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Chapter 1

RADIOMETRY —
MEASURING LIGHT

In this chapter, we introduce a vocabulary with which we can describe the behaviour
of light. There are no vision algorithms, but definitions and ideas that will be useful
later on. Some readers may find more detail here than they really want; for their
benefit, sections 1.4, 1.5 and 1.6 give quick definitions of the main terms we use
later on.

1.1 Light in Space

The measurement of light is a field in itself, known as radiometry. We need a
series of units that describe how energy is transferred from light sources to surface
patches, and what happens to the energy when it arrives at a surface. The first
matter to study is the behaviour of light in space.

1.1.1 Foreshortening

At each point on a piece of surface is a hemisphere of directions, along which light
can arrive or leave (figure 1.1). Two sources that generate the same pattern on this
input hemisphere must have the same effect on the surface at this point (because
an observer at the surface can’t tell them apart). This applies to sources, too;
two surfaces that generate the same pattern on a source’s output hemisphere must
receive the same amount of energy from the source.

This means that the orientation of the surface patch with respect to the direction
in which the illumination is travelling is important. As a source is tilted with respect
to the direction in which the illumination is travelling, it “looks smaller” to a patch
of surface. Similarly, as a patch is tilted with respect to the direction in which the
illumination is travelling, it “looks smaller” to the source.

The effect is known as foreshortening. Foreshortening is important, because
from the point of view of the source a small patch appears the same as a large patch
that is heavily foreshortened, and so must receive the same energy.
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Figure 1.1. A point on a surface sees the world along a hemisphere of directions centered
at the point; the surface normal is used to orient the hemisphere, to obtain the 6, ¢
coordinate system that we use consistently from now on to describe angular coordinates
on this hemisphere. Usually in radiation problems we compute the brightness of the surface
by summing effects due to all incoming directions, so that the fact we have given no clear
way to determine the direction in which ¢ = 0 is not a problem.

1.1.2 Solid Angle

The pattern a source generates on an input hemisphere can be described by the
solid angle that the source subtends. Solid angle is defined by analogy with angle
on the plane.

The angle subtended on the plane by an infinitesimal line segment of length dl at
a point p can be obtained by projecting the line segment onto the unit circle whose
center is at p; the length of the result is the required angle in radians (see Figure 1.2).
Because the line segment is infinitesimally short, it subtends an infinitesimally small
angle which depends on the distance to the center of the circle and on the orientation

of the line:
dl cos 0

d¢ =

and the angle subtended by a curve can be obtained by breaking it into infinitesimal
segments and summing (integration!).

Similarly, the solid angle subtended by a patch of surface at a point « is obtained
by projecting the patch onto the unit sphere whose center is at @; the area of the
result is the required solid angle, whose unit is now steradians. Solid angle is
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usually denoted by the symbol w. Notice that solid angle captures the intuition in
foreshortening — patches that “look the same” on the input hemisphere subtend
the same solid angle.

Figure 1.2. Top: The angle subtended by a curve segment at a particular point is
obtained by projecting the curve onto the unit circle whose center is at that point, and
then measuring the length of the projection. For a small segment, the angle is (1/7)dl cos 6.
Bottom: A sphere, illustrating the concept of solid angle. The small circles surrounding
the coordinate axes are to help you see the drawing as a 3D surface. An infinitesimal patch
of surface is projected onto the unit sphere centered at the relevant point; the resulting
area is the solid angle of the patch. In this case, the patch is small, so that the angle is
(1/r*)dAcos 6.

If the area of the patch dA is small (as suggested by the infinitesimal form), then
the infinitesimal solid angle it subtends is easily computed in terms of the area of
the patch and the distance to it as

dAcosf
= 2

dw

r

where the terminology is given in Figure 1.2.

Solid angle can be written in terms of the usual angular coordinates on a sphere
(illustrated in Figure 1.2). From figure 1.1 and the expression for the length of
circular arcs, we have that infinitesimal steps (df, d¢) in the angles # and ¢ cut out
a region of solid angle on a sphere given by:

dw = sin 0d0ds

Both of these expressions are worth remembering, as they turn out to be useful for
a variety of applications.
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1.1.3 Radiance

The distribution of light in space is a function of position and direction. For exam-
ple, consider shining a torch with a narrow beam in an empty room at night — we
need to know where the torch is shining from, and in what direction it is shining.
The effect of the illumination can be represented in terms of the power an infinitesi-
mal patch of surface would receive if it were inserted into space at a particular point
and orientation. We will use this approach to obtain a unit of measurement.

Definition of Radiance

The appropriate unit for measuring the distribution of light in space is radiance,
which is defined as:

the amount of energy travelling at some point in a specified direction,
per unit time, per unit area perpendicular to the direction of travel, per
unit solid angle (from [?])

The units of radiance are watts per square meter per steradian (Wm=2sr—1). It
is important to remember that the square meters in these units are foreshortened,
i.e. perpendicular to the direction of travel. This means that a small patch viewing a
source frontally collects more energy than the same patch viewing a source radiance
along a nearly tangent direction — the amount of energy a patch collects from a
source depends both on how large the source looks from the patch and on how large
the patch looks from the source.

Radiance is a function of position and direction (the torch with a narrow beam
is a good model to keep in mind — you can move the torch around, and point the
beam in different directions). The radiance at a point in space is usually denoted
L(x, direction), where @ is a coordinate for position — which can be a point in
free space or a point on a surface — and we use some mechanism for specifying
direction.

One way to specify direction is to use (6, ¢) coordinates established using some
surface normal. Another is to write ®; — ®2, meaning the direction from point
€1 to 2. We shall use both, depending on which is convenient for the problem at
hand.

Radiance is Constant Along a Straight Line

For the vast majority of important vision problems, it is safe to assume that light
does not interact with the medium through which it travels — i.e. that we are in a
vacuum. Radiance has the highly desirable property that, for two points p; and p,
(which have a line of sight between them), the radiance leaving p; in the direction
of p, is the same as the radiance arriving at p, from the direction of p;.

The following proof may look vacuous at first glance; it’s worth studying care-
fully, because it is the key to a number of other computations. Figure 1.3 shows
a patch of surface radiating in a particular direction. From the definition, if the
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dA,

Figure 1.3. Light intensity is best measured in radiance, because radiance does not go
down along straight line paths in a vacuum (or, for reasonable distances, in clear air). This
is shown by an energy conservation argument in the text, where one computes the energy
transferred from a patch dA; to a patch dAs

radiance at the patch is L(x1, 0, ¢), then the energy transmitted by the patch into
an infinitesimal region of solid angle dw around the direction 6, ¢ in time dt is

L(x1,0, ¢)(cos01dAr)(dw)(dt),

(i.e. radiance times the foreshortened area of the patch times the solid angle into
which the power is radiated times the time for which the power is radiating).

Now consider two patches, one at 1 with area dA; and the other at xo with
area dAy (see Figure 1.3). To avoid confusion with angular coordinate systems,
write the angular direction from x; to @2 as ;1 — x2. The angles 6, and 6 are as
defined in figure 1.3.

The radiance leaving ; in the direction of @5 is L(x1, €1 — ®2) and the radiance
arriving at @5 from the direction of @1 is L(xa, 1 — ®3).
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This means that, in time dt, the energy leaving x; towards s is
d3E1_>2 = L(ml, xr1 — mg) COS Glde(l)dAldt

where dws(q) is the solid angle subtended by patch 2 at patch 1 (energy emitted
into this solid angle arrives at 2; all the rest disappears into the void). The notation
d3F1_,5 implies that there are three infinitesimal terms involved.

From the expression for solid angle above,

cos 0 d Ay

dwz1) = —3

Now the energy leaving 1 for 2 is:

d3E1_>2 = L(ml, xr1 — mg) COS Glde(l)dAldt
[¢0)S] 01 COS 02 dAQdAl dt

= L(ml, xr1 — mg) 2

Because the medium is a vacuum, it does not absorb energy, so that the energy
arriving at 2 from 1 is the same as the energy leaving 1 in the direction of 2. The
energy arriving at 2 from 1 is:

d3E1_>2 = L(mg, xr1 — mg) COS agdwl(g)dAth
[¢0)S] 02 COS 01 dAl dAth
7'2

= L(mg, xr1 — mg)

which means that L(xs, 1 — ®2) = L(x1, 0, ¢), so that radiance is constant along
(unoccluded) straight lines.

1.2 Light at Surfaces

When light strikes a surface, it may be absorbed, transmitted, or scattered; usually,
a combination of these effects occur. For example, light arriving at skin can be
scattered at various depths into tissue and reflected from blood or from melanin in
there; can be absorbed; or can be scattered tangential to the skin within a film of
oil and then escape at some distant point.

The picture is complicated further by the willingness of some surfaces to absorb
light at one wavelength, and then radiate light at a different wavelength as a result.
This effect, known as fluorescence, is fairly common: scorpions fluoresce visible
light under x-ray illumination; human teeth fluoresce faint blue under ultraviolet
light (nylon underwear tends to fluoresce, too, and false teeth generally do not
— the resulting embarrassments led to the demise of uv lights in discotheques);
and laundry can be made to look bright by washing powders that fluoresce under
ultraviolet light. Furthermore, a surface that is warm enough emits light in the
visible range.
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1.2.1 Simplifying Assumptions

It is common to assume that all effects are local, and can be explained with a
macroscopic model with no fluorescence or emission. This is a reasonable model for
the kind of surfaces and decisions that are common in vision. In this model:

e the radiance leaving a point on a surface is due only to radiance arriving at
this point (although radiance may change directions at a point on a surface,
we assume that it does not skip from point to point);

e we assume that all light leaving a surface at a given wavelength is due to light
arriving at that wavelength;

e we assume that the surfaces do not generate light internally, and treat sources
separately.

1.2.2 The Bidirectional Reflectance Distribution Function

We wish to describe the relationship between incoming illumination and reflected
light. This will be a function of both the direction in which light arrives at a surface
and the direction in which it leaves.

Irradiance
The appropriate unit for representing incoming power which is irradiance, defined
as:

incident power per unit area not foreshortened.

A surface illuminated by radiance L;(x, 0;, ¢;) coming in from a differential region
of solid angle dw at angles (6;, ¢;) receives irradiance

L; (m, 01', ¢1) cos 0;dw

where we have multiplied the radiance by the foreshortening factor and by the solid
angle to get irradiance. The main feature of this unit is that we could compute
all the power incident on a surface at a point by summing the irradiance over the
whole input hemisphere — which makes it the natural unit for incoming power.

The BRDF

The most general model of local reflection is the bidirectional reflectance dis-
tribution function, usually abbreviated BRDF. The BRDF is defined as

the ratio of the radiance in the outgoing direction to the incident irra-
diance (after [?])
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so that, if the surface of the preceding paragraph was to emit radiance L,(x, 6,, @),
its BRDF would be:

pbd(ao, ¢)07 01', ¢1) = Lo(m7 007 ¢0)

L; (m, 01', (f)z) cos 0;dw

The BRDF has units of inverse steradians (sr~!), and could vary from 0 (no light
reflected in that direction) to infinity (unit radiance in an exit direction resulting
from arbitrary small radiance in the incoming direction). The BRDF is symmetric
in the incoming and outgoing direction, a fact known as the Helmholtz reciprocity
principle.

Properties of the BRDF

The radiance leaving a surface due to irradiance in a particular direction is easily
obtained from the definition of the BRDF:

Lo(x,0,, ¢0) = pya(bo, Po, 0i, ¢i)Li(x, 5, ¢;) cos O;dw

More interesting is the radiance leaving a surface due to its irradiance (whatever
the direction of irradiance). We obtain this by summing over contributions from all
incoming directions:

Lo(%@o,(ﬁo)=/Pbd(ao,fbo,9¢,¢>1)Lz‘(m,9u¢z’)cosaidw
Q

where (2 is the incoming hemisphere. From this we obtain the fact that the BRDF
is not an arbitrary symmetric function in four variables.

To see this, assume that a surface is subjected to a radiance of 1/ cos 0; Wm=2sr~
This means that the total energy arriving at the surface is:

27 z
/ L cosfdw = / / sin 0dfd¢p
q COs 0 0 0
2w

1

We have assumed that any energy leaving at the surface leaves from the same
point at which it arrived, and that no energy is generated within the surface. This
means that the total energy leaving the surface must be less than or equal to the
amount arriving. So we have

27 > / Lo(x,0,, do) cos 0,dw,
Qo
- / / pbd(007 ¢07 01;, ¢1)L1 (m7 01;, ¢)1,) COS aidwid’wo
Qo JQ;
- / / pbd(007 ¢07 01;, ¢1)dw1dwo
Qo JQ;

27 z 27 z
= / / / / od (00, bo, i, ¢;) sin 6;d6;d¢; sin 8,d0,d¢,,
0 0 0 0
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What this tells us is that, although the BRDF can be large for some pairs of
incoming and outgoing angles, it can’t be large for many.

1.3 Important Special Cases

Radiance is a fairly subtle quantity, because it depends on angle. This generality
is sometimes essential — for example, for describing the distribution of light in
space in the torch beam example above. As another example, fix a compact disc
and illuminate its underside with a torch beam. The intensity and colour of light
reflected from the surface depends very strongly on the angle from which the surface
is viewed and on the angle from which it is illuminated. The CD example is worth
trying, because it illustrates how strange the behaviour of reflecting surfaces can
be; it also illustrates how accustomed we are to dealing with surfaces that do not
behave in this way. For many surfaces — cotton cloth is one good example — the
dependency of reflected light on angle is weak or non-existent, so that a system of
units that are independent of angle is useful.

1.3.1 Radiosity

If the radiance leaving a surface is independent of exit angle, there is no point in
describing it using a unit that explicitly depends on direction. The appropriate unit
is radiosity, defined as

the total power leaving a point on a surface per unit area on the surface
(from [?7])

Radiosity, which is usually written as B(x) has units watts per square meter
(Wm~2). To obtain the radiosity of a surface at a point, we can sum the radiance
leaving the surface at that point over the whole exit hemisphere. Thus, if x is a
point on a surface emitting radiance L(x, 0, ¢), the radiosity at that point will be:

B(m):/QL(m,G,gb)cosﬂdw

where (2 is the exit hemisphere and the term cosf turns foreshortened area into
area (look at the definitions again!); dw can be written in terms of 6, ¢ as above.

The Radiosity of a Surface with Constant Radiance

One result to remember is the relationship between the radiosity and the radi-
ance of a surface patch where the radiance is independent of angle. In this case
Lo(z,0,,d0) = Lo(x). Now the radiosity can be obtained by summing the radiance
leaving the surface over all the directions in which it leaves:

B(x) = /QLO(m)cosﬂdw
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z 2w
L,(x) / cos 0 sin Odpdl
o Jo
)

= nLl,(x

1.3.2 Directional Hemispheric Reflectance

The BRDF is also a subtle quantity, and BRDF measurements are typically difficult,
expensive and not particularly repeatable. This is because surface dirt and aging
processes can have significant effects on BRDF measurements; for example, touching
a surface will transfer oil to it, typically in little ridges (from the fingertips) which
can act as lenses and make significant changes in the directional behaviour of the
surface.

The light leaving many surfaces is largely independent of the exit angle. A
natural measure of a surface’s reflective properties in this case is the directional-
hemispheric reflectance, usually termed pgp,, defined as:

the fraction of the incident irradiance in a given direction that is reflected
by the surface, whatever the direction of reflection (after [?])

The directional hemispheric reflectance of a surface is obtained by summing the
radiance leaving the surface over all directions, and dividing by the irradiance in
the direction of illumination, which gives:

~ Jo Lo(x, 05, d,) cos B,dw,

o Li (m, 01', (f)z) COS Gldwz

/ Lo(x,0,,d,) cos b,
= dw,
o | Li(z, 0;, ;) cos O;dw;

- / pbd(007 ¢07 01;, ¢)1) COS aodwo
Q

pan(0:, i)

This property is dimensionless, and its value will lie between 0 and 1.

Directional hemispheric reflectance can be computed for any surface. For some
surfaces, it will vary sharply with the direction of illumination. A good example is
a surface with fine, symmetric triangular grooves which are black on one face and
white on the other. If these grooves are sufficiently fine, it is reasonable to use a
macroscopic description of the surface as flat, and with a directional hemispheric
reflectance that is large along a direction pointing towards the white faces and small
along that pointing towards the black.

1.3.3 Lambertian Surfaces and Albedo

For some surfaces the directional hemispheric reflectance does not depend on illu-
mination direction. Examples of such surfaces include cotton cloth, many carpets,
matte paper and matte paints. A formal model is given by a surface whose BRDF
is independent of outgoing direction (and, by the reciprocity principle, of incom-
ing direction as well). This means the radiance leaving the surface is independent
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of angle. Such surfaces are known as ideal diffuse surfaces or Lambertian
surfaces (after George Lambert, who first formalised the idea).

It is natural to use radiosity as a unit to describe the energy leaving a Lam-
bertian surface. For Lambertian surfaces, the directional hemispheric reflectance is
independent of direction. In this case the directional hemispheric reflectance is of-
ten called their diffuse reflectance or albedo and written pg. For a Lambertian
surface with BRDF py4(60,, ¢0, 0, i) = p, we have:

pd = /pbd(007¢0701'7¢i)(30500dw0
Q

= /pcos@odwo

Q
% 2
= p/ / cos 6, sin 0,d0,do,
o Jo
0

This fact is more often used in the form
Db = pd
brdf -

a fact that is useful, and well worth remembering.

Because our sensations of brightness correspond (roughly!) to measurements of
radiance, a Lambertian surface will look equally bright from any direction, whatever
the direction along which it is illuminated. This gives a rough test for when a
Lambertian approximation is appropriate.

1.3.4 Specular Surfaces

A second important class of surfaces are the glossy or mirror-like surfaces, often
known as specular surfaces (after the Latin word speculum, a mirror). An ideal
specular reflector behaves like an ideal mirror. Radiation arriving along a particular
direction can leave only along the specular direction, obtained by reflecting the
direction of incoming radiation about the surface normal. Usually some fraction
of incoming radiation is absorbed; on an ideal specular surface, the same fraction
of incoming radiation is absorbed for every direction, the rest leaving along the
specular direction. The BRDF for an ideal specular surface has a curious form
(exercise ?7), because radiation arriving in a particular direction can leave in only
one direction.

Specular Lobes

Relatively few surfaces can be approximated as ideal specular reflectors. A fair
test of whether a flat surface can be approximated as an ideal specular reflector is
whether one could safely use it as a mirror. Good mirrors are suprisingly hard to
make; up until recently, mirrors were made of polished metal. Typically, unless the
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30
~specular specular
direction direction

Figure 1.4. Specular surfaces commonly reflect light into a lobe of directions around
the specular direction, where the intensity of the reflection depends on the direction, as
shown on the left. Phong’s model is used to describe the shape of this lobe, in terms of
the offset angle from the specular direction.

metal is extremely highly polished and carefully maintained, radiation arriving in
one direction leaves in a small lobe of directions around the specular direction. This
results in a typical blurring effect. A good example is the bottom of a flat metal pie
dish. If the dish is reasonably new, one can see a distorted image of one’s face in
the surface but it would be difficult to use as a mirror; a more battered dish reflects
a selection of distorted blobs.

Larger specular lobes mean that the specular image is more heavily distorted
and is darker (because the incoming radiance must be shared over a larger range of
outgoing directions). Quite commonly it is possible to see only a specular reflection
of relatively bright objects, like sources. Thus, in shiny paint or plastic surfaces,
one sees a bright blob — often called a specularity — along the specular direction
from light sources, but few other specular effects. It is not often necessary to model
the shape of the specular lobe. When the shape of the lobe is modelled, the most
common model is the Phong model, which assumes that only point light sources
are specularly reflected. In this model, the radiance leaving a specular surface is
proportional to cos™(80) = cos™ (6, —05), where 0, is the exit angle, §; is the specular
direction and n is a parameter. Large values of n lead to a narrow lobe and small,
sharp specularities and small values lead to a broad lobe and large specularities
with rather fuzzy boundaries.

1.3.5 The Lambertian + Specular Model

Relatively few surfaces are either ideal diffuse or perfectly specular. Very many
surfaces can be approximated has having a surface BRDF which is a combination
of a Lambertian component and a specular component, which usually has some
form of narrow lobe. Usually, the specular component is weighted by a specular
albedo. Again, because specularities tend not to be examined in detail, the shape
of this lobe is left unspecified. In this case, the surface radiance (because it must
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now depend on direction) in a given direction is typically approximated as:

L(m7 007 ¢0) = pd(m) /g; L(m7 01', ¢1) Cos aldw =+ ps (m)L(m7 087 ¢S) COSn(as - 00)

where 05, ¢, give the specular direction and ps is the specular albedo. As we shall
see, it is common not to reason about the exact magnitude of the specular radiance
term.

Using this model implicitly excludes “too narrow” specular lobes, because most
algorithms expect to encounter occasional small, compact specularities from light
sources. Surfaces with too narrow specular lobes (mirrors) produce overwhelm-
ing quantities of detail in specularities. Similarly, “too broad” lobes are excluded
because the specularities would be hard to identify.
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1.4 Quick Reference: Radiometric Terminology for Light
Term Definition | Units Application
Radiance the quantity of energy trav- | wm?2sr—! representing light travelling
elling at some point in a in free space; representing
specified direction, per unit light reflected from a surface
time, per unit area perpen- when the amount reflected
dicular to the direction of depends strongly on direc-
travel, per unit solid angle. tion
Irradiance total incident power per unit | wm ™2 representing light arriving at
surface area a surface
Radiosity the total power leaving a | wm™2 representing light leaving a
point on a surface per unit diffuse surface
area on the surface
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1.5 Quick Reference: Radiometric Properties of Surfaces

Term Definition | Units | Application
BRDF the ratio of the radiance sr1 representing reflection
(Bidirectional | in the outgoing direction off general surfaces
Reflectance | to the incident irradiance where reflection depends
Distribution strongly on direction
Function)
Directional the fraction of the unitless | representing reflection
Hemispheric incident irradiance in off a surface where
Reflectance a given direction that direction is
is reflected by the unimportant
surface, whatever the
direction of reflection
Albedo Directional hemispheric | unitless representing a
reflectance of a diffuse diffuse surface
surface
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1.6 Quick Reference: Important Types of Surface

Term

Definition

Examples

Diffuse surface;
Lambertian surface

A surface whose BRDF is
constant

Cotton cloth; many rough
surfaces; many paints
and papers; surfaces whose
apparent brightness doesn’t
change with viewing direction

Specular surface

A surface that behaves like
a mirror

Mirrors; polished metal

Specularity

Small bright patches on
a surface that result from
specular components of
the BRDF

Chapter 1
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1.7 Notes

We strongly recommend Francois Sillion’s excellent book [?], for its very clear ac-
count of radiometric calculations. There are a variety of more detailed publications
for reference [] Our discussion of reflection is thoroughly superficial. The specular
plus diffuse model appears to be originally due to Cook, Torrance and Sparrow.
A variety of modifications of this model appear in computer vision and computer
graphics; see, for example [|. Reflection models can be derived by combining a sta-
tistical description of surface roughness with electromagnetic considerations (e.g. [])
or by adopting scattering models (e.g. [], where a surface is modelled by colourant
particles embedded in a matrix, and a scattering model yields an approximate
BRDF).

Top of the list of effects we omitted to discuss is off-specular glints, followed by
specular backscatter. Off-specular glints commonly arise in brushed surfaces, where
there is a large surface area oriented at a substantial angle to the macroscopic surface
normal. This leads to a second specular lobe, due to this region. These effects can
confuse algorithms that reason about shape from specularities, if the reasoning is
close enough. Specular backscatter occurs when a surface reflects light back in the
source direction — usually for a similar reason that off-specular glints occur. Again,
the effect is likely to confuse algorithms that reason about shape from specularities.

It is commonly believed that rough surfaces are Lambertian. This belief has a
substantial component of wishful thinking, because rough surfaces often have local
shadowing effects that make the radiance reflected quite strongly dependent on the
illumination angle. For example, a stucco wall illuminated at a near grazing angle
shows a clear pattern of light and dark regions where facets of the surface face
toward the light or are shadowed. If the same wall is illuminated along the normal,
this pattern largely disappears. Similar effects at a finer scale are averaged to endow
rough surfaces with measurable departures from a Lambertian model (for details,
see [?; ?; 7; ?7]). Determining non-Lambertian models for surfaces that appear to
be diffuse is a well established line of enquiry.

Another example of an object that does not support a simple macroscopic surface
model is a field of flowers. A distant viewer should be able to abstract this field as a
“surface”; however, doing so leads to a surface with quite strange properties. If one
views such a field along a normal direction, one sees mainly flowers; a tangential
view reveals both stalks and flowers, meaning that the colour changes dramatically
(the effect is explored in []).

1.8 Assignments

Exercises

1. How many steradians in a hemisphere?

2. We have proven that radiance does not go down along a straight line in a
non-absorbing medium, which makes it a useful unit. Show that if we were to
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10.

use power per square meter of foreshortened area (which is irradiance), the
unit must change with distance along a straight line. How significant is this
difference?

An absorbing medium: assume that the world is filled with an isotropic
absorbing medium. A good, simple model of such a medium is obtained by
considering a line along which radiance travels. If the radiance along the line
is N at z, it will be N — (adz)N at x + dzx.

e Write an expression for the radiance transferred from one surface patch
to another in the presence of this medium.

o Now qualitatively describe the distribution of light in a room filled with
this medium, for « small and large positive numbers. The room is a
cube, and the light is a single small patch in the center of the ceiling.
Keep in mind that if « is large and positive, very little light will actually
reach the walls of the room.

Identify common surfaces that are neither Lambertian nor specular, using
the underside of a CD as a working example. There are a variety of im-
portant biological examples, which are often blue in colour. Give at least
two different reasons that it could be advantageous to an organism to have a
non-Lambertian surface.

Show that for an ideal diffuse surface the directional hemispheric reflectance
is constant; now show that if a surface has constant directional hemispheric
reflectance, it is ideal diffuse.

Show that the BRDF of an ideal specular surface is

P (Bos Do, 03, 03) = ps(6:){26(sin” 6, — sin® 6;) H(do — o)}
where p,(0;) is the fraction of radiation that leaves.
Why are specularities brighter than diffuse reflection?

A surface has constant BRDF. What is the maximum possible value of this
constant? Now assume that the surface is known to absorb 20% of the radia-
tion incident on it (the rest is reflected); what is the value of the BRDF?

The eye responds to radiance. Explain why Lambertian surfaces are often
referred to as having a brightness that is independent of viewing angle.

Show that the solid angle subtended by a sphere of radius € at a point a
distance r away from the center of the sphere is approximately 7 (<)?, for
> €.



Chapter 2

SOURCES, SHADOWS AND
SHADING

We shall start by describing the basic radiometric properties of various light sources.
We shall then develop models of source geometries and discuss the radiosity and the
shadows that result from these sources. The purpose of all this physics is to establish
a usable model of the shading on a surface; we develop two kinds of model in some
detail. We show that, when one of these models applies, it is possible to extract a
representation of the shape and albedo of an object from a series of images under
different lights. Finally, we describe the effects that result when surfaces reflect
light onto one another.

2.1 Radiometric Properties of Light Sources

Anything that emits light is a light source. To describe a source, we need a descrip-
tion of the radiance it emits in each direction. Typically, emitted radiance is dealt
with separately from reflected radiance. Together with this, we need a description
of the geometry of the source, which has profound effects on the spatial variation of
light around the source and on the shadows cast by objects near the source. Sources
are usually modelled with quite simple geometries, for two reasons: firstly, many
synthetic sources can be modelled as point sources or line sources fairly effectively;
secondly, sources with simple geometries can still yield surprisingly complex effects.

We seldom need a complete description of the spectral radiance a source emits
in each direction. It is more usual to model sources as emitting a constant radiance
in each direction, possibly with a family of directions zeroed (like a spotlight). The
proper quantity in this case is the exitance, defined as

the internally generated energy radiated per unit time and per unit area
on the radiating surface (after [?])

Exitance is similar to radiosity, and can be computed as

E(m):/Le(m,00,¢>o)cosﬁodw
Q
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In the case of a coloured source, one would use spectral exitance or spectral
radiance as appropriate. Sources can have radiosity as well as exitance, because
energy may be reflected off the source as well as generated within it.

2.2 Qualitative Radiometry

We should like to know how “bright” surfaces are going to be under various lighting
conditions, and how this “brightness” depends on local surface properties, on surface
shape, and on illumination. The most powerful tool for analysing this problem is to
think about what a source looks like from the surface. In some cases, this technique
us to give qualitative descriptions of “brightness” without knowing what the term
means.

Recall from section 1.1.1 and figure 1.1 that a surface patch sees the world
through a hemisphere of directions at that patch. The radiation arriving at the
surface along a particular direction passes through a point on the hemisphere. If
two surface patches have equivalent incoming hemispheres, they must have the
same incoming radiation, whatever the outside world looks like. This means that
any difference in “brightness” between patches with the same incoming hemisphere
is a result of different surface properties.

1

i

|
Overcast e !
sky < i
I

I

I
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Figure 2.1. A geometry in which a qualitative radiometric solutions can be obtained by
thinking about what the world looks like from the point of view of a patch. We wish to
know what the brightness looks like at the base of two different infinitely high walls. In
this geometry, an infinitely high matte black wall cuts off the view of the overcast sky —
which is a hemisphere of infinite radius and uniform “brightness”. On the right, we show
a representation of the directions that see or do not see the source at the corresponding
points, obtained by flattening the hemisphere to a circle of directions (or, equivalently, by
viewing it from above). Since each point has the same input hemisphere, the brightness
must be uniform.

Lambert determined the distribution of “brightness” on a uniform plane at the
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base of an infinitely high black wall illuminated by an overcast sky (see Figure 2.1).
In this case, every point on the plane must see the same hemisphere — half of its
viewing sphere is cut off by the wall, and the other half contains the sky, which is
uniform — and the plane is uniform, so every point must have the same “brightness”.

Overcast .
sky

brightest

, infinite .~
- lane .~
& p plane,
N 7 darker

Figure 2.2. We now have a matte black, infinitely thin, half-infinite wall on an infi-
nite white plane. This geometry also sees an overcast sky of infinite radius and uniform
“brightness”. In the text, we show how to determine the curves of similar “brightness”
on the plane. These curves are shown on the right, depicted on an overhead view of the
plane; the thick line represents the wall. Superimposed on these curves is a representation
of the input hemisphere for some of these isophotes. Along these curves, the hemisphere
is fixed (by a geometrical argument), but they change as one moves from curve to curve.

A second example is somewhat trickier. We now have an infinitely thin black
wall that is infinitely long only in one direction, on an infinite plane (Figure 2.2). A
qualitative description would be to find the curves of equal “brightness” look like.
It is fairly easy to see that all points on any line passing through the point p in
Figure 2.2 see the same input hemisphere, and so must have the same “brightness”.
Furthermore, the distribution of “brightness” on the plane must have a symmetry
about the line of the wall — we expect the brightest points to be along the extension
of the line of the wall, and the darkest to be at the base of the wall.

2.3 Sources and their Effects

There are three main types of geometrical source models: point sources, line sources
and area sources. In this section, we obtain expressions for radiosity sources of these
types produce at a surface patch. These expressions could be obtained by thinking
about the limiting behaviour of various nasty integrals. Instead, we obtain them by
thinking about the appearance of the source from the patch.
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Figure 2.3. A surface patch sees a distant sphere of small radius; the sphere produces a
small illuminated patch on the input hemisphere of the sphere. In the text, by reasoning
about the scaling behaviour of this patch as the distant sphere moves further away or gets
bigger, we obtain an expression for the behaviour of the point source.

2.3.1 Point Sources

A common approximation is to consider a light source as a point. It is a natural
model to use, because many sources are physically small compared to the environ-
ment in which they stand. We can obtain a model for the effects of a point sources
by modelling the source as a very small sphere which emits light at each point on
the sphere, with an exitance that is constant over the sphere.

Assume that a surface patch is viewing a sphere of radius €, at a distance r away,
and that € > r. We assume the sphere is far away from the patch relative to its
radius (a situation that almost always applies for real sources). Now the solid angle
that the source subtends is 2. This will behave approximately proportional to

2

r2
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The pattern of illumination that the source creates on the hemisphere will
(roughly) scale, too. As the sphere moves away, the rays leaving the surface patch
and striking the sphere move closer together (roughly) evenly, and the collection
changes only slightly (a small set of new rays is added at the rim — the contribution
from these rays must be very small, because they come from directions tangent to
the sphere). In the limit as € tends to zero, no new rays are added.

The radiosity due to the source is obtained by integrating this pattern, times
cosB; over the patch of solid angle. As e tends to zero, the patch shrinks and the
cos #; is close to constant. If p is the surface albedo, all this means the expression
for radiosity due to the point source will be

p(;)QECOSG

where E is a term in the exitance of the source, integrated over the small patch.
We don’t need a more detailed expression for E (to determine one, we would need
to actually do the integral we have shirked).

A Nearby Point Source

The angle term can be written in terms of N (z) (the unit normal to the surface)
and S(x) (a vector from x to the source, whose length is E) to yield the standard
nearby point source model:

This is an extremely convenient model, because it gives an explicit relationship
between radiosity and shape (the normal term). In this model, S is usually called
the source vector. It is common (and incorrect!) to omit the dependency on
distance to the source from this model.

A Point Source at Infinity

The sun is far away; as a result, the terms 1/r(x)? and S(x) are essentially constant.

In this case, the point source is referred to as being a point source at infinity.

If all the surface patches we are interested in are close together with respect to

the distance to the source, r(x) = ro + Ar(x) where ro > Ar(x). Furthermore,

S(x) = So + AS(x), where | So |>| AS(x) |. We now have that:

N-Sx) N-(So+AS(x)) N-Sp 1_2(N-AS(:13))A7':13 n NS
= o = 5

r(@)?  (rg+ Ar(z))? re o e

so that our model for the radiosity due to a point source at infinity becomes:

B(z) = pa(x)(N - S)
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Choosing a Point Source Model

A point source at infinity is a good model for the sun, for example, because the solid
angle that the sun subtends is small and essentially constant, wherever it appears in
the field of view (this test means that our approximation step is valid). Usually, we
do not care about the structure of the term S, which is again known as the source
vector. If we use linear sensors with an unknown gain, for example, we can roll
the source intensity and the unknown gain into this term.

As you should expect from the derivation, this is a poor model when the distance
between objects is similar in magnitude to the distance to the source. In this case,
we cannot use the series approximation to pretend that the radiosity due to the
source does not go down with distance to the source.

The heart of the problem is easy to see if we consider what the source looks
like from different surface patches. It must look bigger to nearer surface patches
(however small its radius); this means that the radiosity due to the source must go
up. If the source is sufficiently distant — for example, the sun — we can ignore this
effect because the source does not change in apparent size for any plausible motion.

However, for configurations like a light bulb in the center of a room the solid
angle subtended by the source goes up as the inverse square of the distance, meaning
that the radiosity due to the source will do so, too. The correct model to use in
this case is the point source of Section 2.3.1. The difficulty with this model is
that radiosity changes very sharply over space, in a way that is inconsistent with
experience. For example, if a point source is placed at the center of a cube, then
the radiosity in the corners is roughly a ninth that at the center of each face — but
the corners of real rooms are nowhere near as dark as that. The explanation must
wait until we have discussed shading models.

2.3.2 Line Sources

A line source has the geometry of a line — a good example is a single fluorescent
light bulb. Line sources are not terribly common in natural scenes or in synthetic
environments, and we will discuss them only briefly. Their main interest is as an
example for radiometric problems; in particular, the radiosity of patches reasonably
close to a line source changes as the reciprocal of distance to the source (rather than
the square of the distance). The reasoning is more interesting than the effect. We
model a line source as a thin cylinder with diameter e. Assume for the moment that
the line source is infinitely long, and that we are considering a patch that views the
source frontally, as in Figure 2.4.

Figure 2.4 sketches the appearance of the source from the point of view of patch
1; now move the patch closer, and consider patch 2 — the width of the region on
the hemisphere corresponding to the source changes, but not the length (because
the source is infinitely long). In turn, because the width is approximately €/r, the
radiosity due to the source must go down with the reciprocal of distance. It is easy
to see that with a source that is not infinitely long, this applies as long as the patch
is reasonably close.
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Figure 2.4. The radiosity due to a line source goes down as the reciprocal of distance,
for points that are reasonably close to the source. On the left, two patches viewing an
infinitely long, narrow cylinder with constant exitance along its surface and diameter e.
On the right, the view of the source from each patch, drawn as the underside of the input
hemisphere seen from below. Notice that the length of the source on this hemisphere does
not change, but the width does (as €/r). This yields the result.

2.3.3 Area Sources

Area sources are important, for two reasons. Firstly, they occur quite commonly in
natural scenes — an overcast sky is a good example — and in synthetic environ-
ments — for example, the fluorescent light boxes found in many industrial ceilings.
Secondly, a study of area sources will allow us to explain various shadowing and
interreflection effects. Area sources are normally modelled as surface patches whose
emitted radiance is independent of position and of direction — they can be described
by their exitance.

An argument similar to that used for line sources shows that, for points not
too distant from the source, the radiosity due to an area source does not change
with distance to the source. This explains the widespread use of area sources in
illumination engineering — they generally yield fairly uniform illumination. For
our applications, we need a more exact description of the radiosity due to an area
source, so we will need to write out the integral.

The Exact Radiosity due to an Area Source

Assume we have a diffuse surface patch which is illuminated by an area source with
exitance E(u). We use u as a coordinate on the source, and instead of writing
angles in coordinates, we write u — @ for the direction from u to & (more notation
is illustrated in Figure 2.5). The radiosity on the surface is obtained by summing the
incoming radiance over all incoming directions. This integral can be transformed
into an integral over the source (by turning the angle to a source point into a
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coordinate on the source). The process looks like:

B(x) = pd(m)/ Li(x,u — @) cos 0;dw
Q

= pd(m)/ L.(u,u — x) cos b;dw
Q

— pul®) /Q (L B(w)) cos fidw
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cos 0; cos 0,
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The transformation works because radiance is constant along straight lines and
because E(u) = 1/mwL.(u). This transformation is very useful, because it means
we do not have to worry about consistent angular coordinate systems, but these
integrals are still almost always impossible to do in closed form (but see exercise ).

2.4 Local Shading Models

We have studied the physics of light because we want to know how bright things
will be, and why, in the hope of extracting object information from these models.
Currently, we know the radiosity at a patch due to a source but this is not a shading
model. Radiance could arrive at surface patches in other ways (it could, for example,
be reflected from other surface patches); we need to know which components to
account for.

This topic is fraught with all the difficulties involved in choosing a model. The
easiest model to manipulate is a local shading model, which models the radiosity
at a surface patch as the sum of the radiosity due to sources and sources alone.
This model will support a variety of algorithms and theories (see section 2.5). Un-
fortunately, this model often produces wildly inaccurate predictions. Even worse,
there are is little reliable information about when this model is safe to use.

An alternate model is to account for all radiation (section 2.6). This takes into
account radiance arriving from sources, and that arriving from radiating surfaces.
This model is physically accurate, but usually very hard to manipulate.

2.4.1 Local Shading Models for Point Sources

The local shading model for a set of point sources is:

B(z) = > By(z)
sesources visible from @
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Figure 2.5. A diffuse source illuminates a diffuse surface. The source has exitance
E(u) and we wish to compute the radiosity on the patch due to the source. We do this
by transforming the integral of incoming radiance at the surface into an integral over the
source area. This transformation is convenient, because it avoids us having to use different
angular domains for different surfaces; however, it still leads to an integral that is usually
impossible in closed form.

where B; () is the radiosity due to source s. This expression is fairly innocuous; but
notice that if all the sources are point sources at infinity, the expression becomes:

B(x) = ) pa(x)N (@) - S,

sesources visible from @

so that if we confine our attention to a region where all points can see the same
sources, we could add all the source vectors to obtain a single virtual source that
had the same effects. The relationship between shape and shading is pretty direct
here — the radiosity is a measurement of one component of the surface normal.
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Figure 2.6. Shadows cast by point sources on planes are relatively simple. Self shadow
boundaries occur when the surface turns away from the light and cast shadow boundaries
occur when a distant surface occludes the view of the source.

For point sources that are not at infinity the model becomes:

N(x) - S(x
Bla) - 3 pular) DS
sesources visible from x #

where r4(x) is the distance from the source to @; the presence of this term means
that the relationship between shape and shading is somewhat more obscure.

The Appearance of Shadows

In a local shading model, shadows occur when the patch can not see one or more
sources. In this model, point sources produce a series of shadows with crisp bound-
aries; shadow regions where no source can be seen are particularly dark. Shadows
cast with a single source can be very crisp and very black, depending on the size
of the source and the albedo of other nearby surfaces (which reflect light, whether
we model the effect or not!). It was a popular 19’th century pastime to cast such
shadows onto paper, and then draw them, yielding the silhouettes which are still
occasionally to be found in antiques shops.

The geometry of the shadow cast by a point source on a plane is analogous to the
geometry of viewing in a perspective camera (Figure 2.6). Any patch on the plane
is in shadow if a ray from the patch to the source passes through an object. This
means that there are two kinds of shadow boundary. At self shadow boundaries,
the surface is turning away from the light, and a ray from the patch to the source is
tangent to the surface. At cast shadow boundaries, from the perspective of the
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patch, the source suddenly disappears behind an occluding object. Shadows cast
onto curved surfaces can have extremely complex geometries, however.

If there are many sources, the shadows will be less dark (except at points where
no source is visible) and there can be very many qualitatively distinct shadow
regions (each source casts its own shadow — some points may not see more than
one source). One example of this effect occurs in televised soccer matches — because
the stadium has multiple bright distant point-like illuminants spaced evenly around
the perimeter of the stadium, there is a set of shadows radiating evenly around each
player’s feet. These shadows typically become brighter or darker as the player moves
around, usually because the illumination due to other sources and to interreflections
in the region of the shadow increases or decreases.

2.4.2 Area Sources and their Shadows

The local shading model for a set of area sources is significantly more complex,
because it is possible for patches to see only a portion of a given source. The model
becomes:

B(x)

>

seall sources

/ Radiosity due to source
visible component of source s

/ {E(u)cosﬂu 0205 05 dAu}
visible component of source s mr

seall sources
using the terminology of Figure 2.5; usually, we assume that F is constant over the
source.

Area sources do not produce dark shadows with crisp boundaries. This is be-
cause, from the perspective of a viewing patch, the source appears slowly from
behind the occluding object (think of an eclipse of the moon — it is an exact anal-
ogy). It is common to distinguish between points in the umbra (a Latin word,
meaning “shadow”) — which cannot see the source at all — and points in the
penumbra (a compound of Latin words, meaning “almost shadow”) — which see
part of the source. The vast majority of indoor sources are area sources of one form
or another, so the effects are quite easy to see; hold an arm quite close to the wall
(for reasons we will discuss below) and look at the shadow it casts — there is a
dark core, which gets larger as the arm gets closer to the wall; this is the umbra —
surrounded by a lighter region with a fuzzier boundary (the penumbra). Figure 2.7
illustrates the geometry.

2.4.3 Ambient lllumination

One problem with local shading models should be apparent immediately; they pre-
dict that some shadow regions are arbitrarily dark, because they cannot see the
source. This prediction is inaccurate in almost every case, because shadows are
illuminated by light from other diffuse surfaces. This effect can be very significant.
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Figure 2.7. Area sources generate complex shadows with smooth boundaries, because,
from the point of view of a surface patch, the source disappears slowly behind the occluder.
Regions where the source cannot be seen at all are known as the umbra; regions where
some portion of the source is visible are known as the penumbra. A good model is to
imagine lying with your back to the surface, looking at the world above. At point 1, you
can see all of the source; at point 2, you can see some of it; and at point 3 you can see
none of it.

In rooms with light walls and area sources, it is possible to see shadows only by
holding objects close to the wall or close to the source. This is because a patch on
the wall sees all the other walls in the room; and until an object is close to the wall,
it blocks out only a very small fraction of each patches visual hemisphere.

For some environments, the total irradiance a patch obtains from other patches
is roughly constant and roughly uniformly distributed across the input hemisphere.
This must be true for the interior of a sphere with a constant distribution of radiosity
(by symmetry), and (by accepting a model of a cube as a sphere) is roughly true
for the interior of a room with white walls. In such an environment it is sometimes
possible to model the effect of other patches by adding an ambient illumination
term to each patch’s radiosity. There are two strategies for determining this term.
Firstly, if each patch sees the same proportion of the world (for example, the interior
of a sphere), we can add the same constant term to the radiosity of each patch. The
magnitude of this term is usually guessed.

Secondly, if some patches see more or less of the world than others (this happens
if regions of the world occlude a patch’s view, for example, a patch at the bottom
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Figure 2.8. Ambient illumination is a term added to the radiosity predictions of local
shading models to model the effects of radiosity from distant, reflecting surfaces. In a world
like the interior of a sphere or of a cube (the case on the left), where a patch sees roughly
the same thing from each point, a constant ambient illumination term is often acceptable.
In more complex worlds, some surface patches see much less of the surrounding world than
others. For example, the patch at the base of the groove on the right sees relatively little
of the outside world, which we model as an infinite polygon of constant exitance; its input
hemisphere is shown below.

of a groove), this can be taken into account. To do so, we need a model of the
world from the perspective of the patch under consideration. A natural strategy is
to model the world as a large, distant polygon of constant radiosity, where the view
of this polygon is occluded at some patches (see Figure 2.8). The result is that the
ambient term is smaller for patches that see less of the world. This model is often
more accurate than adding a constant ambient term. Unfortunately, it is much
more difficult to extract information from this model, possibly as difficult as for a
global shading model.

2.5 Application: Photometric Stereo

We will reconstruct a patch of surface from a series of pictures of the surface, taken
under different illuminants. First, we need a camera model. For simplicity, we
choose a camera situated so that the point (z,y, 2) in space is imaged to the point
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(z,y) in the camera (the method we describe will work for the other camera models
described in chapter ?7).

In this case, to measure the shape of the surface we need to obtain the depth
to the surface. This suggests representing the surface as (z,y, f(z,y)) — a rep-
resentation known as a Monge patch, after a French military engineer who first
used it (figure 2.9). This representation is attractive, because we can determine a
unique point on the surface by giving the image coordinates. Notice that to obtain
a measurement of a solid object, we would need to reconstruct more than one patch,
because we need to observe the back of the object.

Image
Plane

direction
of projection

height

X

Figure 2.9. A Monge patch is a representation of a piece of surface as a height function.
For the photometric stereo example, we assume that an orthographic camera — one that
maps (z,y, z) in space to (z,y) in the camera — is viewing a Monge patch. This means
that the shape of the surface can be represented as a function of position in the image.

Photometric stereo is a method for recovering a representation of the Monge
patch from image data. The method involves reasoning about the image intensity
values for several different images of a surface in a fixed view, illuminated by different
sources. This method will recover the height of the surface at points corresponding
to each pixel; in computer vision circles, the resulting representation is often known
as a height map, depth map or dense depth map.

Fix the camera and the surface in position, and illuminate the surface using a
point source that is far away compared to the size of the surface. We adopt a local
shading model and assume that there is no ambient illumination — more about this
later — so that the radiosity at a point & on the surface is

where IN is the unit surface normal and S; is the source vector. We can write
B(z,y) for the radiosity of a point on the surface, because there is only one point
on the surface corresponding to the point (z,y) in the camera. Now we assume that
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the response of the camera is linear in the surface radiosity, and so have that the
value of a pixel at (z,y) is

I(z,y) = kB(x)

where g(z,y) = p(x,y)N(z,y) and V1 = kS, where k is the constant connecting
the camera response to the input radiance.

Figure 2.10. Five synthetic images of a sphere, all obtained in an orthographic view
from the same viewing position. These images are shaded using a local shading model
and a distant point source. This is a convex object, so the only view where there is no

visible shadow occurs when the source direction is parallel to the viewing direction. The
variations in brightness occuring under different sources code the shape of the surface.

In these equations, g(z,y) describes the surface and V'; is a property of the
illumination and of the camera. We have a dot-product between a vector field g(z, y)
and a vector V'; which could be measured; with enough of these dot-products, we
could reconstruct g, and so the surface.



36 Sources, Shadows and Shading  Chapter 2

2.5.1 Normal and Albedo from Many Views

Now if we have n sources, for each of which V; is known, we stack each of these V;
into a known matrix )V, where
T
vy
v=| V2

n

For each image point, we stack the measurements into a vector

i(z,y) = {I(z,y), (2, y), ..., In(z, )}

Notice we have one vector per image point; each vector contains all the image
brightnesses observed at that point for different sources. Now we have

’L(x?y) = VQ(x7y)

and g is obtained by solving this linear system — or rather, one linear system per
point in the image. Typically, n > 3 so that a least squares solution is appropriate.
This has the advantage that the residual error in the solution provides a check on
our measurements.

The difficulty with this approach is that substantial regions of the surface may
be in shadow for one or the other light (see figure 2.10). There is a simple trick that
deals with shadows. If there really is no ambient illumination, then we can form a
matrix from the image vector and multiply both sides by this matrix; this will zero
out any equations from points that are in shadow. We form

Li(z,y) 0 0
0 Iz, 0
Iwy=| ° P&V
0 0 e In(z,y)
and
i =IVg(z,vy)

and Z has the effect of zeroing the contributions from shadowed regions, because
the relevant elements of the matrix are zero at points that are in shadow. Again,
there is one linear system per point in the image; at each point, we solve this linear
system to recover the g vector at that point. Figure 2.11 shows the vector field
g(x,y) recovered from the images of figure 2.10.

Measuring Albedo

We can extract the albedo from a measurement of g, because IV is the unit normal.
This means that | g(z,y) |= p(z,y). This provides a check on our measurements
as well. Because the albedo is in the range zero to one, any pixels where | g | is
greater than one are suspect — either the pixel is not working, or V is incorrect.
Figure 2.12 shows albedo recovered using this method for the images of figure 2.10.



Section 2.5. Application: Photometric Stereo 37

Figure 2.11. The vector field g(z,y) recovered from the input data of 2.10, mapped
onto the recovered surface (this just makes the vectors more visible. The vector field is
shown for every 16’th pixel in each direction, to reduce the complexity of the plot and
make the structure clear.

Recovering Normals
We can extract the surface normal from g, because the normal is a unit vector
9(z,y)
N(z,y) = = —+
[g(z,y)|

Figure 2.13 shows normal values recovered for the images of figure 2.10.

2.5.2 Shape from Normals

The surface is (z,y, f(z,y)), so the normal as a function of (z,y) is

9 OFf T
N(z,y) = —812 ~ {—,—,1}
1 6£ BgJ;

To recover the depth map, we need to determine f(z,y) from measured values of
the unit normal.

Assume that the measured value of the unit normal at some point (z,y) is
(a(z,y),b(z,y), c(x,y)). Then we have that

of _alz,y)
ox  c(z,y) oy  c(x,y)
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Figure 2.12. The magnitude of the vector field g(x,y) recovered from the input data
of 2.10 represented as an image — this is the reflectance of the surface.

We have another check on our data set, because

2f  2f

oxdy  Oydx

so that we expect that

a(z, b(z,
o(s4) o()
dy ox
should be small at each point; in principle it should be zero, but we would have
to estimate these partial derivatives numerically, and so should be willing to ac-
cept small values. This test is known as a test of integrability, which in vision
applications always boils down to checking that first partials are equal.

Shape by Integration

Assuming that the partial derivatives pass this sanity test, we can reconstruct the
surface up to some constant depth error. The partial derivative gives the change
in surface height with a small step in either the x or the y direction. This means
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Figure 2.13. The normal field recovered from the surface of figure 2.10.

we can get the surface by summing these changes in height along some path. In

particular, we have that
_ of of

where C is a curve starting at some fixed point and ending at (z,y) and c is a
constant of integration, which represents the (unknown) height of the surface at
the start point. Exercise 7?7 asks you to show that the recovered surface does not
depend on the choice of curve.

For example, we can reconstruct the surface at (u,v) by starting at (0, 0), sum-
ming the y-derivative along the line 2 = 0 to the point (0,v), and then summing
the z-derivative along the line y = v to the point (u,v)

f(u,v)z/o %(07y)dy+/o g—i(az,v)dw—kc

This is the integration path given in algorithm 1. Any other set of paths would
work as well, though it is probably best to use many different paths and average,
so as to spread around the error in the derivative estimates. Figure 2.14 shows the
reconstruction obtained for the data of figure 2.10 and figure 2.11.

Another approach to recovering shape is to choose the function f(z,y) whose
partial derivatives most look like the measured partial derivatives. We explore this
approach for a similar problem in section 3.5.2.
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Obtain many images in a fixed view under different illuminants
Determine the matrix )V from source and camera information

Create arrays for albedo, normal (3 components),
p (measured value of %) and

q (measured value of 55)

For each point in the image array
Stack image values into a vector ¢
Construct the diagonal matrix 7
Solve ZVg =11

to obtain g for this point

albedo at this point is | g |

normal at this point is %

p at this point is %

q at this point is
end

Check: is (B—Z - %)2 small everywhere?

top left corner of height map is zero

for each pixel in the left column of height map
height value=previous height value + corresponding q value
end

for each row
for each element of the row except for leftmost
height value = previous height value + corresponding p value
end
end

Algorithm 2.1: Photometric Stereo

2.6 Interreflections: Global Shading Models

As we indicated above, local shading models can be quite misleading. In the real
world, each surface patch is illuminated not only by sources, but also by other
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Figure 2.14. The height field obtained by integrating this normal field using the method
described in the text.

surface patches. This leads to a variety of complex shading effects, which are still
quite poorly understood. Unfortunately, these effects occur widely, and it is still not
yet known how to simplify interreflection models without losing essential qualitative
properties.

For example, Figure 2.15 shows views of the interior of two rooms. One room
has black walls and contains black objects. The other has white walls, and contains
white objects. Each is illuminated (approximately!) by a distant point source.
Given that the intensity of the source is adjusted appropriately, the local shading
model predicts that these pictures would be indistinguishable. In fact, the black
room has much darker shadows and much more crisp boundaries at the creases of the
polyhedra than the white room. This is because surfaces in the black room reflect
less light onto other surfaces (they are darker) whereas in the white room, other
surfaces are significant sources of radiation. The sections of the camera response to
the radiosity (these are proportional to radiosity for diffuse surfaces) shown in the
figure are hugely different qualitatively. In the black room, the radiosity is constant
in patches as a local shading model would predict, whereas in the white room slow
image gradients are quite common — these occur in concave corners, where object
faces reflect light onto one another.

This effect also explains why a room illuminated by a point light source does
not show the very sharp illumination gradients that a local shading model predicts
(recall section 2.3.1). The walls and floor of the room reflect illumination back, and
this tends to light up the corners, which would otherwise be dark.
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Figure 2.15. The column on the left shows data from a room with matte black walls
and containing a collection of matte black polyhedral objects; that on the right shows
data from a white room containing white objects. The images are qualitatively different,
with darker shadows and crisper boundaries in the black room, and bright reflexes in the
concave corners in the white room. The graphs show sections of the image intensity along
the corresponding lines in the images. data obtained from the paper “Mutual Illumination,”
by D.A. Forsyth and A.P. Zisserman, page 473 in the fervent hope that permission will be
granted

2.6.1 An Interreflection Model

It is quite well understood how to predict the radiosity on a set of diffuse surface
patches. The total radiosity of a patch will be its exitance — which will be zero for
all but sources — plus all the radiosity due to all the other patches it can see:

B(’U,) = E(’Uz) + Bincoming (’U,)

From the point of view of our patch, there is no distinction between energy
leaving another patch due to exitance and that due to reflection. This means we
can take the expression for an area source, and use it to obtain an expression for
Bincoming(u). In particular, from the perspective of our patch, every other patch
in the world that it can see is an area source, with exitance B(v). This means that
we can rework equation 2.5 to get

Bincoming(u) = Pd(u)/ ViSible(’uﬂv)B(’v)Cosoq&*avdA’v (261)
world TGy

pd(u)/ y visible(u, v) K (u, v) B(v)d Ay (2.6.2)
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dA,

Figure 2.16. Terminology for expression derived in the text for the interreflection kernel.

where the terminology is that of Figure 2.16 and

visible(w, v) — 1 if u can see v,
7727 0if w can’t see v

visible(u, v) K (u, v) is usually referred to as the interreflection kernel. This
means that our model is:

B(u) = E(u) + pd(u)/ visible(u, v) K (u, v) B(v)d Ay
world

In particular, the solution appears inside the integral. Equations of this form are
known as Fredholm integral equations of the second kind. This particular equation
is a fairly nasty sample of the type, because the interreflection kernel is generally
not continuous and may have singularities. Solutions of this equation can yield
quite good models of the appearance of diffuse surfaces and the topic supports a
substantial industry in the computer graphics community [].

2.6.2 Solving for Radiosity

We will sketch one approach to solving for radiosity, to illustrate the methods.
Subdivide the world into small, flat patches and approximate the radiosity as being
constant over each patch. This approximation is reasonable, because we could
obtain a very accurate representation by working with small patches. Now we
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Figure 2.17. The model described in the text produces quite accurate qualitative predic-
tions for interreflections. The top figure shows a concave right angled groove, illuminated
by a point source at infinity where the source direction is parallel to the one face. On the
left of the bottom row, a series of predictions of the radiosity for this configuration. These
predictions have been scaled to lie on top of one another; the case p — 0 corresponds to
the local shading model. On the right, an observed image intensity for an image of this
form for a corner made of white paper, showing the roof-like gradient in radiosity associ-
ated with the edge. A local shading model predicts a step. data obtained from the paper
“Mutual Illumination,” by D.A. Forsyth and A.P. Zisserman, page 471 in the fervent hope
that permission will be granted

construct a vector B, which contains the value of the radiosity for each patch. In
particular, the ¢’ th component of B is the radiosity of the i’th patch.

We write the incoming radiosity at the i’th patch due to radiosity on the j’th
patch as Bj_,;:

B i(x) = pd(m)/ visible(x, v) K (x, v)dAy B;
patch j

where x is a coordinate on the i’th patch and v is a coordinate on the j’th patch.
Now this expression is not a constant, and so we must average it over the i’th patch
to get

— 1
B4 / pa(x) / visible(z, v) K (2, v)dApd Az B;
i Jpatch 1 patch j
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where A; is the area of the i’th patch. If we insist that the exitance on each patch
is constant, too, we obtain the model:

B; = Ei+ Z Baverage incoming at ¢ from j

all j
= Ei+ Y KB,
all j
where
1
Kij=— pd(m)/ visible(x, v) K (2, v)dAydAg
A patch i patch j

This is a system of linear equations in B; (although an awfully big one — Kj;
could be a million by a million matrix), and as such can in principle be solved. The
tricks that are necessary to solve the system efficiently, quickly and accurately are
well beyond our scope; Sillion and Puech’s book is an excellent account [?] as is the
book of Cohen [?].

2.6.3 The qualitative effects of interreflections

We should like to be able to extract shape information from radiosity. This is
relatively easy to do with a local model (see section 2.5 for some details), but
the model describes the world poorly, and very little is known about how severely
this affects the resulting shape information. Extracting shape information from
an interreflection model is difficult, for two reasons. Firstly, the relationship —
which is governed by the interreflection kernel — between shape and radiosity is
complicated. Secondly, there are almost always surfaces that are not visible, but
radiate to the objects in view. These so-called “distant surfaces” mean it is hard to
account for all radiation in the scene using an interreflection model, because some
radiators are invisible and we may know little or nothing about them.

All this suggests that understanding qualitative, local effects of interreflection
is important; armed with this understanding, we can either discount the effects of
interreflection or exploit them. This topic remains largely an open research topic,
but there are some things we can say.

Smoothing and Regional Properties

Firstly, interreflections have a characteristic smoothing effect. This is most obvi-
ously seen if one tries to interpret a stained glass window by looking at the pattern
it casts on the floor; this pattern is almost always a set of indistinct coloured blobs.
The effect is seen most easily with the crude model of Figure 6. The geometry con-
sists of a patch with a frontal view of an infinite plane which is a unit distance away
and carries a radiosity sinwz. There is no reason to vary the distance of the patch
from the plane, because interreflection problems have scale invariant solutions —
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Figure 2.18. A small patch views a plane with sinusoidal radiosity of unit amplitude.
This patch will have a (roughly) sinusoidal radiosity due to the effects of the plane. We
refer to the amplitude of this component as the gain of the patch. The graph shows
numerical estimates of the gain for patches at ten equal steps in slant angle, from 0 to
/2, as a function of spatial frequency on the plane. The gain falls extremely fast, meaning
that large terms at high spatial frequencies must be regional effects, rather than the result
of distant radiators. This is why it is hard to determine the pattern in a stained glass
window by looking at the floor at foot of the window.

this means that the solution for a patch two units away can be obtained by reading
our graph at 2w. The patch is small enough that its contribution to the plane’s
radiosity can be ignored. If the patch is slanted by o with respect to the plane,
it carries radiosity that is nearly periodic, with spatial frequency w coso. We refer
to the amplitude of the component at this frequency as the gain of the patch, and
plot the gain in Figure 6. The important property of this graph is that high spatial
frequencies have a difficult time jumping the gap from the plane to the patch. This
means that shading effects that have a high spatial frequency and a high amplitude
generally cannot come from distant surfaces (unless they are abnormally bright).

The extremely fast fall-off in amplitude with spatial frequency of terms due to
distant surfaces means that, if one observes a high amplitude term at a high spatial
frequency, it is very unlikely to have resulted from the effects of distant, passive
radiators (because these effects die away quickly). There is a convention — which
we shall see in section 3.5.2 — that classifies effects in shading as due to reflectance
if they are fast (“edges”) and the dynamic range is relatively low, and due to
illumination otherwise. We can expand this convention. There is a mid range of
spatial frequencies that are largely unaffected by mutual illumination from distant
surfaces, because the gain is small. Spatial frequencies in this range cannot be
“transmitted” by distant passive radiators unless these radiators have improbably
high radiosity. As a result, spatial frequencies in this range can be thought of as
regional properties, which can result only from interreflection effects within a
region.
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Figure 2.19. Reflexes at concave edges are a common qualitative result of interreflec-
tions. The figure on the top shows the situation here; a concave right-angled groove,
illuminated by a point light source at infinity, whose source vector is along the angle bisec-
tor. The graph on the left shows the intensity predictions of an interreflection model for
this configuration; the case p — 0 is a local shading model. The graphs have been lined
up for easy comparison. As the surface’s albedo goes up, a roof like structure appears.
The graph on the right shows an observation of this effect in an image of a real scene.
data obtained from the paper “Mutual Illumination,” by D.A. Forsyth and A.P. Zisserman,
page 472 in the fervent hope that permission will be granted

The most notable regional properties are probably reflexes, small bright patches
that appear mainly in concave regions (illustrated in Figure 2.19 and Figure 2.20).
A second important effect is colour bleeding, where a coloured surface reflects
light onto another coloured surface. This is a common effect that people tend not
to notice unless they are consciously looking for it. It is quite often reproduced by
painters (Figure 2.21).

2.7 Notes

Shading models are handled in a quite unsystematic way in the vision literature.
The point source approximation is widely abused; you should use it with care and
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Figure 2.20. Reflexes occur quite widely; they are usually caused by a favourable view
of a large reflecting surface. In the geometry shown on the left, the shadowed region
of the cylindrical bump sees the plane background at a fairly favourable angle — if the
background is large enough, near half the hemisphere of the patch at the base of the bump
is a view of the plane. This means there will be a reflex with a large value attached to
the edge of the bump, and inside the cast shadow region (which a local model predicts
as black). There is another reflex on the other side, too, as the series of solutions (again,
normalised for easy comparison) in the center show. On the right, an observation of this
effect in a real scene. data obtained from the paper “Mutual Illumination,” by D.A. Forsyth
and A.P. Zisserman, page 473 in the fervent hope that permission will be granted

inspect others’ use of it with suspicion. We believe we are the first to draw the
distinction between (a) the physical effects of sources and (b) the shading model.
Interreflection effects are often ignored, which causes a reflex response of hostility in
one of the authors. If interreflection effects do not change the output of a method
much, then it is probably all right to ignore them. Unfortunately, this line of
reasoning is seldom pursued, because it is quite difficult to show that a method is
stable under interreflections. This means that there is not much knowledge about
the overall properties of interreflected shading other than the spatial frequency
issues discussed above, which is a pity.

There are a variety of variations on photometric stereo. One interesting idea
is to illuminate the surface with three lights of different colours (and in different
positions) and use a colour image. For an appropriate choice of colours, this is
equivalent to obtaining three images, so the measurement process is simplified.

Generally, photometric stereo is used under circumstances where the illumina-
tion is quite easily controlled, so that it is possible to ensure that there is no ambient
illumination in the image. It is relatively simple to insert ambient illumination into
the formulation given above; we extend the matrix V by attaching a column of ones.
In this case, g(z,y) becomes a four dimensional vector, and the fourth component
is the ambient term. However, this approach does not guarantee that the ambient
term is constant over space; instead, we would have to check that this term was
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Figure 2.21. Another form of reflex occurs when colour is reflected from a surface; it is
occasionally reproduced by artists. On the top, “Still Life”, by A. Caproens (reproduced
from Nash, “Plaisirs d’Amour”, p. 95). On the bottom, a detail around the orange. Notice
that the peel is reflecting orange light onto the pith, and creating an orange reflex. This
effect is easily observed in real life, too.

constant, and adjust the model if it is not.

Photometric stereo depends only on adopting a local shading model. This model
need not be a Lambertian surface illuminated by a distant point source. If the
radiosity of the surface is a known function of the surface normal satisfying a small
number of constraints, photometric stereo is still possible. This is because the
intensity of a pixel in a single view determines the normal up to a one parameter
family. This means that two views determine the normal. The simplest example of
this case occurs for a surface of known albedo illuminated by a distant point source.

In fact, if the radiosity of the surface is a k-parameter function of the surface
normal, photometric stereo is still possible. The intensity of the pixel in a single
view determines the normal up to a k+1 parameter family, and k+1 views give the
normal. For this approach to work, the radiosity needs to be given by a function for
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which our arithmetic works — if the radiosity of the surface is a constant function
of the surface normal, it isn’t possible to infer any constraint on the normal from
the radiosity.

2.8

Assignments

2.8.1 Exercises

1.

What shapes can the shadow of a sphere take, if it is cast on a plane, and the
source is a point source?

We have a square area source and a square occluder, both parallel to a plane.
The source is the same size as the occluder, and they are vertically above one
another, with their centers aligned.

e What is the shape of the umbra?
e What is the shape of the outside boundary of the penumbra?

We have a square area source and a square occluder, both parallel to a plane.
The edge length of the source is now twice that of the occluder, and they are
vertically above one another, with their centers aligned.

e What is the shape of the umbra?
e What is the shape of the outside boundary of the penumbra?

We have a square area source and a square occluder, both parallel to a plane.
The edge length of the source is now half that of the occluder, and they are
vertically above one another, with their centers aligned.

e What is the shape of the umbra?
e What is the shape of the outside boundary of the penumbra?

A small sphere casts a shadow on a larger sphere. Describe the possible
shadow boundaries that occur.

Explain why it is difficult to use shadow boundaries to infer shape, particularly
if the shadow is cast onto a curved surface.

An infinitesimal patch views a circular area source of constant exitance frontally
along the axis of symmetry of the source. Compute the radiosity of the patch,
due to the source exitance E(u) as a function of the area of the source and
the distance between the center of the source and the patch. You may have
to look the integral up in tables — if you don’t, you’re entitled to feel pleased
with yourself — but this is one of few cases that can be done in closed form.
It will be easier to look up if you transform it to get rid of the cosine terms.



Section 2.8. Assignments 51

8.

10.

As in Figure 6, a small patch views an infinite plane at unit distance. The
patch is sufficiently small that it reflects a trivial quantity of light onto the
plane. The plane has radiosity B(x,y) = 1+ sinaz. The patch and the plane
are parallel to one another. We will move the patch around parallel to the
plane, and consider its radiosity at various points.

e Show that if one translates the patch, its radiosity varies periodically
with its position in z.

e Fix the patches center at (0,0); determine a closed form expression for
the radiosity of the patch at this point, as a function of a. You'll need a
table of integrals for this.

If one looks across a large bay in the daytime, it is often hard to distinguish
the mountains on the opposite side; near sunset, they are clearly visible. This
phenomenon has to do with scattering of light by air — a large volume of air
is actually a source. Explain what is happening. We have modelled air as a
vacuum, and asserted that no energy is lost along a straight line in a vacuum.
Use your explanation to give an estimate of the kind of scales over which that
model is acceptable.

Read the book “Colour and light in nature”, by Lynch and Livingstone, pub-
lished by Cambridge University Press, 1995.

2.8.2 Programming Assignments

e An area source can be approximated as a grid of point sources. The weakness

of this approximation is that the penumbra contains quantization errors, which
can be quite offensive to the eye.

1. Explain.

2. Render this effect for a square source and a single occluder, casting a
shadow onto an infinite plane. For a fixed geometry, you should find
that as the number of point sources goes up, the quantization error goes
down.

3. This approximation has the unpleasant property that it is possible to pro-
duce arbitrarily large quantization errors with any finite grid, by chang-
ing the geometry. This is because there are configurations of source and
occluder that produce very large penumbrae. Use a square source and a
single occluder casting a shadow onto an infinite plane, to explain this
effect.

e Make a world of black objects and another of white objects (paper, glue and

spraypaint are useful here) and observe the effects of interreflections. Can you
come up with a criterion that reliably tells, from an image which is which?
(if you can, publish it; the problem looks easy, but isn’t).
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o (This exercise requires some knowledge of numerical analysis.) Do the numer-
ical integrals required to reproduce Figure 6. These integrals aren’t particu-
larly easy: if one uses coordinates on the infinite plane, the size of the domain
is a nuisance, and if one converts to coordinates on the view hemispher of the
patch, the frequency of the radiance becomes infinite at the boundary of the
hemisphere. The best way to estimate these integrals is using a Monte Carlo
method on the hemisphere. You should use importance sampling, because the
boundary contributes rather less to the integral than the top.

e Set up and solve the linear equations for an interreflection solution for the
interior of a cube with a small square source in the center of the ceiling.

e Implement a photometric stereo system.

1. How accurate are its measurements (i.e. how well do they compare with
known shape information)? do interreflections affect the accuracy?

2. How repeatable are its measurements (i.e. if you obtain another set
of images, perhaps under different illuminants, and recover shape from
those, how does the new shape compare with the old)?

3. Compare the minimization approach to reconstruction with the integra-
tion approach; which is more accurate, or more repeatable and why?
Does this difference appear in experiment?

4. One possible way to improve the integration approach is to obtain depths
by integrating over many different paths, and then average these depths
(you need to be a little careful about constants here). Does this improve
the accuracy or repeatability of the method?
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COLOUR

Colour is a rich and complex experience, usually caused by the vision system re-
sponding differently to different wavelengths of light (other causes include pressure
on the eyeball and dreams). While the colour of objects seems to be a useful cue in
identifying them, it is currently difficult to use.

We will first describe the physical causes of colour; we then study human colour
perception, which will yield methods for describing colours; finally, we discuss how
to extract information about the colour of the surfaces we are looking at from the
colour of image pixels, which are affected by both surface colour and illuminant
colour.

3.1 The Physics of Colour

We will extend our radiometric vocabulary to describe energy arriving in different
quantities at different wavelengths and then describe typical properties of coloured
surfaces and coloured light sources.

3.1.1 Radiometry for Coloured Lights: Spectral Quantities

All of the physical units we have described can be extended with the phrase “per
unit wavelength” to yield spectral units. These allow us to describe differences in
energy, in BRDF or in albedo with wavelength. We will ignore interactions where
energy changes wavelength; thus, the definitions of Chapter 1 can be extended by
adding the phrase “per unit wavelength,” to obtain what are known as spectral
quantities.

Spectral radiance is usually written as L (z, 0, ¢), and the radiance emitted
in the range of wavelengths [\, A+ d)\] is L*(z, 0, #)d\. Spectral radiance has units
Watts per cubic meter per steradian (Wm™3sr~! — cubic meters because of the
additional factor of the wavelength). For problems where the angular distribution of
the source is unimportant, spectral exitance is the appropriate property; spectral
exitance has units Wm=3.

Similarly, the spectral BRDF is obtained by considering the ratio of the spec-
tral radiance in the outgoing direction to the spectral irradiance in the incident

53
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direction. Because the BRDF is defined by a ratio, the spectral BRDF will again

have units sr—1.

3.1.2 The Colour of Surfaces

The colour of coloured surfaces is a result of a large variety of mechanisms, includ-
ing differential absorbtion at different wavelengths, refraction, diffraction and bulk
scattering (for more details, see, for example []). Usually these effects are bundled
into a macroscopic BRDF model, which is typically a Lambertian plus specular
approximation; the terms are now spectral reflectance (sometimes abbreviated
to reflectance) or (less commonly) spectral albedo. Figures 3.1 and 3.2 show
examples of spectral reflectances for a number of different natural objects.
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Figure 3.1. Spectral albedoes for a variety of natural surfaces, measured by Esa Koivisto,
Department of Physics, University of Kuopio, Finland. On the left, albedoes for a series
of different natural surfaces — a colour name is given for each. On the right, albedoes for
different colours of leaf; again, a colour name is given for each. These figures were plotted
from data available at http://www.it.lut.fi/research/color/lutcs_database.html.

The colour of the light returned to the eye is affected both by the spectral
radiance (colour!) of the illuminant and by the spectral reflectance (colour!) of the
surface. If we use the Lambertian plus specular model, we have:

E(X) = pan(X)S(A) x geometric terms + specular terms

where E()) is the spectral radiosity of the surface, pgn () is the spectral reflectance
and S(A) is the spectral irradiance. The specular terms have different colours de-
pending on the surface — i.e. we now need a spectral specular albedo.

Colour and Specular Reflection

Generally, metal surfaces have a specular component that is wavelength dependent
— a shiny copper penny has a yellowish glint. Surfaces that do not conduct — di-
electric surfaces — have a specular component that is independent of wavelength
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Figure 3.2. Spectral albedoes for a variety of natural surfaces, measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland. On the left, albedoes
for a series of different red flowers. Each is given its Finnish name. On the right, albe-
does for green leaves; again, each is given its Finnish name. You should notice that
these albedoes don’t vary all that much. This is because there are relatively few mecha-
nisms that give rise to colour in plants. These figures were plotted from data available at
http://www.it.lut.fi/research/color/lutcs database.html.

— for example, the specularities on a shiny plastic object are the colour of the light.
Section 3.4 describes how these properties can be used to find specularities, and to
find image regions corresponding to metal or plastic objects.

3.1.3 The Colour of Sources

Building a light source usually involve heating something until it glows. There is
an idealisation of this process, which we study first. We then describe the spectral
power distribution of sunlight, and discuss a number of artificial light sources.

Black Body Radiators

A body that reflects no light — usually called a black body — is the most efficient
radiator of illumination. A heated black body emits electromagnetic radiation. It
is a remarkable fact that the spectral power distribution of this radiation depends
only on the temperature of the body. It is possible to build quite good black bodies
(one obtains a hollow piece of metal and looks into the cavity through a tiny hole
— very little of the light getting into the hole will return to the eye), so that the
spectral power distribution can be measured. In particular, if we write T for the
temperature of the body in Kelvins, h for Planck’s constant, k for Boltzmann’s
constant, ¢ for the speed of light and A for the wavelength, we have that

1 1
EQ) > 35 oaphe/in =1
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This means that there is one parameter family of light colours corresponding to
black body radiators — the parameter being the temperature — and so we can talk
about the colour temperature of a light source. This is the temperature of the
black body that looks most similar.

The Sun and the Sky

The most important natural light source is the sun. The sun is usually modelled as
a distant, bright point. The colour of sunlight varies with time of day (figure 3.3)
and time of year. These effects have been widely studied. Figure 7?7 shows one
standard model of sunlight that is widely used.

25

slightly cloudy, sun behind a cloud

cloudy, gray sky

0.5

cloudless sky, sunset

0 cloudless sky, just before sunset 0 . I
400 450 500 550 600 650 700

Figure 3.3. There are significant variations in the relative spectral power of sun-
light measured at different times of day and under different conditions. The fig-
ure shows a series of seven different sunlight measurements, made by Jussi Parkki-
nen and Pertti Silfsten, of daylight illuminating a sample of barium sulphate
(which gives a very high reflectance white surface). Plot from data obtainable at
http://www.it.lut.fi/research/color/lutcs database.html.

The sky is another important natural light source. A crude geometrical model is
as a hemisphere with constant exitance. The assumption that exitance is constant
is poor, however, because the sky is substantially brighter at the horizon than at
the zenith. The sky is bright because light from the sun is scattered by the air.
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The natural model is to consider air as emitting a constant amount of light per
unit volume; this means that the sky is brighter on the horizon than at the zenith,
because a viewing ray along the horizon passes through more sky.

For clear air, the intensity of radiation scattered by a unit volume depends on
the fourth power of the frequency; this means that light of a long wavelength can
travel very much further before being scattered than light of a short wavelength
(this is known as Rayleigh scattering). This means that, when the sun is high in
the sky, blue light is scattered out of the ray from the sun to the earth — meaning
that the sun looks yellow — and can scatter from the sky into the eye — meaning
that the sky looks blue. There are standard models of the spectral radiance of
the sky at different times of day and latitude, too. Surprising effects occur when
there are fine particles of dust in the sky (the larger particles cause very much more
complex scattering effects, usually modelled rather roughly by the Mie scattering
model []) — one author remembers vivid sunsets in Johannesburg caused by dust
in the air from mine dumps, and there are records of blue and even green moons
caused by volcanic dust in the air.

Artificial lllumination

Typical artificial light sources are commonly of a small number of types.

e An incandescent light contains a metal filament which is heated to a high
temperature. The spectrum roughly follows the black-body law, meaning that
incandescent lights in most practical cases have a reddish tinge (Figure 3.10
shows the locus of colours available from the black-body law at different tem-
peratures).

e Fluorescent lights work by generating high speed electrons that strike gas
within the bulb; this in turn releases ultraviolet radiation, which causes phos-
phors coating the inside of the bulb to fluoresce. Typically the coating consists
of three or four phosphors, which fluoresce in quite narrow ranges of wave-
lengths. Most fluorescent bulbs generate light with a bluish tinge, but bulbs
that mimic natural daylight are increasingly available (figure 3.4).

e In some bulbs, an arc is struck in an atmosphere consisting of gaseous metals
and inert gases. Light is produced by electrons in metal atoms dropping from
an excited state, to a lower energy state. Typical of such lamps is strong radi-
ation at a small number of wavelengths, which correspond to particular state
transitions. The most common cases are sodium arc lamps, and mercury
arc lamps. Sodium arc lamps produce a yellow-orange light extremely effi-
ciently, and are quite commonly used for freeway lighting. Mercury arc lamps
produce a blue-white light, and are often used for security lighting.

Figure 3.4 shows a sample of spectra from different light bulbs.
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Figure 3.4. There is a variety of illuminant models; the graph shows the relative
spectral power distribution of two standard CIE models, illuminant A — which mod-
els the light from a 100W Tungsten filament light bulb, with colour temperature 2800K
— and illuminant D-65 — which models daylight. Figure plotted from data available at
http://www-cvrl.ucsd.edu/index.htm.The relative spectral power distribution of four
different lamps from the Mitsubishi Electric corp, measured by **** data from *****
Note the bright, narrow bands that come from the flourescing phosphors in the fluorescent
lamp.

3.2 Human Colour Perception

To be able to describe colours, we need to know how people respond to them. Hu-
man perception of colour is a complex function of context; illumination, memory,
object identity and emotion can all play a part. The simplest question is to un-
derstand which spectral radiances produce the same response from people under
simple viewing conditions (section 3.2.1). This yields a simple, linear theory of
colour matching which is accurate and extremely useful for describing colours. We
sketch the mechanisms underlying the transduction of colour in section 3.2.2.

3.2.1 Colour Matching

The simplest case of colour perception is obtained when only two colours are in
view, on a black background. In a typical experiment a subject sees a coloured
light — the test light — in one half of a split field. The subject can then adjust
a mixture of lights in the other half to get it to match. The adjustments involve
changing the intensity of some fixed number of primaries in the mixture. In this
form, a large number of lights may be required to obtain a match, but many different
adjustments may yield a match.

Write T for the test light, an equals sign for a match, the weights w; and the
primaries P; (and so are non-negative). A match can then written in an algebraic
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Figure 3.5. Human perception of colour can be studied by asking observers to mix
coloured lights to match a test light, shown in a split field. The drawing shows the outline
of such an experiment. The observer sees a test light 7', and can adjust the amount of
each of three primaries in a mixture that is displayed next to the test light. The observer
is asked to adjust the amounts so that the mixture looks the same as the test light. The
mixture of primaries can be written as w1 P1 + w2 P>+ w3 Ps; if the mixture matches the test
light, then we write T' = w1 P1 + w2 P>+ w3 Ps. It is a remarkable fact that for most people
three primaries are sufficient to achieve a match for many colours, and for all colours if
we allow subtractive matching (i.e. some amount of some of the primaries is mixed with
the test light to achieve a match). Some people will require fewer primaries. Furthermore,
most people will choose the same mixture weights to match a given test light.

form as:
TZ’LU1P1—|—’LU2P2—|—...

meaning that test light 7' matches the particular mixture of primaries given by
(w1, wa, w3). The situation is simplified if subtractive matching is allowed: in
subtractive matching, the viewer can add some amount of some primaries to the
test light instead of to the match. This can be written in algebraic form by allowing
the weights in the expression above to be negative.

Trichromacy

It is a matter of experimental fact that for most observers only three primaries are
required to match a test light. There are some caveats. Firstly, subtractive matching
must be allowed, and secondly, the primaries must be independent — meaning that
no mixture of two of the primaries may match a third. This phenomenon is known as
the the principle of trichromacy. It is often explained by assuming that there are
three distinct types of colour transducer in the eye; recently, evidence has emerged
from genetic studies to support this view [?].

It is a remarkable fact that, given the same primaries and the same test light,
most observers will select the same mixture of primaries to match that test light.
This phenomenon is usually explained by assuming that the three distinct types
of colour transducer are common to most people. Again, there is now some direct
evidence from genetic studies to support this view [?].
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Grassman’s Laws

It is a matter of experimental fact that matching is (to a very accurate approxima-
tion) linear. This yields Grassman’s laws.
Firstly, if we mix two test lights, then mixing the matches will match the result,
that is, if
Ta = walpl + wa2P2 + wa?)P?)

and
Ty = wy1 P1 + wpo Py + wp3 P3

then
To + Ty = (Wa1 + wp1)P1 + (wa2 + we2) P2 + (Wa3 + wp3) Ps

Secondly, if two test lights can be matched with the same set of weights, then
they will match each other, that is, if
Ta Z’LU1P1 —|—’LU2P2—|—’LU3P3
and
sz’wlPl —|—’LU2P2—|—’LU3P3

then
Ta = Tb

Finally, matching is linear: if
Ta Z’LU1P1 —|—’LU2P2—|—’LU3P3
then
kT, = (kw1) Py + (kw2) P2 + (kws)Ps

for non-negative k.

Exceptions

Given the same test light and the same set of primaries, most people will use the
same set of weights to match the test light. This, trichromacy and Grassman’s laws
are about as true as any law covering biological systems can be. The exceptions
include:

e people with aberrant colour systems as a result of genetic ill-fortune (who may
be able to match everything with fewer primaries);

e people with aberrant colour systems as a result of neural ill-fortune (who may
display all sorts of effects, including a complete absence of the sensation of
colour);

e some elderly people (whose choice of weights will differ from the norm, because
of the development of macular pigment in the eye);
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e very bright lights (whose hue and saturation look different from less bright
versions of the same light);

o and very dark conditions (where the mechanism of colour transduction is
somewhat different than in brighter conditions).

3.2.2 Colour Receptors

Trichromacy suggests that there are profound constraints on the way colour is trans-
duced in the eye. One hypothesis that satisfactorily explains this phenomenon is
to assume that there are three distinct types of receptor in the eye that mediate
colour perception. Each of these receptors turns incident light into neural signals.
It is possible to reason about the sensitivity of these receptors from colour matching
experiments. If two test lights that have different spectra look the same, then they
must have the same effect on these receptors.

The Principle of Univariance

The principle of univariance states that the activity of these receptors is of one
kind — i.e. they respond strongly or weakly, but do not, for example, signal the
wavelength of the light falling on them. Experimental evidence can be obtained by
carefully dissecting light sensitive cells and measuring their responses to light at
different wavelengths, or by reasoning backward from colour matches. Univariance
is a powerful idea, because it gives us a good and simple model of human reaction
to coloured light: two lights will match if they produce the same receptor responses,
whatever their spectral radiances.

Because the system of matching is linear, the receptors must be linear. Let us
write py for the response of the k’th receptor, o () for its sensitivity, E()) for the
light arriving at the receptor and A for the range of visible wavelengths. We can
obtain the overall response of a receptor by adding up the response to each separate
wavelength in the incoming spectrum so that

pe = /A k(N E(A)dA

Rods and Cones

Anatomical investigation of the retina shows two types of cell that are sensitive
to light, differentiated by their shape. The light sensitive region of a cone has a
roughly conical shape, whereas that in a rod is roughly cylindrical. Cones largely
dominate colour vision and completely dominate the fovea. Cones are somewhat
less sensitive to light than rods are, meaning that in low light, colour vision is poor
and it is impossible to read (one doesn’t have sufficient spatial precision, because
the fovea isn’t working).

Studies of the genetics of colour vision support the idea that there are three
types of cone, differentiated by their sensitivity (in the large; there is some evidence
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Figure 3.6. There are three types of colour receptor in the human eye, usually called
cones. These receptors respond to all photons in the same way, but in different amounts.
The figure shows the log of the relative spectral sensitivities of the three kinds of colour
receptor in the human eye. The first two receptors —sometimes called the red and green
cones respectively, but more properly named the long and medium wavelength receptors —
have peak sensitivities at quite similar wavelengths. The third receptor has a very different
peak sensitivity. The response of a receptor to incoming light can be obtained by summing
the product of the sensitivity and the spectral radiance of the light, over all wavelengths.
Figures plotted from data available at http://www-cvrl.ucsd.edu/index.htm.

that there are slight differences from person to person within each type). The
sensitivities of the three different kinds of receptor to different wavelengths can
be obtained by comparing colour matching data for normal observers with colour
matching data for observers lacking one type of cone. Sensitivities obtained in this
fashion are shown in Figure 3.6. The three types of cone are properly called S
cones, M cones and L cones (for their peak sensitivity being to short, medium
and long wavelength light respectively). They are occasionally called blue, green
and red cones; this is bad practice, because the sensation of red is definitely not
caused by the stimulation of red cones, etc.
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3.3 Representing Colour

Describing colours accurately is a matter of great commercial importance. Many
products are closely associated with very specific colours — for example, the golden
arches; the colour of various popular computers; the colour of photographic film
boxes — and manufacturers are willing to go to a great deal of trouble to ensure
that different batches have the same colour. This requires a standard system for
talking about colour. Simple names are insufficient, because relatively few people
know many colour names, and most people are willing to associate a large variety
of colours with a given name.

Colour matching data yields simple and and highly effective linear colour spaces
(section 3.3.1). Specific applications may require colour spaces that emphasize
particular properties (section 3.3.2) or uniform colour spaces, which capture the
significance of colour differences (section 3.3.2).

3.3.1 Linear Colour Spaces

There is a natural mechanism for representing colour: first, agree on a standard
set of primaries, and then describe any coloured light by the three values of the
weights that people would use to match the light using those primaries. In principle,
this is easy to use — to describe a colour, we set up and perform the matching
experiment and transmit the match weights. Of course, this approach extends
to give a representation for surface colours as well if we use a standard light for
illuminating the surface (and if the surfaces are equally clean, etc.).

Performing a matching experiment each time we wish to describe a colour can
be practical. For example, this is the technique used by paint stores; you take
in a flake of paint, and they’ll mix paint, adjusting the mixture until a colour
match is obtained. Paint stores do this because complicated scattering effects within
paints mean that predicting the colour of a mixture can be quite difficult. However,
Grassman’s laws mean that mixtures of coloured lights — at least those seen in
a simple display — mix linearly, which means that a much simpler procedure is
available.

Colour Matching Functions

When colours mix linearly, we can construct a simple algorithm to determine which
weights would be used to match a source of some known spectral radiance, given a
fixed set of primaries. The spectral radiance of the source can be thought of as a
weighted sum of single wavelength sources. Because colour matching is linear, the
combination of primaries that matches a weighted sum of single wavelength sources
is obtained by matching the primaries to each of the single wavelength sources, and
then adding up these match weights.

If we have a record of the weight of each primary required to match a single-
wavelength source — a set of colour matching functions — we can obtain the
weights used to match an arbitrary spectral radiance. The colour matching func-



64 Colour  Chapter 3

tions — which we shall write as f1(A\), fo(A) and f3(A\) — can be obtained from
a set of primaries Py, P, and Psby experiment. Essentially, we tune the weight of
each primary to match a unit radiance source at every wavelength. We then obtain
a set of weights, one for each wavelength, for matching a unit radiance source U()).
We can write this process as

UN) = fiA) P+ fo(N) P2+ f3(A)Ps

i.e. at each wavelength A, f1()), f2()\) and f3(\) give the weights required to match
a unit radiance source at that wavelength.

The source — which we shall write S(A\) — is a sum of a vast number of single
wavelength sources, each with a different intensity. We now match the primaries
to each of the single wavelength sources, and then add up these match weights,
obtaining

S(A) = w1 Py +waPs 4+ w3Ps
{/A fl(A)S(A)dA} P+ {/A fz(A)S(A)dA} Py + {/A fs(A)S(A)dA} Py
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Figure 3.7. On the left, colour matching functions for the primaries for the RGB
system. The negative values mean that subtractive matching is required to match
lights at that wavelength with the RGB primaries. On the right, colour matching
functions for the CIE X, Y and Z primaries; the colourmatching functions are every-
where positive, but the primaries are not real. Figures plotted from data available at
http://www-cvrl.ucsd.edu/index.htm.

General Issues for Linear Colour Spaces

Linear colour naming systems can be obtained by specifying primaries — which
imply colour matching functions — or by specifying colour matching functions —
which imply primaries. It is an inconvenient fact of life that, if the primaries are
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real lights, at least one of the colour matching functions will be negative for some
wavelengths. This is not a violation of natural law — it just implies that subtractive
matching is required to match some lights, whatever set of primaries is used. It is
a nuisance though.

