can use to get around them.

In Python, resources are not available
directly but are wrapped in higher level
Python objects that you instantiate and
use in your own Python objects and func-
tions. Resource management consists of
the tasks that you and/or the Python in-
terpreter must carry out to ensure that a

resource that you have acquired is re-
turned to the system.

There are actually three issues that may
not be immediately apparent to you in
Python’s resource management model:

• NonDeterministic destruction (NDD).
• Circular references.
• Uncaught exceptions.

NDD
Resource management in Python is triv-
ial 90 percent of the time because it is au-
tomated: Once you no longer need an
object (say after you return from a func-
tion), you can just forget about it, and the
interpreter does its best to eventually re-
lease it.

The “eventually” part of this statement
refers to the fact that the Python Language
Reference Manual (http://docs.python
.org/ref/ref.html) guarantees that objects
stay alive as long as they are in use. This
means that if you create an object foo in
a function A and from there call another
function B that creates a global reference
to foo, foo stays alive past the return from
function A, at least until that global refer-
ence is discarded. There is, therefore, no
way for you to know when your object
will no longer be in use.

The “its best” refers to the fact that the
Python Language Reference (PLR) does
not prescribe what the interpreter must
do with foo once there are no other ob-
jects left referring to it; for instance, after
foo has become unreachable or “garbage.”
Actually, the PLR does not even prescribe
that the interpreter must notice at all. Many
languages have that as well, Java and C#
being two such examples. Therefore, “its
best” depends on the interpreter imple-
mentation; CPython, Jython, and Iron-
Python are the most well known. This in-
determinism is a trap that is difficult for
newcomers to Python to discern because
of the del operator and _ _del_ _ class
method. The del operator simply removes
a variable name from the local or global
namespace, it says nothing about object

destruction. On the other hand, the
_ _del_ _ method is called automatically
by the interpreter just before the object is
destroyed. But as explained earlier, object
destruction is not guaranteed to occur.
The call to your object’s __del__ is com-
pletely out of your control and may nev-
er happen, and using the del operator will
not help. The only reliable use for the del

operator is to make sure you (or a user
of your module) can’t mistakenly use a
name that shouldn’t be used.

This can be even harder to accept for
many Pythoneers who only have experi-
ence with the CPython implementation:
That implementation appears determinis-
tic because in trivial examples such as a
= foo(); del a, the foo is immediately de-
stroyed. Consequently, you may not real-
ize that your code will not work with oth-
er interpreter implementations.

This indeterminism is even a trap for
experienced programmers who have a
background in object-oriented languages
that have deterministic destruction (such
as C++), where create-release pairs (for
instance, the “resource acquisition is ini-
tialization,” or “RAII” idiom) are used heav-
ily, and to great effect. It is tempting to
see del as the equivalent of delete, and
__del__ as equivalent to a destructor. The
two statements taken separately are true,
but the difference from C++ is that
Python’s “delete” does not call the “de-
structor.”

Resource
Management in Python
When portability,
robustness, and
performance are
important

OLIVER SCHOENBORN

Oliver is a researcher for the National Re-
search Council of Canada doing R&D in
simulation systems for engineering appli-
cations in virtual reality. He can be con-
tacted at oliver.schoenborn@utoronto.ca.

54 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“Resource
management in
Python is trivial 90
percent of the time”

In fact, __del__ is not only effectively
useless for lifetime management, but should
be avoided due to reference cycles.

Circular References
In Python, variable names are references
to objects, not objects in and of them-
selves. A Python interpreter tracks whether
an object is in use by how many variable
names refer to that object— its “reference
count” (which, in the CPython imple-
mentation of Python, would be the same
as returned by sys.getrefcount(obj)). Un-
fortunately, even if the PLR prescribed that
objects shall be destroyed, and subjected
to this as soon as they are no longer ref-
erenced by any variable names, you
wouldn’t be much further ahead because
of reference cycles. A reference cycle oc-
curs when an object directly or indirectly
refers to itself. For instance, Listing One
leads an A (aa) to refer to a B (aa.b),
which in turn refers to aa via aa.b.a, and
aa -> aa.b -> aa, thus creating a refer-
ence cycle.

Reference cycles are more common
than you might think. For example, they
are common in GUI libraries, where in-
formation must flow up/down GUI com-
ponent trees.

While reference cycles are not a prob-
lem per se, they do prevent the reference
count of all objects in the cycle from go-
ing to zero — even those not directly in
the chain. So, those objects are never de-
stroyed and associated resources are nev-
er released. Hence, reference cycles are a
problem only when there are critical re-
sources to release; for example, mutex
locks, opened files, and the like, or if cy-
cles get continuously created (as in a
loop), which leads to an ever-increasing
memory consumption of your program
(Listing Two).

Even if you are careful not to create ref-
erence cycles, third-party modules that
create a cycle that refers to your object,
even indirectly, can trap it in the cycle.
For instance, the hypothetical object
yourObj in Figure 1 gets involved in a cy-
cle, c1->c2->c3->c1, unbeknownst to you.
Its reference count can’t go to zero until
you break the cycle.

Uncaught Exceptions
Even if you could be sure that reference
cycles don’t occur in your program, the
uncaught exceptions problem remains. An
exception in a function causes the named
references at all levels of the function call
stack to be retained until the Python in-
terpreter exits, in case you need to ex-
plore the data for debugging purposes.
Yet, objects that are left over from un-
caught exceptions are not guaranteed to
be destroyed, as stated in the PLR. See
Listing Three for a trick that can help clean

up resources (but again, the PLR offers
no guarantees).

It should be clear by now that you can’t
rely on __del__ for resource management;
for example, RAII does not work in
Python, and the del operator is no help
in that matter.

Fighting Indeterminism
Listing Four is C++ code that uses the RAII
idiom. The C++ code guarantees that the
critical mutex lock resource acquired when
instantiating a Lock is released when the
function returns, because Lock has a de-
structor (not shown) that releases it; this is
guaranteed by the language standard to be
called upon scope exit (that is, function re-
turn). The equivalent Python code is only
equivalent in appearance: lock is only a

named reference to a Lock instance object,
so upon scope exit, the reference count of
the created Lock is decreased, but:

• Python doesn’t guarantee that the ref-
erence count will be zero, since
do_stuff() might have increased it.

• Even if do_stuff() didn’t affect the refer-
ence count, the lock named reference is
not deleted if the scope is being exited
due to an exception raised by do_stuff().

• Even if no exception is raised, Python
doesn’t guarantee that any special func-
tion (__del__, for instance) will be called.

Until the next release of Python, the only
solution is to make judicious use of the
try-finally clause and manually call the re-
lease method (Listing Five). This works

http://www.ddj.com Dr. Dobb’s Journal, March 2005 55

Listing One
class A:

def __init__(self):
self.b = B(self)

def __del__(self):
print "goodbye"

class B:
def __init__(self, a):

self.a = a
aa = A()
del aa

Listing Two
while 1:

aa = A()

Listing Three
someScript.py
def run_application():

...
def handle_exception():

...
try:

run_application()
except: # catch all

handle_exception()
attempt to free as many remaining as possible
import sys
sys.exc_clear()
sys.exc_traceback = None
sys.last_traceback = None

well, except that the coder of Lock must
remember to document which method must
be called to release resource (not too bad),
but the user must read the documentation
and notice it (far less likely). In addition,
users must remember to use a try-finally
clause. The latter is actually easy to forget
or to get wrong (Listing Six). Also, you can’t
mix except and finally clauses. Rather, a
try- except must wrap a try- finally, or
vice versa (Listing Seven). This is an un-
fortunate obfuscation of code that begs for
refactoring into a separate function.

Starting with Python 2.4, a new type of
expression lets you use the keyword with.
This lets you write Listing Seven as List-
ing Eight. This does the right thing as long
as the developer of Lock has defined an
__exit__ method in Lock. Outside of the
with block, the object that lock refers to
should not be used. This new syntax
cleans things up somewhat but still leaves
it up to you to remember that Lock re-
quires proper manual resource manage-
ment; legacy code will not be able to take
advantage of this feature (though adding
an __exit__ would be easy to do manu-
ally). Also, the PEP (PEP310, http://
www.python.org/peps/pep-0310.html)
doesn’t allow for multiple variables on the
with line, though that is likely to be a rare
requirement.

In cases where a with block is still not
adequate (for instance, if you have more
than one object to guard with the with
and don’t want to nest two with clauses),
your only options are to:

• Continue with try-finally and try-except.
• Go with something like detscope.py that

provides a means of automating the try-
finally mechanics (see Listing Nine for

a functional prototype that is, however,
not multithreadsafe).

• Develop your own technique.

Breaking the Cycle
Since Python 2.1, the standard weakref
module supports the concepts of weak
reference. A weakref.ref(yourObject) is an
object that does not affect the reference
count of yourObject. It has other nice
properties, such as being testable for null-
ness, and letting you specify a callback
that gets called when yourObject is de-
stroyed; see Listing Ten. A weak reference
can be used to break a reference cycle
because it tells the interpreter “Don’t keep
this object alive on my account.” Listing
Eleven does not create any cycle.

There is a catch: Reference cycles can
be hard to find. Since Python 2.1, a
garbage collector has been added that de-
tects cycles and frees as many trapped ob-
jects as possible. The garbage collector
can destroy an object involved in a cycle
only if that object does not have a __del__
method. This is simply because a cycle
has no beginning and no end, so there is
no way of knowing which object’s
__del__ should be called first. Cycles that
cannot be destroyed are put in a special
list that you can manipulate via the gc
module.

The gc module gives access to the
garbage collector. The most useful mem-
bers of gc are:

• garbage, a list containing all objects with
reference count > 1 but that your code
can no longer reach, and which has a
__del__ method.

• collect(), forces a cleanup to update
gc.garbage.

• get_referrers(obj), gets a list of objects
that refer to obj.

• get_referents(obj), gets a list of objects
referred to by obj.

Listing Twelve provides code useful for
exploring the concept of cycles, and List-
ing Thirteen is a sample session using it
and showing how the cycle is broken. Re-
member that gc.garbage is a standard
Python list so it holds “hard” references to
your objects: If you manually break a cy-

cle, you must also remove your object from
this list for it to be labeled as “unused”
(reference count = 0). (See http://aspn
.activestate.com/ASPN/Cookbook/Python/
Recipe/65333/ for a recipe to dump un-
reachable objects using gc.garbage.)

If you’re working with versions of
Python prior to 2.1, you can use Cyclops
(http://www.python.org/ftp/). This pack-
age, not in the standard library, contains
the cyclops module, which helps identify
reference cycles. Contrary to Python’s
garbage collector, Cyclops seems to re-
quire that you tell it which objects to in-
spect for cycles.

Once you have identified that a cycle is
being created, you must figure out how
(where) to break the cycle, or, if that is
not possible, how to properly free the crit-
ical resources being held some other way.
Most often, this will involve wrapping an
object with a weakref.ref or weakref.proxy.

Conclusion
If you use Python for its portability, keep
both platform and interpreter portability
in mind: You must be careful not to rely
on your objects being destroyed, ever, so
you can’t use the RAII idiom. The del op-
erator affects only whether you can ac-
cess (reach) an object, not the object’s ex-
istence. Therefore, you must make sure
you read the documentation of a class to
see if a special disposal method must be
called when you no longer need the ob-
ject, and use such disposal methods in-
side a try- finally clause. In Python 2.4,
you should be able to use the with clause,
but that still requires work on your part.
Detscope.py and other techniques may
be appropriate as well. Circular references
may prevent such a disposal from taking
place, in which case you must hunt down
the cycles manually or using pdb or gc or
Cyclops, and fix them using weak refer-
ences available via the weakref module.

Acknowledgments
Thanks to Holger Dürer, Todd MacCul-
loch, Francis Moore, and Pierre Rouleau
for their helpful reviews of the drafts of
this article.

DDJ

56 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 1: Cyclic references.

C1 C2

C3

yourObj

Listing Four
C++ code:
void func() {

Lock lock;
do_stuff();

}
"equivalent" Python code:
def func():

lock = Lock()
do_stuff()

Listing Five
def func():

lock = Lock()
try:

do_stuff()
finally:

lock.release()

Listing Six
extreme danger:
open('somefile.txt','w').write(contents)
runtime error in exception handler:
try:

ff = open('somefile.txt','w')
ff.write(contents)

finally:
ff.close() #bang!! ff undefined

multithreaded:
ff = open('somefile.txt','w')
if exception raised before getting
into the try-finally clause: bang!
try:

ff.write(contents)
finally:

ff.close()

Listing Seven
def func():

lock = Lock()
unfortunately not allowed:
try:
do_stuff()
except MyExcept:
undo_stuff()
finally:
lock.release()

instead, nesting is necessary:
try:

try:
do_stuff()

except MyExcept:
undo_stuff()

finally:
lock.release()

Listing Eight
def func():

with lock = Lock():
do_stuff()

Listing Nine
detscope.py
"""
Example use: a function, funcWCriticalRes(), creates two critical resources,
of type CritRes1 and CritRes2, and you want those resources to be released
regardless of control flow in function:
import detscope.py
def funcWCriticalRes():

critres1 = CritRes1()
critres2 = CritRes2()
use_res(res1, res2)
if something:

return # early return
...

funcWCriticalRes = ScopeGuarded(funcWCriticalRes)

class CritRes1(NeedsFinalization):
def __init__(self, ...):

...
def _finalize(self):

...
class CritRes2(NeedsFinalization):

def __init__(self, ...):
...

def _finalize(self):
...

"""
import sys
def ScopeGuarded(func):

return lambda *args, **kwargs: ScopeGuardian(func, *args, **kwargs)
_funcStack = []
class NeedsFinalization:

def __init__(self):
print '\n%s: being created' % repr(self)
self.__finalized = False
try: _funcStack[-1].append(self)
except IndexError:

raise RuntimeError, "Forgot to scope-guard function? "
def finalizeMaster(self):

"""Derived classes MUST define a self._finalize() method,
where they do their finalization for scope exit."""
print '%s: Finalize() being called' % repr(self)
self._finalize()
self.__finalized = True

def __del__(self):
"""This just does some error checking, probably want to remove
in production in case derived objects involved in cycles."""

try:
problem = not self.__finalized

except AttributeError:
msg = '%s: NeedsFinalization.__init__ not called for %s' \

% (repr(self), self.__class__)
raise RuntimeError, msg

if not problem:
print '%s: Finalized properly' % repr(self)

else:
print 'Forgot to scope-guard func?'

def ScopeGuardian(func, *args, **kwargs):
try:

scopedObjs = []
_funcStack.append(scopedObjs)
func(*args, **kwargs)

finally:
_funcStack.pop()
if scopedObjs != []:

scopedObjs.reverse() # destroy in reverse order from creation
for obj in scopedObjs:

obj.finalizeMaster()

Listing Ten
import weakref
class Foo:

def __str__(self):
return "I'm a Foo and I'm ok"

def __del__(self):
print "obj %s: I was a Foo and now I'm dead" % id(self)

def noticeDeath(wr):
print "weakref %s: weakly ref'd obj has died" % id(wr)

yourObj = Foo()
wr = weakref.ref(yourObj, noticeDeath)
print 'weakref %s -> obj %s: %s' % (id(wr), id(wr()), wr())

del yourObj
assert wr() is None
output:
weakref 17797504 -> obj 17794632: I'm a Foo and I'm ok
weakref 17797504: weakly ref'd obj has died
obj 17794632: I was a Foo and now I'm dead

Listing Eleven
import weakref
class A:

def __init__(self):
self.b = B(self)

def __del__(self):
print "goodbye"

class B:
def __init__(self, a):

self.a = weakref.ref(a)
aa = A()
del aa

Listing Twelve
testCycle.py
from sys import getrefcount
import gc
class CycleContainer:

def __init__(self, instName):
self.instName = instName
self.cycle = Cycle(self)
print "Constructed a CycleContainer named '%s'" % instName

def refs(self):
"""Get number of references to self. The 3 was
determined experimentally, so method returns
expected number of references."""
return getrefcount(self)-3

def __del__(self):
"""Will prevent CycleContainer instance from being destroyed by gc"""
print "CycleContainer '%s' being finalized" % self.instName

class Cycle:
def __init__(self, containerOfSelf):

self.container = containerOfSelf
def checkgc():

gc.collect()
return gc.garbage

Listing Thirteen
>>> from testCycle import CycleContainer, Cycle, checkgc
>>> aa= CycleContainer('one')
Constructed a CycleContainer named 'one'
>>> aa.refs()
1
>>> aa.cycle = Cycle(aa)
>>> aa.refs()
2
>>> checkgc()
[]
>>> del aa
>>> checkgc()
[<testCycle.CycleContainer instance at 0x00984CB0>]
>>> checkgc()[0].refs()
2
>>> bad = checkgc()[0]
>>> del bad.cycle
>>> bad.refs()
2
>>> checkgc()
[<testCycle.CycleContainer instance at 0x00984CB0>]
>>> del checkgc()[:]
>>> checkgc()
[]
>>> bad.refs()
1
>>> del bad
CycleContainer 'one' being finalized

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 57

T
ake one traditional sequential pro-
gramming language — C, for in-
stance— and remove the parts you
don’t like. Design and code a com-

piler based on this language, and target a
popular microcontroller (making sure that
the design is flexible enough to support
multiple targets). Now, add Finite State
Machine programming constructs as an
integral part of the language. What you
end up with is “StatiC,” a dual-mode com-
piler that provides an easy migration path
from the traditional sequential program-
ming model to the inherently multitask-
ing Finite State Machine model. Effective-
ly, you get two languages for the price of
one, along with a friendly syntax and small
learning curve. Additionally, the use of
command-line switches facilitates retar-
geting through external parsing software.

The StatiC compiler supports both tra-
ditional sequential and Finite State Ma-
chine (FSM) language methodologies, the
feature being controlled via a command-
line switch. Dual-methodology support
lets you code using an identical syntax

(but different language constructs) in ei-
ther the “generic” sequential mode or the
inherently multitasking FSM mode. The
sequential language is based on the fa-
miliar language constructs of C, Basic,
and Pascal, but with a unified and sim-
plified syntax. The FSM language is the
same as the sequential language, except
that it has additional FSM extensions. In
this article, I don’t specifically address
Finite State Machines, as this topic has
been covered in DDJ in the past. Rather,
I deal with the implementation of the
concept as it applies to the StatiC lan-
guage.

The compiler has been designed from
scratch, specifically for the embedded do-
main, and includes the features required
to support both the sequential and FSM
modes of operation. In addition, the lan-
guages themselves have been enhanced
to remove “clutter” (such as ambiguous
operators and symbols) found in other
languages, as well as incorporating some
features more suited for embedded soft-
ware development.

The StatiC compiler can be hosted un-
der Windows or Linux, and currently tar-
gets the Motorola DSP56F80x microcon-
trollers. These controllers, with their dual
Hardvard architecture, JTAG flash capa-
bilities, and a wide variety of interface
modules, are particularly well suited for
the embedded/robotics domain. A demo
version of the compiler is available at
http://petegray.newmicros.com/static/ and
from DDJ (see “Resource Center,” page 5).

StatiC compiler operation is controlled
via parameters and switches, which are
invoked like this:

static sourcename [switches]

By convention, StatiC FSM-mode pro-
grams have a filetype of .fsm and non-
FSM programs have a filetype of .nsm.

Table 1(a) lists the switches that con-
trol compiler operation. For example, to

produce CodeWarrior-style assembly lan-
guage for myprog.nsm, enter:

static myprog.nsm -a568cw

Output is placed in the file clist.asm.
Table 1(b) lists additional switches for
compiler development and debugging.

If the assembler output is unspecified
(that is, you don’t use the -a switch), the
compiler generates descriptive, nonopti-
mized assembler, making it possible for
an external program to parse the output
and produce assembler for a completely

The StatiC
Compiler & Language

A dual-mode system
for sequential and
FSM development

PETE GRAY

Pete is a programmer who specializes in
embedded systems development. He can
be contacted at petegray@ieee.org.

58 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“Dual-methodology
support lets you
code using an
identical syntax in
either the ‘generic’
sequential mode or
the inherently
multitasking
FSM mode”

different target. The default compiler mode
is sequential. In addition, if the compiler
is invoked without specifying a source, it
begins an interactive session.

FSM-Specific Language Topics
FSM mode allows the use of Finite State
Machine constructs, which are inherently
multitasking. An application typically con-
sists of multiple machines that— at any
point in time— exist in a particular state.
A good analogy would be that a machine
is like a thread running in a process, or a
machine is like a program running in a
multitasking operating system.

The implementation of the FSM meth-
odology requires that you list the al-
lowable states of the machines in an ap-
plication, defines the conditions whereby
a machine state transition occurs, and
declares the name and initial state of
each machine. Each state and each ma-
chine has a unique name (they are, af-
ter all, identifiers).

State transitions are used to determine
and execute a machine transition from one
state to another, and achieve this through
the assignment of the reserved word
nextstate, optionally executing additional
code during the transition.

