

Network Programming
in .NET

Metzger,

Debugging by Thinking

,
ISBN 1-55558-307-5, 600pp, 2003

Mosher,

Microsoft Outlook Programming: Jump Start for Administrators, Developers

,

and Power Users

,
ISBN 1-55558-286-9, 624pp, 2002

Lawrence,

Compaq Visual Fortran: A Guide to Creating Windows Applications

,
ISBN 1-55558-249-4, 468pp, 2002

Breakfield & Burkey,

Managing Systems Migrations and Upgrades: Demystifying
the Technology Puzzle

, 320pp,
ISBN 1-55558-256-7, 2002

For more information or to order these and other Digital Press
titles, please visit our website at www.bh.com/digitalpress!

At www.bh.com/digitalpress you can:
•Join the Digital Press Email Service and have news about

our books delivered right to your desktop
•Read the latest news on titles

•Sample chapters on featured titles for free
•Question our expert authors and editors

•Download free software to accompany select texts

Network Programming
in .NET

With C# and Visual Basic .NET

Fiach Reid

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO•

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Elsevier Digital Press
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Application submitted.

ISBN: 1-55558-315-6

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

For information on all Digital Press publications
visit our Web site at www.digitalpress.com and www.bh.com/digitalpress

04 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

To my parents, thank you for everything.

This page intentionally left blank

vii

Contents

Preface xv

Who should read this book? xv
What hardware and software do you need? xvi
How this book is organized xvi

Part I: Basic network applications xvi
Part II: Network application design xvi
Part III: Specialized networking topics xvii

Conventions used in this book xvii
Further information xviii

Acknowledgments xix

1 Understanding the Internet and Network Programming 1

1.1 Introduction 1
1.2 Why network programming in .NET? 2
1.3 What can a network program do? 2
1.4 IP addresses 3
1.5 The network stack 6
1.6 Ports 7
1.7 Internet standards 7
1.8 What is .NET? 9
1.9 Getting started 11
1.10 Using Visual Studio .NET 12
1.11 Using the .NET SDK 16

1.11.1 Compiling with Visual Basic.NET 19
1.11.2 Compiling with C# 20
1.11.3 Testing the application 20

1.12 Conclusion 20

viii Contents

2 I/O in the .NET Framework 21

2.1 Introduction 21
2.2 Streams 21

2.2.1 Streams for files 22
2.2.2 Encoding data 28
2.2.3 Binary and text streams 29
2.2.4 Serialization 33
2.2.5 Writing a database to a stream 44

2.3 Conclusion 54

3 Working with Sockets 55

3.1 Introduction 55
3.2 What is a socket? 55
3.3 Creating a simple “hello world” application 56

3.3.1 Writing a simple UDP client 57
3.3.2 Writing a simple UDP server 58

3.4 Using TCP/IP to transfer files 62
3.4.1 Writing a simple TCP/IP client 62
3.4.2 Writing a simple TCP/IP server 65

3.5 Debugging network code 73
3.6 Socket-level networking in .NET 75
3.7 Conclusion 86

4 HTTP: Communicating with Web Servers 87

4.1 Introduction 87
4.1.1 Data mining 88

4.2 HTTP 88
4.2.1 The HTTP request 88
4.2.2 The HTTP response 91
4.2.3 MIME types 93
4.2.4 System.Web 93
4.2.5 Posting data 97
4.2.6 A note on cookies 104
4.2.7 A WYSIWYG editor 105

4.3 Web servers 113
4.3.1 Implementing a Web server 114

4.4 System.Net.HttpWebListener 124
4.5 Mobile Web browsers 128

4.5.1 Mobile Web SDK 130
4.6 Conclusion 130

Contents ix

Contents

5 SMTP and POP3: Communicating with email Servers 131

5.1 Introduction 131
5.2 Sending an email 131
5.3 SMTP 132

5.3.1 Implementing SMTP 133
5.4 Post office protocol 3 140

5.4.1 Implementing POP3 141
5.5 System.Web.Mail 148

5.5.1 Attachments 151
5.5.2 Images 153

5.6 Mail application programming interface 153
5.6.1 Accessing the address book 156
5.6.2 IMAP 158
5.6.3 Network news transfer protocol 159

5.7 Conclusion 161

6 FTP: Communicating with File Servers 163

6.1 Background 163
6.2 Microsoft file sharing 163
6.3 Netware file sharing 164
6.4 An overview of FTP 165

6.4.1 How FTP uses ports 167
6.4.2 The FTP handshake 168
6.4.3 Navigating folders 170
6.4.4 FTP command reference 171
6.4.5 Implementing FTP 172
6.4.6 Implementing FTP with the Internet Transfer Control 174
6.4.7 A more substantial implementation of FTP 178
6.4.8 FTP support in .NET 2.0 193

6.5 Conclusion 194

7 Securing a Network: Firewalls, Proxy Servers,
and Routers 195

7.1 Introduction 195
7.1.1 Building a network from scratch 195

7.2 Building an enterprise network 199
7.2.1 Routers 199
7.2.2 Firewalls 200

7.3 Tunneling out of an enterprise network 203

x Contents

7.4 Avoiding the networking pitfalls 205
7.4.1 Firewall tunneling 206

7.5 Conclusion 207

8 Protecting Data: Encryption 209

8.1 Introduction 209
8.2 Cryptanalysis 209
8.3 Terminology 212
8.4 Asymmetric encryption 212
8.5 Using RSA as asymmetric encryption 213
8.6 Symmetric encryption 218

8.6.1 Using 3DES as symmetric encryption 218
8.7 Piracy protection 224
8.8 Conclusion 225

9 Controlling User Access: Authentication
and Authorization 227

9.1 Introduction 227
9.2 Authentication techniques 227

9.2.1 IIS authentication 228
9.3 Microsoft .NET Passport authentication 230
9.4 Hashing information 232

9.4.1 Hashing algorithms 234
9.4.2 Using SHA 234

9.5 SSL 236
9.6 Certificates 236
9.7 Server certificates 238
9.8 Client certificates 239

9.8.1 Microsoft Certificate Services 240
9.8.2 Reading certificates 241

9.9 Permissions in .NET 244
9.10 Financial network security 246

9.10.1 X.25 247
9.10.2 ISO 8730 247
9.10.3 SWIFT 248
9.10.4 Corporate transactions 248

9.11 Conclusion 249

Contents xi

Contents

10 Programming for Scalability 251

10.1 Introduction 251
10.2 Case study: The Google search engine 251
10.3 Replication and redundancy 253
10.4 Scalable network applications 254
10.5 Future proofing 255
10.6 Thread pooling 256

10.6.1 Implementing a thread pool 258
10.7 Avoiding deadlocks 261
10.8 Load balancing 262
10.9 Conclusion 272

11 Optimizing Bandwidth Utilization 275

11.1 Introduction 275
11.2 Tricks and tips to increase performance 275

11.2.1 Caching 276
11.2.2 Keep-alive connections 277
11.2.3 Progressive downloads 278
11.2.4 Tweaking settings 278

11.3 Multicast UDP 282
11.3.1 Multicast basics 282
11.3.2 Multicast routing 283
11.3.3 Implementing multicast 284

11.4 Data compression 289
11.5 Lossless compression 290

11.5.1 Implementing ZIP compression 291
11.6 Lossy compression 296

11.6.1 Audio compression 296
11.6.2 Image compression 298
11.6.3 Video compression 302

11.7 Conclusion 303

12 Ping, DNS, and WHOIS: Monitoring your Network 305

12.1 Introduction 305
12.2 DNS 305

12.2.1 Implementing DNS MX 306
12.3 Ping 314
12.4 WHOIS 321

12.4.1 Telnet 326

xii Contents

12.5 Other members of the TCP/IP suite 327
12.5.1 ARP 327
12.5.2 RIP 327
12.5.3 OSPF 328
12.5.4 BGP/EGP 328
12.5.5 SNMP 328
12.5.6 PPP 328

12.6 WMI 329
12.6.1 Reading WMI data 330
12.6.2 Leveraging WMI 333

12.7 Conclusion 336

13 Analyzing Network Packets 337

13.1 Introduction 337
13.2 IP-level network tapping 339

13.2.1 Interpreting raw network data 344
13.2.2 IP packets in detail 346
13.2.3 ICMP packets in detail 348
13.2.4 TCP/IP packets in detail 349
13.2.5 UDP packets in detail 351
13.2.6 DNS packets in detail 352

13.3 Layer 2 network tapping 354
13.3.1 Using rvPacket and WinPCap 354
13.3.2 Using PacketX and WinPCap 360

13.4 Physical network tapping 366
13.5 Conclusion 376

14 Adding Digital Telephony 379

14.1 Introduction 379
14.2 Basic telephony 380
14.3 Listening for incoming phone calls 382
14.4 DTMF tones 399
14.5 Audio playback 401

14.5.1 Audio playback over TAPI 413
14.6 Conclusion 417

15 Message Queues 419

15.1 Introduction 419
15.2 MSMQ 420

Contents xiii

Contents

15.3 Implementing a message queue 420
15.3.1 Queuing complex objects 427
15.3.2 Transactions 435
15.3.3 Acknowledgments 437

15.4 Timeouts 439
15.5 Journal 441
15.6 Queued Components 443
15.7 Security 447
15.8 Scalability 449
15.9 Performance issues 451
15.10 Conclusion 452

16 IPv6: Programming for the Next-generation Internet 453

16.1 Introduction 453
16.2 What is IPv6? 453
16.3 The history of IPv6 454
16.4 So what changes? 455
16.5 IPv6 naming conventions 456
16.6 Installing IPv6 457

16.6.1 Auto configuration 457
16.7 Using IPv6 utilities 458

16.7.1 IPv6 458
16.7.2 NETSH 459
16.7.3 Ping6 459
16.7.4 Tracert6 460
16.7.5 IPSec6 461
16.7.6 Windows 2000 specific 463

16.8 IPv6 routing 464
16.8.1 Route determination process 465
16.8.2 Administering the IPv6 routing table 466
16.8.3 IPv6 routing advertisements 468

16.9 IPv6 coexistence 469
16.9.1 The 6to4 protocol 469
16.9.2 The ISATAP protocol 471
16.9.3 The 6over4 protocol 473

16.10 IPv6 in .NET 473
16.11 Conclusion 479

17 Web Services and Remoting 481

17.1 Introduction 481
17.2 Creating a Web service 481

xiv Contents

17.2.1 Deploying a Web service 485
17.3 Using a Web service 486
17.4 Asynchronous calls to Web services 489

17.4.1 Wait handles 490
17.4.2 Callbacks 491

17.5 Interoperability 493
17.6 Performance 494
17.7 Security 495
17.8 Web services enhancements 497

17.8.1 Web service extensions: Attachments 498
17.8.2 Web service extensions: Routing 500
17.8.3 A word on Project Hailstorm (MyServices) 500

17.9 .NET remoting 500
17.9.1 How remoting works 501
17.9.2 Implementing remoting 502
17.9.3 Asynchronous use of remote objects 506
17.9.4 Deployment of a remoting service 508
17.9.5 Configuration 509
17.9.6 Hosting remote objects within IIS 510
17.9.7 Hosting remote objects within a Windows service 511
17.9.8 Distributed garbage collection 515

17.10 Conclusion 518

Index 519

xv

Preface

This book will help you develop network applications with .NET, using
either the C# or VB.NET programming language.

It covers everything you need to know about network programming in
.NET, from basic get-started information, to a huge selection of advanced
networking technologies that may have seemed like science fiction—until
now. Whether you’re looking for a solution to a specific networking issue or
for a general all-round knowledge of network application development,
you’ll find it in this book!

Who should read this book?

This book is aimed at professional developers with some previous program-
ming experience. Basic knowledge of either C# or VB.NET is an advantage,
but not essential. This is not a beginners guide to .NET, and as such it is
assumed that you already know basic programming constructs such as

if

statements and loops.

No previous experience with network programming is assumed, so even
complete newcomers will find this book comprehensive enough cover all
the basics. Seasoned programmers may skip the first chapter, and readers
will quickly find the pace fast enough to keep even the most expert develop-
ers glued to the pages.

Although the book is geared for developers, as a solution architect, IT
manager, or even computer science undergraduate, you will also find this
book of enormous benefit. Every new concept is introduced with its associ-
ated technology theory and commercial implications for IT businesses. This
book keeps a keen eye on best practice techniques, as well as provides
ground-up implementations. Using this approach, project managers can

xvi Preface

help guide developers towards an implementation that could provide future
flexibility or lead to faster end-product deployment.

What hardware and software do you need?

In order to use the code examples provided in this book, you should install
the latest version of the .NET framework from Microsoft’s Web site. It is
also highly recommended that you install Visual Studio .NET, rather than
use the command-line based compilers supplied with the .NET SDK.

The minimum hardware requirements for Visual Studio .NET are

�

Intel Pentium processor; 450 MHz or equivalent

�

Microsoft Windows 2000, NT 4.0, or XP

�

128 Mb RAM

�

3 Gb of available disk space

The telephony examples in chapter 14 require the use of a voice modem
and access to a live analog phone line.

How this book is organized

The book is divided into three main parts. The following sections will
describe what is covered in each part of the book.

Part I: Basic network applications

Chapters 1 to 6 cover the established Internet technologies. These include
the main activities that we all carry out in our daily lives, everything from
browsing the Web, sending e-mail, and maybe uploading files with FTP.
Knowing how to implement these basic networking operations from .NET
is a must for any serious developer. Ever wanted to link to your company
Web site from your application or to send an e-mail whenever the program
crashes? These chapters show you how.

Part II: Network application design

Chapters 7 to 11 discuss network application design. These chapters are
aimed at enterprise-scale development of heavy-duty distributed applica-

Preface xvii

Chapter

tions. Provided are five chapters on hardware, encryption, authentication,
scalability, and performance. Encryption and authentication provide you
with the confidence to know that nobody can defraud your system or com-
promise the confidentiality of the information held within it. Scalability
ensures that you can keep your service working at full tilt even under
extreme loads. With an excellent chapter on performance enhancing tech-
niques, after reading this section you can be sure that no customer turns
away because they were ”bored waiting.” All together this handful of pages
equates to a huge step forward in application quality.

Part III: Specialized networking topics

Chapters 12 to 17 are geared toward the more specialized networking topics
and the more advanced developer with a keen interest in niche or cutting-
edge technologies. Each chapter in this section is the result of months of
research, brought to you in simple step-by-step examples. This section
includes possibly the first published implementation of frame-level packet
capture in .NET, as well as a cool telephony application built from scratch
in .NET.

These chapters also cover MSMQ, IPv6, WMI, DNS, Ping, WHOIS,
Telnet, ARP, RIP, OSPF, BGP/EGP, SNMP, PPP, Web services, remoting,
and more!

Conventions used in this book

Typographical conventions

This book uses

fixed-spaced

 font to differentiate between English
text and keywords that are used verbatim in computer code. Words high-
lighted in

italic

 are used to emphasize a new programming term.

Note:

A note such as this is used to emphasize an important point or a

worthwhile observation.

Code

Code examples in this book are labeled as either C# or VB.NET and are
printed with fixed-spaced fonts, such as the following example:

C#

public int addition(int a, int b)

{

 return a+b;

}

xviii Preface

In some cases, other scripts, such as SQL, ASP.NET, or MS-DOS are
used and labeled accordingly.

Further information

You can find help for specific problems and questions by investigating sev-
eral Web sites. A good place to start for issues relating to .NET is always
Microsoft’s official Web site at

msdn.Microsoft.com/net

.

For definitive information on specific network protocols, you should
consult the IETF (Internet Engineering Task Force) Web site at

http://
www.ietf.org/rfc.html

.

You may also contact the author with any questions or comments regard-
ing this book. While every care has been taken to ensure that all the informa-
tion within is correct and accurate, you are free to report anything you feel is
missing or erroneous, so that these can be corrected in future revisions.

Fiach Reid

fiach@eircom.net

Co. Donegal, Ireland
February 2004

xix

Acknowledgments

This book was made possible by a wonderful network of people at Digital
Press. Of these people I would like to personally thank Pam Chester and
Theron Shreve, without whom this book would have never been published.
I would also like to thank Alan Rose and all at Multiscience Press for their
efforts in getting this book into print.

I am extremely grateful to the assistance of my technical reviewer, David
Stephenson at HP. His technical expertise improved the code examples in
this book one hundred fold. A big thank you goes out to all those at
Microsoft who offered their assistance in the writing of this book, especially
Christopher Brown and Lance Olson.

I would like to also like to say thanks to everybody at eyespyfx.com for
their help and support and also to the guys at cheapflights.ie for their exper-
tise and sense of humor. Above all else, I would like to thank my parents for
being so supportive of me for the past twenty-three years.

This page intentionally left blank

1

1

Understanding the Internet and Network
Programming

1.1 Introduction

This book will help you develop network applications with .NET, using
either the C# (pronounced C-sharp) or VB.NET programming language. It
is broken up into three distinct sections: networking basics, distributed
application design, and specialized networking topics.

The first six chapters of the book cover the established Internet technol-
ogies, such as email and the World Wide Web. Leveraging established tech-
nologies such as these gives the general public greater access to your
software service because most users will already have a Web browser or
email client on their computers.

The next five chapters discuss network application design. This
includes application security, performance, and scalability. Contained
within these chapters is practical, hands-on advice to help improve the
overall quality of your software. With tougher security, your applications
will be less susceptible to theft of intellectual property and privileged infor-
mation. The performance and scalability improvements described in this
section will ensure that your application remains responsive even under the
most extreme loads.

The specialized networking topics section provides a wealth of informa-
tion about both niche and cutting-edge Internet technologies. These
include chapters on telephony, packet capture, message queues, IPv6, and
Microsoft’s latest offerings in the field of distributed application develop-
ment: Web services and remoting.

2

1.3

What can a network program do?

1.2 Why network programming in .NET?

One of the first technical decisions to be made whenever a new project is
undertaken is what language to use. .NET is a capable platform on which
to develop almost any solution, and it offers substantial support for net-
work programming. In fact, .NET has more intrinsic support for network-
ing than any other platform developed by Microsoft.

This book assumes that you have already decided to develop with .NET,
and languages outside the .NET platform will not be discussed in any great
detail, except for comparative purposes. This is not to say that .NET is the
be-all and end-all of network-programming applications. If your applica-
tion runs over a UNIX-only infrastructure communicating via Java remote
method invocation (RMI), then .NET is not the way to go. In most cir-
cumstances, however, you will find that .NET is more than capable of han-
dling whatever you throw at it.

1.3 What can a network program do?

A network program is any application that uses a computer network to
transfer information to and from other applications. Examples range from
the ubiquitous Web browser such as Internet Explorer, or the program you
use to receive your email, to the software that controls spacecraft at NASA.

All of these pieces of software share the ability to communicate with
other computers, and in so doing, become more useful to the end-user. In
the case of a browser, every Web site you visit is actually files stored on a
computer somewhere else on the Internet. With your email program, you
are communicating with a computer at your Internet service provider (ISP)
or company email exchange, which is holding your email for you.

This book is largely concerned with creating network programs, not
Web sites. Although the capabilities of Web sites and network programs are
quickly converging, it is important to understand the arguments for and
against each system. A service accessed via a Web site is instantly accessible
to users across many different platforms, and the whole networking archi-
tecture is ready-built for you; however, there is a point at which features are
simply unfeasible to implement using Web sites and at which you have to
turn to network applications.

Users generally trust network applications; therefore, these programs
have much greater control over the computers on which they are running
than a Web site has over the computers viewing it. This makes it possible

1.4

IP addresses 3

Chapter 1

for a network application to manage files on the local computer, whereas a
Web site, for all practical purposes, cannot do this. More importantly, from
a networking perspective, an application has much greater control over how
it can communicate with other computers on the Internet.

To give a simple example, a Web site cannot make the computer that is
viewing it open a persistent network connection to another computer
(except the computer from which the Web site was served). This applies
even when the Web site contains embedded content such as a Java applet or
Flash movie. There is one exception to this rule, when executable content
(such as an ActiveX control) is included in a page. In this case, the page is
capable of everything a network program could do, but most browsers and
antivirus software will warn against or deny such executable content.
Therefore, this scenario is commonly accepted as being unfeasible because
of public distrust.

1.4 IP addresses

Every computer that connects directly to the Internet must have a globally
unique IP address. An IP address is a four-byte number, which is generally
written as four decimal, period-separated numbers, such as 192.168.0.1.
Computers that connect indirectly to the Internet, such as via their com-
pany network, also have IP addresses, but these do not need to be globally
unique, only unique within the same network.

To find out what the IP address of your computer is, open a DOS con-
sole window and type

IpConfig

 (Windows NT, 2000, and XP) or

winIpcfg

(Windows 95, 98, and ME).

In Figure 1.1, the PC has two IP addresses: 192.618.0.1 and
81.98.59.133. This is unusual because this particular PC contains two net-
work cards and is connected to two different networks. Only one of those
IP addresses is publicly accessible.

If you receive the IP address 127.0.0.1, your computer is not connected
to any network. This IP address always refers to the local machine and is
used in later examples.

In the same way that you can tell whether a phone number is local or
international by looking at the prefix, you can tell whether the computer
with that IP address is on the same local area network or somewhere else on
the Internet by looking closely at an IP address. In the case of IP addresses,
they are always the same length, but certain prefixes (192.168 being the

4

1.4

IP addresses

most common) indicate that the computer is in a local area network, or
intranet, and not accessible to the outside world.

If you share your Internet connection with other computers on your
network, you may have a private IP address. These can be recognized as
being within the IP address ranges listed in Table 1.1.

The same private IP address may exist on two computers in different
local area networks (LANs). This does not cause a problem because neither
computer can directly contact the other. Whereas a privately addressed
computer can initiate a request for information from a foreign computer,
no foreign computer can initiate a request for information from a privately
addressed computer.

The exception to this rule would be where network address translation
(NAT) or port forwarding is set up on the router that lies upstream of the
privately addressed computer. This is where requests from foreign machines
destined for the IP address of the router are forwarded to a designated com-

Figure 1.1

IPConfig.

Table 1.1

Private IP families.

IP Address Range Number of Distinct Addresses

10.0.0.0 to 10.255.255.255 Up to 16 million computers (Class A)

172.16.0.0 to 172.31.255.255 900,000 computers (Class B)

192.168.0.0 to 192.168.255.255 65,000 computers (Class C)

1.4

IP addresses 5

Chapter 1

puter behind the router. Responses from this computer are forwarded from
the router back to the foreign machine that initiated the request. The bene-
fits of such an architecture are security and the possibility for load balanc-
ing, which is described in more detail in later chapters.

All computers with private IP addresses must be connected to at least
one computer or network router with a public IP address to access the
Internet.

In order to ensure that no two computers on the Internet have the same
IP address, there is a central regulatory body known as the Internet
Assigned Numbers Authority (IANA), and more recently the Internet Cor-
poration for Assigned Names and Numbers (ICANN). This body acts
through ISPs to assign public IP addresses to organizations and individuals.
Although it is possible to be allocated one IP address at a time, it is more
common to be allocated IP addresses in contiguous blocks.

Contiguous blocks come in three classes: A, B, and C. Class A addresses
are blocks of IP addresses with the same first byte only. Class A is more than
16 million IP addresses in size. Class B addresses are blocks of IP addresses
with the same first and second byte. Class B holds 65,024 public IP
addresses. The full 2

16

 byte range is not available because the last byte of an
IP address cannot be 0 or 255 because these are reserved for future use.
Class C addresses are blocks of IP addresses with the same first, second, and
third byte. Class C holds 254 public addresses, and class C addresses are
routinely allocated to companies.

A computer may not always have the same IP address. It may obtain its
IP address from your ISP’s dynamic host control protocol (DHCP) server.
This means that your IP address may change every time you go online.
Such an IP address is called a dynamic IP address. If you are on an intranet,
you can check to see if your IP address is liable to change by checking the
“obtain IP address automatically” radio button in TCP/IP properties, under
Network in the control panel.

The purpose of DHCP is that if there is a limited number of IP
addresses available to the ISP, it will allocate its subscribers with IP
addresses from a pool on a first-come, first-served basis. IP addresses are 32-
bit numbers, with a maximum value of about 4 billion, and the number of
computers in the world is fast approaching that figure. IPv6 is a solution to
that problem and is discussed in later chapters.

There is one identifier built into every network card that is genuinely
unique and cannot be changed. This is called the hardware, or media access
control (MAC) address. A sample MAC address is 00-02-E3-15-59-6C.

6

1.5

The network stack

This is used on intranets to identify computers when they log on to the net-
work. A system called address resolution protocol (ARP) is used to associate
MAC addresses with IP addresses.

1.5 The network stack

The digital signals that travel between computers on the Internet are
extremely complex. Without the concept of encapsulation, programmers
would quickly become bogged down with insignificant details.

This technique is used in everyday life, where you may ask a taxi driver
to take you to the city center. It is the taxi driver’s responsibility to find the
quickest route and to operate the car. At a lower level again, it is the car
manufacturer’s responsibility to ensure that gasoline will be present in the
engine pistons while the accelerator is depressed.

Encapsulation is where the more complex details of a task are hidden,
and the programmer only needs to concentrate on what is happening at a
higher level. The open systems interconnection (OSI) network stack model
has seven layers of encapsulation, as shown in Table 1.2.

In modern programming, however, the network stack looks more like
Table 1.3.

The most important layer for any programmer is the uppermost layer
because this will afford the greatest ease of use and will suit most applica-
tions. When you head down the stack, implementation becomes more diffi-
cult, albeit more flexible.

Table 1.2

The traditional network stack.

Level Name Layer Name Example Protocol

Level 7 Application layer FTP

Level 6 Presentation layer XNS

Level 5 Session layer RPC

Level 4 Transport layer TCP

Level 3 Network layer IP

Level 2 Data-Link layer Ethernet Frames

Level 1 Physical layer Voltages

1.7

Internet standards 7

Chapter 1

This book covers the application layer primarily, but coverage is given to
all of the various layers, excluding the physical layer, which would apply
only to electronics engineers.

In network programming, you generally do not need to concern yourself
with how information travels between two computers, just with what you
want to send. The finer details are handled at lower levels and are controlled
by the computer’s operating system.

1.6 Ports

If you want to browse the Web and receive emails at the same time, your
computer needs to decide which bits of network traffic are emails and
which are Web pages. To tell the difference, every piece of data on the net-
work is tagged with a port number: 80 for Web pages, 110 for incoming
email. This information is contained within either the transmission control
protocol (TCP) or user datagram protocol (UDP) header that immediately
follows the IP header. Table 1.4 lists common protocols and their associated
port numbers.

1.7 Internet standards

When developing a networked application, it is important not to reinvent
the wheel or otherwise create an application that is unnecessarily incompat-
ible with other applications of the same genre. This book often refers to
standards documents, so it is worthwhile knowing where to find them.

A shining example is dynamic HTML, which was implemented differ-
ently on Internet Explorer and Netscape Navigator. This meant that most
Web sites that used dynamic HTML would fail to work properly on all
browsers. Thus, Web developers avoided it and moved toward cross-

Table 1.3

The modern network stack.

Level Name Layer Name Example Protocol

Level 4 Structured Information layer SOAP

Level 3 Messaging layer HTTP

Level 2 Stream layer TCP

Level 1 Packet layer IP

8

1.7

Internet standards

browser technologies, such as Macromedia Flash and Java Applets. The rea-
son for this downfall is lack of standardization.

Two organizations are largely responsible for regulating Internet stan-
dards: the Internet Engineering Task Force (IETF) and the World Wide
Web Consortium (W3C). The IETF is a not-for-profit organization, which
regulates the most fundamental protocols on the Internet. Anyone can sub-
mit a protocol to them, and it will be publicly available as a request for

Table 1.4

Well-known port numbers.

Port Protocol

20 FTP (data)

21 FTP (control)

25 SMTP (email, outgoing)

53 DNS (domain names)

80 HTTP (Web)

110 POP3 (email, incoming)

119 NNTP (news)

143 IMAP (email, incoming)

Source:

www.iana.org/assignments/port-numbers.txt.

Table 1.5

Important RFCs.

RFC Document Protocol Described

RFC 821 SMTP (email, outgoing)

RFC 954 WHOIS

RFC 959 FTP (uploading and downloading)

RFC 1939 POP3 (email, incoming)

RFC 2616 HTTP (Web browsing)

RFC 793 TCP (runs under all above protocols)

RFC 792 ICMP (ping)

RFC 791 IP (runs under TCP and ICMP)

1.8

What is .NET? 9

Chapter 1

comments (RFC) on their Web site at

www.ietf.org/rfc.html.

 Table 1.5 lists
some important RFC documents.

The W3C (

www.w3c.org

)

is designed to facilitate standard interopera-
bility among vendors. Only large corporations can become members of the
W3C. The W3C is responsible for hypertext markup language (HTML),
cascading style sheets (CSS), and extensible markup language (XML).

1.8 What is .NET?

.NET is not a programming language. It is a development framework that
incorporates four official programming languages: C#, VB.NET, Managed
C++, and J# .NET. Where there are overlaps in object types in the four lan-
guages, the framework defines the framework class library (FCL).

All four languages in the framework share the FCL and the common
language runtime (CLR), which is an object-oriented platform that pro-
vides a runtime environment for .NET applications. The CLR is analogous
to the virtual machine (VM) in Java, except it is designed for Windows, not
cross-platform, use; however, a stripped-down version of the .NET frame-
work, known as the .NET compact framework, is capable of running on
Windows CE devices, such as palmtops and certain cell phones. Further-
more, there are initiatives to port the CLR to Linux, such as the MONO
project (

www.go-mono.com

).

In this book, the two most popular .NET programming languages, C#
and VB.NET, are used. Both languages differ syntactically, but are equally
capable and offer identical performance characteristics. Languages in the
.NET framework are highly interoperable, so there is no need to be con-
fined to a single language. A class compiled from VB.NET can be called
from a C# application and vice versa. Similarly, a class written in VB.NET
can derive from a compiled class written in C#. Exceptions and polymor-
phism are also supported across languages. This is made possible by a speci-
fication called the Common Type System (CTS).

When an application written in a .NET language is compiled, it
becomes the Microsoft intermediate language (MSIL) byte code, which is
then executed by the CLR. MSIL code generated from compiling C# is
generally identical to MSIL code generated from compiling VB.NET code.
Exceptions to this lie with a few language-specific features, such as how C#
can use classic C-style pointers within unsafe code and how VB.NET can
use VB6-style Windows API definitions.

10

1.8

What is .NET?

One of the failings of interpreted, or semicompiled, languages is a per-
formance loss. .NET avoids this problem by using a just-in-time (JIT)
compiler, which is generally transparent to the user. JIT acts ondemand,
whenever MSIL code is first executed. JIT compiles MSIL code to machine
code, which is optimized for the processor of the computer that is executing
the code. In this way, JIT can leverage new features as they become available
in new Intel processors without rendering older computers obsolete.

.NET languages are object-oriented rather than procedurally based. This
provides a natural mechanism to encapsulate interrelated data and methods
to modify this data within the same logical construct. An object is a pro-
grammatic construct that has properties or can perform actions. A core
concept of object orientation is the ability of one class to inherit the proper-
ties and methods of another. The most common example used in this book
is inheritance from

System.Windows.Forms.Form

. This provides the stan-
dard Windows user interface (i.e., a grey window with a title bar and the
Minimize/Restore/Close button set at the top right).

You can make your own classes, which could form a base class from
which other classes inherit. A typical example would be a class representing
a car that could inherit from the vehicle class. .NET does not support mul-
tiple inheritance, so the car class cannot inherit from a vehicle class and a
Windows form. Interestingly, every class within .NET derives from a root
called

System.Object

.

An interface is a contract that stipulates what methods and properties a
class must expose. To return to the previous example, the vehicle interface
could be that it must be able to move, hold people, and be bought and sold.
The benefit of interfaces is that software designed to auction vehicle objects
would work with cars, motorcycles, and boats. An object can inherit from
multiple interfaces. Thus, a boat could inherit from the vehicle interface
and expose extra methods that satisfy with the marine interface (e.g., buoy-
ancy ratings, nationality).

The code examples in this book are designed to be stand-alone Win-
dows applications, rather than portable, self-contained classes. This
approach is used to ensure that examples are kept as concise as possible. In
real-world applications, networking code is generally kept separate from
other facets of the application (e.g., user interface (UI), database access).
Therefore, it is commonplace to keep classes associated with networking in
a separate assembly.

An assembly is generally a .DLL file that contains precompiled (MSIL)
code for a collection of .NET classes. Unlike standard Win32 DLLs in

1.9

Getting started 11

Chapter 1

which developers had to rely on documentation, such as header files, to use
any given DLL, .NET assemblies contain metadata, which provides enough
information for any .NET application to use the methods contained within
the assembly correctly. Metadata is also used to describe other features of
the assembly, such as its version number, culture, the originator of the code,
and any custom attributes that were added to the classes.

.NET provides a unique solution to the issue of sharing assemblies
between multiple applications (aptly named DLL Hell). Generally, where
an assembly is designed for use with only one application, it is contained
within the same folder (or

bin

 subfolder) as the application. This is known
as a

private assembly

. A

public assembly

 is copied into a location where all
.NET applications on the local system have access too. Furthermore, this
public assembly is designed to be versioned, unique, and tamperproof,
thanks to a clever security model. This location into which public assem-
blies are copied is called the global assembly cache (GAC).

If you are developing a component that will be shared among many appli-
cations, you can transfer it to the GAC with these simple steps. First, create a
key-pair file by typing

sn –k c:\keys.snk

 at the command prompt. You
then associate the key file with your assembly by adding the code

[assem-

bly:AssemblyKeyFile(“c:\keys.snk“)]

 to the head of your class. Finally, it
can be copied into the GAC, either by copying and pasting into windows\
assembly with Windows Explorer or by typing

gacutil /I:MyAssembly.dll

.

1.9 Getting started

The examples in this book require you to have access to Microsoft Visual
Studio .NET. To program in Microsoft .NET, you need to have the
Microsoft .NET SDK or Microsoft Visual Studio .NET. The former is freely
available at the Microsoft Web site (

http://msdn.microsoft.com/netframework/
technologyinfo/howtoget/

). The SDK can be used to create .NET applications,
but it is awkward to create graphical user interfaces (GUIs) and use com-
mand-line-based compilers.

Visual Studio .NET is not free, but no serious .NET developer should
attempt to write .NET applications without it. A free alternative to Visual
Studio .NET is SharpDevelop (http://www.icsharpcode.net/OpenSource/
SD/Default.aspx). This first example will include instructions for develop-
ers opting to use the .NET SDK, as well as Visual Studio .NET users, but
no further examples will use the .NET SDK.

12

1.10

Using Visual Studio .NET

All examples are given in the two most popular .NET languages: C# and
Visual Basic .NET. Both languages have exactly the same capabilities, and
there is absolutely no difference in performance between the two languages.
If you are familiar with C or C++, you should choose to develop in C#. If
you are familiar with Visual Basic, you should choose to develop in Visual
Basic .NET. When developing an application, you should not swap
between languages.

The first example demonstrates how to display a Web page within a
.NET application.

1.10 Using Visual Studio .NET

Open Visual Studio .NET, and click New Project. Then type in a name and
location for your project (Figure 1.2).

Select the Visual Basic Windows application or Visual C# Windows
application, depending on which language you wish to develop in.

When the form appears, right-click on the toolbox and select Customize
Toolbox (Visual Studio .NET 2002) or Add/Remove Items (Visual Studio
.NET 2003). Then select Microsoft Web Browser from the dialog box (as
shown in Figure 1.3), and press OK.

Figure 1.2

Visual Studio
.NET, New Project

dialog.

1.10

Using Visual Studio .NET 13

Chapter 1

Drag the Explorer icon onto the form, and then drag a button and text-
box onto the form. The finished form should look like Figure 1.4.

The next step is to set the properties of all the user interface elements.
Right-click on the button and select the Properties option. You will see the
Properties snap-in window appearing. Scroll up to the top of this window,
and click on the property labeled

(Name)

. Enter in the new name,

btn-

Browse

, as shown in Figure 1.5.

Similarly, name the textbox

tbURL

 and the Microsoft Web Browser con-
trol

webBrowser

.

If you double-click on the button, you will see a page of code already
written for you. Find the reference to

btnBrowse_Click

 and insert the fol-
lowing code:

VB.NET

Private Sub btnBrowse_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs) Handles _

 btnBrowse.Click

 webBrowser.Navigate(tbURL.Text)

End Sub

Figure 1.3

Visual Studio
.NET, Customize

Toolbox dialog.

14

1.10

Using Visual Studio .NET

C#

private void btnBrowse_Click(object sender, System.EventArgs
e)

{

 object notUsed = null;

 webBrowser.Navigate(tbURL.Text,ref notUsed,ref notUsed, ref
notUsed, ref notUsed);

}

The code consists simply of a single method call,

navigate

. This
invokes the standard process that Internet Explorer goes through as it navi-
gates the Web. The reason for the extra parameters to the method in the C#
version is that C# does not support optional parameters. The

navigate

method has four optional parameters:

Flags

,

targetFrameName

,

postData

,
and

Headers

. None of these is needed for this simple example.

In the application, click Debug

→→→→

Start, type in the name of a Web page
in the space provided, and press the Browse button. You will see that Web
page appearing in the Web Browser control on the page, such as that shown
in Figure 1.6.

You will quickly notice that the Web browser window behaves identi-
cally to Internet Explorer. This is because the component that was added to
the toolbox is the main processing engine behind Internet Explorer. This

Figure 1.4

Visual Studio
.NET, form design

view.

1.10

Using Visual Studio .NET 15

Chapter 1

component was developed before .NET arrived on the scene, so it uses an
older component model than the native .NET-managed controls.

Applications written in .NET are referred to as

managed

, or

type-safe

,

code

. This means that the code is compiled to an intermediate language
(IL) that is strictly controlled, such that it cannot contain any code that
could potentially cause a computer to crash. Applications written in native
code have the ability to modify arbitrary addresses of computer memory,
some of which could cause crashes, or general protection faults.

Components designed before the advent of .NET are written in native
code and are therefore unmanaged and deemed unsafe. There is no techni-
cal difficulty in combining unsafe code with a .NET application, as shown
previously; however, if an underlying component has the potential to bring
down a computer, the whole application is also deemed unsafe. Unsafe

Figure 1.5

Visual Studio
.NET, Properties

tool window.

16

1.11

Using the .NET SDK

applications may be subject to restrictions; for instance, when they are exe-
cuted from a network share, they could be prevented from operating. On
the whole, though, if a component can do the job, use it.

The Internet Explorer component is a Common Object Model (COM)
control. This type of model was used most extensively in Visual Studio 6.0.
When a COM object is imported into a .NET application, a Runtime call-
able wrapper (RCW) class is created. This class then exposes all the proper-
ties and methods of the COM object to .NET code. In some cases, this
importing process produces an interface that is virtually identical to the
original COM object; however, as aptly demonstrated in the previous
example, there may be some differences in the syntax of function calls.

In the original COM object, the

Navigate

 method’s last four parameters
were optional, but in the case of C#, the optional parameters had to be
passed

ref notUsed

.

1.11 Using the .NET SDK

Using the .NET SDK to develop .NET applications makes a lot more work
for a developer. This section shows you how to write and compile a .NET
application from the command line.

The command line may be adequate for development of console appli-
cations, ASP.NET, and components, but it is not feasible to develop large

Figure 1.6

Visual Studio
.NET, form at

runtime.

1.11

Using the .NET SDK 17

Chapter 1

Windows forms applications from the command line. The previous exam-
ple, although easy to implement in Visual Studio .NET, would require a
large and complex program. Nevertheless, it should be informative to
Visual Studio .NET developers to be aware of the code that is autogener-
ated by Visual Studio .NET.

In the true programming tradition, we shall start with a program that
simply displays “Hello World.” To make this different, the program will be
written as a Windows form. After all, DOS console applications are very
much past their sell-by date, and there seems little point in using them at all.

The code for this application may seem daunting at first, but this should
illustrate how much extra work is required to implement applications with-
out Visual Studio .NET.

First, decide which language you want to develop in, either C# or Visual
Basic .NET. Open a text editor, such as Notepad, and type in the following
code:

C#

using System;

using System.Windows.Forms;

namespace helloWorld

{

 public class Form1 : System.Windows.Forms.Form

 {

 public Form1()

 {

 this.Text = "Hello World";

 }

 [STAThread]

 static void Main()

 {

 Application.Run(new Form1());

 }

 }

}

VB.NET
Imports System

Imports System.Windows.Forms

Public Class Form1

 Inherits System.Windows.Forms.Form

18 1.11 Using the .NET SDK

 Public Sub New ()

 InitializeComponent()

 End Sub

 Private Sub InitializeComponent()

 Me.Text = "Hello World"

 End sub

End Class

Module Module1

 Sub Main ()

 Application.Run (new Form1 ())

 End sub

End Module

All this code does is open a window with the caption “Hello World,”
which is somewhat underwhelming for the amount of code entered. Look-
ing closely at the code, you can see the process of events that make up a
Windows application in .NET.

An application in .NET is made up of namespaces, some of which are
system defined and others are coded in. This application contains three
namespaces: System, System.Windows.Forms, and helloWorld. The latter is
the only namespace of the three that is actually supplied by the program-
mer. The helloWorld namespace contains a class, named Form1. This class
inherits from System.Windows.Forms.Form. This means that the class will
have a visible presence on screen.

Whenever a class is created, a function known as the constructor is called.
This function can be recognized in C# when the name of the function is
the same as that of the class. In VB.NET, the constructor is a subroutine
named New. In the case of the previous example and in most Windows
applications, this constructor is used to place user interface elements (some-
times referred to as widgets) on the form. In the previous example, the con-
structor calls InitializeComponent, which then sets the window name of
the current form (this) to “Hello World.”

Every application must have a starting point. It is tradition in virtually
every programming language that the stating point should be called Main.
In C#, the [STAThread] attribute indicates the function which acts as the
entry point for this single threaded apartment (STA) application. Every
application must have one, and only one, entry point.

1.11 Using the .NET SDK 19

Chapter 1

[STAThread] static void Main()

In VB.NET, the main function is coded in a different way but operates
identically. The main function must appear in a separate module and be
coded as follows. A module is a programmatic element that contains code
that is global to the entire application.

Module Module1: Sub Main ()

Once a Windows application starts, at least one form (a class inheriting
from System.Windows.Forms.Form) must be created in order for there to be
a visual interface. To create a new form, we call Application.Run, passing
an instance of the form.

1.11.1 Compiling with Visual Basic.NET

Save the file to d:\temp\helloworld.vb. Open the command prompt by
pressing Start→→→→Run and then typing cmd for Windows NT, 2000, or XP or
command for Windows 95, 98, or ME.

Note: Path names mentioned differ among computers, depending on
installation options.

Type the following:

DOS
D:\temp> path %path%;C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705

D:\temp> Vbc /t:winexe /r:system.dll /r:system.windows.forms.dll
helloworld.vb

D:\temp> helloworld

Figure 1.7
“Hello World”

application.

20 1.12 Conclusion

1.11.2 Compiling with C#

Save the file to d:\temp\helloworld.cs. Open the command prompt by
pressing Start > Run and then typing cmd for Windows NT, 2000, or XP or
command for Windows 95, 98, or ME.

Note: Path names mentioned differ among computers, depending on
installation options.

DOS
D:\temp> path %path%;C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705

D:\temp> csc /t:exe helloworld.cs

D:\temp> helloworld

1.11.3 Testing the application

To run the application, you need to compile it first. Depending on what
language you used to program the application, skip to the relevant section.
Once it has compiled, you can run the application by clicking on the exe-
cutable (.exe) file generated from the compilation. You should see a form
resembling Figure 1.7.

1.12 Conclusion

This chapter should whet your appetite for .NET network programming
and give you a better understanding of what you have to bear in mind when
working with networks.

The following chapter deals with input and output (I/O) in .NET,
which forms the foundation for all native .NET networking functions.

21

2

I/O in the .NET Framework

2.1 Introduction

This chapter lays the foundation for virtually every networking example
contained in this book. Without a working knowledge of how .NET han-
dles I/O, it may prove difficult to adapt the code examples in this book to
your own needs.

I/O applies to network data transfers, as well as saving and loading to
your computer’s hard disk Later chapters will describe how to perform net-
work transfers; however, this chapter will be concerned with the underly-
ing I/O operations that are common to both types of transfers. The first
half of this chapter will demonstrate how to read and write to disk, using
.NET streams.

The second half of this chapter develops the stream concept by demon-
strating how to convert complex objects, such as database queries, into a
format that can be written to a .NET stream.

2.2 Streams

In order to provide similar programmatic interfaces to the broad range of I/O
devices with which a programmer has to contend, a stream-based architec-
ture was developed in .NET. I/O devices can be anything from printers to
hard disks to network interfaces.

Not all devices support the same functions. For example, it is possible
to read only the second half of a 1-Mb file, but not possible to download
only the second half of a Web page. Therefore, not all streams support the
same methods.

Properties such as

canRead()

,

canSeek()

, and

canWrite()

 indicate the
capabilities of the stream when applied to a particular device.

22

2.2

Streams

The most important stream in the context of this book is the

network-

Stream

, but another important stream is

fileStream

, which is used exten-
sively throughout this book to demonstrate file transfers over networks.

Streams can be used in two ways: asynchronously or synchronously.
When using a stream synchronously, upon calling a method, the thread will
halt until the operation is complete or fails. When using a stream asynchro-
nously, the thread will return from the method call immediately, and when-
ever the operation is complete, a method will be called to signify the
completion of the operation, or some other event, such as I/O failure.

It is not user friendly to have a program “hang” when it is waiting for an
operation to complete. Therefore, synchronous method calls must be used
in a separate thread.

Through the use of threads and synchronous method calls, computers
achieve the illusion of being able to do several things at once. In reality,
most computers have only one central processing unit (CPU), and the illu-
sion is achieved by quickly switching between tasks every few milliseconds.

The following application illustrates the two techniques. The code in
this book will tend toward using synchronous streams, but it is important
to be able to recognize and understand asynchronous streams.

2.2.1 Streams for files

Start a new Visual Studio .NET Windows application project.

Drag an File Open Dialog control onto the form. Name this control

openFileDialog

. Then add a textbox, to be named

tbResults

, which
should be set with

multiline=true

. Add two buttons to the form, and
name them

btnReadAsync

 and

btnReadSync

.

First, we shall implement asynchronous file reading. Press Read Async
and enter the following code:

C#

FileStream fs;

byte[] fileContents;

AsyncCallback callback;

private void btnReadAsync_Click(object sender,
System.EventArgs e)

{

 openFileDialog.ShowDialog();

2.2

Streams 23

Chapter 2

 callback = new AsyncCallback(fs_StateChanged);

 fs = new FileStream(openFileDialog.FileName, FileMode.Open,

 FileAccess.Read, FileShare.Read, 4096, true);

 fileContents = new Byte[fs.Length];

 fs.BeginRead(fileContents, 0, (int)fs.Length, callback,
null);

}

VB.NET

Dim fs As FileStream

Dim fileContents As Byte()

Dim callback As AsyncCallback

Private Sub btnReadAsync_Click(ByVal sender As _

 System.Object, ByVal e As System.EventArgs) _

 Handles btnReadAsync.Click

 OpenFileDialog.ShowDialog()

 callback = New AsyncCallback(AddressOf fs_StateChanged)

 fs = New FileStream(OpenFileDialog.FileName,

 FileMode.Open, FileAccess.Read, FileShare.Read, _

 4096, True)

 ReDim fileContents(fs.Length)

 fs.BeginRead(fileContents, 0, fs.Length, callback, Nothing)

End Sub

This code requires a little explanation. First, the magic number, 4096, is
simply a performance characteristic because it is quicker to transfer data
from disks in 4-Kb chunks than 1 byte at a time.

The final parameter in the

FileStream

 constructor indicates whether
the operation is to be completed asynchronously or synchronously.

The most important thing to note is that there is no reference to

tbResults;

 this implies that some other function must handle the data once
the read is complete. The

AsyncCallback

 constructor refers to another func-
tion, which is also referenced in the

BeginRead

 method, so this must be it.

As you can see from the code, the

fs_StateChanged

 function has not yet
been implemented. This function is called whenever the file is finished
reading.

24

2.2

Streams

Note:

Synchronous use of

FileStream

 is more efficient when the file size is

less than 64 Kb and the file is located on the local machine.

C#

private void fs_StateChanged(IAsyncResult asyncResult)

{

 if (asyncResult.IsCompleted)

 {

 tbResults.Text = Encoding.UTF8.GetString(fileContents);

 fs.Close();

 }

}

VB.NET

Private Sub fs_StateChanged(ByVal asyncResult As _

 IAsyncResult)

 If asyncResult.IsCompleted Then

 tbResults.Text = Encoding.UTF8.GetString(fileContents)

 fs.Close()

 End If

End Sub

Now, let’s look at how the same operation is carried out using synchro-
nous streams and threading.

Click on the Read Sync button, and enter the following code:

C#

private void btnReadSync_Click(object sender,
System.EventArgs e)

{

 Thread thdSyncRead = new Thread(new ThreadStart(syncRead));

 thdSyncRead.Start();

}

VB.NET

Private Sub btnReadSync_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs) Handles _

 btnReadSync.Click

2.2

Streams 25

Chapter 2

 Dim thdSyncRead = New Thread(New ThreadStart _

 (AddressOf syncRead)) thdSyncRead.Start();

End Sub

This code doesn’t perform any file handling; instead, it creates a new
thread, whose entry point is the

syncRead

 function. When this thread runs,
it does so in parallel with any other code that is running at the same time,
which includes the background operating system (OS) “housekeeping”
(Windows message handling) functions.

If the code above were replaced by a simple call to

syncRead()

, the pro-
gram would still operate; however, if the file happened to be several
gigabytes in size, the user would quickly perceive the application to be
“hung.” A hung application is notably nonresponsive and may turn white
when dragged behind another application. What is actually happening is
that the main thread of application is taking 100% processor time and
does not give the OS time to handle simple tasks such as redrawing the
user interface.

In certain time-critical applications, it may be necessary to take 100%
processor time, but any application with a user interface should remain
responsive at all times.

The next task is to implement the

syncRead

 function:

C#

public void syncRead()

{

 openFileDialog.ShowDialog();

 FileStream fs;

 try

 {

 fs = new FileStream(ofd.FileName, FileMode.OpenOrCreate);

 }

 catch(Exception ex)

 {

 MessageBox.Show(ex.Message);

 return;

 }

 fs.Seek(0, SeekOrigin.Begin);

 byte[] fileContents = new byte[fs.Length];

 fs.Read(fileContents, 0, (int)fs.Length);

 tbResults.Text = Encoding.UTF8.GetString(fileContents);

26

2.2

Streams

 fs.Close();

}

VB.NET

 Public Sub syncRead()

 OpenFileDialog.ShowDialog()

 Dim fs As FileStream

 Try

 fs = New FileStream(ofd.FileName, _

 FileMode.OpenOrCreate)

 Catch ex As Exception

 MessageBox.Show(ex.Message)

 Return

 End Try

 fs.Seek(0, SeekOrigin.Begin)

 ReDim fileContents(fs.Length)

 fs.Read(fileContents, 0, fs.Length)

 tbResults.Text = Encoding.UTF8.GetString(fileContents)

 fs.Close()

 End Sub

In the above code, you will notice that the

FileStream

 constructor is
enclosed in a

try/catch

 block. This allows the program to recover grace-
fully from problems such as a missing file or an unreadable disk. In real-
world applications, any operation that relies on the existence of files or net-
work resources should be contained within a

try/catch

 block. This allows
programs to continue execution, even if something unexpected happens. In
most examples throughout this book,

try/catch

 blocks are not used in
order to keep the examples concise and readable.

Three namespaces must be included in the code as follows:

C#

using System.IO;

using System.Text;

using System.Threading;

VB.NET

Imports System.IO

Imports System.Threading

Imports System.Text

2.2

Streams 27

Chapter 2

Note:

The most concise way to read text files (under 1 Gb) is:

 (new StreamReader(filename)).ReadToEnd();

To test the application, press Debug

→→→→

Start. Press either button, and
then open a file, and you will see its contents in the textbox opposite, as
shown in Figure 2.1. Many files, such as those designed to hold audio or
video data, will display as pages of seemingly random characters because the
data is not designed to be displayed as text and requires another program to
interpret into something we can see or hear.

An interesting observation you can make with this application is that if
you compare the textual representation of a database file (

.mdb

) with an
Mp3 (

.mp3

), you will notice that the database file contains many identical
pages of text, whereas the Mp3 file contains a real mixture of characters.
The similarity of data within a file is known as its

entropy

. By reducing the
entropy of data in a file, the file size can be reduced. This is why a database
shrinks in size when compressed, but an Mp3 doesn’t. Chapter 11 deals
with this topic in more detail.

The significant methods and properties for

FileStream

 are shown in
Table 2.1.

Figure 2.1

Reading files using
synchronous and

asynchronous
methods.

28

2.2

Streams

2.2.2 Encoding data

In the previous example, in both synchronous and asynchronous modes, a
call was made to

Encoding.UTF8.GetString()

 in order to convert the byte
array to a string. The reason for such a verbose statement is the variety of
ways in which a byte array can represent a string. Other valid formats are
Unicode (

Encoding.Unicode

), ASCII, and UTF7.

Unicode Transformation Format 8 (UTF8)

represents each byte as a dif-
ferent character; Unicode represents every two bytes as a character. This sys-
tem is used for Eastern languages such as Japanese, but also covers English.
Applications designed for worldwide markets should have all human-read-
able strings encoded in Unicode to facilitate localization at a later date.

Table 2.1

Significant members of

FileStream

.

Method or Property Purpose

Constructor

Initializes a new instance of the

FileStream

. It may be
invoked thus:

FileStream(string, FileMode)

.

Length

Gets the length of the file. Returns

long

.

Position

Gets or sets the current position of the file pointer. Returns

long

.

BeginRead()

Begins an asynchronous read. It may be invoked thus:

BeginRead(byte[] array,int offset,int
numBytes, AsyncCallback userCallback, object
stateObject)

.

BeginWrite()

Begins an asynchronous write. It may be invoked thus:

BeginWrite(byte[] array,int offset,int
numBytes, AsyncCallback userCallback, object
stateObject)

.

Write

Writes a block of bytes to this stream using data from a buffer. It
may be invoked thus:

Write(byte[] array,int
offset,int count)

.

Read Reads a block of bytes from the stream and writes the data in a
given buffer. It may be invoked thus: Read(in byte[]
array,int offset, int count).

Lock Prevents access by other processes to all or part of a file. It may
be invoked thus: Lock (long position, long
length).

2.2 Streams 29

Chapter 2

2.2.3 Binary and text streams

When data contained in streams is of a well-known format, such as XML,
plain text, or primitive types, there are methods available to greatly simplify
the parsing of such data.

Plain text is most commonly used in streams that are designed to be
human readable and editable. Plain-text streams exist in many network pro-
tocols that were originally designed for text-only UNIX computers. A com-
mon guise for plain-text files is the end-user modifiable application
configuration files such as the ubiquitous .INI or .CSV; however, these are
being somewhat replaced by XML in .NET.

A common feature of plain text is that each unit of information is termi-
nated with an {enter}. This is actually a sequence of two UTF8 codes, 10
and 13 (represented in C# by \n and by VBCrLf in VB.NET). This can be
tricky to parse out of a string, so methods such as ReadLine have been
implemented in the textReader class.

To read a file one line at a time to the end, you could use code similar to
the following application. Start a new project in Visual Studio .NET, and
draw a button on the form. Name this button btnRead. Click on this but-
ton, and enter the following code:

C#
private void btnRead_Click(object sender, System.EventArgs e)

{

 OpenFileDialog ofd = new OpenFileDialog();

 ofd.ShowDialog();

 FileStream fs = new FileStream(ofd.FileName,

 FileMode.OpenOrCreate);

 StreamReader sr = new StreamReader(fs);

 int lineCount=0;

 while (sr.ReadLine()!=null)

 {

 lineCount++;

 }

 fs.Close();

 MessageBox.Show("There are " + lineCount + " lines in " +

 ofd.FileName);

}

30 2.2 Streams

VB.NET
Private Sub btnRead_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnRead.Click

 Dim ofd As OpenFileDialog = New OpenFileDialog()

 ofd.ShowDialog()

 Dim fs As FileStream = New _

 FileStream(ofd.FileName,FileMode.OpenOrCreate)

 Dim sr As StreamReader = New StreamReader(fs)

 Dim lineCount As Integer = 0

 While Not sr.ReadLine() Is Nothing

 lineCount = lineCount + 1

 End While

 fs.Close()

 MessageBox.Show("There are " & lineCount & _

 " lines in " & ofd.FileName)

End sub

The following namespace must be included in the code in order for it to
compile correctly:

C#
using System.IO;

VB.NET
Imports System.IO

To test the application, run it from Visual Studio .NET. Press the Read
button, and then select a text file from the hard disk. Press OK, and a mes-
sage box similar to Figure 2.2 will appear shortly.

When porting a .NET application from a console application to a Win-
dows application, you will notice that the familiar format of the Con-
sole.WriteLine method is not reflected in standard string handling. It is,
however, available in StringBuilder.AppendFormat and Stream-

Writer.WriteLine.

Not everything stored on disk or sent across a network has to be human
readable. In many cases, significantly more efficient code can be written,
which leverages the compact binary representations of variables. For
instance, the number 65000 in a 16-bit unsigned Integer binary (Uint16) is
11111101 11101000 (2 bytes); in text it is “6,” “5,” “0,” “0,” “0” (5 bytes).

2.2 Streams 31

Chapter 2

To save an array of variables to disk, you could use the following applica-
tion. Start a new project in Visual Studio .NET and draw a button on the
form. Name this button btnWrite. Click on this button and enter the fol-
lowing code:

C#
private void btnWrite_Click(object sender, System.EventArgs
e)

{

 SaveFileDialog sfd = new SaveFileDialog();

 sfd.ShowDialog();

 FileStream fs = new FileStream(sfd.FileName,

 FileMode.CreateNew);

Figure 2.2
Using streams to

help read files.

Table 2.2 The significant methods and properties for StreamReader.

Method or Property Purpose

Constructor Initializes a new instance of the object. May be invoked thus:
StreamReader(Stream).

Peek Returns the next available character, but does not consume it.
Returns -1 at the end of a stream. Takes no parameters.

Read Reads the next character or next set of characters from the input
stream. It may be invoked thus: Read(char[], int, int).

ReadBlock Reads characters from the current stream and writes the data to
buffer, beginning at index. It may be invoked thus:
ReadBlock(in char[] buffer, int index, int
count).

ReadLine Reads a line of characters from the current stream and returns
the data as a string. Takes no parameters; returns string.

ReadToEnd Reads the stream from the current position to the end of the
stream. Takes no parameters; returns string.

32 2.2 Streams

 BinaryWriter bw = new BinaryWriter(fs);

 int[] myArray= new int[1000];

 for(int i=0;i<1000;i++)

 {

 myArray[i]=i;

 bw.Write(myArray[i]);

 }

 bw.Close();

}

VB.NET
Private Sub btnWrite_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnRead.Click

 Dim sfd As SaveFileDialog = New SaveFileDialog()

 sfd.ShowDialog()

 Dim fs As FileStream = New _

 FileStream(sfd.FileName,FileMode.CreateNew)

 Dim bw As BinaryWriter = New BinaryWriter(fs)

 Dim myArray() As Integer = New Integer(1000) {}

 Dim i As Integer

 For i = 1 to 1000

 myArray(i)=i

 bw.Write(myArray(i))

 Next

 bw.Close()

End Sub

The following namespace must be included in the code in order for it to
compile correctly:

C#
using System.IO;

VB.NET
Imports System.IO

To test the application, run it from Visual Studio .NET. Press the Write
button and then select a location on the hard disk. Press OK, and a file will
be written to that location shortly.

2.2 Streams 33

Chapter 2

Note: int in C# is a signed 4-byte number; thus the resultant file is exactly
4,000 bytes long.

The significant methods and properties for BinaryWriter are shown in
Table 2.3.

2.2.4 Serialization

Serialization is the process by which a .NET object can be converted into a
stream, which can easily be transferred across a network or written to disk.
This stream can be converted into a copy of the original object through a
process called deserialization.

The following examples are modeled on a purchase order system. A pur-
chase order is a request to supply goods on a credit basis. The process must
be highly bug resilient because an error in purchasing information could
cost millions of dollars in unfulfilled sales and audits. This means that each
stage of the process must be recorded, from issuance to payment. The pro-
cess must follow a set pattern, and dates must be recorded. These rules must
be enforced by the object itself, so that any bugs can be traced quickly back
to the offending class.

To demonstrate serialization, you could use code similar to the following
application. Start a new project in Visual Studio .NET and draw two but-

Table 2.3 Significant members of the BinaryWriter class.

Method or Property Purpose

Constructor Initializes a new instance of the object. May be invoked
thus: BinaryWriter(Stream).

Close Closes the current BinaryWriter and the
underlying stream. It takes no parameters.

Seek Sets the position within the current stream. It may be
invoked thus: Seek(int offset, SeekOrigin
origin).

Write Writes a value to the current stream. It may be invoked
thus: Write(byte[]).

Write7BitEncodedInt Writes a 32-bit integer in a compressed format. It may
be invoked thus: Write7BitEncodedInt(int
value).

34 2.2 Streams

tons on the form. Name the buttons button1 and button2, respectively.
Click on the form, and enter the following code:

C#
 public enum purchaseOrderStates

 {

 ISSUED,

 DELIVERED,

 INVOICED,

 PAID

 }

 [Serializable()]

 public class company

 {

 public string name;

 public string address;

 public string phone;

 }

 [Serializable()]

 public class lineItem

 {

 public string description;

 public int quantity;

 public double cost;

 }

 [Serializable()]

 public class purchaseOrder

 {

 private purchaseOrderStates _purchaseOrderStatus;

 private DateTime _issuanceDate;

 private DateTime _deliveryDate;

 private DateTime _invoiceDate;

 private DateTime _paymentDate;

 public company buyer;

 public company vendor;

 public string reference;

 public lineItem[] items;

 public purchaseOrder()

 {

2.2 Streams 35

Chapter 2

 _purchaseOrderStatus=purchaseOrderStates.ISSUED;

 _issuanceDate=DateTime.Now;

 }

 public void recordDelivery()

 {

 if (_purchaseOrderStatus==purchaseOrderStates.ISSUED)

 {

 _purchaseOrderStatus=purchaseOrderStates.DELIVERED;

 _deliveryDate=DateTime.Now;

 }

 }

 public void recordInvoice()

 {

 if
(_purchaseOrderStatus==purchaseOrderStates.DELIVERED)

 {

 _purchaseOrderStatus=purchaseOrderStates.INVOICED;

 _invoiceDate=DateTime.Now;

 }

 }

 public void recordPayment()

 {

 if (_purchaseOrderStatus==purchaseOrderStates.INVOICED)

 {

 _purchaseOrderStatus=purchaseOrderStates.PAID;

 _paymentDate=DateTime.Now;

 }

 }

}

VB.NET
Public Enum purchaseOrderStates

 ISSUED

 DELIVERED

 INVOICED

 PAID

End Enum

 <Serializable()> _

 Public Class company

 Public name As String

 Public address As String

36 2.2 Streams

 Public phone As String

 End Class

 <Serializable()> _

 Public Class lineItem

 Public description As String

 Public quantity As Integer

 Public cost As Double

 End Class

 <Serializable()> _

 Public Class purchaseOrder

 Private _purchaseOrderStatus As purchaseOrderStates

 Private _issuanceDate As DateTime

 Private _deliveryDate As DateTime

 Private _invoiceDate As DateTime

 Private _paymentDate As DateTime

 Public buyer As company

 Public vendor As company

 Public reference As String

 Public items() As lineItem

 Public sub New()

 _purchaseOrderStatus=purchaseOrderStates.ISSUED

 _issuanceDate=DateTime.Now

 End sub

 Public sub recordDelivery()

 if _purchaseOrderStatus=purchaseOrderStates.ISSUED

 _purchaseOrderStatus=purchaseOrderStates.DELIVERED

 _deliveryDate=DateTime.Now

 end if

 end sub

 Public sub recordInvoice()

 if _purchaseOrderStatus=purchaseOrderStates.DELIVERED

 _purchaseOrderStatus=purchaseOrderStates.INVOICED

 _invoiceDate=DateTime.Now

 end if

 end sub

 Public sub recordPayment()

 if _purchaseOrderStatus=purchaseOrderStates.INVOICED

2.2 Streams 37

Chapter 2

 _purchaseOrderStatus=purchaseOrderStates.PAID

 _invoiceDate=DateTime.Now

 end if

 end sub

 End Class

Note: The use of the [Serializable()] tag facilitates deep seilalization. It is
possible to perform deep serialization without this tag by using surrogates. A
surrogate is where the a class implements ISerializationSurrogate, and is
passed to the AddSurrogate method of a SurrogateSelector object. The
SurrogateSelector property of the formatter is then set equal to this object
prior to serialization.

The _purchaseOrderStatus variable is private and can only be modified
by recordDelivery(), recordInvoice(), and recordPayment(). This
ensures that a bug elsewhere in the code will not cause undelivered goods to
be paid for (i.e., _purchaseOrderStatus cannot change directly from
ISSUED to PAID). Similarly, the date recording is encapsulated within the
object and cannot be externally manipulated.

To place a purchase order on a stream (either to disk or to the network),
you could write each value one after the other as text, separated by commas,
and have the receiver parse out the values and re-create the object; however,
there is an easier way: serialization.

To write the object to a stream and save the object to disk, you could use
the following code:

C#
private void button1_Click(object sender, System.EventArgs e)

{

 company Vendor = new company();

 company Buyer = new company();

 lineItem Goods = new lineItem();

 purchaseOrder po = new purchaseOrder();

 Vendor.name = "Acme Inc.";

 Buyer.name = "Wiley E. Coyote";

 Goods.description = "anti-RoadRunner cannon";

 Goods.quantity = 1;

 Goods.cost = 599.99;

38 2.2 Streams

 po.items = new lineItem[1];

 po.items[0] = Goods;

 po.buyer = Buyer;

 po.vendor = Vendor;

 SoapFormatter sf = new SoapFormatter();

 FileStream fs = File.Create("C:\\po.xml");

 sf.Serialize(fs,po);

 fs.Close();

}

VB.NET
Private Sub Button1_Click(ByVal sender As Object, ByVal e As _

System.EventArgs) Handles Button1.Click

 Dim Vendor As company = New company()

 Dim Buyer As company = New company()

 Dim Goods As lineItem = New lineItem()

 Dim po As purchaseOrder = New purchaseOrder()

 Vendor.name = "Acme Inc."

 Buyer.name = "Wiley E. Coyote"

 Goods.description = "anti-RoadRunner cannon"

 Goods.quantity = 1

 Goods.cost = 599.99

 po.items = New lineItem(1) {}

 po.items(0) = Goods

 po.buyer = Buyer

 po.vendor = Vendor

 Dim sf As SoapFormatter = New SoapFormatter()

 Dim fs As FileStream = File.Create("C:\po.xml")

 sf.Serialize(fs,po)

 fs.Close()

End Sub

To read the object back into memory, we can deserialize it thus:

C#
private void button2_Click(object sender, System.EventArgs e)

{

 SoapFormatter sf = new SoapFormatter();

2.2 Streams 39

Chapter 2

 FileStream fs = File.OpenRead("C:\\po.xml");

 purchaseOrder po = (purchaseOrder)sf.Deserialize(fs);

 fs.Close();

 MessageBox.Show("Customer is " + po.buyer.name);

}

VB.NET
Private Sub button2_Click(ByVal sender As Object, ByVal e As_
System.EventArgs) Handles Button2.Click

 Dim sf As SoapFormatter = New SoapFormatter()

 Dim fs As FileStream = File.OpenRead("C:\po.xml")

 Dim po As purchaseOrder = CType(sf.Deserialize(fs),_
 purchaseOrder)

 fs.Close()

 MessageBox.Show("Customer is " + po.buyer.name)

End Sub

Before this code will work, you will need an assembly reference for
SoapFormatter. This is done by clicking Project→→→→Add Reference and select-
ing System.Runtime.Serialization.Formatters.Soap, then adding this
line to the top of the code:

C#
using System.IO;

using System.Runtime.Serialization.Formatters.Soap;

VB.NET
imports System.IO

imports System.Runtime.Serialization.Formatters.Soap

To test this application, run it from Visual Studio .NET. Press the Serial-
ize button and then the Deserialize button. You will see the message “Cus-
tomer is Wiley E. Coyote,” as depicted in Figure 2.3.

If you open the file C:\PO.XML, you will see a human-readable represen-
tation of the object, as shown in Figure 2.4. This format is known as simple
object access protocol (SOAP) and is very portable between platforms (e.g.,
WebSphere for UNIX can read it).

40 2.2 Streams

Note: The constructor is not called during deserialization. In the above
example, you will see that the issue date does not change when the object is
re-created from disk.

The significant methods and properties for SoapFormatter are shown in
Table 2.4.

Figure 2.3
Serializing .NET

classes.

Figure 2.4
XML view of a

serialized object.

2.2 Streams 41

Chapter 2

Serializing to binary

SOAP formatting may be very impressive, but it is far from compact and
may be quite bandwidth consuming if sent over a slow network. We can
therefore use the native binary format to store the array by substituting
SoapFormatter with BinaryFormatter in the above example thus:

C#
BinaryFormatter bf = new BinaryFormatter();

FileStream fs = File.Create("C:\\po.bin");

bf.Serialize(fs,po);

fs.Close();

VB.NET
Dim bf As BinaryFormatter = New BinaryFormatter()

Dim fs As FileStream = File.Create("C:\po.bin")

bf.Serialize(fs,po)

fs.Close()

And deserialize with this code:

C#
BinaryFormatter bf = new BinaryFormatter();

FileStream fs = File.OpenRead("C:\\po.bin");

Table 2.4 Significant members of SoapFormatter .

Method or Property Purpose

Constructor Initializes a new instance of the SoapFormatter class. It may
be invoked without any parameters.

Deserialize Deserializes a stream into an object graph. It may be invoked
thus: Deserialize(Stream).

Serialize Serializes an object or graph of connected objects. It may be
invoked thus: Serialize(Stream, object).

AssemblyFormat Gets or sets the format in which assembly names are serialized.
Returns FormatterAssemblyStyle.

TypeFormat Gets or sets the format in which type descriptions are laid out in
the serialized stream. Returns FormatterTypeStyle.

TopObject Gets or sets the ISoapMessage into which the SOAP top
object is deserialized. Returns ISoapMessage.

42 2.2 Streams

purchaseOrder po = (purchaseOrder)bf.Deserialize(fs);

fs.Close();

VB.NET
Dim bf As BinaryFormatter = New BinaryFormatter()

Dim fs As FileStream = File.OpenRead("C:\po.bin")

Dim po As purchaseOrder = CType(bf.Deserialize(fs), _

 purchaseOrder)

fs.Close()

When substituting the SoapFormatter with the BinaryFormatter, a ref-
erence to System.Runtime.Serialization.Formatters.Soap is no longer
required. Instead, the Formatters.Binary namespace is required; it can be
added by inserting this line to the top of the code:

C#
 using System.Runtime.Serialization.Formatters.Binary;

VB.NET
 imports System.Runtime.Serialization.Formatters.Binary

This produces a file that is considerably smaller than the previous SOAP
version. The resulting file is not human readable, and it is unfeasible to port
to other platforms.

Note: Binary representations, although difficult to read, are not a secure
way of protecting sensitive data.

The BinaryFormatter object is programatically identical to the Soap-
Formatter object, except that it does not support the topObject method.

Shallow serialization

Whenever an object is serialized without its private and protected members,
this is known as shallow serialization. This may cause problems as a result of
inaccurate copies of objects; for instance, in the purchase order application,
users would find their orders reverting from PAID to ISSUED. Furthermore,
shallow serialization cannot resolve circular references within objects. For
instance, if a BookCatalog class has a member of type Book, and the Book

2.2 Streams 43

Chapter 2

class has a member of type BookCatalog, then neither object can be serial-
ized shallowly.

One benefit of shallow serialization is that it uses XML schema defini-
tion (XSD) to define types. The XSD standard ensures faithful representa-
tions on other platforms. The SOAP formatter, as used in deep
serialization, uses the CLR-type system and is not standardized across non-
.NET platforms.

Code for shallow serialization can be seen by the use of code similar to
the following:

C#
 XmlSerializer xs = new XmlSerializer(po.GetType());

 FileStream fs = File.Create("C:\\po.xml");

 xs.Serialize(fs,po);

 fs.Close();

VB.NET
 Dim xs As XmlSerializer = New XmlSerializer(po.GetType())

 Dim fs As FileStream = File.Create("C:\po.xml")

 xs.Serialize(fs,po)

 fs.Close()

Shallow deserialization is performed with the following code:

C#
 purchaseOrder po = new purchaseOrder();

 XmlSerializer xs = new XmlSerializer(po.GetType());

 FileStream fs = File.OpenRead("C:\\po.xml");

 po = (purchaseOrder)xs.Deserialize(fs);

 fs.Close();

 MessageBox.Show("Customer is " + po.buyer.name);

VB.NET
 Dim po As purchaseOrder = New purchaseOrder()

 Dim xs As XmlSerializer = New XmlSerializer(po.GetType())

 Dim fs As FileStream = File.OpenRead("C:\po.xml")

 po = CType(xs.Deserialize(fs), purchaseOrder)

 fs.Close()

 MessageBox.Show("Customer is " + po.buyer.name)

44 2.2 Streams

The following namespace is required for the XmlSerializer object:

C#
using System.Xml.Serialization;

VB.NET
imports System.Xml.Serialization

The significant methods and properties for XMLSerializer are shown in
Table 2.5.

2.2.5 Writing a database to a stream

Most business applications use databases to store their data. In order to
transport data from the database across a network, it must be written to a
stream. The easiest way of doing this is to serialize the dataset.

Note: SQL Server and Oracle provide direct network access to their data-
bases and should be used in preference to serialization.

Table 2.5 Significant members of the XMLSerializer class.

Method or Property Purpose

Constructor Initializes a new instance of the object. It may be invoked thus:
XmlSerializer(Type).

Deserialize Deserializes an XML document. May be invoked thus:
Deserialize(Stream).

FromTypes Returns an array of XmlSerializer objects created from an
array of types. May be invoked thus: FromTypes(Type[]
types).

Serialize Serializes an object into an XML document. May be invoked
thus: Serialize(Stream stream, object o).

CanDeserialize Gets a value indicating whether this XmlSerializer can
deserialize a specified XML document. Can be invoked thus:
CanDeserialize(XmlReader xmlReader).

2.2 Streams 45

Chapter 2

Database programming overview

Whole books have been written on database programming, and it would be
impossible to do the topic justice in this chapter; however, a brief overview
is provided here to help explain the basics of database access in .NET and
the concept of dataset serialization.

Database programming is centered on two key strings: the connection
string and structured query language (SQL) statements. The connection
string indicates the location and type of the database. The SQL statement
describes the operation to be performed on the data.

To open a connection to a database in .NET, you need to import the
System.Data.OleDb namespace:

C#
using System.Data.OleDb;

VB.NET
imports System.Data.OleDb

This task is followed by the creation of an OleDbConnection object,
where the constructor is passed the connection string (Table 2.6). Here the
database is a Microsoft Access file located at c:\purchaseOrder.mdb

C#
 string szDSN = "Provider=Microsoft.Jet.OLEDB.4.0;" +

 "Data Source=C:\\purchaseOrder.mdb";

 OleDbConnection DSN = new OleDbConnection(szDSN);

Table 2.6 Connection strings for common databases.

Database type Connection string

Microsoft Access Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=<location of .mdb file>

SQL Server Provider=sqloledb;
Network Library=DBMSSOCN;
DataSource=<IP address>,1433; Initial
Catalog=<database name>; User ID=<user>;
Password=<password>;

46 2.2 Streams

VB.NET
 String szDSN = "Provider=Microsoft.Jet.OLEDB.4.0;" + _

 "Data Source=C:\purchaseOrder.mdb"

 Dim DSN As OleDbConnection = New OleDbConnection(szDSN)

Once we have a connection to the database, SQL statements can be exe-
cuted against it to read and manipulate data. The constructor of the OleDb-
Command object is passed the SQL string.

Depending on the intended use of the data, there are three ways to make
the OleDbCommand act upon the SQL: (1) data binding and serialization pass
the object to the constructor of an OleDbDataAdapter; (2) manipulation
statements use the executeNonQuery method; and (3) everything else uses
the executeReader method.

Four main operations can be performed on a database: reading data
(Select), adding new rows to a table (Insert), removing rows from a table
(Delete), and changing the contents of an existing row (Update).

A select statement takes the form

Select * from table

Where table is the name of a table in the database. The preceding state-
ment would return all of the rows from the selected table. It is possible to
limit the amount of data returned by using where clauses:

Select * from table where column=’some data’

Note: It is possible to increase the amount of data returned by using join to
combine two or more tables on a common field.

Update statements may take the following form:

Update table set column=’new data’ where column=’old data’

Delete statements may take the following form:

Delete from table where column=’old data’

Insert statements may take the following form:

Insert into table (column) values (’new data’)

2.2 Streams 47

Chapter 2

To perform an Update, Delete, or Insert function, we use the exe-
cuteNonQuery method:

C#
Public void nonQuery(string szSQL,string szDSN)

{

 OleDbConnection DSN = new OleDbConnection(szDSN);

 DSN.Open();

 OleDbCommand SQL = new OleDbCommand(SQL,DSN);

 SQL.ExecuteNonQuery();

 DSN.Close();

}

VB.NET
Public Sub nonQuery(ByVal szSQL As String, ByVal szDSN _

 As String)

 Dim DSN As OleDbConnection = New OleDbConnection(szDSN)

 DSN.Open()

 Dim SQL As OleDbCommand = New OleDbCommand(SQL,DSN)

 SQL.ExecuteNonQuery()

 DSN.Close()

End Sub

To perform a Select query, without requiring any serialization or data
binding, the executeReader method is used:

C#
Public void Query(string szSQL,string szDSN)

{

 OleDbConnection DSN = new OleDbConnection(szDSN);

 DSN.Open();

 OleDbCommand SQL = new OleDbCommand(szSQL,DSN);

 OleDbDataReader dataReader = SQL.ExecuteReader();

 While(dataReader.Read())

 {

 // process data

 }

 DSN.Close();

}

48 2.2 Streams

VB.NET
Public sub Query(String szSQL,string szDSN)

 Dim DSN As OleDbConnection = New OleDbConnection(szDSN)

 DSN.Open()

 Dim SQL As OleDbCommand = New OleDbCommand(szSQL,DSN)

 Dim dataReader As OleDbDataReader = SQL.ExecuteReader()

 Do while dataReader.Read()

 ' process data.

 loop

 DSN.Close()

end sub

To perform a select query, requiring further serialization or data bind-
ing, the OleDbDataAdapter object is used to fill a dataset object with the
SQL query results:

C#
Public DataSet Query(string szSQL,string szDSN)

{

 DataSet ds = new DataSet();

 OleDbConnection DSN = new OleDbConnection(szDSN);

 DSN.Open();

 OleDbCommand SQL = new OleDbCommand(szSQL,DSN);

 OleDbDataAdapter Adapter = new OleDbDataAdapter(SQL);

 Adapter.Fill(ds,"sql");

 DSN.Close();

 return(ds);

}

VB.NET
Public Function Query(ByVal szSQL As String, ByVal szDSN _

 As String) As DataSet

 Dim ds As DataSet = New DataSet()

 Dim DSN As OleDbConnection = New OleDbConnection(szDSN)

 DSN.Open()

 Dim SQL As OleDbCommand = New OleDbCommand(szSQL,DSN)

 Dim Adapter As OleDbDataAdapter = New OleDbDataAdapter(SQL)

 Adapter.Fill(ds,"sql")

 DSN.Close()

 Return(ds)

End Sub

2.2 Streams 49

Chapter 2

Creating a database

In order to try out the following demo, you will need either Microsoft SQL
Server 2000 Desktop Engine (available free at www.microsoft.com/sql/msde/
downloads/download.asp) or Microsoft Access to create the database.

If you are using SQL Server, you can set up the necessary tables and data
using the SQL statements below. Open Query Analyzer, log onto the data-
base, and execute the following SQL code:

SQL
create table purchaseOrder

(

 id int identity(1,1) not null,

 purchaseOrderStatus int,

 issuanceDate datetime,

 deliveryDate datetime,

 invoiceDate datetime,

 paymentDate datetime,

 buyer int,

 vendor int,

 reference varchar(50)

)

create table company

(

 id int identity(1,1) not null,

 name varchar(50),

 address varchar(50)

)

create table lineitem

(

 id int identity(1,1) not null,

 description varchar(50),

 quantity int,

 cost money,

 purchaseOrderID int

)

insert into company (name,address) values (

'Wiley E coyote','sandy desert')

50 2.2 Streams

insert into company (name,address) values ('Acme corp.',

'big city')

insert into purchaseorder (issuanceDate, buyer,vendor)
values (getDate(),1,2)

insert into lineitem
(description,quantity,cost,purchaseorderid) values

('Road runner trap',1,100,1)

If you are using Access, open Microsoft Access, select Blank Access data-
base, and press OK (Figure 2.5).

Save the file to c:\purchaseOrder.mdb, and press New to create a new
table. You should select Design View. Then press OK.

Enter in the table fields as illustrated below. Set Allow Zero Length to
Yes for the reference field.

Close the window and save the table as purchaseOrder. Create two
other tables named company and lineItem.

The company table should have the following fields: id, name, address,
and phone. The lineItem table should have the following fields: id,
description, quantity, cost, and purchaseOrderID.

Figure 2.5
Microsoft Access,

new database
dialog.

2.2 Streams 51

Chapter 2

Enter details for two companies into the company table by selecting the
table name and pressing “open.” A corresponding row in the purchaseOr-
der table should also be entered, ensuring that the buyer and vendor fields
match the ID fields in the company table. Enter one item into the lineItem
table, where purchaseOrderID is equal to the ID of the newly entered row
in the purchaseOrder table.

Dataset serialization

The following application runs SQL queries against the database just cre-
ated in the previous section. The results of the queries are displayed as XML
in a browser window. The ability to convert datasets into XML is useful
because it is transferable across networks and can be read from other plat-
forms without too much extra work.

Start a new Visual Studio .NET project, and select a Windows applica-
tion as before.

Right-click on the toolbox, and select Customize toolbox (Visual Studio
.NET 2002) or Add/Remove Items (Visual Studio .NET 2003). Then
select Microsoft Web Browser, and press OK. Drag this onto the form, and
name it WebBrowser. Also drag a button and textbox named btnQuery and
tbSQL, respectively.

You will need to add references to the required namespaces first:

C#
using System.Data.OleDb;

using System.IO;

using System.Xml.Serialization;

VB.NET
imports System.Data.OleDb

imports System.IO

imports System.Xml.Serialization

To remove the unsightly error message on the Web browser, we can set
the initial page to be about:blank thus:

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 object notUsed = null;

52 2.2 Streams

 WebBrowser.Navigate("about:blank",ref notUsed,ref notUsed,
ref notUsed, ref notUsed);

}

VB.NET
Private Sub Form1_Load(ByVal sender As Object, ByVal e _

As System.EventArgs)

 WebBrowser.Navigate("about:blank")

End Sub

Now, click on the Query button, and enter the following code:

C#
private void button1_Click(object sender, System.EventArgs e)

{

 string szDSN = "Provider=Microsoft.Jet.OLEDB.4.0;" +

 "Data Source=C:\\purchaseOrder.mdb";

 OleDbConnection DSN = new OleDbConnection(szDSN);

 XmlSerializer xs = new XmlSerializer(typeof(DataSet));

 DataSet ds = new DataSet();

 DSN.Open();

 OleDbCommand odbc = new OleDbCommand(tbSQL.Text,DSN);

 OleDbDataAdapter odda = new OleDbDataAdapter(odbc);

 odda.Fill(ds,"sql");

 TextWriter tw = new StreamWriter("c:\\sql.xml");

 xs.Serialize(tw, ds);

 tw.Close();

 DSN.Close();

 object notUsed = null;

 WebBrowser.Navigate("c:\\sql.xml",ref notUsed,ref notUsed,
ref notUsed, ref notUsed);

}

VB.NET
Private Sub button1_Click(ByVal sender As Object, ByVal _

e As System.EventArgs) Handles btnQuery.Click

 Dim szDSN as String = _

 "Provider=Microsoft.Jet.OLEDB.4.0;" + _

 "Data Source=C:\purchaseOrder.mdb"

 Dim DSN As OleDbConnection = New OleDbConnection(szDSN)

 Dim xs As XmlSerializer = New XmlSerializer((New _

2.2 Streams 53

Chapter 2

 DataSet).GetType())

 Dim ds As DataSet = New DataSet()

 DSN.Open()

 Dim odbc As OleDbCommand = New OleDbCommand(tbSQL.Text,DSN)

 Dim odda As OleDbDataAdapter = New OleDbDataAdapter(odbc) _

 odda.Fill(ds,"sql")

 Dim tw As TextWriter = New StreamWriter("c:\sql.xml")

 xs.Serialize(tw, ds)

 tw.Close()

 DSN.Close()

 Dim notUsed As Object = Nothing

 WebBrowser.Navigate("c:\sql.xml")

End Sub

Note: The dataset is shallowly serialized. This does not cause a problem
because there are no private members of interest in the dataset object.

Please note that the above example assumes that you have used Microsoft
Access rather than SQL Server and that the database was saved to C:\pur-
chaseOrder.mdb. If you have used SQL Server, then you must change the

Figure 2.6
Serialization from

an SQL query.

54 2.3 Conclusion

szDSN string to “Provider=sqloledb;Network Library=DBMSSOCN;Data-

Source=<IP>,1433;Initial Catalog=<database>;UserID=<user>;Pass-

word=<password>;”, where <IP>, <database>, <user> and <password> are
substituted as necessary.

To test this application, run it from Visual Studio .NET, enter an SQL
statement in the box provided (e.g., “select * from company”), and press the
Query button. XML should appear in the browser window that represents
the set of data returned, as shown in Figure 2.6.

2.3 Conclusion
This chapter has introduced the concept of streams. These are used heavily
throughout the remainder of this book.

Serialization was also explored and can clearly be seen as a powerful tool
that can be implemented in only a few lines of code. It certainly is a must
have for any object-oriented distributed application.

To conclude the chapter, a brief introduction to databases was given.
This provides a rudimentary grounding in using either SQL Server or
Microsoft Access in your .NET applications.

Chapter 3 deals with sockets, the .NET implementation of the funda-
mental Internet protocols, TCP/IP and UDP.

55

3

Working with Sockets

3.1 Introduction

This chapter explains the most important aspect of network programming,
the socket. It is essential to fully understand how to use sockets in .NET
before proceeding to the following chapters. Examples in this chapter will
enable the user to send files and messages over the Internet, using simple
network applications.

Two socket-level protocols are described in this chapter. Both protocols
are demonstrated as a pair of applications—one client, one server. This fol-
lows the classic client/server model, which is prevalent in most distributed
applications. The chapter follows this structure, describing the client first,
followed immediately by an implementation of the server.

3.2 What is a socket?

A socket is an object that represents a low-level access point to the IP stack.
This socket can be open or closed or one of a set number of intermediate
states. A socket can send and receive data down this connection. Data is
generally sent in blocks of a few kilobytes at a time for efficiency; each of
these blocks is called a

packet

.

Table 3.1

Well-known port numbers .

Port
Number Protocol

20 FTP data

21 FTP control

56

3.3

Creating a simple “hello world” application

All packets that travel on the Internet must use the Internet protocol.
This means that the source IP address, destination address must be
included in the packet. Most packets also contain a port number. A port is
simply a number between 1 and 65,535 that is used to differentiate higher
protocols, such as email or FTP (Table 3.1). Ports are important when it
comes to programming your own network applications because no two
applications can use the same port. It is recommended that experimental
programs use port numbers above 1024.

Packets that contain port numbers come in two flavors: UDP and TCP/
IP. UDP has lower latency than TCP/IP, especially on startup. Where data
integrity is not of the utmost concern, UDP can prove easier to use than
TCP, but it should never be used where data integrity is more important
than performance; however, data sent via UDP can sometimes arrive in the
wrong order and be effectively useless to the receiver. TCP/IP is more com-
plex than UDP and has generally longer latencies, but it does guarantee that
data does not become corrupted when traveling over the Internet. TCP is
ideal for file transfer, where a corrupt file is more unacceptable than a slow
download; however, it is unsuited to Internet radio, where the odd sound
out of place is more acceptable than long gaps of silence.

3.3 Creating a simple “hello world” application

This program will send the words “hello world” over a network. It consists
of two executables, one a client, the other a server. These two programs
could be physically separated by thousands of kilometers, but as long as the
IP addresses of both computers are known, the principle still works.

25 SMTP (email, outgoing)

53 DNS

80 HTTP (Web)

110 POP3 (email, incoming)

143 IMAP (email, incoming)

Source:

www.iana.org/assignments/port-numbers.txt.

Table 3.1

Well-known port numbers (continued).

Port
Number Protocol

3.3

Creating a simple “hello world” application 57

Chapter 3

In this example, the data will be sent using UDP. This means that the
words “hello world” will be bundled up with information that will be used
by IP routers to ensure that the data can travel anywhere it wishes in the
world. UDP data is not bundled with headers that track message integrity
or security. Furthermore, the receiving end is not obliged to reply to the
sender with acknowledgments as each packet arrives. The elimination of
this requirement allows UDP data to travel with much lower latency than
TCP. UDP is useful for small payload transfers, where all of the data to be
sent can be contained within one network packet. If there is only one
packet, the out-of-sequence problems associated with UDP do not apply;
therefore, UDP is the underlying protocol behind DNS.

3.3.1 Writing a simple UDP client

To get started, open Visual Studio .NET, click New Project, then click
Visual C# projects, and then Windows Application. Set the name to “

UDP

Client

” and press OK. You could alternately click Visual Basic .NET
projects and follow the code labeled VB.NET in the examples.

Now, design the form as shown in Figure 3.1. Name the button

button1

and the textbox

tbHost

.

Click the button and type in the source code as follows:

C#

private void button1_Click(object sender, System.EventArgs e)

{

 UdpClient udpClient = new UdpClient();

 udpClient.Connect(tbHost.Text, 8080);

 Byte[] sendBytes = Encoding.ASCII.GetBytes("Hello World?");

 udpClient.Send(sendBytes, sendBytes.Length);

}

VB.NET

Private sub button1_Click(sender as object, e as _
System.EventArgs) Handles button1.Click

 Dim udpClient as new UdpClient()

 udpClient.Connect(tbHost.Text, 8080)

 Dim sendBytes as Byte()

 sendBytes = Encoding.ASCII.GetBytes("Hello World?")

 udpClient.Send(sendBytes, sendBytes.Length)

End sub

58

3.3

Creating a simple “hello world” application

From the code, we can see that the first task is creating a

UDP Client

object. This is a socket that can send UDP packets. A port number is cho-
sen arbitrarily. Here, the port number 8080 is used, simply because it is easy
to remember and it is not in the first 1024 port numbers, which are
reserved for special use by IANA.

The first argument in the

Connect

 method indicates where any data
should be sent. Here, I have used

tbHost.Text

 (i.e., whatever is typed into
the textbox). If you have access to only one computer, you would type

localhost

 into this window; otherwise, if you are using two computers,
type the IP address of the server.

You also need to include some assemblies by adding these lines to just
under the lock of the

using

 statements at the top of the code:

C#

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.IO;

VB.NET

imports System.Net

imports System.Net.Sockets

imports System.Text

imports System.IO

Now, press F5 to compile and run the application. You should see your
application resembling Figure 3.1.

Table 3.2 shows the significant methods and properties for

UdpClient

.

3.3.2 Writing a simple UDP server

The purpose of the UDP server is to detect incoming data sent from the
UDP client. Any new data will be displayed in a list box.

Figure 3.1

UDP client
application.

3.3

Creating a simple “hello world” application 59

Chapter 3

As before, create a new C# project, but with a new user interface, as
shown below. The list box should be named

lbConnections

.

A key feature of servers is multithreading (i.e., they can handle hundreds
of simultaneous requests). In this case, our server must have at least two
threads: one handles incoming UDP data, and the main thread of execu-
tion may continue to maintain the user interface, so that it does not appear
hung. The details of threading are not within the scope of this book.

First, we write the UDP data handling thread:

C#

public void serverThread()

{

 UdpClient udpClient = new UdpClient(8080);

 while(true)

 {

 IPEndPoint RemoteIpEndPoint = new IPEndPoint(IPAddress.Any,

Table 3.2

Significant members of the UdpClient class.

Method or Property Purpose

Constructor

Initializes a new instance of the

UdpClient

 class. For
client UDP applications, this is used as

new

UdpClient (string,int)

; for servers use

 new

UdpClient(int)

.

Close()

Closes the UDP connection.

DropMulticastGroup()

Leaves a multicast group.

JoinMulticastGroup()

Adds a

UdpClient

 to a multicast group. This may be
invoked thus:

JoinMulticastGroup(IPAddress)

.

Receive()

Returns a UDP datagram that was sent by a remote
host. This may be invoked thus:

Receive(ref

IPEndPoint)

. Returns

Byte[]

.

Send()

Sends a UDP datagram to a remote host. This may be
invoked thus

Send(byte[], int)

.

Active

Gets or sets a value indicating whether a connection to
a remote host has been made. Returns

Bool

Client

Gets or sets the underlying network sockets. Returns

Socket

.

60

3.3

Creating a simple “hello world” application

 0);

 Byte[] receiveBytes = udpClient.Receive(ref
RemoteIpEndPoint);

 string returnData = Encoding.ASCII.GetString(receiveBytes);

 lbConnections.Items.Add(

 RemoteIpEndPoint.Address.ToString() + ":" +
returnData.ToString()

);

 }

}

VB.NET

Public Sub serverThread()

 Dim udpClient as new UdpClient(8080)

 While true

 Dim RemoteIpEndPoint as new IPEndPoint(IPAddress.Any, 0)

 Dim receiveBytes as Byte()

 receiveBytes = udpClient.Receive(RemoteIpEndPoint)

 Dim returnData As String = _

 Encoding.ASCII.GetString(receiveBytes)

 lbConnections.Items.Add _

 RemoteIpEndPoint.Address.ToString() + ":" + _

 returnData.ToString()

 Wend

End Sub

Again, we use the

UdpClient

 object. Its constructor indicates that it
should be bound to port 8080, like in the client. The

Receive

 method is
blocking (i.e., the thread does not continue until UDP data is received). In
a real-world application, suitable timeout mechanisms should be in place
because UDP does not guarantee packet delivery. Once received, the data is
in byte array format, which is then converted to a string and displayed on-
screen in the form

source address: data

.

There is then the matter of actually invoking the

serverThread

 method
asynchronously, such that the blocking method,

Receive

, does not hang
the application. This is solved using threads as follows:

C#

private void Form1_Load(object sender, System.EventArgs e)

{

3.3

Creating a simple “hello world” application 61

Chapter 3

 Thread thdUDPServer = new Thread(new
ThreadStart(serverThread));

 thdUDPServer.Start();

}

VB.NET

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim thdUDPServer = new Thread(new ThreadStart(AddressOf _

 serverThread))

 thdUDPServer.Start()

End Sub

To finish off, the following assemblies are to be added:

C#

using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

VB.NET

imports System.Threading

imports System.Net

imports System.Net.Sockets

imports System.Text

Figure 3.2

UDP Server
application.

62

3.4

Using TCP/IP to transfer files

To test this application, execute it from Visual Studio .NET. On the
same computer, open the UDP client and execute it. Type

localhost

 into
the textbox and press the button on the UDP client. A message
“Localhost:Hello World?” should appear, such as shown in Figure 3.2.

If you have a second PC, get its IP address and install the server on this
second PC and execute it. Again open the client, but type the IP address
into the textbox. When you press the button on the client, the server should
display the “Hello World” message. Voilà! You have used .NET to send data
across a network.