One way to avoid this problem is to specify colour matching functions that are
everywhere positive (which guarantees that the primaries are imaginary, because
for some wavelengths their spectral radiance will be negative).

Although this looks like a problem — how would one create a real colour with
imaginary primaries? — it isn’t, because colour naming systems are hardly ever
used that way. Usually, we would simply compare weights to tell whether colours
are similar or not, and for that purpose it is enough to know the colour match-
ing functions. A variety of different systems have been standardised by the CIE
(the commission international d’éclairage, which exists to make standards on such
things).

The CIE XYZ Colour Space

The CIE XYZ colour space is one quite popular standard. The colour matching
functions were chosen to be everywhere positive, so that the coordinates of any real
light are always positive. It is not possible to obtain CIE X, Y, or Z primaries
because for some wavelengths the value of their spectral radiance is negative. How-
ever, given colour matching functions alone, one can specify the XYZ coordinates
of a colour and hence describe it.

Linear colour spaces allow a number of useful graphical constructions which are
more difficult to draw in three-dimensions than in two, so it is common to intersect
the XYZ space with the plane X + Y + Z = 1 (as shown in Figure 3.8) and draw
the resulting figure, using coordinates

X Y

(x’y):(X+Y+Z’X+Y+Z

)

This space is shown in Figure 3.10. CIE xy is widely used in vision and graphics
textbooks and in some applications, but is usually regarded by professional col-
orimetrists as out of date.

The RGB Colour Spaces

Colour spaces are normally invented for practical reasons, and so a wide variety
exist. The RGB colour space is a linear colour space that formally uses single
wavelength primaries (645.16 nm for R, 526.32nm for G and 444.44nm for B — see
Figure 3.7). Informally, RGB uses whatever phosphors a monitor has as primaries.
Available colours are usually represented as a unit cube — usually called the RGB
cube — whose edges represent the R, G, and B weights. The cube is drawn in
figure ?7?7; remember, since the weights are the weights associated with primary
lights, red and green mix to give yellow.
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Figure 3.8. The volume of all visible colours in CIE XYZ coordinate space is a cone
whose vertex is at the origin. Usually, it is easier to suppress the brightness of a colour —
which we can do because to a good approximation perception of colour is linear — and we
do this by intersecting the cone with the plane X +Y 4+ Z = 1 to get the CIE xy space
shown in figure 3.10

CMY and Black

Intuition from one’s finger-painting days suggests that the primary colours should
be red, yellow and blue, and that red and green mix to make yellow. The reason
this intuition doesn’t apply to monitors is that it is about pigments — which mix
subtractively — rather than about lights. Pigments remove colour from incident
light which is reflected from paper. Thus, red ink is really a dye that absorbs green
and blue light — incident red light passes through this dye and is reflected from
the paper.

Colour spaces for this kind of subtractive matching can be quite complicated.
In the simplest case, mixing is linear (or reasonably close to linear) and the CMY
space applies. In this space, there are three primaries: cyan (a blue-green colour);
magenta (a purplish colour) and yellow. These primaries should be thought of as
subtracting a light primary from white light; cyan is W — R (white-red); magenta
is W — G (white-green) and yellow is W — B (white-blue). Now the appearance
of mixtures may be evaluated by reference to the RGB colour space. For example
cyan and magenta mixed give

W-R+W-G)=R+G+B—-R-G=B

that is, blue. Notice that W + W = W because we assume that ink cannot cause
paper to reflect more light than it does when uninked. Practical printing devices
use at least four inks (cyan, magenta, yellow and black), because: mixing colour
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Figure 3.9. The figure shows a constant brightness section of the standard 19** standard
CIE xy colour space. This space has two coordinate axes. The curved boundary of the
figure is often known as the spectral locus — it represents the colours experienced when
lights of a single wavelength are viewed. The figure shows a locus of colours due to black-
body radiators at different temperatures, and a locus of different sky colours. Near the
center of the diagram is the neutral point, the colour whose weights are equal for all three
primaries. CIE selected the primaries so that this light appears achromatic. Generally,
colours that lie further away from the neutral point are more saturated — the difference
between deep red and pale pink — and hue — the difference between green and red — as
one moves around the neutral point. (Taken in the fervent hope of receiving permission
from Lamb and Bourriau, Colour Art and Science, p. 88)

inks leads to a poor black; it is difficult to ensure good enough registration between
the three colour inks to avoid coloured haloes around text; and colour inks tend
to be more expensive than black inks. Getting really good results from a colour
printing process is still difficult: different inks have significantly different spectral
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Figure 3.10. The figure shows a constant brightness section of the standard 19**
standard CIE xy colour space, with colour names marked on the diagram. Generally,
colours that lie further away from the neutral point are more saturated — the difference
between deep red and pale pink — and hue — the difference between green and red — as
one moves around the neutral point. (Taken in the fervent hope of receiving permission
from Lamb and Bourriau, Colour Art and Science, p. 88)

properties; different papers have different spectral properties, too; and inks can mix
non-linearly.

3.3.2 Non-linear Colour Spaces

The coordinates of a colour in a linear space may not necessarily encode properties
that are common in language or are important in applications. Useful colour terms
include: hue — the property of a colour that varies in passing from red to green;
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Figure 3.11. The linear model of the colour system allows a variety of useful construc-
tions. If we have two lights whose CIE coordinates are A and B all the colours that can
be obtained from non-negative mixtures of these lights are represented by the line segment
joining A and B. In turn, given B, C and D, the colours that can by obtained by mixing
them lie in the triangle formed by the three points. This is important in the design of
monitors — each monitor has only three phosphors, and the more saturated the colour
of each phosphor the bigger the set of colours that can be displayed. This also explains
why the same colours can look quite different on different monitors. The curvature of the
spectral locus gives the reason that no set of three real primaries can display all colours
without subtractive matching.

saturation — the property of a colour that varies in passing from red to pink; and
brightness (sometimes called lightness or value) — the property that varies in
passing from black to white. For example, if we are interested in checking whether
a colour lies in a particular range of reds, we might wish to encode the hue of the
colour directly.

Another difficulty with linear colour spaces is that the individual coordinates
do not capture human intuitions about the topology of colours; it is a common
intuition that hues form a circle, in the sense that hue changes from red, through
orange to yellow and then green and from there to cyan, blue, purple and then red
again. Another way to think of this is to think of local hue relations: red is next to
purple and orange; orange is next to red and yellow; yellow is next to orange and
green; green is next to yellow and cyan; cyan is next to green and blue; blue is next
to cyan and purple; and purple is next to blue and red. Each of these local relations
works, and globally they can be modelled by laying hues out in a circle. This means
that no individual coordinate of a linear colour space can model hue, because that
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coordinate has a maximum value which is far away from the minimum value.

Hue, Saturation and Value

A standard method for dealing with this problem is to construct a colour space
that reflects these relations by applying a non-linear transformation to the RGB
space. There are many such spaces. One, called HSV space (for hue, saturation
and value) is obtained by looking down the center axis of the RGB cube. Because
RGB is a linear space, brightness — called value in HSV — varies with scale out
from the origin, and we can “flatten” the RGB cube to get a 2D space of constant
value, and for neatness deform it to be a hexagon. This gets the structure shown
in figure 3.12, where hue is given by an angle that changes as one goes round the
neutral point and saturation changes as one moves away from the neutral point.

Value

Green (120°)

Red (0°)
Blue (240°)

Magenta Saturation

Figure 3.12. On the left, we see the RGB cube; this is the space of all colours that can
be obtained by combining three primaries (R, G, and B — usually defined by the colour
response of a monitor) with weights between zero and one. It is common to view this cube
along its neutral axis — the axis from the origin to the point (1, 1, 1) — to see a hexagon,
shown in the middle. This hexagon codes hue (the property that changes as a colour is
changed from green to red) as an angle, which is intuitively satisfying. On the right, we
see a cone obtained from this cross-section, where the distance along a generator of the
cone gives the value (or brightness) of the colour, angle around the cone gives the hue and
distance out gives the saturation of the colour.

There are a variety of other possible changes of coordinate from between linear
colour spaces, or from linear to non-linear colour spaces (Fairchild’s book [] is a
good reference). There is no obvious advantage to using one set of coordinates over
another (particularly if the difference between coordinate systems is just a one-one
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transformation) unless one is concerned with coding and bit-rates, etc. or with
perceptual uniformity.

Uniform Colour Spaces

Usually, one cannot reproduce colours exactly. This means it is important to know
whether a colour difference would be noticeable to a human viewer; it is generally
useful to be able to compare the significance of small colour differences!.

09r 4 091

Figure 3.13. This figure shows variations in colour matches on a CIE x, y space. At the
center of the ellipse is the colour of a test light; the size of the ellipse represents the scatter
of lights that the human observers tested would match to the test colour; the boundary
shows where the just noticeable difference is. The ellipses in the figure on the left have
been magnified 10x for clarity, and on the right they are plotted to scale. The ellipses
are known as MacAdam ellipses, after their inventor. Notice that the ellipses at the top
are larger than those at the bottom of the figure, and that they rotate as they move up.
This means that the magnitude of the difference in z, y coordinates is a poor guide to the
difference in colour. Ellipses plotted using data from Macadam’s paper of 194*

Just noticeable differences can be obtained by modifying a colour shown to
an observer until they can only just tell it has changed in a comparison with the
original colour. When these differences are plotted on a colour space, they form the
boundary of a region of colours that are indistinguishable from the original colours.
Usually, ellipses are fitted to the just noticeable differences. It turns out that in CIE
xy space these ellipses depend quite strongly on where in the space the difference
occurs, as the Macadam ellipses in Figure 3.13 illustrate.

11t is usually dangerous to try and compare large colour differences; consider trying to answer
the question “is the blue patch more different from the yellow patch than the red patch is from
the green patch?”
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This means that the size of a difference in (x, ) coordinates, given by (Ax)? +
(Ay)?), is a poor indicator of the significance of a difference in colour (if it was a
good indicator, the ellipses representing indistinguishable colours would be circles).
A uniform colour space is one in which the distance in coordinate space is a fair
guide to the significance of the difference between two colours — in such a space, if
the distance in coordinate space was below some threshold, then a human observer
would not be able to tell the colours apart.

Figure 3.14. This figure shows the CIE 1976 u’, v’ space, which is obtained by a
projective transformation of CIE x, y space. The intention is to make the MacAdam
ellipses uniformly circles — this would yield a uniform colour space. A variety of non-
linear transforms can be used to make the space more uniform (see [?] for details)

A more uniform space can be obtained from CIE XYZ by using a projective
transformation to skew the ellipses; this yields the CIE u’v’ space, illustrated in
Figure 3.14. The coordinates are:

4X 9y

rooN
W) = Ty 732 X157 1 32

)

Generally, the distance between coordinates in u’, v’ space is a fair indicator
of the significance of the difference between two colours. Of course, this omits
differences in brightness. CIE LAB is now almost universally the most popular
uniform colour space. Coordinates of a colour in LAB are obtained as a non-linear
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mapping of the XYZ coordinates:
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(here X,,, Y, and Z,, are the X, Y, and Z coordinates of a reference white patch).
The reason to care about the LAB space is that it is substantially uniform. In some
problems, it is important to understand how different two colours will look to a
human observer, and differences in LAB coordinates give a good guide.

3.3.3 Spatial and Temporal Effects

Predicting the appearance of complex displays of colour — i.e. a stimulus that is
more interesting than a pair of lights — is difficult. If the visual system has been
exposed to a particular illuminant for some time, this causes the colour system to
adapt, a process known as chromatic adaptation. Adaptation causes the colour
diagram to skew, in the sense that two observers, adapted to different illuminants,
can report that spectral radiosities with quite different chromaticities have the same
colour. Adaptation can be caused by surface patches in view. Other mechanisms
that are significant are assimilation — where surrounding colours cause the colour
reported for a surface patch to move towards the colour of the surrounding patch
— and contrast — where surrounding colours cause the colour reported for a
surface patch to move away from the colour of the surrounding patch. These effects
appear to be related to coding issues within the optic nerve, and colour constancy
(section 3.5).

3.4 Application: Finding Specularities

Specularities can have quite strong effects on the appearance of an object. Typically,
they appear as small, bright patches, often called highlights. Highlights have a
substantial effect on human perception of a surface properties; the addition of small,
highlight-like patches to a figure makes the object depicted look glossy or shiny.
Specularities are often sufficiently bright to saturate the camera, so that the colour
can be hard to measure. However, because the appearance of a specularity is quite
strongly constrained, there are a number of effective schemes for marking them, and
the results can be used as a shape cue.

The dynamic range of practically available albedoes is relatively small. Surfaces
with very high or very low albedo are difficult to make. Uniform illumination is
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common, too, and most cameras are reasonably close to linear within their operating
range. This means that very bright patches cannot be due to diffuse reflection; they
must be either sources (of one form or another — perhaps a stained glass window
with the light behind it) or specularities [?]. Furthermore, specularities tend to be
small. Thus, looking for small very bright patches can be an effective way of finding
specularities [J.

In colour images, specularities produce quite characteristic effects if they occur
on dielectric materials (those that do not conduct electricity). This link to con-
ductivity occurs because electric fields cannot penetrate conductors (the electrons
inside just move around to cancel the field), so that light striking a metal surface
can be either absorbed or specularly reflected. Dull metal surfaces look dull because
of surface roughness effects and shiny metal surfaces have shiny patches that have a
characteristic colour because the conductor absorbs energy in different amounts at
different wavelengths. However, light striking a dielectric surface can penetrate it.
Many dielectric surfaces can be modelled as a clear matrix with randomly embedded
pigments; this is a particularly good model for plastics and for some paints. In this
model, there are two components of reflection that correspond to our specular and
diffuse notions: body reflection, which comes from light penetrating the matrix,
striking various pigments and then leaving; and surface reflection, which comes
from light specularly reflected from the surface. Assuming the pigment is randomly
distributed (and small, and not on the surface, etc.) and the matrix is reasonable,
we have that the body reflection component will behave like a diffuse component
with a spectral albedo that depends on the pigment and the surface component will
be independent of wavelength.

Assume we are looking at a single object dielectric object with a single colour.
We expect that the interreflection term can be ignored, and our model of camera
pixel brightnesses becomes

p(x) = ga(x)d + gs(x)s

where s is the colour of the source and d is the colour of the diffuse reflected light,
ga(x) is a geometric term that depends on the orientation of the surface and gs(x)
is a term that gives the extent of the specular reflection. If the object is curved,
then gs(@) is small over much of the surface, and large only around specularities;
and g4(x) varies more slowly with the orientation of the surface. We now map
the colours produced by this surface in receptor response space, and look at the
structures that appear there (Figure 3.15).

The term g4(x)d will produce a line that should extend to pass through the
origin, because it represents the same vector of receptor responses multiplied by
a constant that varies over space. If there is a specularity, then we expect to see
a second line, due to gs(x)s. This will not, in general, pass through the origin
(because of the diffuse term). This is a line, rather than a planar region, because
gs(x) is large over only a very small range of surface normals, and we expect that,
because the surface is curved, this corresponds to a small region of surface. The
term gq(x) should be approximately constant in this region. We expect a line,
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Figure 3.15. Assume we have a picture of a single uniformly coloured surface. Our
model of reflected light should lead to a gamut that looks like the drawing. We are
assuming that reflected light consists of the diffuse term plus a specular term, and the
specular term is the colour of the light source. Most points on the surface do not have a
significant specular term, and instead are brighter or darker versions of the same diffuse
surface colour. At some points, the specular term is large, and this leads to a “dog-leg” in
the gamut, caused by adding the diffuse term to the source term. If the diffuse reflection
is very bright, one or another colour channel might saturate (point T); similarly, if the
specular reflection is very bright one or another colour channel might saturate (point “S”).

rather than an isolated pixel value, because we expect surfaces to have (possibly
narrow) specular lobes, meaning that the specular coefficient has a range of values.
This second line may collide with a face of the colour cube and get clipped.

The resulting dog-leg pattern leads pretty much immediately to a specularity
marking algorithm — find the pattern, and then find the specular line. All the
pixels on this line are specular pixels, and the specular and diffuse components can
be estimated easily. For the approach to work effectively, we need to be confident
that only one object is represented in the collection of pixels. This is helped by using
local image windows as illustrated by Figure 3.16. The observations underlying the
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method hold if the surface is not monochrome — a coffee mug with a picture on it,
for example — but finding the resulting structures in the colour space now becomes
something of a nuisance, and to our knowledge has not been demonstrated.

Boundary of
specularity

A

Diffuse
region

\

\ 4

R R

Figure 3.16. The linear clusters produced by specularities on plastic objects can be
found by reasoning about windows of image pixels. In a world of plastic objects on a black
background, a background window produces a region of pixels that are point-like in colour
space — all pixels have the same colour. A window that lies along the body produces
a line-like cluster of points in colour space, because the intensity varies but the colour
does not. At the boundary of a specularity, windows produce plane-like clusters, because
points are a weighted combination of two different colours (the specular and the body
colour). Finally, at interior of a specular region, the windows can produce volume-like
clusters, because the camera saturates, and the extent of the window can include both
the boundary style window points and the saturated points. Whether a region is line-like,
plane-like or volume like can be determined easily by looking at the eigenvalues of the
covariance of the pixels.
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3.5 Surface Colour from Image Colour

The colour of light arriving at a camera is determined by two factors: firstly, the
spectral reflectance of the surface that the light is leaving, and secondly, the spectral
radiance of the light falling on that surface. The colour of the light falling on surfaces
can vary very widely — from blue fluorescent light indoors, to warm orange tungsten
lights, to orange or even red light at sunset — so that the colour of the light arriving
at the camera can be quite a poor representation of the colour of the surfaces being
viewed (figures 3.17, 3.18, 3.19 and 3.20)

It would be attractive to have a colour constancy algorithm that could take an
image, discount the effect of the light, and report the actual colour of the surfaces
being viewed. Colour constancy is an interesting subproblem that has the flavour
of a quite general vision problem: we are determining some parameters of the world
from ambiguous image measurements; we need to use a model to disentangle these
measurements; and we should like to be able to report more than one solution.

3.5.1 Surface Colour Perception in People

There is some form of colour constancy algorithm in the human vision system.
People are often unaware of this, and inexperienced photographers are sometimes
surprised that a scene photographed indoors under fluorescent lights has a blue cast,
while the same scene photographed outdoors may have a warm orange cast.

It is common to distinguish between colour constancy — which is usually thought
of in terms of intensity independent descriptions of colour like hue and saturation
— and lightness constancy, the skill that allows humans to report whether a
surface is white, grey or black (the lightness of the surface) despite changes in the
intensity of illumination (the brightness). Colour constancy is neither perfectly
accurate [], nor unavoidable. Humans can report:

e the colour a surface would have in white light (often called surface colour);

e colour of the light arriving at the eye, a skill that allows artists to paint
surfaces illuminated by coloured lighting [];

e and sometimes, the colour of the light falling on the surface [].

All of these reports could be by-products of a colour constancy process.

The colorimetric theories of Section 3.3 can predict the colour an observer will
perceive when shown an isolated spot of light of a given power spectral distribution.
The human colour constancy algorithm appears to obtain cues from the structure of
complex scenes, meaning that predictions from colorimetric theories can be wildly
inaccurate if the spot of light is part of a larger, complex scene. Edwin Land’s
demonstrations [?] (which are illustrated in Figure 3.21) give convincing examples
of this effect. It is surprisingly difficult to predict what colours a human will see
in a complex scene [?; ?]; this is one of the many difficulties that make it hard to
produce really good colour reproduction systems (section ?7?).
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Figure 3.17. Light sources can have quite widely varying colours. This figure
shows the colour of the four light sources of figure 3.4, compared with the colour of
a uniform spectral power distribution, plotted in CIE z, y coordinates.

Human competence at colour constancy is surprisingly poorly understood. The
main experiments on humans [?; ?; ?] do not explore all circumstances and it is not
known, for example, how robust colour constancy is or the extent to which high-
level cues contribute to colour judgements. Little is known about colour constancy
in other animals — except that goldfish have it [?]. Colour constancy clearly fails
— otherwise there would be no film industry — but the circumstances under which
it fails are not well understood. There is a large body of data on surface lightness
perception for achromatic stimuli. Since the brightness of a surface varies with its
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Figure 3.18. Surfaces have significantly different colours when viewed under dif-
ferent lights. These figures show the colours taken on by the blue flower and the
violet flower of figure 3.1, when viewed under the four different sources of figure 3.4

and under a uniform spectral power distribution.
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Figure 3.19. Surfaces have significantly different colours when viewed under dif-
ferent lights. These figures show the colours taken on by the yellow flower and the
orange flower of figure 3.1, when viewed under the four different sources of figure 3.4
and under a uniform spectral power distribution.
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Figure 3.20. Surfaces have significantly different colours when viewed under dif-
ferent lights. These figures show the colours taken on by the white petal figure 3.1
and one of the leaves of figure 3.2, when viewed under the four different sources of
figure 3.4 and under a uniform spectral power distribution.

orientation as well as with the intensity of the illuminant, one would expect that
human lightness constancy would be poor: it is in fact extremely good over a wide
range of illuminant variation [?].

3.5.2 Inferring Lightness

There is a lot of evidence that human lightness constancy involves two processes:
one compares the brightness of various image patches, and uses this comparison to
determine which patches are lighter and which darker; the second establishes some
form of absolute standard to which these comparisons can be referred (e.g. [?]). We
will describe lightness algorithms first, because they tend to be simpler than colour
constancy algorithms.

A Simple Model of Image Brightness

The radiance arriving at a pixel depends on the illumination of the surface being
viewed, its BRDF, its configuration with respect to the source and the camera
responses. The situation is considerably simplified by assuming that the scene is
plane and frontal; that surfaces are Lambertian; and that the camera responds
linearly to radiance.

This yields a model of the camera response C' at a point X as the product of an
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Figure 3.21. Land showed an audience a quilt of rectangles of flat coloured papers - since
known as a Mondrian, for a purported resemblance to the work of that artist - illuminated
using three slide projectors, casting red, green and blue light respectively. He used a
photometer to measure the energy leaving a particular spot in three different channels,
corresponding to the three classes of receptor in the eye. He recorded the measurement,
and asked the audience to name the patch - say the answer was “red”. Land then adjusted
the slide projectors so that some other patch reflected light that gave the same photometer
measurements, and asked the audience to name that patch. The reply would describe the
patch’s colour in white light - if the patch looked blue in white light, the answer would be
“blue”. In later versions of this demonstration, Land put wedge-shaped neutral density
filters into the slide-projectors, so that the colour of the light illuminating the quilt of
papers would vary slowly across the quilt. Again, although the photometer readings vary
significantly from one end of a patch to another, the audience sees the patch as having a
constant colour.

illumination term, an albedo term and a constant that comes from the camera gain
C(z) = kel (z)p(x)
If we take logarithms, we get
log C(x) = log k. + logI(x) + log p(x)
A second set of assumptions comes into play here.

e Firstly, we assume that albedoes change only quickly over space — this means
that a typical set of albedoes will look like a collage of papers of different
greys. This assumption is quite easily justified: firstly, there are relatively
few continuous changes of albedo in the world (the best example occurs in
ripening fruit); and secondly, changes of albedo often occur when one object
occludes another (so we would expect the change to be fast). This means that
spatial derivatives of the term logp(x) are either zero (where the albedo is
constant) or large (at a change of albedo).

e Secondly, illumination changes only slowly over space. This assumption is
somewhat realistic: for example, the illumination due to a point source will



82 Colour  Chapter 3

change relatively slowly unless the source is very close — so the sun is a source
that is particularly good for this example; as another example, illumination
inside rooms tends to change very slowly, because the white walls of the room
act as area sources. This assumption fails dramatically at shadow boundaries
however; we will have to see these as a special case, and assume that either
there are no shadow boundaries, or that we know where they are.

Recovering Lightness from the Model

It is relatively easy to build algorithms that use our model. The earliest algorithm,
Land’s Retinex algorithm [?], has fallen into disuse. A natural approach is to
differentiate the log transform, throw away small gradients, and then “integrate”
the results [?]. There is a constant of integration missing, so lightness ratios are
available, but absolute lightness measurements are not. Figure 3.22 illustrates the
process for a one-dimensional example, where differentiation and integration are
easy.

This approach can be extended to two dimensions as well. Differentiating and
thresholding is easy: at each point, we estimate the magnitude of the gradient, and
if the magnitude is less than some threshold, we set the gradient vector to zero,
else we leave it alone. The difficulty is in integrating these gradients to get the
log albedo map. The thresholded gradients may not be the gradients of an image,
because the mixed second partials may not be equal (integrability again; compare
with section 2.5.2).

The problem can be rephrased as a minimization problem: choose the log albedo
map whose gradient is most like the thresholded gradient. This is a relatively simple
problem, because computing the gradient of an image is a linear operation. The
z-component of the thresholded gradient is scanned into a vector p and the y-
component is scanned into a vector q. We write the vector representing log-albedo
as I. Now the process of forming the x derivative is linear, and so there is some
matrix M, such that Ml is the = derivative; for the y derivative, we write the
corresponding matrix M,,.

The problem becomes to find the vector I that minimizes

| Mol =p [P + [ Myl —q?

This is a quadratic minimisation problem, and the answer can be found by a linear
process. Some special tricks are required, because adding a constant vector to I
cannot change the derivatives, so the problem does not have a unique solution. We
explore the minimisation problem in the exercises.

The constant of integration needs to be obtained from some other assumption.
There are two obvious possibilities:

e we can assume that the brightest patch is white;
e we can assume that the average lightness is constant.

We explore the consequences of these models in the exercises.
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Figure 3.22. The lightness algorithm is easiest to illustrate for a 1D image. In the
top row, the graph on the left shows log p(z); that on the center log I(z) and that on the
right their sum which is log C'. The log of image intensity has large derivatives at changes
in surface reflectance and small derivatives when the only change is due to illumination
gradients. Lightness is recovered by differentiating the log intensity, thresholding to dispose
of small derivatives, and then integrating, at the cost of a missing constant of integration.

3.5.3 A Model for Image Colour

To build a colour constancy algorithm, we need a model to interpret the colour of
pixels. By suppressing details in the physical models of Chapters 7?7 and above, we
can model the value at a pixel as:
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Form the gradient of the log of the image

At each pixel, if the gradient magnitude is below
a threshold, replace that gradient with zero

Reconstruct the log-albedo by solving the minimization
problem described in the text

Obtain a constant of integration

Add the constant to the log-albedo, and exponentiate

Algorithm 3.1: Determining the Lightness of Image Patches

In this model

e d(x) is the image colour of an equivalent flat frontal surface viewed under the
same light;

e g4(x) is a term that varies over space and accounts for the change in brightness
due to the orientation of the surface;

e s(x) is the image colour of the specular reflection from an equivalent flat
frontal surface;

e gs(x) is a term that varies over space and accounts for the change in the
amount of energy specularly reflected;

e and é(x) is a term that accounts for coloured interreflections, spatial changes
in illumination, and the like.

We are primarily interested in information that can be extracted from colour at
a local level, and so we are ignoring the detailed structure of the terms g4(x) and
i(x). Nothing is known about how to extract information from #(x); all evidence
suggests that this is very difficult. The term can sometimes be quite small with
respect to other terms and usually changes quite slowly over space. We shall ignore
this term, and so must assume that it is small (or that its presence does not disrupt
our algorithms too severely).

Specularities are small and bright, and can be found using these properties
(section 3.4). In principle, we could use the methods of that section to generate
new images without specularities. This brings us to the term gq(x)d(x) in the
model above. Assume that g4(x) is a constant, so we are viewing a flat, frontal
surface.
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Figure 3.23. If a patch of perfectly diffuse surface with diffuse spectral reflectance p(\)
is illuminated by a light whose spectrum is E()), the spectrum of the reflected light will
be p(A)E(A\) (multiplied by some constant to do with surface orientation, which we have
already decided to ignore). Thus, if a photoreceptor of the k’th type sees this surface
patch, its response will be: pr = || A T&(A)p(A)E(X)dA where A is the range of all relevant
wavelengths and o () is the sensitivity of the k’th photoreceptor.

The resulting term, d(x), models the world as a collage of flat, frontal diffuse
coloured surfaces. We shall assume that there is a single illuminant that has a
constant colour over the whole image. This term is a conglomeration of illuminant,
receptor and reflectance information. It is impossible to disentangle completely in
a realistic world. However, current algorithms can make quite usable estimates of
surface colour from image colours, given a well populated world of coloured surfaces
and a reasonable illuminant.

Finite-Dimensional Linear Models

The term d(x) is results from interactions between the spectral irradiance of the
source, the spectral albedo of the surfaces, and the camera sensitivity. We need a
model to account for these interactions. If a patch of perfectly diffuse surface with
diffuse spectral reflectance p(A) is illuminated by a light whose spectrum is E()),
the spectrum of the reflected light will be p(A)E(A) (multiplied by some constant
to do with surface orientation, which we have already decided to ignore).

Thus, if a photoreceptor of the k’th type sees this surface patch, its response
will be:

pe = /A ok (VPN E(A)dA

where A is the range of all relevant wavelengths and o () is the sensitivity of the
k’th photoreceptor (figure 3.23).
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This response is linear in the surface reflectance and linear in the illumination,
which suggests using linear models for the families of possible surface reflectances
and illuminants. A finite-dimensional linear model models surface spectral
albedoes and illuminant spectral irradiance as a weighted sum of a finite number of
basis functions. We need not use the same bases for reflectances and for illuminants.

If a finite-dimensional linear model of surface reflectance is a reasonable descrip-
tion of the world, any surface reflectance can be written as

p(\) = Z rii(N)

where the ¢;(X) are the basis functions for the model of reflectance, and the r; vary
from surface to surface.

Similarly, if a finite-dimensional linear model of the illuminant is a reasonable
model, any illuminant can be written as

m

E(\) =) ei()

=1

where the 1);(\) are the basis functions for the model of illumination.
When both models apply, the response of a receptor of the k’th type is:

pr = / or(N) ergbj(x) (Zw&m) dX

=1
= 3 e ([ams0mm) ar
i=1,j=1
= Z €iTj9ijk
i=1,j=1

where we expect that the g;jx = [ 0% (\)d;(A)1;(A)dX are known, as they are compo-
nents of the world model (they can be learned from observations; see the exercises).

3.5.4 Surface Colour from Finite Dimensional Linear Models

Each of the indexed terms can be interpreted as components of a vector, and we shall
use the notation p for the vector with k’th component pg, etc. We could represent
surface colour either directly by the vector of coefficients r, or more indirectly by
computing r and then determining what the surfaces would look like under white
light. The latter representation is more useful in practice; among other things, the
results are easy to interpret.
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Normalizing Average Reflectance

Assume that the spatial average of reflectance in all scenes is constant and is known
(for example, we might assume that all scenes have a spatial average of reflectance
that is dull grey). In the finite-dimensional basis for reflectance we can write this
average as

Zwm

Now if the average reflectance is constant, the average of the receptor responses must
be constant too (the imaging process is linear), and the average of the response of
the £’'th receptor can be written as:

m,n
Pk = E €i9ijkTj
i=1,j=1

If p is the vector with k’th component 7, (using the notation above) and A is
the matrix with k,7’th component

n
E TiGijk
j=1
then we can write the above expression as:

p=Ae

For reasonable choices of receptors, the matrix A will have full rank, meaning
that we can determine e, which gives the illumination, if the finite dimensional
linear model for illumination has the same dimension as the number of receptors.
Of course, once the illumination is known, we can report the surface reflectance at
each pixel, or correct the image to look as though it were taken under white light.

The underlying assumption that average reflectance is a known constant is dan-
gerous, however, because it is usually not even close to being true. For example, if
we assume that the average reflectance is a medium gray (a popular choice - see,
for example, [?; ?]), an image of a leafy forest glade will be reported as a collection
of objects of various grays illuminated by green light. One way to try and avoid
this problem is to change the average for different kinds of scenes [?] - but how do
we decide what average to use? Another approach is to compute an average that is
not a pure spatial average; one might, for example, average the colours that were
represented by ten or more pixels, but without weighting them by the number of
pixels present. It is hard to say in practice how well this approach could work; there
is no experimental data in the literature.

Normalizing the Gamut

Not every possible pixel value can be obtained by taking images of real surfaces
under white light. It is usually impossible to obtain values where one channel
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Compute the average colour p for the image
Compute e from p = Ae

To obtain a version of the image under white light, ev:
Now for each pixel, compute r from p; = Zz’:l j=1 1% NeiGijkTj

Replace the pixel value with p}’ = Zz‘:l,j:l m, ne’ ik

Algorithm 3.2: Colour Constancy from Known Average Reflectance

responds strongly and others do not - for example, 255 in the red channel and 0 in
the green and blue channels. This means that the gamut of an image - the collection
of all pixel values - contains information about the light source. For example, if one
observes a pixel that has value (255,0,0), then the light source is likely to be red
in colour.

If an image gamut contains two pixel values, say p; and p,, then it must be
possible to take an image under the same illuminant that contains the value tp; +
(1 —t)py for 0 <t <1 (because we could mix the colorants on the surfaces). This
means that the convex hull of the image gamut contains the illuminant information.
These constraints can be exploited to constrain the colour of the illuminant.

Write G for the convex hull of the gamut of the given image, W for the convex
hull of the gamut of an image of many different surfaces under white light, and Me
for the map that takes an image seen under illuminant e to an image seen under
white light. Then the only illuminants we need to consider are those such that
Me(G) € W. This is most helpful if the family Me has a reasonable structure;
one natural example is to assume that changes in one illuminant parameter affect
only the response of a single receptor. In turn, this means that elements of Me are
diagonal matrices.

In the case of finite dimensional linear models, Me depends linearly on e, so
that the family of illuminants that satisfy the constraint is also convex. This family
can be constructed by intersecting a set of convex hulls, each corresponding to the
family of maps that takes a hull vertex of G to some point inside W (or we could
write a long series of linear constraints on e).

Once we have formed this family, it remains to find an appropriate illuminant.
There are a variety of possible strategies: if something is known about the likeli-
hood of encountering particular illuminants, then one might choose the most likely;
assuming that most pictures contain many different coloured surfaces leads to the
choice of illuminant that makes the restored gamut the largest (which is the ap-
proach that generated the results of figure ??); or one might use other constraints
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Obtain the gamut W of many images of
many different coloured surfaces under white
light (this is the convex
hull of all image pixel values)

Obtain the gamut G of the image (this is the convex
hull of all image pixel values)

Obtain every element of the family of illuminant maps Me
such that MeG e W
this represents all possible illuminants

Choose some element of this family, and apply
it to every pixel in the image

Algorithm 3.3: Colour Constancy by Gamut Mapping

on illuminants - for example, all the illuminants must have non-negative energy at
all wavelengths - to constrain the set even further [?].

3.6 Notes

The use of colour in computer vision is surprisingly primitive. One difficulty is
some legitimate uncertainty about what it is good for. John Mollon’s remark that
the primate colour system could be seen as an innovation of some kinds of fruiting
tree [] is one explanation, but it is not much help.

3.6.1 Trichromacy and Colour Spaces

Up until quite recently, there was no conclusive explanation of why trichromacy
applied, although it was generally believed to be due to the presence of three dif-
ferent types of colour receptor in the eye. Work on the genetics of photoreceptors
by Nathans et al. can be interpreted as confirming this hunch (see []), though a
full explanation is still far from clear because this work can also be interpreted as
suggesting many individuals have more than three types of photoreceptor [].

There is an astonishing number of colour spaces and colour appearance models
available. We discourage the practice of publishing papers that compare colour
spaces for, say, segmentation, because the spaces are within one-one transformations
of one another. The important issue is not in what coordinate system one measures
colour, but how one counts the difference — so colour metrics may still bear some
thought.
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Colour metrics are an old topic; usually, one fits a metric tensor to MacAdam el-
lipses. The difficulty with this approach is that a metric tensor carries the strong im-
plication that you can measure differences over large ranges by integration, whereas
it is very hard to see large range colour comparisons as meaningful. Another con-
cern is that the weight observers place on a difference in a Maxwellian view and the
semantic significance of a difference in image colours are two very different things.

3.6.2 Lightness and Colour Constancy

There has not been much recent study of lightness constancy algorithms. The basic
idea is due to Land []; his work was formalised for the computer vision community
by Horn [|; and a variation on Horn’s algorithm was constructed by Blake [?]. The
techniques are not as widely used as they should be, particularly given that there
is some evidence they produce useful information on real images [?]. Classifying
illumination vs albedo simply by looking at the magnitude of the gradient is crude,
and ignores at least one important cue (very large changes must be illumination,
however fast they occur); there is significant room for improvement.

The most significant case in colour constancy occurs when there are three classes
of photoreceptor; others have been studied [?; ?; ?; ?; ?], but this is mainly an excuse
to do linear algebra.

Finite-dimensional linear models for spectral reflectances can be supported by
an appeal to surface physics, as spectral absorbtion lines are thickened by solid state
effects. The main experimental justifications for finite-dimensional linear models of
surface reflectance are Cohen’s [?] measurements of the surface reflectance of a se-
lection of standard reference surfaces known as Munsell chips, and Krinov’s [?]
measurements of a selection of natural objects. Cohen [?] performed a principal
axis decomposition of his data, to obtain a set of basis functions, and Maloney [?]
fitted weighted sums of these functions to Krinov’s date to get good fits with pat-
terned deviations. The first three principal axes explained in each case a very high
percentage of the sample variance (near 99 % ), and hence a linear combination of
these functions fitted all the sampled functions rather well. More recently, Maloney
[?] fitted Cohen’s basis vectors to a large set of data, including Krinov’s data, and
further data on the surface reflectances of Munsell chips, and concluded that the
dimension of an accurate model of surface reflectance was of the order of five or six.

On surfaces like plastics, the specular component of the reflected light is the
same colour as the illuminant. If we can identify specular regions from such objects
in the image, the colour of the illuminant is known. This idea has been popular
for a long time?. Recent versions of this idea appear in, for example, [?; ?; ?;
?].

There is surprisingly little work on colour constancy that unifies a study of the
spatial variation in illumination with solutions for surface colour, which is why we
were reduced to ignoring a number of terms in our colour model. There is substantial

2Judd [?] writing in 1960 about early German work in surface colour perception refers to it as
“a more usual view”.
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room for research here, too.

3.6.3 Colour in Recognition

As future chapters will show, it is quite tricky to build systems that use object
colour to help in recognition. A variety of effects cause image colours to be poor
measurements of surface colour. Uniform colour spaces offer some help here, if
we are willing to swallow a fairly loose evolutionary argument: it is worth under-
standing the colour differences that humans recognise, because they are adapted to
measurements that are useful.

3.7 Assignments

Exercises

1. Sit down with a friend and a packet of coloured papers, and compare the
colour names that you use. You will need a large packet of papers — one can
very often get collections of coloured swatches for paint, or for the Pantone
colour system very cheaply. The best names to try are basic colour names
— the terms red, pink, orange, yellow, green, blue, purple, brown, white,
gray and black, which (with a small number of other terms) have remarkable
canonical properties that apply widely across different languages [?; ?; ?]. You
will find it surprisingly easy to disagree on which colours should be called blue
and which green, for example.

2. Derive the equations for transforming from RGB to CIE XYZ, and back. This
is a linear transformation. It is sufficient to write out the expressions for the
elements of the linear transformation — you don’t have to look up the actual
numerical values of the colour matching functions.

3. Linear colour spaces are obtained by choosing primaries and then constructing
colourmatching functions for those primaries. Show that there is a linear
transformation that takes the coordinates of a colour in one linear colour
space to those in another; the easiest way to do this is to write out the
transformation in terms of the colourmatching functions.

4. Exercise 3 means that, in setting up a linear colour space, it is possible to
choose primaries arbitrarily, but there are constraints on the choice of colour
matching functions. Why? What are these constraints?

5. Two surfaces that have the same colour under one light and different colours
under another are often referred to as metamers. An optimal colour is a
spectral reflectance or radiance that has value 0 at some wavelengths and 1
at others. Though optimal colours don’t occur in practice, they are a useful
device (due to Ostwald) for explaining various effects.

e use optimal colours to explain how metamerism occurs.
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e given a particular spectral albedo, show that there are an infinite number
of metameric spectral albedoes.

e use optimal colours to construct an example of surfaces that look very
different under one light (say, red and green) and the same under another.

e use optimal colours to construct an example of surfaces that swop ap-
parent colour when the light is changed (i.e. surface one looks red and
surface two looks green under light one, and surface one looks green and
surface two looks red under light two).

6. You have to map the gamut for a printer to that of a monitor. There are
colours in each gamut that do not appear in the other. Given a monitor
colour that can’t be reproduced exactly, you could choose the printer colour
that is closest. Why is this a bad idea for reproducing images? Would it work
for reproducing “business graphics” (bar charts, pie charts, and the like which
all consist of many differernt large blocks of a single colour)?

7. Volume colour is a phenomenon associated with translucent materials that
are coloured — the most attractive example is a glass of wine. The colouring
comes from different absorption coeflicients at different wavelengths. Explain
(1) why a small glass of sufficiently deeply coloured red wine (a good Cahors,
or Gigondas) looks black (2) why a big glass of lightly coloured red wine also
looks black. Experimental work is optional.

8. (This exercise requires some knowledge of numerical analysis). In section 3.5.2,
we set up the problem of recovering the log-albedo for a set of surfaces as one
of minimizing

| Mol —p [P+ Myl —q|?
where M, forms the = derivative of I and M, forms the y derivative (i.e.
Ml is the z-derivative).

o We asserted that M, and M, existed. Use the expression for forward
differences (or central differences, or any other difference approximation
to the derivative) to form these matrices. Almost every element is zero.

e The minimisation problem can be written in the form
choose 1 to minimize (Al + b)” (Al + b)

Determine the values of A and b, and show how to solve this general
problem. You will need to keep in mind that A does not have full rank,
so you can’t go inverting it.

9. In section 3.5.2, we mentioned two assumptions that would yield a constant
of integration.

e Show how to use these assumptions to recover an albedo map.



Section 3.7. Assignments 93

10.

e For each assumption, describe a situation where it fails, and describe the
nature of the failure. Your examples should work for cases where there
are many different albedoes in view.

Read the book “ Colour: Art and Science”, by Lamb and Bourriau, Cambridge
University Press, 1995.

Programming Assignments

1.

Spectra for illuminants and for surfaces are available on the web (for example
http:whereisit?). Fit a finite-dimensional linear model to a set of illumi-
nants and surface reflectances using principal components analysis, render the
resulting models, and compare your rendering with an exact rendering. Where
do you get the most significant errors? why?

. Print a coloured image on a colour inkjet printer using different papers and

compare the result. It is particularly informative to (a) ensure that the driver
knows what paper the printer will be printing on, and compare the variations
in colours (which are ideally imperceptible) and (b) deceive the driver about
what paper it is printing on (i.e. print on plain paper and tell the driver it
is printing on photographic paper). Can you explain the variations you see?
Why is photographic paper glossy?

Fitting a finite-dimensional linear model to illuminants and reflectances sep-
arately is somewhat ill-advised, because there is no guarantee that the in-
teractions will be represented well (they’re not accounted for in the fitting
error). It turns out that one can obtain g;;x by a fitting process that sidesteps
the use of basis functions. Implement this procedure (which is described in
detail in [?]), and compare the results with those obtained from the previous
assignment,.

Build a colour constancy algorithm that uses the assumption that the spatial
average of reflectance is constant. Use finite-dimensional linear models. You
can get values of g;;; from your solution to exercise 3.

We ignore colour interreflections in our surface colour model. Do an exper-
iment to get some idea of the size of colour shifts possible from colour in-
terreflections (which are astonishingly big). Humans very seldom interpret
colour interreflections as surface colour — speculate as to why this might be
the case, using the discussion of the lightness algorithm as a guide.

Build a specularity finder along the lines described in section 3.4.
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Part 11

IMAGE MODELS






Chapter 4

GEOMETRIC IMAGE
FEATURES

What is the image of a given geometric figure, for example a line, a plane, a sphere,
or a general smooth surface? Answering this question is of course important if we
are to interpret pictures of our three-dimensional world. As shown analytically in
the Chapter 5, answering it is also easy for linear features such as points and lines:
indeed, under perspective projection, points map onto points, and lines project (in
general) onto lines. Geometrically, this is also obvious for points, and the image of
a line is simply the intersection of the retina with the plane that contains this line
and the pinhole (Figure 4.1(a)). In truth, things degenerate a bit for exceptional
views: when a line passes through the pinhole, its image is reduced to a point
(Figure 4.1(b)). Likewise, the image of a surface patch covers in general a finite
area of the image plane, but the projection of a plane passing through the pinhole
is reduced to a line. Still, almost any small perturbation of the viewpoint restores
the usual projection pattern.

By the same argument, general viewpoint assumptions allow us to infer three-
dimensional scene information from a single image: in particular, Figure 4.1(b)
shows that two points that appear to coincide in the image usually also coincide in
space since the set of pinhole positions aligned with two distinct points has a zero
volume in the three-dimensional set of possible viewpoints.

More generally, the edges and vertices of a polyhedral solid project onto line
segments and points of the image plane. A subset of these segments forms a polygon
that bounds the image of the solid, corresponding to surface edges adjacent to faces
whose normals point into opposite directions relative to the observer (Figure 4.2(a)).
To assert stronger image properties requires additional hypotheses: for example,
assuming a general viewpoint and a trihedral world, where all polyhedral vertices
are formed by the intersection of exactly three planar faces, it is possible to show
that the image edges joining at a vertex may only be arranged in four qualitatively
distinct configurations, the so-called arrow, fork, L- and T-junctions (Figure 4.2(b)).

Using these junctions to construct three-dimensional interpretations of line-
drawings is a time-honored artificial intelligence exercise that had its hayday in

96
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(a) (b)

Figure 4.1. Point and line projections: (a) general case: the grey triangle represents the
plane defined by the line A and the pinhole O; (b) degenerate case: the line supporting the
segment P(Q and passing through O projects onto the point P’, and the plane II passing
through O projects onto the line A’.

Arrow:  Fork:

(a) (b)

Figure 4.2. The images of polyhedral solids: (a) polygonal edges of the image of a
polyhedron; (b) the image of a trihedral object and the corresponding junctions. Note
that the solid shown in (a) is not trihedral, and the image junction corresponding to its
top vertex is neither an arrow nor a fork, an L- or a T-junction.

the early seventies but has fallen out of favor because of the great difficulty in con-
structing a program that reliably extracts flawless line-drawings from images. This
merely suggests that a purely bottom-up approach to image understanding may
fail, but should not detract from the fundamental importance of understanding
how lines, points and other simple geometric objects project into images.

What about more complex figures? It is easy to show that any (planar or
twisted) curve that can be defined by polynomial equations (e.g., a conic section,
which is defined by a quadratic equation) also projects onto a curve defined by
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polynomial equations. The case of curved surfaces is more interesting: consider for
example a solid bounded by a smooth surface with a smooth reflectance function,
observed by a perspective camera under a smooth illumination pattern. Ignoring
shadows (e.g., considering a single point light source and a camera co-located far
from the scene), the image is also smooth, except perhaps along occlusion bound-
aries, where the object surface turns away from the camera, and two points that
project on opposite sides of these boundaries belong to spatially separate parts of
the surface.

Intuitively, it is clear that occlusion boundaries form a set of image curves, called
the outline, silhouette, or contour of the object (Figure 4.3(a)). As in the case of
spheres discussed in Chapter 7?7, these curves are formed by intersecting the retina
with viewing cones (or cylinders in the case of orthographic projection) whose apex
coincides with the pinhole and whose surface grazes the object along a second set
of curves, called the occluding contour, or rim.

Viewing A A

Cone

(b)

Figure 4.3. The images of solids bounded by smooth surfaces: (a) the occluding
boundaries of a smooth surface; (b) contour components: folds, cusps, and T-junctions.
Reprinted from [?], Figure 3.

This intuition can be made mathematically precise. In particular, it can be
shown that the occluding contour is in general a smooth curve, formed by fold points,
where the viewing ray is tangent to the surface, and a discrete set of cusp points
where the ray is tangent to the occluding contour as well. The image contour is
piecewise smooth, and its only singularities are a discrete set of cusps, formed by the
projection of cusp points, and T-junctions, formed by the transversal superposition
of pairs of fold points (Figure 4.3(b)). The intuitive meaning of these exotic terms
should be pretty clear: a fold is a point where the surface folds away from its viewer,
and a contour cusps at a point where it suddenly decides to turn back, following a
different path along the same tangent (this is for transparent objects only: contours
of opaque objects terminate at cusps, see Figure 4.3(b)). Likewise, two smooth
pieces of contour cross at a T-junction (unless the object is opaque and one of the
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branches terminates at the junction).

Interestingly, attached shadows are delineated by the occluding contours asso-
ciated with the light sources, and cast shadows are bounded by the corresponding
object outlines (Figure 4.4). Thus we also know what they look like. (Caveat: the
objects onto which shadows are cast may themselves have curved surfaces, which
complicates things a great deal. However, the boundaries of attached shadows are
really just occluding contours. Of course, light sources are rarely punctual, and this
adds further difficulties..)

(a)

Figure 4.4. (a) Shadow boundaries and occluding contours. Reprinted from [?], Figure
157. (b) The actress Barbara Steele and the cast and attached shadows of her face.
Reprinted from [?], p. 33.

It should not come as a surprise that the notion of occluding boundaries car-
ries over to the polyhedral world: the image contour of a polyhedron is exactly
the polygon bounding its image, and its occluding contour is formed by the edges
separating faces that point in opposite directions relative to the observer (these
are drawn as thicker line segments in Figure 4.2(a)). The image contour of a solid
shape constrains it to lie within the associated viewing cone but does not reveal the
depth of its occluding contour. In the case of solids bounded by smooth surfaces,
the contour provides additional information: in particular, the plane defined by the
eye and the tangent to the image contour is itself tangent to the surface. Thus the
contour orientation determines the surface orientation along the occluding contour.

More generally, the rest of this chapter focuses on the geometric relationship
between curved surfaces and their projections and on the type of information about
surface geometry that can be infered from contour geometry (we will come back
later to the case of polyhedral solids): for example, we will show that the contour
curvature also reveals information about the surface curvature. In the mean time, let
us start by introducing elementary notions of differential geometry that will provide
a natural mathematical setting for our study. Differential geometry will prove useful
again later in this book, when we study the changes in object appearance that stem
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T

(a) ¥

Figure 4.5. Tangents and normals: (a) definition of the tangent as the limit of secants;
(b) the coordinate system defined by the (oriented) tangent and normal.

from viewpoint changes.

4.1 Elements of Differential Geometry

In this section we will present the rudiments of differential geometry necessary to
understand the local relationship between light rays and solid objects. The topic of
our discussion is of course technical, but we will attempt to stay at a fairly informal
level, emphasizing descriptive over analytical geometry. We will also illustrate some
of the concepts introduced with a simple study of surface specularities and what
they reveal about surface shape. Following [?] we will limit our study of surfaces to
those bounding compact solids in Euclidean space.

4.1.1 Curves

We start with the study of curves that lie in a plane. We will examine a curve 7y in
the immediate vicinity of some point P, and will assume that v does not intersect
itself, or, for that matter, terminate in P. If we draw a straight line L through
P, it will (in general) intersect 7 in some other point @, defining a secant of this
curve (Figure 4.5(a)). As @ moves closer to P, the secant L will rotate about P
and approach a limit position T, called the tangent line to vy in P.

By construction, the tangent T' has more intimate contact with v than any
other line passing through P. Let us now draw a second line N through P and
perpendicular to L, and call it the normal to v in P. Given an (arbitrary) choice
for a unit tangent vector t along L, we can construct a right-handed coordinate
frame whose origin is P and whose axes are t and a unit normal vector n along N.

This coordinate system is particularly well adapted to the study of the curve
in the neighborhood of P: its axes divide the plane into four quadrants that can
be numbered in counterclockwise order as shown in Figure 4.6, the first quadrant
being chosen so it contains a particle traveling along the curve toward (and close
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to) the origin. In which quadrant will this particle end up just after passing P? As
shown by Figure 4.6(a)-(d), there are four possible answers to this question, and
they characterize the shape of the curve near P: we say that P is regular when
the moving point ends up in the second quadrant, and singular otherwise. When
the particle traverses the tangent and ends up in the third quadrant, P is called an
inflection of the curve, and we say that P is a cusp of the first or second kind in the
two remaining cases respectively. This classification is in fact independent of the
orientation chosen for -y, and it turns out that almost all points of a general curve
are regular, while singularities only occur at isolated points.

(b) (d)

Figure 4.6. A classification of curve points: (a) a regular point; (b) an inflection; (c)
a cusp of the first kind; (d) a cusp of the second kind. Note that the curve stays on the
same side of the tangent at regular points.

As noted before, the tangent to a curve 7 in P is the closest linear approxi-
mation of v passing through this point. In turn, constructing the closest circular
approximation will now allow us to define the curvature in P, another fundamental
characteristic of the curve shape: consider a point P’ as it approaches P along the
curve, and let M denote the intersection of the normal lines N and N’ in P and P’
(Figure 4.7). As P’ moves closer to P, M approaches a limit position C' along the
normal N, called the center of curvature of v in P.

Figure 4.7. Definition of the center of curvature as the limit of the intersection of normal
lines through neighbors of P.
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At the same time, if §6 denotes the (small) angle between the normals N and
N’, and ds denotes the length of the (short) curve arc joining P and P’, the ratio
06/ds also approaches a definite limit k, called the curvature of the curve in P, as
ds nears zero. It turns out that x is just the inverse of the distance r between C' and
P (this follows easily from the fact that sinu ~ u for small angles, see exercises).
The circle centered in C with radius r is called the circle of curvature in P, and r
is the radius of curvature.

It can also be shown that a circle drawn through P and two close-by points P’
and P’ approaches the circle of curvature as P’ and P move closer to P. This
circle is indeed the closest circular approximation to v passing through P. The
curvature is zero at inflections, and the circle of curvature degenerates to a straight
line (the tangent) there: inflections are the “flattest” points along a curve.

We will now introduce a device that will prove to be extremely important in the
study of both curves and surfaces, the Gauss map. Let us pick an orientation for
the curve vy and associate with every point P on 7 the point () on the unit circle
St where the tip of the associated normal vector meets the circle (Figure 4.8). The
corresponding mapping from v to S! is the Gauss map associated with 7.1

Gauss Map

Figure 4.8. The Gaussian image of a plane curve. Observe how the direction of traversal
of the Gaussian image reverses at the inflection P’ of the curve. Also note that there are
close-by points with parallel tangents/normals on either side of P’. The Gaussian image
folds at the corresponding point Q’.

Let us have another look at the limiting process used to define the curvature.
As P’ approaches P on the curve, so does the Gaussian image Q' of P’ approach
the image @ of P. The (small) angle between N and N’ is equal to the length of
the arc joining Q and Q' on the unit circle. The curvature is therefore the limit of
the ratio between the lengths of corresponding arcs of the Gaussian image and of
the curve as both approach zero.

The Gauss map also provides an interpretation of the classification of curve
points introduced earlier: consider a particle traveling along a curve and the cor-

1 The Gauss map could have been defined just as well by associating with each curve point the
tip of its unit tangent on S'. The two representations are equivalent in the case of planar curves.
The situation will be different when we generalize the Gauss map to twisted curves and surfaces.
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responding motion of its Gaussian image. The direction of traversal of v stays the
same at regular points and inflections, but reverses for both types of cusps (Figure
4.6). On the other hand, the direction of traversal of the Gaussian image stays the
same at regular points and cusps of the first kind, but it reverses at inflections and
cusps of the second kind (Figure 4.8). This indicates a double covering of the unit
circle near these singularities: we say that the Gaussian image folds at these points.

A conventional sign can be chosen for the curvature at every point of a plane
curve v by picking some orientation for this curve, and deciding, say, that the
curvature will be positive when the center of curvature lies on the same side of ~
as the tip of the oriented normal vector, and negative when these two points lie on
opposite sides of . Thus the curvature changes sign at inflections, and reversing
the orientation of a curve also reverses the sign of its curvature.

Twisted space curves are more complicated animals that their planar counter-
parts. Although the tangent can be defined as before as a limit of secants, there is
now an infinity of lines perpendicular to the tangent at a point P, forming a normal
plane to the curve at this point (Figure 4.9).

Figure 4.9. The local geometry of a space curve: N, O and R are respectively the normal,
osculating, and rectifying plane; ¢, n and b are respectively the tangent, (principal) normal
and binormal lines, and C' is the center of curvature.

In general, a twisted curve does not lie in a plane in the vicinity of one of its
points, but there exists a unique plane that lies closest to it. This is the osculating
plane, defined as the limit of the plane containing the tangent line in P and some
close-by curve point @) as the latter approaches P. We finish the construction of a
local coordinate frame in P by drawing a rectifying plane through P, perpendicular
to both the normal and osculating planes. The axes of this coordinate system, called
moving trihedron, or Frénet frame, are the tangent, the principal normal formed by
the intersection of the normal and osculating planes, and the binormal defined by
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the intersection of the normal and rectifying planes (Figure 4.9).

As in the planar case, the curvature of a twisted curve can be defined in a number
of ways: as the inverse of the radius of the limit circle defined by three curve points
as they approach each other (this circle of curvature lies in the osculating plane),
as the limit ratio of the angle between the tangents at two close-by points and the
distance separating these points as it approaches zero, etc. Likewise, the concept
of Gaussian image can be extended to space curves, but this time the tips of the
tangents, principal normals and binormals draw curves on a unit sphere. Note that
it is not possible to give a meaningful sign to the curvature of a twisted curve:
in general, such a curve does not have inflections, and its curvature is positive
everywhere.

The curvature can be thought of as a measure of the rate of change of the
tangent direction along a curve. It is also possible to define the rate of change of
the osculating plane direction along a twisted curve: consider two close-by points P
and P’ on the curve; we can measure the angle between their osculating planes, or
equivalently between the associated binormals, and divide this angle by the distance
between the two points. The limit of this ratio as P’ approaches P is called the
torsion of the curve in P. Not surprisingly, its inverse is the limit of the ratio
between the lengths of corresponding arcs on the curve and the spherical image of
the binormals.

b)

Figure 4.10. Geometric definition of the torsion as the limit, as both quantities approach
zero, of the ratio obtained by dividing the angle between the binormals by the distance
between the associated surface points.

A space curve can be oriented by considering it as the trajectory of a moving
particle and picking a direction of travel for this particle. Furthermore, we can pick
an arbitrary reference point Py on the curve and define the arc length s associated
with any other point P as the length of the curve arc separating Py and P. Although
the arc length depends on the choice of Py, its differential does not (moving Py along
the curve amounts to adding a constant to the arc length), and it is often convenient
to parameterize a curve by its arc length, where some unspecified choice of origin
Py is assumed. In particular, the tangent vector at the point P is the unit velocity
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t = dP/ds. Reversing s also reverses t. It can be shown that the acceleration
d?P/ds?, the curvature k, and the (principal) normal n are related by

’P  dt
—5 = — = KN.
ds* ds

Note that x and n are both independent of the curve orientation (the negative
signs introduced by reversing the direction of traversal of the curve cancel during
differentiation), and the curvature is the magnitude of the acceleration. The binor-
mal vector can be defined as b = t x n, and, like ¢, it depends on the orientation
chosen for the curve. In general, it is easy to show that

7s n|l=|-« 0 71 n |,
S\ b 0 —7 0 b

where 7 denotes the torsion in P. Unlike the curvature, the torsion may be positive,
negative or zero for a general space curve. Its sign depends on the direction of
traversal chosen for the curve, and it has a geometric meaning: in general, a curve
crosses its osculating plane at every point with non-zero torsion, and it emerges on
the positive side of that plane (i.e., the same side as the binormal tangent) when
the torsion is positive, and on the negative side otherwise. The torsion is of course
identically zero for planar curves.

4.1.2 Surfaces

Most of the discussion of the local characteristics of plane and space curves can be
generalized in a simple manner to surfaces. Consider a point P on the surface S
and all the curves passing through P and lying on S. It can be shown that the
tangents to these curves lie in the same plane II, appropriately called the tangent
plane in P (Figure 4.11(a)). The line N passing through P and perpendicular to
IT is called the normal line to P in S, and the surface can be oriented (locally) by
picking a sense for a unit normal vector along N (unlike curves, surfaces admit a
single normal but an infinity of tangents at every point). The surface bounding a
solid admits a canonical orientation defined by letting the normal vectors locally
point toward the outside of the solid.?

Intersecting a surface with the planes that contain the normal in P yields a one-
parameter family of planar curves, called normal sections (Figure 4.11(b)). These
curves are in general regular in P, or they may exhibit an inflection there. The
curvature of a normal section is called the normal curvature of the surface in the

20f course the reverse orientation, where, as Koenderink [?, p. 137] puts it, “the normal vector
points into the ‘material’ of the blob like the arrows in General Custer’s hat”, is just as valid.
The main point is that either choice yields a coherent global orientation of the surface. Certain
pathological surfaces (e.g., Mobius strips) do not admit a global orientation, but they do not bound
solids.
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| V%

(a) (b)

Figure 4.11. Tangent plane and normal sections: (a) the tangent plane II and the
associated normal line N at a point P of a surface; 7 is a surface curve passing through
P, and its tangent line T lies in II; (b) the intersection of the surface S with the plane
spanned by the normal vector IN and the tangent vector ¢ forms a normal section 74 of S.

associated tangent direction. By convention, we will choose a positive sign for the
normal curvature when the normal section lies (locally) on the same side of the
tangent plane as the inward-pointing surface normal, and a negative sign when it
lies on the other side. The normal curvature is of course zero when P is an inflection
of the corresponding normal section.

With this convention, we can record the normal curvature as the sectioning
plane rotates about the surface normal. It will (in general) assume its maximum
value k1 in a definite direction of the tangent plane, and reach its minimum value
Ko in a second definite direction. These two directions are called the principal
directions in P and it can be shown that, unless the normal curvature is constant
over all possible orientations, they are orthogonal to each other (see exercises). The
principal curvatures k1 and ko and the associated directions define the best local
quadratic approximation of the surface: in particular, we can set up a coordinate
system in P with = and y axes along the principal directions and z axis along the
outward-pointing normal; the surface can be described (up to second order) in this
frame by the paraboloid z = —1/2(k122 + K2y?)).

The neighborhood of a surface point can locally take three different shapes,
depending on the sign of the principal curvatures (Figure 4.12). A point P where
both curvatures have the same sign is said to be elliptic, and the surface in its vicinity
is cup-shaped (Figure 4.12(a)): it does not cross its tangent plane and looks like
the surface of an egg (positive curvatures) or the inside surface of its broken shell
(negative curvatures). We say that P is convex in the former case and concave in the
latter one. When the principal curvatures have opposite signs, we have a hyperbolic
point. The surface is locally saddle-shaped and crosses its tangent plane along two
curves (Figure 4.12(b)). The corresponding normal sections have an inflection in P
and their tangents are called the asymptotic directions of the surface in P. They are
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(c)
Figure 4.12. Local shape of a surface: (a) an elliptic point, (b) a hyperbolic point, and

(c) a parabolic point (there are actually two distinct kinds of parabolic points [?]; we will
come back to those in Chapter 22).

bisected by the principal directions. The elliptic and hyperbolic points form patches
on a surface. These areas are in general separated by curves formed by parabolic
points where one of the principal curvature vanishes. The corresponding principal
direction is also an asymptotic direction, and the intersection of the surface and its
tangent plane has (in general) a cusp in that direction (Figure 4.12(c))

Naturally, we can define the Gaussian image of a surface by mapping every
point onto the place where the associated unit normal pierces the unit sphere. In
the case of plane curves, the Gauss map is one-to-one in the neighborhood of regular
points, but the direction of traversal of the Gaussian image reverses in the vicinity
of certain singularities. Likewise, it can be shown that the Gauss map is one-to-one
in the neighborhood of elliptic or hyperbolic points. The orientation of a small
closed curve centered at an elliptic point is preserved by the Gauss map, but the
orientation of a curve centered at a hyperbolic point is reversed (Figure 4.13).

The situation is a bit more complex at a parabolic point: in this case, any small
neighborhood will contain points with parallel normals, indicating a double covering
of the sphere near the parabolic point (Figure 4.13): we say that the Gaussian image
folds along the parabolic curve. Note the similarity with inflections of planar curves.

Let us now consider a surface curve y passing through P, parameterized by its
arc length s in the neighborhood of P. Since the restriction of the surface normal to
~ has constant (unit) length, its derivative with respect to s lies in the tangent plane
in P. It is easy to show that the value of this derivative only depends on the unit
tangent t to v and not on +y itself. Thus we can define a mapping dIN that associates

with each unit vector ¢ in the tangent plane in P the corresponding derivative of

the surface normal (Figure 4.14). Using the convention dIN (At) NN (t) when

A #£ 1, we can extend dIN to a linear mapping defined over the whole tangent plane
and called the differential of the Gauss map in P.
The second fundamental form in P is the bilinear form that associates with any
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Gauss
Map

Figure 4.13. Left: a surface in the shape of a kidney bean. It is formed of a convex
area, a hyperbolic region, and the parabolic curve separating them. Right: the correspond-
ing Gaussian image. Darkly shaded areas indicate hyperbolic areas, lightly shaded ones
indicate elliptic ones. Note that the bean is not convex but does not have any concavity.

Figure 4.14. The directional derivative of the surface normal: if P and P’ are nearby
points on the curve v, and IN and N’ denote the associated surface normals, with 6N =
N’ — N, the derivative is defined as the limit of § N /ds as the length s of the curve arc
separating P and P’ tends toward zero.

two vectors u and v lying in the tangent plane the quantity®

II(u,v) . dN (v).

3The second fundamental form is sometimes defined as II(u,v) = —u-dIN(v) (see, for example
[7; ?]). Our definition allows us to assign positive normal curvatures to the surfaces bounding
convex solids with outward-pointing normals.
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Application: The shape of specularities

Specularities offer hints about the colour of the illuminant, which we shall exploit in
Chapter ?7?. They also offer cues to the local geometry of a surface. Understanding these
cues is a simple exercise in differential geometry that will serve to illustrate the concepts
introduced in this chapter. We consider a smooth specular surface and assume that the
radiance reflected in the direction V' is a function of V' - P, where P is the specular
direction. We expect the specularity to be small and isolated, so we can assume that
the source direction S and the viewing direction V' are constant over its extent. Let us
further assume that the specularity can be defined by a threshold on the specular energy,
i.e., V. P > 1 — ¢ for some constant €, denote by IN the unit surface normal, and define
the half-angle direction as H = (S + V')/2 (Figure 4.15(left)). Using the fact that the
vectors S, V and P have unit length and a whit of plane geometry, it can easily be shown
that the boundary of the specularity is defined by (see exercises):

(H-N)*
(H - H)

l-e=V.P=2 ~ 1 (4.1.1)

Figure 4.15. A specular surface viewed by a distant observer. We establish a coordinate
system at the brightest point of the specularity (where the half-angle direction is equal to
the normal) and orient the system using the normal and principal directions.

Because the specularity is small, the second-order structure of the surface will allow
us to characterize the shape of its boundary as follows: there is some point on the surface
inside the specularity (in fact, the brightest point) where H is parallel to N. We set up
a coordinate system at this point, oriented so that the z-axis lies along IN and the z- and
y-axes lie along the principal directions u; and w2 (Figure 4.15(right)). As noted earlier,
the surface can be represented up to second order as z = —1/2(k12> 4 k2y?) in this frame,
where k1 and k2 are the principal curvatures. Now, let us define a parametric surface as
a differentiable mapping  : U C IR* — IR® associating with any couple (u,v) € U the
coordinate vector (z,y, z)T of a point in some fixed coordinate system. It is easily shown
(see exercises) that the normal to a parametric surface is along the vector dx/0u x 0z /dv.
Our second-order surface model is a parametric surface parameterized by x and y, thus
its unit surface normal is defined in the corresponding frame by

KR1X

1

/14 k222 4 K2y ey
1 2Y 1

N(xay) =
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and H = (0,0,1)7. Since H is a constant, we can rewrite (4.1.1) as kiz® + k3y? = ¢
where ( is a constant depending on €. In particular, the shape of the specularity on the
surface contains information about the second fundamental form. The specularity is an
ellipse, with major and minor axes along the principal directions, and eccentricity equal
to the ratio of the principal curvatures. Unfortunately, the shape of the specularity on the
surface is not, in general, directly observable, so this property can only be exploited when
a fair amount about the viewing and illumination setup is known [?]. While we cannot
get much out of the shape of the specularity in the image, it is possible to tell a convex
surface from a concave one by watching how a specularity moves as the view changes (you
can convince yourself of this with the aid of a spoon). Let us consider a point source at
infinity and assume that the specular lobe is very narrow so the viewing direction and the
specular direction coincide. Initially, the specular direction is V' and the specularity is
at the surface point P; after a small eye motion, V changes to V' while the specularity
moves to the close-by point P’ (Figure 4.16).

Motion of Source Motion of
observer direction observer
v NN
p’
L
Motion of
specularity Motion of specularity

Figure 4.16. Specularities on convex and concave surfaces behave differently when the
view changes.

The quantity of interest is da = (V'—V)-t, where t = 5~ PP is tangent to the surface,
and ds is the (small) distance between P and P': if da is positive, then the specularity
moves in the direction of the view (back of the spoon), and if it is negative, the specularity
moves against the direction of the view (bowl of the spoon). By construction, we have
V =2(S-N)N — S, and

V' = 2(S-N')N' =S =2(S- (N +6N))(N +6N)— S
= V42(S-6N)N +2(S-5N)SN +2(S - N)iN,

where 6N % N/ — N = §s dN (t). Since t is tangent to the surface in P, ignoring
second-order terms yields
da = 26s (S - N)II(¢,t).

Thus, for a concave surface, the specularity always moves against the view and for a convex
surface it always moves with the view. The effect is clearly visible if you move a spoon
back and forth and look at the images of light sources (of course you could also tell you are
looking into the bowl of the spoon by just noticing you see yourself upside-down there).
Things are more complex with hyperbolic surfaces; the specularity may move with the
view, against the view, or perpendicular to the view (when ¢ is an asymptotic direction).
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Since II is easily shown to be symmetric, i.e., II(u, v) = II(v,u), the mapping
that associates with any tangent vector u the quantity II(u, u) is a quadratic form.
In turn, this quadratic form is intimately related to the curvature of the surface
curves passing through P. Indeed, note that the tangent ¢ to a surface curve is
everywhere orthogonal to the surface normal IN. Differentiating the dot product of
these two vectors with respect to the curve arc length yields

km-N+t-dN(t) =0,

where n denotes the principal normal to the curve, and k denotes its curvature.
This can be rewritten as
II(¢, t) = —k cos . (4.1.2)

where ¢ is the angle between the surface and curve normals. For normal sections,
we have n = FIV, and it follows that the normal curvature in some direction ¢ is

ke =1I(t, ),

where, as before, we use the convention that the normal curvature is positive when
the principal normal to the curve and the surface normal point in opposite direc-
tions.

In addition, (4.1.2) shows that the curvature  of a surface curve whose principal
normal makes an angle ¢ with the surface normal is related to the normal curvature
k¢ in the direction of its tangent ¢ by xcos¢ = —k¢. This is known as Meusnier’s
theorem (Figure 4.17).

Figure 4.17. Meusnier’s theorem.

It turns out that the principal directions are the eigenvectors of the linear map
dNN, and the principal curvatures are the associated eigenvalues. The determinant
K of this map is called the Gaussian curvature, and it is equal to the product of
the principal curvatures. Thus, the sign of the Gaussian curvature determines the
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local shape of the surface: a point is elliptic when K > 0, hyperbolic when K < 0,
and parabolic when K = 0. If §A is the area of a small patch centered in P on a
surface S, and 0A’ is the area of the corresponding patch of the Gaussian image
of S, it can also be shown that the Gaussian curvature is the limit of the (signed)
ratio §A’/JA as both areas approach zero (by convention, the ratio is chosen to
be positive when the boundaries of both small patches have the same orientation,
and negative otherwise, see Figure 4.13). Note again the strong similarity with
the corresponding concepts (Gaussian image and plain curvature) in the context of
planar curves.

4.2 Contour Geometry

Before studying the geometry of surface outlines, let us pose for a minute and
examine the relationship between the local shape of a twisted curve I' and that of
its orthographic projection v onto some plane II (Figure 4.18). Let us denote by «
the angle between the tangent to I' and the plane II, and by 3 the angle betweem
the principal normal to I" and II. These two angles completely define the local
orientation of the curve relative to the image plane.

n

p I

p

Y

Figure 4.18. A space curve and its projection Note that the tangent to - is the projection
of the tangent to I' (think for example of the tangent as the velocity of a particle traveling
along the curve). The normal to v is not, in general, the projection of the normal to T.

If k denotes the curvature of I' at some point, and k, denotes its apparent
curvature, i.e., the curvature of v at the corresponding image point, it is easy to
show analytically (see exercises) that

cos 3

(4.2.1)

Ka = K 5—.
cos” «

In particular, when the viewing direction is in the osculating plane (cos 8 = 0),
the apparent curvature k, vanishes and the image of the curve acquires an inflection.
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When, on the other hand, the viewing direction is tangent to the curve (cosa = 0),
K becomes infinite and the projection acquires a cusp.

These two properties of the projections of space curves are well known and
mentioned in all differential geometry textbooks. Is it possible to relate in a similar
fashion the local shape of the surface bounding a solid object to the shape of its
image contour? The answer is a resounding “Yes!”, as shown by Koenderink [?] in
his delightful paper “What does the occluding contour tell us about solid shape?,”
and we present in this section a few elementary properties of image contours, before
stating and proving the main theorem of Koenderink’s paper, and concluding by
discussing some of its implications.

4.2.1 The Occluding Contour and the Image Contour

As noted earlier, the image of a solid bounded by a smooth surface is itself bounded
by an image curve, called the contour, silhouette or outline of this solid. This curve
is the intersection of the retina with a viewing cone whose apex coincides with
the pinhole and whose surface grazes the object along a second curve, called the
occluding contour, or rim (Figure 4.3).

We will assume orthographic projection in the rest of this section. In this case,
the pinhole moves to infinity and the viewing cone becomes a cylinder whose gen-
erators are parallel to the (fixed) viewing direction. The surface normal is constant
along each one of these generators, and it is parallel to the image plane (Figure
4.19). The tangent plane at a point on the occluding contour projects onto the tan-
gent to the image contour, and it follows that the normal to this contour is equal
to the surface normal at the corresponding point of the occluding contour.

Viewing
Contour Cylinder

R

Image

Contour

Figure 4.19. Occluding boundaries under orthographic projection.
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It is important to note that the viewing direction v is mot, in general, perpen-
dicular to the occluding contour tangent ¢ (as noted by Nalwa [?] for example,
the occluding contour of a tilted cylinder is parallel to its axis and not to the im-
age plane). Instead, it can be shown that these two directions are conjugated, an
extremely important property of the occluding contour.

4.2.2 The Cusps and Inflections of the Image Contour

Two directions w and v in the tangent plane are said to be conjugated when
II(u,v) = 0. For example, the principal directions are conjugated since they are
orthogonal eigenvectors of dIN, and asymptotic directions are self-conjugated.

It is easy to show that the tangent ¢ to the occluding contour is always conjugated
to the corresponding projection direction v: indeed, v is tangent to the surface at
every point of the occluding contour, and differentiating the identity IV -v = 0 with
respect to the arc length of this curve yields

d

0= (—
(ds

N)-v=dN(t) v =1(¢t,v).

Let us now consider a hyperbolic point Py and project the surface onto a plane
perpendicular to one of its asymptotic directions. Since asymptotic directions are
self-conjugated, the occluding contour in Py must run along this direction. As
shown by (4.2.1), the curvature of the contour must be infinite in that case, and
the contour acquires a cusp of the first kind.

We will state in a moment a theorem by Koenderink [?] that provides a quan-
titative relationship between the curvature of the image contour and the Gaussian
curvature of the surface. In the mean time, we will prove (informally) a weaker, but
still remarkable result: under orthographic projection, the inflections of the contour
are images of parabolic points (Figure 4.20).

First note that, under orthographic projection, the surface normal at a point on
the occluding contour is the same as the normal at the corresponding point of the
image contour. Since the Gaussian image of a surface folds at a parabolic point,
it follows that the Gaussian image of the image contour must reverse direction at
such a point. As shown earlier, the Gaussian image of a planar curve reverses at its
inflections and cusps of the second kind. It is easily shown that the latter singularity
does not occur for a general viewpoint, which proves the result.

In summary, the occluding contour is formed by points where the viewing di-
rection v is tangent to the surface (the fold points mentioned in the introduction).
Occasionally, it becomes tangent to v or crosses a parabolic line, and cusps (of the
first kind) or inflections appear on the contour accordingly. Unlike the curves men-
tioned so far, the image contour may also cross itself (transversally) when two dis-
tinct branches of the occluding contour project onto the same image point, forming
a T-junction (Figure 4.3). For general viewpoints, these are the only possibilities:
there is no cusp of the second kind, nor any tangential self-intersection for example.
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Figure 4.20. The inflections of the contour are images of parabolic points: the left side
of this diagram shows the bean-shaped surface with an occluding contour overlaid, and
its right side shows the corresponding image contour. The Gaussian image folds at the
parabolic point, and so does its restriction to the great circle formed by the image of the
occluding and image contours.

We will come back to the study of exceptional viewpoints and the corresponding
contour singularities in a latter chapter.

4.2.3 Koenderink’s Theorem

Let us now state the theorem by Koenderink [?] that has already been mentioned
several times. We assume as before orthographic projection, consider a point P on
the occluding contour of a surface .S, and denote by p its image on the contour.

Theorem 1: The Gaussian curvature K of S in P and the contour curvature k.
in p are related by
K = K¢k,

where Kk, denotes the curvature of the radial curve formed by the intersection of S
with the plane defined by the normal to S in P and the projection direction (Figure

4.21).

This remarkably simple relation has several important corollaries. Note first
that s, remains positive (or zero) along the occluding contour since the projection
ray locally lies inside the imaged object at any point where x, < 0. It follows that &,
will be positive when the Gaussian curvature is positive, and negative otherwise. In
particular, the theorem shows that convexities of the contour corresponds to elliptic
points of the surface, while contour concavities correspond to hyperbolic points and
contour inflections correspond to parabolic points.

Among elliptic surface points, it is clear that concave points never appear on
the occluding contour of an opaque solid since their tangent plane lies (locally)
completely inside this solid (Figure 4.21(b)). Thus convexities of the contour also



116 Geometric Image Features Chapter 4

w

N

Figure 4.21. The relationship between occluding contour and image contour: the view-
ing direction v and the occluding contour tangent ¢ are conjugated, and the radial curva-
ture is always nonnegative at a visible point of the contour for opaque solids.

correspond to convexities of the surface. Likewise, we saw earlier that the contour
cusps when the viewing direction is an asymptotic direction at a hyperbolic point.
In the case of an opaque object, this means that concave arcs of the contour may
terminate at such a cusp, where a branch of the contour becomes occluded. Thus we
see that Koenderink’s theorem strengthens and refines the earlier characterization
of the geometric properties of image contours.

Let us now prove the theorem. It is related to a general property of conjugated
directions: if kg and kyp denote the normal curvatures in conjugated directions u
and v, and K denotes the Gaussian curvature, then

Ksin®? 0 = ky ko, (4.2.2)

where 6 is the angle between w and v. This relation is easy to prove by using the

fact that the matrix associated with the second fundamental form is diagonal in

the basis of the tangent plane formed by conjugated directions (see exercises). It is

obviously satisfied for principal directions (f = 7/2) and asymptotic ones (6 = 0).
In the context of Koenderink’s theorem, we obtain

Ksin?0 = Krk,
where k4 denotes the normal curvature of the surface along the occluding contour

direction ¢ (which is of course different from the actual curvature of the occluding
contour).
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To complete the proof of the theorem, we use another general property of sur-
faces: the apparent curvature of any surface curve with tangent ¢ is
Kt
cos® o’

(4.2.3)

Kag =

where « denotes as before the angle between ¢ and the image plane. Indeed, we can
use Meusnier’s theorem to rewrite (4.2.1) as

cosf  kgeosfB o Kt

cos“ —cos’acos¢  cos®a

since in this case ¢ = # + 7. In other words, the apparent cuvature of any surface
curve is obtained by dividing the associated normal curvature by the square of the
cosine of the angle between its tangent and the image plane. Applying this result
to the occluding contour yields

Kt
sin? 6

Ko = (4.2.4)
since &« = 6 — w/2. Substituting (4.2.4) into (4.2.2) concludes the proof of the
theorem.

4.3 Notes

There is a rich literature on the three-dimensional interpretation of line-drawings,
including the seminal work by Huffman [?], Clowes [?] and Waltz [?], that uses
the relatively small set of possible junction labels associated with typical scenes to
control the combinatorial explosion of the line-labeling process. More quantitative
approaches have also been proposed (see, for example [?; ?]), and the technique
based on linear programming proposed by Sugihara [?] is often considered as the
ultimate achievement in this field. The relationship between contour and surface
orientation is studied in [?]. See also the work of Malik [?] for an extension of the
junction catalogue to piecewise-smooth surfaces.

There is of course a large number of excellent textbooks on differential geome-
try, including the very accessible presentations found in the books of do Carmo [?]
and Struik [?]. Our presentation is closer in spirit (if not in elegance) to the de-
scriptive introduction to differential geometry found in Hilbert’s and Cohn-Vossen’s
wonderful book “Geometry and the Imagination” [?].

It was not always recognized that the image contour carries vital information
about surface shape: see [?; ?] for arguments to the contrary. The theorem proven
in this chapter clarified the situation and appeared first in [?]. Our proof is different
from the original one, but it is close in spirit to the proof given in [?], which is based
on Blaschke’s dual version of Euler’s theorem. Our choice here was motivated by our
reluctance to use any formulas that require setting a particular coordinate system.

Alternate proofs for various kinds of projection geometries can be found in [?; ?; ?;
?: 7).
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4.4 Assignments

Exercises

1. Prove that the curvature x of a planar curve in a point P is the inverse of the
radius of curvature r at this point.

Hint: use the fact that sinu &~ u for small angles.

2. Prove that, unless the normal curvature is constant over all possible directions,
the principal directions are orthogonal to each other.

3. Prove that the second fundamental form is bilinear and symmetric.

4. Consider a fixed coordinate system, and a parametric surface « : U € R* —

IR®. Show that the normal to a parametric surface is parallel to the vector
Ox/0u x dx/dv.

Hint: consider the two surface curves u = ug and v = vy passing through the
point x(ug, vg).

5. Consider a specular surface observed by a distant observer. Denote by V' the
viewing direction, P the specular direction, and S the light source direction,
all unit vectors. Define the half-angle direction H = (S + V')/2. Show
that

(H-N)*

P=2"""
vV.pP B

where N is the unit surface normal.
6. Let us denote by a the angle between the tangent to I and the plane II, by 8
the angle betweem the principal normal to I and II, and by s the curvature

of I' at some point. Prove that if k, denotes its apparent curvature, i.e., the
curvature of v at the corresponding point, then

cos 3

Kqe = K 5
cos” «

(Note: this is a variant of a result by Koenderink [?, p. 191], who uses a

different notation.)

7. Let kqy and Ky denote the normal curvatures in conjugated directions w and
v at a point P, and let K denote the Gaussian curvature, prove that:

2
K sin“ 0 = ky ko,

where 6 is the angle between the u and v.
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PrOOF: Note that the second fundamental form can be written in the basis (u,v)
as

H(zutyv, sutyv) = (z,y) (ﬁgzzg EEZ:D (‘;) = (z,y) (? ,2,) (2)

In other words, the second fundamental form has a diagonal matrix in the basis
(u,v). If e1 and ez denote the principal directions, and zu + yv = z’e1 + y'ea, we

have )
(=',y') (e1,e2)" (u,v)" 7" (K(;L 0 > (u,v)7" (e1,e2) (x/> .

Ko Y

Since the Gaussian curvature is the determinant of the differential of the Gauss map,

we have therefore
Ru kv Rukv
K= 5= —5
[(u,v)] sin” 0

8. Show that the occluding is a smooth curve that does not intersect itself.

Hint: use the Gauss map.



Chapter 5

ANALYTICAL IMAGE
FEATURES

Chapter 77 laid the geometric foundations of image formation. This chapter uses
analytical geometry to quantify more precisely the relationship between a camera,
the objects it observes, and the pictures of these objects. We start by briefly recall-
ing elementary notions of analytical Euclidean geometry, including dot and cross
products, norms and distances, rigid transformations and homogeneous coordinates:
this machinery will allow us in the rest of the book to reason about geometric ob-
jects like points, lines and planes, and geometric transformations like rotations,
translations and projections in terms of linear algebra constructs such as vectors
and matrices. We then introduce the various physical parameters that relate the
world and camera coordinate frames, and present as an application various methods
for estimating these parameters, a process known as geometric camera calibration.
We also present along the way some linear and non-linear least-squares techniques
for parameter estimation that will prove useful on several occasions in the rest of
the book.

5.1 Elements of Analytical Euclidean Geometry

We assume that the reader has some familiarity with elementary analytical Eu-
clidean geometry and linear algebra. This section will serve to fix the notation
used in the book and introduce informally some useful notions such as coordinate
systems, homogeneous coordinates, rotation matrices, etc.

Notation. We will use the following notation in the rest of this chapter and
throughout the book: points, lines and planes will be denoted by Roman or Greek
letters in italic font, e.g., P, A or II. Vectors will be denoted by Roman or Greek
bold-italic letters, e.g., v, P, or £, although the vector joining two points P and
@ will often be denoted by P(). Matrices will be denoted by Roman letters in
calligraphic font, e.g., M. The familiar three-dimensional Euclidean space will be
denoted by IE* and the vector space formed by n-tuples of real numbers with the
usual laws of addition and multiplication by a scalar will be denoted by IR". El-

120
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ements of IR" will be considered as column vectors or m x 1 matrices, and the
transpose of the m x n matrix A4 with coeflicients a;; will be the n x m matrix
denoted by AT with coefficients a;;.

We will denote the dot product (or inner product) between two vectors u and
v as u - v. When these two vectors are elements of R™ given by u = (uy,...,u,)"
and v = (v1,...,v,), we have of course

UV =UV] + ...+ UpUp,

and we will often use the fact that in this case the dot product can be rewritten
as a matrix product, i.e., u - v = uTv = vTu. We will denote by |v|?> = v - v the
square of the Euclidean norm of the vector v, and denote by d the distance function
induced by the Euclidean norm in IE?, i.e., d(P, Q) = |@|
The symbol “x” will be used to denote the cross product (or outer product)
operator that associates with two vectors u = (u1,us2,u3)” and v = (vi,v2,v3)T
the vector
U2V3 — U3V2
u X v = uU3v1 — U103
U1V2 — U2V

When v has unit norm, the dot product u - v is equal to the (signed) length of
the projection of v onto u, and two vectors are orthogonal when their dot product
is zero. On the other hand, the cross product of two vectors w and v in R is
orthogonal to these two vectors, and a necessary and sufficient condition for u and
v to have the same direction is that u x v = 0. We will also use the identities

(u-v)? = |ul?|v|? cos? 0,
lv x v|? = |u|?|v|?sin? 0,

where 6 denotes the angle between the vectors w and v.

5.1.1 Coordinate Systems and Homogeneous Coordinates

We already used three-dimensional coordinate systems in Chapter ?7?. Let us intro-
duce them a bit more formally: we assume a fixed system of units, say meters, or
inches, so unit length is well defined; picking a point O in IE® and three unit vectors
i, j and k orthogonal to each other defines an orthonormal coordinate frame (F') as
the quadruple (O, 4, j, k). The point O is the origin of the coordinate system (F'),
and 2, 7 and k are its basis vectors. We will restrict our attention to right-handed
coordinate systems, such that the vectors ¢, 7 and k can be thought of as being
attached to fingers of your right hand, with the thumb pointing up, index pointing
straight, and middle finger pointing left as shown in Figure 5.1.

LThis is the traditional way of defining right-handed coordinate systems. One of the authors,
who is left-handed, has always found it a bit confusing, and prefers to identify these coordinate
systems using the fact that when one looks down the k axis at the (¢,7) plane, the vector 4 is
mapped onto the vector j by a counterclockwise 90° rotation (Figure 5.1). Left-handed coordinate
systems correspond to clockwise rotations. Left- and right-handed readers alike may find this
characterization useful as well.
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i\ i p

Figure 5.1. A right-handed coordinate system and the Cartesian coordinates z, y, z of
a point P.

The Cartesian coordinates x, y and z of a point P in this coordinate frame are
defined as the (signed) lengths of the orthogonal projections of the vector OP onto
the vectors 4, j and k (Figure 5.1), with

xzﬁ-i
y:ﬁ-j @W:xi+yj+zk.
ZZW-k

The column vector

P=|y|eR?
z

is called the coordinate vector of the point P in (F). We can also define the co-
ordinate vector associated with any free vector v by the lengths of its projections
onto the basis vectors of (F'), and these coordinates are of course independent of
the choice of the origin O.

Let us now consider a plane II, an arbitrary point A in IT and a unit vector n
perpendicular to the plane. The points lying in II are characterized by

ﬁ-n:O.

In a coordinate system (F') where the coordinates of the point P are z, y, z and
the coordinates of 1 are a, b and ¢, this can be rewritten as OP -n — OA -n =0 or

ar+by+cz—d=0, (5.1.1)

where d % 04 - n is independent of the choice of the point A in IT and is simply

the (signed) distance between the origin O and the plane II (Figure 5.2)
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n

0

Figure 5.2. The geometric definition of the equation of a plane. The distance d between
the origin and the plane is reached at the point H where the normal vector passing through
the origin pierces the plane.

At times, it is useful to use homogeneous coordinates to represent points, vectors,
and planes. We will justify formally their definition later in this book, when we
introduce notions of affine and projective geometry, but for the time being, let us
just note that (5.1.1) can be rewritten as

x
_ L -
(a,b,¢,—d) 2= 0
1
or, more concisely, as
a x
II-P=0, where II%Y i and P Z (5.1.2)
—d 1

The vector P is called the vector of homogenous coordinates of the point P in
the coordinate system (F'), and it is simply obtained by adding a fourth coordinate
equal to 1 to the ordinary coordinate vector of P. Likewise, the vector II is the
vector of homogeneous coordinates of the plane IT in the coordinate frame (F') and
(5.1.2) is called the equation of II in that coordinate system. Note that II is only
defined up to scale since multiplying this vector by any nonzero constant does not
change the solutions of (5.1.2).