Due to the nature of state machines, a
transition may not include loops or calls
(that is, anything that may cause a tran-
sition to “hang”). This apparent limitation
really isn’t limiting, rather, it proactively
encourages you to produce code that is
more appropriate to the state machine
programming paradigm. The compiler
automatically generates a high-speed,
minimal overhead, context-switching
mechanism based on an application’s ma-

chine chain. This context switch exam-
ines the state transition conditions of each
machine in a round-robin fashion, per-
forming a machine state transition only
when the transition conditions have been
satisfied.

The demo version of the StatiC com-
piler has limited FSM capabilities— two
machines and 12 states — which is
enough to compile the FSM mode ex-
ample program.

Program Structure: Sequential Mode
The structure of a typical sequential pro-
gram looks like this:

Comments
Directives
Global Variable and Constant Declarations
Procedure Block(s)

Program Block

All items, except the Program Block,
are optional. Comments can appear any-
where. Most Directives can appear any-
where. Global Variables and Constants
must appear prior to being referenced
(that is, referenced from a Procedure or
the Program). Procedure Blocks must ap-
pear before the Program Block.

The Procedure and Program Block
Structures follow. Optional elements are
shown between square braces ([and]).
Procedure Block Structure, see Example
1(a), define the name, parameters, and
code of a callable routine. The Program
Block Structure defines the code of the
main program; see Example 1(b).

Listing One, a complete sequential
mode StatiC program, performs simple ter-
minal I/O and lets users turn LEDs on/off.
The target system is New Micros’s Pluga-
Pod (http://www.newmicros.com/), which

is based on Motorola’s DSP56F803 digital-
signal processor. This program displays
instructions, then turns the LEDs on/off,
depending upon what users type at the
keyboard.

From within the program block, you
see the statement:

word ichar 1

which declares a one-word variable, ichar,
which is local to the program block. Next,
the statement

^SCI0BR = 260 // baud 9600

loads the Serial Communications Interface
(SCI) baud rate register with the value 260,
which sets the baud rate of the chip’s SCI
module to 9600. The statement works this
way because I defined SCI0BR, near the
top of the program, to be $0F00, the ad-
dress (in Hex) of the baud-rate register
for the PlugaPod, and I use the “^” oper-
ator. This could be thought of as mean-
ing “load the contents of $0F00 with 260.”
In StatiC, the same statement could have
been written like this:

^$0F00 = 260

which would have achieved the same
thing. However, it’s good practice to sub-
stitute definitions for register addresses
because the registers do not always have
the same address within the same family
of chips. Using definitions means that if
you port your code to another chip, which
doesn’t have the same register address as
the original, you’ll only need to change
the program in one place— in the #de-
f ine directive. Besides, SCI0BR is a little
more meaningful than $0F00 to someone
reading or maintaining the code.

The program then sets the various
general-purpose input/output (GPIO)
line-control registers, which are tied to
the LEDs on the PlugaPod. Next, the
statement:

call sci0output (@msg1) // display message

calls the SCI output routine, passing the
address of msg1 as the parameter. The
constant msg1 is a null-terminated string,
and sci0output is coded to process the
string passed to it, displaying the charac-
ters (via the SCI) to the terminal.

The program then enters a never-ending
loop, reading the keystrokes and adjusting
the LEDs accordingly. The statement:

call sci0input (@ichar)

calls the SCI input routine, passing the ad-
dress of the local variable ichar as the pa-
rameter. The sci0input routine is coded
to wait for keyboard input and return what
was typed in the parameter passed to it.

Next, the character returned from the
input routine is tested, and the LEDs are
adjusted. The statement:

(continued from page 58)

60 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Switch Description

(a)
-a568 Produces assembler output for the a568 assembler.

-a568cw Produces assembler output suitable for use in
CodeWarrior.

-s$xxxx Specifies the initial SP value, in Hex (defaults if
unspecified).

-f Invokes the compiler in FSM mode.

-b Turns the bell on (for errors and/or warnings).

-w Displays warning messages.

-m$xxxx Specifies the initial SP value, in Hex, for machines.

(b)
-l Lists the pseudocodes being generated, as comments,

in the assembly output.

-t Produces a trace file of the compiler activity (ctrace.txt),
including internal routine calls, parsing, and optimization
details.

Table 1: StatiC compiler switches.

if (ichar = '1') ^PADR = ^PADR | $0004 endif

performs a logical OR operation on the con-
tents of the GPIO data register (PADR =
Port A Data Register), if users type a “1”
at the keyboard. ORing the data register
with $0004 sets bit 2 high, which turns
the green LED on.

Finally, sci0input waits until the SCI sta-
tus register (SCI0SR) indicates that a char-
acter has been entered, then puts the char-
acter into wherever rchar is pointing at:

ostat = ^SCI0SR
while (ostat & $3000) <> $3000

ostat = ^SCI0SR
endwhile
^rchar = ^SCI0DR

Recall that I passed @ichar to the rou-
tine, and the formal declaration of the rou-
tine was:

procedure sci0input (rchar)

so the statement:

^rchar = ^SCI0DR

actually stores the contents of the SCI data
register (SCI0DR) into ichar.

Program Structure: FSM Mode
The structure of a typical FSM program
looks like this:

Comments
Directives
Global Variable and Constant Declarations

Procedure Block(s)
State List

Transition Blocks(s)
Machine Definitions

Program Block

Many of the components of an FSM pro-
gram structure are present in the sequen-
tial program structure. The extensions re-
quired for FSM mode are the State List,
Transitions, and Machine Definitions,
which must appear in order.

The State List simply lists the allowable
application machine states:

statelist statename1 statename2 …

The Transition Block Structure defines
the conditions required for a state change
and the actions to perform when those
conditions are met.

transition statename
begin

condition expression
causes

statements
endcondition

end

Finally, Machine Definitions lists the
machines in the application, and defines
their stack space and initial state. Each
machine has its own stack space, and the
compiler automatically initializes— and
keeps track of— the stack pointer for
each machine.

machine machinename stacksize initial state

Listing Two, a complete FSM mode
StatiC program, performs simple termi-
nal I/O. Characters entered on the key-
board are received by the microcontroller
and echoed on a PC running a terminal
emulator. Again, the target system is
NewMicros’s PlugaPod, although this ex-
ample also runs on the 805 chip (NewMi-
cro’s IsoPod), and— with modification
to the SCI register addresses— the 807
(ServoPod).

First, notice that this application con-
sists of two machines— inputmachine and
outputmachine. The main part of the pro-
gram, the Program Block:

^SCI0BR = 260 // baud rate 9600
^SCI0CR = 12 // 8N1
call sci0output (@msg1) // display

// welcome message
appstate = APPSTATEINPUT// the initial

//app state

sets up the Serial Communications Inter-
face (SCI), displays a message, and sets
the global variable appstate to be APP-
STATEINPUT. This application is designed
in such a way that the two machines are
cooperative, and the setting of appstate
determines their transition to/from one

http://www.ddj.com Dr. Dobb’s Journal, March 2005 61

(a)
procedure procedurename ([parameter_list])
begin

[local variable declarations]
statements

end

(b)
program
begin

[local variable declarations]
statements

end

Example 1: (a) Procedure Block Structure; (b) Program Block Structure.

state to another. Machines don’t have to
behave this way, but it’s useful, for demon-
stration purposes.

Once the program block has been ex-
ecuted, all machines are activated. That is
to say, they’re put into their “initial state”
as determined by the machine definition
statements:

machine inputmachine 10 waitappinput
machine outputmachine 10 waitappoutput

inputmachine is put into waitappinput
state, and outputmachine is put into wait-
appoutput state. Once in these states, they
remain in these states until the state tran-
sition conditions have been satisfied. So,
inputmachine is initially in waitappinput
state, which is described in the transition
block, thus:

transition waitappinput
begin

condition appstate = APPSTATEINPUT
causes

nextstate = waitinput
endcondition

end

However, appstate was defined as
APPSTATEINPUT in the main program
block, so the inputmachine’s transition
condition is satisfied. This causes in-
putmachine to change states to wait-
input.

Also, you’ll notice that outputmachine’s
initial state is waitappoutput, which is de-
scribed in the transition block, thus:

transition waitappoutput
begin
condition appstate = APPSTATEOUTPUT
causes

nextstate = doappoutput
endcondition

end

Unlike inputmachine, outputmachine’s
transition condition has not been satisfied,
so no state change takes place, and out-
putmachine remains in the waitappout-
put state.

At this point in time, outputmachine is
waiting for its transition condition to be
satisfied, and inputmachine has changed
state to waitinput. So, looking at the wait-
input transition block:

transition waitinput
begin

condition (^SCI0SR & $3000) = $3000
causes

appchar = ^SCI0DR
appstate = APPSTATEOUTPUT
nextstate = waitappinput

endcondition
end

inputmachine remains in this waitinput
state until a keyboard key is pressed at
the keyboard. The outputmachine is still

waiting for its transition conditions to be
satisfied.

When a key is pressed, inputmachine’s
transition conditions are satisfied, a char-
acter is read from the SCI data buffer into
the global variable appchar, the appstate
is set to APPSTATEOUTPUT, and input-
machine performs a state change back to
waitappinput.

At this point, outputmachine’s state tran-
sition conditions have been satisfied (be-
cause appstate was set to APPSTATEOUT-
PUT by inputmachine), so outputmachine
experiences a state change from waitapp-
output to doappoutput. Looking at the
doappoutput transition block:

transition doappoutput
begin

condition (^SCI0SR & $C000) = $C000
causes

^SCI0DR = appchar
appstate = APPSTATEINPUT
nextstate = waitappoutput

endcondition
end

The outputmachine waits until the SCI
is ready to send, then it loads the SCI data
register with the global variables; appchar,
sets the appstate to APPSTATEINPUT, and
performs a state change back to waitapp-
output. While this is all happening, in-
putmachine does nothing, because its
state transition conditions have not been
satisfied.

At this point in time, both machines are
back in their initial states, and the whole
cycle starts again.

Why FSM?
At this point, you may be wondering why
anyone would want to code like this. The
answer is because it’s inherently multi-

tasking. For example, say that you’ve cod-
ed the previous example and want to have
the application monitor the PH level of
the water in a fishtank (via the ADC), then
set a GPIO line high (triggering an alarm)
if the reading goes above a certain point.
All you have to do is add another ma-
chine. Want to send PWM signals to acti-
vate a servo that opens a feeding tray?
Add another machine.

There’s no difficult “where do I put this
new code so that the existing code still
works?”— the machines run independently
from each other (unless, of course, you
deliberately design them to be coopera-
tive). You could even run multiple ma-
chines on the same chip, which perform
functions for more than one application;
for instance, monitor a fishtank and mon-
itor a home-security system.

You simply create machines, as re-
quired, to perform the tasks you desire.
Each machine runs and changes state
when its transition conditions are satisfied.
All of the machines you define are run-
ning at the same time— the same as a
multitasking operating system— and per-
forming whatever function you’ve de-
signed them to do. This is the true pow-
er of FSM programming.

Conclusion
My goal with StatiC is to create a dual-
methodology language, which is easy to
learn and use, yet advanced enough to
perform multitasking in embedded envi-
ronments. It had to be something that
made rapid application development a re-
ality, and not just an overused marketing
phrase. But most of all, it had to be a lan-
guage that I— as an experienced software
developer—would want to use, as a mat-
ter of preference, over any other languages
available in the domain. The StatiC lan-
guage and compiler meet, and in some
ways exceed, that goal. I’m surprised with
what can be achieved using a relatively
simple language — which just goes to
show that sometimes the best solution to
complex problems is a simple solution.

Acknowledgments
New Micros (http://www.newmicros.com/)
produces inexpensive DSP56F80x micro-
controller boards (IsoPod, ServoPod, Mini-
Pod, and PlugaPod), as well as the JTAG
cables. I’d like to thank Randy M. Dumse
and Jack Crenshaw for their support and
guidance. All compiler development was
performed on a homemade P4 WXP box
and an IBM 300PL running Linux RH9. I’m
currently developing support for the At-
mel AVR series of microcontrollers, as well
as additional language features.

DDJ

62 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“You simply create
machines, as

required, to perform
the tasks you desire”

Listing One
// port A definitions for GPIO (LEDs)
#define PAPUR $0FB0
#define PADR $0FB1
#define PADDR $0FB2
#define PAPER $0FB3
#define PAIAR $0FB4
#define PAIENR $0FB5
#define PAIPOLR $0FB6
#define PAIPR $0FB7
#define PAIESR $0FB8

// SCI0 definitions for terminal (RS232) interface
#define SCI0BR $0F00
#define SCI0CR $0F01
#define SCI0SR $0F02
#define SCI0DR $0F03

// constants - the welcome message
const msg1 "LEDs on/off 1/2=Green 3/4=Yellow 5/6=Red."
const msge 13,10,0

// output a null-terminated string to SCI0
procedure sci0output (optr)
begin
word ostat 1

while ^optr
ostat = ^SCI0SR
while (ostat & $C000) <> $C000
ostat = ^SCI0SR

endwhile
^SCI0DR = ^optr
optr = optr + 1

endwhile
end

// read a character from SCI0
procedure sci0input (rchar)
begin
word ostat 1

ostat = ^SCI0SR
while (ostat & $3000) <> $3000
ostat = ^SCI0SR

endwhile
^rchar = ^SCI0DR

end

// the main program
program
begin
word ichar 1

^SCI0BR = 260 // baud 9600
^SCI0CR = 12 // 8N1
^PAIAR = 0 // enable LEDs
^PAIENR = 0
^PAIPOLR = 0
^PAIESR = 0
^PAPER = $00F8
^PADDR = $0007
^PAPUR = $00FF
call sci0output (@msg1) // display message
^PADR = 0 // LEDs off
while 1 // loop forever
call sci0input (@ichar)
if (ichar = '1') ^PADR = ^PADR | $0004 endif
if (ichar = '2') ^PADR = ^PADR & $00FB endif
if (ichar = '3') ^PADR = ^PADR | $0002 endif
if (ichar = '4') ^PADR = ^PADR & $00FD endif
if (ichar = '5') ^PADR = ^PADR | $0001 endif
if (ichar = '6') ^PADR = ^PADR & $00FE endif

endwhile

end

Listing Two
// definitions for SCI (RS232)
#define SCI0BR $0F00
#define SCI0CR $0F01
#define SCI0SR $0F02
#define SCI0DR $0F03

// global variables
word appstate 1
word appchar 1

// application control definitions
#define APPSTATEINPUT 1
#define APPSTATEOUTPUT 2

// constants
const msg1 "StatiC FSM SCI Demo Ready."
const msg2 13,10,0

// the application states
statelist waitappinput waitinput waitappoutput doappoutput

// the transitions
transition waitappinput
begin
condition appstate = APPSTATEINPUT
causes
nextstate = waitinput

endcondition
end

transition waitinput
begin
condition (^SCI0SR & $3000) = $3000
causes
appchar = ^SCI0DR
appstate = APPSTATEOUTPUT
nextstate = waitappinput

endcondition
end

transition waitappoutput
begin
condition appstate = APPSTATEOUTPUT
causes
nextstate = doappoutput

endcondition
end

transition doappoutput
begin
condition (^SCI0SR & $C000) = $C000
causes
^SCI0DR = appchar
appstate = APPSTATEINPUT
nextstate = waitappoutput

endcondition
end

// define the machines
machine inputmachine 10 waitappinput
machine outputmachine 10 waitappoutput

// a procedure used at start-up, to display welcome message
procedure sci0output (optr)
begin
word ostat 1

while ^optr
ostat = ^SCI0SR
while (ostat & $C000) <> $C000
ostat = ^SCI0SR

endwhile
^SCI0DR = ^optr
optr = optr + 1

endwhile
end

// the main program
program
begin
^SCI0BR = 260 // baud rate 9600
^SCI0CR = 12 // 8N1
call sci0output (@msg1) // display welcome message
appstate = APPSTATEINPUT // the initial app state

end

// at this point, all of the defined machines are 'running'

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 63

Building on
TiVo

P R O G R A M M E R ’ S T O O L C H E S T

T
iVo is a digital video recording (DVR)
device and service that, among other
things, lets you store up to 140 hours
of television programming, pause/

rewind/fast-forward live TV shows, find
and record shows with your favorite actor,
and record one program while watching
another. It’s no surprise that TiVo’s success
has made it an attractive target for hobby-
ists and hackers, as witnessed by the In-
ternet sites, books, and hardware exten-
sions available to extend and improve the
user experience. Though customizing your
digital video recorder is not encouraged or
endorsed by TiVo, we nonetheless recog-
nize there is a desire to extend the expe-
rience.

In this article, we introduce a new tech-
nology for doing just that. Currently avail-
able as a developer preview on standalone

TiVo devices, the Home Media Engine
(HME) lets you build applications that in-
tegrate seamlessly with the TiVo user ex-
perience. The HME technology originated
at Strangeberry, a Silicon Valley startup we
founded, which was acquired by TiVo in
early 2004.

HME enables a wide variety of new ap-
plication types and lays a solid founda-
tion for integrating third-party functional-
ity into the TiVo user interface. Dust off
your compilers, because with HME, you
can finally legally hack your TiVo DVR!

Rewind
When we started Strangeberry in 2002,
we had just completed lengthy cubicle
stints writing enterprise software and were
eager to turn our attention to something
near and dear to our hearts— consumer
electronics. Since the Strangeberry
founders were TiVo enthusiasts, we in-
vestigated developing the first third-party
aftermarket application for TiVo DVRs.
We built a concept application in Power-
Point and pitched it to TiVo representa-
tives. They loved the idea, but it quickly
became clear that it would never see the
light of day. Back then, integrating with
TiVo DVRs from the outside turned out
to be technically challenging with limit-
ed business opportunities.

Frustrated, we decided that the market
needed an open DVR and set out to build
one from scratch. Within a couple of
months, we created a reasonably func-
tional system based entirely on open-
source software and featuring powerful
user interface (UI) primitives.

Our experiments generated clouds of
speculative smoke, but we couldn’t quite
find the fire. We tried to imagine how fu-
ture components would be connected to-
gether. Today’s devices lack connective

intelligence and require too many remote
controls. What kind of connector will you
find on the back of your television in 10
years? NTSC? Coax? Ethernet? Wireless?

We investigated emerging Standards
such as Universal Plug-and-Play (UPnP),
which allows access to network-based me-
dia resources. However, it is inflexible and
hard to extend in meaningful ways. Be-
sides, we don’t want our media to show

Extending the home
media platform—
legally!

ARTHUR VAN HOFF
AND ADAM DOPPELT

Arthur is a principle engineer at TiVo and
Adam is one of the architects for the HME
project. They can be contacted at avh@
tivo.com and amd@tivo.com, respectively.

64 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“HME is currently
available to
developers for
building applications
for the TiVo
platform”

up in someone else’s user interface. In-
stead, we want our media in our user in-
terface on someone else’s device! (We
want iTunes, not Windows Explorer.)

It quickly became clear that the archi-
tecture we created solved many of these
problems. We decided to focus on build-
ing a Digital Media Receiver based on this
technology, which we dubbed the “Home
Media Engine” (HME).

The Strangeberry Digital Media Re-
ceiver was able to display rich multime-
dia UIs for network-based or embedded
applications on television screens. De-
velopers could create attractive applica-
tions, with alpha-blended graphics and
smooth animations. We had built a tru-
ly open technology that let developers
control the user experience and integrate
diverse applications on a single televi-
sion screen.

Now Playing
HME is currently available to developers
for building applications for the TiVo plat-
form. Figure 1 describes the TiVo plat-
form. The initial release of HME is a de-
veloper preview that makes it possible to
build PC-based applications that add in-
teresting new functionality to the TiVo
box. HME developers have already built
personal media applications for music and
photos, RSS readers, games, weather view-
ers, news tickers, search engines, and
much more.

For techies like us, it is easiest to think
of HME as X/11 for television. Instead of
the tired old X primitives, HME supports
image compositing, transparency, anima-
tion, antialiased text, streaming media, and
remote-control input.

HME applications advertise them-
selves using the Rendezvous service dis-
covery protocol. TiVo devices on the
local network will discover these ap-
plications and add them to the Music &
Photos screen in the TiVo UI (see Fig-
ure 2). When users select an HME ap-
plication, the TiVo device connects to
it and the application can display its UI
on the television screen. Remote-control
input is routed back to the application,
giving it full control over the user ex-
perience.

The display protocol is simple but ef-
fective. The application builds a hierar-
chical tree of views, each of which can
contain a resource, such as a color, im-
age, or text string. The device renders the
tree and combines text, graphics, and
video into a UI. When users press a key
on the remote, an event is delivered to the
application, which can then adjust the UI
accordingly.

HME has features that let applications
create a rich user experience. It contains
animation primitives that allow for smooth

transitions and fades. Assets can be load-
ed directly from the application or from
an external location specified by a URL.