3.4 Using TCP/IP to transfer files

Most networked applications use TCP/IP because there is no risk of data
becoming corrupted while traveling over the Internet. It is said to be con-
nection oriented; that is, both client and server after a setup phase treat a set
of IP packets as being sent along a virtual channel, allowing for data that is
too large to fit into a single IP packet to be sent and for retransmission to
occur when packets are lost.

This sample application will allow you to send any file from one com-
puter to another. Again, it is client/server based, so you will need either two
computers or to run both the client and server on the same computer.

3.4.1 Writing a simple TCP/IP client

Create a new project as usual, and design a form as shown in Figure 3.3.
Name the Send button

btnSend

, the Browse button

btnBrowse

, the File
textbox

tbFilename

, and the Server textbox

tbServer

.

 Also add an Open
File Dialog control named

openFileDialog

.

Click on the Browse button and add the following code:

Figure 3.3

TCP client
application.

3.4 Using TCP/IP to transfer files 63

Chapter 3

C#
 private void btnBrowse_Click(object sender,
System.EventArgs e)

 {

 openFileDialog.ShowDialog();

 tbFilename.Text = openFileDialog.FileName;

 }

VB.NET
 Private Sub btnBrowse_Click(ByVal sender As _

 System.Object, ByVal e As System.EventArgs) _

 HandlesbtnBrowse.Click

 openFileDialog.ShowDialog()

 tbFilename.Text = openFileDialog.FileName

 end sub

This code opens the default file open dialog box. If the user does not
select a file, openFileDialog.Filename will return an empty string.

Click on the Send button and add the following code:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 Stream fileStream = File.OpenRead(tbFilename.Text);

 // Alocate memory space for the file

 byte[] fileBuffer = new byte[fileStream.Length];

 fileStream.Read(fileBuffer, 0, (int)fileStream.Length);

 // Open a TCP/IP Connection and send the data

 TcpClient clientSocket = new TcpClient(tbServer.Text,8080);

 NetworkStream networkStream = clientSocket.GetStream();

 networkStream.Write(fileBuffer,0,fileBuffer.GetLength(0));

 networkStream.Close();

}

VB.NET
Private Sub btnSend_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnSend.Click

 Dim filebuffer As Byte()

 Dim fileStream As Stream

 fileStream = File.OpenRead(tbFilename.Text)

64 3.4 Using TCP/IP to transfer files

 ' Alocate memory space for the file

 ReDim filebuffer(fileStream.Length)

 fileStream.Read(filebuffer, 0, fileStream.Length)

 ' Open a TCP/IP Connection and send the data

 Dim clientSocket As New TcpClient(tbServer.Text, 8080)

 Dim networkStream As NetworkStream

 networkStream = clientSocket.GetStream()

 networkStream.Write(filebuffer, 0, fileStream.Length)

end sub

The above code reads in a file and sends it over a network connection.
To read in a file, a stream for this file is created by passing the filename to
the OpenRead method. This stream is read into the file buffer array. An alter-
nate means of reading this file would be to pass the file stream as a parame-
ter to the constructor of a StreamReader, then to call the ReadToEnd
method, although this approach would only be useful for text-only files.

It then opens a TCP/IP connection with the server on port 8080, as
specified in tbServer.Text. The TcpClient constructor is blocking, in that
code execution will not continue until a connection is established. If a con-
nection cannot be established, a SocketException will be thrown: “No
connection could be made because the target machine actively refused it.”
As usual, the following assemblies are added:

C#
using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.IO;

VB.NET
imports System.Threading

imports System.Net

imports System.Net.Sockets

imports System.Text

imports System.IO

Table 3.3 shows the significant methods and properties for TcpClient.

3.4 Using TCP/IP to transfer files 65

Chapter 3

3.4.2 Writing a simple TCP/IP server

Open a new project as before, and design a user interface as depicted in
Figure 3.4. The label should be named lblStatus, and the list box,
lbConnections.

Like the UDP server in a preceding example, the TCP server is multi-
threaded. In this case, three threads are used: the main thread maintains the
user interface, a second thread listens for connections, and a third thread
handles the connections.

One socket is required for each connection and will remain loaded in
memory until the connection is closed. These sockets need to be stored in
an ArrayList rather than a standard array because it is impossible to predict
how many connections will be received.

To start, declare a global ArrayList variable:

Table 3.3 Significant methods and properties of TcpClient.

Method or Property Purpose

Constructor Initializes a new instance of the TcpClient class. It
may be used thus: new TcpClient(string,Int).

NoDelay When set to true, it increases efficiency if your
application only transmits small amounts of data in
bursts. Returns Bool.

ReceiveBufferSize Gets or sets the size of the receive buffer. Returns Int.

SendBufferSize Gets or sets the size of the send buffer. Returns Int.

SendTimeout Gets or sets the amount of time a TcpClient will wait
to receive confirmation after you initiate a send.
Returns Int.

Close() Closes the TCP connection.

Connect() Connects the client to a remote TCP host using the
specified host name and port number. It may be
invoked thus: Connect(string,Int).

GetStream() Returns the stream used to send and receive data.
Returns NetworkStream.

66 3.4 Using TCP/IP to transfer files

C#
public class Form1 : System.Windows.Forms.Form

{

 private ArrayList alSockets;

 ...

VB.NET
Public Class Form1 Inherits System.Windows.Forms.Form

 private alSockets as ArrayList

 ...

Because any client wishing to connect to this server would need to know
its IP address, it is helpful to display this on-screen. This is a cosmetic fea-
ture, but it may come in handy in other applications. In order to retrieve
the local IP address, we call the static method Dns.GetHostByName. This
returns an IPHostEntry object, which is a collection of IP addresses, to
accommodate multihomed computers, which many are. Element zero in
this array is commonly the external IP address for the computer.

The Form1_Load method displays the local IP address on the form and
starts the thread that will wait for incoming connections. If the
listenerThread method were to be called directly, the program would
become unresponsive and appear to hang, while the socket waited on
incoming connections. This effect is avoided by executing the
listenerThread method in a separate thread of execution, which can
block without adversely affecting the user interface.

Figure 3.4
TCP Server
application.

3.4 Using TCP/IP to transfer files 67

Chapter 3

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 IPHostEntry IPHost = Dns.GetHostByName(Dns.GetHostName());

 lblStatus.Text = "My IP address is " +
IPHost.AddressList[0].ToString();

 alSockets = new ArrayList();

 Thread thdListener = new Thread(new
ThreadStart(listenerThread));

 thdListener.Start();

}

VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim IPHost as IPHostEntry

 IPHost = Dns.GetHostByName(Dns.GetHostName())

 lblStatus.Text = "My IP address is " + _
 IPHost.AddressList(0).ToString()

 alSockets = new ArrayList()

 Dim thdListener As New Thread(New ThreadStart _

 (AddressOf listenerThread))

 thdListener.Start()

End Sub

The listenerThread method’s function is to wait indefinitely for TCP
connections on port 8080 and then to redelegate the work of handling
these requests to the handlerThread method. This function also reports the
source of the connections.

This time, the reason for redelegating work to a thread is not to main-
tain the responsiveness of the user interface, but rather to ensure that the
application will continue to listen for new connections while it is handling
a previous client. The new thread will be required to have access to the
socket that is dealing with the current client. Otherwise, there would be no
means of returning data.

This thread will block on the call to AcceptSocket. Execution will not
continue until an incoming connection has been detected; when it has, a
new socket is created and dedicated to handling this particular client. Once

68 3.4 Using TCP/IP to transfer files

this socket has established a connection, the socket is placed on top of the
alSockets array list to await pickup by the handler thread.

It may seem unusual that the socket is not passed directly to the thread.
This is because it is not valid to specify parameters when defining the start-
ing point of a thread, for example, making an erroneous statement such as

New ThreadStart(AddressOf handlerThread(Parameter))

Therefore, another means of passing parameters to threads is required. In
this example, a public array list of sockets is used, where the top-most entry
is used by the newest thread, and so forth. Another common technique for
passing parameters to threads is to encapsulate the thread’s methods in a sep-
arate class, with public variables acting as parameters. When a new instance
of this class is created, it can be passed to the ThreadStart constructor.

Once the socket has been added to the array list, the handler thread is
invoked, and this thread continues to listen for incoming connections.

Note: You may notice a port number added to the end of the source IP
address. This is an internally negotiated port number used by TCP/IP.
More details on this topic can be found in Chapter 13.

C#
public void listenerThread()

{

 TcpListener tcpListener = new TcpListener(8080);

 tcpListener.Start();

 while(true)

 {

 Socket handlerSocket = tcpListener.AcceptSocket();

 if (handlerSocket.Connected)

 {

 lbConnections.Items.Add(

 handlerSocket.RemoteEndPoint.ToString() + " connected."

);

 lock (this)

 {

 alSockets.Add(handlerSocket);

 }

 ThreadStart thdstHandler = new

3.4 Using TCP/IP to transfer files 69

Chapter 3

 ThreadStart(handlerThread);

 Thread thdHandler = new Thread(thdstHandler);

 thdHandler.Start();

 }

 }

}

VB.NET
Public sub listenerThread()

 Dim tcpListener as new TcpListener(8080)

 Dim handlerSocket as Socket

 Dim thdstHandler as ThreadStart

 Dim thdHandler as Thread

 tcpListener.Start()

 do

 handlerSocket = tcpListener.AcceptSocket()

 if handlerSocket.Connected then

 lbConnections.Items.Add(_

 handlerSocket.RemoteEndPoint.ToString() + _

 "connected.")

 SyncLock (Me)

 alSockets.Add(handlerSocket)

 end SyncLock

 thdstHandler = New ThreadStart(AddressOf _

 handlerThread)

 thdHandler = New Thread(thdstHandler)

 thdHandler.Start()

 end if

 Loop

End sub

The remainder of the work is carried out in the handlerThread method.
This function finds the last used socket and then retrieves the stream from
this socket. An array is allocated to the same size as the stream, and once the
stream is fully received, its contents are copied into this array.

Once the connection closes, the data is written to file at c:\my
documents\upload.txt. It is important to have the lock() keyword around
the lines of code associated with file access; otherwise, if two concurrent con-
nections try to access the same file, the program will crash. The contents of
the file are then displayed in the list box on-screen. The socket is then set to

70 3.4 Using TCP/IP to transfer files

null to remove it from memory. If this point were omitted, the array list
would quickly fill with sockets that had lost connection with their clients.

Note that the constructor for TcpListener that takes only a single int
for a port number is now obsolete. To stop the compiler complaining about
this line of code, simply call the constructor thus:

new TcpListener(IPAddress.Any,8080)

C#
public void handlerThread()

{

 Socket handlerSocket = (Socket)alSockets[alSockets.Count-1];

 NetworkStream networkStream = new

 NetworkStream(handlerSocket);

 int thisRead=0;

 int blockSize=1024;

 Byte[] dataByte = new Byte[blockSize];

 lock(this)

 {

 // Only one process can access

 // the same file at any given time

 Stream fileStream = File.OpenWrite("c:\\my documents\

 \upload.txt");

 while(true)

 {

 thisRead=networkStream.Read(dataByte,0,blockSize);

 fileStream.Write(dataByte,0,thisRead);

 if (thisRead==0) break;

 }

 fileStream.Close();

 }

 lbConnections.Items.Add("File Written");

 handlerSocket = null;

 }

VB.NET
 Public Sub handlerThread()

 Dim handlerSocket As Socket

 handlerSocket = alSockets(alSockets.Count - 1)

3.4 Using TCP/IP to transfer files 71

Chapter 3

 Dim networkStream As NetworkStream = New _

 NetworkStream(handlerSocket)

 Dim blockSize As Int16 = 1024

 Dim thisRead As Int16

 Dim dataByte(blockSize) As Byte

 SyncLock Me

 ' Only one process can access the

 ' same file at any given time

 Dim fileStream As Stream

 fileStream = File.OpenWrite("c:\upload.txt")

 While (True)

 thisRead = networkStream.Read(dataByte, _

 0, blockSize)

 fileStream.Write(dataByte, 0, dataByte.Length)

 If thisRead = 0 Then Exit While

 End While

 fileStream.Close()

 End SyncLock

 lbConnections.Items.Add("File Written")

 handlerSocket = Nothing

 End Sub

As before, add the namespace references to the head of the code:

C#
using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.IO;

VB.NET
imports System.Threading

imports System.Net

imports System.Net.Sockets

imports System.Text

imports System.IO

To test the application, run the server application, and take note of the IP
address displayed. Then, run the client application. Type the IP address into
the box provided. Click on browse to select a file. Press send to transfer the

72 3.4 Using TCP/IP to transfer files

file. A file will soon appear on the server at c:\my documents\upload.txt,
which is an exact copy of the file that was located on the client.

To further demonstrate this principle, you can use a telnet program to
write text to c:\upload.txt remotely.

On Windows 95, 98, or ME machines, click Start→→→→Run, then type
Telnet. Click Connect→→→→Remote System. Type the server IP address into
the host name textbox, and type 8080 into the port textbox. Press Con-
nect. Type some text into the window, and when finished, press Connect,
Disconnect. A file will soon appear on the server at c:\my documents\
upload.txt.

On Windows NT, 2000, and XP machines, click Start→→→→Run, then type
Telnet. Type Open 127.0.0.1 8080. Replace 127.0.0.1 with the IP address
of your server, if you have two computers. Type some text into the window,
and when finished, close the window. A file will soon appear on the server
at c:\upload.txt.

Table 3.4 Significant members of the TcpListener class.

Method or Property Purpose

Constructor Initializes a new instance of the TcpListenerClient
class. It may be used thus: new TcpListener(int).

LocalEndpoint Gets the underlying EndPoint of the current
TcpListener. Returns EndPoint.

AcceptSocket() Accepts a pending connection request. Returns
Socket.

AcceptTcpClient() Accepts a pending connection request. Returns
TcpClient.

Pending() Determines if there are pending connection requests.
Returns Bool.

Start() Starts listening to network requests.

Stop() Closes the listener.

Active Gets a value that indicates whether TcpListener is
actively listening for client connections. Returns Bool.

Server Gets the underlying network socket. Returns Socket.

3.5 Debugging network code 73

Chapter 3

Ways have already been developed to send files through the Internet.
Anybody who has ever written a Web site would be familiar with programs
such as cuteFTP and smartFTP, which do exactly what was demonstrated
in the previous example, albeit with a much more flexible interface.

It is rarely a good idea to try to reinvent the wheel and develop a new
way to send data through the Internet. The global standardization of proto-
cols has made the Internet what it is today.

Table 3.4 shows the significant methods and properties for TcpListener.

3.5 Debugging network code

Network connections can and do break, and other applications may be
already using the ports you want to use. It is therefore foolhardy to assume
that a call to a Connect or Listen method will always succeed. For this rea-
son, the try/catch construct should be employed as demonstrated below:

C#
try

{

 serverSocket.Bind(ipepServer);

 serverSocket.Listen(-1);

}

catch(SocketException e)

{

 MessageBox.Show(e.Message);

}

catch(Exception e)

{

 MessageBox.Show(e.Message);

 Application.Exit();

}

VB.NET
try

 serverSocket.Bind(ipepServer)

 serverSocket.Listen(-1)

catch e as SocketException

 MsgBox(e.Message)

Catch e as Exception

 MsgBox(e.Message)

74 3.5 Debugging network code

 Application.Exit()

End try

Another type of problem that plagues network applications is scalability.
This is where the software cannot cope with a large number of sequential or
concurrent connections, or both. To discover scalability problems, you can
either repetitively hit the Connect and Send buttons on your client or write
a stress test program to do this for you over long periods. The program may
run out of memory if sockets are not set to null after use, or it may crash
because of simultaneous access to a limited resource, or start dropping con-
nections, or work perfectly.

To locate problems in multithreaded applications, tracing statements
are invaluable. A good mechanism for doing this is the System.

Diagnostics.Trace class or simple Console.WriteLine statements at the
entrance and exit of methods. Once the problem has been located, plac-
ing Lock statements around non-thread-safe code usually aids system sta-
bility; however, placing a Lock clause around a blocking statement may
cause your application to hang.

When developing an application that interfaces with a third-party dis-
tributed application, it is sometimes quite difficult to see exactly what is
being sent between client and server. This matter can be further compli-
cated if the protocol is proprietary, with little or no technical information.

Many protocols are inherently text based and were originally designed
for users to access by typing the commands directly into the server, rather
than using a GUI. Nowadays, nobody would have the patience to upload a
file via FTP by typing the FTP commands directly into the server, but
because Internet standards are somewhat immortal, these old systems have
remained.

This rather arcane way of accessing Web-based services may no longer
be relevant to the end-user, but it is a godsend to the developer. Say, for
example, you are developing a program that is designed to interface an
IMAP (email) server. If the program is not receiving emails, after you’ve
meticulously implemented the protocol as per RFC spec, you can always
open up telnet and go through the paces of receiving an email by typing
text into telnet. If you can re-create the error manually, it should help
solve the problem from a programmatic perspective. This approach would
not work with binary protocols such as Distributed Common Object
Model (DCOM).

3.6 Socket-level networking in .NET 75

Chapter 3

If you are working with an unofficial or proprietary protocol, there may
be little chance you can guess how it works. The first step in approaching
any such protocol is to determine on which port it is operating. A useful
tool in doing this is netstat. To see it in action, open the command
prompt and type netstat (Figure 3.5).

This lists all of the current outgoing and incoming connections to your
computer at that time, along with the port in use. To isolate the port used
by any particular application, use the process of elimination. If you turn off
all nonessential network services apart from the application that you are
trying to analyze, take note of the list of ports, then turn off the application,
and compare the new list with the old list; whatever port is missing is the
application’s port.

Knowing the port number is only one step toward tapping into a proto-
col. To see exactly what bits and bytes are being sent between the two appli-
cations, you can use one of the example protocol analyzer programs
described in Chapter 13 or a ready-made application such as Trace Plus
from www.sstinc.com.

3.6 Socket-level networking in .NET

It is often necessary to understand network code written by other develop-
ers in order to debug it or adapt it to your own application. After all, no
program is ever written without referring to some existing code.

This book will consistently use the most concise code possible, but it is
important to realize that there are many techniques to implement net-
worked applications in .NET. It is equally important to be able to under-

Figure 3.5
Netstat utility.

76 3.6 Socket-level networking in .NET

stand and recognize these techniques when they are used in code written by
other developers.

The most important class in .NET networking is the Socket class. This
can be used for either TCP/IP or UDP as either a client or server; however,
it requires the help of the Dns class to resolve IP addresses and is quite diffi-
cult to use. Three other classes exist, which are simpler to use, but less flexi-
ble: TcpListener, TcpClient, and UdpClient. To illustrate the differences
between the two techniques, listed below is code that demonstrates how a
socket can be made to listen for incoming connections on port 8080 and
display any received data on screen.

The example below shows how to create a single-threaded TCP server
using only the Socket class. Begin a new project in Visual Studio .NET.
Drag a textbox onto the form, named tbStatus, which has its multiline
property set to true. Also add a button, named btnListen. Click on this
button and add the following code:

C#
private void btnListen_Click(object sender, System.EventArgs e)

{

 int bytesReceived = 0;

 byte[] recv = new byte[1];

 Socket clientSocket;

 Socket listenerSocket = new Socket(

 AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp

);

 IPHostEntry IPHost = Dns.GetHostByName(Dns.GetHostName());

 IPEndPoint ipepServer = new

 IPEndPoint(IPHost.AddressList[0],8080);

 listenerSocket.Bind(ipepServer);

 listenerSocket.Listen(-1);

 clientSocket = listenerSocket.Accept();

 if (clientSocket.Connected)

 {

 do

 {

 bytesReceived = clientSocket.Receive(recv);

 tbStatus.Text += Encoding.ASCII.GetString(recv);

 }

3.6 Socket-level networking in .NET 77

Chapter 3

 while (bytesReceived!=0);

 }

}

VB.NET
Private Sub btnListen_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Dim bytesReceived As Integer = 0

 Dim recv() As Byte = New Byte(1) {}

 Dim clientSocket As Socket

 Dim listenerSocket As New Socket(_

 AddressFamily.InterNetwork, _

 SocketType.Stream, _

 ProtocolType.Tcp)

 Dim IPHost As IPHostEntry = _

 Dns.GetHostByName(Dns.GetHostName())

 Dim ipepServer As IPEndPoint = New _

 IPEndPoint(IPHost.AddressList(0), 8080)

 listenerSocket.Bind(ipepServer)

 listenerSocket.Listen(-1)

 clientSocket = listenerSocket.Accept()

 If clientSocket.Connected Then

 Do

 bytesReceived = clientSocket.Receive(recv)

 tbStatus.Text += Encoding.ASCII.GetString(recv)

 Loop While bytesReceived <> 0

 End If

End Sub

So far, the sockets we have dealt with have been abstracted to perform
specific tasks, and as such provide specialized methods that make the cod-
ing easier. The generic socket object can be either a server or client.

The listener socket is created with a constructor that is passed three
parameters: addressing scheme, socket type, and protocol type.

Table 3.5 shows supported addressing schemes.

Most of these addressing schemes would rarely be used in a modern
Windows environment, but they could be used when interfacing to mini-
computers or legacy systems.

Table 3.6 shows upported protocol types.

78 3.6 Socket-level networking in .NET

Table 3.5 Addressing schemes supported by Socket .

Addressing scheme Usage

AddressFamily.AppleTalk AppleTalk address, used for
communications with Apple Macintosh
computers.

AddressFamily.Atm Native asynchronous transfer mode
(ATM) services address.

AddressFamily.Banyan Banyan VINES (Virtual Networking
System) address.

AddressFamily.Ccitt Addresses for protocols such as X.25.

AddressFamily.Chaos Address for CHAOS protocols, in format
007.x.y.z.

AddressFamily.Cluster Address for Microsoft cluster products,
such as MSCS.

AddressFamily.DataKit Address for Datakit protocols, such as the
universal receiver protocol.

AddressFamily.DataLink Direct data-link (MAC) interface address.

AddressFamily.DecNet DECnet address, designed for DEC
minicomputers.

AddressFamily.Ecma European Computer Manufacturers
Association (ECMA) address, used for
circuit-switched call control.

AddressFamily.FireFox FireFox address, runs over TCP 1689.

AddressFamily.HyperChannel NSC hyperchannel address, defined in
RFC 1044.

AddressFamily.Ieee12844 IEEE 1284.4 workgroup address,
commonly known as DOT4 and used by
HP printers.

AddressFamily.ImpLink ARPANET interface message processor
(IMP) address.

AddressFamily.InterNetwork IPv4 address, most commonly used for
Internet transfers.

AddressFamily.InterNetworkV6 IPv6 address, used for the next version of
IP.

AddressFamily.Ipx Internetwork packet exchange (IPX)
address.

3.6 Socket-level networking in .NET 79

Chapter 3

AddressFamily.Irda Infrared data association address.

AddressFamily.Iso Address for ISO protocols, such as ISO-
IP.

AddressFamily.Lat Local area transport protocol address,
used with DEC minicomputers.

AddressFamily.Max MAX address.

AddressFamily.NetBios NetBios address, used for Windows file
and printer sharing.

AddressFamily.NetworkDesigners Address for Network Designers OSI
gateway-enabled protocols.

AddressFamily.NS Address for Xerox NS protocols, such as
IDP.

AddressFamily.Pup Address for PARC universal packet (PUP)
protocols.

AddressFamily.Sna IBM Systems Network Architecture
address.

AddressFamily.Unix UNIX local-to-host address.

AddressFamily.VoiceView VoiceView address, used in voice and data
telephony.

Table 3.6 Protocol types supported by socket .

Addressing scheme Usage

ProtocolType.Ggp Gateway to gateway protocol (GGP),
used for interrouter communications

ProtocolType.Icmp Internet control message protocol
(ICMP), also known as Ping and used to
report network errors

ProtocolType.Idp Internet datagram protocol (IDP), the
underlying transport for Xerox
networking protocols

ProtocolType.Igmp Internet group management protocol
(IGMP), used in multicasting

Table 3.5 Addressing schemes supported by Socket (continued).

Addressing scheme Usage

80 3.6 Socket-level networking in .NET

The next section of code following the socket constructor is used to
resolve the local IP address of the computer. Using the same construct as
before, Dns.GetHostByName returns an IPHostEntry object. Element num-
ber 0 of the AddressList array is then assumed to be the external address.

An IPEndPoint object is created from the local IP address and the port
number 8080. The listener socket is then bound to the endpoint. The
socket does not start listening until the Listen method is called. The
parameter specifies the number of clients to keep on hold at any one time;
-1 indicates an indefinite holding time.

As before, when the Accept method is called, execution stops until a
connection request is received. Once a connection request is received, a new
socket dedicated to this client is returned. Once a connection has been

ProtocolType.IP Internet protocol (IP), the underlying
transport for all communications on the
Internet

ProtocolType.Ipx Internetwork packet exchange (IPX),
Novell’s implementation of IDP

ProtocolType.ND Specifies an unofficial protocol named net
disk (ND)

ProtocolType.Pup PARC universal packet (PUP) protocol, a
predecessor of routing information
protocol (RIP)

ProtocolType.Raw Raw socket data; excludes frame headers

ProtocolType.Spx Sequential packet exchange (SPX),
Novell’s transport layer protocol that
provides a packet delivery service

ProtocolType.SpxII Sequential packet exchange 2 (SPX2), a
more modern implementation of SPX

ProtocolType.Tcp Transmission control protocol (TCP), the
most common protocol for Internet data
transfer

ProtocolType.Udp User datagram protocol (UDP), used for
high-speed, low-integrity data transfers on
the Internet

Table 3.6 Protocol types supported by socket (continued).

Addressing scheme Usage

3.6 Socket-level networking in .NET 81

Chapter 3

established, the socket will read incoming data one byte at a time and
append it to the textbox tbStatus. When the Receive method returns 0,
the remote end will have closed the connection. Because this example does
not use threading, it cannot handle more than one client at a time and will
appear to hang during operation.

To complete the program, you will also require the following
namespaces:

C#
using System.Text;

using System.Net.Sockets;

using System.Net;

VB.NET
Imports System.Text

Imports System.Net.Sockets

Imports System.Net

To test this application, run it from Visual Studio .NET. Press the listen
button. At this point, the application will become unresponsive and appear
to hang. Open telnet on the local machine with the following command:

telnet localhost 8080

Type some text, and then quit telnet. You should see that text on the
application window, as depicted in Figure 3.6.

Most networked applications deal with the interchange of commands
and data between client and server. Because TCP/IP requires connections to
be explicitly opened and closed, it is possible to locate where networking
code starts by searching for phrases such as “new TcpListener” or “Listen”
for servers, and “new TcpClient” or “Connect” for clients.

It is both unprofessional and irritating to users if your application
becomes unresponsive during normal operation. To avoid this problem,
you could use threading, as was demonstrated in examples earlier in this
chapter; however, another technique is sometimes employed. Asynchronous
sockets are arguably more complicated than threading, but can sometimes
offer higher performance when you are handling a large number of concur-
rent connections. Asynchronous operation is mapped to low-level I/O com-
pletion ports in the operating system.

82 3.6 Socket-level networking in .NET

The following code modifies the above example such that it does not
become unresponsive when waiting for incoming requests or data. Reopen
the previous example in Visual Studio .NET, and add the following public
variables directly inside the Form class:

C#
private AsyncCallback acceptCallBack;

private AsyncCallback receiveCallBack;

public Socket listenerSocket;

public Socket clientSocket;

public byte[] recv;

VB.NET
Private acceptCallBack As AsyncCallback

Private receiveCallBack As AsyncCallback

Public listenerSocket As Socket

Public clientSocket As Socket

Public recv() As Byte

These variables need to be accessible to any function within the form
because server operation is split between three functions: btnListen_Click
uses a socket to listen on port 8080; acceptHandler accepts incoming con-
nections; and receiveHandler handles incoming data.

Double-click on the Listen button, and replace the code with the fol-
lowing code:

Figure 3.6
TCP server using
socket-level code.

3.6 Socket-level networking in .NET 83

Chapter 3

C#
private void btnListen_Click(object sender, System.EventArgs
e)

{

 acceptCallBack = new AsyncCallback(acceptHandler);

 listenerSocket = new Socket(

 AddressFamily.InterNetwork,

 SocketType.Stream,

 ProtocolType.Tcp

);

 IPHostEntry IPHost = Dns.GetHostByName(Dns.GetHostName());

 IPEndPoint ipepServer = new
IPEndPoint(IPHost.AddressList[0],8080);

 listenerSocket.Bind(ipepServer);

 listenerSocket.Listen(-1);

 listenerSocket.BeginAccept(acceptCallBack,null);

}

VB.NET
Private Sub btnListen_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 acceptCallBack = New AsyncCallback(AddressOf _

 acceptHandler)

 Dim listenerSocket As Socket = New Socket(_

 AddressFamily.InterNetwork, _

 SocketType.Stream, _

 ProtocolType.Tcp _

)

 Dim IPHost As IPHostEntry = _

 Dns.GetHostByName(Dns.GetHostName())

 Dim ipepServer As IPEndPoint = New _

 IPEndPoint(IPHost.AddressList(0), 8080)

 listenerSocket.Bind(ipepServer)

 listenerSocket.Listen(-1)

 listenerSocket.BeginAccept(acceptCallBack, Nothing)

End Sub

Instead of calling Listen on the socket, BeginListen is called. By doing
this, the function will return immediately, and .NET knows that if an
incoming connection appears on the port, the function acceptHandler is
to be called. The second parameter passed to BeginAccept is Nothing, or

84 3.6 Socket-level networking in .NET

null because no extra information needs to be passed to the callback func-
tion once it is called.

Now, add the callback function to handle incoming connections:

C#
public void acceptHandler(IAsyncResult asyncResult)

{

 receiveCallBack = new AsyncCallback(receiveHandler);

 clientSocket = listenerSocket.EndAccept(asyncResult);

 recv = new byte[1];

 clientSocket.BeginReceive(recv,0,1,

 SocketFlags.None,receiveCallBack,null);

}

VB.NET
Public Sub acceptHandler(ByVal asyncResult As IAsyncResult)

 receiveCallBack = New AsyncCallback(receiveHandler)

 clientSocket = listenerSocket.EndAccept(asyncResult)

 recv = New Byte(1) {}

 clientSocket.BeginReceive(recv,0,1, _

 SocketFlags.None,receiveCallBack,Nothing)

End Sub

The EndAccept method returns the same socket as would be created by
the Accept method; however, EndAccept is nonblocking and will return
immediately, unlike Accept.

Just as incoming connections are asynchronous by nature, incoming
data also arrives asynchronously. If the connection is held open for longer
than a few seconds, users will begin to notice that the application has
become unresponsive; therefore, a second asynchronous call is used here.
Instead of calling Receive, BeginReceive is called on the socket. This is
passed an array buffer, which it populates asynchronously as data arrives.
Again, an AsyncCallback object is passed to it because this object contains
the reference to the callback function: receiveHandler.

Now, add the callback function to handle incoming data:

C#
public void receiveHandler(IAsyncResult asyncResult)

{

3.6 Socket-level networking in .NET 85

Chapter 3

 int bytesReceived = 0;

 bytesReceived = clientSocket.EndReceive(asyncResult);

 if (bytesReceived != 0)

 {

 tbStatus.Text += Encoding.UTF8.GetString(recv);

 recv = new byte[1];

 clientSocket.BeginReceive(recv,0,1,

 SocketFlags.None,receiveCallBack,null);

 }

}

VB.NET
Public Sub receiveHandler(ByVal asyncResult As _
IAsyncResult)

 Dim bytesReceived As Integer = 0

 bytesReceived = clientSocket.EndReceive(asyncResult)

 if bytesReceived <> 0 then

 tbStatus.Text += Encoding.UTF8.GetString(recv)

 recv = New Byte(1) {}

 clientSocket.BeginReceive(recv,0,1, _

 SocketFlags.None,receiveCallBack,Nothing)

 End if

End Sub

In this example, the array buffer is only one byte long, so this function
will be called every time one byte of data appears on port 8080. This func-
tion is also called when the connection closes, but in this case, the number
returned from EndReceive is 0. If data is received, the asynchronous read
must be continued by calling BeginReceive again.

To complete the program, you will also require the following namespaces:

C#
using System.Text;

using System.Net.Sockets;

using System.Net;

VB.NET
Imports System.Text

Imports System.Net.Sockets

Imports System.Net

86 3.7 Conclusion

Test the application in the same way as before. This time, you will notice
that the application does not become unresponsive once the Listen button
is pressed.

3.7 Conclusion

Socket-level programming is the foundation of all network programming.
This chapter should provide enough information to assist you in imple-
menting any TCP- or UDP-based protocol, proprietary or otherwise.

Not all network protocols need to be coded at the socket level; extensive
support for HTTP is provided through classes provided by the .NET frame-
work. Leveraging this ready-made functionality can cut down on the devel-
opment time required for socket-level implementation.

The next chapter takes a detailed look at HTTP and how to write pro-
grams in .NET that communicate with Web servers.

87

4

HTTP: Communicating with Web Servers

4.1 Introduction

This chapter demonstrates how to pull data from the Web and use it within
your own applications. As mentioned in Chapter 1, Web pages are hosted
on computers that run Web server software such as Microsoft Internet
Information Services (IIS) or Apache. Hypertext transfer protocol (HTTP)
is used to communicate with these applications and retrieve Web sites.

There are many reasons why an application may interact with a Web
site, such as the following:

�

To check for updates and to download patches and upgrades

�

To retrieve information on data that changes from hour to hour (e.g.,
shared values, currency conversion rates, weather)

�

To automatically query data from services operated by third parties
(e.g., zip code lookup, phone directories, language translation services)

�

To build a search engine

�

To cache Web pages for faster access or to act as a proxy

The first half of this chapter describes how to send and receive data to
web servers. This includes an example of how to manipulate the HTML
data received from the web server. The chapter is concluded with an imple-
mentation of a custom web server, which could be used instead of IIS.

88

4.2

HTTP

4.1.1 Data mining

Data mining is where an application downloads a Web page and extracts
specific information from it automatically. It generally refers to the retrieval
of large amounts of data from Web pages that were never designed for auto-
mated reading.

A sample application could be a TV guide program that would down-
load scheduling information from TV Web sites and store it in a database
for quick reference.

Note:

You should always check with Web site administrators whether they
permit data mining on their sites because it may infringe copyright or put
excessive load on their servers. Unauthorized data mining can result in a

Web administrator blocking your IP address or worse!

In order to extract useful data from this HTML, you will need to be well
acquainted with the language and good at spotting the patterns of HTML
that contain the data required; however, several good commercial products
aid developers with data mining from HTML pages, and home-brewed
solutions are not always the best idea.

4.2 HTTP

HTTP operates on TCP/IP port 80 and is described definitively in RFC
2616. The protocol is quite straightforward. The client opens TCP port 80
to a server, the client sends an HTTP request, the server sends back an
HTTP response, and the server closes the TCP connection.

4.2.1 The HTTP request

The simplest HTTP request is as follows:

GET /

<enter><enter>

Tip:

On some servers, it is necessary to specify the DNS name of the server

in the

GET

 request.

4.2

HTTP 89

Chapter 4

This request will instruct the server to return the default Web page; how-
ever, HTTP requests are generally more complex, such as the following:

GET / HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-powerpoint, application/vnd.ms-excel,
application/msword, */*

Accept-Language: en-gb

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT
5.1; .NET CLR 1.0.3705)

Host: 127.0.0.1:90

Connection: Keep-Alive

This tells the server several things about the client, such as the type of
browser and what sort of data the browser can render.

Table 4.1 shows a complete list of standard HTTP request headers are as
follows:

Table 4.1

Standard HTTP request headers .

HTTP header Meaning

Accept

Used to specify which media (MIME) types are
acceptable for the response. The

type */*

 indicates
all media types and

type/*

 indicates all subtypes of
that type. In the example above,

application/

msword

 indicates that the browser can display Word
documents.

Accept-Charset

Used to specify which character sets are acceptable in
the response. In the case where a client issues

Accept-Charset: iso-8859-5

, the server
should be aware that the client cannot render Japanese
(Unicode) characters.

Accept-Encoding

Used to specify if the client can handle compressed
data. In the above example, the browser is capable of
interpreting GZIP compressed data.

Accept-Language

Used to indicate the language preference of the user.
This can be used to estimate the geographic location
of a client;

en-gb

 in the above example may indicate
that the client is from the United Kingdom.

90

4.2

HTTP

Authorization

Used to provide authentication between clients and
servers. Refer to RFC 2617 or Chapter 9 for more
details.

Host

Host indicates the intended server IP address as typed
in at the client. This could differ from the actual
destination IP address if the request were to go via a
proxy. The host address

127.0.0.1:90

 in the above
example indicates that the client was on the same
computer as the server, which was running on port 90.

If-Modified-Since

Indicates that the page is not to be returned if it has
not been changed since a certain date. This permits a
caching mechanism to work effectively. An example is

If-Modified-Since: Sat, 29 Oct 1994

19:43:31 GMT

.

Proxy-Authorization

This provides for authentication between clients and
proxies. Refer to RFC 2617 or Chapter 9 for more
details.

Range

This provides for a mechanism to retrieve a section of
a Web page by specifying which ranges of bytes the
server should return; this may not be implemented
on all servers. An example is

bytes=500-

600,601-999

.

Referer

This indicates the last page the client had visited
before going to this specific URL. An example is

Referer: http://www.w3.org/index.html.

(The misspelling of

“referrer”

 is not a typing mistake!)

TE

Transfer encoding (TE) indicates which extension
transfer encoding it can accept in the response and if it
can accept trailer fields in a chunked transfer
encoding.

User-Agent

Indicates the type of device the client is running from.
In the above example, the browser was Internet
Explorer 6.

Content-Type

Used in

POST

 requests. It indicates the MIME type of
the posted data, which is usually

application/x-

www-form-urlencoded

.

Content-Length

Used in

POST

 requests. It indicates the length of the
data immediately following the double line.

Table 4.1

Standard HTTP request headers (continued).

HTTP header Meaning

4.2

HTTP 91

Chapter 4

Note:

Device-specific HTTP request headers are prefixed with “x-”.

GET

 and

POST

 are the most common HTTP commands. There are oth-
ers, such as

HEAD

,

OPTIONS

,

PUT

,

DELETE

, and

TRACE

, and interested readers
can refer to RFC 2616 for information on these HTTP commands.

Web developers may be familiar with

GET

 and

POST

 from the HTML
form tag, which takes the form:

<form name="myForm" action="someDynamicPage" method="POST">

The difference from a user’s point of view is that form parameters do not
appear in the URL bar of the browser when submitting this form. These
parameters are contained in the region immediately following the double-
line feed. A POST request resembles the following:

POST / HTTP/1.1

Content-Type: application/x-www-form-urlencoded

Content-Length: 17

myField=some+text

4.2.2 The HTTP response

When the server receives an HTTP request, it retrieves the requested page
and returns it along with an HTTP header. This is known as the HTTP
response.

A sample HTTP response is as follows:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.1

Date: Sun, 05 Jan 2003 20:59:47 GMT

Connection: Keep-Alive

Content-Length: 25

Content-Type: text/html

Set-Cookie: ASPSESSIONIDQGGQQFCO=MEPLJPHDAGAEHENKAHIHGHGH;
path=/

Cache-control: private

This is a test html page!

92

4.2

HTTP

The client would display the message “This is a test html page!” on
screen in response to this command.

Table 4.2

Standard HTTP request headers.

HTTP request header Meaning

ETag

The entity tag is used in conjunction with the

If-

suffixed HTTP requests. Servers rarely return it.

Location

It is used in redirects, where the browser is requested
to load a different page. Used in conjunction with
HTTP 3xx responses.

Proxy-Authenticate

This provides for authentication between clients and
proxies. Refer to RFC 2617 Section 14.33 or Chapter
9 for more details.

Server

Indicates the server version and vendor. In the above
example, the server was IIS running on Windows XP.

WWW-Authenticate

This provides for authentication between clients and
proxies. Refer to RFC 2617 Section 14.47 or Chapter
9 for more details.

Content-Type

Indicates the MIME type of the content returned. In
the above example, the type is HTML

Content-Length

Indicates the amount of data following the double-line
feed. The server will close the connection once it has
sent all of the data; therefore, it is not always necessary
to process this command.

Set-Cookie

A cookie is a small file that resides on the client. A
cookie has a name and value. In the above example,
the cookie name is

ASPSESSIONIDQGGQQFCO

.

Table 4.3

HTTP response codes .

HTTP response
code range Meaning

100–199

Informational: Request was received; continuing the process.

200–299 Success: The action was successfully received, understood, and
accepted.

300–399 Redirection: Further action must be taken in order to complete the
request.

4.2 HTTP 93

Chapter 4

Every HTTP response has a response code. In the above example, the
response code was 200. This number is followed by some human-readable
text (i.e., OK).

The response codes fall into five main categories shown in Table 4.3.

4.2.3 MIME types

Multipart Internet mail extensions (MIME) types are a means of describing
the type of data, such that another computer will know how to handle the
data and how to display it effectively to the user.

To illustrate the example, if you changed the extension of a JPEG image
(.JPG) to .TXT, and clicked on it, you would see a jumble of strange char-
acters, not the image. This is because Windows contains a mapping from
file extension to file type, and .JPG and .TXT are mapped to different file
types: image/jpeg for .JPG and text/plain for .TXT.

To find an MIME type for a particular file, such as .mp3, you can open
the registry editor by clicking on Start > Run, then typing REGEDIT. Then
click on HKEY_CLASSES_ROOT, scroll down to .mp3, and the MIME
type is written next to Content Type.

Note: Not all file types have a MIME type (e.g., .hlp help files).

4.2.4 System.Web

One of the most common uses of HTTP within applications is the ability
to download the HTML content of a page into a string. The following
application demonstrates this concept.

It is certainly possible to implement HTTP at the socket level, but there
is a wealth of objects ready for use in HTTP client applications, and it

400–499 Redirection: Further action must be taken in order to complete the
request.

500-599 Server error: The server failed to fulfill an apparently valid request.

Table 4.3 HTTP response codes (continued).

HTTP response
code range Meaning

94 4.2 HTTP

makes little sense to reinvent the wheel. The HTTP server in the next sec-
tion is implemented using HTTPWebReqest.

Start a new project in Visual Studio .NET, and drag on two textboxes,
tbResult and tbUrl. TbResults should be set with multiline=true. A
button, btnCapture, should also be added. Click on the Capture button,
and enter the following code:

C#
private void btnCapture_Click(object sender, System.EventArgs
e)

{

 tbResult.Text = getHTTP(tbUrl.Text);

}

VB.NET
Private Sub btnCapture_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnCapture.Click

 tbResult.Text = getHTTP(tbUrl.Text)

End Sub

Then implement the getHTTP function:

C#
public string getHTTP(string szURL)

{

 HttpWebRequest httpRequest;

 HttpWebResponse httpResponse;

 string bodyText = "";

 Stream responseStream;

 Byte[] RecvBytes = new Byte[Byte.MaxValue];

 Int32 bytes;

 httpRequest = (HttpWebRequest) WebRequest.Create(szURL);

 httpResponse = (HttpWebResponse) httpRequest.GetResponse();

 responseStream = httpResponse.GetResponseStream();

 while(true)

 {

 bytes = responseStream.Read(RecvBytes,

 0,RecvBytes.Length);

 if (bytes<=0) break;

 bodyText += System.Text.Encoding.UTF8.GetString(RecvBytes,

 0, bytes);

4.2 HTTP 95

Chapter 4

 }

 return bodyText;

}

VB.NET
Public Function getHTTP(ByVal szURL As String) As String

 Dim httprequest As HttpWebRequest

 Dim httpresponse As HttpWebResponse

 Dim bodytext As String = ""

 Dim responsestream As Stream

 Dim bytes As Int32

 Dim RecvBytes(Byte.MaxValue) As Byte

 httprequest = CType(WebRequest.Create(szURL), _

 HttpWebRequest)

 httpresponse = CType(httprequest.GetResponse(), _

 HttpWebResponse)

 responsestream = httpresponse.GetResponseStream()

 Do While (True)

 bytes = responsestream.Read(RecvBytes, 0, _

 RecvBytes.Length)

 If bytes <= 0 Then Exit Do

 bodytext += System.Text.Encoding.UTF8.GetString _

 (RecvBytes, 0, bytes)

 Loop

 Return bodytext

End Function

Taking a closer look at this code, it should be relatively easy to identify
how it operates. The first action taken as this code is executed is that a static
method on the WebRequest class is called and passed the string szURL as a
parameter. This creates a webRequest object that can be cast to an HttpWe-
bRequest object, which will handle outgoing HTTP connections.

Once we have an HttpWebRequest object, we can then send the HTTP
request to the server and start receiving data back from the server by calling
the GetResponse method. The return value is then cast to an
HttpWebResponse object, which is then held in the httPresponse variable.

A response from a Web server is asynchronous by nature, so it is natural
to create a stream from this returning data and read it in as it becomes avail-
able. To do this, we can create a stream by calling the GetResponseStream
method. Once the stream is obtained, we can read bytes from it in chunks

96 4.2 HTTP

of 256 bytes (byte.Max). Reading data in chunks improves performance.
The chunk size can be arbitrarily chosen, but 256 is efficient.

The code sits in an infinite loop until all of the incoming data is
received. In a production environment, therefore, this type of action should
be contained within a separate thread. Once we have a string containing all
of the HTML, we can simply dump it to screen. No other processing is
required. You will also need some extra namespaces:

C#
using System.Net;

using System.IO;

VB.NET
Imports System.Net

Imports System.IO

To test the application, run it from Visual Studio, type in a Web site
address (not forgetting the http:// prefix), and press Capture. The HTML
source will appear in the body (Figure 4.1).

This is a very simple HTTP client, with no error handling, and is single
threaded; however, it should suffice for simpler applications.

Figure 4.1
HTTP client
application.

4.2 HTTP 97

Chapter 4

Table 4.4 shows the significant methods of HttpWebResponse.

4.2.5 Posting data

Many dynamic Web sites contain forms for login details, search criteria, or
similar data. These forms are usually submitted via the POST method. This
poses a problem, however, for any application that needs to query a page
that lies behind such a form because you cannot specify posted data in the
URL line.

Table 4.4 Significant members of the HttpWebResponse class.

Method or property Meaning

ContentEncoding Gets the method used to encode the body of the.
response. Returns String.

ContentLength Gets the length of the content returned by the request.
Returns Long.

ContentType Gets the content type of the response. Returns
String.

Cookies Gets or sets the cookies associated with this request.
May be used thus:
Cookies[“name”].ToString().

Headers Gets the headers associated with this response from
the server. May be invoked thus:
Headers[“Content-Type”].ToString().

ResponseUri Gets the URI of the Internet resource that responded
to the request. May be invoked thus:
RequestURI.ToString().

Server Gets the name of the server that sent the response.
Returns String.

StatusCode Gets the status of the response. Returns the
HttpStatusCode enumerated type. The
StatusDescription returns a descriptive
String.

GetResponseHeader Gets the specified header contents that were returned
with the response. Returns String.

GetResponseStream Gets the stream used to read the body of the response.
No asynchronous variant. Returns stream.

98 4.2 HTTP

First, prepare a page that handles POST requests. In this case, type the fol-
lowing lines into a file called postTest.aspx in c:\inetpub\wwwroot (your
HTTP root):

ASP.NET
<%@ Page language="c#" Debug="true"%>

<script language="C#" runat="server">

 public void Page_Load(Object sender, EventArgs E)

 {

 if (Request.Form["tbPost"]!=null)

 {

 Response.Write(Request.Form["tbPost"].ToString());

 }

 }

</script>

<form method="post">

 <input type="text" name="tbpost">

 <input type="submit">

</form>

ASP.NET is a vast subject that lies outside the scope of this book; how-
ever, for the sake of explaining the above example, a quick introduction is
necessary. ASP.NET is an extension to IIS that enables .NET code to be
executed on receipt of requests for Web pages. This also provides means for
.NET code to dynamically generate responses to clients in the form of
HTML, viewable on Web browsers.

Incoming requests and outgoing data are mapped to objects in .NET,
which can easily be read and manipulated. The most fundamental of these
objects are the Request and Response objects. The Request object encapsu-
lates the data sent from the Web browser to the server; of its properties, two
of the most important are the Form and QueryString collections. The Form
collection reads data sent from the client via the POST method, whereas the
QueryString collection reads data sent from the client via the GET method.

The Response object places data on the outgoing HTTP stream to be
sent to the client. One of its most important methods is Write. This
method is passed a string that will be rendered as HTML on the client.

One of the features that makes ASP.NET more powerful than its predeces-
sor, classic ASP, is its ability to model HTML elements as objects, not merely

4.2 HTTP 99

Chapter 4

as input and output streams. For example, an input box would be typically
written in ASP.NET as <ASP:TEXTBOX id=”tbText” runat=”server”/>, and
the properties of this textbox could then be modified from code by accessing
the tbText object. In classic ASP, the only way to achieve such an effect
would be to include code within the textbox declaration, such as <input
type=”text” <%=someCode%>>, which is less desirable because functional
code is intermixed with HTML.

ASP.NET provides better performance than classic ASP because it is
compiled on first access (in-line model) or precompiled (code-behind
model). It also leverages the .NET framework, which is much richer than
the scripting languages available to ASP.

The example above is appropriate for demonstrating the posting
method. Every Web scripting language handles posted data in much the
same way, so the technique is applicable to interfacing with any Web form.

Web scripting languages share a common feature: some sections of the
page are rendered on the browser screen as HTML, and some are processed
by the server and not displayed on the client. In the example, anything
marked runat=”server” or prefixed <% will be processed by the server.

When the user presses the submit button (<input type=”submit”>), the
browser packages any user-entered data that was contained within the
<form> tags and passes it back to the server as a POST request.

The server parses out the data in the POST request once it is received.
The server-side script can retrieve this data by accessing the Request.Form
collection. The Response.Write command prints this data back out to the
browser.

To try the page out, open a browser and point it at http://localhost/post-
Test.aspx; type something into the textbox, and press Submit. Then you will
see the page refresh, and the text you typed appears above the form.

Reopen the previous example and add a new textbox named tbPost.
Click on the Capture button and modify the code as follows:

C#
private void btnCapture_Click(object sender, System.EventArgs
e)

{

 tbPost.Text = HttpUtility.UrlEncode(tbPost.Text);

 tbResult.Text =
getHTTP(tbUrl.Text,"tbPost="+tbPost.Text);

}

100 4.2 HTTP

VB.NET
Private Sub btnCapture_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnCapture.Click

 tbPost.Text = HttpUtility.UrlEncode(tbPost.Text)

 tbResult.Text = getHTTP(tbUrl.Text,"tbPost="+tbPost.Text)

End Sub

The reason for the call to HttpUtility.UrlEncode is to convert the text
entered by the user into a string that is safe for transport by HTTP. This
means the removal of white space (spaces are converted to “+”) and the con-
version of nonalphanumeric characters, which is a requirement of the
HTTP protocol.

Once the data to post is encoded, it can be passed to the getHTTP func-
tion, which is described below. It is a modified version of the code previ-
ously listed.

C#
public string getHTTP(string szURL,string szPost)

{

 HttpWebRequest httprequest;

 HttpWebResponse httpresponse;

 StreamReader bodyreader;

 string bodytext = "";

 Stream responsestream;

 Stream requestStream;

 httprequest = (HttpWebRequest) WebRequest.Create(szURL);

 httprequest.Method = "POST";

 httprequest.ContentType =

 "application/x-www-form-urlencoded";

 httprequest.ContentLength = szPost.Length;

 requestStream = httprequest.GetRequestStream();

 requestStream.Write(Encoding.ASCII.GetBytes(szPost),0,

 szPost.Length);

 requestStream.Close();

 httpresponse = (HttpWebResponse) httprequest.GetResponse();

 responsestream = httpresponse.GetResponseStream();

 bodyreader = new StreamReader(responsestream);

 bodytext = bodyreader.ReadToEnd();

 return bodytext;

}

4.2 HTTP 101

Chapter 4

VB.NET
Public Function getHTTP(ByVal szURL As String, _

ByVal szPost As String) As String

 Dim httprequest As HttpWebRequest

 Dim httpresponse As HttpWebResponse

 Dim bodyreader As StreamReader

 Dim bodytext As String = ""

 Dim responsestream As Stream

 Dim requestStream As Stream

 httprequest = CType(WebRequest.Create(szURL), _

 HttpWebRequest)

 httprequest.Method = "POST"

 httprequest.ContentType = _

 "application/x-www-form-urlencoded"

 httprequest.ContentLength = szPost.Length

 requestStream = httprequest.GetRequestStream()

 requestStream.Write(Encoding.ASCII.GetBytes(szPost), _

 0,szPost.Length)

 requestStream.Close()

 httpresponse = CType(httprequest.GetResponse(), _

 HttpWebResponse)

 responsestream = httpresponse.GetResponseStream()

 bodyreader = New StreamReader(responsestream)

 bodytext = bodyreader.ReadToEnd()

 Return bodytext

End Function

This differs from the code to simply retrieve a Web page in that once the
HttpWebRequest has been created, several parameters are set such that the
request also includes the posted data. The chunked reader loop is also
replaced with the ReadToEnd() method of StreamReader. This method may
be elegant, but it is not compatible with binary data.

The three settings that need to be changed are the request method, con-
tent type, and content length. The request method is usually GET but now
must be set to POST. The content type should be set to the MIME type
application/x-www-form-urlencoded, although this is not strictly neces-
sary. The content length is simply the length of the data being posted,
including the variable names, and after URL encoding.

102 4.2 HTTP

The data to be posted must then be sent to the server using the Write
method on the request stream. Once the request has been created, it is sim-
ply a matter of receiving the stream from the remote server and reading to
the end of the stream.

Finally, we need namespaces for the HttpUtility and Encoding objects.
You will need to make a reference to System.Web.dll by selecting Project→→→→
Add Reference, as shown in Figure 4.2.

C#
using System.Web;

using System.Text;

using System.IO;

using System.Net;

VB.NET
Imports System.Web

Imports System.Text

Imports System.IO

Imports System.Net

Figure 4.2
Visual Studio

.NET, Add
Reference dialog.

4.2 HTTP 103

Chapter 4

To test the application, run it through Visual Studio .NET, enter http://
localhost/postTest.aspx into the URL textbox, and add some other text into
the POST textbox. When you press Capture, you will see that the posted
text appears as part of the Web page (Figure 4.3).

Table 4.5 shows the significant members of HttpWebRequest.

Figure 4.3
HTTP client

application with
POST facility.

Table 4.5 Significant members of HttpWebRequest .

Method or Property Meaning

Accept Gets or sets the value of the Accept HTTP header.
Returns String.

AllowAutoRedirect Gets or sets a Boolean value that indicates whether the
request should follow redirection (3xx) responses.

ContentLength Gets or sets the Content-length HTTP header.

ContentType Gets or sets the value of the Content-type HTTP
header.

CookieContainer Gets or sets the cookies associated with the request.
May be invoked thus:
CookieContainer.getCookies[“name”].ToS

tring().

104 4.2 HTTP

4.2.6 A note on cookies

HTTP does not maintain state information. It is therefore difficult to dif-
ferentiate between two users accessing a server or one user making two
requests. From the server’s point of view, it is possible for both users to have
the same IP address (e.g., if they are both going through the same proxy
server). If the service being accessed contained personal information, the
user to whom this data pertains is legally entitled to view this data, but
other users should not be allowed access.

In this situation, the client side of the connection needs to differentiate
itself from other clients. This can be done in several ways, but for Web sites,
cookies are the best solution.

Headers Gets a collection of strings that are contained in the
HTTP header. May be invoked thus:
Headers[“Content-Type”].ToString().

Method Gets or sets the method for the request. Can be set to
GET, HEAD, POST, PUT, DELETE, TRACE, or
OPTIONS.

Proxy Gets or sets proxy information for the request. Returns
WebProxy.

Referer Gets or sets the value of the Referer HTTP header.
Returns String.

RequestUri Gets the original URI of the request. Address is the
URI after redirections. May be invoked thus:
RequestURI.ToString().

Timeout Gets or sets the time-out value. May be invoked thus

Timeout=(int) new

TimeSpan(0,0,30).TotalMilliseconds.

TransferEncoding Gets or sets the value of the Transfer-encoding
HTTP header. Returns String.

UserAgent Gets or sets the value of the User-agent HTTP
header. Returns String.

GetResponse Returns a webResponse from an Internet resource.
Its asynchronous variant is BeginGetResponse and
EndGetResponse.

Table 4.5 Significant members of HttpWebRequest (continued).

Method or Property Meaning

4.2 HTTP 105

Chapter 4

Cookies are small files stored in c:\windows\cookies (depending on
your Windows installation). They are placed there in one of two ways: by
the JavaScript document.cookie object, or by the set-cookie header in
HTTP requests. These cookies remain on the client’s machine for a set time
and can be retrieved in JavaScript or in HTTP responses.

Cookies are supported in .NET via the HttpWebResponse.Cookies and
the HttpWebRequest.CookieContainer objects.

Cookies are domain specific; therefore, a cookie stored on www.library.com
cannot be retrieved by www.bookshop.com. In circumstances where both sites
are affiliated with each other, the two sites might need to share session state
information. In this example, it would be advantageous for bookshop.com
to know a user’s reading preferences, so that it could advertise the most rel-
evant titles.

The trick to copying cookies across domains is to convert the cookies
into text, pass the text between the servers, and pass the cookies back to the
client from the foreign server. .NET offers a facility to serialize cookies,
which is ideal for the purpose.

4.2.7 A WYSIWYG editor

WYSIWYG (what you see is what you get) is a term used to describe Web
and graphics editors that enable you to naturally manipulate graphical out-
put, without having to be concerned with the underlying code. This feature
is a handy way to let users be more creative in the type of textual messages
or documents they create, without requiring them to take a crash course in
HTML.

Internet Explorer can run in a special design mode, which is acceptable
as a WYSIWYG editor. The trick to accessing design mode in Internet
Explorer is simply to set the property WebBrowser.Document.designMode to
On. Users can type directly into the Internet Explorer window and use well-
known shortcut keys to format text (e.g., Ctrl + B, Bold; Ctrl + I, Italic;
Ctrl + U, Underline). By right-clicking on Internet Explorer in design
mode, a user can include images, add hyperlinks, and switch to browser
mode. When an image is included in the design view, it can be moved and
scaled by clicking and dragging on the edge of the image.

More advanced features can be accessed via Internet Explorer’s
execCommand function. Only FontName, FontSize, and ForeColor are used in
the following sample program, but here is a list of the commands used by
Internet Explorer.

106 4.2 HTTP

Other functionality not included in this list can be implemented by
dynamically modifying the underlying HTML.

To start coding this application, open a new project in Visual Studio
.NET. Add a reference to Microsoft.mshtml by clicking Project→→→→Add Ref-
erence. Scroll down the list until you find Microsoft.mshtml, highlight it,
and press OK. If you have not already done so from Chapter 1’s example,
add Internet Explorer to the toolbox. To do this, right-click on the toolbox
and select Customize Toolbox. Scroll down the list under the COM com-
ponents tab until you see Microsoft Web Browser. Check the box opposite
it, and press OK.

Table 4.6 Parameters of Internet Explorer’s execCommand function .

Command Meaning

Bold Inserts a tag in HTML

Copy Copies text into the clipboard

Paste Pastes text from the clipboard

InsertUnorderedList Creates a bulleted list, in HTML

Indent Tabulates text farther right on the page

Outdent Retabulates text left on the page

Italic Inserts an <I> tag in HTML

Underline Inserts an <U> tag in HTML

CreateLink Creates a hyperlink to another Web page

UnLink Removes a hyperlink from text

FontName Sets the font family of a piece of text

FontSize Sets the font size of a piece of text

CreateBookmark Creates a bookmark on a piece of text

ForeColor Sets the color of the selected text

SelectAll Is equivalent to pressing CTRL + A

JustifyLeft Moves all text as far left as space allows

JustifyRight Moves all text as far right as space allows

JustifyCenter Moves all selected text as close to the center as possible

SaveAs Saves the page to disk

4.2 HTTP 107

Chapter 4

Draw a Tab control on the form named tabControl. Click on the
tabPages property in the properties window and add two tab pages, labeled
Preview and HTML. Draw the Microsoft Web Browser control onto the
preview tab page and name the control WebBrowser. Add three buttons to
the Preview tab page, named btnViewHTML, btnFont, and btnColor. In the
HTML tab page, add a textbox named tbHTML, and set its multiline prop-
erty to true. Also add a button to the HTML tab page named btnPreview.
Drag a Color Dialog control onto the form, and name it colorDialog.
Drag a Font Dialog control onto the form and name it fontDialog.

Double-click on the form, and add the following code:

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 object any = null;

 object url = "about:blank";

 WebBrowser.Navigate2(ref url,ref any,ref any,ref any,ref
any);

 Application.DoEvents();

 ((HTMLDocument)WebBrowser.Document).designMode="On";

}

VB.NET
Private Sub Form1_Load(ByVal sender As Object, _
ByVal e As System.EventArgs)

 Dim url As Object = "about:blank"

 WebBrowser.Navigate2(url)

 Application.DoEvents()

 (CType(WebBrowser.Document, HTMLDocument)).designMode="On"

End Sub

In order to access the HTML contained within the Web browser page, it
must first point to a valid URL that contains some HTML source. In this
case, the URL about:blank is used. This page contains nothing more than
<HTML></HTML>, but is sufficient for the needs of this application. The
DoEvents method releases a little processor time to allow the Web browser
to load this page. The Document property of the Web browser contains the
object model for the page, but it must first be cast to an HTMLDocument
object to be of use. The designMode property of Internet Explorer is then
set to On to enable WYSIWYG editing.

108 4.2 HTTP

Click on the view HTML button on the Preview tab page and enter the
following code:

C#
private void btnViewHTML_Click(object sender,
System.EventArgs e)

{

 tbHTML.Text=(

 (HTMLDocument)WebBrowser.Document).body.innerHTML;

}

VB.NET
Private Sub btnViewHTML_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 tbHTML.Text= _

 (CType(WebBrowser.Document, HTMLDocument)).body.innerHTML

End Sub

This button extracts the HTML from the Web Browser control and
places it into the HTML-viewer textbox. Again, the Document property
must be cast to an HTMLDocument object in order to access the page object
model. In this case, the body.innerHTML property contains the page source.
If you required the page source less the HTML tags, then body.innerText
would be of interest.

Click on the corresponding Preview button on the HTML tab page, and
enter the following code:

C#
private void btnPreview_Click(object sender, System.EventArgs
e)

{

 ((HTMLDocument)WebBrowser.Document).body.innerHTML=

 tbHTML.Text;

}

VB.NET
Private Sub btnPreview_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 (CType(WebBrowser.Document, _

 HTMLDocument)).body.innerHTML=tbHTML.Text

End Sub

4.2 HTTP 109

Chapter 4

This code simply performs the reverse of the preceding code, replacing
the HTML behind the Web browser with the HTML typed into the text-
box.

Click on the Font button on the Preview tab page, and enter the follow-
ing code:

C#
private void btnFont_Click(object sender, System.EventArgs e)

{

 fontDialog.ShowDialog();

 HTMLDocument doc = (HTMLDocument)WebBrowser.Document;

 object selection= doc.selection.createRange();

 doc.execCommand("FontName",false,

 fontDialog.Font.FontFamily.Name);

 doc.execCommand("FontSize",false,fontDialog.Font.Size);

 ((IHTMLTxtRange)selection).select();

}

VB.NET
Private Sub btnFont_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 fontDialog.ShowDialog()

 Dim doc As HTMLDocument = CType(WebBrowser.Document, _

 HTMLDocument)

 Dim selection As Object = doc.selection.createRange()

 doc.execCommand("FontName",False,fontDialog.Font. _

 FontFamily.Name)

 doc.execCommand("FontSize",False,fontDialog.Font.Size)

 (CType(selection, IHTMLTxtRange)).select()

End Sub

Pressing the Font button will bring up the standard font dialog box
(Figure 4.4), which allows the user to select any font held on the system and
its size. Other properties that may be available on this screen, such as sub-
script, strikethrough, and so on, are not reflected in the WYSIWYG editor.
This works by first capturing a reference to any selected text on the screen
using the selection.createRange() method. The execCommand method is
called twice, first to apply the font family to the selected text and then the
font size. The selection is then cast to an IHTMLTxtRange interface, which
exposes the select method and commits the changes to memory.

110 4.2 HTTP

Now click on the Color button on the Preview tab page, and enter the
following code:

C#
private void btnColor_Click(object sender, System.EventArgs
e)

{

 colorDialog.ShowDialog();

 string colorCode = "#" +

 toHex(colorDialog.Color.R) +

 toHex(colorDialog.Color.G) +

 toHex(colorDialog.Color.B);

 HTMLDocument doc = (HTMLDocument)WebBrowser.Document;

 object selection = doc.selection.createRange();

 doc.execCommand("ForeColor",false,colorCode);

 ((IHTMLTxtRange)selection).select();

}

VB.NET
Private Sub btnColor_Click(ByVal sender As Object, _

Figure 4.4
Font-chooser dialog

box.

4.2 HTTP 111

Chapter 4

 ByVal e As System.EventArgs)

 colorDialog.ShowDialog()

 String colorCode = "#" + _

 toHex(colorDialog.Color.R) + _

 toHex(colorDialog.Color.G) + _

 toHex(colorDialog.Color.B)

 Dim doc As HTMLDocument = CType(WebBrowser.Document, _

 HTMLDocument)

 Dim selection As Object = doc.selection.createRange()

 doc.execCommand("ForeColor",False,colorCode)

 (CType(selection, IHTMLTxtRange)).select()

End Sub

Pressing the Color button brings up the standard Color dialog box (Fig-
ure 4.5). When a color is chosen, the selected color is applied to any
selected text. This code brings up the Color dialog box by calling the Show-
Dialog method. The color returned can be expressed in terms of its red (R),
green (G), and blue (B) constituents. These values are in decimal format, in
the range 0 (least intense) to 255 (most intense). HTML expresses colors in
the form #RRGGBB, where RR, GG, and BB are hexadecimal equivalents

Figure 4.5
Color-picker dialog

box.

112 4.2 HTTP

of the R, G, and B values. To give a few examples, #FF0000 is bright red,
#FFFFFF is white, and #000000 is black.

Once again, a handle to the selected text is obtained in the same way as
before. The execCommand method is called and passed ForeColor, along
with the HTML color code. The selected text is cast to an IHTMLTxtRange
interface and committed to memory with the Select method as before.

The above code calls the function toHex to convert the numeric values
returned from the colorDialog control to hexadecimal values, which are
required by Internet Explorer. Enter the following code:

C#
public string toHex(int digit)

{

 string hexDigit = digit.ToString("X");

 if (hexDigit.length == 1){

 hexDigit = "0" + hexDigit;

 }

 return hexDigit;

}

VB.NET
Public Function toHex(ByVal number As Integer) As String

 Dim hexByte As String

 hexByte = Hex(number).ToString()

 If hexByte.Length = 1 Then

 hexByte = "0" & hexByte

 End If

 Return hexByte

 End Function

Finally, the relevant namespaces are required:

C#
using mshtml;

VB.NET
Imports mshtml

4.3 Web servers 113

Chapter 4

To test this application, run it from Visual Studio .NET. Type into the
Web Browser control under the Preview tab. Press the Font button to
change the style and size of any text that is selected. Press the Color button
to change the color of selected text. You can insert images by right-clicking
and selecting Insert image (special thanks to Bella for posing for this photo-
graph!). Press the view HTML button, then switch to the HTML tab page
to view the autogenerated HTML (Figure 4.6).

4.3 Web servers

One may ask why you should develop a server in .NET when IIS is freely
available. An in-house-developed server has some advantages, such as the
following:

� Web server can be installed as part of an application, without requiring
the user to install IIS manually from the Windows installation CD.

� IIS will not install on the Windows XP Home Edition, which consti-
tutes a significant portion of Windows users.

Figure 4.6
HTML editor

application.

114 4.3 Web servers

4.3.1 Implementing a Web server

Start a new Visual Studio .NET project as usual. Draw two textboxes,
tbPath and tbPort, onto the form, followed by a button, btnStart, and a
list box named lbConnections, which has its view set to list.

At the heart of an HTTP server is a TCP server, and you may notice an
overlap of code between this example and the TCP server in the previous
chapter. The server has to be multithreaded, so the first step is to declare an
Array List of sockets:

C#
public class Form1 : System.Windows.Forms.Form

{

 private ArrayList alSockets;

 ...

VB.NET
Public Class Form1 Inherits System.Windows.Forms.Form

 Private alSockets As ArrayList

 ...

Every HTTP server has an HTTP root, which is a path to a folder on
your hard disk from which the server will retrieve Web pages. IIS has a
default HTTP root of C:\inetpub\wwwroot; in this case, we shall use the
path in which the application is saved.

To obtain the application path, we can use Application.Executable-
Path, which returns not only the path but also the filename, and thus we
can trim off all characters after the last backslash.

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 tbPath.Text = Application.ExecutablePath;

 // trim off filename, to get the path

 tbPath.Text =

 tbPath.Text.Substring(0,tbPath.Text.LastIndexOf("\\"));

}

4.3 Web servers 115

Chapter 4

VB.NET
Private Sub Form1_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

 tbPath.Text = Application.ExecutablePath

 ' trim off filename, to get the path

 tbPath.Text = _

 tbPath.Text.Substring(0,tbPath.Text.LastIndexOf("\"))

End Sub

Clicking the Start button will initialize the Array List of sockets and
start the main server thread. Click btnStart:

C#
private void btnStart_Click(object sender, System.EventArgs e)

{

 alSockets = new ArrayList();

 Thread thdListener =

 new Thread(new ThreadStart(listenerThread));

 thdListener.Start();

}

VB.NET
Private Sub btnStart_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 alSockets = New ArrayList()

 Dim thdListener As Thread = New Thread(New _

 ThreadStart(AddressOf listenerThread))

 thdListener.Start()

End Sub

The listenerThread function manages new incoming connections,
allocating each new connection to a new thread, where the client’s requests
will be handled.

HTTP operates over port 80, but if any other application is using port
80 at the same time (such as IIS), the code will crash. Therefore, the port
for this server is configurable. The first step is to start the TcpListener on
the port specified in tbPort.Text.

This thread runs in an infinite loop, constantly blocking on the
AcceptSocket method. Once the socket is connected, some text is written
to the screen, and a new thread calls the handlerSocket function.

116 4.3 Web servers

The reason for the lock(this) command is that handlerSocket
retrieves the socket by reading the last entry in ArrayList. In the case where
two connections arrive simultaneously, two entries will be written to
ArrayList, and one of the calls to handlerSocket will use the wrong
socket. Lock ensures that the spawning of the new thread cannot happen at
the same time as the acceptance of a new socket.

C#
public void listenerThread()

{

 int port =0;

 port = Convert.ToInt16(tbPort.Text);

 TcpListener tcpListener = new TcpListener(port);

 tcpListener.Start();

 while(true)

 {

 Socket handlerSocket = tcpListener.AcceptSocket();

 if (handlerSocket.Connected)

 {

 lbConnections.Items.Add(

 handlerSocket.RemoteEndPoint.ToString() + " connected."

);

 lock(this)

 {

 alSockets.Add(handlerSocket);

 ThreadStart thdstHandler = new

 ThreadStart(handlerThread);

 Thread thdHandler = new Thread(thdstHandler);

 thdHandler.Start();

 }

 }

 }

}

VB.NET
Public Sub listenerThread()

 Dim port As Integer = 0

 port = Convert.ToInt16(tbPort.Text)

 Dim tcpListener As TcpListener = New TcpListener(port)

 tcpListener.Start()

 do

4.3 Web servers 117

Chapter 4

 Dim handlerSocket As Socket = tcpListener.AcceptSocket()

 If handlerSocket.Connected = true then

 lbConnections.Items.Add(_

 handlerSocket.RemoteEndPoint.ToString() + " _
 connected.")

 syncLock(me)

 alSockets.Add(handlerSocket)

 Dim thdstHandler As ThreadStart = New _
 ThreadStart(AddressOf handlerThread)

 Dim thdHandler As Thread = New _
 Thread(thdstHandler)

 thdHandler.Start()

 end syncLock

 end if

 loop

End sub

The handlerThread function is where HTTP is implemented, albeit
minimally. Taking a closer look at the code should better explain what is
happening here.

The first task this thread must perform, before it can communicate with
the client to which it has been allocated, is to retrieve a socket from the top
of the public ArrayList. Once this socket has been obtained, it can then
create a stream to this client by passing the socket to the constructor of a
NetworkStream.

To make processing of the stream easier, a StreamReader is used to read
one line from the incoming NetworkStream. This line is assumed to be:

GET <some URL path> HTTP/1.1

HTTP posts will be handled identically to HTTP gets. Because this
server has no support for server-side scripting, there is no use for anything
else in the HTTP POST data, or anything else in the HTTP Request header
for that matter.

Assuming that the HTTP request is properly formatted, we can extract
the requested page URL from this line by splitting it into an array of strings
(verbs[]), delimited by the space character.

The next task is to convert a URL path into a physical path on the local
hard drive. This involves four steps:

118 4.3 Web servers

1. Converting forward slashes to backslashes

2. Trimming off any query string (i.e., everything after the question
mark)

3. Appending a default page, if none is specified; in this case,
“index.htm”

4. Prefixing the URL path with the HTTP root

Once the physical path is resolved, it can be read from disk and sent out
on the network stream. It is reported on screen, and then the socket is
closed. This server does not return any HTTP headers, which means the
client will have to determine how to display the data being sent to it.

C#
public void handlerThread()

{

 Socket handlerSocket = (

 Socket)alSockets[alSockets.Count-1];

 String streamData = "";

 String filename = "";

 String[] verbs;

 StreamReader quickRead;

 NetworkStream networkStream =

 new NetworkStream(handlerSocket);

 quickRead = new StreamReader(networkStream);

 streamData = quickRead.ReadLine();

 verbs = streamData.Split(" ".ToCharArray());

 // Assume verbs[0]=GET

 filename = verbs[1].Replace("/","\\");

 if (filename.IndexOf("?")!=-1)

 {

 // Trim of anything after a question mark (Querystring)

 filename = filename.Substring(0,filename.IndexOf("?"));

 }

 if (filename.EndsWith("\\"))

 {

 // Add a default page if not specified

 filename+="index.htm";

 }

4.3 Web servers 119

Chapter 4

 filename = tbPath.Text + filename;

 FileStream fs = new FileStream(filename,

 FileMode.OpenOrCreate);

 fs.Seek(0, SeekOrigin.Begin);

 byte[] fileContents= new byte[fs.Length];

 fs.Read(fileContents, 0, (int)fs.Length);

 fs.Close();

 // optional: modify fileContents to include HTTP header.

 handlerSocket.Send(fileContents);

 lbConnections.Items.Add(filename);

 handlerSocket.Close();

}

VB.NET
Public Sub handlerThread()

 Dim handlerSocket As Socket = _

 CType(alSockets(alSockets.Count-1), Socket)

 Dim streamData As String = ""

 Dim filename As String = ""

 Dim verbs() As String

 Dim quickRead As StreamReader

 Dim networkStream As NetworkStream = New _

 NetworkStream(handlerSocket)

 quickRead = New StreamReader(networkStream)

 streamData = quickRead.ReadLine()

 verbs = streamData.Split(" ".ToCharArray())

 ' Assume verbs[0]=GET

 filename = verbs(1).Replace("/","\\")

 If filename.IndexOf("?")<>-1 Then

 ' Trim of anything after a question mark (Querystring)

 filename = filename.Substring(0,filename.IndexOf("?"))

 End If

 If filename.EndsWith("\\") Then

 ' Add a default page if not specified

 filename+="index.htm"

 End If

 filename = tbPath.Text + filename

 Dim fs As FileStream = New _

120 4.3 Web servers

 FileStream(filename,FileMode.OpenOrCreate)

 fs.Seek(0, SeekOrigin.Begin)

 Dim fileContents() As Byte = New Byte(fs.Length) {}

 fs.Read(fileContents, 0, CType(fs.Length, Integer))

 fs.Close()

 ' optional: modify fileContents to include HTTP header.

 handlerSocket.Send(fileContents)

 lbConnections.Items.Add(filename)

 handlerSocket.Close()

End Sub

Most modern browsers can determine how best to display the data being
sent to them, without the need for Content-Type headers. For instance,
Internet Explorer can tell the difference between JPEG image data and
HTML by looking for the standard JPEG header in the received data; how-
ever, this system is not perfect.

A simple example is the difference between how XML is rendered on a
browser window and how HTML is displayed. Without the Content-Type
header, Internet Explorer will mistake all XML (excluding the <?xml?> tag)
as HTML. You can see this by viewing a simple XML file containing the
text <a> through this server.

And, the usual namespaces are thrown in:

C#
using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.IO;

VB.NET
Imports System.Threading

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Imports System.IO

To test the server, you will need a simple HTML page. Save the follow-
ing text as index.htm in the same folder where the executable is built (the
HTTP root).

4.3 Web servers 121

Chapter 4

HTML

<html>

 Hello world!

</html>

Run the server from Visual Studio .NET, change the port to 90 if you
are running IIS, and press Start. Open a browser and type in http://
localhost:90. Localhost should be replaced by the IP address of the
server, if you are running the server on a second computer (Figure 4.7).

As mentioned previously, the server does not return HTTP headers. It is
worthwhile to extend the example to include one of the more important
headers, Content-Type, to save data from being misinterpreted at the client.

Figure 4.7
HTTP server

application.

122 4.3 Web servers

First, implement a new function called getMime(). This will retrieve a
file’s MIME type from the computer’s registry from its file extension:

C#
public string getMime(string filename)

{

 FileInfo thisFile = new FileInfo(filename);

 RegistryKey key = Registry.ClassesRoot;

 key = key.OpenSubKey(thisFile.Extension);

 return key.GetValue("Content Type").ToString();

}

VB.NET
Public Function getMime(ByVal filename As String) As String

 Dim thisFile As FileInfo = New FileInfo(filename)

 Dim key As RegistryKey = Registry.ClassesRoot

 key = key.OpenSubKey(thisFile.Extension)

 Return key.GetValue("Content Type").ToString()

End Function

If you have never used Windows registry before, this code may need a
little explaining. The Windows registry is a repository for information that
holds the vast amount of settings and preferences that keep Windows tick-
ing over. You can view and edit the registry using Registry Editor (Figure
4.8); start this by clicking Start→→→→Run and typing regedit or regedt32.

To view MIME types that correspond with file type extensions, click on
HKEY_CLASSES_ROOT, scroll down to the file extension in question,
and look at the Content Type key on the right-hand side of the screen.

Figure 4.8
Registry Editor

utility.

4.3 Web servers 123

Chapter 4

This data is accessed programmatically by first extracting the file type
extension using the Extension property of a FileInfo object. The first step
in drilling down through the registry data is to open the root key. In this
case, it is Registry.ClassesRoot.

The .html subkey is then opened using the openSubKey method.
Finally, the Content Type value is retrieved using the getValue statement
and returned as a string to the calling function.

Now the final call to the Send method must be replaced by a slightly
more elaborate sending procedure, which issues correct HTTP headers:

C#
handlerSocket.Send(fileContents);

VB.NET
handlerSocket.Send(fileContents)

These become:

C#
string responseString = "HTTP/1.1 200 OK\r\nContent-Type: " +

 getMime(filename) + "\r\n\r\n";

System.Collections.ArrayList al = new ArrayList();

al.AddRange(Encoding.ASCII.GetBytes(responseString));

al.AddRange(fileContents);

handlerSocket.Send((byte[])al.ToArray((new
byte()).GetType()));

VB.NET
Dim responseString As String

responseString = "HTTP/1.1 200 OK" + vbCrLf + _
"Content-Type: " + getMime(filename) + vbCrLf + vbCrLf

Dim al As System.Collections.ArrayList = New ArrayList

al.AddRange(Encoding.ASCII.GetBytes(responseString))

al.AddRange(fileContents)

handlerSocket.Send(CType(_

al.ToArray((New Byte).GetType()), Byte()))

Finally, to support the registry access functionality, we need to include
an extra namespace:

124 4.4 System.Net.HttpWebListener

C#
using Microsoft.Win32;

VB.NET
Imports Microsoft.Win32

To demonstrate the difference this makes to running the server, create two
files, test.txt and test.xml, both containing the text <a>. Save
them both in the HTTP root of your server and type in http:localhost/test.xml
and http:localhost/test.txt. You will notice that test.xml will be rendered as a
collapsible tree, and the text file will be shown as a series of characters.

4.4 System.Net.HttpWebListener

In .NET 2 Whidbey, a more elegant solution for implementing Web servers
exists, namely the HttpWebListener class. This class leverages the Http.sys
driver (where available) to deliver unprecedented performance, and inte-
grates many features, such as SSL encryption and authentication, which
would be difficult to develop from the ground up.

The HttpWebListener class consists of the significant methods and
properties shown in Table 4.7.

Table 4.7 Significant members of the HttpWebListener class .

Method or Property Description

Abort / Close Destroys the request queue.

AddPrefix Adds a prefix to the Web listener.

BeginGetRequest Awaits a client request asynchronously. Returns
IasyncResult.

EndGetRequest Handles client request. Returns
ListenerWebRequest.

GetPrefixes Retrieves all handled prefixes. Returns String[]v.

GetRequest Awaits a client request synchronously. Returns
ListenerWebRequest.

RemoveAll Removes all prefixes.

RemovePrefix Removes a specified prefix.

4.4 System.Net.HttpWebListener 125

Chapter 4

The ListenerWebRequest returned by GetRequest contains the signifi-
cant methods and properties shown in Table 4.8.

Start Starts the Web server.

Stop Stops the Web server.

AuthenticationScheme Sets the means by which the server authenticates
clients. Returns AuthenticationScheme (i.e.,
Basic, Digest, NTLM).

IsListening Determines if the server is running. Returns Boolean.

Realm string If Basic or Digest authentication schemes are selected,
gets the realm directive. Returns String.

Table 4.8

Method or Property Description

Abort / Close Closes the client connection.

GetRequestStream Retrieves a reference to the stream sent from the client.
Returns Stream.

GetResponse Retrieves a reference to the response to be sent to the
client. Returns ListenerWebResponse.

Accept Gets the Accept HTTP header sent in the client
request. Returns String.

ClientCertificate Gets the digital certificate sent with the client request.
Returns X509Certificate.

ClientCertificateError Determines if any errors were present in the client
certificate. Returns int32.

Connection Gets the Connection HTTP header sent in the
client request. Returns String.

ContentLength Gets the length of any data posted in the client
request. Returns int64.

ContentType Gets the ContentType HTTP header sent in the
client request. Returns String.

Table 4.7 Significant members of the HttpWebListener class (continued).

Method or Property Description

126 4.4 System.Net.HttpWebListener

The ListenerWebResponse returned by GetResponse contains the sig-
nificant methods and properties listed in Table 4.9.

Expect Gets the Expect HTTP header sent in the client
request. Returns String.

HasEntityBody Determines if the client request had an Entity body.
Returns Boolean.

Headers Gets a reference to the set of HTTP headers sent from
the client. Returns WebHeaderCollection.

Host Gets the Host HTTP header sent in the client
request. Returns String.

Identity Determines the identity credentials in the client
request. Returns Identity.

IfModifiedSince Gets the IfModifiedSince header sent in the
client request. Returns DateTime.

KeepAlive Boolean Determines if the client sent Connection: Keep-
Alive in its request. Returns Boolean.

LocalEndPoint Determines the local logical endpoint of the
communication. Returns IPEndPoint.

Method Gets the HTTP send method (i.e., GET, POST) in the
client request. Returns String.

ProtocolVersion Determines the HTTP version used by the client.
Returns Version.

RawUri Gets the URI requested by the client. Returns
String.

Referer Gets the Referer HTTP header sent in the client
request. Returns String.

RemoteEndPoint Determines the remote logical endpoint of the
communication. Returns IPEndPoint.

RequestUri Gets the URI requested by the client. Returns Uri.

UserAgent Gets the UserAgent HTTP header sent in the client
request. Returns String.

Table 4.8

4.4 System.Net.HttpWebListener 127

Chapter 4

Table 4.9

Method or Property Description

Abort / Close Disconnects the client.

GetResponseStream Retrieves a reference to the stream to be returned to
the client. Returns Stream.

ContentLength Sets the length of data to be sent back to the client.
Returns int64.

ContentType Sets the ContentType HTTP header to be sent back
the client. Returns String.

Date Sets the Date HTTP header to be sent back to the
client. Returns DateTime.

EntityDelimitation Determines how the response content should be
delimited (i.e., ContentLength, Chunked, Raw).
Returns EntityDelimitation.

Headers Retrieves a reference to the HTTP headers to be sent
back to the client. Returns WebHeaderCollection.

KeepAlive Determines if Connection: Keep-Alive should
be set in the HTTP headers returned to the client.
Returns Boolean.

LastModified Sets the LastModified HTTP header to be sent
back to the client. Returns DateTime.

ProtocolVersion Sets the HTTP protocol version to be used in
communicating with the client. Returns Version.

RawHeaders Retrieves a reference to the HTTP headers to be sent
back to the client. Returns Byte[].

Request Retrieves a reference to the request that initiated the
response. Returns ListenerWebRequest.

Server Sets the Server HTTP header to be sent back to the
client. Returns String.

StatusCode Sets the HTTP status code to be sent to the client.
Returns httpstatuscode (e.g., OK, Moved,
NotFound).

StatusDescription Sets the HTTP status description to be sent to the
client. Returns String.

128 4.5 Mobile Web browsers

4.5 Mobile Web browsers

Not all HTTP clients are PCs. Many people use their mobile phones to
access the Internet. Some applications are infinitely more useful when avail-
able wirelessly. Even though mobile phones ferry data in a totally different
way from wired networks, a wireless application protocol (WAP) phone will
communicate via a WAP gateway, which converts mobile phone signals
into TCP/IP and accesses servers in much the same way as browsers.

WAP runs over HTTP and wireless transfer protocol (WTP), with a few
extra headers thrown into the HTTP request. The following is a sample
HTTP request generated by a WAP phone:

GET / HTTP/1.1

Accept-Charset: ISO-8859-1

Accept-Language: en

Content-Type: application/x-www-form-urlencoded

x-up-subno: Fiach_hop

x-upfax-accepts: none

x-up-uplink: none

x-up-devcap-smartdialing: 1

x-up-devcap-screendepth: 1

x-up-devcap-iscolor: 0

x-up-devcap-immed-alert: 1

x-up-devcap-numsoftkeys: 3

x-up-devcap-screenchars: 15,4

Accept: application/x-hdmlc, application/x-up-alert,
application/x-up-cacheop, application/x-up-device,
application/x-up-digestentry, text/x-hdml;version=3.1, text/
x-hdml;version=3.0, text/x-hdml;version=2.0, text/x-wap.wml,
text/vnd.wap.wml, */*, image/bmp, text/html

User-Agent: UP.Browser/3.1-ALAV UP.Link/3.2

Host: 127.0.0.1:50

Note: x-up-subno is set to the computer username followed by the com-
puter name.

WAP clients and PC browsers differ most in the response. WAP clients
cannot read HTML and use a simpler language, wireless markup language
(WML), which has a MIME type text/vnd.wap.wml.

4.5 Mobile Web browsers 129

Chapter 4

A minimal page in WML is as follows:

WML

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

 "http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

 <card>

 <p align="left">

 Title

 body

 </p>

 </card>

</wml>

To view this page on a WAP phone, save the above text to index.wml.
Ensure that the MIME type is registered on your computer by adding a reg-
istry key to HKEY_CLASSES_ROOT\.wml named Content Type with the value
text/vnd.wap.wml.

Run the server as described in the previous section, and copy index.wml
into the HTTP root as displayed. Ensure that your computer is online and
has an externally visible IP address. Connect your mobile phone to the Inter-
net and type your IP address into it, followed by /index.wml (Figure 4.9).

Note: If you do not have a WAP phone, you can use a WAP emulator such
as the UP.SDK from www.openwave.com.

Not all wireless HTTP clients read WML. A competing technology,
iMode, which is the most widely used technology in Asia, offers a similar,
yet incompatible, system. iMode reads compact HTML (cHTML), which
is a stripped-down version of the language with features such as frames,
tables, and even JPEG images explicitly unsupported; however, iMode has

Figure 4.9
Sample WML

page.

130 4.6 Conclusion

good support for Unicode and can adequately display many Web pages
designed for PCs.

An iMode browser can be recognized by the word DoCoMo in the user
agent HTTP request header.

4.5.1 Mobile Web SDK

When implementing WAP compatibility in a Web application, it is worth
considering the .NET Mobile Web SDK. This enables you to develop
applications for WAP in the same way as an ASP.NET Web application.
Therefore, there is no need to learn WML.

Note: Utilities are available to convert HTML to WML on-the-fly, but the
.NET Mobile Web SDK is freely available.

A sample page could be as follows:

ASP.NET
<%@ Page Inherits="System.Mobile.UI.MobilePage" language="c#"
%>

<%@ Register TagPrefix="mobile" Namespace="System.Mobile.UI"
%>

<mobile:Form runat="server">

<mobile:Label runat="server">

 Hello world!

</mobile:Label>

</mobile:Form>

To try this page out, save it as mobile.aspx in your IIS root (usually c:\
inetpub\wwwroot). Ensure that your computer is online and has an exter-
nally visible IP address. Connect your mobile phone to the Internet, and
type your IP address into it, followed by /mobile.aspx.

4.6 Conclusion
This chapter should have provided enough information to link your .NET
application into data from the Web, to illustrate the point that HTTP is
not only used for Web browsing and the WAP.

The next chapter deals with sending and receiving email from .NET
applications.

131

5

SMTP and POP3: Communicating with
email Servers

5.1 Introduction

More emails are sent every day than postal mail. Why? Because email is
cheap, informal, fast, and can be picked up at the receiver’s convenience.
Emails can be automatically generated and sent, making them ideal for
automated status notification. One day, you may receive an email from
your home sprinkler system saying simply, “Your house is on fire.”

After reading this chapter you will be able to send and receive emails
from your .NET applications. These features can be useful for customer
support systems, collaborative personnel management, and many other
types of applications.

This chapter begins by describing how emails can be constructed and
sent, using either a socket-level approach, or by using in-built .NET classes.
Immediately following that, is a description on how emails may be received,
again, by either using a socket level approach, or a higher-level methodol-
ogy, leveraging Microsoft Outlook.

5.2 Sending an email

Every email must have a destination email address. An email address takes
the following form:

<

Username

>@<

domain name

>

The domain name in an email address generally does not include the
“www” prefix, which is common for Web site addresses. Despite that, the
domain name is globally recognized under the DNS system. The username
is recognized only by the recipient mail server.

132

5.3

SMTP

Emails are not immediately delivered to the recipient; instead, they are
initially sent to your ISP’s or company’s mail server. From there, they are
forwarded to the recipient’s mail server or held for a period of time until the
recipient’s mail server accepts the email. Emails are sent using the simple
mail transfer protocol (SMTP), which is described in detail later.

In order to determine the recipient’s mail server, a DNS mail exchange
(MX) query is issued to the local DNS server for that domain name. That
computer will then return details of where the server or servers that handle
incoming mail are located.

Note:

Most ISPs have only one incoming mail server, but Hotmail.com has

more than 10 mail servers.

You will always be told the IP address of your SMTP server. Unfortu-
nately, you cannot use an SMTP server from another ISP because it will
block you with an error message such as “Relaying denied.”

Microsoft virtual SMTP server is available for most versions of Win-
dows and generally appears under IIS when installed.

5.3 SMTP

SMTP is used to send, but not receive, emails. Every mail server in the
world must conform to the SMTP standard in order to send emails reli-
ably regardless of destination. The definitive guide to SMTP is held by the
Internet Engineering Task Force (IETF) under RFC 821 at

www.ietf.org/
rfc/rfc0821.txt.

The definitive guides to most major protocols are held at the IETF.
They are free to download and should be consulted when you are develop-
ing network applications that are designed to work with preexisting or
third-party clients or servers.

SMTP is not a difficult protocol to implement from the ground up;
however, it is natively supported from .NET and, thus, would be a waste of
time to redevelop. Also, many commercial email components are available,
which can be imported into your application. One of the most popular is
AspEmail from Persits Software. The demo version of this component is
adequate for most applications.

5.3

SMTP 133

Chapter 5

5.3.1 Implementing SMTP

SMTP operates on TCP port 25. Before sitting down to code, you should
first find out the IP address of your ISP’s SMTP server. In the examples
below, the SMTP server

smtp.ntlworld.com

 is used. You should replace
this with your own SMTP server, or the examples will not work.

SMTP was originally designed for UNIX users and has a command-
line-type feel to it, although the commands are issued over a network con-
nection, rather than a keyboard.

A good way to test the protocol is to open telnet by clicking Start

→→→→

Run
and type

telnet

. In Windows NT, 2000, and XP, type

o smtp.ntl-

world.com 25

.

In prior versions of Windows, click File

→→→→

Connect, and
then type

smtp.ntlworld.com

 into the connection box and 25 into the port
box. Then press Connect.

Once the client establishes a TCP connection to the server on port 25,
the server will always reply with

220 <

some greeting message

><enter>

. A
number is always included at the start of every server response. Any number
beginning with 5 is an error and should be dealt with; everything else can
be ignored.

The client must then send a greeting back to the server. This is merely a
formality and does not contain any useful information. The format is

HELLO

server <enter>

, and the server should reply with

250 server <enter>

.

The next step is to send a contact email address for the sender. This is
sent in the format

MAIL FROM:<

email address

><enter>

. The server should
reply

250 OK<enter>

.

Following that, the recipient must be indicated. To do this,

RCPT

TO:<email address><enter>

 is used. The server should reply

250

OK<enter>

.

To create the body of the email, the client sends the command

DATA<enter>

. To this the server should reply

354 <

some instruc-

tions

><enter>

.

The client can then send as much text as required to make up the body
of the email. It is recommended to split the mail over several lines because
of restrictions in some mail servers. To indicate the end of the mail body,
send

<enter>.<enter>

. The server should reply

250 OK<enter>

.

At this point, it is possible simply to close the TCP connection, but it is
recommended to send

QUIT<enter>

. The following passage shows the chain
of events between client and server when an email is sent from

smith@usc-

134

5.3

SMTP

isif.arpa

to

jones@bbn-unix.arpa.

“S” indicates a transmission from server to
client, and “C” indicates a client-to-server transaction.

S: 220 Simple Mail Transfer Service

C: HELO SERVER

S: 250 SERVER

C: MAIL FROM:<Smith@USC-ISIF.ARPA>

S: 250 OK

C: RCPT TO:<Jones@BBN-UNIX.ARPA>

S: 250 OK

C: DATA

C: 354 Start mail input; end with <CRLF>.<CRLF>

C: Dear sir

C: Please give me a call to discuss your offer

C: .

S: 250 OK

C: QUIT

S: 221 CLOSED

Example: Complaints department SMTP server

If you ever work in the complaints department of a company, this applica-
tion will make your life a lot easier. It mimics the communications an
SMTP server would make, but it thoughtfully ignores the email content,
saving you a lot of stress.

Of course, a real application would be to have it log the emails to a data-
base, but, for the sake of clarity, that feature is not included in this example.
Possible derivations of this project could be an email proxy server, which
could filter emails for viruses, and so forth.

Start a C# or VB.NET Windows form project as usual, and drag a text-
box onto the form. Call it

tbStatus

, and set

multiline

 to

true

.

To start with, we must import all of the namespaces we intend to use in
this application. Put this code at the beginning of the program:

C#

using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

5.3

SMTP 135

Chapter 5

VB.NET

Imports System.Threading

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

For simplicity, this server will be single threaded. The thread that listens
for incoming connections runs in the background and starts when the form
loads. This means that, although the program won’t hang waiting for con-
nections, it can only handle one email at a time.

C#

private void Form1_Load(object sender, System.EventArgs e)

{

 Thread thdSMTPServer = new Thread(new

 ThreadStart(serverThread));

 thdSMTPServer.Start();

}

VB.NET

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim thdSMTPServer As Thread

 thdSMTPServer = New Thread(New ThreadStart(_
 AddressOf serverThread))

 thdSMTPServer.Start()

End Sub

This thread provides the functionality to receive emails sent via SMTP.
It listens on port 25 and blocks until an incoming connection is detected.
This connection is accepted, and a

250 hello<enter>

 reply is sent back to
the client. Note that here it is possible to use

ASCII.GetBytes

 because
SMTP is a text-based protocol, and binary content is not sent at this level.