We will use the convention that homogeneous coordinates are only defined up
to scale, whether they represent points or planes (this will be established more
formally for points later). To go back to the ordinary non-homogenous coordinates
of points, one just divides all coordinates by the fourth one. Among other things,
homogeneous coordinates will allow us shortly to express changes of coordinate
in terms of vectors of matrices, but first, we have to understand how coordinates
change between two frames.
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5.1.2 Coordinate System Changes and Rigid Transformations

When several different coordinate systems are considered at the same time, it is
convenient to follow Craig [?] and denote by ' P (resp. fv) the coordinate vector
of the point P (resp. vector v) in the frame (F), i.e.,?

x
Fp_FOP = Y <:>W=xi+yj+zk.
z

Let us now consider two coordinate systems (A) = (Oa,%4,7 4,k4) and (B) =
(OB,iB,jg,kB). The rest of this section will allow us to express P as a function
of AP. Let us suppose first that the basis vectors of both coordinate systems are
parallel to each other, i.e., 24 =25, j4 = jp and k4 = kp, but the origins O 4 and
Op are distinct (Figure 5.3). We say that the two coordinate systems are separated
by a pure translation, and we have OgP = OO 4 + O 4P, thus

Bp_Ap4 Bo,.

kp

04

P
Figure 5.3. Coordinate change between two frames: pure translation.

When the origins of the two frames coincide, i.e., O4 = Op = O, we say that
the frames are separated by a pure rotation (Figure 5.4). Let us define the rotation
matriz BR as the 3 x 3 array of numbers
ta-ip Ja-tp ka-ip
ta-Jp Ja-Jp ka-Jp
ta-kp Jja-kp ka-kp

def

BR

2The superscripts and subscripts preceding points, vectors and matrices in Craig’s notation
may appear awkward at first, but the rest of this section should clearly demonstrate their utility.
Please stick with us for a little while..
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'p

Figure 5.4. Coordinate change between two frames: pure rotation.

Note that the first column of R is formed by the coordinates of 44 in the basis
(iB,Jp, kp). Likewise, the third row of this matrix is formed by the coordinates of
kp in the basis (34,7 4,ka), etc. More generally, the matrix ZR can be written in
a more compact fashion using a combination of three column vectors or three row
vectors:

BR=(Pia Bj, Pka)=| 455" |,

and it follows that 4R = BR” .

As noted earlier, all these subscripts and superscripts may be somewhat confus-
ing at first. To keep everything straight, it is useful to remember that in a change of
coordinates, subscripts refer to the object being described, while superscripts refer
to the coordinate system in which the object is described. For example 4P refers
to the coordinate vector of the point P in the frame (A), 5, is the coordinate
vector of the vector j, in the frame (B), and §R is the rotation matrix describing
the frame (A) in the coordinate system (B).

Let us give an example of pure rotation: suppose that k4 = kg = k, and denote
by 6 the angle such that the vector ip is obtained by applying to the vector 14 a
counterclockwise rotation of angle 6 about k (Figure 5.5). The angle between the
vectors j 4 and jp is also 6 in this case, and we have

cosf sinf O
BR=1| —sinf cosf 0 ]. (5.1.3)
0 0 1

Similar formulas can be written when the two coordinate systems are deduced
from each other via rotations about the ¢4 or j, axes (see exercises). In general,
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Figure 5.5. Two coordinate frames separated by a rotation of angle § about their
common k basis vector. As shown in the right of the figure, ¢4 = cip — sjg and é4 =
st + cj g, where ¢ = cosf and s = sinf.

it can be shown that any rotation matrix can be written as the product of three
elementary rotations about the ¢, 7 and k vectors of some coordinate system.

Let us go back to characterizing the change of coordinates associated with an
arbitrary rotation matrix. Writing

AIII BIII
OP=(ia ja ka) |y |=(is jp ks)| %y
AZ BZ
in the frame (B) yields immediately
Bp—-BrAp

since the rotation matrix BR is obviously the identity. Note how the subscript
matches the following superscript. This property remains true for more general
coordinate changes and it can be used after some practice to reconstruct the corre-
sponding formulas without calculations.

It is easy to show (see exercises) that rotation matrices are characterized by the
following properties: (1) the inverse of a rotation matrix is equal to its transpose,
and (2) its determinant is equal to 1. By definition, the columns of a rotation matrix
form a right-handed orthonormal coordinate system. It follows from property (1)
that their rows also form such a coordinate system.

It should be noted that the set of rotation matrices, equipped with the matrix
product, forms a group, i.e., the product of two rotation matrices is also a rotation
matrix (this is intuitively obvious and easily verified analytically); the matrix prod-
uct is associative; there is a unit element, the 3 x 3 identity matrix Id; and every
rotation matrix R admits an inverse R~! = R” such that RR~! = R™'R = Id.
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When the origins and the basis vectors of the two coordinate systems are dif-
ferent, we say that that the frames are separated by a general rigid transformation
(Figure 5.6), and we have

Bp=BRAP +B0,. (5.1.4)

04

P 'p
Figure 5.6. Coordinate changes between two frames: general rigid transformation.

Homogeneous coordinates can be used to rewrite (5.1.4) as a matrix product:
let us first note that matrices can be multiplied in blocks, i.e., if

All A12 Bll 612
= = .1.
A <A21 A22> and B (621 322>’ (5.1.5)

where the number of columns of the sub-matrices Ay and As; (resp. Ajz and Ags)
is equal to the number of rows of By; and Bio (resp. Bz and Bas), then

AB — A11Bi1+ Ai2Ba1r Ai11Bia + A12Ba2
A1 Bi1 + A22B21 A21Bia + A22B22 ) -

For example, we have

T11 Ti2  Ti3 c11  C12 T11C11 + T12C21 + T13C31  T11C12 + T12C22 + T'13C32

To1 T22  T23 21 C22 | = | 7r21c11 + T22c21 +T23C31  T21C12 + T22C22 + T23C32
T31C11 + T'32C21 + T33C31  T'31C12 + 732022 + T33C32

C11 C12

T11 712713 T11 712 T13
C21 C22

i1 Ti2 T13 || Ci1 | C12 721 722 T'23 T21 722 T23
C31 C32

=| T21 T22 T23 C21 C22 (=

c c C11 C12
T T T 31 32
3 32 33 (7"31 T32T33 ) C21 (7"31 T32 T'33 ) C22

C31 C32

In particular, (5.1.5) allows us to rewrite the change of coordinates (5.1.4) as

B A B B
( f) :ﬁT( f) where ﬁT“‘éf(glz (f“> (5.1.6)
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and 0 = (0,0,0)T. In other words, using homogeneous coordinates allows us to
write a general change of coordinates as the product of a 4 x 4 matrix and a 4-
vector. It is easy to show that the set of rigid transformations defined by (5.1.6),
equipped with the matrix product operation is also a group (see exercises).

A rigid transformation maps a coordinate system onto another one. In a given
coordinate frame (F'), a rigid displacement can also be considered as a mapping
between points, i.e., a point P is mapped onto the point P’ such that

F pr F
FP’:RFP+t<:>( f):(&% f)( 1P> (5.1.7)

where R is a rotation matrix and t is an element of R® (Figure 5.7). The set of
rigid transformations considered as mappings of IE* onto itself and equipped with
the law of composition is once again easily shown to form a group. It is also easy
to show that rigid transformations preserve the distance between points and the
angle between vectors. On the other hand, the 4 x 4 matrix associated with a rigid
transformation depends on the choice of (F) (see exercises).

J

P

Figure 5.7. A rigid transformation maps the point P onto the point P’ through a
rotation R before mapping P” onto P’ via a translation ¢. In the example shown in this
figure, R is a rotation of angle 6 about the k axis of the coordinate system (F').

For example, let us consider the rotation of angle 6 about the k axis of the frame
(F). As shown in the exercises, this mapping can be represented by

cosf —sinf 0
Fp'=RFP, where R=|[ sinf cos® 0
0 0 1

In particular, if (F”) is the coordinate system obtained by applying this rotation

!’ !’ !’ _1
to (F), we have, according to (5.1.3), ' P = ERFP and R = LR . More
generally, the matrix representing the change of coordinates between two frames is
the inverse of the matrix mapping the first frame onto the second one (see exercises).
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What happens when R is replaced by an arbitrary 3 x 3 matrix A? Equation
(5.1.7) still represents a mapping between points (or a change of coordinates be-
tween frames), but this time lengths and angles may not be preserved anymore
(equivalently, the new coordinate system does not necessarily have orthogonal axes
with unit length). We say that the 4 x 4 matrix

At
S

represents an affine transformation. When 7T is allowed to be completely arbitrary,
we say that we have a projective transformation. Affine and projective transforma-
tions also form groups, and they will be given a more thorough treatment later in
the book.

5.2 Geometric Camera Parameters

We saw in Chapter ?? that the coordinates (z,y, z) of a scene point P observed
by a pinhole camera are related to its image coordinates (z’,y’') by the perspective
equation (?7?). In reality, this equation is only valid when all distances are measured
in the camera’s reference frame, and image coordinates have their origin at the
principal point where the axis of symmetry of the camera pierces its retina. In
practice, the world and camera coordinate systems are related by a set of physical
parameters, such as the focal length of the lens, the size of the pixels, the position
of the principal point, and the position and orientation of the camera.

This section identifies these parameters. We will distinguish the intrinsic pa-
rameters, that relate the camera’s coordinate system to the idealized coordinate
system used in Chapter 7?7, from the extrinsic parameters, that relate the camera’s
coordinate system to a fixed world coordinate system and specify its position and
orientation in space.

Before proceeding, let us note that we will ignore in the rest of this chapter the
fact that for cameras equipped with a lens, a point will only be in focus when its
depth and the distance betweem the optical center of the camera and its image plane
obey the thin lens equation (?7?). Likewise, the non-linear aberrations associated
with real lenses are not taken into account by (??). We will neglect these aberrations
in most of the chapter but will consider radial distortion in Section 5.3.2.

5.2.1 Intrinsic Parameters

We can associate with a camera two different image planes: the first one is a nor-
malized plane located at a unit distance from the pinhole. We attach to this plane
its own coordinate system with an origin located at the point C where the optical
axis pierces it (Figure 5.8). The perspective projection equation (??) can be written
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in this normalized coordinate system as

(<33
Il

<:>i):§(1d o)(f), (5.2.1)

(S5
I
VR w8

where p % (4,9,1)T is the vector of homogeneous coordinates of the projection p
of the point P into the normalized image plane.

Normalized
image plane

J Physical
retina

Figure 5.8. Physical and normalized image coordinate systems.

The physical retina of the camera is in general different (Figure 5.8): it is located
at a distance f # 1 from the pinhole,® and the image coordinates (u,v) of the image
point p are usually expressed in pixel units (instead of, say, meters). In addition,
pixels are normally rectangular instead of square, so the camera has two additional
scale parameters k and [, and

u=kf=,

® (5.2.2)
v=1fZ.

z

Let us talk units for a second: f is a distance, expressed in meters for example,
and a pixel will have dimensions % X %, where k and [ are expressed in pixel x m~!.
The parameters k, [ and f are not independent, and they can be replaced by the
magnifications « = kf and 8 = [f expressed in pixel units.

Now, in general, the actual origin of the camera coordinate system is at a cor-
ner C of the retina (e.g., in the case depicted in Figure 5.8, the lower-left corner,

3From now on we will assume that the camera is focused at infinity so the distance between
the pinhole and the image plane is equal to the focal length.
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or sometimes the upper-left corner, when the image coordinates are the row and
column indices of a pixel) and not at its center, and the center of the CCD matrix
usually does not coincide with the principal point Cy. This adds two parameters
up and wvp that define the position (in pixel units) of Cp in the retinal coordinate
system. Thus, (5.2.2) is replaced by

T
U = a— + ug,

N (5.2.3)
v = 6% —|—’Uo.

Finally, the camera coordinate system may also be skewed, due to some manu-
facturing error, so the angle 6 between the two image axes is not equal to (but of
course not very different from either) 90 degrees. In this case, it is easy to show
(see exercises) that (5.2.3) transforms into

u=a£—acot0g+uo,

z : (5.2.4)
_ By
V= — = +p.

sinf z

Combining (5.2.1) and (5.2.4) now allows us to write the change in coordinates
between the physical image frame and the normalized one as a planar affine trans-
formation:

a —acotf wug

IS

p=Kp, where p=|wv and K[ o .6 Vo
1 sin 6
0 0 1
Putting it all together, we obtain
1 def
p=-MP, where M= (K 0) (5.2.5)
z

and P denotes this time the homogeneous coordinate vector of P in the camera
coordinate system: homogeneous coordinates have allowed us to represent the per-
spective projection mapping by the 3 x 4 matrix M.

Note that the physical size of the pixels and the skew are always fixed for a
given camera and frame grabber, and they can in principle be measured during
manufacturing (this information may of course not be available, in the case of stock
film footage for example, or when the frame grabber’s digitization rate is unknown
and different from 1). For zoom lenses, the focal length and possibly the optical
center may vary with time. As mentioned earlier, simply changing the focus of
the camera will also affect the magnification since it will change the lens-to-retina
distance, but we will ignore this effect in the sequel.
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5.2.2 Extrinsic Parameters

We consider in this section the case where the camera frame (C) is distinct from
the world frame (). Noting that

wp
P=(§r “ow) ()
and substituting in (5.2.5) yields
1
p=-MP, where M=K(R t), (5.2.6)
z

R = §,R is a rotation matrix, t = “Ow is a translation vector, and P denotes the
vector of homogeneous coordinates of P in the frame (W).

We will often write the general perspective projection equation as zp = MP,
or even, slightly abusing the notation, as p = MP, with the convention that a
vector of homogeneous coordinates is only defined up to scale, and the actual image
coordinates of the image point p being defined as u/w and v/w if p = (u,v,w)T. In
this setting, the matrix M is also defined up to scale, with 11 free coefficients. Note
that there are 5 intrinsic parameters («, 3, ug, vo and 6) and 6 extrinsic parameters
(the three angles defining R and the three coordinates of ¢), which matches the
number of independent coefficients of M.

The matrix M can of course be rewritten explicitly as a function of the intrinsic
and extrinsic parameters of the camera, namely

arl —acotOr +ugrl at, — acotOt, + uot,
B B
M= sinﬂrg + ’U()'T'g mty + ’U()tz s (527)
'I”g tz

where rT, rZ and r denote the three rows of the matrix R and t,, t,, and ¢, are the
coordinates of the vector ¢ in the frame attached to the camera. If R is written as
the product of three elementary rotations, the vectors r; (i = 1,2,3) can of course
be written explicitly in terms of the corresponding three angles.

It is worth noting that the matrix M determines the coordinate vector C' of the
camera’s optical center in the world coordinate system. Indeed, as shown in the

exercises, C verifies
o
M ( : ) 0.

(Intuitively this is rather obvious since the optical center is the only point whose
image is not uniquely defined.) In particular, if M = (A b) then C = —A~'b.
5.2.3 A Characterization of Perspective Projection Matrices

We say that a 3 x4 matrix that can be written (up to scale) as (5.2.6) or equivalently
(5.2.7) for some set of intrinsic and extrinsic parameters is a perspective projection
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matriz. It is of practical interest to put some restrictions on the intrinsic parameters
of a camera since, as noted earlier, some of these parameters will be fixed and may
be known. In particular, we will say that a 3 X 4 matrix is a zero-skew perspective
projection matriz when it can be rewritten (up to scale) as (5.2.7) with 0 = /2,
and that it is a perspective projection matrix with zero skew and unit aspect-ratio
when it can be rewritten (up to scale) as (5.2.7) with 6 = 7/2 and « = 3. Of course,
a camera with known non-zero skew and non-unit aspect-ratio can be transformed
into a camera with zero skew and unit aspect-ratio by an appropriate change of
image coordinates. Are arbitrary 3 x 4 matrices perspective projection matrices?
The following theorem answers this question.

Theorem 2: Let M = (A b) be a 3 x 4 matriz and let al (i = 1,2,3) denote
the rows of the matriz A formed by the three leftmost columns of M.

o A necessary and sufficient condition for M to be a perspective projection ma-
triz is that Det(A) # 0.

o A necessary and sufficient condition for M to be a zero-skew perspective pro-
jection matriz is that Det(A) # 0 and

(0,1 X 0,3) . (0,2 X 0,3) =0.

o A necessary and sufficient condition for M to be a perspective projection ma-
triz with zero skew and unit aspect-ratio is that Det(A) # 0 and

{ (0,1 X 0,3) . (0,2 X 0,3) = 0,
(0,1 X 0,3) . (0,1 X 0,3) = (0,2 X 0,3) . (0,2 X 0,3).

The conditions of the theorem are clearly necessary: according to (5.2.6), we
have A = KR, thus the determinants of A and K are the same and A is non-singular.
Further, a simple calculation shows that the rows of KR in (5.2.7) satisfy the
conditions of the theorem under the various assumptions imposed by its statement.
Proofs that they are also sufficient can be found in [?; ?] and in the exercises. Note
that when the conditions of the theorem are satisfied, there are exactly four sets of
intrinsic and extrinsic parameters satisfying (5.2.7), see [?; 7] and Section 5.3.1.

5.3 Calibration Methods

This section introduces various techniques for estimating the intrinsic and extrinsic
parameters of a camera, a process known as geometric camera calibration. Specif-
ically, suppose that a camera observes n geometric features such as points or lines
with known positions in some fixed world coordinate system. This section addresses
the problem of (1) computing the perspective projection matrix M associated with
the camera in this coordinate system, then (2) computing the intrinsic and extrinsic
parameters of the camera from this matrix. Once a camera has been calibrated, it



134 Analytical Image Features Chapter 5

is possible to associate with any image point a well-defined ray passing through this
point and the camera’s optical center, and to conduct quantitative three-dimensional
measurements from digitized pictures [?].

5.3.1 A Linear Approach to Camera Calibration

Let us first assume that our camera has non-zero skew. According to Theorem 2, the
matrix M is not singular but otherwise arbitrary. If the 4-vectors P; (i =1,...,n)
and mf (j = 1,2, 3) denote respectively the homogeneous coordinate vectors of the
points P; and the rows of the matrix M, we can express the position of the image
of each point as

_mqi - Py

uz_ms'Pz’ (ml uim?)) P; =0,
mQ-Pz (mg—vimg) PZZO

v; =

Collecting these constraints for all points yields a system of 2n homogeneous
linear equations in the twelve coefficients of the matrix M, namely,

P’{ OT —’LL1P’{

def OT P’{ —’UlP’{ def mi
Pm =0, where P=< | ... ... and m= [ my | =0.
pT of  —u,PT ms

o PY —y,PT

(5.3.1)
When n > 6, the system of equations (5.3.1) is in general overconstrained, i.e.,
there is no non-zero vector m € IR*? that satisfies exactly these equations. On the
other hand, the zero vector is always a solution. The linear least-squares literature,
as briefly discussed in the insert next page, provides methods for computing the
value of the unit vector m that minimizes |Pm|?. In particular, estimating the vec-
tor m (hence the matrix M) reduces to computing the eigenvectors and eigenvalues

of the 12 x 12 matrix PTP.
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Technique: Linear Least Squares Methods

Let us consider a system of n linear equations in p unknowns:

a11T1 + a22 + ... + a1pTp = b1 a1 @12 ... Qip T1 b1
a21T1 + G222 + ... + G2pTp = b2 o | 02 a2 ... ax x2 | | be
an1Z1 + an2Z2 + . .. + AnpTp = by anl Ap2 ... Qnp Tp bn,
(5.3.2)
Let A denote the n x p matrix with coefficients a;;, and let @ = (z1,...,2,)" and

b= (bi,...,b,)T. We know from linear algebra that (in general):

1. when n < p, there exists an (p — n)-dimensional vector space of vectors x that are
solutions of (5.3.2);

2. when n = p, there is a unique solution;
3. when n > p, there is no solution.

This statement is true when the rank of A is maximal, i.e., equal to min(n,p) (this is
what we mean by “in general”). When the rank is lower, there exists a higher-dimensional
set of solutions.

Here we will consider the overconstrained case n > p. Since there is no exact solution
in this case, we will content ourselves with finding the vector  that minimizes the error

measure
n

FE d:Ef Z(ai1$1 + ...+ QipTp — b1)2 = |.A:13 — b|2.
=1
FE is proportional to the mean-squared error associated with the equations, hence the
name of least-squares methods given to techniques for minimizing F.
Now, we can write E = |eTe|, where e 4" Az —b. To find the vector x minimizing
E, we write that the derivatives of this error measure with respect to the coordinates x;
(:=1,...,p) of @ must be zero, i.e.,

OF _,0e 0 for i=1
= e = or i=1,...,p.
8mi 8m1 p
But if the vectors ¢; (¢ = 1,...,p) denote the columns of A, we have
Oe _ 9 ( ) B Y B (w1e1+... + b)
= c1 ... ¢ ... ] =b| = r1€1 + ...+ xpCy — b) = c;.
8mi 8m1 ! P z 8m1 1= e
P

In particular, the constraint E/dz; = 0 implies that ¢ (Ax — b) = 0, and stacking
the constraints associated with the p coordinates of & yields

cf

0=|...|(Az—b) = A"(Az — b) <= A" Az = A"b.
T

Cp

The equations in this linear system are called the normal equations. When A has
maximal rank p, the matrix AT A is easily shown to be invertible, and the solution of the
least-squares problem can be written as

x=Ab where A" [(ATA4)71AT].
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The p x p matrix A" is called the pseudoinverse of A. It coincides with A~! when the
matrix A is square and non-singular. Linear least-squares problems can be solved without
explicitly computing the pseudoinverse, using for example QR decomposition or singular
value decomposition techniques, which are known to be better behaved numerically.

Let us now consider a slightly different problem, where we have a system of n homo-
geneous linear equations in p unknowns:

a11T1 + @122 + ... + A1pTp = 0 ail a2 ... Gip T1
2121 + a22x2 + ... +aspxy =0 a1 @22 ... a2 T2

PP & P =0. (5.3.3)
An1Z1 + @n2Z2 + ... + GnpTp =0 anl Qn2 ... Qnp Tp

As before, we denote by A the n X p matrix with coefficients a;;, and define & =
(x1,...,2,)T. When n = p and the matrix A is non-singular, the system (5.3.3) admits
as a unique solution & = 0. Conversely, when n > p, non-trivial (i.e., non-zero) solutions
may only exist when A is singular.

In this context, minimizing the error measure

n

EE | Ax)* = ai 2]’

=1

only makes sense when some constraint is imposed on the solution x since = 0 yields
the zero global minimum of E.

Since, by homogeneity, E(Ax) = A?E(z), it is reasonable to minimize E under the
constraint |z|> = 1, which avoids the trivial solution and forces the uniqueness of the
result.

Let us have another look at the error E = &” (AT A)x. The p x p matrix AT A is
symmetric positive semidefinite, and it can be diagonalized in an orthonormal basis of
eigenvectors e; (1 = 1,...,p) associated with the eigenvalues 0 < A\ < ... < \,. Now we
can write any unit vector @ as ® = p1e1 + ...+ ppep for some p; (¢ =1,...,p) such that
ui+ ...+ u2 =1 We have

E(x)—E(e)) =" (AT Axz—el (AT A)er = \ipi+.. Adppia—A1 > A (i App—1) = 0.

It follows that the unit vector & minimizing the least-squares error F is the eigenvector
e; associated with the minimum eigenvalue of AT A and the corresponding minimum value
of Eis A1.

Various methods are available for computing the eigenvectors and eigenvalues of a
symmetric matrix, including Jacobi transformations and reduction to tridiagonal form
followed by QR decomposition.

It should finally be noted that least-squares minimization admits a statistical inter-
pretation in terms of maximum likelihood when the coordinates of the data points are
modelled as random variables obeying a normal distribution. We will come back to this
interpretation in a latter chapter.
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In the noise-free case, there will be a unique solution for the matrix M as long
at the rank of the matrix P is equal to its maximum value of 11 (the matrix P
is singular since by construction Pm = 0). A degenerate point configuration will
correspond to the case where the matrix has rank 10 or less, or equivalently the
nullspace of the matrix has dimension two or greater. Let us consider a vector I
in the nullspace and introduce the vectors formed by successive quadruples of its
coordinates, i.e., A= (11,12,13,14)T, H = (l5,lﬁ,l7,lg)T and v = (lg,llo,lll,llg)T.
Since 1 belongs to the nullspace we have

pT o7 —u,PT PTXx —u, PTv
o” Pf —lef A Pf/,b—lefu

(=)
I
3
I
S
I

pT o —y,PT P —u,PTy
o’ pPT _y,PT Py —v,PTy

or, equivalently, taking into account the values of u; and v; yields

T
P,
PIA--ipTy, g,
m; P for i=1 n
PTM_@PTVZO o
¢ mng ¢ ’

We finally obtain after clearing the denominators and rearranging the terms:

T T T\p. _
{Pi (maA” —mw” )P =0, i=1,...,n. (5.3.4)

P (msp” — myT)P; =0,

As expected, the vector I associated with A = my, p = mg and v = mg3 is a
solution of these equations. Are there other solutions?

Let us first consider the case where the points P; (i = 1,...,n) all lie in some
plane II, or equivalently, IT- P; = 0 for some 4-vector II. Clearly, choosing (A, u, v)
equal to (I1, 0, 0), (0,II,0), or (0,0, II), or any linear combination of these vectors
will yield a solution of (5.3.4). In other words, the nullspace of P contains the
four-dimensional vector space spanned by these vectors and m. In practice, this
means that coplanar points should not be used in calibration tasks.

In general, for a given non-zero value of the vector I, the points P; that satisfy
(5.3.4) must lie on the curve where the two quadric surfaces defined by the corre-
sponding equations intersect. A closer look at (5.3.4) reveals that the straight line
where the planes defined by m3-P = 0 and v- P = 0 intersect lies on both quadrics.
It can be shown that the intersection curve of these two surfaces consists of this
line and of a twisted cubic curve I' passing through the origin [?]. A twisted cubic
is entirely determined by six points lying on it, and it follows that seven points
chosen at random will not fall on I'. Since, in addition, this curve passes through
the origin, choosing n > 6 random points will in general guarantee that the matrix
P has rank 11 and that the projection matrix can be recovered in a unique fashion.
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Once the projection matrix M has been estimated, (5.2.7) can be used to recover
the intrinsic and extrinsic parameters as follows. If we write as before M = (A b),

we have
oT arf —acot OrL + uor?
3 p
T T T
a = —— T3 +vr
P9 sing 2 3
T

a

3 vl

In particular, using the fact that the rows of a rotation matrix have unit length
and are perpendicular to each other yields immediately

p= E/|0,3|,
T3 = pas,
5.3.5
ug = p*(a1 - as), (5:3.5)
vo = p*(az - az),
where ¢ = F1.
In addition, we have
p*(a; x az) = —ary — acotfry, Pla; x az| = |.a—|,
sin 6
P (an % a3) = - and 15 (5.3.6)
sinf "’ p2|a2 X 0/3| =
sin 6

since 6 is always in the neighborhood of 7/2 with a positive sine, and it follows that

cosf = —eu€ (a1 x as) - (as x @)
|0,1 X 0,3”0,2 X 0,3| (537)

a = gyp?la; x az|sind,
B = eyp?laz x as|sinb,

where €, = a/|a| and &, = 3/|5].
We can now compute 71 and r2 from the second equation in (5.3.6) as

1

(a2 xas) = 1= g7 (@2 X a3); (5.3.8)

_ p*sinf

T = 6

T2 =73 X7T7.

Note that there are four possible choices for the matrix R depending on the

values of € and ¢,.
Finally, the translation parameters are recovered by writing

aty — acot Oty + uopt.
3 br
P ——ty + Vot =1 b2
sin 6 b
3

122
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5.3.2 Taking Radial Distortion into Account

We have assumed so far that our camera was equipped with a perfect lens. As shown
in Chapter 7?7, real lenses suffer from a number of aberrations. In this section we
follow Tsai [?] and show how to account for radial distortion, a type of aberration
that depends on the distance between the imaged point and the optical axis and
can be modelled as

1A 0 0
p=[ 0 1/n o|MmpP,
0 0 1
where ) is a polynomial function of #2 % 42 4+ 62, i.e., A = 1 + 172 + kot + .. ..

Geometrically, radial distortion changes the distance between the image center
and the image point p but it does not affect the direction of the vector joining these
two points. This is called the radial alignment constraint by Tsai, and it can be
expressed algebraically by writing

ml-P

u mg'P
A(’L)): my- P :>v(m1-P)—u(m2-P):

mg'P

This is a linear constraint on the vectors m; and my. Given n fiducial points
we obtain n equations in the eight coeflicients of the vectors m; and ms, namely

U1 P’{ —Ul P’{
On =0, where O def . . and n= (m1 > . (5.3.9)
vnPZ —unPg m2

Note the similarity with the previous case. When n > 8, the system of equations
(5.3.9) is in general overconstrained, and a solution with unit norm can be found
using linear least squares.

We can as before determine the degenerate point configurations for which the
vectors mj and ms will not be uniquely determined. The matrix Q has at most
rank 7 since the vector m is in its nullspace. More generally, let us consider a vector
I in the nullspace and the vectors XA = (I, l2,13,14)T and p = (I5, ls, l7,13)T’; we have

’01P’{ —’LL1P’{ A ’L)lPI{A—’UqP’{,U,
o—ai=| ... .. ( )-
v, PT —u, PT ® Vo PTA —u, P p
Taking into account the values of u; and v; yields, after rearranging the terms
and clearing the denominators,

PTmuAT —mpTYP; =0 for i=1,...,n. (5.3.10)

The vector I associated with A = m4 and p = m is of course a solution of these
equations. When the points P; (i = 1, ...,n) all lie in some plane II, or equivalently,



140 Analytical Image Features Chapter 5

IT - P; = 0 for some 4-vector IT, we can choose (A, u) equal to (IL,0), (0,II), or
any linear combination of these two vectors, and construct a solution of (5.3.10).
The nullspace of P contains the three-dimensional vector space spanned by these
vectors and [. Thus, as before, coplanar points should not be used in calibration.

More generally, for a given value of A and p, the points P; will form a degenerate
configuration when they lie on the quadric surface defined by (5.3.10). Note that
this surface contains the four straight lines defined by A-P=pu-P =0, A- P =
mi1-P=0,u-P=my-P=0and m;-P =mgy-P =0, and it must therefore
be either two planes, a cone, a hyperboloid of one sheet or a hyperbolic paraboloid.
In any case, for a large enough number of points in general position, there will be
a unique solution to our least-squares problem.

Once m; and my have been estimated, we can as before define the corresponding
values of a1, as, by and by and we obtain the constraints

T arf —acot OrL + uer?
a
1
p( T> = 6 T T
a —17r; +UT
2 sin@ 2 3

In this setting, there are more unknowns (nine, i.e., the three coefficients of the
rotation matrix, the two magnifications a and 3, the coordinates ug and vy of the
image center, the skew angle 6 and the scale factor p) than equations (six scalar
constraints corresponding to the two vector equations above).

As noted in [?], however, when the principal point is known we can take ug =
vg = 0 and p = 1, and we obtain

o
sin@’
18l

sinf’

la1| =

las| =

In particular we have

ai - as
cosf = —eyep——,
la:||az]
a = gylaq|sind,

B = e,|az|sino,

where as before €, = a/|a| and ¢, = 3/|8]. It is now easy to compute 71, ro and
r3 = 1 X To, then, as before, the translation components.

Once the intrinsic and extrinsic parameters have been estimated, the radial
distortion coefficients can themselves be recovered using linear least squares and
the radial alignment constraint.

5.3.3 Using Straight Lines for Calibration

Points are not the only geometric image features that constrain the camera param-
eters. We characterize in this section the projection of straight lines into an image,
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and show how they can be used, in principle at least, to perform camera calibration.
We must first recall some elementary notions of line geometry. Let us introduce the
operator “A” that associates with two vectors @ and b in R* their ezterior product
defined as the 6-vector

a1by — azb;
a1b3 — azb;
aAb déf a1b4 — (L4b1
azbz — azbo
azby — asbo
aszbs — asbs

Note the similarity with the cross-product operator that also associates with
two vectors (3-vectors of course, instead of 4-vectors) a and b the vector formed by
all the 2 x 2 minors of the matrix (a, b).

Let us assume a fixed coordinate system. Geometrically, the exterior product
associates with the homogeneous coordinate vectors of two points A and B in IE® the
vector A = (A1, Ag, Az, Ay, As, Ag)T of Pliicker coordinates of the line A joining
them. To gain a better intuitive understanding of the situation, let us denote by
O the origin of the coordinate system and by H its projection onto A (Figure 5.9),
and let us identify the vectors OA and OB with their non-homogeneous coordinate
vectors. It is easy to verify analytically (see exercises) that AB = —(As, As, Ag)T
and OA x OB = OH x AB = (A4, —Ag, A7)T.

o

Figure 5.9. Geometric definition of line Plicker coordinates. In this figure u =
(Ag,A5,A6)T and v = (A4, —AQ,Al)T.

In turn, this implies that: (1) changing the position of A (or B) along A only
changes the overall scale of A, so Pliicker coordinates are homogeneous coordinates
only defined up to scale but otherwise independent from the choice of the points
A and B along A; and (2) the Pliicker coordinates of a line obey the quadratic
constraint

A1Ag — AsAs + AsAy = 0. (5311)
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It is also possible to define an inner product on the set of all lines by the formula

def

(AJA") EALAL + AgA) — AsAl — AsA) + AsAL + AgAL.

Clearly, a 6-vector A represents a line if and only if (A|A) = 0, and it can also
be shown that a necessary and sufficient condition for two lines to be coplanar is
that (AJA") = 0.

Let us now follow Faugeras and Papadopoulo [?] and show that the mapping
between a line with Pliicker coordinate vector A and its image § with homogeneous
coordinates & can be represented by
)T

1, (5.3.12)
)T

(mg AN ms
(m3 N 1my
(m1 A\ mo

p6 = MA, where M &

mT, mI and mI denote as before the rows of M and p is an appropriate scale

factor.

To prove this relation, let us consider a line A joining two points A and B, and
denote by a and b the projections of these two points, with homogeneous coordinates
a = Ma and b = Mb. The points a and b lie on J, thus § -a = 6 - b = 0. Hence,
d (as an element of R?) is orthogonal to both MA and MB and must be parallel
to their cross product. Thus we have

(m2 - A)(ms3 - B) — (m3 - A)(m2 - B)
pd = (MA) x (MB) = | (m3-A)(m;-B)—(
(my - A)(my - B) — (my - A)(m, - B)

for some scale factor p.
Now, as shown in the exercises, the following identity holds for any 4-vectors a,
b, c and d:
(anb)-(end)=(a-c)(b-d)—(a-d)b-c).

Applying this identity to (5.3.13) yields

(mg/\mg)(A/\B)
pd=1| (m3gAmy)-(AANB) |,
(ml/\mg)(A/\B)

and the result follows immediately.

The 3 x 6 matrix M is only defined up to scale with 17 coefficients. These
parameters can be estimated as before via linear least squares (ignoring of course
the non-linear constraints imposed by the fact that the rows of M are Pliicker co-
ordinates) when n > 9 (eliminating p in (5.3.12) yields two independent constraints
per line).

Once M is known, we can recover M as well through linear least squares. Indeed,
it is easily shown (see exercises) that

M = (e1 X €3,¢1 X €3,€1 X €4,Cp X €C3,C2 X C4,C3 X C4),
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where the vectors ¢; (i = 1,...,4) are the columns of M. We can thus estimate
the vectors ¢; (i = 1,2, 3,4) using constraints such as

~T
Ci2

¢i3 |1 =0, ¢2-c3=2¢ca3-c1,

~T

Ci4
where €;; denotes the values of ¢; x ¢; (1 <14 < j < 4) stored in the columns of
M. Collecting the 20 different equations of this type obtained by permuting the
appropriate subscripts yields a systems of linear equations in the coordinates of the
vectors ¢; that can be solved once again using linear least squares (at most 11 of
these 20 equations are of course linearly independent in the noise-free case).

We leave it to the reader to characterize the degenerate line configurations for

which this method fails.

5.3.4 Analytical Photogrammetry

We present in this section a non-linear approach to camera calibration that takes
into account all the constraints associated with a camera. This approach is borrowed
from photogrammetry, an engineering field whose aim is to recover quantitative
geometric information from one or several pictures, with applications in cartography,
military intelligence, city planning, etc. [?; ?]. For many years, photogrammetry
relied on a combination of geometric, optical, and mechanical methods to recover
three-dimensional information from pictures, but the advent of computers has made
a purely computational approach to this problem feasible. This is the domain of
analytical photogrammetry, where the intrinsic parameters of a camera define its
interior orientation, while the extrinsinc parameters define its exterior orientation.
Let us write again the perspective projection equation as

ml-P
'I’ng'P7
mQ-P
mg'P'

v =

Let £ denote the vector formed by all intrinsic and extrinsic parameters of a
camera. We can explicitly parameterize the projection matrix M and its columns
m! (i = 1,2,3) by the vector £ as in (5.2.7). In this setting, the problem of
calibrating the camera reduces to minimizing the least-squares error

- my(§) - P, my(€) - P,
E(€) = ;[(uz - m) + (v; — m) ] (5.3.14)

with respect to the coefficients &.

Contrary to the cases studied so far, the dependency of each error term on the
unknown parameters £ is not linear. Instead, this dependency involves a combina-
tion of polynomial and trigonometric functions, and minimizing the overall error
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measure involves the use of non-linear least squares algorithms, as briefly discussed
in the insert next page. These methods rely on the derivatives of the error func-
tion with respect to the unknown parameters to linearize the steps of the iterative
minimization process. Non-linear least-squares techniques provide the means of
computing a local minimum of F, and, when started with an appropriate initial
guess, they will yield the global minimum as well.
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Technique: Non-Linear Least Squares Methods

Let us consider a system of n non-linear equations in p unknowns:

fi(z1, z2,. .., 2p) = b1,
fo(z1, z2,. .., 2p) = b2, (5.3.15)
:}L‘;L.(thl'z, ceyTp) = bp,
where f; denotes, for ¢ = 1,...,n, a differentiable function from IR? to IR. When
fi(z1,z2,...,2p) = @i1®1 + @22 + . .. + aipTp,

we have of course exactly the same situation as in (5.3.2). In the general setting of non-
linear least squares, the functions f; can be arbitrarily non-linear. This time, we have (in
general):

1. when n < p, there exists an (p — n)-dimensional subspace of IRP formed by the
vectors x that are solutions of (5.3.15);

2. when n = p, there exists a finite set of solutions;
3. when n > p, there is no solution.

We have emphasized in this statement the main differences with the linear case: the
dimension of the solution set will still be p — n (in general) in the underconstrained case,
but this set will not form a vector space anymore. Its structure will depend on the nature
of the functions f;. Likewise, there will be (in general) a finite number of solutions instead
of a unique one in the case n = p. This time we will not go into the details of what it means
for a family of functions f; (i = 1,...,n) to satisfy the “general” conditions under which
the above statement is true. Linear and polynomial functions, for example, do satisfy
these conditions.

From now on we will consider the overconstrained case n > p and minimize the error

n

E(x) =) (filx) - bi)”.

=1

The error function E : R? — R' may have many local minima, but it has (in general)
a single global minimum. Except for the case of polynomial functions [?], there is unfor-
tunately no numerical method guaranteed to find this global minimum. Effective iterative
methods (e.g., gradient descent) do exist for finding a local minimum of a non-linear func-
tion, and it can be hoped that these methods will find the global minimum when they
start from a reasonable initial guess. We will give in the remaining of this note such a
method specialized for non-linear least squares.

The idea is to linearize the process: indeed, any smooth function looks like its tangent
in a (small) neighborhood of any of its points. Formally, this can be rewritten using a
first-order Taylor expansion as

fi(x + dx) = fi(x) +6x1%(m) + ...+ +6xp%(m) + O(|6:13|2) ~ fi(x) + Vfi(z) - dz,

(5.3.16)
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Oz1’ " Oz
neglected the second-order term O(|dz|?).

In the context of an iterative process, consider the problem of minimizing E(x + dx)
with respect to dx for a given value of . Substituting (5.3.16) into (5.3.15) yields

where V f;(x) & ( is called the gradient of f; at the point @, and we have

n

B(e +b6z) = ) _(fi(w) + Vii@) 62 — )" = |To — cf’,

where
def(Vﬁ(@f) %(m) i—f(m) def<b1> (fl(m)>
J = = and ¢ = — .
V fu() iﬁ(m) iﬁ(m) bn fn(2)

At this point we are back in the linear least-squares setting, and the adjustment dx
can be computed as dx = J'e. In practice the process is started with some initial
guess xo, and a few iterations of the form x;+1 = x; + dx are sufficient to find a local
(and hopefully global) minimum of E. Variants of this method include the Levenberg-
Marquardt algorithm, popular in computer vision circles.
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In our setting, we must compute the derivatives of the image coordinates with
respect to the camera parameters. If p = MP and p = (p,q,7)7, we have

ou_ 9y _10p_por_ 10 . p_ 0. .
9~ 0E\r) “roE wmog riag ) mugg(ms P
v 0,q, 10¢g qor 10 0
8_6_8_6(;)_;8_6—7_28_6_;(8_6(m2 P) Uag(m?) pP)),
which is easily rewritten as

Ju

o _1(1 0 —u %P

o | Trlo 1 —v) e

23

Note that u, v, » and P depend on the image considered, but that M /9
only depends on the intrinsic and extrinsic parameters of the camera. Note also
that this method requires an explicit parameterization of the matrix R. Such a
parameterization in terms of three elementary rotations about coordinate axes was
mentioned earlier. Many other parameterizations are possible as well (Euler angles,
matrix exponentials, quaternions, etc.), see [?; ?; ?] for discussions.

5.4 Notes

The book by Craig [?] offers a very good introduction to coordinate system rep-
resentations and kinematics. A thorough presentation of camera models and the
associated calibration methods can be found in the excellent book by Faugeras [?].
The calibration technique for taking radial distortion into account is adapted from
Tsai [?]. The line-based calibration technique is inspired by the characterization of
line projections in terms of the exterior product introduced by Faugeras and Pa-
padopoulo [?]. The book of Haralick and Shapiro [?] presents an excellent concise
introduction to analytical photogrammetry. The Manual of Photogrammetry is of
course the gold standard, and newcomers to this field (like the authors of this book)
will probably find the ingenious mechanisms and rigorous methods described in the
various editions of this book fascinating [?; ?]. We will come back to photogram-
metry in the context of multiple images in Chapter 11.

5.5 Assignments

Exercises

1. Write formulas for the matrices AR when (B) is deduced from (A) via a
rotation of angle 6 about the axes 24, j 4 and k4 respectively.

2. Show that rotation matrices are characterized by the following properties:
(1) the inverse of a rotation matrix is equal to its transpose, and (2) its
determinant is equal to 1.
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3. Show that the set of matrices associated with rigid transformations and equipped
with the matrix product forms a group.

4. Let AT denote the matrix associated with a rigid transformation 7 in the
coordinate system (A), with

A A
ar (AR AT
T—(O 1).

Construct the matrix 27 associated with 7 in the coordinate system (B) as
a function of A7 and the rigid transformation separating (A4) and (B).

5. Show that if the coordinate system (B) is obtained by applying to the coordi-
nate system (A) the transformation associated with the 4 x 4 matrix 7, then
Bp=T1-14p.

6. Show that the rotation of angle § about the k axis of the frame (F') can be
represented by
cos —sinf 0
FP'=R | sinf cosd 0| P.
0 0 1

7. Show that the change of coordinates associated with a rigid transformation
preserves distances and angles.

8. Show that when the camera coordinate system is skewed and the angle 6
between the two image axes is not equal to 90 degrees, then (5.2.3) transforms
into (5.2.4).

9. Let C denote the coordinate vector of the optical center of a camera in some
reference frame, and let M denote the corresponding perspective projection

matrix. Show that
M (f) —o.

10. Show that the conditions of Theorem 2 are necessary.

11. Show that the conditions of Theorem 2 are sufficient. Note that the statement
of this theorem is a bit different from the corresponding theorems in [?; ?],
where the condition Det(A) # 0 is replaced by as # 0. But of course Det(.A) #
0 implies a3 # 0.

12. Consider some coordinate system and the Pliicker coordinate vector A of the
line A passing through the points A and B. Show that if O denotes the
origin of the coordinate system and H denotes its projection onto A, then
ﬁ: —(Ag,Ag,,Aﬁ) and Oj X @ = O? X E = (A4, —AQ,Al)T.
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13. Show analytically that the following identity holds for any 4-vectors a, b, c
and d:
(anb)-(end)=(a-c)(b-d)—(a-d)b-c).

14. Show that

M= (e1%xeg, €1 XC3,€1XCy, CaXC3,CaXeCy,c3%XCy) where M = (c1,co,c3,¢4).
Programming Assignments

Note: the assignments below require routines for solving square and overdetermined
linear systems. An extensive set of such routines is available in MATLAB as well as
in public-domain libraries such as LINPACK and LAPACK that can be downloaded
from the Netlib repository (http://www.netlib.org/). Data for these assignments
will be available in the CD companion to this book.

1. Use linear least-squares to fit a plane to n data points (z;, yi, 2;)” (i = 1,...,n)
in R3.

2. Use linear least-squares to fit a conic section defined by
azx® +bry +cy? +drtey+ f=0

to n data points (z;, ;)" (i =1,...,n) in R?.



Chapter 6

AN INTRODUCTION TO
PROBABILITY

As the previous chapters have illustrated, it is often quite easy to come up with
physical models that determine the effects that result from various causes — we
know how image intensity is determined, for example. The difficulty is that effects
could have come from various causes and we would like to know which — for exam-
ple, is the image dark because the light level is low, or because the surface has low
albedo? Ideally, we should like to take our measurements and determine a reason-
able description of the world that generated them. Accounting for uncertainty is a
crucial component of this process, because of the ambiguity of our measurements.
This process of accountancy needs to take into account reasonable preferences about
the state of the world — for example, it is less common to see very dark surfaces
under very bright lights than it is to see a range of albedoes under a reasonably
bright light.

Probability is the proper mechanism for accounting for uncertainty. Axiomatic
probability theory is gloriously complicated, and we don’t attempt to derive the
ideas in detail. Instead, this chapter will first review the basic ideas of probability.
We then describe techniques for building probabilistic models and for extracting
information from a probabilistic model, all in the context of quite simple examples.
In chapter 7?7, we show some substantial examples of probabilistic methods; there
are other examples scattered about the text by topic.

Discussions of probability are often bogged down with waffle about what prob-
ability means, a topic that has attracted a spectacular quantity of text. Instead,
we will discuss probability as a modelling technique with certain formal, abstract
properties — this means we can dodge the question of what the ideas mean and
concentrate on the far more interesting question of what they can do for us.

We will develop probability theory in discrete spaces first, because it is possible
to demonstrate the underpinning notions without much notation. We then pass to
continuous spaces.

150
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6.1 Probability in Discrete Spaces

Generally, a probability model is used to compare various kinds of experimental
outcome that can be distinguished. These outcomes are usually called events. Now
if it is possible to tell whether an event has occurred, it is possible to tell if it has not
occurred, too. Furthermore, if it is possible to tell that two events have occurred
independently, then it is possible to tell if they have occurred simultaneously.

This motivates a formal structure. We take a discrete space, D, which could be
infinite and which represents the world in which experiments occur. Now construct
a collection of subsets of D, which we shall call F, with the following properties:

e The empty set is in F and so is D.
e Closure under intersection: if Sy € F and Sp € F, then §1 NSy € F.
o Closure under complements: if Sy € F then S =D — S; € F.

The elements of F correspond to the events. Note that we can we can tell whether
any logical combinations of events has occurred, too, because a logical combination
of events corresponds to set unions, negations or intersections.

Given a coin that is flipped once,
D = {heads, tails}
There are only two possible sets of events in this case:
{0, D}
(which implies we flipped the coin, but can’t tell what happened!) and

{0, D, {heads}, {tails}}

Example 6.1: The space of events for a single toss of a coin.

6.1.1 Probability: the P-function

Now we construct a function P, which takes elements of F to the unit interval. We
require that P has some important properties:

e P is defined for every element of F

e P(B)=0

e P(D)=1

o for Aec Fand Be F, P(AUB) = P(A)+ P(B)— P(ANB)
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Given two coins that are flipped,
D = {hh, ht, tt, th}

There are rather more possible sets of events in this case. One useful one would
be

®7 D7
{bh}, {nt}, {et}, {th},
F= {hh,ht}, {hh, th}, {hh, tt}, {ht, th},
{ht, tt}, {th, tt}, {hh, ht,th}, {hh, ht,tt},

{hh, th,tt}, {ht,th,tt}}

which would correspond to all possible cases. Another (perhaps less useful)
structure would be:

F = {0, D, {hh,ht}, {th, tt}}}

which implies that we cannot measure the state of the second coin

Example 6.2: Two possible spaces of events for a single flip each of two coins.

which we call the aziomatic properties of probability. Note that 0 < P(A) < 1 for all
A € F, because the function takes elements of F to the unit interval. We call the
collection of D, P and F a probability model. We call P(A) the probability
of the event A — because we are still talking about formal structures, there
is absolutely no reason to discuss what this means; it’s just a name. Rigorously
justifying the properties of P is somewhat tricky — Jaynes’ book ( []) is one place
to start, as is []. It can be helpful to think of P as a function that measures the size
of a subset of D — the whole of D has size one, and the size of the union of two
disjoint sets is the sum of their sizes.

In example 1, for the first structure on D, there is only one possible choice of
P; for the second, there is a one parameter family of choices, we could choose
P(heads) to be an arbitrary number in the unit interval, and the choice of
P(tails) follows.

Example 6.3: The possible P functions for the flip of a single coin.
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In example 2, there is a three-parameter family of choices for P in the case of
the first event structure shown in that example — we can choose P(hh), P(ht)
and P(th), and all other values will be given by the axioms. For the second
event structure in that example, P is the same as that for a single coin (because
we can’t tell the state of one coin).

Example 6.4: The P functions for two coins, each flipped once.

6.1.2 Conditional Probability

If we have some element A of F where P(A) # 0 — and this constraint is important
— then the collection of sets

Fa={unAlue F}

has the same properties as F. Furthermore, the function with domain F 4

(where C € F4) also satisfies the axiomatic properties of probability on its domain.
We call this function the conditional probability of C, given A; it is usually
written as P(C|A). If we adopt the metaphor that P measures the size of a set,
then the conditional probability measures the size of the set C' N A relative to A.
Notice that

P(AN B) = P(A|B)P(B) = P(B|A)P(A)

an important fact that you should memorize.

Assume that we have a collection of n sets A;, such that A; N A, = 0 for every
j # k and A = |J; A;. The analogy between probability and size motivates the
result that

n

P(B) =" P(B|A)P(A))

=1

a fact well worth remembering.

6.1.3 Choosing P

We have a formal structure — to use it, we need to choose values of P that have
useful semantics. There are a variety of ways of doing this, and it is essential to
understand that there is no canonical choice. The choice of P is an essential part of
the modelling process. A bad choice will lead to an unhelpful or misleading model,
and a good choice may lead to a very enlightening model. There are some strategies
that help in choosing P.
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Symmetry

Many problems have a form of symmetry that means we have no reason to distin-
guish between certain sets of events. In this case, it is natural to choose P to reflect
this fact.

Assume we have a single coin which we will flip, and we can tell the difference
between heads and tails. Then

F = {0, D, {heads}, {tails}}

is a reasonable model to adopt. Now this coin is symmetric — there is no reason
to distinguish between the heads side and the tails side from a mechanical
perspective. Furthermore, the operation of flipping it subjects it to mechanical
forces that do not favour one side over the other. In this case, we have no reason
to believe that there is any difference between the outcomes, so it is natural to
choose

P(heads) = P(tails)

Example 6.5: Choosing the P function for a single coin flip using symmetry.

Assume we have a die that we believe to be fair, in the sense that it has been
manufactured to have the symmetries of a cube. A symmetry argument allows
us to assume that the probability that each face comes up is equal because we
have no reason to prefer faces.

Example 6.6: Choosing the P function for a roll of a die using symmetry.

Independence

In many probability models, events do not depend on one another. This is reflected
in the conditional probability. If there is no interaction between events A and B,
then P(A|B) cannot depend on B. This means that P(A|B) = P(A), a property
known as independence. In turn, if A and B are independent, we have P(ANB) =
P(A|B)P(B) = P(A)P(B). This property is important, because it reduces the
number of parameters that must be chosen in building a probability model.

A more subtle version of this property is conditional independence. Formally,
A and B are conditionally independent given C' if

P(A, B,C) = P(A, B|C)P(C) = P(A|C)P(B|C)P(C)

Like independence, conditional independence simplifies modelling by (sometimes
substantially) reducing the number of parameters that must be chosen in construct-
ing a model.
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We adopt the first of the two event structures given for the two coins in exam-
ple 2 (this is where we can tell the state of both coins). Now we assume that
neither coin knows the other’s intentions or outcome.

This assumption restricts our choice of probability model quite considerably
because it enforces a symmetry. Let us choose

P({hh,ht}) = p1p,
and
P({hh, th}) = pay,

Now let us consider conditional probabilities, in particular
P({th, ht}|{nh, th})

(which we could interpret as the probability that the first coin comes up heads
given the second coin came up heads). If the coins cannot communicate, then
this conditional probability should not depend on the conditioning set, which
means that

P({hh, ht}|{hh, th}) = P({hh, ht})

In this case, we know that
P(hh) = P({hh,ht}|{hh, th})P({hh, th}) = P({hh, ht})P({hh, th}) = p1ppan

Similar reasoning yields P(A) for all A € F, so that our assumption that the
two coins are independent means that there is now only a two parameter family
of probability models to choose from — one parameter describes the first coin,
the other describes the second.

Example 6.7: Choosing the P function for a single flip each of two coins using the
idea of independence.

Frequency:

Data reflecting the relative frequency of events can be easily converted into a form
that satisfies the axioms for P, as example 9 indicates.

An interpretation of probability as frequency is consistent, in the sense that
if we make repeated, independent trials of a probability model where P has been
allocated using frequency data, then the events with the highest probability —
which will be long sequences of outcomes — will be those that show the outcomes
with about the right frequency. Example 10 illustrates this effect for repeated flips
of a single coin.

Saying that the relative frequency of an event is f means that, in a very large
number of trials (say, N), we expect that the event occurs in about fN of those
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Both I and my neighbour have a lawn; each lawn has its own sprinkler system.
There are two reasons that my lawn could be wet in the morning — either it
rained in the night, or my sprinkler system came on. There is no reason to
believe that the neighbour’s sprinkler system comes on at the same times or on
the same days as mine does. Neither sprinkler system is smart enough to know
whether it has rained. Finally, if it rains, both lawns are guaranteed to get wet;
however, if the sprinkler system comes on, there is some probability that the
lawn will not get wet (perhaps a jammed nozzle).

A reasonable model has five binary variables (my lawn is wet or not; the neigh-
bour’s lawn is wet or not; my sprinkler came on or not; the neighbour’s sprinkler
came on or not; and it rained or not). D has 32 elements, and the event space is
too large to write out conveniently. If there was no independence in the model,
specifying P could require 31 parameters.

However, if I know whether it rained in the night, then the state of my lawn is
independent of the state of the neighbour’s lawn. Our joint probability function
is

P(W,W,,,S,5n,R) = P(W,S|R)P (W, Sn|R)P(R)

We know that P(W = true, S|R = true) = P(S) (this just says that if it rains,
the lawn is going to be wet); a similar observation applies to the neighbour’s
lawn. The rain and the sprinklers are independent and there is a symmetry —
both my neighbour’s lawn and mine behave in the same. This means that, in
total, we need only 5 parameters to specify this model.

Example 6.8: Simplifying a model using conditional independence: the case
rain, sprinklers and lawns.

of

Assume that, in the past, we have flipped the single coin described above many
times, and observed that for 51% of these flips it comes up heads, and for 49%
it comes up tails. We could choose

P(heads) = 0.51 and P(tails) = 0.49

This choice is a sensible choice, as example 10 indicates.

Example 6.9: Choosing a P function for a single coin flip using frequency infor-

mation.

trials. Now for large n, the expression

( fl > pP(1—p)"*
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Now consider a single coin that we flip many times, and where each flip is
independent of the other. We set up an event structure that does not reflect
the order in which the flips occur. For example, for two flips, we would have:

{0, D,hh, tt, {ht, th}, {hh, tt}, {hh, ht, th}, {tt,ht, tt}}

We assume that P(hh) = p?; a simple computation using the idea of inde-
pendence yields that P({ht,th}) = 2p(1 — p) and P(tt) = (1 — p)?. We can
generalise this result, to obtain

P(k heads and n — k tails in n flips) = ( fz > pF(1 —p)nk

Example 6.10: The probability of various frequencies in repeated coin flips

(which is what we obtained for the probability of a sequence of trials showing k heads

and n — k tails in example 10) has a substantial peak at p = % This peak gets very
narrow and extremely pronounced as n — oo. This effect is extremely important,

and is consistent with an interpretation of probability as relative frequency:

e firstly, because it means that we assign a high probability to long sequences
of coin flips where the event occurs with the “right” frequency

e and secondly, because the probability assigned to these long sequences can
also be interpreted as a frequency — essentially, this interpretation means
that long sequences where the events occur with the “right” frequency occur
far more often than other such sequences (see figure 6.1).

All this means that, if we choose a P function for a coin flip — or some other
experiment — on the basis of sufficiently good frequency data, then we are very
unlikely to see long sequences of coin flips — or repetitions of the experiment —
that do not show this frequency.

This interpretation of probability as frequency is widespread, and common. One
valuable advantage of the interpretation is that it simplifies estimating probabilities
for some sorts of models. For example, given a coin, one could obtain P(heads)
by flipping the coin many times and measuring the relative frequency with which
heads appear.

Subjective probability

It is not always possible to use frequencies to obtain probabilities. There are circum-
stances in which we would like to account for uncertainty but cannot meaningfully
speak about frequencies. For example, it is easy to talk about the probability it
will rain tomorrow, but hard to interpret this use of the term as a statement about
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Figure 6.1. We assume that a single flip of a coin has a probability 0.5 of coming up
heads. If we interpret probability as frequency, then long sequences of coin flips should
almost always have heads appearing about half the time. This plot shows the width of the
interval about 0.5 that contains 95% of the probability for various numbers of repeated
coin flips. Notice that as the sequence gets longer, the interval gets narrower — one is
very likely to observe a frequency of heads in the range [0.43,0.57] for 170 flips of a coin
of this kind.

frequency®. An alternative source of P is to regard probability as encoding degree
of belief. In this approach, which is usually known as sub jective probability, one
chooses P to reflect reasonable beliefs about the situation that applies.

Subjective probability must still satisfy the axioms of probability. It is simply
a way of choosing free parameters in a probability model without reference to fre-
quency. The attractive feature of subjective probability is that it emphasizes that
a choice of probability model is a modelling exercise — there are few circumstances
where the choice is canonical. One natural technique to adopt is to choose a func-
tion P that yields good behaviour in practice, an approach known as learning and
discussed in chapter ?77.

1One dodge is to assume that there are a very large set of equivalent universes which are the
same today. In some of these worlds, it rains tomorrow and in others it doesn’t; the frequency with
which it rains tomorrow is the probability. This philosophical fiddle isn’t very helpful in practice,
because we can’t actually measure that frequency by looking at these alternative worlds.
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A friend with a good reputation for probity and no obvious need for money
draws a coin from a pocket, and offers to bet with you on whether it comes up
heads or tails — your choice of face. What probability do you ascribe to the
event that it comes up heads?

Now an acquaintance draws a coin from a pocket and offers a bet: he’ll pay
you 15 dollars for your stake of one dollar if the coin comes up heads. What
probability do you ascribe to the event that it comes up heads?

Finally you encounter someone in a bar who (it emerges) has a long history
of disreputable behaviour and an impressive conviction record. This person
produces a coin from a pocket and offers a bet: you pay him 1000 dollars for
his stake of one dollar if it lands on its edge and stands there. What probability
do you ascribe to the event that it lands on its edge and stands there?

You have to choose your answer for these cases — that’s why it’s subjective —
but you could lose a lot of money learning that the answer in the second case
is going to be pretty close to zero and in the third case is pretty close to one.

Example 6.11: Assigning P functions to two coins from two different sources,
using subjective probability.

6.2 Probability in Continuous Spaces

Much of the discussion above transfers quite easily to a continuous space, as long
as we are careful about events. The difficulty is caused by the “size” of continuous
spaces — there are an awful lot of numbers between 1.0 and 1.00000001, one for each
number between 1.0 and 2.0. For example, if we are observing noise — perhaps by
measuring the voltage across the terminals of a warm resistor — the noise will very
seldom take the value 1 exactly. It is much more helpful to consider the probability
that the value is in the range 1 to 1 + 4, for § a small step.

6.2.1 Event Structures for Continuous Spaces

This observation justifies using events that look like intervals or boxes for continuous
spaces. Given a space D, our space of events will be a set F with the following
properties:

e The empty set is in F and so is D.

o (Closure under finite intersections: if S; is a finite collection of subsets, and
each S; € F then N;S; € F.

o (Closure under finite unions: if S; is an finite collection of subsets, and each
S; € F then U;S; € F.

o Closure under complements: if Sy € F then S1 =D — S; € F.
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The basic axioms for P apply here too. For D the domain, and A and B events,
we have:

e P(D)=1

e P(0)=0

e forany 4,0 < P(A) <1

e if AC B, then P(A) < P(B)

e P(AUB)=P(A)+P(B)—P(ANB)

The concepts of conditional probability, independence and conditional independence
apply in continuous spaces without modification. For example, the conditional
probability of an event given another event can be defined by

P(AN B) = P(A|B)P(B)

and the conditional probability can be thought of as probability restricted to the
set B. Events A and B are independent if and only if

P(ANB) =P(A)P(B)
and A and B are conditionally independent given C' if and only if
P(AN B|C) = P(A|C)P(B|C)

The main difficulty is expressing the function P in a useful way — it is clearly no
longer possible to write down the space of events and give a value of P for each
event. We will deal only with R™, with subsets of this space, or with multiple copies
of this space.

6.2.2 Representing a P-function for the Real Line

The set of events for the real line is far too big to write down. All events look like
unions of a basic collection of sets. This basic collection consists of:

e individual points (i.e a);

e open intervals (i.e. (a,b));

e half-open intervals (i.e. (a,b] or [a,b));
o and closed intervals (i.e. [a, b]).

All of these could extend to infinity. The function P can be represented by a
function F' with the following properties:

e F(—00)=0
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o F(oo)=1
e F'(z) is monotonically increasing.

and we interpret F(x) as P((—o0,]). The function F' is referred to as the cumu-
lative distribution function.

The value of P for all the basic sets described can be extracted from F', with
appropriate attention to limits; for example, P((a,b]) = F(b) — F(a) and P(a) =
lim. g+ (F(a+ €) — F(a)). Notice that if F' is continuous, P(a) = 0.

6.2.3 Probability Densities

In R™, events are unions of elements of a basic collection of sets, too. This basic
collection consists of a product of n elements from the basic collection for the real
line. A cumulative distribution function can be defined in this case, too. It is
given by a function F' with the property that P({z1 < uy, 22 <wug,...2n <up}) =
F(w). This function is constrained by other properties, too. However, cumulative
distribution functions are a somewhat unwieldy way to specify probability.

For the examples we will deal with in continuous spaces, the usual way to specify
P is to provide a function p such that

P(event) = / p(u)du
event
This function is referred to as a probability density function. Not every prob-
ability model admits a density function, but all our cases will. Note that a density
function cannot have a negative value, but that its value could be larger than one.
In all cases, probability density functions integrate to one, i.e.

P(D) = /Dp(u)duz 1

and any non-negative function with this property is a probability density function.
The value of the probability density function at a point represents the probability
of the event that consists of an infinitesimal neighbourhood at that value, i.e.:

p(u1)du = P({u € [u1,u1 + dul})

Conditional probability, independence and conditional independence are ideas that
can be translated into properties of probability density functions. In their most
useful form, they are properties of random variables.

6.3 Random Variables

Assume that we have a probability model on either a discrete or a continuous
domain, {D, F, P}. Now let us consider a function of the outcome of an experiment.
The values that this function takes on the different elements of D form a new set,
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which we shall call D’. There is a structure, with the same formal properties as F
on D’ defined by the values that this function takes on different elements of F —
call this structure F'.

This function is known as a random variable. We can talk about the probabil-
ity that a random variable takes a particular set of values, because the probability
structure carries over. In particular, assume that we have a random variable £. If
A’ € F', there is some A € F such that A’ = £(A). This means that

P({g¢e A'}) = P(4)

The simplest random variable is given by the identity function — this means
that D’ is the same as D, and F’ is the same as F. For example, the outcome
of a coin flip is a random variable.

Now gamble on the outcome of a coin flip: if it comes up heads, you get a dollar,
and if it comes up tails, you pay a dollar. Your income from this gamble is a
random variable. In particular, D’ = {1, -1} and F’' = {0, D', {1}, {—1}}.
Now gamble on the outcome of two coin flips: if both coins come up the
same, you get a dollar, and if they come up different, you pay a dollar. Your
income from this gamble is a random variable. Again, D’ = {1,-1} and
F' ={0,D’,{1},{—1}}. In this case, D’ is not the same as D and F’ is not the
same as J; however, we can still speak about the probability of getting a dollar
— which is the same as P({hh,tt}).

Example 6.12: The payoff on a gamble is a random variable.

Density functions are very useful for specifying the probability model for the
value of a random variable. However, they do result in quite curious notations
(probability is a topic that seems to encourage creative use of notation). It is com-
mon to write the density function for a random variable as p. Thus, the distribution
for A would be written as p(A) — in this case, the name of the variable tells you
what function is being referred to, rather than the name of the function, which
is always p. Some authors resist this convention, but its use is pretty much uni-
versal in the vision literature, which is why we adopt it. For similar reasons, we
write the probability function for a set of events as P, so that the probability of an
event P(event) (despite the fact that different sets of events may have very different
probability functions).

6.3.1 Conditional Probability and Independence

Conditional probability is a very useful idea for random variables. Assume we
have two random variables, m and n — (for example, the value I read from my rain
gauge as m and the value I read on the neighbour’s as n). Generally, the probability
density function is a function of both variables, p(m,n). Now

p(mi,n1)dmdn = P({m € [mi,m1 + dm]}and{n € [n1,n1 +dm]})
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= P({m € [m1,m1 +dm]}|{n € [n1,n1 +dm]})P({n € [n1,n1 +dm]})
We can define a conditional probability density from this by

p(mi,n1)dmdn = P({m € [mi,m1 +dm]}|{n € [n1,n1 +dm]})P({n € [n1,n1 +dm]})
(p(ma|n1)dm)(p(n1)dn)

Note that this conditional probability density has the expected property, that

p(m,n)

p(min) = 705

Independence and conditional independence carry over to random variables and
probability densities without fuss.

We now consider the probability that each of two coins comes up heads, yielding
two random variables — the relevant probabilities — which we shall write as
p1 and ps. Now the density function for these random variables is p(p1, p2).

There is very little reason to believe that there is any dependency between these
coins, so we should be able to write p(p1,p2) = p(p1)p(p2). Notice that the
notation is particularly confusing here; the intended meaning is that p(p1, p2)
factors, but that the factors are not necessarily equal. In this case, a further
reasonable modelling step is to assume that p(p1) is the same function as p(p2)

Example 6.13: Independence in random variables associated with two coins.

6.3.2 Expectations

The expected value or expectation of a random variable (or of some function
of the random variable) is obtained by multiplying each value by its probability
and summing the results — or, in the case of a continuous random variable, by
multiplying by the probability density function and integrating. The operation is
known as taking an expectation. For a discrete random variable, x, taking the
expectation of x yields:
E[z] = Z z;p(z:)
ievalues

For a continuous random variable, the process yields

Efa] = /D p()dz

often referred to as the average, or the mean in polite circles. One model for an
expectation is to consider the random variable as a payoff, and regard the expec-
tation as the average reward, per bet, for an infinite number of repeated bets. The
expectation of a general function g(x) of a random variable x is written as E[g(x)].
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The variance of a random variable x is
var(z) = E[z* — (E(z))?]

This expectation measures the average deviance from the mean. The variance of
a random variable gives quite a strong indication of how common it is to see a
value that is significantly different from the mean value. In particular, we have the
following useful result:

var(z)

P({|z - Efz] |> €}) < —;

- (6.3.1)

You and an acquaintance decide to bet on the outcome of a coin flip. You will
receive a dollar from your acquaintance if the coin comes up heads, and pay
one if it comes up tails. The coin is symmetric.
This means the expected value of the payoff is

1P(heads) — 1P(tails) =0

The variance of the payoff is one, as is the standard deviation.

Now consider the probability of obtaining 10 dollars in 10 coin flips, with a
fair coin. Our random variable x is the income in 10 coin flips. Equation 6.3.1
yields P({|  |> 10}) < 145, which is a generous upper bound — the actual
probability is of the order of one in a thousand.

Example 6.14: The expected value of gambling on a coin flip.
The standard deviation is obtained from the variance:
sd(z) = y/var(z) = VE[z? — (E[z])?]
For a vector of random variables, the covariance is

cov(z) = E[zz’ — (E[z]E[z]")]

This matrix (look carefully at the transpose) is symmetric. Diagonal entries are
the variance of components of @, and must be non-negative. Off-diagonal elements
measure the extent to which two variables co-vary. For independent variables, the
covariance must be zero. For two random variables that generally have different
signs, the covariance can be negative.

Expectations of functions of random variables are extremely useful. The no-
tation for expectations can be a bit confusing, because it is common to omit the
density with respect to which the expectation is being taken, which is usually ob-
vious from the context. For example, E[z?] is interpreted as

/D ?p(z)dx
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6.3.3 Joint Distributions and Marginalization

Assume we have a model describing the behaviour of a collection of random vari-
ables. We will proceed on the assumption that they are discrete, but (as should
be clear by now) the discussion will work for continuous variables if summing is
replaced by integration. One way to specify this model is to give the probability
distribution for all variables, known in jargon as the joint probability distribu-
tion function — for concreteness, write this as P(z1, 2, .. .z,). If the probability
distribution is represented by its density function, the density function is usually
referred to as the joint probability density function. Both terms are often
abbreviated as “joint.”

As we have already seen, the value of P for some elements of the event space
can be determined from the value of P for other elements. This means that if we
know

P{z1=a,22=0,... 2, =n})

for each possible value of a, b, ..., n, then we should know P for a variety of other
events. For example, it might be useful to know P({z1 = a}).

It should be obvious that the event structure, while useful, is getting unwieldy
as a notation. It is quite common to use a rather sketchy notation to indicate the
appropriate event. For example 15, we would write

P({(heads, I), (heads, IT)}) = P(heads)

for example. In this notation, the argument of example 15 leads to:

P(zo,...xpn) = Z P(z1,x9,...25)
values of x1

This operation is referred to as marginalisation.
A similar argument applies to probability density functions, but the operation is
now integration. Given a probability density function p(x1, s, ..., x,), we obtain

p(xa,...xpn) = / p(x1,x2, ... xy)dxy
D

6.4 Standard Distributions and Densities

There are a variety of standard distributions that arise regularly in practice. Refer-
ences such as [| give large numbers; we will discuss only the most important cases.

The uniform distribution has the same value at each point on the domain.
This distribution is often used to express an unwillingness to make a choice or a
lack of information. On a continuous space, the uniform distribution has a density
function that has the same value at each point. Notice that a uniform density on
an infinite continuous domain isn’t meaningful, because it could not be scaled to
integrate to one.
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Let us assume we have a coin which could be from one of two types; the first
type of coin is evenly balanced; the other is wildly unbalanced. We flip our coin
some number of times, observe the results, and should like to know what type
of coin we have. Assume that we flip the coin once. The set of outcomes is

D = {(heads, I), (heads, I]), (tails, I), (tails, I])}

An appropriate event space is:

0, D,

{(heads, I)}, {(heads, I])},
{(tails, I)}, {(tails, 1)},
{(heads, I), (heads, II)}, {(tails, I),(tails, II),},
{(tails, I), (heads, )}, {(tails, II), (heads,II)},

{(heads, II), (tails, I), (tails, II)}, {(heads,I),(tails,I),(tails,I])}
{(heads, I), (heads, I]), (tails, I1)} {(heads,I), (heads,[]),(tails,I)}

In this case, assume that we know P(face, type), for each face and type. Now, for
example, the event that the coin shows heads (whatever the type) is represented
by the set

{(heads, I), (heads, I])}

We can compute the probability that the coin shows heads (whatever the type)
as follows

P({(heads, I), (heads, IT)}) = P((heads,I)U (heads, I]))
= P((heads, I)) + P((heads, IT))

We can compute the probability that the coin is of type I, etc. with similar
ease using the same line of reasoning, which applies quite generally.

Example 6.15: Marginalising out parameters for two different types of coin.

The binomial distribution applies to situations where one has independent
identically distributed samples from a distribution with two values. For example,
consider drawing n balls from an urn containing equal numbers of black and white
balls. Each time a ball is drawn, its colour is recorded and it is replaced, so that
the probability of getting a white ball — which we denote p — is the same for each
draw. The binomial distribution gives the probability of getting k& white balls

( Z > pFa—pn*

The mean of this distribution is np and the variance is np(1 — p).

The Poisson distribution applies to spatial models that have uniformity prop-
erties. Assume that points are placed on the real line randomly in such a way that
the expected number of points in an interval is proportional to the length of the
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interval. The number of points in a unit interval will have a Poisson distribution
where
Afe™®

PUN =) = 25

(where x = 0,1,2... and A > 0 is the constant of proportionality). The mean of
this distribution is A and the variance is A

6.4.1 The Normal Distribution

The probability density function for the normal distribution for a single random
variable x is ( 2
1 T — U
T, 0) = ———€eXp— —————
o) = e { E2E

The mean of this distribution is ¢ and the standard deviation is . This distribution
is widely called a Gaussian distribution in the vision community.

The multivariate normal distribution for d-dimensional vectors x has prob-
ability density function

p(x;p, X)) = (® — )5 (— p) }

N _{
2n)Fdet(x) T 2

The mean of this distribution is g and the covariance is .. Again, this distribution
is widely called a Gaussian distribution in the vision community.
The normal distribution is extremely important in practice, for several reasons:

e The sum of a large number of random variables is normally distributed, pretty
much whatever the distribution of the individual random variables. This fact
is known as the central limit theorem. It is often cited as a reason to model
a collection of random effects with a single normal model.

e Many computations that are prohibitively hard for any other case are easy
for the normal distribution.

e In practice, the normal distribution appears to give a fair model of some kinds
of noise.

e Many probability density functions have a single peak and then die off; a
model for such distributions can be obtained by taking a Taylor series of the
log of the density at the peak. The resulting model is a normal distribution
(which is often quite a good model).

6.5 Probabilistic Inference

Very often, we have a sequence of observations produced by some process whose
mechanics we understand, but which has some underlying parameters that we do
not know. The problem is to make useful statements about these parameters. For
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example, we might observe the intensities in an image, which are produced by the
interaction of light and surfaces by principles we understand; what we don’t know
— and would like to know — are such matters as the shape of the surface, the
reflectance of the surface, the intensity of the illuminant, etc. Obtaining some
representation of the parameters from the data set is known as inference. There
is no canonical inference scheme; instead, we need to choose some principle that
identifies the most desirable set of parameters.

6.5.1 The Maximum Likelihood Principle

A general inference strategy known as maximum likelihood estimation, can be
described as

Choose the world parameters that mazximise the probability of the mea-
surement observed

In the general case, we are choosing
arg max P(measurements|parameters)

(where the maximum is only over the world parameters because the measurements
are known, and arg max means “the argument that maximises”). In many prob-
lems, it is quite easy to specify the measurements that will result from a particular
setting of model parameters — this means that P(measurements|parameters), often
referred to as the likelihood, is easy to obtain. This can make maximum likelihood
estimation attractive.

We return to example 15. Now assume that we know some conditional proba-
bilities. In particular, the unbiased coin has P(heads|I) = P(tails|]) = 0.5,
and the biased coin has P(tails|/]) = 0.2 and P(heads|II) = 0.8.

We observe a series of flips of a single coin, and wish to know what type of coin
we are dealing with. One strategy for choosing the type of coin represented
by our evidence is to choose either I or II, depending on whether P(side|l) >
P(side|IT). For example, if we observe four heads and one tail in sequence, then
P(hhhht|IT) = (0.8)%0.2 = 0.08192 and P(hhhht|I) = 0.03125, and we choose
type IL

Example 6.16: Mazimum likelihood inference on the type of a coin from its be-
haviour.

Maximum likelihood is often an attractive strategy, because it can admit quite
simple computation. A classical application of maximum likelihood estimation in-
volves estimating the parameters of a normal distribution from a set of samples of
that distribution (example 17).
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Assume that we have a set of n samples — the 7’th of which is z; — that
are known to be independent and to have been drawn from the same normal
distribution. The likelihood of our sample is

1 (z; — p)?
L(zy,...xp;p,0) = Hp(xi;'”’a) = H Wore exp <_T

Working with the log of the likelihood will remove the exponential, and not
change the position of the maximum. For the log-likelihood, we have

2

Xr; — 1 1
Qe awi ) == 3 T Lioga 4 Slogn + logo)

202

and we want the maximum with respect to 4 and ¢. This must occur when the
derivatives are zero, so we have

o0Q (Ti—p)
ou _2; 202 =0

and a little shuffling of expressions shows that this maximum occurs at
p= 2 i Ti
n
Similarly
oQ _ Yilzi—p)® n

il _ 2
0o o3 o

and this maximum occurs at

Note that this estimate of ¢ is biased, in that its expected value is

a(n/(n—1))

and it is more usual to use
> (@i — p)?
(n—1)

as an estimate.

Example 6.17: Estimating the parameters of a normal distribution from a series
of independent samples from that distribution.
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6.5.2 Priors, Posteriors and Bayes’ rule

In example 16, our maximum likelihood estimate incorporates no information about
P(I) or P(II) — which can be interpreted as how often coins of type I or type II
are handed out, or as our subjective degree of belief that we have a coin of type I
or of type II before we flipped the coin. This is unfortunate, to say the least; for
example, if coins of type II are rare, we would want to see an awful lot of heads
before it would make sense to infer that our coin is of this type. Some quite simple
algebra suggests a solution.

Recall that P(A, B) = P(A|B)P(B). This simple observation gives rise to an
innocuous looking identity for reversing the order in a conditional probability:

p(B|4) = LADEE) (A]L?X; (B)

This is widely referred to as Bayes’ theorem or Bayes’ rule.

Now the interesting property of Bayes’ rule is that it tells us which choice of
parameters is most probable, given our model and our prior beliefs. Rewriting
Bayes’ rule gives

P(measurements|parameters) P(parameters)

P(parameters|measurements) = P (measurements)

The term P(parameters) is referred to as the prior (presumably because it de-
scribes our knowledge of the world before measurements have been taken). The
term P(parameters|data) is usually referred to as the posterior (presumably be-
cause it describes the probability of various models after measurements have been
taken). P(data) can be computed by marginalisation (which requires computing
a high dimensional integral, often a nasty business) or for some problems can be
ignored. As we shall see in following sections, attempting to use Bayes’ rule can
result in difficult computations — that integral being one — because posterior dis-
tributions often take quite unwieldy forms.

6.5.3 Bayesian Inference
The Bayesian philosophy is that

all information about the world is captured by the posterior.

The first reason to accept this view is that the posterior is a principled combination
of prior information about the world and a model of the process by which measure-
ments are generated — i.e. there is no information missing from the posterior, and
the information that is there, is combined in a proper manner. The second reason
is that the approach appears to produce very good results. The great difficulty is
that computing with posteriors can be very difficult — we will discuss mechanisms
for computing with posteriors in section 77?.



Section 6.5. Probabilistic Inference 171

For example, we could use the study of physics in the last few chapters to get
expressions relating pixel values to the position and intensity of light sources, the
reflectance and orientation of surfaces, etc. Similarly, we are likely to have some
beliefs about the parameters that have nothing to do with the particular values of
the measurements that we observe. We know that albedos are never outside the
range [0, 1]; we expect that illuminants with extremely high exitance are uncommon;
and we expect that no particular surface orientation is more common than any other.
This means that we can usually cobble up a reasonable choice of P(parameters).
This expression is usually referred to as a prior, because it represents beliefs about
the state of the world before measurements were made.

MAP Inference

An alternative to maximum likelihood inference is to infer a state of the world that
maximises the posterior:

Choose the world parameters that mazimise the conditional probability
of the parameters, conditioned on the measurements taking the observed
values

This approach is known as maximum a posteriori (or MAP) reasoning.

Assume that we have three flips of the coin, and would like to determine whether
it has type I or type II. We know that the mint has 3 machines that produce
type I coins and 1 machine that produces type II coins, and there is no reason to
believe that these machines run at different rates. We therefore assign P(I) =
0.75 and P(IT) = 0.25. Now we observe three heads, in three consecutive flips.
The value of the posterior for type I is:

P(hhh|T)P(I)
P(hhh)
_ P(h|I)*P(I)
= P(hhh, I) + P(hhh, I1)
_ P(h|I)*P(I)
= P(hhh[I)P(I) + P(hhh[IT)P(I])
B 0.5%0.75

"~ 0.530.75 + 0.830.25
= 0.422773

P(I|hhh) =

By a similar argument, the value of the posterior for type II is 0.577227. An
MAP inference procedure would conclude the coin is of type IIL.

Example 6.18: Determining the type of a coin using MAP inference.
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The denominator in the expression for the posterior can be quite difficult to
compute, because it requires a sum over what is potentially a very large number of
elements (imagine what would happen if there were many different types of coin).
However, knowing this term is not crucial if we wish to isolate the element with the
maximum value of the posterior, because it is a constant. Of course, if there are
a very large number of events in the discrete space, finding the world parameters
that maximise the posterior can be quite tricky.

The Posterior as an Inference

Assume we have a coin which comes from a mint which has a continuous control
parameter, A, which lies in the range [0, 1]. This parameter gives the probability
that the coin comes up heads, so P(heads|\) = A. We know no reason to prefer
any one value of A to any other, so as a prior probability distribution for \ we
use the uniform distribution so p(A) = 1.

Assume we flip the coin twice, and observe heads twice; what do we know about
A? All our knowledge is captured by the posterior, which is

P(X € [z,z+ dz]|hh)
dz

we shall write this expression as p(A|hh). We have

() — PRI
 pmp()
fo (hh|A)p(X)dA
A2 (A)
) p(RB|A)p(A)dA
= 3\?

It is fairly easy to see that if we flip the coin n times, and observe k heads and
n — k tails, we have

p(A|k heads and n — k tails) oc eA®(1 — )"~k

Example 6.19: Determining the probability a coin comes up heads from the out-
come of a sequence of flips.

We have argued that choosing parameters that maximise the posterior is a useful
inference mechanism. But, as figure 6.2 indicates, the posterior is good for other
uses as well. This figure plots the posterior distribution on the probability that a
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coin comes up heads, given the result of some number of flips. In the figure, the
posterior distributions indicate not only the single “best” value for the probability
that a coin comes up heads, but also the extent of the uncertainty in that value. For
example, inferring a value of this probability after two coin flips leads to a value that
is not particularly reliable — the posterior is a rather flat function, and there are
many different values of the probability with about the same value of the posterior.
Possessing this information allows us to compare this evidence with other sources
of evidence about the coin.

5

450

4 sof 36 flips

350
25

18 flips

12 flips

6flips
st o 4tiips
2flips
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Figure 6.2. On the left, the value of the posterior density for the probability that a coin
will come up heads, given an equal number of heads and tails are observed. This posterior
is shown for different numbers of observations. With no evidence, the posterior is the prior;
but as the quantity of evidence builds up, the posterior becomes strongly peaked — this
is because one is very unlikely to observe a long sequence of coin flips where the frequency
of heads is very different from the probability of obtaining a head. On the right, a similar
plot, but now for the case where every flip comes up heads. As the number of flips builds
up, the posterior starts to become strongly peaked near one. This overwhelming of the
prior by evidence is a common phenomenon in Bayesian inference.

Bayesian inference is a framework within which it is particularly easy to combine
various types of evidence, both discrete and continuous. It is often quite easy to set
up the sums.

Bayesian Model Selection

The crucial virtue of Bayesian inference is the accounting for uncertainty shown
in examples 20 and 21. We have been able to account for an occasionally un-
truthful informant and a random measurement; when there was relatively little
contradictory evidence from the coin’s behaviour, our process placed substantial
weight on the informant’s testimony, but when the coin disagreed, the informant
was discounted. This behaviour is highly attractive, because we are able to combine
uncertain sources of information with confidence.

Example 22 shows how to tell whether the informant of examples 20 and 21 is
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We use the basic setup of example 19. Assume you have a contact at the
coin factory, who will provide a single estimate of A\. Your contact has poor
discrimination, and can tell you only whether A is low, medium or high (i.e
in the range [0,1/3], (1/3,2/3) or [2/3,1]). You expect that a quarter of the
time your contact, not being habitually truthful, will simply guess rather than
checking how the coin machine is set. What do you know about \ after a single
coin flip, which comes up heads, if your contact says high? We need

p(high, heads|A)p(\)
p(high, heads)
x p(high,heads|A)p(\)

p(A|high, heads) =

The interesting modelling problem is in p(high, heads|\). This is

p(high, heads|A) = p(high, heads|\, truth = 1)p(truth = 1)
+p(high, heads|A, truth = 0)p(truth = 0)
= p(high,heads|A, truth = 1)p(truth = 1)
+p(heads|A, truth = 0)p(high|\, truth = 0)p(truth = 0)

Now from the details of the problem

p(truth =1) = 0.75

p(truth = 0) = 0.25
p(heads|A, truth =0) = A
1
p(high|A, truth = 0) = 3

and the term to worry about is p(high, heads|, truth = 1). This term reflects
the behaviour of the coin and the informant when the informant is telling the
truth; in particular, this term must be zero for A € [0, 2/3), because in this case
A is not high, so we never see a truthful report of high with A in this range.
For A in the high range, this term must be A, because now it is the probability
of getting a head with a single flip. Performing the computation, we obtain the
posterior graphed in figure 6.3.

Example 6.20: Determining the type of a coin from a sequence of flips, incorpo-
rating information from an occasionally untruthful informant.

telling the truth or not, given the observations. A useful way to think about this
example is to regard it as comparing two models (as opposed to the value of a binary
parameter within one model). One model has a lying informant, and the other has
a truthful informant. The posteriors computed in this example compare how well
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Figure 6.3. On the left, the posterior probability density for the probability a coin comes
up heads, given a single flip that shows a head and a somewhat untruthful informant who
says high, as in example 20. In the center, a posterior probability density for the same
problem, but now assuming that we have seen two tails and the informant says high (a
sketch of the formulation appears in example 21). On the right, a posterior probability
density for the case when the coin shows five tails and the informant says high. As the
number of tails builds up, the weight of the posterior in the high region goes down, strongly
suggesting the informant is lying.

Now consider what happens in example 20 if the contact says high and we see
two tails. We need

p(high, ££[A)p(}A)
p(high, tt)
o< p(high, t£[A)p(A)

p(Alhigh, tt) =

Now p(high, tt|)) is

p(high, tt|A) = p(high, tt|A, truth = 1)P(truth = 1)
+p(high, tt|A, truth = 0) P(truth = 0)
= p(high, tt|A, truth = 1) P(truth = 1)
+p(tt|A, truth = 0)p(high|A, truth = 0) P(truth = 0)

Now p(tt|\truth = 0) = (1 — X)? and the interesting term is
p(high, tt|A, truth = 1). Again, this term reflects the behaviour of the coin
and the informant when the informant is telling the truth; in particular, this
term must be zero for A € [0,2/3), because in this case A is not high. For A in
the high range, this term must be (1 — A\)?, because now it is the probability
of getting two tails with two flips. Performing the computation, we obtain the
posterior graphed in figure 6.3.

Example 6.21: Determining the type of a coin from a sequence of flips, incorpo-
rating information from an occasionally untruthful informant — I1.
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We now need to know whether our informant lied to us. Assume we see a single
head and an informant saying high, again. The relevant posterior is:

P(head, high|truth=0)P (truth=0)

P(head, high)
J P(X\, head, high|truth=0) P(truth=0)d\

P(head, high)
J P(head, high|\, truth=0)P(\) P(truth=0)d\
P(head, high)
1

[ P(head high|x truth=1)P(»)drP(truth=1)
| P(head high|xtruth=0)P(x)dxP(truth=0)

(truth=0|head, high) =

1+

Example 6.22: Is the informant lying?

different models explain a given data set, given a prior on the models. This is a
very general problem — usually called model selection — with a wide variety of
applications in vision:

e Recognition: Assume we have a region in an image, and an hypothesis that

an object might be present in that region at a particular position and orienta-
tion (the hypothesis will have been obtained using methods from section ?7?,
which aren’t immediately relevant). Is there an object there or not? A prin-
cipled answer involves computing the posterior over two models — that the
data was obtained from noise, or from the presence of an object.

Are these the same? Assume we have a set of pictures of surfaces we want
to compare. For example, we might want to know if they are the same colour,
which would be difficult to answer directly if we didn’t know the illuminant.
A principled answer involves computing the posterior over two models — that
the data was obtained from one surface, or from two (or more).

‘What camera was used? Assume we have a sequence of pictures of a world.
With a certain amount of work, it is usually possible to infer a great deal of
information about the shape of the objects from such a sequence (section ?7?).
The algorithms involved differ quite sharply, depending on the camera model
adopted (i.e. perspective, orthographic, etc.). Furthermore, adopting the
wrong camera model tends to lead to poor inferences. Determining the right
camera model to use is quite clearly a model selection problem.