Pause
The hardware inside the TiVo DVR su-
perficially resembles a modern PC, but
with reduced cost comes reduced horse-
power. Most TiVo DVRs are built around
a 180MHz MIPS CPU with 32MB of mem-
ory and limited memory bandwidth. The
system is continuously recording and
playing back video, which consumes a
sizable chunk of the system’s limited re-
sources.

Luckily, each TiVo device contains a
graphics chip that provides a reasonably
powerful 2D compositing engine. The chip
is a fascinating component with interest-
ing potential and equally interesting re-
strictions. To work around these restric-
tions, the HME team built a powerful tiling
engine that breaks the HME view hierar-
chy into a list of regions that can be ren-
dered using the graphics hardware.

The tiling engine, informally known as
the “supercollider,” detects situations that
would violate the constraints imposed by
the graphics chip. When the graphics chip
becomes overloaded, portions of the user
interface are rendered by the main CPU.
As the load increases, the rendering en-
gine continues to paint the screen cor-
rectly, but performance gradually de-
grades, similar to a modern rendering
pipeline. The result is a smooth and in-
teractive user experience with an intuitive
API for developers.

Thumbs Up
Because the HME is currently only avail-
able as a developer preview release, users
need to enter a secret backdoor key se-

quence to turn on support for the HME
rendering engine. In future releases, the
backdoor will be removed and HME
turned on by default.

The HME developer release is freely
available and includes a Java SDK, HME
simulator, sample applications, documen-
tation, and lots of source code (http://
www.tivo.com/developer/). The SDK is
available under the CPL license (similar to
LGPL) and can be included in commer-
cial products without requiring a separate
license.

HME is part of the 7.1 release of the TiVo
System software and available on all TiVo
Series2 standalone units. Standalone units
require a USB Ethernet or wireless network
adapter to connect to the local network.

What is the secret backdoor key se-
quence? Go to the System Information
screen and enter clear-clear-0-0 using
the remote. You will notice that the Mu-
sic & Photos screen is renamed to Music,

http://www.ddj.com Dr. Dobb’s Journal, March 2005 65

Figure 1: TiVo architecture.

Figure 2: TiVo Music screen.

Photos & More. HME is now enabled on
the TiVo box.

Enter
To get started with HME, we present in
Listing One TiVo’s version of the ubiqui-
tous HelloWorld application. HelloWorld
creates a text resource by specifying the
font, color, and a text string. The text re-
source is placed into the application’s root
view and appears centered on the televi-
sion screen.

Since HelloWorld is easy to understand
but a bit dull, we’ll explore another sam-
ple application that is part of the SDK—
TicTacToe. The TicTacToe (see Figure 3)
example covers simple screen layout, an-
imation, remote control events, and sound
effects.

Screen Layout
The init method is the main entry point
for each application, and one of its pri-
mary tasks is to layout the screen. Listing
Two is TicTacToe’s init method.

“Views” are the basic building blocks
of HME applications and provide clipping,
a coordinate system, and transparency,
but are invisible unless they contain re-
sources. “Resources” are concrete elements
that are drawn inside views. The layout
of the screen is controlled using the view
hierarchy. Each view can contain many
child views but it can contain only a sin-
gle resource.

Each application has a root view. The
root view can be thought of as the tele-
vision’s “desktop.” The size of the root
view is 640×480 pixels. However, appli-
cation developers should be careful to use
only the “title-safe” area of the screen.
Older televisions have a black border of
paint around the edge that can obscure
almost 32 pixels on each side!

TicTacToe’s init method creates two
views as children of the root view. The
piecesView is initially empty and will
eventually contain the X and O pieces
used throughout the game. Later, we will
add children to piecesView, one for each
move made in the game. The grid view
paints the TicTacToe grid that serves as
the playing field. It is placed in a spe-
cific location on screen and populated

66 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 3: TicTacToe screen.

with the grid.png image contained in the
application.

Layering
Because piecesView is created before grid,
piecesView and all of its children will paint
before grid. On screen, this has the effect
of making the pieces appear “underneath”
the grid. This is important because when
the game ends, we want to highlight and
animate the pieces in various ways and the
effects are improved if the pieces are un-
derneath the grid. In fact, this is the only
reason that piecesView exists at all— to pro-
vide layering in a specific way that makes
the special effects look more dramatic.

The images array contains the X and O
text resources that are used to paint the
pieces. A single resource can be used in
many different views, and we only need
a single X and O for the entire lifetime of
the application.

Keys
Now that we’ve put a grid on screen, we
need to respond to remote-control events
to actually play the game when the user
presses buttons. Listing Three is TicTacToe’s
handleKeyPress method. TicTacToe uses
the numeric pad on the TiVo remote con-
trol. The one button (KEY_NUM1) repre-
sents the upper-left corner of the grid, and
the nine button (KEY_NUM9) is the lower
right. If users hit a numeric key on the re-
mote, we convert it to x-/y-coordinates and
make a move. If a user hits any other key,
we play the bonk.snd error sound. Nearly
all of our standard set of TiVo keys and
sound effects are available for use by HME
applications.

Animation
Finally, TicTacToe takes advantage of
HME’s powerful animation primitives to

provide feedback when the game is over.
By default, changes made to HME views
using accessor methods, such as set-
Bounds, setTransparency, and setScale,
occur instantly. But these same view meth-
ods accept an optional animation argu-
ment. By specifying an animation, the

change can be performed incrementally
over some period of time. Listing Four is
a snippet from the game-over code.

When a player wins, the X and O pieces
appear to explode away from the board
over a period of one second. The pieces
gradually fade away at the same time. If
the game is a draw, the pieces fade with-
out the satisfying explosion, leaving dead-

locked players to stare at the stark lines
of the game grid.

HME was designed from the ground up
to produce an NFL-quality experience, not
an HTML experience. Even a simple game
like TicTacToe benefits greatly from the
pizzazz offered by HME.

Fast Forward
TiVo is excited about opening up the plat-
form to developers. We can’t wait to see
what applications you’ll write. By open
sourcing the SDK, we hope to tap into a
vibrant community and help developers
build on our position at the center of the
modern living room. This is your official
invitation to join the party!

To encourage your creativity, we’re
hosting the TiVo Developer Challenge,
where you can compete for fame and for-
tune by writing the most creative and in-
teresting HME applications. The contest
has great prizes and a jury consisting of
well-known industry leaders. We hope it
will inspire many of you to develop the
next killer app for the TiVo DVR. For com-
petition details, see http://www.tivo.com/
developer/.

This initial release is just the tip of the
iceberg for the TiVo platform. In up-
coming releases, HME will be enabled
by default so that all TiVo service users
can enjoy the benefits of an open plat-
form. We plan to introduce additional de-
ployment models that don’t require a PC,
and in some cases, don’t even require a
home network. The HME API will pro-
vide access to more DVR functionality,
including scheduling, recording, and
playback. Stay tuned— you don’t want
to miss the show.

DDJ

Listing One
import com.tivo.hme.sdk.*;
public class HelloWorld extends Application {

protected void init(Context context) {
root.setResource(createText("default-36-bold.font",

"0xffffff", "Hello, world!"));
}

}

Listing Two
public class TicTacToe extends Application
{

View piecesView;
Resource images[] = new Resource[2];
int gridX, gridY;
...
protected void init(Context context)
{

piecesView = new View(root, 0, 0, width, height);
gridX = (width - 300) / 2;
gridY = (height - 300) / 2;
View grid = new View(root, gridX, gridY, 300, 300);
grid.setResource("grid.png");
images[0] = createText("default-72-bold.font", "0xffffff", "X");
images[1] = createText("default-72-bold.font", "0xffffff", "O");

}
...

Listing Three
public boolean handleKeyPress(int code, long rawcode)
{

if (code >= KEY_NUM1 && code <= KEY_NUM9) {
int pos = code - KEY_NUM1;
makeMove(pos % 3, pos / 3);
return true;

}
play("bonk.snd");
return false;

}

Listing Four
Resource animation = getResource("*1000");
for (int x = 0; x < 3; ++x) {
for (int y = 0; y < 3; ++y) {
View v = pieces[x][y];
if (v != null) {
if (victory) {
v.setLocation(v.x + (x - 1) * 400, v.y + (y - 1) * 300, animation);

}
v.setTransparency(1, animation);
...

}
}

}

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 67

“By open sourcing
the SDK, we hope
to tap into a vibrant
community and help
developers build on

our position”

T
he .NET Framework designers rec-
ognized that you’d want to add trace
messages liberally in your code. How-
ever, since trace messages are only

useful for debug builds, the designers had
to provide a mechanism so that you would
not have to edit your code to remove trace
messages from release builds. C# has con-
ditional compilation similar to native C++,
where the compiler only compiles a sec-
tion of code depending on whether a spe-
cific symbol is defined (see Listing One).
However, this usually results in code that
is unreadable. Instead, C# (and VB.NET,
but not Managed C++) has support for the
[Conditional] attribute, which is applied
to methods in libraries and specifies a sym-
bol that must be defined to use the
method. Another assembly can have code
that calls this method, but the compiler
only compiles this call into the final as-
sembly if the symbol is defined.

Contrast Listing Two with Listing One.
Listing One uses conditional compilation
so that the code only appears in the as-

sembly (app.exe) if the symbol DEBUG
has been defined. Listing Two shows frag-
ments of code from two assemblies; all of
the code in the first half of the listing is
compiled into the first assembly (lib.dll)
regardless of whether the DEBUG symbol
is defined. The method PrintDebug is
added to the assembly and is marked with
the [Conditional] attribute. The second
fragment of code has a call to this method,
but the compiler only adds this to the as-
sembly if the symbol DEBUG is defined.
Listing Two is definitely preferable to the
code in Listing One; however, note the
subtle difference between the two when
DEBUG is not defined. In Listing One, the
conditional code is not compiled at all; in
Listing Two, the conditional code is com-
piled, but it is not called. The [Condi-
tional] attribute is acted upon by compil-
ers, but the Managed C++ compiler does
not recognize this attribute, so you have
to use conditional compilation. Listing
Three shows how to use macros to access
a conditional method.

Trace Messages
Why am I saying this? Well, the Frame-
work library provides two identical class-
es—Debug and Trace—which are used
to provide traces and asserts. These class-
es only differ in that the methods of De-
bug are marked with [Conditional("DE-
BUG")], whereas the methods of Trace are
marked with [Conditional("TRACE")]. Vi-
sual Studio.NET 2003 C# and VB.NET pro-
jects define both DEBUG and TRACE for
Debug builds and TRACE for Release
builds. Review what I have just said: By
default, the methods of Trace can be called
in Release builds.

By themselves, the methods of the
Trace and Debug classes do very little—
they only accept some diagnostic message
from your code, and do a little formatting

on them. Reporting that message is the
work of a trace listener, a class that de-
rives from the abstract class TraceListen-
er. By default, every application domain

in a process is initialized with a single trace
listener of type DefaultTraceListener. Each
application domain will have a collection
of trace listeners that you can access
through the static Listeners property on
either the Trace or Debug class. You can
use this collection to add or remove lis-
teners in your code. When an application
domain is created, the runtime will read
the configuration file for the application
and add or remove the listeners mentioned
there. Listing Four shows a sample con-
figuration file, which indicates that when
an application domain is created, it should
not have the default trace listener. Instead,
however, it should have an instance of
TextWriterTraceListener to log the trace
messages to the file mentioned in the ini-
tializeData attribute.

What should you trace? There are two
main types of data: First, you may want
to test code coverage, so it is useful to
record each method called and to record

68 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Adding Diagnostics to
.NET Code

How you can use
Framework classes to
add diagnostic
messages to your code

RICHARD GRIMES

Richard is the author of Programming
with Managed Extensions for Microsoft
Visual C++ .NET 2003 (Microsoft Press,
2003). He can be contacted at richard@
richardgrimes.com.

W I N D O W S / . N E T D E V E L O P E R

“The Framework
library provides two
identical classes—
Debug and
Trace—which are
used to provide
traces and asserts”

the branch of a test statement. The sec-
ond type of data are metrics of how well
your algorithms are working, so you may
decide to trace input parameters, results,
and selective intermediate values. The
problem, of course, is that this represents
a large amount of data and the Frame-
work classes provide few tools to help
you. To trace a message, you call either
the WriteLine or Write method. These
methods are overloaded, but in effect, you
can trace just a message string, or a mes-
sage string and a category string. The cat-
egory string is just a description— it has
no effect on how the trace listener han-
dles the trace message.

There are versions of Write and Write-
Line that take a Boolean parameter; these

are called WriteIf and WriteLineIf. Only if
this parameter is True is the method called.
Conceivably, you could create a global
collection of switches and use this to al-
low only messages of a specific category
to be traced. One suggestion about how
to do this is shown in Listing Five— the
MySwitches class has public static mem-
bers so that they can be accessed through-
out the assembly. These members indi-
cate if messages of a particular category
(in this case, for code that obtains, ana-
lyzes, and presents data) should be traced.

The diagnostics namespace contains an
abstract class called Switch that can be
used to obtain a value from the <switch-
es> element in the application configura-
tion file. There are two classes in the
Framework derived from Switch: Boolean-

Switch is passed the name of a switch in
its constructor, and if the switch value is
nonzero, it sets the Enabled property to
True; TraceSwitch goes one step further—
it returns the value of the switch in the
Level Property as one of the values in the
TraceLevel enumeration. Listing Six shows
how to use the BooleanSwitch. There are
two parameters to the BooleanSwitch con-
structor; the second parameter is not used,
it is left over from the first beta of .NET.

Trace Listeners
When you generate a trace message, ei-
ther through Trace or Debug, the Trace-
Internal class is called. TraceInternal will
access the application domain’s Listeners
collection and iterate calling an appro-
priate method on each trace listener. If
you call Debug.Write(String), then Trace-
Internal will call TraceListener.Write-
(String) on each TraceListener in the col-
lection. If you call the conditional methods
(WriteIf or WriteLineIf), then it is the
TraceInternal equivalent of these meth-
ods that performs the test on the Boolean
parameter.

If you call one of the overloads that take
a category string, then the trace listener
decides what the category parameter
means and how to react to it. The imple-
mentation of these methods in the base
class, TraceListener, merely concatenates
the two strings separated by a colon.
These methods are virtual, so it is possi-
ble that a trace listener could behave dif-
ferently for each category (for example, it
could log only specific categories); how-
ever, all of the Framework trace listener
classes use the base class implementation.

Asserts
As the name suggests, an assert tests that
some condition is True, and if the test fails,
the user is informed. Asserts should be used
on important conditions where a failure will
mean that the code will fault. The default
trace listener class recognizes this and in-
dicates that an assert has failed with a modal
dialog that you cannot ignore. It is impor-
tant that you do not let asserts be active in
release builds. An assert tells your users that
not only is there a bug in your code, but
that you thought that there was one and
you have released the code without fixing
it! Quite rightly, the Debug class has an As-
sert method, because the only situation
when you should use an assert is in a de-
bug build. Again, however, Trace has the
same methods as Debug, but you must not
be tempted to call Assert on this class. The
reason is that by default, C# and VB.NET
projects in Visual Studio .NET define the
TRACE symbol in release builds, which en-
ables you to call Assert in release builds.

There are three overloads of the As-
sert method: The most flexible has the

(continued from page 68)

70 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

condition to check a short message and
a long message; the other two have just
the short message or no message at all.
If you don’t provide a message when you
receive a failed assert at runtime, you will
have no idea about the failure condition.
The Fail method does not take a condi-
tional parameter, but can take either a
short message or a short and a long mes-
sage. Clearly you have to perform some
logic to determine whether Fail should
be called. However, it is useful during
development to put a call to Fail in code
that has not been completely imple-
mented; for example, when you add an
interface to a class, it is good practice to
put a call to Fail in each method body.
Fail is marked with [Conditional], and
like Assert, you should only call it through
the Debug class.

All the overloads of Assert and Fail call
an overload of TraceInternals.Fail that
takes two string parameters; this method
iterates through the trace listeners collec-
tion calling the Fail(string, string) method
on each one. The base class implementa-
tion of this method merely appends the
long message and the short message to a
failure message, and passes this to the
trace listener’s WriteLine method. This is
used by all of the trace listeners except
the DefaultTraceListener class. The De-
faultTraceListener class displays the assert
using a modal dialog, so it is important
that you do not let this be shown in code
that runs in a service or on a remote serv-
er machine. A modal dialog blocks the
current thread until the dialog is dismissed
and, thus, it must only be used in a situ-
ation when there is a human who can dis-
miss the dialog. Again, the best guard
against this is to only call Assert (or Fail)
on Debug so that it can only be called in
debug builds when, presumably, you have
also marked the service to interact with
the desktop.

The code handling Assert (and Fail) has
more problems. In Figure 1, an assert di-
alog, the short message, and the long mes-
sage are displayed on separate lines,
which are followed by a stack trace. If the
project was compiled with debug symbols
(which will be the case for a debug build)
and the symbols are available, then the
stack trace gives the name of the file and
the line number where the method is de-
fined. If the symbols are not available,
then the stack trace will not have filename
and line number information.

There are some more points to be made
about the dialog shown in Figure 1. The
names of the buttons are Abort, Retry, and
Ignore. The dialog caption gives a help-
ful hint that Abort means you should quit
the application, Retry means that the de-
bugger should attach to the process, and
Ignore means the application should con-

tinue executing. Why didn’t the .NET team
use the names Quit, Debug, and Contin-
ue on the buttons? The reason is that the
dialog is a standard Windows dialog
shown by the Win32 MessageBox func-
tion, and this function does not let you
give custom names to the buttons. An-
other option would be to use Windows
Forms to create a dialog; however, this
would mean that every application that
uses the diagnostic classes would have a
dependency on the system.windows.forms
assembly.

If you click Abort, then it just means
that the application ends and the assert
will not be reported to other trace listen-
ers (which is what you need, because you
will want to know exactly what has hap-
pened). The only way around this issue
is to use either the configuration file, or
to programmatically remove the Default-
TraceListener that the system has added
to the Listeners collection (called Default)
and add it to the end of the collection.

If you call Debug.Assert in Managed
C++, you discover that no stack trace is
shown. The reason is that the stack trace
has the name of each method in the
stack, and to do this, the Default-
TraceListener attempts to get the method
name and the type of the class. Howev-
er, in Managed C++, the entry point will
be a global method. This means that the
type will be null and the code does not
check for this— it merely bails out giv-
ing an empty string for the entire stack
trace. If you add asserts to a process as-
sembly in Managed C++, it is prudent to
include the method name and class in
the long description. The alternative is to
write your own trace listener that fixes
this problem.

Default Trace Listener
The Framework library has three trace lis-
teners; see Table 1. DefaultTraceListener
sends trace messages to OutputDebugString,
Debugger.Log, and a file. OutputDebugString
works by throwing the system exception
(SEH) 0x40010006, passing the length of the
string and the string as exception parame-
ters. Listing Seven shows this: The call to
OutputDebugString and RaiseException do
the same thing. Windows catches this ex-
ception and makes this data available through
the shared memory-mapped file DB-
WIN_BUFFER. Because this buffer is shared,
it must be protected from multithreaded ac-
cess; in particular, only one thread must be
able to write to the memory-mapped file
at any one time. To do this, the system
creates two events—you can find out how
these are used by looking at the dbmon
example in the Platform SDK. The prob-
lem is that OutputDebugString blocks un-
til the process reading the memory-
mapped file has set one of these events to
indicate it has read the data. In other
words, OutputDebugString couples your
process to another process that will read
the debug string. This is bad news, so you
should not generate OutputDebugString
messages in release code. Again, this
means that you should only generate trace
messages through the Debug class in de-
bug builds

DefaultTraceListener will also log a
trace message to the Debugger.Log class,
which communicates with an attached
debugger. If the Visual Studio .NET de-
bugger is attached to a process that gen-
erates a trace message handled by De-
faultTraceListener, you will see the
message appear in the Output window.
In addition, you can specify that the

http://www.ddj.com Dr. Dobb’s Journal, March 2005 71

Figure 1: Typical assert shown for Debug.Assert or Debug.Fail. The short and
long descriptions are shown on separate lines followed by a stack trace.

Class Description

DefaultTraceListener Sends the message to OutputDebugString, Debugger.Log,
and to a log file for trace messages and Fail. In addition, a
modal dialog is displayed for Fail.

EventLogTraceListener Asserts and trace messages are written to an event log
whose source is specified by the constructor.

TextWriterTraceListener Writes asserts and trace messages to a TextWriter, Stream,
or a file.

Table 1: Trace Listeners in .NET Framework 1.0 and 1.1.