The function

socketReadLine

 is not defined yet, but its purpose is to
store incoming data in a string until the termination character(s) is found.

Data returned from the client is displayed in

tbStatus

, but no other
processing takes place.

C#

public void serverThread()

136

5.3

SMTP

{

 Byte[] sendBytes;

 TcpListener tcpListener = new TcpListener(25);

 tcpListener.Start();

 while(true)

 {

 Socket handlerSocket = tcpListener.AcceptSocket();

 if (handlerSocket.Connected)

 {

 // Reply 250 hello

 sendBytes = Encoding.ASCII.GetBytes("250 hello\n");

 handlerSocket.Send(sendBytes,0,

 sendBytes.Length,SocketFlags.None);

 // Wait for enter (hello)

 tbStatus.Text += socketReadLine(handlerSocket,"\n");

 // Reply 250 ok

 sendBytes = Encoding.ASCII.GetBytes("250 ok\n");

 handlerSocket.Send(sendBytes,0,

 sendBytes.Length,SocketFlags.None);

 // Wait for enter (mail from)

 tbStatus.Text += socketReadLine(handlerSocket,"\n");

 // Reply 250 ok

 sendBytes = Encoding.ASCII.GetBytes("250 ok\n");

 handlerSocket.Send(sendBytes,0,

 sendBytes.Length,SocketFlags.None);

 // Wait for enter (rcpt to)

 tbStatus.Text += socketReadLine(handlerSocket,"\n");

 // Reply 250 ok

 sendBytes = Encoding.ASCII.GetBytes("250 ok\n");

 handlerSocket.Send(sendBytes,0,

 sendBytes.Length,SocketFlags.None);

 // Wait for enter (data)

 tbStatus.Text += socketReadLine(handlerSocket,"\n");

 // Reply 354

 sendBytes = Encoding.ASCII.GetBytes("354 proceed\n");

 handlerSocket.Send(sendBytes,0,

 sendBytes.Length,SocketFlags.None);

 // Wait for enter.enter (email body)

 tbStatus.Text += socketReadLine(handlerSocket,

 "\r\n.\r\n");

 // Reply 221 close

5.3

SMTP 137

Chapter 5

 sendBytes = Encoding.ASCII.GetBytes("221 close\n");

 handlerSocket.Send(sendBytes,0,

 sendBytes.Length,SocketFlags.None);

 handlerSocket.Close();

 }

 }

}

VB.NET

Public Sub serverThread()

 Dim sendBytes As Byte()

 Dim tcpListener As New TcpListener(25)

 Dim handlerSocket As Socket

 tcpListener.Start()

 Do

 handlerSocket = tcpListener.AcceptSocket()

 If handlerSocket.Connected = True Then

 ' Reply 250 hello

 sendBytes = Encoding.ASCII.GetBytes("250 hello" + vbCrLf)

 handlerSocket.Send(sendBytes, 0, sendBytes.Length, _

 SocketFlags.None)

 ' Wait for enter (hello)

 tbStatus.Text += socketReadLine(handlerSocket, vbCrLf)

 ' Reply 250 ok

 sendBytes = Encoding.ASCII.GetBytes("250 ok" + vbCrLf)

 handlerSocket.Send(sendBytes, 0, sendBytes.Length, _

 SocketFlags.None)

 ' Wait for enter (mail from)

 tbStatus.Text += socketReadLine(handlerSocket, vbCrLf)

 ' Reply 250 ok

 sendBytes = Encoding.ASCII.GetBytes("250 ok" + vbCrLf)

 handlerSocket.Send(sendBytes, 0, sendBytes.Length, _

 SocketFlags.None)

 ' Wait for enter (rcpt to)

 tbStatus.Text += socketReadLine(handlerSocket, vbCrLf)

 ' Reply 250 ok

 sendBytes = Encoding.ASCII.GetBytes("250 ok" + vbCrLf)

 handlerSocket.Send(sendBytes, 0, sendBytes.Length, _

 SocketFlags.None)

 ' Wait for enter (data)

 tbStatus.Text += socketReadLine(handlerSocket, vbCrLf)

138

5.3

SMTP

 ' Reply 354

 sendBytes = Encoding.ASCII.GetBytes("354 proceed" + _

 vbCrLf)

 handlerSocket.Send(sendBytes, 0, sendBytes.Length, _

 SocketFlags.None)

 ' Wait for enter.enter (email body)

 tbStatus.Text += socketReadLine(handlerSocket, _

 vbCrLf + "." + vbCrLf)

 ' Reply 221 close

 sendBytes = Encoding.ASCII.GetBytes("221 close" + vbCrLf)

 handlerSocket.Send(sendBytes, 0, sendBytes.Length, _

 SocketFlags.None)

 handlerSocket.Close()

 End If

 Loop

End Sub

This thread starts by listening on port 25 for incoming connections. The
thread blocks on the call to

AcceptSocket()

 and waits indefinitely until a
connection arrives. Once a connection arrives, it is stored in a socket object
named

handlerSocket

. Once the connection is established, the server
immediately responds with

250 hello

. The server then waits for the client
to respond. In response to every command sent by the client, the server
responds with

250 ok

. The client is then expected to send a

mail from

 com-
mand, and the server will wait until the client does so. Once the server has
replied, it will wait for a

rcpt to

 command and finally a

data

 command.
The server will read in data from the socket until the end-of-message marker
(a period on a line by itself) appears. The server then prompts the client to
close the connection before closing the connection itself.

The

socketReadLine

 function is called many times from

serverThread

.
It takes a socket and a terminator string as parameters. Again, it reads in
from the network stream one byte at a time and builds up the

streamData

string. If the terminator string appears in the

streamData

 string, or if

Read-

Byte

 fails because of a network error, then the function returns.

C#

public String socketReadLine(Socket socket,String terminator)

{

 int lastRead=0;

 String streamData = "";

 NetworkStream networkStream = new NetworkStream(socket);

5.3

SMTP 139

Chapter 5

 do

 {

 lastRead = networkStream.ReadByte();

 if (lastRead==-1) break;

 streamData+=(Convert.ToChar(lastRead));

 if (streamData.EndsWith(terminator)) break;

 }

 while(true);

 return streamData;

}

VB.NET

Public Function socketReadLine(ByVal socket As Socket, _
ByVal terminator As String) As String

 Dim lastRead As Int16

 Dim streamData As String

 Dim networkStream As New NetworkStream(socket)

 Do

 lastRead = networkStream.ReadByte()

 If lastRead = -1 Then Exit Do

 streamData += (Convert.ToChar(lastRead))

 If streamData.EndsWith(terminator) Then Exit Do

 Loop

 Return streamData

End Function

The socketReadLine function may look a little verbose, especially because
the StreamReader already has a ReadLine method; however, this function is
designed to be generic enough such that it can detect both new-line (\n or
vbcrlf) message terminators and end-of-message markers (a period on a line
by itself). This function creates a NetworkStream to the socket and then reads
from the stream one byte at a time, appending the byte to a string, which is
returned once the message terminator has been found.

Before running this example, ensure that no other SMTP server is run-
ning at the same time. You can check for the default virtual SMTP server by
opening IIS from Administrative Tools and expanding your local computer
name from within the console. You can stop the SMTP server (if it is
installed) by right-clicking on its icon and selecting stop.

140 5.4 Post office protocol 3

To test this example, run it from Visual Studio .NET. Then open an
email program (e.g., Microsoft Outlook). Press Tools→→→→Accounts (Figure
5.1), then click Add→→→→Mail, and click Next twice.

Type anything in the POP3 box, and type the IP address of the com-
puter on which you are running the SMTP Server, or 127.0.0.1 if you
only have one computer. Keep pressing Next until you arrive back at the
previous screen.

Create a new email as usual, and select your new account to send from.
On Outlook, this is selected from an arrow to the right of the Send button;
on Outlook Express, this is selected from a drop-down list in the “to” field.
Now press Send.

You will see the raw TCP data written as text in the application’s win-
dow, as shown in Figure 5.2.

5.4 Post office protocol 3

Post office protocol 3 (POP3) is used to receive, but not send, emails. Every
ISP has a POP3 server, and many Web hosting companies offer access to a

Figure 5.1
Microsoft Outlook,

new account.

5.4 Post office protocol 3 141

Chapter 5

POP3 server to provide personalized email addresses such as joeDoe@exam-
ple.com (fictitious). POP3 is described definitively in RFC 1939, which is
downloadable at www.ietf.org/rfc/rfc1939.txt and operates on TCP port 110.

POP3 is used to store emails on behalf of users. Users can then down-
load these emails selectively from the server. Some service providers limit
the amount of space devoted to any one user on a POP3 server. Therefore,
POP3 also facilitates message deletion.

Again, before rushing into implementing POP3, be aware that there are
alternatives; for instance, you can use Microsoft Exchange as a POP3 server,
and commercial components by IP*Works or SoftArtisans can be used as
POP3 clients.

5.4.1 Implementing POP3

Like SMTP, POP3 is a command-line-based protocol, where each line is
terminated with a line-feed (<enter>) character. For variable length lines,
the command is terminated by <enter>.<enter> as in SMTP.

When the server is operating normally, each line will start with +OK. If
an error occurs, the line begins with –ERR <some explanation>. Once the
client establishes a TCP connection to the server on port 110, the server
will always reply with +OK <some greeting message><enter>.

Figure 5.2
SMTP server
application.

142 5.4 Post office protocol 3

To access a mailbox, the client must authenticate itself with a username
and password. The client sends USER <username><enter>. The server then
replies with +OK <welcome><enter>. The password is sent as USER <pass-
word><enter> with the same response from the server.

To get summary information about the mailbox, the command
STAT<enter> is issued. To this the server will reply +OK <number of mes-
sages> <total size><enter>. Unlike the previous messages, where the
text after the +OK could be ignored, here it must be read and stored for
future use.

To read back an email, the client sends the RETR <number> command;
Number must be between 1 and the number received in response to the STAT
command. The server will respond +OK <some message><enter><mail

body><enter>.<enter>. The only piece of important information is the
mail body; everything else can be ignored.

To delete emails, the client sends the DELE <number> command. The
server will respond +OK <some message><enter>. At this point, it is possi-
ble simply to close the TCP connection, but it is recommended to send
QUIT<enter>.

To illustrate the protocol more simply, the following text shows the
chain of events that occur between a POP3 server and client. As before, “S”
indicates a transmission from server to client, and “C” indicates a client-to-
server transaction. Here, user Bob is checking his emails, when he receives
two messages from Alice and Terry.

S: +OK POP3 server ready

C: USER bob

S: +OK user valid

C: PASS secret

S: +OK pass valid

C: STAT

S: +OK 2 170

C: RETR 1

S: +OK 120 octets

S: hello, how are you bob?, haven’t seen you in

S: ages, any chance you could give me a call

S: sometime? I’d love to see you. Alice

S: .

C: DELE 1

S: +OK message 1 deleted

5.4 Post office protocol 3 143

Chapter 5

C: RETR 2

S: +OK 50 octets

S: Hi bob, I got the order of 500 widgets placed

S: with Acme. Terry

S: .

C: DELE 2

S: +OK message 2 deleted

C: QUIT

S: +OK

This transcript has been simplified for reasons of clarity. Modern mail
messages contain headers, including the subject, date, natural names of the
sender and recipient, and technical information concerning what software
was used to send the email and how it was relayed.

This is a message header sent from fiach_reid@hotmail.com to fiach@eir-
com.net.

Return-Path: <fiach_reid@hotmail.com>

Delivered-To: eircom.net-fiach@eircom.net

Received: (vpopmail 31497 invoked by uid 16); 11 Jan 2004
21:51:58 +0000

Received: (qmail 31491 messnum 229855 invoked from
network[64.4.19.76/law12-f76.law12.hotmail.com]); 11 Jan 2004
21:51:57 -0000

Received: from law12-f76.law12.hotmail.com (HELO hotmail.com)
(64.4.19.76)

 by mail09.svc.cra.dublin.eircom.net (qp 31491) with SMTP;
11 Jan 2004 21:51:57 -0000

Received: from mail pickup service by hotmail.com with
Microsoft SMTPSVC;

 Sun, 11 Jan 2004 13:51:56 -0800

Received: from 195.92.168.176 by lw12fd.law12.hotmail.msn.com
with HTTP;

 Sun, 11 Jan 2004 21:51:56 GMT

X-Originating-IP: [195.92.168.176]

X-Originating-Email: [fiach_reid@hotmail.com]

X-Sender: fiach_reid@hotmail.com

From: "Fiach Reid" <fiach_reid@hotmail.com>

To: fiach@eircom.net

Bcc:

Subject: test message

144 5.4 Post office protocol 3

Date: Sun, 11 Jan 2004 21:51:56 +0000

Mime-Version: 1.0

Status: U

X-UIDL:
1073857917.31497.mail09.svc.cra.dublin.eircom.net,S=1118

Content-Type: text/plain; format=flowed

Message-ID: <Law12-F76F1HkikieqX000054e5@hotmail.com>

X-OriginalArrivalTime: 11 Jan 2004 21:51:56.0469 (UTC)
FILETIME=[21BF7650:01C3D88D]

Two line-feed characters separate the message header from the body.

Example: POP3 client SPAM filter

SPAM is the term used for mass, unsolicited email. These emails are some-
times accompanied by attached viruses, which can be accidentally opened
by unwitting users. This application could be used to safely delete emails
containing message fragments indicative of a SPAM email; in this case, the
string “free money.”

This simple program scans your mailbox for emails containing the text
“free money” and deletes them. This is obviously overly simplistic, but the
example is here for illustration, not practicality.

The first step is to draw the user interface; you will need three textboxes,
labeled tbServer, tbUsername, and tbPassword. Another textbox is
required, named tbStatus; this textbox should be set with multiline to
true. Finally, place a button on the form, and call it btnClean.

First, import the required namespaces:

C#
using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

using System.IO;

VB.NET
Imports System.Threading

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Imports System.IO

5.4 Post office protocol 3 145

Chapter 5

Double-click on the Clean button and type the following code:

C#
private void btnClean_Click(object sender, System.EventArgs
e)

{

 TcpClient clientSocket = new TcpClient(tbServer.Text,110);

 NetworkStream NetStrm = clientSocket.GetStream();

 StreamReader RdStrm= new StreamReader(NetStrm);

 tbStatus.Text += RdStrm.ReadLine();

 sendPOP3cmd("USER "+ tbUsername.Text + "\r\n",NetStrm);

 sendPOP3cmd("PASS "+ tbPassword.Text+ "\r\n",NetStrm);

 string Data = sendPOP3cmd("STAT\r\n",NetStrm);

 string[] BreakDown = Data.Split(" ".ToCharArray());

 int messageCount = Convert.ToInt16(BreakDown[1]);

 for (int i=1;i<= messageCount;i++)

 {

 StringBuilder message = new StringBuilder("");

 Data = "RETR " + Convert.ToString(i) + "\r\n";

 byte[] szData=

 System.Text.Encoding.ASCII.GetBytes(Data.ToCharArray());

 NetStrm.Write(szData,0,szData.Length);

 string szTemp = RdStrm.ReadLine();

 while(szTemp!=".")

 {

 message.Append(szTemp);

 tbStatus.Text += szTemp+"\r\n";

 szTemp = RdStrm.ReadLine();

 }

 if (message.ToString().IndexOf("free money")>0)

 {

 sendPOP3cmd("DELE " + Convert.ToString(i) +

 "\r\n",NetStrm);

 }

 }

 clientSocket.Close();

}

146 5.4 Post office protocol 3

VB.NET
Private Sub btnClean_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles _

btnClean.Click

 Dim clientSocket As TcpClient

 Dim NetStrm As NetworkStream

 Dim RdStrm As StreamReader

 Dim Data As String

 Dim BreakDown() As String

 Dim messageCount As Int16

 Dim message As StringBuilder

 Dim szData() As Byte

 Dim i As Int16

 Dim szTemp As String

 clientSocket = New TcpClient(tbServer.Text, 110)

 NetStrm = clientSocket.GetStream()

 RdStrm = New StreamReader(NetStrm)

 tbStatus.Text += RdStrm.ReadLine()

 sendPOP3cmd("USER " + tbUsername.Text + vbCrLf, NetStrm)

 sendPOP3cmd("PASS " + tbPassword.Text + vbCrLf, NetStrm)

 Data = sendPOP3cmd("STAT" + vbCrLf, NetStrm)

 BreakDown = Data.Split(" ".ToCharArray())

 messageCount = Convert.ToInt16(BreakDown(1))

 For i = 1 To messageCount

 message = New StringBuilder("")

 Data = "RETR " + Convert.ToString(i) + vbCrLf

 szData = _

 System.Text.Encoding.ASCII.GetBytes(Data.ToCharArray())

 NetStrm.Write(szData, 0, szData.Length)

 szTemp = RdStrm.ReadLine()

 Do While szTemp <> "."

 message.Append(szTemp)

 tbStatus.Text += szTemp + vbCrLf

 szTemp = RdStrm.ReadLine()

 Loop

 If message.ToString().IndexOf("free money") > 0 Then

 sendPOP3cmd("DELE " + Convert.ToString(i) + vbCrLf, _

 NetStrm)

 End If

 Next i

 clientSocket.Close()

End Sub

5.4 Post office protocol 3 147

Chapter 5

Note that the sendPOP3cmd function is not yet implemented.

This piece of code uses a different method from the code for the SMTP
server to read in lines of data from the network. In this case, the ReadLine
method is used for single-line responses and an iterative loop reads multi-
ple-line responses. The chain of events is that the client reads the welcome
message from the server, then sends the USER and PASS commands. After it
issues the STAT command, the server stores the response in Data.

Data is in the format +OK n1 n2, where n1 is the number of messages
and n2 is the total size of the messages. To extract n1 from this string, it is
split into an array of strings, delimited by the space character. The second
element in this array is now n1.

The program then loops through the messages, issuing the RETR com-
mand for each one. The contents of the messages returned are built up
using a stringBuilder object, rather than a string, for performance pur-
poses. When it reaches a message that has the string “free money” contained
within it, it issues the DELE command.

This code implements the sendPOP3cmd function:

C#
public string sendPOP3cmd(string cmd,NetworkStream NetStrm)

{

 byte[] szData;

 string returnedData = "";

 StreamReader RdStrm= new StreamReader(NetStrm);

 szData =
System.Text.Encoding.ASCII.GetBytes(cmd.ToCharArray());

 NetStrm.Write(szData,0,szData.Length);

 returnedData = RdStrm.ReadLine();

 tbStatus.Text += cmd + "\r\n" + returnedData + "\r\n";

 return returnedData;

}

VB.NET
Public Function sendPOP3cmd(ByVal cmd As String, _

ByVal NetStrm As NetworkStream) As String

 Dim szData() As Byte

 Dim returnedData As String

 Dim RdStrm As StreamReader

 RdStrm = New StreamReader(NetStrm)

 szData = _

148 5.5 System.Web.Mail

 System.Text.Encoding.ASCII.GetBytes(cmd.ToCharArray())

 NetStrm.Write(szData, 0, szData.Length)

 returnedData = RdStrm.ReadLine()

 tbStatus.Text += cmd + vbCrLf + returnedData + vbCrLf

 Return returnedData

End Function

It sends the specified command to the POP3 server and reads back data
until it encounters the end-of-line marker \r\n or vbCrLf. The data that is
read back is displayed on screen and returned to the calling function.

To test this application, run it from Visual Studio .NET. Type your
POP3 server’s IP address into the field provided. You will also need to pro-
vide your email account username and password.

Using your email program, send an email to yourself with the words
“free money” in the subject line. Press Send. Now press Clean out. If you
scroll the text to the bottom, you will see the POP3 command DELE, signi-
fying that the email was deleted as shown in Figure 5.3.

5.5 System.Web.Mail

There is a built-in mechanism for Windows 2000 and later to send emails.
This is called CDOSYS (Microsoft Collaboration Data Objects for Win-

Figure 5.3
POP3 client
application.

5.5 System.Web.Mail 149

Chapter 5

dows 2000). It is much simpler than implementing SMTP, especially where
attachments and rich-text emails are involved; however, CDOSYS can only
provide functionality for the client side of the email service.

The following example shows how to send a simple email from
source@here.com to destination@there.com via the SMTP server smtp.ntl-
world.com (change this to your own SMTP server).

You must first make a reference to System.Web.dll before you can
import the System.Web.Mail namespace. This DLL is a .NET assembly,
not .COM. To do so, click Project→→→→Add Reference, and then click on the
DLL (Figure 5.4).

With that, you can draw your GUI. Drag three textboxes onto the form,
name them tbTo, tbFrom, and tbServer. Drag another textbox onto the
form, name it tbMessage, and set multiline to true. Finally, place a but-
ton on the form, and name it btnSend.

C#
using System.Web.Mail;

Figure 5.4
Visual Studio

.NET, Add
Reference.

150 5.5 System.Web.Mail

VB.NET
Imports System.Web.Mail

Now click on the Send button and type in the following code:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 MailMessage email = new MailMessage();

 email.From = tbFrom.Text;

 email.To = tbTo.Text;

 email.Subject = "email from .NET";

 email.Body = tbMessage.Text;

 SmtpMail.SmtpServer = tbServer.Text;

 SmtpMail.Send(email);

}

VB.NET
Private Sub btnSend_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnSend.Click

 Dim email As New MailMessage()

 With email

 .From = tbFrom.Text

 .To = tbTo.Text

 .Subject = "email from .NET"

 .Body = tbMessage.Text

 End With

 SmtpMail.SmtpServer = tbServer.Text

 SmtpMail.Send(email)

End Sub

This code simply sets the various properties of a MailMessage object and
passes it to the SmtpMail object. To test the application, run it from Visual
Studio .NET. Fill in your own email address in the “To:” field, your SMTP
server in the “Server” field, and then fill in whatever you wish in the other
fields and press Send. A few moments later, check your email, and you
should have received the message (Figure 5.5).

5.5 System.Web.Mail 151

Chapter 5

5.5.1 Attachments

To elaborate on this example, let’s add an attachment box and change the
format to HTML. Drag in the Open File Dialog control, name it
ofdAttachment, and then add in a textbox, tbAttachment, and a button,
btnAttachment.

Click on the Browse button and type the following code:

C#
private void btnBrowse_Click(object sender, System.EventArgs
e)

{

 ofdAttachment.ShowDialog();

 tbAttachment.Text = ofdAttachment.FileName;

}

VB.NET
Sub btnBrowse_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnBrowse.Click

 ofdAttachment.ShowDialog()

 tbAttachment.Text = ofdAttachment.FileName

End Sub

Figure 5.5
SMTP client
application.

152 5.5 System.Web.Mail

Click on the Send button, and modify the code as follows:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 MailMessage email = new MailMessage();

 MailAttachment fileAttachment=new

 MailAttachment(tbAttachment.Text);

 email.Priority = MailPriority.High;

 email.BodyFormat = MailFormat.Html;

 email.From = tbFrom.Text;

 email.To = tbTo.Text;

 email.Subject = "email from .NET";

 email.Body = tbMessage.Text;

 email.Attachments.Add(fileAttachment);

 SmtpMail.SmtpServer = tbServer.Text;

 SmtpMail.Send(email);

}

VB.NET
Private Sub btnSend_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnSend.Click

 Dim email As New MailMessage()

 Dim fileAttachment As New _

 MailAttachment(tbAttachment.Text)

 With email

 .Priority = MailPriority.High

 .BodyFormat = MailFormat.Html

 .From = tbFrom.Text

 .To = tbTo.Text

 .Subject = "email from .NET"

 .Body = "<html>" + tbMessage.Text + "</html>"

 .Attachments.Add(fileAttachment)

 End With

 SmtpMail.SmtpServer = tbServer.Text

 SmtpMail.Send(email)

End Sub

5.6 Mail application programming interface 153

Chapter 5

5.5.2 Images

Anyone who is familiar with HTML will instantly notice a snag here. On a
Web site, if you want to display an image, you use a piece of HTML such as
; however, where can HTML in an email body
look for images?

First, use the following HTML to represent an in-line picture in an
email, , and then, before calling the send
method on the system.web.mail.mailmessage object, call the following:

attachInlineFile("c:\picture.jpg", "", "picture1")

where c:\picture.jpg is the image you wish to display.

5.6 Mail application programming interface

Microsoft Outlook provides an interface to applications to access emails
stored within its message store. This interface is called the mail application
programming interface (MAPI), and it’s based on legacy COM interfaces,
but nevertheless can still be accessed from .NET.

The following example lists the subject lines of all the emails in your
Outlook inbox.

Start a new project as usual, draw a list view onto the form, and name it
lvOutlook. Set the view to Details, and create two column headers labeled
From and Subject. Click on the Project→→→→Add Reference. Click COM,
scroll down the list, and select Microsoft Outlook 10.0 Object Library, and
then click Select.

Note: You do not need to have version 10.0 of the Microsoft Outlook Object
Library; this demonstration program will work fine with older versions.

Add the following code:

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 ListViewItem liEmail;

 Outlook.Application App;

154 5.6 Mail application programming interface

 Outlook.MailItem Msg;

 Outlook.NameSpace NS;

 Outlook.MAPIFolder Inbox;

 Outlook.Items Items;

 int I;

 App = new Outlook.Application();

 NS= App.GetNamespace("mapi");

 Inbox = NS.GetDefaultFolder

 (Outlook.OlDefaultFolders.olFolderInbox);

 Items = Inbox.Items;

 for (I=1;I<Items.Count;I++)

 {

 Msg = (Outlook.MailItem)Items.Item(I);

 liEmail = lvOutlook.Items.Add(Msg.SenderName);

 liEmail.SubItems.Add(Msg.Subject);

 }

 }

VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 Dim liEmail As ListViewItem

 Dim App As Outlook.Application

 Dim Msg As Outlook.MailItem

 Dim NS As Outlook.NameSpace

 Dim Inbox As Outlook.MAPIFolder

 Dim Items As Outlook.Items

 Dim i As Integer

 App = New Outlook.Application()

 NS= App.GetNamespace("mapi")

 Inbox = NS.GetDefaultFolder _

 (Outlook.OlDefaultFolders.olFolderInbox)

 Items = Inbox.Items

 For i = 1 To Items.Count

 Msg = Items.Item(i)

 liEmail = lvOutlook.Items.Add(Msg.SenderName)

 liEmail.SubItems.Add(Msg.Subject)

 Next

 End Sub

5.6 Mail application programming interface 155

Chapter 5

The procedure for receiving emails from outlook via MAPI is relatively
straightforward; however, the MAPI interface is huge and offers an
extremely flexible means of leveraging Outlook’s functionality. In the above
example, a new instance of Outlook Express is created, and a handle to
MAPI is obtained using the GetNamespace() method. The inbox folder is
then picked up and its contents examined by iterating through its Items
collection. Here, only two pieces of information are extracted from each
email: the name of the sender and the message subject (Figure 5.6).

This application may take a few seconds to start because Microsoft Out-
look must start when the Outlook.Application() object is created.

It is good programming practice to set these types of objects to nothing
or null after use to prevent hidden instances of Outlook hogging system
resources.

You will note in the above example that some sender names are fully
qualified email addresses, whereas some are aliases. To specify email
addresses only, the following command should be used in preference to the
SenderName property:

Msg.Recipients(1).Address

Figure 5.6
MAPI client
application.

156 5.6 Mail application programming interface

5.6.1 Accessing the address book

MAPI can be used to access most features of Microsoft Outlook, some of
which may be useful for developers working on plug-in applications for
Outlook.

The address book can be accessed via the AddressLists collection in the
MAPI namespace (NS in the example above). Each element in the collection
contains an AddressEntries collection. Each entry in the latter collection
contains a Name and Address property that can be used to extract email
addresses and proper names from the Outlook address book.

To create an application that reads the Outlook address book, reopen
the example shown above and alter the column headers to read Alias and
email address. Now click on the form and enter the following code:

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 ListViewItem liEmail;

 Outlook.Application App;

 Outlook.NameSpace NS;

 App = new Outlook.Application();

 NS= App.GetNamespace("mapi");

 int ListsIndexer;

 int EntriesIndexer;

 Outlook.AddressList CurrentList;

 Outlook.AddressEntry CurrentEntry;

 for(ListsIndexer = 1;

 ListsIndexer<=NS.AddressLists.Count;ListsIndexer++)

 {

 CurrentList = NS.AddressLists.Item(ListsIndexer);

 for(EntriesIndexer=1;

 EntriesIndexer<=CurrentList.AddressEntries.Count;

 EntriesIndexer++)

 {

 CurrentEntry =

 CurrentList.AddressEntries.Item(EntriesIndexer);

 liEmail = lvOutlook.Items.Add(CurrentEntry.Name);

 liEmail.SubItems.Add(CurrentEntry.Address);

 }

5.6 Mail application programming interface 157

Chapter 5

 }

}

VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim liEmail As ListViewItem

 lvOutlook.View = View.Details

 Dim App As Outlook.Application = New Outlook.Application()

 Dim NS As Outlook.NameSpace = App.GetNamespace("mapi")

 Dim ListsIndexer As Integer

 Dim EntriesIndexer As Integer

 Dim CurrentList As Outlook.AddressList

 Dim CurrentEntry As Outlook.AddressEntry

 For ListsIndexer = 1 To NS.AddressLists.Count

 CurrentList = NS.AddressLists.Item(ListsIndexer)

 For EntriesIndexer = 1 To CurrentList.AddressEntries.Count

 CurrentEntry = _
CurrentList.AddressEntries.Item(EntriesIndexer)

 liEmail = lvOutlook.Items.Add(CurrentEntry.Name)

 liEmail.SubItems.Add(CurrentEntry.Address)

 Next

 Next

End Sub

To test this code, first check that there are entries in the Outlook address
book by pressing Tools→→→→Address Book in Outlook. If there are no entries,
add one by pressing the New→→→→New Contact button. Now run the above
application from Visual Studio .NET, and the contact’s name and email
address will appear as shown in Figure 5.7.

Figure 5.7
MAPI address book

application.

158 5.6 Mail application programming interface

5.6.2 IMAP

The Internet message access protocol (IMAP) runs over port 143 and is
described definitively in RFC 1730.

Although SMTP and POP3 are the de facto standards for email com-
munication on the Internet, they are both very simple protocols, and some
contenders exist for their place on people’s desktops. IMAP is a competing
technology for POP3. IMAP is much more richly featured than POP3, but
for some reason it is less popular.

Messages stored in an IMAP server can be marked as being answered,
flagged, deleted, seen, draft, or recent (fetch only). In POP3, a message is
either stored or not deleted. These flags help manage an IMAP account over
multiple clients. If a single POP3 account is accessed by numerous clients,
it is difficult to keep track of who has seen or sent what.

The protocol itself is line-based, similar to the POP3 protocol. It uses a
more complicated, but flexible syntax. Following is an overview of the pro-
tocol. It is recommended that you review RFC 1730 for a definitive guide
to IMAP.

To access a mailbox, the client must authenticate itself with a username
and password. The client sends login <username> <password>, to which
the server replies with OK LOGIN completed, assuming the username and
password are correct.

To get summary information about the mailbox, the command select
inbox is issued. To this the server replies * <number of messages>

EXISTS.

To read back an email, the client sends the fetch <number> full com-
mand; number must be between 1 and the number received in response to
the select inbox command. The server responds with the message body in
RFC 822 format, followed by an end-of-message marker, OK FETCH com-
pleted.

To delete emails, the client sends the store <number> +flags \deleted
command. The server responds with OK +FLAGS completed.

To illustrate the protocol more simply, the following text shows the
chain of events that occurs between an IMAP server and client. As before,
“S” indicates a transmission from server to client, and “C” indicates a cli-
ent-to-server transaction. Here, user Marc is checking his emails, when he
receives 18 new messages. One of these emails is from Terry Gray, which he
deletes after reading the subject line.

5.6 Mail application programming interface 159

Chapter 5

 S: * OK IMAP4 Service Ready

 C: a001 login marc secret

 S: a001 OK LOGIN completed

 C: a002 select inbox

 S: * 18 EXISTS

 S: * FLAGS (\Answered \Flagged \Deleted \Seen

 \Draft)

 S: * 2 RECENT

 S: * OK [UNSEEN 17] Message 17 is the first

 unseen message

 S: * OK [UIDVALIDITY 3857529045] UIDs valid

 S: a002 OK [READ-WRITE] SELECT completed

 C: a004 fetch 12 rfc822.header

 S: * 12 FETCH (RFC822.HEADER {346}

 S: Date: Wed, 14 Jul 1993 02:23:25 -0700 (PDT)

 S: From: Terry Gray <gray@cac.washington.edu>

 S: Subject: IMAP4 WG mtg summary and minutes

 S: To: imap@cac.washington.edu

 S: cc: minutes@CNRI.Reston.VA.US, John Klensin

 <KLENSIN@INFOODS.MIT.EDU>

 S: Message-Id: <B27397-

 0100000@cac.washington.edu>

 S: MIME-Version: 1.0

 S: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII

 S:)

 S: a004 OK FETCH completed

 C: a005 store 12 +flags \deleted

 S: * 12 FETCH (FLAGS (\Seen \Deleted))

 S: a005 OK +FLAGS completed

 C: a006 logout

 S: * BYE IMAP4 server terminating connection

 S: a006 OK LOGOUT completed

Because of its low prevalence in everyday computing, a full implementa-
tion of IMAP is not included here.

5.6.3 Network news transfer protocol

The network news transfer protocol (NNTP) runs over port 119 and is
described definitively in RFC 977.

160 5.6 Mail application programming interface

This protocol is used for efficient management of mailing lists and is
gradually becoming obsolete and being replaced by email-based systems. It
is based on the idea that many users can send and receive undirected email,
which is sorted into subjects of interest.

Two basic tasks can be performed with NNTP: reading postings and
creating new postings. To read posts from a newsgroup, a client connects
to the news server and retrieves a list of newsgroups by using the LIST
command. To select a group, the client issues the GROUP command fol-
lowed by the group name. The server response to this command includes
the number of messages stored for that group. To download one of these
messages, the client sends the STAT command, followed by the message
number. To view the downloaded message, the client can use either the
HEAD or BODY command.

To better explain the procedure, in this example a client wishes to view
message number 10,110 in a group named net.unix-wizards. As before,
“S” indicates a transmission from server to client, and “C” indicates a cli-
ent-to-server transaction:

S: 200 wombatvax news server ready - posting ok

C: LIST

S: 215 list of newsgroups follows

S: net.wombats 00543 00501 y

S: net.unix-wizards 10125 10011 y

 (more information here)

S: net.idiots 00100 00001 n

S: .

C: GROUP net.unix-wizards

S: 211 104 10011 10125 net.unix-wizards group

 Selected (there are 104 articles on file,

 from 10011 to 10125)

C: STAT 10110

S: 223 10110 <23445@sdcsvax.ARPA> article

 retrieved - statistics only (article 10110

 selected, its message-id is

 <23445@sdcsvax.ARPA>)

C: BODY

S: 222 10110 <23445@sdcsvax.ARPA> article

 retrieved – body follows (body text here)

S: .

5.7 Conclusion 161

Chapter 5

The second operation that can be performed through NNTP is posting
to newsgroups. Not all newsgroups allow this function, but for those that
do, this is the procedure. Here the user is posting a message to a server
named BANZAIVAX:

S: 200 BANZAIVAX news server ready, posting

 allowed.

C: POST

S: 340 Continue posting; Period on a line by

 itself to end

C: (transmits news article in RFC850 format)

C: .

S: 240 Article posted successfully.

C: QUIT

S: 205 BANZAIVAX closing connection. Goodbye.

5.7 Conclusion

This chapter has explained how to send and receive emails from your .NET
application, either from high-level code or socket-level operations. This
chapter outlined the key facets of SMTP and POP3, in summary:

� SMTP is used to send emails from client to server.

� POP3 is used to receive emails from server to client.

� POP3 can be used to delete emails from the server once received.

Chapter 12 deals with the issue of determining mail exchange servers
from domain names. This helps improve the performance of email-driven
applications.

The next chapter deals with the file transfer protocol (FTP). This is the
de facto standard for transferring files over the Internet and is well worth
knowing about.

This page intentionally left blank

163

6

FTP: Communicating with File Servers

6.1 Background

Anybody with experience in Web design knows that in order to put the site
“live,” the Web page files need to be sent to a Web server provided by your
hosting company or ISP. Most people never get to see the physical machine
that their Web site is hosted on, and their only contact with it is through a
file transfer protocol, or FTP, program such as cuteFTP or smartFTP.

FTP is the most common cross-platform file transfer mechanism
between computers over the Internet. FTP software is freely available for all
major operating systems, including Windows, UNIX, and Mac OS X. This
cross-platform interoperability is very important for Web site development
because most Web designers work on Windows and most Web servers run
from UNIX, Linux, and Netware OS.

FTP as defined in RFC 1350 supersedes an older protocol known as
trivial file transfer protocol (TFTP). This system is very seldom used on the
Internet, but it can be used for procedures such as diskless booting on a net-
work. It has no authentication facilities.

6.2 Microsoft file sharing

A competing technology developed by Microsoft is the Common Internet
File (CIF) system. This is the native file-sharing protocol of Windows
2000 and XP. It is an extension of the earlier server message block (SMB)
protocol used in prior versions of Windows. It is used to provide for the
network drive functionality and print sharing. It is more secure than FTP,
because of NTLM encryption, and generally faster; however, non-Win-
dows implementations are not commonplace, but do exist for VMS and

164

6.3

Netware file sharing

UNIX. The protocol is largely proprietary, which is often a deterrent to
non-Microsoft developers.

Windows file sharing is most commonplace within office networks,
where many employees share a printer or a central repository for files. From
a programmer’s perspective, it is an ideal technology to use as a once-off
solution at a company where all of the system users would be on the same
internal network. If, for instance, an architecture firm were looking for a
central repository for drawings, network share would be ideal because it
requires no programming. The equivalent system using FTP would be
slower, more awkward, and less secure; however, if the same firm wanted to
share drawings with other firms, then FTP would be more suitable because
of its interoperability and ease of deployment on Internet (rather than
intranet) environments.

The terms

NETBIOS

 and

NETBEUI

 are the more correct names for
Microsoft file and print sharing. A flavor of NETBIOS, NBT runs over IP,
but all other forms are not based on IP addresses; they use NETBIOS host-
names. These hostnames are resolved into physical addresses in one of four
ways. They can broadcast the request on the network (B-Node). Alternately,
they may query a WINS server (P-Node). Using a combination of these
methods, by broadcasting before querying, is M-Node operation, and the
reverse is H-Node operation.

6.3 Netware file sharing

This is somewhat of a dinosaur of file-transfer mechanisms, but it regularly
appears in networks that have been in place for decades. It is, however, one
of the fastest file transfer protocols over internal networks. It is built on top
of the Internetworking packet exchange / Sequenced Packet Exchange
(IPX/SPX) protocols and is thus nonroutable. Translators are available to
convert these packets to TCP/IP, but the performance factor is lost.

The Netware system (also referred to as

IntranetWare

) is centered on a
central Netware server. This server runs the Novell operating system, which
is started from a bootstrap DOS application. The server hosts the Netware
directory service (NDS), which is used to control authentication and privi-
leges. Older Novell servers (3.x) use a bindery instead of NDS. The differ-
ence between the two systems is that the NDS is a relational database and
can replicate among other servers, whereas the bindery cannot.

Novell clients are available for almost any platform, from DOS and
Windows to Macintosh and UNIX. The clients locate the server by using

6.4

An overview of FTP 165

Chapter 6

the Novell core protocol (NCP). When a remote file server is found, it is
mapped to a local drive on the client’s machine.

There is no native support for interoperating with Netware in .NET, and
it is no small undertaking to integrate a .NET application with a Novell net-
work. If you have to do so, look at the DOS command-line interfaces to the
network, or failing that, try interfacing at the IPX level using raw sockets.

6.4 An overview of FTP

FTP operates on two ports: 21, the control socket, and a data socket, which
can exist on port 20 or some other, high port. The definitive description of
the protocol is found in RFC 959 at

www.ietf.org/rfc/rfc959.txt.

Like the email protocols, the commands that flow between client and
server are quite human readable and are broken up into lines, like English
text; however, it is not feasible to upload or download files using FTP
through telnet. If, however, you require a simple batch program to perform
a routine upload of files to an FTP server, it may save time to look at the
FTP.exe utility.

The FTP utility is a DOS-based program with a command-line inter-
face. It can, however, accept script files with the

–s

 command-line parame-
ter, such that it can run autonomously. To try this utility, create a file named

script.ftp

 containing the following text:

open www.eej.ulst.ac.uk

anonymous

me@myemail.com

cd lib

get libtermcap.so.2.0.8

quit

This FTP script file will open a connection to a server named

www.eej.ulst.ac.uk

. Log in anonymously, navigate to the

lib

 folder, and
download a file named

libtermcap.so.2.0.8

, and then exit. The down-
loaded file will be stored in the current local directory.

To run the script as shown in Figure 6.1, go to the command prompt,
navigate to the location where

script.ftp

 was saved, and then type the fol-
lowing keywords:

ftp –s:script.ftp

166

6.4

An overview of FTP

The technique of using the FTP utility is not the best-practice means of
transferring files, but it is a simple and straightforward way to perform rou-
tine uploads when aesthetics and performance are not important. To lever-
age FTP from within a .NET application properly, it is necessary to be well-
acquainted with the FTP protocol at a socket level, which is not all that dis-
similar to learning to use the FTP utility command-line interface.

The FTP protocol facilitates more than uploading and downloading: It
must also be able to accommodate all manner of file-manipulation tasks.
This includes deleting, renaming, and navigating through folders. You can-
not, however, edit the contents of files using FTP, unless you replace them
completely.

Commands issued from client to server take the form

<

keyword

> <

parameter

> <enter>

Commands from server to client take the form:

<

status code

> <

human and/or computer readable message

>
<enter>

Table 6.1 lists the main groups for status codes.

When you open an FTP connection to a server using an FTP client, you
sometimes will be shown the raw data being sent to and from the server on
the command socket. The text may resemble the following:

Figure 6.1

FTP MS-DOS
utility.

6.4

An overview of FTP 167

Chapter 6

220 Serv-U FTP-Server v2.5k for WinSock ready...

 USER secret

331 User name okay, need password.

 PASS (hidden)

230 User logged in, proceed.

 PWD

257 "/" is current directory.

 TYPE A

200 Type set to A.

 PASV

227 Entering Passive Mode (212,17,38,3,11,144)

 LIST -aL

150 Opening ASCII mode data connection for /bin/ls.

226 Transfer complete.

This is a dump of the traffic on the command port. The data port is not
shown.

6.4.1 How FTP uses ports

In the email protocols, sections of data of variable length (i.e., emails) could
be suffixed with

<enter>.<enter>

 to mark the end of the data. If this char-
acter sequence is detected within the body of the email, it could be removed
before sending without any real degradation of the legibility of the email;
however, in FTP, an executable file could quite easily have this sequence of

Table 6.1

FTP status codes.

Status
code
range Meaning

1xx

Positive preliminary reply. The command has begun on the server.

2xx

Positive completion reply. The command has been completed successfully.

3xx

Positive intermediate reply. The command has been accepted, but no action
has been taken.

4xx

Transient negative completion reply. The command has been denied, but can
be reissued later.

5xx

Permanent negative completion reply. The command has been denied and
should not be reissued.

168

6.4

An overview of FTP

characters embedded within it, and the removal of those characters could
cause the file to corrupt.

To avoid this problem, port 21 is used to send and receive commands
and responses, each terminated by an

<enter>

. When variable length data is
sent between client and server, such as files or directory listings, a temporary
connection is opened on port 20, the data is transferred, and the port is
closed again. In most real-world FTP client implementations, however, the
FTP client may be behind a firewall, so the server should do all the serving
and the client should do all the requesting.

Passive-mode FTP is where the client instructs the server to listen on a
port other than the default data port. The client will then connect to this
port and use it for uploading and downloading as usual.

The response to the

PASV

 command will always include a bracketed list
of six numbers separated by commas. The first four digit groups represent
the IP address of the server, and the final two groups represent the port the
server is listening on for its data connection.

In the previous example, the four digits are 212,17,38,3,11,144. This
means that the server is located at IP address 212.17.38.3 and listening on
port 2960 (11

×

 256 + 144).

The server will begin listening on the port as soon as it receives the

PASV

command. It will return a 227 message to indicate that it has begun listen-
ing on this port. Once the client connects to this port, the server will return
a 150 message. If the client does not connect to the port in a timely fashion
(a few seconds), the server will issue a 425 timeout message. The server will
send the requested data on that port and close the connection once all of
the data is sent, and then issue a 226 message.

The same process happens in reverse when uploading to the server. In
this case, the

PASV

 command is issued, and the client connects to the port
specified by the server. The client then places the contents of the file on the
new socket and closes the connection once the file is sent.

6.4.2 The FTP handshake

In the same way, FTP uses a basic authentication mechanism: It accepts a
username and password in plain text, which can be seen by anyone using
a protocol analyzer at any point between the client and the server. FTP
over SSL is recommended when a Web site carries information of sub-
stantial value.

6.4

An overview of FTP 169

Chapter 6

An FTP server may allow anonymous access. This is where the username
is set to

anonymous

 and the password can be anything. This is the default
setup of the Microsoft FTP service.

When you connect to an FTP server on port 21, the server will respond
as follows:

220 <

some message

><enter>

Using the same format as the POP3 handshake, the next commands to
send are

USER

 and

PASS

 (in that order). The

USER

 command is of this for-
mat:

USER <

username

><enter>

The server will generally respond with 331 and request a password,
whether there is any record of that user on the system or not. This is to
make brute-force attacks more difficult.

331 <

some message

><enter>

The

PASS

 command must then be sent:

PASS <

password

><enter>

The server will either respond with a 530 message for a failed login or
230 for a successful login.

230 <

some message

><enter>

At this point, the user should have access to the FTP server. Depending
on the privileges set on the FTP server, the user will be able to read or write
operations within a limited section of the remote computer’s disk drives.

Some FTP servers will disconnect inactive users to save resources. There-
fore, a periodic

NOOP

 command will keep the FTP server from closing the
connection. A

NOOP

 command has no effect on the server beyond this task.

NOOP<enter>

170

6.4

An overview of FTP

200 <message><enter>

To close the connection, the client may simply close the underlying
TCP connection, or issue a QUIT command as follows:

QUIT<enter>

221 <message><enter>

6.4.3 Navigating folders

In order to navigate around a remote computer’s file system, you need to
know what files and subfolders are contained within each folder.

Like files, this data is returned on the data socket. The process for receiv-
ing folder listings is as follows:

�

Client issues

LIST

 command.

�

Server waits for data socket to be created. A timeout will occur with a
425 response. Otherwise, a 125 response is received.

�

Server transfers file data, as illustrated below.

�

Server closes data connection and issues a 226 response on the con-
trol socket.

On the Windows FTP service, the default directory listing style is DOS.
A listing would resemble the following:

01-18-03 03:22PM 0 ge.bmp

01-18-03 11:40PM 733 Project1.vbp

01-18-03 05:00PM 2498 Readme.txt

01-18-03 03:40PM <DIR> wat

The five columns are last modified date, time, folder or file, size, and
name, respectively.

For UNIX FTP servers, the directory listing style is in this format:

d---rw-rw- 1 user group 0 Jan 18 2003 .

d---rw-rw- 1 user group 0 Jan 18 2003 ..

----rw-rw- 1 user group 0 Jan 18 15:22 ge.bmp

6.4 An overview of FTP 171

Chapter 6

----rw-rw- 1 user group 733 Jan 18 23:40 Project1.vbp

----rw-rw- 1 user group 2498 Jan 18 17:00 Readme.txt

d---rw-rw- 1 user group 0 Jan 18 2003 wat

Note: The Cerberus FTP server for Windows (www.cerberusftp.com) will
also return file data in a UNIX format. The directory listing style is inter-
changeable in IIS.

This is an unfortunate lack of standardization, but something that devel-
opers must be aware of. A quick-and-dirty approach is to read the last word
at the end of each line and assume it to be a file if there is a period in it.

A more foolproof implementation is to issue a SYST command to the
server and read the response, either 215 UNIX<version><enter> or 215
Windows<version><enter>. Alternately, the NLST command may be used to
receive a list of files (only) from the server.

The folder system in FTP is navigated in much the same way as in
DOS. To move to a subfolder, the client issues CWD /<folder

name><enter>, to which the server replies 250 for success or 550 for failure.
To move to the parent folder, the client issues CDUP.

To retrieve the current folder, the client may issue PWD, to which the
server replies:

257 "<folder name>"<message><enter>

6.4.4 FTP command reference

Following is a comprehensive list of FTP commands as would be issued by
a client.

Table 6.2 FTP commands .

FTP Command Action

RETR Downloads

STOR Uploads

STOU Uploads, where the server chooses the name of the remote file; this
name is specified in the 250 response

172 6.4 An overview of FTP

6.4.5 Implementing FTP

To access an FTP server, you need to know its IP address and have a user-
name and password with it. Most ISPs provide you with a small amount of
Web space on their servers when you sign up, and you should be able to get
these details if you call your ISP.

APPE Appends

REST Restarts file transfer at a specified position

RNFR Renames a file (RNFR <old name>); must be followed by RNTO

RNTO Renames a file (RNTO <new name>); must be preceded by RNFR

ABOR Aborts the current data transfer

DELE Deletes the specified file

RMD Deletes the specified folder

MKD Creates a new folder

PWD Responds with the current working directory

LIST Responds with the contents of the current working directory in
human-readable format

NLST Responds with a list of files in the current working directory

SITE Provides proprietary FTP services

SYST Responds with the name of the operating system (or the OS being
emulated)

STAT Responds with the status of a data transfer

HELP Responds with human-readable text with information about the
server

NOOP No effect

USER Specifies the username of the user

PASS Specifies the password of the user

TYPE Indicates the format of the data, either A for ASCII, E for
EBCDIC, I for Binary, or L n to select a custom byte size (where
n is the length of the byte)

Table 6.2 FTP commands (continued).

FTP Command Action

6.4 An overview of FTP 173

Chapter 6

Some versions of Windows come with an option to install an FTP
server. Click Control Panel→→→→Add/Remove Programs→→→→Add or Remove Win-
dows Components→→→→Internet Information Services→→→→Details→→→→FTP Service
(Figure 6.2).

To administer the FTP server once it is installed, click Control
Panel→→→→Administrative Tools→→→→Internet Information Services→→→→FTP
Site→→→→Default FTP site. Then right-click and go to Properties.

Click on the Home Directory tab (Figure 6.3). This is where you can set
the FTP site directory path, which is where uploaded FTP files are stored
on your local hard disk. For the purposes of the code examples in this chap-
ter, you should check both the read and write options.

To test out your FTP server, type ftp://localhost into Internet Explorer.
You can download various FTP clients from the Internet (e.g., smartFTP,
www.smartftp.com, or cuteFTP, www.globalscape.com).

Figure 6.2
Windows: Add or

remove components
for IIS.

174 6.4 An overview of FTP

6.4.6 Implementing FTP with the Internet
Transfer Control

A full implementation of FTP is quite an undertaking. It may be worth-
while to consider the Microsoft Internet Transfer Control if you need to
perform this task. It is a legacy COM control (and thus carries a lot of over-
head for .NET applications). Native .NET components are available com-
mercially from Dart and IP*Works.

Having said that, for many applications you don’t need an all-singing,
all-dancing implementation of FTP to get your job done. If you are writing
a feature to an application to perform a scheduled upload of files to a server,
you probably don’t want to confuse the user with details of the remote com-
puter’s directory structure. All you may need is a few lines of code to trans-
fer the file to a predetermined location.

Create a new Windows application project in Visual Studio .NET as
usual, and draw two textboxes, one named tbServer and the other tbFile.

Figure 6.3
FTP site

administration.

6.4 An overview of FTP 175

Chapter 6

Add two buttons, btnBrowse and btnUpload. You will also require an Open
File Dialog control named openFileDialog.

Click on the Browse button, and add the following code:

C#
private void btnBrowse_Click(object sender, System.EventArgs
e)

{

 openfileDialog.ShowDialog();

 tbFile.Text = openfileDialog.FileName;

}

VB.NET
Private Sub btnBrowse_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnBrowse.Click

 openfileDialog.ShowDialog()

 tbFile.Text = openfileDialog.FileName

End Sub

Now, double-click on the Upload button, and add this code:

C#
private void btnUpload_Click(object sender, System.EventArgs
e)

{

 FileInfo thisFile = new FileInfo(tbFile.Text);

 Type ITC;

 object[] parameter= new object[2];

 object ITCObject;

 ITC = Type.GetTypeFromProgID("InetCtls.Inet");

 ITCObject = Activator.CreateInstance(ITC);

 parameter[0] = (string)tbServer.Text;

 parameter[1] = (string)"PUT " + thisFile.FullName + " /" +

 thisFile.Name;

 ITC.InvokeMember("execute", BindingFlags.InvokeMethod,

 null, ITCObject, parameter);

}

176 6.4 An overview of FTP

VB.NET
Private Sub btnUpload_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnUpload.Click

 Dim thisFile As FileInfo = New FileInfo(tbFile.Text)

 Dim ITC As Type

 Dim parameter() As Object = New Object(1) {}

 Dim ITCObject As Object

 ITC = Type.GetTypeFromProgID("InetCtls.Inet")

 ITCObject = Activator.CreateInstance(ITC)

 parameter(0) = CType(tbServer.Text, String)

 parameter(1) = CType("PUT " + thisFile.FullName + _

 " /" + thisFile.Name, String)

 ITC.InvokeMember("execute", BindingFlags.InvokeMethod, _

 Nothing, ITCObject, parameter)

End Sub

As mentioned earlier, the Internet Transfer Control (ITC) is a legacy
COM control rather than a native .NET control. In Chapter 1, the Inter-
net Explorer component (which was also COM) was used as part of an
application to form a custom Web browser. This time, instead of including
the COM control in the project by right-clicking on the toolbox and add-
ing it there, we call the COM control directly through code.

This is slightly more complex, but offers the advantage of late binding
(i.e., the object is loaded at run time rather than compile time). This gives
the benefit of fault tolerance; in case the external COM control is acciden-
tally deleted, the host application will still operate, albeit with degraded
functionality. Late binding does incur a performance penalty because the
code will need to determine the object’s supported methods and types at
run time by interrogating the object’s IDispatch interface. The environ-
ment would already know the object’s interface if it had been early bound.
Late binding is not strictly required for use with the ITC, but it is useful to
learn new techniques.

Every COM control has a unique programmatic ID, or ProgID. This
string is stored in the registry and is in the format <project name>.<Class
name>.<version>. In this instance, the programmatic ID is
InetCtls.Inet, with no version number.

The Activator creates an instance of the class at run time. At design
time, there is no way of knowing the methods and properties of the object;

6.4 An overview of FTP 177

Chapter 6

therefore, the return value is of the generic object type. In order to call
methods on an object that has unknown type (at design time at least), we
use the InvokeMember method.

In order to invoke the execute method on the object and pass two
parameters to it, we need first to define the two parameters. The first is the
FTP address to which the object will connect. The second is the FTP com-
mand that the object will execute on the server. These two parameters are
cast to strings and stored in an array. Finally, the InvokeMember method is
called, passing the method name as the first parameter and the parameters
to be sent to the COM control as the last parameter.

You will also need the relevant namespaces:

C#
using System.IO;

using System.Reflection;

using System.Threading;

VB.NET
Imports System.IO

Imports System.Reflection

Imports System.Threading

To test this piece of code, first ensure that your FTP server is running.
After you have checked this, run the application from Visual Studio .NET.
Type the IP address, username, and password into the Server textbox in the
standard URL format (i.e., ftp://username:password@myserver.com). Choose
a file from your hard disk by pressing the Browse button, then press Upload
(Figure 6.4). Now check your FTP root to ensure that the file is there.

Figure 6.4
FTP client using

COM.

178 6.4 An overview of FTP

There is an important limitation in the ITC; that is that the file must be
in the old DOS 8.3 format, where C:\program files\myile.txt becomes
c:\progra~1\myfile.txt. Please note that you must have write access to
the root of the FTP server; otherwise, the code example will not work.

The second parameter passed to the execute method of the ITC deter-
mines the action to be performed on the remote FTP server. Table 6.3 lists
the possible actions.

6.4.7 A more substantial implementation of FTP

The ITC has several limitations, contains quite a few well-known bugs, and
is far from being a high-performance implementation. Furthermore, it is
not native to .NET, and many software houses will demand that a .NET
project is 100% managed code.

Table 6.3 FTP command usage.

FTP command Action

DIR /anyFolder Retrieves the directory listing tree from the
specified folder at the remote machine; list-
ing can be retrieved using the GetChunk
method

CD anyFolder Moves to the specified folder on the remote
machine

CDUP Moves to the parent folder (if one exists) on
the remote machine

GET anyFolder/anyFile.txt c:\
anyFile.txt

Downloads a remote file to a local file

PUT c:\anyFile.txt anyFolder/
anyFile.txt

Uploads a local file to a remote file

MKDIR /anyFolderName Creates a directory on the remote machine

RMDIR anyFolderName Removes a directory from the remote
machine

RENAME oldFileName.txt
newFileName.txt

Changes the name of a file on the remote
machine

SIZE /anyFile.txt Retrieves the size of a specified file

QUIT Closes the connection to the FTP server

6.4 An overview of FTP 179

Chapter 6

By following the code on the next few pages, you will have a full-fledged
FTP client, with the ability to browse a remote file system, upload, and
download.

Start a new project in Visual Studio .NET and add two forms, frmLogon
and frmMain. On the Logon form, draw four textboxes: tbServer, tbUser-
name, tbPassword, and tbStatus. The latter should be set with multi-
line=true and greyed out appropriately. A button, btnLogon, should also
be added.

On the Main form, draw two list boxes: lbFiles and lbFolders. Add a
textbox named tbStatus in the same style as in the Logon form. Add three
buttons: btnUpload, btnDownload, and btnRoot. Also add an File Open Dia-
log control named OpenFileDialog and a Save File Dialog control named
SaveFileDialog.

In the Main form, add a few public variables:

C#
public frmLogon LogonForm = new frmLogon();

public NetworkStream NetStrm;

public string RemotePath = "";

public string server = "";

VB.NET
Public LogonForm As frmLogon = New frmLogon()

Public NetStrm As NetworkStream

Public RemotePath As String = ""

Public server As String = ""

In the Logon form, add the following public variable:

C#
public frmMain MainForm;

VB.NET
Public MainForm as frmMain

The call to new frmLogon() does not make the Logon form visible;
instead, it is used to help ensure that only one instance of the Logon form
occurs. The NetworkStream variable is used to represent the command
socket connection. The data connection is less permanent and does not

180 6.4 An overview of FTP

need to be defined globally. The two strings maintain information about
where the server is and what the working folder is on the server.

Double-click on the Main form and add these lines:

C#
private void frmMain_Load(object sender, System.EventArgs e)

{

 LogonForm.MainForm = this;

 LogonForm.Visible = true;

}

VB.NET
Private Sub frmMain_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

 LogonForm.MainForm = Me

 LogonForm.Visible = True

End Sub

This shows the Logon form and provides a means for the Logon form to
call public methods on this particular instance of the Main form.

On the Logon from, comment out the Dispose method to ensure that it
cannot be deleted from memory unless the Main form is closed. You may
need to expand the “Windows Form Designer generated code” region to
view this method.

C#
protected override void Dispose(bool disposing)

{ }

VB.NET
Protected Overrides Sub Dispose(ByVal disposing As Boolean)

End Sub

On the logon form, click on the Logon button, and enter the following
code:

C#
private void btnLogon_Click(object sender, System.EventArgs
e)

6.4 An overview of FTP 181

Chapter 6

{

 TcpClient clientSocket = new TcpClient(tbServer.Text,21);

 MainForm.NetStrm = clientSocket.GetStream();

 StreamReader RdStrm= new StreamReader(MainForm.NetStrm);

 tbStatus.Text = RdStrm.ReadLine();

 tbStatus.Text = MainForm.sendFTPcmd("USER "+

 tbUsername.Text + "\r\n");

 tbStatus.Text = MainForm.sendFTPcmd("PASS "+

 tbPassword.Text+ "\r\n");

 if (tbStatus.Text.Substring(0,3)!="230")

 {

 MessageBox.Show ("Failed to log in");

 }

 else

 {

 MainForm.server = tbServer.Text;

 MainForm.getRemoteFolders();

 MainForm.Text += "[logged in]";

 Visible=false;

 }

}

VB.NET
Private Sub btnLogon_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnLogon.Click

 Dim clientSocket As TcpClient = New _

 TcpClient(tbServer.Text,21)

 MainForm.NetStrm = clientSocket.GetStream()

 Dim RdStrm As StreamReader = New _

 StreamReader(MainForm.NetStrm)

 tbStatus.Text = RdStrm.ReadLine()

 tbStatus.Text = MainForm.sendFTPcmd("USER "+ _

 tbUsername.Text + vbcrlf)

 tbStatus.Text = MainForm.sendFTPcmd("PASS "+ _

 tbPassword.Text+ vbcrlf)

 If tbStatus.Text.Substring(0,3)<>"230" Then

 MessageBox.Show ("Failed to log in")

182 6.4 An overview of FTP

 Else

 MainForm.server = tbServer.Text

 MainForm.getRemoteFolders()

 MainForm.Text += "[logged in]"

 Visible=False

 End If

End Sub

This code opens a TCP connection to the FTP server on port 21. Once
the connection has been made, a stream to the remote host is established.
This stream is then extended through a StreamReader. The welcome mes-
sage from the server is read in and displayed on-screen.

The program then attempts to log in using the username and password
supplied. If the FTP server responds with a 230 message, then a message
box is displayed. Otherwise, the getRemoteFolders() method is called on
the main form, a “Logged in” message appears in the form caption, and the
logon form disappears.

The function sendFTPcmd() has not yet been implemented, so insert
this code into the Main form:

C#
public string sendFTPcmd(string cmd)

{

 byte[] szData;

 string returnedData = "";

 StreamReader RdStrm= new StreamReader(NetStrm);

 szData = Encoding.ASCII.GetBytes(cmd.ToCharArray());

 NetStrm.Write(szData,0,szData.Length);

 tbStatus.Text += "\r\nSent:" + cmd;

 returnedData = RdStrm.ReadLine();

 tbStatus.Text += "\r\nRcvd:" + returnedData;

 return returnedData;

}

VB.NET
Public Function sendFTPcmd(ByVal cmd As String) As String

 Dim szData() As Byte

 Dim ReturnedData As String = ""

 Dim RdStrm As StreamReader = New StreamReader(NetStrm)

 szData = Encoding.ASCII.GetBytes(cmd.ToCharArray())

6.4 An overview of FTP 183

Chapter 6

 NetStrm.Write(szData,0,szData.Length)

 tbStatus.Text += vbcrlf +"Sent:" + cmd

 ReturnedData = RdStrm.ReadLine()

 tbStatus.Text += vbcrlf +"Rcvd:" + ReturnedData

 Return ReturnedData

End Function

This code sends a string on the command socket via the public
NetworkStream NetStrm. This stream is passed to the constructor of a
StreamReader to facilitate easier reading of the stream. The string passed
into the function is converted to a character array and sent over the wire
using the Write method. The outgoing command is printed on screen.
The StreamReader reads incoming data up to the end-of-line character
and then displays this on-screen. Finally, the data received is returned to
the calling function.

As seen earlier, when the Logon button is pressed, a call is made to
getRemoteFolders(). We can now implement this in the Main form:

C#
public void getRemoteFolders()

{

 string[] filesAndFolders;

 string fileOrFolder;

 string folderList="";

 int lastSpace=0;

 folderList =

 Encoding.ASCII.GetString(sendPassiveFTPcmd("LIST\r\n"));

 lbFiles.Items.Clear();

 lbFolders.Items.Clear();

 filesAndFolders = folderList.Split("\n".ToCharArray());

 for(int i=0;i<filesAndFolders.GetUpperBound(0);i++)

 {

 if (filesAndFolders[i].StartsWith("-") ||

 filesAndFolders[i].StartsWith("d"))

 {

 lastSpace=59; // UNIX format

 }

 else

 {

 lastSpace=39; // DOS format

 }

184 6.4 An overview of FTP

 fileOrFolder = filesAndFolders[i].Substring(lastSpace);

 if (fileOrFolder.IndexOf(".")!=-1)

 {

 lbFiles.Items.Add(fileOrFolder.Trim());

 }

 else

 {

 lbFolders.Items.Add(fileOrFolder.Trim());

 }

 }

}

VB.NET
Public Sub getRemoteFolders()

 Dim filesAndFolders() As String

 Dim fileOrFolder As String

 Dim folderList As String = ""

 Dim lastSpace As Integer = 0

 folderList = Encoding.ASCII.GetString(sendPassiveFTPcmd _

 ("LIST" + vbCrLf))

 lbFiles.Items.Clear()

 lbFolders.Items.Clear()

 filesAndFolders = folderList.Split(vbCr.ToCharArray())

 Dim i As Integer

 For i = 0 To filesAndFolders.GetUpperBound(0) - 1

 If filesAndFolders(i).StartsWith("-") Or _

 filesAndFolders(i).StartsWith("d") Then

 lastSpace = 59 ' UNIX format

 Else

 lastSpace = 39 ' DOS format

 End If

 fileOrFolder = filesAndFolders(i).Substring(lastSpace)

 If fileOrFolder.IndexOf(".") <> -1 Then

 lbFiles.Items.Add(fileOrFolder.Trim())

 Else

 lbFolders.Items.Add(fileOrFolder.Trim())

 End If

 Next

End Sub

6.4 An overview of FTP 185

Chapter 6

This uses the quick-and-dirty method of pulling file and folder details
out of the file data received from the FTP server. It issues the LIST FTP
command via a passive connection. The passive connection is required
because the data returned could potentially be quite large and contains
many lines of information.

The data returned is then split into lines by delimiting the string by the
end-of-line character and applying the Split method. Going through these
lines one by one, everything is stripped off that precedes the final space. If
the remaining string contains a period, then it is added to the file list; if not,
it is added to the folder list.

In order to receive data from a passive connection, we need to imple-
ment the sendPassiveFTPcmd() function:

C#
public byte[] sendPassiveFTPcmd(string cmd)

{

 byte[] szData;

 System.Collections.ArrayList al = new ArrayList();

 byte[] RecvBytes = new byte[Byte.MaxValue];

 Int32 bytes;

 Int32 totalLength=0;

 szData =

 System.Text.Encoding.ASCII.GetBytes(cmd.ToCharArray());

 NetworkStream passiveConnection;

 passiveConnection = createPassiveConnection();

 tbStatus.Text += "\r\nSent:" + cmd;

 StreamReader commandStream= new StreamReader(NetStrm);

 NetStrm.Write(szData,0,szData.Length);

 while(true)

 {

 bytes = passiveConnection.Read(RecvBytes,

 0,RecvBytes.Length);

 if (bytes<=0) break;

 totalLength += bytes;

 al.AddRange(RecvBytes);

 }

 al = al.GetRange(0,totalLength);

 tbStatus.Text+="\r\nRcvd:"+commandStream.ReadLine(); // 125

 tbStatus.Text+="\r\nRcvd:"+commandStream.ReadLine(); // 226

 return (byte[])al.ToArray((new byte()).GetType());

}

186 6.4 An overview of FTP

VB.NET
Public Function sendPassiveFTPcmd(ByVal cmd As String) _

 As Byte()

 Dim szData() As Byte

 Dim al As New System.Collections.ArrayList

 Dim bytes As Int32

 Dim RecvBytes(Byte.MaxValue) As Byte

 szData = _

 System.Text.Encoding.ASCII.GetBytes(cmd.ToCharArray())

 Dim totalLength As Int32 = 0

 Dim passiveConnection As NetworkStream

 passiveConnection = createPassiveConnection()

 tbStatus.Text += vbCrLf + "Sent:" + cmd

 Dim commandStream As StreamReader = New _

 StreamReader(NetStrm)

 NetStrm.Write(szData, 0, szData.Length)

 Do While (True)

 bytes = passiveConnection.Read(RecvBytes, 0, _

 RecvBytes.Length)

 If bytes <= 0 Then Exit Do

 totalLength += bytes

 al.AddRange(RecvBytes)

 Loop

 al = al.GetRange(0, totalLength)

 tbStatus.Text += vbCrLf + "Rcvd:" + _

 commandStream.ReadLine() ' 125

 tbStatus.Text += vbCrLf + "Rcvd:" + _

 commandStream.ReadLine() ' 226

 Return CType(al.ToArray((New Byte).GetType()), Byte())

End Function

This code requests a passive connection to the server via the createPas-
siveConnection() function. It then sends the string on the command
socket, and then reads everything sent on the passive connection until the
server closes it. This data is then returned to the calling function. Any data
sent back on the command socket is more or less ignored, apart from some
on-screen reporting.

The next step is to implement the createPassiveConnection() function:

6.4 An overview of FTP 187

Chapter 6

C#
private NetworkStream createPassiveConnection()

{

 string[] commaSeperatedValues;

 int highByte =0;

 int lowByte =0;

 int passivePort =0;

 string response="";

 response = sendFTPcmd("PASV\r\n");

 // 227 Entering Passive Mode (127,0,0,1,4,147).

 commaSeperatedValues = response.Split(",".ToCharArray());

 highByte = Convert.ToInt16(commaSeperatedValues[4]) * 256;

 commaSeperatedValues[5] =

 commaSeperatedValues[5].Substring(0,

 commaSeperatedValues[5].IndexOf(")"));

 lowByte = Convert.ToInt16(commaSeperatedValues[5]);

 passivePort = lowByte + highByte;

 TcpClient clientSocket = new TcpClient(server,passivePort);

 NetworkStream pasvStrm = clientSocket.GetStream();

 return pasvStrm;

}

VB.NET
Private Function createPassiveConnection() As NetworkStream

 Dim commaSeperatedValues() As String

 Dim highByte As Integer = 0

 Dim lowByte As Integer = 0

 Dim passivePort As Integer = 0

 Dim response As String = ""

 response = sendFTPcmd("PASV"+vbCrLf)

 ' 227 Entering Passive Mode (127,0,0,1,4,147).

 commaSeperatedValues = response.Split(",".ToCharArray())

 highByte = Convert.ToInt16(commaSeperatedValues(4)) * 256

 commaSeperatedValues(5) = _

 commaSeperatedValues(5).Substring(0, _

 commaSeperatedValues(5).IndexOf(")"))

 lowByte = Convert.ToInt16(commaSeperatedValues(5))

 passivePort = lowByte + highByte

 Dim clientSocket As TcpClient= New _

 TcpClient(server,passivePort)

 Dim pasvStrm As NetworkStream=clientSocket.GetStream()

188 6.4 An overview of FTP

 Return pasvStrm

End Function

This function issues a PASV command on the command socket to the
server. The received data should resemble the following:

227 Entering Passive Mode (127,0,0,1,4,147)

The final two numbers indicate the port number of the socket that the
server has just begun to listen on. In this case, it is 1171 (4 × 256 + 147). To
extract these numbers, the string is first split into smaller strings, which are
divided up using the comma character in the Split method.

The low-order byte of the new port number is followed by a closed
bracket. This bracket must be stripped off before it will convert to an inte-
ger. To do this, the IndexOf method locates the superfluous bracket, and
Substring removes everything following the final digit.

Once the passive port has been determined, the function then opens a
TCP connection to the server on this port. The resultant NertworkStream is
sent back to the calling function.

At this point, you can compile and run the code from Visual Studio
.NET and check that you can log onto any FTP server and view the root
directory listing. The next step is to add the folder-browsing capabilities.
We can implement the event that is fired when a user clicks on a folder in
the folder list. Click on the folder list, and type this code:

C#
private void lbFolders_SelectedIndexChanged(object sender,
System.EventArgs e)

{

 RemotePath += "/" + lbFolders.SelectedItem.ToString();

 sendFTPcmd("CWD /" + RemotePath +"\r\n");

 getRemoteFolders();

}

VB.NET
Private Sub lbFolders_SelectedIndexChanged(ByVal _

sender As Object, ByVal e As System.EventArgs) Handles _

 lbFolders.SelectedIndexChanged

 RemotePath += "/" + lbFolders.SelectedItem.ToString()

6.4 An overview of FTP 189

Chapter 6

 sendFTPcmd("CWD /" + RemotePath + vbcrlf)

 getRemoteFolders()

End Sub

The purpose of building up the RemotePath variable is that when the
next list of folders is shown, the application must remember that each list-
ing corresponds to /folder/subfolder rather than /subfolder. The folder
and file lists are refreshed once the operation is complete. We could, of
course, have used the PWD command to get the path from the server, but it is
probably easier and quicker to store this information locally. To instruct the
FTP server to move to a working directory, the CWD command is used.

This gives a user the means to drill down directories, but no means of
returning back up. In this case, we can double-click on btnRoot:

C#
private void btnRoot_Click(object sender, System.EventArgs e)

{

 RemotePath = "/";

 sendFTPcmd("CWD /\r\n");

 getRemoteFolders();

}

VB.NET
Private Sub btnRoot_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 RemotePath = "/"

 sendFTPcmd("CWD /" + vbcrlf)

 getRemoteFolders()

End Sub

This resets the working folder to the root and sends a command to the
FTP server to return to the FTP root. It then refreshes the file and folder
lists. Again, the CWD command is issued to instruct the FTP server to move
working folders.

Now, to implement the core purpose of this application, double-click
the Upload button:

C#
private void btnUpload_Click(object sender, System.EventArgs
e)

190 6.4 An overview of FTP

{

 openFileDialog.ShowDialog();

 NetworkStream passiveConnection;

 FileInfo fileParse = new FileInfo(openFileDialog.FileName);

 FileStream fs = new

 FileStream(openFileDialog.FileName,FileMode.Open);

 byte[] fileData = new byte[fs.Length];

 fs.Read(fileData,0,(int)fs.Length);

 passiveConnection = createPassiveConnection();

 string cmd = "STOR " + fileParse.Name + "\r\n";

 tbStatus.Text += "\r\nSent:" + cmd;

 string response = sendFTPcmd(cmd);

 tbStatus.Text += "\r\nRcvd:" + response;

 passiveConnection.Write(fileData,0,(int)fs.Length);

 passiveConnection.Close();

 MessageBox.Show("Uploaded");

 tbStatus.Text += "\r\nRcvd:" + new

 StreamReader(NetStrm).ReadLine(); getRemoteFolders();

}

VB.NET
Private Sub btnUpload_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 openFileDialog.ShowDialog()

 Dim passiveConnection As NetworkStream

 Dim fileParse As FileInfo = New _

 FileInfo(openFileDialog.FileName)

 Dim fs As New FileStream(openFileDialog.FileName, _

 FileMode.Open)

 Dim fileData(fs.Length) As Byte

 fs.Read(fileData, 0, fs.Length)

 passiveConnection = createPassiveConnection()

 Dim cmd As String = "STOR " + fileParse.Name + vbCrLf

 tbStatus.Text += vbCrLf + "Sent:" + cmd

 Dim response As String = sendFTPcmd(cmd)

 tbStatus.Text += vbCrLf + "Rcvd:" + response

 passiveConnection.Write(fileData, 0, fs.Length)

 passiveConnection.Close()

 MessageBox.Show("Uploaded")

 tbStatus.Text += vbCrLf + "Rcvd:" + New _

 StreamReader(NetStrm).ReadLine()

 getRemoteFolders()

End Sub

6.4 An overview of FTP 191

Chapter 6

This function opens the standard File Open dialog and then reads the
contents of the specified file into a string by passing the filename to a
StreamReader, and reading to the end of the file while storing the data in
the fileData string.

A passive connection is then opened to the server, and a STOR command
is issued on the command socket. Once the server has responded to the
STOR command, the file contents are placed on the passive connection.
Once all of the data is sent, the connection is closed. A message is displayed
on screen, and the file and folder list is refreshed.

Note that you do not have to pass the local path of the file to the FTP
server because the file will be stored in the current working folder. The file-
name, minus its path, is obtained from the FileName property of the
FileInfo class.

Finally, the download functionality can be implemented by clicking on
the Download button:

C#
private void btnDownload_Click(object sender,
System.EventArgs e)

{

 byte[] fileData;

 saveFileDialog.ShowDialog();

 fileData = sendPassiveFTPcmd(

 "RETR " + lbFiles.SelectedItem.ToString()+ "\r\n");

 FileStream fs = new FileStream(

 saveFileDialog.FileName,FileMode.CreateNew);

 fs.Write(fileData,0,fileData.Length);

 fs.Close();

 MessageBox.Show("Downloaded");

}

VB.NET
Private Sub btnDownload_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim fileData As Byte()

 saveFileDialog.ShowDialog()

 fileData = sendPassiveFTPcmd(_

 "RETR " + lbFiles.SelectedItem.ToString() + vbCrLf)

 Dim fs As FileStream = New FileStream(_

 saveFileDialog.FileName, FileMode.CreateNew)

192 6.4 An overview of FTP

 fs.Write(fileData, 0, fileData.Length)

 fs.Close()

 MessageBox.Show("Downloaded")

End Sub

This event opens the standard File Save dialog window. The file to be
downloaded is the one that is currently selected in the files list. A RETR com-
mand is issued via a passive connection. The returned data is the contents
of the remote file. In order to write this data to the local disk, a new
FileStream is created. The FileStream constructor includes the name of
the local file. The data to be written to disk is converted from a string into a
byte array and then passed to the write method of the stream. A message is
shown to signify the end of the operation.

Add these namespaces to both forms, and we’re ready to go:

C#
using System.Net;

using System.Net.Sockets;

using System.Text;

using System.IO;

VB.NET
Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Imports System.IO

To test the application, ensure that you have an FTP server running, and
then execute the application from Visual Studio .NET. Note that when
compiling this application, if you are prompted for “Sub Main” (VB.NET),

Figure 6.5
FTP client Logon

dialog.

6.4 An overview of FTP 193

Chapter 6

please select the Main form for this purpose. When the application is run-
ning, you may enter your FTP account details into the Logon window (Fig-
ure 6.5) and press Logon.

On the next screen (Figure 6.6), you can navigate around the remote
computer’s file system by clicking on the folder names in the list provided.
To return to where you started, press the root button.

To upload a file, click Upload, then select a file. Wait until you receive a
message box, and then you should see the file in the files list. To download a
file, click on a file in the files list, and then press Save. Choose a destination
for the file (e.g., the desktop). When you press OK, wait until you see a
message box, and then you should see the file on the desktop.

6.4.8 FTP support in .NET 2.0

In the .NET Framework version 2.0 (Whidbey), FTP support is included
in the WebClient class, thus negating the need to use either socket-level
programming or COM objects. The following code illustrates the simplic-
ity of this new feature:

C#
public void downloadFile()

{

 string filename = "ftp://ms.com/files/dotnetfx.exe";

 WebClient client = new WebClient();

Figure 6.6
FTP client file-

management
dialog.

194 6.5 Conclusion

 client.DownloadFile(filename,"dotnetfx.exe");

}

VB.NET
Sub downloadFile()

 Dim Filename as String = "ftp://ms.com/file/dotnetfx.exe"

 Dim client as new WebClient

 Client.DownloadFile(filename,"dotnetfx.exe")

End sub

6.5 Conclusion

This chapter gave a brief overview of Microsoft file sharing and two imple-
mentations of FTP clients in .NET: one for a five-minute solution and one
as a substantial, flexible implementation of the protocol.

The next chapter deals with the practical issues faced by developers
working with real-world networks. It is designed to help solve network
problems for individual scenarios and provide tips and tricks to keep your
software from crashing on unusual network setups.

195

7

Securing a Network: Firewalls, Proxy
Servers, and Routers

7.1 Introduction

This chapter deals with the practical issues of setting up a network and net-
work architecture in general. Knowing how networks differ from a pro-
grammatic perspective can help fix a lot of network-application-related
bugs. Furthermore, basic working knowledge of network setup is essential
in the day-to-day life of many developers.

This chapter is structured in two sections. The first section explains how
to create a network from autonomous, stand-alone machines. Immediately
following that is a discussion of common devices that form gateways
between your network and the Internet. These gateway devices can often
create problems for your software by imposing their own restrictions and
regulations. By being able to detect and work around these problems, your
application will be more stable in a mass-market environment.

7.1.1 Building a network from scratch

If you are developing a point-of-sale system for a supermarket, each ter-
minal will need to communicate with a central server to consolidate the
day’s takings and process stock levels. This is not easily achievable without
a network. In many cases, you can’t just give a shopkeeper a CD and
expect him to figure out how to get every computer in his business tied to
a single network.

Choosing a topology

If you have only two computers that you want to network, and there is no
need for a third, then the most economic solution is a unshielded twisted
pair (UTP) crossover cable (not UTP patch cable). This can be used to link
two computers directly.

196

7.1

Introduction

There are three main types of physical connections in modern network-
ing: UTP, BNC, and wireless. The latter uses radio waves to transmit data
between terminals, whereas the other two systems use wired connections.

The benefits of a wireless network are quite readily apparent. Users can
move within the radius of the transmitter and maintain a connection to the
Internet; however, wireless networks are slower than their wired counter-
parts. For instance, a typical network card can support a 100-Mbps connec-
tion, whereas the equivalent wireless card will operate at 11 or 54 Mbps,
and the actual throughput may only be a fraction of that. A network cable
can easily stretch for 100 meters, but wireless hubs have a radius substan-
tially smaller than that. Wireless networks are more expensive but are simi-
lar in architecture to a UTP network.

The differences between UTP and BNC are most apparent in the type
of cable used to connect the computers. UTP cable resembles a phone line,
only thinner, whereas BNC is coaxial, like a television cable. BNC plugs are
circular, whereas UTP plugs (RJ45 connectors) are rectangular.

UTP is laid out in a star topology, where each computer has a dedicated
line to its nearest hub or router. In smaller networks, one of the computers
on the network uses a modem (or other device) to connect to the ISP. Every
other machine on the network then shares this Internet connection. On
larger networks, a router connects directly to a line provided by the service
provider. This arrangement provides better performance because the router
helps steer the data, as well as being dedicated to the task of providing a net-
work connection; however, it adds extra cost to the network.

BNC is laid out in a bus topology. This is where all computers on the
network share a single line of communications. In a BNC network, each
computer has a T-shaped connection attached to its network card. At each
end of the wire is a terminator. BNC is rare nowadays, and it is more com-
mon to use either UTP or wireless.

Other networks, based on Universal Serial Bus (USB) and serial connec-
tions, are available, but they should be avoided because of possible interop-
erability problems.

Setting up a network

When building a UTP network, ensure that each computer is wired to a
hub, and make sure the hub is powered. In a BNC network, each computer
is connected to its neighbor, and a BNC terminator should be affixed to the
end of the wire.

7.1

Introduction 197

Chapter 7

Users will expect a file-sharing mechanism on the network, so you should
provide this from the outset. To provide this mechanism, you have to choose
a unique name for each computer on the network. To name a computer on
Windows 2000, right-click My Computer

→→→→

Properties

→→→→

Network Identifica-
tion, and select Properties. On Windows XP, right-click My Com-
puter

→→→→

Properties

→→→→

Computer Name

→→→→

Change (Figure 7.1).

Enter in a computer name, and if required, a workgroup. Then press
OK. You may need to restart the computer for these changes to take effect.

You will need to bind some protocols and services to your new network
card. To do this in Windows 2000, right-click My Network
Places

→→→→

Properties

→→→→

Local Area Connection

→→→→

Properties. On Windows XP,
click Control Panel

→→→→

Network Connections

→→→→

Local Area Connection.

In this box, you need to see three things: Client for Microsoft Networks,
File and Printer Sharing for Microsoft Networks, and Internet Protocol
(TCP/IP). If any of these is missing, press the Install button.

Figure 7.1

Windows,
Computer Name
Changes Dialog.

198

7.1

Introduction

The next task is to set up the TCP/IP settings for the computer. To open
the dialog box, highlight Internet Protocol (TCP/IP) and click Properties.

If this computer is part of a larger network, there may be a DHCP server
on the network, which automatically assigns IP addresses. In this case,
choose the options “Obtain an IP address automatically” and “Obtain DNS
server address automatically.” Otherwise, set the fields manually.

You have to set the IP addresses as nonpublic addresses, and each com-
puter must be assigned a unique IP address. A series of IP addresses could
be 10.0.0.1, 10.0.0.2, 10.0.0.3, and so on. The subnet mask should be
255.255.255.0. Press OK to save the settings.

To share a folder, right-click on the folder, click Properties

→→→→

Sharing.
Click on Share this folder (on Windows XP, you will need to click on a dis-
claimer message, “If you understand the risk but still want to share the con-
tents of this folder”).

Note:

If you intend to accept Windows 9x clients, you will need to have a

guest account on your system.

To limit remote users’ access to your files on Windows 2000, click Per-
missions. On the next window you can grant and revoke read, write, and
change permissions to any or all users on the network. On Windows XP, this
has been simplified to a checkbox, “Allow network users to change my files.”

Another useful feature of networks is the ability to remotely print docu-
ments. This section assumes that you have a printer attached to a computer
on your network. On Windows 2000, click Start

→→→→

Settings

→→→→

Printers. On
Windows XP, press Start

→→→→

Control Panel

→→→→

Printers and Faxes. Right-click
on a printer that you would like to share, and select the Sharing option.
Then select Shared As, enter a unique name, and a descriptive name for the
printer. You can set the level of control users will have over the printer from
the Security tab. Press OK to complete the process.

How to set up a virtual private network

A virtual private network (VPN) is used to give a remote client secure
access to a LAN. The remote client will have transparent (albeit, slower)
access to the LAN and will be able to share files and use remote printers,
and so forth.

7.2

Building an enterprise network 199

Chapter 7

A VPN operates over the point-to-point tunneling protocol (PPTP) or
layer 2 tunneling protocol (L2TP). The local traffic is layered on top of this to
support true transparency and support for nonroutable protocols such as IPX.

A VPN has some advantages over dial-in connections to a network.
These are security, where every transmission is encrypted, and transparency,
because the client can retain its own IP address.

To become a VPN client, on Windows 2000, click Start

→→→→

Settings

→→→→

Net-
work Connections, and then click New Connection wizard. On Windows
XP, click Start

→→→→

Control Panel

→→→→

Network Connections

→→→→

Create a New Con-
nection

→→→→

Next.

Click on “Connect to a private network through the Internet” on Win-
dows 2000 or “Connect to the network at my workplace,” then Virtual Pri-
vate Network Connection on Windows XP.

When prompted, type in the IP address of the VPN gateway. This
should be as supplied by the administrator of the VPN. Press Finish to
finalize the settings.

7.2 Building an enterprise network

Up to now, private IP addresses have been mentioned in passing, more by
way of highlighting the fact that they exist, how to recognize them, and
how to understand their limitations. In enterprise networks, it is unfeasible
to supply every user with a separate direct connection to the Internet. It is
normal to channel each user’s network connection to a gateway, and from
here, a direct connection to the Internet exists.

The term

gateway

 is generic. It simply means the device that is con-
nected to both the internal network and the Internet. This can be either a
computer or a stand-alone device. Both proxies and routers can function as
a gateway. A proxy would be in the form of software running on a com-
puter, and a router being a stand-alone device. A router is always preferable
to a proxy in every respect, apart from cost.

7.2.1 Routers

If you have inherited a network running a proxy server that is experiencing
performance problems or on which users are finding it difficult to run cer-
tain applications, then you should consider using a router instead of a
proxy server.

200

7.2

Building an enterprise network

A router is generally a piece of hardware. It performs minimal processing
of packets. This means that a router can operate at speeds far exceeding those
of a proxy server. It also steers packets in the right direction, instead of blindly
sending them out to the next router up the chain. Furthermore, its presence is
much more transparent to clients, and it has much higher resiliency.

If you look at the rear panel of a router, you will see several LAN con-
nections: one marked WAN, a power lead, and possibly a serial connection.
To wire one up, you connect the WAN port to the cable provided by your
ISP. Each LAN port can be connected to a computer, or hub. You need to
obtain the following information from your ISP:

�

What fixed IP address to use, or whether to obtain one via DHCP

�

The IP address of the default gateway

�

What subnet mask to use

�

The primary and secondary DNS

Each computer behind the router must then set its default gateway and
DNS servers to the IP address of the gateway and set the IP addresses to pri-
vate addresses.

7.2.2 Firewalls

A good analogy for a firewall is a switchboard operator for a company. If an
unsolicited salesperson rings, chances are the operator will not forward the
call through; however, if an employee makes an outgoing call to the sales-
person, the operator will not block the call. Calls made from employees
within the company go through the switchboard, so the caller ID that
appears on the recipient’s phone will be that of the switchboard rather than
the direct line.

A firewall performs this function, only at very high speeds, either in soft-
ware or hardware. It is possible to buy stand-alone firewalls, but every mod-
ern router will contain some sort of firewall (sometimes referred to as

packet
filtering

). A firewall can also come in the guise of software.

In Administrative Tools

→→→→

Services, you will see the Internet Connection
Firewall (ICF) service. You can press Start to enable this service. This will
suffice to protect a single computer from the ravages of the Internet. There
is no need to use this service if your local gateway uses a firewall.

7.2

Building an enterprise network 201

Chapter 7

Proxies

Proxies should only be considered when you have no budget to develop a
network or only two or three computers require an Internet connection.
Proxies will slow down your Internet connection considerably.

First, if you expect to have multiple users sharing an Internet connec-
tion, you will need something more than a dial-up connection. ISDN
would be the minimum, with DSL being a preferred option. You will have
already created your LAN, with one computer equipped with a DSL
modem of some description. This computer runs the proxy server software.

All other computers on the network have to use this computer as a via
point to request Web pages and so forth. This means that every Internet-
connecting program needs to know the IP address of the proxy. In Internet
Explorer, this is set from Tools

→→→→

Internet Options

→→→→

Connections

→→→→

LAN Set-
tings

→→→→

Use a proxy server.

Proxies come in two flavors: application proxies and circuit-level proxies.
Application proxies normally accept only one protocol, such as HTTP. Cir-
cuit-level proxies can accept any protocol over IP. The most popular circuit-
level proxy is known as SOCKS; a popular HTTP proxy is Wingate
(www.wingate.com).

Some applications will only work with an HTTP proxy or SOCKS. It is
generally a case of determining which applications you need to use and get-
ting a proxy server to suit.

The SOCKS protocol is defined in RFC 1928. In order to use a SOCKS
proxy, the client must first authenticate itself. This consists of an initial
short (3-byte) negotiation followed by a vendor-specific subnegotiation.
Once the client is authenticated, a packet to the outside world can be sent
when preceded by a short (10-byte) header. This header includes the port
and IP address of the destination. Responses are tagged with the same
header, only reversed.

 Network address translators

All gateways perform some sort of network address translation, or NAT. For
simplicity’s sake, any device that implements NAT will also be referred to as
a NAT. A NAT rewrites the IP header of packets leaving the network with a
new, public IP address. When the response packet returns, the NAT will
have remembered what computer had originally issued the request and
rewrite the IP header with the appropriate private IP address.

202

7.2

Building an enterprise network

A proxy server, although it can provide HTTP requests that emanate
from a different IP address than the source, is not considered to implement
NAT. This is because the input is different from the output in more ways
than just the IP address. More specifically, a proxy server expects a header in
the data sent to it to indicate the destination host and port. True NAT
devices do not require this identification. When configuring a computer to
use a NAT, it is only necessary to change the gateway and DNS settings
(under TCP/IP settings) to allow all applications to communicate transpar-
ently through the NAT. With a proxy, there is no such global setting, and
each application has to be configured independently.

NAT was developed by Cisco, but it is now an Internet standard (RFC
1631). Several different translations can be performed on network
addresses, which can be used to provide more flexible gateways to the Inter-
net. Not all gateway devices support the full range of NAT operations.

Static NAT is where every private IP address has its own corresponding
public IP address. This means that each computer is distinguishable from
the outside world, yet not necessarily accessible.

Dynamic NAT is where every private IP address is mapped to a unique
public IP address, although not always the same one every time.

Overloading is the most common form of NAT (sometimes called

port
address translation

). It maps every private IP address to a single public IP,
but differentiates the connections by placing them on different local ports
(multiplexing).

Overlapping is used when two LANs with different subnets are joined
together. Every private IP on one network is mapped to a unique private IP
on the second network, and vice versa. Overlapping can be done by using
static or dynamic NAT. The latter is a more complex undertaking.

When there is a mixture of public and private IP addresses on the stub
domain (a private LAN), the NAT will not perform any translation on pub-
lic IP addresses, but the packets still pass through the device.

As mentioned previously, a NAT needs to store information about what
packets it has sent out, so that it can appropriately return the replies. In
dynamic NAT, an IP address mapping cannot change midway through a
TCP/IP session. Therefore, a NAT also needs to store which TCP/IP ses-
sion is mapped to each IP address. Because a computer can theoretically
maintain a TCP/IP session on each port, a network of 100 computers
could maintain 6 million concurrent sessions.

7.3

Tunneling out of an enterprise network 203

Chapter 7

The number of clients a router can process should be stated by the man-
ufacturer; however, as a rough estimate, every entry in the NAT translation
table is 160 bytes long; therefore a router with 2 Mb of RAM could handle
about 12,000 sessions, which is more than enough for any office network.

A device that implements NAT will probably also include some sort of
packet filtering and logging to compliment it. After all, what is the point of
providing the ultimate network if the users spend all of their time browsing
pornographic Web sites (unless of course you’re in that industry)? Filtering
can block various destination addresses, port numbers, and so forth. Log-
ging will record packets entering and leaving the router, but not the internal
nonroutable traffic. On large networks, a packet analyzer will have diffi-
culty recording the activities of 100 users who all decide to ghost their
machines at once.

Note:

Ghost is a product developed by Symantec that can replicate hard

disks over a network

http://www.symantec.com/ghost/

.

Even with its complexity, NAT eases system administration (e.g., if your
server goes down, and you can’t get physical access to it). You can use the
remote-access facility that comes standard on most routers to change the
inbound mapping to point to the IP address of a server that you do have
access to, and the problem will be solved, for Internet clients anyway.

In order to provide a backup Internet connection, you will require a sec-
ond router. This router ensures that outgoing traffic to the backup ISP will
be appropriately mapped. Providing both routers are interconnected, when
one ISP fails, the other router will take all of the traffic from the other, and
will do so without any human intervention. This type of arrangement is
known as a

multihomed network

. This is made possible because of the vari-
ous ways routers interoperate. They use the interborder gateway protocol
(IGBP) to talk to each other inside a LAN and the exterior gateway proto-
col (EGP) to communicate with the ISP’s routers.

A piece of NAT software named Sygate is freely available, but hardware
implementations are recommended

7.3 Tunneling out of an enterprise network

If your customer already has a functioning network, but your software
doesn’t work on it, you can’t ignore the problem, or you will lose the sale.

204

7.3

Tunneling out of an enterprise network

There are always two ways to fix a problem: address it or avoid it. Both
methods are equally valid and equally applicable to different situations.
Take the situation where a teleconferencing application does not operate
behind a firewall. You can either move the server outside the firewall, set up
port forwarding to tunnel through the firewall (or router), or bounce data
off a proxy server to avoid the firewall. The first two options may involve
you going on-site to fix the problem, whereas the latter involves renting a
dedicated server and doing some programming.

Proxy tunneling

If you write an application for the mass market, you have to bear in mind
that not all software users will have either direct or transparent connections
to the Internet. In some cases, users may access the Internet via a proxy.
Unfortunately, there is no foolproof means of detecting if a proxy is in use
on a network, where it is, or what type it is.

Unlike routers, proxies are not transparent to clients. You will need to
modify your code to account for a proxy. If you are using the

HTTPWebRe-

quest

 and are trying to navigate an application proxy, then this is relatively
straightforward:

C#

WebProxy myProxy= new WebProxy("proxyserver",8080);

myProxy.BypassProxyOnLocal = true;

String url = "http://www.yahoo.com";

HttpWebRequest request =
(HttpWebRequest)HttpWebRequest.Create(url);

request.Proxy = myProxy;

VB.NET

Dim myProxy As WebProxy = New WebProxy("proxyserver", 8080)

myProxy.BypassProxyOnLocal = True

Dim url As String = "http://www.yahoo.com"

Dim request As HttpWebRequest = _

CType(HttpWebRequest.Create(url), _

 HttpWebRequest)

request.Proxy = myProxy

Note that the above code requires the

System.Net

namespace.