How many segments are there? We would like to break an image into
coherent components, each of which is generated by a probabilistic model.
How many components should there be? (section 17.3).
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The solution is so absurdly simple in principle (in practice, the computations can
be quite nasty) that it is easy to expect something more complex, and miss it. We
will write out Bayes’ rule specialised to this case to avoid this:

P(datalmodel)
P(data)

[ P(dataJmodel, parameters) P(parameters)d{parameters }
N P(data)

P(model|data) =

x / P(data|model, parameters) P(parameters)d{parameters}

which is exactly the form used in the example. Notice that we are engaging in
Bayesian inference here, too, and so can report the MAP solution or report the whole
posterior. The latter can be quite helpful when it is difficult to distinguish between
models. For example, in the case of the dodgy informant, if P(truth=0|data) =
0.5001, it may be undesirable to conclude the informant is lying — or at least,
to take drastic action based on this conclusion. The integral is potentially rather
nasty, which means that the method can be quite difficult to use in practice. We will
discuss methods for computing the integral in section ??; useful references include [].

6.5.4 Open Issues

In the rest of the book, we will have regular encounters with practical aspects of
the Bayesian philosphy. Firstly, although the posterior encapsulates all information
available about the world, we very often need to make discrete decisions — should
we shoot it or not? Typically, this decision making process requires some accounting
for the cost of false positives and false negatives.

Secondly, how do we build models? There are three basic sources of likelihood
functions and priors:

e Judicious design: it is possible to come up with models that are too hard to
handle computationally. Generally, models on very high-dimensional domains
are difficult to deal with, particularly if there is a great deal of interdepen-
dence between variables. There is a family of models — commonly known as
graphical models — for which quite good inference algorithms are known.
The underlying principle of this approach is to exploit simplifications due
to independence and conditional independence. We describe this approach in
chapter ??, section 7?7 and in chapter 77, section ??, in the context of relevant
examples.

e Physics: particularly in low-level vision problems, likelihood models follow
quite simply from physics. It is hard to give a set of design rules for this
strategy. Instead, we illustrate the approach with an example, in section 77?.

e Learning: as section 77 suggested, a poor choice of model results in poor
performance, and a good choice of model results in good performance. We
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can use this observation to tune the structure of models if we have a sufficient
set of data. We describe aspects of this strategy in chapter ?7.

Finally, the examples above suggest that posteriors can have a nasty functional
form. This intuition is correct, and there is a body of technique that can help handle
ugly posteriors which we explore in section ?7.

6.6 Discussion

Probabilistic inference techniques lie at the core of any solution to serious vision
problems. The great difficulty, in our opinion, is arriving at a model that is both
sufficiently accurate and sufficiently compact to allow useful inference. This isn’t
at all easy. A naive Bayesian view of vision — write out a posterior using the
physics of illumination and reflection, guess some reasonable priors, and then study
the posterior — very quickly falls apart. In terms of what representation should
this posterior be written? and how can we extract information from the posterior?
These questions are exciting research topics.

The examples in this chapter are all pretty simple, so as to expose the line
of reasoning required. We do some hard examples in chapter ??. Building and
handling complex examples is still very much a research topic; however, probabilistic
reasoning of one form or another is now pervasive in vision, which is why it’s worth
studying.

Exercises

1. The event structure of section 6.1 did not explicitly include unions. Why does
the text say that unions are here?

2. In example ??, if P(heads) = p, what is P(tails)?

3. In example 10 show that if P(hh) = p? then P({ht,th}) = 2p(1 — p) and
P(tt) = (1 — p)2.

4. In example 10 it says that
P(k heads and n — k tails in n flips) = ( fz > pF(1 —p)nk

Show that this is true.

5. A careless study of example 10 often results in quite muddled reasoning, of
the following form: I have bet on heads successfully ten times, therefore I
should bet on tails next. Explain why this muddled reasoning — which has
its own name, the gambler’s fallacy in some circles, anti-chance in others
— is muddled.

6. Confirm the count of parameters in example 8.
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7.
8.

10.

11.

12.

13.

In example 19, what is c?

As in example 16, you are given a coin of either type I or type II; you do not
know the type. You flip the coin n times, and observe k heads. You will infer
the type of the coin using maximum likelihood estimation. for what values of
k do you decide the coin is of type 1?7

Compute P(truth|high, coin behaviour) for each of the three cases of exam-
ple 21. You'll have to estimate an integral numerically.

In example 22, what is the numerical value of the probability that the infor-
mant is lying, given that the informant said high and the coin shows a single
tail? What is the numerical value of the probability that the informant is
lying, given that the informant said high and the coin shows seven tails in
eight flips?

The random variable = (21, 22,...2,)7 has a normal distribution. Show
that the random variable & = (z2, ..., 7,)T has a normal distribution (which
is obtained by marginalizing the density). A good way to think about this
problem is to consider the mean and covariance of &, and reason about the
behaviour of the integral; a bad way is to storm ahead and try and do the
integral.

The random variable p has a normal distribution. Furthermore, there are
symmetric matrices A, B and C and vectors D and E such that P(d|p) has
the form

—log P(d|p) = pT Ap + p"'Bd +d"Cd +p'D +d"E + C

(C is the log of the normalisation constant). Show that P(p|d) is a normal
distribution for any value of d. This has the great advantage that inference is
relatively easy.

z is a random variable with a continuous cumulative distribution function
F(z). Show that u = F(z) is a random variable with a uniform density on
the range [0,1]. Now use this fact to show that w = F~!(u) is a random
variable with cumulative distribution function F'.
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Chapter 7

LINEAR FILTERS

Pictures of zebras and of dalmatians have black and white pixels, and in about the
same number, too. The differences between the two have to do with the character-
istic appearance of small groups of pixels, rather than individual pixel values. In
this chapter, we introduce methods for obtaining descriptions of the appearance of
a small group of pixels.

Our main strategy will be to use weighted sums of pixel values, using different
patterns of weights to find different image patterns. This process, despite its sim-
plicity, is extremely useful. It allows us to smooth noise in images, and to find edges
and other image patterns. We discuss noise in some detail. We also describe some
useful non-linear functions of image neighbourhoods.

7.1 Linear Filters and Convolution

Many important effects can be modelled with a quite simple model. Construct a
new array, the same size as the image. Fill each location of this new array with a
weighted sum of the pixel values from the locations surrounding the corresponding
location in the image, using the same set of weights each time. Different sets of
weights could be used to represent different processes — for example, we could use
a set of weights that was large at the center and fell off sharply as the distance from
the center increased to model the kind of smoothing that occurs in a defocussed lens
system. The result of this procedure is shift-invariant — meaning that the value
of the output depends on the pattern in an image neighbourhood, rather than the
position of the neighbourhood — and linear — meaning that the output for the
sum of two images is the same as the sum of the outputs obtained for the images
separately. The procedure itself is known as linear filtering.

7.1.1 Convolution

We introduce some notation at this point. The pattern of weights used for a linear
filter is usually referred to as the kernel of the filter. The process of applying the
filter is usually referred to as convolution. There is a catch: for reasons that will
appear later (section 7.2.1), it is convenient to write the process in a non-obvious
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way.
In particular, given a filter kernel 4, the convolution of the kernel with image
F is an image R. The 4, j'th component of R are given by:

Rij: § Hi—u,j—vRu,v
u,v

We carefully avoid inserting the range of the sum; in effect, we assume that the
sum is over a large enough range of v and v that all non-zero values are taken into
account. We will use this convention — which is common — regularly in what
follows.

7.1.2 Example: Smoothing by Averaging

Images typically have the property that the value of a pixel is usually similar to
that of its neighbour. Assume that the image is affected by noise of a form where
we can reasonably expect that this property is preserved. For example, there might
be occasional dead pixels; or small random numbers with zero mean might have
been added to the pixel values. It is natural to attempt to reduce the effects of this
noise by replacing each pixel with a weighted average of its neighbours, a process
often referred to as smoothing or blurring.

At first guess, we could model the blurring process as replacing the value of a
function at each point with an unweighted (or uniform) average taken over a fixed
region. For example, we could average all pixels within a 2k + 1 x 2k 4 1 block of
the pixel of interest. For an input image F, this gives an output

u=it+k v=j+k

1
RU:WZ Z]:uv

u=i—kv=j—k

This is the same as convolution with a kernel that is a 2k +1 x 2k + 1 block of ones,
multiplied by a constant — you can establish this point by close attention to the
range of the sum.

This process is a poor model of blurring — its output does not look like that
of a defocussed camera (figure 7.1. The reason is clear. Assume that we have an
image in which every point but the center point was zero, and the center point was
one. If we blur this image by forming an unweighted average at each point, the
result will look like a small bright box — but this is not what defocussed cameras
do. We want a blurring process that takes a very small bright dot to a circularly
symmetric region of blur, brighter at the center than at the edges and fading slowly
to darkness. As figure 7.1 suggests, a set of weights of this form produces a much
more convincing defocus model.
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Figure 7.1. Although a uniform local average may seem to give a good blurring model,
it generates effects that are not usually seen in defocussing a lens. The images above
compare the effects of a uniform local average with weighted average. The image at the
top shows a view of grass. On the left in the second row, the result of blurring this image
using a uniform local model and on the right, the result of blurring this image using a
set of Gaussian weights. The degree of blurring in each case is about the same, but the
uniform average produces a set of narrow vertical and horizontal bars — an effect often
known as ringing. The bottom row shows the weights used to blur the image, themselves
rendered as an image; bright points represent large values and dark points represent small
values (in this example the smallest values are zero).
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Figure 7.2. The symmetric Gaussian kernel in 2D. This view shows a kernel scaled so
that its sum is equal to one; this scaling is quite often omitted. The kernel shown has
o = 1. Convolution with this kernel forms a weighted average which stresses the point at
the center of the convolution window, and incorporates little contribution from those at
the boundary. Notice how the Gaussian is qualitatively similar to our description of the
point spread function of image blur; it is circularly symmetric, has strongest response in
the center, and dies away near the boundaries.

7.1.3 Example: Smoothing with a Gaussian

A good formal model for this fuzzy blob is the symmetric Gaussian kernel

1 z? +y?)
Go(z,y) = o2 exp <—(T‘2>

illustrated in figure 7.2. o is referred to as the standard deviation of the Gaussian
(or its “sigma”!); the units are inter-pixel spaces, usually referred to as pixels. The
constant term makes the integral over the whole plane equal to one and is often
ignored in smoothing applications. The name comes from the fact that this kernel
has the form of the probability density for a 2D Gaussian random variable with a
particular covariance.

This smoothing kernel forms a weighted average, that weights pixels at its center
much more strongly than at its boundaries. One can justify this approach qualita-
tively: smoothing suppresses noise by enforcing the requirement that pixels should
look like their neighbours; and by down-weighting distant neighbours in the aver-
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age, we can ensure that the requirement that a pixel look like its neighbours is less
strongly imposed for distant neighbours. A qualitative analysis gives:

e if standard deviation of the Gaussian is very small — say smaller than one
pixel — the smoothing will have very little effect, because the weights for all
pixels off the center will be very small;

e for alarger standard deviation, the neighbouring pixels will have larger weights
in the weighted average, which means in turn that the average will be strongly
biased toward a consensus of the neighbours — this will be a good estimate
of a pixel’s value, and the noise will largely disappear, at the cost of some
blurring;

e finally, a kernel that has very large standard deviation will cause much of the
image detail to disappear along with the noise.

Figure 7.3 illustrates these phenomena. You should notice that Gaussian smoothing
can be effective at suppressing noise.

In applications, a discrete smoothing kernel is obtained by constructing a 2k +
1 x 2k 4 1 array whose 4, j'th value is

Loy (-l G oo 1)

ij = ex
YL 202

Notice that some care must be exercised with o; if ¢ is too small, then only one
element of the array will have a non-zero value. If ¢ is large, then k£ must be large,
too, otherwise we will be ignoring contributions from pixels that should contribute
with substantial weight.

7.2 Shift invariant linear systems

Most imaging systems have, to a good approximation, three significant properties:

e Superposition: we expect that

R(f +g) = R(f) + R(9)

that is, the response to the sum of stimuli is the sum of the individual re-
sponses.

e Scaling: the response to a zero input is zero. Taken with superposition, we
have that the response to a scaled stimulus is a scaled version of the response
to the original stimulus, i.e.

R(kf) = kR(f)

A device that exihibits superposition and scaling is linear.
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Figure 7.3. In salt-and-pepper noise, we choose pixels uniformly at random, and uni-
formly at random make them either black or white. Gaussian smoothing is particularly
effective at suppressing the effects of salt-and-pepper noise. The top row shows an image,
and versions smoothed by a symmetric Gaussian with o two pixels and four pixels. The
images in the second row are obtained by corrupting the images in the top row by this
noise model and then smoothing the result. Notice that, as the smoothing increases, detail
is lost, but the effects of the noise diminish, too — the smoothed versions of the noisy
images look very much like the smoothed version of the noise-free images.

e Shift invariance: in a shift invariant system, the response to a translated
stimulus is just a translation of the response to the stimulus. This means that,
for example, if a view of a small light aimed at the center of the camera is a
small bright blob, then if the light is moved to the periphery, we should see
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the same small bright blob, only translated.

A device that is linear and shift invariant is known as a shift invariant linear
system, or often just as a system.

The response of a shift invariant linear system to a stimulus is obtained by
convolution. We will demonstrate this first for systems that take discrete inputs —
say vectors or arrays — and produce discrete outputs. We then use this to describe
the behaviour of systems which operate on continuous functions of the line or the
plane, and from this analysis obtain some useful facts about convolution.

7.2.1 Discrete Convolution

In the 1D case, we have a shift invariant linear system that takes a vector and
responds with a vector. This case is the easiest to handle, because there are fewer
indices to look after. The 2D case — a system that takes an array, and responds
with an array — follows easily. In each case, we assume that the input and output
are infinite dimensional. This allows us to ignore some minor issues that arise at
the boundaries of the input — we’ll deal with these later (section 7.2.3).

Discrete Convolution in One Dimension

We have an input vector f. For convenience, we will assume that the vector is
infinite, and its elements are indexed by the integers (i.e. there is a -1’th element,
etc.). The #’th component of this vector is f;. Now f is a weighted sum of basis
elements. A convenient basis is a set of elements that have a one in one component,
and zeros elsewhere. We write

ey =...0,0,0,1,0,0,0,...

(this is a data vector that has a 1 in the zero’th place, and zeros elsewhere). Define
a shift operation, where Shift(f,) is a vector whose j’th component is the j —7’th
component of f. For example, Shift(eg, 1) has a zero in the first component. Now
we can write

f=>_ fiShift(eo,1)
i
We write the response of our system to a vector f as

R(f)

Now because the system is shift invariant, we have that
R(shift(f,k)) = shift(R(f), k)
Furthermore, because it is linear, we have that

R(kf) = kR(f)



Section 7.2. Shift invariant linear systems 189

This means that

R(f) = R(Y_ fishitt(eo,1))
- Z;%(fiShift(eo,i))
- ifiR(Shift(eo,i))
— ifiShift(R(eo),i))

This means that to obtain the system’s response to any data vector, we need to
know only its response to ey. This is usually called the system’s impulse response.
Assume that the impulse response can be written as g. We have

R(f) = Z h;Shift(g,j) =g=xh

This defines an operation — the 1D, discrete version of convolution — which we
write with a *.

This is all very well, but does not give us a particularly easy expression for the
output. If we consider the j’th element of R(f), which we write as R;, we must

have:
Rj =Y g;-ifi

which conforms to (and explains the origin of) the form we used in section 7.1.1.

Discrete Convolution in Two Dimensions

We now use an array of values, and write the ¢, j'th element of the array D is D;;.
The appropriate analogy to an impulse response is the response to a stimulus that
looks like:

Eoo = 0 1 0
0 0 O

If G is the response of the system to this stimulus, the same considerations as
for 1D convolution yield a response to a stimulus F that is:

Rij = Z Gi—u,j—vFuv

which we write as
R=Gx*«H
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7.2.2 Continuous Convolution

There are shift invariant linear systems that produce a continuous response to a
continuous input; for example, a camera lens takes a set of radiances and produces
another set, and many lenses are approximately shift invariant. A brief study of
these systems will allow us to study the information that is lost by approximating
a continuous function — the incoming radiance values across an image plane — by
a discrete function — the value at each pixel.

The natural description is in terms of the system’s response to a rather unnatural
function — the J-function, which is not a function in formal terms. We will do the
derivation first in one dimension, to make the notation easier.

Convolution in One Dimension

We will obtain an expression for the response of a continuous shift invariant linear
system from our expression for a discrete system. We can take a discrete input, and
replace each value with a box, straddling the value — this gives a continuous input
function. We will then make the boxes narrower, and consider what happens in the
limit.

Our system takes a function of one dimension and returns a function of one
dimension. Again, we write the response of the system to some input f(z) as R(f);
when we need to emphasize that f is a function, we write R(f(x)). The response
is also a function; occasionally, when we need to emphasize this fact, we will write
R(f)(u). We can express the linearity property in this notation by writing

R(kf) = kR(f)

(for k some constant) and the shift invariance property by introducing a Shift
operator, which takes functions to functions:

Shift(f,c) = f(u —c)
With this Shift operator, we can write the shift invariance property as:
R(Shift(f,c)) = Shift(R(f),c)
We define the box function as:
[ 0 abs(z) >
bowe(x) = { 1 abs(z) <

The value of bozx(e/2) does not matter for our purposes. The input function is f(x).
We construct an even grid of points z;, where x;;1 — z; = e. We now construct a
vector f, whose ¢’th component (written f;) is f(z;). This vector can be used to
represent the function.

We obtain an approximate representation of f by . fiShift(box., z;) We apply
this input to a shift-invariant linear system; the response is a weighted sum of shifted

[SIEY NI
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responses to box functions as in figure ??. This means that
R(Z fiShift(box., x;)) = Z R(f;Shift(boze, x;))
= ZfiR(Shift(boxe,xi))

bore 6)7 1111)
€

= fishift(R(

box.

)71;1')6

= fisnift(R(

€

(so far, everything has followed our derivation for discrete functions). We now have
something that looks like an approximate integral, if € — 0.
We introduce a new device, called a §-function, to deal with the term boz./e.

Define
_ box(x)

de(z) =

€

The §-function is:

0(x) = lim d.(x)

e—0

We don’t attempt to evaluate this limit, so we need not discuss the value of §(0). One
interesting feature of this function is that for practical shift-invariant linear systems
the response of the system to a J-function exists and has compact support (i.e.
is zero except on a finite number of intervals of finite length). For example, a good
model of a §-function in 2D is an extremely small, extremely bright light. If we
make the light smaller and brighter, while ensuring the total energy is constant, we
expect to see a small but finite spot due to the defocus of the lens. The J-function
is the natural analogue for e( in the continuous case.
This means that the expression for the response of the system,

box.

Z fiShift(R( ), ;)€

€
will turn into an integral as e limits to zero. We obtain
R(P) = [ (RO -2} 1)
— [otu-a)sa)is’
where we have written R(§) — which is usually called the impulse response of

the system — as ¢ and have omitted the limits of the integral. These integral could
be from —oco to 0o, but more stringent limits could apply if g and h have compact
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support. This operation is called convolution (again), and we write the expression
above as

R(f) = (9*f)

Convolution is symmetric, meaning

(g% h)(z) = (h*g)(x)

Convolution is associative, meaning that

(f x(g*h)) =((f*g)xh)

This latter property means that we can find a single shift-invariant linear system
that behaves like the composition of two different systems. This will come in useful
when we discuss sampling.

Convolution in Two Dimensions

The derivation of convolution in two dimensions requires more notation — a box
function is now given by box(x,y) = box.(x)box.(y); we now have

box(x,y)

d€($7y): 2

€

The é-function is the limit of d.(z,y) function as € — 0; and there are more terms
in the sum. All this activity will result in the expression:

R(h)(z, y) / / g(z — o'y — ) )h(a', o )dady

= (gx*h)(z,y)

Where we have used two #’s to indicate a two dimensional convolution. Convolution
in 2D is symmetric — that is (g x x*h) = (h * xg) — and associative.

A natural model for the impulse response of two dimensional system is to think
of the pattern seen in a camera viewing a very small, distant light source (which
subtends a very small viewing angle). In practical lenses, this view results in some
form of fuzzy blob, justifying the name point spread function which is often
used for the impulse response of a 2D system. The point spread function of a linear
system is often known as its kernel.

7.2.3 Edge Effects in Discrete Convolutions

In practical systems we cannot have infinite arrays of data. This means that, when
we compute the convolution, we need to contend with the edges of the image; at
the edges, there are pixel locations where computing the value of the convolved
image requires image values that don’t exist. There are a variety of strategies we
can adopt:
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e Ignore these locations — this means that we report only values for which
every required image location exists. This has the advantage of probity, but
the disadvantage that the output is smaller than the input — repeated con-
volutions can cause the image to shrink quite drastically.

e Pad the image with constant values — this means that, as we look at
output values closer to the edge of the image, the extent to which the output
of the convolution depends on the image goes down. This is a convenient
trick, because we can ensure that the image doesn’t shrink, but it has the
disadvantage that it can create the appearance of substantial gradients near
the boundary.

e Pad the image in some other way — for example, we might think of the
image as a doubly periodic function, so that, if we have an n x m image, then
column m + 1 — required for the purposes of convolution — would be the
same as column m — 1. This can create the appearance of substantial second
derivative values near the boundary.

7.3 Spatial Frequency and Fourier Transforms

We have used the trick of thinking of a signal g(x,y) an weighted sum of a very
large (or infinite) number of very small (or infinitely small) box functions. This
model emphasizes that a signal is an element of a vector space — the box functions
form a convenient basis, and the weights are coeflicients on this basis. We need a
new technique to deal with two related problems, so far left open:

e while it is clear that a discrete image version cannot represent the full infor-
mation in a signal, we have not yet indicated what is lost;

e it is clear that we cannot shrink an image simply by taking every k’th pixel —
this could turn a checkerboard image all white or all black — and we should
like to know how to shrink an image safely.

All of these problems are related to the presence of fast changes in an image. For
example, shrinking an image is most likely to miss fast effects, because they could
slip between samples; similarly, the derivative is large at fast changes.

These effects can be studied by a change of basis. We will change the basis to be
a set of sinusoids, and represent the signal as an infinite weighted sum of an infinite
number of sinusoids. This means that fast changes in the signal will be obvious,
because they will correspond to large amounts of high frequency sinusoids in the
new basis.

7.3.1 Fourier Transforms

We will concentrate on Fourier transforms in the continuous domain, because we
use Fourier transforms mainly as a conceptual device.
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oy 7

Figure 7.4. The real component of Fourier basis elements, shown as intensity images.
The brightest point has value one, and the darkest point has value zero. The domain is
[-1,1]z[—1,1], with the origin at the center of the image. On the left, (u,v) = (1,2); in
the center, (u,v) = (10,—5) and on the right (u,v) = (32, —32). These are sinusoids of
various frequencies and orientations, described in the text.

Z

Fourier Transforms in the Continuous Domain

The change of basis is effected by a Fourier Transform. We define the Fourier
transform of a signal g(z,y) to be:

Flg(, 1)) (u,v) = / / g(z, y)e~ 2T gy

Assume that appropriate technical conditions are true to make this integral exist (it
is sufficient for all moments of g to be finite; a variety of other possible conditions
are available []). The process takes a complex valued function of z, y and returns
a complex valued function of u, v (images are complex valued functions with zero
imaginary component).

For the moment, fix v and v, and let us consider the meaning of the value of the
transform at that point. The exponential can be rewritten

e~ 2 (urtvy) — cog(2m(ux + vy)) + i sin(2n(uz + vy))

These terms are sinusoids on the z, y plane, whose orientation and frequency are
given by u, v. For example, consider the real term, which will be constant when
ux + vy is constant, i.e. along a straight line in the =, y plane whose orientation
is given by tan® = v/u. The gradient of this term is perpendicular to lines where
ux + vy is constant, and the frequency of the sinusoid is vu? + v2. These sinusoids
are often referred to as spatial frequency components; a variety are illustrated
in figure 7.4.

The integral should be seen as a dot product. If we fix v and v, the value
of the integral is the dot product between a sinusoid in z and y and the original
function. This is a useful analogy, because dot products measure the “amount” of
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one vector in the direction of another. In the same way, the value of the transform
at a particular v and v can be seen as measuring the “amount” of the sinusoid with
given frequency and orientation in the signal. Our transform is a record of this
value for every u and v. The Fourier transform is linear:

F(g9(z,y) + h(z,y) = Flg(z,y)) + F(h(z,y))
and

F(kg(z,y)) = kF(g(z,v))

The Inverse Fourier Transform

It is useful to be able to recover a signal from its Fourier transform. This is another
change of basis, with the form

o(z,y) = / / Flgle, 9)) (u, 0)e> 9 diy

Fourier Transform Pairs

Fourier transforms are known in closed form for a variety of useful cases; a large set
of examples appears in [?]. We list a few in table 7.1 for reference. The last line of
table 7.1 contains the convolution theorem; convolution in the signal domain is
the same as multiplication in the Fourier domain. We will use this important fact
several times in what follows.

Phase and Magnitude

The Fourier transform consists of a real and a complex component.

F(g(z,y))(u,v) = //_00 g(z,y) cos(2m(uz + vy))dxdy +

i / /_ O:O oz, ) sin(27 (uz + vy))dady

= R(F(g9)) +ix3(F(9))
= Fr(g) +ix* Fi(g)

It is usually inconvenient to draw complex functions of the plane. One solution
is to plot Fr(g) and F;(g) separately; another is to consider the magnitude and
phase of the complex functions, and to plot these instead. These are then called
the magnitude spectrum and phase spectrum respectively.

The value of the Fourier transform of a function at a particular uw, v point
depends on the whole function. This is obvious from the definition, because the
domain of the integral is the whole domain of the function. It leads to some subtle
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| Function | Fourier transform |
9(z,) ST gla,ye 2t dady
ENT) — i
5L (z,y) uF (f)(u,v)
0.5§(z + a,y) + 0.56(z — a,y) cos 2mau
I e—m(u?+0?)
bar(z,y) sihu siny
Flaz, by) o/t
Do oo 2o O — 1,y — ) D e o Do (U — v — )
(f * xg)(z,y) F(f)F(g)(u, v)
flz—a,y—10) e~ Pl F(f)
f(zcos® —ysinb,xsinf +ycosd) | F(f)(ucosf —vsinb, usinb + v cos)

Table 7.1. A variety of functions of two dimensions, and their Fourier transforms.
This table can be used in two directions (with appropriate substitutions for w,v and
z,y), because the Fourier transform of the Fourier transform of a function is the function.
Observant readers may suspect that the results on infinite sums of ¢ functions contradict
the linearity of Fourier transforms; by careful inspection of limits, it is possible to show
that they do not (see, for example []).

properties, however. Firstly, a local change in the function — for example, zeroing
out a block of points — is going to lead to a change at every point in the Fourier
transform. This means that the Fourier transform is quite difficult to use as a repre-
sentation — for example, it might be very difficult to tell if a pattern was present in
an image just by looking at the Fourier transform. Secondly, the magnitude spectra
of images tends to be similar — this appears to be a fact of nature, rather than
something that can be proven axiomatically — and the magnitude spectrum of an
image is surprisingly uninformative (see figure 7.5 for an example).
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Figure 7.5. The second image in each row shows the log of the magnitude spectrum
for the first image in the row; the third image shows the phase spectrum, scaled so that
—m is dark and 7 is light. The final images are obtained by swapping the magnitude
spectra. While this swap leads to substantial image noise, it doesn’t substantially affect
the interpretation of the image, suggesting that the phase spectrum is more important for
perception than the magnitude spectrum.

7.4 Sampling and Aliasing

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images; in particular, it is clear that
some information has been lost when we work on a discrete pixel grid — but what?
A good, simple example to think about is an image of a checkerboard. Assume that
the checks are two units on edge. If we sample this image on a unit grid, we can
ensure that there are four white pixels to each white check and four black pixels
to each black one (assuming that we set up the grid in the right place and make
sensible decisions about the colour value at the boundary of each check). Again, if
we place samples two units apart, we can ensure that each check receives one pixel.
Now consider what happens if the samples are three units apart — we can actually
end up with four white pixels to each white check and four black pixels to each
black one again, which is a significant misrepresentation. Things get worse if we
place the samples four units apart — we could end up with an entirely white or an
entirely black grid. The problem appears to have to do with the number of samples
relative to the function; we can formalize this rather precisely, given a sufficiently
powerful model.
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Figure 7.6. Sampling in 1D takes a function, and returns a vector whose elements are
values of that function at the sample points, as the top figures show. For our purposes, it
is enough that the sample points be integer values of the argument. We allow the vector
to be infinite dimensional, and have negative as well as positive indices.

7.4.1 Sampling

Passing from a continuous function — like the irradiance at the back of a camera
system — to a collection of values on a discrete grid — like the pixel values reported
by a camera — is referred to as sampling. We will construct a model that allows
us to obtain a precise notion of what is lost in sampling.

Sampling in One Dimension

Sampling in one dimension takes a function, and returns a discrete set of values.
The most important case involves sampling on a uniform discrete grid, and we shall
assume that the samples are defined at integer points. This means we have a process
that takes some function and returns a vector of values:

sample, p(f(2)) = f

We will model this sampling process by assuming that the elements of this vector
are the values of the function f(x) at the sample points, and allowing negative
indices to the vector. This means that the i’th component of f is f(x;).

Sampling in Two Dimensions

Sampling in 2D is very similar to sampling in 1D. Although sampling can occur on
non-regular grids (the best example being the human retina), we will proceed on
the assumption that samples are drawn at points with integer coordinates. This
yields a uniform rectangular grid, which is a good model of most cameras. Our
sampled images are then rectangular arrays of finite size (all values outside the grid
being zero).

In the formal model, we sample a function of two dimensions, instead of one,
yielding an array. This array we allow to have negative indices in both dimensions,
and can then write

sample,(F(x,y)) = F
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Figure 7.7. Sampling in 2D takes a function and returns an array; again, we allow the
array to be infinite dimensional and to have negative as well as positive indices.

where the ¢, j’th element of the array F is F(z;,y;) = F (3, j).

Samples are not always evenly spaced in practical systems. This is quite often
due to the pervasive effect of television; television screens have an aspect ratio of
4:3 (width:height). Cameras quite often accomodate this effect by spacing sample
points slightly further apart horizontally than vertically (in jargon, they have non-
square pixels).

A Continuous Model of a Sampled Signal

We need a continuous model of a sampled signal. Generally, this model will be used
to evaluate integrals — in particular, taking a Fourier transform involves integrating
the product of our model with a complex exponential. It is clear how this integral
should behave — the value of the integral should be obtained by adding up values
at each integer point. This means we cannot model a sampled signal as a function
that is zero everywhere except at integer points (where it takes the value of the
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Figure 7.8. Convolving a d-function with an arbitrary function can be thought of in
terms of convolving a d. function, and taking the limit. The shaded region contributes
to the integral, and as € gets smaller — and so the region averaged gets narrower — the
result limits to the original function.

signal), because this model has a zero integral.
An appropriate continuous model of a sampled signal relies on an important
property of the § function:

e—0

/00 ad(z) f(x)dx = alim h d(z;e) f(x)dx

= ot [ #ED (fa))ds
= ali_rf(l) i M(f(ie)bar(m —i€;€))e
= af(0)

(where we have used the idea of an integral as the limit of a sum of small strips).

An appropriate continuous model of a sampled signal consists of a d-function at
each sample point weighted by the value of the sample at that point. We can obtain
this model by multiplying the sampled signal by a set of J-functions, one at each
sample point. In one dimension, a function of this form is called a comb function
(because that’s what the graph looks like). In two dimensions, a function of this
form is called a bed-of-nails function (for the same reason).

Working in 2D and assuming that the samples are at integer points, this proce-
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dure gets

sample,,(f) = > Y. f(i,5)d(z —i,y—j)

1=—00 j=—00

= e, >, Y d@—iy—j)

1=—00 j=—00

This function is zero except at integer points (because the d-function is zero except
at integer points) and its integral is the sum of the function values at the integer
points.

7.4.2  Aliasing

Sampling involves a loss of information. As this section will show, a signal that is
sampled too slowly will be misrepresented by the samples; high spatial frequency
components of the original signal will appear as low spatial frequency components
in the sampled signal, an effect known as aliasing.

The Fourier Transform of a Sampled Signal

A sampled signal is given by a product of the original signal with a bed-of-nails
function. By the convolution theorem, the Fourier transform of this product is
the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.

Now convolving a function with a shifted J-function merely shifts the function
(figure 7.8) (exercises). This means that the Fourier transform of the sampled signal
is the sum of a collection of shifted versions of the Fourier transforms of the signal.

F(sampleyp(f(z,9)) = F | fl@y) 4 > D S@—iy—j) (7.4.1)

1=—00 j=—00

F(f(z,y)) * *F ,Z 'Z §(x — i,y —j) ((1.4.2)
> Fu—iv—j) (7.4.3)

1=—00

where we have written the Fourier transform of f(x,y) as F(u,v).

If the support of these shifted versions of the Fourier transform of the signal does
not intersect, we can easily reconstruct the signal from the sampled version. We
take the sampled signal, Fourier transform it, and cut out one copy of the Fourier
transform of the signal, and Fourier transform this back (figure 7.9).
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Figure 7.9. The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by the
sampling frequency. Two possibilities occur. If the shifted copies do not intersect with
each other (as in this case), the original signal can be reconstructed from the sampled
signal (we just cut out one copy of the Fourier transform, and inverse transform it). If
they do intersect (as figure 7.10) the intersection region is added, and so we cannot obtain
a separate copy of the Fourier transform, and the signal has aliased.

However, if the support regions do overlap, we will not be able to reconstruct the
signal because we will not be able to determine the Fourier transform of the signal
in the regions of overlap, where different copies of the Fourier transform will add.
This results in a characteristic effect, usually called aliasing, where high spatial
frequencies appear to be low spatial frequencies (see figure 7.11 and exercises). Our
argument also yields Nyquist’s theorem — the sampling frequency must be at
least twice the highest frequency present for a signal to be reconstructed from a
sampled version.

7.4.3 Smoothing and Resampling

Nyquist’s theorem means it is dangerous to shrink an image by simply taking every
k’th pixel (as figure 7.11 confirms). Instead, we need to filter the image so that
spatial frequencies above the new sampling frequency are removed. We could do
this exactly by multiplying the image Fourier transform by a scaled 2D bar function,
which would act as a low pass filter. Equivalently, we would convolve the image
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Figure 7.10. The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by the
sampling frequency. Two possibilities occur. If the shifted copies do not intersect with
each other (as in figure 7.9), the original signal can be reconstructed from the sampled
signal (we just cut out one copy of the Fourier transform, and inverse transform it). If they
do intersect (as in this figure) the intersection region is added, and so we cannot obtain a
separate copy of the Fourier transform, and the signal has aliased. This also explains the
tendency of high spatial frequencies to alias to lower spatial frequencies.

<< >

with a kernel of the form (sin z siny)/(zy). This is a difficult and expensive (a polite
way of saying “impossible”) convolution, because this function has infinite support.

The most interesting case occurs when we want to halve the width and height
of the image. We assume that the sampled image has no aliasing (because if it did,
there would be nothing we could do about it, anyway — once an image has been
sampled, any aliasing that is going to occur has happened, and there’s not much we
can do about it without an image model). This means that the Fourier transform of
the sampled image is going to consist of a set of copies of some Fourier transform,
with centers shifted to integer points in u, v space.

If we resample this signal, the copies will now have centers on the half-integer
points in u, v space. This means that, to avoid aliasing, we need to apply a low pass
filter that strongly reduces the content of the original Fourier transform outside the
range |u| < 1/2, |v| < 1/2. Of course, if we reduce the content of the signal inside
this range, we may lose information, too.



204 Linear Filters Chapter 7

256x256  128x128 64x64 32x32 16x16

Figure 7.11. Left: At the top is a 256x256 pixel image showing a grid obtained by
multiplying two sinusoids with linearly increasing frequency — one in z and one in y.
The other images in the series are obtained by resampling by factors of two, without
smoothing (i.e. the next is a 128x128, then a 64x64, etc., all scaled to the same size). Note
the substantial aliasing; high spatial frequencies alias down to low spatial frequencies, and
the smallest image is an extremely poor representation of the large image. Right: The
magnitude of the Fourier transform of each image — displayed as a log, to compress the
intensity scale. The constant component is at the center. Notice that the Fourier transform
of a resampled image is obtained by scaling the Fourier transform of the original image
and then tiling the plane. Interference between copies of the original Fourier transform
means that we cannot recover its value at some points — this is the mechanism of aliasing.

Gaussians die away fairly quickly and so can be used as low pass filters. The
choice of Gaussian depends on the application; if ¢ is large, the kernel must be large
and, while there is less aliasing (because the value of the kernel outside our range
is very small), information is lost because the kernel is not flat within our range;
similarly, if ¢ is small, less information is lost within the range, but aliasing can be
more substantial. Figures 7?7 and ?7? illustrate the effects of different choices of o.

7.5 Technique: Scale and Image Pyramids

Images look quite different at different scales. For example, the zebra’s nose in
figure 7?7 can be described in terms of individual hairs — which might be coded in
terms of the response of oriented filters that operate at a scale of a small number
of pixels — or in terms of the stripes on the zebra.
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Figure 7.12. Left: Resampled versions of the image of figure 7.11, again by factors of
two, but this time each image is smoothed with a Gaussian of ¢ one pixel before resam-
pling. This filter is a low-pass filter, and so suppresses high spatial frequency components,
reducing aliasing. Right: The effect of the low-pass filter is easily seen in these log-
magnitude images; the low pass filter suppresses the high spatial frequency components
so that components interfere less, to reduce aliasing.

7.5.1 The Gaussian Pyramid

A pyramid is a collection of representations of an image. The name pyramid comes
from a visual analogy. Typically, each layer of the pyramid is half the width and
half the height of the previous layer, and if we were to stack the layers on top of each
other a pyramid would result. In a Gaussian pyramid, each layer is smoothed
by a symmetric Gaussian kernel and resampled to get the next layer (figure 7.14).
These pyramids are most convenient if the image dimensions are a power of two, or
a multiple of a power of two. The smallest image is the most heavily smoothed; the
layers are often referred to as coarse scale versions of the image.

There are a variety of other kinds of pyramid, best understood with the aid of
a little notation. To simplify things, assume that the original image is square, with
image dimensions 2¥. The operator S¥ downsamples an image; in particular, the
j, k’'th element of S¥(Z) is the 25, 2k’th element of Z. The n’th level of a pyramid
P(Z) is denoted P(Z),,.

We can now write simple expressions for the layers of a Gaussian pyramid:

PGaussian(Dn+1 = SH(Go * *PGaussian(Z)n) (7.5.1)
= (Sin’)PGaussian(I)n) (7.5.2)

(where we have written G, for the linear operator that takes an image to the
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Figure 7.13. Left: Resampled versions of the image of figure 7.11, again by factors
of two, but this time each image is smoothed with a Gaussian of o two pixels before
resampling. This filter suppresses high spatial frequency components more aggressively
than that of figure 7.12. Right: The effect of the low-pass filter is easily seen in these
log-magnitude images; the low pass filter suppresses the high spatial frequency components
so that components interfere less, to reduce aliasing.

convolution of that image with a Gaussian). The finest scale layer is the original
image

PGaussian(I)l =1

A simple, immediate use for a Gaussian pyramid is to obtain zero-crossings of a
Laplacian of Gaussian (or a DOG) at various levels of smoothing.

7.5.2 Applications of Scaled Representations

Gaussian pyramids are useful, because they make it possible to extract representa-
tions of different types of structure in an image. For example, in the case of the
zebra, we would not want to apply very large filters to find the stripes. This is
because these filters are inclined to spurious precision — we don’t wish to have to
represent the disposition of each hair on the stripe — inconvenient to build, and
slow to apply.

A more practical approach than applying very large filters is to apply smaller
filters to a less detailed version of the image. We expect effects to appear at a
variety of scales, and so represent the image in terms of several smoothed and
sampled versions. Continuing with the zebra analogy, this means we can represent
the hair on the animal’s nose, the stripes of its body, dark legs, and entire zebras,
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Figure 7.14. A Gaussian pyramid of images, running from 512x512 to 8x8. On the top
row, we have shown each image at the same size (so that some have bigger pixels than
others), and the lower part of the figure shows the images to scale.

each as bars of different sizes.

Scale and Spatial Search

Another application is spatial search, a common theme in computer vision. Typi-
cally, we have a point in one image and are trying to find a point in a second image
that corresponds to it. This problem occurs in stereopsis — where the point has
moved because the two images are obtained from different viewing positions — and
in motion analysis — where the image point has moved either because the camera
moved, or because it is on a moving object.

Searching for a match in the original pairs of images is inefficient, because we
may have to wade through a great deal of detail. A better approach, which is now
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Set the finest scale layer to the image
For each layer, going from next to finest to coarsest

Obtain this layer by smoothing the next finest
layer with a Gaussian, and then subsampling it

end

Algorithm 7.1: Forming a Gaussian pyramid

pretty much universal, is to look for a match in a heavily smoothed and resampled
image, and then refine that match by looking at increasingly detailed versions of
the image. For example, we might reduce 1024x1024 images down to 4x4 versions,
match those and then look at 8x8 versions (because we know a rough match, it is
easy to refine it); we then look at 16x16 versions, etc. all the way up to 1024x1024.
This gives an extremely efficient search, because a step of a single pixel in the 4x4
version is equivalent to a step of 256 pixels in the 1024x1024 version. We will explore
this strategy of coarse-to-fine matching in greater detail in chapters ?7.

Feature Tracking

Most features found at coarse levels of smoothing tend are associated with large,
high contrast image events, because for an feature to be marked at a coarse scale
a large pool of pixels need to agree that it is there. Typically, these phenomena
misestimate the size of a feature — the contrast might decay along an edge, for
example — and their accuracy can be quite poor — a single pixel error in a coarse-
scale image represents a multiple pixel error in a fine-scale image.

At fine scales, there are many features, some of which are associated with smaller,
low contrast events. One strategy for improving a set of features obtained at a fine
scale is to track features across scales to a coarser scale, and accept only the fine
scale features that have identifiable parents at a coarser scale. This strategy in
principle can suppress features resulting from textured regions (often referred to as
“noise”) and features resulting from real noise.

7.5.3 Scale Space

Coarse scale components give the overall structure of a signal, and fine scale com-
ponents give detailed information, as figure 77 suggests. This approach allows us
to think about representing such objects as trees, which appear to exist at several
distinct scales; we would want to be able to represent a tree both as a puff of foliage
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Figure 7.15. On the left, a 1D signal smoothed using Gaussian filters of increasing o.
As the signal is smoothed, extrema merge and vanish. The smoothest versions of the signal
can be seen as an indication of the “overall trend” of the signal, and the finer versions
have increasing amounts of detail imposed. The representation below marks the position of
zero crossings of the second derivative of the smoothed signal, as the smoothing increases
(again, scale increases vertically). Notice that zero crossings can meet and obliterate one
another as the signal is smoothed but no new zero-crossing is created. This means that the
figure shows the characteristic structure of either vertical curves or inverted “u” curves.
An inverted pitchfork shape is also possible — where three extrema meet and become one
— but this requires special properties of the signal and usually becomes an inverted u next
to a vertical curve. Notice also that the position of zero crossings tends to shift as the
signal is smoothed. Figure from “Scale-space filtering,” A.P. Witkin, Proc. 8’th IJCAI,
1983, page 1020, in the fervent hope, etc.
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on top of a stalk (coarse scale) and as a collection of individual leaves and twigs
(fine scale).

Gaussian pyramids are not an ideal tool for this representation, because they
sample the range of smoothed images quite coarsely. Instead of a discrete pyramid
of images, we might consider a one parameter family of images (or, equivalently, a
function of three dimensions)

q)(x7y7 ’LL) = GG(U) *I($7y)

where the extent of the smoothing is now a continuous parameter. For a 1D signal,
we can draw the behaviour of features as the scaling parameter changes, and this
drawing gives us a simple and sometimes quite informative description of the signal
(figure ??). If we define a “feature” to be a zero-crossing of the Laplacian, then
it is possible to show that in this family of images, features are not created by
smoothing. This means that all coarse-scale zero-crossings will have finer-scale
events corresponding to them, so that there are quite simple rules for what these
drawings look like (figure ??). These drawings and the underlying representations
are often referred to as scale space.

If we think of the signal as being composed of a set of parametric patches joined
at these feature points, we obtain a different decomposition of the signal at each
scale. Instead of representing the signal with a continuous family of decompositions
where the feature points move, we could fix the location of these feature points and
then use the simple rules for constructing scale-space drawings to obtain a strip-like
decomposition (as in figure ??). This is not a decomposition with a canonical form
— we get to choose what the features are and the nature of the parametric patches
— but it is often rather useful in practice, mainly because the decomposition of the
signal appears to reflect the structure apparent to humans.

2D scale space

It is possible to extend these decompositions from 1D to 2D. Again, the choice
of features is somewhat open, but a reasonable choice is the points of maximum
or minimum brightness. Smoothing an image with a symmetric Gaussian cannot
create local maxima or minima in brightness, but it can (and does) destroy them.
Assume we have a scale value o4;e where a maximum (or minimum — we will just
talk about the one case, for simplicity) is destroyed. If we now reduce the scale, a
standard pattern will appear — there will be a corresponding maximum surrounded
by a curve of equal brightness that has a self intersection. Thus, corresponding to
each maximum (or minimum) at any scale, we have a blob, which is the region
of the image marked out by this curve of equal brightness. Typically, maxima
are represented by light blobs and minima by dark blobs. All of this gives us a
representation of an image in terms of blobs growing (or dying) as the scale is
decreased (or increased).
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Figure 7.16. Smoothing an image with a symmetric Gaussian cannot create local max-
ima or local minima of brightness. However, local extrema can be extinguished. What
happens is that a local maximum shrinks down to the value of the surrounding pixels. This
is most easily conveyed by drawing a contour plot — the figure shows a contour plot with
a local maximum which dies as the image is smoothed (the curve is a contour of constant
brightness; the regions marked + have brightness greater than that of the contour, so the
blob must have a maximum in it; the regions marked - have brightness less than that of
the contour). Recording the details of these disappearances — where the maximum that
disappears is, the contour defining the blob around the maximum, and the scale at which
it disappears — yields a scale-space representation of the image.

7.6 Discussion

The book (hah! mere mathematics has a book - vision has a library) in which the
secrets of vision are recorded must contain many volumes on the subject of filters;
we have had to omit topics very aggressively to produce a survey of reasonable
length. The topics whose omission will most disturb the informed are probably (i)
the design of filters and (ii) techniques to obtain filtered representations efficiently.
The first three sections of this chapter are essential if you want to study these topics;
it wouldn’t be possible to read the literature on filters in vision without these ideas.

7.6.1 Real Imaging Systems vs Shift-Invariant Linear Systems

Imaging systems are only approximately linear. Film is not linear — it does not
respond to very weak stimuli, and it saturates for very bright stimuli — but one
can usually get away with a linear model within a reasonable range. CCD cameras
are linear within a working range. They give a very small, but non-zero response
to a zero input, as a result of thermal noise (which is why astronomers cool their
cameras) and they saturate for very bright stimuli. CCD cameras often contain
electronics that transforms their output to make them behave more like film, because
consumers are used to film. Shift invariance is approximate as well, because lenses
tend to distort responses near the image boundary. Some lenses — fish-eye lenses
are a good example — are not shift-invariant.
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7.6.2 Scale

There is a very large body of work on scale space and scaled representations. We
have given only the briefest picture here, because the analysis tends to be quite
tricky. The usefulness of the techniques is currently hotly debated, too. The general
idea is as follows: a representation of an object like a tree should probably occur
at multiple scales — at a fine scale, we consider each twig and leaf, and at a coarse
scale there are a couple of puffs of leaves at the top of a trunk. One technique
that might It is something of a stretch from a representation of the behaviour of
brightness maxima/minima to (say) a description of a tree. Generally, high maxima
and deep minima will give blobs that last over a large range of scales, so that dark
leaves on a bright sky may lead to a very large collection of small blobs which slowly
merge over scales to end up with a single dark blob (the puff at the top of the tree).
Much of the detailed gymnastics of the blobs as they merge is irrelevant — we really
care only about the statistics of the blobs at the finest scale, and the size of the
blob at the coarsest. There is little formalised knowledge about which bits of the
representation carry cogent information and which do not.

Assignments

Exercises

1. Show that forming unweighted local averages — which yields an operation of

the form
u=itk v=j+k

1
RU:WZ Z]:uv

u=i—kv=j—k

is a convolution. What is the kernel of this convolution?

2. Write & for an image that consists of all zeros, with a single one at the center.
Show that convolving this image with the kernel

1 p(_((i—k—1)2+(1—k—1)2)>

ij] = ex
7 org? 202

(which is a discretised Gaussian) yields a circularly symmetric fuzzy blob.

3. Show that convolving an image with a discrete, separable 2D filter kernel is
equivalent to convolving with two 1D filter kernels. Estimate the number of
operations saved for an NxN image and a 2k + 1 x 2k + 1 kernel.

4. Show that convolving a function with a shifted § function shifts the function.

5. Aliasing takes high spatial frequencies to low spatial frequencies. Explain why
following effects occur:
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e In old cowboy films that show wagons moving, the wheel often seems to
be stationary or moving in the wrong direction (i.e. the wagon moves
from left to right and the wheel seems to be turning anticlockwise).

e White shirts with thin dark pinstripes often generate a shimmering array
of colours on television.

e Inray-traced pictures, soft shadows generated by area sources look blocky.

6. Each pixel value in 500 x 500 pixel image Z is an independent normally dis-
tributed random variable with zero mean and standard deviation one. Esti-
mate the number of pixels that where the absolute value of the = derivative,
estimated by forward differences (i.e. |[;11,; — I; 4 is greater than 3.

7. Each pixel value in 500 x 500 pixel image Z is an independent normally dis-
tributed random variable with zero mean and standard deviation one. 7 is
convolved with the 2k 4+ 1 x 2k + 1 kernel G. What is the covariance of pixel
values in the result? (There are two ways to do this; on a case-by-case basis —
e.g. at points that are greater than 2k 4 1 apart in either the x or y direction,
the values are clearly independent — or in one fell swoop. Don’t worry about
the pixel values at the boundary.)

Programming Assignments

e One way to obtain a Gaussian kernel is to convolve a constant kernel with
itself, many times. Compare this strategy with evaluating a Gaussian kernel.

1. How many repeated convolutions will you need to get a reasonable ap-
proximation? (you will need to establish what a reasonable approxi-
mation is; you might plot the quality of the approximation against the
number of repeated convolutions).

2. Are there any benefits that can be obtained like this? (hint: not every
computer comes with an FPU)

e A sampled Gaussian kernel must alias, because the kernel contains components
at arbitrarily high spatial frequencies. Assume that the kernel is sampled on
an infinite grid. As the standard deviation gets smaller, the aliased energy
must increase. Plot the energy that aliases against the standard deviation of
the Gaussian kernel in pixels. Now assume that the Gaussian kernel is given
on a 7x7 grid. If the aliased energy must be of the same order of magnitude
as the error due to truncating the Gaussian, what is the smallest standard
deviation that can be expressed on this grid?
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EDGE DETECTION

Sharp changes in image brightness are interesting for many reasons. Firstly, object
boundaries often generate sharp changes in brightness — a light object may lie
on a dark background, or a light object may lie on a dark background. Secondly,
reflectance changes often generate sharp changes in brightness which can be quite
distinctive — zebras have stripes and leopards have spots. Cast shadows can also
generate sharp changes in brightness. Finally, sharp changes in surface orientation
are often associated with sharp changes in image brightness.

Points in the image where brightness changes particularly sharply are often
called edges or edge points. We should like edge points to be associated with
the boundaries of objects and other kinds of meaningful changes. It is hard to
define precisely the changes we would like to mark — is the region of a pastoral
scene where the leaves give way to the sky the boundary of an object? Typically,
it is hard to tell a semantically meaningful edge from a nuisance edge, and to do
so requires a great deal of high-level information. Nonetheless, experience building
vision systems suggests that very often, interesting things are happening in an image
at an edge and it is worth knowing where the edges are.

We will proceed with a rather qualitative model of an edge as a point where the
change of image brightness is distinctive and large. One sign of a sharp change in
an image is a large gradient magnitude. We discuss estimating image derivatives in
section 8.1 (which leads to a simple edge detector based on second derivative prop-
erties section 8.1.2), deal with the associated noise issues in section 8.6, and show
how to to build an edge detector using gradient magnitude estimates in section 8.3.

8.1 Estimating Derivatives with Finite Differences

Estimates of derivatives are generally important in vision, because changes in images
are interesting. A sharp change in an image could be associated with the boundary
of an object, or with markings on the object; and such changes are associated with
large gradients.

To estimate a derivative of an image represented by a discrete set of pixels, we
need to resort to an approximation. Derivatives are rather naturally approximated

214
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Figure 8.1. Finite differences are one way to obtain an estimate of a derivative. The
image at the left shows a detail from a picture of a zebra. The center image shows the
partial derivative in the y-direction — which responds strongly to horizontal stripes and
weakly to vertical stripes — and the right image shows the partial derivative in the -
direction — which responds strongly to vertical stripes and weakly to horizontal stripes.
In the derivative figures, a mid grey level is a zero value, a dark grey level is a negative
value, and a light grey level is a positive value.

by finite differences. Because

a_f — lim f(x+67y)_f($7y)

Or -0 €

we might estimate a partial derivative as a symmetric difference:

8_h
ox

~ hiv1,y = hi1

This is the same as a convolution, where the convolution kernel is

00 O
G=<1 0 -1

00 O
Notice that this kernel could be interpreted as a template — it will give a large
positive response to an image configuration that is positive on one side and negative
on the other, and a large negative response to the mirror image.

As figure 8.2 suggests, finite differences give a most unsatisfactory estimate of
the derivative. This is because this filter has a strong response to fast changes
due to noise, as well as those due to signal. For example, if we had bought a
discount camera with some pixels that were stuck at either black or white, the filter
would produce a strong response at those pixels because they will, in general, be
substantially different from their neighbours. All this suggests that some form of
smoothing is appropriate before differentiation; the details appear in section 8.3.1.
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Figure 8.2. Finite differences respond strongly to noise. The image at top left shows
a detail from a picture of a zebra; the next image in the row is obtained by adding a
random number with zero mean and normal distribution (o = 0.03) to each pixel; and
the third image is obtained by adding a random number with zero mean and normal
distribution (o = 0.09) to each pixel. The second row shows the partial derivative in the
z-direction of the image at the head of the row. Notice how strongly the differentiation
process emphasizes image noise — the derivative figures look increasingly grainy. In the
derivative figures, a mid grey level is a zero value, a dark grey level is a negative value,
and a light grey level is a positive value.

8.1.1 Differentiation and Noise

From table 7.1, differentiating a function is the same as multiplying its Fourier
transform by a frequency variable; this means that the high spatial frequency com-
ponents are heavily emphasized at the expense of the low frequency components.
This is intuitively plausible — differentiating a function must set the constant com-
ponent to zero, and the amplitude of the derivative of a sinusoid goes up with its
frequency. Furthermore, this property is the reason we are interested in derivatives;
we are discussing the derivative precisely because fast changes (which generate high
spatial frequencies) have large derivatives.

It is possible to show that stationary additive Gaussian noise has uniform energy
at each frequency; but if we differentiate the noise, we will emphasize the high fre-
quencies. If we do not attempt to ameliorate this situation, the gradient magnitude
map is likely to have occasional large values due to noise. Filtering with a Gaussian
filter suppresses these high spatial frequencies.

The discussion of aliasing gives us some insight into available smoothing param-
eters as well. Any Gaussian kernel that we use will be a sampled approximation to a
Gaussian, sampled on a single pixel grid. This means that, for the original kernel to
be reconstructed from the sampled approximation, it should contain no components
of spatial frequency greater than 0.5pixel™!. This isn’t possible with a Gaussian,
because its Fourier transform is also Gaussian, and hence isn’t bandlimited. The
best we can do is insist that the quantity of energy in the signal that is aliased is
below some threshold — in turn, this implies a minimum value of ¢ that is available
for a smoothing filter on a discrete grid (for values lower than this minimum, the
smoothing filter itself is badly aliased — see exercise 77).
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8.1.2 Laplacians and edges

One diagnostic for a large gradient magnitude is a zero of a “second derivative”
at a point where the gradient is large. A sensible 2D analogue to the 1D second
derivative must be rotationally invariant; it is not hard to show that the Laplacian
has this property. The Laplacian of a function in 2D is defined as:

2 *f  0*f
(v f)(:I;?y) - 8:112 8y2
It is natural to smooth the image It turns out that smoothing an image and then
applying the Laplacian is the same as convolving the image with the Laplacian of a
Gaussian (section 8.3.4 explains this fact for first derivatives, but it works for any
linear differential operator).

This leads to a simple and historically important edge detection strategy, illus-
trated in figure 8.3. We convolve an image with a Laplacian of Gaussian at some
scale, and mark the points where the result has value zero — the zero crossings.
These points should be checked to ensure that the gradient magnitude is large.

The response of a Laplacian of Gaussian filter is positive on one side of an edge
and negative on another. This means that adding some percentage of this response
back to the original image yields a picture in which edges have been sharpened,
and detail is more easy to see. This observation dates back to a photographic
developing technique called unsharp masking, where a blurred positive is used to
increase visibility of detail in bright areas by “subtracting” a local average of the
brightness in that area. Unsharp masking essentially applies a difference of Gaussian
kernel to an image; as exercise 77 indicates, the difference between two Gaussian
kernels looks very similar to a Laplacian of Gaussian kernel. It is quite common to
replace one with the other.

Laplacian of Gaussian edge detectors have fallen into some disfavour. Because
the Laplacian of Gaussian filter is not oriented, its response is composed of an
average across an edge and one along the edge. This means that their behaviour
at corners — where the direction along the edge changes — is poor. They mark
the boundaries of sharp corners quite inaccurately; furthermore, at trihedral or
greater vertices, they have difficulty recording the topology of the corner correctly,
as figure 8.4 illustrates. Secondly, the components along the edge tend to contribute
to the response of the filter to noise but not necessarily to an edge; this means that
zero-crossings may not lie exactly on an edge.

8.2 Noise

We have asserted that smoothing suppresses some kinds of noise. To be more
precise we need a model of noise. Usually, by the term noise, we mean image
measurements from which we do not know how to extract information, or from
which we do not care to extract information; all the rest is signal. It is wrong to
believe that noise does not contain information — for example, we should be able
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Figure 8.3. Zero crossings of the Laplacian of Gaussian for various scales and at various
gradient magnitude thresholds. Each column shows a fixed scale, with ¢, the threshold on
gradient magnitude increasing as one moves down the right (by a factor of two from image
to image). Each row shows a fixed ¢, with scale increasing from o one pixel to o eight
pixels, by factors of two. Notice that the fine scale, low threshold edges contain a quantity
of detailed information that may or may not be useful (depending on one’s interest in the
hairs on the zebra’s nose). As the scale increases, the detail is suppressed; as the threshold
increases, small regions of edge drop out. No scale or threshold gives the outline of the
zebra’s head; all respond to its stripes, though as the scale increases, the narrow stripes
on the top of the muzzle are no longer resolved.

to extract some estimate of the camera temperature by taking pictures in a dark
room with the lens-cap on. Furthermore, since we cannot say anything meaningful
about noise without a noise model, it is wrong to say that noise is not modelled.
Noise is everything we don’t wish to use, and that’s all there is to it.
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Figure 8.4. Zero crossings of Laplacian of Gaussian output can behave strangely at
corners. Firstly, at a right angled corner, the zero crossing bulges out at the corner (but
passes through the vertex). This effect is not due to digitisation or to quantization, but
can be shown to occur in the continuous case as well. At corners where three or more
edges meet, contours behave strangely, with the details depending on the structure of
the contour marking algorithm — this algorithm (the one shipped with Matlab) produces
curious loops. This effect can be mitigated with careful design of the contour marking
process, which needs to incorporate a fairly detailed vertex model.

8.2.1 Additive Stationary Gaussian Noise

In the additive stationary Gaussian noise model, each pixel has added to it a
value chosen independently from the same Gaussian probability distribution. Al-
most always, the mean of this distribution is zero. The standard deviation is a
parameter of the model. The model is intended to describe thermal noise in cam-
eras.

Linear Filter Response to Additive Gaussian Noise

Assume we have a discrete linear filter whose kernel is G, and we apply it to a noise
image A consisting of stationary additive Gaussian noise with mean p and standard
deviation o. The response of the filter at some point 4, 7 will be:

R(N)i,j = Z Gi—u,j—vNum

Because the noise is stationary, the expectations that we compute will not de-
pend on the point, and we assume that ¢ and j are zero, and dispense with the
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Figure 8.5. The top row shows three realisations of a stationary additive Gaussian noise
process. We have added half the range of brightnesses to these images, so as to show both
negative and positive values of noise. From left to right, the noise has standard deviation
1/256, 4/256 and 16/256 of the full range of brightness respectively. This corresponds
roughly to bits zero, two and five of a camera that has an output range of eight bits per
pixel. The lower row shows this noise added to an image. In each case, values below zero
or above the full range have been adjusted to zero or the maximum value accordingly.

subscript. Assume the kernel has finite support, so that only some subset of the
noise variables contributes to the expectation; write this subset as ng,...,nys.
The expected value of this response must be:

E[R(N)] = / {R(N)}p(N070, ey Nr7s)dN070 e dan
= ZG—u,—v{/ Nu,vp(Nu,v)dNu,v}

where we have done some aggressive moving around of variables, and integrated
out all the variables that do not appear in each expression in the sum. Since all the
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Ny, are independent identically distributed Gaussian random variables with mean
u, we have that:

E[RN) =1 Gicujo
The variance of the noise response is obtained as easily. We want to determine
E{RN)i; — E[RWN)i 31}
and this is the same as

/{{R(N)zyj — E[R(N)iyj]}Qp(N(Lo, cey Nr,s)dNQO - dan

which expands to
/{Z G—u,—v(Nu,v - ,u')}Qp(NO,O; SRR NT,s)dNO,O v dNr,s
This expression expands into a sum of two kinds of integral. Terms of the form

/GQ_uy_v(Nuyv — 1)*p(No,o, - - -s Nys)dNog - . .dN,.

(for some u, v) can be integrated easily, because each N, , is independent; the
integral is 0°G?,, _, where o is the standard deviation of the noise. Terms of the
form

v

/G—u,—vG—a,—b(Nu,v - ,u’)(Na,b - M)p(NO,O; ) Nr,s)dNO,O e dNr,s

(for some u, v and a, b) integrate to zero, again because each noise term is inde-
pendent. We now have:

E{R(WN)i; —E[RWN)i1}] =0 ) G2,

Finite Difference Filters and Gaussian Noise

From these results, we get some insight into the noise behaviour of finite differences.
Assume we have an image of stationary Gaussian noise of zero mean, and consider
the variance of the response to a finite difference filter that estimates derivatives of
increasing order. We shall use the kernel
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Figure 8.6. Finite differences can accentuate additive Gaussian noise substantially,
following the argument in section ??. On the left, an image of zero mean Gaussian noise
with standard deviation 4/256 of the full range. The second figure shows a finite difference
estimate of the third derivative in the x direction, and the third shows the sixth derivative
in the x direction. In each case, the image has been centered by adding half the full range
to show both positive and negative deviations. The images are shown using the same grey
level scale; in the case of the sixth derivative, some values exceed the range of this scale.
The rightmost image shows the standard deviations of these noise images compared with
those predicted by the Pascal’s triangle argument.

to estimate the first derivative. Now a second derivative is simply a first derivative
applied to a first derivative, so the kernel will be:

oo
|
oo
oo

With a little thought, you can convince yourself that under this scheme, the
kernel coefficients of a k’th derivative come from the k4 1’th row of Pascal’s triangle,
with appropriate flips of sign. For each of these derivative filters, the mean response
to Gaussian noise is zero; but the variance of this response goes up sharply; for the
k’th derivative it is the sum of squares of the k£ 4 1’th row of Pascal’s triangle times
the standard deviation. Figure 8.6 illustrates this result.

Smoothing alleviates this effect, but the explanation needs a little thought. As-
sume we smooth a noisy image, and then differentiate it. Firstly, the variance of
the noise will tend to be reduced by a smoothing kernel. This is because we tend
to use smoothing kernels which are positive, and for which

Y Guw=1

which means that

Y@, <1
uv

Secondly, pixels will have a greater tendency to look like neighbouring pixels — if
we take stationary additive Gaussian noise, and smooth it, the pixel values of the
resulting signal are no longer independent. In some sense, this is what smoothing
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Figure 8.7. Smoothing stationary additive Gaussian noise results in signals where pixel
values tend to be increasingly similar to the value of neighbouring pixels. This occurs at
about the scale of the filter kernel, because the filter kernel causes the correlations. The
figures show noise smoothed with increasingly large Gaussian smoothing kernels. Grey
pixels have zero value, darker values are negative and brighter values are positive. The
kernels are shown in the top right hand corners of the figures, to indicate the spatial scale
of the kernel (we have scaled the brightness of the kernels, which are Gaussians, so that
the center pixel is white and the boundary pixels are black). Smoothed noise tends to look
like natural texture, as the figures indicate.

was about — recall we introduced smoothing as a method to predict a pixel’s
value from the values of its neighbours. However, if pixels tend to look like their
neighbours, then derivatives must be smaller (because they measure the tendency
of pixels to look different from their neighbours).

Smoothed noise has applications. As figure 8.7 indicates, smoothed noise tends
to look like some kinds of natural texture, and smoothed noise is quite widely used
as a source of textures in computer graphics applications []).

Difficulties with the Additive Stationary Gaussian Noise Model

Taken literally, the additive stationary Gaussian noise model is poor model of image
noise. Firstly, the model allows positive (and, more alarmingly, negative!) pixel
values of arbitrary magnitude. With appropriate choices of standard deviation for
typical current cameras operating indoors or in daylight, this doesn’t present much
of a problem, because these pixel values are extremely unlikely to occur in practice.
In rendering noise images, the problematic pixels that do occur are fixed at zero or
full output respectively.

Secondly, noise values are completely independent, so this model does not cap-
ture the possibility of groups of pixels that have correlated responses, perhaps be-
cause of the design of the camera electronics or because of hot spots in the camera
integrated circuit. This problem is harder to deal with, because noise models that
do model this effect tend to be difficult to deal with analytically. Finally, this model
does not describe “dead pixels” (pixels that consistently report no incoming light,
or are consistently saturated) terribly well. If the standard deviation is quite large
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Figure 8.8. The gradient magnitude can be estimated by smoothing an image and
then differentiating it. This is equivalent to convolving with the derivative of a smoothing
kernel. The extent of the smoothing affects the gradient magnitude; in this figure, we show
the gradient magnitude for the figure of a zebra at different scales. On the left, gradient
magnitude estimated using the derivatives of a Gaussian with ¢ = 1 pixel and on the right
gradient magnitude estimated using the derivatives of a Gaussian with o = 2 pixel. Notice
that large values of the gradient magnitude form thick trails.

and we threshold pixel values, then dead pixels will occur, but the standard devi-
ation may be too large to model the rest of the image well. A crucial advantage
of additive Gaussian noise is that it is easy to estimate the response of filters to
this noise model. In turn, this gives us some idea of how effective the filter is at
responding to signal and ignoring noise.

8.3 Edges and Gradient-based Edge Detectors

Typically, the gradient magnitude can be large along a thick trail in an image
(figure 8.8). Object outlines are curves however, and we should like to obtain a
curve of the most distinctive points on this trail.

A natural approach is to look for points where the gradient magnitude is a maxi-
mum along the direction perpendicular to the edge. For this approach, the direction
perpendicular to the edge can be estimated using the direction of the gradient (fig-
ure 8.9). These considerations yield algorithm 1. Most current edgefinders follow
these lines, but there remain substantial debates about the proper execution of the
details.

8.3.1 Estimating Gradients

As figure 8.2 indicates, simple finite difference filters tend to give strong responses
to noise, so that applying two finite difference filters is a poor way to estimate
a gradient. However, we expect that any change of significance to us has effects
over a pool of pixels. For example, the contour of an object can result in a long
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form an estimate of the image gradient
obtain the gradient magnitude from this estimate

identify image points where the value

of the gradient magnitude is maximal

in the direction perpendicular to the edge
and also large; these points are edge points

Algorithm 8.1: Gradient based edge detection.

-

Figure 8.9. The gradient magnitude tends to be large along thick trails in an image.
Typically, we would like to condense these trails into curves of representative edge points.
A natural way to do this is to cut the trail perpendicular to its direction and look for a
peak. We will use the gradient direction as an estimate of the direction in which to cut.
The top left figure shows a trail of large gradient magnitude; the figure on the top right
shows an appropriate cutting direction; and below, we show the peak in this direction.

chain of points where the image derivative is large. For many kinds of noise model,
large image derivatives due to noise are an essentially local event. This means that
smoothing a differentiated image would tend to pool support for the changes we are
interested in, and to suppress the effects of noise. An alternative interpretation of
the point is that the changes we are interested in will not be suppressed by some
smoothing, which will tend to suppress the effects of noise. There is no difference in
principle between differentiating a smoothed image, or smoothing a differentiated
image. In practice, it is usual to differentiate a smoothed image.

8.3.2 Choosing a Smoothing Filter

The smoothing filter can be chosen by taking a model of an edge and then using
some set of criteria to choose a filter that gives the best response to that model.
It is difficult to pose this problem as a two dimensional problem, because edges in
2D can be curved. Conventionally, the smoothing filter is chosen by formulating a
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Figure 8.10. Derivative of Gaussian filters are less extroverted in their response to noise
than finite difference filters. The image at top left shows a detail from a picture of a zebra;
top center shows the same image corrupted by zero mean stationary additive Gaussian
noise, with o = 0.03 (pixel values range from 0 to 1). Top right shows the same image
corrupted by zero mean stationary additive Gaussian noise, with o = 0.09. The second
row shows the partial derivative in the z-direction of each image, in each case estimated
by a derivative of Gaussian filter with o one pixel. Notice how the smoothing helps to
reduce the impact of the noise.

one-dimensional problem, and then using a rotationally symmetric version of the
filter in 2D.

The one-dimensional filter must be obtained from a model of an edge. The usual
model is a step function of unknown height, in the presence of stationary additive
Gaussian noise:

edge(z) = AU (x) + n(zx)

where
0 ifz<0
U(“:):{ 1 ifz >0

(the value of U(0) is irrelevant to our purpose). A is usually referred to as the
contrast of the edge. In the 1D problem, finding the gradient magnitude is the
same as finding the square of the derivative response. For this reason, we usually
seek a derivative estimation filter rather than a smoothing filter (which can then be
reconstructed by integrating the derivative estimation filter).

Canny established the practice of choosing a derivative estimation filter by using
the continuous model to optimize a combination of three criteria:

e Signal to noise ratio — the filter should respond more strongly to the edge
at © = 0 than to noise.

e Localisation — the filter response should reach a maximum very close to
z=0.

e Low false positives — there should be only one maximum of the response
in a reasonable neighbourhood of z = 0.
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Once a continuous filter has been found, it is discretised. The criteria can be
combined in a variety of ways, yielding a variety of somewhat different filters. It
is a remarkable fact that the optimal smoothing filters that are derived by most
combinations of these criteria tend to look a great deal like Gaussians — this is
intuitively reasonable, as the smoothing filter must place strong weight on center
pixels and less weight on distant pixels, rather like a Gaussian. In practice, optimal
smoothing filters are usually replaced by a Gaussian, with no particularly important
degradation in performance.

Figure 8.11. The scale (i.e. o) of the Gaussian used in a derivative of Gaussian filter
has significant effects on the results. The three images show estimates of the derivative in
the z direction of an image of the head of a zebra, obtained using a derivative of Gaussian
filter with o one pixel, three pixels and seven pixels (moving to the right). Note how
images at a finer scale show some hair and the animal’s whiskers disappear at a medium
scale, and the fine stripes at the top of the muzzle disappear at the coarser scale.

The choice of ¢ used in estimating the derivative is often called the scale of
the smoothing. Scale has a substantial effect on the response of a derivative filter.
Assume we have a narrow bar on a constant background, rather like the zebra’s
whisker. Smoothing on a scale smaller than the width of the bar will mean that the
filter responds on each side of the bar, and we will be able to resolve the rising and
falling edges of the bar. If the filter width is much greater, the bar will be smoothed
into the background, and the bar will generate little or no response (as figure 8.11).

8.3.3 Why Smooth with a Gaussian?

While a Gaussian is not the only possible blurring kernel, it is convenient because
it has a number of important properties. Firstly, if we convolve a Gaussian with a
Gaussian, and the result is another Gaussian:

G, %*xG,y, =G o7 5a3

This means that it is possible to obtain very heavily smoothed images by resmooth-
ing smoothed images. This is a significant property, firstly because discrete convo-
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lution can be an expensive operation (particularly if the kernel of the filter is large),
and secondly because it is common to want to see versions of an image smoothed
by different amounts.

Efficiency

Consider convolving an image with a Gaussian kernel with ¢ one pixel. Although
the Gaussian kernel is non zero over an infinite domain, for most of that domain
it is extremely small because of the exponential form. For o one pixel, points
outside a 5x5 integer grid centered at the origin have values less than e = 0.0184
and points outside a 7x7 integer grid centered at the origin have values less than
e~? = 0.0001234. This means that we can ignore their contributions, and represent
the discrete Gaussian as a small array (5x5 or 7x7, according to taste and the
number of bits you allocate to representing the kernel).

However, if o is 10 pixels, we may need a 50x50 array or worse. A back of
the envelope count of operations should convince you that convolving a reasonably
sized image with a 50x50 array is an unattractice prospect. The alternative —
convolving repeatedly with a much smaller kernel — is much more efficient, because
we don’t need to keep every pizel in the interim. This is because a smoothed image
is, to some extent, redundant (most pixels contain a significant component of their
neighbours’ values). As a result, some pixels can be discarded. We then have a
strategy which is quite efficient: smooth, subsample, smooth, subsample, etc. The
result is an image that has the same information as a heavily smoothed image, but
is very much smaller and is easier to obtain. We explore the details of this approach
in section 7.5.1.

The Central Limit Theorem

Gaussians have another significant property which we shall not prove but illustrate
in figure 8.12. For an important family of functions, convolving any member of that
family of functions with itself repeatedly will eventually yield a Gaussian. With
the associativity of convolution, this implies that if we choose a different smoothing
kernel, and apply it repeatedly to the image, the result will eventually look as
though we had smoothed the image with a Gaussian anyhow.

Gaussians are Separable
Finally, a Gaussian can be factored as

1 z? 492
Golw,y) = om0 P <_w>

202

- (G (52) < (e (437))

and this is a product of two 1-D Gaussians. Generally, a function f(z,y) that
factors as f(z,y) = g(z)h(y) is referred to as a tensor product. It is common to
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Figure 8.12. The central limit theorem states that repeated convolution of a positive
kernel with itself will eventually limit towards a kernel that is a scaling of a Gaussian. The
top figure illustrates this effect for 1D convolution; the triangle is obtained by convolving a
box function with itself; each succeding stage is obtained by convolving the previous stage
with itself. The four images show a 2D box function convolved with itself 0, 1, 2 and 4
times (clockwise).

refer to filter kernels that are tensor products as separable kernels. Separability
is a very useful property indeed. In particular, convolving with a filter kernel that
is separable is the same as convolving with two 1-D kernels, one in the z direction
and another in the y direction (exercises).

Many other kernels are separable. Separable filter kernels result in discrete
representations that factor as well. In particular, if H is a discretised separable
filter kernel, then there are some vectors f and g such that

Hi; = fig;

It is possible to identify this property using techniques from numerical linear algebra;
commercial convolution packages often test the kernel to see if it is separable before
applying it to the image. The cost of this test is easily paid off by the savings if the
kernel does turn out to be separable.

8.3.4 Derivative of Gaussian Filters

Smoothing an image and then differentiating it is the same as convolving it with the
derivative of a smoothing kernel. This fact is most easily seen by thinking about
continuous convolution.

Firstly, differentiation is linear and shift invariant. This means that there is
some kernel — we dodge the question of what it looks like — that differentiates.



230 Edge Detection  Chapter 8

That is, given a function I(x,y)

oI
%:Kaa_x**]

Now we want the derivative of a smoothed function. We write the convolution
kernel for the smoothing as S. Recalling that convolution is associative, we have

(Ki**(5’**])):(K%**S)**I:(Z—S)**I
I = z

This fact appears in its most commonly used form when the smoothing function is
a Gaussian; we can then write

0 (Gy % *I) _(8GG
ox - Oz

IEEY

i.e. we need only convolve with the derivative of the Gaussian, rather than convolve
and then differentiate. A similar remark applies to the Laplacian. Recall that the
Laplacian of a function in 2D is defined as:

0? 0?
(V2)an) = G + 5ok

Again, because convolution is associative, we have that
(Kv2 * #(Gy x 1)) = (Ky2 * ¥Gy) % xI = (V2Gy) * xI

This practice results in much smaller noise responses from the derivative esti-
mates (figure 8.10).

8.3.5 Identifying Edge Points from Filter Outputs

Given estimates of gradient magnitude, we would like to obtain edge points. Again,
there is clearly no objective definition, and we proceed by reasonable intuition.
The gradient magnitude can be thought of as a chain of low hills. Marking local
extrema would mark isolated points — the hilltops in the analogy. A better criterion
is to slice the gradient magnitude along the gradient direction — which should
be perpendicular to the edge — and mark the points along the slice where the
magnitude is maximal. This would get a chain of points along the crown of the hills
in our chain; the process is called non-maximum suppression.

Typically, we expect edge points to occur along curve-like chains. The significant
steps in non maximum suppression are:

e determining whether a given point is an edge point;

e and, if it is, finding the next edge point.
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Figure 8.13. Non-maximum suppression obtains points where the gradient magnitude
is at a maximum along the direction of the gradient. The figure on the left shows how
we reconstruct the gradient magnitude. The dots are the pixel grid. We are at pixel g,
attempting to determine whether the gradient is at a maximum; the gradient direction
through g does not pass through any convenient pixels in the forward or backward direc-
tion, so we must interpolate to obtain the values of the gradient magnitude at p and 7;
if the value at q is larger than both, g is an edge point. Typically, the magnitude values
are reconstructed with a linear interpolate, which in this case would use the pixels to the
left and right of p and 7 respectively to interpolate values at those points. On the right,
we sketch how to find candidates for the next edge point, given that g is an edge point;
an appropriate search direction is perpendicular to the gradient, so that points s and ¢
should be considered for the next edge point. Notice that, in principle, we don’t need to
restrict ourselves to pixel points on the image grid, because we know where the predicted
position lies between s and ¢, so that we could again interpolate to obtain gradient values
for points off the grid.

Once these steps are understood, it is easy to enumerate all edge chains. We find
the first edge point, mark it, expand all chains through that point exhaustively,
marking all points along those chains, and continue to do this for all unmarked
edge points.

The two main steps are simple. For the moment, assume that edges are to be
marked at pixel locations (rather than, say, at some finer subdivision of the pixel
grid). We can determine whether the gradient magnitude is maximal at any pixel
by comparing it with values at points some way backwards and forwards along the
gradient direction. This is a function of distance along the gradient; typically we
step forward to the next row (or column) of pixels and backwards to the previous to
determine whether the magnitude at our pixel is larger (figure 8.13). The gradient
direction does not usually pass through the next pixel, so we must interpolate to
determine the value of the gradient magnitude at the points we are interested in; a
linear interpolate is usual.
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While there are points with high gradient
that have not been visited

Find a start point that is a local maximum in the
direction perpendicular to the gradient
erasing points that have been checked

while possible, expand a chain through
the current point by:

1) predicting a set of next points, using

the direction perpendicular to the gradient

2) finding which (if any) is a local maximum
in the gradient direction

3) testing if the gradient magnitude at the
maximum is sufficiently large

4) leaving a record that the point and
neighbours have been visited

record the next point, which becomes the current point
end

end

Algorithm 8.2: Non-mazimum suppression.

If the pixel turns out to be an edge point, the next edge point in the curve can
be guessed by taking a step perpendicular to the gradient. This step will not, in
general, end on a pixel; a natural strategy is to look at the neighbouring pixels that
lie close to that direction (see figure 8.13. This approach leads to a set of curves
that can be represented by rendering them in black on a white background, as in
figure ?7.

There are too many of these curves to come close to being a reasonable repre-
sentation of object boundaries. This is, in part, because we have marked maxima of
the gradient magnitude without regard to how large these maxima are. It is more
usual to apply a threshold test, to ensure that the maxima are greater than some
lower bound. This in turn leads to broken edge curves (figure ?77). The usual trick
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Figure 8.14. Edge points marked on the pixel grid for the image shown on the left.
The edge points on the center left are obtained using a Gaussian smoothing filter at o
one pixel and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point or not. The edge points on the center right are obtained
using a Gaussian smoothing filter at o four pixels and gradient magnitude has been tested
against a high threshold to determine whether a point is an edge point or not. The edge
points on the right are obtained using a Gaussian smoothing filter at o four pixels and
gradient magnitude has been tested against a low threshold to determine whether a point
is an edge point or not. At a fine scale, fine detail at high contrast generates edge points,
which disappear at the coarser scale. When the threshold is high, curves of edge points
are often broken because the gradient magnitude dips below the threshold; for the low
threshold, a variety of new edge points of dubious significance are introduced.

N\

Figure 8.15. Edge points marked on the pixel grid for the image shown on the left.
The edge points on the center left are obtained using a Gaussian smoothing filter at o
one pixel and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point or not. The edge points on the center right are obtained
using a Gaussian smoothing filter at o four pixels and gradient magnitude has been tested
against a high threshold to determine whether a point is an edge point or not. The edge
points on the right are obtained using a Gaussian smoothing filter at ¢ four pixels and
gradient magnitude has been tested against a low threshold to determine whether a point
is an edge point or not. At a fine scale, fine detail at high contrast generates edge points,
which disappear at the coarser scale. When the threshold is high, curves of edge points
are often broken because the gradient magnitude dips below the threshold; for the low
threshold, a variety of new edge points of dubious significance are introduced.

for dealing with this is to use hysteresis; we have two thresholds, and refer to the
larger when starting an edge chain and the smaller while following it. The trick
often results in an improvement in edge outputs (exercises)
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Figure 8.16. Edge points marked on the pixel grid for the image shown on the left.
The edge points on the center left are obtained using a Gaussian smoothing filter at o
one pixel and gradient magnitude has been tested against a high threshold to determine
whether a point is an edge point or not. The edge points on the center right are obtained
using a Gaussian smoothing filter at o four pixels and gradient magnitude has been tested
against a high threshold to determine whether a point is an edge point or not. The edge
points on the right are obtained using a Gaussian smoothing filter at ¢ four pixels and
gradient magnitude has been tested against a low threshold to determine whether a point
is an edge point or not. At a fine scale, fine detail at high contrast generates edge points,
which disappear at the coarser scale. When the threshold is high, curves of edge points
are often broken because the gradient magnitude dips below the threshold; for the low
threshold, a variety of new edge points of dubious significance are introduced.

8.4 Commentary

Edge detection is a subject that is alive with controversy, much of it probably empty.
We have hardly scratched the surface. There are many optimality criteria for edge
detectors, and rather more “optimal” edge detectors. At the end of the day, most
boil down to smoothing the image with something that looks a lot like a Gaussian
before measuring the gradient. Our choice of Canny’s approach to expound here
and in the next chapter is based mainly on tradition.

Object boundaries are not the same as sharp changes in image values. Firstly,
objects may not have a strong contrast with their backgrounds through sheer bad
luck. Secondly, objects are often covered with texture or markings which generate
edges of their own; often so many that it is hard to wade through them to find
the relevant pieces of object boundary. Finally, shadows and the like may generate
edges that have no relation to object boundaries. There are some strategies for
dealing with these difficulties.

Firstly, some applications allow management of illumination; if it is possible to
choose the illumination, a careful choice can make a tremendous difference in the
contrast and eliminate shadows. Secondly, by setting smoothing parameters large
and contrast thresholds high it is often possible to ensure that edges due to texture
are smoothed over and not marked. This is a dubious business, firstly because it can
be hard to choose reliable values of the smoothing and the thresholds and secondly
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because it is perverse to regard texture purely as a nuisance, rather than a source
of information.

There are other ways to handle the uncomfortable distinction between edges and
object boundaries. Firstly, one might work to make better edge detectors. This
approach is the root of a huge literature, dealing with matters like localisation,
corner topology and the like. We incline to the view that returns are diminishing
rather sharply in this endeavour.

Secondly, one might deny the usefulness of edge detection entirely. This ap-
proach is rooted in the observation that some stages of edge detection, particularly
non-maximum suppression, discard information that is awfully difficult to retrieve
later on. This is because a hard decision — testing against a threshold — has been
made. Instead, the argument proceeds, one should keep this information around in
a “soft” (a propaganda term for probabilistic) way. Attactive as these arguments
sound, we are inclined to discount this view because there are currently no practical
mechanisms for handling the volumes of soft information so obtained.

Finally, one might regard this as an issue to be dealt with by overall questions of
system architecture — the fatalist view that almost every visual process is going to
have obnoxious features, and the correct approach to this problem is to understand
the integration of visual information well enough to construct vision systems that
are tolerant to this. Although it sweeps a great deal of dust under the carpet —
precisely how does one construct such architectures? — we find this approach most
attractive and will discuss it again and again.

All edge detectors behave badly at corners; only the details vary. This has
resulted in two lively strands in the literature (i - what goes wrong; ii - what to do
about it). There are a variety of quite sophisticated corner detectors, mainly because
corners make quite good point features for correspondence algorithms supporting
such activities as stereopsis, reconstruction or structure from motion. This has
led to quite detailed practical knowledge of the localisation properties of corner
detectors (e.g. []).

A variety of other forms of edge are quite common, however. The most com-
monly cited example is the roof edge, which can result from the effects of inter-
reflections (figure 2.17). Another example that also results from interreflections is
a composite of a step and a roof (figure ??). It is possible to find these phenomena
by using essentially the same steps as outlined above (find an “optimal” filter, and
do non-maximum suppression on its outputs). In practice, this is seldom done.
There appear to be two reasons. Firstly, there is no comfortable basis in theory
(or practice) for the models that are adopted — what particular composite edges
are worth looking for? the current answer — those for which optimal filters are
reasonably easy to derive — is most unsatisfactory. Secondly, the semantics of roof
edges and more complex composite edges is even vaguer than that of step edges —
there is little notion of what one would do with roof edge once it had been found.

Edges are poorly defined and usually hard to detect, but one can solve problems
with the output of an edge detector. Roof edges are similarly poorly defined and
similarly hard to detect; we have never seen problems solved with the output of
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a roof edge detector. The real difficulty here is that there seems to be no reliable
mechanism for predicting, in advance, what will be worth detecting. We will scratch
the surface of this very difficult problem in section ?7.

Assignments

Exercises

1. We said “One diagnostic for a large gradient magnitude is a zero of a “second
derivative” at a point where the gradient is large. A sensible 2D analogue
to the 1D second derivative must be rotationally invariant” in section 8.1.2.
Why is this true?

Programming Assignments

1. Why is it necessary to check that the gradient magnitude is large at zero
crossings of the Laplacian of an image? Demonstrate a series of edges for
which this test is significant.

2. The Laplacian of a Gaussian looks similar to the difference between two Gaus-
sians at different scales. Compare these two kernels for various values of the
two scales — which choices give a good approximation? How significant is the
approximation error in edge finding using a zero-crossing approach?

3. Obtain an implementation of Canny’s edge detector (you could try the vision
home page at http://www.somewhereorother) and make a series of images
indicating the effects of scale and contrast thresholds on the edges that are
detected. How easy is it to set up the edge detector to mark only object
boundaries? Can you think of applications where this would be easy?

4. Tt is quite easy to defeat hysteresis in edge detectors that implement it —
essentially, one sets the lower and higher thresholds to have the same value.
Use this trick to compare the behaviour of an edge detector with and without
hysteresis. There are a variety of issues to look at:

e What are you trying to do with the edge detector output? it is sometimes
very helpful to have linked chains of edge points — does hysteresis help
significantly here?

e Noise suppression: we often wish to force edge detectors to ignore some
edge points and mark others. One diagnostic that an edge is useful is
high contrast (it is by no means reliable). How reliably can you use
hysteresis to suppress low contrast edges without breaking high contrast
edges?
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FILTERS AND FEATURES

Linear filters can be thought of as simple pattern finders. This view is helpful, be-
cause it allows us to build quite effective object detection systems using filters. We
describe this view of a filter in section 9.1; in section 9.2, we use this view to under-
stand a body of evidence about the primate early vision system, and in section 9.3
we describe a system that uses this approach to find hand gestures. Section 9.4
shows how to find other kinds of features — in particular, corners — using filter
outputs. Finally, we describe more complex noise models and correspondingly more
complex smoothing techniques in section 9.5.

9.1 Filters as Templates

It turns out that filters offer a natural mechanism for finding simple patterns, be-
cause filters respond most strongly to pattern elements that look like the filter. For
example, smoothed derivative filters are intended to give a strong response at a
point where the derivative is large; at these points, the kernel of the filter “looks
like” the effect it is intended to detect. The z-derivative filters look like a verti-
cal light blob next to a vertical dark blob (an arrangement where there is a large
z-derivative), and so on.

It is generally the case that filters that are intended to give a strong response to
a pattern look like that pattern. This is a simple geometric result.

9.1.1 Convolution as a Dot Product

Recall from section 7.1.1 that, for G the kernel of some linear filter, the response of
this filter to an image # is given by:

Rij = Z Gi—u,j—vHuv

Now consider the response of a filter at the point where ¢ and j are zero. This will
be

R= Z G—u,—vHu,v

237
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Figure 9.1. Filter kernels “look like” the effects they are intended to detect. On the left,
an smoothed derivative of Gaussian filter that looks for large changes in the z-direction
(such as a dark blob next to a light blob); on the right, a smoothed derivative of Gaussian
filter that looks for large changes in the y-direction.

This response is obtained by associating image elements with filter kernel ele-
ments, multiplying the associated elements, and summing. We could scan the image
into a vector, and the filter kernel into another vector, in such a way that associated
elements are in the same component. By inserting zeros as needed, we can ensure
that these two vectors have the same dimension. Once this is done, the process
of multiplying associated elements and summing is precisely the same as taking a
dot-product.

This is a powerful analogy, because this dot-product, like any other, will achieve
its largest value when the vector representing the image is parallel to the vector
representing the filter kernel. This means that a filter responds most strongly when
it encounters an image pattern that looks like the filter. The response of a filter
will get stronger as a region gets brighter, too.