Listing One
// Assembly app.exe
int i = 42;

#if DEBUG
Console.WriteLine(

"initial value of i is " + i.ToString());
#endif // DEBUG

Listing Two
// Assembly lib.dll
class DbgCode
{

[Conditional("DEBUG")]
public static void PrintDebug(string str)
{

Console.WriteLine();
}

}
// Assembly uselib.exe
int i = 42;
// Next line will compile only if this assembly is compiled with DEBUG defined
DbgCode.PrintDebug("initial value of i is " + i.ToString());

Listing Three
// Call PRINTDEBUG rather than PrintDebug
#ifdef DEBUG

#define PRINTDEBUG DbgCode::PrintDebug
#else

#define PRINTDEBUG __noop
#endif

Listing Four
<configuration>
<system.diagnostics>
<trace autoflush="true">
<listeners>
<remove name="Default"/>
<add name="myListener"
type="System.Diagnostics.TextWriterTraceListener"
initializeData="MyListener.txt"/>

</listeners>
</trace>
</system.diagnostics>
</configuration>

Listing Five
class MySwitches
{

public static bool DataAcquisition {get;}
public static bool DataAnalysis {get;}
public static bool Presentation {get;}
// Implementation omitted

}

message should be appended to a file.
To do this, all you have to do is set the
LogFileName property to the name of the
file, which you can only do program-
matically. When a trace message is gen-
erated, DefaultTraceListener opens your
logging file, writes the message, and then
closes the file; no synchronization is
used. So if you have two threads gener-
ating trace messages, there is a small
chance that one thread will have the file
open while the other thread attempts to
open the file; this will result in a file ac-
cess fault and a .NET exception. This is
tolerable during testing because you
know what is causing the issue, but this
should not happen in release mode.

Again, the Fail method, shows a modal
dialog. In release builds, you should nev-
er show an assert dialog, so you should
never let Assert or Fail be called in release
builds. Even in debug builds you should
not allow a modal dialog to be shown in
a service. You can prevent this by setting
the AssertUiEnabled property to False,
which can be done either programmati-
cally or through the configuration file.

Event Log Trace Listener
EventLogTraceListener derives from
TraceListener, but overrides very little.
There are three constructors, and the one
that is called through the configuration
file takes a single string, which is the name
of the event log source. This means that
all messages are sent to the Application
log, with the potential detrimental effect
of swamping the log with trivial messages
so that you cannot see events generated
by other processes. The other construc-
tors let you programmatically specify the
log and source.

Once the event log is open, it remains
open until the trace listener is disposed,
or when it is explicitly closed by calling
Close. Both trace messages and asserts are

handled by writing an event log entry.
However, no attempt is made to specify
the event log entry type (for example, an
assert should be an Error type). The im-
plementation of the EventLog class in Ver-
sion 1.1 of the .NET Framework is broken
because it does not let you log an event
using an event log message file, which
means that localization is the responsibil-
ity of the code generating the event rather
than the code displaying the event (which
will know what language you would pre-
fer to use to read the messages). All oth-
er processes on Windows generate events
that are localized by the event log view-
er; since .NET deems that it should be dif-
ferent to all other processes, I regard it as
a broken implementation. For all of these
reasons, I advise you to not use Event-
LogTraceListener (or even the EventLog
class) in release builds, and preferably not
to use it at all.

TextWriter Trace Listener
The TextWriterTraceListener class lets you
attach any stream to the trace listener.
There are several overloaded constructors,
and essentially, these let you create the
trace listener from an open TextWriter ob-
ject or an open stream, or you can pass
the name of a file and the constructor at-
tempts to open that file (this is the con-
structor that is called if you specify this
trace listener in the configuration file). The
trace listener’s TextWriter will remain open
until the trace listener is disposed or is
closed explicitly by calling Close. Howev-
er, this is a problem if you use the con-
figuration file because every application
domain attempts to create the trace lis-
teners identified.

For example, Listing Eight shows the
configuration file that specifies that the
process should log to a file called “log-
File.log.” The first application domain to
be created creates an instance of Text-

WriterTraceListener, opens this file for ex-
clusive access, and keeps it open. The sec-
ond application domain creates another
instance of TextWriterTraceListener and
attempts to open the same file— this call
fails. Listing Nine shows a version of Text-
WriterTraceListener that is safe to use in
processes that have multiple application
domains and Listing Ten shows the ap-
propriate configuration file.

If you use this trace listener, it is im-
portant that you are aware of Flush. Some
streams are buffered and so the data is
not written out until the Flush method is
called. This method is implemented on
TraceListener as well as Debug and Trace.
If you call code that is likely to throw an
exception, it is important to call Flush be-
fore you call this code, or at least call
Flush in your exception handler. Asserts
are a problem because a failed assert will
not throw an exception. In this case, you
should set the AutoFlush property of De-
bug to True or use the autoflush attribute
of the <trace> element in the configura-
tion file.

Wrap Up
Postmortem diagnostics are extremely im-
portant to determine why your code has
failed, so traces and asserts are very im-
portant in debug builds. However, there
are numerous issues with the Framework
diagnostic classes, and for all of these rea-
sons, you should not let diagnostic mes-
sages be generated in release builds. Nev-
er call Assert in release builds, avoid using
EventLogTraceListener in release or debug
builds (because it abuses the event log),
and if you want to use TextWriterTrace-
Listener, use the class in Listing Nine to
prevent issues in processes that have more
than one application domain.

DDJ

72 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

// Use switches
WriteLineIf(MySwitches.DataAnalysis, "Searching for user...");

Listing Six
<configuration>

<system.diagnostics>
<switches>

<add name="DataAnalysis" value="1"/>
</switches>

</system.diagnostics>
</configuration>
// MySwitches constructor
static MySwitches()
{

BooleanSwitch data = new BooleanSwitch(
"DataAnalysis", "this parameter is not used");
dataAnalysis = data.Enabled;
// other code

}

Listing Seven
// Unmanaged C++
LPCSTR str = "Test String\n";
OutputDebugString(str);
LPCSTR args[2] = {reinterpret_cast<LPCSTR>(strlen(str)), str};
RaiseException(0x40010006, 0, 2, reinterpret_cast<const DWORD*>(args));

Listing Eight
<configuration>
<system.diagnostics>
<trace autoflush="true">
<listeners>
<add name="myListener"
type="System.Diagnostics.TextWriterTraceListener"
initializeData="logFile.log"/>

</listeners>
</trace>
</system.diagnostics>
</configuration>

Listing Nine
// Defined in assembly domainsafe.dll
class DomainSafeTextTrace : TextWriterTraceListener
{

public DomainSafeTextTrace()
{

Initialize("Trace");
}
// The parameter is the base name for the log file.
public DomainSafeTextTrace(string str)
{

Initialize(str);
}
// Create a file with a name that includes the name of application domain.
// This will be unique for each application domain.
protected void Initialize(string str)
{

this.Name = "DomainSafeTextTrace";
string strFile = str + AppDomain.CurrentDomain.FriendlyName + ".log";
this.Writer = new StreamWriter(strFile, true);

}
}

Listing Ten
<configuration>
<system.diagnostics>
<trace autoflush="true">
<listeners>
<add name="myListener"
type="DomainSafeTextTrace, domainsafe"
initializeData="domainSafeLog"/>

</listeners>
</trace>
</system.diagnostics>
</configuration>

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 73

More .NET on DDJ.com
ASP.NET2theMax: Skin Your Pages
Global Themes help unify the appearance of controls through all the
pages of a web application.

Richard Grimes: Using Worker Threads in Windows Forms
Richard provides advice on updating the user interface while
performing lengthy routines.

Available online at http://www.ddj.com/topics/dotnet/

E
xecutable files for the .NET Frame-
work currently cannot be packed by
binary file compressors such as UPX
(http://upx.sourceforge.net/) because

.NET uses customized sections in the
Portable Executable (PE) file (which is
used by all Windows executable files).
The .NET Execution Engine expects Com-
mon Language Infrastructure (CLI) data to
be in the proper sections of the PE file.
However, CLI data is placed in the PE sec-
tions uncompressed by default.

In this article, I present a technique for
reducing the size of .NET executables
without using native code or otherwise
modifying the PE format. Instead, I use
reflection, which is supported by the .NET
Framework, and pack the applications at
a higher level.

Reducing the size of applications has
several benefits:

• The disk space required is smaller.
While disk space is usually not a prob-
lem in desktop computers, it can be
in portable devices that run .NET
Framework.

• Smaller executables load faster because
of fewer disk accesses. Even if you un-
compress the data in memory, RAM ac-
cess is very fast and compressed exe-
cutables still load faster than the original
uncompressed ones.

• Using compression combined with, say,
in-memory encryption/decryption makes
it harder to disassemble .NET applica-
tions. This helps protect intellectual
property.

The technique I present to compress
.NET executables can be used with the
main executable (EXE) file of .NET appli-
cations and with .NET DLL files that fol-
low the .NET XCOPY paradigm. The tech-
nique will not work for DLL files placed
in the Global Assembly Cache (GAC),
which can be shared system wide or for
DLL files shared by more than one appli-
cation that is not aware of this technique.

The technique does not affect the usu-
al development of .NET applications. The
application EXE file and DLL files are built
and compiled as usual. The technique can
be applied as an additional step after you
build the release version. Because of the
generality of the solution, it is possible to
generalize the technique to work with
generic EXE and DLL files written in any
.NET front-end language. I have created
a tool called .NETZ, which is based on
this technique (source code and binaries
are available at http://www.st.informatik
.tu-darmstadt.de/static/staff/Cepa/tools/
netz/index.html and from DDJ; see “Re-
source Center,” page 5). Here, I explain
how .NETZ works, giving examples of the
most interesting points. This makes it eas-
ier to apply customized versions of this
technique in .NET applications.

Selecting a Compression Library
To compress the .NET executable data, you
need a compression library. I use the open-
source #ZipLib (http://www.icsharpcode
.net/), which implements various com-
pression algorithms. I use only the usual
ZIP format (http://www.pkware.com/
products/enterprise/white_papers/app-
note.txt) from this library. To compress
the data, any third-party ZIP tool will do.
For example, pkzip25 — add app.zip
app.exe can be used in a batch file and
pack app.exe as app.zip. The resulting
app.zip is about 60 percent smaller on av-
erage than the original. .NETZ automates
this step and does zipping programmati-
cally using #ZipLib. To unzip the appli-
cation at runtime, you need access to the
unzip code. This means that you have to
distribute the zip library with the com-
pressed executable file. The size of #Zip-
Lib is about 115KB. But given that it is

open source, you can remove from it sup-
port for all compression formats other than
ZIP. Moreover, you only need to leave the
unzip code. If you do this, the size of the
compiled zip.dll you need to distribute
with the application becomes about 60KB.
This is the only size overhead of this
method. For applications larger than

200KB, however, you still gain size when
compressing. You can do better by using
compression libraries written especially
for this technique.

The Starter Application
The heart of the technique is a small starter
application (stater.exe), which unpacks
the data in memory and starts a packed
application. (The source code file starter.cs
is also available electronically.) Figure 1
illustrates how the starter application han-
dles .NET EXE files. Keep in mind that the
goal here is to create a packed applica-
tion that, apart from size, is undistin-
guishable to users from the original ap-
plication. For this reason, I pack the
app.zip data as part of the starter appli-
cation. The easiest way to do this in .NET
is to pack the data as a resource. The re-
sources of .NET applications are packed
along with the application in the same
physical executable file. Listing One pro-
duces a valid resource file. While any
name will do, I’ve named the resource
“app.exe” so I can access it later in the
starter application. In the starter applica-
tion at runtime, you first access the packed
resource like this:

74 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Reducing the Size of
.NET Applications
Smaller EXEs without
native code

VASIAN CEPA

Vasian is a Ph.D. candidate in the Darm-
stadt University of Technology’s Software
Technology Group. He can be contacted
at cepa@informatik.tu-darmstadt.de.

W I N D O W S / . N E T D E V E L O P E R

“Smaller
executables load
faster because of
fewer disk accesses”

ResourceManager rm =
new ResourceManager ("app",

Assembly).GetExecutingAssembly()0
(byte[])rm.GetObject("app.exe");

Then you unzip the data in memory:

string zipPath = "app.exe";
MemoryStream zipFile =

new MemoryStream(data);
ZipFile zf = new ZipFile(zipFile);
ZipEntry ze = zf.GetEntry(zipPath);
Stream zs = zf.GetInputStream(ze);
byte[] uzdata = new byte[ze.Size];
sz.Read(uzdata, 0, uzdata.Length);

This code is specific to #ZipLib, and the
zipPath value is unique to the ZIP file for-
mat. The zip entry path inside the zip file
in this example is simply the name of the
zipped application. You create a System.IO-
.MemoryStream object zipFile to pass it to
the ZipFile constructor as required by #Zip-
Lib, so to it, the memory data looks like a
usual filestream. Finally, the variable uz-
data contains the unzipped data.

Once you’ve uncompressed the appli-
cation data in memory, you need to acti-
vate it. The starter application creates an
Assembly from the uzdata byte array, which
is invoked by activating its entry point:

Assembly assembly =
Assembly.Load(uzdata);

assembly.EntryPoint.Invoke
(null, new object[]{args});

I used null as Invoke’s first argument
because the entry point, which corre-
sponds to the Main() method of a C# ap-
plication, is a static method. As the sec-
ond argument, I pass the arguments passed
to the void Main(string[] args) method of
the starter application. This trick lets you
transparently pass any command-line ar-
gument passed to the starter to the packed
application. Consequently, when app.exe
is started, it appears that the arguments
come directly from the command line. You

have to pack the argument as an object
array to pass them to the Invoke method.

Alternatively, you can rely on reflection
code to find the types in the assembly and
invoke methods on them. This is useful
when app.exe doesn’t have an entry point,
or when you want to invoke other meth-
ods. The startup time is usually smaller
than starting app.exe directly because of
lower disk overhead.

To make the code work, you must
compile the starter application like this:

csc /t:winexe /out:starter.exe starter.cs
AssemblyInfo.cs

/r:zip.dll /res:app.resources
/win32icon:App.ico

Here, you create a Windows executable.
Because I wanted to preserve version in-
formation of the original file, I used two
additional files —AssemblyInfo.cs and
App.ico —which come from the original
app.exe. If you have the app.exe source
code, you can reuse them; otherwise, you
have to write some .NET reflection code
to extract the assembly information from
app.exe and generate AssemblyInfo.cs in
Visual Studio format from it. You can also
extract the icon file from the app.exe.
.NETZ already contains code to do this
automatically. It also compiles the starter
application programmatically using the
System.CodeDom.Compiler.ICodeCompil-
er interface with Microsoft.CSharp.CSharp-
CodeProvider.

You can rename starter.exe back to
app.exe later if you like. This way, you
distribute starter.exe and zip.dll, which are
both smaller in size than app.exe alone.

Handling .NET DLL Files
If the sample app.exe depends on other
DLLs, you normally don’t need to do any-
thing. At times, however, you may need to
also zip the DLL files. Again, the technique
I describe here does not work with DLL files
placed in GAC, or is shared by more than
one application not aware of the technique.

(continued from page 74)

76 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 1: How the starter application handles .NET EXE files.

1
ZIP the application

2
Pack as resource

3
Link the resource

with starter application

Build Time

4
Get the resource data

5
Unzip the data

6
Use reflection to start
the original application

Starter Application/Runtime

Listing One
FileStream fs = new FileStream("app.zip", FileMode.Open, FileAccess.Read);
byte[] data = new byte[fs.Length];
fs.Read(data, 0, data.Length);
fs.Close();

ResourceWriter rm = new ResourceWriter("app.resources");
rm.AddResource("app.exe", data);
rm.Close();

Listing Two
public static Assembly MyResolveEventHandler(object sender,

ResolveEventArgs args)
{

int i = args.Name.IndexOf(',');
string dllName = args.Name.Substring(0, i);

// dllName equals "lib" in the example; mapped to the zipped filename
dllName += "z.dll";

// read the file and unzip the data as above code omitted ...
byte[] uzdata = ...

return Assembly.Load(uzdata);
}

DDJ

Suppose lib.dll is a DLL required by the
app.exe you want to zip. First you would
link app.exe with the normal unzipped
version of lib.dll as you normally do. .NET
has a built- in mechanism for resolving
types and assemblies. When it fails, how-
ever, you can provide .NET with an as-
sembly. This functionality is exposed by
a hook in the System.AppDomain class.
In .NET, every application executes in an
application domain.

You need to handle this event:

AppDomain currentDomain =
AppDomain.CurrentDomain;

currentDomain.AssemblyResolve += new
ResolveEventHandler

(MyResolveEventHandler);

This code needs to be placed into the
Main method of the starter application.
The trick for this event to be activated is

to place the app.exe assembly activation
code in another separate method that is
called by the starter’s Main method.

Once you zip the lib.dll into lib.zip, then
you can also pack it as a resource file with
the starter application, as you did with the
app.zip. This is preferable if you want to
have a single EXE file; otherwise, you can
leave it as a separate file. However, you
need to rename the file to something dif-
ferent from lib.dll, given that .NET looks
for this name, and it appears like a cor-
rupted file to .NET. You can leave the
name lib.zip or you can be creative and
rename “lib.zip” to “libz.dll.” Alternative-
ly, you can save the lib.zip data in a SQL
database table and retrieve it from there.

Listing Two is code that activates the
DLL in MyResolveEventHandler. For the
sake of example, suppose that the zipped
DLL is a file in the same directory as the

starter application. The types in the DLL
are resolved to the AppDomain. The .NETZ
tool supports both DLLs packed as re-
sources and as separate files.

Conclusion
I presented here a pure C# technique that
uses reflection to compress the size of
.NET executables that requires no native
code. The method is straightforward to
implement and offers lots of possibilities.
I have combined all these steps in the
.NETZ open-source tool that can be used
like this: netz [-b] [-c] [-s] [exe file] [dll files]
[- i win32icon], where -b (batch mode)
generates a batch file and source; -c is
the console exe, the default is winexe; -s
(single exe) packs DLLs as resources; and
-i win32icon is an optional icon file.

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 77

W
riting efficient code for memory-
and resource-constrained em-
bedded platforms is difficult, and
the entire process is compound-

ed when dealing with data- intensive
computations such as signal- and image-
processing algorithms. Digital Signal Pro-
cessors (DSPs) are less general-purpose
than familiar desktop CPU architectures—
IA32, PowerPC, AMD, and the like. How-
ever, DSPs are architected to excel at the
computations typically found in signal-
and image-processing applications. In this
article, I examine how 64-bit architectural
features of the Texas Instruments C6416,
a fixed-point member of the TMS320C6000
(C6x) family of DSPs, engender significant
performance boosts in common opera-
tions used in image processing. The C6416
is an updated and faster version of the
older C62x fixed-point DSPs, and the C6x
family also includes the floating-point
C67x series. Specifically, I illustrate how
packed data-processing optimizations that
take advantage of double-word-wide mem-
ory accesses can be incorporated into C
code using Code Composer Studio com-
piler intrinsics to enhance the performance
of critical loops. Code Composer Studio
(CCStudio) is TI’s flagship IDE and in many
respects looks and feels like Microsoft’s Vi-
sual Studio. I’ve compiled all of the code
accompanying this article using Version 2.20
of CCStudio, and tested it on a C6416 DSK
(DSP Starter Kit).

My approach to DSP code optimization
involves a series of stages:

1. Development of a MATLAB prototype
to gain an in-depth understanding of
the algorithm and underlying mathe-
matics at a high level.

2. Implement a straightforward reference
C/C++ implementation of the algo-
rithm in Visual Studio. This is usually
a MATLAB-to-C/C++ port that generates
the same output as Step 1. Because the
C6416 is a fixed-point processor, I gen-
erally convert any algorithms from float-
ing point to fixed point here (see “Fixed-
Point Arithmetic for Embedded Systems,”
by Jean Labrosse, C/C++ Users Journal,
February 1998, for a discussion of fixed-
point representations of numbers).

3. Get the code running on the DSP plat-
form. If performance is unsatisfactory,
begin the optimization process through
techniques such as reducing the memo-
ry footprint and packed data-processing
techniques via specialized compiler in-
trinsics.

4. After identifying bottlenecks, write gat-
ing loops in so-called “linear assembly”
or hand-optimized native C6x assembly.

Obviously, you must get to at least Step
3 during development of a DSP-based em-
bedded system. It is essential to profile
the code at this point to garner whether
the processing meets the stated time re-
quirements (hopefully such requirements
are available). After all, if the code is fast
enough as is, there is not much to be
gained from proceeding to Steps 3 or 4,
save for your own personal edification.
Experimentation with the compiler and
understanding its capabilities must be
stressed— it is easier to fiddle with the
compiler optimizations than it is to code
in assembly. The TI compiler has a “com-
piler directed feedback” feature that emits
information on utilization of the proces-
sor’s functional units, software pipelining,
and other useful information that may
point one towards which compiler opti-
mizations may make sense in this context
(see “Code Efficiency & Compiler-Directed
Feedback,” by Jackie Brenner and Markus
Levy, DDJ, December 2003, for addition-
al information).