7.4

Avoiding the networking pitfalls 205

Chapter 7

Firewall tunneling

If a firewall is in place that blocks all ports, then you could make changes to
the firewall to allow access on your requested port. Firewalls are generally
accessed either through a Web interface (

http://192.168.1.1

 or similar) or
via a serial connection. You will need to have the manual and passwords
close at hand. Some routers offer port forwarding to bypass firewalls. This is
where the data directed at the router’s IP address on a specified port is for-
warded to a specified internal IP address. The process is transparent to both
ends of the connection.

Finally, if you have no access to the firewall, or you want to provide a
user-friendly solution, you can bounce data from a proxy. This is where the
machine behind the firewall opens a steady TCP and connects to a proxy
machine, which is outside of the firewall, and the proxy allows the client to
connect to it. Data from the client to the proxy is forwarded via the previ-
ously opened connection. This is the technique used by Instant Messenger
applications. A coded example of this solution is provided at the end of
this chapter.

7.4 Avoiding the networking pitfalls

Prevention is always better than cure. If you are releasing a product into the
wild, it is almost certain that some user will have such an unusual network
configuration that your software won’t work. To them, their network isn’t
unusual, and in fact a hundred other users out there have the same prob-
lem, but they didn’t bother to tell you that your software doesn’t work.

Port conflict

If your software can’t start on its default port, it should move to another
port, or at least prompt the user to enter a new port. If you don’t provide
this function, you will encounter one of two problems: (1) users will inevi-
tably run software that uses the same port as yours and that they don’t want
to stop using, or (2) firewalls may already be set up to allow traffic through
some ports; even if your customer doesn’t use a firewall, their ISP might.

The client who is waiting to connect to your software will need to know
that it has moved port. You could simply display a message box and ask the
user to type in the new port, or you could use a DNS request (Chapter 12)
to tell users which ports the server is listening on and connect to each in
turn. Generally, this approach is overkill.

206

7.4

Avoiding the networking pitfalls

Tip:

It is possible to force sockets to listen on an occupied port, by setting
the reuse-address option thus:

Socket.SetSocketOption(SocketOption-

Level.Socket, SocketOptionName.ReuseAddress,1)

. This approach is

not recommended as it may cause undefined behavior.

Dynamic IP addresses

Another problem that is regularly encountered is dynamic IP addresses.
This is where the IP address of the computer changes every time it goes
online. Left unchecked, many applications will grab the local IP address
when the application starts and assume that is will remain static for the life-
time of the application. When users have dial-up connections, they could
obtain five different IP addresses in the space of an hour under normal
usage (signing on and off the Internet). This situation poses a problem for
server applications because there is no way a client can know where it
should connect. This can be solved either on a case-by-case basis or by host-
ing an IP tracking mechanism.

Software such as “no-IP” can be used to map a dynamic IP address to a
DNS name. The process of using this software is relatively straightforward,
but it may be unfeasible to request software users to use this product to
solve the dynamic IP address issue. The alternative is to have the computer
periodically post its IP address to a server, whereupon the server will store
the IP address, along with a timestamp and a human-readable identifier.
Clients can look this up and connect to the dynamic IP address. The time-
stamp ensures that offline computers will be deleted from the listing.

When posting an IP address, care must be taken to ensure that the IP is
valid for the Internet. A LAN IP such as 192.168.0.1 is no good to a client
on the other side of the world.

7.4.1 Firewall tunneling

If you sell firewalls for a living, look away now because this section describes
how to tunnel files (or any other data) through a firewall, in either direc-
tion, rendering the whole purpose of a firewall defunct. If you are develop-
ing a peer-to-peer application for the open market, however, this
information opens up a whole new customer base.

To best illustrate the concept of firewall tunneling, let’s look at an anal-
ogy: Imagine two prisoners, one in Alcatraz and another in the Bastille.
They can both make one phone call, but obviously, neither is allowed to

7.5

Conclusion 207

Chapter 7

receive calls. The prisoner in Alcatraz knows an escape route from the
Bastille, which he wants to tell his partner in crime. How does he send the
message? The prisoner in Alcatraz phones his friend’s home answering
machine and leaves a message of where the escape route is located. The pris-
oner in the Bastille then makes his call to his own answering machine,
where he hears the message and uses the information to escape.

The same technique is used to tunnel though firewalls. One user sends
data to a publicly accessible server with a header indicating from whom the
data came and who the intended recipient is. The recipient is constantly
polling this server, querying it for any new messages. Once the data has
been posted up to the server, the recipient can then download it and
instruct the server to remove its copy.

The system could be implemented roughly by simply using an email
account. Both computers would poll it using POP3 and post new messages
using SMTP. Otherwise, Microsoft Message Queue (MSMQ) server (see
Chapter 15) could be used for the same purpose.

Peer-to-peer architecture

Peer-to-peer (P2P) is a way of structuring distributed applications such that
the individual nodes have symmetric roles. Rather than being divided into
clients and servers, each with distinct roles (such as Web clients versus Web
servers), in P2P applications a node may act as both a client and a server.
P2P systems are generally deployable in an ad hoc fashion, without requir-
ing centralized management or control. They can be highly autonomous
and can lend themselves to anonymity.

In order to function correctly, each node on a P2P network must know
the location of at least one other node. In some implementations, a node
could contact an indexing server, which would return a list of other nodes
on the P2P network. The benefit of P2P networks is that they are fault tol-
erant (i.e., there is no single point of failure), and the network can continue
to operate smoothly even if several nodes are missing. Furthermore, the
combined processing power and storage available across a multitude of
nodes can greatly exceed what is practical to combine into one central
server computer. Famous P2P software includes Napster and Kazaa.

7.5 Conclusion

This chapter should contain enough information to enable anyone to
develop a simple LAN. More importantly, it illustrates network peculiarities

208

7.5

Conclusion

of which a developer must be aware when developing distributed applica-
tions for enterprise environments.

With this information, it should be possible to develop an approach that
will render the low-level network implementation details (such as private
and dynamic IP addresses) transparent to higher-level processes.

The next chapter deals with data encryption and security. It explains
how the industry-standard encryption mechanisms work and how they can
be proclaimed to be “unbreakable.”

209

8

Protecting Data: Encryption

8.1 Introduction

Without encryption, it is easy for anyone with access to a computer
between you and the receiver to view transmitted data while it is in transit.
In fact, this book includes a chapter that describes how to monitor network
traffic at the packet level. This network traffic could include confidential or
privileged information that you transmit from your computer.

Security is paramount in financial transactions and many other types of
information exchange with an associated dollar value. It is vitall that privi-
leged information remain in the hands of its rightful owners and not stray
into the hands of hackers, or worse, the public domain.

This chapter is divided into three sections. The first section describes
how encrypted data is cracked and how to recognize weak encryption,
which effectively makes your data less secure than plain text. The second
section describes asymmetric encryption, which is most applicable for
securing data in transit. The chapter concludes with a discussion on sym-
metric encryption, which is ideal for use in conjunction with other types of
encryption for added performance and security.

8.2 Cryptanalysis

In order to appreciate fully what cryptography is, it is necessary to under-
stand the difference between good and bad encryption. When encryption
techniques are used incorrectly, they are worse than having no encryption at
all because system users will mistakenly trust the encryption, when it is not
secure at all. This section should plainly demonstrate how to recognize
weak encryption and how simply it can be broken.

210

8.2

Cryptanalysis

Any encryption algorithm that substitutes one character for another can
be broken without knowing the key or even the mechanism by which the
text was encrypted. The process is known as

frequency analysis

.

The most common character used in English text is the space character
(ASCII code 32). After that comes the letter “e,” then “t,” right down to
“z,” the least common.

The complete list is:

(space)etaoinshrdlcumwfgypbvkjxqz

In ciphers, where each letter is substituted by another letter, the fre-
quency of its occurrence is similar to that of plain English.

For instance, a piece of text was taken randomly out of a text file and
encrypted. The resultant cipher text was:

v`z/bnv/a`{/c`na/}ja{/cjn|j/cjak/`}/`{gj}xf|j/{}na|ij}/{gj/
`{gj}/bjkfzb/{`/na`{gj}/z|j}/jwlj�{/n|/�n}{/`i/{gj/�j}bnaja{/
{}na|ij}/n|/�}`yfkjk/nm`yj/`i/{gj/|`i{xn}j/�}`kzl{

The most common character is “/,” so we can assume that it is the space
character. After that, “j” can be assumed to be “e,” and so on down to “z.”
The result seems more like a human language, but only a few English words
can be seen (e.g., “not,” “the,” “to”).

fou cif not moin aent meise mend oa otheagwse tainsrea the
othea cedwuc to inothea usea ebpelt is liat or the leacinent
tainsrea is laoywded ivoye or the sortgiae laodupt

Looking through the text, a few words would make sense if one letter
were changed. Because character substitution ciphers must have one-to-one
mapping between characters, if one letter is changed, then the letter it is
changed to must also be substituted.

We can therefore make three assumptions:

1. othea

→→→→

 other: a = r, r = ?

2. o?

→→→→

 on, of: Assume “not” is correct, r = f, f = ?

3. ?ou

→→→→

 you: f = y, “y” doesn’t appear in cipher text

8.2

Cryptanalysis 211

Chapter 8

This process can be iterated several times. Each step makes the cipher
text more legible.

you ciy not moin rent meise mend or othergwse trinsfer the
other cedwuc to inother user ebpelt is lirt of the lercinent
trinsfer is lroywded ivoye of the softgire lrodupt

1. trinsfer

→→→→

 transfer: i = a

2. softgare

→→→→

 software: g = w, w = ?

3. otherw?se

→→→→

 otherwise: w = I

you cay not moan rent mease mend or otherwise transfer the
other cediuc to another user ebpelt as lart of the lercanent
transfer as lroyided avoye of the software lrodupt

1. cediuc

→→→→

 medium: c = m

2. ?ermanent

→→→→

 permanent: l = p, p =?

3. mease

→→→→

 lease: m = l

you may not loan rent lease lend or otherwise transfer the
other medium to another user eb?ept as part of the permanent
transfer as proyided avoye of the software produ?t

1. produ?t

→→→→

 product: p = c

2. ebcept

→→→→

 except: b = x

3. proyided

→→→→

 provided: y = v

4. avove

→→→→

 above: v = b

Voilà! The message has been decrypted.

you may not loan rent lease lend or otherwise transfer the
other medium to another user except as part of the permanent
transfer as provided above of the software product

Frequency analysis software can be programmed to run without any
human intervention and could easily recognize and decrypt files or network
data that was encrypted with any of the ciphers mentioned to date. If the

212

8.4

Asymmetric encryption

message had not been in English, or was audio data rather than text, this
approach would not have worked.

8.3 Terminology

Cryptography carries with it a vast amount of jargon, some of which is
unavoidable when discussing the subject.

�

Plain text

 is digital information that is unencrypted.

�

Cipher text

 is digital information that has been encrypted.

�

A

key

 is a piece of digital data that is used by a computer program to
convert plain text, to cipher text or vice versa.

�

A

cryptographic algorithm

, or

cipher

, is a prescribed algorithm for con-
verting plain text into cipher text and back again, using a key.

�

Strength

 is the measure of the difficulty a hacker would have convert-
ing cipher text to plain text without having access to the key.

8.4 Asymmetric encryption

If you imagine a padlock, it consists of a bolt, a key, and a locking mecha-
nism. Each padlock is unique. They all have different keys and different
locking mechanisms. The way these padlocks are made in the factory, it is
impossible to guess the shape of the key by simply looking at the locking
mechanism. It is possible to close the bolt on the padlock without having a
key. This makes it much more secure than the previous encryption methods
described, which would be more akin to a combination lock, where the
combination needs to be set when inserting the bolt into the lock.

Now imagine three people: a tourist, a travel agent, and a thief. The
tourist wants to send $1,000 to the travel agent, but if the thief gets to the
key before the travel agent, he will steal the money. If the tourist were to put
the money in a box and then lock it, the travel agent would not have a way
to reopen the box if she did not have the key. If the key were to be sent, the
thief would surely steal the key and the money before anyone knew what
had happened.

The solution is that the tourist asks the travel agent to send him an open
padlock and keep the key. The tourist then puts the money in the box, locks
it, and sends it back. The travel agent still has the key, so she can open the

8.5

Using RSA as asymmetric encryption 213

Chapter 8

box and bank the money. The thief may have seen the padlock, and may
even have been able to examine the locking mechanism, but he could not
open it.

In this case, the padlock key is called the

private key

, and the locking
mechanism is the

public key

. In computing, the padlocks become one-way
mathematical equations, and the keys become numbers.

An example of a one-way mathematical equation is as follows:

A prime number is a number that is divisible only by itself and 1
(e.g., 13). Given a number

z

, which is a product of two prime num-
bers

x

 and

y

, determine the values of

x

 and

y

, where neither

x

 nor

y

 is
equal to 1.

For example, what two numbers multiply to give 22,321?

To solve this problem by hand, you could multiply every prime number
between 1 and 149 (square root of 22,321). Other techniques to factor
large primes exist, but this would take a computer merely seconds to do;
however, if the number to be factored was in the order of billions, it no
longer remains feasible for desktop PCs to solve.

The Rivest-Shamir-Adleman (RSA) is quite slow in comparison to most
of the shared key (symmetrical) encryption technologies available. In a sys-
tem using a combination of public key and shared key, overall encryption
speed can be increased.

If a message is encrypted with the Triple Data Encryption Standard
(3DES), then the key is encrypted with RSA. The same level of security is
offered, but with a much faster execution.

8.5 Using RSA as asymmetric encryption

RSA (Rivest Shamir Adleman, named after its inventors) is implemented
in the

RSACryptoServiceProvider

 class. It generates public and private
keys on instantiation; encryption and decryption are performed from the

Encrypt

 and

Decrypt

 methods. Keys are stored in XML format.

Start a new project in Visual Studio .NET. Add two textboxes:

tbWork-

ing

 and

tbStatus

. The latter should be set with

MultiLine

 to

True

. Add
two more buttons:

btnEncrypt

 and

btnDecrypt

. To further assist code

214

8.5

Using RSA as asymmetric encryption

development, we will encapsulate the core cryptographic functions in a
class. Therefore, add a new class to your project named

clsCryptography

.

First, the

Cryptography

 class has to implement both encryption and
decryption. The cryptographic framework works from byte arrays prima-
rily, so the functions will accept and return byte arrays. As mentioned ear-
lier, RSA is asymmetric, so it uses two keys, which happen to be stored in
XML (string) format.

Open

clsCryptography

 and enter the following code:

C#

namespace rsa

{

 public class clsCryptography

 {

 private RSACryptoServiceProvider RSA;

 public string PublicKey;

 public string PrivateKey;

 public byte[] Encrypt(byte[] Data, string PublicKeyIn)

 {

 RSA.FromXmlString(PublicKeyIn);

 return RSA.Encrypt(Data, false);

 }

 public byte[] Decrypt(byte[] Data, string PrivateKeyIn)

 {

 RSA.FromXmlString(PrivateKeyIn);

 return RSA.Decrypt(Data, false);

 }

 }

}

VB.NET

Namespace rsa

 Public Class clsCryptography

 Private RSA As RSACryptoServiceProvider

 Public PublicKey As String

 Public PrivateKey As String

 Public function Encrypt(Data as byte(),PublicKeyIn as _

 string) as Byte()

 RSA.FromXmlString(PublicKeyIn)

8.5

Using RSA as asymmetric encryption 215

Chapter 8

 Return RSA.Encrypt(Data,False)

 End function

 Public Function Decrypt(Data as byte(),PrivateKeyIn as_

 string) as Byte()

 RSA.FromXmlString(PrivateKeyIn)

 Return RSA.Decrypt(Data,False)

 End Function

 End Class

End Namespace

RSA cryptography is of little value if we have no keys to work from.
These keys should be generated when the class is created, so we insert this
code as the constructor of

clsCryptography

:

C#

public clsCryptography()

{

 CspParameters cspParams = new CspParameters();

 cspParams.Flags = CspProviderFlags.UseMachineKeyStore;

 RSA = new RSACryptoServiceProvider(cspParams);

 PublicKey = RSA.ToXmlString(false);

 PrivateKey = RSA.ToXmlString(true);

}

VB.NET

Public Sub New()

 Dim cspParams As CspParameters = New CspParameters()

 cspParams.Flags = CspProviderFlags.UseMachineKeyStore

 RSA = New RSACryptoServiceProvider(cspParams)

 PublicKey = RSA.ToXmlString(False)

 PrivateKey = RSA.ToXmlString(True)

End Sub

The Boolean parameter sent to

ToXmlString

 indicates whether the pri-
vate key should be included in the XML output.

The following namespaces must be added to the

clsCryptography

 class:

216

8.5

Using RSA as asymmetric encryption

C#

using System;

using System.Security.Cryptography;

VB.NET

imports System

imports System.Security.Cryptography

Open the application, go to the point in the code directly after the con-
structor of the form, and enter some private variables:

C#

public class Form1 : System.Windows.Forms.Form

{

 private rsa.clsCryptography clsRSA = new

 rsa.clsCryptography();

 private byte[] Decrypted;

 private byte[] Encrypted;

 ...

VB.NET

Public Class Form1

 Inherits System.Windows.Forms.Form

 Private clsRSA As clsCryptography = New clsCryptography()

 Private Decrypted() As Byte

 Private Encrypted() As Byte

To display the generated keys on-screen, we append the XML to the sta-
tus textbox at startup:

C#

private void Form1_Load(object sender, System.EventArgs e)

{

 tbStatus.Text += "Private key is:\r\n" + clsRSA.PrivateKey
+ "\r\n";

 tbStatus.Text += "Public key is:\r\n" + clsRSA.PublicKey +
"\r\n";

}

8.5

Using RSA as asymmetric encryption 217

Chapter 8

VB.NET

Private Sub Form1_Load(ByVal sender As Object, ByVal e _

As System.EventArgs)

 tbStatus.Text += "Private key is:"

 tbStatus.Text += clsRSA.PrivateKey + vbcrlf

 tbStatus.Text += "Public key is:" + vbcrlf

 tbStatus.Text += clsRSA.PublicKey + vbcrlf

End Sub

To encrypt the text, we convert it to a byte array and pass it to the
clsCryptography class; the process is similar with decryption. Click on the
two buttons in turn and add the following code:

C#
private void btnEncrypt_Click(object sender, System.EventArgs
e)

{

 byte[] PlainText =

 System.Text.Encoding.ASCII.GetBytes(tbWorking.Text);

 Encrypted = clsRSA.Encrypt(PlainText, clsRSA.PublicKey);

 tbWorking.Text =

 System.Text.Encoding.ASCII.GetString(Encrypted);
}

private void btnDecrypt_Click(object sender, System.EventArgs e)

{

 Decrypted = clsRSA.Decrypt(Encrypted,

 clsRSA.PrivateKey);

 tbWorking.Text =

 System.Text.Encoding.ASCII.GetString(Decrypted);

}

VB.NET
Private Sub btnEncrypt_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim PlainText() As Byte = _

 System.Text.Encoding.Encoding.ASCII.GetBytes _

 (tbWorking.Text)

 Encrypted = clsRSA.Encrypt(PlainText, _

 clsRSA.PublicKey)

 tbWorking.Text = _

218 8.6 Symmetric encryption

 System.Text.Encoding.ASCII.GetString(Encrypted)

End Sub

Private Sub btnDecrypt_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Decrypted = clsRSA.Decrypt(Encrypted, clsRSA.PrivateKey)

 tbWorking.Text = _

 System.Text.Encoding.ASCII.GetString(Decrypted)

End Sub

No additional namespaces are required.

To test the application, run it from Visual Studio .NET. Type something
into the box provided and press Encrypt (Figure 8.1). The text should
change into an unrecognizable series of characters. Pressing Decrypt will
revert this back to plain text again.

8.6 Symmetric encryption

Symmetric encryption is when the same key is used for encryption and
decryption. It is commonly used in conjunction with asymmetric encryp-
tion for performance purposes. When used on its own, it is important that
the key never travel on an insecure channel and that is be delivered by hand
to the receiver on physical media, such as a disk or smart card. It is not suit-
able for network use by itself; however, asymmetric encryption can provide
a means to deliver these keys on a secure channel and, therefore, makes
symmetric encryption viable for networked applications.

Symmetric encryption is, however, suitable for securing software and
databases because the administrator can hold this key on a disk in a secure
location. Without the key, symmetric algorithms are actually more difficult
to break than RSA for the same key size.

8.6.1 Using 3DES as symmetric encryption

A famous author, Simon Singh, once offered $15,000 to crack a short pas-
sage of text encrypted with 3DES. One year later, a Swedish team man-
aged to crack the message and claimed the prize. Unbeknown to Simon
Singh at the time, the message had actually been singleDES and thus sub-
stantially less secure. 3DES remains one of the world’s unbroken crypto-
graphic algorithms.

8.6 Symmetric encryption 219

Chapter 8

Create an application in Visual Studio .NET as usual, and draw a text-
box, tbFile. Include three buttons named btnEncrypt, btnDecrypt, and
btnBrowse. You will also require an Open File Dialog control named open-
FileDialog.

Directly following the class definition, add a public DESCryptoService-
Provider object as follows:

C#
public class Form1 : System.Windows.Forms.Form

{

 private DESCryptoServiceProvider des;

VB.NET
Public Class Form1

 Inherits System.Windows.Forms.Form

 Private des As DESCryptoServiceProvider

This public object will contain the symmetric keys required to encrypt
and decrypt files. In this application, the keys are not saved to disk; they are
only stored within this object.

Click on the Browse button and enter the following code:

C#
 private void btnBrowse_Click(object sender,

Figure 8.1
Asymmetric
encryption

application.

220 8.6 Symmetric encryption

 System.EventArgs e)

 {

 openFileDialog.ShowDialog();

 tbFile.Text = openFileDialog.FileName;

 }

VB.NET
 Private Sub btnBrowse_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 openFileDialog.ShowDialog()

 tbFile.Text = openFileDialog.FileName

 End Sub

This code is pretty self-explanatory. It opens the standard File Open
dialog window and displays the filename of the selected file in the tbFile
textbox.

Click on the Encrypt button and enter the following code:

C#
 private void btnEncrypt_Click(object sender,

 System.EventArgs e)

 {

 string encFile = tbFile.Text + ".enc";

 FileStream fs = new FileStream(encFile, FileMode.Create,

 FileAccess.Write);

 StreamReader sr = new StreamReader(tbFile.Text);

 string strinput = (sr).ReadToEnd();

 sr.Close();

 byte[] bytearrayinput =

 Encoding.Default.GetBytes(strinput);

 des = new DESCryptoServiceProvider();

 ICryptoTransform desencrypt =

 des.CreateEncryptor();

 CryptoStream cryptostream =

 new CryptoStream(fs, desencrypt,

 CryptoStreamMode.Write);

 cryptostream.Write(bytearrayinput, 0,

 bytearrayinput.Length);

 cryptostream.Close();

8.6 Symmetric encryption 221

Chapter 8

 fs.Close();

 MessageBox.Show("encrypted");

 }

VB.NET
Private Sub btnEncrypt_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs) _

Handles btnEncrypt.Click

 Dim encFile As String = tbFile.Text + ".enc"

 Dim fs As FileStream = New FileStream(encFile, _

 FileMode.Create,FileAccess.Write)

 Dim sr As StreamReader = New _

 StreamReader(tbFile.Text)

 Dim strinput As String = (sr).ReadToEnd()

 sr.Close()

 Dim bytearrayinput() As Byte = _

 Encoding.Default.GetBytes(strinput)

 des = New DESCryptoServiceProvider

 Dim desencrypt As ICryptoTransform = _

 des.CreateEncryptor()

 Dim CryptoStream As CryptoStream = _

 New CryptoStream(fs, desencrypt, _

 CryptoStreamMode.Write)

 cryptostream.Write(bytearrayinput, 0, _

 bytearrayinput.Length)

 cryptostream.Close()

 fs.Close()

 MessageBox.Show("encrypted")

End Sub

The encryption procedure consists of several steps. The first step is
where an output file is prepared. The output file has the same name as the
input file, except that the extension .enc is appended to the end of the file-
name. The input file is then read in from memory by passing the filename
as a parameter to the constructor of a StreamReader object and calling the
ReadToEnd method to pull in the file contents to a string. This string is then
converted to a byte array.

 The next step in the encryption process is the application of DES. Here
the public DES variable is instantiated. At this point, a unique symmetric
key is generated within the DESCryptoServiceProvider class. The encryp-
tion mechanism works as a stream. As with most value-added streams, an

222 8.6 Symmetric encryption

existing stream is passed to the constructor of the new stream. In this case,
the output file stream is the underlying stream used by the cryptographic
stream. This stream then processes and writes out the byte array read in
from the input file using the Write method. The stream is then closed, and
a message is shown on the screen.

Now double-click on the Decrypt button, and enter the following code:

C#
private void btnDecrypt_Click(object sender, System.EventArgs e)

 {

 FileStream fsread = new FileStream(tbFile.Text,

 FileMode.Open, FileAccess.Read);

 ICryptoTransform desdecrypt = des.CreateDecryptor();

 CryptoStream cryptostreamDecr = new CryptoStream(fsread,

 desdecrypt, CryptoStreamMode.Read);

 string decryptedFile = new StreamReader(

 cryptostreamDecr).ReadToEnd();

 FileInfo fi = new FileInfo(tbFile.Text);

 string origionalFile = tbFile.Text.Substring(0,

 tbFile.Text.Length - fi.Extension.Length);

 StreamWriter fileWriter = new

 StreamWriter(origionalFile);

 fileWriter.Write(decryptedFile);

 fileWriter.Close();

 MessageBox.Show("decrypted");

 }

VB.NET
Private Sub btnDecrypt_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs) Handles _

btnDecrypt.Click

Dim fsread As FileStream = _

 New FileStream(tbFile.Text, _

 FileMode.Open, FileAccess.Read)

 Dim desdecrypt As ICryptoTransform = _

 des.CreateDecryptor()

 Dim cryptostreamDecr As CryptoStream = _

 New CryptoStream(fsread, _

 desdecrypt, CryptoStreamMode.Read)

 Dim decryptedFile As String = New _

 StreamReader(cryptostreamDecr).ReadToEnd()

8.6 Symmetric encryption 223

Chapter 8

 Dim fi As FileInfo = New FileInfo(tbFile.Text)

 Dim origionalFile As String = _

 tbFile.Text.Substring(0,tbFile.Text.Length _

 - fi.Extension.Length)

 Dim fileWriter As StreamWriter = New _

 StreamWriter(origionalFile)

 fileWriter.Write(decryptedFile)

 fileWriter.Close()

 MessageBox.Show("decrypted")

End Sub

The decryption process is a little easier because our symmetric key is
already generated. Three streams are used to decrypt the file on disk. The
first stream is a FileStream that reads the cipher text from the file on disk.
The crypto stream is created from our public des variable, which would
have been previously instantiated in the encryption process. The
FileStream is passed as a parameter to the constructor of the crypto stream,
which decrypts the data from the stream. To extract the data quickly from
the crypto stream, a StreamReader is used, which uses the ReadToEnd
method to pull the decrypted data into a string.

Finally, using a bit of string manipulation, the .enc extension is
removed from the filename, and a StreamWriter dumps the string contain-
ing the decrypted data to disk. This stream is then closed, and a message is
displayed on-screen.

As usual, the following namespaces are required:

C#
using System.IO;

using System.Text;

using System.Security.Cryptography;

VB.NET
Imports System.IO

Imports System.Text

Imports System.Security.Cryptography

To test this application, run it from Visual Studio .NET. Press Browse
and locate a file on your hard disk. Press the Encrypt button, and press OK
when the message box appears. You will notice that a new file has been cre-
ated with the extension .enc. If you open this file in Notepad, it will appear

224 8.7 Piracy protection

to be garbage. If you wish, you can delete or move the original file. Press the
Browse button again, and select the .enc file (Figure 8.2). When the mes-
sage box appears, you will notice that the original file has been re-created.

8.7 Piracy protection

Software is expensive to create, but costs virtually nothing to duplicate. Peo-
ple generally have few qualms about sharing a CD filled with copyrighted
material with anyone who they believe will find it useful. To the software
producer, this can be considered a lost sale.

The most common form of software piracy is a CD-R with the license
code scribbled across the front. The only real way to guarantee that the
same license code cannot be used on multiple machines is to track these
codes from a central server.

A common way to generate license codes is to choose a large random
number (a), and increment it with a multiple of a smaller random number
(b). This number would generally be encrypted so that it is not easily mem-
orable. A key that the user enters (c) can be deemed to be valid if

(c - a) mod b = 0

Your software can broadcast this key on the local network or a central
server to ensure uniqueness of the key. It is difficult for an attacker to deter-
mine a second valid key from c if a and b are sufficiently large.

An other way to protect software is if your software generates a large ran-
dom number (n) at the time of purchase. This number can be encrypted by
your private key to produce a second number (m) and returned to your
software. If m, decrypted with the public key, is n, then the key is valid.
Because n is random, m is not valid for any other copy of the software.

Figure 8.2
Symmetric
encryption

application.

8.8 Conclusion 225

Chapter 8

Hackers can also use programs to cycle automatically through millions of
key combinations by simulating a user typing into your “enter license key”
window. For this reason, you should have your software close after 3 failed
attempts to enter the license key and delete itself after 100 failed attempts.

Beyond license fraud, there are people who make a hobby out of disas-
sembling executable files and disabling piracy protection. There is no surefire
way to defeat this type of attack, but it can be made difficult by duplicating
the piracy protection code several times throughout the application.

8.8 Conclusion

This chapter has introduced the concept of data encryption in .NET with
both asymmetric and symmetric forms. Also covered was the basic theory
behind cryptographic systems and cryptanalysis.

It cannot be stressed enough that you are more likely to get a faster, sim-
pler, stronger, and sometimes even more interoperable method when using
the standard encryption mechanisms used in .NET as compared to home-
grown encryption algorithms.

The next chapter deals with authentication, the science of knowing with
whom you are dealing.

This page intentionally left blank

227

9

Controlling User Access: Authentication
and Authorization

9.1 Introduction

Until now, we have assumed that hackers use network-sniffing software to
intercept confidential data; however, there is as much danger in forged or
spoofed data. Chapter 5 on SMTP/POP3 demonstrates how the sender
can specify the originating email address arbitrarily, making it easy to
send an email that appears to have come from someone else’s account.
One can imagine the havoc this would cause if a student were to send an
email purporting to be from a professor saying, “All lectures have been
canceled. You can all go home now, and we’ve decided to give you all an
A+ on your exams.”

This chapter deals with the tricky issue of confirming that a client is
who he says he is and that no fraudulent activity is taking place. Authenti-
cation systems must be able to validate supplied credentials securely against
trusted sources and also to ensure that the message has not been tampered
with in transit.

This chapter is structured in four distinct sections. The first section deals
with Microsoft authentication systems, such as NTLM and .NET Passport.
This is followed by a discussion on techniques to detect data tampering. The
chapter continues with an explanation of secure sockets layer (SSL), one of
the most common security mechanisms for data delivered via Web sites. The
chapter concludes with coverage of some other related authentication tech-
nologies, such as .NET permissions and legacy authentication schemes.

9.2 Authentication techniques

To guarantee the identity of a client, you need to trust one piece of infor-
mation that is unique to that client and that cannot easily be determined or

228

9.2

Authentication techniques

faked (e.g., IP address, Windows username/password, or some other cre-
dential). Authentication systems prevent the masquerading of credentials,
but they cannot protect against a careless user compromising the security of
a Windows password.

Several different types of authentications are applicable to different sce-
narios. If you are developing a solution for an ISP, then the chances are the
ISP can be sure which client base has what IP address and, thus, can use IP
addresses as credentials. When developing a Windows-only intranet appli-
cation, you can trust Windows logins. Internet service developers may use a
combination of the IIS authentication options or a custom username and
password system.

The most basic form of authentication is IP address validation, where
access to information is granted only if the IP address of the client is within
a given range. This scheme is used by ISPs to limit access to technical sup-
port to current customers. They can do this because their customers will
have IP addresses in the range that was assigned to the ISP. IP spoofing
would defeat form of authentication, but this is not an easy undertaking.
Only a select few determined hackers are capable of carrying it off.

9.2.1 IIS authentication

Although this book focuses on stand-alone software, using IIS as a server
is always an option not to be dismissed lightly. This approach does
remove some of the flexibility from the system, and it becomes necessary
to use the encryption and authentication mechanisms that Microsoft pro-
vides, rather than proprietary protocols. IIS5 provides five kinds of
authentication: anonymous, basic, NT challenge/response (NTLM, stan-
dard for Windows 9x and NT), Integrated Windows (Kerberos, standard
for Windows 2000 and XP), and digest. The latter two options are not
available on IIS4. Each kind of authentication offers varying degrees of
interoperability and security.

The most basic form of IIS authentication, if it has a right to be called
authentication, is anonymous. This is where the clients do not have to sup-
ply any credentials and are automatically granted IUSR (guest) privileges.
This allows them to read and write files, but not to generate any graphical
interface or access certain API functions.

One step above this is basic authentication. This forces the client to sup-
ply credentials in base64 (basically, clear text). This system is completely
interoperable between browsers, but offers very little security; however,
when combined with SSL, this is a secure solution.

9.2

Authentication techniques 229

Chapter 9

Moving toward the Microsoft world, we have NT challenge/response, or
NTLM. This is quite secure and cannot be broken without significant
effort, but it can be hacked by a determined individual. NTLM is sup-
ported on IIS4 and all versions of Internet Explorer. The credentials sup-
plied by the client will have to match those of a local account on the server.

Digest authentication was introduced in IIS5. There has not been
widely publicized case of any hacker breaking digest encryption. It is com-
patible with most versions of Internet Explorer. Again, the credentials sup-
plied by the client will have to match those of a local account on the server.

Kerberos provides one of the highest levels of security for authentication
available over the Internet. It requires access to a domain controller and
works only on IIS5 and recent versions of Internet Explorer.

To access authentication options on IIS, click Start

→→→→

Control
Panel

→→→→

Administrative Tools

→→→→

Internet Information Services. Right-click on
the server in question, and click Properties. Select the Directory Security
tab and press Edit (Figure 9.1).

The screen in Figure 9.1 shows the authentication options for IIS. In
this case, the lowest form of security is selected as the default. Options

Figure 9.1

IIS authentication
dialog.

230

9.3

Microsoft .NET Passport authentication

exist to upgrade this to basic authentication or NTLM. The option for
digest authentication is not enabled here because this particular server has
no access to a domain controller.

Apart from the security versus interoperability trade-off, there is also a
security versus performance trade-off. On a benchmark computer (Pentium
3, 450 MHz, 128 Mb RAM), each of the preceding authentication systems
was tested for performance in a high-load environment.

When accepting anonymous connections, the computer handled 860
requests per second. With basic authentication, the computer handled 780
requests per second, proving to be the fastest authentication mechanism,
albeit with little security. NTLM incurred an additional overhead, reducing
the overall speed to 99 requests per second. Digest authentication clocked
in at 96 requests per second. With Kerberos authentication, the computer
could handle only 55 requests per second. Finally, with full-blown SSL, the
server dropped as low as a mere 2 requests per second.

9.3 Microsoft .NET Passport authentication

Passport authentication is where users can be identified by their Hotmail
email addresses. Other passport-supporting email accounts do exist, but
Hotmail is the most prevalent. This form of authentication is not meant to
secure international fund transfers, but it certainly suffices for personal
communications. The advantage of passport over in-house-developed sys-
tems is that many people already have a Hotmail email address, and thus do
not have to reregister their details.

Passport authentication is used primarily for Web sites, but can also be
applied to applications, MSN Messenger being a good example. The online
help for .NET Passport is centered on Web site development, but it is possi-
ble to implement a proxy service built as a programmatically accessible Web
site that your application could connect to. This could then be used to
obtain personal details from a user-supplied passport.

Passports are available in two flavors: preproduction and production.
Preproduction passports are free, but only a limited amount of personal
information can be extracted from a passport. Production passports are not
free, and Microsoft will inspect your site or application before you are
granted a production passport. You do, however, get the benefit of being
able to read full personal details from visitors’ passports. Furthermore, a
preproduction passport does not have the functionality to perform a sign-
out operation.

9.3

Microsoft .NET Passport authentication 231

Chapter 9

The first step in implementing .NET Passport–enabled software is to
obtain what is known as a site ID. This is simply a number, which is given
to you when you register your details with Microsoft .NET Services Man-
ager. On

www.netservicesmanager.com

, click Applications

→→→→

Create Applica-
tion, and then fill in all of the necessary fields.

Once you have a site ID, you can download the Passport SDK from

www.microsoft.com/net/services/passport/developer.asp

. This SDK should be
installed on the server on which you intend to deploy the Web site, or the
proxy server that is to provide passport services to the .NET-enabled stand-
alone applications.

The final step is to download a private key that is to be installed on the
deployment server. This can be downloaded under Manage Applications, in
.NET Services Manager. The key comes in the form of an executable,
which must be run from the command prompt as follows:

Partner###_#.exe /addkey
Partner###_#.exe /makecurrent /t 0

Where ####_# differs for different installations and site IDs. At this
point, you may then run the passport administration utility (Figure 9.2).

Figure 9.2

.NET Passport
Manager

Administration
dialog.

232

9.4

Hashing information

Enter your site ID in the space provided. Then press the Commit
Changes button.

To test the system, start and stop IIS using Computer Management, or
the IIS snap-in, then press Refresh Network Map, and Commit Changes
again. You should see the following Web site appear:

http:/localhost/passport-
test/

, as shown in Figure 9.3.

Pressing the Sign-In button will bring you to a cobranded login page for
Passport. On successful login, the browser will display the URL that was
specified during the site ID signup procedure

9.4 Hashing information

Hashing is a one-way algorithm in which data can be converted to a hash
value, but a hash value cannot be converted back to meaningful data. It is
used in conjunction with encryption to ensure that messages are not tam-
pered with in transit. Modern hashing systems include Message Digest
(MD5) and Secure Hash Algorithm (SHA-1).

When a hash value is produced from a block of plain text, it should be
computationally difficult to generate a different block of text that would
yield the same hash value. A standard property of hashing algorithms is that
a small change in the input text creates a large change in the hash value.
Hash algorithms always produce output values with the same length,
regardless of the amount of input text.

In practice, a hash value is generated for a given message, and then the
message and the hash code are encrypted together. When the message is
decrypted, a hash must match that of the message; otherwise, it may have
been tampered with. Even though it would be impossible for a hacker to

Figure 9.3

.NET Passport test
page.

9.4

Hashing information 233

Chapter 9

read this encrypted message in transit, it would be possible for him to
alter the contents of the transmission, which could result in misinter-
preted communications.

Another useful application of hashing is the secure storage of usernames
and passwords. If an application stores username and password pairs in a
database, it is easy for a professional hacker to access this database and read
them off. If the password is hashed, the hacker cannot tell what the original
password was. When the legitimate user enters a password into your appli-
cation, the entered password will be hashed, and if it matches the value in
the database, then the user is granted access.

This may pose a problem if the user forgets a password because the
application cannot determine the original password from the hash. A sys-
tem should be in place to replace passwords from an administrator’s
account. More importantly, if the hacker can guess the hashing algorithm
used, he could generate a hashed password, replace the existing one, and
gain access. For this reason, where data integrity can be compromised, the
hashing procedure should be combined with another form of encryption
such as 3DES.

Hashing can also be used to prevent unauthorized data mining of online
services. If you provide an Internet-based service that is accessed via a cus-
tom-made client (e.g., a DLL that provides currency conversion based on
live exchange rates, or whatever), and you want only paying customers to
access the service, the last thing you want is a competitor to use a packet-
sniffing tool to determine what data you are sending to the server and create
a product that uses your service without paying you. The obvious solution
is to use asymmetric encryption; however, let us imagine that performance
is the overriding factor, and asymmetric encryption would cause an unac-
ceptable processing overhead.

A keyed hash (or a hash of the payload with an appended secret string of
characters) of the data included in the header creates only a small overhead,
but it makes the header impossible to re-create without knowing the hash key.
This affords no security against your competitors’ reading what is being sent
back and forth to your server, but it prevents them from generating their own
client; however, you should take care that the client cannot be disassembled
to view this key easily. A tool such as Dotfuscator (www.preemptive.com)can
be used to obfuscate the code and help hide this key from prying eyes.

A real-world example of this system in use is the Google toolbar. This
utility can display Google’s page rank for any given Web page. Google does
not want people to be able to data-mine these values using automatic pro-

234

9.4

Hashing information

cesses, so the request that the toolbar component makes to the Google
server contains a keyed hash code for the Web site in question. It is difficult
to predict this hash code, and requests made without this code return an
error. Full-blown asymmetric encryption was not used in this case because
it would have created unacceptable overhead for the servers to return data
that is basically available to anyone.

9.4.1 Hashing algorithms

.NET provides support for two hashing algorithms: Secure Hash Algo-
rithm, or SHA, and Message Digest, or MD5 in the classes

SHA1Managed

and

MD5CryptoServiceProvider

, respectively.

SHA is specified by the secure hash standard (SHS). The hash is gener-
ated from 64-byte blocks, which are transformed by a combination of one-
way operations and a function of previous block transforms. The specifica-
tion for SHA is widely available and can be implemented easily in any other
language, so it is suitable for use on solutions with clients written in other
languages or on other platforms. The specification is available in RFC 3174
(

ftp://ftp.rfc-editor.org/in-notes/rfc3174.txt

).

Hashing algorithms do not involve the same high-level mathematics as
RSA or elliptic curve encryption. This is not to say that it is advisable to
try to develop your own hashing algorithm. Breeds of algorithms that are
similar in function to hashing are cyclic redundancy check (CRC) func-
tions. CRC functions provide a fixed-length checksum for any given
input. Although these may be one-way functions and provide generally
higher throughput than hashing algorithms, they do not afford the same
level of security.

There are four different variations of the SHA available for use in .NET:

SHA1Managed

 (20-byte hash),

SHA256Managed

 (32-byte hash),

SHA384Managed

(48-byte hash), and

SHA512Managed

 (64-byte hash). The longer the hash, the
more difficult it is for a hacker to create a new message with the same hash,
although a longer hash may contain more information about the original
message. In either case, SHA1 should be sufficient.

9.4.2 Using SHA

Create a new Windows application in Visual Studio .NET as usual, and
draw two textboxes on the form named

tbPlaintext

 and

tbHashed

. A but-
ton named

btnHash

 is also needed. Click on the button and enter the fol-
lowing code:

9.4

Hashing information 235

Chapter 9

C#

private void btnHash_Click(object sender, System.EventArgs e)

{

 byte[] entered =

 Encoding.ASCII.GetBytes(tbPlaintext.Text);

 byte [] hash = new SHA1Managed().ComputeHash(entered);

 tbHashed.Text = Encoding.ASCII.GetString(hash);

}

VB.NET

Private Sub btnHash_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim entered() As Byte = _

 Encoding.ASCII.GetBytes(tbPlainText.Text)

 Dim hash() As Byte = New _

 SHA1Managed().ComputeHash(entered)

 tbHashed.Text = Encoding.ASCII.GetString(hash)

End Sub

This code converts the text entered in

tbPlainText

 into a byte array,
and then passes this byte array to the

ComputeHash

 method of the

SHA1Managed

 class. The hash code is generated by an instance of this

SHA1Mananged

 class. By substituting

SHA1Managed

 with

SHA512Managed

 or
even

MD5cryptoServiceProvider

, the hashing will take place using that
algorithm instead of SHA1.

You will also require the relevant namespaces:

C#

using System.Text;

using System.Security.Cryptography;

VB.NET

Imports System.Text

Imports System.Security.Cryptography

To test this, run it from Visual Studio .NET, type some text into the
textbox provided, and press the button. A fixed-length hash will appear in
the second textbox as shown in Figure 9.4. A small change in the plain text
will cause a large change in the hash value, which will always remain the
same length.

236

9.6

Certificates

9.5 SSL

The most common form of security used over the Internet is secure sockets
layer, or SSL. SSL is a secure stream protocol, which uses both symmetric
and asymmetric encryption, combined with digital certificates to provide
authentication. Digital certificates can be bought from a certificate author-
ity (CA) such as Thawte or Verisign. In order to buy a certificate, you need
to prove your identity beyond doubt, which may involve providing a letter
from your bank manager or the articles of association for your company.
The certificate contains details of your server’s DNS name and your orga-
nization, and it is encrypted by the CA’s private key. The public key for
every CA is installed in every browser, so anyone on the Internet can be
sure that your company, and no one else, operates the machine that serves
the page they are looking at. Furthermore, all data sent between client and
server is encrypted with RSA.

SSL is defined in RFC 2660. The most common use for SSL is securing
Web pages, but it can be equally applied to email, FTP, or news. HTTP
over SSL (HTTPS) operates on port 443; SMTP over SSL (SSMTP) oper-
ates on port 465; and NNTP over SSL (SNNTP) operates on port 563.

9.6 Certificates

SSL provides end-to-end encryption and authentication. Whenever a
browser views a secure Web site, a padlock appears in the status bar. Click-
ing this icon will authenticate the server as belonging to a particular com-
pany, in a specific location. This is achieved by using server certificates.

Figure 9.4

Secure hashing
application.

9.6

Certificates 237

Chapter 9

A certificate has to be issued by a CA in order to be globally accepted. It
is possible to create self-signed certificates, but these would generally be
deemed trustworthy only within your organization. A digital certificate
signed by XYZ Corporation would be trusted by employees of XYZ, but
probably wouldn’t be trusted by the general public.

The most common form of digital certificate is known as X.509. This is
an international standard maintained by the IETF Public Key Infrastruc-
ture (PKIX) working group. X.509 comes in three versions: v1, v2, and v3.
Version 3 is the most commonly used form. The certificate comprises vari-
ous fields that identify the holder, the issuer, and the certificate itself:

�

Serial number:

 The unique serial number on every certificate created
by an issuer

�

Signature:

 Identifies the makeup of the certificate, represented by an
object identifier (OID).

�

Validity period:

 The date at which the certificate becomes and ceases
to be valid

�

Subject:

 The owner of the private key

�

Public key:

 The key that will decrypt the certificate hash

�

Signed hash:

 The hash of the certificate encrypted with the private key
of the CA

The subject has several predefined fields (Table 9.1), some of which are
standard, but there are no strict guidelines as to what can or cannot be
included in the subject line.

The certificate is not encrypted, but its contents are held in either
Base64 or Distinguished Encoding Rules (DER). This is to facilitate trans-
mission over plain-text email and to make it more difficult to sniff certifi-
cates from the network.

Some common myths about certificates should be mentioned in this
context. Contrary to popular belief, certificates are not only used for Web
page authentication; they can also be used in email (S/MIME) and general-
purpose data (IPSec). Another common fallacy is that the private key
should be kept in the HTTP root of the server it authenticates. This is akin
to leaving the house keys under the doormat. The private key should never
be transmitted over the Internet because if it is lost, it will need to be reis-
sued. The issuer generally does not retain private keys for customers.

238

9.7

Server certificates

9.7 Server certificates

If you ever enter your credit card details into a Web site, the first thing you
should look for is the padlock icon in the bottom right-hand corner of the
browser. This icon not only means that the communications with the
remote site are secure, but also that you can click on this icon and assure
yourself that the company with which you are dealing is the owner of the
Web site you are viewing.

Server certificates for real-world Web sites need to be obtained from a
CA. For development purposes, however, it is possible to make self-signed
certificates. A useful utility for creating self-signed certificates is IBM Key-
Man (

www.alphaworks.ibm.com/tech/keyman

). You could also use Keytool,
which is part of the Java SDK from Sun, but this utility doesn’t have a GUI
and is more awkward to use.

The steps to enable HTTPS using a self-signed certificate and IBM Key-
Man on IIS are as follows:

1. Click Control Panel

→→→→

Administrative Tools

→→→→

Internet Information
Services.

2. Expand the tree, and right-click Default Web Site, then click
Properties.

3. Select the Directory Security tab, then click Server Certifi-
cate

→→→→

Next

→→→→

Create a new certificate.

Table 9.1

Standard subject markers for digital certificates.

Subject Marker Meaning

C Country

SP State/province

S State

L Locality

O Organization

OU Organizational unit

CN Common name

E Email

9.8

Client certificates 239

Chapter 9

4. Select Prepare a request now, then fill in your details on each
page, pressing the Next button when complete. The default loca-
tion for the certificate request file is

c:\certreq.txt

.

5. Install IBM KeyMan, and run it from Start

→→→→

Programs

→→→→

IBM
KeyMan

→→→→

KeyMan.

6. Select Create New, then PKCS #12 Token, then the tick icon.

7. Select Actions

→→→→

Generate Key, then click the tick icon to accept
the default RSA 1024bit security.

8. Select Actions

→→→→

Create Certificate

→→→→

Self-Signed certificate, then
fill in your details in the space provided. Press the tick icon twice
to proceed.

9. Select Actions

→→→→

Create Certificate

→→→→

Sign a PCKS #10 request,
then enter c:\certreq.txt into the box provided and press the
tick icon.

10. Select a location to save the certificate. You should use the .cer
extension for your file.

11. Going back to the directory security settings for IIS, select Server
Certificate, press Next, then click Process the pending request.

12. Enter the path of the .cer file produced by KeyMan. Then press
Next and then Finish.

13. You can now test HTTPS on your local server, by entering https://
localhost in your browser. You will receive a warning saying that
“The security certificate was issued by a company you have not
chosen to trust.” This is because it was signed by yourself, not a
CA. Pressing Yes on this warning will allow you to proceed.

9.8 Client certificates

Whereas server certificates authenticate a Web site to a browser, a client cer-
tificate authenticates a browser to a server. Client certificates are only used
for maximum-security Web sites, such as online business banking. Client
certificates are available free of charge from Thawte. They are used to send
and receive encrypted emails and to authenticate your email address to
recipients. You will need to have a passport or social security number to
receive a client certificate.

A basic client certificate only authenticates the email address, not the
person who sent the email. To get your name on the certificate, you need to

240 9.8 Client certificates

have a bank manager or attorney vouch for your identity. The rest of this
section assumes that you have, at this point, received a client certificate
from Thawte.

 To view the client certificates installed on your system, open Internet
Explorer. Click on Tools→→→→Internet Options→→→→Content→→→→Certificates (Fig-
ure 9.5).

Clicking on View→→→→Details→→→→Subject on this screen will show which
email address this certificate authenticates. Pressing Export will produce an
X.509 (.cer) file, which is used in the next example program.

9.8.1 Microsoft Certificate Services

As mentioned earlier, you cannot download a software package that will
create globally acceptable X.509 certificates on the fly because the certificate
issuer needs to be trusted in order for the certificate to be meaningful. Cer-
tificate issuers are to legally required enforce policies and have their private
key fully insured against theft.

Figure 9.5
Internet Explorer

Certificates dialog.

9.8 Client certificates 241

Chapter 9

Organizations may require internal security (e.g., in a university, the
servers that hold student grade information would need to be authenti-
cated, to ensure that a student is not using a “poisoned” DNS server to
impersonate one of the servers). In this scenario, it might be expensive to
buy certificates for every server, and there is no need for people from out-
side the campus to access the servers, let alone trust them. This is where
Microsoft Certificate Services (MSCS) is used.

MSCS runs on Windows 2000 and can generate X.509 certificates in
PKCS #7 format from PKCS #10 certificate requests. MSCS can run as
either a root CA or subordinate CA and can optionally hold certificates in
the active directory. When used in conjunction with the active directory,
MSCS will use this as its certificate revocation list (CRL).

A CRL is a publicly accessible list of serial numbers of certificates that
have been compromised or have been shown to have been fraudulently
acquired. Verisign holds its CRL at http://crl.versign.com.

9.8.2 Reading certificates

Certificates can be read using the X509Certificate class (Table 9.2) in
.NET.

Table 9.2 Significant methods and properties of X.509 certificates .

Method or Property Description

GetCertHashString Returns the hash value for the certificate as a
hexadecimal string

GetEffectiveDateString Returns the effective date of this certificate

GetExpirationDateString Returns the expiration date of this certificate

GetFormat Returns the name of the format of this certificate

GetIssuerName Returns the name of the certification authority
that issued the certificate

GetKeyAlgorithm Returns the key algorithm information for this
certificate

GetKeyAlgorithmParameters Returns the key algorithm parameters for this
certificate

GetName Returns the name of the principal to which the
certificate was issued

242 9.8 Client certificates

To write a short .NET application to read certificate files, create a new
project in Visual Studio .NET. Draw two textboxes named tbCertFile and
tbDetails. Add two buttons, btnBrowse and btnExamine. You will also
require a File Open Dialog control named openFileDialog.

Click on the Browse button and add the following code:

C#
private void btnBrowse_Click(object sender, System.EventArgs
e)

{

 openFileDialog.ShowDialog();

 tbCertFile.Text = openFileDialog.FileName;

}

VB.NET
Private Sub btnBrowse_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnBrowse.Click

 openFileDialog.ShowDialog()

 tbCertFile.Text = openFileDialog.FileName

End Sub

Once we have the name of the certificate file, we can use an
X.509certificate object to decrypt the file and extract some pertinent
information.

Now click on the Examine button and enter the following code:

C#
private void btnExamine_Click(object sender, System.EventArgs e)

{

 X509Certificate x509 =

 X509Certificate.CreateFromCertFile(tbCertFile.Text);

GetPublicKeyString Returns the public key for the certificate

GetRawCertDataString Returns the raw data for the entire certificate

GetSerialNumberString Returns the serial number of the certificate

Table 9.2 Significant methods and properties of X.509 certificates (continued).

Method or Property Description

9.8 Client certificates 243

Chapter 9

 tbDetails.Text = x509.GetName();

 tbDetails.Text += x509.GetIssuerName();

}

VB.NET
Private Sub btnExamine_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs) _

Handles btnExamine.Click

 Dim x509 As X509Certificate

 x509 = X509Certificate.CreateFromCertFile(tbCertFile.Text)

 tbDetails.Text = x509.GetName()

 tbDetails.Text += x509.GetIssuerName()

End Sub

You will also need to include the relevant namespace:

C#
using System.Security.Cryptography.X509Certificates;

VB.NET
Imports System.Security.Cryptography.X509Certificates

Figure 9.6
Digital certificate

reader application.

244 9.9 Permissions in .NET

To test the application, run it from Visual Studio .NET. Click Browse,
and locate your .cer file on disk, which you have previously exported from
Internet Explorer. Press Examine, and you should see information about
the issuer and the certificate owner, as is shown in Figure 9.6.

9.9 Permissions in .NET

Any programmer familiar with Java will know about the sandbox imposed
on applets. This protects client computers from accidentally executing Java
code that could potentially damage that computer. The restrictions include
file reading and writing and connecting to a computer other than the one
that the applet was downloaded from.

.NET offers the same sandbox architecture, which provides users with a
facility to execute untrustworthy code without risking damage to their
computers. There are several levels of sandbox, from trusted local computer
to potentially dangerous code downloaded from an unknown site on the
Internet.

Although there is no widespread usage of .NET applets running inside
Web pages, there will be in the future. At present, the most significant
impact the .NET sandbox will have on code is when a program is executed
directly from a network share. This type of application deployment could
be used on a corporate intranet, where a small application is executed from
a central server at every login to record employees’ working practices and
the like.

Code running from network shares is restricted in several ways. It can-
not write arbitrarily to the local hard disk, but it can use an unlimited
amount of isolated storage space on the local computer or the network
share from which it was executed. Because unmanaged code cannot be gov-
erned by .NET, any assembly operating within a sandbox cannot make a
call to unmanaged code. This includes any use of legacy COM controls or
Windows API functions. Restrictions also apply to reading environment
variables, performing reflection, and accessing the event log.

To view or edit the run-time security policy in .NET, you can access this
from Control Panel→→→→Administrative Tools→→→→Microsoft .NET Framework
Configuration. Then click Runtime Security Policy (Figure 9.7).

The System.Security.Permissions namespace offers facilities to check
permissions programmatically and impose further restrictions on the code.
There seem to be very few circumstances in which it would be necessary to
impose further restrictions on an intranet application.

9.9 Permissions in .NET 245

Chapter 9

An interesting feature of code access security in .NET is the isolated
storage feature. This is one idea that was not adapted from Java, unlike so
many other features of .NET. This feature enables applications deployed
over an intranet or other semitrusted source to read and write a limited
amount of data to the host computers. If the application could read and
write arbitrarily, the privilege could be exploited maliciously to read your
personal emails, but isolated storage is a clever solution to this problem.

Isolated storage, as the name suggests, is where a small amount of hard
disk space (10 Kb) is allocated to any particular application originating
from a trusted Internet site. The folder where this data is placed is well away
from the system folders and anything else that may contain user data. Each
application is allocated its own folder and space such that untrusted appli-
cations cannot read each other’s data. The amount of isolated storage allo-
cated to any particular application is configurable. This can prevent rogue
applications from hogging too much disk space. Intranet-originating appli-
cations are allocated unlimited isolated storage.

To use isolated storage from within a .NET application, obtain an Iso-
latedStorageFile object and then create a stream to it. This stream can
then be used in the same way as a FileStream.

Figure 9.7
 .NET permission

configuration
utility.

246 9.10 Financial network security

C#
IsolatedStorageFile IsolatedStore;

IsolatedStorageFileStream IsolatedStream;

IsolatedStore =

IsolatedStorageFile.GetStore(IsolatedStorageScope.Assembly,

 null,null);

IsolatedStream = new IsolatedStorageFileStream("data.txt",

 FileMode.CreateNew, IsolatedStore);

VB.NET
Dim IsolatedStore as IsolatedStorageFile

Dim IsolatedStream as IsolatedStorageFileStream

IsolatedStore = IsolatedStorageFile.GetStore _

 (IsolatedStorageScope.Assembly, _

 Nothing,Nothing)

IsolatedStream = New IsolatedStorageFileStream _

 ("data.txt", FileMode.CreateNew, IsolatedStore)

Access to isolated storage in the case described above would be allocated
on a per-assembly basis. Isolated storage can also be allocated on a per-user
basis, per–domain name basis (for Internet code), or a combination of the
above.

9.10 Financial network security

If a hacker were to break into an e-commerce site successfully and capture
someone’s credit card number, some unfortunate person would get stung
financially; however, if the same thing happened on an interbank network,
a country’s economy could be ruined overnight. Banks and financial institu-
tions use a diverse array of cryptography and authentication systems, which
are not accessible to the general public.

The threat to security so far has been pictured as a lone hacker trying to
steal credit cards; however, a rogue nation or terrorist organization could
use a network of supercomputers to bring down a large national bank in
order to cripple a country’s economy.

Most banks use private leased lines between their branches so that the
confidential information does not come into contact with the public phone
network. ATMs usually employ VPN links to the bank. ATMs are limited

9.10 Financial network security 247

Chapter 9

to a maximum value of transactions they can perform, so it would be
impossible to use one rogue VPN connection to drain a bank of its capital.

When a bank needs to communicate with a second financial institution
overseas to perform, it must use the public phone network. Where commu-
nications between two banks happen on a daily basis, a private virtual cir-
cuit (PVC) is set up between the two banks. This reduces the amount of
foreign data on the line, but neither bank actually owns the telecom con-
nection. The communication will be very strongly encrypted in one of two
main formats: ISO 8730 or SWIFT.

9.10.1 X.25

Many financial protocols run over X.25 packet layer protocol rather than
IP. This offers no inherent security above the fact that it isn’t IP. X.25 was
developed by the CCITT in 1978 and is in widespread use on banking net-
works. Like the OSI model, it uses encapsulation, where low-level details
such as packet framing are not of concern at the implementation level. It
supports many of the features of TCP/IP, such as connection orientation
and data integrity provided by high-level data link control/Link access pro-
cedure balanced (HDLC/LAPB). Supported speeds are from 300 bps to
2.04 Mbps, on packets up to 1,024 bytes.

Routing on X.25 is extensive, with support for both shared virtual circuits
and PVCs. Up to 200 virtual circuits can be supported on one X.25 line. A
network has to be designed to support X.25 data. In situations where X.25
must travel over an IP network, LAPB can be replaced by TCP/IP. Cisco IOS
software or TCP X.25 gateways have the capability to do this, as described in
RFC 1613.

9.10.2 ISO 8730

Although less common than SWIFT, this format is used frequently for
interbank transfers. It uses symmetric keys with ISO 8732 / ANSI X9.17
key distribution. The key distribution center (KDC) would be run by one
or the other of the banks, or a trusted third party.

An ISO 8730 message can be hashed in one of two ways: a hash can be
taken of (1) the entire message, or (2) only of the details that are crucial to
the purpose of the message. In any case, every message must include the
date on which the MAC was created. Out-of-date messages can therefore be
discarded. This date value must be hashed regardless of the mode of opera-
tion. Hashed fields throughout the message are clearly delimited thus:

248 9.10 Financial network security

QD<date>DQ: The date the MAC was created

QK<key>QK: The authentication key used by the recipient

QX<message ID>XQ: A unique number for that day and key

QT<transaction detail>TQ: Details of the transaction amount,
currency, identification of the parties, and the date

MQ<hash>MQ: The hash itself, being eight bytes long, separated by
a space

9.10.3 SWIFT

The Society for Worldwide Interbank Financial Telecommunications
(SWIFT) network caters to 7,000 financial institutions in almost 200
countries around the world. It is based in Belgium, Holland, and the
United States. To access the SWIFT network, dedicated terminals are
required, each with SWIFT-accredited software.

Communications can be made using either X.25 or Secure IP Network
(SIPN). Connections to the SWIFT point of presence (POP) are made
with leased lines or dedicated ISDN links. An API is available from SWIFT
to communicate on this network, but accreditation must be sought before
any transactions are made using any in-house software.

SWIFT is not solely concerned with electronic fund transfers. The pre-
defined communications on SWIFT are customer transfers, bank-to-bank
instructions, foreign exchange and derivatives, documentary collections,
securities, syndicated loans, precious metals, travelers checks, documentary
credits, statements, advice, and general messages.

When a transaction involves two currencies, control of the debit and
credit is designated to the bank at which the transaction currency is local
tender. When only one currency is involved, a third-party clearinghouse or
other financial institution carries out the control of the debit and credit.

9.10.4 Corporate transactions

When a bank has a large corporation as a client, it will expect to process
many highly sensitive transactions with them on a daily basis. Some of these
transactions will be on a par with interbank transfers and, thus, must be
afforded the same level of security.

The Comité Français d’Organisation et de Normalisation Bancaires
(CFONB) designed a secure file-transfer mechanism named ETEBAC 5.

9.11 Conclusion 249

Chapter 9

This mechanism was designed specifically for client–bank transactions and
is widely used in France and elsewhere.

A common system for corporate transactions in the United Kingdom is
the Bankers Automated Clearing Service (BACS). This is used when a com-
pany performs an electronic fund transfer (EFT) to pay an employee’s salary
or wishes to process a direct debit. The BACS can process anywhere up to 60
million transactions per day, for more than 40,000 customers. It is accessed
remotely via the BACSTEL service during office hours. BACSTEL runs over
X.25, but an IP version of BACSTEL is set to replace this standard.

9.11 Conclusion

This chapter has looked at the mechanisms for guaranteeing the identity of
network clients over the Web and on Microsoft networks. The structure
and use of digital certificates in a distributed environment were discussed.
Extending the topic to real-world scenarios, we looked at how banks use
authentication to transfer billions of dollars safely across phone lines.

Sample code was provided to demonstrate how to process a credit card
payment securely over an SSL connection. This type of facility is common-
place in most e-commerce solutions, point-of-sale systems, and many other
software products.

The next chapter introduces the concept of application scalability (i.e.,
how software performs under heavy usage and when designed to run reli-
ably for long periods).

This page intentionally left blank

251

10

Programming for Scalability

10.1 Introduction

Providing software that lets people do their jobs is

usability

; providing soft-
ware that lets 10,000 people do their jobs is

scalability

. The term

scalability

encompasses many facets of software. It means stability, reliability, and effi-
cient use of one or more computer resources. The goal of a scalable system
is that it must be available for use at all times and remain highly responsive
regardless of how many people use the system.

Scalability, with respect to software architectures, has also come to mean
extensibility and modularity. This simply means that when a software sys-
tem needs to scale upward in complexity, it does not need to be overhauled
with each addition. In the following pages, you will learn about both
aspects of scalability.

The first half of this chapter deals with scalable architecture design. This
is most largely applicable when a distributed service requires more than one
server and the system-performance-to-hardware-cost ratio is of paramount
importance. This is followed by some hands-on code examples of how to
provide added scalability to your application, such as load balancing and
efficient thread management.

10.2 Case study: The Google search engine

Google.com

is certainly the Internet’s largest search engine. It serves 200 mil-
lion requests per day and runs from more than 15,000 servers distributed
worldwide. It is arguably one of the most scalable Internet services ever pro-
vided to the general public.

Each server that Google uses is no more powerful than the average desk-
top PC. Granted, each server crashes every so often, and they are prone to

252

10.2

Case study: The Google search engine

hardware failure, but a complex software failover system is employed by
Google to account for server crashes seamlessly. This means that even if a
hundred servers crashed at the same time, the service would still be available
and in working order.

The rationale behind using a large number of bog-standard PCs rather
than a few state-of-the-art servers is simple: cost per performance. It is pos-
sible to buy servers with 8 CPUs, 64-Gb memory, and 8 Tb of disk space,
but these cost roughly three times the price of a rack of 88 dual-processor
machines with 2-Gb memory and 80-Gb disk space. The high-end server
would serve a single client four times faster than the rack of slower comput-
ers, but the rack could serve 22 times as many of concurrent users as the
high-end server. That’s scalability.

It is not the case, however, to say that one server handles one user’s
request. If this were the case, each computer would have to trawl through
thousands of terabytes of data looking for a search term. It would take
weeks to return a single query. Instead, the servers are divided into six dif-
ferent groups—Web servers, document servers, index servers, spell check
servers, advertisement servers, and Googlebot servers—each performing its
own task.

Google uses a sophisticated DNS system to select the most appropriate
Web server for its visitors. This DNS system can automatically redirect visi-
tors to the geographically closest data center. This is why, for instance, if
you type

www.google.com

in Switzerland, you will be directed to

www.goo-
gle.ch

, which is located in Zurich. But if you type

www.google.com

in Cali-
fornia, you will be directed to their data center in Santa Clara. The DNS
system also accounts for server load and may redirect to different centers in
the event of high congestion.

When the request arrives at the data center, it goes through a hardware
load balancer that selects one from a cluster of available Web servers to han-
dle the request. These Web servers’ sole function is to prepare and serve the
HTML to the client; they do not perform the actual search. The search task
is delegated to a cluster of index servers, which lie behind the Web servers.

An index server cluster comprises hundreds of computers, each holding
a subset (or shard) of a multiterabyte database. Many computers may hold
identical subsets of the same database in case of a hardware failure on one of
the index servers. The index itself is a list of correlated words and terms
with a list of document IDs and a relevancy rating for each match. A docu-
ment ID is a reference to a Web page or other Google-readable media (e.g.,
PDF, DOC). The order of results returned by the index depends on the

10.3

Replication and redundancy 253

Chapter 10

combined relevancy rating of the search terms and the page rank of the doc-
ument ID. The page rank is a gauge of site popularity measured as a sum of
the popularity of the sites linking to it. Other factors also affect page rank,
such as the number of links leaving the site, the structure of internal links,
and so forth.

Google’s document servers contain cached copies of virtually the entire
World Wide Web on their hard drives. Each data center would have its own
document server cluster, and each document server cluster would need to
hold at least two copies of the Web, in order to provide redundancy in case
of server failure. But document servers are not merely data warehouses.
They also perform retrieval of the page title and keyword-in-context snip-
pet from the document ID provided by the index servers.

As the search is running, the peripheral systems also add their content to
the page as the search is in progress. This includes the spell check and the
advertisements. Once all elements of the page are together, the page is
shipped off to the visitor, all in less than a second.

Google also employs another breed of software, a spider named Google-
bot. This piece of software, running on thousands of PCs simultaneously,
trawls the Web continuously, completing a full round-trip in approximately
one month. Googlebot requests pages in an ordered fashion, following links
to a set depth, storing the content in the document servers and updating
the index servers with updated document IDs, relevancy ratings, and page
rank values. Another spider named Fastbot crawls the Web on a more regu-
lar basis, sometimes in less than a week. It only visits sites with a high page
rank and those that are frequently updated.

The Google architecture is one of the best in the world and is the pinna-
cle of scalability; however, for .NET developers, there is a slight twist in the
tail. Google can afford to buy 15,000 servers by cutting down on licensing
costs. This means that they use Linux, not Windows. Unfortunately, Linux
isn’t exactly home turf for .NET, but there is an open-source project called
MONO, which aims to provide a C# compiler for Linux (see

www.go-
mono.com

).

10.3 Replication and redundancy

Keeping a backup system ready for instant deployment is

redundancy

; keep-
ing the backup system identical to the live system is

replication

. When deal-
ing with a high-availability Internet-based service, it is important to keep
more than one copy of critical systems. Thus, in the event of software or

254

10.4

Scalable network applications

hardware failure, an identical copy of the software can take the place of the
failed module.

Backup systems do not need to be kept on separate machines. You can
use redundant hard drives using a redundant array of inexpensive disks
(RAID) array. This is where the file system is stored on several physical hard
disks. If one disk fails, then the other disks take over, with no loss of data.
Many computers can read from a RAID array at once but only one com-
puter can write at the same time (known as “shared nothing”). Of course,
it’s not just hard disks that fail. If a computer fails, another must take over
in the same way.

Providing redundancy among computers is the task of a

load balancer,

 a
piece of hardware or software that delegates client requests among multiple
servers. In order to provide redundancy, the load balancer must be able to
recognize a crashed computer or one that is unable to respond in a timely
fashion. A full discussion of load balancers is included later in this chapter.

Replication provides the means by which a backup system can remain
identical to the live system. If replication did not occur, data on the backup
system could become so out-of-date that it would be worthless if set live.
Replication is built into Microsoft SQL, accessible under the replication
folder in Enterprise Manager. SQL replication works by relaying update,
insert, and delete statements from one server to another. Changes made
while the other server is down are queued until the server goes live again.

10.4 Scalable network applications

Server-side applications are often required to operate with full efficiency
under extreme load.

Efficiency

, in this sense, relates to both the throughput
of the server and the number of clients it can handle. In some cases, it is
common to deny new clients to conserve resources for existing clients.

The key to providing scalable network applications is to keep threading
as efficient as possible. In many examples in this book, a new thread is cre-
ated for each new client that connects to the server. This approach,
although simple, is not ideal. The underlying management of a single
thread consumes far more memory and processor time than a socket.

In benchmarking tests, a simple echo server, running on a Pentium IV
1.7 GHz with 768-Mb memory, was connected to three clients: a Pentium
II 233 MHz with 128-Mb memory, a Pentium II 350 MHz with 128-Mb
memory, and an Itanium 733 MHz with 1-Gb memory. This semitypical
arrangement demonstrated that using the approach outlined above, the

10.5

Future proofing 255

Chapter 10

server could only serve 1,008 connections before it reached an internal
thread creation limit. The maximum throughput was 2 Mbps. When a fur-
ther 12,000 connections were attempted and rejected, the throughput
keeled off to a mere 404 Kbps.

The server, although having adequate memory and CPU time resources
to handle the additional clients, was unable to because it could not create
any further threads as thread creations and destructions were taking up all
of the CPU resources. To better manage thread creation, a technique
known as

thread pooling

 (demonstrated later in this chapter) can be
employed. When thread pooling was applied to the echo server example,
the server performed somewhat better. With 12,000 client connections, the
server handled each one without fail. The throughput was 1.8 Mbps, vastly
outperforming the software in the previous example, which obtained only
0.4 Mbps at the same CPU load. As a further 49,000 clients connected,
however, the server began to drop 0.6% of the connections. At the same
time, the CPU usage reached 95% of its peak capacity. At this load, the
combined throughput was 3.8 Mbps.

Thread pooling unarguably provides a scalability bonus, but it is not
acceptable to consume 95% of server resources just doing socket I/O, espe-
cially when other applications must also use the computer. In order to beef
up the server, the threading model should be abandoned completely, in
favor of I/O completion ports (see Chapter 3). This methodology uses
asynchronous callbacks that are managed at the operating system level.

By modifying the above example to use I/O completion ports rather
than thread pools, the server once again handled 12,000 clients without
fail; however, this time the throughput was an impressive 5 Mbps. When
the load was pushed to 50,000 clients, the server handled these connections
virtually flawlessly and maintained a healthy throughput of 4.3 Mbps. The
CPU usage at this load was 65%, which could have permitted other appli-
cations to run on the same server without conflicts.

In the thread-pool and completion-port models, the memory usage at
50,000 connections was more than 240 Mb, including non-paged-pool
usage at more than 145 Mb. If the server had less than this available in
physical memory, the result would have been substantially worse.

10.5 Future proofing

Scalability can also apply to the ability of an application to evolve gracefully
to meet future demands without major overhaul. When software is first

256

10.6

Thread pooling

designed, the primary goal is to hit all of the customer’s requirements or to
meet the perceived needs of a typical end-user. After rollout of the product,
it may address these requirements perfectly. Once the market demands
some major change to the application, the program has to scale to meet the
new demands without massive recoding.

This connotation of scalability is not the focus of the chapter, but some
of the following tips may help create a future-proof application:

�

Use classes instead of basic types for variables that represent elements
within your software that may grow in complexity. This ensures that
functions accept these variables because parameters will not need to
be changed as dramatically in the future.

�

Keep culture-specific strings in a resource file; if the software is ever
localized for a different language, this will reduce the change impact.

�

Keep abreast of modern technologies. It may soon be a requirement
of network applications to be IPv6 compliant.

�

Provide a means to update your software automatically post deploy-
ment.

The key to architectural scalability is to make everything configurable
and to assume nothing of the deployment environment.

10.6 Thread pooling

Every computer has a limit to the number of threads it can process at one
time. Depending on the resources consumed by each thread, this number
could be quite low. When given the choice either to guarantee your soft-
ware to handle a set number of clients or to “max out” the computer’s
resources and risk a system crash, choose the first option: thread pooling.

Threads can improve the responsiveness of applications, where each
thread consumes less than 100% processor time. Multitasking operating
systems share the available CPU resources among the running threads by
quickly switching between them to give the impression that they are all
running in parallel. This switching, which may occur up to 60 times per
second, incurs some small switching cost, which can become prohibitive if
the number of threads becomes too large. Threads that are blocked waiting
for some event do not, however, consume CPU resources while they wait,

10.6

Thread pooling 257

Chapter 10

but they still consume some kernel memory resources. The optimum num-
ber of threads for any given application is system dependent. A thread pool
is useful at finding this optimum number of threads to use.

To give some perspective on the effect of unpooled threading, examine
the code below:

C#

public static void IncrementThread()

{

 while(true)

 {

 myIncrementor++;

 long ticks = DateTime.Now.Ticks – startTime.Ticks;

 lock (this)

 {

 lblIPS.Text = "Increments per second:" +

 (myIncrementor / ticks) * 10000000;

 }

 }

}

VB.NET

Public Shared Sub IncrementThread()

 Dim ticks as long

 Do

 MyIncrementor = MyIncrementor+1

 Ticks = DateTime.Now.Ticks – startTime.Ticks

 SyncLock(me)

 lblIPS.Text = "Increments per second:" + _

 (myIncrementor / ticks) * 10000000

 End synclock

 Loop

End Sub

This code adds one to a public variable named

MyIncrementor

. It then
takes an accurate reading of system time, before updating the screen to
show the level of increments per second. The

SyncLock

or

Lock

 statement
is used to ensure that no two threads attempt to update the screen at the
same time because this causes unpredictable results. The results shown on-
screen should not be used as a measure of how quickly the computer can

258

10.6

Thread pooling

perform subtraction because most of the processor time is actually spent
showing the results!

When this thread was instantiated on its own, it operated at a speed of
235 increments per second; however, when this thread was instantiated
1,000 times and ran concurrently, the threads consumed more than 60 Mb
of memory stack frame, which on some older computers would go directly
to a paging file on disk, creating a systemwide loss of performance. In a
group of 1,000 threads, the overall performance was a mere 98 increments
per second, meaning that a single thread could take more than 10 seconds
to iterate through one

while

 loop. The test machine was a 333 MHz Pen-
tium III with 128 Mb of RAM.

With a thread pool, the optimal number of threads on this particular
computer was found to be 25, which gave an overall operating speed of
402 increments per second, with a slightly modified

Incrementer-

Thread()

 routine.

10.6.1 Implementing a thread pool

Thread pools are used constantly in servers, where a reliable service must be
provided regardless of load. This sample application is a simply a benchmark-
ing utility, but with experimentation it could be adapted for any purpose.

Create a new project in Visual Studio .NET and drop in two labels:

lblThreads

 and

lblIPS

. The thread pool will be populated with threads as
soon as the form loads. The exact time at which the form starts is stored in
a public variable named

startTime

. Every thread then adds one to a public
variable named

myIncrementor

, which helps gauge overall performance.
Both of these are included in the code directly after the class declaration:

C#

public class Form1 : System.Windows.Forms.Form

{

 public double myIncrementor;

 public DateTime startTime;

 ...

VB.NET

Public Class Form1

 Inherits System.Windows.Forms.Form

 Public myIncrementor As Double

 Public startTime As DateTime

 ...

10.6

Thread pooling 259

Chapter 10

To populate the thread pool, a check is made to see how many threads
should run together concurrently. That number of threads is then added to
the thread pool. There is no problem in adding more than the recom-
mended number of threads to the pool because the surplus threads will not
execute until another thread has finished. In this case, the threads run in an
infinite loop; therefore, no surplus threads would ever execute.

Double-click on the form and add the following code:

C#

private void Form1_Load(object sender, System.EventArgs e)

{

 int workerThreads=0;

 int IOThreads=0;

 ThreadPool.GetMaxThreads(out workerThreads,out IOThreads);

 lblThreads.Text = "Threads: " + workerThreads;

 for (int threads=0;threads<workerThreads;threads++)

 {

 ThreadPool.QueueUserWorkItem(new

 WaitCallback(Increment),this);

 }

 startTime = DateTime.Now;

}

VB.NET

Private Sub Form1_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

 Dim workerThreads As Integer = 0

 Dim IOThreads As Integer = 0

 ThreadPool.GetMaxThreads(workerThreads, IOThreads)

 lblThreads.Text = "Threads: " & workerThreads

 Dim threads As Integer = 0

 For threads = 1 To workerThreads

 ThreadPool.QueueUserWorkItem(New WaitCallback _

 (AddressOf Increment), Me)

 Next

 startTime = DateTime.Now

End Sub

260

10.6

Thread pooling

This code first obtains the default number of threads that can run con-
currently on the local machine using the

GetMaxThreads

 method. It then
displays this value on-screen before creating and running these threads.

There can only be one thread pool in an application, so only static
methods are called on the thread pool. The most important method is

QueueUserWorkItem

. The first parameter of this method is the function
(delegate) to be called, and the second parameter (which is optional) is the
object that is to be passed to the new thread. The

Increment

 function is
then implemented thus:

C#

public void Increment()

{

 while(true)

 {

 myIncrementor++;

 long ticks = DateTime.Now.Ticks - startTime.Ticks;

 lock (this)

 {

 lblIPS.Text = "Increments per second:"+

 (myIncrementor/ticks) * 10000000;

 }

 }

}

VB.NET

Public Sub Increment()

 Dim ticks As Long

 Do

 myIncrementor = myIncrementor + 1

 ticks = DateTime.Now.Ticks - startTime.Ticks

 SyncLock (Me)

 lblIPS.Text = "Increments per second:" & _

 (myIncrementor / ticks) * 10000000

 End SyncLock

 Loop

End Sub

10.7

Avoiding deadlocks 261

Chapter 10

The

lock

 (or

syncLock

) is required for application stability. If two
threads repeatedly access the same user interface element at the same time,
the application’s UI becomes unresponsive.

Finally, the threading namespace is required:

C#

using System.Threading;

VB.NET

imports System.Threading

To test the application, run it from Visual Studio .NET and wait for a
minute or two for the increments-per-second value to settle on a number
(Figure 10.1). You can experiment with this application and see how perfor-
mance increases and decreases under certain conditions, such as running
several applications or running with low memory.

10.7 Avoiding deadlocks

Deadlocks are the computing equivalent of a Catch-22 situation. Imagine
an application that retrieves data from a Web site and stores it in a database.
Users can use this application to query from either the database or the Web
site. These three tasks would be implemented as separate threads, and for
whatever reason, no two threads can access the Web site or the database at
the same time.

The first thread would be:

�

Wait for access to the Web site.

�

Restrict other threads’ access to the Web site.

�

Wait for access to the database.

Figure 10.1

Thread pool sample
application.

262

10.8

Load balancing

�

Restrict other threads’ access to the database.

�

Draw down the data, and write it to the database.

�

Relinquish the restriction on the database and Web site.

The second thread would be:

�

Wait for access to the database.

�

Restrict other threads’ access to the database.

�

Read from the database.

� Execute thread three, and wait for its completion.

� Relinquish the restriction on the database.

The third thread would be:

� Wait for access to the Web site.

� Restrict other threads’ access to the Web site.

� Read from the Web site.

� Relinquish the restriction on the Web site.

Any thread running on its own will complete without any errors; how-
ever, if thread 2 is at the point of reading from the database, while thread 1
is waiting for access to the database, the threads will hang. Thread 3 will
never complete because thread 1 will never get access to the database until
thread 2 is satisfied that thread 3 is complete.

A deadlock could have been avoided by relinquishing the database
restriction before executing thread 3, or in several different ways, but the
problem with deadlocks is spotting them and redesigning the threading
structure to avoid the bug.

10.8 Load balancing

Load balancing is a means of dividing workload among multiple servers by
forwarding only a percentage of requests to each server. The simplest way
of doing this is DNS round-robin, which is where a DNS server contains
multiple entries for the same IP address. So when a client requests a DNS,
it will receive one of a number of IP addresses to connect to. This

10.8 Load balancing 263

Chapter 10

approach has one major drawback in that if one of your servers crashes,
50% of your clients will receive no data. The same effect can be achieved
on the client side, where the application will connect to an alternative IP
address if one server fails to return data. Of course, this would be a night-
mare scenario if you deploye a thousand kiosks, only to find a week later
that your service provider had gone bust and you were issued new IP
addresses. If you work by DNS names, you will have to wait 24 hours for
the propagation to take place.

Computers can change their IP addresses by themselves, by simply
returning a different response when they receive an ARP request. There is
no programmatic control over the ARP table in Windows computers, but
you can use specially designed load-balancing software, such as Microsoft
Network Load Balancing Service (NLBS), which ships with the Windows
2000 advanced server. This allows many computers to operate from the
same IP address. By way of checking the status of services such as IIS on
each computer in a cluster, every other computer can elect to exclude that
computer from the cluster until it fixes itself, or a technician does so. The
computers do not actually use the same IP address; in truth, the IP
addresses are interchanged to create the same effect.

NLBS is suitable for small clusters of four or five servers, but for high-
end server farms from between 10 and 8,000 computers, the ideal solution
is a hardware virtual server, such as Cisco’s Local Director. This machine sits
between the router and the server farm. All requests to it are fed directly to
one of the 8,000 computers sitting behind it, provided that that server is lis-
tening on port 80.

None of the above solutions—DNS round-robin, Cisco Local Director,
or Microsoft NLBS—can provide the flexibility of custom load balancing.
NLBS, for instance, routes requests only on the basis of a percentage of the
client requests they will receive. So if you have multiple servers with differ-
ent hardware configurations, it’s your responsibility to estimate each sys-
tem’s performance compared to the others. Therefore, if you wanted to
route a percentage of requests based on actual server CPU usage, you
couldn’t achieve this with NLBS alone.

There are two ways of providing custom load balancing, either through
hardware or software. A hardware solution can be achieved with a little
imagination and a router. Most routers are configurable via a Web interface
or serial connection. Therefore, a computer can configure its own router
either through an RS232 connection (briefly described in Chapter 4) or by
using HTTP. Each computer can periodically connect to the router and set
up port forwarding so that incoming requests come to it rather than the

264 10.8 Load balancing

other machine. The hardware characteristics of the router may determine
how quickly port forwarding can be switched between computers and how
requests are handled during settings changes. This method may require
some experimentation, but it could be a cheap solution to load balancing,
or at least to graceful failover.

Custom software load balancers are applicable in systems where the time
to process each client request is substantially greater than the time to move
the data across the network. For these systems, it is worth considering using
a second server to share the processing load. You could program the clients
to connect to switch intermittently between servers, but this may not
always be possible if the client software is already deployed. A software load
balancer would inevitably incur an overhead, which in some cases could be
more than the time saved by relieving server load. Therefore, this solution
may not be ideal in all situations.

This implementation of a software load balancer behaves a little like a
proxy server. It accepts requests from the Internet and relays them to a
server of its choosing. The relayed requests must have their HOST header
changed to reflect the new target. Otherwise, the server may reject the
request. The load balancer can relay requests based on any criteria, such as
server CPU load, memory usage, or any other factor. It could also be used
to control failover, where if one server fails, the load balancer could auto-
matically redirect traffic to the remaining operational servers. In this case, a
simple round-robin approach is used.

The example program balances load among three mirrored HTTP serv-
ers: uk.php.net, ca.php.net, and ca2.php.net. Requests from users are directed
initially to the load-balancing server and are then channeled to one of these
servers, with the response returned to the user. Note that this approach does
not take advantage of any geographic proximity the user may have to the
Web servers because all traffic is channeled through the load balancer.

To create this application, start a new project in Microsoft Visual Studio
.NET. Draw a textbox on the form, named tbStatus. It should be set with
multiline to true.

Add two public variables at the top of the Form class as shown. The port
variable is used to hold the TCP port on which the load balancer will listen.
The site variable is used to hold a number indicating the next available
Web server.

C#
public class Form1 : System.Windows.Forms.Form

10.8 Load balancing 265

Chapter 10

{

 public int port;

 public int site;

VB.NET
Public Class Form1

 Inherits System.Windows.Forms.Form

 Public port As Integer

 Public Shadows site As Integer

When the application starts, it will immediately run a thread that will
wait indefinitely for external TCP connections. This code is placed into the
form’s Load event:

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 Thread thread = new Thread(new

 ThreadStart(ListenerThread));

 thread.Start();

}

VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim thread As Thread = New Thread(New ThreadStart(_

 AddressOf ListenerThread))

 thread.Start()

End Sub

The ListenerThread works by listening on port 8889 and waiting on
connections. When it receives a connection, it instantiates a new instance of
the WebProxy class and starts its run method in a new thread. It sets the
class’s clientSocket and UserInterface properties so that the WebProxy
instance can reference the form and the socket containing the client
request.

C#
public void ListenerThread()

{

266 10.8 Load balancing

 port = 8889;

 TcpListener tcplistener = new TcpListener(port);

 reportMessage("Listening on port " + port);

 tcplistener.Start();

 while(true)

 {

 WebProxy webproxy = new WebProxy();

 webproxy.UserInterface = this;

 webproxy.clientSocket = tcplistener.AcceptSocket();

 reportMessage("New client");

 Thread thread = new

 Thread(new ThreadStart(webproxy.run));

 thread.Start();

 }

}

VB.NET
Public Sub ListenerThread()

 port = 8889

 Dim tcplistener As TcpListener = New TcpListener(port)

 reportMessage("Listening on port " + port.ToString())

 tcplistener.Start()

 Do

 Dim webproxy As WebProxy = New WebProxy

 webproxy.UserInterface = Me

 webproxy.clientSocket = tcplistener.AcceptSocket()

 reportMessage("New client")

 Dim thread As Thread = New Thread(New ThreadStart(_

 AddressOf webproxy.run))

 thread.Start()

 Loop

End Sub

A utility function that is used throughout the application is reportMes-
sage. Its function is to display messages in the textbox and scroll the textbox
automatically, so that the user can see the newest messages as they arrive.

C#
public void reportMessage(string msg)

{

 lock(this)

10.8 Load balancing 267

Chapter 10

 {

 tbStatus.Text += msg + "\r\n";

 tbStatus.SelectionStart = tbStatus.Text.Length;

 tbStatus.ScrollToCaret();

 }

}

VB.NET
Public Sub reportMessage(ByVal msg As String)

 SyncLock Me

 tbStatus.Text += msg + vbCrLf

 tbStatus.SelectionStart = tbStatus.Text.Length

 tbStatus.ScrollToCaret()

 End SyncLock

End Sub

The core algorithm of the load balancer is held in the getMirror func-
tion. This method simply returns a URL based on the site variable. More
complex load-balancing techniques could be implemented within this func-
tion if required.

C#
public string getMirror()

{

 string Mirror = "";

 switch(site)

 {

 case 0:

 Mirror="uk.php.net";

 site++;

 break;

 case 1:

 Mirror="ca.php.net";

 site++;

 break;

 case 2:

 Mirror="ca2.php.net";

 site=0;

 break;

 }

 return Mirror;

}

268 10.8 Load balancing

VB.NET
Public Function getMirror() As String

 Dim Mirror As String = ""

 Select Case site

 Case 0

 Mirror = "uk.php.net"

 site = site + 1

 Case 1

 Mirror = "ca.php.net"

 site = site + 1

 Case 2

 Mirror = "ca2.php.net"

 site = 0

 End Select

 Return Mirror

End Function

The next step is to develop the WebProxy class. This class contains two
public variables and two functions. Create the class thus:

C#
public class WebProxy

{

 public Socket clientSocket;

 public Form1 UserInterface;

}

VB.NET
Public Class WebProxy

 Public clientSocket As Socket

 Public UserInterface As Form1

End Class

The entry point to the class is the run method. This method reads 1,024
(or fewer) bytes from the HTTP request. It is assumed that the HTTP
request is less than 1 Kb in size, in ASCII format, and that it can be
received in one Receive operation. The next step is to remove the HOST
HTTP header and replace it with a HOST header pointing to the server
returned by getMirror. Having done this, it passes control to relayTCP to
complete the task of transferring data from user to Web server.

10.8 Load balancing 269

Chapter 10

C#
public void run()

{

 string sURL = UserInterface.getMirror();

 byte[] readIn = new byte[1024];

 int bytes = clientSocket.Receive(readIn);

 string clientmessage = Encoding.ASCII.GetString(readIn);

 clientmessage = clientmessage.Substring(0,bytes);

 int posHost = clientmessage.IndexOf("Host:");

 int posEndOfLine = clientmessage.IndexOf("\r\n",posHost);

 clientmessage =

 clientmessage.Remove(posHost,posEndOfLine-posHost);

 clientmessage =

 clientmessage.Insert(posHost,"Host: "+ sURL);

 readIn = Encoding.ASCII.GetBytes(clientmessage);

 if(bytes == 0) return;

 UserInterface.reportMessage("Connection from:" +

 clientSocket.RemoteEndPoint + "\r\n");

 UserInterface.reportMessage

 ("Connecting to Site:" + sURL + "\r\n");

 relayTCP(sURL,80,clientmessage);

 clientSocket.Close();

}

VB.NET
Public Sub run()

 Dim sURL As String = UserInterface.getMirror()

 Dim readIn() As Byte = New Byte(1024) {}

 Dim bytes As Integer = clientSocket.Receive(readIn)

 Dim clientmessage As String = _

 Encoding.ASCII.GetString(readIn)

 clientmessage = clientmessage.Substring(0, bytes)

 Dim posHost As Integer = clientmessage.IndexOf("Host:")

 Dim posEndOfLine As Integer = clientmessage.IndexOf _

 (vbCrLf, posHost)

 clientmessage = clientmessage.Remove(posHost, _

 posEndOfLine - posHost)

 clientmessage = clientmessage.Insert(posHost, _

 "Host: " + sURL)

 readIn = Encoding.ASCII.GetBytes(clientmessage)

 If bytes = 0 Then Return

270 10.8 Load balancing

 UserInterface.reportMessage("Connection from:" + _

 clientSocket.RemoteEndPoint.ToString())

 UserInterface.reportMessage("Connecting to Site:" + sURL)

 relayTCP(sURL, 80, clientmessage)

 clientSocket.Close()

End Sub

The data transfer takes place on relayTCP. It opens a TCP connection
to the Web server on port 80 and then sends it the modified HTTP header
sent from the user. Immediately after the data is sent, it goes into a loop,
reading 256-byte chunks of data from the Web server and sending it back
to the client. If at any point it encounters an error, or the data flow comes
to an end, the loop is broken and the function returns.

C#
public void relayTCP(string host,int port,string cmd)

{

 byte[] szData;

 byte[] RecvBytes = new byte[Byte.MaxValue];

 Int32 bytes;

 TcpClient TcpClientSocket = new TcpClient(host,port);

 NetworkStream NetStrm = TcpClientSocket.GetStream();

 szData =

 System.Text.Encoding.ASCII.GetBytes(cmd.ToCharArray());

 NetStrm.Write(szData,0,szData.Length);

 while(true)

 {

 try

 {

 bytes = NetStrm.Read(RecvBytes, 0,RecvBytes.Length);

 clientSocket.Send(RecvBytes,bytes,SocketFlags.None);

 if (bytes<=0) break;

 }

 catch

 {

 UserInterface.reportMessage("Failed connect");

 break;

 }

 }

}

10.8 Load balancing 271

Chapter 10

VB.NET
Public Sub relayTCP(ByVal host As String, ByVal port _

 As Integer, ByVal cmd As String)

 Dim szData() As Byte

 Dim RecvBytes() As Byte = New Byte(Byte.MaxValue) {}

 Dim bytes As Int32

 Dim TcpClientSocket As TcpClient = New TcpClient(host, port)

 Dim NetStrm As NetworkStream = TcpClientSocket.GetStream()

 szData = _

 System.Text.Encoding.ASCII.GetBytes(cmd.ToCharArray())

 NetStrm.Write(szData, 0, szData.Length)

 While True

 Try

 bytes = NetStrm.Read(RecvBytes, 0, RecvBytes.Length)

 clientSocket.Send(RecvBytes, bytes, SocketFlags.None)

 If bytes <= 0 Then Exit While

 Catch

 UserInterface.reportMessage("Failed connect")

 Exit While

 End Try

 End While

End Sub

As usual, some standard namespaces are added to the head of the code:

C#
using System.Net;

using System.Net.Sockets;

using System.Text;

using System.IO;

using System.Threading;

VB.NET
Imports System.Net

Imports System.Net.Sockets

Imports System.Text

Imports System.IO

Imports System.Threading

To test the application, run it from Visual Studio .NET, and then open a
browser on http://localhost:8889; you will see that the Web site is loaded

272 10.9 Conclusion

from all three servers. In this case, data transfer consumes most of the site’s
loading time, so there would be little performance gain, but it should serve
as an example (Figure 10.2).

10.9 Conclusion

Scalability problems generally only start appearing once a product has
rolled out into full-scale production. At this stage in the life cycle, making
modifications to the software becomes a logistical nightmare. Any changes
to the software will necessarily have to be backwards compatible with older
versions of the product.

Many software packages now include an autoupdater, which accommo-
dates postdeployment updates; however, the best solution is to address scal-

Figure 10.2
HTTP load-

balancing
application.

10.9 Conclusion 273

Chapter 10

ability issues at the design phase, rather than ending up with a dozen versions
of your product and the server downtime caused by implementing updates.

The next chapter deals with network performance, including techniques
such as compression and multicast.

This page intentionally left blank

275

11

Optimizing Bandwidth Utilization

11.1 Introduction

You can’t always expect your customer to have the same bandwidth as your
office LAN. Huge numbers of people still use modem connections, and
some use mobile GPRS devices with even lower connection speeds.

These customers will only buy your software if it works at a speed that is
at least usable and does not frustrate them. Online services with slow load-
ing times will infuriate casual Web users and drive away potential custom-
ers. Conversely, people will pay more for better performance. To give an
example, VNC (

www.realvnc.com

) is free, under general public license
(GPL), whereas client licenses for Microsoft Terminal Services (MTS) are
certainly not free. Both pieces of software allow you to control another
computer remotely, but many people still opt for MTS. Why? Performance.
MTS provides more fluid control over the remote computer than VNC
over the same bandwidth.