Now consider the response of the image to a filter at some other point. Nothing
significant about our model has changed; again, we can scan the image into one
vector and the filter kernel into another vector, such that associated elements lie
in the same components. Again, the result of applying this filter is a dot-product.
There are two useful ways to think about this dot-product.

9.1.2 Changing Basis

We can think of convolution as a dot-product between the image and a different
vector (because we have moved the filter kernel to lie over some other point in the
image). The new vector is obtained by rearranging the old one, so that the elements



Section 9.2. Human Vision: Filters and Primate Early Vision 239

lie in the right components to make the sum work out (exercise ??). This means
that, by convolving an image with a filter, we are representating the image on a
new basis of the vector space of images — the basis given by the different shifted
versions of the filter. The original basis elements were vectors with a zero in all
slots except one. The new basis elements are shifted versions of a single pattern.
For many of the kernels we have discussed, we expect that this process will lose
information — for the same reason that smoothing suppresses noise — so that the
coefficients on this basis are redundant. This basis transformation is valuable in
texture analysis (section 7).

9.2 Human Vision: Filters and Primate Early Vision

There is quite a lot of information about the early stages of the primate visual
system. The “wiring” can be studied using stains that carry from cell to cell; the
response of individual cells can be studied by displaying patterns and recording
the electrical behaviour of the cell; and some structural information can be elicited
using psychophysical experiments. All this evidence suggests that spatiotemporal
filters yield a rather good model of early visual processing.

9.2.1 The Visual Pathway

The anatomical details of how visual information is passed into the brain, and
what happens in the early stages, are quite well understood. Information about the
connections along this pathway can be obtained by staining methods; typically, a
cell is stained with a substance that moves in known ways (along the body of the
cell; across connections; etc.) and one looks to see where the stain ends up.

The stages in the visual pathway are:

e Theretina, where photoreceptive cells transduce irradiance to electrical spikes.
These signals are processed by a variety of layers of cells. Retinal ganglion
cells connect to the final layer.

e The optic nerve consists of the fibers of the retinal ganglion cells, and con-
nects the retina to the brain through the the optic chiasma. This is a
crossing point; the left-hand side of each retina is connected to the left half of
the brain, and the right-hand side to the right half.

e There are now two pathways; some information is fed to the superior col-
liculus (which we shall ignore), but most goes to the lateral geniculate
nucleus.

e The lateral geniculate nucleus is connected to the visual cortex, one of the
best studied regions in the primate brain. The visual cortex consists of a series
of quite well defined layers. Much of early vision occurs in this structure, which
contains a large selection of different representations of an image, organised
in fairly well understood structures.
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Figure 9.2. A diagram of the visual pathway, viewed from the underside of the brain.
Elements of the right hand visual field are imaged on both left and right retinas; through
the optic chiasm, the left hand visual field is projected to the right lateral geniculate
nucleus (and vice versa — the dashed lines indicate the pathway followed by the right
visual field). Signals then leave the LGN for the visual cortex, at the back of the brain.
The behaviour of cells up to and including the cortex is quite well understood, and is
usually modelled as a system of filters. Notice that the outputs of retinal cells map to
the cortex in a spatially organised fashion, but that the central portion of the visual field
maps to a larger area of cortex than the peripheral portions; this reflects the fact that the
eye has higher spatial resolution in the central portion of the visual field. Redrawn after
figure ****** of Frisby.

e Visual information leaves the visual cortex for the parietal cortex and the
temporal cortex. The temporal cortex appears to be involved in determin-
ing what an object is, and the parietal cortex in determining where it is []
and possibly how it can be grasped []. This information must be reunited
somewhere, but it isn’t currently known where.
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9.2.2 How the Visual Pathway is Studied

There are quite detailed models of how cells respond along this pathway, up to the
point where signals leave the visual cortex (there is rather little information after
this point). These models are supported by large quantities of evidence on the
responses elicited from cells in the brain by particular patterns of light and motion.
Both the visual cortex and the lateral geniculate nucleus are quite conveniently sited
on a primate brain, so that it is possible to insert electrodes into these structures
without traumatising the brain so badly that the results are meaningless.

In a typical experiment, an electrode is inserted along a path through some
structure to record electrical signals from cells along that path. Patterns of light,
colour and motion are shown to an experimental animal, and the response from the
electrode — which is hopefully a response from a nearby cell — is recorded along
with the depth to which the electrode has penetrated. When sufficient information
has been obtained, the electrode is moved deeper along its path and the process
continues. Recordings may be taken from several different paths. Eventually, the
experimental animal is sacrificed and its brain cut in sections to determine from
what precise regions the electrode recorded information.

Gratings

Typically, neurons in the visual pathway are discussed in terms of their receptive
field — this is a record of the spatial distribution of the effect of illumination on
the neuron’s output. The response of cells is often determined by their response to
a grating. A spatial grating is a pattern of the form m(1+ cos 27 fx), where z is a
convenient spatial coordinate across the visual field. These gratings can be used to
investigate the spatial response of a cell; the spatio-temporal response is studied us-
ing a spatio-temporal grating is a pattern of the form m(14a cos 27 fx cos 27gt))
— this is a moving sinusoid. Many cells temporal components to their response as
well, and such cells can be described in terms of their contrast sensitivity to a
spatio-temporal grating (figure 9.3).

9.2.3 The Response of Retinal Cells

The earliest cells in the visual pathway are retinal ganglion cells, which collect
outputs from the layers of retinal cells receptors. Typically, light falling in the center
of a ganglion cell’s receptive field increases its firing rate — often called its response
— and light falling in the outside decreases the firing rate. A cell that responds like
this is referred to as an on-center, off-surround cell; there are also off-center,
on-surround cells. For a fized mean value m, ganglion cells appear to sum their
response over the receptive field, weighting the center positive (respectively nega-
tive) and the surround negative (resp. positive) for an on-center, off-surround (resp.
off-center, on-surround) cell. In particular, their response appears to be linear. This
can be tested by comparing the sum of the responses to individual stimuli and the
response to a sum of these stimuli. Figure 9.3 illustrates the behaviour of a linear
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retinal ganglion cell.

Delay

Figure 9.3. The response of a retinal ganglion cell can be predicted by adding the
temporal response of the center to the temporal response of the surround (which is slower
than that of the center, and is so delayed in the model). As the cross-section indicates,
the model of the spatial response is a difference of Gaussian model — there is a center
field that has a spatial sensitivity of the form of a narrow Gaussian, and a surround field
that has the form of a broad Gaussian. One field excites, the other inhibits (as indicated
by the positive/negative signs in the figure). Figure redrawn fter Enroth-Cugell et al.,

This linearity can be exploited to measure response using periodic functions,
which are usually spatial sinusoids. It is usual to study neurons by fixing some
level of response, and then determining the contrast (amplitude of the sinusoid)
required to elicit that level of response — the contrast threshold. Typically, one
plots the contrast sensitivity (the inverse of the contrast threshold) against some
interesting variable. Figure 9.4 plots the contrast sensitivity of a center-surround
neuron against a measure of spatial frequency. In this case, the stimulus shown was
fixed, and the cell’s response measured after some long time, giving an assymptotic
response. The contrast sensitivity function is different for different mean values, an
effect known as adaptation.

9.2.4 The Lateral Geniculate Nucleus

The LGN is a layered structure, consisting of many sheets of neurons. The layers are
divided into two classes — those consisting of cells with large cell bodies (magno-
cellular layers), and those consisting of cells with small cell bodies (parvocellular
layers). The behaviour of these cells differs as well.

Each layer in the LGN receives input from a single eye, and is laid out like
the retina of the eye providing input (an effect known as retinotopic mapping).
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Figure 9.4. The contrast sensitivity function can be used to describe the behaviour of
linear cells. In a center-surround cell, described in the figure, the response to a constant
stimulus is zero. The receptive field is symmetric, meaning that its behaviour can be
described in terms of its response to a signal of the form m(1 + acos(2wfz)), where f
is the spatial frequency and x is spatial position in a convenient system of units; a is
referred to the contrast of the signal. The contrast sensitivity is obtained by fixing some
level of response, and taking the inverse of the contrast required to reach that level of
response. Center-surround cells are tuned in spatial frequency; if the spatial frequency
of the signal is low, then the signal is nearly constant over the receptive field of the cell,
and the contrast sensitivity is lowered. If the frequency of the signal is high, then the
excitatory and inhibitory responses tend to cancel. These considerations lead to a curve
with the rather typical shape shown here.

Retinotopic mapping means that nearby regions on the retina end up near one
another in the layer, and so we can think of each layer as representing some form
of feature map. Neurons in the lateral geniculate nucleus display similar receptive
field behaviour to retinal neurons. The role of the LGN is unclear; it is known that
the LGN receives input from the cortex and from other regions of the brain, which
may modify the visual signal travelling from the retina to the cortex.

9.2.5 The Visual Cortex

Most visual signals arrive at an area of the cortex called area V1 (or the primary
visual cortex, or the striate cortex). This area is highly structured and has been
intensively studied. Most physiological information about the cortex comes from
studies of cats or monkeys (which are known to react differently from one another
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and from humans if the cortex is damaged). The cortex is also retinotopically
mapped. It has a highly structured layered architecture, with regions organised by
the eye of origin of the signal (often called ocular dominance columns). Within
these columns, cells are arranged so that their receptive fields move smoothly from
the center to the periphery of the visual field. Neurons in the primary visual cortex
have been extensively studied. Two classes are usually recognised — simple cells
and complex cells.

A

Figure 9.5. Cortical simple cells can typically be modelled as linear, and are usually
thought of as spot, edge or bar detectors. Typical receptive fields are shown above; the
output of the cell on the left is inhibited by light in the center of its receptive field —
marked with the ‘-’ sign — and excited by light in the surround (the ‘+’ sign). Thus, the
cell on the left is particularly strongly excited by dark bars on a light background, and so
is a bar detector. Similarly, the cell on the right is strongly excited by a vertical edge (a
bright patch next to a dark patch). Notice that these cells are orientation selective; the cell
on the left responds most strongly to a bright bar on a dark background and the cell on
the right will respond strongly to an oriented edge. Notice the similarity to the derivative
of Gaussian filters plotted below, where the mid-grey level represents a zero value in the
kernel, a dark value is negative and a light value is positive.

Simple cells have orientation selective receptive fields, meaning that a partic-
ular cell will respond more strongly to an oriented structure. To a good approxima-
tion, the response of a simple cell is linear, so that the behaviour of these cells can
be modelled with spatial filters. The structure of typical receptive fields means that
these cells can be thought of as edge and bar detectors [?], or as first and second
derivative operators. Some simple cells have more lobes to their receptive field, and
can be thought of as detecting higher derivatives. The preferred orientation of a
cell varies fairly smoothly in a principled way that depends on the cell’s position.

Complex cells typically are highly non-linear, and respond to moving edges or
bars. Typically, the cells display direction selectivity, in that the response of a cell
to a moving bar depends strongly on both the orientation of the bar and the direction
of the motion (figure 9.6). Some complex cells, often called hypercomplex cells
respond preferentially to bars of a particular length.
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Figure 9.6. Many cortical cells typically give stronger or weaker responses to moving
bars, depending on the direction in which the bar moves. The receptive field of a cell
like this can be thought of as a spatial filter that is swept in a particular direction with
time — a spatio-temporal filter. The first row shows typical behaviour from such a
cell; a horizontal bar moving vertically gets a strong response, but the bar gets a much
weaker response when its orientation changes. The second row shows one way of thinking
about this phenomenon — the cell’s output is computed by adding together the response
of several different spatial filters, computed at different time offsets. An alternative way
to think of this cell is as a linear filter in the spatial and the temporal domain; we can lay
out the kernel as a graph in space and time, as on the bottom row.

One strong distinction between simple and complex cells appears when one con-
siders the time-course of a response to a contrast reversing pattern — a spatial
sinusoid whose amplitude is a sinusoidal function of time. Exposed to such a stim-
ulus, a simple cell responds strongly for the positive contrast and not at all for
the negative contrast — it is trying to be linear, but because the resting response
of the cell is low, there is a limit to the extent to which the cell’s output can be
inhibited. In contrast, complex cells respond to both phases (figure 9.7). Thus, one
can think of a simple cell as performing half-wave rectification — it responds to
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Figure 9.7. Cortical cells are classified simple or complex, depending on their response
to a time-reversing grating. In a simple cell, the response grows as the intensity of the
grating grows, and then falls off as the contrast of the grating reverses. The negative
response is weak, because the cell’s resting output is low so that it cannot code much
inhibition. The response is what one would expect from a linear system with a lower
threshold on its response. On the right, the response of a complex cell, which looks like
full wave rectification; the cell responds similarly to a grating with positive and reversed
contrast.

the positive half of the amplitude signal — and a complex cell as performing full
wave rectification — it gives a response to both the positive and negative half of
the amplitude signal.

9.2.6 A Model of Early Spatial Vision

We now have a picture of the early stages of primate vision. The retinal image is
transformed into a series of retinotopic maps, each of which contains the output of
a linear filter which may have spatial or spatio-temporal support. The retinotopic
structure means that each map can be thought of as an image which is filtered
version of the retinal image. The filters themselves are oriented filters that look
rather a lot like various derivatives of a Gaussian, at various orientations. The
retinotopic maps are subjected to some form of non-linearity (to get the output of
the complex cells).

This model can be refined somewhat, with the aid of psychophysical studies
of adaptation. Adaptation is a term that is used fairly flexibly; generally, the re-
sponse of an observer to a stimulus declines if the stimulus is maintained and stays
depressed for some time afterwards. Adaptation can be used to determine com-
ponents of a signal that are coded differently — or follow different psychophysical
channels, in the jargon — if we adopt the model that channels adapt indepen-
dently. Observer sensitivity to gratings can be measured by the contrast sensi-
tivity function, which codes the contrast that a periodic signal must have with a
constant background before it is visible (figure 7).
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In experiments by Blakemore and Campbell [|, observers were shown spatial
frequency gratings until they are adapted to that spatial frequency. It turns out
that the observer’s contrast sensitivity is decreased for a range of spatial frequencies
around the adapting frequency. This suggests that the observer is sensitive to
several spatial frequency channels; the contrast sensitivity function can be seen as
a superposition of several contrast sensitivity functions, one for each channel.

This is a multiresolution model. The current best model of human early
vision is that the visual signal is split into several spatial frequency bands (rather
as in section ?7); each band is then subjected to a set of oriented linear filters,
and the responses of these filters in turn are subjected to a non-linearity (as in
figure 9.8). The response of this model can be used quite successfully to predict
various forms of pattern sensitivity for simple patterns (it clearly doesn’t explain,
say, recognition); we will see it again in discussions of texture.

Linear
filters
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Figure 9.8. An overview of a multiresolution model of human pattern sensitivity. The
stimulus is convolved with linear filters at a variety of scales and orientations — we show
three scales, and only one orientation per scale; this is not a commitment to a number
— and then subjected to a nonlinearity. The results have noise added, and are passed to
a decision process. The details of the number of scales, the number of orientations, the
choice of non-linearity, etc. vary from author to author. This class of model is now quite
successful at predicting responses to simple patterns. (after Figure from Brian Wandell’s
book, “Foundations of Vision”, page222, in the fervent hope that permission will be granted,
who got it from Spillman and Werner)
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9.3 Technique: Normalised Correlation and Finding Patterns

We can think of convolution as comparing a filter with a patch of image centered at
the point whose response we are looking at. In this view, the image neighbourhood
corresponding to the filter kernel is scanned into a vector which is compared with
the filter kernel. By itself, this dot-product is a poor way to find features, because
the value may be large simply because the image region is bright. By analogy with
vectors, we are interested in the cosine of the angle between the filter vector and the
image neighbourhood vector; this suggests computing the root sum of squares of
the relevant image region (the image elements that would lie under the filter kernel)
and dividing the response by that value.

This yields a value that is large and positive when the image region looks like
the filter kernel, and small and negative when the image region looks like a contrast-
reversed version of the filter kernel. This value could be squared if contrast reversal
doesn’t matter. This is a cheap and effective method for finding patterns, often
called normalised correlation.

9.3.1 Controlling the Television by Finding Hands by Normalised
Correlation

It would be nice to have systems that could respond to human gestures. You
might, for example, wave at the light to get the room illuminated, or point at the
airconditioning to get the temperature changed. In typical consumer applications,
there are quite strict limits to the amount of computation available, meaning that
it is essential that the gesture recognition system be simple. However, such systems
are usually quite limited in what they need to do, too.

Typically, a user interface is in some state — perhaps a menu is displayed —
and an event occurs — perhaps a button is pressed on a remote control. This
event causes the interface to change state — a new menu item is highlighted, say
— and the whole process continues. In some states, some events cause the system
to perform some action — the channel might change. All this means that a state
machine is a natural model for a user interface.

One way for vision to fit into this model is to provide events. This is good,
because there are generally very few different kinds of event, and we know what
kinds of event the system should care about in any particular state. As a result,
the vision system needs only to determine whether either nothing or one of a small
number of known kinds of event has occurred. It is quite often possible to build
systems that meet these constraints.

Controlling the Television

A relatively small set of events is required to simulate a remote control — one needs
events that “look like” button presses (for example, to turn the television on or off),
and events that “look like” pointer motion (for example, to increase the volume; it
is possible to do this with buttons, too). With these events, the television can be



Section 9.4. Corners and Orientation Representations 249

Missing
Figure

Figure 9.9. Freeman’s system controlling his telly

turned on, and an on-screen menu system navigated.

Freeman et al. produced an interface where an open hand turns the television
on. This can be robust, because all the system needs to do is determine whether
there is a hand in view. Furthermore, the user will cooperate by holding their hand
up and open. Because the user is expected to be a fairly constant distance from
the camera — so the size of the hand is roughly known, and there is no need to
search over scales — and in front of the television, the image region that needs to
be searched to determine if there is a hand is quite small.

The hand is held up in a fairly standard configuration and orientation to turn
the television set on (so we know what it will look like). This means that Freeman
can get away with using a normalised correlation score to find the hand. Any points
in the correlation image where the score is high enough correspond to hands.

This approach can be used to control volume, etc. as well as turn the television
on and off. To do so, we need some notion of where the hand is going — to one
side turns the volume up, to the other turns it down — and this can be obtained by
comparing the position in the previous frame with that in the current frame. The
system displays an iconic representation of its interpretation of hand position, so
the user has some feedback as to what the system is doing (figure 9.9).

9.4 Corners and Orientation Representations

Edge detectors notoriously fail at corners, because the assumption that estimates of
the partial derivatives in the x and y direction suffice to estimate an oriented gra-
dient becomes unsupportable. At sharp corners or unfortunately oriented corners,
these partial derivative estimates will be poor, because their support will cross the
corner. There are a variety of specialised corner detectors, which look for image
neighbourhoods where the gradient swings sharply. More generally, the statistics
of the gradient in an image neighbourhood yields quite a useful description of the
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Figure 9.10. An image of a joshua tree, and its orientations shown as vectors superim-
posed on the image. The center image shows the orientation superimposed on top of the
image as small vectors. Notice that around corners and in textured regions, the orientation
vector swings sharply.

neighbourhood. There is a rough taxonomy of four qualitative types of image win-
dow:

constant windows, where the grey level is approximately constant;

edge windows, where there is a sharp change in image brightness that runs
along a single direction within the window;

flow windows, where there are several fine parallel stripes — say hair or fur
— within the window;

and 2D windows, where there is some form of 2D texture — say spots, or a
corner — within the window.

These cases correspond to different kinds of behaviour on the part of the image
gradient. In constant windows, the gradient vector is short; in edge windows, there
is a small number of long gradient vectors all pointing in a single direction; in flow
windows, there are many gradient vectors, pointing in two directions; and in 2D
windows, the gradient vector swings.
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Figure 9.11. The orientation field for a detail of the joshua tree picture. On the left,
the orientations shown as vectors and superimposed on the image. Orientations have been
censored to remove those where the gradient magnitude is too small. The center shows the
ellipses described in the text, for a 3x3 window; left shows the ellipses for a 5x5 window.

These distinctions can be quite easily drawn by looking at variations in orienta-
tion within a window. In particular, the matrix

ox ox ox o

(%%**I)(BB%**I) (BB%**I)(B = % +7)

=Y {(vD(VD) "}~ Y

window window

{ (%**I)(BG” * xT) (%**I)(%**I)

oy

gives a good idea of the behaviour of the orientation in a window. In a constant
window, both eigenvalues of this matrix will be small, because all terms will be
small. In an edge window, we expect to see one large eigenvalue associated with
gradients at the edge and one small eigenvalue because few gradients will run in
other directions. In a flow window, we expect the same properties of the eigenvalues,
except that the large eigenvalue is likely to be larger because many edges contribute.
Finally, in a 2D window, both eigenvalues will be large.

The behaviour of this matrix is most easily understood by plotting the ellipses

(z,y)"H N (z,y) =€

for some small constant e. These ellipses are superimposed on the image windows.
Their major and minor axes will be along the eigenvectors of H, and the extent of the
ellipses along their major or minor axes corresponds to the size of the eigenvalues;
this means that a large circle will correspond to an edge window and a narrow
extended ellipse will indicate an edge window as in figure 9.10. Thus, corners could
be marked by marking points where the area of this ellipse is large. The localisation
accuracy of this approach is limited by the size of the window and the behaviour of
the gradient. More accurate localisation can be obtained, at the price of providing
a more detailed model of the corner sought (see, for example, []).

}
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9.5 Advanced Smoothing Strategies and Non-linear Filters

Another way to think of a smoothing filter is as a statistical estimator. In particular,
the goal here is to estimate the actual image value at a pixel, in the presence of
noisy measurements. This view leads us to a class of filters that are hard to analyse,
but can be extremely useful. Typically, these filters are used in circumstances where
the stationary additive Gaussian noise model is unusable. We describe a variety of
more complex noise models which occur in practice, and then discuss filters that
can be used to smooth away these models.

9.5.1 More Noise Models

Salt and pepper noise models cameras with defective sample sites. Pixels are
chosen uniformly at random; each of these pixels is set to be either full value or
zero value (again, uniformly at random). The result looks as though the image has
been sprinkled with salt and pepper, whence the name. There is a basic conceptual
difference between stationary additive Gaussian noise and salt and pepper noise; in
the first case, we add a random quantity to each pixel, whereas in the second, we
use a random mechanism to select pixels, and then operate on the selected pixels.

Random mechanisms to select pixels are usually called point processes, and
form a significant topic of their own. We will describe some important types of
point process. In a homogenous Poisson point process, points on the image
plane are chosen randomly so that the expected number of points in any subset is
proportional to the area of the subset. The constant of proportionality is known as
the intensity of the process. An instance of a Poisson point process can be obtained
by sampling the number of affected pixels from a Poisson distribution whose mean
is the intensity times the image area, and then drawing the coordinates of these
pixels uniformly at random.

Because we need to flip some pixels to white and other to black, we need to use
a marked point process. In this model, we use a point process to select points,
then assign to each point a “mark” (for example, whether it is white or black, or
some other such thing) at random using an appropriate distribution. For a camera
where a non-responsive pixel is as likely as a saturated pixel, the probability that
a point carries a black mark should be the same as the probability that a point
carries a white mark. If (for example, because of the manufacturing process) there
are fewer non-responsive pixels than responsive pixels, then the distribution on the
marks can reflect this as well.

A noise process of this form results in fairly evenly distributed noise. A set of bad
pixels that consists of widely separated large, tight clumps is quite unlikely. One
model that would achieve this takes points chosen by a Poisson process and then
marks a clump of pixels around them. The shape of the clump is chosen randomly
— this is another form of mark. Another form of noise that is quite common in
videotape systems involves whole scan-lines of an image being turned to noise. The
line involved can be chosen with a Poisson point process as well (figure 9.13). A
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Figure 9.12. Examples of salt-and-pepper noise at different intensities (Poisson process).
The snowy background means that, in some areas, the pepper is more visible than the salt.

variety of models of this form are available; a brief exposition appears in chapter
*%% of [?]; more detail on point processes appears in [?].

The response of a filter to spatial noise models of this form is usually impossible
to compute analytically. Instead, we rely on simulation. The basic idea is to set up
a probabilistic noise model, draw a large number of samples from that model, and
then apply the filter in question to the samples. One computes appropriate statistics
from the result — for example, the mean and variance of the noise response. In
principle it is possible to choose filters from families of filters in this way, although
we are not aware of anyone doing so in the computer vision literature.

9.5.2 Robust Estimates

Smoothing an image with a symmetric Gaussian kernel replaces a pixel with some
weighted average of its neighbours. If an image has been corrupted with stationary
additive zero-mean Gaussian noise, then this weighted average gives a reasonable
estimate of the original value of the pixel. The expected noise response is zero,
and the estimate has better behaviour in terms of spatial frequency than a simple
average (as the ringing effects in figure ?7? show).

However, if the image noise is not stationary additive Gaussian noise, difficul-
ties arise. For example, consider a noise model where image points are set to the
brightest or darkest possible value with a Poisson point process (section 9.14). In
particular, consider a region of the image which has a constant dark value and
there is a single bright pixel due to noise — smoothing with a Gaussian will leave
a smooth, Gaussian-like, bright bump centered on this pixel.

The problem here is that a weighted average can be arbitrarily badly affected
by very large noise values. Thus, in our example, we can make the bright bump
arbitrarily bright by making the bright pixel arbitrarily bright — perhaps as result
of, say, a transient error in reading a memory element. Estimators that do not have
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Figure 9.13. A variety of other natural spatial noise models. We show two versions. The
first image shows the result of randomly replacing lines with noise, where the probability
of replacing the line is uniform; in the second, a block of lines of random length is replaced
with noise — this process is a reasonable model of the sort of noise that occurs in fast-
forwarding or rewinding VCR’s. In the third, a Poisson process chooses “noise points”; in
a neighbourhood of each noise point, pixels are randomly marked black with a probability
that falls off as the negative exponential of the distance from the noise point. This process
simulates damage to the CCD array, or to the lens.

this most undesirable property are often known as robust estimates.

The best known robust estimator involves estimating the mean of a set of values
using its median. For a set with 2k +1 elements, the median is the £+ 1’th element
of the sorted set of values. For a set with 2k elements, the median is the average
of the k£ and the k 4 1’th element of the sorted set. It does not matter whether the
set is sorted in increasing or decreasing order (exercises!).

9.5.3 Maedian Filters

A median filter is specified by giving some form of neighbourhood shape (which
can significantly affect the behaviour of the filter). This neighbourhood is passed
over the image as in convolution, but instead of taking a weighted sum of elements
within the neighbourhood, we take the median. If we write the neighbourhood
centered at i, j as IV;;, the filter can be described by:

Yij = med({Tyv|Tus € Nij})

Applying a median filter to our example of a uniform dark region with a single,
arbitrarily bright, pixel will yield a dark region. In this example, up to half of the
elements in the neighbourhood could be noise values and the answer would still be
correct (exercises!). It is difficult to obtain analytic results about the behaviour of
median filters, but a number of general observations apply.
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Figure 9.14. On the left, a black background with white noise pixels distributed as a
Poisson point process. These pixels are outliers, in the sense that they differ radically from
their neighbouring pixels. In the center image, we see the result of estimating pixels as
the response of the image to a Gaussian filter with ¢ one pixel; we are estimating a pixel
value as a weighted sum of its neighbours. Because the noise pixels are wildly different
from their neighbourhood, they skew this estimate substantially. In the right hand image,
we see the result of using a Gaussian filter with o two pixels; the effect remains, but is
smaller, because the effective support of the filter is larger.

Figure 9.15. The columns on the left show Poisson noise processes of different intensities;
on the top row, there are 2000 noise pixels and on the bottom row, 20000. The second
column shows the effect of applying a filter that returns the median of a 3x3 neighbourhood
to these images, and the third column shows the effect of applying a filter that returns the
median of a 7x7 neighbourhood to these images. Notice that, if the noise is intense, then
the median filter is unable to suppress it.
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Figure 9.16. On the left, an image corrupted with salt-and-pepper noise (points are
chosen by a Poisson process, and then with even probability marked either black or white;
in this image, about 9% of the pixels are noise pixels). Gaussian smoothing (center left
shows o one pixel and center shows o two pixels) works particularly poorly, as the contrast
makes the dark regions left behind by averaging in dark pixels very noticeable. A median
filter is much more successful (center right shows a 3x3 median filter and right shows a
7x7 median filter). Notice how the median filter blurs boundaries.

Multi-stage Median Filters

Median filters preserve straight edges, but tend to behave badly at sharp corners
(figure 7.1 and exercises). This difficulty is usually dealt with by forming a multi-
stage median filter; this filter responds with the median of a set of different
medians, obtained in different neighbourhoods:

yij = med(z1, 22, 23, 24)

21 = med({xyo|Tus € N}J})
zo = med({Tyo|Tus € ij})
z3 = med({@yy|Tuo € ij})
24 = med({xw|xm, IS ij})

where N! is a vertically extended neighbourhood, N? is a horizontally extended
neighbourhood, and N3 and N* are diagonal neighbourhoods. Exercise ?? asks for
an intuitive argument as to why this filter is inclined to preserve corners; the effect
is illustrated in figure 9.17.

Trimmed and Hybrid Median Filters

While median filters tend to be better than linear filters at rejecting very large noise
values — so called outliers — they tend to be poorer than linear filters at handling
noise that does not have outliers. In jargon, noise that can produce occasional large
values is often called long-tailed noise, because the probability density for the
noise values has “long tails” —there is significant weight in the density far from
the mean; similarly, noise that does not have this property is often called short-
tailed noise. In a neighbourhood, long-tailed noise will produce a small number of
very large values, which tend not to affect the median much; however, short-tailed
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Figure 9.17. On the left, a detail from the figure of vegetables; in the center the result of
applying a median filter with a 7x7 neighbourhood of support. Notice that the texture of
the broccoli florets is almost completely smoothed away, and that corners around the red
cabbage have been obscured. These effects could be useful in some contexts, but reduce the
usefulness of the filter in suppressing long-tailed noise because they represent a reduction
in image detail, too. On the right, the result of applying a multistage median filter, using
7 pixel domains that are horizontal, vertical, and along the two diagonals. Significantly
less detail has been lost.

noise will produce values that are similar to the original pixel value and which
will affect the median more. This difficulty can be handled either by using an «-
trimmed linear filter — where «/2 percent of the largest and smallest values
in a neighbourhood are removed from consideration and the rest are subjected to
a linear filter — or by using a hybrid median filter — where the output is the
median of a set of linear filters over a neighbourhood.

Median filters can be extremely slow. One strategy is to pretend that a median
filter is separable, and apply separate z and y median filters.

9.5.4 Mathematical morphology: erosion and dilation

A variety of useful operators can be obtained from considering set-theoretic opera-
tions on binary images. It often occurs that a binarised images has individual pixels
or small groups of pixels that are isolated from the main body of the image. Com-
monly, one would like to remove very small groups of pixels and join up groups that
are close together. Small groups can be removed by noticing that a block of pixels
would not fit inside a small group; large groups can be joined up by “thickening”
their boundaries. In figure 9.18, we illustrate removing groups of dark pixels by
removing pixels that are not at the center of a 3x3 block of dark pixels (i.e. pixels
where some neighbour is light). Similarly, gaps can be jumped by attaching a 3x3
neighbourhood to each pixel.

These (quite useful) tricks can be generalised. For example, there is no need to
insist on a 3x3 neighbourhood — any pattern will do. The generalisation is most
easily phrased in terms of sets. Assume, for the moment, we have two binary images
7 and S (i.e. pixel values in each can be only either 0 or 1). We can regard each
image as a representation of a set of elements which belong to a finite grid. Pixels
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Figure 9.18. On the left, a binary image; a natural strategy for removing small groups of
dark pixels is to lighten all pixels that do not lie at the center of a 3x3 dark neighbourhood.
This process is known as erosion. In the center, the relevant pixels have been greyed.
Similarly, we could fill in small gaps by marking all pixels such that a 3x3 neighbourhood
around the pixel contacts a dark pixel, a process known as dilation. The relevant pixels
have been greyed on the right.

that have the value 1 are elements of the set and pixels that have the value 0 are
not. Now write S, for the image obtained by shifting the center of S to the pixel
p. We can define a new set

IeoS={p:S,NIT#0}
This is called the dilation of the set Z by S. Similarly, we can define
IeS={p:S, C1}

which is called the erosion of the set Z by S. In these operations, S is usually
called the structuring element. The properties of these operators have been
widely studied [|; some are explored in the exercises. Their main application in
practice appears in cleaning up data sets. Typically, a predicate is available that
marks “interesting” pixels — which might be skin-coloured, or red, or textured,
etc. Usually, small groups of pixels pass this criterion as well as the real regions
of interest. A few passes of erosion by a 3x3 neighbourhood, followed by a few
passes of dilation by a 3x3 neighbourhood, will remove small groups, fill gaps, and
leave an estimate of the real region of interest that is often significantly improved.
Occasionally, applications arise where erosion or dilation by structuring elements
different from kxk neighbourhoods is appropriate [].

9.5.5 Anisotropic Scaling

One important difficulty with scale space models is that the symmetric Gaussian
smoothing process tends to blur out edges rather two aggressively for comfort. For
example, if we have two trees near one another on a skyline, the large scale blobs
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corresponding to each tree may start merging before all the small scale blobs have
finished. This suggests that we should smooth differently at edge points than at
other points. For example, we might make an estimate of the magnitude and orien-
tation of the gradient: for large gradients, we would then use an oriented smoothing
operator that smoothed aggressively perpendicular to the gradient and very little
along the gradient; for small gradients, we might use a symmetric smoothing oper-
ator. This idea used to be known as edge preserving smoothing.
In the modern, more formal version (details in in []), we notice the scale space

representation family is a solution to the diffusion equation

o®  9*® n 0?®

do  0x2  Oy?

= V’®
®(z,y,0) = I(z,y)

If this equation is modified to have the form

Z_f = V- (c(z,y,0)VP)
= c(z,y,0)V?® + (Ve(z,y,0)) - (VD)

CI)(:E?y?O) = I(:E?y)

then if ¢(x,y,0) = 1, we have the diffusion equation we started with, and if
c(z,y,0) = 0 there is no smoothing. We will assume that ¢ does not depend
on o. If we knew where the edges were in the image, we could construct a mask
that consisted of regions where c¢(z,y) = 1, isolated by patches along the edges
where c¢(z,y) = 0; in this case, a solution would smooth inside each separate region,
but not over the edge. While we do not know where the edges are — the exercise
would be empty if we did — we can obtain reasonable choices of ¢(x,y) from the
magnitude of the image gradient. If the gradient is large, then ¢ should be small,
and vice-versa.

9.6 Commentary
Assignments

Exercises

1. For a set with 2k +1 elements, the median is the k£ + 1’th element of the sorted
set of values. For a set with 2k elements, the median is the average of the
k and the k + 1’th element of the sorted set. Show that it does not matter
whether the set is sorted in increasing or decreasing order.

2. Assume that we wish to remove salt-and-pepper noise from a uniform back-
ground. Show that up to half of the elements in the neighbourhood could be
noise values and a median filter would still give the same (correct) answer.
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Programming Assignments

1. Build a normalised correlation matcher. The hand finding application is a
nice one, but another may occur to you.

How reliable is it?
How many different patterns can you tell apart in practice?

How sensitive is it to illumination variations? shadows? occlusion?

2. Median filters can smooth corners unacceptably.

Demonstrate this effect by applying a median filter to a variety of images;
what are the qualitative effects at corners and in textured regions?

Explain these effects.

Show that the multi-stage median filter results in less heavily smoothed
corners in practice.

Explain this effect.

On occasion, it is attractive to suppress texture; median filters can do
this rather well. Read [?].
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TEXTURE

Texture is a phenomenon that is widespread, easy to recognise and hard to define.
Typically, whether an effect is referred to as texture or not depends on the scale
at which it is viewed. A leaf that occupies most of an image is an object, but
the foliage of a tree is a texture. Texture arises from a number of different sources.
Firstly, views of large numbers of small objects are often best thought of as textures.
Examples include grass, foliage, brush, pebbles and hair. Secondly, many surfaces
are marked with orderly patterns that look like large numbers of small objects.
Examples include: the spots of animals like leopards or cheetahs; the stripes of
animals like tigers or zebras; the patterns on bark, wood and skin.
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Figure 10.1. A set of texture examples, used in experiments with human subjects to
tell how easily various types of textures can be discriminated. Note that these textures are
made of quite stylised subelements, repeated in a meaningful way. figure from the Malik
and Perona, A Computational Model of Texture Segmentation, p.331, in the fervent hope,
etc.

There are three standard problems to do with texture:

261
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Figure 10.2. A typical textured image. For materials such as brush, grass, foliage and
water, our perception of what the material is is quite intimately related to the texture.
These textures are also made of quite stylised subelements, arranged in a pattern. figure
from the Malik and Perona, A Computational Model of Texture Segmentation, p.331, in
the fervent hope, etc. figure from the Calphotos collection, number. 0057, in the fervent
hope, etc.

o Texture segmentation is the problem of breaking an image into components

within which the texture is constant. Texture segmentation involves both rep-
resenting a texture, and determining the basis on which segment boundaries
are to be determined. In this chapter, we deal only with the question of
how textures should be represented (section 10.1); chapter ?? shows how to
segment textured images using this representation.

Texture synthesis seeks to construct large regions of texture from small
example images. We do this by using the example images to build probability
models of the texture, and then drawing on the probability model to obtain
textured images. There are a variety of methods for building a probability
model; three successful current methods are described in section 10.3.

Shape from texture involves recovering surface orientation or surface shape
from image texture. We do this by assuming that texture “looks the same” at
different points on a surface; this means that the deformation of the texture
from point to point is a cue to the shape of the surface. In section 10.4 and
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section ??, we describe the main lines of reasoning in this (rather technical)
area.

10.1 Representing Texture

Image textures generally consist of organised patterns of quite regular subelements
(sometimes called textons). For example, one texture in figure 10.1 consists of
triangles. Similarly, another texture in that figure consists of arrows. One natural
way to try and represent texture is to find the textons, and then describe the way
in which they are laid out.

The difficulty with this approach is that there is no known canonical set of
textons, meaning that it isn’t clear what one should look for. Instead of looking for
patterns at the level of arrowheads and triangles, we could look for even simpler
pattern elements — dots and bars, say — and then reason about their spatial layout.
The advantage of this approach is that it is easy to look for simple pattern elements
by filtering an image.

10.1.1 Extracting Image Structure with Filter Banks

In section 9.1, we saw that convolving an image with a linear filter yields a repre-
sentation of the image on a different basis. The advantage of transforming an image
to the new basis given by convolving it with a filter, is that the process makes the
local structure of the image clear. This is because there is a strong response when
the image pattern in a neighbourhood looks similar to the filter kernel, and a weak
response when it doesn’t.

Figure 10.3. A set of eight filters used for expanding images into a series of responses.
These filters are shown at a fixed scale, with zero represented by a mid-grey level, lighter
values being positive and darker values being negative. They represent two distinct spots,
and six bars; the set of filters is that used by [?].

This suggests representing image textures in terms of the response of a collection
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of filters. The collection of different filters would consist of a series of patterns —
spots and bars are usual — at a collection of scales (to identify bigger or smaller
spots or bars, say). The value at a point in a derived image represents the local
“spottiness” (“barriness”, etc.) at a particular scale at the corresponding point in
the image. While this representation is now heavily redundant, it exposes structure
(“spottiness”, “barriness”, etc., in a way that has proven helpful. The process of
convolving an image with a range of filters is referred to as analysis.

Generally, spot filters are useful because they respond strongly to small regions
that differ from their neighbours (for example, on either side of an edge, or at a spot).
The other attraction is that they detect non-oriented structure. Bar filters, on the
other hand, are oriented, and tend to respond to oriented structure (this property
is sometimes, rather loosely, described as analysing orientation or representing
orientation).

Spots and Bars by Weighted Sums of Gaussians

But what filters should we use? There is no canonical answer. A variety of answers
have been tried. By analogy with the human visual cortex, it is usual to use at
least one spot filter and a collection of oriented bar filters at different orientations,
scales and phases. The phase of the bar refers to the phase of a cross-section
perpendicular to the bar, thought of as a sinusoid (i.e. if the cross section passes
through zero at the origin, then the phase is 0°.

One way to obtain these filters is to form a weighted difference of Gaussian filters
at different scales; this technique was used for the filters of figure 10.3. The filters
for this example consist of

e A spot, given by a weighted sum of three concentric, symmetric Gaussians,
with weights 1, —2 and 1, and corresponding sigmas 0.62, 1 and 1.6.

e Another spot, given by a weighted sum of two concentric, symmetric Gaus-
sians, with weights 1 and —1, and corresponding sigmas 0.71 and 1.14.

e A series of oriented bars, consisting of a weighted sum of three oriented
Gaussians, which are offset with respect to one another. There are six versions
of these bars; each is a rotated version of a horizontal bar. The Gaussians in
the horizontal bar have weights —1, 2 and —1. They have different sigma’s in
the x and in the y directions; the o, values are all 2, and the o, values are all
1. The centers are offset along the y axis, lying at (0, 1), (0,0) and (0, —1).

You should understand that the details of the choice of filter are almost certainly
immaterial. There is a body of experience that suggests that there should be a series
of spots and bars at various scales and orientations — which is what this collection
provides — but very little reason to believe that optimising the choice of filters
produces any major advantage.

Figures 10.4 and 10.5 illustrate the absolute value of the responses of this bank
of filters to an input image of a butterfly. Notice that, while the bar filters are not
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Figure 10.4. At the top, an image of a butterfly at a fine scale, and below, the result of
applying each of the filters of figure 10.3 to that image. The results are shown as absolute
values of the output, lighter pixels representing stronger responses, and the images are laid
out corresponding to the filter position in the top row.

completely reliable bar detectors (because a bar filter at a particular orientation
responds to bars of a variety of sizes and orientations), the filter outputs give a
reasonable representation of the image data. Generally, bar filters respond strongly
to oriented bars and weakly to other patterns, and the spot filter responds to isolated
spots.

Spots and Bars by Gabor Filters

Another way to build spot and bar filters is to use Gabor filters. The kernels
look like Fourier basis elements that are multiplied by Gaussians, meaning that a
Gabor filter responds strongly at points in an image where there are components
that locally have a particular spatial frequency and orientation. Gabor filters come
in pairs, often referred to as quadrature pairs; one of the pair recovers sym-
metric components in a particular direction, and the other recovers antisymmetric
components. The mathematical form of the symmetric kernel is

:1:2 + 2
GSymmetm‘c(II?, y) = COS (k‘xili =+ k‘yy) exp — {TQy}
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Figure 10.5. The input image of a butterfly and responses of the filters of figure 10.3
at a coarser scale than that of figure 10.4. Notice that the oriented bars respond to the
bars on the wings, the antennae, and the edges of the wings; the fact that one bar has

responded does not mean that another will not, but the size of the response is a cue to
the orientation of the bar in the image.

and the antisymmetric kernel has the form

24,2
Gantisymmetric(xy y) = sin (k‘oiIJ + kly) exp — { L 21__2y }
The filters are illustrated in figures 10.6 and 10.7; (k;, k) give the spatial frequency
to which the filter responds most strongly, and o is referred to as the scale of the
filter. In principle, by applying a very large number of Gabor filters at different
scales, orientations and spatial frequencies, one can analyse an image into a detailed
local description.

Gabor filter kernels look rather a lot like smoothed derivative kernels, for dif-
ferent orders of derivative. For example, if the spatial frequency of the Gabor filter
is low compared to the scale and the phase is zero, we get a kernel that looks a
lot like a derivative of Gaussian filter (top left of figure 10.6); if the phase is 7/2,
then the kernel looks a lot like a second derivative of Gaussian filter (bottom left of
figure 10.6). Another way to think of Gabor filter kernels is as assemblies of bars —
as the spatial frequency goes up compared to the scale, the filter looks for patches
of parallel stripes rather than individual bars.
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Figure 10.6. Gabor filter kernels are the product of a symmetric Gaussian with an
oriented sinusoid; the form of the kernels is given in the text. The images show Gabor
filter kernels as images, with mid-grey values representing zero, darker values representing
negative numbers and lighter values representing positive numbers. The top row shows
the antisymmetric component, and the bottom row shows the symmetric component. The
symmetric and antisymmetric components have a phase difference of /2 radians, because
a cross-section perpendicular to the bar (horizontally, in this case) gives sinusoids that
have this phase difference. The scale of these filters is constant, and they are shown for
three different spatial frequencies. Notice how these filters look rather like derivative of
Gaussian filters — as the spatial frequency goes up, so does the derivative in the derivative

of Gaussian model. It can be helpful to think of these filters as seeking groups of bars.
Figure 10.7 shows Gabor filters at a finer scale.

How many Filters and at what Orientation?

It is not known just how many filters are required for useful texture algorithms.
Perona lists the number of scales and orientation used in a variety of systems;
numbers run from four to eleven scales and from two to eighteen orientations [?].
The number of orientations varies from application to application and does not
seem to matter much, as long as there are at least about six orientations. Typically,
the “spot” filters are Gaussians and the “bar” filters are obtained by differentiating
oriented Gaussians.

Similarly, there does not seem to be much benefit in using more complicated
sets of filters than the basic spot and bar combination. There is a tension here:
using more filters leads to a more detailed (and more redundant representation of
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Figure 10.7. The images shows Gabor filter kernels as images, with mid-grey values rep-
resenting zero, darker values representing negative numbers and lighter values representing
positive numbers. The top row shows the antisymmetric component, and the bottom row
shows the symmetric component. The scale of these filters is constant, and they are shown

for three different spatial frequencies. These filters are shown at a finer scale than those
of figure 10.6.

the image); but we must also convolve the image with all these filters, which can
be expensive. Section 77 illustrates a variety of the tricks that are used to reduce
the computational expense.

10.2 Analysis (and Synthesis) Using Oriented Pyramids

Analysing images using filter banks presents a computational problem — we have to
convolve an image with a large number of filters at a range of scales. The computa-
tional demands can be simplified by handling scale and orientation systematically.
The Gaussian pyramid (section ??) is an example of image analysis by a bank of
filters — in this case, smoothing filters. The Gaussian pyramid handles scale sys-
tematically by subsampling the image once it has been smoothed. This means that
generating the next coarsest scale is easier, because we don’t process redundant
information.

In fact, the Gaussian pyramid is a highly redundant representation because each
layer is a low pass filtered version of the previous layer — this means that we are
representing the lowest spatial frequencies many times. A layer of the Gaussian
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pyramid is a prediction of the appearance of the next finer scale layer — this pre-
diction isn’t exact, but it means that it is unnecessary to store all of the next finer
scale layer. We need keep only a record of the errors in the prediction. This is the
motivating idea behind the Laplacian pyramid.

The Laplacian pyramid will yield a representation of various different scales
that has fairly low redundancy, but it doesn’t immediately deal with orientation; in
section 10.2.2, we will sketch a method that obtains a representation of orientation
as well.

10.2.1 The Laplacian Pyramid

The Laplacian pyramid makes use of the fact that a coarse layer of the Gaussian
pyramid predicts the appearance of the next finer layer. If we have an upsampling
operator that can produce a version of a coarse layer of the same size as the next
finer layer, then we need only store the difference between this prediction and the
layer itself.

Clearly, we cannot create image information, but we can expand a coarse scale
image by replicating pixels. This involves an upsampling operator ST which takes
an image at level n 4 1 to an image at level n. In particular, ST(Z) takes an image,
and produces an image twice the size in each dimension. The four elements of the
output image at (2j — 1,2k — 1); (24, 2k — 1); (25 — 1, 2k); and (24, 2k) all have the
same value as the j, k’th element of 7.

Analysis — Building a Laplacian Pyramid from an Image

The coarsest scale layer of a Laplacian pyramid is the same as the coarsest scale
layer of a Gaussian pyramid. Each of the finer scale layers of a Laplacian pyramid
is a difference between a layer of the Gaussian pyramid and a prediction obtained
by upsampling the next coarsest layer of the Gaussian pyramid. This means that:

PLaplacian(I)m = PQaussian (Z)m

(where m is the coarsest level) and

PLaplacian(I)k = PQaussian(D)k — ST(PGaussian(I)kJrl) (10.2.1)
(Id - STS*Go)Paaussian @)k (10.2.2)

All this yields algorithm 1. While the name “Laplacian” is somewhat misleading —
there are no differential operators here — it is not outrageous, because each layer
is approximately the result of a difference of Gaussian filter.

Each layer of the Laplacian pyramid can be thought of as the response of a
band-pass filter (that is, the components of the image that lie within a particular
range of spatial frequencies. This is because we are taking the image at a particular
resolution, and subtracting the components that can be predicted by a coarser
resolution version — which corresponds to the low spatial frequency components
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Figure 10.8. A Laplacian pyramid of images, running from 512x512 to 8x8. A zero
response is coded with a mid-grey; positive values are lighter and negative values are
darker. Notice that the stripes give stronger responses at particular scales, because each
layer corresponds (roughly) to the output of a band-pass filter.

of the image. This means in turn that we expect that an image of a set of stripes
at a particular spatial frequency would lead to strong responses at one level of the
pyramid and weak responses at other levels (figure 10.8).

Because different levels of the pyramid represent different spatial frequencies,
the Laplacian pyramid can be used as a reasonably effective image compression
scheme. Laplacian pyramids are also used for image blending (figure 7).

Synthesis — Recovering an Image from its Laplacian Pyramid

Laplacian pyramids have one important feature. It is easy to recover an image
from its Laplacian pyramid. We do this by recovering the Gaussian pyramid from
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Form a Gaussian pyramid

Set the coarsest layer of the Laplacian pyramid to be
the coarsest layer of the Gaussian pyramid

For each layer, going from next to coarsest to finest
Obtain this layer of the Laplacian pyramid by
upsampling the next coarser layer, and subtracting

it from this layer of the Gaussian pyramid

end

Algorithm 10.1: Building a Laplacian pyramid from an image

the Laplacian pyramid, and then taking the finest scale of the Gaussian pyramid
(which is the image) . It is easy to get to the Gaussian pyramid from the Laplacian.
Firstly, the coarsest scale of the Gaussian pyramid is the same as the coarsest scale
of the Laplacian. The next-to-coarsest scale of the Gaussian pyramid is obtained by
taking the coarsest scale, upsampling it, and adding the next-to-coarsest scale of the
Laplacian pyramid (and so on up the scales). This process is known as synthesis
(algorithm 2).

Set the working image to be the coarsest layer
For each layer, going from next to coarsest to finest

upsample the working image and add the current layer
to the result

set the working image to be the result of this operation

end
The working image now contains the original image

Algorithm 10.2: Synthesis: obtaining an image from a Laplacian pyramid
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10.2.2 Oriented Pyramids

A Laplacian pyramid does not contain enough information to reason about image
texture, because there is no explicit representation of the orientation of the stripes.
A natural strategy for dealing with this is to take each layer and decompose it
further, to obtain a set of components each of which represents a energy at a distinct
orientation. Each component can be thought of as the response of an oriented filter
at a particular scale and orientation. The result is a detailed analysis of the image,
known as an oriented pyramid (figure 10.9).

A comprehensive discussion of the design of oriented pyramids would take us out
of our way. However, some insight can be obtained by thinking about pyramids in
the Fourier domain. Each layer of the Laplacian pyramid represents the difference
between an image convolved with a Gaussian and the same image convolved with
a finer scale Gaussian. Convolution in the image domain is equivalent to multipli-
cation in the Fourier domain; the Fourier transform of a Gaussian is a Gaussian;
and Fourier transformation is linear. This means that the Fourier transform of each
layer of the Laplacian pyramid is obtained by taking the Fourier transform of the
image and multiplying it by a difference of Gaussians. This difference of Gaussians
will be large within an annulus in Fourier transform space, and small outside this
annulus (the left half of figure 10.10). While an ideal bandpass filter would have
a unit value within the annulus and a zero value outside, such a filter would have
infinite spatial support — making it difficult to work with — and the difference of
Gaussians appears to be a satisfactory practical choice. Now if we wish to select
orientations as well, we need to modify the Fourier transform of the filter kernel so
that it is large within a wedge of the annulus, and small outside (the right half of
figure 10.10).

There is a second design constraint for our analysis filters: synthesis should be
easy. If we think of the oriented pyramid as a decomposition of the Laplacian pyra-
mid (figure 10.11), then synthesis involves reconstructing each layer of the Laplacian
pyramid, and then synthesizing the image from the Laplacian pyramid. The ideal
strategy is to have a set of filters that have oriented responses and where synthesis
is easy. It is possible to produce a set of filters such that reconstructing a layer
from its components involves filtering the image a second time with the same filter
(as figure 10.12 suggests). An efficient implementation of these pyramids is avail-
able at http://www.cis.upenn.edu/ eero/steerpyr.html. The design process is
described in detail in [].

10.3 Application: Synthesizing Textures for Rendering

Objects rendered using computer graphics systems look more realistic if real textures
are rendered on their faces. There are a variety of techniques for texture mapping;
the basic idea is that when an object is rendered, the reflectance value used to shade
a pixel is obtained by reference to a texture map. Some system of coordinates is
adopted on the surface of the object to associate the elements of the texture map
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Filter Kernels

Coarsest scaleu

Image

Finest scale

Figure 10.9. An oriented pyramid, formed from the image at the top, with four
orientations per layer. This is obtained by firstly decomposing an image into sub-
bands which represent bands of spatial frequency (as with the Laplacian pyramid),
and then applying oriented filters to these subbands to decompose them into a set
of distinct images, each of which represents the amount of energy at a particular
scale and orientation in the image. Notice how the orientation layers have strong
responses to the edges in particular directions, and weak responses at other direc-
tions. Code for constructing oriented pyramids, written and distributed by Eero
Simoncelli, can be found at http://www.cis.upenn.edu/ eero/steerpyr.html.
Data obtained from “Shiftable MultiScale Transforms”, Simoncelli et al., page 599,
in fervent hope that permission will be granted.

with points on the surface. Different choices of coordinate system yield renderings
that look quite different, and it is not always easy to ensure that the texture lies
on a surface in a natural way (for example, consider painting stripes on a zebra
— where should the stripes go to yield a natural pattern?). Despite this issue,
texture mapping seems to be an important trick for making rendered scenes look
more realistic.

Texture mapping demands textures, and texture mapping a large object may
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Figure 10.10. Each layer of the Laplacian pyramid consists the elements of a smoothed
and resampled image that are not represented by the next smoother layer. Assuming
that a Gaussian is a sufficiently good smoothing filter, each layer can be thought of as
representing the image components within a range of spatial frequencies — this means
that the Fourier transform of each layer is an annulus of values from the Fourier transform
space (u,v) space (recall that the magnitude of (u,v) gives the spatial frequency). The
sum of these annuluses is the Fourier transform of the image, so that each layer cuts an
annulus out of the image’s Fourier transform. An oriented pyramid cuts each annulus into
a set of wedges. If (u, v) space is represented in polar coordinates, each wedge corresponds
to an interval of radius values and an interval of angle values (recall that arctan(u/v) gives
the orientation of the Fourier basis element).

require a substantial texture map. This is particularly true if the object is close to
the view, meaning that the texture on the surface is seen at a high resolution, so
that problems with the resolution of the texture map will become obvious. Tiling
texture images can work poorly, because it can be difficult to obtain images that
tile well — the borders have to line up, and even if they did, the resulting periodic
structure can be annoying. It is possible to buy image textures from a variety of
sources, but an ideal would be to have a program that can generate large texture
images from a small example. Quite sophisticated programs of this form can be
built, and they illustrate the usefulness of representing textures by filter outputs.

10.3.1 Homogeneity

The general strategy for texture synthesis is to think of a texture as a sample from
some probability distribution and then to try and obtain other samples from that
same distribution. To make this approach practical, we need to obtain a probability
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Figure 10.11. The oriented pyramid is obtained by taking layers of the Laplacian
pyramid, and then applying oriented filters (represented in this schematic drawing by
boxes). Each layer of the Laplacian pyramid represents a range of spatial frequencies; the
oriented filters decompose this range of spatial frequencies into a set of orientations.

model. The first thing to do is assume that the texture is homogenous. This means
that local windows of the texture “look the same”, from wherever in the texture
they were drawn. More formally, the probability distribution on values of a pixel
is determined by the properties of some neighborhood of that pixel, rather than
by, say, the position of the pixel. This assumption means that we can construct a
model for the texture outside the boundaries of our example region, based on the
properties of our example region. The assumption often applies to natural textures
over a reasonable range of scales. For example, the stripes on a zebra’s back are
homogenous, but remember that those on its back are vertical and those on its legs,
horizontal. We now use the example texture to obtain the probability model for
the synthesized texture in various ways.

10.3.2 Synthesis by Matching Histograms of Filter Responses

If two homogenous texture samples are drawn from the same probability model,
then (if the samples are big enough) histograms of the outputs of various filters
applied to the samples will be the same. Heeger and Bergen use this observation to
synthesize a texture using the following strategy: take a noise image and adjust it
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Figure 10.12. In the oriented pyramid, synthesis is possible by refiltering the layers and
then adding them, as this schematic indicates. This property is obtained by appropriate
choice of filters.

until the histogram of responses of various filters on that noise image looks like the
histogram of responses of these filters on the texture sample.

Using an arbitrary set of filters is likely to be inefficient; we can avoid this
problem by using an oriented pyramid. As we have seen, each orientation of each
layer represents the response of an oriented filter at a particular scale, so the whole
pyramid represents the response of a large number of different filters!.

If we represent texture samples as oriented pyramids, we can adjust the pyramid
corresponding to the image to be synthesized, and then synthesize the image from
the pyramid, using the methods of section 10.2. We will adjust each layer separately,
and then synthesize an image. The details of the process for adjusting the layers
is given in section 4; for the moment, we will assume that this process works, and
discuss what we do with it.

Once we have obtained an image from the adjusted pyramid, we form a pyramid
from that image (the two pyramids will not, in general, be the same, because we’ve
assumed, incorrectly, that the layers are independent). In particular, we are not
guaranteed that each layer in the new pyramid has the histogram we want it to. If
the layer histograms are not satisfactory, we readjust the layers, resynthesize the
image, and iterate. While convergence is not guaranteed, in practice the process

L The reason this is efficient is that we have thrown away redundant information in subsampling
the images to get the coarser scale layers.
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appears to converge.

make a working image from noise
match the working image histogram to the example image histogram
make a pyramid pe from the example image

until convergence
Make a pyramid pw from the working image
For each layer in the two pyramids
match the histogram of pw’s layer to that of pe’s layer
end
synthesize the working image from the pyramid pw
end

Algorithm 10.3: Iterative texture synthesis using histogram equalisation applied
to an oriented pyramid

The overall technique looks like algorithm 3. This algorithm yields quite good
results on a substantial variety of textures, as figure 10.13 indicates. It is inclined
to fail when there are conditional relations in the texture that are important — for
example, in figure 10.14, the method has been unable to capture the fact that the
spots on the coral lie in stripes. This problem results from the assumption that the
histogram at each spatial frequency and orientation is independent of that at every
other.

Histogram Equalization

We have two images — which might be layers from the oriented pyramid — and we
should like to adjust image two so that it has the same histogram as image one. The
process is known as histogram equalization. Histogram equalization is easiest for
images that are continuous functions. In this case, we record for each value of the
image the percentage of the image that takes the value less than or equal to this one-
this record is known as the cumulative histogram. The cumulative histogram is
a continuous, monotonically increasing function that maps the range of the image
to the unit interval. Because it is continuous and monotonically increasing, the
inverse exists. The inverse of the cumulative histogram takes a percentage — say
25 % — and gives the image value v such that the given percentage of the image
has value less than or equal to v — i.e. 0.3, if 25% of the image has value less than
or equal to 0.3.

The easiest way to describe histogram equalisation is slightly inefficient in space.
We create a temporary image, image three. Now choose some value v from image
two. The cumulative histogram of image two yields that p percent of the image
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Figure 10.13. Examples of texture synthesis by histogram equalisation. On the left,
the example textures and on the right, the synthesized textures. For the top example, the
method is unequivocally successful. For the bottom example, the method has captured the
spottiness of the texture but has rather more (and smaller) spots than one might expect.
figure from Heeger and Bergen, Pyramid-based Texture Analysis and Synthesis, p. figure
3, in the fervent hope, etc.

has value less than v. Now apply the inverse cumulative histogram of image one to
p, yielding a new value v’ for v. Wherever image two has the value v, insert the
value v’ in image three. If this is done for every value, image three will have the
same histogram as image one. This is because, for any value in image three, the
percentage of image three that has that value is the same as the percentage of image
one that has that value. In fact, image three isn’t necessary, as we can transform
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Figure 10.14. Examples of texture synthesis by histogram equalisation failing. The left
column shows example textures, and the right hand column shows synthesized textures.
The main phenomenon that causes failure is that, for most natural textures, the histogram
of filter responses at different scales and orientations is not independent. In the case of
the coral (top left), this independence assumption suppresses the fact that the small spots
on the coral lie in a straight line. figure from Heeger and Bergen, Pyramid-based Texture
Analysis and Synthesis, p. figure 8, in the fervent hope, etc., figure from Heeger and
Bergen, Pyramid-based Texture Analysis and Synthesis, p. figure 7, in the fervent hope,
etc.

image two in place, yielding algorithm 4.
Things are slightly more difficult for discrete images and images that take dis-
crete values. For example, if image one is a binary image in which every pixel but
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Figure 10.15. Histogram equalization uses cumulative histograms to map the grey
levels of one image so that it has the same histogram as another image. The figure at the
top shows two cumulative histograms, with the relevant images inset in the graphs. To
transform the left image so that it has the same histogram as the right image, we take a
value from the left image, read off the percentage from the cumulative histogram of that
image, and obtain a new value for that grey level from the inverse cumulative histogram
of the right image. The image on the left is a linear ramp (it looks non-linear because the
relationship between brightness and lightness is not linear); the image on the right is a
cube root ramp. The result — the linear ramp, with grey levels remapped so that it has
the same histogram as the cube root ramp — is shown on the bottom row.

one is black, and image two is a binary image in which half the pixels are white,
some but not all of the white pixels in image two will need to be mapped to black
— but which ones should we choose? usually the choice is made uniformly and at
random.

10.3.3 Synthesis by Sampling Conditional Densities of Filter Re-
sponses

A very successful algorithm due to DeBonet retains the idea of synthesizing a texture
by coming up with an image pyramid that looks like the pyramid associated with
an example texture. However, this approach does not assume that the layers are
independent, as the previous algorithm did.

For each location in a given layer of the pyramid, there are a set of locations in
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form the cumulative histogram c1(v) for image 1
form the cumulative histogram c2(v) for image 2
form ic1(p), the inverse of c1(v)

for every value v in image 2, going from smallest to largest
obtain a new value vnew=icl(c2(v))
replace the value v in image 2 with vnew

end

Algorithm 10.4: Histogram Equalization

[/

Figure 10.16. The values of pixels at coarse scales in a pyramid are a function of the
values in the finer scale layers. We associate a parent structure with each pixel, which
consists of the values of pixels at coarse scales which are used to predict our pixel’s value
in the Laplacian pyramid, as indicated in this schematic drawing. This parent structure
contains information about the structure of the image around our pixel for a variety of
differently sized neighbourhoods.

coarser scale layers associated with it by the sampling process (as in figure 10.16).
The set of values of in these locations is called the parent structure of the location.

We can use this parent structure for synthesis. Firstly, let us make the coarsest
scale in the new pyramid the same as the coarsest scale — say the m’th level —
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make a pyramid pe from the example image

make an empty pyramid pw, corresponding to the image to
be synthesized

set the coarsest scale layer of pw to be the same as the
coarsest scale level of pe; if pw is bigger than pe, then

replicate copies of pe to fill it

for each other layer 1 of pe, going from coarsest to finest
for each element e of the layer

obtain all elements with
the same parent structure

choose one of this collection uniformly at random
insert the value of this element into e

end
end

synthesize the texture image from the pyramid pw

Algorithm 10.5: Texture Synthesis using Conditional Histograms

in the example pyramid. Now choose a location to be synthesized in the m — 1’th
level of the pyramid. We know the parent structure of this location, so we can go
to the example pyramid and collect all values in the corresponding level that have
a similar parent structure. This collection forms a probability model for the values
for our location, conditioned on the parent structure that we observed. If we choose
an element from this collection uniformly and at random, the values at the m’th
level and at the m — 1’th level of the pyramid being synthesized have the same joint
histogram as the corresponding layers in the example pyramid.

This is easiest to see if we think of histograms as a representation of a proba-
bility distribution. The joint histogram is a representation of the joint probability
distribution for values at the two scales. From section 77, this joint distribution
is the product of a marginal distribution on the values at the m’th level with the
conditional distribution on values at the m — 1’th level, conditioned on the value at
the m’th level.

The m’th level layers must have the same histograms (that is, the same marginal
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Figure 10.17. Four examples of textures synthesized using De Bonet’s algorithm (al-
gorithm 5). In each case, the example texture is the small block on the left, and the
synthesized texture is the larger image block on the right. Note that the method has
captured apparent periodic structure in the textures; in the case of the blob with wires
(top right), it has succeeded in joining up wires. This is because the method can capture
larger scale structure in a texture in greater detail, by not assuming that responses at each
level of the pyramid are independent. figure from De Bonet, Multiresolution Sampling
Procedure for Analysis and Synthesis of Image Textures, p figure 10, in the fervent hope,
etc.

distributions). The sampling procedure for the m — 1’th layer means that a his-
togram of the pixels in the m — 1’th layer whose parents have some fixed value will
be the same for the pyramid being synthesized as for the example pyramid. This
histogram — which is sometimes called a conditional histogram — is a repre-
sentation of the conditional distribution on values at the m — 1’th level, conditioned
on the value at the m’th level.

Nothing special is required to synthesize a third (or any other) layer. For any
location in the third layer, the parent structure involves values from the coarsest
and the next to coarsest scale. To obtain a value for a location, we collect every
element from the corresponding layer in the example pyramid with the same parent
structure, and choose from a uniformly and at random from this collection. The
fourth, fifth and other layers follow from exactly the same approach. Furthermore,
the joint histogram of all these layers in the synthesized pyramid will be the same
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Figure 10.18. Figure 10.13 showed texture synthesis by histogram equalisation failing on
the coral texture example shown on the top left here, because the independence assumption
suppresses the fact that the small spots on the coral lie in a straight line. The texture
synthesized by histogram equalization is shown on the top right. The bottom row shows
textures synthesized using algorithm 5, which doesn’t require an independence assumption.
These textures appear to have the same structure as the example. figure from De Bonet,
Multiresolution Sampling Procedure for Analysis and Synthesis of Image Textures, p figure
14, in the fervent hope, etc.

as that for the example pyramid, using the same argument as above.
There are two important details to address before we have a usable algorithm.

e Firstly, what does it mean for parent structures to be the same? In practice,
it is sufficient to regard the parent structures as vectors and require that
they are close together — an appropriate distance threshold should be set by
experiment.

e Secondly, how do we obtain all pixels with the same parent structure as a
given location? one strategy is to search all locations in the example image
for every pixel value we wish to synthesize, but this is crude and expensive.
We explore alternate strategies in exercise ?77.

10.3.4 Synthesis by Sampling Local Models

As Efros points out, it isn’t essential to use an oriented pyramid to build a probabil-
ity model. Instead, the example image itself supplies a probability model. Assume
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for the moment that we have every pixel in the synthesized image, except one. To
obtain a probability model for the value of that pixel, we could match a neigh-
borhood of the pixel to the example image. Every matching neighborhood in the
example image has a possible value for the pixel of interest. This collection of values
is a conditional histogram for the pixel of interest. By drawing a sample uniformly
and at random from this collection, we obtain the value that is consistent with the
example image. Section 77 describes the details of the matching process.

Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized

until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score

Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods
end
end

Algorithm 10.6: Non-parametric Texture Synthesis

Generally, we need to synthesize more than just one pixel. Usually, the values
of some pixels in the neighborhood of the pixel to be synthesized are not known —
these pixels need to be synthesized too. One way to obtain a collection of examples
for the pixel of interest is to count only the known values in computing the sum
of squared differences, and to adjust the threshold pro rata. The synthesis process
can be started by choosing a block of pixels at random from the example image,
yielding algorithm 6.

Matching Image Neighbourhoods

Efros uses a square neighborhood, centered at the pixel of interest. The size of the
neighborhood is a parameter that significantly affects the appearance of the synthe-
sized image (see figure 10.20). The similarity between two image neighbourhoods
can be measured by forming the sum of squared differences of corresponding pixel
values. This value is small when the neighbourhoods are similar, and large when
they are different (it is essentially the length of the difference vector). Of course, the
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Figure 10.19. Efros’ texture synthesis algorithm (algorithm 6) matches neighbourhoods
of the image being synthesized to the example image, and then chooses at random amongst
the possible values reported by matching neighbourhoods. This means that the algorithm
can reproduce complex spatial structures, as these examples indicate. The small block on
the left is the example texture; the algorithm synthesizes the block on the right. Note
that the synthesized text looks like text; it appears to be constructed of words of varying
lengths that are spaced like text; and each word looks as though it is composed of letters
(though this illusion fails as one looks closely). figure from Efros, Texture Synthesis by
Non-parametric sampling, p. figure 3, in the fervent hope, etc.

value of the pixel to be synthesized is not counted in the sum of squared differences.

The set of possible values for the pixel of interest comes from any neighborhood
of the example image whose sum of squared differences with the neighborhood of
interest is smaller than some threshold. Other choices of neighbourhood, and of
matching criterion, might work well; little is known about what is best.

10.4 Shape from Texture: Planes and Isotropy

A patch of texture of viewed frontally looks very different from a same patch viewed
at a glancing angle, because foreshortening appears to make the texture elements
smaller, and move them closer together. This means that, if a surface is covered
with the same texture, we should be able to tell elements that are frontal from those
that are viewed at a glancing angle. By doing so, we can recover the shape of the
surface (figure 10.21).

To construct useful algorithms, we need to be crisp about what it means for
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Figure 10.20. The size of the image neighbourhood to be matched makes a significant
difference in algorithm 6. In the figure, the textures at the right are synthesized from
the small blocks on the left, using neighbourhoods that are increasingly large as one
moves to the right. If very small neighbourhoods are matched, then the algorithm cannot
capture large scale effects easily. For example, in the case of the spotty texture, if the
neighbourhood is too small to capture the spot structure (and so sees only pieces of curve),
the algorithm synthesizes a texture consisting of curve segments. As the neighbourhood
gets larger, the algorithm can capture the spot structure, but not the even spacing. With
very large neighbourhoods, the spacing is captured as well. figure from Efros, Texture
Synthesis by Non-parametric sampling, p. figure 2, in the fervent hope, etc.

a texture to be the same. In the first case, let us assume that we are looking
at textured planes. There are two useful notions of similarity for this case. We
discussed homogenous textures above (section 10.3.1); an isotropic texture is one
where the probability of encountering a texture element does not depend on the
orientation of that element. This means that a probability model for an isotropic
texture need not depend on the orientation of the coordinate system on the textured
plane. We will confine our discussion to the case of an orthographic camera. If the
camera is not orthographic, the arguments we use will go through, but require
substantially more work and more notation. Derivations for other cases appear
in [].
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Figure 10.21. Humans obtain information about the shape of surfaces in space from
the appearance of the texture on the surface. The figure on the left shows one common use
for this effect — away from the contour regions, our only source of information about the
surface depicted is the distortion of the texture on the surface. On the right, the texture
of the stones gives a clear sense of the orientation of the (roughly) plane surface leading
up to the waterhole. figure from the Calphotos collection, number. 0127, in the fervent
hope, etc.

10.4.1 Recovering the Orientation of a Plane from an Isotropic
Texture

Now assume that we are viewing a single textured plane in an orthographic camera.
Because the camera is orthographic , there is no way to measure the depth to the
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plane. However, we can think about the orientation of the plane. Let us work
in terms of the camera coordinate system. We need to know firstly, the angle
between the normal of the textured plane and the viewing direction — sometimes
called the slant — and secondly, the angle the projected normal makes in the
camera coordinate system — sometimes called the tilt (figure 10.22). In an image
of a plane, there is a tilt direction — the direction in the plane parallel to the
projected normal.

Viewing
direction

Plane
normal

Projected
normal

Textured
plane

Figure 10.22. The orientation of a plane with respect to the camera plane can be
given by the slant — which is the angle between the normal of the textured plane and the
viewing direction — and the tilt — which is the angle the projected normal makes with
the camera coordinate system. The figure illustrates the tilt, and shows a circle projecting
to an ellipse.

If we assume that the texture is isotropic, both slant and tilt can be read from
the image. We could synthesize an orthographic view of a textured plane by first
rotating the coordinate system by the tilt and then secondly contracting along
one coordinate direction by the cosine of the slant — call this process a viewing
transformation. The easiest way to see this is to assume that the texture consists
of a set of circles, scattered about the plane. In an orthographic view, these circles
will project to ellipses, whose minor axes will give the tilt, and whose aspect ratios
will give the slant (see exercise 77 and figure 10.22).

The process of contraction interferes with the isotropy of the texture, because
elements that point along the contracted direction get shorter. Furthermore, ele-
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ments that have a component along the contracted direction have that component
shrunk. This yields a strategy for determining the orientation of the plane: find a
viewing transformation that turns the image texture into an isotropic texture, and
recover the slant and tilt from that viewing transformation.

There are variety of ways to find this viewing transformation. One natural
strategy is to use the energy output of a set of oriented filters. This is the squared
response, summed over the image. For an isotropic texture, we would expect the
energy output to be the same for each orientation at any given scale, because the
probability of encountering a pattern does not depend on its orientation. Thus, a
measure of isotropy is the standard deviation of the energy output as a function of
orientation. We could sum this measure over scales, perhaps weighting the measure
by the total energy in the scale. The smaller the measure, the more isotropic the
texture. We now find the inverse viewing transformation that makes the image
looks most isotropic by this measure, using standard methods from optimization.

Notice that this approach immediately extends to perspective projection, spheri-
cal projection, and other types of viewing transformation. We simply have to search
over a larger family of transformations for the transformation that makes the image
texture look most isotropic. One does need to be careful, however. For example,
scaling an isotropic texture will lead to another isotropic texture, meaning that it
isn’t possible to recover a scaling parameter, and it’s a bad idea to try. Notice also
that it isn’t possible to recover the configuration of a plane from an orthographic
image if one assumes the plane is homogenous — an affine transformation of a
homogenous texture is homogenous.

The main difficulty with using an assumption of isotropy to recover the orien-
tation of a plane is that there are very few isotropic textures in the world. Curved
surfaces have a richer geometric structure — basically, the texture at different points
is distorted in different ways — and we can recover that structure with more realistic
assumptions.

10.4.2 Recovering the Orientation of a Plane from an Homogene-
ity Assumption

It isn’t possible to recover the orientation of a plane in an orthographic view by
assuming that the texture is homogeneous (the definition is in section 10.3.1). This
is because the viewing transformation takes one homogeneous texture into another
homogeneous texture. However, if we make some other assumptions about the
structure of the texture, it becomes possible. One possible assumption is that the
texture is a homogenous marked Poisson point process. This is a special case
of the Poisson point process described in section 9.5.1; in particular, the texture
is obtained by (1) marking points on the plane with a homogenous Poisson point
process and then (2) dropping a texture element (a “mark”) at each point, with the
choice of element and orientation being random with some fixed distribution.
Assume that we can identify each texture element. Now recall that the core
property of a homogenous Poisson point process is that the expected number of
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points in a set is proportional to the area of that set. Consider a set of rectangles
in the image oriented by the slant-tilt coordinate system: a rectangle that is long in
the slant direction and short in the tilt direction will contain more texture elements
than a rectangle that is long in the tilt direction and short in the slant direction.
This is because the slant direction is foreshortened — so that image length in this
direction is shorter than length on the plane in this direction — but the tilt direction
is not. However, the foreshortening does not affect the count of texture elements.
These observations mean that we can obtain the slant and tilt direction of a plane
textured according to our model by searching over plane orientations to find one
that makes the back-projected texture most uniform in space.

Rotate and
N\~ translate =/
\/
Foreshortening Foreshortening
Image Image
patch 1 patch 2

Figure 10.23. If the texture on a surface is homogenous, then the texture at each point
on the surface “looks like” the texture at other points. This means that the deformation
of the texture in the image is a cue to surface geometry. In particular, the texture around
one point in the image is related to the texture around another point by: mapping from
the image to the surface, transforming on the surface, and then mapping back to the
image. By keeping track of these transformations, we can reconstruct surfaces up to some
ambiguity.

10.4.3 Shape from Texture for Curved Surfaces

If a homogenous texture lies on a curved surface, we can recover information about
the differential geometry of that surface. The reasoning is as follows:

e We assume that texture is homogeneous. This means that, if we know the
configuration of one of the tangent planes on the surface, then we know what
the texture looks like frontally.

e Now we assume that we know the configuration of one of the tangent planes.
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Figure 10.24. A textured cylinder, with a representation of surface normals obtained by
reasoning about relative distortion from point to point. figure from the Malik and Rosen-
holtz, Computing Local Surface Orientation and Shape from Texture for Curved Surfaces,
p.161, in the fervent hope, etc.

e Now we can reconstruct other tangent planes — possibly every other tangent
plane — from this information, because we know the rule by which the texture
foreshortens.

Of course, we don’t know the configuration of any of the tangent planes, so we need
to reason about relative configurations. The texture distorts from place to place
in the image, because it undergoes different projections into the image: we keep
track of those distortions, and use them to reason about the shape of the surface
(figures 10.23 and 10.24). Shape from texture for curved surfaces tends to require
some technical geometry, however, and we will pursue it no further.

10.5 Notes

We have aggressively compressed the texture literature in this chapter. Over the
years, there have been a wide variety of techniques for representing image textures,
typically looking at the statistics of how patterns lie with respect to one another.
The disagreements are in how a pattern should be described, and what statistics to
look at. While it is a bit early to say that the approach that represents patterns
using linear filters is correct, it is currently dominant, mainly because it is very
easy to solve problems with this strategy. Readers who are seriously interested in
texture will probably most resent our omission of the Markov Random Field model,
a choice based on the amount of mathematics required to develop the model and
the absence of satisfactory inference algorithms for MRF’s. We refer the interested
reader to [].

Texture synthesis exhausted us long before we could exhaust it. The most
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significant omission, apart from MRF’s, is the work of Zhu and Mumford, which
uses sophisticated entropy criteria to firstly choose filters by which to represent a
texture and secondly construct probability models for that texture.

10.5.1 Shape from Texture

We have not handled shape from texture in any great detail, from a conviction that
the literature is unsatisfactory. Local methods for curved surfaces currently require
quite implausible assumptions about the rotational properties of the texture field
to recover geometry (e.g. [|). Furthermore, these methods recover both curvature
and surface normal, thereby ignoring integrability. Most of what we have sketched
applies only where the scale of the variation in the surface is much larger than the
scale of variation in the texture — this should be a source of some unease, too.
There is a great deal that can be done in this area, and the tools for understanding
texture are now much better than they used to be.

Assignments

Exercises

1. The texture synthesis algorithm of section 10.3.3 needs to obtain parent struc-
tures in the example image that match the parent structure of a pixel to be
synthesized. These could be obtained by blank search. An alternative is to
use a hashing process. It is essential that every parent structure that could
match a given structure is obtained by this hashing process. One strategy is
to compute a hash key from the parent structure, and then look at nearby
keys as well, to ensure that no matches are missed.

e Describe how this strategy could work.

e What savings could be obtained by using it?

2. Show that a circle appears as an ellipse in an orthographic view, and that the
minor axis of this ellipse is the tilt direction. What is the aspect ratio of this
ellipse?

3. We will study measuring the orientation of a plane in an orthographic view,
given the texture consists of points laid down by a homogenous Poisson point
process. Recall that one way to generate points according to such a process is
to sample the z and y coordinate of the point uniformly and at random. We
assume that the points from our process lie within a unit square.

e Show that the probability that a point will land in a particular set is
proportional to the area of that set.

e Assume we partition the area into disjoint sets. Show that the number
of points in each set has a multinomial probability distribution.
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We will now use these observations to recover the orientation of the plane.
We partition the image texture into a collection of disjoint sets.

e Show that the area of each set, backprojected onto the textured plane, is
a function of the orientation of the plane.

e Use this function to suggest a method for obtaining the plane’s orienta-
tion.

Programming Assignments

e Texture synthesis - a: Implement the texture synthesis algorithms of sec-
tion 10.3.2 and of section 10.3.3. Use the steerable filter implementation
availableat http://www.cis.upenn.edu/ eero/steerpyr.html to construct
steerable pyramid representations. Use your implementation to find examples
where the independence assumption fails. Explain what is going on in these
examples.

e Texture synthesis - b: Extend the algorithms of section 10.3.2 and of
section 10.3.3 to use pyramids obtained using an analysis based on more ori-
entations; you will need to ensure that you can do synthesis for the set of
filters you choose. Does this make any difference in practice to (a) the quality
of the texture synthesis or (b) the speed of the synthesis algorithm?

e Texture synthesis - c: Implement the non-parametric texture synthesis
algorithm of section 10.3.4. Use your implementation to study:
1. the effect of window size on the synthesized texture;
2. the effect of window shape on the synthesized texture;

3. the effect of the matching criterion on the synthesized texture (i.e. using
weighted sum of squares instead of sum of squares, etc.).
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Chapter 11

THE GEOMETRY OF
MULTIPLE VIEWS

Despite the wealth of information contained in a photograph, the depth of a scene
point along the corresponding projection ray is not directly accessible in a single
image. With at least two pictures, on the other hand, depth can be measured
through triangulation. This is of course one of the reasons why most animals have
at least two eyes and/or move their head when looking for friend or foe, as well
as the motivation for equipping autonomous robots with stereo or motion analysis
systems. Before building such a program, we must understand how several views of
the same scene constrain its three-dimensional structure as well as the corresponding
camera configurations. This is the goal of this chapter.

In particular, we will elucidate the geometric and algebraic constraints that hold
among two, three, or more views of the same scene. In the familiar setting of binoc-
ular stereo vision, we will show that the first image of any point must lie in the plane
formed by its second image and the optical centers of the two cameras. This epipo-
lar constraint can be represented algebraically by a 3 x 3 matrix called the essential
matriz when the intrinsic parameters of the cameras are known, and the funda-
mental matriz otherwise. Three pictures of the same line will introduce a different
constraint, namely that the intersection of the planes formed by their preimages
be degenerate. Algebraically, this geometric relationship can be represented by a
3 x 3 x 3 trifocal tensor. More images will introduce additional constraints, for
example four projections of the same point will satisfy certain quadrilinear rela-
tions whose coeflicients are captured by the quadrifocal tensor, etc. Remarkably,
the equations satisfied by multiple pictures of the same scene feature can be set up
without any knowledge of the cameras and the scene they observe, and a number of
methods for estimating their parameters directly from image data will be presented
in this chapter.

Computer vision is not the only scientific field concerned with the geometry
of multiple views: the goal of photogrammetry, already mentioned in Chapter 5,
is precisely to recover quantitative geometric information from multiple pictures.
Applications of the epipolar and trifocal constraints to the classical photogrammetry

297
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problem of ¢ransfer (i.e., the prediction of the position of a point in an image given its
position in a number of reference pictures) will be briefly discussed in this chapter,
along with some examples. Many more applications in the domains of stereo and
motion analysis will be presented in latter chapters.

11.1 Two Views
11.1.1 Epipolar Geometry

Consider the images p and p’ of a point P observed by two cameras with optical
centers O and O’. These five points all belong to the epipolar plane defined by the
two intersecting rays OP and O’P (Figure 11.1). In particular, the point p’ lies
on the line I’ where this plane and the retina I’ of the second camera intersect.
The line I is the epipolar line associated with the point p, and it passes through
the point €’ where the baseline joining the optical centers O and O’ intersects IT'.
Likewise, the point p lies on the epipolar line ! associated with the point p’, and
this line passes through the intersection e of the baseline with the plane II.

P

0 o

Figure 11.1. Epipolar geometry: the point P, the optical centers O and O’ of the two
cameras, and the two images p and p’ of P all lie in the same plane.

The points e and e’ are called the epipoles of the two cameras. The epipole €’ is
the (virtual) image of the optical center O of the first camera in the image observed
by the second camera, and vice versa. As noted before, if p and p’ are images of the
same point, then p’ must lie on the epipolar line associated with p. This epipolar
constraint plays a fundamental role in stereo vision and motion analysis.

Let us assume for example that we know the intrinsic and extrinsic parameters
of the two cameras of a stereo rig. We will see in Chapter 12 that the most difficult
part of stereo data analysis is establishing correspondences between the two images,
i.e., deciding which points in the right picture match the points in the left one.
The epipolar constraint greatly limits the search for these correspondences: indeed,
since we assume that the rig is calibrated, the coordinates of the point p completely
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determine the ray joining O and p, and thus the associated epipolar plane OO’p
and epipolar line. The search for matches can be restricted to this line instead of
the whole image (Figure 11.2). In two-frame motion analysis on the other hand,
each camera may be internally calibrated, but the rigid transformation separating
the two camera coordinate systems is unknown. In this case, the epipolar geometry
obviously constrains the set of possible motions. The next sections explore several
variants of this situation.

0 o

Figure 11.2. Epipolar constraint: given a calibrated stereo rig, the set of possible
matches for the point p is constrained to lie on the associated epipolar line I’.

11.1.2 The Calibrated Case

Here we assume that the intrinsic parameters of each camera are known, so p = p.
Clearly, the epipolar constraint implies that the three vectors Op, O'p’, and OO’

are coplanar. Equivalently, one of them must lie in the plane spanned by the other
two, or
Op-[00" x O'p] = 0.
We can rewrite this coordinate-independent equation in the coordinate frame
associated to the first camera as

p- [t x (Rp))], (11.1.1)

where p = (u,v,1)T and p’ = (v/,v',1)T denote the homogenous image coordinate
vectors of p and p’, t is the coordinate vector of the translation OO’ separating the
two coordinate systems, and R is the rotation matrix such that a free vector with
coordinates w’ in the second coordinate system has coordinates Rw’ in the first
one (in this case the two projection matrices are given in the coordinate system
attached to the first camera by (Id 0) and (R”, —RTt)).

Equation (11.1.1) can finally be rewritten as

p"Ep' =0, (11.1.2)
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where £ = [t«]R, and [ax] denotes the skew-symmetric matrix such that [ax]|z =
a x x is the cross-product of the vectors a and . The matrix £ is called the essential
matriz, and it was first introduced by Longuet-Higgins [?]. Its nine coefficients are
only defined up to scale, and they can be parameterized by the three degrees of
freedom of the rotation matrix R and the two degrees of freedom defining the
direction of the translation vector ¢.

Note that £p’ can be interpreted as the coordinate vector representing the epipo-
lar line associated with the point p’ in the first image: indeed, an image line | can
be defined by its equation au + bv + ¢ = 0, where (u,v) denote the coordinates of a
point on the line, (a, b) is the unit normal to the line, and —c is the (signed) distance
between the origin and [. Alternatively, we can define the line equation in terms
of the homogeneous coordinate vector p = (u,v,1)T of a point on the line and the
vector I = (a,b,c)” by I -p = 0, in which case the constraint a? + b? = 1 is relaxed
since the equation holds independently of any scale change applied to I. In this con-
text, (11.1.2) expresses the fact that the point p lies on the epipolar line associated
with the vector £p’. By symmetry, it is also clear that £7p is the coordinate vector
representing the epipolar line associated with p in the second image.

It is obvious that essential matrices are singular since t is parallel to the coordi-
nate vector e of the left epipole, so that £7e = —RT[t«]e = 0. Likewise, it is easy
to show that e’ is a zero eigenvector of £. As shown by Huang and Faugeras [?],
essential matrices are in fact characterized by the fact that they are singular with
two equal non-zero singular values (see exercises).

11.1.3 Small Motions

Let us now turn our attention to infinitesimal displacements. We consider a moving
camera with translational velocity v and rotational velocity w and rewrite (11.1.2)
for two frames separated by a small time interval 6¢. Let us denote by p = (u, v, 0)7
the velocity of the point p, or motion field. Using the exponential representation of
rotations,! we have (to first order):

t = tw,
R =1d + 6t [wx],
p =p+otp.

Substituting in (11.1.2) yields
P’ [vx](Id + 8t [wx])(p + 6t p) = 0,

and neglecting all terms of order two or greater in 6t yields:

T .
p ([vx]lwx])p—(pxP) v=0. (11.1.3)
IThe matrix associated w1th the rotation whose axis is the unit vector a and whose angle is 6
can be shown to be equal to e? ] def Zj—og 21,(0[a><]
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Equation (11.1.3) is simply the instantaneous form of the Longuet-Higgins rela-
tion (11.1.2) which captures the epipolar geometry in the discrete case. Note that
in the case of pure translation we have w = 0, thus (p x p) - v = 0. In other words,
the three vectors p = op, p and v must be coplanar. If e denotes the infinitesimal
epipole, or focus of expansion, i.e., the point where the line passing through the op-
tical center and parallel to the velocity vector v pierces the image plane, we obtain
the well known result that the motion field points toward the focus of expansion
under pure translational motion (Figure 11.3).

Figure 11.3. Focus of expansion: under pure translation, the motion field at every point
in the image points toward the focus of expansion.

11.1.4 The Uncalibrated Case

The Longuet-Higgins relation holds for internally calibrated cameras, whose intrin-
sic parameters are known so that image positions can be expressed in normalized
coordinates. When these parameters are unknown (uncalibrated cameras), we can
write p = Kp and p’ = K'p’, where K and K’ are 3 x 3 calibration matrices, and
P and p’ are normalized image coordinate vectors. The Longuet-Higgins relation
holds for these vectors, and we obtain

p"Fp' =0, (11.1.4)

where the matrix F = K~TEK'™!, called the fundamental matriz, is not, in general,
an essential matrix.? It has again rank two, and the eigenvector of F (resp. F7)
corresponding to its zero eigenvalue is as before the position €’ (resp. e) of the
epipole. Note that Fp' (resp. Fp) represents the epipolar line corresponding to
the point p’ (resp. p) in the first (resp. second) image.