Using Compiler Intrinsics
Intrinsics provide you with access to the
hardware while letting you remain with-

in the friendly confines of the C pro-
gramming environment. They directly
translate into assembly instructions for
processor-specific features that standard
ANSI C cannot support, and are inlined
so that there is no function call overhead.
A simple example is the _abs intrinsic.
The C6x instruction set includes an in-
struction that computes the absolute val-
ue of a register in a single clock cycle,

which is going to be more efficient than
a multicycle C ternary statement that in-
cludes a branch statement; for instance:

int absolute_value = (a>0) ? a : -a;

In CCStudio, this C statement can be re-
placed by:

int absolute_value = _abs(a);

All C6x intrinsics begin with a leading
underscore. Another basic operation en-
countered in image-processing algorithms
is saturated arithmetic, whereby the result
of an operation of two pixels is clamped
to the maximum or minimum value of a
predefined range. Rather than code a mul-
ticycle series of C statements that imple-
ment the saturated add, you should use
the _sadd intrinsic (see Examples 2– 6 in
TMS320C6000 Programmer’s Guide, lit-
erature number SPRU198g). Some of the
C6x instructions are quite specialized, and
many (not all) C6x assembly instructions
have intrinsic equivalents— a full list is
enumerated in the programmer’s guide to
the C6x. For example, on the floating-
point C67x DSPs, there are instructions

“Intrinsics provide
you with access to
the hardware while
letting you remain
within the friendly
confines of the C
programming
environment”

64-Bit Computing & DSPs
Writing efficient
code for resource-
constrained platforms

SHEHRZAD QURESHI

Shehrzad is an engineer at Labcyte Inc. Por-
tions of this article were adapted from his
forthcoming book Embedded Image Pro-
cessing on the C6000 DSP (Springer, 2005).
He can be contacted at shehrzad_q@
hotmail.com.

E M B E D D E D S Y S T E M S

78 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

for single- and double-precision recipro-
cal approximations—RCPSP and RCPDP,
respectively. These instructions, and their
corresponding compilers intrinsics
(_rcpdp and _rcpsp) can be used to ei-
ther seed a Newton-Rhapson iterative pro-
cedure to increase the accuracy of the re-
ciprocal or perhaps as the reciprocal itself,
as accuracy requirements warrant. How-
ever, my focus here is not on the use of
intrinsics for specialized operations, but
rather on using intrinsics within image-
processing loops for vectorizing code to
use word-wide (32-bit), or preferably,
double word-wide (64-bit) optimizations
that operate on packed data.

Packed Data Processing
Image-processing algorithms are notori-
ous memory hogs, as it takes large
amounts of memory to store image pixels.
While this may not be of huge concern to
nonembedded developers who have oo-
dles of available RAM, embedded devel-
opers do not have the luxury of being so
cavalier. Hence, the first order of business
in the optimization of image-processing
algorithms is to make maximum utilization
of fast on-chip memory. This often entails
splitting the image into pieces and pag-
ing these pieces from external memory to
on-chip RAM, where there is a reduced
memory-access latency.

Once the processing completes, the
next order of business is to go the other
way— page the processed pixels back out
to external memory. Equally salient to im-
age processing and signal processing in

general is this idea of “packed data pro-
cessing,” where the same instruction ap-
plies the identical operation on all ele-
ments in a data stream. This general
concept is known as SIMD (Single In-
struction, Multiple Data) processing in
computer architecture circles, and is pow-
erful because, more often than not, the
operations acting on the data stream are
independent of one another, leading to
code-generation techniques that exploit
this inherent parallelism. With the right
optimization, code size is reduced and
processor throughput fully maximized. As
you might imagine, Texas Instruments is
not the only chip developer to incorpo-
rate such techniques into its processor
cores. Intel brought to market similar SIMD
IA-32 instruction set extensions with MMX,
SSE, SSE2, and SSE3, as did AMD with
3DNow!. In a nutshell, packed data pro-
cessing boils down to storing multiple el-
ements in a single register, then using spe-
cialized processor instructions to operate
on this data. Here, I use compiler intrin-
sics to access these processor instructions
from within C code.

For example, consider the sum of prod-
ucts between two vectors in Example 1,
which is critical in signal processing. This
operation appears in various forms, a
prominent example being the convolution
of two sequences. Suppose h and x are
16-bit integer quantities, perhaps repre-
senting fixed-point numbers in Q15 for-
mat. Then a high-level description of what
the processor is doing within a loop ker-
nel that implements this vector product
sum would look like Example 2. Since C6x
registers are 32 bits wide, by reading the
data in 16-bit (half-word) chunks at a time,
you waste half of the storage capacity of
registers 1 and 2. By packing the data to
store multiple elements of the stream with-
in registers 1 and 2, you can reduce the

load pressure on this loop, as illustrated
in the pseudocode in Example 3.

Actually, Example 3 is an embodiment
of two optimizations that go hand- in-
hand— packed data and loop unrolling.
You alleviate the load pressure in the loop
kernel by reducing the number of in-
structions using word-wide data access;
for example, replacing what would be
LDH (Load Half-Word) instructions in the
first loop with LDW (Load Word) instruc-
tions in the second loop, and subsequently
packing two 16-bit quantities into the 32-
bit registers. The same optimization holds
(and is even more advantageous) if data
elements in the stream are 8-bit quantities;
then, using the just mentioned example,
each load would place four data elements
in each register and operate on them ac-
cordingly. This strategy replaces four LDB
(Load Byte) instructions with a single LDW
instruction. Of course, specifying these
sorts of loads and stores is not feasible in
strict and portable ANSI C, and it is a risky
proposition to completely rely on the com-
piler’s code optimization engine to gener-
ate code that takes full advantage of SIMD
instructions operating on packed data. This
is where intrinsics come in.

All C6x DSPs have instructions and cor-
responding intrinsics that let you operate
on 16-bit data stored in the high and low
parts of a 32-bit register, as illustrated in
Example 2. The C64x and C67x offer dou-
ble word-wide access via the LDDW (Load
Double Word) and STDW (Store Double
Word) instructions and corresponding in-
trinsics. In this case, 64 bits worth of data
are read into the register file, with ele-
ments packed into a pair of registers. A
requirement is that arrays must now be
aligned on certain boundaries to use these
instructions. Arrays have to be word-
aligned to use LDW/STW, and aligned on
a double-word boundary to use LDDW/
STDW. The C64x DSP builds upon this ar-
chitectural feature by allowing nonaligned
accesses of memory via various instruc-
tions such as LDNW/STNW (load/store
nonaligned word) and LDNDW/STNDW
(load/store nonaligned double word),
which correspond to the intrinsics _mem4
and _memd8, respectively. These non-
aligned instructions constitute a significant
advantage, especially in certain image-
and video-processing scenarios when al-
gorithms march along in 8-bit pixel (byte)
boundaries. Without such instructions, you
are locked out of the packed data opti-
mization due to restrictions imposed by
32-bit or 64-bit alignment boundaries.

One of the simplest examples of using
intrinsics to help guide the compiler to
take advantage of packed data is the im-
plementation of a function that zeros out
an array. This function is similar to the
Standard C Library memset function; see

(continued from page 78)

80 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Example 2: Loop that implements the vector dot product.

Example 3: Vector dot product using packed data.

Example 1: Sum of products of two
vectors.

y [i]=Σ(h[i])(x[i])
N—1

i=0

for each i

1. Load h[i] from memory address &h+i, and place in register 1.
2. Load x[i] from memory address &x+i, and place in register 2.
3. Multiply contents of register 1 and register 2, placing result
in register 3.

4. Add contents of register 3 to running sum stored in register 4.

end

for i = 0 ... N-1 in steps of 2
1. Load h[i] and h[i+1], starting from memory address &h+i, placing h[i] in the lower-half of register 1

and h[i+1] in the upper-half of register 1.
2. Load x[i] and x[i+1], starting from memory address &x+i, placing x[i] in the lower-half of register 2

and x[i+1] in the upper-half of register 2.
3. Multiply lower-half of register 1 by lower-half of register 2 and place 32-bit result in register 3.
4. Multiply upper-half of register 1 by upper-half of register 2 and place 32-bit result in register 4.
5. Add contents of register 3 to running sum stored in register 5.
6. Add contents of register 4 to running sum stored in register 5.

end

Listing One. This function only works with
arrays aligned on a double-word bound-
ary, where count is a multiple of 8 and
greater than or equal to 32. However, giv-
en these restrictions, this function offers
advantages over the general-purpose mem-
set function, which by necessity must be
more conservative than memclear to main-
tain generality (see Listing Two). The
_nassert intrinsic in Listing One is an ex-
ample of an intrinsic that does not gener-
ate any code, rather it asserts to the com-
piler that the address of the pointer passed
into the function is divisible by 8; in oth-
er words, aligned on a double-word
boundary. To declare an aligned array use
the DATA_ALIGN pragma (see Listing
Three). The MUST_ITERATE pragma di-
rective is a means of conveying informa-
tion to the compiler regarding the number
of times a loop iterates, commonly referred
to as the “loop trip count.” Through this
directive, you can specify the exact num-
ber of times a loop executes, if the trip
count is a multiple of some number, the
minimum number of iterations through the
loop, and so on. This pragma should be
used wherever possible— especially when
the minimum trip count is known because
this information lets the compiler be more
aggressive when applying loop transfor-
mations. The form of the MUST_ITERATE
pragma used in memclear specifies that
the loop is guaranteed to execute at least
32 times, and armed with this information
the compiler can proceed to unroll the
loop. Loop unrolling is a code optimiza-
tion technique where the kernel of a loop
is expanded by some factor X— and the
loop stopping condition adjusted to N/X—
with the intent of reducing the number of
branches. By reducing the branch over-
head, the efficiency of the loop is in-
creased, and it also allows for better
scheduling of instructions contained with-
in the loop kernel.

By stipulating the minimum number of
iterations through the memclear loop, the
input pointer casted to a long (64-bit) type,

and guaranteeing alignment of lptr to a
64-bit boundary via _nassert, the compil-
er is given numerous pieces of informa-
tion so that it can generate a loop that
runs faster than an equivalent memset-like
function. The compiler is now free to use
the LDDW/STDW (load/store aligned dou-
ble word) instructions to initialize the 64-
bit number pointed to by lptr. The more
conservative code compiles to assembly
language using LDB/STB (load/store byte)
instructions to initialize the 8-bit values
pointed to by ptr, and a series of these in-
structions is not as efficient as a series of
LDDW/STDW instructions due to the less-
ened throughput of the data flowing
through the DSP. Figure 1 highlights the
difference in operation between memclear
and memset (as defined in Listing One).
In a conservative, but more general, im-
plementation, successive LDB/STB in-
structions are used for accessing and stor-
ing array elements. In a single iteration of
memclear, each LDDW instruction loads
64 bits of data into a register pair. The as-
sembly code would use two MVK (move
constant) instructions to zero out both reg-
isters each time through the loop, then
STDW to send the packed data back into
the storage array pointed to by lptr.

Optimization of the
Center-of-Mass Calculation
The “isodata” clustering algorithm for au-
tomatic threshold detection (see the text
box “Autonomous Threshold Detection”)
is used in image segmentation. This algo-
rithm calls for computing the center-of-
mass of two portions of an image his-
togram, where the histogram is split by the
current threshold. The isodata algorithm
also entails repeatedly performing these
center-of-mass computations, as the iter-
ative procedure continues until a “good”
threshold value is found. The center-of-
mass calculation is illustrated graphically
in Figure 2. The threshold T=150 bifur-
cates the histogram, with c1 the center-of-
mass of the left portion of histogram and

c2 the center-of-mass to the right of T. The
mechanics of this algorithm can be trans-
formed so that you can employ the packed
data-processing optimization via intrinsic
functions to improve the performance of
the algorithm. Furthermore, this optimiza-
tion is an example where the nonaligned
double-word instructions present only in
the C64x series lets you use 64-bit mem-
ory accesses where you otherwise would
not be able to.

A description of the procedure for com-
puting the center-of-mass of a region of
the histogram is simple enough. Referring
to Figure 2, computing the center-of-mass
to the left of T requires multiplying each
histogram count by the bin number, sum-
ming those results together, and then di-
viding by the sum of the counts from 0 to
T. In mathematical terminology, this trans-
lates to the equation in Example 4. Com-
putation of the center-of-mass to the right
of T is the same, except that the limits of
summation change accordingly. Focusing
attention on the numerator of this expres-
sion, note that you could state the numer-
ator in terms of a dot product; in other
words, the sum of products of two vectors,
the values of the actual histogram, and the
bins for that portion of the histogram we
are summing over. So instead of loops like
those in Listing Four, you can rewrite them
and replace the variable ii in the loop ker-
nels with an array indexing operation. List-
ing Five shows this modification, where the
array pixval (consisting of an integer ramp)
is used in lieu of ii. You can now vectorize
the operation because you are willing to
sacrifice memory usage (the pixval array for
a 16-bit image would be large and would
most likely preclude this optimization). If
both the hist and pixval arrays are aligned
on a double-word boundary, you might
consider replacing half-word accesses with
double-word accesses, reading and writing
four elements at a time, and packing two
elements per register. If you can make the
assumption that the starting value of ii is
divisible by 4 and T-ii is also divisible by

http://www.ddj.com Dr. Dobb’s Journal, March 2005 81

Figure 1: Optimization of memory initialization function using packed data
instructions. (a) Conservative implementation where successive LDB/STB
instructions are used for accessing and storing array elements. (b) One iteration
illustrating how LDDW, MVK, and STDW instructions are used to zero out 64 bits
worth of data in one fell swoop.

→

0count=0

ptr

ptr

count=1

(a)

(b)

...

count=1
...

0

0 0 0 0 0 0 0 0

8→←

8
64

→←
←

Figure 2: Center-of-mass calculations
in the isodata algorithm. The function
depicted is an image histogram.

5000

4000

3000

2000

1000

0
0

C1

C2

T

50 100 150 200 250

bin

hi
st

og
ra

m
 c

ou
nt

4 (64 bits divided by 16-bit elements), which
is equivalent to saying the number of iter-
ations through the loop is divisible by 4,
then the loops in Listing Six would suffice
on both the C67x and c64x DSPs.

The form of the MUST_ITERATE prag-
ma in Listing Six tells the compiler that
the number of iterations is divisible by 4,
and this in conjunction with _nassert
should be a sufficient trigger for the com-
piler to apply packed data optimizations
using LDDW and STDW. Unfortunately,
you can make no such assumption about
the number of times through either loop
and by extension can make no such claim

about the starting value of ii in the sec-
ond loop. This fact prevents double word-
wide accesses on the C67x; however, with
the C64x, you can take advantage of the
nonaligned double-word instructions LD-
NDW and STNDW to improve the loop
performance. Listing Seven shows the con-
tents of the dotprod function that is used
to compute the numerator of Example 4,
assuming the existence of a global array
hist. The use of double in the declarations
for h1_h2_h3_h4 and b1_b2_b3_b4 may
seem odd at first, but the type double in
this context is just used as a placeholder
to signify 64 bits of storage. The loop has

been unrolled by a factor of 4 and the
_memd8_const intrinsic, which generates
code that uses LDNDW, is used to read
64 bits, or two words worth of data, into
h1_h2_h3_h4 and b1_b2_b3_b4. Next,
both of these 64-bit elements, which in
reality are stored in register pairs, are “split”
into 32-bit upper and lower halves via the
_lo and _hi intrinsics. At this point, you
are left with a situation like that in Figure
3, with four 32-bit elements.

Although you could split the contents
of the four registers again, you need not
resort to that course of action. There are
assembly instructions available that mul-
tiply the 16 LSBs (least significant bits) of
one register by the 16 LSBs of another reg-
ister. Similarly, there are assembly in-
structions for multiplying the 16 MSBs
(most significant bits) of one register by
the 16 MSBs of another register. There are
actually four different variants of each of
these instructions, pertaining to whether
the data contained within the portion of
the register are to be treated as signed or
not, and whether the result should be
truncated down to 16 bits or returned as
a 32-bit entity. In general, multiplication
of two 16-bit quantities yields a 32-bit re-
sult. As the comments in Listing 7 indi-
cate, the _mpyu (16 unsigned LSBs mul-
tiplied together and returned as 32-bit
quantity) and _mpyhu (16 unsigned MSBs
multiplied together and returned as 32-bit
quantity) intrinsics are used to perform
four packed-data multiplications. These
quantities are then added to the accumu-
lators, four of which are used to avoid
loop-carried dependencies that inhibit par-
allelism.

A loop “epilogue” of sorts is required
to clean up. Because you can make no
claims about loop count being divisible
by 4, you need to wrap up the dot prod-
uct computation using a final “tradition-
al” C loop, which iterates at most three
times. Alternatively, you could zero pad
the arrays such that you are guaranteed
to iterate a number of times divisible by
4. We have now succeeded in fully vec-
torizing the loop kernel, given the mem-
ory bandwidth of the architecture, but in
fact have yet to reach the denouement of
this story. A hallmark of DSP architectures
is the fabled multiply-and-accumulate, or
MAC, instruction, and it is not surprising

82 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Figure 3: Use of the _lo and _hi intrinsics to split 64-bit elements into 32-bit elements.
64-bit data elements are read into memory using the _memd8_const intrinsic.

→

→

→

64
32

h1_h2 b1_b2

_lo()_hi()_lo()

h1_h2_h3_h4 b1_b2_b3_b4

_hi()

h3_h4 b3_b4

16

←

←

←

Example 4: Center-of-mass calculation
used in isodata threshold detection.

center-of mass =
0→T

Σ(i)(hist [i])
T

i=0

Σhist [i]
T

i=0

Broadly speaking, image segmentation
is the task of isolating those parts of
images that constitute objects or ar-

eas of interest and separating these ob-
jects or areas from the image. Once this
separation has been achieved, various
characteristics (center-of-mass or area,
for instance) can be computed and used
toward a particular application. One such
means of accomplishing image segmen-
tation is to threshold the image, where-
by all pixels less than some threshold T
are set to zero while the remaining pix-
els are left alone. There are different twists
on this idea— for example, setting all pix-
els greater than T to 0 and the remain-
ing pixels set to some other value V—
but the basic concept is the same. A
central problem facing this scheme is how
to choose a suitable value for T. If the in-
put image is guaranteed to be of high
contrast, then simply selecting a bright-
ness threshold somewhere within the
middle of the dynamic range may be suf-
ficient (128 for 8-bit images). Obviously,
this is not always going to be the case
and there are a variety of algorithms that
attempt to derive a “good” threshold from
the histogram of the image—where the
goodness criterion is one where the num-
ber of falsely classified pixels is kept to
a minimum. One such means is to use
known properties of the image to select
the threshold value. For example, in the
case of optical character recognition
(OCR) applications, it may be known that

text covers 1/p of the total canvas area.
Thus, it follows that the optimal algorithm
for OCR is to select a threshold value
such that 1/p of the image area has pix-
el intensities less than some threshold T
(assuming the text is dark and the sheet
is white), which is easily determined
through inspection of the histogram. This
method is known as “p-tile-thresholding.”

Alternative techniques relying on the
morphology of the histogram are used
where such knowledge is not available.
One such method is the iterative isoda-
ta clustering algorithm of Ridler and Cal-
vard (see “Picture thresholding using an
iterative selection method,” IEEE Trans-
actions on Systems, Man and Cybernet-
ics, SMC-8:630-632, 1978). The image
histogram is initially segmented into two
sections starting with an initial thresh-
old value T 0 such as 2bpp-1, or half the
dynamic range. The algorithm then pro-
ceeds as follows:

1. Compute sample mean of the pixel
intensities of the foreground mf.

2. Compute sample mean of the pixel
intensities of the background mb.

3. Set Ti+1 = (mf + mb) / 2.
4. Terminate iteration if Ti+1 = Ti, else go

to 1.

This method has been shown to work
well under a variety of image contrast
conditions.

—S.Q.