This chapter is largely devoted to two different performance-enhancing
techniques. The first section of the chapter covers a technology known as

multicast

, the ability to send one piece of data to more than one recipient
simultaneously. The second section deals with data compression and
decompression. This is the ability to convert a block of data into a smaller
block of data and then return this to either an exact or near copy of the
original data.

11.2 Tricks and tips to increase performance

Performance increases can often be made by simple changes to how data is
moved between client and server. In some cases, these techniques may not

276

11.2

Tricks and tips to increase performance

be applicable; however when used correctly, each of the following methods
will help keep your data moving quickly.

11.2.1 Caching

Caching can increase network performance by storing frequently accessed
static data in a location that provides faster data return than the normal
access time for the static data. It is important that all three of the following
criteria are met:

�

The data must be frequently accessed

. There is no point in storing large
datasets in memory or on disk when only one client will ever request
it, once.

�

The data must not change as often as it is requested

. The data should
remain static for long periods, or else clients will receive outdated
data.

�

The access time for cached data must be substantially faster than the
access time to receive the data directly

. It would defeat the purpose if a
client were denied access to the data from its source and instead was
redirected to a caching server that had to reprocess the data.

Data can be cached at any point between the client and server.

Server-
side caches

 can protect against out-of-date data, but they are slower than cli-
ent-side caches.

Client caches

 are very fast because the data is read from disk,
not the network, but they are prone to out-of-date data.

Proxy caches

 are a
combination of the two. They can refresh their cache regularly when idle
and can serve data faster because they will be on a local connection to the
client. Old data on a proxy can be frustrating for a user because it is awk-
ward to flush the cache of a proxy server manually.

Server caching can be extremely useful when data on the server needs to
be processed before it can be sent to clients. A prime example of this is that
when an ASP.NET page is uploaded to a server, it must be compiled before
generating content that is sent to the client. It is extremely wasteful to have
the server recompile the page every time it is requested, so the compiled
version is held in a server-side cache.

When a site consists of mainly static content, it is possible to cache a
compressed version of each of the pages to be delivered because most
browsers can dynamically decompress content in the right format. There-

11.2

Tricks and tips to increase performance 277

Chapter 11

fore, instead of sending the original version of each page, a compressed ver-
sion could be sent. When the content is dynamic, it is possible to utilize on-
the-fly compression from server-accelerator products such as Xcache and
Pipeboost.

Caching introduces the problem of change monitoring, so that the
cached data reflects the live data as accurately as possible. Where the data is
in the form of files on disk, one of the simplest mechanisms is to compare
the “date modified” field against the cached data. Above that, hashing could
be used to monitor changes within datasets or other content.

Within the environment of a single Web site or application, caching can
be controlled and predicted quite easily, except when the content to be
served could come from arbitrary sources. This situation might arise in a
generic caching proxy server, where content could come from anywhere on
the Internet. In this case, the proxy must make an educated assessment
about whether pages should be cached locally or not.

The proxy would need to hold an internal table, which could record all
requests made to it from clients. The proxy would need to store the full
HTTP request because many sites behave differently depending on what
cookies and so forth are sent by the client. Along with the requests, the
proxy would need to be able to count the number of identical requests and
how recently they were made. The proxy should also keep checksums (or
hashes) of the data returned from the server relative to each request. With
this information, the proxy can determine if the content is too dynamic to
cache. With that said, even the most static and frequently accessed sites
change sometimes. The proxy could, during lull periods, check some of the
currently cached Web sites against the live versions and update the cache
accordingly.

11.2.2 Keep-alive connections

Even though most Web pages contain many different images that all come
from the same server, some older (HTTP 1.0) clients create new HTTP
connections for each of the images. This is wasteful because the first HTTP
connection is sufficient to send all of the images. Luckily, most browsers
and servers are capable of handling HTTP 1.1 persistent connections. A cli-
ent can request that a server keep a TCP connection open by specifying

Connection: Keep-Alive

 in the HTTP header.

Netscape pioneered a technology that could send many disparate forms
of data through the same HTTP connection. This system was called “server
push” and could provide for simple video streaming in the days before Win-

278

11.2

Tricks and tips to increase performance

dows media. Server push was never adopted by Microsoft, and unfortu-
nately it is not supported by Internet Explorer, but it is still available in
Netscape Navigator.

When a TCP connection opens and closes, several handshake packets
are sent back and forth between the client and server, which can waste up to
one second per connection for modem users. If you are developing a propri-
etary protocol that involves multiple sequential requests and responses
between client and server, you should always aim to keep the TCP connec-
tion open for as long as possible, rather than repeatedly opening and closing
it with every request.

The whole handshake latency issue can be avoided completely by using
a non-connection-oriented protocol such as UDP. As mentioned in Chap-
ter 3, however, data integrity is endangered when transmitted over UDP.
Some protocols such as real-time streaming protocol (RTSP, defined in
RFC 2326) use a combination of TCP and UDP to achieve a compromise
between speed and reliability.

11.2.3 Progressive downloads

When most of a file is downloaded, the client should be able to begin to use
the data. The obvious applications are audio and video, where users can
begin to see and hear the video clip before it is fully downloaded. The same
technique is applicable in many scenarios. For instance, if product listings
are being displayed as they are retrieved, a user could interrupt the process
once the desired product is shown and proceed with the purchase.

Image formats such as JPEG and GIF come in a progressive version,
which renders them as full-size images very soon after the first few hundred
bytes are received. Subsequent bytes form a more distinct and higher-qual-
ity image. This technique is known as

interlacing

. Its equivalent in an online
catalog application would be where product names and prices download
first, followed by the images of the various products.

11.2.4 Tweaking settings

Windows is optimized by default for use on Ethernets, so where a produc-
tion application is being rolled out to a client base using modems, ISDN,
or DSL, some system tweaking can be done to help Windows manage the
connection more efficiently and, ultimately, to increase overall network per-
formance. Because these settings are systemwide, however, these changes

11.2

Tricks and tips to increase performance 279

Chapter 11

should only be applied when the end-customer has given your software per-
mission to do so.

The TCP/IP settings are held in the registry at

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\
Parameters

Under this location, various parameters can be seen, such as default name
servers and gateways, which would otherwise be inaccessible programmati-
cally. Not all of these parameters would already be present in the registry by
default, but they could be added when required.

The first system tweak is the TCP window size, which can be set at the
following registry location:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
GlobalMaxTcpWindowSize

The TCP window specifies the number of bytes that a sending computer
can transmit without receiving an ACK. The recommended value is
256,960. Other values to try are 372,300, 186,880, 93,440, 64,240, and
32,120. The valid range is from the maximum segment size (MSS) to 2

30

.
For best results, the size has to be a multiple of MSS lower than 65,535
times a scale factor that’s a power of 2. The MSS is generally roughly equal
to the maximum transmission unit (MTU), as described later. This tweak
reduces protocol overhead by eliminating part of the safety net and trim-
ming some of the time involved in the turnaround of an ACK.

TcpWindowSize

 can also exist under

\Parameters\Interface\

. If the
setting is added at this location, it overrides the global setting. When the
window size is less than 64K, the

Tcp1323Opts

 setting should be applied as
detailed below:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
Tcp1323Opts

“Tcp1323” refers to RFC 1323, a proposal to add timestamps to pack-
ets to aid out-of-order deliveries. Removing timestamps shaves off 12 bytes
per TCP/IP packet, but reduces reliability over bad connections. It also
affects TCP window scaling, as mentioned above. Zero is the recommended
option for higher performance. Set the size to one to include window-scal-

280

11.2

Tricks and tips to increase performance

ing features and three to apply the timestamp. This setting is particularly
risky and should not be tampered with without great care.

The issue of packets with a time-to-live (TTL) value is discussed again
in the multicast section in this chapter, where it is of particular importance.
The setting can be applied on a systemwide level at this registry location:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
DefaultTTL

The TTL of a packet is a measure of how many routers a packet will travel
through before being discarded. An excessively high TTL (e.g., 255) will
cause delays, especially over bad links. A low TTL will cause some packets
to be discarded before they reach their destination. The recommended
value is 64.

The MTU is the maximum size of any packet sent over the wire. If it is
set too high, lost packets will take longer to retransmit and may get frag-
mented. If the MTU is set too low, data becomes swamped with overhead
and takes longer to send. Ethernet connections use a default of 1,500 bytes
per packet; ADSL uses 1,492 bytes per packet; and FDDI uses 8,000 bytes
per packet. The MTU value can be left as the default or can be negotiated
at startup. The registry key in question is

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
EnablePMTUDiscovery

The recommended value is one.This will make the computer negotiate with
the NIC miniport driver for the best value for MTU on initial transmission.
This may cause a slow startup effect, but it will ultimately be beneficial if
there should be little packet loss and the data being transferred is large.

Ideally, every piece of datagram being sent should be the size of the
MTU. If it is any larger than the MTU, the datagram will fragment, which
takes computing time and increases the risk of datagram loss. This setting is
highly recommended for modem users:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
EnablePMTUBHDetect

The recommended setting is zero. Setting this parameter to one (

True

)
enables “black hole” routers to be detected; however, it also increases the

11.2

Tricks and tips to increase performance 281

Chapter 11

maximum number of retransmissions for a given TCP data segment. A
black hole router is one that fails to deliver packets and does not report the
failure to the sender with an ICMP message. If black hole routers are not an
issue on the network, they can be ignored.

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
SackOpts

The recommended setting is one. This enables Selective Acknowledgement
(SACK) to take place, which can improve performance where window sizes
are low.

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\
TcpMaxDupAcks

The recommended value is two. The parameter determines the number
of duplicate acknowledgments that must be received for the same sequence
number of sent data before “fast retransmit” is triggered to resend the seg-
ment that has been dropped in transit. This setting is of particular impor-
tance on links where a high potential for packet loss exists.

Moving outside the low-level TCP nuts and bolts, a setting can improve
the performance of outgoing HTTP connections. These settings can speed
up activities such as Web browsing:

HKEY_USERS\.DEFAULT\Software\Microsoft\Windows\
CurrentVersion\Internet Settings\

"MaxConnectionsPerServer"=dword:00000020

"MaxConnectionsPer1_0Server"=dword:00000020

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\
Internet Settings\

"MaxConnectionsPerServer"=dword:00000020

"MaxConnectionsPer1_0Server"=dword:00000020

This setting actually increases the number of concurrent outgoing con-
nections that can be made from the same client to the one server. This is a
(small) violation of the HTTP standard and can put undue strain on some
Web servers, but the bottom line is, if it makes your application run faster,
who cares?

282

11.3

Multicast UDP

11.3 Multicast UDP

Multicasting

 is where a message can travel to more than one destination at
the same time. This can provide significant increases in efficiency where
there is more than one recipient of the data being sent. It is ideally suited to
networks where all clients and servers are on the same LAN, and it is
routable on the Internet, but is only supported by some service providers.

The first audio multicast took place in 1992, followed one year later by
the first video multicast. Nowadays, multicast UDP is used in products
such as Symantec Ghost to provide remote software installations on multi-
ple hosts simultaneously. It is also used to broadcast video footage of popu-
lar events over the Internet.

11.3.1 Multicast basics

From a programmer’s perspective, the difference between point-to-point
UDP and multicast UDP is minimal. In .NET, we use the

UDPClient

object and call the

JoinMulticastGroup()

 method, passing to it a multicast
IP address. We can then send and receive packets using the same methods
as we would with a standard UDP connection.

A multicast IP address is one that lies in the range 224.0.0.0 to
239.255.255.255. Unfortunately, you can’t pick any multicast IP address
arbitrarily because there are some restrictions. The IANA controls multicast
IP addresses, so you should consult RFC 3171 and the IANA Web site for a
definitive list. Never use a multicast IP address that is already assigned to a
well-known purpose, such as the following:

�

224.0.0.0 to 224.0.0.255:

 The Local Network Control Block is non-
routable and cannot travel over the Internet. These addresses have
well-known purposes (e.g., DHCP is on address 224.0.0.12).

�

224.0.1.0 to 224.0.1.255:

 The Internetwork Control Block is
routable, but these addresses have special uses. Network time proto-
col (NTP) is on address 224.0.1.1, and WINS is on address
224.0.1.24.

�

239.0.0.0 to 239.255.255.255:

 The scope-relative addresses are not
routable, but they have no special purpose and can be used freely for
experimental purposes.

11.3

Multicast UDP 283

Chapter 11

It is possible to request a globally unique multicast IP address from the
IANA. Initially, you should use an experimental multicast address such as
234.5.6.11 or obtain a leased multicast address from multicast address
dynamic client allocation protocol (MADCAP), as defined in RFC 2730.

If other people are using the same multicast address as you, you may
receive stray packets that could corrupt the data you are trying to transmit.
If you are broadcasting exclusively to a LAN, use a scope-relative address.

When broadcasting on a WAN (but not the Internet), you can limit the
TTL of the packet to less than 63. TTL prevents a packet from being
routed indefinitely. Every hop decreases the TTL by one. When the TTL
reaches zero, the packet is discarded. This can confine a packet to a geo-
graphic area and also prevents multicast avalanches, which occur when
packets are replicated exponentially and end up clogging routers all over
the Internet.

11.3.2 Multicast routing

Multicast UDP may be the first non-P2P protocol to be accessible pro-
grammatically, but there is nothing new in protocols that broadcast rather
than going from A to B. Routing protocols such as RIP and OSPF do not
have set endpoints; rather, they percolate through networks in all directions
at once. In fact, it would be a paradox if a routing protocol needed to be
routed from point to point. The technique is not limited to routing proto-
cols (e.g., BOOTP [bootstrap] and ARP are other examples of nondirec-
tional protocols).

The biggest limitation of network broadcasts is that they generally only
work within the same LAN and cannot be routed across the Internet. Multi-
cast UDP goes partway toward solving this problem. It is true that not every-
one can send or receive multicasts to or from the Internet. Multicast data
does have a tendency to flood networks, so not all service providers want to
be bombarded with unsolicited data. To enable service providers who do
accept multicast to communicate, the multicast backbone (MBONE) was
developed. This links multicast-compatible providers together via point-to-
point channels in non-multicast-compatible networks. It currently spans
more than 24 countries, mostly in academic networks.

Multicast implies that data travels in all directions at once (floods), but
in practice, it is not the UDP packets that flood, but multicast routing pro-
tocol packets that do this job for them. There are three multicast routing
protocols: distance vector multicast routing (DVMRP), multicast open
shortest path first (MOSPF), and protocol independent multicast (PIM).

284

11.3

Multicast UDP

A subscriber to a multicast will issue an Internet group management proto-
col (IGMP) packet to register its interest in receiving messages. This proto-
col is also used to leave groups.

There is no equivalent multicast TCP because of the constant one-to-
one handshaking that is required. This causes some difficulties for applica-
tion developers because data sent by UDP can be corrupted as a result of
packet loss, duplication, and reordering. This problem can be counteracted
by inserting headers in the data containing a sequence number, which the
client can reorganize or request a once-off TCP/IP transfer of the missing
packet from the server.

Similarly, it is difficult to implement public/private key security via mul-
ticast because every client would have a different public key. The IETF is
scheduled to publish a standard security mechanism over multicast
(MSEC) to address this issue.

11.3.3 Implementing multicast

Before you can implement a multicast-enabled application, you should
ensure that your Internet connection supports multicast traffic and is con-
nected to the MBONE network.

This example consists of two applications: a sender and a receiver. We
start with the implementation of the sender. Open a new project in Visual
Studio .NET and add three textboxes:

tbMulticastGroup

,

tbPort

, and

tbMessage

. You will also require a button named

btnSend

.

Click on the Send button, and add the following code:

C#

private void btnSend_Click(object sender, System.EventArgs e)

{

 send(tbMulticastGroup.Text , int.Parse(tbPort.Text),

 tbMessage.Text);

}

VB.NET

Private Sub btnSend_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 send(tbMulticastGroup.Text,Integer.Parse(tbPort.Text), _

 tbMessage.Text)

End Sub

11.3

Multicast UDP 285

Chapter 11

Multicast operation can be performed at both the socket level and

Udp-

Client

 level. To illustrate both techniques, the sender (client) will be imple-
mented using sockets, whereas the receiver will be implemented using the

UdpClient

 object. Before sending or receiving from a multicast group, it is
necessary to join the group. This is done in the example below using the
socket option

AddMembership

.

In the same way as if the socket was operating in point-to-point (uni-
cast) mode, the remote endpoint must be specified with both a port and an
IP address. The IP address in this case must be valid and within the multi-
cast range (224.0.0.0 to 239.255.255.255). The TTL specifies how far the
packet can travel; in this case, it is set to the maximum, 255.

The next step is to implement the

Send

 function as follows:

C#

public void send(string mcastGroup, int port, string message)

{

 IPAddress ip=IPAddress.Parse(mcastGroup);

 Socket s=new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

 s.SetSocketOption(SocketOptionLevel.IP,

 SocketOptionName.AddMembership, new MulticastOption(ip));

 s.SetSocketOption(SocketOptionLevel.IP,

 SocketOptionName.MulticastTimeToLive, 255);

 byte[] b;

 b = Encoding.ASCII.GetBytes(message);

 IPEndPoint ipep=new IPEndPoint(

 IPAddress.Parse(mcastGroup), port);

 s.Connect(ipep);

 s.Send(b,b.Length,SocketFlags.None);

 s.Close();

}

VB.NET

Public Sub send(ByVal mcastGroup As String, _

 ByVal port As Integer, ByVal message As String)

 Dim ip As IPAddress = IPAddress.Parse(mcastGroup)

 Dim s As Socket = New Socket(AddressFamily.InterNetwork, _

 SocketType.Dgram, ProtocolType.Udp)

 s.SetSocketOption(SocketOptionLevel.IP, _

286

11.3

Multicast UDP

 SocketOptionName.AddMembership, New MulticastOption(ip))

 s.SetSocketOption(SocketOptionLevel.IP, _

 SocketOptionName.MulticastTimeToLive, 255)

 Dim b As Byte()

 b = Encoding.ASCII.GetBytes(Message)

 Dim ipep As IPEndPoint = New _

 IPEndPoint(IPAddress.Parse(mcastGroup), port)

 s.Connect(ipep)

 s.Send(b, b.Length, SocketFlags.None)

 s.Close()

End Sub

This code uses sockets rather than streams to send multicast data. Sev-
eral parameters need to be applied to the newly created code in order for it
to operate effectively in multicast mode. First, the protocol type is set to
UDP with

ProtocolType.Udp

 because this is the underlying protocol for all
multicast broadcasts.

A socket option is then set such that the socket will request to join the
specified group. The option

SocketOptionName.AddMembership

indicates
that the socket is attaching to a multicast group. The final parameter is the
TTL; in this case, the TTL is 255, which effectively means that the
packet(s) can travel anywhere in the world.

The message, which is in string format, is converted to a byte array. The
endpoint is set to the multicast address on the port specified. The socket
then connects to the endpoint, sends the byte array, and then disconnects.

To complete the program, add the required namespaces at the top of the
code:

C#

using System.Text;

using System.Net;

using System.Net.Sockets;

VB.NET

Imports System.Text

Imports System.Net

Imports System.Net.Sockets

11.3

Multicast UDP 287

Chapter 11

The next step is to code the multicast receiver. Open a new project in
Visual Studio .NET and draw a textbox named

tbMessages

 with

multi-

line set to true on the form.

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 Thread thdReceiver = new Thread(new

 ThreadStart(receiverThread));

 thdReceiver.Start();

}

VB.NET
Private Sub Form1_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim thdReceiver As Thread

 thdReceiver = New Thread(New ThreadStart _

 (AddressOf receiverThread))

 thdReceiver.Start()

End Sub

The receiving thread will remain in an infinite loop awaiting new data.
It is therefore run in a separate thread named recieverThread().

In this case, the multicast functionality is implemented using the
UdpClient object. Membership to the group is obtained by calling the
JoinMulticastGroup. Again the TTL and port details must be specified.

Enter the following code to finish this application:

C#
public void receiverThread()

{

 UdpClient client = new UdpClient(5000);

 IPAddress group = IPAddress.Parse("224.5.4.6");

 int timeToLive = 255;

 int port = 5000;

 client.JoinMulticastGroup(group, timeToLive);

 IPEndPoint remoteEP = new IPEndPoint(group, port);

 while (true)

 {

 IPEndPoint ep = null;

288 11.3 Multicast UDP

 byte[] buffer = client.Receive(ref ep);

 string message = Encoding.ASCII.GetString(buffer);

 this.tbMessages.Text += message + "\n";

 }

}

VB.NET
Public Sub receiverThread()

 Dim client As UdpClient = New UdpClient(5000)

 Dim group As IPAddress = IPAddress.Parse("224.5.4.6")

 Dim timeToLive As Integer = 255

 Dim port As Integer = 5000

 client.JoinMulticastGroup(group, timeToLive)

 Dim remoteEP As IPEndPoint = New IPEndPoint(group,port)

 Do

 Dim ep As IPEndPoint = Nothing

 Dim buffer() As Byte = client.Receive(ep)

 Dim message as String = _

 System.Text.Encoding.ASCII.GetString(buffer)

 Me.tbMessages.Text += message + vbcrlf

 Loop

End Sub

This code uses a higher level of abstraction than the sender and imple-
ments a multicast receiver using UdpClient objects rather than bare sockets.
In much the same way as you would receive standard UDP packets, the
UdpClient is set to listen on a specified port (in this case, 5000) by passing
the port number to the constructor. Where it differs is when JoinMulti-
castGroup is called. This method is passed an IPAddress object that holds
the multicast IP address and the TTL value for any packets sent. The pro-
gram goes into an infinite loop at this point, receiving arrays of bytes from
whomever happens also to be transmitting on that multicast IP address.
These byte arrays are then converted into strings and displayed on-screen.

To finish this code, add the required namespaces as follows:

C#
using System.Threading;

using System.Net;

using System.Net.Sockets;

using System.Text;

11.4 Data compression 289

Chapter 11

VB.NET
Imports System.Threading

Imports System.Net

Imports System.Net.Sockets

Imports System.Text

To test this application, run both the sender and receiver from Visual
Studio .NET. Set the group address on the sender to 224.5.6.7 and the port
to 5000, type in a short message, and press send. You will see the text
appearing in the receiver application (Figure 11.1). It should be possible to
open multiple instances of the receiver application and have them all receive
the same text simultaneously.

11.4 Data compression

The most effective way to send data between computers faster is to send
less data. This does not mean that you send the recipient less information,
just that it is packaged in a more compact way. The process of compressing
data so that the decompressed data is identical to the original is known as
lossless compression and is used in ZIP compression. The process of com-
pressing data in a way that is not identical, but is not perceived as different

Figure 11.1
Multicast UDP

client and server.

290 11.5 Lossless compression

from the original, is known as lossy compression and is used in JPEG and
Mp3 compression.

11.5 Lossless compression

Lossless compression is used when the integrity of data is paramount. In the
same way that it saves space to round the company’s annual returns to the
nearest million, there may be a risk that someone could run off with
$499,999 without affecting the books.

There are two ways of compressing data without losing integrity:
entropy encoding and source encoding. Entropy encoding is where the statis-
tical similarity between bytes or byte sequences is recorded, rather than the
bytes themselves. Source encoding is where the rate of change between bytes
or byte sequences is recorded and not the bytes themselves. Entropy encod-
ing is used in the ZIP format, whereas source encoding is used in adaptive
delta pulse code modulation (ADPCM), an audio compression technique.

The most basic form of entropy encoding is run length encoding (RLE),
where a byte sequence consisting entirely of the same byte is converted into
a number followed by the byte. Therefore, the sequence (in hex) 00 00 00
00 00 could be shortened to 05 00. This approach achieves compression
only on files with very high entropy, but it was used effectively in the rather
outdated PCX format.

A more effective component of ZIP compression is Huffman compres-
sion, where the most common bytes are encoded into short bit sequences.
The less common bytes are encoded into bit sequences longer than a byte,
but because they are less common, the overall effect is a shorter file.

A table of bit-code-to-byte conversions is known as a codebook, which
can be either static or dynamic. Because the codebook adds to the total
length of the transmitted file, it is advantageous to have a short codebook or
no codebook with a static codebook. There is no need to transmit the code-
book with the data because the receiver will already have it.

Static codebooks have been around for years, in fact, since well before
the time of computers. The first data compression scheme was Morse code.
The designers of Morse code may not have had entropy reduction in mind,
but they did happen to choose the shortest codes for the most common let-
ters. E and T are encoded as a single dot and dash, whereas Z is encoded as
a four “bit” sequence. Morse code is not applicable for computer data com-
pression because it uses a pause as a delimiter, which cannot be represented
in binary.

11.5 Lossless compression 291

Chapter 11

Dynamic codebooks are built up during compression, which is where
the most common characters are ascertained and then assigned bit
sequences. The codebook is then used to compress the data bytes into
shorter bit sequences, which are joined together and padded to form a byte
stream that should be smaller than the original data.

Codebooks cannot be built up arbitrarily. They must reflect the fre-
quency of each character in the data and be easily delimitable. The simplest
scheme is to assign a two-bit sequence to the most common character (i.e.,
01). Each byte that follows this character frequencywise is represented by
either an additional 1 or 00.

In English text, the most common character is a space, followed by e
and then “t.” Therefore, a space can be represented as 01, “e” as 011, and “t”
as 0100. Using this method, the sequence “e et” (6 bytes) can be repre-
sented as 01101010 10110100 (2 bytes). The process of building up a
Huffman codebook (or “tree”) is not processor intensive, and it is possible
to implement in real time to provide higher effective bandwidth to clients.

11.5.1 Implementing ZIP compression

It is not necessary to reinvent the wheel when it comes to ZIP compression.
Many third-party controls are available for download on the Internet. Some
of these are under GPL and, thus, can be redistributed in binary (closed-
source) form, once the license terms, as specified on the publisher’s Web
site, are adhered to. A good implementation of ZIP in .NET is the #ZipLib
from www.icsharpcode.net. The following example demonstrates how to
compress a file using #ZipLib, so it is worthwhile to download it from their
Web site.

Where using third-party code is not an option, the official reference for
the ZIP format is located in RFC 1950 through RFC 1952.

Create a new project in Visual Studio .NET, click Projects→→→→Add Refer-
ences→→→→Browse, and then select SharpZipLib.dll from the folder where
#ZipLib was installed. Draw two textboxes named tbInput and tbOutput
on the form with two corresponding buttons, btnBrowseInput and btn-
BrowseOutput. The two browse buttons should have corresponding File
Open and File Save Dialog controls, OpenFileDialog and SaveFileDialog,
respectively. Finally, a button named btnCompress is also required.

The first step is to tie the File Open and File Save dialog boxes to the
buttons, to make it easier for users to select the relevant files. Click on the
Browse button opposite the Input textbox and enter the following code:

292 11.5 Lossless compression

C#
private void btnBrowseInput_Click(object sender,
System.EventArgs e)

{

 openFileDialog.ShowDialog();

 tbInput.Text = openFileDialog.FileName;

}

VB.NET
Private Sub btnBrowseInput_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 openFileDialog.ShowDialog()

 tbInput.Text = openFileDialog.FileName

End Sub

Click on the Browse button opposite the Output textbox and enter the
following code:

C#
private void btnBrowseOutput_Click(object sender,
System.EventArgs e)

{

 saveFileDialog.ShowDialog();

 tbOutput.Text = saveFileDialog.FileName;

}

VB.NET
Private Sub btnBrowseOutput_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 saveFileDialog.ShowDialog()

 tbOutput.Text = saveFileDialog.FileName

End Sub

The workhorse of the application is contained behind the Compress
button. ZIP files can contain more than one source file and retain CRC and
date information with each file to help maintain integrity. The ZipOutput-
Stream is appended to using ZipEntry objects. Each entry contains the
original file data, along with a CRC for that file and a date.

11.5 Lossless compression 293

Chapter 11

Note: Checksums (or CRCs) are similar to hash values, although they are
used for integrity checks rather than security against data tampering.

The SetLevel method is used to define the strength of compression, where
zero is no compression and nine is maximum compression. There is a small
performance difference between the compression levels, but in most cases,
it should be set to maximum.

Click on the Compress button and enter the following code:

C#
private void btnCompress_Click(object sender,
System.EventArgs e)

{

 Crc32 crc = new Crc32();

 ZipOutputStream ZipStream =

 new ZipOutputStream(File.Create(tbOutput.Text));

 ZipStream.SetLevel(9);

 string file = tbInput.Text;

 FileStream fs = File.OpenRead(file);

 byte[] buffer = new byte[fs.Length];

 fs.Read(buffer, 0, buffer.Length);

 ZipEntry entry = new ZipEntry(file);

 entry.DateTime = DateTime.Now;

 entry.Size = fs.Length;

 fs.Close();

 crc.Reset();

 crc.Update(buffer);

 entry.Crc = crc.Value;

 ZipStream.PutNextEntry(entry);

 ZipStream.Write(buffer, 0, buffer.Length);

 ZipStream.Finish();

 ZipStream.Close();

}

VB.NET
Private Sub btnCompress_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim crc As Crc32 = New Crc32

 Dim ZipStream As ZipOutputStream = _

294 11.5 Lossless compression

 New ZipOutputStream(_

 System.IO.File.Create(tbOutput.Text))

 ZipStream.SetLevel(9)

 Dim file As String = tbInput.Text

 Dim fs As FileStream = System.IO.File.OpenRead(file)

 Dim buffer() As Byte = New Byte(fs.Length) {}

 fs.Read(buffer, 0, buffer.Length)

 Dim enTry As ZipEnTry = New ZipEnTry(file)

 enTry.DateTime = DateTime.Now

 enTry.Size = fs.Length + 1

 fs.Close()

 crc.Reset()

 crc.Update(buffer)

 enTry.Crc = crc.Value

 ZipStream.PutNextEnTry(enTry)

 ZipStream.Write(buffer, 0, buffer.Length)

 ZipStream.Finish()

 ZipStream.Close()

End Sub

ZIP files consist of multiple entries, one entry for each file. Each entry
has an associated CRC value, which is analogous to a hash value in proving
integrity checks for files that could have been corrupted in transit. Creating
a ZIP file takes three steps: (1) creating a zip stream, (2) defining the various
entries, and (3) calculating the CRC values for each entry.

The zip stream is created with a constructor that is passed the final desti-
nation of the .zip file. The compression level is also set at this point: level 1
is fast, but offers little compression, whereas level 9 is slower, but offers bet-
ter compression ratios.

The second step is to create an entry for the file that is to be compressed.
Here a new ZipEntry object is instantiated. The constructor of this object is
passed the filename and the path for the file to be compressed. The file’s
date and length are included in the entry. This entry is appended to the
stream using the PutNextEntry method.

Every entry must have a corresponding CRC value. This value is calcu-
lated by first reading in the contents of the file and then passing the result-
ant byte array to the Update method of a Crc32 object. The CRC value is
stored in the crc property of the entry.

11.5 Lossless compression 295

Chapter 11

The ZIP file is written to disk, one entry at a time, by passing the con-
tents of the uncompressed file to the Write method of the zip stream.
Finally, the stream is flushed with the Finish command and then closed.

Add the following assemblies at the top of the code:

C#
using ICSharpCode.SharpZipLib.Checksums;

using ICSharpCode.SharpZipLib.Zip;

using ICSharpCode.SharpZipLib.GZip;

using System.IO;

VB.NET
Imports ICSharpCode.SharpZipLib.Checksums

Imports ICSharpCode.SharpZipLib.Zip

Imports ICSharpCode.SharpZipLib.GZip

Imports System.IO

To test the application, run it from Visual Studio .NET. Press the
Browse button beside the Input textbox and select a text file from your
computer. Press the second Browse button and enter a filename with the
extension .zip. Press Compress, and then locate the newly created ZIP file.
You should notice a reduction in file size (Figure 11.2).

Figure 11.2
ZIP data

compression
application.

296 11.6 Lossy compression

Examples of decompressing ZIP files and more advanced uses of this
control may be found at the www.icSharpcode.net Web site. Interested read-
ers should refer to this site for more information. In Chapter 4, a certain
HTTP header may have particular relevance to developers working on
Web-based applications that have browsers as clients. Specifically:

Accept-Encoding: gzip, deflate

As the name suggests, browsers can accept compressed data as well as
plain text. Therefore, it is possible to improve the performance of a Web
server by compressing its output, either on the fly or in cache compression.

The gzip and deflate compression algorithms are contained within the
#ZipLib control, so furnishing this format to clients is easy. All that is
required in addition to the compression aspect is that Content-Encoding is
added to the header in the HTTP reply. An open-source implementation
of this was developed by Ben Lowery and can be found at: www.blowery.org/
stories/2002/12/12/httpcompressionmodule.html.

11.6 Lossy compression

In cases where data integrity is not as important, but good compression is
imperative, lossy compression is a good option. This is particularly perti-
nent to audio and visual data, where users will put up with a little muffling
or blurring, as long as they see or hear what they want without having to
wait too long.

11.6.1 Audio compression

An audio file has very little byte-to-byte entropy, and compression schemes
such as ZIP or Huffman will have little effect on the file size; however, if
you open an audio file in a wave editor, such as Goldwave (www.gold-
wave.com), you will notice a definite pattern when you look closely at the
data in Figure 11.3.

The screenshot is of a recording of a girl’s voice. It contains only a frac-
tion of a second (0.026 sec) of audio, but contains more than 2 Kb of data.
To achieve CD-quality audio, a computer must output data at 44,100 (× 2)
bytes per second.

Audio is made up of waves. Each sample in a wave is usually very similar
to the preceding sample. The rate of change constantly increases and

11.6 Lossy compression 297

Chapter 11

decreases in harmonic fashion. Therefore, instead of recoding the value of
each sample, if the change between samples is recorded, then the amount of
data is reduced.

In delta pulse code modulation (DPCM), an increase in sample value is
represented by the bit 1 and a decrease is represented by the bit 0. During
decompression, the sample value is incremented or decremented by 1,
depending on the value of the current bit in the bitstream. This causes two
detrimental effects: slope overload and granular noise. Slope overload is
where the input signal changes substantially from sample to sample, result-
ing in a muffling effect in the decompressed signal. Granular noise is where
the input signal does not change at all, in which case the output sound
oscillates around the true value, which causes either a hiss or a high-pitched
shrill in the audio.

To counteract the muffling effect, adaptive DPCM, or ADPCM, can be
used. This is where, during the decompression process, a number that dou-
bles with each contiguous sample increases the sample value. This process
more closely mimics the harmonic action of the sine wave, but can produce
a phase undershoot, which is a rasping, sharp noise.

You may never have heard of ADPCM (although it is used heavily in
telecommunications and especially on international telephone lines), but
Mp3 has become almost a household name. There is a good reason for this,
in that Mp3 provides excellent compression ratios and acceptable sound
quality and can be decompressed in real time by any PC and many portable
digital music devices. Mp3 achieves this quality by recognizing how humans
perceive sounds at an acoustic level. Our ears are designed to hear harmonic
sounds, and standard lossy compression algorithms cause unnatural attenua-
tions that are not pleasant to listen to. By filtering at the harmonic level,
rather than at the byte level, a much more natural sound is produced.

Figure 11.3
Typical speech

waveform.

298 11.6 Lossy compression

Recognizing a pattern of cyclic values in a stream of data, which may be
combined with thousands of other cyclic patterns, is not an easy task for a
computer; however, a rather gifted mathematician developed a formula to
produce a mathematical representation of the harmonics contained in a
block of data.

In Figure 11.3, a pattern of waves can be seen in the audio; these are
made primarily from a 300 Hz with a 2400 Hz harmonic. To extract this
information from what appears to the computer as a block of ones and
zeros, you need to use a mathematical formula known as the Discrete
Cosine Transform (DCT):

Cu is equal to 0.7071 (the reciprocal of root 2); when u is zero, Cu is
one, for all u not equal to zero.

When the above formula is applied to an array of eight numbers (i.e.,
f(1) to f(7)), the resultant array in S is a representation of the data in terms
of frequencies. It is possible to represent any sequence of eight integers in
terms of the values of the peaks and troughs of a wave composed of up to
eight harmonics. When compressing audio data, most of the higher har-
monics are zero or near zero and can be canceled out; thus the array in S
can be compressed using traditional lossless encoding more efficiently.

The most famous audio compression format that uses DCT is the ubiq-
uitous Mp3. This technology is not an easy implementation, and its exact
format is a closely guarded secret. You can use third-party DLLs and appli-
cations such as Lame, BladeEnc, and L3enc to perform the compression.
Alternately, you can license the technology from Fraunhoffer.

11.6.2 Image compression

Image compression is remarkably similar to audio compression, except that
it works in two dimensions rather than one. There may not be the same
obvious wave pattern in images, but in digital photographs the natural dith-
ering in shades of color compresses very well when DCT/Huffman com-
pression is applied.

During the JPEG compression process, the image is split into macrob-
locks, or 8×8 blocks of pixels. Each macroblock is then compressed using
a two-dimensional DCT to isolate and reduce the number of color har-

S8 u() Cu
2

-------= f x()
2x 1+()πu

16
---------------------------cos

x 0=

7

∑⋅

11.6 Lossy compression 299

Chapter 11

monics within each area of the picture. The idea of waves existing within
an image may seem alien, but they exist everywhere in natural textures.

The two-dimensional DCT can be expressed mathematically as follows:

Cu is equal to 0.7071 (the reciprocal of root 2); when u is zero, Cu is
one for all u not equal to zero. The same applies to Cv.

This formula produces a two-dimensional array, which can be com-
pressed by rounding the near-zero values of the array to zero, then using
RLE compression followed by Huffman compression.

Luckily, you will probably never have to implement JPEG compression
from scratch. .NET has native support for JPEG, along with plenty of other
image formats, including PNG, TIFF, and GIF. The following sample pro-
gram shows you how to compress a bitmap image into a JPEG.

Start a new project in Visual Studio .NET. Draw a picture box, named
pictureBox onto the form. Draw two textboxes named tbInput and
tbOutput on the form, with two corresponding buttons, btnBrowseInput
and btnBrowseOutput. The two browse buttons should have corresponding
File Open and File Save Dialog controls, named openFileDialog and
saveFileDialog, respectively. Finally, a button named btnCompress is also
required.

The first step is to tie the File Open and File Save dialog boxes to the
buttons to make it easier for users to select the relevant files. The open file
procedure will also load the new image into the picture box.

Click on the Browse button opposite the Input textbox and enter the
following code:

C#
private void btnBrowseInput_Click(object sender,
System.EventArgs e)

{

 openFileDialog.ShowDialog();

 tbInput.Text = openFileDialog.FileName;

 pictureBox.Image= Image.FromFile(openFileDialog.FileName);

}

S v u(,) Cv
2

-------Cu
2

------- f y x,() 2x 1+()πu
16

2y 1+()πv

16
--------------------------coscos

x 0=

7

∑
y 0=

7

∑=

300 11.6 Lossy compression

VB.NET
Private Sub btnBrowseInput_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 openFileDialog.ShowDialog()

 tbInput.Text = openFileDialog.FileName

 pictureBox.Image= Image.FromFile(openFileDialog.FileName)

End Sub

Click on the Browse button opposite the Output textbox and enter the
following code:

C#
private void btnBrowseOutput_Click(object sender,
System.EventArgs e)

{

 saveFileDialog.ShowDialog();

 tbOutput.Text = saveFileDialog.FileName;

}

VB.NET
Private Sub btnBrowseOutput_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 saveFileDialog.ShowDialog()

 tbOutput.Text = saveFileDialog.FileName

End Sub

To save a JPEG from a loaded image, you may simply call the Save
method. The method requires the image format and a stream as input
parameters:

C#
private void btnCompress_Click(object sender,
System.EventArgs e)

{

 FileStream fs = new

 FileStream(tbOutput.Text,FileMode.CreateNew);

 PictureBox.Image.Save(fs,

 System.Drawing.Imaging.ImageFormat.Jpeg);

 fs.Close();

}

11.6 Lossy compression 301

Chapter 11

VB.NET
Private Sub btnCompress_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim fs As FileStream = New FileStream(tbOutput.Text, _

 FileMode.CreateNew)

 PictureBox.Image.Save(fs, _

 System.Drawing.Imaging.ImageFormat.Jpeg)

 fs.Close()

End Sub

To test this application, run it from Visual Studio .NET, press the
Browse button next to the Input textbox, and choose a bitmap from your
computer. Click the Browse button next to the Output textbox, and select a
location to save the JPEG. Press Compress, and then locate the new saved
JPEG on your computer; you should notice that it will have a smaller file
size (Figure 11.4).

Figure 11.4
JPEG Compression

application.

302 11.6 Lossy compression

You may notice that it is possible to take a JPEG file as an input to this
program. Although the application will allow you to do this, the end result
will be a JPEG file of even lower quality than the original.

11.6.3 Video compression

With a healthy percentage of consumers using broadband technology in
their homes, it will soon be possible to deliver video on demand to the aver-
age user. Without compression, the bandwidths required would be phe-
nomenal. Various standards have been developed to compress video data
into narrower channels, the most successful of which is Motion Pictures
Expert Group (MPEG). MPEG encoders are not cheap, but they do pro-
vide the best compression of any other format.

A cheap alternative to MPEG is the audio-video interleaved (AVI) for-
mat. This is a technology built in to the Windows API. It has nowhere near
the same compressing capabilities, but it saves time in developing a propri-
etary format. A good resource for creating AVI files programmatically is
www.shrinkwrapvb.com. The code examples are in Visual Basic 6.0, but they
can be ported to VB.NET from within Visual Studio .NET.

If a proprietary format is the only option, then examining the operation
of MPEG or MJPEG may help. Video compression is similar to audio com-
pression, except there are three data channels for imaging and one channel
for audio. Every pixel is made from a combination of three colors: red,
green, and blue (RGB format).

One important compression technique for motion pictures is subsam-
pling. Subsampling is a technique employed by MPEG and JPEG, at the
start of the encoding process. In this process, the first step is to convert the
RGB format into the YUV format. The YUV format defines each color in
terms of luminance and chrominance. Chrominance defines the color, from
red to blue. Luminance defines the saturation, or greyness. Because lumi-
nance changes more often than chrominance, less color data can be sent.
The rationalization for this is that a red car may turn dark red when travel-
ing under a shadow, but it would rarely turn blue spontaneously.

When this phenomenon is applied to motion picture compression,
chrominance levels are updated every frame, whereas the saturation levels
are updated only every few frames. In the H.261 standard, the ratio of
chrominance to luminance sampling is 4:1.

The most novel part of MPEG encoding is the motion-estimation algo-
rithm. This is where the image is split into macroblocks, or 8×8 blocks of

11.7 Conclusion 303

Chapter 11

pixels. These blocks are compared for similarity with blocks in previous or
future frames. Because most images do not change significantly between
frames, this is an effective compression technique, albeit processor intensive
on the encoder. Therefore, MPEG compression can rarely be done on-the-
fly and must be pre-encoded before serving. MPEG decompression is on
the order of 10 times faster than compression and can be performed as data
is being received.

The final stage in MPEG compression is where each macroblock is com-
pressed using JPEG image compression.

11.7 Conclusion

This chapter has dealt with the problem of furnishing clients with more
data in less time. In many cases, this involves a trade-off in data integrity,
timeliness, or quality; however, this trade-off is often entirely justified. A
good percentage of people can tell the difference between CD-quality and
Mp3 audio, but when given a choice to download a 20-Mb wave file or the
equivalent 2-Mb Mp3, very few people will value the quality difference
enough to wait 10 times longer to hear the music.

A trade-off is not always a necessary side effect of techniques to send
more data faster across the phone networks. Lossless data compression guar-
antees the integrity of data, yet can compress high-entropy data, such as
plain text or XML, to a mere fraction of its original size. As long as the
server and client have the processing power to compress and decompress
the data at a rate faster than the amount of time it would take to send the
data over the wire, then compression is an excellent means of accelerating
your applications’ communications.

The next chapter deals with network protocols that are not ordinarily
used to move data between computers, but that act as auxiliary protocols to
help applications become more responsive and scalable. These protocols can
be used to determine if computers are connected to the network or if there
are alternative computers with which to communicate. An introduction to
Windows Management Instrumentation (WMI) will demonstrate how to
administer computers remotely over a network.

This page intentionally left blank

305

12

Ping, DNS, and WHOIS: Monitoring
your Network

12.1 Introduction

Network protocols are not just used to move data from one point to
another. Some protocols have specific purposes that help keep Internet traf-
fic flowing and make using the network easier.

These utility protocols may not be required for every network applica-
tion; however, because these are niche technologies, many developers may
not know how to implement such features. By leveraging these technolo-
gies, it may be possible to add unique features to your products, which may
provide that competitive advantage.

This chapter is divided into roughly equal sections describing three
everyday utility protocols: DNS, WHOIS, and Ping. The chapter con-
cludes with a discussion of an interesting utility protocol developed by
Microsoft, named WMI.

12.2 DNS

DNS operates on UDP port 53 and is described in RFC 1010, RFC 1304,
RFC 1035, and RFC 1183. As described in Chapter 1, the most common
use for DNS is to convert domain names into IP addresses because people
find it difficult to remember strings of numbers more than nine digits long.
DNS was developed to provide a system that converts easily recognizable
domain names into IP addresses.

No central computer stores a list of domain names against IP addresses.
Instead, a worldwide network of DNS servers holds this information. Every
Web site would typically be listed on two DNS servers; these machines are
said to be authoritative in the domain. DNS servers routinely query each
other for updated information, and in this way the information slowly

306

12.2

DNS

propagates through the Internet. Therefore, if you change hosting providers
on a Web site, it will take up to 48 hours for the new DNS information to
propagate through the Internet.

You can use

DNS.GetHostByName

 to convert a domain name (

string

) to
an IP address (

IPHostEntry

). The reverse of this action, converting an IP
address to a domain name, can be achieved using

DNS.GetHostByAddress

.
There is more to DNS than converting IP addresses to domain names and
vice versa, however. In fact, most DNS handling is behind the scenes, and
most high-level network programming would rarely need to know the IP
address of the servers or clients with which it was communicating.

An interesting facet of DNS is its role in sending and receiving emails.
As mentioned in Chapter 5, SMTP servers discover the destination POP3
servers using DNS mail exchange (MX). This is where a specially formatted
DNS query is sent to a (any) DNS server, which returns a list of mail serv-
ers associated with the specified domain in order of preference.

This technique can be used to provide email address validation, above
and beyond the simple checks for the @ symbol followed by a period. It
could also be used to simplify email software by skipping the need for end-
users to enter SMTP server details. A final advantage of this technique is
that it is much faster than relaying by SMTP, so it could improve the per-
formance of email software.

12.2.1 Implementing DNS MX

Open a new project in Visual Studio .NET and draw three textboxes
named

tbDNSServer

,

tbDomain

, and

tbStatus

, the latter having

multiline

set to

true

. You also require a button named

btnFind

.

Click on the Find button and enter the following code:

C#

private void btnFind_Click(object sender, System.EventArgs e)

{

 byte[] DNSQuery;

 byte[] DNSReply;

 UdpClient dnsClient = new UdpClient(tbDNSServer.Text , 53);

 DNSQuery = makeQuery(DateTime.Now.Millisecond *

 60,tbDomain.Text);

 dnsClient.Send(DNSQuery,DNSQuery.GetLength(0));

 IPEndPoint endpoint = null;

 DNSReply = dnsClient.Receive(ref endpoint);

12.2

DNS 307

Chapter 12

 this.tbStatus.Text = makeResponse(DNSReply,tbDomain.Text);

}

VB.NET

Private Sub btnFind_Click(ByVal sender As Object,_

 ByVal e As System.EventArgs)

 Dim DNSQuery() As Byte

 Dim DNSReply() As Byte

 Dim dnsClient As UdpClient = New _

 UdpClient(tbDNSServer.Text, 53)

 DNSQuery = makeQuery(DateTime.Now.Millisecond * 60, _

 tbDomain.Text)

 dnsClient.Send(DNSQuery, DNSQuery.GetLength(0))

 Dim endpoint As IPEndPoint = Nothing

 DNSReply = dnsClient.Receive(endpoint)

 Me.tbStatus.Text = makeResponse(DNSReply, tbDomain.Text)

End Sub

This opens a UDP connection on port 43 to the DNS server and sends
an MX query to it. The response is then parsed and displayed by the

make-

Response

 function.

To prepare the MX query, we need to write a new function. It involves
quite a bit of byte-by-byte writing, which we won’t discussed in too much
detail here. Interested readers should consult the RFCs quoted at the start
of this section.

C#

public byte[] makeQuery(int id,string name)

{

 byte[] data = new byte[512];

 byte[] Query;

 data[0] = (byte) (id >> 8);

 data[1] = (byte) (id & 0xFF);

 data[2] = (byte) 1; data[3] = (byte) 0;

 data[4] = (byte) 0; data[5] = (byte) 1;

 data[6] = (byte) 0; data[7] = (byte) 0;

 data[8] = (byte) 0; data[9] = (byte) 0;

 data[10] = (byte) 0; data[11] = (byte) 0;

 string[] tokens = name.Split(new char[] {'.'});

 string label;

308

12.2

DNS

 int position = 12;

 for(int j=0; j<tokens.Length; j++)

 {

 label = tokens[j];

 data[position++] = (byte) (label.Length & 0xFF);

 byte[] b = System.Text.Encoding.ASCII.GetBytes(label);

 for(int k=0; k < b.Length; k++)

 {

 data[position++] = b[k];

 }

 }

 data[position++] = (byte) 0 ; data[position++] = (byte) 0;

 data[position++] = (byte) 15; data[position++] = (byte) 0 ;

 data[position++] = (byte) 1 ;

 Query = new byte[position+1];

 for (int i=0;i<=position;i++)

 {

 Query[i]= data[i];

 }

 return Query;

}

VB.NET

Public Function makeQuery(id as Integer,name as _

 String) as Byte()

 Dim data() As Byte = New Byte(512) {}

 Dim Query() As Byte

 data(0) = CType((id >> 8), Byte)

 data(1) = CType((id And &HFF), Byte)

 data(2) = 1 : data(3) = 0

 data(4) = 0 : data(5) = 1

 data(6) = 0 : data(7) = 0

 data(8) = 0 : data(9) = 0

 data(10) = 0 : data(11) = 0

 Dim tokens() As String = Name.Split(New Char() {"."})

 Dim label As String

 Dim position As Integer = 12

 Dim j As Integer

 For j = 0 To tokens.Length - 1

 label = tokens(j)

 data(position) = _

12.2

DNS 309

Chapter 12

 CType((label.Length And &HFF), Byte)

 position = position + 1

 Dim b() As Byte = _

 System.Text.Encoding.ASCII.GetBytes(label)

 Dim k As Integer

 For k = 0 To b.Length - 1

 data(position) = b(k)

 position = position + 1

 Next

 Next

 data(position) = 0

 position = position + 1

 data(position) = 0

 position = position + 1

 data(position) = 15

 position = position + 1

 data(position) = 0

 position = position + 1

 data(position) = 1

 Query = New Byte(position + 1) {}

 Dim i As Integer

 For i = 0 To position

 Query(i) = data(i)

 Next

 Return Query

End Function

Domain names in DNS queries appear in a rather unusual format.
Instead of periods separating each level (word) in the domain, a byte value
representing the next part of the domain is used. This would mean that

www.google.com

 becomes

3www6google3com

 (the numbers represent the
binary value and not the ASCII code for the number). For more informa-
tion on this topic and the DNS format in general, please refer to the RFCs
listed at the start of this chapter.

The next step is to analyze the response, so type in the

makeResponse

function as follows:

C#

public string makeResponse(byte[] data,string name)

{

 int qCount = ((data[4] & 0xFF) << 8) | (data[5] & 0xFF);

310

12.2

DNS

 int aCount = ((data[6] & 0xFF) << 8) | (data[7] & 0xFF);

 int position=12;

 for(int i=0;i<qCount; ++i)

 {

 name = "";

 position = proc(position,data,ref name);

 position += 4;

 }

 string Response ="";

 for (int i = 0; i < aCount; ++i)

 {

 name = "";

 position = proc(position,data,ref name);

 position+=12;

 name="";

 position = proc(position,data,ref name);

 Response += name + "\r\n";

 }

 return Response;

}

VB.NET

Public Function makeResponse(ByVal data() As Byte, _

 ByVal DomainName As String) As String

 Dim qCount As Integer = ((data(4) And &HFF) << 8) Or _

 (data(5) And &HFF)

 Dim aCount As Integer = ((data(6) And &HFF) << 8) Or _

 (data(7) And &HFF)

 Dim position As Integer = 12

 Dim i As Integer

 For i = 0 To qCount - 1

 DomainName = ""

 position = proc(position, data, DomainName)

 position += 4

 Next

 Dim Response As String = ""

 For i = 0 To aCount - 1

 DomainName = ""

 position = proc(position, data, DomainName)

 position += 12

 DomainName = ""

12.2

DNS 311

Chapter 12

 position = proc(position, data, DomainName)

 Response += DomainName + vbCrLf

 Next

 Return Response

End Function

The preceding code extracts the MX servers from the DNS reply and dis-
plays them on-screen. It uses the

proc

 function to convert between the native
DNS format for domain names and the standard dot notation format.

The next step is to implement the

proc

 function as follows:

C#

private int proc(int position,byte[] data,ref string name)

{

 int len = (data[position++] & 0xFF);

 if(len == 0)

 {

 return position;

 }

 int offset;

 do

 {

 if ((len & 0xC0) == 0xC0)

 {

 if (position >= data.GetLength(0))

 {

 return -1;

 }

 offset = ((len & 0x3F) << 8) | (data[position++] &

 0xFF);

 proc(offset,data,ref name);

 return position;

 }

 else

 {

 if ((position + len) > data.GetLength(0))

 {

 return -1;

 }

 name += Encoding.ASCII.GetString(data, position, len);

 position += len;

312

12.2

DNS

 }

 if (position > data.GetLength(0))

 {

 return -1;

 }

 len = data[position++] & 0xFF;

 if (len != 0)

 {

 name += ".";

 }

 }

 while (len != 0);

 return position;

}

VB.NET

Private Function proc(ByVal position As Integer, ByVal data() _

 As Byte, ByRef DomainName As String) As Integer

 Dim len As Integer = data(position) And &HFF

 position = position + 1

 If len = 0 Then

 Return position

 End If

 Dim offset As Integer

 Do

 If (len And &HC0) = &HC0 Then

 If position >= data.GetLength(0) Then

 Return -1

 End If

 offset = ((len And &H3F) << 8) Or (data(position))

 position = position + 1

 proc(offset, data, DomainName)

 Return position

 Else

 If (position + len) > data.GetLength(0) Then

 Return -1

 End If

 DomainName+=Encoding.ASCII.GetString(data, _

 position, len)

 position += len

 End If

12.2

DNS 313

Chapter 12

 If position > data.GetLength(0) Then

 Return -1

 End If

 len = data(position)

 position = position + 1

 If len <> 0 Then

 DomainName += "."

 End If

 Loop While len <> 0

 Return position

End Function

The

proc

 function converts between the DNS native format for domain
names and the standard notation. It stores the result in a private variable
named

name

 and advances the position pointer to the end of the domain
name.

Finally, add the required namespaces:

C#

using System.Net;

using System.IO;

using System.Text;

using System.Net.Sockets;

VB.NET

Imports System.Net

Imports System.IO

Imports System.Text

Imports System.Net.Sockets

To run this application, first find the IP address of a DNS server. You can
use 204.111.1.36 or your ISP’s DNS server (type

IPConfig /all

 in DOS to
find it). Type the IP address of the DNS server into the box provided and a
domain name (without the “www” prefix) into the second textbox. Press
find, and you will see the associated MX server appear in the textbox.

Note:

You will note that when you query hotmail.com, the MX servers cycle
between 1 and 4. This is the effect of round-robin load balancing being used

to handle the large volumes of mail handled by hotmail (Figure 12.1).

314

12.3

Ping

12.3 Ping

Ping or, as it is more correctly known, Internet control message protocol
(ICMP), is a protocol used to report broken network connections or other
router-level problems that end hosts might need to know. When a router
can’t get its packet to the next hop, it discards the packet and sends an
ICMP packet back to the sender. ICMP packets are not used to report lost
routing problems for other ICMP packets in order to prevent network cas-
cade effects.

Many developers are familiar with the

ping

 utility, which can be used to
determine if a computer is switched on or not and how much delay there is
over the connection to it. This protocol can be implemented in .NET to
provide applications with the ability to check quickly if a computer to
which it needs to connect is turned on.

It is possible to send a ping by constructing it with a raw socket; an
example of this can be seen at

www.eggheadcafe.com/articles/20020209.asp.

A simpler implementation is to use the ICMP DLL, which is standard to all
Windows platforms.

Create a new project in Visual Studio .NET. Add a new module to the
project, and enter the following code:

Figure 12.1

DNS MX client
application.

12.3

Ping 315

Chapter 12

C#

public class PING

{

 public struct IP_OPTION_INFORMATION

 {

 public byte TTL, Tos,Flags,OptionSize;

 [MarshalAs(UnmanagedType.ByValTStr,SizeConst=128)]

 public string OptionsData;

 }

 public struct ICMP_ECHO_REPLY

 {

 public uint Address, Status, RoundTripTime;

 public ushort DataSize,Reserved;

 public IP_OPTION_INFORMATION Options;

 }

 [DllImport("icmp.dll",SetLastError=true)]

 public static extern uint IcmpSendEcho (

 uint IcmpHandle,

 uint DestAddress,

 string RequestData,

 uint RequestSize,

 ref IP_OPTION_INFORMATION RequestOptns,

 ref ICMP_ECHO_REPLY ReplyBuffer,

 uint ReplySize,

 uint TimeOut);

 [DllImport("icmp.dll",SetLastError=true)]

 public static extern uint IcmpCreateFile ();

 public static IP_OPTION_INFORMATION pIPo;

 public static ICMP_ECHO_REPLY pIPe;

}

VB.NET

Option Strict Off

Option Explicit On

Module PING

 Structure IP_OPTION_INFORMATION

 Dim TTL As Byte

 Dim Tos As Byte

 Dim Flags As Byte

316

12.3

Ping

 Dim OptionsSize As Integer

 <VBFixedString(128), _

 System.Runtime.InteropServices.MarshalAs _

 (System.Runtime.InteropServices.UnmanagedType.ByValTStr, _

 SizeConst:=128)> _

 Public OptionsData As String

 End Structure

 Structure IP_ECHO_REPLY

 Dim Address As Int32

 Dim Status As Integer

 Dim RoundTripTime As Integer

 Dim DataSize As Short

 Dim Reserved As Short

 Dim data As Integer

 Dim Options As IP_OPTION_INFORMATION

 End Structure

 Public pIPo As IP_OPTION_INFORMATION

 Public pIPe As IP_ECHO_REPLY

 Declare Function IcmpCreateFile Lib "icmp.dll" () As _

 Integer

 Declare Function IcmpSendEcho Lib "ICMP" (ByVal _

 IcmpHandle As Integer, ByVal DestAddress As UInt32, _

 ByVal RequestData As String, _

 ByVal RequestSize As Short, _

 ByRef RequestOptns As IP_OPTION_INFORMATION, _

 ByRef ReplyBuffer As IP_ECHO_REPLY, _

 ByVal ReplySize As Integer, _

 ByVal timeout As Integer) As Boolean

End Module

With nearly all API code, it is rarely necessary to understand every
parameter sent to each function.

IcmpCreateFile

 creates a handle to resources used when generating
ping requests. Where a program may issue large numbers of ping requests,
then

IcmpCloseHandle

 should be used to reclaim memory.

12.3

Ping 317

Chapter 12

IcmpSendEcho

 sends an ICMP echo request to a host as specified in the

DestAddress

 parameter. The format of the outgoing ping is set in the

RequestOptns

 parameter, and details of the reply (or lack thereof) are
stored in the

ReplyBuffer

.

Go to the form and draw a textbox named

tbIP

 and a button named

btnPing

. Click on the button and add the following code:

C#

private void btnPing_Click(object sender, System.EventArgs e)

{

 uint LongIP;

 string buffer;

 UInt32 hIP;

 uint timeout;

 buffer = new StringBuilder().Append(' ',32).ToString();

 LongIP = convertIPtoLong(tbIP.Text);

 hIP = PING.IcmpCreateFile();

 PING.pIPo.TTL = 255;

 timeout = 2700;

 PING.IcmpSendEcho(hIP, LongIP, buffer,

 (uint)buffer.Length,

 ref PING.pIPo, ref PING.pIPe,

 (uint)Marshal.SizeOf(PING.pIPe) + 8,

 timeout);

 MessageBox.Show(describeResponse(PING.pIPe.Status));

}

VB.NET

Private Sub btnPing_Click(ByVal eventSender As _

System.Object, ByVal eventArgs As System.EventArgs) _

 Handles btnPing.Click

 Dim LongIP As UInt32

 Dim buffer As String

 Dim hIP As Integer

 Dim timeout As Short

 buffer = Space(32)

 LongIP = convertIPtoLong((tbIP.Text))

 hIP = IcmpCreateFile()

 pIPo.TTL = 255

 timeout = 2700

318

12.3

Ping

 IcmpSendEcho(hIP, LongIP, buffer, Len(buffer), pIPo, _

 pIPe, Len(pIPe) + 8, timeout)

 MsgBox(describeResponse(pIPe.Status))

End Sub

You may notice that the IP address is converted from a string to a
Uint32 (unsigned 32-bit integer) by the

ConvertIPtoLong

 function. This is
required because the

DestAddress

 parameter of

IcmpSendEcho

 uses a binary
representation of IP addresses.

So, add in the following function to implement

convertIPtoLong:

C#
public UInt32 convertIPtoLong(string ip)

{

 string[] digits;

 digits = ip.Split(".".ToCharArray());

 return Convert.ToUInt32(

 Convert.ToUInt32(digits[3]) * Math.Pow(2,24) +

 Convert.ToUInt32(digits[2]) * Math.Pow(2,16) +

 Convert.ToUInt32(digits[1]) * Math.Pow(2,8) +

 Convert.ToUInt32(digits[0]));

}

VB.NET
Public Function convertIPtoLong(ByRef ip As String) As UInt32

 Dim digits() As String

 digits = Split(ip, ".")

 convertIPtoLong = Convert.ToUInt32(digits(3) * 2 ^ 24 _

 + digits(2) * 2 ^ 16 + _

 digits(1) * 2 ^ 8 + _

 digits(0))

 End Function

This function splits an IP address into its four constituent bytes, multi-
plies each byte by a power of 2, and adds them together. In the case of the
loop-back address 127.0.0.1, this is converted to 127 + 1 × 224, or
16,777,343.

You may also notice in the code above that a message box is displayed
once IcmpSendEcho returns. This message could therefore describe to the
user the result of the ping request. The function describeResponse per-

12.3 Ping 319

Chapter 12

forms the task of converting the rather cryptic response codes into mean-
ingful phrases.

Enter the following code:

C#
public string describeResponse(uint code)

{

 string Rcode = "";

 switch(code)

 {

 case 0 : Rcode = "Success";break;

 case 11001 : Rcode = "Buffer too Small";break;

 case 11002 : Rcode = "Dest Network Not Reachable";break;

 case 11003 : Rcode = "Dest Host Not Reachable";break;

 case 11004 : Rcode = "Dest Protocol Not Reachable";break;

 case 11005 : Rcode = "Dest Port Not Reachable";break;

 case 11006 : Rcode = "No Resources Available";break;

 case 11007 : Rcode = "Bad Option";break;

 case 11008 : Rcode = "Hardware Error";break;

 case 11009 : Rcode = "Packet too Big";break;

 case 11010 : Rcode = "Rqst Timed Out";break;

 case 11011 : Rcode = "Bad Request";break;

 case 11012 : Rcode = "Bad Route";break;

 case 11013 : Rcode = "TTL Exprd in Transit";break;

 case 11014 : Rcode = "TTL Exprd Reassemb";break;

 case 11015 : Rcode = "Parameter Problem";break;

 case 11016 : Rcode = "Source Quench";break;

 case 11017 : Rcode = "Option too Big";break;

 case 11018 : Rcode = " Bad Destination";break;

 case 11019 : Rcode = "Address Deleted";break;

 case 11020 : Rcode = "Spec MTU Change";break;

 case 11021 : Rcode = "MTU Change";break;

 case 11022 : Rcode = "Unload";break;

 case 11050 : Rcode = "General Failure";break;

 }

 return Rcode;

}

VB.NET
Public Function describeResponse(ByRef code As Integer) _

 As String

320 12.3 Ping

 Dim Rcode As String

 Select Case code

 Case 0 : Rcode = "Success"

 Case 11001 : Rcode = "Buffer too Small"

 Case 11002 : Rcode = "Dest Network Not Reachable"

 Case 11003 : Rcode = "Dest Host Not Reachable"

 Case 11004 : Rcode = "Dest Protocol Not Reachable"

 Case 11005 : Rcode = "Dest Port Not Reachable"

 Case 11006 : Rcode = "No Resources Available"

 Case 11007 : Rcode = "Bad Option"

 Case 11008 : Rcode = "Hardware Error"

 Case 11009 : Rcode = "Packet too Big"

 Case 11010 : Rcode = "Rqst Timed Out"

 Case 11011 : Rcode = "Bad Request"

 Case 11012 : Rcode = "Bad Route"

 Case 11013 : Rcode = "TTL Exprd in Transit"

 Case 11014 : Rcode = "TTL Exprd Reassemb"

 Case 11015 : Rcode = "Parameter Problem"

 Case 11016 : Rcode = "Source Quench"

 Case 11017 : Rcode = "Option too Big"

 Case 11018 : Rcode = " Bad Destination"

 Case 11019 : Rcode = "Address Deleted"

 Case 11020 : Rcode = "Spec MTU Change"

 Case 11021 : Rcode = "MTU Change"

 Case 11022 : Rcode = "Unload"

 Case 11050 : Rcode = "General Failure"

 End Select

 describeResponse = Rcode

End Function

Many of the response codes listed would be rare and would probably
indicate a programming error instead of a real network error. The most
common are Success and Dest host not available.

C# programmers will also require the following namespaces in both the
form and class file:

C#
using System.Text;

using System.Runtime.InteropServices;

12.4 WHOIS 321

Chapter 12

To test the application, run it from Visual Studio .NET, type the IP address
(not domain name!) of a well-known Web server into the box provided, and
press Ping. It should respond with the message “Success” if the computer is
accessible or “Dest Host Not Reachable” if it is not, as in Figure 12.2.

Ping can be used for more than simply checking whether a computer is
switched on or not; it can also be used to trace the route of packets over the
Internet. This is achieved by sending a ping request with a TTL of 1, fol-
lowed by a ping with a TTL of 2, and so on. At each hop, a router will
report a dead ping request and send a packet back to the original host,
which will contain the IP address of the router. This technique is used by
the tracert utility.

In .NET v2 (Whidbey), it is possible to retrieve statistics easily relating
to the number and type of pings received and sent by your computer. Please
refer to the IcmpV4Statistics class, as described in Chapter 13, for more
information on this topic.

12.4 WHOIS

WHOIS (“who is”) is a protocol that can be used to query the registrant of
a domain name. It runs on TCP port 43 and is described definitively in
RFC 954. This information includes the name and company of the person
who bought the domain name, along with details of the DNS servers for
that domain and the operator(s) of those servers.

Despite its usefulness, WHOIS is a poorly designed protocol. There are
many WHOIS servers worldwide, each of which contains a subset of all the
Internet domain names. There is no way to determine from a domain name

Figure 12.2
ICMP (ping) client

application.

322 12.4 WHOIS

which WHOIS server contains registrant information for that name. Fur-
thermore, the content of WHOIS replies is not properly standardized,
which makes it particularly difficult to parse replies properly.

Note: Operators of WHOIS servers generally limit the number of queries
per day per IP address to 100 in order to prevent data mining.

Most countries have their own WHOIS server that covers the top-level
domain for that country (such as .co.uk or .ie). International top-level
domains such as .com, .net, and .org are stored in subsets in large WHOIS
servers or allocated by central WHOIS servers on a continent-by-continent
basis. A few well-known WHOIS servers are whois.networksolutions.com,
whois.crsnic.net, and whois.ripe.net.

To perform a WHOIS query manually, run telnet from the command
prompt, and type the following:

O whois.ripe.net 43

Google.de

The result will be as follows (abbreviated for clarity):

% This is the RIPE Whois server.

% The objects are in RPSL format.

% The object shown below is NOT in the RIPE database.

% It has been obtained by querying a remote server:

% (whois.denic.de) at port 43.

 %REFERRAL
START

domain: google.de

descr: Google Inc.

descr: Valentinskamp 24

descr: 20354 Hamburg

descr: GERMANY

nserver: ns1.google.com

nserver: ns2.google.com

nserver: ns3.google.com

nserver: ns4.google.com

status: connect

12.4 WHOIS 323

Chapter 12

changed: 20021125 170514

source: DENIC

 [admin-c]

 Type:
PERSON

Name: joel Fokke

Address: Valentinskamp 24

City: Hamburg

Pcode: 20354

Country: DE

Changed: 20021023 150831

Source: DENIC

[tech-c][zone-c]

Type: ROLE

Name: DENICoperations

Address: DENIC eG

Address: Wiesenhuettenplatz 26

City: Frankfurt am Main

Pcode: 60329

Country: DE

Phone: +49 69 27235 272

Fax: +49 69 27235 234

Email: ops@denic.de

Changed: 20020621 194343

Source: DENIC

%REFERRAL END

Unfortunately, as mentioned earlier, the WHOIS reply is not standard-
ized, so expect different fields from different WHOIS servers. Whois.Net-
workSolutions.Com will return fields in this format (abbreviated reply for
hotmail.com):

Registrant: Microsoft Corporation (HOTMAIL-DOM)

 One Microsoft Way

 Redmond, CA 98052

 US

Domain Name: HOTMAIL.COM

324 12.4 WHOIS

Administrative Contact: Gudmundson, Carolyn

(PPUFRBYFWI)

 domains@microsoft.com

 One Microsoft Way

 Redmond, WA 98052

 US

 (425) 882-8080

fax: (425) 936-7329

Technical Contact: NOC, MSN (RWJALTFZAI)

 msnhst@microsoft.com

Note: For a bit of entertainment, look up the WHOIS entry for
Microsoft.com with whois.crsnic.net. You’ll find some interesting entries
made by some Linux fans!

Performing a WHOIS query with .NET is easy. All that is required is to
open a TCP connection on port 43, send the domain name followed by the
new line character, and read back the response until the connection closes.

Create a new project in Visual Studio .NET. Draw three textboxes
named tbServer, tbQuery, and tbStatus, the latter having multiline set
to true. A button named btnSend is also required.

Click on the Send button, and add the following code:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 byte[] Query = Encoding.ASCII.GetBytes(

 tbQuery.Text + "\n");

 TcpClient clientSocket = new TcpClient(tbServer.Text,43);

 NetworkStream networkStream = clientSocket.GetStream();

 networkStream.Write(Query,0,Query.GetLength(0));

 StreamReader Response = new StreamReader(networkStream);

 tbStatus.Text=Response.ReadToEnd();

 networkStream.Close();

}

12.4 WHOIS 325

Chapter 12

VB.NET
Private Sub btnSend_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim Query() As Byte = Encoding.ASCII.GetBytes _

 (tbQuery.Text + vbcrlf)

 Dim clientSocket As TcpClient = New _

 TcpClient(tbServer.Text,43)

 Dim networkStream As NetworkStream = _

 clientSocket.GetStream()

 networkStream.Write(Query,0,Query.GetLength(0))

 Dim Response As StreamReader = New _

 StreamReader(networkStream)

 tbStatus.Text=Response.ReadToEnd()

 networkStream.Close()

End Sub

You will also require a reference to some namespaces needed for the
string handling and networking:

C#
using System.Text;

using System.Net;

using System.Net.Sockets;

using System.IO;

VB.NET
Imports System.Text

Imports System.Net

Imports System.Net.Sockets

Imports System.IO

To test the application, run it from Visual Studio .NET. Enter the name
of a WHOIS server in the box provided, in this case whois.crsnic.net.
Enter a domain name in the query box, omitting the “www” prefix. Press
Send, and you should receive information about the registrant of that
domain, similar to that shown in Figure 12.3.

326 12.4 WHOIS

12.4.1 Telnet

In the days before GUIs, users of UNIX enjoyed the luxury of being able to
control their server remotely via a command-line interface. Text-only inter-
faces may be passé, but many online services are still hosted on UNIX, and
where configuration changes need to be made to the server, telnet is still the
defacto standard for UNIX servers.

The protocol itself is straightforward: a TCP connection is opened on
port 23, and this connection is persisted until one end closes the connec-
tion. Generally, any character typed on the keyboard is sent to the server
and any returned data is displayed on-screen as text.

Telnet could be used as a back end to a remote configuration console for
a UNIX product, but beyond that, it would rarely be used programmati-
cally. It is, however, often used to debug servers and investigate new TCP-
based protocols because all telnet clients provide the option to connect on
ports other than 23.

A telnet client is included with Windows. In Windows 95 and 98, the
telnet client has a GUI, but XP uses a DOS-based client. If you have a Web
server on your computer, you can check that telnet is operational by typing
the following code at the command prompt:

telnet localhost 80

GET /

Figure 12.3
WHOIS client

application.

12.5 Other members of the TCP/IP suite 327

Chapter 12

If the server is online, an HTTP reply will be displayed on-screen simi-
lar to Figure 12.4. Otherwise, a “Could not open connection to the host”
message will be displayed.

A secure version of telnet named SSH is now widely used to communi-
cate with Linux and UNIX boxes.

12.5 Other members of the TCP/IP suite

Many protocols work behind the scenes in IP networks to provide the ser-
vice. These would generally not be used programmatically, but they are
worth being aware of.

12.5.1 ARP

Address resolution protocol (ARP) resolves IP addresses into their equivalent
MAC addresses. Reverse ARP (RARP) performs the reverse of this function.

To view the ARP entries stored on your system, try the following:

DOS

C:\>arp -a

12.5.2 RIP

Routing information protocol (RIP) works by counting the number of
times a packet moves toward its destination. Each new routing is called a

Figure 12.4
Telnet MS-DOS

utility.

328 12.5 Other members of the TCP/IP suite

hop, and the maximum hop count is usually set to 16. RIP will discard
packets that are routed more than 16 times.

12.5.3 OSPF

Open shortest path first (OSPF) is a routing protocol that uses a link-state
algorithm. This type of algorithm looks at the available routes a data packet
can take to its destination and decides the fastest route. OSPF does not
have a maximum hop count.

12.5.4 BGP/EGP

Border gateway protocol (BGP) supersedes exterior gateway protocol
(EGP) and is used to route packets outside of a network to other people’s
networks. It differs from OSPF, which is used in internal networks.

Note: You should never have two BGP routers on the same network with-
out support for OSPF or RIP.

12.5.5 SNMP

Simple network management protocol (SNMP) enables network adminis-
trators to connect and manage network devices. It is being superseded
with RMON, but is still widely used by network devices. It operates over
UDP port 161 and is generally accessed using a managed information base
(MIB) browser (downloadable from www.mg-soft.com). An MIB is a col-
lection of resource variables, providing information about the status of the
device. SNMP can issue traps (events) when something goes wrong with a
network device.

12.5.6 PPP

Point-to-point protocol (PPP) can be used to transport IP, IPX, and Net-
BEUI over serial links such as modem connections. PPP is commonly used
by ISPs to provide subscribers with modem or ISDN Internet access. PPP
requires a phone number and, usually, a DNS server address, with user-
name and password. PPP supersedes Serial Line Internet Protocol (SLIP)
because of its speed, simplicity, and flexibility.

12.6 WMI 329

Chapter 12

12.6 WMI

WMI, or Windows Management Instrumentation, is used within a Win-
dows intranet to provide a facility to perform simple administrative tasks
remotely. The main advantage this provides is that the WMI client is built
into Windows, so there is no need to write or install a proprietary client, as
long as the Windows Management Instrumentation service is running on
the remote machine.

One of the main uses of WMI is to extract technical information
about remote Windows systems. Whether you want to tell how much free
disk space is on a remote computer or discover its CPU clock speed,
WMI can do the job.

WMI is structured somewhat like a database. The CIM (Common
Information Model) repository holds multiple namespaces. These in turn
hold many classes, which have properties which correspond to either
devices such as a CD-ROM drive or intangiable processes or data such as
the NT event log.

To view the CIM namespaces installed on your system, run WBE-
MTEST from the command line. Press Connect→→→→type Root→→→→Connect→→→→
Enum Instances→→→→type __NAMESPACE→→→→ok. A few namespaces of inter-
est are:

� root\directory\ldap: provides access to active directory services

� root\snmp: provides access to SNMP MIB data

� root\default: provides access to the windows registry

� root\WMI: provides access to Windows Device Model (WDM)
devices.

The root\cimv2 namespace is the largest of all the CIM namespaces, and
forms the basis of the following examples. To view a list of all the classes con-
tained within the root\cimv2 namespace, load WBEMTEST, press Con-
nect→→→→Type root\cimv2→→→→Connect→→→→Enum Classes→→→→Check Recursive→→→→click
Ok. The data contained in these classes can be queried using a language
known as WQL (WMI Query Language), as the example in section 12.6.1
demonstrates.

330 12.6 WMI

12.6.1 Reading WMI data

WMI data may resemble a database conceptually, but the System.Manage-
ment namespace, which encapsulates WMI, is dissimilar to the data access
namespaces. In the same way as a database connection is required before
SQL can be executed, a scope must be defined before WQL can be used.
WMI uses a ManagementScope that is passed the location of the remote
computer in the format \\<host name>\root\namespace and a Connec-
tionOptions object that contains the logon credentials (username and
password).

A ManagementObjectSearcher processes the WQL. This object returns a
ManagementObjectCollection when the Get() method is called. This col-
lection is similar to a table, where every element represents a row in the
table. This row is represented as a ManagementBaseObject. Every row has a
variable number of columns, which are represented by a collection of Prop-
ertyData objects held within the Properties collection contained in each
ManagementBaseObject object.

Start a new project in Visual Studio .NET. Under Project→→→→Add Refer-
ences, add a reference to System.Management. Draw four textboxes onto the
form named tbHost, tbUsername, tbPassword, and tbExecute. You will
also require a list view named lvWMI and a button named btnExecute.

Click on the Execute button and add the following code:

C#
private void btnExecute_Click(object sender, System.EventArgs
e)

{

 ConnectionOptions Options = new ConnectionOptions();

 if(tbPassword.Text != "" && tbUsername.Text != "")

 {

 Options.Username = tbHost.Text + "\\" + tbUsername.Text;

 Options.Password = tbPassword.Text;

 }

 ManagementScope Scope = new ManagementScope("\\\\" +

 tbHost.Text "\\root\\cimv2", Options);

 Scope.Connect();

 ObjectQuery Query = new ObjectQuery(tbExecute.Text);

 ManagementObjectSearcher Searcher = new

 ManagementObjectSearcher(Scope, Query);

 ManagementObjectCollection ItemCollection;

12.6 WMI 331

Chapter 12

 ItemCollection = Searcher.Get();

 lvWMI.Clear();

 lvWMI.Columns.Clear();

 lvWMI.View = View.Details;

 foreach(ManagementBaseObject Item in ItemCollection)

 {

 if (lvWMI.Columns.Count==0)

 {

 foreach (PropertyData prop in Item.Properties)

 {

 lvWMI.Columns.Add(prop.Name,

 lvWMI.Width/4,

 HorizontalAlignment.Left);

 }

 }

 ListViewItem lvItem = new ListViewItem();

 bool firstColumn = true;

 foreach (PropertyData prop in Item.Properties)

 {

 if (firstColumn)

 {

 lvItem.SubItems[0].Text = prop.Value+"";

 firstColumn=false;

 }

 else

 {

 lvItem.SubItems.Add(prop.Value+"");

 }

 }

 lvWMI.Items.Add(lvItem);

 }

}

VB.NET
Private Sub btnExecute_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim Options As ConnectionOptions

 If tbPassword.Text <> "" And tbUsername.Text <> "" Then

 Options.Username = tbHost.Text + "\\" + _

 tbUsername.Text

 Options.Password = tbPassword.Text

332 12.6 WMI

 End If

 Dim Scope As ManagementScope = New ManagementScope _

 ("\\" + tbHost.Text + "\root\cimv2", Options)

 Scope.Connect()

 Dim Query As ObjectQuery = New ObjectQuery(tbExecute.Text)

 Dim Searcher As ManagementObjectSearcher = New _

 ManagementObjectSearcher(Scope, Query)

 Dim ItemCollection As ManagementObjectCollection

 ItemCollection = Searcher.Get()

 lvWMI.Clear()

 lvWMI.Columns.Clear()

 lvWMI.View = View.Details

 Dim Item As ManagementBaseObject

 For Each Item In ItemCollection

 Dim prop As PropertyData

 If lvWMI.Columns.Count = 0 Then

 For Each prop In Item.Properties

 lvWMI.Columns.Add(prop.Name, _

 lvWMI.Width / 4, _

 HorizontalAlignment.Left)

 Next

 End If

 Dim lvItem As ListViewItem = New ListViewItem

 Dim firstColumn As Boolean = True

 For Each prop In Item.Properties

 If firstColumn = True Then

 lvItem.SubItems(0).Text = Convert.ToString(prop.Value)

 firstColumn = False

 Else

 lvItem.SubItems.Add(Convert.ToString(prop.Value))

 End If

 Next

 lvWMI.Items.Add(lvItem)

 Next

End Sub

You will also require a reference to the relevant namespaces, so add this
code to the top of the application:

C#
using System.Management;

12.6 WMI 333

Chapter 12

VB.NET
Imports System.Management

To test the application, run it from Visual Studio .NET, and type
localhost into the host box provided, entering a username and password if
one is required on your machine. Type a WQL query such as Select *
from Win32_NetworkAdapterConfiguration and press Execute. The list
view should fill with information about your system (Figure 12.5).

To run WMI queries against remote machines, you must have adminis-
trator privileges on those computers.

12.6.2 Leveraging WMI

You are not restricted to reading data when using WMI; you can also per-
form actions on remote computers using this technology. Functions such as
starting and stopping services, rebooting, and starting and terminating pro-
cesses can all be performed directly from WMI. In order to view which
methods may be called on any given WMI class, load WBEMTEST, con-
nect to the container namespace (i.e. root\cimv2), click Create Class, then
type the name of the WMI Class (i.e. WIN32_PROCESS), and press con-
tinue. The supported methods will be listed on-screen. The most generic
task that can be performed with WMI is to start a process. This process
(application) could then carry out any function that is required.

Figure 12.5
WMI query

language analyzer
application.

334 12.6 WMI

Like the previous WMI example, a connection, or scope, is required to the
remote computer. This is created in exactly the same way. Instead of executing
a WQL query, a ManagementClass is obtained for the Win32_Process class.
This WMI class holds a method named Create that can spawn new pro-
cesses. This method is passed parameters via a ManagementBaseObject object.

Create a new project in Visual Studio .NET. Under Project→→→→Add Refer-
ences, add a reference to System.Management. Draw four textboxes onto the
form named tbHost, tbUsername, tbPassword, and tbExecute. Add a but-
ton named btnExecute. Click on it and enter the following code:

C#
private void btnExecute_Click(object sender, System.EventArgs
e)

{

 ConnectionOptions Options = new ConnectionOptions();

 if(tbPassword.Text != "" && tbUsername.Text != "")

 {

 Options.Username = tbHost.Text + "\\" + tbUsername.Text;

 Options.Password = tbPassword.Text;

 }

 ManagementScope Scope = new ManagementScope("\\\\" +

 tbHost.Text + "\\root\\cimv2", Options);

 Scope.Connect();

 ManagementClass ProcessClass = new

 ManagementClass("Win32_Process");

 ManagementBaseObject inParams =

 ProcessClass.GetMethodParameters("Create");

 ProcessClass.Scope = Scope;

 inParams["CommandLine"] = tbExecute.Text;

 ProcessClass.InvokeMethod("Create", inParams, null);

}

VB.NET
Private Sub btnExecute_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim Options As ConnectionOptions = New ConnectionOptions()

 If tbPassword.Text <> "" and tbUsername.Text <> ""

 Options.Username = tbHost.Text + "\\" + tbUsername.Text

 Options.Password = tbPassword.Text

 End if

 Dim Scope as ManagementScope = New ManagementScope _

12.6 WMI 335

Chapter 12

 ("\\" + tbHost.Text + "\root\cimv2" ,Options)

 Scope.Connect()

 Dim ProcessClass As ManagementClass = New _

 ManagementClass("Win32_Process")

 Dim inParams As ManagementBaseObject = _

 ProcessClass.GetMethodParameters("Create")

 ProcessClass.Scope = Scope

 inParams("CommandLine") = tbExecute.Text

 ProcessClass.InvokeMethod("Create", inParams, Nothing)

End Sub

You will also require a reference to the relevant namespaces, so add this
code to the top of the application:

C#
using System.Management;

VB.NET
Imports System.Management

To test the application, run it from Visual Studio .NET, type in local-
host for the host, and provide the username and password if required. Type
notepad.exe into the command-line box as shown in Figure 12.6, and
press Execute. You should see Notepad opening on-screen.

Again, this can be run remotely, as long as you have administrator privi-
leges on a remote computer on the network.

Figure 12.6
WMI remote

process manager
application.

336 12.7 Conclusion

12.7 Conclusion

This chapter has dealt with a set of network protocols that are not suited to
moving bulk data among machines, but are particularly valuable in adding
features and improving the performance of distributed applications. These
utility protocols can be used to test quickly if machines are online, what
domain names or hosts are associated with them, and who is the registrant
of the domain name. This provides vital extra information that ultimately
adds value to your final product.

The chapter concluded with a look at a surprisingly versatile Microsoft
technology, WMI, which can pull virtually every conceivable piece of tech-
nical information from a remote computer over. WMI is an absolutely
essential technology for internal IT support.

The next chapter takes a microscope to the network and looks at exactly
what gets sent down the phone line when you use the Internet. If you’re on
a LAN, you might be surprised to see what passes through your computer
without your knowledge. Be warned: Read the following chapter, and you’ll
never play multiplayer games on your company network again!

337

13

Analyzing Network Packets

13.1 Introduction

Network programming is very much concerned with moving data from cli-
ent to server, but when you need to look at what is moving between the cli-
ent and server, you encounter a problem.

In most cases, there is no need for a program to know what data is being
received by other applications. Furthermore, it is a security risk to have one
program that could scan third-party applications, such as FTP software,
and retrieve the username and password for your Web site; however, if you
are building a value-added package to a third-party application, such as a
content filter for a proprietary or legacy application, tapping into what is
being sent between client and server is a good start.

Packet capture isn’t something new. It has been around for many years.
But very few applications actually leverage the technology to provide tools
that can be used in conjunction with other software to provide virus or
computer-misuse detection. What is available, though, are extensive tools
that can tell you what each byte in every packet means, down to even the
computer manufacturer that sent the packet. Figure 13.1 shows the demo
version of TracePlus from

www.sstinc.com.

Note:

 In order to determine the manufacturer of a particular piece of equip-
ment from its MAC address, access the listing at

http://standards.ieee.org/
regauth/oui/oui.txt

, which

contains most, if not all, network equipment man-

ufacturers with their allocated MAC address space.

Software that can leverage packet-level data can be useful for businesses.
We have all heard of the scenario where a few employees decide to down-
load their favorite band’s latest album on Mp3 the day of a big presentation,

338

13.1

Introduction

causing a total misallocation of bandwidth within a company. This is where
traffic-detection software comes into its own, providing an early warning
system for bandwidth misuse.

Traffic-detection software can be used to detect packets on a network
that could uncover viruses, use of unauthorized software, and email forgery.
Let’s look briefly at how the applications mentioned above could be imple-
mented using packet-level monitoring.

You can use traffic detection to discover the presence of viruses and
attacks in progress, but unfortunately not to prevent them. It could, how-
ever, be used to provide companywide detection of infected computers and
denial-of-service attacks. The telltale signs of virus propagation could be
rapid sequential accesses to computers within the subnet on port 80 (scan-
ning for servers to infect) or heartbeat signals coming from a nonstandard
port to an external server (firewall tunneling).

Denial-of-service attacks could be detected from the presence of a large
number of corrupted packets sent to a particular server. A fragmented ping
request would indicate a ping-of-death attack. Large numbers of incom-

Figure 13.1

TracePlus utility.

13.2

IP-level network tapping 339

Chapter 13

plete TCP connections would indicate a

SYN

 flood attack, in which the first
packet of a TCP handshake is sent repetitively and rapidly. The victim
attempts to establish TCP sessions for each of the packets by sending

ACK

(acknowledge) packets to the attacker, which are not responded to. The vic-
tim eventually becomes overwhelmed with pending TCP sessions and
denies all network traffic.

Detection of unauthorized software usage could be useful in a com-
pany where employees may be partial to spending time playing computer
games during work hours. Multiplayer computer games generally operate
on a high port over TCP/IP or IPX. Games produce a lot of network traf-
fic and, thus, can be spotted easily in a TCP/IP trace. The IP addresses of
the offending employee’s computers could be logged, and the employee
could be suitably warned.

Email traffic could also be monitored remotely using these techniques.
This could be used to detect company secrets being sent to a competitor.
Furthermore, a system to prevent email spoofing and forgery could be
implemented if SMTP traffic were monitored. An application could keep a
record of each employee’s computer’s IP address and email address. In the
event of a mismatch between the IP and email address, an alarm could be
raised, possibly sending an email to the recipient warning of the possibility
of email forgery.

This chapter begins with information about how to read and interpret
IP-level traffic on your network. It then progresses to more complex exam-
ples about how to drill down further into the network stack and extract
lower-level data at the frame level. The chapter concludes with information
about how to use new classes introduced in .NET 2.0 Whidbey to gather
systemwide network information.

13.2 IP-level network tapping

Network tapping anything that runs at the IP level includes TCP/IP and
UDP and everything above that, such as DNS, HTTP, FTP, and so forth.
At this level, you don’t need to use any special software. Everything can be
done natively in .NET.

To implement a layer 3 network tap in .NET, open a new project in
Visual Studio .NET and add a list box named

lbPackets

 and two buttons,

btnStart

 and

btnStop

. It may be worthwhile to set the font for the list box
to Courier for easier reading.

340

13.2

IP-level network tapping

After designing the user interface, you should add the following public
variable, a reference to the main listener thread:

C#

public Thread Listener;

VB.NET

Public Listener as Thread

Click on the Start button and enter the following code:

C#

private void btnStart_Click(object sender, System.EventArgs
e)

{

 btnStart.Enabled = false;

 btnStop.Enabled = true;

 Listener = new Thread(new ThreadStart(Run));

 Listener.Start();

}

VB.NET

Private Sub btnStart_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 btnStart.Enabled = False

 btnStop.Enabled = True

 Listener = New Thread(New ThreadStart(AddressOf Run))

 Listener.Start()

End Sub

The

Run

 method is where the network tap takes place. It is a processor-
intensive task, so it is executed in its own thread, as can be seen from the
code. Click on the Stop button and enter the following code:

C#

private void btnStop_Click(object sender, System.EventArgs e)

{

 btnStart.Enabled = true;

 btnStop.Enabled = false;

 if(Listener != null)

13.2

IP-level network tapping 341

Chapter 13

 {

 Listener.Abort();

 Listener.Join();

 Listener = null;

 }

}

VB.NET

Private Sub btnStop_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 btnStart.Enabled = True

 btnStop.Enabled = False

 If Not Listener Is Nothing Then

 Listener.Abort()

 Listener.Join()

 Listener = Nothing

 End If

End Sub

This code simply kills the thread containing the network tap, which
effectively stops reporting the arrival of new packets.

C#

public void Run()

{

 int len_receive_buf = 4096;

 int len_send_buf = 4096;

 byte[] receive_buf = new byte[len_receive_buf];

 byte[] send_buf = new byte[len_send_buf];

 int cout_receive_bytes;

 Socket socket = new Socket(AddressFamily.InterNetwork,

 SocketType.Raw, ProtocolType.IP);

 socket.Blocking = false;

 IPHostEntry IPHost = Dns.GetHostByName(Dns.GetHostName());

 socket.Bind(new

 IPEndPoint(IPAddress.Parse

 (IPHost.AddressList[0].ToString()), 0));

 socket.SetSocketOption(SocketOptionLevel.IP,

 SocketOptionName.HeaderIncluded, 1);

 byte []IN = new byte[4]{1, 0, 0, 0};

 byte []OUT = new byte[4];

342

13.2

IP-level network tapping

 int SIO_RCVALL = unchecked((int)0x98000001);

 int ret_code = socket.IOControl(SIO_RCVALL, IN, OUT);

 while(true)

 {

 IAsyncResult ar = socket.BeginReceive(receive_buf, 0,

 len_receive_buf, SocketFlags.None, null, this);

 cout_receive_bytes = socket.EndReceive(ar);

 Receive(receive_buf, cout_receive_bytes);

 }

}

VB.NET

Public Sub Run()

 Dim len_receive_buf As Integer = 4096

 Dim len_send_buf As Integer = 4096

 Dim receive_buf() As Byte = New Byte(len_receive_buf) {}

 Dim send_buf() As Byte = New Byte(len_send_buf) {}

 Dim cout_receive_bytes As Integer

 Dim socket As Socket = New _

 Socket(AddressFamily.InterNetwork, _

 SocketType.Raw, ProtocolType.IP)

 socket.Blocking = False

 Dim IPHost As IPHostEnTry = _

 Dns.GetHostByName(Dns.GetHostName())

 socket.Bind(New _

 IPEndPoint(IPAddress.Parse _

 (IPHost.AddressList(0).ToString()), 0))

 socket.SetSocketOption(SocketOptionLevel.IP, _

 SocketOptionName.HeaderIncluded, 1)

 Dim bIN As Byte() = New Byte() {1, 0, 0, 0}

 Dim bOUT As Byte() = New Byte() {0, 0, 0, 0}

 Dim SIO_RCVALL As Integer = &H98000001

 Dim ret_code As Integer = socket.IOControl _

 (SIO_RCVALL, bIN, bOUT)

 Do

 Dim ar As IAsyncResult = socket.BeginReceive _

 (receive_buf, 0, _

 len_receive_buf, SocketFlags.None, Nothing, Me)

 cout_receive_bytes = socket.EndReceive(ar)

 Receive(receive_buf, cout_receive_bytes)

 Loop

End Sub

13.2

IP-level network tapping 343

Chapter 13

The

Run

 method is the core thread of the application. It creates a raw
socket bound to the local machine on the default adapter. The socket’s nor-
mal operating parameters are then modified using the

IOControl

 method,
which accesses the underlying socket API function

WSAIoctl

. This function
is passed a parameter

SIO_RCVALL

 (98000001 Hex). Use of this parameter
enables a socket to receive all IP packets on the network. The socket must
be in

RAW

 mode, using the IP protocol, and bound to a specific local
adapter. This feature requires administrator privilege on the local machine.
The packet parsing and display has been separated from the tapping thread
to make the program more legible. This method is called

Receive

 and
should be implemented thus:

C#

public void Receive(byte []buf, int len)

{

 if (buf[9]==6)

 {

 lbPackets.Items.Add

 (Encoding.ASCII.GetString(buf).Replace("\0"," "));

 }

}

VB.NET

Public Sub Receive(ByVal buf as byte(), ByVal len As Integer)

 If buf(9)=6 then

 lbPackets.Items.Add(Encoding.ASCII.GetString _

 (buf).Replace(chr(0)," "))

 end if

End Sub

In this example, traffic is filtered so that only TCP/IP packets are shown.
This means that the screen is not cluttered with DNS queries, pings, and
UDP data. TCP/IP packets will always have the ninth byte in the header set
to 6. All null (ASCII code 0) characters are displayed as spaces so that the
list box does not crop the string at the first null character.

Finally, you need to add some standard namespaces to the code:

C#

using System;

using System.Windows.Forms;

344

13.2

IP-level network tapping

using System.Net.Sockets;

using System.Net;

using System.Threading;

using System.Text;

VB.NET

Imports System

Imports System.Windows.Forms

Imports System.Net.Sockets

Imports System.Net

Imports System.Threading

Imports System.Text

To test the application, run it from Visual Studio .NET, and visit a
Web site using your browser. You should see the raw TCP data flowing
between your browser and the Web server appear in the list box, as shown
in Figure 13.2.