2Small motions can also be handled in the uncalibrated setting. In particular, Viéville and
Faugeras [?] have derived an equation similar to (11.1.3) that characterizes the motion field of a
camera with varying intrinsic parameters.
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The rank-two constraint means that the fundamental matrix only admits seven
independent parameters. Several choices of parameterization are possible, but the
most natural one is in terms of the coordinate vectors e = (o, 3)T and e’ = (o, 5')T
of the two epipoles, and of the so-called epipolar transformation that maps one set
of epipolar lines onto the other one. We will examine the properties of the epipolar
transformation in Chapter 14 in the context of structure from motion. For the time
being, let us just note (without proof) that this transformation is parameterized by
four numbers a, b, ¢, d, and that the fundamental matrix can be written as

b a —af — ba
F = —d —c cfB + da . (11.1.5)
df' —ba' B —aa’ —cB6 —dB o+ aBa’ + bao'

11.1.5 Weak Calibration

As mentioned earlier, the essential matrix is defined up to scale by five indepen-
dent parameters. It is therefore possible (at least in principle), to calculate it by
writing (11.1.2) for five point correspondences. Likewise, the fundamental matrix
is defined by seven independent coeflicients (the parameters a, b, ¢, d in (11.1.5) are
only defined up to scale) and can in principle be estimated from seven point corre-
spondences. Methods for estimating the essential and fundamental matrices from a
minimal number of parameters indeed exist (see [?] and Section 11.4), but they are
far too involved to be described here. This section addresses the simpler problem
of estimating the epipolar geometry from a redundant set of point correspondences
between two images taken by cameras with unknown intrinsic parameters, a process
known as weak calibration.

Note that the epipolar constraint (11.1.4) is a linear equation in the nine coeffi-
cients of the fundamental matrix F:

Fy1 Fi2 Fi3 u’ Fo
(u,v,1) | Fo1  Faa Fhag v | =0e (uwu,u,u,vu o0’ v, 0", 1) | Fae | = 0.

F31 F3x Fs3 1

(11.1.6)

Since (11.1.6) is homogeneous in the coefficients of F, we can for example set
F33 =1 and use eight point correspondences p; <+ p} (i =1,..,8) to set up an 8 x 8
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system of non-homogeneous linear equations:

/ / / / / /
uiu]  wv] uwr viuy; vvy vr up v Fiy 1
UgUh UV U VaUh VaVy Vo uh  vh Fio 1
/ / / / / /
UgUs UV5 U3 U3U3 UVsV3 V3 Uy Vi Fi3 1
/ / / / / / F 1
UqUy U4V, Ug UV4Uy V4UV4 Vg4 Uy Uy 21 _
UsUy  UsVy Us UsUE UsUS Us  uf U Fao 1]’
/ / / / / /
UslUg UeUs Us UVslUg Usls Ve Ug Vg Fys 1
/ / / / / /
UrUr  U7Ur U7 UrUr U7V U7 Un Uy F3q 1
ugug UsVg Ug Uglg UsUy Ug Uy Ug F3y 1

which is sufficient for estimating the fundamental matrix. This is the eight-point
algorithm proposed by Longuet-Higgins [?] in the case of calibrated cameras. It will
fail when the associated 8 x 8 matrix is singular. As shown in [?] and the exercises,
this will only happen, however, when the eight points and the two optical centers
lie on a quadric surface. Fortunately, this is quite unlikely since a quadric surface
is completely determined by nine points, which means that there is in general no
quadric that passes through ten arbitrary points.

When n > 8 correspondences are available, F can be estimated using linear least

squares by minimizing
n

> (o] Fpi)? (11.1.7)
i=1
with respect to the coefficients of F under the constraint that the vector formed by
these coefficients has unit norm.

Note that both the eight-point algorithm and its least-squares version ignore the
rank-two property of fundamental matrices.®> To enforce this constraint, Luong et
al. [?7; 7] have proposed to use the matrix F output by the eight-point algorithm as
the basis for a two-step estimation process: first, use linear least squares to com-
pute the position of the epipoles e and e’ that minimize |F”e|? and |Fe'|?; second,
substitute the coordinates of these points in (11.1.5): this yields a linear parameter-
ization of the fundamental matrix by the coefficients of the epipolar transformation,
which can now be estimated by minimizing (11.1.7) via linear least squares.

The least-squares version of the eight-point algorithm minimizes the mean-
squared algebraic distance associated with the epipolar constraint, i.e., the mean-
squared value of e(p,p’) = p? Fp' calculated over all point correspondences. This
error function admits a geometric interpretation: in particular, we have

e(p,p') = M(p, Fp') = Xd(p', F'p),

where d(p, 1) denotes the (signed) Euclidean distance between the point p and the
line I, and Fp and FTp’ are the epipolar lines associated with p and p’. The
scale factors A and )\ are simply the norms of the vectors formed by the first two

3The original algorithm proposed by Longuet-Higgins ignores the fact that essential matrices
have rank two and two equal singular values as well.
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components of Fp' and FTp, and their dependence on the pair of data points
observed may bias the estimation process.

It is of course possible to get rid of the scale factors and directly minimize the
mean-squared distance between the image points and the corresponding epipolar
lines, i.e.,

n
> [ (p;, Fpi) + (0}, F'p,)).

=1

This is a non-linear problem, regardless of the parameterization chosen for the
fundamental matrix, but the minimization can be initialized with the result of the
eight-point algorithm. This method was first proposed by Luong et al. [?], and
it has been shown to provide results vastly superior to those obtained using the
eight-point method.

Recently, Hartley [?] has proposed a normalized eight-point algorithm and has
also reported excellent results. His approach is based on the observation that the
poor performance of the plain eight-point method is due, for the most part, to poor
numerical conditioning. Thus Hartley has proposed to translate and scale the data
so it is centered at the origin and the average distance to the origin is v/2 pixel.
This dramatically improves the conditioning of the linear least-squares estimation
process. Accordingly, his method is divided into four steps: first, transform the
image coordinates using appropriate translation and scaling operators T : p; — p;
and 7' : p, — p;. Second, use linear least squares to compute the matrix F
minimizing

n
> (B ).

=1

Third, enforce the rank-two constraint; this can be done using the two-step method
of Luong et al. described earlier, but Hartley uses instead a technique, suggested
by Tsai and Huang [?] in the calibrated case, which constructs the singular value
decomposition F = USVT of F. Here, S = diag(r, s, t) is a diagonal 3 x 3 matrix
with entries r > s > ¢, and U,V are orthogonal 3 x 3 matrices.* The rank-two
matrix F minimizing the Frobenius norm of F — F is simply F = Udiag(r, s, 0)VT
[?]. Fourth, set F = 7L F7’. This is the final estimate of the fundamental matrix.

Figure 11.4 shows weak calibration experiments using as input data a set of 37
point correspondences between two images of a toy house. The data points are
shown in the figure as small discs, and the recovered epipolar lines are shown as
short line segments. The top of the figure shows the output of the least-squares
version of the plain eight-point algorithm, and the bottom part of the figure shows
the results obtained using Hartley’s variant of this method. As expected, the results
are much better in the second case, and in fact extremely close to those obtained
using the distance minimization criterion of Luong et al. [?; ?].

4Singular value decomposition will be discussed in detail in Chapter 13.
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Linear Least Squares [7] [7]
Av. Dist. 1 2.33 pixels 0.92 pixel | 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel | 0.80 pixel

Figure 11.4. Weak calibration experiments using 37 point correspondences between two
images of a toy house. The figure shows the epipolar lines found by (a) the least-squares
version of the 8-point algorithm, and (b) the “normalized” variant of this method proposed
by Hartley [?]. Note for example the much larger error in (a) for the feature point close
to the bottom of the mug. Quantitative comparisons are given in the table, where the
average distances between the data points and corresponding epipolar lines are shown for
both techniques as well as the non-linear distance minimization algorithm of Luong et
al. [7].

11.2 Three Views

Let us now go back to the calibrated case where p = p as we study the geometric
constraints associated with three views of the same scene. Consider three perspec-
tive cameras observing the same point P, whose images are denoted by pi, p2 and
ps (Figure 11.5). The optical centers O1, O2 and O3 of the cameras define a trifocal
plane T that intersects their retinas along three trifocal lines t1, t2 and t3. Each
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one of these lines passes through the associated epipoles, e.g., the line t5 associated
with the second camera passes through the projections ej; and ess of the optical
centers of the two other cameras.

Figure 11.5. Trinocular epipolar geometry.

Each pair of cameras defines an epipolar constraint, i.e.,

p’{ngpQ = 07
P Ea3ps =0, (11.2.1)
p3E31py =0,

where &;; denotes the essential matrix associated with the image pairs 7 <+ j. These
three constraints are not independent since we must have el}€i2e32 = eX,E23e13 =
653531621 = 0 (to see why, consider for example the epipoles e3; and ess: they are
the first and second images of the optical center O3 of the third camera, and are
therefore in epipolar correspondence).

Any two of the equations in (11.2.1) are, on the other hand, independent. In
particular, when the essential matrices are known, it is possible to predict the
position of the point p; from the positions of the two corresponding points ps and
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ps: indeed, the first and third constraints in (11.2.1) form a system of two linear
equations in the two unknown coordinates of p;. Geometrically, p; is found as the
intersection of the epipolar lines associated with py and ps (Figure 11.5). Thus the
trinocular epipolar geometry offers a solution to the problem of transfer mentioned
in the introduction.

11.2.1 Trifocal Geometry

A second set of constraints can be obtained by considering three images of a line
instead of a point: as shown in Chapter 4, the set of points that project onto an
image line is the plane that contains the line and the pinhole. We can characterize
this plane as follows: if M denotes a 3 x4 projection matrix, then a point P projects
onto p when zp = MP, or
1" MP =0, (11.2.2)
where P = (z,y, 2,1)7 is the 4-vector of homogeneous coordinates of P. Equation
(11.2.2) is of course the equation of the plane L that contains both the optical center
O of the camera and the line I, and L = M71 is the coordinate vector of this plane.
Two images l; and Il of the same line do not constrain the relative position
and orientation of the associated cameras since the corresponding planes L1 and Lo
always intersect (possibly at infinity). Let us now consider three images I;, I3 and I3
of the same line [ and denote by L;, Ly and L3 the associated planes (Figure 11.6).
The intersection of these planes forms a line instead of being reduced to a point in
the generic case. Algebraically, this means that the system of three equations in
three unknowns
Ly
L |P=0
Ly
must be degenerate, or, equivalently, the rank of the 3 x 4 matrix

e (M
LE [ 1M,
T
I3 M3
must be two, which in turn implies that the determinants of all its 3 x 3 minors must
be zero. These determinants are clearly trilinear combinations of the coordinates

vectors 1y, lo and l3. As shown below, only two of the four determinants are
independent.

11.2.2 The Calibrated Case

To obtain an explicit formula for the trilinear constraints, we pick the coordinate
system attached to the first camera as the world reference frame, which allows us
to write the projection matrices as

Mi=(Id 0), Mza=(Rz tz) and Msz=(Rs t3),
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Figure 11.6. Three images of a line define it as the intersection of three planes in the
same pencil.

and to rewrite £ as
ir 0
L=|1IRy 1It,|. (11.2.3)
I3Rs lits

As shown in the exercises, three of the minor determinants can be written to-
gether as

1fgh
350
17G31,
where
Gi = t, R — Rit] for i=1,2,3, (11.2.5)

and R} and Rg (i =1,2,3) denote the columns of Ry and R3.
The fourth determinant is equal to |l; Rala R3ls|, and it is zero when the nor-
mals to the plane L;, Ly and L3 are coplanar. The corresponding equation can be
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written as a linear combination of the three equations in (11.2.4) (see exercises).
Only two of those are linearly independent of course.
Equation (11.2.4) can finally be rewritten as

11611
I~ | 11G3, (11.2.6)
12 G313

where we use a ~ b to denote that a and b are equal except for an unknown scale
factor.

The three 3 x 3 matrices Gi define the 3 x 3 x 3 trifocal tensor with 27 coefficients
(or 26 up to scale). (A tensor is the multi-dimensional array of coefficients associated
with a multilinear form, in the same way that matrices are associated with bilinear
forms.)

Since O is the origin of the coordinate system in which all projection equations
are expressed, the vectors t2 and t3 can be interpreted as the homogeneous image
coordinates of the epipoles e15 and ej3. In particular it follows from (11.2.5) that
1ZGil3 = 0 for any pair of matching epipolar lines I and I3.

The trifocal tensor also constrains the positions of three corresponding points.
Indeed, suppose that P is a point on I. Its first image lies on I;, so p?1; = 0 (Figure
11.7). In particular,

pT | 1Igu, | =o. (11.2.7)
13G3;

Given three point correspondences p; <> ps <> p3, we obtain four independent
constraints by rewriting (11.2.7) for independent pairs of lines passing through po
an p3, e.g., I, = (1,0,—w;) and I/ = (0,1, —v;) (i = 2,3). These constraints are
trilinear in the coordinates of the points p;, p2 and ps.

11.2.3 The Uncalibrated Case

We can still derive trilinear constraints in the image line coordinates when the
intrinsic parameters of the three cameras are unknown. Since in this case p = Kp,
and since the image line associated with the vector I is defined by 1"p =0, we
obtain immediately I = X ~71, or equivalently I = K”1.
In particular, (11.2.3) holds when p, = p, and I; = I,. In the general case we
have
17, 0
L=|1IKRy XKty |,
I3K3Rs 15 Kats

and
ir 0
>):Rank T4, lay | =2,
1T A3 Uas

Kitoo

Rank(£) = 2 <= Rank(L ( 01
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Figure 11.7. Given three images p1, p2 and ps of the same point P, and two arbitrary
images l2 and l3 passing through the points p2 and ps, the ray passing through O; and
p1 must intersect the line where the planes Lo and L3 projecting onto l2 and I3 meet in
space.

where A; def KiRiKT Land a; def K;t; fori = 2, 3. Note that the projection matrices

associated with our three cameras are now My = (K1 0), My = (AK1 a2),
and M3 = (A3K; a3). In particular as and ag can still be interpreted as the
homogeneous image coordinates of the epipoles e12 and e;3, and the trilinear con-
straints (11.2.6) and (11.2.7) still hold when, this time,

Gi = a2 A5 — Aja],
where A} and Aé (i = 1,2, 3) denote the columns of Ay and Asz. As before, we will

have lggilg = 0 for any pair of matching epipolar lines [5 and I3.

11.2.4 Estimation of the Trifocal Tensor

We now address the problem of estimating the trifocal tensor from point and line
correspondences established across triples of pictures. The equations (11.2.5) defin-
ing the tensor are linear in its coeflicients and depend only on image measurements.
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As in the case of weak calibration, we can therefore use linear methods to estimate
these 26 parameters. Each triple of matching points provides four independent
linear equations, and every triple of matching lines provides two additional linear
constraints. Thus the tensor coefficients can be computed from p points and [ lines
granted that 2p + [ > 13. For example, 7 triples of points or 13 triples of lines will
do the trick, as will 3 triples of points and 7 triples of lines, etc.

Once the tensor has been estimated, it can be used to predict the position of
a point in one image from its positions in the other two. As noted before, the
epipolar constraints associated with the camera pairs 1 <+ 2 and 1 <> 3 can also
be used to perform this task. Figure 11.8 shows experimental results using point
correspondences found in three images of a sports shoe [?]. It compares the results
obtained from the fundamental matrices estimated by the method of Luong et al. [?]
(Figure 11.8(a)) and by a different weak-calibration technique that takes advantage
of the coplanarity of correspondences lying in the ground plane supporting the shoe
(see [?] and Figure 11.8(b)) with the results obtained using the trifocal tensor
estimated from a minimal set of seven points (Figure 11.8(c)) and a redundant set
of ten correspondences (Figure 11.8(d)). In this example, the trifocal tensor clearly
gives better results than the fundamental matrices.

Asin the case of weak calibration, it is possible to improve the numerical stability
of the tensor estimation process by normalizing the image coordinates so the data
points are centered at the origin with an average distance from the origin of v/2
pixel. See [?] for details.

The methods outlined so far ignore the fact that the 26 parameters of the trifocal
tensor are mot independent. This should not come as a surprise: the essential
matrix only has five independent coefficients (the associated rotation and translation
parameters, the latter being only defined up to scale) and that the fundamental
matrix only has seven. Likewise, the parameters defining the trifocal tensor satisfy
a number of constraints, including the aforementioned equations 12 Gilz = 0 (i =
1,2, 3) satisfied by any pair of matching epipolar lines I and I3. It is also easy to
show that the matrices Gi are singular, a property we will come back to in Chapter
14. Faugeras and Mourrain [?] have shown that the coefficients of the trifocal tensor
of an uncalibrated trinocular stereo rig satisfy 8 independent constraints, reducing
the total number of independent parameters to 18. The method described in [?]
enforces these constraints a posteriori by recovering the epipoles ej5 and ez (or
equivalently the vectors t3 and 3 in (11.2.5)) from the linearly-estimated trifocal
tensor, then recovering in a linear fashion a set of tensor coefficients that satisfy the
constraints.

11.3 More Views

What about four views? In this section we follow Faugeras and Mourrain [?] and
first note that we can eliminate the depth of the observed point in the projection
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(d)

Transfer Using Fundamental Matrices || Transfer Using the Trifocal Tensor

Method: Average Distance: Method: Average Distance:
Ground Plane (b) 7.70 pixels 7 points (d) 0.98 pixel
1?] () 9.58 pixels 10 points (e) 0.44 pixel

Figure 11.8. Transfer experiments: (a) input images; (b)-(c) transfer using the fun-
damental matrix, estimated in (a) using correspondences on the ground floor and in (b)
using the non-linear method of [?]; (d)-(e) transfer using the trifocal tensor estimated in
(d) from seven points, and in (e) using least squares from ten points. Reprinted from [?],
Figures 2-4. Quantitative comparisons are given in the table, where the average distances
between the data points and the transfered ones are shown for each method. The input
features are indicated by white squares and the reprojected ones are are indicated by white
crosses.
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equation by writing
zp=MP <= p x (MP) = ([p,|M)P =0. (11.3.1)

Of course, only two of the scalar equations associated with this vector equation
are independent. Choosing (for example) the first and second of these equations
allows us to rewrite (11.3.1) as

M3 _Ml
(Z‘Mg - M2> P =0, (11.3.2)

where M? denotes row number i of the matrix M.
Suppose now that we have four views, with associated projection matrices M;
(i=1,2,3,4). Writing (11.3.2) for each one of these yields

ul./\/li’ - M%
’UlMi’ - M%
’U;QM% - M%

3 2

QP =0, where Q% Zzﬁé B A/\ilé, (11.3.3)

’U?,Mg - M%
’UJ4M2 - M}l
’U4Mz - Mz

Equation (11.3.3) is a system of eight homogeneous equations in four unknowns
that admits a non-trivial solution. It follows that the rank of the corresponding
8 X 4 matrix Q is at most 3, or, equivalently, all its 4 X 4 minors must have zero
determinants. Geometrically, each pair of equations in (11.3.3) represents the ray
R; (i =1,2,3,4) associated with the image point p;, and Q must have rank 3 for
these rays to intersect at a point P (Figure 11.9).

The matrix Q has three kinds of 4 X 4 minors:

1. Those that involve two rows from one projection matrix, and two rows from
another one. The equations associated with the six minors of this type include,
for example,®

’UJQM:;’ — M%
Vo ME = M7 |

Det whi - M| = 0. (11.3.4)
’U?,Mg - M%

These determinants yield bilinear constraints on the position of the associated
image points. It is easy to show (see exercises) that the corresponding equa-
tions reduce to the epipolar constraints (11.1.2) when we take My = (Id 0)
and MQ = (RT —RTt).

5General formulas can be given as well by using for example (u!,u?) instead of (u,v) and

playing around with indices and tensorial notation. We will abstain from this worthy exercise
here.
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=

Figure 11.9. Four images p1, p2, ps and ps of the same point P define this point as the
intersection of the corresponding rays R; (i = 1,2,3,4).

2.

The second type of minors involves two rows from one projection matrix, and
one row from each of two other matrices. There are 48 of those, and the
associated equations include, for example,

’UJlMi’ - M%
uMi - Mi |

Det whi — M3 | = 0. (11.3.5)
’U?,Mg - M%

These minors yield trilinear constraints on the corresponding image positions.
It is easy to show (see exercises) that the corresponding equations reduce
to the trifocal constraints (11.2.7) introduced in the previous section when
we take M1 = (Id 0). In particular, they can be expressed in terms of the
matrices G (i = 1,2, 3). Note that this completes the geometric interpretation
of the trifocal constraints, that express here the fact that the rays associated
with three images of the same point must intersect in space.
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3. The last type of determinant involves one row of each matrix. The equations
associated with the 16 minors of this form include, for example,

’UlMi’ - M%
up M3 —Ms | _

Det oM — M3 | = 0. (11.3.6)
’U4Mz - Mz

These equations yield quadrilinear constraints on the position of the points p;
(i=1,2,3,4). Geometrically, each row of the matrix Q is associated with an
image line or equivalently with a plane passing through the optical center of
the corresponding camera. Thus each quadrilinearity expresses the fact that
the four associated planes intersect in a point (instead of not intersecting at
all in the generic case).

Let us focus from now on the the quadrilinear equations. Developing determi-
nants such as (11.3.6) with respect to the image coordinates reveals immediately
that the coefficients of the quadrilinear constraints can be written as

sijleet (11.3.7)

where €;;5 = F1 and 4, j, k and [ are indices between 1 and 4 (see exercises). These
coefficients determine the quadrifocal tensor [?].

Like its trifocal cousin, this tensor can be interpreted geometrically using both
points and lines. In particular, consider four pictures p; (i = 1,2,3,4) of a point
P and four arbitrary image lines I; passing through these points. The four planes
L; (i = 1,2,3,4) formed by the preimages of the lines must intersect in P, which
implies in turn that the 4 x 4 matrix

i M,
def l§M2
l;Mg
Iy My

must have rank 3, and, in particular, that its determinant must be zero. This
obviously provides a quadrilinear constraint on the coefficients of the four lines I;
(i=1,2,3,4). In addition, since each row L? = l?/\/li of L is a linear combination
of the rows of the associated matrix M;, the coefficients of the quadrilinearities
obtained by developing Det(L) with respect to the coordinates of the lines I; are
simply the coefficients of the quadrifocal tensor as defined by (11.3.7).

Finally, note since Det (L) is linear in the coordinates of Iy, the vanishing of this
determinant can be written as Iy -q(lz, ls,14) = 0, where q is a (trilinear) function of
the coordinates of the lines I; (i = 2, 3,4). Since this relationship holds for any line
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l; passing through p; it follows that p; =~ q(l2,13,14). Geometrically, this means
that the ray passing through O; and p; must also pass through the intersection of
the planes formed by the preimages of Iy, I3 and Iy (Figure 11.10). Algebraically,
this means that, given the quadrifocal tensor and arbitrary lines passing through
three images of a point, we can predict the position of this point in a fourth image.
This provides yet another method for transfer.

Figure 11.10. Given four images p1, p2, p3 and ps4 of some point P and three arbitrary
image lines l2, I3 and l4 passing through the points p2, p3 and p4, the ray passing through
O1 and p; must also pass through the point where the three planes L2, L3 and L4 formed
by the preimages of these lines intersect.

Note that the quadrifocal constraints are valid in both the calibrated and uncal-
ibrated cases since we have made no assumption on the form of the matrices M;.
The quadrifocal tensor is defined by 81 coefficients (or 80 up to scale), but these
coefficients satisfy 51 independent constraints, reducing the total number of inde-
pendent parameters to 29 [?; ?]. It can also be shown that, although each quadruple
of images of the same point yields 16 independent constraints like (11.3.6) on the 80
tensor coefficients, there exists a linear dependency between the 32 equations asso-
ciated with each pair of points [?]. Thus six point correspondences are necessary to
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estimate the quadrifocal tensor in a linear fashion. Algorithms for performing this
task and enforcing the 51 constraints associated with actual quadrifocal tensors can
be found in [?].

Finally, Faugeras and Mourrain [?] have shown that the quadrilinear tensor
is algebraically dependent on the associated essential/fundamental matrices and
trifocal tensor, and thus does not add independent new constraints. Likewise, it
can be shown that additional views do not add independent constraints either.

11.4 Notes

The essential matrix as an algebraic form of the epipolar constraint was discovered
by Longuet-Higgins [?], and its properties have been elucidated by Huang and
Faugeras [?]. The fundamental matrix was introduced by Luong and Faugeras [?;
?]. We will come back to the properties of the fundamental matrix and of the
epipolar transformation in Chapter 14, when we adress the problem of recovering
the structure of a scene and the motion of a camera from a sequence of perspective
images.

The trilinear constraints associated with three views of a line were introduced
independently by Spektakis and Aloimonos [?] and Weng, Huang and Ahuja [?]
in the context of motion analysis for internally calibrated cameras. They were
extended by Shashua [?] and Hartley [?] to the uncalibrated case. The quadrifocal
tensor was introduced by Triggs [?]. Geometric studies can by found in Faugeras
and Mourrain [?], Faugeras and Papadopoulo [?] and Heyden [?].

We mentioned in the introduction that photogrammetry is concerned with the
extraction of quantitative information from multiple pictures. In this context, binoc-
ular and trinocular geometric constraints are regarded as the source of condition
equations that determine the intrinsic and extrinsic parameters (called interior and
exterior orientation parameters in photogrammetry) of a stereo pair or triple. In
particular, the Longuet-Higgins relation appears, in a slightly disguised form, as the
coplanarity condition equation, and trinocular constraints yield scale-restraint con-
dition equations that take calibration and image measurement errors into account
[?, Chapter X]: in this case, the rays associated with three images of the same point
are not guaranteed to intersect anymore (Figure 11.11).

The setup is as follows: if the rays Ry and R; (i = 2, 3) associated with the image
points p; and p; do not intersect, the minimum distance between them is reached
at the points P; and P; such that the line joining these points is perpendicular to
both R; and R;. Algebraically, this can be written as

01P1 = ziOlpl = 0101 + ZZOTP: + Ai(Olpl X Ozpz) for 7= 2, 3. (1141)

Assuming that the cameras are internally calibrated so the projection matrices
associated with the second and third cameras are (R —RIty)and (RY —RIt;),
(11.4.1) can be rewritten in the coordinate system attached to the first camera as

2ipy =t + ziRip; + Ni(py X Rip;) for i=2,3. (11.4.2)
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Figure 11.11. Trinocular constraints in the presence of calibration or measurement
errors: the rays Ri, R2 and R3 may not intersect.

Note that a similar equation could be written as well for completely uncalibrated
cameras by including terms depending on the (unknown) intrinsic parameters. In
either case, (11.4.2) can be used to calculate the unknowns z;, \; and 2% in terms of
Py, P;, and the projection matrices associated with the cameras (see exercises). The
scale-restraint condition is then written as 27 = 2. Although it is more complex
than the trifocal constraint (in particular, it is not trilinear in the coordinates of
the points p1, ps and ps3), this condition does not involve the coordinates of the
observed point, and it can be used (in principle) to estimate the trifocal geometry
directly from image data. A potential advantage is that the error function 27 — 23
has a clear geometric meaning: it is the difference between the estimates of the
depth of P obtained using the pairs of cameras 1 <> 2 and 1 < 3. It would be
interesting to further investigate the relationship between the trifocal tensor and
the scale-constraint condition, as well as its practical application to the estimation
of the trifocal geometry.
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11.5 Assignments

Exercises

1. Show that one of the singular values of an essential matrix is 0 and the other
two are equal. (Huang and Faugeras [?] have shown that the converse is also
true, i.e., any 3 x 3 matrix with one singular value equal to 0 and the other
two equal to each other is an essential matrix.)

Hint: the singular values of £ are the eigenvalues of ££7.

Solution: We have € = [t«|R, thus £EET = [t«|[tx]T = [tx]T[t]. If a is an
eigenvector of £ET associated with the eigenvalue A then, for any vector b

Ab-a=b" ([t [tx]a) = (t x b) - (t x a).

Choosing @ = b = t shows that A\ = 0 is an eigenvalue of E£T. Choosing
b = t shows that if A # 0 then a is orthogonal to t. But then choosing a = b
shows that

Nal? = |t x af? = [t]*]a|*.

It follows that all non-zero singular values of £ must be equal. Note that the
singular values of £ cannot all be zero since this matrix has rank 2.

2. The infinitesimal epipolar constraint (11.1.3) was derived by assuming that
the observed scene was static and the camera was moving. Show that when
the camera is fixed and the scene is moving with translational velocity v and
rotational velocity w, the epipolar constraint can be rewritten as

p"([vx]lwx])p+ (px p) v =0.

Note that this equation is now the sum of the two terms appearing in (11.1.3)
instead of their difference.

Hint: If R and t denote the rotation matrix and translation vectors appearing
in the definition of the essential matrix for a moving camera, show that the
object displacement that yields the same motion field for a static camera is
given by the rotation matrix R” and the translation vector —R”t.

3. Show that when the 8 x 8 matrix associated with the eight-point algorithm is
singular, the eight points and the two optical centers lie on a quadric surface

[?7].

Hint: Use the fact that when a matrix is singular, there exists some non-trivial
linear combination of its columns that is equal to zero. Also take advantage of
the fact that the matrices representing the two projections in the coordinate
system of the first camera are in this case (Id 0) and (RT, -RTt).
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Show that three of the determinants of the 3 x 3 minors of

17 0
L= lgvzz zth
I2Rs I3ts

can be written as Ton
l% g1l3
l1 X l% %lg =0.
1,G3l;3
Show that the fourth determinant can be written as a linear combination of
these.

Show that (11.3.4) reduces to (11.1.2) when M; = (Id 0) and My =
(RT —RTt).

Show that (11.3.5) reduces to (11.2.7) when My = (Id 0).

Develop (11.3.6) with respect to the image coordinates and verify that the
coefficients can indeed be written in the form (11.3.7).

Use (11.4.2) to calculate the unknowns z;, \; and 2% in terms of p;, p;, R:
and ¢; (¢ = 2,3). Show that the value of \; is directly related to the epipolar
constraint and characterize the degree of the dependency of 27 — 23 on the
data points.

Programming Assignments

Note: the assignments below require routines for solving square and overdetermined
linear systems. An extensive set of such routines is available in MATLAB as well as
in public-domain libraries such as LINPACK and LAPACK that can be downloaded
from the Netlib repository (http://www.netlib.org/). Data for these assignments
will be available in the CD companion to this book.

1.

Implement the 8-point algorithm for weak calibration from binocular point
correspondences.

Implement the linear least-squares version of that algorithm with and without
Hartley’s pre-conditioning step.

Implement an algorithm for estimating the trifocal tensor from point corre-
spondences.

Implement an algorithm for estimating the trifocal tensor from line correspon-
dences.
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STEREOPSIS

Fusing the pictures recorded by our two eyes and exploiting the difference (or dis-
parity) between them allows us to gain a strong sense of depth (Figure 12.1(left)).
This chapter is concerned with the design and implementation of algorithms that
mimick our ability to perform this task, known as stereopsis. Note that a machine
(or for that matter the Martian shown in Figure 12.1(right), or an ordinary spi-
der) may be equipped with three eyes or more, and this will lead us to investigate
multi-camera approaches to stereopsis at the end of this chapter.

Figure 12.1. The sailor shown in the left picture is, like most people, able to perform
stereopsis and gain a sense of depth for the objects within his field of view. Reprinted from
[?], Figure 6-8. The right photograph is from the 1953 film “The War of the Worlds”, and
it shows a close-up of the face of a three-eyed Martian warrior. Why such a configuration
may prove benefitial will be explained in Section 12.3.1.

Reliable computer programs for stereoscopic perception are of course invaluable
in visual robot navigation (Figure 12.2), cartography, aerial reconnaissance and
close-range photogrammetry. They are also of great interest in tasks such as image
segmentation for object recognition and, as will be seen in Chapter 25, the construc-
tion of three-dimensional scene models in image-based rendering, a new discipline
that ties together computer vision and computer graphics.

Stereo vision involves two processes: the binocular fusion of features observed
by the two eyes, and the reconstruction of their three-dimensional preimage. The

321
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Figure 12.2. Mobile robot navigation is a classical application of stereo vision: (a) the
Stanford cart sports a single camera moving in discrete increments along a straight line
and providing multiple snapshots of outdoor scenes [?]; the INRIA mobile robot uses three
cameras to map its environment.

latter is relatively simple: the preimage of matching points can (in principle) be
found at the intersection of the rays passing through these points and the associ-
ated pupil centers (or pinholes, see Figure 12.3(left)). Thus, when a single image
feature is observed at any given time, stereo vision is easy.! However, each picture
consists of hundreds of thousands of pixels, with tens of thousands of image features
such as edge elements, and some method must be devised to establish the correct
correspondences and avoid erroneous depth measurements (Figure 12.3(right)).

Although human binocular fusion is effortless and reliabe in most situations,
we can be fooled too: the abstract single-image stereograms [?] that were popular
in the late nineties demonstrate this quite well: in this case, repetitive patterns
or judiciously assembled random dots are used to trick the eyes into focussing on
the wrong correspondences, producing a vivid impression of layered planes.? This
suggests that constructing a reliable stereo vision program is difficult, a fact that
will be attested time and again in the rest of this chapter. As should be expected,
the geometric machinery introduced in Chapter 11 will prove extremely useful in
tackling this problem. We will assume in the rest of this chapter that all cameras
have been carefully calibrated so their intrinsic and extrinsic parameters are pre-
cisely known relative to some fixed world coordinate system. The case of multiple
uncalibrated cameras will be examined in the context of structure from motion in
Chapters 13 and 14.

LThis is actually how some laser range finders work: two cameras observe an object while a
laser beam scans its surface one point at a time. After thresholding the two pictures, the bright
laser spot is, effectively, the only surface point seen by the cameras. See Chapter 23 for details.

2To enjoy this effect without any special equipment or expensive props, you may try to sit
down in a place decorated with a repetitive tile pattern such as those often found in bathroom
floors. By letting your mind wander and your eyes unfocus, you may be able to see the floor jump
up by a foot or so, and even pass your hand through the “virtual” floor. This experiment, best
conducted late at night, is quite worth the effort.
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Figure 12.3. The binocular fusion problem: in the simple case of the diagram shown on
the left, there is no ambiguity and stereo reconstruction is a simple matter. In the more
usual case shown on the right, any of the four points in the left picture may, a priori, match
any of the four points in the right one. Only four of these correspondences are correct, the
other ones yielding the incorrect reconstructions shown as small grey discs.

12.1 Reconstruction

Given a calibrated stereo rig and two matching image points p and p’, it is in princi-
ple straightforward to reconstruct the corresponding scene point by intersecting the
two rays R = Op and R’ = O'p’. However, the rays R and R’ will never, in practice,
actually intersect, due to calibration and feature localization errors (Figure 12.4).
In this context, various reasonable approaches to the reconstruction problem can be
adopted. For example, we may choose to construct the line segment perpendicular
to R and R’ that intersects both rays: the mid-point P of this segment is the closest
point to the two rays and can be taken as the pre-image of p and p’. It should be
noted that a similar construction was used at the end of Chapter 11 to characterize
algebraically the geometry of multiple views in the presence of calibration or mea-
surement errors. The equations (11.4.1) and (11.4.2) derived in that chapter are
readily adapted to the calculation of the coordinates of P in the frame attached to
the first camera.

Alternatively, we can reconstruct a scene point using a purely algebraic ap-
proach: given the projection matrices M and M’ and the matching points p and
p’, we can rewrite the constraints zp = MP and z'p’ = MP as

px MP=0 pIMY
{p/xM/p:o ‘:’([p;w P-o.

This is an overconstrained system of four independent linear equations in the
homogeneous coordinates of P, that is easily solved using the linear least-squares
techniques introduced in Chapter 5. Unlike the previous approach, this reconstruc-
tion method does not have an obvious geometric interpretation, but it generalizes
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Figure 12.4. Triangulation in the presence of measurement errors. See text for details.

readily to the case of three or more cameras, each new picture simply adding two
additional constraints.

Finally, we can reconstruct the scene point associated with p and p’ as the point
Q with images ¢ and ¢’ that minimizes d?(p,q) + d?(p’, ¢') (Figure 12.4). Unlike
the two other methods presented in this section, this approach does not allow the
closed-form computation of the reconstructed point, which must be estimated via
non-linear least-squares techniques such as those introduced in Chapter 5. The
reconstruction obtained by either of the other two methods can be used as a rea-
sonable guess to initialize the optimization process. This non-linear approach also
readily generalizes to the case of multiple images.

Before moving on to studying the problem of binocular fusion, let us now say a
few words about two key components of stereo vision systems: camera calibration
and image rectification.

12.1.1 Camera Calibration

As noted in the introduction, we will assume throughout this chapter that all cam-
eras have been carefully calibrated (using, for example, one of the techniques intro-
duced in Chapter 5) so their intrinsic and extrinsic parameters are precisely known
relative to some fixed world coordinate system. This is of course a prerequisite for
the reconstruction methods presented in the previous section since they require that
the projection matrices associated with the two cameras be known, or, equivalently,
that a definite ray be associated with every image point. It should also be noted
that, once the intrinsic and extrinsic camera parameters are known, it is a simple
matter to estimate the multi-view geometry (essential matrix for two views, trifocal
tensor for three, etc.) as described in Chapter 11. This will play a fundamental role
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in the algorithms for establishing stereo correspondences presented in Sections 12.2
and 12.3.

12.1.2 Image Rectification

The calculations associated with stereo algorithms are often considerably simplified
when the images of interest have been rectified, i.e., replaced by two projectively
equivalent pictures with a common image plane parallel to the baseline joining the
two optical centers (Figure 12.5). The rectification process can be implemented
by projecting the original pictures onto the new image plane. With an apropriate
choice of coordinate system, the rectified epipolar lines are scanlines of the new
images, and they are also parallel to the baseline.

=

Figure 12.5. A rectified stereo pair: the two image planes IT and IT’ are reprojected onto
a common plane I = IT’ parallel to the baseline. The epipolar lines [ and I’ associated with
the points p and p’ in the two pictures map onto a common scanline [ = I’ also parallel
to the baseline and passing through the reprojected points p and p’. The rectified images
are easily constructed by considering each input image as a polyhedral mesh and using

texture mapping to render the projection of this mesh into the plane II = II'.

As noted in [?], there are two degrees of freedom involved in the choice of the
rectified image plane: (1) the distance between this plane and the baseline, which
is essentially irrelevant since modifying it will only change the scale of the rectified
pictures, an effect easily balanced by an inverse scaling of the image coordinate
axes, and (2) the direction of the rectified plane normal in the plane perpendicular
to the baseline. Natural choices include picking a plane parallel to the line where
the two original retinas intersect, and minimizing the distortion associated with the
reprojection process.
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In the case of rectified images, the notion of disparity introduced informally
earlier takes a precise meaning: given two points p and p’ located on the same
scanline of the left and right images, with coordinates (u, v) and (u', v), the disparity
is defined as the difference d = v’ —u. Let us assume from now on normalized image
coordinates. If B denotes the distance between the optical centers, also called
baseline in this context, it is easy to show that the depth of P in the (normalized)
coordinate system attached to the first camera is z = —B/d (Figure 12.6).

P Th

Figure 12.6. Triangulation for rectified images: the rays associated with two points p
and p’ on the same scanline are by construction guaranteed to intersect in some point P.
As shown in the text, the depth of P relative to the coordinate system attached to the left
camera is inversely proportional to the disparity d = v’ — u. In particular, the preimage
of all pairs of image points with constant disparity d is a frontoparallel plane 114 (i.e., a
plane parallel to the camera retinas).

To show this, let us consider first the points ¢ and ¢’ with coordinates (u,0) and
(u',0), and the corresponding scene point ). Let b and b’ denote the respective
distances between the orthogonal projection of ¢ onto the baseline and the two
optical centers O and O’. The triangles ¢qQq’ and OQO’ are similar, and it follows
immediately that b = zu and V' = —zu'. Thus B = —zd, which proves the result
for ¢ and ¢’. The general case involving p and p’ with v # 0 follows immediately
from the fact that the line P(Q is parallel to the two lines pg and p’q’ and therefore
also parallel to the rectified image plane. In particuliar, the coordinate vector of
the point P in the frame attached to the first camera is P = —(B/d)p, where
p = (u,v,1)T is the vector of normalized image coordinates of p. This provides yet
another reconstruction method for rectified stereo pairs.
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Human Vision: Stereopsis

Before moving on to algorithms for establishing binocular correspondences, let us pause
for a moment to discuss the mechanisms underlying human stereopsis. First, it should be
noted that, unlike the cameras rigidly attached to a passive stereo rig, the two eyes of a
person can rotate in their sockets. At each instant, they fizate on a particular point in
space, i.e., they rotate so that its two images form in the centers of the eyes’ foveas. Figure
12.7 illustrates a simplified, two-dimensional situation.

Vieth-Muller Circle

Disparate dot

Figure 12.7. This diagram depicts a situation similar to that of the sailor in Figure 12.1.
The close-by dot is fixated by the eyes, and it projects onto the center of their foveas, with
no disparity. The two images of the far dot deviate from this central position by different
amounts, indicating a different depth.

If [ and r denote the (counterclockwise) angles between the vertical planes of symmetry
of two eyes and two rays passing through the same scene point, we define the corresponding
disparity as d = r — [ (Figure 12.7). It is an elementary exercise in trigonometry to show
that d = D — F', where D denotes the angle between these rays, and F' is the angle between
the two rays passing through the fixated point. Points with zero disparity lie on the Vieth-
Miller circle that passes through the fixated point and the anterior nodal points of the
eyes. Points lying inside this circle have a positive (or convergent) disparity, points lying
outside it have, as in Figure 12.7, a negative (or divergent) disparity,® and the locus of
all points having a given disparity d forms, as d varies, the pencil of all circles passing
through the two eyes’ nodal points. This property is clearly sufficient to rank-order in
depth dots that are near the fixation point. However, it is also clear that the vergence
angles between the vertical median plane of symmetry of the head and the two fixation
rays must be known in order to reconstruct the absolute position of scene points.

The three-dimensional case is naturally a bit more complicated, the locus of zero-
disparity points becoming a surface, the horopter, but the general conclusion is the same,
and absolute positioning requires the vergence angles. As already demonstrated by Wundt
and Helmholtz [?, pp. 313-314] a hundred years ago, there is strong evidence that these
angles cannot be measured very accurately by our nervous system. In fact, the human

3The terminology comes from the fact that the eyes would have to converge (resp. diverge)
to fixate on a point inside (resp. outside) the Vieth-Miiller circle. Note that the position of this
circle in space depends on the fixation point (even if the fixation angle F is preserved), since the
rotation centers of the eyes do not coincide with their anterior nodal points.
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visual system can be fooled into believing that threads that actually lie in the same vertical
plane lie instead on a convex or concave surface, depending on the distance between the
observer and this plane [?, pp. 318-321]. Likewise, the relief models used in sculpture to
mimick solids with much reduced depths are almost indistinguishable binocularly from the
originals (see [?, pp. 324-326] for an analytical justification). On the other hand, relative
depth, or rank-ordering of points along the line of sight, can be judged quite accurately: for
example, it is possible to decide which one of two targets near the horopter is closer to an
observer for disparities of a few seconds of arc (stereoacuity threshold), which matches the
minimum separation that can be measured with one eye (monocular hyperacuity threshold)
[7, p. 307] (though the stereo disparity threshold increases quickly as one gets away from
the horopter, see, for example, [?]). It can therefore reasonably be argued that the output
of human stereopsis consists mostly of a map of relative depth information, conveying a
partial depth order between scene points [?, pp. 176-177].# In that context, the main role
of eye movements in stereopsis would be to bring the images within Panum’s fusional area,
a disc with a diameter of 6min of arc in the fovea center where fusion can occur [?, pp.
148] (points can still be vividly perceived in depth for much larger disparities, but they
will appear as double images, a phenomenon known as diplopia).

Concerning the construction of correspondences between the left and right images,
Julesz [?] asks the following question: is the basic mechanism for binocular fusion a
monocular process (where local brightness patterns (micropatterns) or higher organiza-
tions of points into objects (macropatterns) are identified before being fused), a binocular
one (where the two images are combined into a single field where all further processing
takes place), or a combination of both? Some anecdotal evidence hints at a binocular
mechanism, for example, to quote Julesz [?, pp. 1133-1134]: “In aerial reconnaissance it is
known that objects camouflaged by a complex background are very difficult to detect but
jump out if viewed sterescopically.” But this is not conclusive: “Though the macropattern
(hidden object) is difficult to see monocularly, it can be seen. Therefore, the evidence
is not sufficient to prove that depth can be perceived without monocular macropattern
recognition.” To gather more conclusive data, Julesz [?] introduces a new device, the ran-
dom dot stereogram, a pair of synthetic images obtained by randomly spraying black dots
on white objects, typically a small square plate floating over a larger one (Figure 12.8).

To quote Julesz [?, p. 1127-1128] again: “When viewed monocularly, the images appear
completely random. But when viewed stereoscopically, the image pair gives the impression
of a square markedly in front of (or behind) the surround. ... Of course, depth perception
under these conditions takes longer to establish because of the absence of monocular cues.
Still, once depth is perceived, it is quite stable. This experiment shows quite clearly that it
is possible to perceive depth without monocular macropatterns.” By locally perturbing the
stereograms in various ways, Julesz proceeds to show that the identification of monocular
micropatterns is not necessary for depth perception either. Although monocular perception
is certainly also involved in most situations (e.g., making the central region in each image
visible by increasing its average brightness has the effect of speeding up depth perception),
the conclusion, articulated in [?], is clear: human binocular fusion cannot be explained by
peripheral processes directly associated with the physical retinas. Intead, it must involve
the central nervous system and an imaginary cyclopean retina that combines the left and

4Frisby [?, p. 155] goes even further, suggesting that the depth effect might be a secondary
advantage of stereopsis, the primary one being to give the human visual system an effective way
of performing grouping and segmentation.
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Figure 12.8. Creating random dot stereograms by shaking pepper over a pair of plates
observed by two cameras. In the experiments presented in [?], the two images are of course
synthesized by a computer using a random-number generator to decide the dot locations
and pixel intensities, that can either be binary values as in the situation described in the
text, or more generally random values in the 0..15 range. The two pictures have the same
random background and differ in a central region by a constant horizontal offset.

right image stimuli as a single unit.

Julesz has proposed two models of human stereopsis. The first one represents the
binocular field in terms of a finite number of difference fields formed by substracting from
the first picture the second one shifted by various degrees of disparity [?]. The matching
process amounts in this case to finding various patterns in some of the difference fields.
This model has been implemented in the AUTOMAP-1 program that has proven capable
of fusing simple randon dot stereograms [?]. The second model represents each image by a
rectangular array of compass needles (or dipoles) mounted on spherical joints. A black dot
will force the corresponding dipole to point north, and a white dot will force it to point
south. After the directions of all dipoles are set, they are coupled to their four neighbors
via springs. Finally, the two dipole arrays are superimposed, and left to follow each other’s
magnetic attraction under various horizontal shifts.

These two models are cooperative, with neighboring matches influencing each other
to avoid ambiguities and promote a global analysis of the observed scene. The approach
proposed by Marr and Poggio [?] is another instance of such a cooperative process. Their
algorithm relies on three constraints: (1) compatibility (black dots can only match black
dots, or more generally, two image features can only match if they have possibly arisen
from the same physical marking), (2) uniqueness (a black dot in one image matches at
most one black dot in the other picture), and (3) continuity (the disparity of matches
varies smoothly almost everywhere in the image). Given a number of black dots on a
pair of corresponding epipolar lines, Marr and Poggio build a graph that reflects possible
correspondences (Figure 12.9).

The nodes of the graph are pairs of black dots within some disparity range, reflecting
the compatibility constraint; vertical and horizontal arcs represent inhibitory connections
associated with the uniqueness constraint (any match between two dots should discourage
any other match for both the left dot —horizontal inhibition— and the right one —vertical
inhibition— in the pair); and diagonal arcs represent excitory connections associated with
the continuity constraint (any match should favor nearby matches with similar disparities).

In this approach, a quality measure is associated with each node. It is initialized to 1
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Figure 12.9. A cooperative approach to stereopsis: the Marr-Poggio algorithm [?]. The
left part of the figure shows two intensity profiles along the same scanline of two images.
The spikes correspond to black dots. The line segments joining the two profiles indicate
possible matches between dots given some maximum disparity range. These matches are
also shown in the right part of the figure, where they form the nodes of a graph. The
vertical and horizontal arcs of this graph join nodes associated with the same dot in the
left or right image. The diagonal arcs join nodes with similar disparities.

for every pair of potential matches within some disparity range. The matching process is
iterative and parallel, each node being assigned at each iteration a weighted combination of
its neighbors’ values. Excitory connections are assigned weights equal to 1, and inhibitory
ones weights equal to 0. A node is assigned a value of 1 when the corresponding weighted
sum exceeds some threshold, and a value of 0 otherwise. This approach works quite
reliably on random dot stereograms (Figure 12.10), but not on natural images, perhaps,
as suggested by Faugeras [?], because the constraints it enforces are not sufficient to deal
with the complexities of real pictures. Section 12.2 will present a number of algorithms
that perform better on most real images, but the original Marr-Poggio algorithm and
its implementation retain the interest of offering an early example of a theory of human
stereopsis that allows the fusion of random dot stereograms.

Figure 12.10. From left to right: a random dot stereogram depicting four planes at
varying depth (a “wedding cake”) and the disparity map obtained after 14 iterations of
the Marr-Poggio cooperative algorithm. Reprinted from [?], Figure 3-7.
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12.2 Binocular Fusion

12.2.1 Correlation

Correlation methods find pixel-wise image correspondences by comparing intensity
profiles in the neighborhood of potential matches, and they are amongst the first
techniques ever proposed to solve the binocular fusion problem [?; ?]. More pre-
cisely, let us consider a rectified stereo pair and a point (u,v) in the first image.
We associate with the window of size p = (2m + 1) x (2n + 1) centered in (u,v)
the vector w(u,v) € RP obtained by scanning the window values one row at a time
(the order is in fact irrelevant as long as it is fixed). Now, given a potential match
(u + d,v) in the second image, we can construct a second vector w’(u + d,v) and
define the corresponding (normalized) correlation function as

1 1

T w—w| W — |

C(d) (w—w) - (w' —w'),

where the u, v and d indices have been omitted for the sake of conciseness and a
denotes the vector whose coordinates are all equal to the mean of the coordinates
of a (Figure 12.11).

Figure 12.11. Correlation of two 3 x 5 windows along corresponding epipolar lines. The
second window position is separated from the first one by an offset d. The two windows
are encoded by vectors w and w’ in IR'®, and the correlation function measures the cosine
of the angle 6 between the vectors w — w and w’ — w’ obtained by substracting from the
components of w and w’ the average intensity in the corresponding windows.
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The normalized correlation function C' clearly ranges from —1 to +1, and it
reaches its maximum value when the image brightnesses of the two windows are
related by an affine transformation I’ = AI + u for some constants A and p with
A > 0 (see exercises). In other words, maxima of this function correspond to image
patches separated by a constant offset and a positive scale factor, and stereo matches
can be found by seeking the maximum of the C' function over some pre-determined
range of disparities.’

At this point, let us make a few remarks about matching methods based on
correlation. First, it is easily shown (see exercises) that maximizing the correlation
function is equivalent to minimizing the norm of the difference between the vectors
(1/|lw—w|)(w—w) and (1/|w'—w’|)(w’—w’), or equivalently the sum of the squared
differences between the pixel values of the normalized windows being compared.
Second, although the calculation of the normalized correlation function at every
pixel of an image for some range of disparities is computationally expensive, it can be
implemented efficiently using recursive techniques (see exercises). Finally, a major
problem with correlation-based techniques for establishig stereo correspondences is
that they implicitly assume that the observed surface is (locally) parallel to the
two image planes (Figure 12.12). This suggests a two-pass algorithm where initial
estimates of the disparity are used to warp the correlation windows to compensate
for inequal amounts of foreshortening in the two pictures [?; ?].

[ r

Figure 12.12. The foreshortening of non-frontoparallel surfaces is different for the two
cameras: a surface segment with length L projects onto two image segments of different
lengths [ and I’.

Figure 12.13 shows a reconstruction example obtained by such a method [?].
In this case, a warped window is associated in the right image with each rectangle
in the left image. This window is defined by the disparity in the center of the
rectangle and its derivatives. An optimization process is used to find the values of

5The invariance of C to affine transformations of the brightness function affords correlation-
based matching techniques some degree of robustness in situations where the observed surface is
not quite Lambertian, or the two cameras have different gains or lenses with different f stops.
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the disparity and of its derivatives that maximize the correlation between the left
rectangle and the right window, using interpolation to retrieve appropriate values
in the right image (see exercises for more details). As shown in Figure 12.13, the
reconstruction obtained by this method is clearly better than the reconstruction
found by plain correlation.

Figure 12.13. Correlation-based stereo matching: (a) a pair of stereo pictures; (b) a
texture-mapped view of the reconstructed surface; (c) comparison of the regular (left) and
refined (right) correlation methods in the nose region. Reprinted from [?], Figures 5, 8
and 9.

12.2.2 Multi-Scale Edge Matching

We saw in the last section that slanted surfaces pose problems to correlation-
based matchers. Other arguments against correlation can be found in the works
of Julesz [?, p. 1145] (“One might think that the matching of corresponding point
domains (instead of corresponding patterns)® could be achieved by searching for a
best fit according to some similarity criterion (e.g., maximal cross-correlation). ...
But such a process cannot work. If the zone [used to search for correspondences]
is small, noise can easily destroy any zone-matching; if the zone size is increased,
ambiguities arise at the boundaries of objects which are at different distances.”)
and Marr [?, p. 105] (“...by and large the primitives that the processes operate on
should correspond to physical items that have identifiable physical properties and
occupy a definite location on a surface in the world. Thus one should not try to
carry out stereo matching between gray-level intensity arrays, precisely because a
pixel corresponds only implicitly and not explicitly to a location on a visible sur-
face.”). These arguments suggest that correspondences should be found at a variety
of scales, and that matches between (hopefully) physically-significant image features
such as edges should be prefered to matches between raw pixel intensities. Marr

6This remark shows, by the way, that the random dot stereogram experiments of Julesz do
not dismiss, at least in his thought, the possibility of a correlation-based process as opposed to a
higher-level, pattern recognition one.
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and Poggio [?] propose an algorithm that follows these two principles. Its overall
structure is quite simple, as described below.

1. Convolve the two (rectified) images with V2G,, filters of increasing standard
deviations 01 < 09 < 03 < 04.

2. Find zero crossings of the Laplacian along horizontal scanlines of the filtered
images.

3. For each filter scale o, match zero crossings with the same parity and roughly
equal orientations in a [—w,, +w,] disparity range, with w, = 2v/20.

4. Use the disparities found at larger scales to control eye vergence and cause
unmatched regions at smaller scales to come into correspondence.

Algorithm 12.1: The Marr-Poggio- Grimson multi-scale algorithm for establishing
stereo correspondences [7; 7).

Note that matches are sought at each scale in the [—w,,w,| disparity range,
where w, = 2v/20 is the width of the central negative portion of the V2G,, filter.
This choice is motivated by psychophysical and statistical considerations. In partic-
ular, assuming that the convolved images are white Gaussian processes, Grimson [?]
has shown that the probability of a false match occurring in the [—w,, +w,] dispar-
ity range of a given zero crossing is only 0.2 when the orientations of the matched
features are within 30° of each other. A simple mechanism can be used to disam-
biguate the multiple potential matches that may still occur within the matching
range. See [?] for details.

Of course, limiting the search for matches to the [—w,, +w,| range prevents the
algorithm from matching correct pairs of zero crossings whose disparity falls outside
this interval. Since w, is proportional to the scale ¢ at which matches are sought,
eye movements (or equivalently image offsets) controlled by the disparities found
at large scales must be used to bring large-disparity pairs of zero crossings within
matchable range at a fine scale. This process occurs in Step 4 of the algorithm, and
it is illustrated by Figure 12.14. Once matches have been found, the corresponding
disparities can be stored in a buffer, called the 2%-dimensional sketch by Marr and
Nishihara [?].

This algorithm has been implemented by Grimson [?], and extensively tested on
random dot stereograms and natural images. An example appears in Figure 12.15.
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Matching zero-crossings at a single scale

Matching zero-crossings at multiple scales
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Figure 12.14. Multi-scale matching of zero crossings: the eye movements (or equiv-
alently the image offsets used in matching) are controlled by seeking image regions that
have been assigned a disparity value at a scale o’ but not at a scale 0 < ¢’. These values
are used to refine the eye positions and bring the corresponding regions within matchable
range. The disparity value associated with a region can be found by various methods, for
example by averaging the disparity values found at each matched zero crossing within it.

Figure 12.15. Applying the multi-scale matching algorithm of Marr and Poggio [?] to a
pair of images: (a) one of the pictures in the stereo pair; (b)-(e) its convolution with four
V2 filters of increasing sizes; (f)-(i) the corresponding zero crossings; (j)-(k) two views of
the disparity map obtained after matching; (1)-(m) two views of the surface obtained by
interpolating the reconstructed dots using the algorithm described in [?]. Reprinted from
[?], Figure 4-8.
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12.2.3 Dynamic Programming

It is reasonable to assume that the order of matching image features along a pair
of epipolar lines is the inverse of the order of the corresponding surface attributes
along the curve where the epipolar plane intersects the observed object’s boundary
(Figure 12.16(left)). This is the so-called ordering constraint that has been used
in stereo circles since the early eighties [?; ?]. Interestingly enough, this constraint
may not be satisfied by real scenes, in particular when small solids occlude parts
of larger ones (Figure 12.16(right)), or more rarely, at least in robot vision, when
transparent objects are involved.

Figure 12.16. Ordering constraints. In the (usual) case shown in the left part of the
diagram, the order of feature points along the two (oriented) epipolar lines is the same,
and it is the inverse of the order of the scene points along the curve where the observed
surface intersects the epipolar plane. In the case shown in the right part of the figure, a
small object lies in front of a larger one. Some of the surface points are not visible in one
of the images (e.g., A is not visible in the right image), and the order of the image points
is not the same in the two pictures: b is on the right of d in the left image, but b’ is on the
left of d’ in the right image.

Despite these reservations, the ordering constraint remains a reasonable one, and
it can be used to devise efficient algorithms relying on dynamic programming [7;
?] to establish stereo correspondences (Figure 12.17). Specifically, let us assume
that a number of feature points (say edgels) have been found on corresponding
epipolar lines. Our objective here is to match the intervals separating those points
along the two intensity profiles (Figure 12.17(left)). According to the ordering
constraint, the order of the feature points must be the same, although the occasional
interval in either image may be reduced to a single point corresponding to missing
correspondences associated with occlusion and/or noise.

This setting allows us to restate the matching problem as the optimization of
a path’s cost over a graph whose nodes correspond to pairs of left and right im-
age features, and arcs represent matches between left and right intensity profile
intervals bounded by the features of the corresponding nodes (Figure 12.17(right)).
This optimization problem can be solved using dynamic programming as shown in
Algorithm 12.2 below.
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Figure 12.17. Dynamic programming and stereopsis: the left part of the figure shows
two intensity profiles along matching epipolar lines. The polygons joining the two profiles
indicate matches between successive intervals (some of the matched intervals may have
zero length). The right part of the diagram represents the same information in graphical
form: an arc (thick line segment) joins two nodes (4,i’) and (j,j') when the intervals (3, 5)
and (i’,7') of the intensity profiles match each other.

% Loop over all nodes (k,!) in ascending order.
for k=1 tom do
forl=1ton do
% Initialize optimal cost C'(k,l) and backward pointer B(k,1).
C(k,1) < 4o00; B(k,1) < nil;
% Loop over all inferior neighbors (z, 7) of (k,1).
for (i,7) € Inferior-Neighbors(k, ) do
% Compute new path cost and update backward pointer if necessary.
d « C(i,j) + Arc-Cost (i, 7, k, );
if d < C(k,l) then C(k,l) < d; B(k,1) < (i,j) endif;
endfor;
endfor;
endfor;
% Construct optimal path by following backward pointers from (m,n).
P+ {(m,n)}; (%,j) < (m,n);
while B(i,j) # nil do (4, 5) < B(3,5); P < {(4,4)} U P endwhile.

Algorithm 12.2: A dynamic-programming algorithm for establishing stereo corre-
spondences between two corresponding scanlines with m and n edge points respec-
tively (the endpoints of the scanlines are included for convenience). Two auziliary
functions are used: Inferior-Neighbors(k, 1) returns the list of neighbors (i,j) of the
node (k,l) such that i <k and j <1, and Arc-Cost(i, j, k,l) evaluates and returns
the cost of matching the intervals (i, k) and (4,1). For correctness, C(1,1) should
be initialized with a value of zero.
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As given, Algorithm 12.2 has a computational complexity of O(mn), where
m and n respectively denote the number of edge points on the matched left and
right scanlines.” Variants of this approach have been implemented by Baker and
Binford [?], who combine a coarse-to-fine intra-scanline search procedure with a
cooperative process for enforcing inter-scanline consistency, and Ohta and Kanade
[?], who use dynamic programming for both intra- and inter-scanline optimization,
the latter procedure being conducted in a three-dimensional search space. Figure
12.18 shows a sample result taken from [?].

Figure 12.18. Two images of the Pentagon and an isometric plot of the disparity map
computed by the dynamic-programming algorithm of Ohta and Kanade [?]. Reprinted
from [?], Figures 18 and 22.

12.3 Using More Cameras

12.3.1 Trinocular Stereo

Adding a third camera eliminates (in large part) the ambiguity inherent in two-
view point matching. In essence, the third image can be used to check hypothetical
matches between the first two pictures (Figure 12.19): the three-dimensional point
associated with such a match is first reconstructed then reprojected into the third
image. If no compatible point lies nearby, then the match must be wrong. In fact,
the reconstruction/reprojection process can be avoided by noting, as in Chapter 11,
that, given three weakly (and a fortiori strongly) calibrated cameras and two images
of a point, one can always predict its position in a third image by intersecting the
corresponding epipolar lines.

The trifocal tensor introduced in Chapter 11 can be used to also predict the
tangent line to some image curve in one image given the corresponding tangents
in the other images (Figure 12.20): given matching tangents /2 and I3 in images
2 and 3, we can reconstruct the tangent /; in image number 1 using Eq. (11.2.4),

7Qur version of the algorithm assumes that all edges are matched. To account for noise and
edge detection errors, it is reasonable to allow the matching algorithm to skip a bounded number
of edges, but this does not change its asymptotic complexity [?].
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A D

ds o by as

Figure 12.19. The small grey discs indicate the incorrect reconstructions associated
with the left and right images of four points. The addition of a central camera removes
the matching ambiguity: none of the corresponding rays intersects any of the six discs.
Alternatively, matches between points in the first two images can be checked by reproject-
ing the corresponding three-dimensional point in the third image. For example, the match
between b1 and a2 is obviously wrong since there is no feature point in the third image
near the reprojection of the hypothetical reconstruction numbered 1 in the diagram.

rewritten here as:

1fgl

2 Y13 R . .

l, ~ z;gflg , where G!=t,Ry — Ritl for i=1,2,3,
11'g31,

t and R% (i = 1,2,3) denote the columns of the rotation matrices Ry and R
associated with cameras 2 and 3, and t2 and t3 denote the corresponding translation
vectors (here “~” is used to denote equality up to scale).

I

P,

Figure 12.20. Given matches between the points p1 and ps and their tangents I; and
l2 in two images, it is possible to predict both the position of the corresponding point ps
and tangent /3 in a third image.
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Algorithms for trinocular stereo include [?; ?; ?; ?]. An example is shown in
Figure 12.21.

Figure 12.21. Three images and the correspondences between edges found by the
algorithm of Robert and Faugeras [?; ?]. Reprinted from [?], Figure 9.

As shown in [?; 7], it is in fact also possible to predict the curvature at a point
on some image curve given the corresponding curvatures in the other images (see

exercises). This fact can be used to effectively reconstruct curves from their images
[7; 7.

12.3.2 Multiple-Baseline Stereo

In most trinocular stereo algorithms, potential correspondences are hypothesized
using two of the images, then confirmed or rejected using the third one. In contrast,
Okutami and Kanade [?] have proposed a a multi-camera method where matches
are found using all pictures at the same time. The basic idea is simple but elegant:
assuming that all the images have been rectified, the search for the correct disparities
is replaced by a search for the correct depth, or rather its inverse. Of course, the
inverse depth is proportional to the disparity for each camera, but the disparity
varies from camera to camera, and the inverse depth can be used as a common
search index. Picking the first image as a reference, Okutami and Kanade add the
sums of squared differences associated with all other cameras into a global evaluation
function E (this is of course, as shown earlier, equivalent to adding the correlation
functions associated with the images).

Figure 12.22 plots the value of E as a function of inverse depth for various sets
of cameras. It should be noted that the corresponding images contain a repetitive
pattern and that using only two or three cameras does not yield a single, well-defined
minimum. On the other hand, adding more cameras provides a clear minimum
corresponding to the correct match.

Figure 12.23 shows a sequence of ten rectified images and a plot of the surface
reconstructed by the algorithm.
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Figure 12.22. Combining multiple-baseline stereo pairs: the sum of squared differences
is plotted here as a function of the inverse depth for various numbers of input pictures.
The data are taken from a scanline near the top of the images shown in Figure 12.23,
whose intensity is nearly periodic. The diagram clearly shows that the mininum of the
function becomes less and less ambiguous as more images are added. Reprinted from [?],
Figure 7.

Figure 12.23. A series of ten images and the corresponding reconstruction. The grid-
board near the top of the images is the source for the nearly periodic brightness signal
giving rise to ambiguities in Figure 12.22. Reprinted from [?], Figure 13(c).

12.4 Notes

The fact that disparity gives rise to stereopsis in human beings was first demon-
strated by Wheatstone’s invention of the stereoscope [?]. The fact that disparity
is sufficient for stereopsis without eye movements was demonstrated shortly after-
wards by Dove [?], using illumination provided by an electric spark and much too
brief for eye vergence to take place [?, p. 455]. Human stereo vision is further
discussed in the classical works of Helmholtz [?] and Julesz [?] as well as the books
by Frisby [?] and Marr [?]. Theories of human binocular perception not presented
in this chapter for lack of space include [?; ?7; ?].
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Excellent treatments of machine stereopsis can be found in the books of Grimson
[?], Marr [?], Horn [?] and Faugeras [?]. Marr focusses on the computational aspects
of human stereo vision, while Horn’s account emphasizes the role of photogrammetry
in artificial stereo systems. Grimson and Faugeras emphasize the geometric and
algorithmic aspects of stereopsis. The constraints associated with stereo matching
are discussed in [?].

As noted earlier, image edges are often used as the basis for establishing binoc-
ular correspondences, at least in part because they can (in principle) be identi-
fied with physical properties of the imaging process, corresponding for example to
albedo, color, or occlusion boundaries. A point rarely taken into account by stereo
matching algorithms is that binocular fusion always fails along the contours of solids
bounded by smooth surfaces (Figure 12.24). Indeed, the corresponding image edges
are in this case viewpoint dependent, and matching them yields erroneous recon-
structions.

Figure 12.24. Stereo matching fails at smooth object boundaries: for narrow baselines,
the pairs (c,d’) and (a,b’) will be easily matched by most edge-based algorithms, yielding
the fictitious points F' and F as the corresponding three-dimensional reconstructions.

As shown in [?; ?; ?7; ?] and the exercises, three cameras are sufficient in this
case to reconstruct a local second-degree surface model.

It is not quite clear at this point whether feature-based matching is preferable to
grey-level matching. The former is accurate near surface markings but only yields
a sparse set of measurements, while the latter may give poor results in uniform
regions but provides dense correspondences in textured areas. In this context, the
topic of dense surface interpolation from sparse samples is important, although it
has hardly been mentioned in this chapter. The interested reader is refered to [?;
?] for more details.

A different approach to stereo vision that we have also failed to discuss for
lack of space involves higher-level interpretation processes, for example predic-
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tion/verification methods operating on graphical image descriptions [?], or hier-
archical techniques matching curves, surfaces and volumes found in two images [?].

All of the algorithms presented in this chapter (implicitly) assume that the
images being fused are quite similar. This is equivalent to considering a short
baseline. An effective algorithm for dealing with wide baselines can be found in [?].
Another, model-based approach will be discussed in Chapter 25.

Finally, we have limited our attention to stereo rigs with fixed intrinsic and
extrinsic parameters. Active vision is concerned with the construction of vision
systems capable of dynamically modifying these parameters, e.g., changing camera
zoom and vergence angles, and taking advantage of these capabilities in perceptual
and robotic tasks [?; ?7; 7; ?].

12.5 Assignments

Exercises

1. Use the definition of disparity to characterize the accuracy of stereo recon-
struction as a function of baseline and depth.

2. Give reconstruction formulas for verging eyes in the plane.

3. Give an algorithm for generating an ambiguous random dot stereogram that
can depict two different planes hovering over a third one.

4. Give an algorithm for generating single-image random dot stereograms.

5. Show that the correlation function reaches its maximum value of 1 when the
image brightnesses of the two windows are related by the affine transform
I’ = M + p for some constants A and p with A > 0.

6. Prove the equivalence of correlation and sum of squared differences for images
with zero mean and unit Frobenius norm.

7. Recursive computation of the correlation function:
(a) Show that
(w—w) (w-w)=w-w - 2m+1)2n+1)II.

(b) Show that the average intensity I can be computed recursively, and es-
timate the cost of the incremental computation.

(¢) Generalize the above calculations to all elements involved in the con-
struction of the correlation function, and estimate the overall cost of
correlation over a pair of images.
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10.

Show how a first-order expansion of the disparity function for rectified im-
ages can be used to warp the window of the right image corresponding to
a rectangular region of the left one. Show how to compute correlation in
this case using interpolation to estimate right-image values at the locations
corresponding to the centers of the left window’s pixels.

Show how to predict curvature in one image from curvature measurements in
two other pictures.

Three-camera reconstruction of smooth surfaces’ occluding contours: show
that, in the planar case, three matching rays provide enough constraints to
reconstruct the circle of curvature as shown below.

Re" Ra Rd' Rf,,

Programming Assignments

1.
2.

S ok w

Implement the rectification process.

Implement the algorithm developed in Exercise 4 for generating single-image
random dot stereograms.

Implement a correlation-based approach to stereopsis.
Implement a multi-scale approach to stereopsis.
Implement a dynamic-programming approach to stereopsis.

Implement a trinocular approach to stereopsis.



Chapter 13

AFFINE STRUCTURE FROM
MOTION

In this chapter we address the problem of recovering the three-dimensional structure
of a scene from a sequence of pictures. We will suppose that n points have been
observed in m images and that the correct correspondences between the features
observed in successive images have been established (through tracking for example).
We will also assume an affine projection model: in other words, the observed objects
undergo an affine motion/deformation before being projected orthographically onto
the picture plane.

Following Koenderink and Van Doorn [?], we stratify the solution to this prob-
lem into two phases: (1) First use at least two views of the scene and purely affine
measurements (e.g., ratios of distances) to construct a unique (up to an arbitrary
affine transformation) three-dimensional representation of the scene; (2) use addi-
tional views and metric measurements (distances or angles) to uniquely determine
the rigid structure of the scene.

As argued by Koenderink and Van Doorn, the first step yields the essential part
of the solution: the affine structure is a full three-dimensional representation of
the scene, which can be used in its own right to construct new views of the scene,
or, as shown in Section 13.5, to segment the data points into objects undergoing
different motions [?; ?; ?]. The second step simply amounts to finding a single affine
transformation that will account for the rigidity of the scene and align it with the
correct Euclidean frame. In addition, purely affine methods do not require camera
calibration since the corresponding transformation of the image coordinates can
be folded into the overall affine deformation of the object. This may prove useful
for active vision systems whose calibration parameters vary dynamically, or, for
example, for planetary robot probes whose parameters may have been altered by
the large accelerations at take-off and landing. As shown in Section 13.4, recovering
the Euclidean structure from the affine one requires, however, knowing at least some
of the calibration parameters (e.g., the aspect ratio of the pixels).

Additional arguments in favor of a stratification of three-dimensional motion
analysis have been advanced by Faugeras [?] in the more general setting of central

345
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projection models, but we will focus our attention on affine models in this chapter.
This is not overly restrictive for small fields of view and restricted depth ranges.
As shown in Section 13.4.1, the affine projection model subsumes three well known
approximations to full perspective projection: orthography, weak perspective, and
paraperspective [?], and it can account for variations in depth as well as certain
types of perspective distortions.

Like Ullman’s classical work on (Euclidean) shape from motion [?], the affine
structure-from-motion method of Koenderink and Van Doorn is concerned with
shape recovery from a minimum number of images. Using more images overcon-
strains the problem and leads to more robust least-squares solutions. Accordingly,
the second part of this chapter is devoted to the problem of recovering the affine
shape of a scene from several (possibly many) pictures. In particular, we will elu-
cidate the structure of affine images, showing it to be the key to powerful linear
solutions to this problem [?; ?].

13.1 Elements of Affine Geometry

As noted in [?], affine geometry is, roughly speaking, what remains after practically
all ability to measure length, area, angles, etc.. has been removed from Euclidean
geometry. The concept of parallelism remains, however, as well as the concept
of affine transformations, i.e., bijections that preserve parallelism and the ratio of
distances between collinear points.

Giving a rigorous axiomatic introduction to affine geometry would be out of
place here. Instead, we will remain quite informal, and just recall the basic facts
about real affine spaces that are necessary to understand the rest of this chapter.
The reader familiar with notions such as barycentric combinations, affine coordinate
systems, and affine transformations may safely proceed to the next section.

Roughly speaking once again, a real affine space is a set X of points, together
with a real vector space X, and an action ¢ of the additive group of V on X. The
vector space X is said to underlie the affine space X. Informally, the action of a
group on a set maps the elements of this group onto bijections of the set. Here, the
action ¢ associates with every vector u € X a bijection ¢qy : X — X such that,
for any w,v in X and any point P in X, ¢pyiv(P) = ¢pu(dv(P)), ¢o(P) = P, and
for any pair of points P, @ in X, there exists a unique vector u in X such that
du(P) = Q.

Although the points of an affine space cannot be “added”, they can be “sub-

tracted”, i.e., @Q—P ef 1@, and the barycentric combination (or affine combination)

of p+ 1 points can also be defined as follows: Consider the points Ay, ..., A,, and
m + 1 real weights «q, ..., a,, such that ag + ...+ a,, = 1; the corresponding
barycentric combination is the point

m

iaiAi Lef A+ Z ai(A; — Aj),
i=0

i=0,i#j
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A familiar affine space is of course the physical three-dimensional space, where
X is the set of physical points, and X is the set of translations of X onto itself.
Another affine space of interest can be constructed by choosing both X and X
to be equal to R", with the action ¢ defined by ¢y (P) = P + u, where P and
u are both elements of IR™ and “+” denotes the addition in IR".

u O=P+u

PQ

X X

These two examples justify the notation that will be used in the rest of this
chapter: we will usually denote the point ¢q(P) by P + u and the vector u
such that ¢u(P) = Q by PO.

Example 13.1: Affine examples

where j is an integer between 0 and m. It is easily verified that this point is
independent of the value of j (it is of course essential that the weights a; add to 1
for this definition to make sense).

An affine subspace is defined by a point O of X and a vector subspace U of X as

the set of points S(O,U) et {O + u,u € U}. The dimension of an affine subspace

is the dimension of the associated vector subspace. Two affine subspaces associated
with the same vector subspace are said to be parallel. Barycentric combinations can
be used to define affine subspaces purely in terms of points: The subspace spanned
by the points Ao, ..., Ay, is the set S(Ag, ..., Am) = {7 aidi] 7y i = 1} of
all barycentric combinations of these points. It is easy to verify that S(Ao, ..., An)
is indeed an affine subspace, and that its dimension is at most m (e.g., two distinct
points define a line, three points define (in general) a plane etc.). We will say that
m + 1 points are independent if they do not lie in a subspace of dimension at most
m — 1, so m + 1 independent points define an m-dimensional subspace.

An affine coordinate system for S(O, U) consists of a point Ay (called the origin
of the coordinate system) in S(O,U) and a coordinate system (w1, ..., u.) for U.
The affine coordinates of the point P € S(O,U) are defined as the coordinates
of the vector m in the coordinate system (u1,...,u;). An alternative way of
defining a coordinate system for an affine subspace Y is to pick m + 1 independent
points Ay, ..., A, in Y. The barycentric coordinates «; (i = 0,...,m) of a point
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Consider three non-collinear points Ag, A; and A, in R® considered as an affine
space. These points span the plane S(Ag, A1, A3), and any point P in that plane
can be represented as a barycentric combination of these three points.

us

Ag Ag

Equivalently, the plane can be viewed as the affine subspace S(Ag,U) of R?

associated with the point A and the vector plane U spanned by the two vectors
— —

u; = AOA1 and Uy = A()AQ.

Example 13.2: More affine examples.

P in'Y are uniquely defined by P = agAg+. ..+ an Ay. Note that the barycentric
coordinates of the basis points are (1,0,...,0),...,(0,...,0,1).

When an n-dimensional affine space X has been equipped with an affine basis,
a necessary and sufficient condition for m + 1 points A; to define a p-dimensional
affine subspace of X (with m > p and n > p) is that the (n + 1) x (m + 1) matrix

oo --- Tmo
Ton -+ Tmn
1 ... 1
formed by the coordinate vectors (z;0,...,%in)? (i = 0,...,m) has rank p + 1:

indeed, a rank lower than p+1 means that any column of this matrix is a barycentric
combination of at most p of its columns, and a rank higher than p + 1 implies that
at least p + 2 of the points are independent.

An affine transformation between two affine subspaces X and Y is a bijection
from X onto Y that preserves parallelism and affine coordinates. Equivalently,
affine transformations can be characterized by the fact that they preserve the ratio
of signed distances along parallel oriented lines.

Finally, the relationship between vector spaces and affine spaces induces a rela-
tionship between linear and affine transformations. In particular, it is easily shown
that an affine transformation ¢ : X — Y between two affine subspaces X and Y
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Parallel projections from a plane onto another one are affine transformations:
the triangles OAa, OBb and OCc are similar, and it follows that AB/BC =
ab/be for any orientation of the lines OC and Oc. The parallelism of lines is
obviously preserved by parallel projection.

Projection
direction

This property of parallel projection will play an essential role in the next section.

Example 13.3: Parallel projection.

associated with the vector spaces X and Y can be written as
Y(P) = 9(0) +9(P - 0),

where O is some arbitrarily chosen origin, and 1/7 : X - Y is a linear mapping from
X onto Y that is independent of the choice of O. When X and Y are of (finite)
dimension m and an affine coordinate system with origin O is chosen, this yields
the familiar expression

Y(P) =t+ AP,

where P denotes the coordinate vector of P in the chosen basis, ¢ denotes the
coordinate vector of (0), and A is the m x m matrix representing 1) in the same
coordinate system.

13.2 Affine Structure from Two Images

We now have the right tools for estimating the three-dimensional structure of a
scene from two images. We follow Koenderink and Van Doorn [?] and first solve for
the affine structure, before taking into account the rigidity constraints and metric
measurements that will map the affine structure onto a Euclidean one.
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13.2.1 The Affine Structure-from-Motion Theorem

Given two orthographic images of five points A, B, C, D and P, is it possible to
reconstruct the affine coordinates of P in the basis (A, B, C, D)?

Koenderink and Van Doorn [?] have shown that the answer to this question is
positive, exploiting the fact that the orthographic projection of a plane onto another
plane is an affine transformation. In particular, when the point P belongs to the
plane II that contains the triangle ABC), its affine coordinates in the basis of II
formed by these three points can be directly measured in either of the two images.

Now let E (resp. @) denote the intersection of the line passing through the
points D and d’ (resp. P and p’) with the plane IT (Figure 13.1). The projections
e” and ¢ of the points F and P onto the plane II" have the same affine coordinates
in the basis (a”,b”, ¢"’) as the points d’ and p’ in the basis (a/, V', ).

Figure 13.1. Geometric construction of the affine coordinates of a point P in the basis
formed by the four points A, B, C and D.

In addition, since the two segments D and QP are parallel to the first projec-
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tion direction, the two line segments e”’d"” and ¢’p” are also parallel, and we can
measure the ratio
q//p// QP

)\ _ = = =,
e//d]// ED

where AB denotes the signed distance between the two points A and B for some
arbitrary (but fixed) orientation of the line joining these points.

If we now denote by (aa, 84) and (o, By ) the coordinates of the points d’' = €’
and p’ = ¢ in the basis (a/, V', ), we can write

AP = AQ+ QP
= O[pu@ —+ ﬂp/m + )\ﬁ
= (o = Aaw)AB + (By — \ja)AC + \AD.

In other words, the affine coordinates of P in the (4, B, C, D) basis are (o —
Aaar, B — ABar, A). This is the affine structure-from-motion theorem: given two
orthographic views of four non-coplanar points, the affine structure of the scene is
uniquely determined [?].

Figure 13.2 shows three projections of the synthetic face used in Koenderink’s
and Van Doorn’s experiments, along with an affine profile view computed from two
of the images.

13.2.2 Rigidity and Metric Constraints

When the observed object is rigid, the transformation between the two views goes
from affine to Euclidean, i.e., it is the composition of a rotation and a translation.
Under orthographic projection, a translation in depth has no effect, and a transla-
tion in the image plane (fronto-parallel translation) is easily eliminated by aligning
the two projections of the point A. Any rotation about the viewing direction is also
easily identified and discarded [?]. At this stage, the two views differ by a rotation
about some axis in a fronto-parallel plane passing through the projection of A, and
Koenderink and Van Doorn show that there exists a one-parameter family of such
rotations, determining the shape up to a depth scaling and a shear. The addition
of a third view finally restricts the solution to one or two pairs related through a
reflection in the fronto-parallel plane. This construction is a bit too involved to
be included here. Instead, we will detail in Section 13.4 the passage from affine to
Euclidean structure in the multi-image case.

Figure 13.3 shows a profile view of the Euclidean face reconstructed from the
three views of Figure 13.2.

13.3 Affine Structure from Multiple Images

The method presented in the previous section is aimed at recovering the affine
scene structure from a minimum number of images. We now address the problem of
estimating the same information from a potentially large number of pictures, and
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Figure 13.2. Affine reconstruction from two views — experimental results: (a) three
views of a face: views 0 and 1 are overlaid on the left, and views 1 and 2 are overlaid
on the right; (b) profile view of the affine reconstruction, computed from images 0 and 1.
Reprinted from [?], Figures 1 and 6.

switch from a mostly geometric approach to an algebraic one. The set of affine
images of a scene is first shown to also exhibit an affine structure, which is then
exploited to derive the factorization method of Tomasi and Kanade [?] for estimating
the affine structure and motion of a scene from an image sequence.!

13.3.1 The Affine Structure of Affine Image Sequences

Let us consider an affine camera observing some three-dimensional object, i.e., let
us assume that the scene, represented in some fixed affine coordinate system, is first
submitted to an affine transformation and then orthographically projected onto the
image plane of the camera.

We will suppose that we observe a point P with a fixed set of m cameras and

1This method was originally proposed by Tomasi and Kanade as an approach to Fuclidean
structure and motion recovery from orthographic views. Indeed, Section 13.4 will show that the
Euclidean structure and motion are easily computed from the affine ones. However, in keeping
with Koenderink’s and Van Doorn’s view of a stratified approach to motion analysis, we believe
that Tomasi’s and Kanade’s method is better understood in the setting of a two-phase process
whose main step is the affine one.
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Figure 13.3. Euclidean reconstruction from the three views of a face shown in Figure
13.2. Reprinted from [?], Figure 9.

denote by p; (i = 1,...,m) the corresponding image points. Let us also denote the
coordinate vector of P in the object coordinate system by P = (x,y,2)7 and use
p; = (ui,v;)T to denote the coordinate vector of p;. The affine camera model can
now be written as

p;, =0+ M;P, (13.3.1)

where M, is a 2 X 3 matrix and o is the position of the projection into the image
of the object coordinate system’s origin.
Stacking the m instances of (13.3.1) yields

d=r+ MP,
where
aer [ P2 et [ 1 def M
d=|...|, »r=1| ... and M =
Dy, Om M.,

This shows that the set of images taken by the cameras is the three-dimensional
affine subspace of R*™ spanned by the point 7 and the column vectors of the 2m x 3
matrix M.

In particular, if we now consider n points P; observed by m cameras, we can
now define a (2m + 1) x n data matrix

d ... d,
1 ... 1)
and it follows from Section 13.1 that this matrix has rank 4.

13.3.2 A Factorization Approach to Affine Motion Analysis

Tomasi and Kanade [?] have exploited the affine structure of affine images in a robust
factorization method for estimating the structure of a scene and the corresponding
camera motion through singular value decomposition [?] (see insert).
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Technique: Singular Value Decomposition
Let A be an m x n matrix, with m > n, then A can always be written as
A=uUwy’,

where:
e U is an m X n column-orthogonal matrix, i.e., UTU = Idm,

e W is a diagonal matrix whose diagonal entries w; (i = 1,...,n) are the singular
values of A with w1 > w2 > ... > wy >0,

e and V is an n X n orthogonal matrix, i.e., VTV = VWT = Id,.

This is the singular value decomposition (SVD) of the matrix A, and it can be computed
using the algorithm described in [7].
Suppose now that A has rank p < n, then the matrices U/, W, and V can be written as

W, |0 T VT
U=[Ty [Uny] W=t and V=
n—p

and

e the columns of U, form an orthonormal basis of the space spanned by the columns
of A, i.e., its range,

e and the columns of V,,_,, for a basis of the space spanned by the solutions of Az = 0,
i.e., the null space of this matrix.

Both U, and V), are nxp column-orthogonal matrices, and we have of course A = U, W, V. .
The following two theorems show that singular value decomposition also provides a valu-
able approzimation procedure. In both cases, U, and V, denote as before the matrices
formed by the p leftmost columns of the matrices & and V, and W, is the p x p diagonal
matrix formed by the p largest singular values. This time, however, A may have maximal
rank n, and the remaining singular values may be nonzero.

Theorem 3: When A has a rank greater than p, L{prvg is the best possible rank-p
approzimation of A (in the sense of the Frobenius norm, i.e., the norm induced on matrices
by the Euclidean vector norm,).

Theorem 4: Let a; € R™ (i = 1,...,n) denote the n column vectors of the matriz A;
the vector subspace V,, of dimension p that minimizes the mean squared error

1 n
- Z |a‘i - bi|27
n =1

where b; denotes the orthogonal projection of a; into Vjp, is the subspace of R™ spanned
by the columns of Uy,.

These two theorems will be used repeatedly in the rest of this book. Singular value
decomposition has other important properties, for example:

e The SVD of a matrix can be used to determine its rank numerically.

e Singular value decomposition can be used to compute the solution of a linear least-
squares problem.
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Assuming that the origin of the object coordinate system is one of the observed
points or their center of mass, we can translate the origin of the image coordinate
system to the corresponding image point. Under this transformation, the set of
images of a scene becomes the three-dimensional vector space defined by

p,=M;P for i=1,...,m orequivalently d= MP. (13.3.2)

We can now define the 2m x n data matrix

DY (d, ... d)=MP, with P (P, ... P,).

As the product of a 2m x 3 matrix and a 3 x n matrix, D has, in general, rank
3. If UWVT is the singular value decomposition, this means that only three of the
singular values are nonzero, thus D = UgWng , where U3 and V3 denote the 2m x 3
and 3 x n matrices formed by the three leftmost columns of the matrices & and V,
and Wi is the 3 x 3 diagonal matrix formed by the corresponding nonzero singular
values.

We claim that we can take M = U3 and P = ng?,T are representative of the
true affine camera motion and scene structure. Indeed, the columns of M form
by definition a basis for the range of D. The columns of U3 form by construction
another basis for this range. This implies that there exists a 3 x 3 matrix Q such
that M =U3Q and thus P = Q"' W3VT. Conversely, D3 = (UsQ)(Q W3 VT for
any invertible 3 x 3 matrix Q. Since the origin of the world coordinate system can
of course be set arbitrarily, it follows that the structure and motion can only be
recovered up to an affine transformation, and singular value decomposition indeed
outputs a representant of the affine motion and scene structure.

Our reasoning so far is of course only valid in an idealized, noiseless case. In
practice, due to image noise, errors in localization of feature points, and to the mere
fact that actual cameras are not affine, (13.3.2) will not hold exactly and the matrix
D will have (in general) full rank. Let us show that singular value decomposition
still yields a reasonable estimate of the affine structure and motion in this case.
Since (13.3.2) does not hold exactly, the best we can hope for is to minimize

def
EZ Y |py; — MiP;|> =) |d; — MP;|*.

4,J J

with respect to the matrices M; (i =1,...,m) and vectors P; (j =1,...,m).
Writing that the partial derivative of EF with respect to P; should be zero at a
minimum yields

oF

0:—:
oP;

2——-(d; — MP;)"][d; — MP;] = —2M"[d; — MP;],

oP;

thus
P, = M'd;
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where MT % (MTM)~IMT is the pseudoinverse of M. Substituting back into E
shows that the minimum value of E verifies

E =) [(1d - MM")d,[*.

J

Now observe that the matrix MM associates with any vector d in IR®*™ its
orthogonal projection onto the three-dimensional subspace Vi, spanned by the
columns of M (see exercises). It follows that F measures the mean squared norm
of the difference between the vectors d; and their orthogonal projections onto V4.
According to Theorem 4, F is minimum when V) is the range of the matrix Us
formed by the three leftmost columns of &/, where UWVT denotes as before the sin-
gular value decomposition of D. In particular, the matrix M minimizing F verifies
Vam = Vi, and we can take M = Us.

As noted earlier, the corresponding estimate of the point position is P; = M'd;,
thus, since U3 is column-orthogonal,

P = MID = [(UTUs) Ul uwvT] = wa VT

where, as before, V3 denotes the 3 x n matrix formed by the three leftmost columns
of the matrix V, and Ws is the 3 x 3 diagonal matrix formed by the corresponding
singular values. In particular, singular value decomposition can be used to estimate
the affine structure and motion from the data matrix D, as shown in Algorithm 13.1.

1. Compute the singular value decomposition D = UWVT.

2. Construct the matrices Us, V3, and W5 formed by the three leftmost columns
of the matrices U and V, and the corresponding 3 x 3 sub-matrix of W.

3. Define
M=U; and P =W3VI;

the 2m x 3 matrix M is an estimate of the camera motion, and the 3 x n
matrix P is an estimate of the scene structure.

Algorithm 13.1: Tomasi’s and Kanade’s factorization algorithm for affine shape
from motion.