Autonomous Threshold Detection

Listing One
void memclear(void * ptr, int count)
{
long *lptr = ptr;
_nassert((int)ptr%8==0);
#pragma MUST_ITERATE (32);
for (count>>=3; count>0; count--)
*lptr++ = 0;

}

Listing Two
void memset(void *ptr, int x, int count) {

char *uch = ptr;
for (; count>0; count--) *uch++ = x;

}

Listing Three
#pragma DATA_ALIGN(double_word_aligned_array, 8)
unsigned char double_word_aligned_array[256];

#pragma DATA_ALIGN(word_aligned_array, 4)
unsigned char word_aligned_array[256];

Listing Four
/* "left" center-of-mass numerator */
for (ii=0; ii<T; ii++)
sumofprod1 += ii*hist[ii];

/* "right" center-of-mass numerator */
for (ii=T+1; ii<MP; ii++) /* MP=255 for 8-bit images */
sumofprod2 += ii*hist[ii];

Listing Five
/* pixval = {0, 1, 2, ..., 255} for an 8-bit image */

for (ii=0; ii<T; ii++) /* left */
sumofprod1 += pixval[ii]*hist[ii];

for (ii=T+1; ii<MP; ii++)
sumofprod2 += pixval[ii]*hist[ii];

Listing Six
#pragma MUST_ITERATE(,,4)
_nassert((int)pixval%8 == 0)
_nassert((int)hist%8 == 0)
for (ii=0; ii<T; ii++) /* left */
sumofprod1 += pixval[ii]*hist[ii];

#pragma MUST_ITERATE(,,4)
_nassert((int)pixval%8 == 0)
_nassert((int)hist%8 == 0)
for (ii=T+1; ii<MP; ii++) /* right */
sumofprod2 += pixval[ii]*hist[ii];

Listing Seven
unsigned long dotproduct(int lo, int hi)
{
/* 0, 1, 2, ..., 255 */
static const unsigned short pixval[] =

{0,1,2, /* 3,5,...,252 */ ,253,254,255};
unsigned long sum1 = 0, sum2 = 0, sum3 = 0, sum4 = 0, sum;
const int N = hi-lo;
int ii=0, jj=lo, remaining;

double h1_h2_h3_h4, b1_b2_b3_b4;
unsigned int h1_h2, h3_h4, b1_b2, b3_b4;

/* unrolled dot-product loop with non-aligned double word reads */
for (; ii<N; ii+=4, jj+=4)
{
h1_h2_h3_h4 = _memd8_const(&hist[ii]);
h1_h2 = _lo(h1_h2_h3_h4);
h3_h4 = _hi(h1_h2_h3_h4);

b1_b2_b3_b4 = _memd8_const(&pixval[ii]);
b1_b2 = _lo(b1_b2_b3_b4);
b3_b4 = _hi(b1_b2_b3_b4);

sum1 += _mpyu(h1_h2, b1_b2); /* (h1)(b1) */
sum2 += _mpyhu(h1_h2, b1_b2); /* (h2)(b2) */
sum3 += _mpyu(h3_h4, b3_b4); /* (h3)(b3) */
sum4 += _mpyhu(h3_h4, b3_b4); /* (h4)(b4) */

}
sum = sum1 + sum2 + sum3 + sum4;
/* loop epilogue: if # iterations guaranteed to
* be a multiple of 4, then this would not be required.
*/
remaining = N - ii;
jj = N - remaining;
for (ii=jj; ii<N; ii++)
sum += hist[ii]*pixval[ii];

return sum;
}

Listing Eight
unsigned long dotproduct(int lo, int hi)
{
/* 0, 1, 2, ..., 255 */
static const unsigned short pixval[] =

{0,1,2, /* 3,5,...,252 */, 253,254,255};
unsigned long sum1 = 0, sum2 = 0, sum;
const int N = hi-lo;
int ii=0, jj=lo, remaining;
double h1_h2_h3_h4, b1_b2_b3_b4;
unsigned int h1_h2, h3_h4, b1_b2, b3_b4;

/* unrolled dot-product loop with non-aligned double word reads */
for (; ii<N; ii+=4, jj+=4)
{
h1_h2_h3_h4 = _memd8_const(&smoothed_hist[ii]);
h1_h2 = _lo(h1_h2_h3_h4);
h3_h4 = _hi(h1_h2_h3_h4);

b1_b2_b3_b4 = _memd8_const(&pixval[ii]);
b1_b2 = _lo(b1_b2_b3_b4);
b3_b4 = _hi(b1_b2_b3_b4);

sum1 += _dotp2(h1_h2, b1_b2); /* see Figure 4 */
sum2 += _dotp2(h3_h4, b3_b4);

}
sum = sum1 + sum2;
/* loop epilogue: if # iterations guaranteed to
* be a multiple of 4, then this would not be required.
*/
remaining = N - ii;
jj = N - remaining;
for (ii=jj; ii<N; ii++)
sum += smoothed_hist[ii]*pixval[ii];

return sum;
}

DDJ

that the C64x provides just the intrinsic
you need here to cut down on the num-
ber of operations within this loop kernel.
TI provides another set of intrinsics that
map to so-called “macro” instructions, and
one of these is DOTP2. This instruction,
accessed in C via _dotp2, performs a MAC-
like operation on packed 16-bit data; that
is, it returns the dot product between two
pairs of packed 16-bit values, as in Fig-
ure 4 for one of the _dotp2 “invocations”
(remember, while they may look like func-
tion calls they are in reality inlined func-
tions). With this final tweak, the number
of add operations is further reduced, as
_dotp2 subsumes two of the four adds
present in Listing Seven. Listing Eight is
the fully optimized dot product function
that can be used within an isodata image
segmentation implementation.

Conclusion
While the aligned word (LDW/STW) and
double-word (LDDW/STDW) wide in-
structions are useful in the application of

packed data processing code optimization
techniques, the C64x line of DSPs aug-
ments this functionality with unaligned vari-
ants of these instructions. There are many
image- and video-processing algorithms
that call for marching across image di-
mensions in step sizes that are not even
multiples of 4 or 8 bytes. Consequently,
without these unaligned instructions, you’re
locked out of utilizing 64-bit computation
methods. Two good papers on C64x-
specific code optimization strategies as they
pertain to digital- image processing are
“VLIW SIMD Architecture Based Imple-
mentation of a Multi-Level Dot Diffusion
Algorithm” by Ju and Song (sips03.snu.ac
.kr/pdf/adv_prog.pdf) and “Implementa-
tion of a Digital Copier Using TMS320-
C6414 VLIW DSP Processor” by Hwang
and Sung (mpeg.snu.ac.kr/pub/conf/c61
.pdf). For a more detailed exposition on
C6x code optimizations, refer to the TI
documentation (http://www.ti.com/) or
“Preferred Strategies for Optimizing Con-
volution on VLIW DSP Architectures” by

Sankaran, Pervin, and Cantrell (http://www
.crest.gatech.edu/conferences/cases2004/
paper/sankaran.pdf).

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 83

Figure 4: Usage of the _dotp2 intrinsic
in Listing Eight. The same operation is
performed on h3_h4 and b3_b4.

→

→

→

32←

32←

16

+

x
h2 h1 h1_h2

b1_b2

(h1)(b1)(h2)(b2)

(h2)(b2)+(h1)(b1)

b2 b1

←

F
rom one perspective, it makes no dif-
ference whether a programming prob-
lem is solved by 200 lines of Fortran
code or a handful of Java classes or a

set of Lisp functions. Any general-purpose
programming language can, in principle,
solve any problem that any other general-
purpose programming language can
solve: That’s what it means to be a general-
purpose programming language. And if
it’s solved, it’s solved.

From another perspective— the work-
ing programmer’s— it can make a great
deal of difference what language you use
to solve a problem. There is typically a
domain of problems that is natural to a
given programming language. Using the
right tool saves time and effort.

Exploring the implications of a set of
premises is what Prolog was designed for.
Fortran was originally created to speed up
large but straightforward mathematical cal-
culations. Snobol is all about manipulat-
ing strings of characters. When Perl fa-
natics show you that they can build a
spreadsheet in Perl, they may be demon-
strating the flexibility of Perl or demon-
strating their chops while busting yours,
but they’re probably not demonstrating
sensible professional programming be-
havior.

What goes for programming languages
also goes for other programming tools,
whether they are called libraries or toolsets
or frameworks or methodologies or what-
ever. Like the hammer that conditions the
carpenter to think of every problem as a
nail, programming tools are all just dif-
ferent paradigms, different perspectives
from which we look at problems. All per-

spectives are in one sense equivalent, but
for any given problem, one perspective
may reveal a solution much more quick-
ly and naturally than another.

I’ve been thinking a lot recently about
this idea of perspectives that are in one
sense equivalent but in another sense very
different. I was led into these thoughts by
two things: playing around with the latest
version of Mathematica, and rereading the
key chapter of Stephen Wolfram’s A New
Kind of Science. These thoughts, in turn,
led me to research an old story about some
blind men and an elephant, and to realize
that the moral of that story might be very
different from what I always took it to be.

All of which led to the following tenta-
tive reflections on paradigms and per-
spectives and programming and science
and relativism.

A Hindu Parable
Do you know the story of the blind men
and the elephant? If you do, you proba-
bly either have read the poem by John
Godfrey Saxe or have been introduced to
the blind men by some speaker or writer
using the story to illustrate a point. The
poem ties up the story with a straightfor-
ward moral, and the essayists and lectur-
ers use it similarly, but the original Hin-
du parable, at least in the version that I’ve
seen, is surprisingly ambiguous.

In the parable, a raja sent a servant to
gather several men who were born blind
and to have them examine an elephant
and report on their findings. The servant
showed each blind man a different part
of the elephant, and predictably, each re-
ported on the aspect of the elephant that
he had experienced— the one that had
touched its side saying that it resembled
a wall, the one that felt its tusk saying that

it resembled a plowshare, and so on. And
each thought that his experience of the
elephant was the complete and correct
view of the beast. So certain were they
that they came to blows over this matter
of the nature of the elephant. The raja, ac-
cording to the parable, was delighted with
this scene. Go figure.

Actually, there is a frame-story wrapped
around this one, in which the Buddha re-
lates this story of the raja and the ser-
vant—who seems to enjoy playing prac-
tical jokes on the visually impaired— for
a purpose: The Buddha wants to teach
his disciples a lesson about those who ar-
gue over whether the world is infinite or
finite or whether the soul dies with the
body or lives forever. His lesson is that,
in their quarreling, each clings to his own
view and sees only one side of the issue.

I’ve heard or read the story several
times, always presented to make a point
about the need to recognize the limits of
your present perspective. But on reread-
ing it, it seems ambiguous. Does the Bud-
dha expect his disciples to “see” the true
nature of the universe, or merely to rec-
ognize their own blindness? The blind men
are, after all, congenitally blind. Are we
to believe that there is what Albert Ein-
stein called, in a different context, a “priv-
ileged perspective,” a nonblind view of
the elephant, of reality? Or do we get only
a choice of different but equivalent per-
spectives—which are not views of some
underlying reality, but are themselves all
there is to reality? I think the story can be
read either way.

Blind Men and
Programming Paradigms
In the case of programming languages
as perspectives, it seems to me that the

The Blind Men and
The Elephant

Michael Swaine

P R O G R A M M I N G P A R A D I G M S

Michael is editor-at-large for DDJ. He can
be contacted at mike@swaine.com.

84 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

second interpretation of the story is the
relevant one. In other words, there is no
elephant: no privileged programming lan-
guage, or privileged programming para-
digm, merely a possibly infinite set of
functionally equivalent ways of going
about solving problems of computation.

Mathematica, the symbolic mathematics
software invented by Stephen Wolfram, is
a good playpen for fooling around with
different programming paradigms. You can
use it as a cookbook for procedural pro-
gramming languages like Basic or Fortran:

z = a;
Do[Print[z *= z + 1], {i, 3}]

or as a functional language like Lisp, in
which everything is a function call and
functions can be treated as data objects:

Nestlist[(1 + #) ^ 2 &, x, 3]

or as a string-manipulation language like
Snobol or some of the popular “little” or
scripting languages:

StringReplace[s,
{"AG" -> "AC", "GT" -> "GT"}]

or as a Prolog-like rule-based language:

p[x_ + y_] := p[x] + p[y]
p[a + b + c]

or define objects as in object-oriented pro-
gramming languages, or mix paradigms
in one program.

But there is, according to Wolfram, one
unifying idea underlying Mathematica:
Everything can be represented as a sym-
bolic expression of the form

head[arg1,arg2…].

Every operation in Mathematica is ulti-
mately a transformation of such a sym-
bolic expression. So maybe for Mathe-
matica, there is a privileged perspective:
symbolic expressions transformed by trans-
formation rules.

Does the fact that Mathematica seems
to have a privileged paradigm mean that
there is some privileged programming
paradigm in a general sense? I don’t think
so. Surely Mathematica’s privileged per-
spective is simply a consequence of its ar-
chitecture.

But what about assembly language or
machine language? Might that be the “true”
perspective against which high-level lan-
guages are merely distorted views, not
from blindness maybe, but through tint-
ed glasses?

I suspect not. I think that when we talk
about the perspective of a programming
language, we are not talking about a par-
ticular implementation on particular hard-
ware, but about the programming
paradigm behind that language— object-
oriented programming, for example, or
declarative programming. And if the ques-

tion is really about paradigms, and about
full computational systems that include
the hardware, then it doesn’t seem that
there is any privileged perspective. There
are practical reasons for building the un-
derlying logic hardware the way we do,
but not fundamental logical reasons.

The CA paradigm
It is, of course, of great practical impor-
tance that different programming paradigms

work better for different purposes. Partic-
ular paradigms are easier to apply, more
natural in particular contexts.

Stephen Wolfram’s preferred program-
ming paradigm seems to consist of the
following components:

1. A set of transformational rules.
2. Data to operate on.
3. An engine that applies the rules to

the data.

That’s loose enough to describe Math-
ematica or an expert-system inference en-
gine or any of a number of other pro-
gramming systems. If you add the
assumptions that the data enter only at
the beginning of the process as the initial
condition of the system, and that the en-
gine keeps applying the same rules to the
output of its previous application of the
rules, then what you have is a pretty good
definition of a cellular automaton (CA).
The most famous example of a cellular
automaton is the Game of Life popular-
ized in the 1970s in the pages of Scien-
tific American magazine by John Horton
Conway and Martin Gardner.

The CA paradigm turns out to be ca-
pable of emulating a Turing machine, and
is therefore computationally equivalent to

any general-purpose programming lan-
guage. It’s a paradigm that Wolfram has
spent the past 20 years studying. The ques-
tion raised by his research is: Is the CA
paradigm the best perspective for study-
ing the universe? Is it, in fact, the universe’s
privileged perspective?

My reading of Stephen Wolfram on sci-
ence is that, contrary to the situation with
programming, there is a privileged per-
spective in science. That may not seem
particularly strange: It is hardly shocking,
in fact may be a little old-fashioned, to
suggest that there is a fundamental reali-
ty behind our various views of the uni-
verse, that there is a real elephant behind
the differing reports of the blind men. The
curious thing, though, is that, for Stephen
Wolfram, this privileged perspective is it-
self functionally equivalent to a program-
ming language.

Blind Men and the Universe
I’ve written before about Wolfram’s mag-
num opus A New Kind of Science, but I
never really did justice to the key chap-
ter of the book, the one in which he ex-
plains his Principle of Computational
Equivalence. I don’t know that I can do
better now. I keep trying to absorb it, but
I begin to suspect that the simple writing
style that Wolfram adopted for the book
is inadequate for fully explaining this con-
cept, which he claims is broader than pre-
viously established deep results about
computation, with richer implications than
the laws of thermodynamics: a new law
of nature, an abstract fact, and a power-
ful and enlightening definition.

That’s a lot to claim. But if you take
Wolfram seriously, and his intellect makes
it foolish not to at least give him a hear-
ing, the concept is central to under-
standing a great many things, including
the question of whether or not there is a
privileged perspective on the universe.
He says:

[I]t has become particularly common in the
academic humanities in the past few
decades to believe that there can be no
valid absolute conclusions about the
world— only statements made relative to
particular cultural contexts…But the Prin-
ciple of Computational Equivalence implies
that in the end essentially any method of
perception and analysis that can actually
be implemented in our universe must have
a certain computational equivalence, and
must therefore at least in some respects
come to the same absolute conclusions.

—Stephen Wolfram,
A New Kind of Science, p. 1131

Before he can explain his Principle of
Computational Equivalence, though, Wol-
fram has to demonstrate what he could
call (but doesn’t) the Principle of Com-
putational Ubiquity.

http://www.ddj.com Dr. Dobb’s Journal, March 2005 85

“Mathematica is a
good playpen for

fooling around with
different

programming
paradigms”

Part of the 1200-page book consists of
detailed demonstrations that computa-
tions that are similar to, and computa-
tionally equivalent to, cellular automata
can be found just about everywhere in
nature. Wolfram’s researches take him
into crystal structures, fracture patterns
in materials, fluid flow, and patterns in
biological morphology. He examines
growth patterns in plants and animals,
with hundreds of illustrations showing
the similarity between the output of a
simple program and the structure of a
particular leaf. He reasons from the ubiq-
uitous appearance of the angle 137.5 de-
grees in plant structures to the likelihood
of an underlying process that is very
much like a cellular automaton. His de-
tailed study of the shapes of seashells is
reminiscent of Darwin.

Other chapters in the book explore
the way in which such seemingly sim-
ple computations show up in other
realms, like fundamental physics. One
highly interesting assumption of Wol-
fram’s is that these discrete computations
are adequate to capture all of physics.
He doesn’t insist, but he does apparent-
ly believe, that the universe is discrete,
and that continuous functions are a math-
ematical abstraction with no direct real-
ization in nature.

There are, I guess, two points to be
made here. First, that Wolfram finds com-
putations everywhere. Where the ancients
thought that all was fire or earth or air or
water or some combination of these ele-
ments, and more recently “all is atoms”
was a mantra of science, Wolfram holds
that “all is computation.” And second, the
computations that he finds everywhere
tend to be, or at least appear to be, quite
simple, either cellular automata or equiv-
alent systems.

The reason for this, Wolfram tells us, is
that there are no more complex calcula-
tions than these simple CAs.

PCE
Wolfram’s Principle of Computational
Equivalence, the punchline of his book,
states that almost all processes that are
not obviously simple can be viewed as
computations of equivalent sophistication.
In particular, simple CA systems no more
elaborate than Conway’s Game of Life are
computationally equivalent to powerful
computer systems.

It says that once you get beyond very
simple systems, all systems immediately
attain the highest level of complexity pos-
sible, and are computationally equivalent
to all other nonsimple systems. The Prin-
ciple of Computational Equivalence, Wol-
fram says, “tells us what kinds of com-
putations can and cannot happen in our
universe [and] summarizes purely abstract

deductions about possible computations,
and provides foundations for more gen-
eral definitions of the very concept of
computation.” [A New Kind of Science, p.
719.] It introduces a new law of nature
asserting that “no system can ever carry
out explicit computations that are more
sophisticated than those carried out by
systems like cellular automata and Tur-
ing machines.”

One consequence of the Principle is that
the detailed behavior of most systems that
are not trivially simple cannot be known
without in effect running the computation
and observing the behavior directly. Be-
cause any accurate theory, model, or sim-
ulation of the system is necessarily of
the same degree of complexity as the
system itself. This runs counter to our
idea of how science works, but this is,
Wolfram says, because science today re-
stricts itself to those systems that are sim-
ple enough to produce only repetitive or
nested patterns of behavior. Science to-
day ignores the vast majority of the pro-
cesses of nature, looking only at those
where easy answers can be found. Where-
as the new kind of science revealed by
Stephen Wolfram boldly takes on all the
hard questions that no scientist has ever
had the courage or imagination to tackle
before.

Sorry; I got carried away. It’s hard to
characterize Stephen Wolfram’s views
without a little of the Wolfram ego slip-
ping in.

So what is the scientific status of this
Principle of Computational Equivalence?
Well, the whole of A New Kind of Science
is an argument for the Principle. And Wol-
fram acknowledges that the Principle is
so fundamental that it may not be direct-
ly testable by the conventional methods
of science. But he argues that the large
amount of data presented in the book and
the new perspective that the book opens
up strongly support the Principle. Perhaps,
he suggests, various aspects of the Prin-
ciple will come to be accepted, until even-
tually the whole thing seems too obvious
even to mention.

Time will tell.

The Privileged Perspective?
Wolfram titled his book A New Kind of
Science because, essentially, nobody has
ever done science in the way he propos-
es. Scientific method has traditionally con-
sisted of looking at complex processes
and discovering simple regularities in the
output of these processes. These regular-
ities are invariably either repetitions or, as
in the case of fractals, nested regularities.
Wolfram proposes studying the process-
es themselves in all their computational-
ly irreducible complexity. Because he finds
computational systems everywhere in na-

ture, he concludes that this means study-
ing the behavior and properties of com-
putational systems that are equivalent to
cellular automata.

And so, the image emerges of the en-
tire universe as a vastly complex sys-
tem creating itself anew each instant
from a possibly simple set of initial con-
ditions and a possibly simple transfor-
mational rule.

Now, although a CA can be emulated
by a Turing machine or other program-
ming paradigm, we know that one pro-
gramming paradigm is usually the most
convenient, the most natural, in a given
context.

For the universe, is that most natural
paradigm the cellular automaton?

DDJ

86 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Solution to “Dig That!,” DDJ,
February 2005.
1. Six probes; see Figure. Because

you know the direction of the
roads as they leave an intersection,
each pair on each row determines
the fate of the pipe on that row
and the next.

2. Six hours is the best, I think. You
may be able to cut out early if a de-
tour and a return to the central path
has been detected, but this is not
guaranteed.

Dr. Ecco
Solution

End

Start

1 2 3 4 5 6 7

H
igh- level languages use a fairly
straightforward model of system
memory: It’s arbitrarily large, read-
write, uniform, and fast. The hideous

details of memory management generally
reside in the operating-system kernel,
which interfaces with whatever hardware
features the CPU and its surrounding
chipset might provide. Apart from apply-
ing the same number of allocate and free
operations to a given block, programmers
generally don’t need to worry much about
the exact type of memory they’re using.