13.2.1 Interpreting raw network data

Capturing and interpreting raw network data are totally separate things.
Being able to recognize anomalies in the network data is the key to provid-
ing a useful tool that could be of real benefit to network managers and
administrators.

Figure 13.2

IP-layer packet
sniffer application.

13.2

IP-level network tapping 345

Chapter 13

Raw network data can appear totally unordered, with HTTP packets
mixed in with NETBIOS (Microsoft file sharing) and ARP, each perform-
ing different tasks, but working simultaneously. Some of these packets can
be recognized immediately: familiar snippets of HTML generally indicate
HTTP (although it could be a rich-text email or a Web page being
uploaded). Most networks will primarily ferry IP traffic, but will also carry
non-IP traffic such as NETBIOS and ARP.

Every packet carries a header that is in a strictly defined binary format.
To define the standards involved most concisely, the tables in this chapter
list the name and starting point of each field in the relevant header. Every
field runs contiguously with the next; thus, the length of any field can be
calculated by subtracting its starting point from the following field’s start-
ing point.

Because fields do not need to start at a byte boundary, the bit number is
also provided in the second column. Where a field is commonly known as
being part of a collective field, it is separated in the description column
from the parent field by a colon.

The frame header (Table 13.1) is the only part that the hardware within
the network card will actually read or process. It is 14 bytes long, contain-
ing the hardware address of the source and destination computers. In the
case where the hardware address of the destination computer is unknown,
this address is set to

 FF-FF-FF-FF-FF-FF

 (hex). Over PPP connections, the
source and destination MAC address may be omitted and replaced by

SRC

and

DEST

.

The Ethernet type code is a two-digit hex number that specifies the
packet protocol (Table 13.2). A fairly comprehensive list of Ethernet type
codes can be seen at

www.cavebear.com/CaveBear/Ethernet.

Table 13.1

Ethernet frame header.

Byte Offset Bit Offset Description

1 1 Destination MAC address

6 1 Source MAC address

12 1 Ethernet type code (2 bytes)

346

13.2

IP-level network tapping

13.2.2 IP packets in detail

In IP packets, the IP header (Table 13.3) immediately follows the frame
header at byte 14. IP is definitively described in RFC 791.

Table 13.2

Ethernet type codes.

Type Code (Hex) Meaning

0800 IP version 4

0805 X.25

0806 ARP

8035 RARP

8037 IPX

809B AppleTalk

80F3 AppleTalk ARP

814C SNMP

86DD IP version 6

Table 13.3

IP header .

Byte Offset Bit Offset Description

1 1 Version

1 5 Header length

2 1 Type of service: Precedence

2 4 Type of service: Delay

2 5 Type of service: Throughput

2 6 Type of service: Reliability

2 7 Type of service: (Reserved)

3 1 Data length

5 1 Identification

7 1 Flags

7 4 Fragment offset

13.2

IP-level network tapping 347

Chapter 13

�

Version:

 Set to 0100 for IPv4 and 0110 for IPv6.

�

Header length:

 The length of the header divided by 4. Max length is
60.

�

Type of service:

 May be used to increase quality of service on some net-
works.

�

Data length:

 The combined length of the header and data.

�

Identification:

 A random number used to identify duplicate packets.

�

Flags:

 Indicates the fragmentation status of the packet. Bit 2 is set to 1
when the datagram cannot be fragmented (0 when it can). Bit 3 is set
to 1 when there are more fragments in the datagram, and 0 when this
packet is the last fragment.

�

Fragment offset:

 Indicates the position a packet should occupy within
a fragmented datagram.

�

TTL:

 Indicates the number of nodes through which the datagram
can pass before being discarded. Used to avoid infinite routing loops.

�

Protocol:

 Set to 6 for TCP, 17 for UDP, 1 for ICMP, and 2 for IGMP.

�

Checksum:

 A checksum of the IP header calculated using a 16-bit
ones complement sum.

�

Source:

 The IP address of the sending computer.

9 1 TTL

10 1 Protocol

11 1 Header checksum

13 1 Source address

17 1 Destination address

21 1 Option: code: Flag

21 2 Option: code: Class

21 4 Option: code: Number

22 1 Option: Length

23 1 Option: Data (variable length)

Data (variable length)

Table 13.3

IP header (continued).

348 13.2 IP-level network tapping

� Destination: The IP address of the receiving computer.

� Option: An optional field that may contain security options, routing
records, timestamps, and so forth.

13.2.3 ICMP packets in detail

In ICMP (ping) packets immediately following the IP header make up a 4-
byte header (Table 13.4) followed by a body of variable length. A definitive
description of ICMP can be found in RFC 792.

Type: Defines the purpose or function of the packet. See Table 13.5.

Code: A type code–specific identifier that more accurately describes the
function of the packet. In a destination unreachable (3) packet, 0 indicates
the subnet is down, whereas 1 indicates that only the host is down.

Checksum: The checksum is the 16-bit ones complement of the ones
complement sum of the ICMP message starting with the ICMP type.

Table 13.4 ICMP header.

Byte Offset Bit Offset Description

1 1 Type

2 1 Code

3 1 Checksum

Table 13.5 ICMP type codes .

Type Code Meaning

0 Echo reply

3 Destination unreachable

4 Source quench

5 Redirect

8 Echo request

11 Timeout

12 Parameter unintelligible

13 Timestamp request

13.2 IP-level network tapping 349

Chapter 13

13.2.4 TCP/IP packets in detail

In TCP/IP packets, immediately following the IP header is a 24-byte TCP
header (Table 13.6). A definitive description of TCP can be found in
RFC 793.

14 Timestamp reply

15 Info request

16 Info reply

17 Address request

18 Address reply

Table 13.6 TCP header.

Byte Offset Bit Offset Description

1 1 Source port

3 1 Destination port

5 1 Sequence number

9 1 Acknowledgment number

13 1 Data offset

13 4 Reserved

14 3 Urgent (URG)

14 4 Acknowledge (ACK)

14 5 Push (PSH)

14 6 Reset (RST)

14 7 Synchronize (SYN)

14 8 Finish (FIN)

15 1 Window

17 1 Checksum

19 1 Urgent pointer

Table 13.5 ICMP type codes (continued).

Type Code Meaning

350 13.2 IP-level network tapping

� Source port: The port the TCP connection is made from, usually a
high port.

� Destination port: The destination port, 80 for HTTP and 25 for
SMTP, etc.

� Sequence number: The sequence number of the first data octet in this
segment (except when SYN is present). If SYN is present, the sequence
number is the initial sequence number (ISN), and the first data octet
is ISN + 1.

� Acknowledgment number: If the ACK control bit is set, this field contains
the value of the next sequence number the segment sender is expecting
to receive. Once a connection is established, this is always sent.

� Data offset: The number of 32-bit words in the TCP header. This
indicates where the data begins. The TCP header (even one including
options) is an integral number 32 bits long.

� Urgent (URG): When set to 1, the urgent pointer field is significant.

� Acknowledge (ACK): When set to 1, the acknowledgment field is sig-
nificant.

� Push (PSH): Implements a push function.

� Reset (RST): When set to 1, it will reset the connection.

� Synchronize (SYN): Synchronizes sequence numbers.

� Finish (FIN): Indicates that there is no more data from the sender.

� Window: The number of data octets indicated in the acknowledg-
ment field that the sender of this segment is willing to accept.

� Checksum: The checksum field is the 16-bit ones complement of the
ones complement sum of all 16-bit words in the header and text, if
segments are zero-padded to form a multiple of 16-bit words for
checksum purposes. The pad is not transmitted as part of the seg-
ment. While computing the checksum, the checksum field is
replaced with zeros. The checksum also covers a pseudoheader that is

21 1 Options

24 1 Padding

Table 13.6 TCP header. (continued)

Byte Offset Bit Offset Description

13.2 IP-level network tapping 351

Chapter 13

prefixed to the TCP header while computing the checksum only. This
pseudoheader contains the source address, the destination address,
the protocol, and TCP length.

� Urgent pointer: Indicates the current value of the urgent pointer as an
offset from the sequence number in this segment. The urgent pointer
points to the sequence number of the byte following the urgent data.
This field is only to be interpreted in segments with the URG control
bit set.

� Options: This contains vendor-specific IP options that may not be
implemented on all systems. It is guaranteed to end on a 32-bit
boundary with zero padding.

TCP is a connection-oriented protocol with built-in protection from
duplicated, dropped, and out-of order packets. This is done by explicitly
opening a connection between client and server and assigning each packet a
sequence number. The client will reply to the server with an acknowledg-
ment for every packet sent; if sequence numbers go missing, appear twice,
or appear out of order to the client, the acknowledgment will not be sent,
and the server can take appropriate action.

A TCP connection is established with a three-way handshake. Initially,
the client sends a SYN request to the server, and the server replies with an
ACK response, to which the client replies with an ACK reply. Similarly, a TCP
connection is closed with a two-way handshake, where one party sends a
FIN request to the other, which then replies with an ACK response.

13.2.5 UDP packets in detail
In UDP packets, immediately following the IP header is an 8-byte UDP
header (Table 13.7). A definitive description of UDP can be found in
RFC 768.

Table 13.7 UDP header.

Byte Offset Bit Offset Description

1 1 Source port

3 1 Destination port

5 1 Length

7 1 Checksum

352 13.2 IP-level network tapping

UDP is the most basic data-carrying protocol that is valid for the Inter-
net. It contains no protection against lost or duplicated packets, and there-
fore is not applicable to media that require high integrity. It is acceptable for
live streaming audio and video formats.

� Source port: The port the UDP connection is made from, usually a
high port.

� Destination port: The destination port, 161 for SNMP and 53 for
DNS, etc.

� Length: The number of bytes following the header, plus the header
itself.

� Checksum: Computed as the 16-bit ones complement of the ones
complement sum of a pseudoheader of information from the IP
header, the UDP header, and the data, padded as needed with zero
bytes at the end to make a multiple of 2 bytes. If the checksum is set
to 0, then check summing is disabled. If the computed checksum is
0, then this field must be set to 0xFFFF.

13.2.6 DNS packets in detail

In DNS packets, immediately following the UDP header (port 53) is a 12-
byte DNS header (Table 13.8). A definitive description of DNS can be
found in RFC 1035.

Table 13.8 DNS header .

Byte Offset Bit Offset Description

1 1 ID

3 1 Query or response

3 2 Query

3 6 Authoritative answer

3 7 Truncation

3 8 Recursive

3 1 Availability

4 2 Set to 0 for future use

4 5 Result code

13.2 IP-level network tapping 353

Chapter 13

� ID: Used to correlate queries and responses.

� Query or response: Identifies the message as a query or response.

� Query: Field that describes the type of message: 0 for standard query
(name to address), 1 for inverse query (address to name), and 2 for
server status request.

� Authoritative answer: Identifies the response as one made by an
authoritative name server when set to 1.

� Truncation: Indicates the message has been truncated when set to 1.

� Recursive: Set to 1 to request the name server to perform recursive
searches.

� Availability: Indicates if the name server can provide recursive service.

� Result code (RCODE): Used to indicate errors in processing the DNS
query.

� Question count: Indicates the number of entries in the question sec-
tion.

� Answer count: Indicates the number of resource records in the answer
section.

� Authority count: Indicates the number of name server resource records
in the authority section.

� Additional count: Indicates the number of resource records in the
additional records section.

DNS is used primarily to resolve IP addresses from domain names; how-
ever, it can also be used to locate mail exchanges and so forth.

5 1 Question count

7 1 Answer count

9 1 Authority count

11 1 Additional count

Table 13.8 DNS header (continued).

Byte Offset Bit Offset Description

354 13.3 Layer 2 network tapping

13.3 Layer 2 network tapping

When you tap into (sniff) network traffic at level 2, you receive not only
data from other applications on your computer, but also from other appli-
cations on different computers that are on the same network. Furthermore,
you get more than just IP traffic: you start to see ARP requests, NETBIOS
packets, and many other weird and wonderful inhabitants of the network,
and they all come complete with frame headers.

WinPCap is, in essence, a driver that enables you to read packets directly
from a network adapter. It was developed by the Politecnico di Torino
(Italy) and can be distributed in binary format with the addition of a copy-
right notice and disclaimer to your application. WinPCap can be down-
loaded from http://winpcap.mirror.ethereal.com.

The WinPCap DLL is designed for use with Visual C++ and is difficult to
use directly from C# or VB.NET. A wrapper of some description is required
to import this library into your .NET application. One of the well-known
wrappers is an ActiveX control named PacketX, which is available from
www.beesync.com. This software is shareware and, therefore, may not be
applicable for inclusion in freeware packages.

Alternatively, I have prepared a wrapper (a C++ DLL) named
rvpacket.dll that is available for download at http://network.programming-
in.net/downloads/rvPacket.zip. This DLL is open source and can be redistrib-
uted as required. The DLL is only a basic implementation of WinPCap, but
the source code is available for those who are savvy in C++ to extend the
functionality.

Developers should be aware of the following known limitations to
WinPCap:

� It will not operate correctly on Windows NT, 2000, or XP dial-up
connections.

� It may reset dial-up connections on Windows 95.

� Wireless network cards are not fully supported.

� Some implementations of VPN are not supported.

13.3.1 Using rvPacket and WinPCap

This first example uses WinPCap with the rvPacket wrapper to display all
network traffic on a textbox. It is normal for network data to pass through

13.3 Layer 2 network tapping 355

Chapter 13

the adapter faster than it can appear on-screen, so there may be some time
lag between data passing through the network and what is displayed on-
screen. The first step in developing this application is to download and
install WinPCap from http://winpcap.mirror.ethereal.com, then to download
rvPacket from http://network.programming-in.net/downloads/rvPacket.zip,
and copy the DLL into your Windows system folder.

Create a new project in Visual Studio .NET, and draw a textbox named
tbPackets with multiline set to true. Two buttons named btnStart and
btnStop are required. VB.NET developers will need to add a reference to
Microsoft.VisualBasic.Compatibility using Project→→→→Add References.

Click on the Start button and add the following code:

C#
private void btnStart_Click(object sender, System.EventArgs
e)

{

 short Qid;

 string packetBuffer;

 short openSuccess;

 short packetQueue;

 short packetLen;

 string rawAdapterDetails = "";

 int posDefaultAdapter;

 getAdapterNames(rawAdapterDetails);

 Adapter="\\"; // default adapter

 openSuccess = openAdapter("\\");

 if (openSuccess != ERR_SUCCESS)

 {

 MessageBox.Show(

 "Unable to start. Check WinPCap is installed");

 return;

 }

 while(true)

 {

 packetQueue = checkPacketQueue(Adapter);

 for (Qid = 1; Qid<packetQueue;Qid++)

 {

 packetBuffer = new

 StringBuilder().Append

 (' ',MAX_PACKET_SIZE).ToString();

 packetLen = getQueuedPacket(packetBuffer);

356 13.3 Layer 2 network tapping

 packetBuffer = packetBuffer.Substring(0, packetLen);

 tbPackets.Text = tbPackets.Text +

 packetBuffer.Replace("\0"," ");

 tbPackets.SelectionStart = tbPackets.Text.Length;

 Application.DoEvents();

 }

 Application.DoEvents();

 }

}

VB.NET
Private Sub cmdStart_Click(ByVal eventSender As _

 System.Object, ByVal eventArgs As _

 System.EventArgs) Handles cmdStart.Click

 Dim Qid As Short

 Dim packetBuffer As String

 Dim adapters() As String

 Dim openSuccess As Short

 Dim packetQueue As Short

 Dim packetLen As Short

 Dim rawAdapterDetails As String

 Dim posDefaultAdapter As Short

 rawAdapterDetails = Space(MAX_ADAPTER_LEN)

 getAdapterNames(rawAdapterDetails)

 posDefaultAdapter = _

 rawAdapterDetails.IndexOf(ADAPTER_DELIMITER)

 Adapter = rawAdapterDetails.Substring(0, posDefaultAdapter)

 openSuccess = openAdapter(Adapter)

 If openSuccess <> ERR_SUCCESS Then

 MsgBox("Unable to start. Check WinPCap is installed")

 Exit Sub

 End If

 Do

 packetQueue = checkPacketQueue(Adapter)

 For Qid = 1 To packetQueue

 packetBuffer = Space(MAX_PACKET_SIZE)

 packetLen = getQueuedPacket(packetBuffer)

 packetBuffer = packetBuffer.Substring(0, packetLen)

 tbPackets.Text = tbPackets.Text & Replace _

 (packetBuffer, Chr(0), " ")

 tbPackets.SelectionStart = Len(tbPackets.Text)

13.3 Layer 2 network tapping 357

Chapter 13

 System.Windows.Forms.Application.DoEvents()

 Next

 System.Windows.Forms.Application.DoEvents()

 Loop

End Sub

The code listed above performs two functions; first, detects all of the
network adapters on the system, bearing in mind that computers can have
more than one means of connecting to a network, either by modem,
Ethernet, or some other system. The getAdapterNames returns a list of
adapter names separated by a pipe character (“|”). Here the first default
adapter is used.

Network traffic regularly arrives faster than it can be read and handled
by an application; thus, the data is buffered internally in a linked-list struc-
ture. The rvPacket library has two functions for reading this buffer, check-
PacketQueue and getQueuedPacket. As the names suggest, the former is a
nonblocking function that retrieves the number of packets in the queue,
and the latter will then read each packet in the queue sequentially. The
queue is guaranteed not to grow in size between calls to checkPacketQueue,
and no data on this buffer will be altered.

The threading model is primitive, using nothing more than a DoEvents
call to maintain responsiveness for the user interface. This has the side effect
of pushing CPU usage to 100%, which looks unprofessional in a consumer
product. In a more polished version, proper threading should be used.

Note: All bytes of value 0 are replaced with a space character in the code
above to help display the text on-screen; this serves no other purpose.

Although not strictly necessary, the adapter should be closed after use. If
it is not closed before the application is destroyed, then a memory leak will
result. More importantly, if two separate processes open the adapter at once,
Windows will crash.

Click on the Stop button, and enter the following code:

C#
private void btnStop_Click(object sender, System.EventArgs e)

{

 closeAdapter(Adapter);

}

358 13.3 Layer 2 network tapping

VB.NET
Private Sub btnStop_Click(ByVal sender As _

 System.Object, ByVal e As System.EventArgs) _

 Handles btnStop.Click

 closeAdapter(Adapter)

 End Sub

Several API declarations have to be made to make the rvPacket library
accessible. Insert this code directly after the form constructor:

C#
[DllImport("rvPacket.dll")]

public static extern short getAdapterNames (string s);

[DllImport("rvPacket.dll")]

public static extern short openAdapter (string Adapter);

[DllImport("rvPacket.dll")] public static extern short

checkPacketQueue(string Adapter);

[DllImport("rvPacket.dll")] public static extern short

getQueuedPacket(string s);

[DllImport("rvPacket.dll")] public static extern void

closeAdapter(string Adapter);

const short SIMULTANEOUS_READS = 10;

const short MAX_ADAPTER_LEN = 512;

const string ADAPTER_DELIMITER = "|";

const short MAX_PACKET_SIZE = 10000;

const short ERR_SUCCESS = 1;

const short ERR_ADAPTER_ID= 2;

const short ERR_INVALID_HANDLE= 3;

const short ERR_INVALID_ADAPTER= 4;

const short ERR_ALLOCATE_PACKET= 5;

string Adapter = "";

VB.NET
 Private Declare Function getAdapterNames Lib _

 "rvPacket.dll" (ByVal s As String) As Short

 Private Declare Function openAdapter Lib _

13.3 Layer 2 network tapping 359

Chapter 13

 "rvPacket.dll" (ByVal Adapter As String) As Short

 Private Declare Function checkPacketQueue Lib _

 "rvPacket.dll" (ByVal Adapter As String) As Short

 Private Declare Function getQueuedPacket Lib _

 "rvPacket.dll" (ByVal s As String) As Short

 Private Declare Sub closeAdapter Lib _

 "rvPacket.dll" (ByVal Adapter As String)

 Private Const SIMULTANEOUS_READS As Short = 10

 Private Const MAX_ADAPTER_LEN As Short = 512

 Private Const ADAPTER_DELIMITER As String = "|"

 Private Const MAX_PACKET_SIZE As Short = 10000

 Private Const ERR_SUCCESS As Short = 1

 Private Const ERR_ADAPTER_ID As Short = 2

 Private Const ERR_INVALID_HANDLE As Short = 3

 Private Const ERR_INVALID_ADAPTER As Short = 4

 Private Const ERR_ALLOCATE_PACKET As Short = 5

 Public Adapter As String

The rvPacket library is developed in unmanaged C++; therefore, these
rather cryptic function declarations must be used, in the same way as they
were required to access the Windows API. The calling conventions for each
of the functions are identical: they all accept a string and return a number.

GetAdapterNames is used to retrieve a list of network adapters present on
the system. One of these adapter names would be passed to openAdapter,
which effectively begins the sniffing process on that network adapter.

CheckPacketQueue returns the number of packets that are currently held
in the network card buffer. The GetQueued packet can then retrieve each of
these packets one at a time.

CloseAdapter stops the sniffing process and frees up the adapter for any
other process to use it. Immediately following the declarations are several
constants that can be used within the code to better explain errors to users,
and so forth.

Finally, C# programmers require the following namespaces:

C#
using System.Text;

using System.Runtime.InteropServices;

360 13.3 Layer 2 network tapping

To test the application, make sure you are connected to an active net-
work and that WinPCap and rvPacket have been installed. Run the program
from Visual Studio .NET and press Start. If you open a browser and start
using the Web, you will see the HTTP sent and received in the textbox
(Figure 13.3).

Note: Data sent to the loop-back address 127.0.0.1 (localhost) does not
actually register with WinPCap because it never actually moves through the
network card.

13.3.2 Using PacketX and WinPCap

The following example uses BeeSync’s packetX control (www.beesync.com)
to illustrate the concept. There would be no problem in using rvPacket for
this example, but packetX is a useful alternative to know how to use. The
object of the example is to log packets that match a certain criterion. In this
case, only TCP/IP traffic will be logged.

TCP/IP traffic can be isolated from raw network traffic by checking two
bytes in the packet. In an IP packet, the IP header follows the frame header
and, thus, will appear at the 14th byte in the packet. The first byte in the IP
header will always be 69 when IPv4 is used with standard priority. The sec-

Figure 13.3
Frame-layer packet

sniffer with
rvPacket.

13.3 Layer 2 network tapping 361

Chapter 13

ond byte to check is the protocol byte, the 10th byte in the IP header. This
byte will always be 6 when TCP/IP is used.

You will need to have downloaded and installed both WinPCap and
PacketX before starting to code this program. Start a new project in Visual
Studio .NET, right-click on the toolbox on the left, and click Customize
Toolbox (or Add/Remove Items in Visual Studio .NET 2003), click the
COM tab, check PacketXCtrl Class, and press OK. Drag the new icon
onto the form. Draw a List View control named lvPackets onto the form
as well as a Start button named btnStart.

To start with, add a few column headers into the list view so that the
results it displays will be evenly tabulated. Add the following lines of code
to the load event:

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 lvPackets.Columns.Add("From", lvPackets.Width / 3,

 HorizontalAlignment.Left);

 lvPackets.Columns.Add("To", lvPackets.Width / 3,

 HorizontalAlignment.Left);

 lvPackets.Columns.Add("Size", lvPackets.Width / 3,

 HorizontalAlignment.Left);

 lvPackets.View = View.Details;

}

VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 With lvPackets

 .Columns.Add("From", .Width / 3, HorizontalAlignment.Left)

 .Columns.Add("To", .Width / 3, HorizontalAlignment.Left)

 .Columns.Add("Size", .Width / 3, HorizontalAlignment.Left)

 .View = View.Details

 End With

End Sub

The PacketX control will not start detecting packets until the Start
method is called. This is to facilitate choosing nondefault adapters:

C#
private void btnStart_Click(object sender, System.EventArgs
e)

362 13.3 Layer 2 network tapping

{

 axPacketXCtrl1.Start();

}

VB.NET
Private Sub btnStart_Click(ByVal eventSender As _

 System.Object, ByVal eventArgs As System.EventArgs) _

 Handles Command1.Click

 axPacketXCtrl1.Start()

End Sub

Unlike the polling mechanism of the rvPacket library, PacketX uses an
event to notify the host application of the arrival of packets. The event
delivers an object that effectively derives from System.EventArgs, yet con-
tains a PacketClass object that contains information on the packet con-
tents and the exact time (with microsecond accuracy) the packet was
received.

The packet contents are stored in a byte array named Data. This byte
array appears to .NET as a generic object; thus, to handle it without caus-
ing type cast errors, Option Strict Off must be added as the first line of
the VB.NET code:

C#
private void axPacketXCtrl1_OnPacket(object sender,
AxPACKETXLib._IPktXPacketXCtrlEvents_OnPacketEvent e)

{

 short I;

 string thisPacket;

 string SourceIP;

 string DestIP;

 ListViewItem item = new ListViewItem();

 thisPacket = "";

 byte[] packetData = (byte[])e.pPacket.Data;

 for (I = 0;I<e.pPacket.DataSize - 1;I++)

 {

 thisPacket = thisPacket + Convert.ToChar(packetData[I]);

 }

 if (packetData[14] == 69 && packetData[23] == 6)

 {

 SourceIP = packetData[26] + "." +

 packetData[27] + "." +

13.3 Layer 2 network tapping 363

Chapter 13

 packetData[28] + "." +

 packetData[29];

 DestIP = packetData[30] + "." +

 packetData[31] + "." +

 packetData[32] + "." +

 packetData[33] + ".";

 item.SubItems[0].Text = SourceIP;

 item.SubItems.Add(DestIP);

 item.SubItems.Add(e.pPacket.DataSize.ToString());

 lvPackets.Items.Add(item);

 }

}

VB.NET
Private Sub axPacketXCtrl1_OnPacket(ByVal eventSender _

 As System.Object, ByVal e As _

 AxPACKETXLib.IPktXPacketXCtrlEvents_OnPacketEvent) _

 Handles axPacketXCtrl1.OnPacket

 Dim I As Short

 Dim thisPacket As String

 Dim SourceIP As String

 Dim DestIP As String

 Dim item As New ListViewItem()

 thisPacket = ""

 For I = 0 To e.pPacket.DataSize - 1

 thisPacket = thisPacket & Chr(eventArgs.pPacket.Data(I))

 Next

 If e.pPacket.Data(14) = 69 And e.pPacket.Data(23) = 6 Then

 SourceIP = e.pPacket.Data(26) & "." & _

 e.pPacket.Data(27) & "." & + _

 e.pPacket.Data(28) & "." & + _

 e.pPacket.Data(29)

 DestIP = e.pPacket.Data(30) & "." & _

 e.pPacket.Data(31) & "." & + _

 e.pPacket.Data(32) & "." & + _

 e.pPacket.Data(33)

 item.SubItems(0).Text = SourceIP

 item.SubItems.Add(DestIP)

364 13.3 Layer 2 network tapping

 item.SubItems.Add(e.pPacket.DataSize)

 lvPackets.Items.Add(item)

 End If

End Sub

The actual network packet that is passed within the eventArgs or e
parameter of the event takes the form of an object stored in
e.pPacket.Data, which can be cast to a byte array (implicitly so, in the case
of VB.NET). This array is examined for key bytes, first to filter out non-
TCP/IP data and then to extract the Local and Remote IP addresses from
the header. The extracted data is displayed on-screen in a list box.

To test this application, run it from Visual Studio .NET and wait for a
TCP/IP connection to take place on the network. Alternately, simply open-
ing a browser should generate a TCP/IP connection to the server hosting
your browser’s home page.

The example shown in Figure 13.4 is one single HTTP request between
two computers on a LAN. Note that it does not involve simply one packet
for the request and one for the response, but a fair amount of handshaking
takes place between client and server, before a connection is made. This
may be worth knowing if, for instance, you were using a TCP trace to build
up statistics on user browsing habits. You cannot equate the number of
packets to the amount of Web pages or emails sent. It might be better to
count occurrences of the string HTTP/1.1 or HELLO in outgoing packets on
ports 80 and 25, respectively, in this instance.

Figure 13.4
Frame-layer packet

sniffer with
PacketX.

13.3 Layer 2 network tapping 365

Chapter 13

A busy network may produce an overwhelming number of packets, and
it is likely that .NET will not be able to process 10 Mb of packets per sec-
ond, as is commonplace on LANs. In this case, we can use hardware filters
that are built into network cards to cope with high-volume traffic.

To detect only packets destined for the local machine, we can apply the
directed packet hardware filter to the WinPCap driver by setting a parameter
in the PacketX object with:

PacketXCtrl1.Adapter.HWFilter = 1

The default hardware filter is promiscuous mode, which will pass up
every packet seen by the network adapter. The rvPacket library only oper-
ates in promiscuous mode. Wireless network cards cannot operate in pro-
miscuous mode; therefore, a nonpromiscuous hardware filter (Table 13.9)
must be applied for wireless devices.

Table 13.9 WinPCap hardware filters .

Filter ID Purpose

1 Directed packets that contain a destination address equal to the station
address of the NIC

2 Multicast address packets sent to addresses in the multicast address list

4 All multicast address packets, not just the ones enumerated in the mul-
ticast address list

8 Broadcast packets

16 All source routing packets

32 Default, promiscuous mode; specifies all packets

64 SMT packets that an FDDI NIC receives

128 All packets sent by installed protocols

4096 Packets sent to the current group address

8192 All functional address packets, not just the ones in the current func-
tional address

16384 Functional address packets sent to addresses included in the current
functional address

32768 NIC driver frames that a Token Ring NIC receives

366 13.4 Physical network tapping

WinPCap also has the capability to send and receive packets. This func-
tionality can be accessed through Adapter.SendPacket, which could be
useful for generating non-IP-based packets, such as ARP requests or raw
server message block (SMB) data. These packets would not be routable over
the Internet, but they may have applications within company networks.

13.4 Physical network tapping
Although there would be no conceivable reason for software to read data at
this low level, it might be important to know whether the phone line is
connected to the computer or not.

A program might also want to determine the type of connection the
computer has to the Internet. To cite an example, when developing a peer-
to-peer network, clients that have a fast connection via a LAN should be
given higher weighting in the index server(s) than 56K dial-up connections.
This would ensure that new clients do not waste time attempting to con-
nect to dial-up connections, which would be more than likely discon-
nected, but instead run queries against more reliable, faster connections.

The Adapter.LinkType and Adapter.LinkSpeed properties of PacketX
provide information on the network type (Table 13.10) and link speed in
bits per second, respectively.

Using WinPCap and PacketX may seem like overkill to determine
whether a computer is connected to the Internet, but you could, of course,
always ping a well-known Web site address or use the getInternetCon-
nectedState API function call.

In .NET version 2 (Whidbey), the NetworkInformation class provides a
simple mechanism to determine whether a computer is connected to the
network as follows:

Table 13.10 Link types.

Link Type Code Meaning

0 None

1 Ethernet (802.3)

2 Token Ring (802.5)

3 FDDI (Fiber Distributed Data Interface)

4 WAN (Wide Area Network)

5 LocalTalk

13.4 Physical network tapping 367

Chapter 13

C#
NetworkInformation netInfo = new NetworkInformation();

If (netInfo.GetIsConnected() == true)

{

 // connected to network

}

VB.NET
Dim netInfo as new NetworkInformation()

If (netInfo.GetIsConnected()= True)

 ' connected to network

end if

The NetworkInformation class (Table 13.11) inherits from Sys-

tem.Net.NetworkInformation. It contains a host of useful properties,
which describe low-level network activities. The last five methods listed in
table 13.11 may be alternatively retrieved from the GetNetworkParams
Windows API function.

The ActiveUdpListener class, as returned by GetActiveUdpListeners,
is descried in Table 13.12. This is equivalent to calling the GetUdpTable
Windows API, or running NETSTAT -p udp -a from the command line.

6 DIX (DEC- Intel - Xerox)

7 ARCNET (raw)

8 ARCNET (878.2)

9 ATM (Asynchronous Transfer Mode)

10 Wireless

Table 13.11 Significant members of the NetworkInformation class .

Method or Property Purpose

AddressChanged Sets AddressChangedEventHandler
(Object,EventArgs) delegate.

GetActiveUdpListeners Lists all active UDP ports. Returns
ActiveUdpListener[].

Table 13.10 Link types. (continued)

Link Type Code Meaning

368 13.4 Physical network tapping

The IcmpV4Statistics class, as returned by GetIcmpV4Statistics, is
described in Table 13.13 (all properties return int64 unless otherwise
specified). This class is equivalent to the GetIcmpStatistics Windows IP
Helper API.

GetIcmpV4Statistics Retrieves statistics of ping (ICMP) activity.
Returns IcmpV4Statistics.

GetIPStatistics Retrieves statistics of IP activity. Returns
IPStatistics.

GetIsConnected Determines if the computer is connected to the
network. Returns Boolean.

GetNetworkInterfaces Retrieves information about connected network
hardware. Returns NetworkInterface[].

GetTcpConnections Retrieves statistics of TCP/IP activity. Returns
TcpStatistics.

GetUdpStatistics Retrieves statistics of UDP/IP activity. Returns
UdpStatistics.

DhcpScopeName Gets the DHCP scope name. Returns String.

DomainName Gets the locally registered domain name. Returns
String.

HostName Gets the host name for the local computer.
Returns String.

IsWinsProxy Specifies if the computer is acting as a WINS
proxy. Returns Boolean.

NodeType Gets the NetBIOS node type of the computer.
Returns NodeType (e.g., broadcast, P2P, mixed,
hybrid).

Table 13.12 Significant members of the ActiveUdpListener class.

Method or Property Purpose

LocalEndPoint The logical location of the port holding the active
UDP connection. Returns IPEndPoint

Table 13.11 Significant members of the NetworkInformation class (continued).

Method or Property Purpose

13.4 Physical network tapping 369

Chapter 13

Table 13.13 Significant members of the IcmpV4Statistics class .

Method or Property Purpose

AddressMaskRepliesReceived Gets the number of address
mask replies received

AddressMaskRepliesSent Gets the number of address
mask replies sent

AddressMaskRequestsReceived Gets the number of address
mask requests received

AddressMaskRequestsSent Gets the number of address
mask requests sent

DestinationUnreachableMessagesReceived Gets the number of destina-
tion unreachable messages
received

DestinationUnreachableMessagesSent Gets the number of destina-
tion unreachable messages
sent

EchoRepliesReceived Gets the number of echo
replies received

EchoRepliesSent Gets the number of echo
replies sent

EchoRequestsReceived Gets the number of echo
requests received

EchoRequestsSent Gets the number of echo
requests sent

ErrorsReceived Gets the number of errors
received

ErrorsSent Gets the number of errors sent

MessagesReceived Gets the number of messages
received

MessagesSent Gets the number of messages
sent

ParameterProblemsReceived Gets the number of parame-
ter problems received

ParameterProblemsSent Gets the number of parame-
ter problems sent

370 13.4 Physical network tapping

The IPStatistics class, as returned by GetIPStatistics, is described
in Table 13.14 (all properties return int64 unless otherwise specified). This
is equivalent to calling the GetIpStatistics Windows IP Helper API, or
running NETSTAT -s from the command line.

RedirectsReceived Gets the number of redirects
received

RedirectsSent Gets the number of redirects
sent

SourceQuenchesReceived Gets the number of source
quenches received

SourceQuenchesSent Gets the number of source
quenches sent

TimeExceededMessagesReceived Gets the number of time
exceeded messages received

TimeExceededMessagesSent Gets the number of time
exceeded messages sent

TimestampRepliesReceived Gets the number of times-
tamp replies received

TimestampRepliesSent Gets the number of times-
tamp replies sent

TimestampRequestsReceived Gets the number of times-
tamp requests received

TimestampRequestsSent Gets the number of times-
tamp requests sent

Table 13.14 Significant members of the IPStatistics class .

Method or Property Purpose

DefaultTtl Gets the default TTL

ForwardingEnabled Determines if forwarding is
enabled; returns Boolean

Interfaces Gets the number of interfaces

Table 13.13 Significant members of the IcmpV4Statistics class (continued).

Method or Property Purpose

13.4 Physical network tapping 371

Chapter 13

IPAddresses Gets the number of IP
addresses

OutputPacketRequests Gets the number of output
packet requests

OutputPacketRoutingDiscards Gets the number of output
packet routing discards

OutputPacketsDiscarded Gets the number of output
packets discarded

OutputPacketsWithNoRoute Gets the number of output
packets with no route

PacketFragmentFailures Gets the number of packet
fragment failures

PacketReassembliesRequired Gets the number of packet
reassemblies required

PacketReassemblyFailures Gets the number of packet
reassembly failures

PacketReassemblyTimeout Retrieves the packet reassem-
bly timeout

PacketsFragmented Gets the number of packets
fragmented

PacketsReassembled Gets the number of packets
reassembled

ReceivedPackets Gets the number of received
packets

ReceivedPacketsDelivered Gets the number of received
packets delivered

ReceivedPacketsDiscarded Gets the number of received
packets discarded

ReceivedPacketsForwarded Gets the number of received
packets forwarded

ReceivedPacketsWithAddressErrors Gets the number of received
packets with address errors

ReceivedPacketsWithHeadersErrors Gets the number of received
packets with headers errors

Table 13.14 Significant members of the IPStatistics class (continued).

Method or Property Purpose

372 13.4 Physical network tapping

The NetworkInterface class, as returned by GetNetworkInterfaces, is
described in Table 13.15.

ReceivedPacketsWithUnknownProtocol Gets the number of received
packets with unknown proto-
col

Routes Gets the number of routes
used

Table 13.15 Significant members of the NetworkInterface class .

Method or Property Purpose

GetInterfaceStatistics Retrieves information on network activity on the
interface. Returns InterfaceStatistics.

GetIPAddressInformation Returns information on the IP address assigned to
the interface. Returns IPAddressInformation.

GetIPv4Properties Gets information concerning local IP routing, etc.
Returns IPv4Properties.

GetPhysicalAddress Retrieves the interface’s MAC address. Returns
byte[].

Description A friendly name for the interface. Returns
String.

DnsEnabled Determines if DNS is enabled on the interface.
Returns Boolean.

DynamicDnsEnabled Determines if Dynamic DNS is enabled on the
interface. Returns Boolean.

Ipv4Index Determines the IP version 4 index on the interface.
Returns int64.

Ipv6Index Determines the IP version 6 index on the interface.
Returns int64.

IPVersionSupported Determines the IP version(s) supported by the
interface. Returns
IPVersionSupportedFlags.

IsConnected Determines if the interface is connected to an
active network. Returns Boolean.

Table 13.14 Significant members of the IPStatistics class (continued).

Method or Property Purpose

13.4 Physical network tapping 373

Chapter 13

The InterfaceStatistics class, as returned by GetInterfaceStatis-
tics, is described in Table 13.16 (all properties return int64 unless other-
wise specified).

Mtu Determines the maximum transmission unit of the
interface. Returns int64.

Name Gets a name for the interface. Returns string.

OperationalStatus Gets the operational status of the interface.
Returns OperationalStatus.

Type Determines the interface hardware. Returns
InterfaceType (e.g., modem, ISDN, ADSL,
Ethernet, etc.).

Table 13.16 Significant members of the InterfaceStatistics class .

Method or Property Purpose

BytesReceived Gets the number of bytes received

BytesSent Gets the number of bytes sent

IncomingPacketsDiscarded Gets the number of incoming packets
discarded

IncomingPacketsWithErrors Gets the number of incoming packets
with errors

IncomingUnknownProtocolPackets Gets the number of incoming
unknown protocol packets

NonUnicastPacketsReceived Gets the number of non-Unicast
packets received

NonUnicastPacketsSent Gets the number of non-Unicast
packets sent

OutgoingPacketsDiscarded Gets the number of outgoing packets
discarded

OutgoingPacketsWithErrors Gets the number of outgoing packets
with errors

OutputQueueLength Gets the number of output queue
length

Table 13.15 Significant members of the NetworkInterface class (continued).

Method or Property Purpose

374 13.4 Physical network tapping

The IPAddressInformation class, as returned by GetIPAddressInfor-
mation, is described in Table 13.17.

The IPv4Properties class, as returned by GetIPv4Properties, is
described in Table 13.18. These properties may be alternatively ascertained
on an adapter-by-adapter basis through the GetAdaptersInfo Windows IP
Helper API function.

Speed Gets the speed of the interface

UnicastPacketsReceived Gets the number of Unicast packets
received

UnicastPacketsSent Gets the number of Unicast packets
sent

Table 13.17 Significant members of the IPAddressInformation class.

Method or Property Purpose

Address Gets the IP address

DnsEligible Determines if the address is eligible for DNS

Transient Determines if the address is transient

Table 13.18 Significant members of the IPv4Properties class .

Method or Property Purpose

GetDhcpServerAddresses Retrieves the local DHCP server
addresses. Returns IPAddress[].

GetGatewayAddresses Retrieves the local gateway addresses.
Returns IPAddress[].

GetWinsServersAddresses Retrieves the local WINS servers
addresses. Returns IPAddress[].

AutomaticPrivateAddressingActive Determines if automatic private
addressing is active. Returns
Boolean.

Table 13.16 Significant members of the InterfaceStatistics class (continued).

Method or Property Purpose

13.4 Physical network tapping 375

Chapter 13

The TcpStatistics class, as returned by GetTcpStatistics, is
described in Table 13.19 (all properties return int64 unless otherwise
stated). This is equivalent to calling the GetTcpTable Windows IP Helper
API, or running NETSTAT -p tcp -a from the command line.

AutomaticPrivateAddressingEnabled Determines if automatic private
addressing is enabled. Returns
Boolean.

DhcpEnabled Determines if DHCP is enabled.
Returns Boolean.

RoutingEnabled Determines if routing is enabled.
Returns Boolean.

UsesWins Determines if the computer uses
WINS. Returns Boolean.

Table 13.19 Significant members of the TcpStatistics class .

Method or Property Purpose

ConnectionsAccepted Determines the number of connections
accepted

ConnectionsInitiated Determines the number of connections ini-
tiated

CumulativeConnections Determines the number of cumulative con-
nections

CurrentConnections Determines the number of current connec-
tions

ErrorsReceived Determines the number of errors received

FailedConnectionAttempts Determines the number of failed connection
attempts

MaximumConnections Determines the maximum number of con-
nections

MaximumTransmissionTimeOut Determines the maximum transmission
time out

Table 13.18 Significant members of the IPv4Properties class (continued).

Method or Property Purpose

376 13.5 Conclusion

 The UdpStatistics class, as returned by GetUdpStatistics, is
described in Table 13.20 (all properties return int64 unless otherwise
stated). This is equivalent to the GetUdpStatistics Windows IP Helper
API function.

13.5 Conclusion

This chapter has shown three different means to tap nonintrusively into the
data that flows between computers. When local system traffic monitoring is
all that is required, then use of the pure .NET implementation is highly rec-
ommended, but for an enterprisewide implementation, then PacketX com-

MinimumTransmissionTimeOut Determines the minimum transmission
time out

ResetConnections Determines the number of reset connections

SegmentsReceived Determines the number of segments
received

SegmentsResent Determines the number of segments resent

SegmentsSent Determines the number of segments sent

SegmentsSentWithReset Determines the number of segments sent
with reset

Table 13.20 Significant members of the UdpStatistics class.

Method or Property Purpose

DatagramsReceived Determines the number of datagrams
received

DatagramsSent Determines the number of datagrams sent

IncomingDatagramsDiscarded Determines the number of incoming data-
grams discarded

IncomingDatagramsWithErrors Determines the number of incoming data-
grams with errors

UdpListeners Determines the number of active UDP lis-
teners

Table 13.19 Significant members of the TcpStatistics class (continued).

Method or Property Purpose

13.5 Conclusion 377

Chapter 13

bined with WinPCap is possibly the best option. Where financial constraints
prevent the use of a third-party commercial component, then rvPacket will
probably point you in the right direction.

It would be impossible to document the format of every protocol that
could exist on a network, so only IP and TCP have been described in this
chapter. Interested readers are advised to consult the relevant RFC for infor-
mation on any specific protocol.

The next chapter deals with a form of telecommunication that has been
with us since the 1880s (i.e., the ubiquitous phone call); however, the chap-
ter is taken from a Computer Telephony Integration (CTI) developer’s per-
spective. Prepare to be introduced to the telephony API.

This page intentionally left blank

379

14

Adding Digital Telephony

14.1 Introduction

If you call any large cinema looking for times for films, you will undoubt-
edly be forwarded to an automated system that tells you when each film is
on. This system is made possible by digital telephony.

Computer Telephony Integration, or CTI, systems routinely cost
$10,000 and upward for enterprise-scale systems. The high cost is largely a
result of the misconceived idea that any telephony system requires loads of
specialized hardware and, thus, is out of reach for the humble developer. In
fact, you can put a simple system together using no more than a cheap
modem.

Any company that employs staff to answer phone calls can save money
by implementing a CTI system. Such a system can be used to route calls to
different departments automatically or to match a caller with customer ID
and associated purchase history.

This chapter is mainly devoted to one rather large code example built up
in three sections. The first section explains how to pick up and drop a call.
The following section explains how to detect key presses on the remote
handset, and the chapter concludes with a demonstration of how to play
back audio to the caller.

Note:

You will need a voice modem and phone line to test the following
examples. Access to a second phone (such as a mobile phone) is beneficial.

Calls made from any phone line may incur charges if the line is opened.

380

14.2

Basic telephony

14.2 Basic telephony

This chapter is focused on using the telephony API, but it is possible to
control a modem by issuing COM port commands. These will provide the
ability to dial telephone numbers and control the physical connection to
the phone line.

Even if your modem is internal or connected via USB, it will always be
mapped to a COM port. To discover the number of this COM port, you
can look at Start

→→→→

Control Panel

→→→→

phone and Modem options

→→→→

Modems.
Under the Attached To tab will be the number of the COM port to which
the modem is attached.

Any command that is sent to this COM port will be interpreted by the
modem. A list of common AT commands shown in Table 14.1.

The responses the modem will send back shown in Table 14.2.

Table 14.1

AT commands.

AT Command Purpose

ATDT<

phone
number

><enter>

Dials the specified phone number using touch-tone dialing.
A comma in the number represents a pause, a W waits for a
second dial tone, and an @ waits for a five-second silence.

ATPT<

phone
number

><enter>

Dials the specified number using pulse dialing.

AT S0=<

number

>

Picks up the line after the specified number of rings.

+++

Drop line.

Table 14.2

Modem responses .

Response Meaning

OK

The command has executed without errors.

CONNECT

A connection to the remote phone has been made.

RING

An incoming call is detected.

NO CARRIER

No carrier signal has been detected (in GSM modems, this
can mean that there is no network).

ERROR

The command is not understood.

14.2

Basic telephony 381

Chapter 14

To implement a simple phone dialer in .NET, open Visual Studio
.NET and start a new Windows forms project. Right-click on the toolbox
and click Customize Toolbox (or Add/Remove Items in Visual Studio
.NET 2003). Click on the COM Controls tab, and then add the Microsoft
Communications control (

MSCOMM.OCX

). Drag this onto the form, and set
the

comport

 property to the COM port number to which your modem is
connected. Add a button to the form, named

btnPhone

, click it, and add
this code:

C#

private void btnPhone_Click(object sender, System.EventArgs
e)

{

 axMSComm1.PortOpen=true;

 axMSComm1.Output="ATDT00353877519575\r\n";

}

VB.NET

Private Sub btnPhone_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 axMSComm1.PortOpen=True

 axMSComm1.Output="ATDT00353877519575" + vbcrlf

End Sub

Note:

Running the code listed above may incur phone charges. It is advis-
able to change the phone number listed (00353877519575) to some other,

less expensive number.

Only one program can control each COM port at a time. This code will
fail if you are using the modem at the time. Several settings are associated
with a COM port; in this case, however, the default parameters (9600

NO DIAL TONE

There is no dial tone on the phone line.

BUSY

The remote end is too busy to take the call.

NO ANSWER

The remote end did not take the call.

Table 14.2

Modem responses (continued).

Response Meaning

382

14.3

Listening for incoming phone calls

baud, no parity, 8 data bits, 1 stop bit—or “9600,n,8,1”) are suitable for
communication with a modem. When the modem begins communication
at full speed, it will use a baud rate of 56 Kbps. This can be set using the

settings

 property of the Microsoft communications control.

14.3 Listening for incoming phone calls

You can only do a certain number of things with a modem by sending com-
mands back and forth via a COM port. In order to develop serious applica-
tions, you have to use the Telephony Application Programming Interface
(TAPI). The TAPI libraries were designed with C++ in mind, not .NET, so
there is a steep learning curve. It is worthwhile to evaluate the various com-
mercial components available before tinkering with low-level TAPI code. A
few interesting Web sites, such as

www.shrinkwrapvb.com and www.pron-
exus.com,

 contain a wealth of information on TAPI.

The overall architecture of TAPI is modeled on a collection of phone
lines that are connected to the computer. Not all of these phone lines are
physical connections. Some of them are software representations of phone
lines used for various internal processes. Each phone line may be opened or
closed, which is analogous to a phone being on or off hook. An open phone
line does not necessarily incur charges, unless a call is active.

When a phone line is open (off hook), it generates callbacks detailing
any event that has happened on the line, such as an incoming call. A call-
back is simply a function that is called asynchronously by an underlying
process.

When an incoming call is detected, the callback will contain a handle that
can be passed to a function that accepts the call. At this point, call charges are
applied to the line by the phone operator. Once the call is open, the modem
behaves like a rudimentary audio device, which can play and receive basic
audio. The line can still generate callbacks, such as a line dropping or the
detection of the remote user pressing digits on the phone’s keypad.

When the call is dropped, the line remains open, but the modem can no
longer function as an audio device. Phone charges will no longer be applied
when the call is dropped. Callbacks will be generated until the line is closed.

Note:

Warning: If a line is not closed before the application exits, the com-

puter may need to be restarted before the line can be reopened.

14.3

Listening for incoming phone calls 383

Chapter 14

Without further ado, here is the first example of TAPI. This sample
application will enable you to open and close a phone line, as well as detect
and accept incoming calls.

Open a new project in Visual Studio .NET. Name the form

frmTapi

,
and add to it three buttons:

btnStart

,

btnStop

, and

btnAccept

. You should
also include a textbox named

tbStatus

 with

multiline

 set to

true

.

Add a module named

TAPI

, and add the following code. In C#, you add
a class file instead of a module. Note that in C#, the class namespace is
assumed to be

tapi1_cs

, so substitute this for the name of your project.

C#

using System;

using System.Runtime.InteropServices;

namespace tapi1_cs

{

 public class TAPI

 {

 public static int hCall;

 public static int hTAPI;

 public static int lNumLines;

 public static int hLine;

 public static linedevcaps lpLineDevCaps;

 public static frmTAPI userInterface;

 public const int TAPIVERSION = 0x10004;

 public const short LINECALLPRIVILEGE_OWNER = 0x4;

 public const short LINECALLPRIVILEGE_MONITOR = 0x2;

 public const short LINEMEDIAMODE_AUTOMATEDVOICE = 0x8;

 public const int LINE_LINEDEVSTATE = 8;

 public const int LINE_CALLSTATE = 2;

 public const int LINECALLSTATE_OFFERING = 0x2;

 public const int LINECALLSTATE_ACCEPTED = 0x4;

 public const int LINECALLSTATE_DISCONNECTED = 0x4000;

 public struct linedialparams

 {

 int dwDialPause;

 int dwDialSpeed;

384

14.3

Listening for incoming phone calls

 int dwDigitDuration;

 int dwWaitForDialtone;

 }

 public struct lineextensionid

 {

 int dwExtensionID0;

 int dwExtensionID1;

 int dwExtensionID2;

 int dwExtensionID3;

 }

 public struct linedevcaps

 {

 public int dwTotalSize;

 public int dwNeededSize;

 public int dwUsedSize;

 public int dwProviderInfoSize;

 public int dwProviderInfoOffset;

 public int dwSwitchInfoSize;

 public int dwSwitchInfoOffset;

 public int dwPermanentLineID;

 public int dwLineNameSize;

 public int dwLineNameOffset;

 public int dwStringFormat;

 public int dwAddressModes;

 public int dwNumAddresses;

 public int dwBearerModes;

 public int dwMaxRate;

 public int dwMediaModes;

 public int dwGenerateToneModes;

 public int dwGenerateToneMaxNumFreq;

 public int dwGenerateDigitModes;

 public int dwMonitorToneMaxNumFreq;

 public int dwMonitorToneMaxNumEntries;

 public int dwMonitorDigitModes;

 public int dwGatherDigitsMinTimeout;

 public int dwGatherDigitsMaxTimeout;

 public int dwMedCtlDigitMaxListSize;

 public int dwMedCtlMediaMaxListSize;

 public int dwMedCtlToneMaxListSize;

 public int dwMedCtlCallStateMaxListSize;

14.3

Listening for incoming phone calls 385

Chapter 14

 public int dwDevCapFlags;

 public int dwMaxNumActiveCalls;

 public int dwAnswerMode;

 public int dwRingModes;

 public int dwLineStates;

 public int dwUUIAcceptSize;

 public int dwUUIAnswerSize;

 public int dwUUIMakeCallSize;

 public int dwUUIDropSize;

 public int dwUUISendUserUserInfoSize;

 public int dwUUICallInfoSize;

 public linedialparams MinDialParams;

 public linedialparams MaxDialParams;

 public linedialparams DefaultDialParams;

 public int dwNumTerminals;

 public int dwTerminalCapsSize;

 public int dwTerminalCapsOffset;

 public int dwTerminalTextEntrySize;

 public int dwTerminalTextSize;

 public int dwTerminalTextOffset;

 public int dwDevSpecificSize;

 public int dwDevSpecificOffset;

 public int dwLineFeatures; // TAPI v1.4

 public string bBytes;

 }

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineAnswer (int hCall, ref string
lpsUserUserInfo, int dwSize);

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineInitialize (ref int hTAPI,int

 hInst, LineCallBackDelegate fnPtr ,

 ref int szAppName, ref int dwNumLines);

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineNegotiateAPIVersion(int hTAPI,

 int dwDeviceID, int dwAPILowVersion,

 int dwAPIHighVersion,

 ref int lpdwAPIVersion,

 ref lineextensionid lpExtensionID);

386

14.3

Listening for incoming phone calls

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineOpen (int hLineApp, int

 dwDeviceID, ref int lphLine, int dwAPIVersion,

 int dwExtVersion, ref int dwCallbackInstance,

 int dwPrivileges, int dwMediaModes,

 ref int lpCallParams);

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineGetDevCaps (int hLineApp, int

 dwDeviceID, int dwAPIVersion, int dwExtVersion,

 ref linedevcaps lpLineDevCaps);

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineSetStatusMessages (int hLine,

 int dwLineStates, int dwAddressStates);

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineDrop (int hCall, string
lpsUserUserInfo, int dwSize);

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineShutdown(int hLineApp);

}

}

VB.NET

Option Strict Off

Option Explicit On

Module VB_TAPI

 Public LastTAPIEvent As Object

 Public aditionalTAPIEventInfo As Object

 Public hCall As Integer

 Public hTAPI As Integer

 Public lNumLines As Integer

 Public hLine As Integer

 Public lpLineDevCaps As linedevcaps

 Public userInterface As frmTAPI

 Public Const TAPIVERSION As Integer = &H10004

 Public Const LINECALLPRIVILEGE_OWNER As Short = &H4S

 Public Const LINECALLPRIVILEGE_MONITOR As Short = &H2S

14.3

Listening for incoming phone calls 387

Chapter 14

 Public Const LINEMEDIAMODE_AUTOMATEDVOICE As Short = &H8S

 Public Const LINE_LINEDEVSTATE = 8

 Public Const LINE_CALLSTATE = 2

 Public Const LINECALLSTATE_OFFERING = &H2

 Public Const LINECALLSTATE_ACCEPTED = &H4

 Public Const LINECALLSTATE_DISCONNECTED = &H4000

 Structure linedialparams

 Dim dwDialPause As Integer

 Dim dwDialSpeed As Integer

 Dim dwDigitDuration As Integer

 Dim dwWaitForDialtone As Integer

 End Structure

 Structure lineextensionid

 Dim dwExtensionID0 As Integer

 Dim dwExtensionID1 As Integer

 Dim dwExtensionID2 As Integer

 Dim dwExtensionID3 As Integer

 End Structure

 Structure linedevcaps

 Dim dwTotalSize As Integer

 Dim dwNeededSize As Integer

 Dim dwUsedSize As Integer

 Dim dwProviderInfoSize As Integer

 Dim dwProviderInfoOffset As Integer

 Dim dwSwitchInfoSize As Integer

 Dim dwSwitchInfoOffset As Integer

 Dim dwPermanentLineID As Integer

 Dim dwLineNameSize As Integer

 Dim dwLineNameOffset As Integer

 Dim dwStringFormat As Integer

 Dim dwAddressModes As Integer

 Dim dwNumAddresses As Integer

 Dim dwBearerModes As Integer

 Dim dwMaxRate As Integer

 Dim dwMediaModes As Integer

 Dim dwGenerateToneModes As Integer

 Dim dwGenerateToneMaxNumFreq As Integer

 Dim dwGenerateDigitModes As Integer

388

14.3

Listening for incoming phone calls

 Dim dwMonitorToneMaxNumFreq As Integer

 Dim dwMonitorToneMaxNumEntries As Integer

 Dim dwMonitorDigitModes As Integer

 Dim dwGatherDigitsMinTimeout As Integer

 Dim dwGatherDigitsMaxTimeout As Integer

 Dim dwMedCtlDigitMaxListSize As Integer

 Dim dwMedCtlMediaMaxListSize As Integer

 Dim dwMedCtlToneMaxListSize As Integer

 Dim dwMedCtlCallStateMaxListSize As Integer

 Dim dwDevCapFlags As Integer

 Dim dwMaxNumActiveCalls As Integer

 Dim dwAnswerMode As Integer

 Dim dwRingModes As Integer

 Dim dwLineStates As Integer

 Dim dwUUIAcceptSize As Integer

 Dim dwUUIAnswerSize As Integer

 Dim dwUUIMakeCallSize As Integer

 Dim dwUUIDropSize As Integer

 Dim dwUUISendUserUserInfoSize As Integer

 Dim dwUUICallInfoSize As Integer

 Dim MinDialParams As linedialparams

 Dim MaxDialParams As linedialparams

 Dim DefaultDialParams As linedialparams

 Dim dwNumTerminals As Integer

 Dim dwTerminalCapsSize As Integer

 Dim dwTerminalCapsOffset As Integer

 Dim dwTerminalTextEntrySize As Integer

 Dim dwTerminalTextSize As Integer

 Dim dwTerminalTextOffset As Integer

 Dim dwDevSpecificSize As Integer

 Dim dwDevSpecificOffset As Integer

 Dim dwLineFeatures As Integer ' TAPI v1.4

 Dim bBytes As String

 End Structure

 Public Declare Function lineAnswer Lib "Tapi32" _

 (ByVal hCall As Integer, ByRef lpsUserUserInfo _

 As String, ByVal dwSize As Integer) As Integer

 Public Declare Function lineInitialize Lib "Tapi32" _

 (ByRef hTAPI As Integer, ByVal hInst As Integer, _

14.3

Listening for incoming phone calls 389

Chapter 14

 ByVal fnPtr As LineCallBackDelegate, ByRef _

 szAppName As Integer, ByRef dwNumLines As _

 Integer) As Integer

 Public Declare Function lineNegotiateAPIVersion Lib _

 "Tapi32" (ByVal hTAPI As Integer, ByVal _

 dwDeviceID As Integer, ByVal dwAPILowVersion _

 As Integer, ByVal dwAPIHighVersion As Integer, _

 ByRef lpdwAPIVersion As Integer, ByRef _

 lpExtensionID As lineextensionid) _

 As Integer

 Public Declare Function lineOpen Lib "Tapi32" _

 (ByVal hLineApp As Integer, ByVal dwDeviceID _

 As Integer, ByRef lphLine As Integer, ByVal _

 dwAPIVersion As Integer, ByVal dwExtVersion _

 As Integer, ByRef dwCallbackInstance _

 As Integer, ByVal dwPrivileges As Integer, _

 ByVal dwMediaModes As Integer, ByRef _

 lpCallParams As Integer) As Integer

 Public Declare Function lineGetDevCaps Lib "Tapi32" _

 (ByVal hLineApp As Integer, ByVal dwDeviceID _

 As Integer, ByVal dwAPIVersion As Integer, _

 ByVal dwExtVersion As Integer, ByRef _

 lpLineDevCaps As linedevcaps) As Integer

 Public Declare Function lineSetStatusMessages Lib _

 "Tapi32" (ByVal hLine As Integer, ByVal _

 dwLineStates As Integer, ByVal _

 dwAddressStates As Integer) As Integer

 Public Declare Function lineDrop Lib "Tapi32" _

 (ByVal hCall As Integer, ByVal lpsUserUserInfo _

 As String, ByVal dwSize As _

 Integer) As Integer

 Public Declare Function lineShutdown Lib "Tapi32" _

 (ByVal hLineApp As Integer) As Integer

End Module

390

14.3

Listening for incoming phone calls

The code for the module may look daunting because these function def-
initions are ported directly from the

TAPI.H

 C++ code from the Windows
platform SDK. It is not important to understand every parameter sent to
these API calls, but for the moment, Table 14.3 gives an overview of all the
API calls involved.

The core element of every TAPI application is the callback function

Lin-

eCallBack

. This is used to detect changes in the phone line, such as incom-
ing calls, dropped calls, or key presses on the remote telephone keypad.

Add the following code to the TAPI module:

Note:

The purpose of the

LineCallBackDelegate

 delegate is to ensure that
the underlying telephony processes have something to call back to even
after the program closes. This prevents Windows from crashing if your

application does not shut down cleanly.

Table 14.3

Telephony API functions.

API Function Purpose

lineAnswer

Picks up the phone when an incoming call is
detected. This may incur phone charges.

lineInitialize

Indicates the name of the callback function to
TAPI, and retrieves the number of modems (vir-
tual and physical) installed on the system.

lineNegotiateAPIVersion

Determines whether a modem can support a speci-
fied version of TAPI (i.e., 1.4 in this case).

lineOpen

Indicates to TAPI that the callback should now
start receiving events for a specified modem.

lineGetDevCaps

Retrieves a host of technical information about a
specified modem (see the

lineDevCaps

 structure
listed above).

lineSetStatusMessages

Indicates which, if any, events should be passed to
the callback.

lineDrop

Shuts down a modem temporarily, dropping any
active call.

lineShutdown

Shuts down a modem permanently, cleaning up
any resources.

14.3

Listening for incoming phone calls 391

Chapter 14

C#
public delegate int LineCallBackDelegate(int dwDevice, int

 dwMessage, int dwInstance, int dwParam1, int dwParam2,

 int dwParam3);

public static int LineCallBack(int dwDevice, int dwMessage,
int dwInstance, int dwParam1, int dwParam2, int dwParam3)

{

 string msgEvent="";

 msgEvent = Convert.ToString(dwMessage);

 switch (dwMessage)

 {

 case LINE_CALLSTATE:

 switch(dwParam1)

 {

 case LINECALLSTATE_OFFERING:

 msgEvent = "Incomming call";

 hCall = dwDevice;

 break;

 case LINECALLSTATE_ACCEPTED:

 msgEvent = "Call accepted";

 break;

 case LINECALLSTATE_DISCONNECTED:

 msgEvent = "Call disconnected";

 break;

 }

 break;

 case LINE_LINEDEVSTATE:

 msgEvent = "Ringing";

 break;

 }

 userInterface.showMessage("Event: " + msgEvent + " Data:"

 + dwParam1 + "\r\n");

 return 1;

}

VB.NET
Delegate Function LineCallBackDelegate(ByVal dwDevice _

As Integer, ByVal dwMessage As Integer, ByVal _

dwInstance As Integer, ByVal dwParam1 As _

Integer, ByVal dwParam2 As Integer, ByVal dwParam3 _

392 14.3 Listening for incoming phone calls

As Integer) As Integer

Public Function LineCallBack(ByVal dwDevice As _

Integer, ByVal dwMessage As Integer, ByVal dwInstance _

As Integer, ByVal dwParam1 As Integer, ByVal dwParam2 _

As Integer, ByVal dwParam3 As Integer) As Integer

 Dim msgEvent As String

 msgEvent = CStr(dwMessage)

 Select Case dwMessage

 Case LINE_CALLSTATE

 Select Case dwParam1

 Case LINECALLSTATE_OFFERING

 msgEvent = "Incomming call"

 hCall = dwDevice

 Case LINECALLSTATE_ACCEPTED

 msgEvent = "Call accepted"

 Case LINECALLSTATE_DISCONNECTED

 msgEvent = "Call disconnected"

 End Select

 Case LINE_LINEDEVSTATE

 msgEvent = "Ringing"

 Case Else

 msgEvent = dwMessage.ToString()

 End Select

 userInterface.tbStatus.Text += "Event: " & _

 msgEvent & " Data:" & dwParam1 & vbCrLf

 End Function

To explain the above code briefly: Once a line has been opened, every
event on that line will cause TAPI to make a call to this function. The
parameter dwMessage indicates broadly what has happened on the line, and
dwParam1 defines the event more concisely.

The most important message type is LINE_CALLSTATE. This indicates sig-
nificant state changes on the line. To determine the exact nature of the event, it
is necessary to drill-down and look at dwParam1. When this parameter is set to
LINECALLSTATE_OFFERING (0x2), a call has just been detected, and the handle
to that call has been passed in dwDevice. This handle can be later passed to
lineAnswer to pick up the phone. Other events such as
LINECALLSTATE_ACCEPTED (0x4) and LINECALLSTATE_DISCONNECTED (0x4000)
determine when a call becomes active and when the call is terminated.

14.3 Listening for incoming phone calls 393

Chapter 14

In some cases, the event can be assumed by looking at the dwMessage
parameter only. A LINE_LINEDEVSTATE (0x8) event is most likely to be the
ringing sound from an incoming call, but it could also be that the phone line
is out of service, indicated by a dwParam1 of LINEDEVSTATE_OUTOFSERVICE
(0x80), or that the phone line is under maintenance, indicated by
LINEDEVSTATE_MAINTENANCE (0x100). Because this type of occurrence is rare,
and a computer program can hardly resolve the problem, the event can be
ignored.

At this point, the user interface should have already been prepared with
three buttons named btnStart, btnStop, and btnAccept on the form. A
large textbox named tbStatus is required. The multiline property should
be set to true.

Click the Start button and enter the following code:

C#
private void btnStart_Click(object sender, System.EventArgs
e)

{

 startModem();

}

VB.NET
 Private Sub btnStart_Click(ByVal eventSender As _

 System.Object, ByVal eventArgs As System.EventArgs) _

 Handles btnStart.Click

 startModem()

 End Sub

Click the Stop button and enter the following code:

C#
private void btnStop_Click(object sender, System.EventArgs e)

{

 stopModem();

}

VB.NET
 Private Sub btnStop_Click(ByVal eventSender As _

 System.Object, ByVal eventArgs As System.EventArgs) _

 Handles btnStop.Click

394 14.3 Listening for incoming phone calls

 stopModem()

 End Sub

Click the Accept button and enter the following code:

C#
private void btnAcceptCall_Click(object sender,
System.EventArgs e)

{

 acceptCall();

}

VB.NET
 Private Sub btnAccept_Click(ByVal eventSender As _

 System.Object, ByVal eventArgs As System.EventArgs) _

 Handles btnAccept.Click

 acceptCall()

 End Sub

C# developers will also require the following function:

C#
public void showMessage(string message)

{

 tbStatus.Text += message;

}

The reason for the extra function is that in VB.NET the TAPI module
exposes functions and types contained within it globally. In C#, a class is
used to hold the functions and types; therefore, any calls to these functions
must be through a reference to the class. Because the functions are static,
the only programmatic difference is the TAPI prefix; however, the class
needs to have a reference to the form so that it can display text on the screen
when the TAPI callback occurs.

A computer may have more than one modem attached and will almost
certainly have a few virtual modems, which are used for various other inter-
nal purposes. Voice modems are much more useful when it comes to tele-
phony applications, but a data modem can still pick up and drop calls, even
if it cannot communicate with a human user once the line is active. This
limited functionality may be all that is required, however, if, for instance,

14.3 Listening for incoming phone calls 395

Chapter 14

the computer needs to do only one task in response to an incoming phone
call, such as connecting to the Internet or rebooting.

This code is designed to open the first line it can find that is capable of
detecting incoming calls. A more advanced system would select a voice
modem over a data modem by selecting a modem with the lowest accept-
able lMediaMode. A voice modem can work with a media mode set to
LINEMEDIAMODE_INTERACTIVEVOICE (4 hex), whereas a data modem will
generally only use LINEMEDIAMODE_DATAMODEM (10 hex). Hybrid modems do
exist, so the code below will scan all media modes from 1 to 100.

C#
public void startModem()

{

 int nError=0;

 TAPI.lineextensionid lpExtensionID = new

 TAPI.lineextensionid();

 int lUnused=0;

 int lLineID=0;

 int lNegVer=0;

 long lPrivilege=0;

 long lMediaMode=0;

 IntPtr HInstance=(IntPtr)0;

 lPrivilege = TAPI.LINECALLPRIVILEGE_OWNER +

 TAPI.LINECALLPRIVILEGE_MONITOR;

 lMediaMode = 4;

 Module thisModule;

 thisModule =

 Assembly.GetExecutingAssembly().GetModules()[0];

 HInstance = Marshal.GetHINSTANCE(thisModule);

 TAPI.LineCallBackDelegate callback = new

 TAPI.LineCallBackDelegate(TAPI.LineCallBack);

 int Unused = 0;

 nError = TAPI.lineInitialize(ref TAPI.hTAPI,

 HInstance.ToInt32(),

 callback, ref Unused, ref TAPI.lNumLines);

 for (lLineID = 0;lLineID<TAPI.lNumLines;lLineID++)

 {

 nError = TAPI.lineNegotiateAPIVersion(TAPI.hTAPI,

396 14.3 Listening for incoming phone calls

 lLineID,

 TAPI.TAPIVERSION,TAPI.TAPIVERSION,

 ref lNegVer, ref lpExtensionID);

 do

 {

 nError = TAPI.lineOpen(TAPI.hTAPI, lLineID,

 ref TAPI.hLine,

 lNegVer, lUnused, ref lUnused,

 (int)lPrivilege, (int)lMediaMode, ref lUnused);

 lMediaMode ++;

 } while (nError < 0 && lMediaMode < 100);

 if (nError == 0) break;

 }

 TAPI.lpLineDevCaps.dwTotalSize =

 Marshal.SizeOf(TAPI.lpLineDevCaps);

 TAPI.lpLineDevCaps.bBytes = new

 StringBuilder().Append(' ',2000).ToString();

 TAPI.lineGetDevCaps(TAPI.hTAPI, lLineID, lNegVer, lUnused,

 ref TAPI.lpLineDevCaps);

 TAPI.lineSetStatusMessages(TAPI.hLine,

 TAPI.lpLineDevCaps.dwLineStates, 0);

 }

VB.NET
Public Sub startModem()

 Dim nError As Integer

 Dim lpExtensionID As lineextensionid

 Dim lUnused As Integer

 Dim lLineID As Integer

 Dim i As Short

 Dim lNegVer As Integer

 Dim lPrivilege As Long

 Dim lMediaMode As Long

 lPrivilege = LINECALLPRIVILEGE_OWNER + _

 LINECALLPRIVILEGE_MONITOR

 lMediaMode = 4

nError = lineInitialize(hTAPI, _

Microsoft.VisualBasic.Compatibility.VB6.GetHInstance.ToInt32, _

AddressOf LineCallBack, 0, lNumLines)

14.3 Listening for incoming phone calls 397

Chapter 14

For lLineID = 0 To lNumLines

 nError = lineNegotiateAPIVersion(hTAPI, _

 lLineID,TAPIVERSION,TAPIVERSION, _

 lNegVer, lpExtensionID)

 Do

 nError = lineOpen(hTAPI, lLineID, hLine, lNegVer, _

 lUnused, lUnused, lPrivilege, lMediaMode, 0)

 lMediaMode = lMediaMode + 1

 Loop Until nError >= 0 Or lMediaMode = 100

 If nError = 0 Then Exit For

 Next

 lpLineDevCaps.dwTotalSize = Len(lpLineDevCaps)

 lpLineDevCaps.bBytes = Space(2000)

 lineGetDevCaps(hTAPI, lLineID, lNegVer, lUnused, _

 lpLineDevCaps)

 lineSetStatusMessages(hLine, lpLineDevCaps.dwLineStates, 0)

End Sub

It is important to shut down the line after use because no other program
can use the modem until the line has been closed. If you close your program
before the line is closed, there may be problems reopening the line, and you
may have to restart your computer.

C#
public void stopModem()

{

 int nError;

 nError = TAPI.lineShutdown(TAPI.hTAPI);

}

VB.NET
Public Sub stopModem()

 Dim nError As Integer

 nError = lineShutdown(hTAPI)

End Sub

Whenever an incoming call is detected, the callback function will set a
public variable named hCall to a reference number (a handle) that TAPI
recognizes. When this handle is passed to lineAnswer, the phone line is

398 14.3 Listening for incoming phone calls

opened. The modem is then in a position to send and receive audio data
from the remote user, provided the modem supports that functionality.

C#
public void acceptCall()

{

 int nError;

 string szUnused="";

 nError = TAPI.lineAnswer(TAPI.hCall, ref szUnused, 0);

}

VB.NET
Public Sub acceptCall()

 Dim nError As Integer

 nError = lineAnswer(hCall, "", 0)

End Sub

Because this is a demonstration program, it is worthwhile to display in
real time what is happening to the callback function. A reference to the
form is stored in a public variable so that the callback function can use that
reference to display status messages in tbStatus.

C#
private void frmTAPI_Load(object sender, System.EventArgs e)

{

 TAPI.userInterface = this;

}

VB.NET
Private Sub frmTAPI_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 userInterface = Me

End Sub

VB.NET developers will need to set option strict off at the top of
their code and include a reference to Microsoft Visual Basic .NET Compat-
ibility Runtime.

C# developers will require the following namespaces, whereas VB.NET
developers will need to add a reference to the Microsoft.VisualBa-
sic.Compatibility assembly in Project→→→→Add References.

14.4 DTMF tones 399

Chapter 14

C#
using System.Runtime.InteropServices;

using System.Text;

using System.Reflection;

To test this program, run it from Visual Studio .NET and press startMo-
dem (see Figure 14.1). Connect your modem to a phone line. With a sec-
ond phone, dial the number of the phone line that is connected to your
modem. When an incoming call is detected and displayed –on-screen, you
can press acceptCall. You will hear the ringing stop once the line is open.
Hang up, or press stopModem to disconnect the call.

14.4 DTMF tones

Dual-tone modulated frequency (DTMF) is a way of encoding a number
into an audible sound composed of two sine waves played simultaneously.
These sounds are generated when someone presses a digit on a phone’s key-
pad. This is particularly useful for automated phone conversations, such as
“Press 1 if you have a billing inquiry. Press 2 if you require technical sup-
port,” and so on.

These sounds are decoded by the modem hardware and passed up to the
TAPI callback as an event with dwMessage set to LINE_MONITORDIGITS (9
hex). The digit pressed is being held in dwParam1.

To use DTMF within a TAPI application, a few small changes need to
be made. First, add a new API definition and two new constants to the
TAPI module thus:

C#
public const short LINEDIGITMODE_DTMF = 0x2;

Figure 14.1
Basic TAPI call-

receiver
application.

400 14.4 DTMF tones

public const short LINE_MONITORDIGITS = 9;

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern int lineMonitorDigits(int hCall,int
dwDigitModes);

VB.NET
Public Const LINEDIGITMODE_DTMF As Short = &H2S

Public Const LINE_MONITORDIGITS = 9

Public Declare Function lineMonitorDigits Lib "Tapi32" _

(ByVal hCall As Integer, ByVal dwDigitModes As _

Integer) As Integer

Then add a new case to the callback function:

C#
public static int LineCallBack(...)

{

 ...

 switch (dwMessage)

 {

 ...

 case LINE_MONITORDIGITS:

 msgEvent = "DTMF";

 break;

 }

 ...

}

VB.NET
Public Function LineCallBack(...) As Integer

 ...

 Select Case dwMessage

 ...

 Case LINE_MONITORDIGITS

 MsgEvent = "DTMF"

 End Select

Then add a call to lineMonitorDigits to acceptCall:

14.5 Audio playback 401

Chapter 14

C#
public void acceptCall()

{

 int nError;

 string szUnused="";

 nError = TAPI.lineAnswer(TAPI.hCall, ref szUnused, 0);

 TAPI.lineMonitorDigits(TAPI.hCall,

 TAPI.LINEDIGITMODE_DTMF);

}

VB.NET
Public Sub acceptCall()

 Dim nError As Integer

 nError = lineAnswer(hCall, "", 0)

 lineMonitorDigits(hCall, LINEDIGITMODE_DTMF)

End Sub

14.5 Audio playback

Playing audio back through a voice modem is the core feature of any CTI
system. The following example demonstrates how to send a prerecorded
wave file as audio to a standard telephone handset. Using prerecorded mes-
sages should be adequate in most situations, where even dynamic data such
as times, dates, and prices can be composed of snippets of audio like “one,”
“two,” “three,” “four,” … “thirteen,” “teen”, “twenty,” “thirty,” “fourty,” etc.

When recordings are so varied that it would be impossible to prerecord
audio snippets, a speech synthesizer such as such as the text-to-speech appli-
cation contained in the Samples\CSharp\SimpleTTS folder of Microsoft
SAPI 5.1 (Speech Application Programming Interface) could be used. This,
however, is beyond the scope of this book.

To illustrate the principle of audio playback, the first example demon-
strates how to play a wave (.wav) file through your sound card. The same
technique is then applied to playing audio over an active phone call. The
code required to play a simple wave file may seem like overkill. It is true that
if all you require is to play a sound through the sound card, you should look
at API calls like sndPlaySound, or if sound recording is required, then the
mciSendString API should be of interest. The reason behind using low-level
code to play a wave file though a sound card is that this method can be easily
adapted to play audio directly through the phone line, albeit at lesser quality.

402 14.5 Audio playback

Open a new project in Visual Studio .NET, and add a new module.
Type the following code into it. In C#, you will create a new class. Ensure
that the namespace is the same as that used in your form; here it is assumed
to be audio. You may replace this as necessary.

C#
namespace audio

{

 public class audio

 {

 public static WAVEHDR whdr;

 public static WAVEFORMAT format_wave;

 public static WAVEHDR outHdr;

 public static int bufferIn;

 public static int numSamples;

 public static int hWaveOut;

 public const short MMIO_READ = 0x0;

 public const int CALLBACK_FUNCTION = 0x30000;

 public const short WAVE_MAPPED = 0x4;

 public const short MMIO_FINDCHUNK = 0x10;

 public const short MMIO_FINDRIFF = 0x20;

 public struct MMCKINFO

 {

 public int ckid;

 public int ckSize;

 public int fccType;

 public int dwDataOffset;

 public int dwFlags;

 }

 public struct mmioinfo

 {

 public int dwFlags;

 public int fccIOProc;

 public int pIOProc;

 public int wErrorRet;

 public int htask;

 public int cchBuffer;

 public string pchBuffer;

14.5 Audio playback 403

Chapter 14

 public string pchNext;

 public string pchEndRead;

 public string pchEndWrite;

 public int lBufOffset;

 public int lDiskOffset;

 public string adwInfo;

 public int dwReserved1;

 public int dwReserved2;

 public int hmmio;

 }

 public struct WAVEFORMAT

 {

 public short wFormatTag;

 public short nChannels;

 public int nSamplesPerSec;

 public int nAvgBytesPerSec;

 public short nBlockAlign;

 public short wBitsPerSample;

 public short cbSize;

 }

 public struct WAVEHDR

 {

 public int lpData;

 public int dwBufferLength;

 public int dwBytesRecorded;

 public int dwUser;

 public int dwFlags;

 public int dwLoops;

 public int lpNext;

 public int Reserved;

 }

[DllImport("winmm.dll",SetLastError=true)]

public static extern int waveOutWrite(int hWaveOut,

 ref WAVEHDR lpWaveOutHdr, int uSize);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int waveOutPrepareHeader(int hWaveIn,

 ref WAVEHDR lpWaveInHdr, int uSize);

[DllImport("winmm.dll",SetLastError=true)]

404 14.5 Audio playback

public static extern int mmioRead (int hmmio,

 int pch, int cch);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int waveOutOpen(ref int lphWaveIn, int

 uDeviceID, ref WAVEFORMAT lpFormat, int dwCallback,

 int dwInstance,int dwFlags);

[DllImport("kernel32.dll",SetLastError=true)]

public static extern int GlobalAlloc (int wFlags, int
dwBytes);

[DllImport("kernel32.dll",SetLastError=true)]

public static extern int GlobalLock (int hmem);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int mmioAscend (int hmmio, ref MMCKINFO

lpck, int uFlags);

[DllImport("kernel32.dll",SetLastError=true)]

public static extern int GlobalFree (int hmem);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int mmioOpenA (string szFileName, ref

mmioinfo lpmmioinfo, int dwOpenFlags);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int mmioDescend (int hmmio, ref MMCKINFO

lpck, int x, int uFlags);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int mmioRead(int hmmio, ref WAVEFORMAT
pch, int cch);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int mmioClose(int hmmio, int uFlags);

[DllImport("winmm.dll",SetLastError=true)]

public static extern int mmioStringToFOURCCA (string sz, int
uFlags);

[DllImport("winmm.dll",SetLastError=true)]

14.5 Audio playback 405

Chapter 14

public static extern int mmioDescend (int hmmio, ref MMCKINFO

lpck, ref MMCKINFO lpckParent, int uFlags);

}

}

VB.NET
Option Strict Off

Option Explicit On

Module modAudio

 Public whdr As WAVEHDR

 Public format_wave As WAVEFORMAT

 Public outHdr As WAVEHDR

 Public bufferIn As Integer

 Public numSamples As Integer

 Public hWaveOut As Integer

 Public Const MMIO_READ As Short = &H0s

 Public Const CALLBACK_FUNCTION As Integer = &H30000

 Public Const WAVE_MAPPED As Short = &H4s

 Public Const MMIO_FINDCHUNK As Short = &H10s

 Public Const MMIO_FINDRIFF As Short = &H20s

 Structure MMCKINFO

 Dim ckid As Integer

 Dim ckSize As Integer

 Dim fccType As Integer

 Dim dwDataOffset As Integer

 Dim dwFlags As Integer

 End Structure

 Structure mmioinfo

 Dim dwFlags As Integer

 Dim fccIOProc As Integer

 Dim pIOProc As Integer

 Dim wErrorRet As Integer

 Dim htask As Integer

 Dim cchBuffer As Integer

 Dim pchBuffer As String

 Dim pchNext As String

 Dim pchEndRead As String

 Dim pchEndWrite As String

406 14.5 Audio playback

 Dim lBufOffset As Integer

 Dim lDiskOffset As Integer

 Dim adwInfo As String

 Dim dwReserved1 As Integer

 Dim dwReserved2 As Integer

 Dim hmmio As Integer

 End Structure

 Structure WAVEFORMAT

 Dim wFormatTag As Short

 Dim nChannels As Short

 Dim nSamplesPerSec As Integer

 Dim nAvgBytesPerSec As Integer

 Dim nBlockAlign As Short

 Dim wBitsPerSample As Short

 Dim cbSize As Short

 End Structure

 Structure WAVEHDR

 Dim lpData As Integer

 Dim dwBufferLength As Integer

 Dim dwBytesRecorded As Integer

 Dim dwUser As Integer

 Dim dwFlags As Integer

 Dim dwLoops As Integer

 Dim lpNext As Integer

 Dim Reserved As Integer

 End Structure

 Declare Function waveOutWrite Lib "winmm.dll" (ByVal _

 hWaveOut As Integer, ByRef lpWaveOutHdr As WAVEHDR, _

 ByVal uSize As Integer) As Integer

 Declare Function waveOutPrepareHeader Lib "winmm.dll" _

 (ByVal hWaveIn As Integer, ByRef lpWaveInHdr As _

 WAVEHDR, ByVal uSize As Integer) As Integer

 Declare Function mmioRead Lib "winmm.dll" (ByVal hmmio _

 As Integer, ByVal pch As Integer, ByVal cch As _

 Integer) As Integer

14.5 Audio playback 407

Chapter 14

 Declare Function waveOutOpen Lib "winmm.dll" (ByRef _

 lphWaveIn As Integer, ByVal uDeviceID As Integer, _

 ByRef lpFormat As WAVEFORMAT, ByVal dwCallback As _

 Integer, ByVal dwInstance As Integer, ByVal dwFlags _

 As Integer) As Integer

 Declare Function GlobalAlloc Lib "kernel32" (ByVal _

 wFlags As Integer, ByVal dwBytes As Integer) As Integer

 Declare Function GlobalLock Lib "kernel32" (ByVal hmem _

 As Integer) As Integer

 Declare Function mmioAscend Lib "winmm.dll" (ByVal _

 hmmio As Integer, ByRef lpck As MMCKINFO, ByVal uFlags _

 As Integer) As Integer

 Declare Function GlobalFree Lib "kernel32" (ByVal hmem _

 As Integer) As Integer

 Declare Function mmioOpen Lib "winmm.dll" Alias _

 "mmioOpenA"(ByVal szFileName As String, ByRef _

 lpmmioinfo As mmioinfo, ByVal dwOpenFlags As _

 Integer) As Integer

 Declare Function mmioDescendParent Lib "winmm.dll" _

 Alias "mmioDescend"(ByVal hmmio As Integer, ByRef lpck _

 As MMCKINFO, ByVal x As Integer, ByVal uFlags As _

 Integer) As Integer

 Declare Function mmioReadFormat Lib "winmm.dll" Alias _

 "mmioRead"(ByVal hmmio As Integer, ByRef pch As _

 WAVEFORMAT, ByVal cch As Integer) As Integer

 Declare Function mmioClose Lib "winmm.dll" (ByVal _

 hmmio As Integer, ByVal uFlags As Integer) As Integer

 Declare Function mmioStringToFOURCC Lib "winmm.dll" _

 Alias "mmioStringToFOURCCA"(ByVal sz As String, ByVal _

 uFlags As Integer) As Integer

 Declare Function mmioDescend Lib "winmm.dll" (ByVal _

 hmmio As Integer, ByRef lpck As MMCKINFO, ByRef _

408 14.5 Audio playback

 lpckParent As MMCKINFO, ByVal uFlags As Integer) As Integer

End Module

This code is ported from the C++ prototypes, so it may appear to be
complex. Again, it is not necessary to know every parameter passed to each

Table 14.4 Windows Multimedia API functions .

waveOutPrepareHeader Indicates the format of the raw audio data to the
wave-out device, so that it can play the sound at
the correct speed and knows its format

mmioRead Reads data from an audio source into memory

GlobalAlloc Allocates a block of memory of a specified size

GlobalLock Prevents other processes from using a specified
block of memory

GlobalFree Releases a block of memory

mmioOpen Opens an audio source (e.g., a wave file)

mmioReadFormat Retrieves the format of an audio source and details
including bit rate, stereo/mono, quality, etc.

mioStringToFOURCC Converts a null-terminated string to a four-charac-
ter code

mmioDescend Descends into a chunk of a RIFF file that was
opened by using the mmioOpen function; can also
search for a given chunk

waveOutOpen Opens an audio output device

mmioAscend Ascends out of a chunk in a RIFF file descended
into with the mmioDescend function or created
with the mmioCreateChunk function

mmioDescendParent Descends into a chunk of a RIFF file that was
opened by using the mmioOpen function; can also
search for a given chunk

mmioClose Closes an audio input or output device

waveOutWrite Tells the audio output device to begin playing the
sound

14.5 Audio playback 409

Chapter 14

of these API calls, but Table 14.4 provides a synopsis of the functions
involved.

This application will load a wave file from disk into memory and then
play it through the sound card on request. Loading a wave file into memory
is done in two stages. The first is where the format of the audio is extracted
from the wave file. The audio format includes details about the quality (16-
bit or 8-bit), bit rate (44 kbps for CD quality), and whether the audio is
mono or stereo. The audio format is stored in a public variable named
format_wave.

The next step is to pull the data segment of the wave file into memory. A
wave file can be several megabytes in size, so for better performance, the
memory is allocated directly from the heap using GlobalAlloc. The wave
file is then read into this memory using mmioRead. Once the operation is
complete, the file is closed.

Add the following code to the module:

C#
public static void LoadFile(ref string inFile)

{

 int hmem = 0;

 MMCKINFO mmckinfoParentIn = new MMCKINFO();

 MMCKINFO mmckinfoSubchunkIn = new MMCKINFO();

 int hmmioIn = 0;

 mmioinfo mmioinf = new mmioinfo();

 mmioinf.adwInfo =

 (new StringBuilder()).Append(' ',4).ToString();

 hmmioIn = mmioOpenA(inFile, ref mmioinf, MMIO_READ);

 if (hmmioIn == 0) return;

 mmioDescend(hmmioIn, ref mmckinfoParentIn, 0,

 MMIO_FINDRIFF);

 mmckinfoSubchunkIn.ckid = mmioStringToFOURCCA("fmt", 0);

 mmioDescend(hmmioIn, ref mmckinfoSubchunkIn,

 ref mmckinfoParentIn, MMIO_FINDCHUNK);

 mmioRead(hmmioIn, ref format_wave,

 Marshal.SizeOf(format_wave));

 mmioAscend(hmmioIn, ref mmckinfoSubchunkIn, 0);

 mmckinfoSubchunkIn.ckid = mmioStringToFOURCCA("data", 0);

 mmioDescend(hmmioIn, ref mmckinfoSubchunkIn,

 ref mmckinfoParentIn,

 MMIO_FINDCHUNK);

410 14.5 Audio playback

 GlobalFree(hmem);

 hmem = GlobalAlloc(0x40, mmckinfoSubchunkIn.ckSize);

 bufferIn = GlobalLock(hmem);

 mmioRead(hmmioIn, bufferIn, mmckinfoSubchunkIn.ckSize);

 numSamples =

 mmckinfoSubchunkIn.ckSize / format_wave.nBlockAlign;

 mmioClose(hmmioIn, 0);

}

VB.NET
Sub LoadFile(ByRef inFile As String)

 Dim hmem As Integer

 Dim mmckinfoParentIn As MMCKINFO

 Dim mmckinfoSubchunkIn As MMCKINFO

 Dim hmmioIn As Integer

 Dim mmioinf As mmioinfo

 mmioinf.adwInfo = Space(4)

 hmmioIn = mmioOpen(inFile, mmioinf, MMIO_READ)

 If hmmioIn = 0 Then Exit Sub

 mmioDescendParent(hmmioIn, mmckinfoParentIn, 0, _

 MMIO_FINDRIFF)

 mmckinfoSubchunkIn.ckid = mmioStringToFOURCC("fmt", 0)

 mmioDescend(hmmioIn, mmckinfoSubchunkIn, _

 mmckinfoParentIn, MMIO_FINDCHUNK)

 mmioReadFormat(hmmioIn, format_wave, Len(format_wave))

 mmioAscend(hmmioIn, mmckinfoSubchunkIn, 0)

 mmckinfoSubchunkIn.ckid = mmioStringToFOURCC("data", 0)

 mmioDescend(hmmioIn, mmckinfoSubchunkIn, _

 mmckinfoParentIn, MMIO_FINDCHUNK)

 GlobalFree(hmem)

 hmem = GlobalAlloc(&H40S, mmckinfoSubchunkIn.ckSize)

 bufferIn = GlobalLock(hmem)

 mmioRead(hmmioIn, bufferIn, mmckinfoSubchunkIn.ckSize)

 numSamples = mmckinfoSubchunkIn.ckSize / _

 format_wave.nBlockAlign

 mmioClose(hmmioIn, 0)

End Sub

Once the wave file is in memory, the sound card can be instructed to
play the audio with a call to this next function, named Play. This function

14.5 Audio playback 411

Chapter 14

is asynchronous and can be called more than once during the playing of a
sound clip, provided the hardware supports it. The sound card will fetch
the audio from memory as required using a process known as direct mem-
ory access (DMA).

Because the audio format is stored in public variables, that data needs to
be transferred to the sound card such that it can correctly play back the
sounds at the right speed and quality. Once waveOutPrepareHeader has set
the sound card up, waveOutWrite then starts the sound playing.

C#
public static void Play(short soundcard)

{

 int rc = 0;

 int lFlags = 0;

 lFlags = CALLBACK_FUNCTION;

 if (soundcard != -1) lFlags = lFlags | WAVE_MAPPED;

 rc = waveOutOpen(ref hWaveOut, soundcard,

 ref format_wave, 0, 0, lFlags);

 if (rc != 0) return;

 outHdr.lpData = bufferIn;

 outHdr.dwBufferLength =

 numSamples * format_wave.nBlockAlign;

 outHdr.dwFlags = 0;

 outHdr.dwLoops = 0;

 waveOutPrepareHeader(hWaveOut, ref outHdr,

 Marshal.SizeOf(outHdr));

 waveOutWrite(hWaveOut, ref outHdr, Marshal.SizeOf(outHdr));

}

VB.NET
Sub Play(ByVal soundcard As Short)

 Dim rc As Integer

 Dim lFlags As Integer

 lFlags = CALLBACK_FUNCTION

 If soundcard <> -1 Then lFlags = lFlags Or WAVE_MAPPED

 rc = waveOutOpen(hWaveOut, soundcard, format_wave, 0, _

 0, lFlags)

 If (rc <> 0) Then Exit Sub

 outHdr.lpData = bufferIn

 outHdr.dwBufferLength = numSamples * format_wave.nBlockAlign

 outHdr.dwFlags = 0

412 14.5 Audio playback

 outHdr.dwLoops = 0

 waveOutPrepareHeader(hWaveOut, outHdr, Len(outHdr))

 waveOutWrite(hWaveOut, outHdr, Len(outHdr))

End Sub

C# developers will also require the following namespaces:

C#
using System.Runtime.InteropServices;

using System.Text;

The next step is to design the user interface. Open the form and drag on
two buttons named btnBrowse and btnPlaySound. Add a textbox name
tbWave and a File Open Dialog control named OpenFileDialog.

Click on the Browse button and add the following code:

C#
private void btnBrowse_Click(object sender, System.EventArgs
e)

{

 openFileDialog.ShowDialog();

 tbWave.Text = openFileDialog.FileName;

}

VB.NET
Private Sub btnBrowse_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnBrowse.Click

 OpenFileDialog.ShowDialog()

 tbWave.Text = OpenFileDialog.FileName

End Sub

The –1 in the code below signifies that we are using the default output
device and not a modem.

Click on the Play sound button, and add the following code:

C#
private void btnPlaySound_CSlick(object sender,
System.EventArgs e)

{

 string filename = tbWave.Text;

 audio.LoadFile(ref filename);

 audio.Play(-1);

}

14.5 Audio playback 413

Chapter 14

VB.NET
Private Sub btnPlaySound_Click(ByVal eventSender As _

System.Object, ByVal eventArgs As System.EventArgs) _

Handles btnPlaySound.Click

LoadFile(tbWave.Text)

 Play(-1)

End Sub

You will need to set option strict off at the top of your code and
include a reference to Microsoft Visual Basic .NET Compatibility Runtime.

To test the application, run it from Visual Studio .NET, press Browse,
and locate a wave file on your hard disk. Press Play sound, and you should
hear the audio being played (Figure 14.2).

14.5.1 Audio playback over TAPI

By combining the previous two example programs, and with the addition
of a few extra lines of code, we can now send audio down the phone line,
completing this introduction to CTI in .NET.

Open the first example program and include the module from the sec-
ond example program. Copy the user interface from the second example
program (including openFileDialog) and place the buttons and textbox on
the form.

The only hurdle in combining these two programs is to find a way to
map a handle to a line to a handle to an output device. Luckily, an API call
does that for us: lineGetID. Open the TAPI module and enter the follow-
ing code:

C#
public const short LINECALLSELECT_CALL = 0x4;

Figure 14.2
Wave sound player

application.