13.4 From Affine to Euclidean Images

As noted in Section 13.2, taking rigidity into account allows the recovery of Eu-
clidean shape from three orthographic views. Here we address a similar problem in
the case where more than three views are available, and consider several Euclidean
projection models subsumed by the affine projection model.
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13.4.1 Euclidean Projection Models

We examine the orthographic, weak perspective (scaled orthographic), and paraper-
spective [?] projection models (Figure 13.4), and assume that the camera observing
the scene has been calibrated so that image points are represented by their normal-
ized coordinate vectors.? We shall see that the affine projection equation (13.3.1)
still holds for these models. However, this time there are some constraints on the
components of the projection matrix M.

Orthographic Projection

r

[
]

Weak Perspective Projection

|

Figure 13.4. Three projection models.

For an orthographic camera, the matrix M is part of a rotation matrix, and
its rows a” and b” are unit vectors orthogonal to each other. In other words, an
orthographic camera is an affine camera with the additional constraints

a-b=0 and |a]*=|b?*=1. (13.4.1)

2Strictly speaking, this is not completely necessary: the orthographic and weak perspective
models only require that the camera aspect ratio be known. However, the paraperspective pro-
jection model utilizes the absolute image position of a reference point, and this requires that the
image center be known.
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Weak perspective is an approximation of perspective projection, constructed as
follows (Figure 13.4): Let C' denote the optical center of the camera and let R
denote a scene reference point; the weak perspective projection of a scene point P
is constructed in two steps: P is first projected orthographically onto a point P’
of the plane II' parallel to the image plane IT and passing through R. Perspective
projection is then used to map the point P’ onto the image point p. Since I’ is
a fronto-parallel plane, the net effect of the second projection step is a scaling of
the image coordinates, and it follows that a weak perspective camera is an affine
camera with the two constraints

a-b=0 and |a*=|b (13.4.2)

Paraperspective projection [?] is a refined approximation of perspective that
takes into account the distortions associated with a reference point that is off the
optical axis of the camera (Figure 13.4). Using the same notation as before, and
denoting by A the line joining the optical center C to the reference point R, parallel
projection in the direction of A is first used to map P onto a point P’ of the plane
IT’; perspective projection is then used to map the point P’ onto the image point p.
It is easily shown (see [?] for example) that a paraperspective camera is an affine
camera that satisfies the constraints

b Uy Uy | |2 i
a-b= a
2(1 + u?)

2(1+v,%)|b|2 and (1+2)|a|® = (1+u2)[b]%, (13.4.3)

where (u,,v,) denote the coordinates of the perspective projection of the point R.
It should be noted that under this projection model, the vectors a and b do not form
a basis of the image plane. Instead, they form a basis of the vector plane orthogonal
to the line joining the optical center of the camera to the reference point.

As expected, the paraperspective constraints reduce to the weak perspective con-
straints when u, = v, = 0, and these reduce in turn to the orthographic constraints
when the planes IT and II' coincide.

13.4.2 From Affine to Euclidean Motion

Let us now show how to recover the Euclidean structure from the affine one under
orthographic projection. Let Q denote the 3 x 3 matrix associated with the linear
mapping between the affine shape P and motion M and their Euclidean counter-
parts P and M (of course Q is only defined up to an arbitrary rotation). As noted in
Section 13.3.2, we must have M = MQ and P = Q~'P. The Euclidean constraints
derived in the previous section can be used to compute Q.

Assuming orthographic projection. we can rewrite the constraints (13.4.1) as

al90"b; =0,
al’'90%a; =1, (13.4.4)
bl Q0Tb; =1,
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where al and blr denote the rows of the matrix M; fori=1,...,m.
To determine Q uniquely, we can for example assume that

~ 1 00
M= (0 1 0) '
Together with the constraints obtained by writing (13.4.4) for the remaining
m—1 images, we have 6 linear equations and 3m—3 quadratic ones in the coeflicients

of Q. Tomasi and Kanade [?] proposed solving these equations via non-linear least
squares . An alternative is to consider (13.4.4) as a set of linear constraints on

the matrix R % Q9T The coefficients of R are found in this case via linear least
squares, and the coefficients of Q can then be computed via Cholesky decomposition.
This is the method used in [?] for example (see [?] for another variant). It should
be noted that it requires that the recovered matrix B be positive definite, which is
not guaranteed in the presence of noise.

Figure 13.5 shows experimental results, including some input images, the corre-
sponding feature tracks, and the recovered scene structure.

Figure 13.5. Euclidean shape from motion — experimental results: top-left: sample
input images; top-right: the features automatically detected in the first frame; bottom:
two views of the reconstructed scene. Reprinted from [?], Figures 6-7.
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The weak and paraperspective cases can be treated in the same manner, except
for the fact that the 2 constraints (13.4.2) or (13.4.3) written for m — 1 images will
replace the 3m — 3 constraints (13.4.4). See [?] for details.

13.5 Affine Motion Segmentation

We have assumed so far that the n points observed all undergo the same motion.
What happens if these points belong instead to k£ objects undergoing different mo-
tions? We present two methods [?; ?] for segmenting the data points into such
independently-moving objects (see [?] for another approach to the same problem).

13.5.1 The Reduced Echelon Form of the Data Matrix

Exactly as in Section 13.3.1, we can define the data matrix

Py1 -+ Pin
D—
P -o+ Pmn
1 1

This time, however, D does not have rank 4 anymore. Instead, the sub-matrices
formed by the columns corresponding to each object will have rank 4 (or less), and
the maximum rank of the overall data matrix will be 4k. In other words, the columns
of D corresponding to each object lie in four- (or less) dimensional subspaces of its
range, and, as remarked by Gear [?], constructing the reduced echelon form of D
will identify these subspaces and the column vectors that lie in them, providing
a segmentation of the input points into rigid objects (or, to be more exact, into
objects that may undergo affine deformations). Gear [?] gives several methods
for computing the reduced echelon form using Gauss-Jordan elimination and QR
reduction.

13.5.2 The Shape Interaction Matrix

The approach presented in the previous section relies only on the affine structure
of affine images. Costeira and Kanade [?] have proposed a different method, based
on a factorization of the data matrix. In the setting of motion segmentation, it is
not possible to define a rank-3 data matrix for each object since the centroid of the
corresponding points is unknown. Instead, Costeira and Kanade [?] construct, for
i=1,...,k, a rank-4 data matrix

Py .. )

Puy oo Pl

pli) def
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where n; is the number of points associated with object number . This matrix
factorizes as D) = MOPE) where, this time,

@ )
o [ i
MO = 2) 2) and P<i>“‘§f<P1§) Pfu))
M om

Let us define the 2m x n composite data matrix

D& (pODp@ . pk)y,

as well as the composite 2m x 4k (motion) and 4k X n (structure) matrices

PO 0 ... 0 0

(2)
M (MOMED  pME) apg pf [ O P 00
0 0 ... o P

With this notation, we have
D = MP,

which confirms, of course, that D has rank 4k (or less).

As in the rank-3 case, the matrix D can be factorized using singular value
decomposition, which also provides an estimate of its rank r < 4k. The best
approximation D, of rank r of D is then constructed and factorized as

D, = UW, VL.

In the noiseless case, the columns of D and the columns of U, span the same
r-dimensional subspace of IR?*™, and there exists an r x r linear transformation
between these two matrices. This implies in turn the existence of a non-singular
r X r matrix B such that

VI = Bp.

Following Costeira and Kanade [?], we can now define the shape interaction

matriz Q as
o ¥y VI = pT(BTB)P.

Noting that the matrix BT B is also a non-singular 4 X 4 matrix and that V), is

by construction column-orthogonal (i.e., VIV, = Id,.) now allows us to write

Q=P"(B'B )P =PT(B"V'V.BT)P =P (PPT)"'P.
The matrix C % (PPT)~1 is an r x r matrix, and it follows that the shape
interaction matrix has the following block-diagonal structure

pOTCpM) 0 . 0

0 ATop . 0
0 PRTCP

0 0 ... pWTCP®
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The above construction assumes that the data points are ordered consistently
with the object they belong to. In general, of course, this will not be the case. As
remarked by Costeira and Kanade however, the values of the entries of the matrix
Q are independent of the order of the points: changing this order will swap the
rows and columns of D and Q in the same way. Thus recovering the correct point
ordering (and the corresponding segmentation into objects) amounts to finding the
row and column swaps of the matrix Q that will reduce it to block-diagonal form.

Costeira and Kanade have proposed several methods for finding the correct
swaps in the presence of noise: one possibility is to minimize the sum of the squares
of the off-diagonal block entries over all rows and column permutations (see [?] for
details). Figure 13.6 shows experimental results, including the images of two objects
and the corresponding feature tracks, a plot of the corresponding shape interaction
matrix before and after sorting, and the corresponding segmentation results.

Figure 13.6. Motion segmentation — experimental results: top-left: one frame from a
sequence of pictures of two cylinders, including feature tracks; top-right: the recovered
shapes after motion segmentation; bottom-left: the shape interaction matrix; bottom-
right: the matrix after sorting. Reprinted from [?], Figures 13-15.

13.6 Notes

As shown in this chapter, the stratification of structure from motion into an affine
and a Euclidean stage affords simple and robust methods for shape reconstruction
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from image sequences. The affine stage by itself also affords simple techniques for
motion-based image segmentation. As shown in Chapter 25, other applications
include interactive image synthesis in the augmented reality domain.

Variations of the rank-3 property of the data matrix associated with an affine
motion sequence include the fact that an affine image is the linear combination of
three model images [?], and that the image trajectories of a scene point are linear
combinations of the trajectories of three reference points [?].

Various extensions of the approach presented in this chapter have been proposed
recently, including the incremental recovery of structure and motion [?; ?], the
extension of the affine/metric stratification to a projective/affine/metric one [?],
along with corresponding projective shape estimation algorithms [?; 7], and the
generalization of the factorization approach of Tomasi and Kanade [?] to various
other computer vision problems that have a natural bilinear structure [?].

13.7 Assignments

Exercises

1. In this exercise we prove Theorem 4. Let us define

1 n
a(v) == (v-a;)?,
nis
S =(a1,...,a,), and C = 188T. With this notation we have
a(v) = vTCv.

You can assume for simplicity that the eigenvalues of C are all distinct. Use
the following steps to prove Theorem 4.

(a) Show that determining V], reduces to constructing the orthonormal family

of vectors v; (i = 1,...,p) that maximizes A def 3P a(v;).
(b) Let u; (j =1,...,m) denote the eigenvectors of C with associated eigen-
values \;, and let &, = (&1, ..., &m)T denote the coordinate vector of v;

(¢ =1,...,p) in the basis of R™ formed by the vectors u;. Show that
A=Y ¢TLe,, where £ = Diag(A1, ..., Am).

(c) Let X, denote the subspace of R™ spanned by the vectors &; (i =
1,...,p) and L, denote the restriction to X, of the linear operator
L: R™ — IR™ associated with the matrix £. Use Lagrange multipliers
to show that L, is an endomorphism of X,.

(d) Show that X, is the subspace of R™ spanned by p of the canonical basis
vectors (1,...,0),...,(0,...,1). (Hint: first show that the matrix repre-
senting L, in the basis of X, formed by the vectors &; is diagonalizable.)
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(e) Show that >-p_ &% = >0 _1 &%, =1 (i,j = 1,...,p), and prove the
theorem.

2. Show that the matrix MM associates with any vector d in R*™ its projection
onto the three-dimensional subspace V4 spanned by the columns of M. (Hint:
shows that MMd is orthogonal to the columns vectors of M.)

Programming Assignments

Note: the assignments below require routines for numerical linear algebra and singu-
lar value decomposition. An extensive set of such routines is available in MATLAB
as well as in public-domain libraries such as LINPACK and LAPACK that can be
downloaded from the Netlib repository (http://www.netlib.org/). Data for these
assignments will be available in the CD companion to this book.

1. Implement the Tomasi-Kanade approach to affine shape from motion.



Chapter 14

PROJECTIVE STRUCTURE
FROM MOTION

This chapter addresses once again the recovery of the three-dimensional structure of
a scene from correspondences established by tracking n points in m pictures. This
time, however, we will assume a perspective projection model. Given some fixed
world coordinate system, we can write

zijpijz./\/lin for i=1,...,m and j:l,...,n, (1401)

where p;; = (uij, vij, 1)T denotes the (homogeneous) coordinate vector of the pro-
jection of the point P; in the image ¢ expressed in the corresponding camera’s
coordinate system, z;; is the depth of P; in the same coordinate system, M; is the
3 x 4 projection matrix associated with this camera in the world coordinate system,
and P; is the (homogeneous) coordinate vector of the point P; in that coordinate
system.

We address the problem of reconstructing both the matrices M; (i =1,...,m)
and the vectors P; (j = 1,...,n) from the image correspondences p;;. This problem
shares a great deal of similarities with the affine structure-from-motion problem, but
it also differs from it in several key aspects: contrary to the set of m affine images
of a fixed scene, the set of m perspective images does not exhibit a natural affine
structure, or for that matter, any (obvious) simple structure at all. On the other
hand, there is a natural ambiguity in perspective structure from motion that is
similar (but not identical) to the natural ambiguity of affine structure from motion:
in particular, if the camera calibration parameters are unknown, the projection
matrices M; are, according to Chapter 5, arbitrary 3 x 4 matrices, and it follows
that if M; and P; are solutions of (14.0.1), so are M;Q and Q™! P, for any non-
singular 4 x 4 matrix Q [?; ?].

Linear geometric relations between homogeneous vectors that are invariant un-
der projective transformations (i.e. bijective linear mappings associated with 4 x 4
matrices) fall in the domain of projective geometry, which will play in the rest of this
chapter the role that affine geometry played in Chapter 13, and will afford a similar
overall methodology: once again, ignoring (at first) the Euclidean constraints as-

365



366 Projective Structure from Motion  Chapter 14

sociated with calibrated cameras will linearize the recovery of scene structure and
camera motion from point correspondences, and this will allow us to decompose
motion analysis into two stages: the first one will be concerned with the recovery
of the scene structure and camera motion, up to an arbitrary projective transfor-
mation. The second step will exploit the geometric constraints associated with real
cameras to upgrade the projective reconstruction to a Euclidean one.

We start by introducing some elementary notions from projective geometry be-
fore presenting several algorithms for projective and metric scene and motion re-
construction from point correspondences. The first class of methods presented in
this chapter was originally introduced by Faugeras [?] and Hartley et al. [?] in the
context of uncalibrated stereo vision, and it takes advantage of the multilinear con-
straints introduced in Chapter 11 to estimate the scene and motion parameters
from a few pictures. We also discuss a different class of techniques that rely on
non-linear optimization to exploit the wealth of information contained in long im-
age sequences in a uniform manner [?]. We conclude with a discussion of techniques

for constructing the metric upgrade of a projective scene reconstruction [?; ?; ?;
?].

14.1 Elements of Projective Geometry

Let us consider a real vector space E of dimension n+ 1. If v is a non-zero element
of E, the set Rv of all vectors kv as k varies over IR is called a ray, and it is
uniquely characterized by any one of its non-zero vectors. The real projective space
P(E) of dimension n associated with E is the set of rays in E, or equivalently the
quotient of the set E\0 of non-zero elements of E under the equivalence relation
“u ~ v if and only if u = kv for some k € R”. Elements of P(E) are called points,
and we will say that a family of points are linearly dependent (resp. independent)
when representative vectors for the corresponding rays are linearly dependent (resp.
independent). The map p : E\0 — P(E) associates with any element v of E the
corresponding point p(v) of P(E).

14.1.1 Projective Bases and Projective Coordinates

Consider a basis (eg,e1,...,e,) for E. We can associate with each point A in
P(E) a one-parameter family of elements of R™ ™, namely the coordinate vectors
(o, 1,...,2,)T of the vectors v € FE such that A = p(v). These tuples are
proportional to one another, and a representative tuple is called a set of homogeneous
(projective) coordinates of the point A.

Homogeneous coordinates can also be characterized intrinsically in terms of fam-
ilies of points in P(E): consider m + 1 (m < n) linearly independent points A;
(i=0,...,m) and m + 1 vectors u; representative of the corresponding rays. If an
additional point A linearly depends upon the points A;, and u is a representative
vector of the corresponding ray, we can write:

U = UoUg —|—,u1u1 + .. —|—,umum
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Consider an affine plane IT of R®. The rays of R?® that are not parallel to II are
in one-to-one correspondence with the points of this plane. For example, the
rays R4, Rp and R¢ associated with the vectors v 4, vp and v¢ below can be
mapped onto the points A, B and C where they intersect II. The vectors v 4,
vp and ve are only defined up to scale; they are linearly independent, and so
are (by definition) the corresponding points A, B and C.

_

D\OA LB o T

Projective plane

D

A model of the projective plane P2 def P(IR?) can be constructed by adding to
II a one-dimensional set of points at infinity associated with the rays parallel
to this plane. For example, the ray Rp parallel to II maps onto the point at
infinity D. The introduction of points at infinity frees projective geometry from
the numerous exceptions encountered in the affine case: for example, parallel
affine lines do not intersect unless they coincide. In contrast, any two distinct
lines in IP? intersect in one point, with pairs of parallel lines intersecting at the
point at infinity associated with their common direction.

Example 14.1: A projective plane embedded in IR>.

Note that the coeflicients u; are not uniquely determined since each vector u; is
only defined up to a non-zero scale factor. However, when none of the coefficients p;
vanishes, i.e., when w does not lie in the vector subspace spanned by any m vectors
u;, we can uniquely define the m + 1 non-zero vectors e; = u;u; such that

u=ey+e +...+ep,.

Any other vector v linearly dependent on the vectors u; can now be written
uniquely as
vV =2xp€g+ Tr1€1 + ...+ Tm€m,.
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This defines a one-to-one correspondence between the rays R(zq, z1, ..., Zm)"
of R™*! and a linear subspace S,, of P(E). S,, is in fact the projective space
P(E,,) associated with the vector subspace E,, of E spanned by the vectors u; (or
equivalently of course by the vectors e;). The number m is called the dimension
of S,,. If P = p(v) is the point of S,, associated with the ray Rv, the numbers
Zo, X1, - -, Tm are called the homogeneous (projective) coordinates of P in the pro-
jective basis (or projective frame) determined by the m + 1 fundamental points A;
and the unit point A. Note that, since the vector v associated with a ray is only
defined up to scale, so are the homogeneous coordinates of a point.

The coordinate vectors of the points that form a projective basis have a par-
ticularly simple form: in particular, since the vectors u; (hence the vectors e;)
are linearly independent, the coordinate vectors of the fundamental points A;
(i=0,...,m) are

AO = (1707"'70)T7
A = (0,1,...,0)T,
A, = (0,0,...,1)T.

The coordinate vector of the unit point A is, by definition, A = (1,1,...,1)7.

Example 14.2: Coordinate vectors of a projective basis.

It should be clear that the two notions of homogeneous coordinates that have
been introduced in this section coincide. The only difference is in the choice of the
coordinate vectors e; (i = 0,...,m), that are given a priori in the former case, and
constructed from the points forming a given projective frame in the latter one.

A linear subspace S; of dimension 1 of IP" is called a line. Linear subspaces of
dimension 2 and n — 1 are respectively called planes and hyperplanes. A hyperplane
Sn—1 consists of the set of points P linearly dependent on n linearly independent
points P; (i =1,...,n).

14.1.2 Projective Transformations

Consider an injective linear map U : E — F between two vector spaces E and F'. By
linearity, U maps rays of E onto rays of F. Since it is injective, it also maps non-zero
vectors onto non-zero vectors and therefore induces a map P(U) : P(E) — P(F)
between the quotient spaces P(FE) and P(F). This map is called a projective map,
and a projective transformation (or homography) if it is bijective. It is easy to show
that projective transformations form a group under the law of composition of maps.
This group is called the projective group of P(E).

Now consider two n-dimensional projective spaces P(E) and P(E’), equipped
respectively with the coordinate frames (Ao, Ay, ..., Anq1) and (Ag, A5, ..., Al )
(here A, 11 and Aj, ,; are the unit points of the two frames). There exists a unique
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A line is uniquely determined by two distinct points lying on it, but a projective
frame for a line is determined by three distinct points on that line.

PR
<

A
Ag
YA
A ‘
O

Likewise, a plane is uniquely determined by three points lying in it, but a
projective frame for that plane is defined by four points: three fundamental
points forming a non-degenerate triangle and a unit point not lying on one of
the edges of this triangle.

Example 14.3: Lines and planes.

homography U : P(E) — P(E’) such that U(A;) = A} for i =0,...,n+ 1. This is
often refered to as the first fundamental theorem of projective geometry.

Given some choice of coordinate frame, projective transformations can conve-
niently be represented by matrices. Let P denote the coordinate vector of the point
P in P(E) and P’ denote the coordinate vector of the point P’ in P(E'); if U is a
non-singular (n+ 1) x (n + 1) matrix, the equation P’ = U P defines a homography
between the points P of P(E) and the points P’ of P(E’). Conversely, any projec-
tive transformation U : P(E) — P(E’) can also be represented by a non-singular
(n+1) x (n+ 1) matrix U.

Projective geometry can be thought of as the study of the properties of a pro-
jective space P(F) that are invariant under any non-singular projectivity. An ex-
ample of such a property is the linear dependence (or independence) of a fam-
ily of points in P(FE). Another fundamental example is obtained by considering
a basis (Ag, A1,...,Ant+1) of P(E) and constructing the images A, = U(A;) of
its points via the projective transformation U : P(E) — P(E’). The points A]
form a basis for P(E’) and if a point P has coordinates (zg,z1,...,Ty) in the
basis (Ag, A1,...,An+1), the point U(P) has the same coordinates in the basis
(Ap, A%, ..., A ). Coming back to Example 14.4, it follows that an image of a
set of coplanar points completely determines the projective coordinates of these
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Consider two planes and a point O in IP?. As shown in the exercises, the per-
spective projection mapping any point A in the first plane onto the intersection
of the line AO and the second plane is a projective transformation.

Scene plane

Example 14.4: Projective correspondence between coplanar points and their pic-
tures.

points relative to the frame formed by four of them. This will prove very useful in
designing invariant-based recognition systems in latter chapters.

Given two projective bases (Af, A},..., Any1) and (Ay, A7, ..., Ap + 1) of the
n-dimensional projective space P(E), it is also easily shown (see exercises) that the
coordinate vectors P’ and P of the same point P are related by P” = AP’, where
A is as before an (n + 1) x (n + 1) non-singular matrix.

14.1.3 Affine and Projective Spaces

Example 14.1 introduced (informally) the idea of embedding an affine plane into a
projective one with the addition of a line at infinity. More generally, it is possible to
construct the projective closure X of an affine space X of dimension n by adding to
it a set of points at infinity associated with the directions of its lines. These points
form a hyperplane of X, called the hyperplane at infinity and denoted by cox.

Let us pick some point A in X and introduce X % P(X x R). We can embed
X into X via the injective map J4 : X — X defined by J4(P) = p(ﬁ, 1).!

1Here we identify X and the underlying vector space X by identifying each point P in X with
the vector AP. This vectorialization process is of course dependent on the choice of the origin A,

but it can easily be shown that X is indeed independent of that choice. A more rigorous approach
to the projective completion process involves the universal vector space associated with an affine
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R P(AP)
P ——
y )
0,1
X Xx (1)
XxR
(AP0
(0,0)
X x {0}

Figure 14.1. The projective completion of an affine space.

The complement of X in X is the hyperplane at infinity cox ef P()Z x {0}) ~
P(X) mentioned earlier. We can also relate affine and projective coordinates as
follows. Consider a fixed affine frame (Ao, A1, ..., 4,) of X and embed X into X
using Jy4,. The vectors e; def m (i =1,...,n) form a basis for X, thus the
vectors (e1,0), ..., (€n,0), and (0,1) form a basis of X x R. If P has coordinates
(1,...,2y) in the basis formed by the points A;, then J4,(P) has coordinates
(z1,...,2Zn,1) in the basis formed by these n + 1 vectors (the elements of cox,
on the other hand, have coordinates of the form (z1,...,x,,0)). Note that the
projective completion process justifies, at long last, the representation of image
and scene points by homogeneous coordinates introduced in Chapter 5 and used
throughout this book.

14.1.4 Hyperplanes and Duality

As mentioned before, the introduction of hyperplanes at infinity frees projective
geometry from the exceptions that plague affine geometry. For example, in the pro-
jective plane, two distinct lines have exactly one common point (possibly at infinity).
Likewise, two distinct points belong to exactly one line. These two statements can
actually be taken as incidence axioms, from which the projective plane can be con-
structed axiomatically. Points and lines play a symmetric, or more precisely dual
role in these statements.

To introduce duality a bit more generally, let us equip the n-dimensional projec-
tive space P(E) with a fixed projective frame and consider n+1 points Py, Py, ..., P,

space and would be out of place here. See [?, Chapter 5] for details.
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lying in some hyperplane S,,_; of P(E). Since these points are by construction lin-
early dependent, the (n+ 1) x (n + 1) matrix formed by collecting their coordinate
vectors is singular. Expanding its determinant with respect to its last column yields

ULy + U1x1 + ... + upzy = 0, (14.1.1)

where (zg,z1,...,2,) denote the coordinates of P, and the coeflicients u; (i =
0,1,...,n) are functions of the coordinates of the points P; (j =0,1,...,n—1).

Equation (14.1.1) is satisfied by every point P, in the hyperplane S,,_1, and it is
called the equation of S,,_;. Conversely, it is easily shown (see exercises) that any
equation of the form (14.1.1) where at least one of the coefficients u; is non-zero
is the equation of some hyperplane. Since the coefficients w; in (14.1.1) are only
defined up to some common scale factor, there exists a one-to-one correspondence
between the rays of R™™! and the hyperplanes of P(E), and it follows that we can
define a second projective space P(E*) formed by these hyperplanes (this notation
is justified by the fact that P(E*) can be shown to be the projective space associated
with the dual vector space E* of E).

It can also be shown that any geometric theorem that holds for points in P(E)
induces a corresponding theorem for hyperplanes (i.e., points in P(E*)) and vice
versa. The two theorems are said to be dual of each other. For example, points and
lines are dual notions in IP?, while points and planes are dual in P32

14.1.5 Cross-Ratios

From now on we will focus on the three-dimensional projective space formed by the
projective closure of the physical affine space surrounding us. Non-homogeneous
projective coordinates of a point can be defined geometrically in terms of cross-
ratios: in the affine case, given four collinear points A, B, C, D such that A, B and
C are distinct, we define the cross-ratio of these points as

CA DB
h D)=[A B,C,D %22 « 2=
ABC( ) [7 s Uy ] CBXDA7

where PQ denotes the signed distance between two points P and @ for some choice
of orientation of the line A joining them. The orientation of this line is fixed but
arbitrary, since reversing it will obviously not change the cross-ratio. Note that
[A, B,C, D] is, a priori, only defined when D # A since its calculation involves a
division by zero when D = A. We extend the definition of the cross-ratio to the
whole affine line by using the symbol co to denote the ratio formed by dividing

2 At this point we cannot resist quoting Samuel [?], who mentions an early ninenteenth-century
controversy on the basis of duality between points and lines in the plane. After contrasting the
views of Gergonne and Poncelet (the former, that emphasizes the structural similarity of the
projective spaces formed by points and lines, is closer to the modern view of duality), Samuel goes
on to write: “Since Poncelet was a general and the head of the Ecole Polytechnique, and Gergonne
a mere captain in the French artillery, it was the former’s point of view that prevailed, at least
among their French contemporaries.”
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What is the dual of a line of P(E)? A line is a one-dimensional linear subspace
of P(E), whose elements are linearly dependent on two points on the line.
Likewise, a line of P(E*) is a one-dimensional subspace of the dual, called a
pencil of hyperplanes, whose elements are linearly dependent on two hyperplanes
in the pencil. In the plane, the dual of a line is a pencil of lines intersecting at
a common point.

In three dimensions, the dual of a line is a pencil of planes, intersecting along
a common line.

Example 14.5: Duality

any non-zero real number by zero, and to the whole projective line A by defin-
ing [A, B,C,00a] = CA/CB. Alternatively, given three points 4, B and C on a
projective line A, the cross-ratio can also be defined as the unique projective trans-
formation hagc : A — R mapping A onto the projective completlon R=RUcx
of the real line such that h(A) = oo, h(B) = 0 and h(C) =

Given a projective frame (A, A1, A) for a line A, and a point P lying on A with
homogeneous coordinates (xg, 1) in that frame, we can define a non-homogeneous
coordinate for P as kg = xo/x1. The scalar ko is sometimes called projective pa-
rameter of P, and it is easy to show that ko = [Ao, A1, A2, P].

As noted earlier, a set of lines passing through the same point O is called a
pencil of lines. The cross-ratio of four coplanar lines A1, Ao, A3 and A4 in some
pencil is defined as the cross-ratio of the intersections of these lines with any other
line A in the same plane that does not pass through O, and it is easily shown to be
independent of the choice of A (Figure 14.2).

Consider now four planes II;, I, IT3 and II4 in the same pencil, and denote by
A their common line. The cross-ratio of these planes is defined as the cross-ratio of
the pencil of lines formed by their intersection with any other plane II not containing
A (Figure 14.3). Once again, the cross-ratio is easily shown to be independent of
the choice of II.
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Figure 14.2. Definition of the cross-ratio of four lines. As shown in the exercises, the
cross-ratio [A, B,C, D] depends only on the three angles a, 8 and . In particular, we
have [A4,B,C,D] = [A’,B’,C’, D].

A

IT, 1—[4

Figure 14.3. The cross-ratio of four planes.

In the plane, the non-homogeneous projective coordinates (ko, k1) of the point
P in the basis (Ag, A1, Aa, A) are defined by kg = zo/x2 and k1 = x1/x2, and it
can be shown that

ko = [A1Ap, A1 A2, A1 A, A1 P,
k1 =[AoA1, AgAa, AgA, AgP],

where M N denotes the line joining the points M and N, and [Aq, Az, Ag, Ay
denotes the cross-ratio of the pencil of lines A1, Ag, Az, Ay.

Similarly, the non-homogeneous projective coordinates (ko, k1, k2) of the point
P in the basis (A, A1, A, A3z, A) are defined by ko = zo/z3, k1 = z1/x3 and
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ko = x9/x3, and it can be shown that

ko =[A1A2Ag, A1 A2 A3, A1 Az A, A1 AP,
k1 =[A2ApA;, Ay AgAs, AsAgA, Ay AP,
ko = [AgA1 A, AgA1As, AgA1 A, Ag A, P],

where LM N denotes the plane spanned by the three points L, M and N, and
[II;, IT2, II5, I14] denotes the cross-ratio of the pencil of planes Iy, Iy, II3, I4.

14.1.6 Application: Parameterizing the Fundamental Matrix

Before attacking the main topic of this chapter, i.e., the estimation of the projective
structure of a scene from multiple images, let us give as an example an important
application of projective geometry to vision by revisiting the problem of determining
the epipolar geometry of two uncalibrated cameras. This problem was introduced
in Chapter 11, where we gave without proof an explicit parameterization of the
fundamentel matrix. We now construct this parameterization. Let us denote by e
and ¢’ the epipoles associated with the two images and define the epipolar trans-
formation as the mapping from one set of epipolar lines onto the other one: as
shown in [?] and illustrated by Figure 14.4, this transformation is a homography.
Indeed, the epipolar planes associated with the two cameras form a pencil whose
spine is the baseline joining the two optical centers. This pencil intersects the cor-
responding image planes along the two families of epipolar lines, and the cross-ratio
of any quadruple of lines in either family is of course the same as the cross-ratio
of the corresponding planes. In turn, this means that the epipolar transformation
preserves the cross-ratio and is therefore a projective tranformation.

Figure 14.4. Epipolar geometry: corresponding epipolar lines in the two images form
pencils of lines in projective correspondence.
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In particular, if the epipolar line [ with slope 7 in the first image is in correspon-
dence with the epipolar line I’ with slope 7/ in the second image, then, as shown in

the exercises,
at + b

er+d’
where a, b, ¢, d are the coefficients of the homography, and

'U_B /_’U/_B/

7=
u—a’ u! r

T = (14.1.2)

T =
—

where p = (u,v)” and p’ = (u/,v")T are the coordinate vectors of corresponding
points, and e = (o, 3)T and € = (a/, )T are the positions of the epipoles. This
homography is the epipolar transformation. As shown in [?] and in the exercises,
the coefficients of the fundamental matrix can be computed from the positions of the
epipoles and a, b, ¢, d, and vice versa. In particular, we obtain the parameterization
of F given without proof in Chapter 11, i.e.,

b a —af — ba
F = —d —c cB +da
df’ —ba’ B —aa' —cB6 —dB o+ aBa’ + bao

14.2 Projective Scene Reconstruction from Two Views

The rest of this chapter is concerned with the recovery of the three-dimensional
structure of a scene assuming that n points have been tracked in m images of this
scene. This section focuses on the case of two images. The general multi-view
problem will be revisited in the next two sections.

14.2.1 Analytical Scene Reconstruction

The perspective projection equations introduced in Chapter 5 extend naturally to
the projective completion of the physical three-dimensional affine space. In partic-
ular, let us consider five points A; (i = 0,...,4) and choose them as a basis for this
projective space, with A4 playing the role of the unit point. We consider a camera
observing these points, with projection matrix M, and denote by a; (: = 0,...,4)
the images of these points, and choose the points ay to a3 as a projective basis of
the image plane, as being this time the unit point. We also denote by «a, 8 and ~
the coordinates of a4 in this basis.
Writing, for ¢ =0, ...,4 that z;a; = M A, yields immediately

zo 0 0 23 z4 = zg + 23,
M=10 2z 0 =z and z40 = 21 + 23,
0 0 2z =z 24y = 22 + 23.

Since a perspective projection matrix is only defined up to scale, we can divide
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its coefficients by z3, and defining A = z4/23 yields

Aa—1 0 0 1
M = 0 A3—1 0 1
0 0 Ay—1 1
Let us now suppose we have a second image of the same scene, with projection

matrix M’ and image points a} (i = 0,...,4). The same construction applies in
this case, and we obtain

Nao' —1 0 0 1
M = 0 N3 -1 0 1
0 0 Ny -1 1

The stereo configuration of our two cameras is thus completely determined by
the two parameters A and \. The epipolar geometry of the rig can now be used
to compute these parameters: let us denote by C the optical center of the first
camera and by €’ the associated epipole in the image plane of the second camera,
with coordinate vectors C and €’ in the corresponding projective bases. We have

MC = 0 thus
1 1 1

1—)\0471—)\6’1—)\7’1
and substituting in the equation M’'C = €’ yields

Na' -1 N3 -1 Ny —1
Aa—1"" M-1"" Mm-1

C=( )

K

e=01- e
Now, if ¢’ and v’ denote this time the non-homogeneous coordinates of €’ in the
projective basis formed by the points a}, we finally obtain

'y =Ny )Aa—1) = (Aa — Na')(xy - 1),
{ 5’@1 - X%(Aﬁ —1)=(\3— )\/6/)()\:;_ 1), (14.2.1)

A system of two quadratic equations in two unknowns A and A’ such as (14.2.1)
admits in general four solutions, that can be thought of as the four intersections
of the conic sections defined by the two equations in the (A, \') plane. Inspection
of (14.2.1) reveals immediately that (A, X)) = (0,0) and (\, X)) = (1/v,1/7') are
always solutions of these equations. It is easy (if a bit tedious) to show that the
two remaining solutions are identical (geometrically the two conics are tangent to
each other at their point of intersection), and that the corresponding values of the
parameters A and )\ are given by

/ / /

uooa o« L oo o
Det| v B fF Det|v B G

/ /

A= L VR Ly 7y
va a «a ua' a o«

Det | v'6 B [ Det | vs' 6

v oy Y Yooy Y
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These values uniquely determine the projection matrices M and M’. Note
that taking into account the equations defining the second epipole would not add
independent constraints because of the epipolar constraint that relates matching
epipolar lines. Once the projection matrices are known, it is a simple matter to
reconstruct the scene points.

14.2.2 Geometric Scene Reconstruction

We now give a simple geometric alternative to the analytical approach presened in
the previous section. Choosing the optical centers of the cameras as part of the
points that define the projective frame will simplify the construction in this case.
Let us start by fixing the notation (Figure 14.5). Suppose that we observe four
non-coplanar points A, B, C, D with a weakly calibrated stereo rig. Let O’ (resp.
O") denote the position of the optical center of the first (resp. second) camera.
For any point P, let p’ (resp. p”’) denote the position of the projection of P into
the first (resp. second) image, and P’ (resp. P”) denote the intersection of the ray
O'P (resp. O"P) with the plane ABC. The epipoles are ¢’ and ¢’ and the baseline
intersects the plane ABC in E. (Clearly, E' = E”" = E, A’ = A" = A, etc.)

D

C

Figure 14.5. Geometry of the three-point problem.

We choose A, B,C,0’,0" as a basis for projective three-space, and our goal
is to reconstruct the position of D. Choosing a’, b, ¢/, e’ as a basis for the first
image plane, we can measure the coordinates of d’ in this basis and reconstruct the
point D’ in the basis A, B, C, E of the plane ABC. Similarly, we can reconstruct
the point D" from the projective coordinates of d’ in the basis a”’,b”,c”, e"” of the
second image plane. The point D is finally reconstructed as the intersection of the
two lines O'D’ and O"D".
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We can now express this geometric construction in algebraic terms. It turns out
to be simpler to reorder the points of our projective frame and to calculate the non-
homogeneous projective coordinates of D in the basis formed by the tetrahedron
A,0"”,0', B and the unit point C. These coordinates are defined by the following
three cross-ratios:

ko = [0"0'A,0"0'B,0"0'C,0"0' D],
ky = [0'AO",0'AB, 0" AC, 0’ AD] (14.2.2)
ky = [AO"0', AO" B, AO"C, AO" D).

By intersecting the corresponding pencils of planes with the two image planes
we immediately obtain the values of kg, k1, k2 as cross-ratios directly measurable in
the two images:

k,o — |:e/al/7 e/b/7 6/0/7 e/d/] — [6”(1”, e//b//, e//c//, e//d//] ,

!,/ AN} /.0 !9/
ki =[d'e,ad't,d'c,ad'd], (14.2.3)
k,2 — |:al//e//7 a://b//, a”C”, a//d//] X

Note that, for any choice of positions for the reference points, ko, k1, and ko can
be used to reconstruct D as the intersection of the three planes O'O” D, AO’'D, and
AO"D. As shown in the exercises, similar methods can be used to reconstruct the
scene when the five basis points are chosen arbitrarily.

Figure 14.6 illustrates this method with data consisting of 46 point correspon-
dences established between two images taken by weakly-calibrated cameras. Figure
14.6(a) shows the input images and point matches. Figure 14.6(b) shows a view of
the corresponding projective scene reconstruction, the raw projectives coordinates
being used for rendering purposes. Since this form of display is not particularly
enlightening, we also show in Figure 14.6(c) the reconstruction obtained by apply-
ing to the scene points the projective transformation mapping the three reference
points (shown as small circles) onto their calibrated Euclidean positions. The true
point positions are displayed as well for comparison.

14.3 Motion Estimation from Two or Three Views

The methods given in the previous two sections reconstruct the scene relative to
five of its points, thus the quality of the reconstruction will strongly depend on
the accuracy of the localization of these points in the two images. In contrast,
the approach presented in this section takes all points into account in a uniform
manner and uses the multilinear constraints introduced in Chapter 11 to reconstruct
the camera motion in the form of the associated projection matrices.

14.3.1 Motion Estimation from Fundamental Matrices

As seen in Chapter 11, the general form of the fundamental matrix is

F =K Tt RK' 71,
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(b) (¢)

Figure 14.6. Geometric point reconstruction: (a) input data; (b) raw projective coor-
dinates; (c) corrected projective coordinates. Reprinted from [?], Figures 1 and 9.

where the projection matrices associated with the two cameras are M = (K 0)
and M’ = K'RT (Id —t). Here, K and K’ are 3 x 3 calibration matrices, and R
and t specify the rigid transformation relating the two cameras’ coordinate systems.

Since in the projective setting the scene structure and the camera motion are
only defined up to an arbitrary projective transformation, we can always reduce the
first projection matrix to the canonical form M = (Id 0) by postmultiplying it

by the matrix
K=t o
H = ( C[T 6) )

where a is an arbitrary element of R® and 3 is an arbitrary non-zero real number.
It is easy to show that this four-parameter family of matrices is the most general
class of projective transformations that achieve the desired reduction.

Let us define 4 = K'RTK~! and b = —BK'RTt. When postmultiplied by H,
the second projection matrix takes the general form

1
M =(B b), where B:A+BbaT. (14.3.1)



Section 14.3. Motion Estimation from Two or Three Views 381

The vector b can be thought of as the homogeneous coordinate vector of the
second epipole in the corresponding image coordinate system.

Let us derive an alternate expression for the fundamental matrix using the new
form of the projection matrices. If P € IR® denotes the non-homogeneous coordinate
vector of the point P in the world coordinate system, we can write the projection
equations associated with the two cameras as

zp=P and Z'p'=BP +b,

which can be rewritten as
Z'p' = z2Bp + b.

It follows that z’bx p’ = zb x Bp, and forming the dot product of this expression
with p’ finally yields

pFp =0 where F % BT[by].

This parameterization of the matrix F provides a simple method for computing
the projection matrix M’. First note that since the overall scale of M’ is irrelevant,
we can always take |b] = 1. Under this constraint, M’ is still only defined up to
the four-parameter class of transformations specified by (14.3.1), and this allows
us to choose o = —B.ATb, which in turn ensures that B7b = 0 when b has unit
norm. These choices allow us to first compute b as the linear least-squares solution
of Fb = 0 with unit norm, then pick B = [by|F” since

[by]FT = —[by]*B

and it is easy to show for any vector a, [ax]? = aa” — |a|?Id.

Once the matrix M is known, we can compute the position of any point P by
solving in the least-squares sense the non-homogeneous linear system of equations
in z and 2’ defined by z’p’ = zBp + b. Various alternatives to this technique are
discussed in [?; ?].

14.3.2 Motion Estimation from Trifocal Tensors

Here we rewrite the uncalibrated trilinear constraints derived in Chapter 11 in a
projective setting. Recall that we wrote the projection matrices associated with
three cameras as

Mlz(lcl 0), MQZ(.AQICl G,Q) and M?,:(.Aglcl ag).

Since in the projective case the scene structure and the camera motion can
only be recovered up to an arbitrary transformation, we can postmultiply the three
matrices by the matrix H defined in the previous section. We obtain

Mlz(ld 0), MQZ(BQ bz) and M?,:(Bg bg),
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. . . 1
where, similar to the previous section, we have b; = Ba; and B; = A; + =b;a” for

B
i=2,3.
Under this transformation, by and bs can still be interpreted as the homoge-
neous image coordinates of the epipoles e12 and e;3, and the trilinear constraints of
Chapter 11 still hold, with the trifocal tensor defined this time by the three matrices

Gi = b,B — Bibt, (14.3.2)

and B and B} (i = 1,2, 3) denote the columns of By and Bs.

Assuming that the trifocal tensor has been estimated from point or line corre-
spondences as described in Chapter 11, our goal in this section is to recover the
projection matrices My and Ms. Let us first observe that

(ba x B3)"Gi = [(ba x B3) bo] B — [(b2 x B3)" Bilb; =0,
and, likewise,
Gi(bs x By) = [Bi' (bs x Bj)|by — [bs (bs x Bj)|BS = 0.

It follows that the matrix G! is singular (a fact already mentioned in Chapter
11) and that the vectors by x Bh and bz x Bg lie respectively in its left and right
nullspaces. In turn, this means that, once the trifocal tensor is known, we can
compute the epipole by (resp. bs) as the common normal to the left (resp. right)
nullspaces of the matrices Gi (=i =1,2,3) [?].

Once the epipoles are known, writing (14.3.2) for ¢ = 1,2, 3 provides 27 homo-
geneous linear equations in the 18 unknown entries of the matrices B; (j = 2,3).
These equations can be solved up to scale using linear least squares. Alternatively,
it is possible to estimate the matrices B; directly from the trilinear constraints
associated with pairs of matching points or lines by writing the trifocal tensor coef-
ficients as functions of these matrices, which leads once again to a linear estimation
process.

Neither of these methods determines the matrices M; and My uniquely of
course. If desired, this ambiguity can be eliminated by imposing various constraints
on the vectors by and bs. For example, Hartley [?] suggests imposing that by be a
unit vector orthogonal to the columns of By, which can be achieved as in the last
section for an appropriate choice for a.

Once the projection matrices have been recovered, the projective structure of
the scene can be recovered as well by using the perspective projection equations
as linear constraints on the homogeneous coordinate vectors of the observed points
and lines.

14.4 Motion Estimation from Multiple Views

Section 14.3 used the epipolar and trifocal constraints to reconstruct the camera
motion and the corresponding scene structure from a pair or a triple of images.
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Likewise, the quadrifocal tensor introduced in Chapter 11 can in principle be used to
estimate the projection matrices associated with four cameras and the corresponding
projective scene structure. However, multilinear constraints do not provide a direct
method for handling m > 4 views in a uniform manner. Instead, the structure
and motion parameters estimated from pairs, triples, or quadruples of successive
views must be stitched together iteratively, as described for example in [?; ?]. We
now present an alternative where all images are taken into account at once in a
non-linear optimization scheme.

14.4.1 A Factorization Approach to Projective Motion Analysis

In this section we present a factorization method for motion analysis due to Ma-
hamud and Hebert [?] that generalizes the algorithm of Tomasi and Kanade pre-
sented in Chapter 13 to the projective case. Given m images of n points we can
rewrite (14.0.1) as

D = MP, (14.4.1)
where
Z11P11  212P1a2  ---  Z1nPin M
pE | TPa EPa e BePa o Mz | and P (P Py L Py
ZmiPm1  Zm2Pma -+ ZmnPmn M,

In particular, the 3m x n matrix D has (at most) rank 4, thus if the projective
depths z;; were known, we could compute M and P, just as in the affine case, by
using singular value decomposition to factor D. On the other hand, if M and P
were known, we could read out the values of the projective depths z;; from (14.4.1).
This suggests an iterative scheme for estimating the unknowns z;;, M and P by
alternating steps where some of these unknowns are held constant while others are
estimated. This section proposes such a scheme and shows that is guaranteed to
converge to a local minimum of a physically-significant objective function.

Ideally, we would like to minimize the mean-squared distance between the ob-
served image points and the point positions predicted from the parameters z;;, M;
and Pj, i.e.,

1 1
E=— = — M P2
mnizj|p” Zz'j J|

Unfortunately the corresponding optimization problem is difficult since the error
we are trying to minimize is highly non-linear in the unknowns z;;, M; and P;. In-
stead, let us define the vectors d; = (21;P1;, - - -, ZmjPpm;) " and z; = (215, .. ., 2Zm;) "
(j =1,...,n), and minimize

1 o 1
E=—E;, where E; <

= ——|dj — MP;|?
mn |dj|2| J J|
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with respect to the unknowns M, z; and P;. Note that the vectors z;, d; and P;
are defined up to a common scale factor. The normalizing factor 1/|d;|? in E; is
used to avoid the trivial solution where all three are zero.

As proposed earlier, we will minimize F iteratively by alternating steps where
motion paramaters are held constant while structure parameters are estimated and
vice versa.

Let us assume that we are at some stage of this minimization process, fix the
value of M to its current estimate and compute, for j = 1,...,n, the values of z;
and P; that minimize E;. These values will of course minimize ' as well.

Just as in the affine case discussed in Chapter 13, writing that the gradient

of E; with respect to the vector P; is zero yields P; = M'd;, where MT o
(MTM)=LMT is the pseudoinverse of M. Substituting this value in the definition
of E; yields
1
Ej = —|(Id — MM")d; .
|d;|

As noted in Chapter 13, the matrix MM/ associates with any vector in IR*™
its orthogonal projection onto the subspace Vi, spanned by the columns of M. It
follows immediately that minimizing F; with respect to z; and P; is equivalent to
minimizing the squared norm of the difference between d; and its projection onto
Vm under the constraint that d; has unit length.

Now, M is a 3m X 4 matrix of rank 4, whose singular value decomposition
UWVT is formed by the product of a column-orthogonal 3m x 4 matrix U, a 4 x 4
non-singular diagonal matrix W and a 4 x 4 orthogonal matrix V. The pseudoin-
verse of M is MT = VW~1UT and substituting this value in the expression of E;
immediately yields

1 1
= —olld —uu"]d;? = ——lld;|* — & U™ )d;) = 1
|d;] |d;]

In turn, this means that minimizing F; with respect to z; and P; is equivalent
to maximizing

1
df uur)d;.

E; _
! d;[*

d; UU™)d;
|d;?
with respect to z;.
Observing that
pfj 000 ... 000
T
d] =27Q;, where Q; def | 000 p3; ... 000 ,

000 000 ... pﬁj
finally shows that minimizing F; is equivalent to maximizing
T
Zj .Aj Zj

T
Zj Bij
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with respect to z;, with A; < QuuT QT and B, g, QT. This is a generalized

eigenvalue problem, whose solution is the generalized eigenvector associated with
the largest eigenvalue. If desired, the value of P; can be computed at this stage as
P; = MMid; = uu*d;.

Let us now fix z; (hence d;), and minimize E with respect to M and the
vectors P;. Writing that the gradient of E' with respect to P; is zero yields once
again P; = MM/'d;, thus

n 1 n 5
E=Y ——[Id- MMd;]> =" |(1d - MM)d,|%,
= |d;| =
~ e 1
where d; %' @
j

In other words, F measures the mean squared norm of the difference between
the unit vectors &j and their orthogonal projections onto the subspace Vi spanned
by the columns of M. As in the affine case, we now use Theorem 4, that states that
FE is minimum when V) is the range of the matrix U, formed by the four leftmost
columns of U, where UWVT denotes the singular value decomposition of the matrix
D whose columns are the unit vectors &j. In particular, the matrix M minimizing
E verifies Vpq =V, and we can take M = Us.

This yields the iterative procedure sketched below. Note that this procedure
does not explicitly maintain a separate copy of D. Instead, the columns of the
matrix D are normalized at each iteration.

Repeat:
1. normalize each column of the data matrix D;

2. compute the singular value decomposition UWVT of the matrix D, and set
U, to be the 3m x 4 matrix formed by the four leftmost columns of U;

3. forj=1,...,ndo:
(a) compute A; = Q;UsUU} Q; and B; = Q; Q?;

(b) solve the generalized eigenvalue problem A;z = A\B;z and set z; to be
the generalized eigenvector associated with the largest eigenvalue;

(¢) update the corresponding column of D;

until convergence.

Algorithm 14.1: A factorization algorithm for projective shape from motion.

It should be noted that this algorithm is guaranteed to converge to some local
minimum of the error function E. Indeed, let Fy be the current error value at the
beginning of each iteration; the first two steps of the algorithm do not change the
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vectors z; but minimizes £ with respect to the unknowns M and P;. If E; is the
value of the error at the end step 2, we have therefore Fo < FEy. Now step 3 does
not change the matrix M but minimizes each error term F; with respect to both
the vectors z; and P;. Therefore the error E3 at the end of this step is smaller
than or equal to Fy. This shows that the error decreases in a monotone manner at
each iteration, and since it is bounded below by zero, we conclude that the process
converges to a local minimum of E.

Whether this local minimum will turn out to be the global one depends, of
course, on the choice of initial values chosen for the various unknown parameters.
A possible choice, used in the experiments presented in [?], is to initialize the projec-
tive depths z;; to 1, which effectively amounts to starting with a weak-perspective
projection model. The authors also report that the data preprocessing suggested by
Hartley [?] and already used in the normalized eight-point algorithm for weak cali-
bration described in Chapter 11 improves the robustness of the algorithm. Figure
14.7(a) shows two images in a sequence of 20 pictures of an outdoor scene. A total
of 30 points were tracked manually across the sequence, with a localization error
of F1 pixel. Figure 14.7(b) plots the evolution of the average and maximum error
between the observed and predicted image point positions when various subsets of
the image sequence are used for training and testing.

14.4.2 Bundle Adjustment

Given initial estimates for the matrices M; (i = 1,...,m) and vectors P; (j =
1,...,n), we can refine these estimates by using non-linear least squares to minimize
the global error measure

1 'I’nﬂ'Pj2 miQ-PjQ
B = o Dl = g (s = )
This is the method of bundle adjustment, whose name originates from the field of
photogrammetry. Although it may be expensive, it offers the advantage of combin-
ing all measurements to minimize a physically-significant error measure, namely the
mean-squared error between the actual image point positions and those predicted
using the estimated scene structure and camera motion.

14.5 From Projective to Euclidean Structure and Motion

Although projective structure is useful by itself, in most cases it is the Euclidean,
or metric structure of the scene which is the true object of interest. Let us assume
that one of the techniques presented in Section 14.4 has been used to estimate the
projection matrices M; (i = 1,...,m) and the point positions P; (j = 1,...,n)
from m images of these points. We know that any other reconstruction and in par-
ticular a metric one will be separated from this one by a projective transformation.
In other words, if M; and 15j denote the metric shape and motion parameters,
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T
max eror (alternate)
max error (inner) ~------
average error (alternate) -
8p ‘average error (inner) 1

Figure 14.7. Iterative projective estimation of camera motion and scene structure: (a)
the first and last images in the sequence; (b) plot of the average and maximum reprojection
error as a function of iteration number. Two experiments were conducted: in the first one
(alternate) alternate images in the sequence are used as training and testing datasets; in
the second experiment (inner), the first five and last five pictures were used as training
set, and the remaining images were used for testing. In both cases, the average error falls
below 1 pixel after 15 iterations. Reprinted from [?], Figure 4.

there exists a 4 x 4 matrix Q such that ./\;Q = M;Q and Pj = Q‘le (the matrix
Q is of course only defined up to an arbitrary similarity, i.e., rigid transformation
plus scaling). This section presents a number of methods for computing the met-
ric upgrade matrix Q and thus recovering the metric shape and motion from the
projective ones.

14.5.1 Metric Upgrades from (Partial) Camera Calibration

It is a simple matter to adapt the affine method introduced in Chapter 13 to the
projective setting when the intrinsic parameters of all cameras are known: indeed,
the 3 x 3 matrix formed by the three leftmost columns of each matrix M, is in
this case a rotation matrix scaled by an unknown factor. Writing that its rows are
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perpendicular to each other and have the same length yields

AT A~

m;;Mm;2 = ma Qs ngw =0,

AT A~

m;om;3 = mg Qs ngiB =0,

AT A~

Mz = mi3Q30im; =0, (14.5.1)

T - T - T T T T _
My My — MM = m;; Q393 my; — mjp, Q3 Q3 mys =0,

AT A T T T T T
MioMis — MMz = M Q33 Mz — Mj3Q3903 Mz =0,

where Q3 is the 4 x 3 matrix formed by the three leftmost columns of Q. To
determine Q uniquely, we can for example assume that the world coordinate system
and the first camera’s frame coincide. Given m images, we obtain 12 linear equations
and 5(m — 1) quadratic ones in the coefficients of Q. These equations can be solved
using non-linear least squares.

Alternatively, the constraints (14.5.1) are linear in the coefficients of the sym-
metric matrix A % Q3097 allowing its estimation from at least two images via
linear least squares. Note that A has rank 3, a constraint that is not enforced by
our construction. To recover Qs, let us also note that since A is symmetric, it can
be diagonalized in an orthonormal basis as A = UDUT, where D is the diagonal
matrix formed by the eigenvalues of A and U is the orthogonal matrix formed by
its eigenvectors. In the absence of noise, A is positive semidefinite with three posi-
tive and one zero eigenvalues, and Q3 can be computed as Uz+/D3, where Us is the
matrix formed by the columns of U inassociated with the positive eigenvalues of A,
and Dj is the corresponding sub-matrix of D. Because of noise, however, A will
usually have maximal rank, and its smallest eigenvalue may even be negative. As
shown in the exercises, if we take this time /3 and D3 to be the sub-matrices of I/
and D associated with the three largest (positive) eigenvalues of A, then UsDsUT
provides the best positive semidefinite rank-3 approximation of A in the sense of
the Frobenius norm,3 and we can take as before Q3 = Us+/Ds.

This method can easily be adapted to the case where only some of the intrinsic
camera parameters are known: let us write the metric upgrade matrix as Q =
(Q3,q,), where Qs is as before a 4 x 3 matrix and g, is a vector in IR*. We can
rewrite the equation /\;lz = M;Q as

Mi(Q3,4q4) = Ki(Ri, t;) = M;Q3 = KR,

where K;, R; and t; denote respectively the matrix of intrinsic parameters, the
rotation matrix and the translation vector associated with M;.
Using the fact that R; is an orthogonal matrix allows us to write

MAMT = KKT. (14.5.2)

Thus every image provides a set of constraints between the entries of IC; and A.
Assuming for example that the center of the image is known for each camera, we

3Note the obvious similarity between this result and Theorem 3.
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can write the square of the matrix /C; as

1 cos 0;
- —aiffi——— 0
% sin® 0, o sin? 6;
KKl = cos 0; 5 1
‘ —ifi —— o 0
@ sin® 6; A sin® 0,
0 0 1

In particular, the part of Equation (14.5.2) corresponding to the zero entries of
KCKT provides two independent linear equations in the ten coefficients of the 4 x 4
symmetrix matrix A. With m > 5 images, these parameters can be estimated via
linear least squares. Once A is known, Q can be estimated as before. Figure 14.8
shows a texture-mapped picture of the 3D model of a castle obtained by a variant
of this method [?].

Figure 14.8. A synthetic texture-mapped image of a castle constructed via projective
motion analysis followed by metric upgrade. The principal point is assumed to be known.
Reprinted from [?], Figure 6.13.

14.5.2 Metric Upgrades from Minimal Assumptions

We now consider the case where the only constraint on the intrinsic parameters is
that the pixels be rectangular, a condition satisfied (to a very good approximation)
by all digital cameras. Theorem 2 in Chapter 5 shows that arbitrary 3 x 4 matrices
are not zero-skew perspective projection matrices. It can therefore be hoped that
better-than-projective reconstructions of the world can be achieved for zero-skew
cameras. We will say that a projective transformation Q preserves zero skew when,
for any zero-skew perspective projection matrix M, the matrix M@ is also a zero-
skew perspective projection matrix. Heyden and Astrom [?] and Pollefeys et al. [?]
have independently shown the following important result.

Theorem 5: The class of transformations that preserve zero skew is the group of
similarity transformations.
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The proof of this theorem is constructive: for example, Pollefeys et al. [?] exhibit
a set of eight camera positions and orientations that constrain the transformation
to be a similarity. Unfortunately, it does not provide a method for estimating
the camera calibration parameters. We use in this section the elements of line
geometry presented in Chapter 5% to derive a linear (or rather linearized) technique
that exploits the zero-skew constraint to compute a metric upgrade of a projective
reconstruction.

This section provides an algebraic and geometric characterization of the 4 x 4
matrices Q such that, if M = MQ, the rows of M satisfy the condition of Theorem
2. We write the matrices M, M and Q as

N 'I’hT 7’?744 m{
M= |y gy |, M= |[my | and Q=(a1 @ ¢ da).
mg m34 mg

Note that the vectors m,; and g, are elements of R* but the vectors m; are
elements of R®. With this notation, we have the following result [?].

Theorem 6: Given a projection matrix M and a projective transformation Q, a
necessary and sufficient condition for the matriz M = MQ to satisfy the zero-skew
constraint

(Thl X 'I’hg) . (Thg X 'I’hg) =0

is that
ATRTRu =0, (14.5.3)
where
(g2 A g3)”
RY [ (@srna)? |, A miAms and p % myAms.
(g1 N qy)”

The proof of this theorem relies on elementary properties of the exterior product
to show that m; x m3 = RA and M9 X m3 = Ru, from which the theorem
immediately follows (see exercises).

A matrix Q satisfying (14.5.3) can be estimated from m images using linear

methods: we first use linear least squares to estimate the matrix S def RTR, then
take advantage of elementary properties of symmetric (but possibly indefinite) ma-
trices to factor S and compute R. Once R is known, it is a simple matter to deter-
mine the matrix Q using once again linear least squares. This approach linearizes
the estimation process since (14.5.3) is an equation of degree 4 in the coefficients of
Q. It is easy to show (see exercises) that the columns of the matrices R and S are
the Pliicker coordinates of a family of lines and it follows that their entries satisfy
a number of quadratic constraints as well as the linear constraint:

S16 — Sos + 534 = 0.

4This may be a good time to look back at that chapter to brush up on your line geometry.
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We can now estimate the matrix S. Let us first note that (14.5.3) is a linear
constraint on the coefficients of S, that can be rewritten as

6
Z Aiti Sii + Z (Nittj + Ajpi)Si; =0 (14.5.4)

i=1 1<i<j<6

where the coefficients \; and p; denote the coordinates of the vectors A and p and
the 20 coefficients S;; denote the entries of S. The unknown Si can be eliminated
by using the constraint S15 — Sos5 + S34 = 0 and the fact that, since the lines
associated with the vectors A and p both lie in the focal plane, we have (A|p) = 0.
This allows us to and rewrite (14.5.4) as

Z AZMS“ + Z 1,uj + Ajui)&j + a25525 + 434534 = 0, (14.5.5)
1<i<j<6

i+j AT

where
{ azs = 2(Aaps + Aspiz) — (Aspea + Aapis),
azs = 2(Aspia + Aapz) — (Mapts + Aspiz),
and the missing elements in the second sum in (14.5.5) correspond to the terms Syg,
SQ5 and 534.

With only 20 out of the 21 original unknown coefficients left, writing (25.5.1) for
m > 19 images yields an overdetermined homogeneous system of linear equations
of the form As = 0, where A is an m x 20 data matrix and s is the vector formed
by the 20 independent coefficients of S. The least-squares solution of this system
is computed (up to an irrelevant scale factor) using the techniques described in
Chapter 5. The Si¢ entry is then computed as Sz5 — S34. Note that this linear
process ignores the quadratic equations satisfied by the entries of the matrix S.
Once the symmetric matrix S = RTR is known, it can be used to estimate the
rank-3 matrix R via eigenvalue decomposition, just as in the previous section.

Once the matrix R is known, we can recover the vectors g; (i =1,2,3) from R
using linear least squares, exactly as we recovered the vectors m; from the matrix
M in Chapter 5. Once the vectors g, are known, we can complete the construction
of Q by imposing, for example, that the optical center of the first camera be used
as origin of the world coordinate system. This translates into the fourth column
of M; being zero, and allows us to compute q, (up to scale) as the solution of
Miq, = 0. This unknown scale factor reflects the fact that absolute scale cannot
be recovered from images.

Let us conclude by noting that, given m projection matrices M;, the estimates
of the vectors q; (i = 1,2, 3) obtained from the linear least-squares process can be
refined using non-linear least-squares to minimize the average squared skew of the
projection matrices, i.e.,

m 2
1 Z Ai) - (Ruy)

— arcsm ,
m IRA | Rops)
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with respect to the vectors g, (i = 1,2, 3). The vector q, can then be computed as
before.

Figure 14.9(a) shows two views of the projective reconstruction of a desk scene
featuring a volleyball and a cylindrical box [?]. The data consists of 182 projection
matrices and 3506 points. Applying the method described in this section to this
reconstruction yields the results shown in Figure 14.9(b)-(c). The skew averaged
over the 182 input matrices is 5.68° after the linear stage of the algorithm, and
0.46° after its non-linear stage.

14.6 Notes

The short introduction to projective geometry given at the beginning of this chap-
ter focuses on the analytical side of things. See for example [?; ?; ?] for thorough
introductions to analytical projective geometry and [?] for an axiomatic presenta-
tion. Projective structure from motion is covered in detail in the excellent book by
Hartley and Zisserman [?].

As mentioned by Faugeras [?], the problem of calculating the epipoles and the
epipolar transformations compatible with seven point correspondences was first
posed by Chasles [?] and solved by Hesse [?]. The problem of estimating the epipo-
lar geometry from five point correspondences for internally calibrated cameras was
solved by Kruppa [?]. An excellent modern account of Hesse’s and Kruppa’s tech-
niques can be found in [?], where the absolute conic, an imaginary conic section
invariant through similarities, is used to derive two tangency constraints that make
up for the missing point correspondences. These methods are of course mostly of
theoretical interest since their reliance on a minimal number of correspondences
limits their ability to deal with noise. The weak-calibration methods of Luong et
al. [?; 7] and Hartley [?] described in Chapter 11 provide reliable and accurate
alternatives.

Faugeras [?] and Hartley et al. [?] introduced independently the idea of using a
pair of uncalibrated cameras to recover the projective structure of a scene. Other
notable work in this area includes, for example, [?; ?]. Section 14.2.1 presents
Faugeras’ original method, and its geometric variant presented in Section 14.2.2 is
taken from [?]. Hartley [?; ?7; 7] developed the two- and three-view motion analysis
techniques also presented in this chapter.

An iterative algorithm for perspective motion and structure recovery using cali-
brated cameras is given in [?]. The extension of factorization approaches to structure
and motion recovery was first proposed by Sturm and Triggs [?]. Its variant due
to Mahamud and Hebert [?] presented in this chapter has the advantage of having
provable convergence.

The problem of computing metric upgrades of projective reconstructions when
some of the intrinsic parameters are known has been addressed by a number of
authors (e.g., [?; ?; ?]). The matrix A = Q307 introduced in Section 14.5 can be
interpreted geometrically as the projective representation of the dual of the absolute
conic, the absolute dual quadric [?]. Like the absolute conic, this quadric surface
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Figure 14.9. Computing metric upgrades of projective reconstructions: (a) two views
of the projective reconstruction of a simple scene, and its metric upgrades after (b) the
linear stage of the method presented in this section, and (c) its non-linear refinement stage.
Reprinted from [?], Figure 1.
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is invariant through similarities, and the (dual) conic section associated with ;KT
is simply the projection of this quadric surface into the corresponding image. Self-
calibration is the process of computing the intrinsic parameters of a camera from
point correspondences with unknown Euclidean positions. Work in this area was
pioneered by Faugeras and Maybank [?] for cameras with fixed intrinsic parameters.
A number of reliable self-calibration methods are now available [?; ?; 7], and they
can of course also be used to upgrade projective reconstructions to metric ones. The
problem of computing metric upgrades of projective reconstructions under minimal
camera constraints such as a zero skew was first addressed by Heyden and Astrom [?]
and Pollefeys et al. [?]. The method discussed in Section 14.5 was proposed in [?].
See also [?] for a related approach.

14.7 Assignments

Exercises

1. Show that the perspective projection mapping between two planes of IP? is a
projective transformation (Example 14.4).

Hint: If II and II' denote the two planes of IP? under consideration, and
V and V' denote the two corresponding planes of IR®, i.e., Il = P(V) and
Il = P(V’), construct the mapping f associated with the restriction to II of
the linear projection onto V' in the direction p=1(O).

2. In this exercise you will show that the cross-ratio of four collinear points A,
B, C and D is equal to

sin(8 + ) siny

A, B,C,D] =
4, 8,6, D] sin(a+ 3)sina’

where the angles a, § and v are defined as in Figure 14.2.
(a) Show that the area of a triangle PQR is
A(P,Q,R) = PQ x RH = PQ x PRsin®,

where P(Q denotes the distance between the two points P and @, H is
the projection of R onto the line passing through P and @, and 6 is the
angle between the lines joining the point P to the points @ and R.

(b) Define the ratio of three collinear points A, B, C as
AB

R(A,B,0) = =

for some orientation of the line supporting the three points. Show that
(A,B,C) = A(A, B,0)/A(B, C,0) where O is some point not lying on
this line.
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(c¢) Conclude that the cross-ratio [A, B, C, D] is indeed given by the formula
above.

3. Show that a collineation between two pencils of lines can be written as

, _ar+b

T = —
cr+d’

where 7 and 7' are the slopes of the lines.

Hint: Parameterize each pencil of lines by the vertical and horizontal lines in
the pencil.

Solution: Consider the first pencil and let a denote the common point of
its lines, with (non-homogeneous) coordinates (a,3) in some fixed coordi-
nate system. The vertical and horizontal lines in the pencil have coordinates
(1,0, —a) and (0,1, —0). In particular, any line in the pencil can be written
as (z,y, —ax — By), where z and y are homogeneous coordinates defined up to
scale. If the line passes through the point (u,v) we have (u—a)z+(v—08)y =0
or z = —wv and y = u — a. Using the same construction for the second line
and writing the collineation in matrix form yields

(wmw)= (e 2) (2=2)

v —p Al —p) — B(u—«a)

or

W—ao  Clw-—p)—Du—a)

and the result follows immediately by taking a = —A, b = B, ¢ = C and
d=—-D.

4. Show that the fundamental matrix F can be expressed as

b a —af — ba
F = —d —c cB+ da ,
df' —ba' B —aad’ —cB6 —dB o+ aBa’ + bao'

where (o, 8) and (¢/, ") denote the coordinates of the epipoles, and a, b, ¢
and d denote the coefficients of the epipolar transformation.

5. **Rewrite this as a true exercise.** Here we revisit the three-point reconstruc-
tion problem in the context of the homogeneous coordinates of the point D
in the projective basis formed by the tetrahedron (4, B,C,0’) and the unit
point O”. Note that the ordering of the reference points, and thus the order-
ing of the coordinates, is different from the one used earlier: this new choice
is, like the previous one, made to facilitate the reconstruction.
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D’

(x",y", 2
A

(1,0,0,0)

g ()u

(1,1,1,1)

O’
(0,0,0,1)
With this choice of coordinates, the point E where the baseline intersects the
plane ABC has coordinates (1,1,1,0). We denote the (unknown) coordinates
of the point D by (z,y, z, w), and equip the first (resp. second) image plane
with the triangle of reference a’,0’, ¢ (resp. a”,b”,¢”) and the unit point €’
(resp. €’), and denote by (z,y/, 2") (resp. (z”,y”,2")) the coordinates of the
point d’ (resp. d”).
Obviously, the coordinates of the points D’ and D" are simply (z’, v/, 2/, 0) and
(z"”,y",2",0). It remains to compute the coordinates of D as the intersection
of the two rays O'D’ and O”D".

We write D = NO' + /D' = N'O" + D", which yields:

i

x=pz =N+ p'"z",

— !,/ — A// _|_ 12 //,
e\ (14.7.1)
w=\ =M. ’

The values of ', u”, N are found (up to some scale factor) by solving the
following homogeneous system:

2 2" 1 '
-y Yy 1 w1 =0. (14.7.2)
— 1 2\

Note that the determinant of this equation must be zero, which corresponds
to D', D", and F being collinear. In practice, (14.7.2) is solved through linear
least-squares, and the values of x,y, z, w are then computed using (14.7.1).

**Rewrite this as a true exercise.** This exercise gives a geometric projective
scene reconstruction method when the projective frame is formed by five ar-
bitrary points A, B,C, D, F'. Here, we give a geometric construction of the
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points O, O”. Scene points can then be reconstructed using the three-point
approach. We change the notation a bit to avoid confusion. While F is still
the intersection of the baseline with the ABC plane, the rays O'D, O" D, O'F,
and O” F now respectively intersect this plane in G, H, I, and J. In addition,
the line DF intersects the plane in K, so this point is known as well.

The position of the projection of a point P in the first (resp. second) image
is as before denoted by p’ (resp. p”). (Clearly, ¢’ =d', i = f', b’ = d", and
]'// — f//')

We use the obvious fact that the points o', ¥',c, €', d’, b, f’, j/, k' and
a', v, ', e g", d’, i, f', k" are in projective correspondence. Note
that h',j’, ¢"”,1" are not directly observable in the images. However, we can
measure the projective coordinates of d = ¢’ and ¢/ = f’ in the o/, ¥, c, ¢
basis, and thus reconstruct g”,i” in the a”,b”,c”,e” basis. This yields the
point k" as the intersection of the lines g”’¢+"" and d" " = h"'j".

We now use the obvious projective correspondence between the points a”/, b,
g, i d"=h", f"=3", k" and A, B,C, G, I, H, J, K. From the projec-
tive coordinates of ¢, h",i”, 7" in the a”,b"”,c", k" basis, we reconstruct the
points G, H, I, J in the A, B, C, K basis. The final step of the reconstruction
yields the point O’ as the intersection of the lines DG and F'I, and the point
0" as the intersection of the lines DH and F'J.

The point P can also be reconstructed directly: we use the C, A, B, D, F basis
and the following cross-ratios

ko = [ABC, ABD, ABF, ABP],
ki = [BCA, BCD, BCF, BCP], (14.7.3)
ky = [CAB,CAD,CAF,CAP].

Once these three cross-ratios have been computed, P can be reconstructed
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as the intersection of the planes ABP, BCP, C AP for any choice of three-
dimensional coordinates for the points A, B,C, D, F'.

We detail the construction of ky. The other cross-ratios are obtained by
permuting the points in the basis and their construction is omitted for the sake
of conciseness. The diagram below shows the geometry of the reconstruction.
The baseline O’O” intersects the planes ABC, ABD, and ABF in three
(unknown) points Ej, Fs, and Fs3, and the visual ray O’P intersects these
three planes in @), R, and S respectively.

o’ CV1 baseline D/\ WF o
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As in the four-point case, we use the projective correspondence between the
first image plane equipped with the a’, V', ¢/, €’ basis, the plane ABC equipped
with the A, B, C, E; basis, and the second image plane equipped with the
a’,b", ", e basis, to reconstruct the image ¢’ of Q in the second image plane.
Likewise, we reconstruct the images 7, s of the points R, S by exploiting
planar projective correspondences. Since the four points @, R, S, P project
onto the four points ¢”, 7", s, p”, the latter are collinear, and the cross-ratios
of both four-tuples are the same.

Finally, intersecting the pencil ABC, ABD, ABF, ABP with the plane O’ AP,
we obtain:

ko = [AQ, AR, AS, AP] = [¢",r",s",p"]. (14.7.4)

Similar constructions can be used to compute the cross-ratios k1 and k.
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Chapter 15

SEGMENTATION USING
CLUSTERING METHODS

An attractive broad view of vision is that it is an inference problem: we have some
measurements, and we wish to determine what caused them, using a mode. There
are crucial features that distinguish vision from many other inference problems:
firstly, there is an awful lot of data, and secondly, we don’t know which of these
data items come from objects — and so help with solving the inference problem
— and which do not. For example, it is very difficult to tell whether a pixel lies
on the dalmation in figure 15.1 simply by looking at the pixel. This problem can
be addressed by working with a compact representation of the “interesting” image
data that emphasizes the properties that make it “interesting”. Obtaining this
representation is known as segmentation.

It’s hard to see that there could be a comprehensive theory of segmentation,
not least because what is interesting and what is not depends on the application.
There is certainly no comprehensive theory of segmentation at time of writing, and
the term is used in different ways in different quarters. In this chapter we describe
segmentation processes that have no probabilistic interpretation. In the following
chapter, we deal with more complex probabilistic algorithms.

Segmentation is a broad term, covering a wide variety of problems and of tech-
niques. We have collected a representative set of ideas in this chapter and in chap-
ter 77. These methods deal with different kinds of data set: some are intended for
images, some are intended for video sequences and some are intended to be applied
to tokens — placeholders that indicate the presence of an interesting pattern, say
a spot or a dot or an edge point (figure 15.1). While superficially these methods
may seem quite different, there is a strong similarity amongst them®. Each method
attempts to obtain a compact representation of its data set using some form of
model of similarity (in some cases, one has to look quite hard to spot the model).

One natural view of segmentation is that we are attempting to determine which
components of a data set naturally “belong together”. This is a problem known as
clustering; there is a wide literature. Generally, we can cluster in two ways:

IWhich is why they appear together!
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Figure 15.1. As the image of a dalmation on a shadowed background indicates, an
important component of vision involves organising image information into meaningful as-
semblies. The human vision system seems to be able to do so surprisingly well. The blobs
that form the dalmation appear to be assembled “because they form a dalmation,” hardly
a satisfactory explanation, and one that begs difficult computational questions. This pro-
cess of organisation can be applied to many different kinds of input. figure from Marr,
Vision, pagel01, in the fervent hope that permission will be granted

e Partitioning: here we have a large data set, and carve it up according to
some notion of the association between items inside the set. We would like
to decompose it into pieces that are “good” according to our model. For
example, we might:

— decompose an image into regions which have coherent colour and texture
inside them;

— take a video sequence and decompose it into shots — segments of video
showing about the same stuff from about the same viewpoint;

— decompose a video sequence into motion blobs, consisting of regions that
have coherent colour, texture and motion.

e Grouping: here we have a set of distinct data items, and wish to collect sets
of data items that “make sense” together according to our model. Effects like
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occlusion mean that image components that belong to the same object are
often separated. Examples of grouping include:

— collecting together tokens that, taken together, forming an interesting
object (as in collecting the spots in figure 15.1);

— collecting together tokens that seem to be moving together .

15.1 Human vision: Grouping and Gestalt

Early psychophysics studied the extent to which a stimulus needed to be changed
to obtain a change in response. For example, Webers’ law attempts to capture
the relationship between the intensity of a stimulus and its perceived brightness
for very simple stimuli. The Gestalt school of psychologists rejected this approach,
and emphasized grouping as an important part of understanding human vision. A
common experience of segmentation is the way that an image can resolve itself
into a figure — typically, the significant, important object — and a ground —
the background on which the figure lies. However, as figure 15.2 illustrates, what
is figure and what is ground can be profoundly ambiguous, meaning that a richer
theory is required.

Figure 15.2. One view of segmentation is that it determines which component of the
image forms the figure, and which the ground. The figure on the left illustrates one form
of ambiguity that results from this view; the white circle can be seen as figure on the black
triangular ground, or as ground where the figure is a black triangle with a circular whole
in it — the ground is then a white square. On the right, another ambiguity: if the figure
is black, then the image shows a vase, but if it is white, the image shows a pair of faces.
figure from Gordon, Theories of Visual Perception, page 65,66 in the fervent hope that
permission will be granted

The Gestalt school used the notion of a gestalt — a whole or a group — and
of its gestaltqualitit — the set of internal relationships that makes it a whole
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Figure 15.3. The famous Muller-Lyer illusion; the horizontal lines are in fact the same
length, though that belonging to the upper figure looks longer. Clearly, this effect arises
from some property of the relationships that form the whole (the gestaltqualitdt), rather
than from properties of each separate segment. figure from Gordon, Theories of Visual
Perception, page 71 in the fervent hope that permission will be granted

(e.g. figure 15.3) as central components in their ideas. Their work was charac-
terised by attempts to write down a series of rules by which image elements would
be associated together and interpreted as a group. There were also attempts to con-
struct algorithms, which are of purely historical interest (see [?] for an introductory
account that places their work in a broad context).

The Gestalt psychologists identified a series of factors, which they felt predis-
posed a set of elements to be grouped. There are a variety of factors, some of which
postdate the main Gestalt movement:

e Proximity: tokens that are nearby tend to be grouped.
e Similarity: similar tokens tend to be grouped together.

e Common fate: tokens that have coherent motion tend to be grouped to-
gether.

e Common region: tokens that lie inside the same closed region tend to be
grouped together.

e Parallelism: parallel curves or tokens tend to be grouped together.

e Closure: tokens or curves that tend to lead to closed curves tend to be
grouped together.

e Symmetry: curves that lead to symmetric groups are grouped together.

e Continuity: tokens that lead to “continuous” — as in “joining up nicely”,
rather than in the formal sense — curves tend to be grouped.

e Familiar Configuration: tokens that, when grouped, lead to a familiar
object, tend to be grouped together — familiar configuration can be seen as
the reason that the tokens of figure 15.1 are all collected into a dalmation and
a tree.
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Figure 15.4. Examples of Gestalt factors that lead to grouping (which are described in
greater detail in the text). figure from Gordon, Theories of Visual Perception, page 67 in
the fervent hope that permission will be granted

These rules can function fairly well as explanations, but they are insufficiently
crisp to be regarded as forming an algorithm. The Gestalt psychologists had serious
difficulty with the details, such as when one rule applied and when another. It is
very difficult to supply a satisfactory algorithm for using these rules — the Gestalt
movement attempted to use an extremality principle.

Familiar configuration is a particular problem. The key issue is to understand
just what familiar configuration applies in a problem, and how it is selected. For
example, look at figure 15.1; one might argue that the blobs are grouped because
they yield a dog. The difficulty with this view is explaining how this occurred —
where did the hypothesis that a dog is present come from? a search through all
views of all objects is one explanation, but one must then explain how this search
is organised — do we check every view of every dog with every pattern of spots?
how can this be done efficiently?

The Gestalt rules do offer some insight, because they offer some explanation for
what happens in various examples. These explanations seem to be sensible, because
they suggest that the rules help solve problems posed by visual effects that arise
commonly in the real world — that is, they are ecologically valid. For example,
continuity may represent a solution to problems posed by occlusion — sections of
the contour of an occluded object could be joined up by continuity (see figures 77
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Figure 15.5. Occlusion appears to be an important cue in grouping. With some effort,
the pattern on the left can be seen as a cube, whereas the pattern on the right is clearly and
immediately a cube. The visual system appears to be helped by evidence that separated
tokens are separated for a reason, rather than just scattered. figure from Gordon, Theories
of Visual Perception, page 87 in the fervent hope that permission will be granted

and 15.5).

This tendency to prefer interpretations that are explained by occlusion leads to
interesting effects. One is the illusory contour, illustrated in figure 15.6. Here
a set of tokens suggests the presence of an object most of whose contour has no
contrast. The tokens appear to be grouped together because they provide a cue to
the presence of an occluding object, which is so strongly suggested by these tokens
that one could fill in the no-contrast regions of contour.

‘Lg LA
o

Figure 15.6. The tokens in these images suggest the presence of occluding triangles,
whose boundaries don’t contrast with much of the image, except at their vertices. Notice
that one has a clear impression of the position of the entire contour of the occluding figures.
These contours are known as illusory contours. figure from Marr, Vision, paged1, in the
fervent hope that permission will be granted

This ecological argument has some force, because it is possible to interpret most
grouping factors using it. Common fate can be seen as a consequence of the fact
that components of objects tend to move together. Equally, symmetry is a useful
grouping cue because there are a lot of real objects that have symmetric or close
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to symmetric contours. Essentially, the ecological argument says that tokens are
grouped because doing so produces representations that are helpful for the visual
world that people encounter. The ecological argument has an appealing, though
vague, statistical flavour. From our perspective, Gestalt factors provide interesting
hints, but should be seen as the consequences of a larger grouping process, rather
than the process itself.

15.2 Applications: Shot Boundary Detection, Background Sub-
traction and Skin Finding

Simple segmentation algorithms are often very useful in significant applications.
Generally, simple algorithms work best when it is very easy to tell what a “useful”
decomposition is. Three important cases are background subtraction — where
anything that doesn’t look like a known background is interesting — shot bound-
ary detection — where substantial changes in a video are interesting — and skin
finding — where pixels that look like human skin are interesting.

15.2.1 Background Subtraction

In many applications, objects appear on a background which is very largely stable.
The standard example is detecting parts on a conveyor belt. Another example is
counting motor cars in an overhead view of a road — the road itself is pretty stable
in appearance. Another, less obvious, example is in human computer interaction.
Quite commonly, a camera is fixed (say, on top of a monitor) and views a room.
Pretty much anything in the view that doesn’t look like the room is interesting.

In these kinds of applications, a useful segmentation can often be obtained by
subtracting an estimate of the appearance of the background from the image, and
looking for large absolute values in the result. The main issue is obtaining a good
estimate of the background. One method is simply to take a picture. This approach
works rather poorly, because the background typically changes slowly over time. For
example, the road may get more shiny as it rains and less when the weather dries
up; people may move books and furniture around in the room, etc.

An alternative which usually works quite well is to estimate the value of back-
ground pixels using a moving average. In this approach, we estimate the value
of a particular background pixel as a weighted average of the previous values. Typ-
ically, pixels in the very distant past should be weighted at zero, and the weights
increase smoothly. Ideally, the moving average should track the changes in the
background, meaning that if the weather changes very quickly (or the book mover
is frenetic) relatively few pixels should have non-zero weights, and if changes are
slow, the number of past pixels with non-zero weights should increase. This yields
algorithm 1 For those who have read the filters chapter, this is a filter that smooths
a function of time, and we would like it to suppress frequencies that are larger than
the typical frequency of change in the background and pass those that are at or
below that frequency. As figures 15.7 and 15.8 indicate, the approach can be quite
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Form a background estimate BO),
At each frame F

Update the background estimate, typically by

(n—i)
forming Bn+1l) — —W“F+Ziw’8
we

for a choice of weights w,, w; and we.

Subtract the background estimate from the

frame, and report the value of each pixel where

the magnitude of the difference is greater than some
threshold.

end

Algorithm 15.1: Background Subtraction

successful.

Missing
Figure

Figure 15.7. Moving average results for human segmentation

15.2.2 Shot Boundary Detection

Long sequences of video are composed of shots — much shorter subsequences that
show largely the same objects. These shots are typically the product of the editing
process. There is seldom any record of where the boundaries between shots fall.
It is helpful to represent a video as a collection of shots; each shot can then be
represented with a key frame. This representation can be used to search for
videos or to encapsulate their content for a user to browse a video or a set of videos.

Finding the boundaries of these shots automatically — shot boundary detec-
tion — is an important practical application of simple segmentation algorithms.
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Figure

Figure 15.8. Moving average results for car segmentation

A shot boundary detection algorithm must find frames in the video that are “sig-
nificantly” different from the previous frame. Our test of significance must take
account of the fact that within a given shot both objects and the background can
move around in the field of view. Typically, this test takes the form of a distance; if
the distance is larger than a threshold, a shot boundary is declared (algorithm 2).

For each frame in an image sequence

Compute a distance between this frame and the
previous frame

If the distance is larger than some threshold,
classify the frame as a shot boundary.

end

Algorithm 15.2: Shot boundary detection using interframe differences

There are a variety of standard techniques for computing a distance:

e Frame differencing algorithms take pixel-by-pixel differences between each
two frames in a sequence, and sum the squares of the differences. These
algorithms are unpopular, because they are slow — there are many differences
— and because they tend to find many shots when the camera is shaking.

e Histogram based algorithms compute colour histograms for each frame, and
compute a distance between the histograms. A difference in colour histograms
is a sensible measure to use, because it is insensitive to the spatial arrangement
of colours in the frame — for example, small camera jitters will not affect the
histogram.
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Figure

Figure 15.9. Shot boundary detection results.

e Block comparison algorithms compare frames by cutting them into a grid
of boxes, and comparing the boxes. This is to avoid the difficulty with colour
histograms, where (for example) a red object disappearing off-screen in the
bottom left corner is equivalent to a red object appearing on screen from the
top edge. Typically, these block comparison algorithms compute an inter-
frame distance that is a composite — taking the maximum is one natural
strategy — of inter-block distances, computed using the methods above.

e Edge differencing algorithms compute edge maps for each frame, and then
compare these edge maps. Typically, the comparison is obtained by counting
the number of potentially corresponding edges (nearby, similar orientation,
etc.) in the next frame. If there are few potentially corresponding edges,
there is a shot boundary. A distance can be obtained by transforming the
number of corresponding edges.

These are relatively ad hoc methods, but are often sufficient to solve the problem
at hand.

15.2.3 Finding Skin Using Image Colour

It is often very useful to be able to find human skin in pictures. For example,
gesture-based user interfaces usually need to know where the face and hands of the
current user are. Similarly, if we were searching for pictures of people, a natural
thing to do is to look for faces. Human skin has a surprisingly limited range of hues
and is not deeply saturated. The colour largely results from the effects of blood and
melanin (which contribute respectively red and yellow/brown hues). Skin cannot
be modelled well with a BRDF, because its appearance is affected by scattering
from quite deep below the surface and by oil and sweat films on the surface. These
effects make skin extremely hard to render convincingly; [?] has the best account.
For skin detection, we can safely ignore this reservation and obtain a reflectance with
a substantial non-Lambertian component. Skin typically has bright areas due to
specular reflection on oil and sweat films. These specularities take the illumination



Section 15.3. Image Segmentation by Clustering Pixels 411

color, which varies slightly from image to image, so that some skin regions appear
as blueish or greenish off-white. Finally, skin has little texture at a coarse scale.

In practice, skin can be found quite effectively by looking for pixels with colours
in a given range and where there is little coarse-scale texture. There are many
methods, and the details vary somewhat from method to method. We sketch a
method due to Forsyth and Fleck [?]; we discuss another method in greater detail
in section ??. Forsyth and Fleck transform image RGB values to an opponent
colour representation that uses intensity and two intensity independent opponent
channels. This representation is smoothed. Each pixel on the resulting intensity
plane is tested for texture intensity. Texture intensity is estimated by forming the
median intensity of a neighbourhood around each pixel; subtracting this median
from the intensity of each pixel in the neighbourhood; and taking the median of the
absolute value of the result.

Corresponding pixels on the intensity independent opponent channels are tested
to determine whether their colour lies within a given range. Pixels whose colour
lies in this range and whose texture intensity is below some threshold are marked
as being “probably skin”. Because this process tends not to mark specular patches
on skin, all pixels with many neighbours that are “probably skin” are marked as
“probably skin”, too. The resulting collection of pixels is tested against a second
range of colours; all pixels that pass both tests are regarded as skin pixels.

The success of these methods seems to be due to cultural practices. Skin changes
colour as it is viewed under different coloured lights, just like any other material,
but people seem to choose lighting and to adjust pictures to reduce these effects,
probably because pictures of skin where the hue is too green or too blue are very
disturbing (subjects tend to look sick or dead, respectively).

15.3 Image Segmentation by Clustering Pixels

Clustering is a process whereby a data set is replaced by clusters, which are col-
lections of data points that “belong together”. It is natural to think of image
segmentation as clustering; we would like to represent an image in terms of clusters
of pixels that “belong together”. The specific criterion to be used depends on the
application. Pixels may belong together because they have the same colour and/or
they have the same texture and/or they are nearby, etc.

15.3.1 Simple Clustering Methods

There are two natural algorithms for clustering. In divisive clustering, the entire
data set is regarded as a cluster, and then clusters are recursively split to yield a
good clustering (algorithm 4). In agglomerative clustering, each data item is
regarded as a cluster and clusters are recursively merged to yield a good clustering
(algorithm 3).