Embedded programmers, on the other
hand, must know far more about those
hideous details, if only because their pro-
grams must handle weird hardware. Seem-
ingly simple memory chips sport com-
mand interfaces, write operations may be
six orders of magnitude slower than reads,
and the chips can return bad data even
before they wear out from overuse. Get
one detail wrong and your product will
fail unpredictably. Oh, and that’s before
you even think of writing a hard real-time
application.

Let’s see how we got here, then exam-
ine the sort of Flash memory one might
find in a typical gizmo these days. You’ll
see how we’ve been spoiled by newfan-
gled semiconductor memory. Perhaps the
Bad Old Days are back?

Earliest Memories
ENIAC, one of the earliest digital com-
puters, stored 1 bit in a pair of vacuum
tubes wired as a set-reset flip-flop, a con-
figuration called a “bistable multivibrator”
in those days. This being a gadget de-
signed by engineers, every flipflop dis-

played its bit on a neon bulb. Think of it:
You could read the entire memory just by
looking at the front panel!

Early programmers found ENIAC’s 20
“accumulators” somewhat confining and,
in 1953, Burroughs spliced on 100 words
of magnetic core memory. That still wasn’t
nearly big enough, it was far too slow,
and its three-phase power supply seemed
excessive. More research was certainly
needed.

Even before ENIAC, Atanasoff con-
cocted a rotating-drum memory based on
1600 discrete capacitors. Pictures show
spine-like contacts sticking out of the
drum, so this thing obviously had serious
reliability issues.

Replacing those capacitors and con-
tacts with a smooth magnetic surface and
a row of read-write heads boosted drum
capacity to a few megabits, but the ac-
cess time remained painfully slow, even
by mid-1940’s standards. Programmers
learned to use the latency of the drum’s
rotation for I/O timing and compute-
bound sections of code.

EDSAC, built in England around 1949,
used what I think are the neatest storage
devices ever made: mercury delay lines.
A piezoelectric transducer launched
acoustic pulses through pipes of liquid
mercury to a receiving transducer. Ana-
log feedback amplifiers regenerated the
pulses on the fly to form a no-moving-
parts, serial-access memory holding about
2 kilobytes of evanescent data. The access
time, a few tens of milliseconds, was com-
parable to drum memory and far too slow
for the ever-increasing speed of the rest
of the system. Sound familiar?

Developed at roughly the same time as
the delay lines, the Williams tube stored
up to 2 kilobits in charged spots on the
face of a cathode-ray tube, with the key
advantage of electronic-speed random ac-

cess to the bits. A pair of bottles held 128
40-bit words in the Manchester Mark I
computer, the first machine to store both
instructions and data in random-access
memory. Yes, both in 128 words!

Magnetic core memory came back from
a shaky start to sweep away all con-
tenders in the early ’60s. It had three key
advantages:

• Fast access.
• Random addressing.
• Relatively low cost per bit, despite hand-

threading all those teensy ferrite dough-
nuts.

Core was also nonvolatile, but most
commercial systems didn’t really take ad-
vantage of that fact, as programs and data
were already far larger than any available
memory.

Core remained the memory of choice
for high-end systems until the late ’70s,
when integrated-circuit semiconductor
memory finally became cheap and reli-
able enough. In fact, the Intel 1101 256-
bit (!) static RAM chips were nothing more
than ENIAC’s bistable multivibrators: Half
a dozen transistors scribed on a silicon
chip replacing two hot triodes.

The neon indicators, alas, didn’t fit.
Intel’s 1702 2-kilobit EPROM, on the

other hand, was almost unusably com-
plex, requiring three power supplies (+5,
+12, –12V), strobed – 48V programming
pulses on the data lines, and finicky UV
erasing. But EPROM was nonvolatile and
could actually form the basis of a recog-
nizable embedded system, after micro-
controllers got beyond the initial 4004 ar-
chitecture.

In fact, small embedded systems through
about the mid ’90s typically featured a
three-chip cluster: microcontroller, EPROM,
and RAM. Smaller systems might omit the

Long-Time
Memories

Ed Nisley

E M B E D D E D S P A C E

Ed’s an EE, PE, and author in Pough-
keepsie, NY. Contact him at ed.nisley@ieee
.org with “Dr Dobbs” in the subject to
avoid spam filters.

http://www.ddj.com Dr. Dobb’s Journal, March 2005 87

RAM, tiny microcontrollers might have on-
chip ROM, but the overall plan was about
the same. In all cases, memory was pret-
ty simple, as long as you remembered that
you could read and write RAM, but only
read EPROM.

Then came Flash memory.

Flash Flavors
NOR Flash, introduced by Intel in 1988,
closely resembles EPROM, at least for read
access. Each memory location, holding 8
or 16 bits depending on the chip, can be
directly addressed and read in tens of
nanoseconds, roughly the speed of large
RAM chips.

NAND Flash, introduced by Toshiba in
1989, uses a serial interface that closely
resembles a disk drive, if not a mercury
delay line. The interface accepts com-
mands, address, and data bits multiplexed
over a few pins. Reading any particular
location takes tens of microseconds, but
reading successive memory addresses hap-
pens in a few tens of nanoseconds.

Unlike EPROM and the later EEPROM,
Flash memory can be erased in relatively
small sections. The CPU can store new
data, thus enabling in-system updates and
the miracle of in-flight program patching.

The names NOR and NAND vaguely
suggest the internal structure of the mem-
ory arrays, but should indicate general cat-
egories: NOR means “direct access” and
NAND means “serial access.” As you might
expect, there are myriad variations on the
theme.

To inject some real-world numbers in
the discussion, I’ll use the Samsung
KAB0xD100M-TxGP multichip memory. It
has a 16-bit datapath (a “word”) with ac-
cess to 4M-word NOR Flash, 8M-word
NAND Flash, and 2M-word pseudostatic
RAM. The “x” characters are placeholders
for digits that indicate various options and
speeds that aren’t relevant here. While you
can find bigger and faster versions of each
component, this one datasheet has all the
pieces: http://tinyurl.com/3wxmt.

Most of the datasheet supplies the de-
tails that the hardware folks use to inter-
face the chip with whatever microcon-
troller will be running the code. A few
key specs, however, make life difficult for
the software folks who might otherwise
regard the Flash as just RAM with a real-
ly slow write cycle.

That’s a really great way to kill a chip,
if not an entire project.

Unlike traditional RAM or EPROM chips,
Flash memory chips have both nonuni-
form addressing and a command struc-
ture. The address space includes control
registers, data, room for metadata like ECC
bits, hidden blocks of secret stuff, config-
uration settings, and so forth and so on.
An on-chip state machine controls access

to the chip’s innards, so you must ensure
that your program’s model of that state
machine either matches what it’s actually
doing or can force it into a known state.
The datasheet gives the details, but ex-
pect to spend some time experimenting.

NAND Flash
NAND Flash may be the easiest to un-
derstand, if only because its serial nature
alerts you to something unusual. Each op-
eration requires writing a command and
address into the chip, then either writing
or reading the appropriate data. The com-
mands can reset the chip and read ID
bytes and status, in addition to the ex-
pected data-read, -erase, and -write op-
erations.

For example, reading a particular data
word from the Samsung NOR Flash in-
volves sending a Read1 command fol-
lowed by three address bytes specifying
the page containing the word, all of which
takes at least 120ns. The chip then trans-
fers the entire page to an internal latch in
a leisurely 10µs process, after which you
can read all 256 words at a mere 50ns
each and extract the particular word you
wanted from that stream.

Obviously, NAND Flash is best used for
applications that mimic a disk drive. Be-
cause it does not provide random access
to words within a page, you cannot exe-
cute code from it or read widely scattered
words with any alacrity.

After reading those 256 words, you must
send another Read1 command with the
next page address and endure another
10µs startup delay. The net transfer rate is
thus (10µs + 256×50ns)/256 = 90ns per
word. That’s actually not too shabby, as
long as you’re consuming data in a stream
rather than sip by sip. If you’re playing
back audio or displaying a picture, it’s the
right hammer for the job.

Unfortunately, it’s not quite that simple,
because NAND Flash doesn’t have near-
ly the same reliability as, say, the SDRAM
in your server. Each 256-word page has
a corresponding 8-word Spare Area for
the ECC bits required to correct what’s
charmingly called “bit flip” in the main
data. The ECC algorithm is up to you, but
you should have one!

The Spare Area is accessible in two
ways. You can read 256 data words, then
continue to read the additional eight
words, or you can use a Read2 command
to access just the Spare Area without slog-
ging through the actual data.

Storing data works similarly, but you
must erase an entire page before writing
new words. Erasing a page requires up to
3ms (yes, 3000µs!), writing data takes
(264×5ns), and the actual program oper-
ation takes up to 500µs, for about 3.6ms.
You must compute and store the addi-
tional eight words in the Spare Area along
with the main data, because there’s no
other way to write them.

In addition to bit flip, NAND Flash sim-
ply wears out with use. Permanent single-
bit errors will occur after 1000 erase/
program cycles on any given block. Single-
bit ECC pushes the inevitable failure out
to 100,000 cycles when you can expect
a second permanent bit failure in a
page. A transient bit flip in a page with
a permanent error will cause an uncor-
rectable error, so you must factor that
probability into your choice of ECC al-
gorithm.

Even with ECC, the NAND Flash chip
may report that an erase or programming
operation has failed, in which case your
code must relocate that page’s data some-
where else. NAND Flash really does be-
have just like a disk drive: It has bad sec-
tors and requires a mapping directory of
some sort.

At least it’s smaller than a drum memo-
ry and less toxic than a mercury delay line.

NOR Flash
Unlike NAND Flash, NOR Flash has a
straightforward address and data interface:
Present an address, assert the Read control
line, and out pops the corresponding data.

It also has a control interface that ac-
cepts commands as data values written to
specific addresses in a particular order.
For example, to erase the whole chip, you
write 0xaa to 0x555, 0x55 to 0x2aa, 0x80
to 0x555, 0xaa to 0x555, 0x55 to 0x2aa,
and 0x10 to 0x555. Got that?

Now, if your first reaction is to figure
the probability that a series of ordinary
memory writes would accidentally trig-
ger a chip erase, you’ve fallen into a
classic embedded systems trap. Re-
member that the type of chip we’re dis-
cussing was once known as Flash ROM:

88 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

“Flash memory can
be erased in

relatively small
sections”

Under normal circumstances, the chip
never sees write operations because it’s
not RAM.

Pop Quiz: Compute the probability that
such a sequence would arise at least once
in a system writing to RAM. Hint: Your
first guess is probably correct.

NOR Flash blocks must also be erased
before being programmed, which the
datasheet says takes 700ms (yes, 700,000µs)
“typical.” A block has 32K words, so the
average value is 20µs per word. Program-
ming a single word with data requires on
the order of 10µs, making the overall band-
width pretty dismal. The chip’s data out-
put contains various status flags during the
programming operation, so your code can
simply poll the chip to figure out when it’s
finished.

See the gotcha? If the memory produces
status outputs instead of data, the code
that should poll the outputs will crash
when it tries to execute status bits fetched
as instructions from different addresses in
that same chip.

It turns out that early Flash chips had
exactly that problem. Systems required ei-
ther two Flash chips (one to run and one
to program), executable RAM, the ability
to run from the CPU’s instruction cache,
or some combination of tricks.

The Samsung part’s NOR Flash is di-
vided into two sections and can program
or erase one while performing normal
read operations from the other. A rela-
tively small section, called the “Boot
Block,” generally holds the system’s start-
up code, as well as the utility code re-
quired to reprogram the other, much larg-
er, section with a new version of the main
firmware.

The Samsung module also has a 2M-
word RAM chip that can be used for in-
structions, but that’s a feature of this par-
ticular multichip part rather than Flash in
general.

Unlike NAND Flash, NOR flash is rated
for over 100,000 updates to a single block
before it fails, so ECC isn’t absolutely re-
quired and there is no dedicated Spare
Area for those bits. You’d be well advised,
however, to compute an overall check-
sum for your data, as it’s entirely possible
for errors to creep in unannounced.

There is, however, a 32K-word Securi-
ty Code area hidden in the Boot Block
that can be programmed only once, then
accessed only by a command sequence.
That’s where you put the unique Prod-
uct ID codes that lock software to your
gizmo, at least if you also believe in San-
ta Claus.

Reentry Checklist
I’ll pick up the thread of Flash file sys-
tems later on. In the meantime, remem-
ber that any particular Flash memory chip

will have more peculiarities than I’ve men-
tioned here. Expect the unexpected!

The History of Computing project is
at http://www.thocp.net/index.htm. A
1946 paper on ENIAC at http://pages
.cpsc.ucalgary.ca/~williams/509pdffiles/
ENIAC.pdf gives an overview of how it
all worked. See a decent picture of the
replica Atanasoff-Berry Computer at
http://perun.hscs.wmin.ac.uk/JHPC00/;
the original ABC drum at http://www
.csm.ornl.gov/ssi-expo/abcDrum.gif; and
a Williams tube at http://www.cedmagic
.com/history/williams-tube.html.

A history of nonmechanical storage,
with some nice photos of core memory
planes, is at http://www.allaboutcircuits
.com/vol_4/chpt_15/4.html and an analy-
sis of core memory development is at

http://theory.lcs.mit.edu/classes/6.972/
Core%20Report.html. A bit of core versus
IC history is at http://www.eetimes.com/
special/special_issues/millennium/
milestones/whittier.html.

The Story of Mel shows how a Real Pro-
grammer puts a bizarre instruction set and
drum memory to good use: http://www
.jargon.net/jargonfile/t/TheStoryofMel.html.

The datasheet for Samsung’s multichip
NOR- and NAND-Flash plus RAM module
is at http://tinyurl.com/3wxmt/, which en-
codes a nasty jawbreaker of a Samsung URL.
If that doesn’t work, start at http://www
.samsung.com/, search for KAB01D100M,
and pick the result with “NOR-based” in the
summary.

DDJ

http://www.ddj.com Dr. Dobb’s Journal, March 2005 89

WIBU C DrDobbs Island.indd 1 1/8/05 1:20:32 AM

T
he Chaos Manor computer system
consists of more than a dozen work-
stations networked into an Active Di-
rectory Domain through three Win-

dows 2000 Server systems — one the
“master” and the other two online at all
times, ready to take over if Imperator fails.
It sounds needlessly complex, and really
it is: I could do everything we do here
with considerably less computing power.
But one reason I have a complex system
is to help me understand the needs of
readers. Many do have small businesses
that require a bit more computing power
than I typically need. Next month, I’m con-
verting to Windows 2003 Server for the
same reason: What I have is more than
enough for me, but for many readers it’s
conversion time and I need to understand
their problems.

Most of the actual work here is done
on three machines: Lance, which is Rober-
ta’s system on which she does e-mail and
takes care of sales of her reading software
(http://www.readingtlc.com/) and other
such matters; Anastasia, my main com-
munications system, which runs Outlook,
FrontPage, and does web crawling; and
my “Main” machine on which I write all
my books, play games, surf the web for
web stuff that’s likely to be cut-and-pasted
into Word documents, and generally do
everything else. That machine used to be
a D850 RAMBUS system called “Sable”; as
we’ll see it has been replaced with a new
Prescott named “Wendy.”

With only three major workstations to
worry about, backup ought to be simple:
two OUTLOOK.PST files (mine and Rober-
ta’s) and all the new Word documents.
Provided that OUTLOOK isn’t running
(you can’t copy the OUTLOOK.PST file
when OUTLOOK is running; you can ex-
tract its information, but that’s painful) a
couple of batch files will do the job.

Assume that my backup machine in the
server room has an F:\ drive, and con-
tains folders for the three machines: Lance,
Anastasia, and Wendy. Then all that’s re-
quired to back up files that aren’t open is
to open a command window (nee “DOS

window”). Assume that Wendy is mapped
to the backup machine as W:\; then the
command from the backup machine is
XCOPY W:*.doc F:\WENDY\ /e/s/d/y,
which goes out and grabs every .doc file
and puts it into the proper folder under
F:\WENDY\, creating folders if they don’t
already exist, and copying only files new-
er than ones it already sees. Another com-
mand seeks out *.pst, again with the
/e/s/d/y switches (open a command win-
dow and do xcopy /? if you don’t under-
stand the switches). Run a batch file with
both those commands and all Wendy’s
documents and pst files are backed up.
Do the same for Anastasia, and again for
Lance, and the job is done. All critical
work saved, even assuming I didn’t make
multiple copies of new creative work at
the time it was written.

In practice, it is a little more complex
than that. I do have some other critical
work, like invoices and accounting
records, but that all resides in one folder
which is the subject of yet one more xcopy
command. Still, that’s the principle of the
thing, and it has been the system I have
used for years. All of this could and should
live in a single batch file.

The Main Machine Dies
The heading for this ought to refer to the
death of a machine named Sable, but I
can’t quite bring myself to write that; su-
perstition, I suppose. Sable is our two-
year old Husky, the dog my kids call “the
empty nest pet,” meaning she is spoiled
rotten. For some unaccountable reason I
named the big D850 RAMBUS computer
I have used Sable as the main writing ma-
chine. I ought to have known better be-
cause nothing lasts forever.

I had just installed Everquest II, a very
large program, from 10— count them,
10!—CD-ROMs on the D850. The program
went out online to get patches and revi-
sions, and up popped a message: It
couldn’t update some files because the
system saw them as read only.

That should have raised some suspi-
cions. I had already had a few flakey mo-
ments with that machine; nothing it didn’t
recover from by turning it off and letting
it rest, but there had been reports of volt-
ages out of tolerance (Intel’s System Mon-

itor program that comes with Intel moth-
erboards is very good about that), and a
couple of times the system didn’t boot up
properly. I knew it wasn’t in 100-percent
reliable condition, and I should have tak-
en this read-only thing as a warning to
back up everything I possibly could be-
fore going any further.

Instead, I used a command line to mark
all the files in that folder as R/W. I thought
I was being very clever. Wrong. Instead,
the machine simply crashed. Attempts to
reboot would get part way, sometimes to
the Windows XP splash screen, but it nev-
er got me to the point that I could copy
files. Booting in Safe Mode with or with-
out networking (the system has a ZIP drive
and USB ports, so if I could get it running
at all, I had ways to sneakernet files out
of it) didn’t work either. That machine just
wasn’t going to boot.

The first moral of this story should be
obvious. If a system does something en-
tirely unexpected, like telling you that files
are read-only when there is no reason for
them to be read only, it’s a clue. Back that
system up, pronto, there’s no time to
waste.

I didn’t do that, and now it wouldn’t
boot. Well, I thought, what have I lost? It
can’t be much, because I did copy all my
work to other machines, and the last time
Larry Niven was over, we copied every-
thing we did to his ZIP disk as well as to
Silver, the machine he works on here
(Niven likes the Microsoft Natural “hump-
back” keyboard, so I keep a machine set
up with one of those just for him). I did
use Sable as the backup machine for ac-
counting, but the primary accounting ma-
chine (which runs Windows 98; I wrote
that program in CBASIC in 1982 and I see
no reason not to use it, but Windows XP
doesn’t much care for it) was still opera-
tional. I quickly went to that one and
made backup copies of the accounting
files to three other places; no point in
tempting fate. But I surely hadn’t lost any-
thing else.

Still, it would have been good to be
sure, so we put the failed Maxtor Dia-
mondMax disk into another machine as a
secondary drive. Alas, Windows sees the
disk fine: But it doesn’t see any files on
it. None whatever, and it wants to format

Backing Up Isn’t Hard To Do
Jerry Pournelle

C H A O S M A N O R

Jerry is a science-fiction writer and senior
contributing editor to BYTE.com. You can
contact him at jerryp@jerrypournelle.com.

90 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

it. We tried several things including Parti-
tion Magic, but nothing worked; all the
files on that drive seem to have vanished.

So I replaced Sable with Wendy, and
began work.

What Was Lost
I soon found what I had lost— a bunch
of utilities I use every day. Most, like Spy-
bot Search and Destroy and Adaware were
installed on other machines and it didn’t
take long to bring them over to Wendy.
Others, like Notepad Pro, had been on
the machine that preceded Anastasia, and
on Sable, but I hadn’t made other copies,
and now were just gone. Of course, I can
download that again, and will, but I can’t
just transfer it, and some of the data files
are gone.

Diskmapper is gone. Once again it’s not
that hard to find it and reinstall it, but I
had never backed it up. Some notes I had
started in the latest version of Info-Select
(nee Tornado Notes) were gone: They use
a different format from previous versions.
I don’t use Info-Select a lot because they
keep changing their rules, and now you
can’t have two copies of the program on
the same network and move data between
them: That’s a deliberate decision on their
part, as it was a deliberate decision on
mine to stop using the program, although
at one time it was a very useful freeform
database. One day I’ll find something to
replace it; indeed, Notepad Pro was the
replacement, and while I can restore
Notepad Pro, the files of passwords and
random data I kept in that format are
probably gone.