414 14.5 Audio playback

 public struct varString

 {

 public long dwTotalSize;

 public long dwNeededSize;

 public long dwUsedSize;

 public long dwStringFormat;

 public long dwStringSize;

 public long dwStringOffset;

 public string bBytes;

 }

[DllImport("Tapi32.dll",SetLastError=true)]

public static extern long lineGetID (long hLine, long

 dwAddressID, long hCall, long dwSelect,

 varString lpDevice, string lpszDeviceClass);

VB.NET
Public Const LINECALLSELECT_CALL = &H4

Structure varString

 Dim dwTotalSize As Long

 Dim dwNeededSize As Long

 Dim dwUsedSize As Long

 Dim dwStringFormat As Long

 Dim dwStringSize As Long

 Dim dwStringOffset As Long

 Dim bBytes As String

End Structure

Public Declare Function lineGetID Lib "Tapi32" _

(ByVal hLine As Long, ByVal dwAddressID As _

Long, ByVal hCall As Long, ByVal dwSelect As Long, _

ByRef lpDevice As varString, ByVal lpszDeviceClass As _

String) As Long

Go to the user interface, click on the Browse button, and add the fol-
lowing code:

C#
private void btnBrowse_Click(object sender, System.EventArgs
e)

14.5 Audio playback 415

Chapter 14

{

 openFileDialog.ShowDialog();

 tbWave.Text = openFileDialog.FileName;

}

VB.NET
Private Sub btnBrowse_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnBrowse.Click

 OpenFileDialog.ShowDialog()

 tbWave.Text = OpenFileDialog.FileName

End Sub

Because we are not playing through the default audio output device, we
can no longer specify –1 for the sound card parameter in Play; we have to
use GetLineID.

C#
private void btnPlaySound_Click(object sender,
System.EventArgs e)

{

 string filename = tbWave.Text;

 audio.LoadFile(ref filename);

 audio.Play((short)Convert.ToInt32

 (TAPI.GetLineID("wave/out")));

}

VB.NET
Private Sub btnPlaySound_Click(ByVal sender As _

System.Object, ByVal e As System.EventArgs) Handles _

btnPlaySound.Click

 LoadFile(tbWave.Text)

 Play(GetLineID("wave/out"))

End Sub

The final step is to implement the GetLineID function. This retrieves
the audio output device from the current call handle. As the parameters
imply, this function is only valid when an active call is in progress (i.e., you
can’t send audio down a phone line if no one is listening).

The string manipulation is used to convert a C++ representation of a
variable-length string to the .NET string type.

416 14.5 Audio playback

C#
public static string GetLineID(string sWave)

{

 long nError = 0;

 string sTemp = "";

 TAPI.varString oVar = new TAPI.varString();

 System.Text.StringBuilder sb = new

 System.Text.StringBuilder();

 oVar.bBytes = sb.Append(' ',2000).ToString();

 oVar.dwTotalSize = Marshal.SizeOf(oVar);

 nError = lineGetID(hLine, 0, hCall,

 LINECALLSELECT_CALL, oVar, sWave);

 if (oVar.dwStringOffset == 0) return "-1";

 sTemp = oVar.bBytes.Substring(0,

 (int)oVar.dwStringSize).Trim();

 return sTemp;

}

VB.NET
Public Function GetLineID(ByVal sWave As String) as String

 Dim nError As Long

 Dim sTemp As String

 Dim oVar As varString

 oVar.bBytes = Space(2000)

 oVar.dwTotalSize = Len(oVar)

 nError = lineGetID(hLine, 0, hCall, _

 LINECALLSELECT_CALL, oVar, sWave)

 If oVar.dwStringOffset = 0 Then Return -1

 sTemp = Trim(oVar.bBytes.Substring(0, oVar.dwStringSize))

 Return sTemp

End Function

To test this program, run it from Visual Studio .NET and press startMo-
dem (Figure 14.3). Connect your modem to a phone line. With a second
phone, dial the number of the phone line that is connected to your modem.
When an incoming call is detected and displayed on-screen, you can press
acceptCall. You will hear the ringing stop once the line is open. Press
Browse, and locate a file on your hard drive, press Play Sound, and you
should hear it through your phone.

14.6 Conclusion 417

Chapter 14

You may notice a distinct loss in sound quality when audio is sent over
the phone line. Choosing different file types can lessen this effect. The offi-
cial format for TAPI is u-Law 56 Kbps (7 KHz, 8-bit mono) in the United
States and a-law 64 Kbps (8 KHz, 8-bit mono) in Europe; however, from
personal experience, I have found that 22,050 Hz is clearer, even over
TAPI connections.

14.6 Conclusion

This chapter detailed the technology involved in making a computer per-
form a task that most of us do every day—answering the phone. Systems
like these can be used to assist any organization’s customer service activities,
providing scalable call routing, and can answer simple queries without
requiring full-time phone operators.

The applications of such a system are virtually unlimited because it can
be used to provide information and services to people who can’t or don’t
have time to log into the Internet. They are used in cinemas, ticket booking
agencies, and mobile phone top-up centers.

The next chapter deals with an interesting technology that solves the
problem of reliably sending data between a client and server that are not
always connected to each other. Say hello to MSMQ!

Figure 14.3
TAPI call receiver
with DTMF and

playback.

This page intentionally left blank

419

15

Message Queues

15.1 Introduction

In all of the networking examples so far, it is necessary for the client and
server to be running at the same time in order for communication to be
sent between them. Message queuing software facilitates the construction
of queues between client and server over an impermanent connection,
such that messages are stored until a connection is present. Microsoft Mes-
sage Queue (MSMQ) is the most applicable system for .NET, but other
products such as IBM WebSphere MQ (

www.ibm.com/software/ts/mqseries

)
or TIBCO

RendezVous

(http://www.tibco.com/software/enterprise_backbone/
rendezvous.jsp)

are alternatives.

Message queuing is often used as a backup system for whenever a com-
munication link fails between two servers. This improves overall system sta-
bility in the event of catastrophic failure. This type of fallback mechanism is
vital in systems where out-of-sync data between sites could cause opportu-
nities for malicious users to defraud the system. One could imagine if a per-
son were to withdraw funds from two ATMs simultaneously, during a
temporary interbank communications link failure. If the ATMs did not
propagate the transactions back to the bank once the link was restored, then
the person could run away with double the available balance.

This chapter begins by describing the basics of MSMQ and providing
examples of how to send and receive objects via a message queue. This topic
is then developed toward the end of the chapter by detailing other features
of MSMQ, which help manage how messages are sent through the system.

420

15.3

Implementing a message queue

15.2 MSMQ

A common application for MSMQ is where a business may have many dif-
ferent regional outlets and one head office, where stock replacement and

auditing takes place. Each outlet may have only a dial-up Internet connec-
tion, but a system still needs to be in place to provide good, reliable data
consolidation whenever the satellite offices are connected to the head office.
The amount of work involved in implementing a custom solution is sub-
stantial, especially if the system is expected to scale upward.

MSMQ is included with Windows XP Professional and available as part
of the Windows NT4 Option Pack. To install it, click Start

→→→→

Control
Panel

→→→→

Add or Remove Programs

→→→→

Windows components, and check Mes-
sage Queuing, and then Next.

You can administer MSMQ by clicking Start

→→→→

Control Panel

→→→→

Admin-
istrative Tools

→→→→

Computer Management

→→→→

Services and Applications

→→→→

Mes-
sage Queuing (Figure 15.1).

15.3 Implementing a message queue

To run this example, you will need MSMQ running on your computer. In
this example, a message will be passed between two computers with an

Figure 15.1

Computer
Management

dialog, MSMQ
console.

15.3

Implementing a message queue 421

Chapter 15

impermanent link between them. If you are on a LAN, you can simulate
the dropout in connectivity by unplugging the Ethernet cable; for readers
with only one computer, the effect can be simulated by running the client
and server one after the other (not simultaneously).

An application not too dissimilar from this example could be used to per-
form database replication, where the string being sent via MSMQ could be
an SQL statement, and the receiver could execute the statement, rather than
simply displaying it. In this way, each action performed on the local database
could be mirrored on a remote database whenever they are connected.

The types of data that can be placed on queues are not limited to strings.
All objects that can be serialized can be placed on the message queue as XML.

Create a new Visual Studio .NET application as Per usual. Add a refer-
ence to

System.Messaging.dll

 with Projects

→→→→

Add Reference.

This code will first check if a queue is available, and then create it if it is
not available. Once that is done, the contents of a textbox will be sent to the
queue. Draw a textbox named

tbMessage

 and a button named

btnSend

,
and then click on the button.

C#

private void btnSend_Click(object sender, System.EventArgs e)

{

 string queueName = ".\\private$\\test";

 MessageQueue mq;

 if (MessageQueue.Exists(queueName))

 {

 mq=new MessageQueue(queueName);

 }

 else

 {

 mq = MessageQueue.Create(queueName);

 }

 mq.Send(tbMessage.Text);

}

VB.NET

Private Sub btnSend_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 Dim queueName As String = ".\private$\test"

 Dim mq As MessageQueue

 If MessageQueue.Exists(queueName) Then

 mq=New MessageQueue(queueName)

422

15.3

Implementing a message queue

 Else

 mq = MessageQueue.Create(queueName)

 End If

 mq.Send(tbMessage.Text)

End Sub

Table 15.1

Significant members of the

MessageQueue

 class .

Formatter

Specifies the formatter used to serialize or
deserialize the message body; can be either

XmlMessageFormatter

,

ActiveXMessageFormatter

, or

BinaryMessageFormatter

Label

Specifies a human-readable queue description

Path

Specifies the location of the queue

Transactional

Specifies whether the queue can accept
nontransactional messages

Authenticate

Specifies whether the queue can accept
unauthenticated messages

EncryptionRequired

Specifies whether the queue can accept
unencrypted messages

Close

Frees all resources used by the handle to the
queue

Create

Creates a new queue at the specified path

Delete

Removes a queue from MSMQ, deleting all
messages contained therein

GetAllMessages

Returns an array of messages from the specified
queue

GetPrivateQueuesByMachine

Returns an array of private message queues
from the specified machine

GetPublicQueues

Returns an array of queues on the local
network

Receive

Returns a message from the top of the specified
queue

Send

Sends a message to the tail of the specified
queue

Purge

Deletes all messages from a queue, but does
not delete the queue itself

15.3

Implementing a message queue 423

Chapter 15

This code first looks at MSMQ to see if a queue of the name

\private$\

test

 has been created on the local machine. If it has not, then a

Message-

Queue

 object (Table 15.1) points to the existing one. The contents of the text-
box (

tbMessage

) are then sent as a message to this queue.

More than one queue can be held on one MSMQ server. They are
named

<

Server name

 >\private$\<

Queue name

 >

, where

<

Server

name

 >

 can be either the computer name of the MSMQ server or “

.

” for
the local server. When the MSMQ server is not on the local intranet, then
MSMQ over HTTP may be used. In this case, the server name can be an IP
address or domain name. MSMQ HTTP support must be installed from
Add/Remove Windows components in the Control Panel (Figure 15.2).

HTTP message queues are hosted by IIS and reside in the

msmq

 virtual
folder. In this way, queues over HTTP take the form:

http://<

domain name

>/msmq/<

queue name

>

You will also require the following namespace:

C#

using System.Messaging;

VB.NET

Imports System.Messaging

To test this application, ensure that you have MSMQ installed on your
system, and then run this program from Visual Studio .NET. You should
then type some text into the box provided and press Send, as shown in Fig-
ure 15.3.

Go to Message Queuing in Computer Management, and click on Pri-
vate Queues

→→→→

Test

→→→→

Queue Messages. Double-click on the envelope icon on
the right-hand side, and click on the Body tab in the new window. You
should see an XML representation of the text that was sent (Figure 15.4).

To complete the example, it is also necessary to know how to read in a
message from a message queue, as well as how to write to it.

Draw a textbox,

tbStatus

, and a button,

btnListen

. Ensure that

Mul-

tiLine

 is set to

true

 for the textbox. Click on

btnListen

and enter the fol-
lowing code:

424

15.3

Implementing a message queue

C#

private void btnListen_Click(object sender, System.EventArgs
e)

{

 Thread thdListener = new Thread(new ThreadStart(QThread));

 thdListener.Start();

}

VB.NET

Private Sub btnListen_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 Dim thdListener As Thread = New Thread(New _

 ThreadStart(AddressOf QThread))

 thdListener.Start()

End Sub

Figure 15.2

MSMQ HTTP
support.

Figure 15.3

Basic MSMQ
application.

15.3

Implementing a message queue 425

Chapter 15

Because it is possible that there are no messages on the queue, the server
will block (hang) at the point of calling the

Receive

 method; therefore,

QThread

 is invoked as a new thread.

C#

public void QThread()

{

 string queuePath = ".\\private$\\test";

 MessageQueue queue = new MessageQueue(queuePath);

 System.Messaging.Message msg;

 ((XmlMessageFormatter)queue.Formatter).TargetTypes =

 new Type[1];

 ((XmlMessageFormatter)queue.Formatter).TargetTypes[0] =

 "".GetType();

 while(true)

 {

 msg= queue.Receive();

 tbStatus.Text += msg.Body + "\n";

 }

}

VB.NET

Public Sub QThread()

 Dim queuePath As String = ".\private$\test"

 Dim queue As MessageQueue = New MessageQueue(queuePath)

Figure 15.4

Native XML
format of a message

in MSMQ.

426 15.3 Implementing a message queue

 Dim msg As System.Messaging.Message

 CType(queue.Formatter, XmlMessageFormatter).TargetTypes _

 = New Type(0){}

 CType(queue.Formatter, XmlMessageFormatter).TargetTypes(0) _

 = "".GetType()

 Do

 msg= queue.Receive()

 tbStatus.Text += msg.Body + VbCrLf

 Loop

End Sub

In Figure 15.4, it is clear that messages are stored internally in XML for-
mat. This permits the storage of complex types as well as simple strings, but
it is necessary to indicate to MSMQ the target type of the object that you
want to read back into. In this case, we are reading a string, so the
TargetType is set to string (obtained by the "".GetType() construct). It is
not necessary to specify the object type when sending to a message queue
because .NET can determine this from reflection. The deserialized version
of the object is then held in the Message object (Table 15.2).

Table 15.2 Significant members of the Message class .

AcknowledgeType Specifies the events that require acknowledgment
from MSMQ

Acknowledgment Determines the type of acknowledgment that is
flagged by the message

AdministrationQueue Specifies the queue to which acknowledgment
messages are to be sent

AttachSenderId Includes the ID of the sending machine in the
message

Body Specifies the message payload, which can be any
type of object

Label Includes a human-readable description of the
message

MessageType Indicates that the message is normal, an
acknowledgment, or a report

Priority Determines where in the queue the message is to
be placed

15.3 Implementing a message queue 427

Chapter 15

You will need a reference to System.Messaging.dll and the following
namespaces:

C#
using System.Threading;

using System.Messaging;

VB.NET
imports System.Threading

imports System.Messaging

To test this application, run them both from their .exe files. Type “hello
world” into the client, and press Send. The message will not appear on the
server because it is not listening yet. Press the Listen button on the server,
and the message will appear in the status box, as shown in Figure 15.5.

15.3.1 Queuing complex objects

It is perfectly valid to use the serialization and deserialization techniques
described in Chapter 2 to send complex objects as strings through MSMQ.
In the interest of efficiency and simplicity, it is better to use the built-in
functionality in MSMQ to perform this task.

In the following example, imagine a situation where a chain of hotels
has a central booking agency. This agency takes phone reservations from
overseas customers and places each booking in a queue destined for a par-
ticular hotel. This hotel would periodically dial in to collect the latest book-
ings from this queue.

Recoverable Specifies whether the message is stored in memory
or disk

SenderId Indicates the sending machine

TimeToReachQueue Specifies the maximum length of time it should
take for a message to reach a queue

UseDeadLetterQueue Determines if the time-expired messages should go
to the dead-letter queue

UseJournalQueue Determines if received messages should be
archived in the journal

Table 15.2 Significant members of the Message class (continued).

428 15.3 Implementing a message queue

A hotel needs to know the names of the tourists, when they are coming
and leaving, and what type of room they are looking for. Furthermore, the
reservation system at the hotel is automated, so the message has to be in a
well-defined format.

Building on the previous example to send strings to a message queue,
include a class that represents a hotel reservation. Add the following code
directly at the start of the namespace:

C#
public class booking

{

 public enum RoomType

 {

 BASIC,

 EN_SUITE,

 DELUXE

 }

 public class Room

 {

 public Int16 occupants;

 public RoomType roomType;

 }

 public string name;

 public Room room;

 public DateTime arrival;

 public DateTime departure;

Figure 15.5
Basic MSMQ

receiver
application.

15.3 Implementing a message queue 429

Chapter 15

}

VB.NET
Public Class booking

 Public Enum RoomType

 BASIC

 EN_SUITE

 DELUXE

 End Enum

 Public Class Room

 Public occupants As Int16

 Public roomType As RoomType

 End Class

 Public name As String

 Public myRoom As Room

 Public arrival As DateTime

 Public departure As DateTime

End Class

Select the Form Design tab, and remove the textbox (tbMessage) from
the form. Now drag on two textboxes named tbName and tbOccupants. If
you wish, you can use labels to indicate what each textbox is used for,
although this is not essential. Draw on two Date-Picker controls named
dtArrival and dtDeparture. A combo box named cbType is also required.
You must click on the Items property for the combo box and add three
strings: basic, en suite, and deluxe.

Click on the Send button and add the following code:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 string queueName = ".\\private$\\test";

 MessageQueue mq;

 if (MessageQueue.Exists(queueName))

 {

 mq=new MessageQueue(queueName);

 }

 else

 {

430 15.3 Implementing a message queue

 mq = MessageQueue.Create(queueName);

 }

 booking hotelBooking = new booking();

 hotelBooking.name = tbName.Text;

 hotelBooking.departure = DateTime.Parse(dtDeparture.Text);

 hotelBooking.arrival = DateTime.Parse(dtArrival.Text);

 hotelBooking.room = new booking.Room();

 hotelBooking.room.occupants =

 Convert.ToInt16(tbOccupants.Text);

 switch(cbType.SelectedIndex.ToString())

 {

 case "basic":

 hotelBooking.room.roomType = booking.RoomType.BASIC;

 break;

 case "en suite":

 hotelBooking.room.roomType = booking.RoomType.EN_SUITE;

 break;

 case "deluxe":

 hotelBooking.room.roomType = booking.RoomType.DELUXE;

 break;

 }

 mq.Send(hotelBooking);

}

VB.NET
Private Sub btnSend_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 Dim queueName As String = ".\private$\test"

 Dim mq As MessageQueue

 If MessageQueue.Exists(queueName) Then

 mq=New MessageQueue(queueName)

 Else

 mq = MessageQueue.Create(queueName)

 End If

 Dim hotelBooking As booking = New booking()

 hotelBooking.name = tbName.Text

 hotelBooking.departure = DateTime.Parse(dtDeparture.Text)

 hotelBooking.arrival = DateTime.Parse(dtArrival.Text)

 hotelBooking.myroom = New booking.Room()

 hotelBooking.myroom.occupants = _

 Convert.ToInt16(tbOccupants.Text)

15.3 Implementing a message queue 431

Chapter 15

 Select Case cbType.SelectedIndex.ToString()

 Case "basic"

 hotelBooking.myroom.roomType = booking.RoomType.BASIC

 Exit Sub

 Case "en suite"

 hotelBooking.myroom.roomType = _

 booking.RoomType.EN_SUITE

 Exit Sub

 Case "deluxe"

 hotelBooking.myroom.roomType = booking.RoomType.DELUXE

 Exit Sub

 End Select

 mq.Send(hotelBooking)

End Sub

You will need a reference to System.Messaging.dll and the following
namespaces:

C#
using System.Threading;

using System.Messaging;

VB.NET
imports System.Threading

imports System.Messaging

To test the application at this stage, you can run it from Visual Studio
.NET. Type some reservation details into the boxes provided, and press send
(Figure 15.6).

If you open the test queue in Computer Management and right-click on
Properties→→→→Body for the new message, you will notice a more verbose XML
representation of the booking object:

<?xml version="1.0"?>

<booking xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <name>Fiach Reid</name>

 <room>

 <occupants>

 1

 </occupants>

 <roomType>

432 15.3 Implementing a message queue

 BASIC

 </roomType>

 </room>

 <arrival>

 2002-04-28T00:00:00.0000000-00:00

 </arrival>

 <departure>

 2002-05-07T00:00:00.0000000-00:00

 </departure>

</booking>

Now, to deserialize the object at the receiving end, it is just a matter of
altering the TargetType in the queue formatter from string to booking.
You will also need to display the new booking, and of course, you still need
to include the booking class after the namespace.

Replace the code in the QThread function with the following:

C#
public void QThread()

{

 string queuePath = ".\\private$\\test";

 MessageQueue queue = new MessageQueue(queuePath);

 System.Messaging.Message msg;

 ((XmlMessageFormatter)queue.Formatter).TargetTypes =

 new Type[1];

 ((XmlMessageFormatter)queue.Formatter).TargetTypes[0] =

Figure 15.6
Complex object

MSMQ transfer
example.

15.3 Implementing a message queue 433

Chapter 15

 (new booking()).GetType();

 while(true)

 {

 msg= queue.Receive();

 booking hotelBooking = (booking)msg.Body;

 tbStatus.Text += "tourist name:" +

 hotelBooking.name + "\n";

 tbStatus.Text += "arrival:" +

 hotelBooking.arrival + "\n";

 tbStatus.Text += "departure:" +

 hotelBooking.departure + "\n";

 if (hotelBooking.room!=null)

 {

 tbStatus.Text += "room occupants:" +

 hotelBooking.room.occupants + "\n";

 tbStatus.Text += "room type:" +

 hotelBooking.room.roomType.ToString() + "\n"; }

 }

}

VB.NET
Public Sub QThread()

 Dim queuePath As String = ".\private$\test"

 Dim queue As MessageQueue = New MessageQueue(queuePath)

 Dim msg As System.Messaging.Message

 CType(queue.Formatter, XmlMessageFormatter).TargetTypes = _

 New Type(0) {}

 CType(queue.Formatter, _

 XmlMessageFormatter).TargetTypes(0) = _

 (New booking()).GetType()

 Do

 msg= queue.Receive()

 Dim hotelBooking As booking = CType(msg.Body, booking)

 tbStatus.Text += "tourist name:" + _

 hotelBooking.name + vbcrlf

 tbStatus.Text += "arrival:" + _

 hotelBooking.arrival + vbcrlf

 tbStatus.Text += "departure:" + _

 hotelBooking.departure + vbcrlf

 if not hotelBooking.room is nothing then

 tbStatus.Text += "room occupants:" & _

434 15.3 Implementing a message queue

 hotelBooking.myroom.occupants & vbcrlf _

 tbStatus.Text += "room type:" & _

 hotelBooking.myroom.roomType.ToString() & vbcrlf

 end if

 Loop

 End Sub

This code locates an existing queue named \private$\test on the local
machine. Because the message contains only one type of object, the Tar-
getTypes property is set to an array of one type. The first and only object
passed is a booking, and therefore element 0 in the array of target types is
set to the booking type.

The thread now enters an infinite loop. Where it encounters the Receive
method, the execution blocks until a new message appears in the queue. This
message is converted into a booking and then displayed on-screen.

To test this, first check that the top message in the test queue is one that
represents a hotel booking. If you are unsure, delete the queue, and then
run the preceding program to post a new reservation to the queue. Now run
this program from Visual Studio .NET and press Listen. You should see the
details of a new booking in the textbox, as shown in Figure 15.7.

Figure 15.7
Complex object

MSMQ receiver
example.

15.3 Implementing a message queue 435

Chapter 15

15.3.2 Transactions

Like databases, MSMQ supports transactions. A transaction is an atomic
unit of work that either succeeds or fails as a whole. In a banking system, a
transaction might involve debiting a checking account via one message
queue and crediting a savings account via another queue. If a system failure
were to occurr in the middle of the transaction, the bank would be liable for
theft, unless the transaction were rolled back. After the system restarted, the
transaction could be carried out again.

The following code attempts to add two messages to a queue. The code
has a deliberate division by zero error between the two message sends. If
this line is commented out, both operations are carried out; if not, then nei-
ther operation is carried out.

Open the client application in the previous example. Click on the Send
button, and replace the code with the following:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 int zero = 0;

 string queueName = ".\\private$\\test2";

 MessageQueueTransaction msgTx = new

 MessageQueueTransaction();

 MessageQueue mq;

 if (MessageQueue.Exists(queueName))

 {

 mq=new MessageQueue(queueName);

 }

 else

 {

 mq = MessageQueue.Create(queueName,true);

 }

 msgTx.Begin();

 try

 {

 mq.Send("Message 1",msgTx);

 zero = 5 / zero; // deliberate error

 mq.Send("Message 2",msgTx);

 msgTx.Commit();

 }

436 15.3 Implementing a message queue

 catch

 {

 msgTx.Abort();

 }

 finally

 {

 mq.Close();

 }

}

VB.NET
Private Sub btnSend_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim zero As Integer = 0

 Dim queueName As String = ".\private$\test2"

 Dim msgTx As MessageQueueTransaction = New _

 MessageQueueTransaction()

 Dim mq As MessageQueue

 If MessageQueue.Exists(queueName) Then

 mq=New MessageQueue(queueName)

 Else

 mq = MessageQueue.Create(queueName,True)

 End If

 msgTx.Begin()

 Try

 mq.Send("Message 1",msgTx)

 zero = 5 / zero ' deliberate error

 mq.Send("Message 2",msgTx)

 msgTx.Commit()

 Catch

 msgTx.Abort()

 Finally

 mq.Close()

 End Try

End Sub

This code creates a queue as before. The Begin method initiates a trans-
action. This means that any changes to the queue will not physically take
place until the Commit method is called. If the Abort method is called, or
the computer crashes, then any statements issued directly after the Begin
method are ignored. In this case, an error occurs before the second message

15.3 Implementing a message queue 437

Chapter 15

is posted to the queue. This error throws an exception, which causes code to
be executed that aborts the transaction.

To test this application, run it from Visual Studio .NET with the
deliberate error left in the code. Press Send, and then open Computer
Management and look at Message Queues. You will notice that a second
queue has been created, but neither message has been posted. If you now
remove the deliberate error from the code and rerun the application, then
press the Send button, you will see both messages appearing in the Queue
Messages list.

15.3.3 Acknowledgments

Most of the work done by MSMQ is behind the scenes and completely
transparent to the application. If MSMQ fails for some reason, the applica-
tion—and therefore the user—will not know that today’s data was never
transferred. Acknowledgments provide a mechanism for the sending appli-
cation to verify that the receiving application has read the message and that
the message queue is functioning correctly.

This example builds on the code for the first example in this chapter, so
open that project in Visual Studio .NET and click on the Send button.

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 string queueName = ".\\private$\\test";

 MessageQueue mq;

 if (MessageQueue.Exists(queueName))

 {

 mq=new MessageQueue(queueName);

 }

 else

 {

 mq = MessageQueue.Create(queueName);

 }

 System.Messaging.Message myMessage = new

 System.Messaging.Message();

 myMessage.Body = tbMessage.Text;

 myMessage.AdministrationQueue =

 new MessageQueue(".\\private$\\test");

 myMessage.AcknowledgeType = AcknowledgeTypes.FullReachQueue

438 15.3 Implementing a message queue

 AcknowledgeTypes.FullReceive;

 mq.Send(myMessage);

}

VB.NET
Private Sub btnSend_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 Dim queueName As String = ".\private$\test"

 Dim mq As MessageQueue

 If MessageQueue.Exists(queueName) Then

 mq=New MessageQueue(queueName)

 Else

 mq = MessageQueue.Create(queueName)

 End If

 Dim myMessage As System.Messaging.Message = New _

 System.Messaging.Message()

 myMessage.Body = tbMessage.Text

 myMessage.AdministrationQueue = New MessageQueue(_

 ".\private$\test")

 myMessage.AcknowledgeType = _

 AcknowledgeTypes.FullReachQueue or _

 AcknowledgeTypes.FullReceive

 mq.Send(myMessage)

End Sub

The preceding code checks for a private queue named \private$\test.
If one is not found, a queue is then created. A message is then created, ready
for posting to this queue. This message is set to acknowledge reaching the
queue (AcknowledgeTypes.FullReachQueue) and reaching the end-recipi-
ent (AcknowledgeTypes.FullReceive). Acknowledgments are set to appear
in the same test queue.

To test this piece of code, run it from Visual Studio .NET, type some text
into the box provided, and press send. On opening Computer Manage-
ment→→→→Message Queuing→→→→Private Queues→→→→Test, you will notice acknowledg-
ment messages interspersed throughout the list. Acknowledgment messages
have a body size of 0 and carry a green circle on the envelope icon (Figure
15.8). The receiver program can recognize acknowledgment messages when a
message has its MessageType set to MessageType.Acknowledgment.

15.4 Timeouts 439

Chapter 15

Note: When each message is received, a second acknowledgment message
will appear in the queue, labeled “The message was received.”

15.4 Timeouts

“Late data is bad data” is an expression that applies particularly to MSMQ.
Imagine a scenario in which MSMQ were used to coordinate last-minute
hotel bookings. When a client (a hotel) could not be contacted for more
than 24 hours after a booking, it would be imperative that alternative
action be taken, such as having an operator call the hotel to confirm the
booking manually.

Timeouts provide a mechanism to age messages, such that if they do not
reach their destination in time, the message can be deleted or moved to a
dead-letter queue so that alternative actions can be taken.

In this example, messages are sent with a five-second timeout. This
means they will only appear in the queue for five seconds after being sent,
before they are either read by a receiving application or discarded to the
dead-letter messages queue. This example builds on the preceding example.

Open the preceding example in Visual Studio .NET, and click on the
Send button. Then enter the following code:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 string queueName = ".\\private$\\test";

Figure 15.8
MSMQ

acknowledgments.

440 15.4 Timeouts

 MessageQueue mq;

 if (MessageQueue.Exists(queueName))

 {

 mq=new MessageQueue(queueName);

 }

 else

 {

 mq = MessageQueue.Create(queueName);

 }

 System.Messaging.Message myMessage = new

 System.Messaging.Message();

 myMessage.Body = tbMessage.Text;

 myMessage.TimeToBeReceived = new TimeSpan(0,0,0,5);

 myMessage.UseDeadLetterQueue = true;

 mq.Send(myMessage);

}

VB.NET
Private Sub btnSend_Click(ByVal sender As Object, ByVal e As
System.EventArgs)

 Dim queueName As String = ".\private$\test"

 Dim mq As MessageQueue

 If MessageQueue.Exists(queueName) Then

 mq=New MessageQueue(queueName)

 Else

 mq = MessageQueue.Create(queueName)

 End If

 Dim myMessage As System.Messaging.Message = _

 New System.Messaging.Message()

 myMessage.Body = tbMessage.Text

 myMessage.TimeToBeReceived = New TimeSpan(0,0,0,5)

 myMessage.UseDeadLetterQueue = True

 mq.Send(myMessage)

End Sub

In this code, the TimeToBeReceived for the message is set to five sec-
onds. A related property TimeToReachQueue can also be used to time-out
messages that do not reach the queue in a timely fashion. By setting
UseDeadLetterQueue to true, all messages that pass their expiration time
are moved into the dead-letter queue for administrative purposes.

15.5 Journal 441

Chapter 15

To test this piece of code, run it from Visual Studio .NET. Type some-
thing into the box provided and press Send. Quickly open Computer Man-
agement, and click on the test queue (you may need to right-click and press
Refresh). You should see a new message in the list. The messages will disap-
pear again if you refresh the queue after five seconds. Click on System
Queues→→→→Dead-letter messages to view expired messages (Figure 15.9).

15.5 Journal

Journaling is where a record is kept of incoming and outgoing messages to
and from remote machines. To specify that the message should be recorded
in the journal, the UseJournalQueue method is used.

In the following example, you will need to have the message receiver pro-
gram described earlier in this chapter close at hand. When sending a message
that uses the Journal queue, it will only be transferred to that queue once it
has been received. This differs from acknowledgment because the body of
the message is stored rather than simply flagging an empty message.

Open the preceding example in Visual Studio .NET, and click on the
Send button. Then enter the following code:

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 string queueName = ".\\private$\\test";

 MessageQueue mq;

 if (MessageQueue.Exists(queueName))

 {

 mq=new MessageQueue(queueName);

Figure 15.9
MSMQ message

timeouts.

442 15.5 Journal

 }

 else

 {

 mq = MessageQueue.Create(queueName);

 }

 System.Messaging.Message myMessage = new

 System.Messaging.Message();

 myMessage.Body = tbMessage.Text;

 myMessage.UseJournalQueue = true;

 mq.Send(myMessage);

}

VB.NET
Private Sub btnSend_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)

 Dim queueName As String = ".\private$\test"

 Dim mq As MessageQueue

 If MessageQueue.Exists(queueName) Then

 mq=New MessageQueue(queueName)

 Else

 mq = MessageQueue.Create(queueName)

 End If

 Dim myMessage As System.Messaging.Message = _

 New System.Messaging.Message()

 myMessage.Body = tbMessage.Text

 myMessage.UseJournalQueue = True

 mq.Send(myMessage)

End Sub

This piece of code creates a queue as before and posts a string as a mes-
sage to the queue. Because UseJournalQueue is set, the message will be
moved to this system queue after it has been received.

To test this piece of code, run it from Visual Studio .NET. Type some-
thing into the box provided and press Send. Open Computer Management
and look at the test queue to confirm that the message is in the system. Start
the message receiver program, and press Listen. The message should appear
in the textbox of the receiver program and be removed from the queue.
Clicking on System Queues→→→→Journal messages should show the message
once again (Figure 15.10).

15.6 Queued Components 443

Chapter 15

15.6 Queued Components

The bulk of the MSMQ code examples to date are very much concerned
with the underlying plumbing of sending and receiving messages. You may
wish to write code that abstracts away from the underlying MSMQ send &
receive mechanisms and concentrate more on business logic.

MSMQ can work in tandem with COM+ component services to provide
a means of asynchronous, queued invocation of object methods via Queued
Components. In the below example, a component that can perform data-
base updates is created, and a corresponding client is used to call methods on
this component. If there were an impermanent connection to this database,
then the component may fail during an update, MSMQ handles retries, and
queues method calls whenever the component is unavailable.

An example application of the below code is where a database update is
required, but is of lower priority than other code which must not be
delayed whist waiting for the update to complete.

You may create a queued component by firstly generating a strong name
key file by typing sn –k CompPlusServer.snk at the VS.NET command
prompt. You can then start a new class library project in Visual Studio
.NET, and enter the following code

C#
[assembly: ApplicationName("ComPlusServer")]

[assembly: ApplicationActivation(ActivationOption.Server)]

[assembly: AssemblyKeyFile("..\\..\\ComPlusServer.snk")]

[assembly: ApplicationQueuing(Enabled=true,
QueueListenerEnabled=true)]

namespace ComPlusService

Figure 15.10
MSMQ, Journal

messages.

444 15.6 Queued Components

{

 public interface IComPlusServer

 {

 void ExecSQLAsync(string SQL,string strDSN);

 }

 [InterfaceQueuing(Interface="IComPlusServer")]

 public class ComPlusServer : ServicedComponent,

 IComPlusServer

 {

 public void ExecSQLAsync(string SQL,string strDSN)

 {

 OleDbConnection DSN = new

 OleDbConnection(strDSN);

 DSN.Open();

 OleDbCommand oSQL = new OleDbCommand("",DSN);

 oSQL.CommandText = SQL;

 oSQL.ExecuteNonQuery();

 DSN.Close();

 }

 }

}

VB.NET
<assembly: ApplicationName("ComPlusServer")>

<assembly: ApplicationActivation(ActivationOption.Server)>

<assembly: AssemblyKeyFile("..\..\ComPlusServer.snk")>

<assembly: ApplicationQueuing(Enabled := True, _

 QueueListenerEnabled := True)>

Public Interface IComPlusServer

Sub ExecSQLAsync(ByVal SQL As String, ByVal _

 strDSN As String)

End Interface

<InterfaceQueuing([Interface] := "IComPlusServer")> _

Public Class ComPlusServer

 Inherits ServicedComponent

 Implements ServicedComponent, IComPlusServer

 Public Sub ExecSQLAsync(ByVal SQL As String, _

 ByVal strDSN As String)

 Dim DSN As New OleDbConnection(strDSN)

 DSN.Open()

 Dim oSQL As New OleDbCommand("", DSN)

15.6 Queued Components 445

Chapter 15

 oSQL.CommandText = SQL

 oSQL.ExecuteNonQuery()

 DSN.Close()

 End Sub

End Class

The above code defines an interface, IComPlusServer, which contains a
function prototype for the ExecSQLAsync method. The latter method
opens a DSN connection to the specified database, executes an insert,
update, or delete, and then closes the connection. A limitation of queued
components is that they cannot have return values.

You will require the following namespaces at the head of your code.

C#
using System;

using System.Reflection;

using System.EnterpriseServices;

using System.Data;

using System.Data.OleDb;

VB.NET
Imports System

Imports System.Reflection

Imports System.EnterpriseServices

Imports System.Data

Imports System.Data.OleDb

In order to use this DLL as a queued component, there are some further
steps that must be taken.

1. Import the DLL into the global assembly cache (GAC) by typing
gacutil /I:ComPlusService.dll at the command prompt

2. Import the DLL into component services by typing regsvcs Com-
PlusService.DLL at the command prompt

3. Disable authentication on the component by opening Component
Services from Administrative Tools, Expand Computers→→→→My
Computer→→→→COM+ Applications. Right Click ComPlusServer,
select properties→→→→Security. Uncheck Enforce access checks for this
application.

4. Right click ComPlusServer, and click start.

446 15.6 Queued Components

At this point you can now write a client to begin calling methods on this
component. Here, we simply create a Windows Forms application in Visual
Studio .NET. Add a reference to the ComPlusService DLL created in the
previous example, and then draw two textboxes, tbSQL and tbDSN, and a
button named btnExecSQL. Double click the button and enter the follow-
ing code:

C#
private void btnExecSQL_Click(object sender, System.EventArgs
e)

{

 ComPlusService.IComPlusServer ComPlusServer = null;

 ComPlusServer = (IComPlusServer)

 Marshal.BindToMoniker

 ("queue:/new:ComPlusService.ComPlusServer");

 ComPlusServer.ExecSQLAsync

 (this.tbSQL.Text,this.tbDSN.Text);

 Marshal.ReleaseComObject(ComPlusServer);

}

VB.NET
Private Sub btnExecSQL_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnExecSQL.Click

 Dim ComPlusServer As ComPlusService.IComPlusServer = _

 Nothing

 ComPlusServer = _

 CType(Marshal.BindToMoniker(_

 "queue:/new:ComPlusService.ComPlusServer"), _

 IComPlusServer)

 ComPlusServer.ExecSQLAsync(Me.tbSQL.Text, Me.tbDSN.Text)

 Marshal.ReleaseComObject(ComPlusServer)

 End Sub

The above code does not directly execute the ExecSQLAsync method on
the ComPlusService component. Instead it writes an instruction to the
ComPlusService queue in MSMQ, which is then read back by component
services, which executes the method on the component.

You will need the following namespaces at the head of the code in your
application.

15.7 Security 447

Chapter 15

C#
using ComPlusService;

using System.Runtime.InteropServices;

VB.NET
Imports ComPlusService

Imports System.Runtime.InteropServices

To test the application, run the client from Visual Studio .NET, type in
a valid DSN and SQL statement, then press the ‘Execute SQL’ button. You
will see that the database is updated within a few moments (Figure 15.11).
If you temporarily stop the component from component services, and con-
tinue to use the client, then the changes will be applied as soon as you
restart the component.

15.7 Security

Using MSMQ gives an attacker another point of access to sensitive infor-
mation. Without encryption and authentication, MSMQ could never be
used to handle credit card details or other financial transactions.

To encrypt a message in MSMQ, you set the UseEncryption property
to true before sending the message. This prevents the message from
being snooped while in transit, but it is decrypted transparently at the
receiving end.

The encryption algorithm can be selected using the EncryptionAlgo-
rithm property. This can be set to either RC2 or RC4. The latter is a stream
cipher and is thus faster than RC2.

To use authentication in a message in MSMQ, you set the UseAuthen-
tication property to true before sending the message. This will guarantee

Figure 15.11
Test COM+

Client.

448 15.7 Security

to the receiver that the message sender is legitimate, but it does not secure
against packet snooping.

The hashing algorithm can be selected using the HashAlgorithm prop-
erty. This can be set to MAC, MD2, MD4, MD5, SHA, or none. The
default algorithm is MD5, although MAC (keyed hash) is the most secure.

An authenticated message needs to be accompanied by an external cer-
tificate, as contained within the SenderCertificate property. An external
certificate must be registered with the directory service of MSMQ. An
external certificate contains information about the certification authority,
the certificate user, the validity period of the certificate, and the public key
of the certificate user, the certification authority’s signature, and so forth.

In cases where message properties usually set by MSMQ are not suited
for a particular application, it is possible to tweak low-level security aspects
of MSMQ manually. This includes the DestinationSymetricKey property.
The latter is simply a byte array used to encrypt and decrypt the message on
sending and receipt. The ConnectorType property must be set to a genu-
inely unique identifier (GUID) to access this property.

Low-level authentication properties that can be altered once Connector-
Type is set are AuthenticationProviderName, AuthenticationProvider-
Type, and DigitalSignature. These methods specify the name, type, and
credentials of authentication applied to the message, defaulting to
Microsoft Base Cryptographic Provider, Ver. 1.0, RSA_FULL and a
zero-length array, respectively.

Where MSMQ is used over HTTP, it is possible to employ standard
Web security systems, such as HTTPS. In this case, the MSMQ server
domain name would be prefixed with https://.

As shown in chapters 8 and 9, it is easy to use ultrastrong encryption
algorithms on strings (and serialized objects). Coupled with the use of
X.509 certificates, issued by an internationally trusted certificate authority,
strong authentication could be easily applied to message queues.

To illustrate the example based on the previous hotel booking center
analogy, imagine that the booking center also forwarded credit card details
to the hotelier via MSMQ. The booking center would need to be absolutely
sure that when someone dialed into the MSMQ server, it was in fact the
hotelier and not a hacker. Furthermore, it would be a disaster if a techni-
cally savvy clerk at the hotel could snoop credit card details from the net-
work installed at the hotel.

15.8 Scalability 449

Chapter 15

First, the hotel would need to acquire an X.509 certificate from a certifi-
cate authority such as Verisign or Thawte. The certificate containing the
private key would remain at the hotel, but the public keyed certificate
would be sent to the booking center.

When a phone order arrived at the booking center, a message would be
placed in the queue, which would be encrypted with the public key from the
certificate. At this point, a hacker could still receive the message, but could
not read it; however, a problem still remains because the hotelier would not
know whether there was ever a new message or if it had been stolen.

To avoid this situation, the booking center would require an acknowl-
edgment from the hotel that the booking had been received. The acknowl-
edgment would simply be an acknowledgment reference number encrypted
with the private key from the certificate. An attacker would not be able to
generate this message, so the message could be reposted awaiting pickup
from the correct recipient.

15.8 Scalability

When computer systems scale upward, so does the volume of data being
sent between them. MSMQ needs to be able to handle larger volumes of
data and larger networks, when needed.

Note: When installing an MSMQ server behind a firewall, you will need to
ensure that TCP 1801 is open.

MSMQ can consume a lot of disk space; therefore, it may be necessary
to ensure that some queues do not grow to a size that they fill the hard disk
and prevent other queues from operating. To do this, set the Queue Quota
by opening Computer Management, clicking on Message Queuing, and
then selecting the queue in question (i.e., Private Queues→→→→test2). Right-
click on the queue and select Properties (Figure 15.12). The queue quota is
contained in the Limit message storage to (KB): box. The computer quota
can be set in the same manner.

Another space-consuming item that is vital to the correct operation of
MSMQ is the MQIS database, an internal database that contains queue
information and network topology. This is a distributed database, so more
than one MSMQ server can hold the data.

450 15.8 Scalability

In situations where multiple segments in a network are all intercon-
nected with impermanent connections, multiple MSMQ servers can be
deployed in each segment. A sample case would be an international chain of
shops that centralize their point-of-sale data at the regional office for end-
of-day processing and send it once a week to the head office for auditing.

In MSMQ terminology, the entire chain is called an enterprise, each
regional office is a site, and every shop is a client. The MSMQ server located
in the head office is called the primary enterprise controller (PEC), and the
servers at the regional offices are called Primary Site Controllers (PSCs).
Three other types of MSMQ servers are available: backup site controllers
(BSCs), routing servers, and connector servers.

A BSC requires both a PEC and PSC and stores as a read-only backup
of a PSC’s database. This ensures that if the PSC goes offline, clients can
still read from the BSC.

A routing server provides a mechanism to forward messages through
alternate routes if a network connection goes down. To illustrate this fea-
ture, envisage two sites, New York and Toronto, and a head office in Dallas.

Figure 15.12
MSMQ queue
settings dialog.

15.9 Performance issues 451

Chapter 15

If the link between Toronto and Dallas is broken, but links between the
other cities are still operational, then a routing server could relay messages
from New York through Toronto.

A connector server is used as a proxy between MSMQ and third-party
messaging systems, such as IBM MQSeries.

The shops can be either dependent clients or independent clients. The
difference is that an independent client can store messages locally and for-
ward them to the regional office whenever a connection becomes available.
A dependent client requires an always-on connection to the regional office.
This may seem disadvantageous, but a dependent client uses less disk space,
will run on Windows 95, and becomes one less point of administration

Note: You cannot install an independent client when disconnected to the
PSC because it requires access to MQIS data to initialize properly.

15.9 Performance issues

MSMQ can operate in a multitude of ways, from running locally as an
interprocess communications (IPC) mechanism for applications or as a
complex structure of hundreds of machines working in tandem. MSMQ is
an effective IPC mechanism when the messages are sent in the Express for-
mat, where messages are held in RAM rather than on disk. This does mean
that the data will be erased on power failure, but the applications will also
be stopped abruptly, so it shouldn’t matter. The only IPC that would out-
perform MSMQ would be Windows messaging (specifically WM_COPY), but
this is not an easy undertaking.

When operating MSMQ over a network, it is common for all messages
to be stored on disk to ensure that no data is lost in the event of a system
failure. These messages are known as recoverable messages. They come in two
flavors: transactional and nontransactional.

Transactions are carried out as a series of in-memory operations and
then committed to disk when the operation is complete. They can be coor-
dinated by MSMQ or by the Microsoft Distributed Transaction Coordina-
tor (MSDTC); the former is the more efficient. Nontransactional messages
cannot be rolled back, but they are faster than transactional messages.

When many messages need to be written to a queue in one operation, a
higher performance can be achieved if a thread pool is used. This only

452 15.10 Conclusion

applies to writing messages to a queue; reading from a queue using multiple
threads actually decreases performance. When using threads, it is important
to make sure the connection to the MSMQ server is not reopened in every
thread, but rather, a connection is shared among all threads.

Where network bandwidth is a concern (e.g., over dial-up connections),
actions can be taken to reduce the size of the message body by using binary
formatters rather than the default XML formatter.

This can be implemented by setting the Formatter property to New
BinaryMessageFormatter()before calling the Send method. A new feature
in MSMQ 3.0 is the use of multicast from within MSMQ. Where a single
message is destined for multiple recipients, multicasting can greatly reduce
network traffic. This does require access to the MBONE network and, thus,
may not be applicable to all situations.

The most common performance problem with MSMQ is handles to
queues being repeatedly opened and closed. This process is extremely waste-
ful, and it is imperative that a handle to the queue should be maintained for
as long as possible. A few bytes from each message can be cut by omitting
the system identification (SID), but this is only an option if security fea-
tures are not being used. Another pitfall could be that the client is request-
ing too many acknowledgments from the server, which may put an
unnecessary strain on both the client and server.

15.10 Conclusion

There is little real voodoo behind message queuing, and it would be an easy
task to implement a store-and-forward-type proxy server using socket-level
programming; however, this chapter is meant to illustrate the advantage of
moving to industry-standard techniques by demonstrating the wealth of
additional functionality built into MSMQ. After an initial learning curve,
MSMQ can easily be seen as a much more scalable solution than any in-
house solution developed in the same timeframe.

The next chapter deals with a subject that may not directly impinge on
developer’s lives now, but by 2005, it is set to overhaul the entire Internet as
we know it, and interoperability with it will become a major selling point
with future-proof software products.

Make way for IPv6.

453

16

IPv6: Programming for the
Next-generation Internet

16.1 Introduction

IPv6 will be the largest overhaul of the Internet since its commercialization.
It is due to arrive in 2005 and will incrementally replace the Internet proto-
col (IP). Many existing network programs will become obsolete as they
become incompatible with the emerging networks. This will inevitably cre-
ate a great opportunity for network programmers who are familiar with the
new protocol.

Such a large overhaul is extremely expensive, but the simple fact is that
the IP cannot accommodate the explosion in market demand for Internet
access. In the long run, the migration to IPv6 makes perfect sense and is
inevitable. IPv6 will create a bigger, faster Internet that will continue to
accommodate the world’s bandwidth-hungry population into the twenty-
second century. Making your application IPv6 compatible from the outset
will ensure that you will not have to go through a costly overhaul once IPv6
becomes mainstream.

This chapter is divided into two sections, beginning with a discussion of
IPv6 in general and the utilities you can use to manage IPv6 on your net-
work. The chapter concludes with an example of how to communicate over
IPv6 from within a .NET application.

16.2 What is IPv6?

IP addresses are 32 bits long, which provides four billion unique addresses.
The number of assigned IP addresses is fast approaching this mark. Con-
tributing to this consumption of IP addresses are professionals in the devel-
oped world who may have several computers dedicated for their use. The
largest source of IP wastage is the way in which addresses are assigned in

454

16.3

The history of IPv6

blocks of 256 or 65,355, which could be hundreds or thousands more
addresses than are required by one organization.

IPv6 addresses this issue by extending the address to 128 bits, which
provides 3 billion billion billion billion unique addresses. Even if the
world’s computer usage were to double every year, it would take 100 years
for the same problem to occur again.

There is no provision in IPv4 for storing routing information. It is possi-
ble for a router to predict the fastest route for a packet many hops in
advance, but the IPv4 packet can only hold the next-hop address, so the
receiving router has to recalculate the fastest route. This consumes router
processing power and delays packets unnecessarily.

IPv6 can hold routing information in its header and can, therefore, be
forwarded through routers with minimal time wastage. Furthermore, the
header is expandable with optional fields, such that it could hold the rout-
ing information the whole way from a computer in Europe to a server in
the United States.

IPX was once a strong contender to IP, but it was unfortunately not
adopted by router vendors and, thus, cannot be used for Internet commu-
nications; however, its unique identifier was based on the hardware (MAC)
address and, thus, was easily configurable, with no need for assignation pro-
tocols such as DHCP, unlike IP. A MAC address is 48 bits long, and there-
fore can be contained within the IPv6 address. This then negates the need
for ARP and DHCP, thus simplifying the job of the network administrator.

Systems that implement security features, such as HTTP-form authenti-
cation, are built on top of IP. This leaves security holes open for people who
have the resources to perform IP spoofing (i.e., the impersonation of IP
addresses). IPv6 contains built-in headers to protect against IP spoofing,
with encryption, authentication, and privacy.

The final difference between IPv6 and IPv4 is the quality-of-service
(QoS) provision. In this way, data with absolute priority, such as voice over
IP (VOIP) will be forwarded through routers before emails, where it doesn’t
matter if they’re a few seconds late.

16.3 The history of IPv6

In 1993, the IETF issued RFC 1550, “IP: Next Generation (IPng) White
Paper Solicitation.” This could almost be described as a request for tenders
for a replacement of IP. This was followed by a requirements document in
RFC 1726, “Technical Criteria for Choosing IP: The Next Generation

16.4

So what changes? 455

Chapter 16

(IPng).” In January 1995, the initial specification for IPng, RFC 1752, was
issued as “The Recommendations for the IP Next Generation Protocol.”
Despite the best efforts of the IETF, IPng became commonly known as
IPv6 with the release of its final specification in RFC 1883.

The first layer 3 protocol to support large addresses was CLNP, more com-
monly known as TUBA (TCP and UDP over bigger addresses). This had
huge 160-bit addresses and was well-established within certain fields; how-
ever, it was inefficient in comparison to IP and lacked the ability to multicast.

In 1993, two new protocols emerged: simple IP (SIP) and policy IP
(PIP), both of which were extensions on IP. SIP addressed the scalability
issue, proposing a 64-bit address, whereas PIP addressed policy routing for
efficiency. The two protocols were merged to form SIPP and extended to
128-bit addressing. The findings were published in 1994. This led to the
development of an experimental protocol, IPv5. This protocol was designed
to coexist with IPv4, but used the same addressing scheme. When the limi-
tations in IPv5 were addressed, a new protocol, IPv6, emerged.

IPv6 will have knock-on effects to routing and auxiliary protocols such
as OSPF, BGP, IDRP, and SNMP. It is predicted that RIP will be replaced
by RIP-2 with the rollout of IPv6.

16.4 So what changes?

IPv6 is backward compatible with IPv4, so there will be a gradual migration
toward the technology. When the last block of IP addresses is assigned,
organizations will be given the chance to use IPv6 instead. This may involve
buying more expensive IPv6-compatible routers, hubs, and switches. The
higher-level protocols, such as TCP and UDP, will not change, although
some higher-level protocols may have some compatibility problems (e.g.,
the

PASV

 command in FTP).

Many applications designed for IPv4 will not work on IPv6, producing
a market void in IPv6-compatible software. Because some large firms, such
as Microsoft, IBM, and Digital Equipment Corporation (DEC), have
developed their own IPv6 implementation, it is unlikely that the
changeover will affect their software.

The first and most obvious difference is the change in the format of the
IP address. IPv6 addresses consist of a combination of six identifiers: (1) a
3-bit format prefix (FP), which is always 001 for aggregatable unicast
addresses; (2) the 13-bit top-level aggregator (TLA), which would be a
number assigned to a backbone service provider; (3) an 8-bit reserved

456

16.5

IPv6 naming conventions

field, set to 0; (4) the 24-bit next-level aggregator (NLA), which would
represent an ISP; (5) the 16-bit site-level aggregator (SLA), which would
represent the subnet; and (6) the 64-bit interface ID, which identifies a
specific interface on a host. The definitive description of this format is
described in RFC 2374.

A global IPv6 address, therefore, takes the following form:

[

FP

][

TLA

]:[

Reserved

][

NLA

]:[

SLA

]:[

Interface ID

]

16.5 IPv6 naming conventions

With Ipv4 addresses, it was practical to write each byte in decimal format,
such as

195.233.254.33

; however, with a 128-bit address, it becomes awk-
ward to write 16 three-digit numbers to represent a single IP address.
Therefore, a new naming convention is used to quote IPv6 addresses. IPv6
addresses are quoted in hexadecimal, not decimal. They are broken into 16-
bit segments, rather than 8 bits, as was the case with IPv4. Therefore, one
would write

FFFF:FFFF

 rather than

255.255.255.255

.

To abbreviate long sequences of zeros, the double colon (

::

) is used.
Sequential blocks of 16 zero bits are replaced with the double colon for
brevity. The IPv6 address

2001:0db8:1000:0000:0000:0000:0000:0027

 is
abbreviated to

2001:db8:1000::27

.

When an IPv6 address encapsulates an IPv4 address, the IPv4 address is
represented in its standard form within the IPv6 address. An example of
this would be

::192.44.75.70 ::ffff:192.44.75.70

.

In order to separate the IPv6 prefix from the IPv6 interface identifier, it
is common practice to append a forward slash followed by the length of the
prefix to the end of an IPv6 address. For example, in the case of

2001:db8:2000:240:290:27ff:fe24:c19f/64,

the prefix is

2001:db8:2000:240.

16.6

Installing IPv6 457

Chapter 16

16.6 Installing IPv6

If you have Windows XP, you can install IPv6 by simply typing

 IPv6

install

at the command prompt. To test IPv6 on Windows 2000 (Service
Pack 1) or later, you need to download an add-on from

www.microsoft.com/
windowsserver2003/technologies/ipv6/default.mspx.

You will need an Ethernet
Network adapter, and TCP/IP must be installed.

To install IPv6 on Windows 2000, follow these steps:

1. Download the add-on from Microsoft.com.

2. Click Start

→→→→

Settings

→→→→

Network and Dial-up Connections.

3. Right-click on your Ethernet card and click Properties.

4. Click Install.

5. In the Select Network Component Type box, click Protocol and
then click Add.

6. In the Select Network Protocol box, click Microsoft IPv5 Protocol.

7. Click OK and then Close.

To install IPv6 on previous versions of Windows, links to third-party
vendors are located at

www.ipv6.com.

To uninstall IPv6 from a host, in Windows XP, you simply type

Ipv6

uninstall

 at the command line and reboot the computer.

16.6.1 Auto configuration

Similar to the loopback address in IPv4 (

127.0.0.1

), you will always be
given an IP address whether you are online or not. In IPv6, the equivalent
of the loopback address is the link-local address. This is

FE80::1

.

Non-link-local addresses, such as site-local addresses or global addresses,
are automatically assigned based on the receipt of IPv6 router advertise-
ments (akin to DHCP in IPv4). An IPv6-compatible router is required to
issue router advertisements.

458

16.7

Using IPv6 utilities

16.7 Using IPv6 utilities

If you have Windows XP, you will be happy to know that several handy
IPv6 utilities come preinstalled, which is helpful for implementing IPv6
applications.

16.7.1 IPv6

IPv6 is a command-line-based utility that is similar, in some ways, to

ipconfig

. To use this application in a meaningful way, you should install
the IPv6 protocol thus:

IPv6 install

After a few seconds, it should report “succeeded.” At this point, you can
view your IPv6 address and other technical information about the IPv6
stack. You will be allocated several interfaces, through which you can access
the Internet. This includes the physical network interface and hybrid inter-
faces. You can list the interfaces on your system by typing the following:

IPv6 if

To specify an interface, you can type

IPv6 if <number>

, such as in Fig-
ure 16.1, where interface 4 was a network card.

Figure 16.1

IPv6 MS-DOS
utility.

16.7

Using IPv6 utilities 459

Chapter 16

Global configuration parameters for the IPv6 stack can be viewed by
typing

 IPv6 gp

. A typical response would be:

DefaultCurHopLimit = 128

UseAnonymousAddresses = yes

MaxAnonDADAttempts = 5

MaxAnonLifetime = 7d/24h

AnonRegenerateTime = 5s

MaxAnonRandomTime = 10m

AnonRandomTime = 2m21s

NeighborCacheLimit = 8

RouteCacheLimit = 32

BindingCacheLimit = 32

ReassemblyLimit = 262144

MobilitySecurity = on

To view the prefix policy table for the IPv6 stack, you can use

IPv6 ppt

,
typical response being the following:

::ffff:0:0/96 -> precedence 10 srclabel 4 dstlabel 4

::/96 -> precedence 20 srclabel 3 dstlabel 3

2002::/16 -> precedence 30 srclabel 2 dstlabel 2

::/0 -> precedence 40 srclabel 1 dstlabel 1

::1/128 -> precedence 50 srclabel 0 dstlabel 0

16.7.2 NETSH

This useful utility can be used to read information from the IPv6 stack, as
well as to perform many of the tasks of the previous utility. It is more user-
friendly than the

IPv6

 utility and provides much the same level of informa-
tion (Figure 16.2).

To view your IPv6 address using

NETSH

, type the following at the com-
mand line:

Netsh interface ipv6 show address

16.7.3 Ping6

There are no prizes for guessing what

ping6

 does. It is simply an IPv6
implementation of the

ping

 utility. It is a stripped-down version of ping,
but it uses IPv6 addresses rather than IPv4 addresses (Figure 16.3). Parame-
ters that are not supported by the

Ping6

 utility (but not necessarily IPv6)

460

16.7

Using IPv6 utilities

are TTL, fragment flag, type of service (TOS), and loose and strict routing.
The parameters that are supported are listed in Table 16.1.

16.7.4 Tracert6

This program is a migration of the

tracert

 utility from IPv4 to IPv6 (Figure
16.4). Some command-line parameters have changed from the original ver-
sion, including the

j

,

s

, and

r

 command-line parameters. Like

ping6

,

Figure 16.2

NETSH MS-DOS
utility.

Table 16.1

Command-line parameters for Ping6.

Parameter Purpose

-t

Pings the host until the user presses CTRL + C

-a

Resolves IP addresses to host names

-n <

count

>

Sends a specified number of pings

-l

Sends buffer size; default is 32 bytes

-r

Uses the routing header to test the reverse route as
well as the forward route

-s <

address

>

Uses the specified source address in the ping
requests

-w <

milliseconds> Discards any replies delayed longer than the speci-
fied time

16.7 Using IPv6 utilities 461

Chapter 16

tracert6 no longer supports loose and strict routing (j parameter), although
it does support the parameters in Table 16.2.

16.7.5 IPSec6

IPSec6 is a utility that manages IP-level security. This is a long-awaited
security feature that effectively makes it impossible for hackers to forge IP
addresses. To view the security policies on your system, you can type
IPSec6 sp at the command prompt. This displays the contents of the
IPSec6 security policies database (illustrated in Figure 16.5; described in
Table 16.3). You can also view the security associations database (Table
16.4) by typing IPSec6 sa at the command prompt.

Figure 16.3
Ping6 MS-DOS

utility.

Table 16.2 Command-line parameters for Tracert6.

Parameter Purpose

-d Suppresses the resolving of IP addresses to domain
names

-h <hops> Specifies the maximum number of hops between
source and destination

-w <milliseconds> Discards any replies delayed longer than the speci-
fied time

-s Uses the specified source address in the ping
requests

-r Uses the routing header to test the reverse route as
well as the forward route

462 16.7 Using IPv6 utilities

Figure 16.4
Tracert6 MS-DOS

utility.

Table 16.3 Fields in the IPv6 security policies database.

Field Purpose

Policy An identifier for the policy, similar to a primary
key in a database

RemoteIPAddr The IP address from which the packet has origi-
nated

LocalIPAddr The IP address at which the packet is arriving

Protocol The higher-level protocol in use

RemotePort The port from which the packet came

LocalPort The port at which the packet arrived

IPSecProtocol The version of the IPSec protocol in use; default is
NONE

IPSecMode The mode of operation of IPSec

RemoteGWIPAddr The remote gateway IP address

SABundleIndex The security association bundle index; default is
NONE

Direction The direction of travel of the packet. The default is
BIDIRECT

Action The action to be taken on any particular packet;
default is BYPASS

InterfaceIndex The interface on which the packet arrives

16.7 Using IPv6 utilities 463

Chapter 16

Note: The default for all fields is * (all) unless otherwise specified.

16.7.6 Windows 2000 specific

The IPv6 implementation comes with some extra utilities, such as 6to4cfg
and checkv4. The first of those two utilities is for use on hybrid IPv6/IPv4
networks. The latter is used to help migrate C++ Windows socket code to

Figure 16.5
IPSec6 MS-DOS

utility.

Table 16.4 Fields in the IPv6 security associations database.

Field Purpose

SAEntry An identifier for the policy, similar to a primary key in a
database

DestIPAddr The destination IP address of the packet

SrcIPAddr The source IP address of the packet

Protocol The higher-level protocol in use

DestPort The destination port of the packet

SrcPort The source port of the packet

AuthAlg The authorization algorithm in use

KeyFile The symmetric or public key in use

Direction The direction of travel of the packet

SecPolicyIndex The security policy index

464 16.8 IPv6 routing

IPv6 compliance. C++ network programming code was concerned mainly
with interfacing directly into wsock32.dll, which luckily C# or VB.NET
programmers are not obliged to do.

16.8 IPv6 routing

Every device that runs IPv6 will maintain a routing table, opposed to all
routing information being stored in routers. It is logical that PCs should
provide some of the processing power to route packets, rather than leaving
it up to routers.

When a router encounters an IPv6 packet, it will match the destination
IPv6 address with entries in the destination cache to determine the next-
hop address and forwarding interface. If no matching entry is found in the
cache, then the destination IPv6 address is compared against the prefixes in
the routing table. The closest match with the lowest cost (as determined
from the preference or metrics field) is used.

A routing table consists of eight different fields:

� The address prefix, similar to a subnet mask, will match specific IPv6
addresses to particular routes. The prefix can be any length between 0
to 128 bits long. This column is named Prefix in the Windows XP
routing table.

� The network interface for each prefix contains an index of the inter-
face over which the packet should be retransmitted. This column is
named Idx in the Windows XP routing table.

� The next-hop address holds the IPv6 address of the host or router to
which the packet is to be forwarded. This column is named Gateway/
Interface Name in the Windows XP routing table.

� A preference or metric for any particular route is used to provide routers
with a means to select what route to send packets when two routes
are available. The preference value could be set manually to reduce
the cost of bandwidth billable connections.

� The route lifetime is an optional field that can be used to provide for
automatic routing cache purges.

� The availability of a routing advertisement is, once again, an optional
field, but it can be used to determine if the connecting network is
IPv6 compliant.

16.8 IPv6 routing 465

Chapter 16

� The aging of the route is an optional field that aids in keeping router
caches up to date.

� The type of route is an optional field that can determine if a destina-
tion is directly attached, remote, an endpoint host, or the default
route.

The routing table is constructed automatically and does not require
manual input, in the same way as the ARP cache of IPv4 computers is not
accessible to users. It is not mandatory for every IPv6 device to maintain a
routing table; in fact, it is quite likely that many computers will store only
the default route (::/0, i.e., an IPv6 address consisting only of zeros) to the
nearest router.

To go into a little more detail on the route type field, four different types
of routes can be stored in the routing table: directly attached, remote, end-
point host, or the default route. It can be estimated from the route type
how far the destination is from the router.

A directly attached route is where a subnet is physically attached to the
router. In this case, the prefix length would typically be 64 bits, and the dis-
tance between the router and the destination would typically only be two
hops.

A remote route is where the packet is forwarded to a subnet or address
space that is not physically connected. In this case, the prefix would be 64
bits or less, and the distance to the destination would typically be over two
hops.

A host route is where the packet is being routed to an endpoint host,
such as a computer. In this case, the prefix length is 128 bits long, and the
distance would typically be one hop or less.

16.8.1 Route determination process

When the sending host does not specify the source address, then the entire
routing table is checked for matches. If a source address is specified, then
only entries for interfaces designated to handle that source address are
checked.

The IPv6 destination address is compared against each entry in the
table, looking for matches between the prefix and the high-order bits in the
IPv6 destination address. Where a prefix is only 64 bits long, and therefore

466 16.8 IPv6 routing

shorter than the IPv6 address, only the highest 64 bits of the IPv6 address
are relevant for this comparison process.

If there is more than one match between the IPv6 destination addresses
and the prefixes held in the routing table, the prefix with the longest length
is selected. When two matching prefixes have the same length, the route
with the lowest cost (as determined from the metrics or preference field) is
selected. The default route is used only in the case where there are no suc-
cessful matches.

The route selection provides a next-hop address and a forwarding inter-
face. In the case where the next-hop address is not the endpoint host, but
another router, then the next-hop address is stored in the next-hop address
field in the packet.

In the case where the destination host or subnet is unreachable, then the
router returns an ICMPv6 packet to the sender of the packet, stating that
the host was unreachable. This is analogous to the action of ICMP in IPv4.

16.8.2 Administering the IPv6 routing table

The IPv6 routing table is mostly self-maintaining. It builds entries from
routing advertisements from other routers and phases out out-of-date or
out-of-service routes over time. In the case where the network infrastructure
has changed significantly, however, or for experimentation purposes, it may
be necessary to configure the routing table of an IPv6 router manually, or in
this case, a Windows XP server running the Internet connection sharing
(ICS) service.

To show the IPv6 routing table (Figure 16.6) on your PC, type the fol-
lowing at the command line:

netsh interface ipv6 show routes

If any routes are stored in the routing table, information will follow the
form described in Table 16.5.

Assume that you wish to add a route to the routing table, where you
want packets with a destination IPv6 address starting with 3ffe to be for-
warded to the loopback address (fe80::1). For debugging purposes, we can
name this route a. Therefore, you may use the following syntax:

netsh interface ipv6 add route 3ffe::/16 "a" fe80::1

16.8 IPv6 routing 467

Chapter 16

Figure 16.6
IPv6 routing table.

Table 16.5 Fields in the IPv6 routing table.

Field Purpose

Publish Specifies whether the route is advertised in a rout-
ing advertisement message.

Met Specifies the metric or preference used to select
between multiple routes with the same prefix. The
lowest metric is the best matching route.

Prefix Specifies the address prefix; it can have a length
between 0 and 128 bits.

Idx Specifies the interface index, over which packets
that match the address prefix may be transferred.
Interface indexes can be viewed by typing netsh
interface ipv6 show interface at the
command prompt.

Gateway/Interface Name Specifies either an interface name or a next-hop
IPv6 address. Remote network routes list a next-
hop IPv6. Directly attached network routes list the
name of the relevant interface.

Type Specifies the type of the route. Routes configured
by user applications are listed with a route type of
Manual. Routes configured by the IPv6 protocol
are listed with a route type of Autoconf.

468 16.8 IPv6 routing

To remove this link, you can use the following command:

netsh interface ipv6 delete route 3ffe::/16 "a" fe80::1

The IPv6 addresses assigned to interfaces can also be changed. Extra
IPv6 addresses can be added to each interface if required. To give a quick
example, if you ping6 the IPv6 address fe80::10, it will fail, but if the
address is assigned to your local computer thus:

netsh interface ipv6 add address "loopback" fe80::10

if you ping6 fe80::10, the ping will succeed because your computer is now
multihomed with a second IPv6 address. To remove this address, you can
use the command:

netsh interface ipv6 delete address "loopback" fe80::10

16.8.3 IPv6 routing advertisements

As previously mentioned, the IPv6 routing table is generally populated
from received advertisements from other routers. These advertisements
contain information about the advertising router’s subnet and optional
information such as the prefix information option and the route informa-
tion option.

The prefix information option is described definitively in RFC 2461. It
provides the receiving router with the address prefix from which the auto-
configured addresses derive.

The route information option is specified in an Internet draft entitled
“Default Router Preferences and More-Specific Routes.” This optional data
contains prefix and routing information for subnets accessible from the
advertising router. This provides a redundancy mechanism, such that if the
router that sent the advertisement ever goes offline, it may still be possible
to communicate with subnets behind that router if an alternative route
exists.

A Windows XP machine will not send routing advertisements on the
network by default, but it can be set to do so with the following command:

netsh interface ipv6 set interface <interface id>
forwarding=enabled advertise=enabled

16.9 IPv6 coexistence 469

Chapter 16

where the interface ID can be determined from the following command,
under the Idx field:

Netsh interface ipv6 show interface

16.9 IPv6 coexistence

IPv6 will not replace IPv4 overnight. Instead, there will be a considerable
period when both IPv6 and IPv4 will coexist on the Internet. In time, IPv4
will be phased out entirely. This transitional period is important for devel-
opers of mass-market software where the network infrastructure of the end-
user can be one of several different hybrid systems.

IPv6 deployment will take place in a much more organized way than the
MBONE project did. The ad hoc deployment of MBONE created islands
of multicast supporting infrastructure and left entire countries with no
access to multicast networks. With IPv6, networks that have not yet
migrated to IPv6 will still be capable of transporting IPv6 data, once it is
encapsulated within IPv4 packets.

The encapsulation of IPv6 data within IPv4 packets can take place using
one of two mechanisms: the intrasite automatic tunnel addressing protocol
(ISATAP) or 6to4. The crucial difference between these two systems is the
IPv4 address that each uses to represent the destination. An IPv6 address
consists of an interface and subnet identifier. With 6to4, this subnet identi-
fier is created from a public IPv4 address, whereas ISATAP uses a local IPv4
address to create the subnet identifier. Regardless of the mechanism used,
the IPv4 packet will contain enough information to determine the source
and destination of the packet. Having said that, there will be designated
pockets of the Internet that natively support IPv6, known as the 6bone.
This region of the Internet will support more efficient and faster transfer of
IPv6 data, but IPv6 accessibility will not be limited only to this region.

16.9.1 The 6to4 protocol

The 6to4 mechanism is an elegant solution to ferry IPv6 data across IPv4
networks. It is described definitively in RFC 3056. Although hosts employ-
ing 6to4 address assignment would not require any manual configuration, it
is likely that 6to4-compliant routers will require some level of configuration.

6to4 generates a global IPv6 address from an IPv4 address by suffixing
the IPv4 address with a global address prefix (2002 hex), appending the

470 16.9 IPv6 coexistence

IPv4 address, and retaining the subnet and interface identifier. This creates
an IPv6 address of the form:

2002 : HIGH IPv4 : LOW IPv4 : SUBNET : INTERFACE

where high IPv4 is the high-order 16 bits from the IPv4 address and low
IPv4 is the low-order 16 bits from the IPv4 address. This type of address is
not suited to multicast applications.

The high 64 bits of the 6to4 address (which includes the subnet) are
used to provide routing information between 6to4-compliant routers.
Routers advertise this route to other routers within the IPv6 intranet and
also to 6to4 routers outside the network.

Any 6to4 network traffic that does not belong within the intranet is for-
warded to a router on the border of the intranet. This data then has to be
encapsulated into an IPv4 packet because non-IPv6-compliant routers
would simply discard native IPv6 packets. The 6to4 router would extract
the IPv4 address from the IPv6 address and use it in the header to direct the
packet.

In Windows XP, the 6to4 service is included with the IPv6 protocol.
This service can be administered from Administrative Tools→→→→Services→→→→
6to4. This service automatically generates 6to4 addresses for all IPv4
addresses assigned to the local computer. It also provides a facility to encap-
sulate IPv6 packets with IPv4 headers when required and attempts to locate
a 6to4 relay router on the Internet using a DNS query.

If ICS were enabled on that computer, as it would be with many home
or small office networks, the computer will enable IPv6 forwarding on the
private interface and broadcast router advertisements, such that any other
IPv6 hosts on the network could communicate natively. This effectively
configures that computer to become a 6to4 router.

Note: Technically, neither the ICS nor 6to4 service provides IPv4/IPv6
address translation, but for all practical purposes, it can be seen as such.

In situations where you cannot or do not want to run ICS on the server,
it is possible to configure the machine as a 6to4 router without using ICS.
In order to configure the computer as a 6to4 router, it must have a publicly
accessible IPv4 address and must not have a 6to4 pseudointerface in its
routing table. A 6to4 pseudointerface is created when a host computer

16.9 IPv6 coexistence 471

Chapter 16

receives a routing advertisement from an IPv6 or ISATAP router. This gen-
erates an entry in the routing table, prefixed 2002::/16 and pointing to a
6to4 relay router on the IPv4 Internet.

Enable forwarding and advertising on all interfaces connected to the
Internet, and enable forwarding on the 6to4 pseudointerface using the fol-
lowing command (with the interface ID substituted accordingly):

netsh interface ipv6 set interface <interface id>
forwarding=enabled advertise=enabled

Add routes to the 6to4 pseudointerface using the following command
(with interface ID, subnet ID, and the IPv4 address substituted accord-
ingly):

Netsh interface ipv6 add route 2002:<High bytes IPv4>:<Low
bytes IPv4>:<Subnet ID>::/64 <interface ID> publish=yes

The subnet ID is, by convention, the index of the interface being used,
but it can be any two-byte hex number.

16.9.2 The ISATAP protocol

ISATAP serves much the same purpose as 6to4 in providing a means to
transport IPv6 data over the existing IPv4 architecture. It has not gained the
same level of support as 6to4, but it still remains a valid and usable technol-
ogy. An ISATAP address uses the following form:

::0:5EFE:[IPv4 Address]

The ISATAP address can be combined with an IPv6 prefix, including
6to4 prefixes if required. Again, ISATAP is not suited to multicast applica-
tions.

On Windows XP, the ISATAP address for each local interface is auto-
matically configured. This address enables ISATAP hosts to communicate
over IPv4 within the same intranet. To allow communication over the
Internet, the host must have previously received a router advertisement
from the border router from the foreign network. Once this advertisement
has been received, the host can then determine other ISATAP addresses
from within that network.

472 16.9 IPv6 coexistence

ISATAP uses an IPv4 address to derive the interface ID. Because it
defeats the purpose to have the uniqueness of an IPv6 address depend on
the availability of a unique IPv4 address, it is possible to have two identical
ISATAP interface IDs for two hosts in separate sites because they would
both have different IPv6 addresses, thanks to the unique subnet ID.

To configure a computer as an ISATAP router, it must have at least two
LAN connections, one of which is connected to the IPv6 network and
another connected to the IPv4 network. The first step in configuring a
Windows XP machine as an ISATAP router is to enable forwarding on all
interfaces connected to the Internet and enable both forwarding and adver-
tising on the automatic tunneling pseudointerface, using the following
command (with the interface ID substituted accordingly):

netsh interface ipv6 set interface <interface id>
forwarding=enabled advertise=enabled

Add routes to the automatic tunneling pseudointerface using the follow-
ing command (with interface ID, subnet ID, and the IPv4 address substi-
tuted accordingly):

Netsh interface ipv6 add route 2002:<High bytes IPv4>:<Low
bytes IPv4>:<Subnet ID>::/64 <interface ID> publish=yes

Add a default route to the physical LAN interface using the following
command (with interface ID and the IPv6 address substituted accordingly):

Netsh interface ipv6 add route ::/0 <interface id>
nexthop=<IPv6> publish=yes

ISATAP hosts use DNS to discover the ISATAP router by resolving the
name ISATAP (Windows Server 2003) or _ISATAP (Windows XP). It is there-
fore necessary either to name the router computer ISATAP or to enter the
record into the local DNS server(s). If this cannot be done, you must run the
following command on all ISATAP hosts and the router computer itself:

Netsh interface ipv6 isatap set state router=<IPv4 Address>

16.10 IPv6 in .NET 473

Chapter 16

16.9.3 The 6over4 protocol

6over4 and 6to4 are similar protocols, but they are different in some signif-
icant respects. They are both used to ferry IPv6 data over IPv4 networks;
however, 6over4 is designed for use in multicast environments, unlike 6to4
or ISATAP. 6over4 is defined definitively in RFC 2529.

6over4 is disabled by default on Windows XP, but it can be enabled with
the command line (substituting the IPv4 address with that of the local com-
puter):

netsh interface ipv6 add 6over4tunnel "6over4" <ipv4 address>

From this point, 6over4 can be configured in an identical way to
ISATAP; however, it should be noted that the underlying IPv4 network
must already support multicasting for IPv6 multicasting to be functional.

16.10 IPv6 in .NET

IPv6 is supported in version 1.1 of .NET. Migrating code to support IPv6
isn’t difficult. All that is required is a new parameter to be passed to the
socket constructor AddressFamily.InterNetworkV6. Locally bound end-
points are created differently, too, using IPAddress.IPv6Any as the loop-
back address.

Support for IPv6 in .NET 1.1 is disabled by default, so before you can
begin programming, you need to adjust the configuration for .NET. Using
a text editor, open the machine.config file, located in the C:\WINDOWS\
Microsoft.NET\Framework\v1.1.4322 folder. Replace the XML <!--

<ipv6 enabled="false "/> --> with <ipv6 enabled="true"/>.

The following example demonstrates how to transmit some text via
TCP/IPv6. There are two parts to this example: a client and a server. We
shall start by first implementing the server. Create a new project in Visual
Studio .NET. Draw a textbox on the form, named tbMessages, with
multiline set to true.

First, add a public variable named port. This variable will hold the port
number on which the server will listen:

C#
public class Form1 : System.Windows.Forms.Form

{

474 16.10 IPv6 in .NET

 public static int port;

VB.NET
Public Class Form1

 Inherits System.Windows.Forms.Form

 Public Shared port As Integer

This server is dual threaded, where the main thread is used to keep the UI
responsive, and a secondary “worker” thread is used to accept and handle
incoming connections. This server would be incapable of handling more
than one connection at a time. In the form Load event, the port is set to
9999, and the worker thread is started.

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 port = 9999;

 Thread thdListener = new Thread(new ThreadStart(listener));

 thdListener.Start();

}

VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 port = 9999

 Dim thdListener As Thread = New Thread(_

 New ThreadStart(AddressOf listener))

 thdListener.Start()

End Sub

The Listener function works by binding a socket to the IPv6 loopback
address on port 9999. It uses Socket.SupportsIPv6 to determine if the
.NET run time is capable of handling IPv6. If so, the socket is bound to the
address and begins listening. Once a connection is received, a new socket is
created, which will read data from the network in 256-byte chunks. It out-
puts all data to the screen immediately. Once there is no more data, both
sockets close, and the server will no longer accept connections.

C#
public void listener()

{

16.10 IPv6 in .NET 475

Chapter 16

 Socket sckListener;

 Socket clientSocket;

 IPEndPoint ipepLocal =

 new IPEndPoint(IPAddress.IPv6Any, port);

 byte[] RecvBytes = new byte[Byte.MaxValue];

 Int32 bytes;

 if(!Socket.SupportsIPv6)

 {

 MessageBox.Show("Cannot support IPv6");

 return;

 }

 sckListener = new Socket(

 AddressFamily.InterNetworkV6, SocketType.Stream,

 ProtocolType.Tcp

);

 sckListener.Bind(ipepLocal);

 sckListener.Listen(0);

 clientSocket = sckListener.Accept();

 while(true)

 {

 bytes = clientSocket.Receive(RecvBytes);

 if (bytes<=0) break;

 tbMessages.Text += Encoding.ASCII.GetString(RecvBytes);

 }

 tbMessages.Text += "\n";

 clientSocket.Close();

 sckListener.Close();

}

VB.NET
Public Sub listener()

 Dim sckListener As Socket

 Dim clientSocket As Socket

 Dim ipepLocal As IPEndPoint = New _

 IPEndPoint(IPAddress.IPv6Any, port)

 Dim RecvBytes() As Byte = New Byte(Byte.MaxValue) {}

 Dim bytes As Int32

 If (Not Socket.SupportsIPv6) Then

 MessageBox.Show("Cannot support IPv6")

 Return

 End If

476 16.10 IPv6 in .NET

 sckListener = New Socket(_

 AddressFamily.InterNetworkV6, SocketType.Stream, _

 ProtocolType.Tcp)

 sckListener.Bind(ipepLocal)

 sckListener.Listen(0)

 clientSocket = sckListener.Accept()

 Do

 bytes = clientSocket.Receive(RecvBytes)

 If bytes <= 0 Then Exit Do

 tbMessages.Text += Encoding.ASCII.GetString(RecvBytes)

 Loop

 tbMessages.Text += vbCrLf

 clientSocket.Close()

 sckListener.Close()

End Sub

You will also need to add the following namespaces to your code:

C#
using System.Net;

using System.Net.Sockets;

using System.Threading;

using System.Text;

VB.NET
Imports System.Net

Imports System.Net.Sockets

Imports System.Threading

Imports System.Text

Once the server is written, let us turn our attention to implementing the
client. Open a new project in Visual Studio .NET. Draw two textboxes on
the form: tbIPv6Addr and tbMessage. Then add a button named btnSend.

First, add a public variable named port. This variable will hold the port
number, on which the server will listen:

C#
public class Form1 : System.Windows.Forms.Form

{

 public static int port;

16.10 IPv6 in .NET 477

Chapter 16

VB.NET
Public Class Form1

 Inherits System.Windows.Forms.Form

 Public Shared port As Integer

As in the server, the port needs to be set to 9999. This is set from within
the form Load event.

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 port = 9999;

}

VB.NET
Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 port = 9999

End Sub

Now, double-click on the Send button, and enter the code below. This
works by creating a socket with an address type of IPv6. This socket estab-
lishes a connection with the remote server in the normal way and transfers
the string by converting it to a byte array.

C#
private void btnSend_Click(object sender, System.EventArgs e)

{

 byte[] msg;

 if(!Socket.SupportsIPv6)

 {

 MessageBox.Show("Cannot support IPv6");

 return;

 }

 IPAddress ipAddrv6 = IPAddress.Parse(tbIPv6Addr.Text);

 IPEndPoint ipEPv6 = new IPEndPoint(ipAddrv6, port);

 Socket socket = new Socket(

 AddressFamily.InterNetworkV6, SocketType.Stream,

 ProtocolType.Tcp

);

478 16.10 IPv6 in .NET

 socket.Connect(ipEPv6);

 msg = Encoding.ASCII.GetBytes(tbMessage.Text);

 socket.Send(msg);

 socket.Close();

}

VB.NET
Private Sub btnSend_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnSend.Click

 Dim msg() As Byte

 If Not Socket.SupportsIPv6 Then

 MessageBox.Show("Cannot support IPv6")

 Return

 End If

 Dim ipAddrv6 As IPAddress = _

 IPAddress.Parse(tbIPv6Addr.Text)

 Dim ipEPv6 As IPEndPoint = New IPEndPoint(ipAddrv6, port)

 Dim ipv6Socket As Socket

 ipv6Socket = New Socket(_

 AddressFamily.InterNetworkV6, SocketType.Stream, _

 ProtocolType.Tcp)

 ipv6Socket.Connect(ipEPv6)

 msg = Encoding.ASCII.GetBytes(tbMessage.Text)

 ipv6Socket.Send(msg)

 ipv6Socket.Close()

End Sub

You will also need to add the following namespaces to your code:

C#
using System.Net;

using System.Net.Sockets;

using System.Text;

VB.NET
Imports System.Net

Imports System.Net.Sockets

Imports System.Text

To test this example, run the server from Visual Studio .NET. Find the IPv6
address of the server computer, using the Ipv6 if command. If you are

16.11 Conclusion 479

Chapter 16

using only one computer, then this is FE80::1. Now run the client pro-
gram, enter the server IPv6 address into the box provided, and type a mes-
sage into the second box. Press Send, and the message should appear in the
text window of the server, as depicted in Figure 16.7.

16.11 Conclusion

IPv6 compliance may not be a big issue today, but in the near future it will
be key and may be an absolute requirement in certain software products.
This chapter should provide enough information for you to set up an
experimental IPv6 network and provide a test platform for IPv6 compliance
in software. It should also give insight into how to upgrade legacy protocols
without alienating existing clients.

IPv6 may be a headache for network administrators, but it is a gold
mine of opportunity for developers. When IPv4 begins to make its exit
from the Internet, it is almost certain that people will start looking at other
protocols. FTP, for instance, is incompatible with IPv6 because of IPv4-
dependent features of the protocol, such as the PASV command. Another
example is X.25, which currently forms the backbone of financial institu-
tions, but has no native mechanism to tunnel over IPv6, so it may also be
replaced. The list is virtually endless.

The final chapter deals with two of the technologies introduced with
.NET that have been heralded as a revolution in distributed computing:
remoting and Web services.

Figure 16.7
TCP/IPv6 client

and server.

This page intentionally left blank

481

17

Web Services and Remoting

17.1 Introduction

Web services are one of the most hyped features of .NET. They facilitate the
sharing of information and services among companies and individuals on a
programmatic level more elegantly than any other existing technology. The
real benefit of using Web services in Visual Studio .NET is that you require
nothing more than a simple URL to begin coding against a Web service
residing on a remote server as if it were a local object. This cuts out the
complexity of establishing network connections, formatting requests, and
parsing replies.

From a business perspective, Web services can drastically reduce the
development and integration time in rolling out affiliate programs. Online
retailers can make their price listings available publicly via Web services to
enable third parties to resell their products, knowing that items sold are cur-
rently in stock.

Although Web services may make information freely available, this
does not imply that all of these services are free. Pay-per-use Web services
such as SMS, credit card processing, and postal address lookup can be
bought and used by third parties as part of larger applications with mini-
mal effort.

17.2 Creating a Web service

In order to create a Web service, you will require access to an IIS server with
the .NET framework installed. You will need administrative rights on this
server to develop the Web service directly from Visual Studio .NET. When
you install VS.NET, it will install and configure IIS for you.

482

17.2

Creating a Web service

 This first Web service is used to report server variables from the server
that hosts the service. This may not seem immediately useful, but one of
the server variables (

REMOTE_HOST

) indicates the remote IP address of the
client connecting to it. This information is useful to determine if a client is
running behind a firewall or proxy, because in this case the local IP address
on the client will not be the same as the IP address that would connect to a
remote server. There is no easy way to determine this IP address using only
code running on the client.

Another use of tracking the requester’s IP address is to limit the number
of queries made against a service in any one day. This effectively prohibits
data mining, but it could be a hindrance when many users use the service
behind the same outgoing proxy or firewall.

Start a new project in Visual Studio .NET, selecting a project of type
ASP.NET Web Service. The default path for this new project is on the local
IIS server (

http://localhost

).

Note:

If you receive an error concerning the “debugging users group” on
IIS, this generally means you have not enabled Integrated Windows

Authentication under Directory Security on the server.

A server will have many variables associated with it, although the names
of these variables do not change from server to server; for flexibility, we can
provide a method that returns an array of all the server variables stored on
this machine.

Enter the following code in the

asmx

 file:

C#

[WebMethod]

public String[] getServerVariableNames()

{

 System.Collections.Specialized.NameValueCollection col;

 col=Context.Request.ServerVariables;

 String[] arr = col.AllKeys;

 return arr;

}

VB.NET

<WebMethod> _

Public Function getServerVariableNames() As String()

17.2

Creating a Web service 483

Chapter 17

 Dim col As _

 System.Collections.Specialized.NameValueCollection _

 col=Context.Request.ServerVariables

 Dim arr() As String = col.AllKeys

 Return arr

End Function

Notice the

[WebMethod]

 attribute placed before the function name. This
exposes the function for use over the Internet. The array returned from this
method would be instantly recognizable by any ASP or ASP.NET devel-
oper. It would include strings such as

REMOTE_HOST

,

representing the IP
address of the client, and

HTTP_USER_AGENT

, representing the software being
used by the client.

To retrieve the value of each of these variables, we can implement a sec-
ond function as follows:

C#

[WebMethod]

public string[] getServerVariable(string variableName)

{

 System.Collections.Specialized.NameValueCollection col;

 col=Context.Request.ServerVariables;

 String[] arr = col.GetValues(variableName);

 return arr;

}

VB.NET

<WebMethod> _

Public Function getServerVariable(ByVal variableName As _

 String) As String()

 Dim col As _

 System.Collections.Specialized.NameValueCollection _

 col=Context.Request.ServerVariables

 Dim arr() As String = col.GetValues(variableName)

 Return arr

End Function

This function returns the value of a server variable when passed its
name. It returns an array because some server variables return more than
one result. To cite an example,

HTTP_ACCEPT

, the variable that enumerates

484

17.2

Creating a Web service

the MIME types that the browser can render, will generally return an array
of several different file types.

To test this service, run it from Visual Studio .NET, and you will see a
browser open with an automatically generated Web page that details the
public functions of your Web service. This Web page should be used for
debugging purposes only because the default security setting is that the
HTML interface is only available to browsers running on the local
machine. End-consumers will use a programmatic interface to access this
service. Click on

getServerVariableNames

 and then Invoke.

You will see a new browser window opening with XML content, as
shown in Figure 17.1. The XML is formatted as SOAP.

Take note of a server variable of interest, such as

REMOTE_ADDR

. Press
Back on the first browser window, and select

getServerVariable

. Enter the
name of the server variable in the box provided, and press Invoke. You will
see a new window open and the Web service’s XML response encoded as
SOAP.

You will notice the URL in the address bar changing as you navigate
within this interface to the Web service. An HTTP

GET

 request in the fol-
lowing format can be used to invoke a Web service method:

Figure 17.1

SOAP result
returned from a

Web service.

17.2

Creating a Web service 485

Chapter 17

http://[

ASMX file

]/[

function name

]?[

function parameters

]

It is possible to use a

GET

 request to invoke a Web service programmati-
cally, but this is ill advised. Using the query string to pass objects is only
possible with primitive types, and there are better ways to use a Web service
programmatically.

Another HTTP

GET

 request can be made against the Web service in the
form

http://[

ASMX file

]?WSDL

This displays the formal definition of the Web service in Web Service
Definition Language (WSDL) format. The WSDL definition allows Visual
Studio .NET to determine the methods exposed by the Web service and to
generate a suitable wrapper or proxy class for it. This step is generally done
behind the scenes, but for the interested reader, it is possible to perform this
step manually using the WSDL.EXE utility provided with .NET. The call-
ing syntax is as follows:

WSDL http://[

ASMX file

]?WSDL

This will generate a C# proxy class in the same folder as WSDL.EXE. To
generate a VB.NET class, precede the URL with

/Language:VB

.

17.2.1 Deploying a Web service

Having a Web service running on your local machine is fine for develop-
ment purposes, but in order to make the service meaningful, it should be
uploaded to a publicly accessible IIS server. Web services that are deployed
publicly must have a unique namespace to distinguish them from other
Web services on the Internet. Coding convention dictates that the
namespace should be in the form of a domain name that you control. The
namespace may look like a URL, but it does not need to point to anything
on the Web in particular.

C#

[WebService(Namespace="http://www.myserver.com/")]

486

17.3

Using a Web service

VB.NET

<WebService(Namespace:="http://www.myserver.com/")> _

If you want to make it easy for people to find your Web service, one of
the first places you should advertise it is at

http://uddi.Microsoft.com

or

http://test.uddi.Microsoft.com

. These are public repositories for Web ser-
vices and generally the first place developers go when looking for a partic-
ular online service.

Universal description discovery integration (UDDI) is an open standard
that can be accessed programmatically by using the

Microsoft.Uddi.Sdk

namespace provided with the UDDI SDK.

17.3 Using a Web service

As mentioned earlier, the automatically generated Web interface for a Web
service is not designed for public use. Instead, you generate a proxy class
that accesses the service programmatically, and you can code against the
Web service as if you are using a local object.

In Visual Studio .NET, you don’t need to code a proxy class yourself; it
will be created for you. All you need to do is enter the URL of the Web ser-
vice, and all of the behind-the-scenes work is taken care of.

Start a new project in Visual Studio .NET and select Windows Forms
Application.

Click Project

→→→→

Add Web Reference, and then enter the URL of
the ASMX file created in the previous example. Press Add Reference once
you have found the Web service. In the following example, the Web service
is assumed to reside on the local machine and to be named

Service1

.

Draw a list view on the form, and name it

lvServerVariables

. A but-
ton named

btnPopulate

 is also required.

Click on the form and add the following code:

C#

private void Form1_Load(object sender, System.EventArgs e)

{

 lvServerVariables.View=View.Details;

 lvServerVariables.Columns.Add("Name",

 lvServerVariables.Width/2,

 HorizontalAlignment.Left);

 lvServerVariables.Columns.Add("Value",

17.3

Using a Web service 487

Chapter 17

 lvServerVariables.Width/2,

 HorizontalAlignment.Left);

}

VB.NET

Private Sub Form1_Load(ByVal sender As Object, ByVal _

 e As System.EventArgs)

 lvServerVariables.View=View.Details

 lvServerVariables.Columns.Add("Name", _

 lvServerVariables.Width/2, _

 HorizontalAlignment.Left)

 lvServerVariables.Columns.Add("Value", _

 lvServerVariables.Width/2, _

 HorizontalAlignment.Left)

End Sub

This code simply lays the list view out on the screen in a neat way, with
the column headers equally spaced across the screen.

Click on the Populate button, and add the following code:

C#

private void btnPopulate_Click(object sender,
System.EventArgs e)

{

 string[] serverVariableNames;

 localhost.Service1 webservice = new localhost.Service1();

 serverVariableNames = webservice.getServerVariableNames();

 lvServerVariables.Items.Clear();

 foreach (string serverVariableName in serverVariableNames)

 {

 ListViewItem lvItem = new ListViewItem();

 lvItem.Text = serverVariableName;

 string[] serverVariableValues;

 serverVariableValues =

 webservice.getServerVariable(serverVariableName);

 if (serverVariableValues!=null)

 {

 lvItem.SubItems.Add(serverVariableValues[0]);

 }

 lvServerVariables.Items.Add((ListViewItem)lvItem.Clone());
}

}

488

17.3

Using a Web service

VB.NET

Private Sub btnPopulate_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim serverVariableNames() As String

 Dim webservice As localhost.Service1 = New _

 localhost.Service1

 serverVariableNames = webservice.getServerVariableNames()

 lvServerVariables.Items.Clear()

 Dim i As Integer

 For each serverVariableName as string in _

 serverVariableNames

 Dim lvItem As ListViewItem = New ListViewItem

 lvItem.Text = serverVariableName

 Dim serverVariableValues() As String

 serverVariableValues = _

 webservice.getServerVariable(serverVariableName)

 If Not serverVariableValues Is Nothing Then

 lvItem.SubItems.Add(serverVariableValues(0))

 End If

 lvServerVariables.Items.Add(CType(lvItem.Clone(), _

 ListViewItem))

 Next

End Sub

This code would seem to have nothing to do with networking code, but
in fact, it communicates extensively with the remote server via the proxy
class every time a method is called on the

webservice

 object.

If you would like to view the proxy class, you can click on show all files
in the Solution Explorer, and click Localhost

→→→→

Reference.map

→→→→

 Refer-
ence.cs. It is not advisable to edit the proxy class manually.

The rest of the code above is concerned with displaying the data
returned from the Web service on-screen. Only the first element in the
array returned from

getServerVariable

 is actually rendered on-screen, for
the sake of simplicity.

To test the Web service client, run it from Visual Studio .NET, ensure
that IIS is running on the local machine, and then press Populate. You
should see a list appearing on-screen, which should resemble Figure 17.2.

17.4

Asynchronous calls to Web services 489

Chapter 17

17.4 Asynchronous calls to Web services

If the same Web service were deployed on several geographically separated
Web servers, clients could connect to several Web services at once in order
to improve performance. This may only be applicable in situations where
several calls have to be made and each call takes a significant amount of
time to complete.

To understand the scenario, we could envisage a situation where an
application displays live stock values of a large share portfolio. A Web ser-
vice is hosted on a server in the United States, which is linked into the
NASDAQ exchange, and another server is located in Japan, which is linked
into the Nikeii exchange. A customer in question has shares in Microsoft
and Toyota. If the client were to issue a request for the value of the
Microsoft shares, wait for the response, and then request the value of the
Toyota shares, the process would take twice as long as if both requests were
made simultaneously.

Several techniques can be used to manage simultaneous Web service
calls. The following code examples perform the same function: They make
two calls to a Web service and measure the response times to the calls. IIS is
multithreaded, so it handles both of these requests in parallel. In a real-
world example, the same Web service would be mirrored on more than one
server, so that the two requests would be handled at exactly the same time.

Figure 17.2

Web service client
application.

490

17.4

Asynchronous calls to Web services

Each of the following samples requires a simple user interface consist-
ing of only a button and a label. To create this interface, open a new
project in Visual Studio .NET, and select a Windows form application.
Draw a button on the form and name it

btnMakeCall

 and then draw a
label named

lblStatus

.

You will also require a Web reference to the Web service as described ear-
lier in this chapter. This Web reference should be named

localhost

, for the
purposes of these code examples. The Web service does not necessarily need
to be hosted on the local machine.

17.4.1 Wait handles

A wait handle is equivalent to a

do-nothing while

 loop using polling, but
it is less processor intensive. This should only be used in a separate thread,
or the client application will be nonresponsive to the user. This technique
should only be used when useful client-side processing can be performed
before data is returned from any of the Web services.

Click on the Make Call button and enter the following code:

C#

private void btnMakeCall_Click(object sender,
System.EventArgs e)

{

 long timeStart = DateTime.UtcNow.Ticks;

 localhost.Service1 svc = new localhost.Service1();

 IAsyncResult result1;

 IAsyncResult result2;

 result1 = svc.BegingetServerVariableNames(null,null);

 result2 =

 svc.BegingetServerVariable("REMOTE_ADDR",null,null);

 result1.AsyncWaitHandle.WaitOne();

 result2.AsyncWaitHandle.WaitOne();

 string[] varNames = svc.EndgetServerVariableNames(result1);

 string[] response = svc.EndgetServerVariable(result2);

 lblStatus.Text = "Time elapsed:" +

 (DateTime.UtcNow.Ticks - timeStart);

 lblStatus.Text += " ticks";

}

VB.NET

Private Sub btnMakeCall_Click(ByVal sender As Object, _

17.4

Asynchronous calls to Web services 491

Chapter 17

 ByVal e As System.EventArgs)

 Dim timeStart As Long = DateTime.UtcNow.Ticks

 Dim svc As localhost.Service1 = New localhost.Service1()

 Dim result1 As IAsyncResult

 Dim result2 As IAsyncResult

 result1 = svc.BegingetServerVariableNames(_

 Nothing,Nothing)

 result2 = _

 svc.BegingetServerVariable(_

 "REMOTE_ADDR",Nothing,Nothing)

 result1.AsyncWaitHandle.WaitOne()

 result2.AsyncWaitHandle.WaitOne()

 Dim varNames() As String = _

 svc.EndgetServerVariableNames(result1)

 Dim response() As String = _

 svc.EndgetServerVariable(result2)

 lblStatus.Text = "Time elapsed:" & _

 (DateTime.UtcNow.Ticks - timeStart)

 lblStatus.Text += " ticks"

End Sub

To test this code, run the application from Visual Studio .NET, and
press the make Call Button. The user interface will become unresponsive
until the call is received. In a production environment, the code detailed
above should be contained within a separate thread.

17.4.2 Callbacks

Callbacks produce the least amount of processor overhead while waiting for
Web service calls to return. They are ideal in situations where no useful cli-
ent-side processing can be performed before all of the data is received; how-
ever, it could be difficult to determine when the last call has returned
successfully or erroneously.

Click on the Make Call button and enter the following code:

C#
public localhost.Service1 svc;

public long timeStart;

private void btnMakeCall_Click(object sender,
System.EventArgs e)

{

492 17.4 Asynchronous calls to Web services

 timeStart = DateTime.UtcNow.Ticks;

 svc = new localhost.Service1();

 svc.BegingetServerVariableNames(new

 AsyncCallback(ServiceCallback1),null);

 svc.BegingetServerVariable("REMOTE_ADDR",new

 AsyncCallback(ServiceCallback2),null);

}

private void ServiceCallback1(IAsyncResult result)

{

 string[] response = svc.EndgetServerVariableNames(result);

 lblStatus.Text = "Time elapsed:" +

 (DateTime.UtcNow.Ticks - timeStart);

 lblStatus.Text += " ticks";

}

private void ServiceCallback2(IAsyncResult result)

{

 string[] response = svc.EndgetServerVariable(result);

 lblStatus.Text = "Time elapsed:" +

 (DateTime.UtcNow.Ticks - timeStart);

 lblStatus.Text += " ticks";

}

VB.NET
Public svc As localhost.Service1

Public timeStart As Long

Private Sub btnMakeCall_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 timeStart = DateTime.UtcNow.Ticks

 svc = New localhost.Service1()

 svc.BegingetServerVariableNames(New _

 AsyncCallback(AddressOf ServiceCallback1),Nothing)

 svc.BegingetServerVariable("REMOTE_ADDR",New _

 AsyncCallback(AddressOf ServiceCallback2),Nothing)

End Sub

Private Sub ServiceCallback1(ByVal result As IAsyncResult)

 Dim response() As String = _

 svc.EndgetServerVariableNames(result)

 lblStatus.Text = "Time elapsed:" & _

17.5 Interoperability 493

Chapter 17

 (DateTime.UtcNow.Ticks - timeStart)

 lblStatus.Text += " ticks"

End Sub

Private Sub ServiceCallback2(ByVal result As IAsyncResult)

 Dim response() As String = _

 svc.EndgetServerVariable(result)

 lblStatus.Text = "Time elapsed:" & _

 (DateTime.UtcNow.Ticks - timeStart)

 lblStatus.Text += " ticks"

End Sub

To test this code, run the application from Visual Studio .NET, and
press the Make Call button. The time displayed is the time that has elapsed
between the issuing of the Web methods and the last response received. A
more robust solution would be to use a global array that would track the
progress of each call.

The BeginGetServerVariableNames function takes two parameters; the
first parameter indicates the procedure to be called once the web-method
returns, and the second, as shown in the code example above, is set to null
or Nothing. This parameter can optionally contain objects that can be
passed to the callback via the result object.

17.5 Interoperability

When developing a Web service, it should be straightforward for any devel-
oper working on any platform to implement a client. The previous example
should demonstrate that it is easy to implement a Web service client in
.NET, but if your service is to be made available to third-party Web site
developers, you have to make sure that you do not needlessly complicate
their job simply for the sake of using this new buzzword in Web technology.

Although it may not seem like your responsibility to support third-
party developers that integrate into your software, it would be lunacy (and
bad for business!) to provide a service that was so difficult to use from plat-
forms other than .NET that developers would simply give up and find a
different supplier.

Most languages now support XML. With this, it is easy to extract prim-
itive types such as strings, numbers, and arrays from SOAP responses;
however, if complex objects such as datasets and nested classes are rendered

494 17.6 Performance

as SOAP, it is likely that the average PHP Web developer will throw his
hands up in despair. Therefore, if it is envisaged that there may be a user
base that may not use Microsoft scripting languages to run their Web sites,
then the clarity of XML returned from Web service methods should be
closely examined.

If the third party wishing to access your Web service is running a
Microsoft platform and does not intend to use .NET (e.g., if he or she are
using classic ASP or Visual Basic 6), then you cannot force these people to
migrate to .NET in order to use your Web service; however, you could
mention the SOAP toolkit from Microsoft (msdn.microsoft.com/webservices/
building/soaptk/), which can greatly simplify the task of adding Web service
support to a legacy Windows application.

17.6 Performance

The first thing that may strike you when running the code sample above is
that it can take several seconds to populate a short list of information. Web
services are slow on first access because of background .NET compilations.
It may look as if Web services were designed more for interoperability than
speed.

In chapter 4, remoting was discussed. This technology is similar to Web
services. With remoting, there were many ways to improve performance by
using more simplistic protocols. With Web services, there is no easy way to
use anything other than SOAP. Having said this, the one-protocol-only way
of doing things makes life easier for system integrators who are working on
different platforms. The trade-off between interoperability and performance
has to be decided on a case-by-case basis. It should be clear enough that
SOAP is more interoperable than Microsoft’s proprietary binary format.

In benchmarking tests, a Web service and remoting object both made
queries to a database in response to client requests. Under high-load condi-
tions (60 requests per second for a single database entry), a remoting object
hosted on a Windows service using a binary formatter over TCP outper-
formed the Web service by 50%.

Although remoting objects can be configured for higher performance
than Web services, when a remoting object communicates with SOAP over
HTTP, it is actually slower than a Windows service by about 25% under
the same load as stated above. Furthermore, it is more difficult to use a
remoting object than a Web service because there is no automatic mecha-
nism to discover the interface of a remoting object, whereas Web services

17.7 Security 495

Chapter 17

use WSDL. Some other configurations of the remoting object also suc-
ceeded in outperforming the Web service. They were binary format over
HTTP and SOAP format over TCP.

When a remoting object is hosted on IIS rather than in a Windows ser-
vice, the performance level drops substantially. When a remoting object
uses the binary format, it only barely surpasses Web services performance at
20 requests per second; however, using other configurations, such as SOAP
over HTTP on IIS, dropped the performance to 35% under Web services.

To sum up, in order to achieve maximum performance, with a user base
that is exclusively .NET clients, and where you have access to a dedicated
Windows server, then use a Windows service hosting a remoting object
using binary format over TCP. If the user base could include non-.NET cli-
ents, however, or if you have only shared access to a server, then you should
use a Web service.

17.7 Security

Web services run on IIS servers, so an IIS server with SSL certificates
installed provides secure Web services. This rather simplistic view of secu-
rity in Web services is nonetheless probably the best approach to take when
implementing a secure Web service at the moment.

Web site security is more concerned with ensuring that the server is
authenticated to the client than vice versa, but this makes good sense
because it means that customers will know they are giving their credit card
details to a reputable supplier, but the supplier doesn’t really care who enters
the details, as long as money is involved in the transaction.

With Web services, the typical user would have paid for the privilege of
using the service. The user would not care exactly who is providing the ser-
vice, just that the information is correct; however, the Web service provider
would need to know that the client was in fact a paying customer.

HTTPS provides for client authentication, so there is no need to rein-
vent the wheel here. In an intranet environment, a Windows authentication
system will undoubtedly already be in place on the network. To provide cre-
dentials with a Web service call, it is a matter of setting the Credentials
property of the Web service, such as in the following code snippet:

C#
localhost.Service1 webservice = new localhost.Service1();

CredentialCache cache = new CredentialCache();

496 17.7 Security

 NetworkCredential netCred =

 new NetworkCredential("user", "pass", "myServerName"
);

cache.Add(new Uri(svc.Url), "Basic", netCred);

webservice.Credentials = cache;

VB.NET
Dim webservice As localhost.Service1 = New _

 localhost.Service1()

Dim cache As CredentialCache = New CredentialCache()

NetworkCredential netCred = _

 New NetworkCredential("user", "pass", "myServerName")

cache.Add(New Uri(webservice.Url), "Basic", netCred)

webservice.Credentials = cache

On the Web service side, it is possible to check credentials using the fol-
lowing statement:

Thread.CurrentPrincipal.Identity.Name

Which will return either an empty string or a user name in the following
form:

[Domain]\[user]

Of course, this type of authentication is only useful for intranet situa-
tions. It is not applicable for globally accessible services when SSL is not
used on the server. The best practice is to use client X.509 certificates, but
this would be overkill for everything less than financial applications because
it takes a lot of time and effort to get issued an X.509 client certificate with
your name on it. An X.509 certificate can be included in the client request
by adding it to the ClientCertificates collection thus:

C#
localhost.Service1 webservice = new localhost.Service1();

X509Certificate x509 = X509Certificate.CreateFromCertFile(

 "c:\\myCertificate.cer");

webservice.ClientCertificates.Add(x509);

17.8 Web services enhancements 497

Chapter 17

VB.NET
Dim webservice As localhost.Service1 = New _

 localhost.Service1()

X509Certificate x509 = X509Certificate.CreateFromCertFile(_

 "c:\myCertificate.cer")

webservice.ClientCertificates.Add(x509)

If your Web service needs to be secure enough to prevent nonpaying
users from accessing it, but doesn’t require the overhead of end-to-end strong
encryption, an acceptable middle road is to use hashing, or as it is more cor-
rectly called, digest authentication. This is where each customer is allocated a
username and password. The password is combined with the username and
then hashed. The hash digest is then sent as a parameter to the Web method.
If the digest matches the hash of the username and password pair held in the
database, then the user can be authenticated. To increase security, a second
digest could be created, composed from the current time (accurate to the
minute) and the user’s password. A hashed timestamp more than one minute
old would be rejected. This means that a hacker listening on the wire could
not record and replay Web service requests.

17.8 Web services enhancements

Web services can be made more flexible by installing Web Services
Enhancements (WSE) from Microsoft. To save confusion over terminology,
Global XML Web Services Architecture (GXA) was a joint proposal by
IBM and Microsoft. WSE is Microsoft’s adaptation of GXA, which is, for
all intents and purposes, identical. The added features are attachments,
security, routing, and referral.

WSE can be downloaded from http://msdn.microsoft.com/webservices/
building/wse. Once installed, it can be integrated into any .NET project
by adding a reference to Microsoft.Web.Services.dll and by modifying
the Web.Config file for the project by adding a type to soapExtension-
Types thus:

<configuration>

 <system.web>

 ...

 <webServices>

 <soapExtensionTypes>

 <add type= "Microsoft.Web.Services.WebServicesExtension,

498 17.8 Web services enhancements

 Microsoft.Web.Services,

 Version=1.0.0.0,

 Culture=neutral,

 PublicKeyToken=31bf3856ad364e35"

 priority="1" group="0" />

 </soapExtensionTypes>

 </webServices>

 </system.web>

</configuration>

17.8.1 Web service extensions: Attachments

If your Web service returns multimedia data, such as images or audio, you
should consider using SOAP attachments. Including binary data as a SOAP
attachment as distinct from plain text offers a performance advantage
because the data will not be encoded and bloated in size. SOAP attach-
ments use the direct Internet message encapsulation (DIME) format. This
feature is included in WSE 1.0. Only the core features of the technology are
described here.

To attach an image (such as c:\photo.jpg) to a SOAP response, you
could use code similar to the following:

C#
string filePath = "C:\\myPhoto.jpg";

DimeAttachment dimeImage = new DimeAttachment(

 "image/jpeg", TypeFormatEnum.MediaType,

 filePath);

dimeImage.Id = "uri:" + Guid.NewGuid().ToString();

SoapContext cntxt = HttpSoapContext.ResponseContext;

cntxt.Attachments.Add(dimeImage);

VB.NET
Dim filePath As String = "C:\myPhoto.jpg"

DimeAttachment dimeImage = New DimeAttachment(_

 "image/jpeg", TypeFormatEnum.MediaType, _

 filePath)

dimeImage.Id = "uri:" & Guid.NewGuid().ToString()

Dim cntxt As SoapContext = HttpSoapContext.ResponseContext

cntxt.Attachments.Add(dimeImage)

You will require the following namespaces:

17.8 Web services enhancements 499

Chapter 17

C#
using System.Web.Services;

using Microsoft.Web.Services;

using Microsoft.Web.Services.Dime;

VB.NET
Imports System.Web.Services

Imports Microsoft.Web.Services

Imports Microsoft.Web.Services.Dime

The Web service client could extract the image data from the SOAP
response by using the following code:

C#
localhost.Service1 webservice = new localhost.Service1();

Stream attachment =
webservice.ResponseSoapContext.Attachments[0].Stream;

Bitmap myImage = new Bitmap(attachment);

VB.NET
Dim webservice As localhost.Service1 = New _

 localhost.Service1()

Dim attachment As Stream

Attachment = _

 webservice.ResponseSoapContext.Attachments(0).Stream

Dim myImage As Bitmap = New Bitmap(attachment)

There are several limitations to DIME in WSE 1.0. One significant lim-
itation is that SOAP attachments are not reflected in the WDSL contract
that is generated with the Web service. This means that clients will not be
aware, until they make a request to your Web service, that there are any
attachments in the response. Furthermore, DIME is not portable among
different platforms and is proprietary to Microsoft. To make matters worse,
COM clients using the SOAP toolkit will not be able to access attachments
at all unless the WDSL is manually edited to contain the appropriate
<dime:message> child elements and <wsdl:output> elements, as described
in the WDSL specification.

Another limitation of DIME in WSE 1.0 is that security does not
extend to the attachment. Therefore, whenever attachments need to be kept
secure from prying eyes and made resistant to man-in-the-middle tamper-

500 17.9 .NET remoting

ing, you will have to implement your own hashing and encryption mecha-
nism. Alternately, as previously recommended, the Web service should run
over SSL to provide end-to-end encryption and avoid security loopholes
such as this one.

17.8.2 Web service extensions: Routing

When a Web service begins to scale upward, it may quickly outgrow a sin-
gle-server environment and require hosting on several servers in parallel.
Because Web services run over IIS, they can be scaled upward in much the
same way as any Web site. This includes using load-balancing systems such
as Cisco Local Director or Microsoft NLB.

Load-balancing systems do generally delegate workload equally among
servers, and sometimes you may require more logic behind the load balanc-
ing. When talking specifically about Web services, you can use WSE to cre-
ate an intermediary Web service. This Web service could be used to direct
Web service calls to other servers, which may contain more up-to-date data
or be otherwise more appropriate for that particular call.

17.8.3 A word on Project Hailstorm (MyServices)

Project Hailstorm, or MyServices, is a technology that was shelved by
Microsoft in early 2002; therefore, it is best avoided. MyServices was a
project put forward by Microsoft to permit people to store data they would
use on a day-to-day basis on their servers via an array of custom-built Web
services. Services such as .NET Contacts to store your personal address
book, .NET Inbox to store your email, and .NET Wallet to store your
credit card details would be available through MyServices. The idea is tech-
nically sound, but many people and companies balked at the idea of
Microsoft being in control of so much personal information.

17.9 .NET remoting

Remoting is .NET’s equivalent of Java remote method invocation (RMI)
and Visual Basic’s Distributed Common Object Model (DCOM). It facili-
tates the use of complex objects on remote computers, using the same syn-
tax as if they were in the same application. The advantage that remoting
affords is the abstraction of the network infrastructure. This greatly simpli-
fies the implementation of client/server applications in which the server
must perform a variety of tasks based on instructions from the client.

17.9 .NET remoting 501

Chapter 17

Imagine a scenario in which a distributed billing system is being devel-
oped, where the client’s systems are high-street hire-purchase outlets, and a
central server at the head office handles customer invoicing, debt collection,
and so forth. Clients would require the server to perform tasks such as per-
form credit check, record start of lease, terminate lease, process credit card
payment, and other such tasks. Of course, the same effect could be achieved
by sending strings over TCP/IP, which the server would parse it on the
remote side, but it is simpler to make a call to customer.terminateLease()
and let .NET handle the network transmission.

17.9.1 How remoting works

When using remoting, you still need to create a client and server. You also
need to create an object that performs whatever functions you require. Both
ends of the connection need to know the type of the object. The client
needs to know the IP address and port of the server. Other than that, .NET
does the rest.

Although you don’t see what is being passed over the network, you do
have a choice whether to go for SOAP over HTTP (portable) or binary over
TCP (performance). SOAP used for remoting differs from the industry for-
mat somewhat and would be less portable than an equivalent Web service.

Note: Channel sinks can be used to view or modify the data immediately
before it is sent across the wire. This can be used to add security or queuing
features.

To prevent clients from draining the server’s resources by creating mil-
lions of objects and abandoning their instances, remoting has a built-in gar-
bage-collection system. Objects can be created so that their lifetime lasts
only as long as the execution time of the function (singlecall) or as long
as the class (singleton) or a server-defined lifetime (published objects).
Remote object lifetimes, with the exception of published objects, are speci-
fied in the call to RemotingConfiguration.RegisterWellKnownService-
Type, as we shall see later.

Published objects are instantiated slightly differently, where, instead of
the call to RegisterWellKnownServiceType, the object is created thus:

C#
RemoteObject obj = new RemoteObject(1234);

RemotingServices.Marshal (obj,"RemotingServer");

502 17.9 .NET remoting

VB.NET
Dim obj as RemoteObject

obj = new RemoteObject(1234);

RemotingServices.Marshal(obj,"RemotingServer")

After which the object behaves as a singleton. The benefit of creating an
object in this way is that it is possible to create objects with nondefault con-
structors. This could include constructors that require user intervention
and, thus, are unsuitable for arbitrary client activation.

The key to remoting is to create a class that derives from MarshalBy-
RefObject. This object is then capable of running within the context of a
server and exposes its methods and properties through that server. While
running in the context of the server, local resources such as files and data-
bases located on the server are accessible through the class. Objects that
are returned as a result of calling methods on this class, however, are run
in the context of the client. These objects are called By Value objects.

By Value objects cannot access server resources, such as databases or
files; however, they can be prepopulated with data taken from server
resources such as these. For instance, the ubiquitous DataSet is perfectly
acceptable as a By Value object. A remote object returns a By Value object
by serializing it and transferring it over the network to the client. This
mechanism will only work if two conditions are met: (1) the object must be
marked [Serializable] or implement ISerializable, and (2) the client
must hold at the metadata for the By Value object, such that it can correctly
deserialize it.

17.9.2 Implementing remoting

This example demonstrates a simple remoting application, where the client
application may request a number from a server, which is incremented on
every call.

Start a new Class library project in Visual Studio .NET, and enter the
following code:

C#
using System;

namespace RemoteObject

{

 public class IDGenerator : System.MarshalByRefObject

 {

17.9 .NET remoting 503

Chapter 17

 private int lastID =0;

 public int getID()

 {

 return(lastID++);

 }

 }

}

VB.NET
Imports System

Namespace RemoteObject

 Public Class IDGenerator

 Inherits System.MarshalByRefObject

 Private lastID As Integer = 0

 Public Function getID() As Integer

 lastID = lastID + 1

 return(lastID)

 End Function

 End Class

End Namespace

You will note that the class derives from System.MarshalByRefObject.
This enables the object to be transferred over a remoting channel.

Compile the object, and note the location of the resultant DLL. The
next step is to create the server application to host this object.

Create a new Windows form project in Visual Studio .NET. Click
Project→→→→Add References→→→→Browse, and then click on the DLL created in the
last compilation. You will also need to select the System.Runtime.Remoting
namespace.

C#
private void Form1_Load(object sender, System.EventArgs e)

{

 HttpChannel channel = new HttpChannel(8085);

 ChannelServices.RegisterChannel(channel);

 RemotingConfiguration.RegisterWellKnownServiceType(

 typeof(RemoteObject.IDGenerator),

 "RemotingServer",

 WellKnownObjectMode.Singleton);

}

504 17.9 .NET remoting

VB.NET
Private Sub Form1_Load(ByVal sender As Object, _

ByVal e As System.EventArgs)

 Dim channel As HttpChannel = New HttpChannel(8085)

 ChannelServices.RegisterChannel(channel)

 RemotingConfiguration.RegisterWellKnownServiceType(_

 (New RemoteObject.RemoteObject.IDGenerator).GetType(), _

 "RemotingServer", _

 WellKnownObjectMode.Singleton)

End Sub

Certain things can be immediately ascertained by looking at this code.
The communications will take place on port 8085, using SOAP over
HTTP. The object is to be created as a Singleton, which means that it is
state-full, and the value of LastID will be maintained between calls.

You will also require the supporting namespaces:

C#
using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using RemoteObject;

VB.NET
Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels

Imports System.Runtime.Remoting.Channels.Http

Imports RemoteObject

Create a new Windows forms project in Visual Studio .NET. Click
Project→→→→Add References, click Browse, and then click on the DLL created
in the last compilation. Draw a button on the form and name it btnGetID.
Now click on the btnGetID button and enter the following code:

C#
private void btnGetID_Click(object sender, System.EventArgs
e)

{

17.9 .NET remoting 505

Chapter 17

 RemoteObject.IDGenerator remObject =
(RemoteObject.IDGenerator)Activator.GetObject(

 typeof(RemoteObject.IDGenerator),

 "http://localhost:8085/RemotingServer");

 if (remObject==null)

 MessageBox.Show("cannot locate server");

 else

 MessageBox.Show(Convert.ToString(remObject.getID()));

}

VB.NET
Private Sub btnGetID_Click(ByVal sender As Object, _

 ByVal e As System.EventArgs)

 Dim remObject As RemoteObject.IDGenerator = _

 CType(Activator.GetObject(_

 (New RemoteObject.IDGenerator).GetType(), _

 "http://localhost:8085/RemotingServer"), _

 RemoteObject.IDGenerator)

 If remObject Is Nothing Then

 MessageBox.Show("cannot locate server")

 Else

 MessageBox.Show(Convert.ToString(remObject.getID()))

 End If

End Sub

In this code, the call to the remote object is discretely written as remOb-
ject.getID(). It is worthwhile to note that this is a synchronous call, and
if the client could be doing other things while waiting for the method to
return, then either an asynchronous or one-way call should be employed, as
explained later.

Again, you will also require the supporting namespaces:

C#
using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using RemoteObject;

VB.NET
Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels

506 17.9 .NET remoting

Imports System.Runtime.Remoting.Channels.Http

Imports RemoteObject

To test the application, execute the client and server together (Figure
17.3), and then press the button on the client a few times. You will see the
number in the message box increasing.

17.9.3 Asynchronous use of remote objects

Asynchronous use of remote objects can be achieved by using delegates,
which are the .NET equivalent of function pointers. They are declared
within the same class as the client, but outside any of its methods. It would
have the same function prototype as the synchronous method you wish to
call. For instance, a remote method named getDetails() returning string
would have a corresponding delegate such as the following:

C#
delegate String GetDetailsDelegate();

VB.NET
Delegate Function GetDetailsDelegate() as string

Figure 17.3
Remoting Client

and remoting
Server.

17.9 .NET remoting 507

Chapter 17

Assuming the remote object is already instantiated and named obj, the
getDetails() method can be called thus:

C#
GetDetailsDelegate gdDelegate = new
GetDetailsDelegate(obj.GetDetails);

IASyncResult gdAsyncres = gnDelegate.BeginInvoke(null,null);

VB.NET
Dim gdDelegate as GetDetailsDelegate

Dim gdAsyncres as IASyncResult

gdDelegate = new GetDetailsDelegate(AddressOf obj.GetDetails)

gdAsyncres = gnDelegate.BeginInvoke(nothing,nothing)

This code returns immediately, and the server will begin executing the
GetDetails method on the remote object. In order to retrieve the return
value from the call, the client must execute EndInvoke on the delegate. This
method is blocking and will only return once the server has responded. It is
called as follows:

C#
String details = gdDelegate.EndInvoke(gnAsyncres);

VB.NET
Dim details as string

Details = gdDelegate.EndInvoke(gnAsyncres)

Although this method should be sufficient for most purposes, there is
another way to invoke a remote object asynchronously, by using the OneWay
attribute. One-way calls are made in the same way as standard asynchro-
nous calls from the client; however, the EndInvoke method will be non-
blocking and is guaranteed to return immediately, whether the server has
responded or not. This is useful for noncritical “call-and-forget” methods,
where overall application speed is more important than guaranteeing execu-
tion of selected peripheral functions.

To implement a one-way function, simply mark a method within the
interface definition with the attribute [OneWay()].

508 17.9 .NET remoting

17.9.4 Deployment of a remoting service

When using remoting in a commercial application, a few tricks of the trade
help your software become more robust and manageable. The client must
be able to tell the type of the object it is to receive at compile time. This
means that if you have already deployed your client to a million users
worldwide, you can’t make changes to the object or all of the clients will
stop working. The way around this dilemma is to have the client refer to the
interface of the object rather than the object itself, which means you can
change the implementation of the object’s methods without breaking com-
patibility. Perhaps a more important aspect is that if you are sharing the
implementation of your software with third parties, they could possibly
decompile or otherwise reverse-engineer your DLL, using ILDASM or
MSIL-to-C# (www.saurik.com).

An interface to the RemoteObject.IDGenerator class above is as follows:

C#
using System;

public Interface IIDGenerator

{

 public int getID();

}

VB.NET
Imports System

Public Interface IIDGenerator

 Public Function NextOrder() As int

End Interface

Using shared interfaces is not the only way to provide clients with access
to remote objects. The two main drawbacks are that third parties working
with your remote object must be sent the new interface whenever any of the
public methods or properties in the object change; furthermore, you cannot
pass these objects as parameters to functions running in a different context.

An alternate method is to use shared base classes. This is where the client
is provided with an abstract base class. The server would inherit from this
base class and implement the required functionality. This would make these
classes capable of being passed to functions running in different contexts;
however, it is impossible to create new objects using the new operator, only
the Activator.GetObject() can be used in this instance.

17.9 .NET remoting 509

Chapter 17

In order to address the deployment issue, Microsoft has created a utility
named soapsuds. This command-line utility can be used to extract metadata
from remote objects. It is invoked from DOS thus:

soapsuds –url:<URL>?wsdl -oa:<OUTPUT>.DLL –nowp

This generates a DLL file, which client programs can use to communi-
cate with the remote object. This DLL does not contain any implementa-
tion details, only interfaces. The –nowp, or no-wrap, parameter is used to
indicate whether the URL of the remote object should be hard-coded into
the DLL. An unwrapped proxy DLL does not contain URL information,
but a wrapped proxy DLL does. The benefit of hard-coding the URL into
the DLL is that the remote object can be created using the new operator.
Otherwise, the client has to use Activator.GetObject() to instantiate
the object.

17.9.5 Configuration

One major issue regarding deployment of remoting services is the ability to
configure clients quickly and easily. For instance, if you are forced to change
the IP address of the server hosting the remote object, it could be tricky to
change the code to point to the new IP address, recompile the application,
and request that all customers upgrade their software. A more acceptable
solution is to hold the location of the remote object in a separate XML file,
which could be replaced with a hot-fix patch when required. Therefore,
.NET provides a means of providing configuration files for remoting cli-
ents. A configuration file takes the following form:

XML
<configuration>

 <system.runtime.remoting>

 <application>

 <channels>

 <channel ref="http" port="1234" />

 </channels>

 <service>

 <wellknown mode="Singleton" type="myNamespace.myClass,

 myAssembly" objectUri="myClass.soap">

 </service>

 </application>

 </system.runtime.remoting>

</configuration>

510 17.9 .NET remoting

Assuming this file is saved as MyApp.exe.config, you can instantiate the
remote object from the client using the following code:

C#
String filename = "MyApp.exe.config";

RemotingConfiguration.Configure(filename);

MyClass obj = new MyClass();

VB.NET
Dim filename as string

Filename = "MyApp.exe.config"

RemotingConfiguration.Configure(filename)

Dim obj as MyClass

Obj=new MyClass()

Of course, the client still requires the definition of the class MyClass in
order to create an instance of the class. You could provide the implemen-
tation of MyClass to the client, but this poses code security risks and
deployment problems. Neither the shared interface nor the shared base
class method is suitable for the above example for providing class defini-
tions, so in this case you should use soapsuds to generate a DLL for the
client to reference in order to create these remote objects. The –nowp
switch should be used with soapsuds to ensure that the DLL does not
have hard-coded parameters.

In most cases, this should be all that is required to deploy a remoting
service with configuration files; however, some developers may run into a
problem where a remote object returns a By Value object, containing its
own methods. In this case, the client must have a local reference to the By
Value object, so it can deserialize the object and execute its methods. But a
problem occurs because the namespace generated by soapsuds will be the
same as the By Value object’s namespace. To avoid this namespace name
clash, you should manually edit the soapsuds-generated proxy DLL from
its source code, which can be obtained by calling soapsuds with the –gc
switch. Once the C# code can be edited, the namespace can be changed to
something else, thereby avoiding the namespace clash.

17.9.6 Hosting remote objects within IIS

Remote objects, as described thus far, have been hosted in simple Windows
applications. In reality, remote object servers generally do not require a user

17.9 .NET remoting 511

Chapter 17

interface, but they often require the ability to execute on a computer
regardless of whether a user is actively logged in. For this reason, you will
probably want to run your remote object server as a service. Chapter 10
covers this topic in more detail.

Another alternative, which may be more applicable for shared hosting
environments, is to host the remote object within IIS. This can be achieved
by adding a little XML to the web.config file thus:

XML
<configuration>

 <system.runtime.remoting>

 <application>

 <service>

 <wellknown

 mode = "Singleton"

 type = "RemoteObject.IDGenerator,RemotingServer"

 objectUri = "RemoteObject.soap"

 />

 </service>

 </application>

 </system.runtime.remoting>

</configuration>

17.9.7 Hosting remote objects within a Windows service

When an application is designed to run unattended on a computer, and has
no need for a user interface, it should run as a Windows service. Windows
services run in the background even when no user is currently logged on.
They are controlled via Control Panel→→→→Administrative Tools→→→→Services,
where you can start, stop, and restart the service, as well as view informa-
tion about it.

It is possible to use IIS as a host for remoting objects, but if you are
developing a mass-market software product, not all users have IIS on their
computers, nor will they want to go to the hassle of installing it.

This example requires the client and object from the previous example,
so if you have not done so, now is a good time to type it in. Start a new
Windows service (not application) project in Visual Studio .NET, scroll
down the code to the OnStart and OnStop methods, and add the following
code:

512 17.9 .NET remoting

C#
Thread thdServer;

protected override void OnStart(string[] args)

{

 thdServer = new Thread(new ThreadStart(serverThread));

 thdServer.Start();

}

VB.NET
Dim thdServer As Thread

Protected Overrides Sub OnStart(ByVal args() As String)

 thdServer = New Thread(New ThreadStart(_

 AddressOf serverThread))

 thdServer.Start()

End Sub

The two events OnStart and OnStop are triggered whenever the service
is started or stopped from Administrative Tools→→→→Services. The above code
will simply start a new thread at the serverThread function. Note that the
thread variable is outside of the method call, which provides a means for
OnStop to disable the service by stopping the thread.

 C#
protected override void OnStop()

{

 thdServer.Abort();

}

VB.NET
Protected Overrides Sub OnStop()

 thdServer.Abort()

End Sub

ServerThread is taken verbatim from the chapter 4 example. It opens an
HTTP channel on port 8085 for the RemoteObject assembly.

C#
public void serverThread()

{

 HttpChannel channel = new HttpChannel(8085);

17.9 .NET remoting 513

Chapter 17

 ChannelServices.RegisterChannel(channel);

 RemotingConfiguration.RegisterWellKnownServiceType(

 typeof(RemoteObject.IDGenerator),

 "RemotingServer",

 WellKnownObjectMode.Singleton);

}

VB.NET
Public Sub serverThread()

 Dim channel As HttpChannel = New HttpChannel(8085)

 ChannelServices.RegisterChannel(channel)

 RemotingConfiguration.RegisterWellKnownServiceType(_

 (New RemoteObject.RemoteObject.IDGenerator).GetType(), _

 "RemotingServer", _

 WellKnownObjectMode.Singleton)

End Sub

As before, the code establishes a connection channel using HTTP over
port 8085. The object is hosted in singleton mode, meaning that only one
instance of the object is ever created. This mode is required for this applica-
tion because the object needs to maintain a private variable, which is shared
between all clients that call the remote object.

Services cannot be run directly from the command line; they must be
installed. To prepare a service for deployment, right-click on the service in
design view and select Add Installer. Click on ServiceInstaller1, and set
the ServiceName property to MyService. Set the Account property of
ServiceProcessInstaller1 to LocalSystem.

Finally, you need to add three references: one to System.Configura-
tion.Install.dll, one to System.Runtime.Remoting, and another that
points at the compiled DLL for the IDGenerator assembly. Then add the
required namespaces as shown:

C#
using System.Configuration.Install;

using System.Runtime.Remoting;

using System.Runtime.Remoting.Channels;

using System.Runtime.Remoting.Channels.Http;

using System.Threading;

514 17.9 .NET remoting

VB.NET
Imports System.Configuration.Install

Imports System.Runtime.Remoting

Imports System.Runtime.Remoting.Channels

Imports System.Runtime.Remoting.Channels.Http

Imports System.Threading

Compile the application in Visual Studio .NET. You will not be able to
run it directly. You need to install the service first. To do so, you now must
go to the DOS command prompt. Navigate to the path where the compiled
.exe file resides, and then type the following at the command prompt:

DOS
path %path%;C:\WINDOWS\Microsoft.NET\Framework\v1.0.3705

installutil service.exe

net start MyService

Note: The path C:\windows\Microsoft.NET\Framework\v1.0.3705 may
differ among computers. If you have two versions of the .NET framework
on your machine, use the latest version.

Figure 17.4
Remoting Server

running as a
Windows service.

17.9 .NET remoting 515

Chapter 17

You may be prompted to enter a valid Windows username and password
during the installation process. To test the application, open the Services
snap-in at Control Panel→→→→Administrative Tools→→→→Services. If you scroll
down the list, you should see an entry named “Service1” (Figure 17.4),
which should be already started. Now open the client program that was cre-
ated for the example in chapter 4. Press Get unique ID, and you should see
a message box appear with a number on it.

17.9.8 Distributed garbage collection

Garbage collection occurs when an object is loaded into memory and no
program holds a reference to it. In a distributed environment, it is much
more difficult to monitor which programs hold references to a remote
object, especially if the programs in question are hundreds of miles away
over unreliable dial-up connections.

There are two ways to solve this problem: client activation and server
activation. Server activation is where the client has no control over the life-
time of the object, and client activation is where the client has full control
over the lifetime of the object.

Table 17.1 Significant members of the ILease interface.

Method or Property Purpose

InitialLeaseTime Specifies the amount of time a remote object will
stay in memory before it is garbage-collected,
assuming no action was taken on the object. The
default is five minutes.

CurrentLeaseTime Represents the amount of time left before the
remote object is garbage-collected.

RenewOnCallTime Specifies the amount of extended lease time that
should be added if the object is called. The default
is two minutes.

SponsorshipTimeout Indicates the amount of time the lease manager
will wait for a sponsor to respond before moving to
another sponsor or garbage-collecting the object.
The default is two minutes.

LeaseManagerPollTime Specifies the interval of time between scans for
expired leases by the underlying lease manager pro-
cess. The default is ten seconds.

516 17.9 .NET remoting

When the object is created using the Activator.GetObject() com-
mand, then the object is server activated. Server activation comes in two
forms: singleton and single call. Singleton activation is where one, and only
one, instance of the object is created on the server. This implies that state
information for the object is shared between all clients. Single-call activation
is a second form of server activation in which the object is created whenever
any method is called on it. The object will be destroyed again once the
method call is complete. This implies that there is no state information held
in the object.

Client-side activation manages objects by lifetime leases, which means
that a client can instruct the server to create an object and to keep it in
memory for a specified time before destroying it. Client-side activation
occurs when the object is created using Activator.CreateInstance().

In order to modify the lease parameters of a remote object, you simply
override the InitializeLifetimeService method and change the proper-
ties of the ILease interface (Table 17.1).

C#
using System;

using System.Runtime.Remoting.Lifetime;

namespace RemoteObject

{

 public class IDGenerator : System.MarshalByRefObject

 {

 private int lastID =0;

 public override Object InitializeLifetimeService()

 {

 ILease lease =

 (ILease)base.InitializeLifetimeService();

 if (lease.CurrentState == LeaseState.Initial)

 {

 lease.InitialLeaseTime = TimeSpan.FromMinutes(5);

 lease.SponsorshipTimeout = TimeSpan.FromMinutes(6);

 lease.RenewOnCallTime =

 TimeSpan.FromSeconds(7);

 }

 return lease;

 }

 public int getID()

 {

17.9 .NET remoting 517

Chapter 17

 return(lastID++);

 }

 }

}

VB.NET
Imports System

Imports System.Runtime.Remoting.Lifetime

Namespace RemoteObject

 Public Class IDGenerator

 Inherits System.MarshalByRefObject

 Private lastID As Integer = 0

 Public Overrides Function _

 InitializeLifetimeService() As [Object]

 Dim lease As Ilease

 Lease = _

 CType(MyBase.InitializeLifetimeService(), ILease)

 If lease.CurrentState = LeaseState.Initial Then

 lease.InitialLeaseTime = TimeSpan.FromMinutes(5)

 lease.SponsorshipTimeout = _

 TimeSpan.FromMinutes(6)

 lease.RenewOnCallTime = TimeSpan.FromSeconds(7)

 End If

 Return lease

 End Function

 Public Function getID() As Integer

 lastID = lastID + 1

 return(lastID)

 End Function

 End Class

End Namespace

Looking closely at the code above, you can see that this is the same
object as described earlier in the chapter. The difference is the overridden
function, which provides access to the lease parameters of the object. To
obtain an interface to the lease parameters, a call is made to base.Initial-
izeLifetimeService(), which returns the lease interface.

Some lease parameters cannot be changed once the object has been
instantiated, thus the lease’s current state is checked with the lease.Cur-

518 17.10 Conclusion

rentState property to ensure that the object is just in the process of being
created.

The InitialLeaseTime, SponsorshipTimeout, and RenewOnCallTime
properties are set to five, six, and seven minutes, respectively. This will keep
the object in memory longer than the default object lifetime.

To test this code, compile the object, and run the client program as
described earlier. Calls to the object will work fine for the first five minutes,
but any call made more than seven minutes after the previous call will cause
incorrect operation because the object will have been garbage collected.

17.10 Conclusion

Web services have been very much hyped as the next big thing in informa-
tion technology. They are arguably one of the simplest remote procedure
call systems ever developed and possibly the most interoperable technology
ever developed by Microsoft. Having said that, remoting can outperform
Web services under most conditions, and the technology is still in its
infancy. Many features, especially within WSE 1.0, are underimplemented
and could easily cause headaches for some developers.

As this concludes this book on .NET networking, I hope it proves bene-
ficial to you and helps you to further your career as a professional developer.
Good luck, and may your programs be bug free and efficient!

519

Index

6over4 protocol, 473
6to4cfg, 463
6to4 protocol, 469–71

defined, 469
IPv6 address, 470
network traffic, 470
pseudointerface, 471

Acknowledgments, 437–39
C#, 437–38
defined, 437
messages, 438, 439
VB.NET, 438

See also

 Message queues; Microsoft
Message Queue (MSMQ)

ActiveUdpListener

 class, 367, 368
Adaptive delta pulse code modulation

(ADPCM), 290, 297
Address book

accessing, 156–57
application, 157
C#, 156–57
VB.NET, 157

See also

 Mail application programming
interface (MAPI)

Address resolution protocol (ARP), 6, 327
Apache, 87
Applications

asymmetric encryption, 219

digital certificate reader, 243
DNS MX client, 314
frame-layer packet sniffer (

PacketX

), 364
frame-layer packet sniffer (

rvPacket

), 360
hashing, 236
“hello world,” 56–62
HTML editor, 113
HTTP client, 93, 96
HTTP server, 121
ICMP client, 321
IP-layer packet sniffer, 344
JPEG compression, 301
load balancing, 272
MAPI address book, 157
MAPI client, 155
MSMQ, 424
MSMQ receiver (basic), 428
MSMQ receiver (complex), 434
MSMQ transfer, 432
namespaces, 18
scalable network, 254–55
STA, 18
symmetric encryption, 224
TAPI call-receiver, 399
TAPI call-receiver with DTMF and

playback, 417
TCP client, 62
TCP Server, 66
testing, 20, 30, 32, 39, 54
third-party distributed, 74

520 Index

thread pool, 261
time-critical, 25
UDP client, 58
UDP server, 61
unresponsive, 81
wave sound player, 413
Web service client, 489
WHOIS client, 326
WMI query language analyzer, 333
WMI remote process manager, 335
ZIP compression, 295

AspEmail, 132
ASP.NET, 98–104, 130, 483

defined, 98
HTML element modeling, 98
mobile Web browsers, 130
performance, 99

Asymmetric encryption, 212–18
application, 219
C#, 214, 215, 216, 217–18
defined, 212–13
RSA as, 213–18
VB.NET, 214–15, 216, 217–18

See also

 Encryption

AsyncCallback

 object, 84
AT commands, 380
Attachments, 151–52

C#, 151, 152
SOAP, 498–500
VB.NET, 151, 152

Audio compression, 296–98
Audio playback, 401–17

C#, 402–5, 409–10, 411, 412
in CTI system, 401
over TAPI, 413–17
principle, 401
VB.NET, 405–8, 410, 411–12, 413

Audio-video interleaved (AVI) format, 302
Authentication, 227–49

anonymous, 228
basic, 228

client, 495
digest, 229, 230, 497
IIS, 228–30
introduction, 227
IP address validation, 228
Kerberos, 229
low-level, 448
.NET Passport, 230–32
NTLM, 229
techniques, 227

See also

 Security

Backup site controllers (BSCs), 450
Bandwidth optimization, 275–303
Bankers Automated Clearing Service (BACS),

249
Base64, 237

BinaryFormatter

 object, 41–42
Binary streams, 29–33

BinaryWriter

 class, 33
Border gateway protocol (BGP), 328

C#, 9
acknowledgments, 437–38
address book access, 156–57
asymmetric encryption, 214, 215, 216,

217–18
attachments, 151, 152
audio playback, 402–5, 409–10, 411, 412
audio playback over TAPI, 413–15, 416
binary/text streams, 29, 30, 31–32
callbacks, 491–92
code debugging, 73
compiling in, 20
complex object queuing, 428, 429–30,

431, 432–33
database programming, 45, 47, 48
dataset serialization, 51–52

Index 521

Index

DNS MX implementation, 306–8, 309–
10, 311–12, 313

DTMF tones, 399–400, 401
FTP implementation, 179, 180–81, 182,

183–84, 185, 187, 188, 189–90,
191, 192

FTP with ITC, 175, 177
ICMP, 315, 317, 318, 319, 320
incoming phone call listening, 383–86,

391, 393, 394, 395–96, 397, 398,
399

IP-level network tapping, 340–42, 343–44
IPv6, 473–75, 476, 477
journaling, 441–42
JPEG compression, 299, 300
leveraging WMI, 334, 335
load balancing, 264–67, 268, 269, 270,

271
MAPI, 153–54
message queue implementation, 421, 423,

424, 425, 427
multicast implementation, 284, 285, 286,

287–88
.NET SDK, 17

PacketX

 control, 361–63
permissions, 246
physical network tapping, 367
POP3, 144, 145, 147
posting data, 99, 100, 102
proxy tunneling, 204
queued components, 443–44, 445, 446,

447
reading certificates, 242–43
remote object hosting, 512–13
remoting configuration, 510
remoting implementation, 502–3, 504–5
remoting service deployment, 508–9
serialization, 34–35, 37–39
serializing to binary, 41–42
SHA-1, 235
shallow serialization, 43, 44

SMTP implementation, 134, 135–37,
138–39

SOAP attachments, 498, 499
socket-level networking, 76–77, 81, 82,

83, 84–85
streams for files, 22–23, 24, 25–26
symmetric encryption, 219–21, 222, 223

System.Web.Mail

, 149, 150
TCP/IP client, 63, 64
TCP/IP server, 66, 67, 69, 70–71
telephony, 381
thread pool implementation, 258, 259,

260, 261
thread pooling, 257
timeouts, 439–40
transactions, 435–36
UDP client, 57, 58
UDP server, 59–61
Visual Studio .NET, 14
wait handles, 490
Web server implementation, 114, 115,

118–19, 120, 122, 123, 124
Web service deployment, 485
Web services, 482, 483
Web service security, 495–96
Web service use, 486–87
WHOIS, 324, 325

WinPCap

 with

rvPacket

, 355–56, 357,
358, 359

WMI, 330–31, 332
WYSIWYG editor, 108, 109, 110, 112
ZIP compression, 292, 293, 295

Caching, 276–77
cache types, 276
change monitoring, 277
criteria, 276
performance and, 276
proxy, 276, 277
server, 276

See also

 Performance increases
Callback function, 84

522 Index

Callbacks, 491–93
C#, 491–92
defined, 491
VB.NET, 492–93

See also

 Web services
Cascading style sheets (CSSs), 9
CDOSYS, 148–49

defined, 148–49
functionality, 149

Certificate revocation list (CRL), 241
Certificates, 236–38

client, 239–44
fields, 237
issue, 237
myths, 237
reader application, 243
reading, 241–44
server, 238–39
subject markers, 238
X.509, 241–42, 449

Channel sinks, 501
Check4 utility, 463–64
Chrominance, 302
Cipher text, 212
Classes

ActiveUdpListener

, 367, 368

BinaryWriter

, 33

clsCryptography

, 215, 217

Crypography

, 214

FileStream

, 22, 26, 28, 192

Form

, 82

HttpWebListener

, 124–25

HttpWebRequest

, 103–4

HttpWebResponse

, 95, 97, 101

IcmpV4Statistics

, 368–70

InterfaceStatistics

, 373–74

IPAddressInformation

, 374

IPStatistics

, 370–72

IPv4Properties

, 374–75

ListenerWebRequest

, 125–26

ListenerWebResponse

, 126–27

Message

, 426–27

MessageQueue

, 422

NetworkInformation

, 366, 367–68

NetworkInterface

, 372–73

NetworkStream

, 22, 183, 188

PacketXCtrl

, 361

SoapFormatter

, 41–42

Socket

, 76

StreamReader

, 31, 221

TcpClient

, 65

TcpListener

, 70, 72

TcpStatistics

, 375–76

UdpClient

, 59, 60

UdpStatistics

, 376

WebProxy

, 268

WebRequest

, 95

XMLSerializer

, 44
Client activation, 515
Client caches, 276
Client certificates, 239–44

availability, 239
basic, 239
CRL, 241
MSCS, 240–41
reading, 241–44
viewing, 240

See also

 Certificates
Clients

authentication, 495
COM+, 447
DNS MX, 314
FTP, 166, 173, 177, 193
HTTP, 93, 96, 103
IMAP, 158
MAPI, 155
MSMQ, 450
multicast UDP, 289
POP3, 141
in port conflict, 205
remoting, 506
SMTP, 151

Index 523

Index

TCP/IP, 62–65
telnet, 326
UDP, 57–58
WAP, 128
Web service, 488, 489
WHOIS, 326

ClsCryptography

 class, 215, 217
Codebooks

defined, 290
dynamic, 291
static, 290

Color-picker dialog box, 111
COM+

component services, 443
test client, 447

Common Information Model (CIM), 329
Common Internet File (CIF) system, 163
Common language runtime (CLR), 9
Common Object Model (COM), 16
Common Type System (CTS), 9
Compact HTML (cHTML), 129
Compiling

with C#, 20
with VB.NET, 19

COM ports, 380, 382
Compression, 289–303

audio, 296–98
defined, 289
Huffman, 290
image, 298–302
JPEG, 298–302
lossless, 289, 290–96
lossy, 290, 296–303
MPEG, 302–3
types of, 289–90
video, 302–3
ZIP, 290, 291–96

Computer Name Changes dialog, 197
Computer Telephony Integration (CTI), 377

audio playback, 401
cost, 379

Constructors, 18
Controls

Color Dialog, 107
COM, 176, 177
Date-Picker, 429
File Open Dialog, 291, 299
File Save Dialog, 291, 299
Open File Dialog, 151, 219, 242

PacketX

, 360–66
Save File Dialog, 179
Web Browser, 108

Cookies, 104–5
copying, across domains, 105
defined, 105
domain specific, 105
retrieval, 105
serializing, 105

Crypography

 class, 214
Cryptanalysis, 209–12
Cryptographic algorithms (ciphers), 212
CuteFTP, 73

CWD

 command, 189
Cyclic redundancy check (CRC), 234

Data
compression, 289–90
encoding, 28
posting, 97–104
SMB, 366
WMI, 330

Databases
connection strings, 45
creating, 49–51
direct network access, 44
opening connections to, 45
programming overview, 45–48
writing, to streams, 44–54

Data mining
defined, 88
permission, 88

524 Index

unauthorized, preventing, 233
Dataset serialization, 51–54

C#, 51–52
shallow, 53
VB.NET, 51, 52–54

See also

 Serialization
Deadlocks

avoiding, 261–62
defined, 261

Debugging, 73–75

Deflate

 compression algorithm, 296
Delete statements, 46
Delta pulse code modulation (DPCM), 297
Denial-of-service attacks, 338

DESCryptoServiceProvider

 object, 219
Deserialization

defined, 33
example, 38–39

See also

 Serialization
Digest authentication, 229, 230

defined, 229, 497
speed, 230

See also

 Authentication
Direct Internet message encapsulation

(DIME) format, 498, 499
Direct memory access (DMA), 411
Discrete Cosine Transform (DCT), 298
Distance vector multicast routing protocol

(DVMRP), 283
Distinguished Encoding Rules (DER), 237
Distributed Common Object Model

(DCOM), 74, 500
Distributed garbage collection, 515–18
DNS, 305–14

format information, 309
Google system, 252
handling, 306
header, 352–53
mail exchange query, 132
MX, implementing, 306–14
packet detail, 352–53

port 53 operation, 305
queries, 309
round-robin, 262
in sending/receiving emails, 306

DNS servers, 262
IP address, 313
MX, 311, 313
queries, 305
Web site listing on, 305

Dual-tone modulated frequency (DTMF)
tones, 399–401

C#, 399–400, 401
defined, 399
with TAPI, 399
VB.NET, 400, 401

See also

 Telephony
Dynamic host control protocol (DHCP), 5
Dynamic HTML, 7
Dynamic IP addresses, 206
Dynamic NATs, 202

Emails
address form, 131
attachments, 151–52
deleting, 142, 158
delivery, 132
images, 153
message header, 143–44
sending, 131–32
SPAM, 144–48
traffic, 339

See also

 Post office protocol 3 (POP3)
Encapsulation, 6
Encoding

data, 28
entropy, 290
run length (RLE), 290
source, 290

Encoding

 object, 102
Encryption, 209–25

Index 525

Index

algorithms, 210
asymmetric, 212–18
cryptanalysis, 209–12
digest, 229
end-to-end, 236
introduction, 209
NTLM, 163
SSL, 236
symmetric, 218–24
terminology, 212

Enterprise networks, 199–205
building, 199–203
firewalls, 200–203
routers, 199–200
tunneling out of, 203–5

See also

 Networks
Entropy encoding, 290
Ethernet

frame header, 345
type codes, 346

Extensible markup language.

See

 XML
Exterior gateway protocols (EGPs), 203, 328

Files
entropy, 27
reading, 27
streams for, 22–28
transfer with TCP/IP, 62–73
ZIP, 292, 294, 295, 296

File sharing, 163–65
Microsoft, 163–64
Netware, 164–65

FileStream

 class, 22, 26
constructor, 192
members of, 28

File transfer protocol.

See

 FTP
Financial network security, 246–49

corporate transactions, 248–49
ISO 8730, 247–48
SWIFT, 248

X.25, 247
Firewalls, 200–203

analogy, 200
defined, 200
NATs, 201–3
proxies, 201
tunneling, 205, 206–7

Font-chooser dialog box, 110

Form

 class, 82
Forms

Logon, 179, 180
Main, 179, 180, 182–83
namespaces, 192

Framework class library (FCL), 9
Frequency analysis

defined, 210
software, 211

FTP, 163–94
authentication mechanism, 168
background, 163
command reference, 171–72
command usage, 178

CWD

 command, 189
defined, 163
folder navigation, 170–71
handshake, 168–70
implementing, 172–74, 178–93
implementing, with ITC, 174–78

LIST

 command, 170

NOOP

 command, 169
over SSL, 168
overview, 165–94

PASS

 command, 169

PASV

 command, 188
port operation, 165
port usages, 167–68
protocol, 166

QUIT

 command, 170
root, 177, 189
script file, 165
site administration, 174

526 Index

status codes, 167
support in .NET 2.0, 193–94
SYST command, 171
with telnet, 165
USER command, 169
utility, 165, 166

FTP clients, 166, 179
with COM, 177
downloading, 173
file management dialog, 193
Logon dialog, 192

FTP servers, 165
230 message, 182
accessing, 172
anonymous access, 169
inactive user disconnect, 169
opening connections to, 166
port listening, 168
pulling file/folder details, 185
root directory listing, 188
TCP connection to, 182
testing, 173
UNIX, 170–71
uploading to, 168
Windows, 170
working folders, moving, 189

Functions
BeginGetServerVariableNames, 493
ConvertIPtoLong, 318
createPassiveConnection(), 186
describeResponse, 318–19
getHTTP, 100
GetLineID, 415
getMine(), 122
getMirror, 267, 268
Increment, 260
LineCallBack, 390
Listener, 474
makeResponse, 309
Play, 410–11
proc, 311, 313

QThread, 432
reportMessage, 266
sendFTPcmd(), 182
sendPassiveFTPcmd(), 185
sendPOP3cmd, 147
socketReadLine, 135, 138, 139
syncRead, 25–26

Future proofing, 255–56

Garbage collection
defined, 515
distributed, 515–18

Gateways, 199
General public license (GPL), 275
GET command, 91, 485
Ghost, 203
Global assembly cache (GAC), 11, 445
Global XML Web Services Architecture

(GXA), 497
Goldwave, 296
Google case study, 251–53

architecture, 253
DNS system, 252
document servers, 253
Googlebot, 253
index server cluster, 252

Gzip compression algorithm, 296

Hashed timestamps, 497
Hashing, 232–36, 497

algorithms, 234
keyed hash, 233
MD5, 232
MSMQ and, 448
SHA-1, 232, 234–35
uses, 232–33

“Hello world” application, 56–62
HTML, 9

autogenerated, 113

Index 527

Index

data extraction from, 88
editor application, 113
WML conversion, 130

HTTP, 87–130
connections, 281
defined, 88
GET command, 91, 485
headers, 118, 122, 123
implementation, 117
message queues, 423
nonalphanumeric character conversion,

100
port 80 operation, 88, 115
POST command, 91
posts, 117
request, 88–91
request headers, 89–90, 92
response, 91–93
response codes, 92–93
root, 114
socket-level implementation, 93
state information and, 104
stream, 98
WAP over, 128

HTTP clients
applications, 93, 96
applications with POST facility, 103
wireless, 129

HTTP servers
application, 121
heart of, 114
HTTP root, 114
implementing, 94

HttpUtility object, 102
HttpWebListener class, 124–25

defined, 124
methods/properties, 124–25

HttpWebRequest class, 103–4
HttpWebResponse class

methods/properties, 97
object, 95

parameters, 101
Huffman compression, 291
Hybrid modems, 395
Hypertext markup language. See HTML
Hypertext transfer protocol. See HTTP

IBM KeyMan, 238
IcmpV4Statistics class, 368–70
IComPlusServer, 445
ILease interface, 516–18
Image compression, 298–302
IMode browser, 130
Insert statements, 46
Interborder gateway protocols (IGBPs), 203
InterfaceStatistics class, 373–74
Interlacing, 278
Internet Assigned Numbers Authority

(IANA), 5
multicast IP address control, 282
Web site, 282

Internet control message protocol (ICMP),
314

C#, 315, 317, 318, 319, 320
client application, 321
defined, 314
echo, 317
header, 348
packet detail, 348–49
packets, 314
type code, 348–49
uses, 321
VB.NET, 315–16, 317–18, 319–20

Internet Corporation for Assigned Names
and Numbers (ICANN), 5

Internet Engineering Task Force (IETF), 8
IPng, 454–55
MSEC, 284
Public Key Infrastructure (PKIX), 237
SMTP guide, 132

Internet Explorer

528 Index

Certificates dialog, 240
designMode property, 107
execCommand function parameters, 106
as WYSIWYG editor, 105

Internet group management protocol
(IGMP), 284

Internet Information Services (IIS), 87
add/remove components, 173
authentication, 228–30
hosting remote objects within, 510–11
installation, 113
servers, 495

Internet message access protocol (IMAP),
158–59

client, 158
implementation, 159
port 143 operation, 158
server, 158

Internet service providers (ISPs), 2
dynamic host control protocol (DHCP)

server, 5
POP3 servers, 140

Internet standards, 7–9
Internet Transfer Control (ITC), 176, 178

defined, 176
limitations, 178

Interprocess communications (IPC), 451
IntranetWare, 164
Intrasite automatic tunnel addressing

protocol (ISATAP), 469, 471–72
addresses, 471
defined, 471
hosts, 472
routers, 472

I/O
failure, 22
in .NET, 21–54

IP addresses, 3–6
classes, 5
defined, 3
DNS servers, 313

dynamic, 206
example, 4
families, 4
IPv6, 454, 455, 456
length, 453
multicast, 282
POP3, 148
port numbers, 68
posting, 206
SMTP server, 132
splitting into bytes, 318
tracking, 482
validation, 228
VPN gateway, 199

IPAddressInformation class, 374
IP header, 346–47
IP-level network tapping, 339–53

C#, 340–42, 343–44
implementing, 339
packet detail, 346–48
raw data interpretation, 344–46
VB.NET, 340, 341, 342, 343, 344
See also Network tapping

IPng, 454–55
IPSec6, 461–63

defined, 461
illustrated, 463
security associations database, 461, 463
security policies database, 461, 462

IPStatistics class, 370–72
IPv4Properties class, 374–75
IPv6, 453–79

addresses, 454, 455, 456
auto configuration, 457
C#, 473–75, 476, 477
changes, 455–56
client and server, 479
coexistence, 469–73
as command-line utility, 458–59
compliance, 479
defined, 453–54

Index 529

Index

destination addresses, 465
global addresses, 456
history, 454–55
installing, 457
interface, 456
introduction, 453
naming conventions, 456
in .NET, 473–79
packets, 464
prefix, 456
QoS provision, 454
route advertisements, 468–69
routers, 457
routing, 464–69
routing advertisements, 468–69
routing table administration, 466–68
uninstalling, 457
VB.NET, 474, 475–76, 477, 478

IPv6 utilities, 458–64
IPSec6, 461–63
MS-DOS utility, 458
NETSH, 459, 460
ping6, 459–60
tracert6, 460–61
Windows 2000 specific, 463–64

ISO 8730, 247–48

Journaling, 441–43
C#, 441–42
defined, 441
VB.NET, 442

JPEG
headers, 120
saving, from loaded image, 300

JPEG compression, 298–302
application, 301
C#, 299, 300
implementation, 299
process, 298
VB.NET, 300, 301

Just-in-time (JIT) compiler, 10

Keep-alive connections, 277–78
Kerberos authentication, 229

defined, 229
speed, 230
See also Authentication

Key distribution center (KDC), 247
Keys

defined, 212
piracy and, 224
private, 213
public, 213
RSA, 214, 215
symmetric, 223

Layer 2 network tapping, 354–66
PacketX, 360–66
rvPacket, 354–60
WinPCap, 354–66
See also Network tapping

Layer 2 tunneling protocol (L2TP), 199
Link types, 366–67
LIST command, 170
Listener sockets, 77

endpoint, 80
parameters, 80

ListenerWebRequest class, 125–26
ListenerWebResponse class, 126–27
Load balancers, 254
Load balancing, 262–72

application, 272
C#, 264–67, 268, 269, 270, 271
defined, 262
implementation, 264
NLBS, 263
VB.NET, 265, 266, 267, 268, 269–70,

271
Local area networks (LANs), 4

530 Index

Lock command, 116
Lossless compression, 290–96

defined, 289
methods, 290
ZIP, 290, 291–96
See also Compression

Lossy compression, 296–303
audio, 296–98
defined, 290
image, 298–302
video, 302–3
See also Compression

Luminance, 302

Mail application programming interface
(MAPI), 153–57

address book access, 156–57
address book application, 157
C#, 153–54
client application, 155
defined, 153
interface, 155
VB.NET, 154

Managed code, 15
Managed information base (MIB), 328
Maximum segment size (MSS), 279
Maximum transmission unit (MTU), 279,

280
datagram size, 280
defined, 280

Message class, 426–27
Message Digest (MD5), 232
MessageQueue class, 422
Message queues, 419–52

acknowledgments, 437–39
adding messages to, 435–37
as backup system, 419
complex objects, 427–34
HTTP, 423
implementing, 420–39

introduction, 419
journal, 441–43
performance issues, 451–52
queued components, 443–47
scalability, 449–51
security, 447–49
timeouts, 439–41
transactions, 435–37

Methods
Abort, 436
Connect, 73
Dispose, 180
EndAccept, 84
EndInvoke, 507
execCommand, 109, 112
executeNonQuery, 47
executeReader, 47
Form1_Load, 66
getDetails, 506, 507
handlerThread, 69, 117
IOControl, 343
Listen, 73
listenerThread, 67, 115
ReadToEnd, 101, 223
Receive, 81, 343, 434
Run, 340, 343
select, 109
SetLevel, 293
Write, 222

Microsoft Access, 50
Microsoft Certificate Services (MSCS), 240–

41
Microsoft Distributed Transaction

Coordinator (MSDTC), 451
Microsoft file sharing, 163–64
Microsoft intermediate language (MSIL)

code, 9, 10
Microsoft Message Queue (MSMQ), 207,

420
acknowledgments, 437–39
administering, 420

Index 531

Index

applications, 420
basic application, 424
basic receiver application, 428
clients, 450
COM+ component services and, 443
complex object queuing, 427–34
complex object receiver application, 434
complex object transfer application, 432
console, 420
defined, 419
disk space consumption, 449
enterprises, 450
hashing algorithm selection, 448
HTTP support, 423, 424
journal messages, 443
message authentication in, 447
message encryption in, 447
message timeouts, 441
multicast and, 452
native XML message format, 425
object target type, 426
performance issues, 451–52
queue settings dialog, 450
scalability, 449–51
security, 447–49
servers, 423, 448
sites, 450
transactions, 435–37

Microsoft Outlook
address book, 156–57
new accounts, 140
Outlook Express, 153

Microsoft Outlook Object Library, 153
Microsoft Terminal Services (MTS), 275
Mobile Web browsers, 128–30

iMode, 130
SDK, 130

Motion Picture Expert Group (MPEG)
compression, 302–3
defined, 302

MQSeries, 451

Multicast, 282–89
backbone (MBONE), 283
basics, 282–83
defined, 275, 282
first, 282
functionality, 287
implementing, 284–89
IP address, 282
MSMQ and, 452
operation, 285
routing, 283–84
UDP, 282–89
UDP client and server, 289

Multicast address dynamic client allocation
protocol (MADCAP), 283

Multicast open shortest path first (MOSPF),
283

Multihomed networks, 203
Multipart Internet mail extensions (MIME)

types, 93
defined, 93
finding, 93
viewing, 123

Multithreading, 59
MyClass class, 510
MyServices, 500

Namespaces, 18
CIM, 329
forms, 192
importing, 134

NETBIOS, 164, 345
defined, 164
packets, 354

.NET
Compatibility Routine, 413
defined, 2, 9–11
FTP support, 193–94
I/O in, 21–54
IPv6 in, 473–79

532 Index

languages, 9–10
managed controls, 15
network programming in, 2
permissions in, 244–46
remoting, 500–518
socket-level networking in, 75–86
starting with, 11–12

.NET Passport authentication, 230–32
defined, 230
Manager Administration dialog, 231
preproduction passports, 230
production passports, 230
steps, 231
test page, 232
uses, 230

.NET SDK, 11
C#, 17
defined, 11
using, 16–20
VB.NET, 17–18

NETSH, 459, 460
Netstat utility, 75
Netware

directory service (NDS), 164
file sharing, 164–65

Network address translators (NATs), 4, 201–
3

defined, 201
development, 202
dynamic, 202
overlapping, 202
overloading, 202
static, 202

NetworkInformation class, 366, 367–68
Networking

pitfalls, avoiding, 205–7
socket-level, 75–86

NetworkInterface class, 372–73
Network Load Balancing Service (NLBS),

263

Network news transfer protocol (NNTP),
159–61

defined, 160
port 119 operation, 159
posting, 161
reading, 160
tasks, 160

Network programming
in .NET, 2
for scalability, 251–73
socket-level, 55–86
understanding, 1–20

Network programs
code, debugging, 73–75
functions of, 2–3
problems, 74

Networks
building, from scratch, 195–99
enterprise, building, 199–203
firewalls, 200–203
monitoring, 305–36
multihomed, 203
P2P, 207
routers, 199–200
setting up, 196–98
topology, 195–96
tunneling out of, 203–5
VPN, 198–99

Network stack, 6–7
modern, 7
traditional, 6

NetworkStream class, 22, 183, 188
Network tapping, 339–76

IP-level, 339–53
layer 2, 354–66
physical, 366–76

Next-level aggregator (NLA), 456
NOOP command, 169
Novell core protocol (NCP), 165
NT challenge/response (NTLM), 229

Index 533

Index

Open shortest path first (OSPF), 328
Open systems interconnection (OSI)

network, 6
Oracle, database access, 44

Packet filtering, 200
Packets

analyzing, 337–77
capture, 337
defined, 55
DNS, detail, 352–53
ICMP, 314
ICMP, detail, 348–49
IP, header, 346–47
IP-layer sniffer application, 344
IPv6, 464
NETBIOS, 354
port numbers, 56
TCP/IP, 279, 343
TCP/IP, detail, 349–51
with TTL value, 280
UDP, detail, 351–52

PacketX control, 360–66
C#, 361–63
frame-layer packet sniffer with, 364
packet detection, 361, 365
polling mechanism, 362
start of, 361
VB.NET, 361, 362, 363–64

PacketXCtrl class, 361
PASS command, 169
PASV command, 188
Peer-to-peer (P2P) architecture, 207
Performance, Web services, 494–95
Performance increases, 275–81

caching, 276–77
keep-alive connections, 277–78
progressive downloads, 278
tweaking, 278–81

Permissions, 244–46
C#, 246
configuration utility, 245
VB.NET, 246

Physical network tapping, 366–76
C#, 367
NetworkInformation class, 367–68
VB.NET, 367
See also Network tapping

Ping. See Internet control message protocol
(ICMP)

Ping6 utility, 459–60
command-line parameters, 460
defined, 459
illustrated, 461

Ping utility, 314
Piracy

CD-R, 224
hackers and, 225
keys and, 224
protection, 224–25

Plain text, 29, 212
Point-to-point protocol (PPP), 328
Point-to-point tunneling protocol (PPTP),

199
Policy IP (PIP), 455
POP3 servers

IP address, 148
ISP, 140
Microsoft Exchange as, 141
space, 141
See also Post office protocol 3 (POP3)

Port numbers
added to IP address, 68
low-order byte, 188
well-known, 8, 55–56

Ports
address translation, 202
COM, 380, 382
conflict, 205

Posting data, 97–104

534 Index

ASP.NET, 98–99
C#, 99, 100, 102
VB.NET, 99–100, 101, 102

Post office protocol 3 (POP3), 140–48
C#, 144, 145, 147
client application, 148
clients, 141
client SPAM filter example, 144–48
as command-line-based protocol, 141
defined, 140, 141
implementing, 141–48
mailbox access, 142
mailbox summary information, 142
VB.NET, 144, 146, 147–48
See also POP3 servers

Primary enterprise controller (PEC), 450
Primary Site Controllers (PSCs), 450
Private assembly, 11
Private keys, 213
Private virtual circuits (PVCs), 247
Progressive downloads, 278
Project Hailstorm, 500
Protocol independent multicast (PIM), 283
Proxies, 201

application, 201
circuit-level, 201
defined, 201
tunneling, 204

Proxy caches, 276
Public assembly, 11
Public keys, 213

Queries
DNS, 309
SQL, 53
WHOIS, 322, 324
WMI, 333
WQL, 333

Queued components, 443–47
C#, 443–44, 445, 446, 447

creating, 443
VB.NET, 444–45, 446, 447

QUIT command, 170

Redundancy
defined, 253
load balancer, 254

Registry Editor utility, 122
Remote method invocation (RMI), 500
Remote objects, 494–95

asynchronous use, 506–7
hosting within IIS, 510–11
hosting within Windows service, 511–15
servers, 510–11

Remoting, 500–518
client, 506
configuration, 509–10
functioning of, 501–2
implementing, 502–6
key, 502
server, 506
service deployment, 508–9

Replication
defined, 253
SQL, 254

Request for comments (RFCs), 8–9
Reverse ARP (RARP), 327
Rivest-Shamir-Adleman (RSA), 213

defined, 213
keys, 214, 215
using, 213–18

Routers, 199–200
client processing, 203
connections, 200
defined, 200
hardware characteristics, 264
IPv6, 457
ISATAP, 472

Routes
determination process, 465–66

Index 535

Index

directly attached, 465
host, 465
remote, 465
selection, 466

Routing
IPv6, 464–69
multicast, 283–84
as Web service extension, 500

Routing information protocol (RIP), 327–28
Routing table, 464–65

administering, 466–68
fields, 467
illustrated, 467
self-maintaining, 466
See also IPv6

Run length encoding (RLE), 290
RvPacket library, 354–60

accessibility, 358
development, 359
frame-layer packet sniffer with, 360
functions, 357

Scalability
architectural, 256
deadlocks and, 261–62
defined, 251
future proofing, 255–56
Google case study, 251–53
load balancing, 262–72
message queues, 449–51
programming for, 251–73
redundancy, 253–54
replication, 253–54
thread pooling, 255, 256–61

Scalable network applications, 254–55
Secure Hash Algorithm (SHA-1), 232, 234–

35
C#, 235
defined, 234
using, 234–35

VB.NET, 235
See also Hashing

Secure hash standard (SHS), 234
Secure sockets layer. See SSL
Security

code access, 245
financial network, 246–49
in financial transactions, 209
message queues, 447–49
Web services, 495–97
See also Encryption

Serialization, 33–44
to binary, 41–42
C#, 34–35, 37–39
cookies, 105
dataset, 51–54
defined, 33
.NET classes, 40
shallow, 42–44
from SQL query, 53
VB.NET, 35–37, 38–39

Serial Line Internet Protocol (SLIP), 328
Server activation, 515
Server certificates, 238–39

obtaining, 238
testing, 239
use steps, 238–39
See also Certificates

Servers
DNS, 262, 305
FTP, 165, 166
HTTP, 94, 114, 121
IIS, 495
IMAP, 158
MSMQ, 423, 448
multicast UDP, 289
POP3, 140–41
proxy, 202
remote object, 510–11
remoting, 506
SMTP, 132

536 Index

TCP/IP, 65–73
UDP, 58–62
Web, 113–24
WHOIS, 321, 322

Server-side caches, 276
Shallow serialization, 42–44

C#, 43, 44
dataset, 53
defined, 42
performing, 43
VB.NET, 43, 44
See also Serialization

Shared base classes, 508
SharpDevelop, 11
Simple IP (SIP), 455
Simple mail transfer protocol (SMTP), 132–

40
client application, 151
complaints department example, 134–40
defined, 132
guide to, 132
implementing, 133–40
port 25 operation, 133
UNIX design, 133
See also SMTP servers

Simple network management protocol
(SNMP), 328

Simple object access protocol (SOAP), 39
attachments, 498–500
formatting, 41
over HTTP, 504
result from Web service, 484
toolkit, 494

Single-call activation, 516
Single threaded apartment (STA)

applications, 18
Singleton activation, 516
Site-level aggregator (SLA), 456
SmartFTP, 73
SmtpMail object, 150
SMTP servers

IP address, 132
single-threaded, 135
stopping, 139
virtual, 132

SoapFormatter class, 40
BinaryFormatter substitution, 41–42
methods/properties, 41
object, 42

Soapsuds utility, 509
Socket class, 76
Sockets, 55–86

adding, to array list, 68
addressing schemes, 78–79
array list, declaring, 114
defined, 55–56
generic object, 77
listener, 77, 80
networking and, 75–86
null, 69–70
protocol types, 79–80

SOCKS protocol, 201
Source encoding, 290
SPAM

defined, 144
POP3 client filter example, 144–48
See also Email

Speech waveform, 297
SQL Server, 44, 49
SSL, 227, 236

defined, 236
encryption and authentication, 124
end-to-end encryption, 236
FTP over, 168
HTTP over (HTTPS), 236
NNTP over (SNNTP), 236

Static NATs, 202
StreamReader class

methods/properties, 31
object, 221

Streams, 21–54
asynchronous use, 22

Index 537

Index

binary, 29–33
capabilities, 21
cryptographic, 222
for files, 22–28
fileStream, 22
HTTP, 98
networkStream, 22
for reading files, 31
synchronous use, 22
text, 29–33
writing databases to, 44–54
writing objects to, 37

Strength, 212
Structured query language (SQL)

database creation, 49–50
queries, 53
replication, 254
statements, 45

SurrogateSelector object, 37
SWIFT, 248
Symmetric encryption, 218–24

3DES, 218–24
application, 224
C#, 219–21, 222, 223
decryption process, 223
defined, 218
key, 223
procedure, 221
uses, 218
VB.NET, 219, 220, 221, 222–23
See also Encryption

SYST command, 171
System.Web.Mail, 148–50

C#, 149, 150
VB.NET, 150

TcpClient class, 65
TCP/IP

clients, writing, 62–65
connections, opening, 64

file transfer with, 62–73
header, 349–50
once-off transfer, 284
packet detail, 349–51
packets, 279, 343
settings, tweaking, 279
traffic, 360
use complexity, 56

TCP/IP servers
C#, 66, 67, 69, 70–71
multithreaded, 65
with socket-level code, 82
VB.NET, 66, 67, 69, 70–71
writing, 65–73

TcpListener class
constructor for, 70
methods/properties, 72

TcpStatistics class, 375–76
Telephony

API functions, 390
AT commands, 380
audio playback, 401–17
basic, 380–82
C#, 381
callbacks, 382
CTI, 377, 379
DTMF tones, 399–401
incoming phone call listening, 382–99
modem response, 381
VB.NET, 381

Telephony Application Programming
Interface (TAPI), 382

architecture, 382
audio playback over, 413–17
callbacks, 382, 394
call-receiver application, 399
call-receiver with DTMF and playback,

417
DTMF tones with, 399
example, 383–99
libraries, 382

538 Index

LineCallBack function, 390
Telnet, 326–27

clients, 326
as de facto standard, 326
defined, 326
FTP through, 165
MS-DOS utility, 327
opening, 81
secure version, 327
uses, 326

Text streams, 29–33
Thread pooling, 255, 256–61

C#, 257
defined, 255
implementation, 258–61
population, 259
sample application, 261
uses, 257
VB.NET, 257

Threads
application responsiveness and, 256
infinite loop, 116, 434
passing parameters to, 68

Timeouts, 439–41
C#, 439–40
defined, 439
as message aging mechanism, 439
VB.NET, 440
See also Message queues

Top-level aggregator (TLA), 455
TracePlus, 75, 337, 338
Tracert6, 460–61

command-line parameters, 461
defined, 460–61
illustrated, 462
See also IPv6 utilities

Tracert utility, 321
Traffic-detection software, 338
Transactions, 435–37

C#, 435–36
defined, 435

support, 435
VB.NET, 436
See also Message queues; Microsoft

Message Queue (MSMQ)
Transmission control protocol (TCP). See

TCP/IP
Triple Data Encryption Standard (3DES),

213
defined, 218
using, 218–24
See also Symmetric encryption

Trivial file transfer protocol (TFTP), 163
Tunneling, 203–5

defined, 204
firewall, 205, 206–7
proxy, 204

Type-safe code, 15

UdpClient class
methods/properties, 59
object, 60

UDP servers
multithreading, 59
purpose, 58
writing, 58–62

UdpStatistics class, 376
Unicode Transformation Format 8 (UTF8),

28
Universal description discovery integration

(UDDI), 486
Universal Serial Bus (USB), 196
Unshielded twisted pair (UTP), 195–96
Update statements, 46
URL path conversion, 118
USER command, 169
User datagram protocol (UDP)

client, writing, 57–58
connections, opening, 307
defined, 352
header, 7, 351

Index 539

Index

latency, 56
multicast, 282–89
packet detail, 351–52
server, writing, 58–62
use, 56
See also UDP servers

VB.NET, 9
acknowledgments, 438
address book access, 157
asymmetric encryption, 214–15, 216,

217–18
attachments, 151, 152
audio playback, 405–8, 410, 411–12, 413
audio playback over TAPI, 414, 415, 416
binary/text streams, 30, 32
callbacks, 492–93
code debugging, 73–74
compiling in, 19
complex object queuing, 429, 430–32,

433–34
database programming, 45, 46, 47, 48
dataset serialization, 51, 52–54
DNS MX implementation, 307, 308–9,

310–11, 312–13
DTMF tones, 400, 401
FTP implementation, 179, 180, 181–83,

184, 186, 187–89, 190, 191–92
FTP with ITC, 175, 176, 177
ICMP, 315–16, 317–18, 319–20
incoming phone call listening, 386–89,

391–92, 393–94, 396–97, 398
IP-level network tapping, 340, 341, 342,

343, 344
IPv6, 474, 475–76, 477, 478
journaling, 442
JPEG compression, 300, 301
leveraging WMI, 334–35
load balancing, 265, 266, 267, 268, 269–

70, 271

main function coding, 19
MAPI, 154
message queue implementation, 421–22,

423, 424, 425–26, 427
multicast implementation, 284, 285–87,

288, 289
.NET SDK, 17–18
PacketX control, 361, 362, 363–64
permissions, 246
physical network tapping, 367
POP3, 144, 146, 147–48
posting data, 99–100, 101, 102
proxy tunneling, 204
queued components, 444–45, 446, 447
reading certificates, 242, 243
remote object hosting, 512, 513, 514
remoting configuration, 510
remoting implementation, 503, 504, 505–

6
remoting service deployment, 508
serialization, 35–37, 38–39
serializing to binary, 41–42
SHA-1, 235
shallow serialization, 43, 44
SMTP implementation, 135, 137–38, 139
SOAP attachments, 498, 499
socket-level networking, 77, 81, 82, 83,

84, 85
streams for files, 23, 24–25, 26
symmetric encryption, 219, 220, 221,

222–23
System.Web.Mail, 150
TCP/IP client, 63–64
TCP/IP server, 66, 67, 69, 70–71
telephony, 381
thread pool implementation, 258, 259,

260, 261
thread pooling, 257
timeouts, 440
transactions, 436
UDP client, 57, 58

540 Index

UDP server, 60, 61
Visual Studio .NET, 13
wait handles, 490–91
Web server implementation, 114, 115,

116–17, 118–19, 120, 122, 123,
124

Web service deployment, 486
Web services, 482–83
Web service security, 496, 497
Web service use, 487, 488
WHOIS, 325
WinPCap with rvPacket, 356–57, 358–59
WMI, 331–32, 333
WYSIWYG editor, 108, 109, 110–11, 112
ZIP compression, 292, 293–94, 295

Video compression, 302–3
Virtual private networks (VPNs)

advantages, 199
defined, 198
gateway address, 199
operation, 199
setting up, 198–99

Visual Studio .NET, 11
Add Reference dialog, 149
C# code, 14
Customize Toolbox dialog, 13, 51
defined, 11
form design view, 14
.NET Add Reference dialog, 102
New Project dialog, 12
Properties tool window, 15
using, 12–16
VB.NET code, 13

Voice over IP (VOIP), 454

Wait handles, 490–91
C#, 490
defined, 490
VB.NET, 490–91
See also Web services

Wave sound player application, 413
Web browsers

iMode, 130
Internet Explorer, 105–7, 240
mobile, 128–30

WebProxy class, 268
WebRequest class, 95
Web scripting languages, 99
Web servers, 113–24

implementing, 114–24
installation, 113
response, 95

Web Service Definition Language (WSDL),
485

Web services, 481–500
asynchronous calls to, 489–93
attachments, 498–500
benchmarking tests, 494
benefits, 481
C#, 482, 483
callbacks, 491–93
client application, 489
clients, testing, 488
creating, 481–86
deploying, 485–86
enhancements, 497–500
extensions, 498–500
interoperability, 493–94
performance, 494–95
routing, 500
security, 495–97
SOAP result, 484
using, 486–89
VB.NET, 482–83
wait handles, 490–91

Web Services Enhancements (WSE), 497,
498, 499

WHOIS, 321–26
C#, 324, 325
client application, 326
defined, 321

Index 541

Index

design, 321
queries, 322, 324
reply, 323
servers, 321, 322
VB.NET, 325

Widgets, 18
Windows Management Instrumentation

(WMI), 303, 329–35
C#, 330–31, 332
class, 333, 334
data, 330
defined, 329
leveraging, 333–35
queries, 333
query language analyzer application, 333
remote process manager application, 335
uses, 329
VB.NET, 331–32, 333

Windows multimedia API functions, 408
Windows registry

access functionality, 124
data, drilling down, 123
defined, 122

WinPCap, 354–66
hardware filters, 365
packet send/receive capability, 366
with PacketX control, 360–66
with rvPacket wrapper, 354–60

Wireless application protocol (WAP), 128
Wireless markup language (WML), 128

HTML conversion to, 130
minimal page in, 129
sample page, 129

Wireless transfer protocol (WTP), 128
World Wide Web Consortium (W3C), 8, 9

defined, 9
responsibilities, 9

WSDL.EXE, 485
WYSIWYG editor, 105–13

C#, 108, 109, 110, 112
defined, 105

Internet Explorer as, 105
VB.NET, 108, 109, 110–11, 112

X.25, 247
X.509 certificates, 241–42, 449
XML, 9

remote object hosting, 511
remoting configuration, 509
serialized object view, 40
support, 493
Web service response, 484

XML schema definition (XSD), 43
XMLSerializer class, 44

YUV format, 302

ZIP compression, 290, 291–96
application, 295
C#, 292, 293, 295
decompression and, 296
files, 293, 294, 295, 296
Huffman compression, 291
implementing, 291–96
VB.NET, 292, 293–94, 295
See also Lossless compression

	Network Programming in Dot NET With C Sharp and Visual Basic Dot NET
	Cover

	Contents
	Preface
	Who should read this book?
	What hardware and software do you need?
	How this book is organized
	Part I: Basic network applications
	Part II: Network application design
	Part III: Specialized networking topics

	Conventions used in this book
	Further information

	Acknowledgments
	1 Understanding the Internet and Network Programming
	1.1 Introduction
	1.2 Why network programming in .NET?
	1.3 What can a network program do?
	1.4 IP addresses
	1.5 The network stack
	1.6 Ports
	1.7 Internet standards
	1.8 What is .NET?
	1.9 Getting started
	1.10 Using Visual Studio .NET
	1.11 Using the .NET SDK
	1.11.1 Compiling with Visual Basic.NET
	1.11.2 Compiling with C#
	1.11.3 Testing the application

	1.12 Conclusion

	2 I/O in the .NET Framework
	2.1 Introduction
	2.2 Streams
	2.2.1 Streams for files
	2.2.2 Encoding data
	2.2.3 Binary and text streams
	2.2.4 Serialization
	2.2.5 Writing a database to a stream

	2.3 Conclusion

	3 Working with Sockets
	3.1 Introduction
	3.2 What is a socket?
	3.3 Creating a simple "hello world" application
	3.3.1 Writing a simple UDP client
	3.3.2 Writing a simple UDP server

	3.4 Using TCP/IP to transfer files
	3.4.1 Writing a simple TCP/IP client
	3.4.2 Writing a simple TCP/IP server

	3.5 Debugging network code
	3.6 Socket-level networking in .NET
	3.7 Conclusion

	4 HTTP: Communicating with Web Servers
	4.1 Introduction
	4.1.1 Data mining

	4.2 HTTP
	4.2.1 The HTTP request
	4.2.2 The HTTP response
	4.2.3 MIME types
	4.2.4 System.Web
	4.2.5 Posting data
	4.2.6 A note on cookies
	4.2.7 A WYSIWYG editor

	4.3 Web servers
	4.3.1 Implementing a Web server

	4.4 System.Net.HttpWebListener
	4.5 Mobile Web browsers
	4.5.1 Mobile Web SDK

	4.6 Conclusion

	5 SMTP and POP3: Communicating with email Servers
	5.1 Introduction
	5.2 Sending an email
	5.3 SMTP
	5.3.1 Implementing SMTP

	5.4 Post office protocol 3
	5.4.1 Implementing POP3

	5.5 System.Web.Mail
	5.5.1 Attachments
	5.5.2 Images

	5.6 Mail application programming interface
	5.6.1 Accessing the address book
	5.6.2 IMAP
	5.6.3 Network news transfer protocol

	5.7 Conclusion

	6 FTP: Communicating with File Servers
	6.1 Background
	6.2 Microsoft file sharing
	6.3 Netware file sharing
	6.4 An overview of FTP
	6.4.1 How FTP uses ports
	6.4.2 The FTP handshake
	6.4.3 Navigating folders
	6.4.4 FTP command reference
	6.4.5 Implementing FTP
	6.4.6 Implementing FTP with the Internet Transfer Control
	6.4.7 A more substantial implementation of FTP
	6.4.8 FTP support in .NET 2.0

	6.5 Conclusion

	7 Securing a Network: Firewalls, Proxy Servers, and Routers
	7.1 Introduction
	7.1.1 Building a network from scratch
	7.2 Building an enterprise network
	7.2.1 Routers
	7.2.2 Firewalls

	7.3 Tunneling out of an enterprise network
	7.4 Avoiding the networking pitfalls
	7.4.1 Firewall tunneling

	7.5 Conclusion

	8 Protecting Data: Encryption
	8.1 Introduction
	8.2 Cryptanalysis
	8.3 Terminology
	8.4 Asymmetric encryption
	8.5 Using RSA as asymmetric encryption
	8.6 Symmetric encryption
	8.6.1 Using 3DES as symmetric encryption

	8.7 Piracy protection
	8.8 Conclusion

	9 Controlling User Access: Authentication and Authorization
	9.1 Introduction
	9.2 Authentication techniques
	9.2.1 IIS authentication

	9.3 Microsoft .NET Passport authentication
	9.4 Hashing information
	9.4.1 Hashing algorithms
	9.4.2 Using SHA

	9.5 SSL
	9.6 Certificates
	9.7 Server certificates
	9.8 Client certificates
	9.8.1 Microsoft Certificate Services
	9.8.2 Reading certificates

	9.9 Permissions in .NET
	9.10 Financial network security
	9.10.1 X.25
	9.10.2 ISO 8730
	9.10.3 SWIFT
	9.10.4 Corporate transactions

	9.11 Conclusion

	10 Programming for Scalability
	10.1 Introduction
	10.2 Case study: The Google search engine
	10.3 Replication and redundancy
	10.4 Scalable network applications
	10.5 Future proofing
	10.6 Thread pooling
	10.6.1 Implementing a thread pool
	10.7 Avoiding deadlocks
	10.8 Load balancing
	10.9 Conclusion

	11 Optimizing Bandwidth Utilization
	11.1 Introduction
	11.2 Tricks and tips to increase performance
	11.2.1 Caching
	11.2.2 Keep-alive connections
	11.2.3 Progressive downloads
	11.2.4 Tweaking settings

	11.3 Multicast UDP
	11.3.1 Multicast basics
	11.3.2 Multicast routing
	11.3.3 Implementing multicast

	11.4 Data compression
	11.5 Lossless compression
	11.5.1 Implementing ZIP compression

	11.6 Lossy compression
	11.6.1 Audio compression
	11.6.2 Image compression
	11.6.3 Video compression

	11.7 Conclusion

	12 Ping, DNS, and WHOIS: Monitoring your Network
	12.1 Introduction
	12.2 DNS
	12.2.1 Implementing DNS MX

	12.3 Ping
	12.4 WHOIS
	12.4.1 Telnet

	12.5 Other members of the TCP/IP suite
	12.5.1 ARP
	12.5.2 RIP
	12.5.3 OSPF
	12.5.4 BGP/EGP
	12.5.5 SNMP
	12.5.6 PPP

	12.6 WMI
	12.6.1 Reading WMI data
	12.6.2 Leveraging WMI

	12.7 Conclusion

	13 Analyzing Network Packets
	13.1 Introduction
	13.2 IP-level network tapping
	13.2.1 Interpreting raw network data
	13.2.2 IP packets in detail
	13.2.3 ICMP packets in detail
	13.2.4 TCP/IP packets in detail
	13.2.5 UDP packets in detail
	13.2.6 DNS packets in detail

	13.3 Layer 2 network tapping
	13.3.1 Using rvPacket and WinPCap
	13.3.2 Using PacketX and WinPCap

	13.4 Physical network tapping
	13.5 Conclusion

	14 Adding Digital Telephony
	14.1 Introduction
	14.2 Basic telephony
	14.3 Listening for incoming phone calls
	14.4 DTMF tones
	14.5 Audio playback
	14.5.1 Audio playback over TAPI

	14.6 Conclusion

	15 Message Queues
	15.1 Introduction
	15.2 MSMQ
	15.3 Implementing a message queue
	15.3.1 Queuing complex objects
	15.3.2 Transactions
	15.3.3 Acknowledgments

	15.4 Timeouts
	15.5 Journal
	15.6 Queued Components
	15.7 Security
	15.8 Scalability
	15.9 Performance issues
	15.10 Conclusion

	16 IPv6: Programming for the Next-generation Internet
	16.1 Introduction
	16.2 What is IPv6?
	16.3 The history of IPv6
	16.4 So what changes?
	16.5 IPv6 naming conventions
	16.6 Installing IPv6
	16.6.1 Auto configuration

	16.7 Using IPv6 utilities
	16.7.1 IPv6
	16.7.2 NETSH
	16.7.3 Ping6
	16.7.4 Tracert6
	16.7.5 IPSec6
	16.7.6 Windows 2000 specific

	16.8 IPv6 routing
	16.8.1 Route determination process
	16.8.2 Administering the IPv6 routing table
	16.8.3 IPv6 routing advertisements

	16.9 IPv6 coexistence
	16.9.1 The 6to4 protocol
	16.9.2 The ISATAP protocol
	16.9.3 The 6over4 protocol

	16.10 IPv6 in .NET
	16.11 Conclusion

	17 Web Services and Remoting
	17.1 Introduction
	17.2 Creating a Web service
	17.2.1 Deploying a Web service

	17.3 Using a Web service
	17.4 Asynchronous calls to Web services
	17.4.1 Wait handles
	17.4.2 Callbacks

	17.5 Interoperability
	17.6 Performance
	17.7 Security
	17.8 Web services enhancements
	17.8.1 Web service extensions: Attachments
	17.8.2 Web service extensions: Routing
	17.8.3 A word on Project Hailstorm (MyServices)

	17.9 .NET remoting
	17.9.1 How remoting works
	17.9.2 Implementing remoting
	17.9.3 Asynchronous use of remote objects
	17.9.4 Deployment of a remoting service
	17.9.5 Configuration
	17.9.6 Hosting remote objects within IIS
	17.9.7 Hosting remote objects within a Windows service
	17.9.8 Distributed garbage collection

	17.10 Conclusion

	Index