The Thumbs Plus database of photo-
graph files is missing. This is again no big
problem because I keep multiple copies
of all photographs, as well as periodical-
ly writing them off to a DVD, but it’s still
annoying. I’ll have to reinstall Thumbs
Plus and let it spend a couple of hours
spidering my photo files.

While I was writing this I found an-
other trivial loss— the Toolbar configu-
ration for Word. Word has gotten com-
plicated enough that getting everything
set just right takes a while, and losing
that requires you to do it again. The Spe-
cial Dictionary, built up over the years,
was gone. I have a separate .dic file for
every novel (after all, I make up words
and have alien names in my stories, none
of which I need in my nonfiction dictio-
nary), and there’s a pretty good special
dictionary over on Anastasia; for that mat-
ter I can consolidate dictionaries from
years ago. Still, it takes doing, and that
too is something I should have backed
up and didn’t.

I could continue the list but surely the
point is made? In addition to all the things

I thought of, there were many other files
I ought to have been backing up and
didn’t.

The New Backup System
Clearly, what I should have been doing
was backing up files from a central point
using the network. There’s a problem with
that: You can’t copy open files, and there’s
never a time when I’m certain to be away
from my desk. When I can’t sleep, rather
than practice lying in bed staying awake,
I just get up and do some work or read
a book, or even play FreeCell.

Anastasia already has a backup system.
The primary drive is a RAID 1, which is a
pair of disks in a mirrored array. Both
would have to fail before I lose all the data.
The next step is to do that for my main
writing machine, and I will. Even so, this
only protects me from hard drive failures.
It does nothing for operator error.

On the other hand, we’ve had a great
backup system for a single machine go-
ing on for weeks: The CMS external USB
2.0 backup system that was installed on
Silver, the machine that Niven and other
visitors use. It was put there because it
was a convenient place for it; but it has
worked so well I am tempted to take it
from Silver, reformat the disk, and install
it on Wendy. When I mentioned that to
CMS they made me a better offer: They’re
sending a couple more units, and I’ll put
one on Roberta’s machine, and one on
Wendy, and that way both our main ma-
chines will be backed up automatically
and without our having to worry about it.

The CMS backup software nags you if
you forget to make a backup; but it does
it politely, and it works in the background
so that on fast machines— in our case,
Prescotts—you don’t notice that it’s work-
ing at all. The more I use this, the more
enthusiastic I have become, and I only
wish now I had installed the first CMS unit
on Sable before her drive went west.

Live and learn. No one gets the back-
up religion until there’s a disaster. In our
case it was a lot short of disaster, but I’m
not waiting for a more serious warning.
We’re doing a lot of backup now, but I
won’t be happy until it’s automatic.

I still wish that Seagate, which bought
Palindrome, would get that wonderful
backup management program out again.
It really worked, doing everything you
ever wanted a backup management sys-
tem to do.

Winding Down
The game of the month is Everquest II,
which I’ve had fun with. The book of the
month is David McCullough’s John Adams,
a very readable account of one of the most
intellectual of the Founding Fathers. With-
out Washington’s charisma and leadership

we would never have been able to form
the Union, but without Adams and his le-
gal sense it is not likely to have held to-
gether long. Washington, Hamilton, and
Adams were all pretty essential in the mak-
ing of the New Order of ordered liberty.
Incidentally, although Adams supported
the Sedition Act, which allowed punish-
ment and suppression of “seditious libel.”
He would have been the first to denounce
the new Treasury regulations requiring
publishers in the United States to obtain
a federal license before publishing dis-
senting works condemned by their home
countries— regulations that would have
required, for instance, a license to publish
Dr. Zhivago, or dissenting works out of
Cuba. Punishing sedition after publication
upon proof that it is seditious libel is
nowhere near the same thing as requiring
a license before publication: Whatever else
the First Amendment was intended to pro-
tect, it most certainly abolished the very
notion of prior restraint, and Adams would
have been among the most vigorous op-
ponents of anything like federal licensing
for publications.

Another book of the month is Neal
Stephenson’s three-volume series ending
with The System of the World. This giant
exposition into the 17th and early 18th
Centuries is a tour de force. Parts of it are
hard to read and some of it is needless,
but it’s certainly a worthwhile experience.

The first computer book of the month
is James C. Foster and Steven C. Foster,
Programmer’s Ultimate Security DeskRef
(Syngress, 2004; ISBN 1932266720). En-
cyclopedic in form, it is precisely what the
title says it is.

The second computer book of the
month is a pair of O’Reilly books in their
“Hacks” series: Sid Steward’s PDF Hacks
(O’Reilly & Associate, 2004; ISBN
0596006551), and Shannon Sofield’s Pay-
pal Hacks (O’Reilly & Associate, 2004;
ISBN 0596007515). I’ve mentioned before
that Amazon and Lightning Press have a
system through which you can sell doc-
uments through the Amazon store. Basi-
cally, you buy ISBNs from Bowker, put
your documents in PDF, Microsoft Read-
er, and other formats as you choose, set
a price, and upload to Lightning, after
which you’re a publisher, and your works
are listed in the Amazon index. Francis
Hamit has been doing this with his mag-
azine articles and other publications, and
while sales build slowly, they do build.
The PDF Hacks book is useful in getting
material into the right format; anyone who
works with PDF needs this book. The Pay-
pal books told me a lot about using Pay-
pal, and I’ll be incorporating some of that
into my web site.

DDJ

(continued from page 90)

92 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

P R O G R A M M E R ’ S B O O K S H E L F

M
any books are available that cov-
er specific technologies, such as
ASP.NET and C#. Many fewer that
address the development process

are available. Fortunately, two recently re-
leased books address just this topic. Mike
Gunderloy’s Coder to Developer covers
what is required to move a newly mint-
ed programmer from being merely a coder
into a more complete developer. A com-
plete developer is someone who knows
not only the syntax of a programming lan-
guage or two, but also can take that
knowledge and create full-featured and
reliable applications. Anyone who has
been coding for a while recognizes that
even if we thought that we were complete
developers right out of school or after our
first programming success, we had a lot
to learn. Moreover, code we developed
even five years ago often makes us cringe
as we look at it with the benefit of the ad-
ditional five years of learning. Coder to
Developer helps speed you along in that
journey.

Coder to Developer steps you through
the process of developing software, start-
ing with the often overlooked planning
phase. Gunderloy also guides you through
the use of source-code control and many
other tools that are, at best, mentioned in
passing during most formal training. It is
the proper use of the appropriate tools
that often separates a coder from a more
complete developer.

Another topic that often is given less
than complete coverage in most training
settings is the need to track and handle
bugs in our code. An especially impor-
tant chapter of the book discusses the
need and benefit of logging application
activity. This is something I learned
through lots of difficult experience with
medical applications that ran 24/7, at
hours I could not be present to observe.
If all beginning developers take away from
this book is the need to log significant

system activities, it is worth the price of
admission.

There are a couple of things you should
know before you commit to Coder to De-
veloper. First, this is a book that very much
focuses on Visual Studio .NET. While
much of the advice is appropriate for all
developers, many of the specific exam-
ples and suggestions are for .NET pro-
grammers. In addition, some of the spe-
cific recommendations may change for
Visual Studio 2005. Keeping in mind that
we are likely more than a year away from
general availability of a released version
of Visual Studio 2005, Coder to Developer
will continue to be a worthwhile purchase
for .NET developers.

Code Complete, Second Edition, is the
most recent edition of Steve McConnell’s
classic Code Complete, originally released
in 1993. If you’re familiar with the orig-
inal, this edition is not a complete rewrite.
Much of the first edition’s content holds
up very well, even all these years later.
McConnell has, however, improved upon
the first version in many ways. First, many
of the “Hard Data” notes point to more
recent studies and articles. The “Hard
Data” notes were among portions of the
original book that I quoted when dealing
with management; folks who did not un-
derstand that increasing capital expendi-
tures, providing better working condi-
tions, and so on, would be worth the
expense. I did not always succeed, but

I had a better argument than just, “I think
better conditions would help the staff
program better.”

I did not do a careful side-by-side com-
parison with the first edition. That said,
there are two more chapters in the new
edition, and some more recent topics, such
as agile development, team programming,
and refactoring are covered well. The
chapters on naming classes, variables, con-
stants, and so on, could have been com-
bined to eliminate some duplication, but
I can live with the amount of duplication
present.

It is a little ironic that Code Complete
from Microsoft Press would in fact be
much more platform agnostic than Coder
to Developer, published by Sybex. Code
Complete is a book that you should have
on your bookshelf. Examples are as often
in Java as C++ or Visual Basic, and in most
cases the specific language does not even
matter. Since this was a new edition, I ex-
pected to see more examples using C#,
and in that respect I was disappointed. In
a few cases where the topic cried out for
a C# example (for instance, the foreach
loop), I did find the example in C#. Most
of the Java or C++ examples will be use-
ful for C# developers, but an understand-
ing of C++ or Java will not hurt, since if
an example uses the C++ namespace res-
olution operator, you will need to under-
stand the C# equivalent.

Which of these books for developers
should be on your bookshelf? That de-
pends on your current situation. If you are
a developer moving to .NET development
and need specific guidance on tools and
techniques, Coder to Developer won’t dis-
appoint you. The specific tools coverage
Gunderloy provides is timely and unique.
If you are a Java developer, or a devel-
oper in a number of languages and plat-
forms, Code Complete will serve you well.
The variety of example languages, as well
as the numerous references, is a welcome
addition to any developer’s bookshelf.

DDJ

Books for Developers

Douglas Reilly

Douglas is president of Access Microsys-
tems and can be contacted at doug@
accessmicrosystems.com.

http://www.ddj.com Dr. Dobb’s Journal, March 2005 95

Coder to Developer:
Tools and Strategies
for Delivering Your
Software

Mike Gunderloy
Sybex, 2004
352 pp., $29.99
ISBN 078214327X

Code Complete, Second Edition
Steve McConnell
Microsoft Press, 2004
960 pp., $49.99
ISBN 0735619670

Simian Systems has developed phpBeans,
a standard for implementing enterprise-
level applications in PHP. phpBeans de-
fines a method of allowing objects to com-
municate seamlessly across separate
machines. phpBeans provides specifica-
tions and reference implementations of
the phpBeans Object Server, the phpBeans
Protocol, and the phpBeans Client API.

Simian Systems
1071 Corydon Avenue
Winnipeg, Manitoba
Canada R3M 0X3
204-942-8630
http://www.simian.ca/

Red Gate Software has released a new
version of its SQL Bundle Developer Edi-
tion, designed to simplify development of
automated programs for comparing, syn-
chronizing, and packaging Microsoft SQL
Server databases. The new release includes
compression for the SQL Packager that re-
duces package sizes. SQL Bundle Devel-
oper Edition comprises five Red Gate
packages: SQL Compare, SQL Data Com-
pare, DTS Compare, SQL Packager, and
SQL Comparison and Synchronization
Toolkit.

Red Gate Software
St John’s Innovation Centre
Cowley Road, Cambridge
United Kingdom CB4 0WS
+44 870 160 0037
http://www.red-gate.com/

Wind River Systems has announced a num-
ber of new releases for device develop-
ment and support. Wind River Workbench
2.2 is an Eclipse-based development suite
supporting VxWorks, Linux, and in-house
operating systems. The Wind River Gen-
eral Purpose Platform integrates VxWorks
6.0, Wind River Workbench 2.2, and mid-
dleware. The Wind River Platform for Net-
work Equipment, Linux Edition combines
Carrier Grade Linux with support for tele-
com hardware. Lastly, Wind River Market
Specific Platforms include industry specif-

ic middleware for consumer devices, in-
dustrial devices, and network equipment.

Wind River
201 Moffett Park Drive
Sunnyvale, CA 94089
408-542-1322
http://www.windriver.com/

Caphyon LLC has released Advanced In-
staller Professional 2.1, a Windows Installer
authoring tool for MSI packages. Advanced
Installer runs on Windows 2000/XP, and
the packages it creates run on all Microsoft
Windows 9x/ME/NT/2k/XP operating sys-
tems. The project files are saved as XML.
This new version adds support for instal-
lation folders that are synchronized with
disk folders for easier project maintenance.

Caphyon LLC
2017 California Street, Suite 1B
Mountain View, CA 94040
http://www.caphyon.com/

Codejock Software is shipping its Xtreme
Toolkit Professional Edition 9.51 for Visu-
al Studio .NET, including Xtreme Suite,
Xtreme Command Bars, Xtreme Docking
Pane, and Xtreme Property Grid. The
Xtreme component family provides cus-
tomizable UI components for developing
Microsoft-style applications for use with
Microsoft Foundation Class (MFC), ActiveX,
and Microsoft.NET development platforms.

Codejock Software
204 W Exchange Street, 2nd Floor
P.O. Box 726
Owosso, MI 48867
989-723-1442
http://www.codejock.com/

ActiveState’s Perl Dev Kit 6.0 introduces
GUIs for most tools, providing visual
guides to build options. Also included is
the PDK Filter Builder, a tool for interac-
tively creating text processors that do cus-
tom filtering and replacement operations,
and VBScript Converter for generating Perl
code from VBScript. The Dynamic DLL
Loader supposedly eliminates the need to
write temporary files to the disk during
execution of most applications, saving disk
space, reducing clean-up of temporary
files, and increasing security.

ActiveState
580 Granville Street
Vancouver, BC Canada V6C 1W6
604-484-6800
http://www.activestate.com/

Canoo has released a new Eclipse 3.0 plug-
in that simplifies Internet-application de-
velopment with the UltraLightClient Java li-
brary. Offering a server-side programming
and execution model, UltraLightClient com-
plements the Eclipse Rich Client Platform
(RCP) to help you provide responsive GUIs

for web applications within J2EE and J2SE
infrastructures. UltraLightClient follows the
Swing API but takes care of the code split
and optimizes communication.

Canoo Engineering AG
Kirschgartenstrasse 7
4051 Basel, Switzerland
+41 (61) 228 94 44
http://www.canoo.com/

Wingware has upgraded the Wing IDE for
Python to Version 2.0. New features include
a completely redesigned customizable user
interface, call tips, syntax error indicators,
editor tabs and splits, multifile wildcard and
regular expression searching, integrated
documentation and tutorial, a German lo-
calization, and Unicode support. Wing IDE
Professional is available on Windows, Lin-
ux, Mac OS X, and other platforms.

Wingware
P.O. Box 1937
Brookline, MA 02446-0016
617-232-0059
http://wingware.com/

IDEAL Software is shipping Version 3.60
of its ad hoc document creation library
Virtual Print Engine (VPE) for Windows.
The new version ships with two new .NET
components, one for Winforms and one
especially created for ASP.NET. The com-
ponents let you dynamically create pre-
cise reports, documents, forms, and draw-
ings by calling functions at runtime.

IDEAL Software GmbH
Erftstrasse 102 a
41460 Neuss, Germany
+49 2131 1511 - 690
http://www.IdealSoftware.com/

Perforce Software has added a Time-lapse
View to its Perforce Software Configuration
Management system. Time-lapse View pro-
vides a graphical way to view the complete
change history of individual text files stored
in the Perforce repository. Perforce also
now integrates with Discreet 3ds max,
Adobe Photoshop, and Alias Maya.

Perforce Software Inc.
2320 Blanding Avenue
Alameda, CA 94501
510-864-7400
http://www.perforce.com/

DDJ

O F I N T E R E S T

96 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

Dr. Dobb’s Software Tools Newsletter
What’s the fastest way of keeping up with new
developer products and version updates? Dr.
Dobb’s Software Tools e-mail newsletter, delivered
once a month to your mailbox. This unique
newsletter keeps you up-to-date on the latest in
SDKs, libraries, components, compilers, and the
like. To sign up now for this free service, go to
http://www.ddj.com/maillists/.

This one is for the nattering nabobs of nadsat.
2004 was a horrorshow year for Steve Jobs, the CEO of Apple and Pixar. One time, all the
gazettas called him a nadmenny baddiwad malchick, but in 2004, it was a different raskazz. It’s

all about the pretty polly, my droogies.
Our Steve shvatted more of the stuff than any other CEO in Silly Con Valley in Anno Domino

2004. He was the bolshy bugatty in Forbes gazetta every month. Apple’s stock rose like a koshka up
a zvonock. Every lewdie’s glazz was on Steven Pee Jobs.

Steve was the CEO with the two rabbits, and each of these rabbits was always shvatting lots of
pretty polly by prodding techie vellocet for the lewdies to mounch. From the Apple rabbit came
carman-sized veshches for razrezzing warbles and dorogoy veshches with knopkas to fist, and from
the Pixar rabbit came bolshy animated sinnies.

And didn’t all the malenky nadsats tolchock pee and em for the gollies to viddy Pixar’s latest
raskazz at the sinny? And didn’t they fill Steve’s carman with the pretty polly? They did and they did.

But oh my droogies, sloosh this: The messel that warms Steve’s heart and that is like the great
Ludwig Van to his ookos is not the pretty polly in his carman, but the fact that the lewdies of Woodside
are finally letting him crack his domy. Steve and his family were all oddy knocky in the fourteen
bedrooms and thirteen and a half baths of that starry staja and bezoomny to ookadeet the place.

2004 was also the year that Dan Gillmor may have traded a creech for a chumble by ookadeeting
his rabbit at the starry San Jose gazetta to become a Citizen Gazettista. Pursuing his sneety, our Dan
was, even if he could snuff it. He might be gloopy, the sarky lewdies at the gazetta platched, but
the malchick’s got gulliwuts.

But sloosh me horrorshow, my droogies: Dan may not be out of his gulliver after all. The time
may be dobby for fillying with blogs and dratsing with the gazettas. Because those malchicks at the
bolshy gazettas seem to be only a dook of their former selves, either gloopy or spoogy, without a
dobby messel, prodding their baddiwad vellocet for the lewdies and getting all grahzny with the
buggaties.

But that’s just my nadmenny opinion.
IBM also pulled an ookadeet in 2004, letting the Chinese kupet its entire pee sea rabbit. This

snuffed a raskazz that began in 1981, when the starry computer company got too droogy with Bill
Gates and let him crast its dorogoys. Of course, that’s just how IBM viddies it. Doubtless Bill viddies
it differently. You have a choice of nadmennies, as always.

In short, my droogies, it was a bezoomny year. This one looks like another.
Anthony Burgess helpfully provided a dictionary for nadsat, the invented patois in which he

wrote his novel A Clockwork Orange. Many copies of that dictionary can be found on the Internet;
here are my versions of the definitions of the nadsat terms used in this month’s column:

S W A I N E ’ S F L A M E S

Last Year Went Like Clockwork

Michael Swaine
editor-at-large
mike@swaine.com

98 Dr. Dobb’s Journal, March 2005 http://www.ddj.com

baddiwad: bad
bezoomny: mad
bolshy: big, great
bugatty: rich, rich person
carman: pocket
crack: to break up, tear down
crast: to rob, to steal
creech: to shout, to scream
chumble: to mumble
dobby: good, right
domy: house
dook: trace, ghost
dorogoy: valuable
dratse: fight
droog: friend
filly: to play or fool with
fist: to punch
gazetta: newspaper, magazine
glazz: eye
gloopy: stupid
golly: unit of money

grahzny: dirty
gulliver: head
gulliwuts: guts
horrorshow: good, well
knopka: button
koshka: cat
kupet: buy
lewdies: people
malchick: boy
malenky: little, tiny
messel: thought, fancy
mounch: snack, to snack
nadmenny: arrogant
nadsat: teenage, teenager
oddy knocky: lonesome
ookadeet: to leave
ooko: ear
pee and em: parents
platch: to cry
pretty polly: money
prod: to produce

rabbit: work, job
raskazz: story
razrez: to rip
sarky: sarcastic
shvat: to grab
sinny: cinema
sloosh: to hear, to listen
sneety: dream
snuff: to kill
snuff it: to die
spoogy: terrified
staja: state jail, prison
starry: ancient
tolchock: to hit or push
vellocet: drug
veshch: thing
viddy: to see, to look
vred: to harm, to damage
warble: song
zvonock: bellpull

	EEn
	Cover
	TOC
	Editorial - Smart Stuff
	Letters
	Dr. Ecco's Omniheurist Corner - Grab Bag
	Dr. Dobb's News & Views
	A Fundamental Turn Toward Concurrency in Software
	64-Bit Computing & JVM Performance
	Windows & the World of 64-Bit Computing
	Integer 64-Bit Optimizations
	High-Performance Math Libraries
	Programming with Contracts in C++
	Making a Scene with Java3D
	A Sound File Editor for Netbeans
	Resource Management in Python
	The StatiC Compiler & Language
	Building on TiVo
	Adding Diagnostics to .NET Code
	Reducing the Size of .NET Applications
	64-Bit Computing & DSPs
	Programming Paradigms - The Blind Men and The Elephant
	Embedded Space - Long-Time Memories
	Chaos Manor - Backing Up Isn't Hard To Do
	Programmer's Bookshelf - Books for Developers
	Of Interest
	Swaine's Flames - Last Year Went Like Clockwork