There are two major issues in thinking about clustering:

e what is a good inter-cluster distance? Agglomerative clustering uses an inter-
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Missing
Figure

Figure 15.10. Marking skin pixels is useful for, for example, finding faces or hands.
The figures on the top show a series of images of faces; below, we show the output of the
skin marking process described in the text. While colour and texture are not an exact test
for skin, much of the background is masked and faces generally appear. Notice that this
approach works reasonably well for a range of skin colours.

Make each point a separate cluster
Until the clustering is satisfactory

Merge the two clusters with the
smallest inter-cluster distance

end

Algorithm 15.3: Agglomerative clustering, or clustering by merging

cluster distance to fuse “nearby” clusters; divisive clustering uses it to split
insufficiently “coherent” clusters. Even if a natural distance between data
points is available (which may not be the case for vision problems), there is
no canonical inter-cluster distance. Generally, one chooses a distance that
seems appropriate for the data set. For example, one might choose the dis-
tance between the closest elements as the inter-cluster distance — this tends
to yield extended clusters (statisticians call this method single-link cluster-
ing). Another natural choice is the maximum distance between an element of
the first cluster and one of the second — this tends to yield “rounded” clus-
ters (statisticians call this method complete-link clustering). Finally, one
could use an average of distances between elements in the clusters — this will
also tend to yield “rounded” clusters (statisticians call this method group
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Construct a single cluster containing all points
Until the clustering is satisfactory

Split the cluster that yields the two
components with the largest inter-cluster distance

end

Algorithm 15.4: Divisive clustering, or clustering by splitting

average clustering).

e and how many clusters are there? This is an intrinsically difficult task if
there is no model for the process that generated the clusters. The algorithms
we have described generate a hierarchy of clusters. Usually, this hierarchy is
displayed to a user in the form of a dendrogram — a representation of the
structure of the hierarchy of clusters that displays inter-cluster distances —
and an appropriate choice of clusters is made from the dendrogram (see the
example in figure 15.11).

15.3.2 Segmentation Using Simple Clustering Methods

It is relatively easy to take a clustering method and build an image segmenter
from it. Much of the literature on image segmentation consists of papers that are,
in essence, papers about clustering (though this isn’t always acknowledged). The
distance used depends entirely on the application, but measures of colour difference
and of texture are commonly used as clustering distances. It is often desirable to
have clusters that are “blobby”; this can be achieved by using difference in position
in the clustering distance.

The main difficulty in using either agglomerative or divisive clustering methods
directly is that there are an awful lot of pixels in an image. There is no reasonable
prospect of examining a dendrogram, because the quantity of data means that
it will be too big. Furthermore, the mechanism is suspect; we don’t really want
to look at a dendrogram for each image, but would rather have the segmenter
produce useful regions for an application on a long sequence of images without any
help. In practice, this means that the segmenters decide when to stop splitting or
merging by using a set of threshold tests — for example, an agglomerative segmenter
may stop merging when the distance between clusters is sufficiently low, or when
the number of clusters reaches some value. The choice of thresholds is usually
made by observing the behaviour of the segmenter on a variety of images, and
choosing the best setting. The technique has largely fallen into disuse except in
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Figure 15.11. Left, a data set; right, a dendrogram obtained by agglomerative clustering
using single link clustering. If one selects a particular value of distance, then a horizontal
line at that distance will split the dendrogram into clusters. This representation makes it
possible to guess how many clusters there are, and to get some insight into how good the
clusters are.

specialised applications, because in most cases it is very difficult to predict the
future performance of the segmenter tuned in this way.

Another difficulty created by the number of pixels is that it is impractical to
look for the best split of a cluster (for a divisive method) or the best merge (for an
agglomerative method). The variety of tricks that have been adopted to address
this problem is far too large to survey here, but we can give an outline of the main
strategies.

Divisive methods are usually modified by using some form of summary of
a cluster to suggest a good split. A natural summary to use is a histogram of
pixel colours (or grey levels). In one of the earliest segmentation algorithms, due to
Ohlander [?], regions are split by identifying a peak in one of nine feature histograms
(these are colour coordinates of the pixel in each of three different colour spaces) and
attempting to separate that peak from the histogram. Of course, textured regions
need to be masked to avoid splitting texture components apart. Figures 15.13
and 15.14 illustrate this segmenter.

Agglomerative methods also need to be modified. There are three main
issues:
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Figure 15.12. We illustrate an early segmenter that uses a divisive clustering algorithm,
due to [?] (circa 1975) using this figure of a house, which is segmented into the hierarchy
of regions indicated in figure 15.13.

e Firstly, given two clusters containing large numbers of pixels, it is expensive
to find the average distance or the minimum distance between elements of the
clusters; alternatives include the distance between centers of gravity.

e Secondly, it is usual to try and merge only clusters with shared boundaries
(this can be accounted for by attaching a term to the distance function that is
zero for neighbouring pixels and infinite for all others). This approach avoids
clustering together regions that are widely separated (we probably don’t wish
to represent the US flag as three clusters, one red, one white and one blue).

e Finally, it can be useful to merge regions simply by scanning the image and
merging all pairs whose distance falls below a threshold, rather than searching
for the closest pair. This strategy means the dendrogram is meaningless, but
the dendrogram is so seldom used this doesn’t usually matter.

15.3.3 Clustering and Segmentation by K-means

Simple clustering methods use greedy interactions with existing clusters to come
up with a good overall representation. For example, in agglomerative clustering we
repeatedly make the best available merge. However, the methods are not explicit
about the objective function that the methods are attempting to optimize. An al-
ternative approach is to write down an objective function that expresses how good a
representation is, and then build an algorithm for obtaining the best representation.
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Figure 15.13. The hierarchy of regions obtained from figure 15.12, by a divisive clus-
tering algorithm. A typical histogram is shown in figure 15.14. The segmentation process
is stopped when regions satisfy an internal coherence test, defined by a collection of fixed
thresholds.
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Figure 15.14. A histogram encountered while segmenting figure 15.12 into the hierarchy
of figure 15.13 using the divisive clustering algorithm of [?].

A natural objective function can be obtained by assuming that we know there
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are k clusters, where k is known. Each cluster is assumed to have a center; we write
the center of the i’th cluster as ¢;. The j’th element to be clustered is described by
a feature vector x;. For example, if we were segmenting scattered points, then x
would be the coordinates of the points; if we were segmenting an intensity image,
« might be the intensity at a pixel.

We now assume that elements are close to the center of their cluster, yielding
the objective function

®(clusters, data) = Z Z (z; — )" (z; — i)

ieclusters \ jei‘th cluster

Notice that if the allocation of points to clusters is known, it is easy to compute the
best center for each cluster. However, there are far too many possible allocations
of points to clusters to search this space for a minimum. Instead, we define an
algorithm which iterates through two activities:

e Assume the cluster centers are known, and allocate each point to the closest
cluster center.

e Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process will eventually converge to a local minimum
of the objective function (why?). It is not guaranteed to converge to the global
minimum of the objective function, however. It is also not guaranteed to produce k
clusters, unless we modify the allocation phase to ensure that each cluster has some
non-zero number of points. This algorithm is usually referred to as k-means. It
is possible to search for an appropriate number of clusters by applying k-means for
different values of k, and comparing the results; we defer a discussion of this issue
until section 17.3.

One difficulty with using this approach for segmenting images is that segments
are not connected and can be scattered very widely (figures 15.15 and 15.16). This
effect can be reduced by using pixel coordinates as features, an approach that tends
to result in large regions being broken up (figure 15.17).

15.4 Segmentation by Graph-Theoretic Clustering

Clustering can be seen as a problem of cutting graphs into “good” pieces. In effect,
we associate each data item with a vertex in a weighted graph, where the weights
on the edges between elements are large if the elements are “similar” and small if
they are not. We then attempt to cut the graph into connected components with
relatively large interior weights — which correspond to clusters — by cutting edges
with relatively low weights. This view leads to a series of different, quite successful,
segmentation algorithms.
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Choose k data points to act as cluster centers

Until the cluster centers are unchanged
Allocate each data point to cluster whose center is nearest
Now ensure that every cluster has at least
one data point; possible techniques for doing this include
supplying empty clusters with a point chosen at random from

points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 15.5: Clustering by K-Means

Figure 15.15. On the left, an image of mixed vegetables, which is segmented using k-
means to produce the images at center and on the right. We have replaced each pixel with
the mean value of its cluster; the result is somewhat like an adaptive requantization, as
one would expect. In the center, a segmentation obtained using only the intensity informa-
tion. At the right, a segmentation obtained using colour information. Each segmentation
assumes five clusters.

15.4.1 Basic Graphs

We review terminology here very briefly, as it’s quite easy to forget.

e A graph is a set of vertices V' and edges F which connect various pairs of
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Figure 15.16. Here we show the image of vegetables segmented with k-means, assuming
a set of 11 components. The top left figure shows all segments shown together, with the
mean value in place of the original image values. The other figures show four of the
segments. Note that this approach leads to a set of segments that are not necessarily
connected. For this image, some segments are actually quite closely associated with objects
but one segment may represent many objects (the peppers); others are largely meaningless.
The absence of a texture measure creates serious difficulties, as the many different segments
resulting from the slice of red cabbage indicate.

Figure 15.17. Five of the segments obtained by segmenting the image of vegetables
with a k-means segmenter that uses position as part of the feature vector describing a
pixel, now using 20 segments rather than 11. Note that the large background regions that
should be coherent has been broken up because points got too far from the center. The
individual peppers are now better separated, but the red cabbage is still broken up because
there is no texture measure.

vertices. A graph can be written G = {V, E}. Each edge can be represented
by a pair of vertices, that is E C V x V. Graphs are often drawn as a set of
points with curves connecting the points.

e A directed graph is one in which edges (a,b) and (b, a) are distinct; such a
graph is drawn with arrowheads indicating which direction is intended.

e An undirected graph is one in which no distinction is drawn between edges

(a,b) and (b, a).

e A weighted graph is one in which a weight is associated with each edge.

A self-loop is an edge that has the same vertex at each end; self-loops don’t
occur in practice in our applications.
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e Two vertices are said to be connected if there is a sequence of edges starting
at the one and ending at the other; if the graph is directed, then the arrows
in this sequence must point the right way.

e A connected graph is one where every pair of vertices is connected.

e Every graph consists of a disjoint set of connected components, that is
G={ViuW...V,, EyUE;y...E,}, where {V;, E;} are all connected graphs
and there is no edge in E that connects an element of V; with one of Vj for

i J.

15.4.2 The Overall Approach

It is useful to understand that a weighted graph can be represented by a square
matrix (figure 15.18). There is a row and a column for each vertex. The 4, j’th
element of the matrix represents the weight on the edge from vertex i to vertex j;
for an undirected graph, we use a symmetric matrix and place half the weight in
each of the 4, j°th and j, i’th element.

The application of graphs to clustering is this: take each element of the collection
to be clustered, and associate it with a vertex on a graph. Now construct an
edge from every element to every other, and associate with this edge a weight
representing the extent to which the elements are similar. Now cut edges in the
graph to form a “good” set of connected components. Each of these will be a
cluster. For example, figure 15.19 shows a set of well separated points and the
weight matrix (i.e. undirected weighted graph, just drawn differently) that results
from a particular similarity measure; a desirable algorithm would notice that this
matrix looks a lot like a block diagonal matrix — because intercluster similarities are
strong and intracluster similarities are weak — and split it into two matrices, each
of which is a block. The issues to study are the criteria that lead to good connected
components and the algorithms for forming these connected components.

15.4.3 Affinity Measures

When we viewed segmentation as simple clustering, we needed to supply some
measure of how similar clusters were. The current model of segmentation simply
requires a weight to place on each edge of the graph; these weights are usually called
affinity measures in the literature. Clearly, the affinity measure depends on the
problem at hand. The weight of an arc connecting similar nodes should be large,
and the weight on an arc connecting very different nodes should be small. It is
fairly easy to come up with affinity measures with these properties for a variety of
important cases, and we can construct an affinity function for a combination of cues
by forming a product of powers of these affinity functions. You should be aware
that other choices of affinity function are possible; there is no particular reason to
believe that a canonical choice exists.
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Figure 15.18. On the top left, a drawing of an undirected weighted graph; on the
top right, the weight matrix associated with that graph. Larger values are lighter. By
associating the vertices with rows (and columns) in a different order, the matrix can be
shuffled. We have chosen the ordering to show the matrix in a form that emphasizes the
fact that it is very largely block-diagonal. The figure on the bottom shows a cut of that
graph that decomposes the graph into two tightly linked components. This cut decomposes
the graph’s matrix into the two main blocks on the diagonal.

Affinity by Distance

Affinity should go down quite sharply with distance, once the distance is over some
threshold. One appropriate expression has the form

afi(z, y) = exp {~ (& — y)'(x — y)/203)}

where 04 is a parameter which will be large if quite distant points should be grouped
and small if only very nearby points should be grouped (this is the expression used
for figure 15.19).
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Figure 15.19. On the left, a set of points on the plane. On the right, the affinity matrix
for these points computed using a decaying exponential in distance (section 15.4.3), where
large values are light and small values are dark. Notice the near block diagonal structure
of this matrix; there are two off-diagonal blocks that contain terms that are very close
to zero. The blocks correspond to links internal to the two obvious clusters, and the
off diagonal blocks correspond to links between these clusters. figure from Perona and
Freeman, A factorization approach to grouping, page 2 figure from Perona and Freeman,
A factorization approach to grouping, page 4

Affinity by Intensity

Affinity should be large for similar intensities, and smaller as the difference increases.
Again, an exponential form suggests itself, and we can use:

aff(z,y) = exp {— ((I(x) — I(y))'(I(x) - I(y))/207)}

Affinity by Colour

We need a colour metric to construct a meaningful colour affinity function. It’s a
good idea to use a uniform colour space, and a bad idea to use RGB space, — for
reasons that should be obvious, otherwise, reread section 7?7 — and an appropriate
expression has the form

aff(z, y) = exp { - (dist(c(), c(y))?/207) }

where ¢; is the colour at pixel 7.

Affinity by Texture

The affinity should be large for similar textures and smaller as the difference in-
creases. We adopt a collection of filters fi,..., f,, and describe textures by the
outputs of these filters, which should span a range of scales and orientations. Now
for most textures, the filter outputs will not be the same at each point in the texture
— think of a chessboard — but a histogram of the filter outputs constructed over
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a reasonably sized neighbourhood will be well behaved. For example, in the case
of an infinite chessboard, if we take a histogram of filter outputs over a region that
covers a few squares, we can expect this histogram to be the same wherever the
region falls.

This suggests a process where we firstly establish a local scale at each point —
perhaps by looking at energy in coarse scale filters, or using some other method —
and then compute a histogram of filter outputs over a region determined by that
scale — perhaps a circular region centered on the point in question. We then write
h for this histogram, and use an exponential form:

aff(x, y) = exp {— ((f(=) - f(u)'(f(z) - f(y))/207) }

08f * *

06f

0.4f

02t

Figure 15.20. The choice of scale for the affinity affects the affinity matrix. The top
row shows a dataset, which consists of four groups of 10 points drawn from a rotationally
symmetric normal distribution with four different means. The standard deviation in each
direction for these points is 0.2. In the second row, affinity matrices computed for this
dataset using different values of 4. On the left, o4 = 0.1, in the center 04 = 0.2 and on
the right, 04 = 1. For the finest scale, the affinity between all points is rather small; for
the next scale, there are four clear blocks in the affinity matrix; and for the coarsest scale,
the number of blocks is less obvious.
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Affinity by Motion

In the case of motion, the nodes of the graph are going to represent a pixel in
a particular image in the sequence. It is difficult to estimate the motion at a
particular pixel accurately; instead, it makes sense to construct a distribution over
the possible motions. The quality of motion estimate available depends on what the
neighbourhood of the pixel looks like. For example, if the pixel lies on an edge, this
motion component parallel to the edge is going to be uncertain but the component
perpendicular to the edge is going to be quite well measured. One way to obtain
a reasonable estimate of the probability distribution is to compare a translated
version of the neighbourhood with the next image; if the two are similar, then
the probability of this motion should be relatively high. If we define a similarity
measure for an image motion v at a pixel & to be

1
S(v,@;00) = exp | —5 > {L(x+u+v) — Ly (2 +u)}’
4 yeneighbourhood

we have a measure that will be near one for a good value of the motion and near zero
for a poor one. This can be massaged into a probability distribution by ensuring
that it somes to one, so we have

Si (’U, Z; Ud)
P ; ==
(v, % 04) > Si(v, x504)

Now we need to obtain an affinity measure from this. The arcs on the graph will
connect pixels that are “nearby” in space and in time. For each pair of pixels, the
affinity should be high if the motion pattern around the pixels could look similar,
and low otherwise. This suggests using a correlation measure for the affinity

1
aff(z, y; 04, 0m) = exp <—ﬁ {1 - ZP(%CB;Ud)P(’U,iB;Ud)}>
m v

15.4.4 Eigenvectors and Segmentation

In the first instance, assume that there are k elements and k clusters. We can
represent a cluster by a vector with k components. We will allow elements to be
associated with clusters using some continuous weight — we need to be a bit vague
about the semantics of these weights, but the intention is that if a component in
a particular vector has a small value, then it is weakly associated with the cluster,
and if it has a large value, then it is strongly associated with a cluster.

Extracting a Single Good Cluster

A good cluster is one where elements that are strongly associated with the cluster
also have large values in the affinity matrix. Write the matrix representing the
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element affinities as A, and the vector of weights as w In particular, we can construct
an objective function

w! Aw
This is a sum of terms of the form

{association of element 7 with cluster} x
{affinity between ¢ and j} x
{association of element j with cluster}

We can obtain a cluster by choosing a set of association weights that maximise this
objective function. The objective function is useless on its own, because scaling w
by A scales the total association by A2. However, we can normalise the weights by
requiring that w”w = 1.

This suggests maximising w” Aw subject to w”w = 1. The Lagrangian is

wlAw + A (ww - 1)
and differentiation and dropping a factor of two yields
Aw = w

meaning that w is an eigenvector of 4. This means that we could form a cluster by
obtaining the eigenvector with the largest eigenvalue — the cluster weights are the
elements of the eigenvector. For problems where reasonable clusters are apparent,
we expect that these cluster weights are large for some elements — which belong to
the cluster — and nearly zero for others — which do not. In fact, we can get the
weights for other clusters from other eigenvectors of A as well.

Extracting Weights for a Set of Clusters

In the kind of problems we expect to encounter, there are strong association weights
between relatively few pairs of elements. For example, if each node is a pixel, the
association weights will depend on the difference in colour and/or texture and/or
intensity. The association weights between a pixel and its neighbours may be large,
but the association weights will die off quickly with distance, because there needs
to be more evidence than just similarity of colour to say that two widely separated
pixels belong together. As a result, we can reasonably expect to be dealing with
clusters that are (a) quite tight and (b) distinct.

These properties lead to a fairly characteristic structure in the affinity matrix.
In particular, if we relabel the nodes of the graph, then the rows and columns of
the matrix A are shuffled. We expect to be dealing with relatively few collections
of nodes with large association weights; furthermore, that these collections actually
form a series of relatively coherent, largely disjoint clusters. This means that we
could shuffle the rows and columns of M to form a matrix that is roughly block-
diagonal (the blocks being the clusters). Shuffling M simply shuffles the elements
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Figure 15.21. The eigenvector corresponding to the largest eigenvalue of the affinity
matrix for the dataset of example 15.20, using o4 = 0.2. Notice that most values are small,
but some — corresponding to the elements of the main cluster — are large. The sign of
the association is not significant, because a scaled eigenvector is still an eigenvector.

of its eigenvectors, so that we can reason about the eigenvectors by thinking about
a shuffled version of M (i.e. figure 15.18 is a fair source of insight).

The eigenvectors of block-diagonal matrices consist of eigenvectors of the blocks,
padded out with zeros. We expect that each block has an eigenvector corresponding
to a rather large eigenvalue — corresponding to the cluster — and then a series of
small eigenvalues of no particular significance. From this, we expect that, if there
are c significant clusters (where ¢ < k), the eigenvectors corresponding to the ¢
largest eigenvalues each represent a cluster.

..................................................

...........

Figure 15.22. The three eigenvectors corresponding to the next three largest eigenvalues
of the affinity matrix for the dataset of example 15.20, using o4 = 0.2 (the eigenvector
corresponding to the largest eigenvalue is given in figure 15.21). Notice that most values
are small, but for (disjoint) sets of elements, the corresponding values are large. This
follows from the block structure of the affinity matrix. The sign of the association is not
significant, because a scaled eigenvector is still an eigenvector.
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This means that each of these eigenvectors is an eigenvector of a block, padded
with zeros. In particular, a typical eigenvector will have a small set of large values —
corresponding to its block — and a set of near-zero values. We expect that only one
of these eigenvectors will have a large value for any given component; all the others
will be small (figure 15.22). Thus, we can interpret eigenvectors corresponding to
the c largest magnitude eigenvalues as cluster weights for the first ¢ clusters. One
can usually quantize the cluster weights to zero or one, to obtain discrete clusters;
this is what has happened in the figures.

Construct an affinity matrix
Compute the eigenvalues and eigenvectors of the affinity matrix
Until there are sufficient clusters

Take the eigenvector corresponding to the

largest unprocessed eigenvalue; zero all components corresponding
to elements that have already been clustered, and threshold the
remaining components to determine which element

belongs to this cluster, choosing a threshold by

clustering the components, or

using a threshold fixed in advance.

If all elements have been accounted for, there are
sufficient clusters

end

Algorithm 15.6: Clustering by Graph Eigenvectors

This is a qualitative argument, and there are graphs for which the argument
is decidedly suspect. Furthermore, we have been decidedly vague about how to
determine ¢, though our argument suggests that poking around in the spectrum of
A might be rewarding — one would hope to find a small set of large eigenvalues,
and a large set of small eigenvalues (figure 15.23).

15.4.5 Normalised Cuts

The qualitative argument of the previous section is somewhat soft. For example,
if the eigenvalues of the blocks are very similar, we could end up with eigenvectors
that do not split clusters, because any linear combination of eigenvectors with the
same eigenvalue is also an eigenvector (figure 15.24).
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Figure 15.23. The number of clusters is reflected in the eigenvalues of the affinity
matrix. The figure shows eigenvalues of the affinity matrices for each of the cases in
figure 15.20. On the left, 04 = 0.1, in the center o4 = 0.2 and on the right, o4 = 1.
For the finest scale, there are many rather large eigenvalues — this is because the affinity
between all points is rather small; for the next scale, there are four eigenvalues rather
larger than the rest; and for the coarsest scale, there are only two eigenvalues rather larger
than the rest.

An alternative approach is to cut the graph into two connected components such
that the cost of the cut is a small fraction of the total affinity within each group.
We can formalise this as decomposing a weighted graph V' into two components A
and B, and scoring the decomposition with

cut(A, B) cut(A, B)
assoc(A, V) = assoc(B,V)

(where cut(A, B) is the sum of weights of all edges in V' that have one end in A and
the other in B, and assoc(A, V) is the sum of weights of all edges that have one
end in A). This score will be small if the cut separates two components that have
very few edges of low weight between them and many internal edges of high weight.
We would like to find the cut with the minimum value of this criterion, called a
normalized cut.

This problem is too difficult to solve in this form, because we would need to
look at every graph cut — it’s a combinatorial optimization problem, so we can’t
use continuity arguments to reason about how good a neighbouring cut is given
the value of a particular cut. However, by introducing some terminology we can
construct an approximation algorithm that generates a good cut.

We write y is a vector of elements, one for each graph node, whose values are
either 1 or —b. The values of y are used to distinguish between the components
of the graph: if the i’th component of y is 1, then the corresponding node in the
graph belongs to one component, and if it is —b, the node belongs to the other. We
write the affinity matrix as A is the matrix of weights between nodes in the graph
and D is the degree matrix; each diagonal element of this matrix is the sum of
weights coming into the corresponding node, that is

D;; = Z Ayj
J
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Figure 15.24. Eigenvectors of an affinity matrix can be a misleading guide to clusters.
The dataset on the top left consists of four copies of the same set of points; this leads
to a repeated block structure in the affinity matrix shown in the top center. Each block
has the same spectrum, and this results in a spectrum for the affinity matrix that has
(roughly) four copies of the same eigenvalue (top right). The bottom row shows the
eigenvectors corresponding to the four largest eigenvalues; notice (a) that the values don’t
suggest clusters and (b) a linear combination of the eigenvectors might lead to a quite
good clustering.

and the off-diagonal elements of D are zero. In this notation, and with a little
manipulation, our criterion can be rewritten as:

y (D - Ay
yTDy

We now wish to find a vector y that minimizes this criterion. The problem we have
set up is an integer programming problem, and because it is exactly equivalent
to the graph cut problem, it isn’t any easier. The difficulty is the discrete values for
elements of y — in principle, we could solve the problem by testing every possible
y, but this involves searching a space whose size is exponential in the number of
pixels which will be slow?. A common approximate solution to such problems is to
compute a real vector y that minimizes the criterion. Elements are then assigned
to one side or the other by testing against a threshold. There are then two issues:
firstly, we must obtain the real vector, and secondly, we must choose a threshold.

2As in, probably won’t finish before the universe burns out.
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Obtaining a Real Vector

The real vector is easily obtained. It is an exercise to show that a solution to
(D—A)yy =Dy

is a solution to our problem with real values. The only question is which generalised
eigenvector to use? It turns out that the smallest eigenvalue is guaranteed to be zero,
so the eigenvector corresponding to the second smallest eigenvalue is appropriate.
The easiest way to determine this eigenvector is to perform the transformation
z =D'/?y, and so get:

DYV2(D - AD 122 = Az

and y follows easily. Note that solutions to this problem are also solutions to
Nz=D V2 AD V%2 = pz

and N is sometimes called the normalised affinity matrix.

Choosing a Threshold

Finding the appropriate threshold value is not particularly difficult; assume there
are N nodes in the graph, so that there are NV elements in y , and at most N different
values. Now if we write ncut(v) for the value of the normalised cut criterion at a
particular threshold value v, there are at most N + 1 values of ncut(v). We can
form each of these values, and choose a threshold that leads to the smallest. Notice
also that this formalism lends itself to recursion, in that each component of the
result is a graph, and these new graphs can be split, too. A simpler criterion, which
appears to work in practice, is to walk down the eigenvalues and use eigenvectors
corresponding to smaller eigenvalues to obtain new clusters.

15.5 Discussion

Segmentation is a difficult topic, and there are a huge variety of methods. Methods
tend to be rather arbitrary — remember, this doesn’t mean they’re not useful —
because there really isn’t much theory available to predict what should be clustered
and how. It is clear that what we should be doing is forming clusters that are
helpful to a particular application, but this criterion hasn’t been formalised in any
useful way. In this chapter, we have attempted to give the big picture while ignoring
detail, because a detailed record of what has been done would be unenlightening.

Segmentation is also a key open problem in vision, which is why a detailed record
of what has been done would be huge. Up until quite recently, it was usual to talk
about recognition and segmentation as if they were distinct activities. This view is
going out of fashion — as it should — because there isn’t much point in creating a
segmented representation that doesn’t help with some application; furthermore, if
we can be crisp about what should be recognised, that should make it possible to
be crisp about what a segmented representation should look like.
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Figure 15.25. The image on top is segmented using the normalised cuts framework,
described in the text, into the components shown. The affinity measures used involved
intensity and texture, as in section 15.4.3. The image of the swimming tiger yields one
segment that is essentially tiger, one that is grass, and four components corresponding to
the lake. Note the improvement over k-means segmentation obtained by having a texture

measure.

Assignments

Exercises

e We wish to cluster a set of pixels using colour and texture differences. The
objective function

®(clusters, data) = Z Z (z; — )" (w; — ;)

ieclusters | jei‘th cluster

used in section 15.3.3 may be inappropriate — for example, colour differences
could be too strongly weighted if colour and texture are measured on different
scales.

1. Extend the description of the k-means algorithm to deal with the case



432 Segmentation using Clustering Methods  Chapter 15

Figure 15.26. The image on top is segmented using the normalised cuts framework,
described in the text, into the components shown. The affinity measures used involved
intensity and texture, as in section 15.4.3. Again, note the improvement over k-means seg-
mentation obtained by having a texture measure; the railing now shows as three reasonably
coherent segments.

of an objective function of the form

D (clusters, data) = Z Z (x; —c))TS(z; —¢;)
ieclusters \ jei‘th cluster

where S is an a symmetric, positive definite matrix.

2. For the simpler objective function, we had to ensure that each cluster
contained at least one element (otherwise we can’t compute the clus-
ter center). How many elements must a cluster contain for the more



Section 15.5. Discussion 433

Figure 15.27. Three of the first six frames of a motion sequence, which shows a moving
view of a house; the tree sweeps past the front of the house. Below, we see spatio-temporal
segments established using normalised cuts and a spatio-temporal affinity function (sec-
tion 15.4.3).

complicated objective function?

3. As we remarked in section 15.3.3, there is no guarantee that k-means
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gets to a global minimum of the objective function; show that it must
always get to a local minimum.

4. Sketch two possible local minima for a k-means clustering method clus-
tering data points described by a two-dimensional feature vector. Use an
example with only two clusters, for simplicity. You shouldn’t need many
data points. You should do this exercise for both objective functions.

Read [?] and follow the proof that the normalised cut criterion leads to the
integer programming problem given in the text. Why does the normalised
affinity matrix have a null space? give a vector in its kernel.

Show that choosing a real vector that maximises the expression

y'(D-W)y
yTDy

is the same as solving the eigenvalue problem
DYV WWz = wz
where z = D~1/2y.

Grouping based on eigenvectors presents one difficulty: how to obtain eigen-
vectors for a large matrix quickly. The standard method is Lanczos’ algo-
rithm; read [], p.xxx-yyy, and implement this algorithm. Determine the time
taken to obtain eigenvectors for a series of images of different sizes. Is your
data consistent with the (known) order of growth of the algorithm?

This exercise explores using normalised cuts to obtain more than two clusters.
One strategy is to construct a new graph for each component separately, and
call the algorithm recursively. You should notice a strong similarity between
this approach and classical divisive clustering algorithms. The other strategy
is to look at eigenvectors corresponding to smaller eigenvalues.

1. Explain why these strategies are not equivalent.

2. Now assume that we have a graph that has two connected components.
Describe the eigenvector corresponding to the largest eigenvalue.

3. Now describe the eigenvector corresponding to the second largest eigen-
value.

4. Turn this information into an argument that the two strategies for gen-
erating more clusters should yield quite similar results under appropriate
conditions; what are appropriate conditions?

Show that the viewing cone for a cone is a family of planes, all of which pass
through the focal point and the vertex of the cone. Now show the outline of
a cone consists of a set of lines passing through a vertex. You should be able
to do this by a simple argument, without any need for calculations.
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Programming Assignments

Build a background subtraction algorithm using a moving average and exper-
iment with the filter.

Build a shot boundary detection system using any two techniques that appeal,
and compare performance on different runs of video.

Implement a segmenter that uses k-means to form segments based on colour
and position. Describe the effect of different choices of the number of segments;
investigate the effects of different local minima.

Implement a hough transform line finder.

Count lines with an HT line finder - how well does it work?
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FITTING

There are a variety of segmentation criteria that involve models at a larger scale.
Typically, one wants to decompose an image or a set of tokens — which could be
pixels, isolated points, sets of edge points, etc. — into components that belong to
one or another simple family. For example, we might want to cluster tokens together
because they form a circle (which seems to be what’s going on in figure 16.1). Find-
ing such groups is often called fitting. We see fitting as part of the segmentation
process, because it uses a model to produce compact representations that emphasize
the relevant image structures.

Fitting lines as a model problem: there is a very wide range of possible
fitting strategies; to keep track of what’s important, and to see ideas in a reasonable
context, we need a model problem. Fitting lines is a good model problem, because
it is clear what the main issues are, and the technical aspects are relatively simple.

Generally, fitting involves determining what possible structures could have given
rise to a set of tokens observed in an image. For example, we might have a set of
edge points (the tokens) and wish to determine which lines fit them best. There are
three quite general problems that occur in fitting:

e Parameter estimation: In this case, we assume we know which tokens came
from a particular structure, and we want to know what the parameters of the
structure are. For example, we might have a set of edge points, all of which
are known to have come from a line, and we wish to know what line they
came from.

¢ Which token came from which structure: In this case, we assume we
know how many structures are present, and we wish to determine which tokens
came from which structure. For example, we might have a set of edge points,
and we need to know the best set of lines fitting these points; this involves (1)
determining which points belong together on a line and (2) figuring out what
each line is. Generally, these problems are not independent (because one good
way of knowing whether points belong together on a line is checking how well
the best fitting line approximates them).

e Counting: In this case, we would like to know (1) how many structures are
present (2) which points are associated with which structure and (3) what

436
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the structures are. For example, given a set of edge points, we might want to
return a set of lines that fits them well. This is, in general, a substantially
difficult problem the answer to which depends strongly on the type of model
adopted (for example, we could simply pass a line through every pair of edge
points — this gives a set of lines that fit extremely well, but are a poor

representation).
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Figure 16.1. On occasion, tokens appear to be grouped together because they form
useful primitives. For example, the main reason these tokens belong together appears to
be that they form circles. figure from Marr, Vision, pagel01, in the fervent hope that
permission will be granted

We first discuss a simple method for clustering tokens that lie on structures
(section 16.1)— in practice, it is almost always used to find points that lie on
lines — and then look at methods for fitting lines to point sets (section 16.2). We
investigate fitting curves other than lines in section 16.3, and then discuss clustering
edge points that could lie on the outlines of interesting objects (section 16.4).

16.1 The Hough Transform

One way to cluster points that could lie on the same structure is to record all the
structures on which each point lies, and then look for structures that get many
votes. This (quite general) technique is known as the Hough transform. We take
each image token, and determine all structures that could pass through that token.
We make a record of this set — you should think of this as voting — and repeat the
process for each token. We decide on what is present by looking at the votes. For
example, if we are grouping points that lie on lines, we take each point and vote for
all lines that could go through it; we now do this for each point. The line (or lines)
that are present should make themselves obvious, because they pass through many
points and so have many votes.

16.1.1 Fitting Lines with the Hough Transform

Hough transforms tend to be most successfully applied to line finding. We will
do this example to illustrate the method and its drawbacks. A line is easily
parametrised as a collection of points (z,y) such that

xcosf +ysinf+r =0
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Now any pair of (6, r) represents a unique line, where r > 0 is the perpendicular
distance from the line to the origin, and 0 < 6 < 27. We call the set of pairs (6, r)
line space; the space can be visualised as a half-infinite cylinder. There is a family
of lines that passes through any point token. In particular, the lines that lie on the
curve in line space given by r = —x( cos 8 4 yo sin 8 all pass through the point token
at (2o, Yo)-

Because the image has a known size, there is some R such that we are not
interested in lines for » > R — these lines will be too far away from the origin
for us to see them. This means that the lines we are interested in form a bounded
subset of the plane, and we discretize this with some convenient grid (which we’ll
discuss later). The grid elements can be thought of as buckets, into which we will
sort votes. This grid of buckets is referred to as the accumulator array. Now for
each point token we add a vote to the total formed for every grid element on the
curve corresponding to the point token. If there are many point tokens that are
collinear, we expect that there will be many votes in the grid element corresponding
to that line.

16.1.2 Practical Problems with the Hough Transform

Unfortunately, the Hough transform comes with a number of important practical
problems:

e Quantization errors: an appropriate grid size is difficult to pick. Too coarse
a grid can lead to large values of the vote being obtained falsely, because many
quite different lines correspond to a bucket. Too fine a value of the grid can
lead to lines not being found, because votes resulting from tokens that are not
exactly collinear end up in different buckets, and no bucket has a large vote
(figure 16.2).

e Difficulties with noise: the attraction of the Hough transform is that it
connects widely separated tokens that lie “close” to some form of parametric
curve. This is also a weakness; it is usually possible to find many quite good
phantom lines in a large set of reasonably uniformly distributed tokens. This
means that, for example, regions of texture can generate peaks in the voting
array that are larger than those associated with the lines sought (figures 16.4
and 16.5).

The Hough transform is worth talking about, because, despite these difficulties,
it can often be implemented in a way that is quite useful for well-adapted problems.
In practice, it is almost always used to find lines in sets of edge points. Useful
implementation guidelines are:

e Ensure the minimum of irrelevant tokens this can often be done by
tuning the edge detector to smooth out texture, setting the illumination to
produce high contrast edges, etc.
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Figure 16.2. The Hough transform maps each point like token to a curve of possible
lines (or other parametric curves) through that point. These figures illustrate the Hough
transform for lines. The left hand column shows points, and the right hand column shows
the corresponding accumulator arrays (the number of votes is indicated by the grey level,
with a large number of votes being indicated by bright points). The top shows a set of
20 points drawn from a line next to the accumulator array for the Hough transform of
these points. Corresponding to each point is a curve of votes in the accumulator array;
the largest set of votes is 20. The horizontal variable in the accumulator array is 6 and the
vertical variable is r; there are 200 steps in each direction, and r lies in the range [0, 1.55].
In the center, these points have been offset by a random vector each element of which is
uniform in the range [0, 0.05]; note that this offsets the curves in the accumulator array
shown next to the points; the maximum vote is now 6.
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Figure 16.3. The Hough transform for a set of random points can lead to quite large
sets of votes in the accumulator array. Asin figure 16.2, the left hand column shows points,
and the right hand column shows the corresponding accumulator arrays (the number of
votes is indicated by the grey level, with a large number of votes being indicated by bright
points). In this case, the data points are noise points (both coordinates are uniform random
numbers in the range [0,1]); the accumulator array in this case contains many points of
overlap, and the maximum vote is now 4. Figures 16.4 and explore noise issues somewhat
further.

e Choose the grid carefully this is usually done by trial and error. It can
be helpful to vote for all neighbours of a grid element at the same time one
votes for the element.

16.2 Fitting Lines

Line fitting is extremely useful. In many applications, objects are characterised
by the presence of straight lines. For example, we might wish to build models of
buildings using pictures of the buildings (as in the application in chapter ??). This
application uses polyhedral models of buildings, meaning that straight lines in the
image are important. Similarly, many industrial parts have straight edges of one
form or another, and if we wish to recognise industrial parts in an image, straight
lines could be helpful. This suggests a segmentation that reports all straight lines
in the image.

The first step in line fitting is to establish a probabilistic model that indicates
how our data relates to any underlying line; with that model in place, we will
proceed to determine how points can be allocated to particular lines, and how to
count lines.
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Figure 16.4. The effects of noise make it difficult to use a Hough transform robustly. The
plot shows the maximum number of votes in the accumulator array for a Hough transform
of 20 points on a line perturbed by uniform noise, plotted against the magnitude of the
noise. The noise displaces the curves from each other, and quite quickly leads to a collapse
in the number of votes. The plot has been averaged over 10 trials.

16.2.1 Least Squares, Maximum Likelihood and Parameter Esti-
mation

Assume that all the points that belong to a particular line are known, and the
parameters of the line must be found. We now need a generative model that
indicates how our measurements were generated, given that the line was present.
This generative model will give us an expression for the likelihood. In the vast
majority of practical cases there is no reason to believe any one line is more likely to
occur than any other, so that the distinction between maximum likelihood and MAP
inference is moot. This means we wish to perform maximum likelihood inference.
We adopt the notation that

2o Ui
k

H:

to simplify the presentation.
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Figure 16.5. A plot of the maximum number of votes in the accumulator array for
a Hough transform of a set of points whose coordinates are uniform random numbers
in the range [0, 1], plotted against the number of points. As the level of noise goes up,
the number of votes in the right bucket goes down and the prospect of obtaining a large
spurious vote in the accumulator array goes up. The plots have again been averaged over
10 trials. Compare this figure with figure 16.4, but notice the slightly different scales; the
comparison suggests that it can be quite difficult to pull a line out of noise with a Hough
transform (because the number of votes for the line might be comparable with the number
of votes for a line due to noise). These figures illustrate the importance of ruling out as
many noise tokens as possible before performing a Hough transform.

Total Least Squares

We can represent a line as the collection of points where ax + by + ¢ = 0. Every
line can be represented in this way, and we can think of a line as a triple of values
(a,b,c). Notice that for A # 0, the line given by A(a, b, ¢) is the same as the line
represented by (a,b,c). Question ?? asks you to prove the simple, but extremely
useful, result that the perpendicular distance from a point (u,v) to a line (a,b,c)
is given by abs(au + bv + ¢) if a®> + b* = 1. In our experience, this fact is useful
enough to be worth memorizing.

Generative model: We assume that our measurements are generated by choos-
ing a point along the line, and then perturbing it perpendicular to the line using
Gaussian noise. We assume that the process that chooses points along the line is
uniform — in principle, it can’t be, because the line is infinitely long, but in practice
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we can assume that any difference from uniformity is too small to bother with. This
means we have a sequence of k measurements, (z;,y;), which are obtained from the

(5)-(2)en(2)

where n ~ N(0,0), au+ bv+ ¢ =0 and a? + b = 1.
Inference algorithm: The log-likelihood function is
~ 2ilaws + by + c)? LC
202
where a? + b2 = 1 and C is some normalising constant of no interest. Thus, a
maximum-likelihood solution is obtained by maximising this expression. Now using
a Lagrange multiplier A, we have a solution if

2 Ty T a 2a
Yy y2 y b = 2b
z gy 1 c 0
This means that
c=—azx — by

and we can substitute this back to get the eigenvalue problem

22 -TT TY-TY a\ _  (a
wm-77 -5 J\b ) "\

Because this is a 2D eigenvalue problem, two solutions up to scale can be obtained
in closed form (for those who care - it’s usually done numerically!). The scale is
obtained from the constraint that a? + b2 = 1. The two solutions to this problem
are lines at right angles, and one maximises the likelihood and the other minimises
it.

Least Squares

Least squares is a fitting procedure with a long tradition (which is the only reason
we describe it!). It has the virtue of yielding a simple analysis and the very sig-
nificant disadvantage of a generative model that very seldom makes sense in vision
applications. For this approach, we represent a line as y = ax + b.

Generative model: The k measurements (xz;,y;) are obtained from the model
y = azx + b+ n, where n ~ N(0,0). This means that only the y-coordinate of each
measurement is affected by noise, which is why it is a rather dubious model.

Inference algorithm: The maximum likelihood estimate of a and b is easily
obtained from the solution to

(2)=(71)(5)
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While this is a standard linear solution to a classical problem, it’s actually not much
help in vision applications because the model is an extremely poor model. The
difficulty is that the measurement error is dependent on coordinate frame — we are
counting vertical offsets from the line as errors, which means that near vertical lines
lead to quite large values of the error and quite funny fits (figure 16.6). In fact, the
process is so dependent on coordinate frame that it doesn’t represent vertical lines
at all.

A A

\ 4

Figure 16.6. Left: Perpendicular least squares models data points as being generated
by an abstract point along the line to which is added a vector perpendicular to the line, with
a length given by a zero mean, Gaussian random variable. This means that the distance
from data points to the line has a normal distribution. By setting this up as a maximum
likelihood problem, we obtain a fitting criterion that chooses a line that minimizes the
sum of distances between data points and the line. Right: Least squares follows the same
general outline, but assumes that the error appears only in the y-coordinate. This yields
a (very slightly) simpler mathematical problem, at the cost of a poor fit.

16.2.2 Which Point is on Which Line?

This problem can be very difficult, because it can involve search over a very large
combinatorial space. One approach is to notice that we very seldom encounter iso-
lated points; instead, we are fitting lines to edge points. We can use the orientation
of an edge point as a hint to the position of the next point on the line. If we are
stuck with isolated points, then both k-means and EM algorithms can be applied.

Incremental Fitting

Incremental line fitting algorithms take connected curves of edge points and fit
lines to runs of points along the curve. Connected curves of edge points are fairly
easily obtained from an edge detector whose output gives orientation (see exercises).
An incremental fitter then starts at one end of a curve of edge points and walks along
the curve, cutting off runs of pixels that fit a line well (the structure of the algorithm
is shown in algorithm 1). Incremental line fitting can work very well indeed, despite
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the lack of an underlying statistical model. One feature is that it reports groups
of lines that form closed curves. This is attractive when the lines one is interested
in can reasonably be expected to form a closed curve (for example, in some object
recognition applications)because it means that the algorithm reports natural groups
without further fuss. This strategy often leads to occluded edges resulting in more
than one fitted line. This difficulty can be addressed by postprocessing the lines to
find pairs that (roughly) coincide, but the process is somewhat unattractive because
it is hard to give a sensible criterion by which to decide when two lines do coincide.

Put all points on curve list, in order along the curve
empty the line point list
empty the line list

Until there are two few points on the curve
Transfer first few points on the curve to the line point list
fit line to line point list

while fitted line is good enough

transfer the next point on the curve

to the line point list and refit the line
end

transfer last point back to curve
attach line to line list
end

Algorithm 16.1: Incremental line fitting by walking along a curve, fitting a line
to runs of pixels along the curve, and breaking the curve when the residual is too
large

16.3 Fitting Curves

In principle, fitting curves is not very different from fitting lines. The usual gen-
erative model is that data points are generated uniformly at random on the curve,
and then perturbed by Gaussian noise normal to the curve. This means that the
distance between points and the underlying curve is normally distributed. In turn,
a maximum likelihood approach minimizes the sum of distances between the points
and the curve.

This generates quite difficult practical problems: it is usually very hard to tell
the distance between a point and a curve. We can either solve this problem, or apply
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various approximations (which are usually chosen because they are computationally
simple, not because they result from clean generative models). In this section, we
will suppress the probabilistic issues — which were comprehensively discussed for
the case of fitting lines — and concentrate on how to solve the distance problem for
the two main representations of curves.

16.3.1 Implicit Curves

The coordinates of implicit curves satisfy some parametric equation; if this equa-
tion is a polynomial, then the curve is said to be algebraic, and this case is by far
the most common. Some common cases are given in table 16.1.

| Curve | equation |
Line ar+by+c=0
Circle, center (a, b) | 22+ y? —2az — 2by +a® +b%> —r?2 =0
and radius r
Ellipses ar? +bry+cy’> +dr+ey+ f =0
(including circles) where
b? —4ac < 0
Hyperbolae ar? +bry+cy’> +dr+ey+ f =0
where
b? — 4ac >0
Parabolae ar? +bry+cy®> +dr+ey+ f =0
where
b? —4ac=0
General conic sections ar? +bry+cy’> +dr+ey+ f =0

Table 16.1. Some implicit curves used in vision applications. Note that not all of these
curves are guaranteed to have any real points on them — for example, z°> + y*> +1 =0
doesn’t. Higher degree curves are seldom used, because it can be difficult to get stable fits
to these curves.

The Distance from a Point to an Implicit Curve

Now we would like to know the distance from a data point to the closest point on
the implicit curve. Assume that the curve has the form ¢(z,y) = 0. The vector
from the closest point on the implicit curve to the data point is normal to the curve,
so the closest point is given by finding all the (u,v) with the following properties:

1. (u,v) is a point on the curve — this means that ¢(u,v) = 0;
2. s = (ds,dy) — (u,v) is normal to the curve.

Given all such s, the length of the shortest is the distance from the data point to
the curve.
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The second criterion requires a little work to determine the normal. The normal
to an implicit curve is the direction in which we leave the curve fastest; along this
direction, the value of ¢ must change fastest, too. This means that the normal at
a point (u,v) is
9¢ 0¢

(%7 8y)

evaluated at (u,v). If the tangent to the curve is T', then we must have T.s = 0.
Because we are working in 2D, we can determine the tangent from the normal, so
that we must have

0 0
Y(u, v;dg, dy) = 8—j(u, v){dy —u} — 8—i(u, v){dy —v} =0

at the point (u,v). We now have two equations in two unknowns, and in principle
can solve them. However, this is very seldom as easy as it looks, as example 1
indicates.

A conic section is given by az? + bzy + cy? + dx + ey + f = 0. Given a data
point (d,d,), the nearest point on the conic satisfies two equations:

au® + buv 4 cv? +dutev+ f = 0
and
2(a — c)uv — (2ady, + e)u + (2¢d,; + d)v + (edy —ddy) = 0

There can be up to four real solutions of this pair of equations (in the exer-
cises, you are asked to demonstrate this, given an algorithm for obtaining the
solutions, and asked to sketch various cases). As an example, choose the ellipse
222 4 % — 1 = 0, which yields the equations

2u?+v2—1=0and 2uv — 4dyu + 2d,v =0

Let us consider a family of data points (d,,d,) = (0, A); then we can rearrange
these equations to get:

2u? + 0% —1 =0 and 2uv — 4 u = 2u(v — 2)\) =0

The second equation helps: either u = 0, or v = 2\. Two of our solutions will
be (0,1), (0,—1). The other two are obtained by solving 2u? + 4\ — 1 = 0,
which has solutions only if —1/2 < A < 1/2. The situation is illustrated in
figure 16.7.

Example 16.1: The distance between a point and a conic
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Figure 16.7. On the left, the example worked in the text, where we study the
number of possible solutions for the distance between a point and an ellipse for data
points lying on the vertical axis. The figure on the right, indicates the general case
for this ellipse.

Approximations to the Distance

Notice that for a relatively simple curve we already have a somewhat nasty problem
to solve. A curve with a slightly more complicated geometry — obtained by choosing
¢ to be a polynomial of higher degree, say d — leads to quite nasty problems.
This is because the closest point on the curve would be obtained by solving two
simultaneous polynomial equations, both of degree d. It can be shown that this
can lead to as many as d? solutions, which are usually hard to obtain in practice.
Various approximations to the distance between a point and an implicit algebraic
curve have come into practice.

The best known is algebraic distance; in this case, we measure the distance
between a curve and a point by evaluating the polynomial equation at that point,
that is, we make the approximation:

distance between (dg,dy) and ¢(z,y) = 0 = ¢(ds, dy)

This approximation can be (rather roughly!) justified when the data points are
quite close to the curve. For a point sufficiently close to the curve and to first
order, ¢(d,,d,) increases as (dg,d,) moves normal to the curve — because the
normal to the curve is given by the gradient of ¢ — and does not increase as
(ds, dy) moves tangent to the curve. One significant difficulty is that, as it stands,
algebraic distance is ill-defined, because many polynomials correspond to the same
curve. In particular, the curve given by u¢(z,y) = 0 is the same as the curve
given by ¢(x,y) = 0. This problem can be solved normalising the coefficients of the
polynomial in some way.

We have already seen one example of this process in section 16.2, where we
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fitted a line (¢p(z,y) = ax + by + ¢ = 0) to a set of points by minimizing the
algebraic distance, subject to the constraint that a? 4+ b = 1. In this case, the
algebraic distance is the same as the actual distance. The choice of normalization
is important. For example, if we try to fit conics (az? 4 bxy+cy? +dz+ey+f = 0)
using the constraint b = 1, we cannot fit circles.

An alternative approximation is to use

¢(ds, dy)
V) (da dy)|

which has the advantage of not requiring a normalising constant; in the case of a
line, this approximation is exact. Notice that this approximation has the same prop-
erties as algebraic distance — it goes up as one moves along the normal, etc. The
advantage of the approximation is that is somewhat more accurate than algebraic
distance, because it is normalised by the length of the normal. This means that
it can be read — roughly! — as giving the percentage distance along the normal
from the curve to the point. In practice, this approximation is seldom used, mainly
because the use of algebraic distance yields simpler numerical problems.

Both of these approximations are very dangerous. This is because their be-
haviour for data points that are far from the curve is strange and not well under-
stood. As a result, the relationship between a fitted curve and a set of data points
becomes a bit mysterious if the data points don’t lie very close to a curve of that
class. Algebraic distance is used quite widely in practice, because it yields easy
numerical problems and can be used for higher dimensional problems like approx-
imating the distance between points and implicit surfaces. The exact distance is
very difficult to compute for such problems.

16.3.2 Parametric Curves

The coordinates of a parametric curve are given as parametric functions of a
parameter that varies along the curve. Parametric curves have the form:

(z(t),y(t) = (x(t;0),y(t;0))  t € [tmin, tmaz)

Table 16.2 shows the form of a variety of useful parametric curves.

The Distance from a Point to a Parametric Curve

Assume we have a data point (dy,d,). The closest point on a parametric curve can
be identified by its parameter value, which we shall write as 7. This point could lie
at one or other end of the curve. Otherwise, the vector from our data point to the
closest point is normal to the curve. This means that s(7) = (dg, dy) — (x(7), y(7))
is normal to the tangent vector, so that s(7).T' = 0. The tangent vector is

dx d_y

(5 () o

(7))
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| Curves | Parametric form | parameters
Circles centered (rsin(t), rcos(t)) 0=r
at the origin t €[0,27)
Circles (rsin(t) + a,rcos(t) + b) 0= (r,a,b)
t €[0,27)
Axis aligned (risin(t) + a,racos(t) +b) 0 = (r1,72,a,b)
ellipses t €10,2m)
Ellipses (cos ¢ (r1sin(t) + a) — sin ¢ (rocos(t) +b), 0 = (r1,r2,a,b, )
sin ¢ (r1sin(t) + a) + cos ¢ (racos(t) + b)) t €10,2m)
cubic segments (at® + bt?> + ct +d,et> + ft2 + gt + h) 0 = (a,b,c,d,e, f,g,h)
te|0,1]

Table 16.2. A selection of parametric curves often used in vision applications. It is
quite common to put together a set of cubic curves, with constraints on their coefficients
such that they form a single continuous differentiable curve; the result is known as a cubic
spline.

which means that 7 must satisfy the equation

dx dy
E(T) {dy — (1)} + a(T) {dy —y(1)} =0

Now this is only one equation, rather than two, but the situation is not much better
than that for parametric curves. It is almost always the case that z(t) and y(t)
are polynomials, because it is usually easier to do root finding for polynomials. At
worst, z(t) and y(t) are ratio’s of polynomials, because we can rearrange the left
hand side of our equation to come up with a polynomial in this case, too. However,
we are still faced with a possibly large number of roots.

There is a second difficulty that makes fitting to parametric curves unpopular.
Parametric curves with different coefficients may represent the same curve — for
example, the curve (z(t), y(t)) for ¢t € [0, 1] is the same as the curve (z(2t), y(2t)) for
t € [0,1/2]. This situation can be very bad, depending on the class of parametric
curves that we use (exercises).

16.4 Fitting to the Outlines of Surfaces

Generally, if we view a surface drawn from a constrained class — say, a surface
of revolution — then its outline will satisfy some set of constraints, too. This
observation is the key to a powerful idea: cluster edge points to form collections
that “look like” the outline of a surface (i.e. satisfy the relevant constraints). The
approach appears to work in practice only for quite simple cases, but some of these
cases are important.
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16.4.1 Some Relations Between Surfaces and Outlines

Recall that the outline of a surface is formed by slicing a cone of rays with the
image plane. The cone of rays consists of rays tangent to the surface that pass
through the focal point of the camera — for a perspective camera — or are parallel
— for an affine camera. Call this cone the viewing cone. If the affine camera
is orthographic, which is by far the most common case, then the slice is taken
perpendicular to the rays. The viewing cone is usually easier to analyze than the
outline.

Cones

A cone is a surface obtained by sweeping a family of rays through a point — the
vertex of the cone — along a plane curve, called the generator. Notice that this
definition is more general than that of a right circular cone, which many people
incorrectly call a cone; right circular cones have a rotational symmetry (figure 16.8).
A cone consists of scaled and translated copies of its generator. Choose a coordinate
frame where the generator can be written as (z(¢),y(¢),1). Then the cone can be
written as

(z(t)s, y(t)s, s)

and the vertex occurs at (0,0,0) (figure 16.8).

generator

o

vertex

. S

A right circular
cone

Figure 16.8. Cones are surfaces obtained by sweeping rays through a vertex along a
generator. A right circular cone is a special cone, where the generator is a circle and the
line joining the vertex with the center of the circle is normal to the circle’s plane.

The viewing cone for a cone is a family of planes, all of which pass through
the focal point and the vertex of the cone. This means that the outline of a cone
consists of a set of lines passing through a vertex (figure 16.9). All this should be
obvious (you are asked for a proof in the exercises), but is surprisingly useful.

Straight Homogenous Generalised Cylinders

A straight homogenous generalised cylinder (or SHGC for short) is a surface
obtained by sweeping a plane generating curve along a line at right angles to the
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Figure 16.9. The viewing cone is a set of planes tangent to the cone, and passing
through both the vertex of the cone and the focal point. The outline of a cone is obtained
by slicing the viewing cone with a plane, and is a set of lines through a single point.

curve, and scaling it as one sweeps. With an appropriate choice of coordinate
system, the generating curve is (x(t), y(t),0), and the surface can be written as

(@(8)f(s), y(8)f(s), 9(s))

An SHGC is locally a cone. Fix a value of s = sg and consider the strip of surface
from sg to sp + €. If the strip is small enough, then f(s) can be approximated by
us + v, and g(s) can be approximated by c¢s + d, for u, v, ¢ and d some constants
(this is what derivatives are all about!). The d can be disposed of by translation
and the ¢ by reparametrisation, so this strip is a cone. This means that all the
tangent vectors in the s direction at s = sg pass through some vertex.

It is a remarkable fact that the collection of vertices obtained for different values
of s is collinear. The easiest way to see this is to work in coordinates. Take the
coordinate form given above, and slice it with an arbitrary vertical plane, yielding
two plane curves (v/x(t0)? + y(t0)2f(s),g(s)) and (—+/z(t1)? + y(t1)%2f(s), g(s))
Take the tangents to these curves at s = sg, and produce them to form tangent
rays; a quick calculation shows that the rays meet at (0, g(so)—(f(s0)/f'(50))g’ (s0))-
This means that for any cross-section and any value of s, the tangents meet on the
line x = 0, meaning that the vertices are collinear. Although we obtained this
result in coordinates, this was merely for convenience. Because the result is about
incidence properties of tangents — which aren’t affected by change of coordinates
— it applies to any SHGC in any coordinate frame. So for any SHGC, in any
coordinate frame, there is a well defined axis, which is the line along which the
vertices of the tangent cones fall.
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Figure 16.10. An SHGC is obtained by sweeping a plane generator along a line per-
pendicular to its plane, and growing or shrinking it as it sweeps (left). This gives a surface
that is locally a cone, in the sense that there is a cone tangent to the surface along any
generator. In the right hand figure, we have cut a narrow strip of the surface between
two generators, and produced its tangents. These tangents meet at a vertex on the axis,
meaning that each such strip of an SHGC is a strip of cone.

Surfaces of Revolution

A surface of revolution — or SOR for short — is a special SHGC, whose gen-
erator is a circle. The viewing cone for an SOR has a symmetry. Imagine the
plane through the axis of the SOR and the focal point; the cone must have a flip
symmetry about this plane. This does nmot mean that the image curve has this
symmetry, because we are slicing the viewing cone with the image plane to get the
image curve, and the slicing process can disrupt the symmetry (figure 16.12). The
effect is governed by the field of view of the camera, and for the vast majority of
practical cameras, it is tiny.

16.4.2 Clustering to Form Symmetries

Clustering the outline of a cone is relatively simple — a collection of image line
segments that would pass through a single point, if extended, could be the outline
of a cone.

Similarly, we can reason about the outline of an SHGC using our knowledge of
cones. In particular, the tangents at components of the outline corresponding to the
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Figure 16.11. The vertices of the tangent cones to an SHGC all fall along a single
line; this defines the axis for the SHGC. The easiest way to prove this is to work with the
SHGC in the coordinatised form (z(t)f(s),y(t)f(s), g(s)), and slice it with an arbitrary
plane through the z-axis (left). For any such slice, lines tangent to the cross-section at a
particular s-value meet at a point on the z-axis, and the result follows.

same value of s, when produced, will meet at the projected vertex of the tangent
cone for that value of s. In turn, there is some correspondence between components
of the outline such that tangents at corresponding sides, when produced, will meet
along a straight line. This is a segmentation criterion, because not all sets of curves
will satisfy it. It is somewhat tricky to use in this form, however (but see [?;

7)),

Surfaces of Revolution

Corresponding points on either side of the outline of an SOR can be identified
by a local test on pairs of points on image curves. In particular, two points on
image curves where the tangent is at about the same angle to the line joining
the points (figure 16.13) could be on opposite sides of a symmetry — we will call
this configuration a local symmetry, and the line segment joining the points the
symmetry line.

We could find the outline of a surface of revolution by looking for local symme-
tries whose midpoints lie on a straight line roughly perpendicular to their symmetry
lines. The main difficulty with this strategy is that most images contain an awful
lot of symmetries, and there may be many groups of symmetries that satisfy this
test.
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Focal point

Figure 16.12. A surface of revolution and a focal point together give a plane of symme-
try, that passes through the axis of the SOR and the focal point. The contour generator
must have a mirror symmetry in this plane. This doesn’t mean that the outline has an
exact mirror symmetry, because the outline is obtained by slicing the viewing cone —
which isn’t shown, for simplicity — by a plane that may not be at right angles to the plane
of symmetry. However, the effect is small, and to all intents and purposes the outline of
an SOR can be regarded as having a mirror symmetry.

Cylinders and Body Segments

A particularly interesting SOR is a cylinder. This is because, to a crude first
approximation human body segments look like this, as do body segments from
some animals. In this case, the local symmetries will have midpoints that (roughly)
lie on a straight line, and this line will be (roughly) perpendicular to the symmetry
lines, and the lengths of all the symmetry lines will be (roughly) the same. While
typical images contain an awful lot of local symmetries with these properties, it is
just about practical to winnow through them looking for groups that satisfy these
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Figure 16.13. A local symmetry is a pair of contour points where the tangents to the
contours are at roughly the same angle to the line joining the contours (the symmetry
line). Such symmetries are often seen in the outlines of surfaces of revolution.

constraints.

Figure 16.14. An example of the kind of representation that can be obtained from
straight segments with near parallel sides. On the left, a colour image of two horses; on
the center left, pixels with the right colour and texture to be hide have been retained
and the others masked off; on the center right, the edges of this set of pixels; and on the
far right, all straight segments with near parallel sides obtained using the mechanisms
described above. These segments have been displayed using the abstraction maintained
by the program (i.e. the sides of the abstract segment are shown superimposed on the
edges that yield the segments). Notice that the components do not exactly correspond to
body segments. Although it looks unpromising, this representation can be used to find the
horses — which are represented as assemblies of segments — despite the fact it captures
image information very poorly.

Cylinders can be found with a relatively crude algorithm (too crude to display!).
We use a form of agglomerative clustering. Make each symmetry a cluster. We will
build bigger clusters by looking forward and backward along the axis predicted
by the symmetries in the cluster. Given a cluster, we can predict the orientation
of the next symmetries in the cluster (roughly parallel to the symmetries in the
cluster), and the position of their midpoints (along a line roughly perpendicular to
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the symmetry lines in the cluster), and their width (roughly the same as the width
of the symmetries in the cluster). If the next symmetries are sufficiently nearby
and sufficiently similar, we add them to the cluster, and proceed until the cluster
cannot be grown further. We do this for each cluster. It is usually a good idea to
have a second pass that engages in greedy merges between clusters, using the same
criteria.

16.5 Discussion

Fitting should be seen as a form of segmentation exercise — we are concentrating
attention on a set of image tokens that have some global structural properties. Sec-
tion 7?7 gives the flavour of this line of reasoning, which is currently very poorly
developed. We were deliberately vague in describing algorithms in that section; typ-
ically, words like “roughly” and “approximately” in our description are interpreted
as tests against some threshold, which is set by hand. This means it is rather hard
to be precise about what the representation means, or how well it performs. At the
same time, symmetries do seem to yield representations that can be useful in prac-
tice — for example, it is possible to decide, with quite limited accuracy, whether
a picture has unclad people in it or not using a representation based on symme-
tries ?7?7. The idea is useful because many interesting objects really do look like
cylinders in images. Furthermore, cylinders are associated with a line of reasoning
that is very attractive: we first check relatively small sets of image components to
tell whether they are part of a cylinder, then assemble the survivors into a larger
region. This means that we are using a model of what (some!) objects look like to
help assemble together the evidence we need to tell whether an object is present.
You should notice that, despite the fact that we have no real probabilistic model
here, we seem to be doing something rather like inference: in the following chapter,
we will describe the use of inference algorithms in segmentation.

Assignments

Exercises

e Prove the simple, but extremely useful, result that the perpendicular distance
from a point (u,v) to a line (a, b, ¢) is given by abs(au + bv +c) if a? +b% = 1.

e Derive the eigenvalue problem

22 -TT TY-TY a\ _ [a
w77 »-55/)\b) "\

from the generative model for total least squares. This is a simple exercise —
maximum likelihood and a little manipulation will do it — but worth doing
right and remembering; the technique is extremely useful.
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e How do we get a curve of edge points from an edge detector that returns
orientation? - give a recursive algorithm.

e A slightly more stable variation of incremental fitting cuts the first few pixels
and the last few pixels from the line point list when fitting the line, because
these pixels may have come from a corner

1.
2.

Why would this lead to an improvement?

How should one decide how many pixels to omit?

e A conic section is given by az? + bxy + cy? + dx + ey + f = 0.

1.

Given a data point (dg,d,), show that the nearest point on the conic
(u,v) satisfies two equations:
au® +buv +cv® +dutev+f =0
and
2(a — c)uv — (2ady, + e)u + (2¢dy + d)v + (edy — ddy) = 0

. These are two quadratic equations. Write u for the vector (u,v,1). Now

show that we can write these equations as u” Miu = 0 and u” Mau = 0,
for Mj and M5 symmetric matrices.

. Show that there is a transformation 7, such that 72 M7 = Id and

TTM,T is diagonal.

Now show how to use this transformation to obtain a set of solutions
to the equations; in particular, show that there can be up to four real
solutions.

. Show that there are either four, two or zero real solutions to these equa-

tions.

. Sketch an ellipse, and indicate the points for which there are four or two

solutions.

e Show that the curve

1—¢® 2t
14127 14¢2

( )

is a circular arc (the length of the arc depending on the interval for which the
parameter is defined).

1.

Write out the equation in ¢ for the closest point on this arc to some data
point (dg,d,); what is the degree of this equation? How many solutions
in ¢t could there be?

. Now substitute s* = ¢ in the parametric equation, and write out the

equation for the closest point on this arc to the same data point. What
is the degree of the equation? why is it so high? What conclusions can
you draw?
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e Show that the outline of a cone consists of a set of lines passing through the
projection of the vertex (you can do this in a short sentence if you think about
it; it’s a bad idea to try and do it with equations).

Programming Assignments

e Implement an incremental line fitter. Determine how significant a difference
results if you leave out the first few pixels and the last few pixels from the line
point list (put some care into building this, as it’s a useful piece of software
to have lying around in our experience).



Chapter 17

SEGMENTATION AND
FITTING USING
PROBABILISTIC METHODS

All the segmentation algorithms we described in the previous chapter involve es-
sentially local models of similarity. Even though some algorithms attempt to build
clusters that are good globally, the underlying model of similarity compares individ-
ual pixels. Furthermore, none of these algorithms involved an explicit probabilistic
model of how measurements differed from the underlying abstraction that we are
seeking.

We shall now look at explicitly probabilistic methods for segmentation. These
methods attempt to explain data using models that are global. These models will
attempt to explain a large collection of data with a small number of parameters.
For example, we might take a set of tokens and fit a line to them; or take a pair
of images and attempt to fit a parametric set of motion vectors that explain how
pixels move from one to the other.

The first important concept is that of a missing data problem. In many seg-
mentation problems, there are several possible sources of data (for example, a token
might come from a line, or from noise); if we knew from which source the data had
come (i.e. whether it came from the line, or from noise), the segmentation problem
would be easy. In section 17.1, we deal with a number of segmentation problems
by phrasing them in this form, and then using a general algorithm for missing data
problems.

We then set up the problem of fitting lines to a set of tokens as a quite general
example of a probabilistic fitting problem (section 16.2), and discuss methods for
attacking this problem. This leads us to situations where occasional data items
are hugely misleading, and we discuss methods for making fitting algorithms robust
(section 17.2). We sketch how to generalize our line fitting techniques to handle
curve fitting problems in section 16.3. Finally, we discuss methods for determining
how many elements (lines, curves, segments, etc.) to fit to a particular data set
(section 17.3).

460
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17.1 Missing Data Problems, Fitting and Segmentation

Segmentation can rather naturally be phrased as a missing data problem. In this
approach, there are a series of different possible sources of pixel values, and the
missing data is the source from which the pixel was drawn. A number of other
interesting problems can be phrased in this way, too, and there is a standard, quite
simple, algorithm for this problem.

17.1.1 Missing Data Problems

It is quite common to encounter problems which contain missing data. There are
two contexts: in the first, some terms in a data vector are missing for some instances
and present for other (perhaps someone responding to a survey was embarrassed by a
question); in the second, which is far more common in our applications, an inference
problem can be made very much simpler by rewriting it using some variables whose
values are unknown. We will demonstrate this method and appropriate algorithms
with two examples.

Example: Owls and Rats

In a study area, there are g different species of rat. A rat of the I’th species appears
in an owl’s diet with probability m; It is hard to observe owls eating rats. Instead,
owl pellets — the indigestible bits of rat, regurgitated by owls — are found and
rat skulls in the pellets are measured. These measurements form observations of
a random vector W. The j’th observation is W ;. The conditional probability of
observing measurements of a rat skull in a pellet given it comes from species [ is
known to be fi(W).

All this means that the probability density for a set of measurements of a rat
skull is:

p(W) = mfi(W)
l

This is a form of probability model that we shall encounter quite often. It is
often referred to as a mixture model, because it consists of a finite mixture of
distributions (the coefficients of the distributions are often referred to as mixing
weights — clearly, they must sum to one). A sample can be drawn from this model
by selecting the I’th component with probability 7;, and then drawing a sample from
fiw).

Under this model, the likelihood of a set of observations is:
g
11 (Z T fi( Wj))
jeobservations \!=1

We would like to infer ;. If we knew which species of rat was represented by each
skull, the problem would be easy; we could estimate 7; by counting the number
of rat skulls of the [’th species, and dividing by the total number of skulls. The



462 Segmentation and Fitting using Probabilistic Methods  Chapter 17

difficulty is that we have only the measurements of the skulls, not the species of the
rat associated with the skull.

Example: Image Segmentation

(This is a formulation due to Malik and his students []) At each pixel in an image,
we compute a d-dimensional feature vector @, which encapsulates position, colour
and texture information. This feature vector could contain various colour represen-
tations, and the output of a series of filters centered at a particular pixel. Our image
model is that each pixel is produced by a density associated by an image segment.
This means that the image is produced by a mixture model, which consists of a
weighted sum of g Gaussian densities. This model is a density in feature vector
space that consists of a set of “blobs”, each of which is associated with an image
segment. We should like to determine: (1) the parameters of each of these blobs;
(2) the mixing weights and (3) from which component each pixel came (thereby
segmenting the image).

We encapsulate these parameters into a parameter vector, writing the mix-
ing weights as a; and the parameters of each blob as 6, = (p;,%;), to get © =
(a1,...,aq,61,...,60,). The mixture model then has the form

p(x|©) = Z aip(x|0;)
=1

Again, this model is sampled by choosing a component and then sampling that
component.
Each component density is the usual Gaussian:

1 1 B
(2m) 472 det ()12 €xXp {_5(“3 — ) (e - l’l’z)}

The likelihood function for an image is:

11 (Z azpz(mﬂ@l))

jeobservations \l=1

pi(x|0) =

Each component is associated with a segment, and © is unknown.

If we knew the component from which each pixel came, then it would be simple
to determine ©. We could use maximum likelihood estimates for each 6;, and then
the fraction of the image in each component would give the «;. Similarly, if we
knew ©, then for each pixel, we could determine the component that is most likely
to have produced that pixel — this yields an image segmentation. The difficulty is
that we know neither.

Strategy

For each of these examples, if we know the missing data then we can estimate the
parameters effectively. Similarly, if we know the parameters, the missing data will
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follow. This suggests an iterative algorithm:

1. Obtain some estimate of the missing data, using a guess at the parameters;

2. now form a maximum likelihood estimate of the free parameters using the
estimate of the missing data.

and we would iterate this procedure until (hopefully!) it converged. In the case of
the owls and the rats, this would look like:

1. Obtain some estimate of the number of rats of each species in each owl pellet,
using a guess at 7;

2. now form a revised estimate of 7; using the number of rats of each species in
each pellet.

For image segmentation, this would look like:

1. Obtain some estimate of the component from which each pixel’s feature vector
came, using an estimate of the 6;.

2. Now update the 6;, using this estimate.

17.1.2 The EM Algorithm

Although it would be nice if the procedures given above converged, there is no
particular reason to believe that they do. In fact, given appropriate choices in each
stage, they do. This is most easily shown by showing that they are examples of a
general algorithm, the expectation-maximization algorithm.

A Formal Statement of Missing Data Problems

Assume we have two spaces, the complete data space X and the incomplete
data space ). There is a map f, which takes X to ). This map “loses” the
missing data; for example, it could be a projection. For the example of the owls
and rats, the complete data space consists of the measurements of the skulls and
a set of variables indicating from which type of rat the skull came; the incomplete
data is obtained by dropping this second set of variables. For the example of image
segmentation, the complete data consists of the measurements at each pixel and a
set of variables indicating from which component of the mixture the measurements
came; the incomplete data is obtained by dropping this second set of variables.
There is a parameter space . For the owls and rats, the parameter space con-
sists of the mixing weights; for the image segmentation example, the parameter
space consists of the mixing weights and of the parameters of each mixture com-
ponent. We wish to obtain a maximum likelihood estimate for these parameters,
given only incomplete data. If we had complete data, we could use the probability
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density function for the complete data space, written p.(a;u). The complete data
log-likelihood is

Le(;u) log{Hpc(wj; u)}

= Zlog (Pe(j;w))

In either of our examples, this log-likelihood would be relatively easy to work with.
In the case of the owls and rats, the problem would be to estimate the mixing
weights, given the type of rat from which each skull came. In the case of image
segmentation, the problem would be to estimate the parameters for each image
segment, given the segment from which each pixel came.

The problem is that we don’t have the complete data. The probability density
function for the incomplete data space is p;(y; u). Now

pilysu) = / pe(; w)de
Z|f(T)=yY

that is, the probability density function for the incomplete data space is obtained
by integrating the probability density function for the complete data space over all
values that give the same y. The incomplete data likelihood is

H pz‘('!lj? u)

jeobservations

We could form a maximum likelihood estimate for u, given y by writing out the
likelihood and maximising it. This isn’t easy, because both the integral and the
maximisation can be quite difficult to do. The usual strategy of taking logs doesn’t
make things easier, because of the integral inside the log. We have:

Li(y;u) = log< [ pi(y;;w)
J

= Zlog (pi(y;;u))

= Zlog (/ pc(m;u)dm>
7 mlf(m):yj

This form of expression is difficult to deal with. The reason that we are stuck with
the incomplete data likelihood is that we don’t know which of the many possible x’s
that could correspond to the y’s that we observe actually does correspond. Forming
the incomplete data likelihood involves averaging over all such x’s.

The key idea in E-M is to obtain a working value for this by computing an
expectation. In particular, we will fix the parameters at some value, and then
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compute the expected value of x, given the value of y and the parameter values.
We then plug the expected value of @ into the complete data log-likelihood, which
is much easier to work with, and obtain a value of the parameters by maximising
that. Now at this point, the expected value of  may have changed. We obtain
an algorithm by alternating the expectation step with the maximisation step, and
iterate until convergence.

More formally, given u®, we form u**! by:

1. Computing an expected value for the complete data using the incomplete data
and the current value of the parameters. This estimate is given by:

=S

z; = / xp.(x; u’)dx
m|f(m):y]

This is referred to as the E-step.

2. Maximizing the complete data log likelihood with respect to w, using the
expected value of the complete data computed in the E-step. That is, we
compute

s+

u'tt = argmﬁch(Es;u)

This is known as the M-step.

It can be shown that the incomplete data log-likelihood is increased at each step,
meaning that the sequence u® converges to a (local) maximum of the incomplete
data log-likelihood (e.g. []). Of course, there is no guarantee that this algorithm
converges to the right local maximum, and in some of the examples below we will
show that finding the right local maximum can be a nuisance.

Example: Owls and Rats, Revisited:

The complete data vector here is the number of rats of each species in each owl
pellet. The incomplete data log-likelihood is:

> log (Z i fi(Wk)>

keobservations i

which is difficult to deal with because of the sum inside the logarithm. We represent
the type of rat a skull came from with a g x n array of binary random variables Z,
where the [, j’th element of Z is z;;. This element is one if the j'th skull is of type
[, and zero otherwise.

The M-step: If we know Z, then an estimate of the 7; is easy. A maximum
likelihood estimate of the probability a rat of a particular type is eaten is given by
the frequency with which those rats are eaten, i.e. by

Z?:l 215

n

T =
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(if you're not confident about this, you should check it, perhaps with chapter ??
in hand). Now we will never have Z, but will have the expected value of Z. The
elements of this expected value will not necessarily be only 0 or 1 — they could
take any value between zero or one. The correct intepretation of a value of, say, 0.2
is that this represents an observation that occured 0.2 times (i.e. rather less than
once). Thus, in the likelihood, we raise the term corresponding to this data item
to the 0.2’th power (in the same way that, if an observation occured three times,
the term corresponding to the data item would appear as third power because three
copies of the term would be multiplied together). This means that our maximum
likelihood estimate obtained from Z would be

i1 Z

n

T =

The E-step: Now for the E-step we want an expectation for z;; given the W ’s.
This expectation is:

Zy; = IXP{ZU=1|W1...Wn}—|-0><P{le=0|W1...Wn}

= P{z; =1|W;}
_ P{W,lz; =1} P{z;}
P{wW,}

Now we assume a uniform prior on z;;, and deal with the question of P {W,} by
getting the probability to normalize to one, yielding

m fi(W)
Z?:l Wifz’(Wj)

Zy; =

Example: Image Segmentation, Revisited

This example works rather like the previous example. Assume there are a total of
n pixels. The missing data forms an n by g array of indicator variables Z. In each
row there is a single one, and all other values are zero — this indicates the blob
from which each pixel’s feature vector came.

The E-step: Now the expected value of the [, m’th entry of 7 is given by the
probability that the I’th pixel comes from the m’th blob, using the same reasoning
as for the owls and the rats. Assuming that the parameters are for the s’th iteration
are ©) we have:

o\ pu (1]60)
Zszl Ot;(:)pk(mz |91(s))
( (s)

keeping in mind that «;,” means the value of o, on the s’th iteration!).

M-step: Once we have an expected value of Z, the rest is easy. We are essen-
tially forming maximum likelihood estimates of ©*!1. Again, the expected value
of the indicator variables is not in general going to be zero or one; instead, they

7lrn =
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will take some value in that range. This should be interpreted as an observation
of that particular case that occurs with that frequency, meaning that the term in
the likelihood corresponding to a particular indicator variable is raised to the power
of the expected value. The calculation yields expressions for a weighted mean and
weighted standard deviation that should be familiar:

1 i
(1) = = ()
Xm - rzp(m|ml7@ )
=1
pletD) — Sy @ip(m|x, ©F)
" Z?:l p(m|ml, @(3))
Yoy p(mlay, ©)) {(mz — ) (@ — MS))T}
Z?:l p(m|ml7 @(s))

s+1 __
Mot o=

(again, keeping in mind that agﬁ) means the value of «,, on the s’'th iteration!).

Example: Line Fitting with EM

An EM line fitting algorithm follows the lines of the owls and rats example above;
the missing data is an array of indicator variables £ whose [, j'th element [;; is one if
point [ is drawn from line j, zero otherwise. As in that example, the expected value
is given by determining P(l;; = 1|point [, line j’s parameters), and this probability
is proportional to

distance from point [ to line j°
exp | — 20_2

for o as above. The constant of proportionality is most easily determined from the
fact that

Z P(l;; = 1|point ¢, line j’s parameters) = Z P(l;; = 1|point ¢, line j’s parameters) = 1
i J

The maximisation follows the form of that for fitting a single line to a set of
points, only now it must be done k times and the point coordinates are weighted by
the value of [;;. Convergence can be tested by looking at the size of the change in
the lines, or by looking at the sum of perpendicular distances of points from their
lines (which operates as a log likelihood, see question ?7?).

Both algorithms are inclined to get stuck in local minima. In one sense, these
local minima are unavoidable — they follow from the assumption that the points
are interchangeable (see figure 17.1). This can be dodged by noticing that the final
configuration of either fitter is a deterministic function of its start point, and using
carefully chosen start points. One strategy is to start in many different (randomly
chosen) configurations, and sift through the results looking for the best fit. Another
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Figure 17.1. The top figure shows a good fit obtained using EM line fitting. The two bad
examples in the bottom row were run with the right number of lines, but have converged
to poor fits — which can be fairly good interpretations of the data, and are definitely
local minima. This implementation adds a term to the mixture model that models the
data point as arising uniformly and at random on the domain; a point that has a high
probability of coming from this component has been identified as noise. Further examples
of poor fits appear in figure 17.2.

is to preprocess the data using something like a Hough transform to guess good
initial line fits. Neither is guaranteed. A cleaner approach is to notice that we are
seldom, if ever, faced with a cloud of indistinguishable points and required to infer
some structure on that cloud; usually, this is the result of posing a problem poorly.
If points are not indistinguishable and have some form of linking structure, then a
good start point should be much easier to choose.

A second difficulty to be aware of is that some points will have extremely small
expected weights. This presents us with a numerical problem; it isn’t clear what will
happen if we regard small weights as being equivalent to zero (this isn’t usually a
wise thing to do). In turn, we may need to adopt a numerical representation which
allows us to add many very small numbers and come up with a non-zero result.



Section 17.1. Missing Data Problems, Fitting and Segmentation 469

Figure 17.2. More poor fits to the data shown in figure 17.1; for these examples, we have
tried to fit seven lines to this data set. Notice that these fits are fairly good interpretations
of the data; they are local extrema of the likelihood. This implementation adds a term
to the mixture model that models the data point as arising uniformly and at random on
the domain; a point that has a high probability of coming from this component has been
identified as noise. The fit on the bottom left has allocated some points to noise, and fits
the others very well.

Choose k lines (perhaps uniformly at random)
or choose L
Until convergence
e-step:
recompute-z, from perpendicular distances
m-step:
refit lines using weights in L

Algorithm 17.1: EM line fitting by weighting the allocation of points to each
line, with the closest line getting the highest weight

This issue is rather outside the scope of this book; you should not underestimate
its nuisance value because we don’t treat it in detail.

17.1.3 Colour and Texture Segmentation with EM

We have already done most of the work for this example in section 17.1. It remains
to specify appropriate feature vectors, and discuss such matters as starting the EM
algorithm. The results shown in figures 17.3-17.4 use three colour features — the
coordinates of the pixel in L*a*b*, after the image has been smoothed — and three
texture features — which use filter outputs to estimate local scale, anisotropy and
contrast (figure 17.3); other features may well be more effective — and the position
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Figure 17.3. The image of the zebra in (a) gives local scale measurements shown in
(b). These scale measurements essentially measure the scale of the change around a pixel;
at edges, the scale is narrow, and in stripey regions it is broad, for example. The features
that result are shown in (c); the top three images show the smoothed colour coordinates
and the bottom three show the texture features (ac, pc and ¢ — the scale and anisotropy
features are weighted by contrast). figure from Belongie et al, Color and Texture Based
Image Segmentation Using EM and Its Application to Content Based Image Retrieval,
ICCV9I8, p 5, in the fervent hope that permission will be granted

of the pixel.

What should the segmenter report? Omne option is to choose for each pixel
the value of m for which p(m|x;, ©%) is a maximum. Another is to report these
probabilities, and build an inference process on top of them.

17.1.4 Motion Segmentation and EM

Missing data problems turn up all over computer vision. For example, motion
sequences quite often consist of large regions which have quite similar motion in-
ternally. Let us assume for the moment that we have a very short sequence —
two frames — and wish to determine the motion field at each point on the first
frame. We will assume that the motion field comes from a mixture model. Recall
that a general mixture model is a weighted sum of densities — the components do
not have to have the Gaussian form used in section 17.1.1 (missing data, the EM
algorithm and general mixture models turn up rather naturally together in vision
applications).
A generative model for a pair of images would have the following form:
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Choose a number of segments
Construct a set of support maps, one per segment,
containing one element per pixel. These support maps
will contain the weight associating a pixel with a segment
Initialize the support maps by either:

Estimating segment parameters from small

blocks of pixels, and then computing weights

using the E-step;

Or randomly allocating values to the support maps.
Until convergence

Update the support maps with an E-Step

Update the segment parameters with an M-Step

end

Algorithm 17.2: Colour and texture segmentation with EM

e At each pixel in the first image, there is a motion vector connecting it to a
pixel in the second image;

e there are a set of different parametric motion fields, each of which is given by
a different probabilistic model;

e the overall motion is given by a mixture model, meaning that to determine
the image motion at a pixel, we firstly determine which component the motion
comes from, and then secondly draw a sample from this component.

This model encapsulates a a set of distinct, internally consistent motion fields —
which might come from, say, a set of rigid objects at different depths and a moving
camera (figure 17.5) — rather well.

Now assume that the motion fields have a parametric form, and that there are
g different motion fields. Given a pair of images, we wish to determine (1) which
motion field a pixel belongs to and (2) the parameter values for each field. All this
should look a great deal like the first two examples, in that if we knew the first,
the second would be easy, and if we knew the second, the first would be easy. This
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For each pixel location !

For each segment m

Insert aﬁ,i)pm(mlwl(s))
in pixel location [ in the support map m

end
Add the support map values to obtain

S ol pi(@]6))

and divide the value in location ! in each support map by this term

end

Algorithm 17.3: Colour and texture segmentation with EM: - the E-step

For each segment m

Form new values of the segment parameters
using the expressions:

als™ = L5 p(mlay, ©©)

(s+1) _ Doy, Tup(m|T1,01)
Bm o S iz, 0)
sl _ 2oy PmIZLO D@ - (@)}

Do, p(m|L1,0))

Where p(mlx;,O(,) is the value
in the m’th support map for pixel location !

end

Algorithm 17.4: Colour and texture segmentation with EM: - the M-step

is again a missing data problem: the missing data is the motion field to which a
pixel belongs, and the parameters are the parameters of each field and the mixing
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Figure 17.4. Each pixel of the zebra image of figure 17.3 is labelled with the value
of m for which p(m|z;,®°) is a maximum, to yield a segmentation. The images in (d)
show the result of this process for K = 2,3,4,5. Each image has K grey-level values
corresponding to the segment indexes. figure from Belongie et al, Color and Texture Based
Image Segmentation Using EM and Its Application to Content Based Image Retrieval,
ICCV9I8, p 5, in the fervent hope that permission will be granted

Missing
Figure

Figure 17.5. A pair of frames from a sequence of a garden, with motion segments
overlaid

weights.

Assume that the pixel at (u, v) in the first image belongs to the I’th motion field,
with parameters 0. This means that this pixel has moved to (u,v) + m(u,v;6;) in
the second frame, and so that the intensity at these two pixels is the same up to
measurement noise. We will write I (u, v) for the image intensity of the first image
at the u, v’'th pixel, and so on. The missing data is the motion field to which the
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pixel belongs. We can represent this by an indicator variable V,,, ; where

Voo - 1, if the u, v’'th pixel belongs to the {’th motion field
uol = 0, otherwise

We assume Gaussian noise with standard deviation ¢ in the image intensity values,
so the complete data log-likelihood is

(I (u,v) — Iy (u + mq (u,v; 0;), v + ma(u,v; 6;)))?

952 +C

L(VV; @) = - Z Vuv,l
i,
where © = (01,...,0,). Setting up the EM algorithm from here on is straightfor-
ward. As above, the crucial issue is determining

P{Vyyy =1|I1,15,0}

The more interesting question is the appropriate choice of parametric motion
model. A common choice is an affine motion model, where

IR EE DREY
mo a1 Qa22 J a23
and 0[ = ((111, .. .,(1,23).

17.1.5 The Number of Components

At each stage of this section, we have assumed that the number of components in
the mixture model is known. This is generally not the case in practice. Finding the
number of components is, in essence, a model selection problem — we will search
through the collection of models (where different models have different numbers of
components) to determine which fits the data best. Of course, if we simply look at
the likelihood, the more components in the model, the better the fit, so we need to
apply a term of that penalizes the model for more components. This issue arises
quite widely, and we deal with it in detail in section 17.3.

17.1.6 How Many Lines are There?

It isn’t possible to do anything sensible about this problem without a model. After
all, there could be one line for every pair of points, or no lines at all and a hyperactive
noise process.

Incremental line fitters appear to solve this problem without a model — after
all, one applies the incremental line fitter, and some collection of lines emerges.
In fact, the series of tests that are applied to determine whether a line is present
constitute a model. These tests are typically a test on the residual to determine
whether edge points are associated with a particular line, and some test to ensure
that lines have sufficient support. Because the model is not explicit, it can be
difficult to understand its implications.
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When there is an explicit model, this problem is a model selection problem (as
in section ??): does the evidence support a model with r + 1 lines better than a
model with r lines? There are a variety of model selection methods that apply to
this problem as well as to telling how many segments are in an image, etc. We
review these methods in section 17.3.

17.2 Robustness

In this section, we discuss a very general difficulty through the lens of our model
problem. In particular, all of the line-fitting methods we have described involve
squared error terms. This can lead to very poor fits in practice, because a single
wildly inappropriate data point can give errors that are dominate those due to many
good data points; these errors can result in a substantial bias in the fitting process
(figure 17.6). It appears to be very difficult to avoid such data points — usually
called outliers — in practice. Errors in collecting or transcribing data points is one
important source of outliers. Another common source is a problem with the model
— perhaps some rare but important effect has been ignored, or the magnitude of an
effect has been badly underestimated!. Vision problems are usually full of outliers.

One approach to this problem puts the model at fault: the model predicts these
outliers occuring perhaps once in the lifetime in the universe, and they clearly occur
much more often than that. The natural response is to improve the model, either
by allowing an explicit outlier model (section 17.2.1) or by giving the noise “heavier
tails” (section 17.2.2). Finally, we could search for points that appear to be good
(section ?77).

17.2.1 Explicit Outliers

The line fitters we have described have difficulty with outliers because they en-
counter outliers with a frequency that is wildly underpredicted by the model. Out-
liers are often referred to as being “in the tails” of a probability distribution. In
probability distributions like the normal distribution, there is a large collection of
values with very small probability; these values are the tails of the distribution
(probably because these values are where the distribution tails off). A natural
mechanism for dealing with outliers is to modify the model so that the distribution
has heavier tails (i.e. that there is more probability in the tails).

One way to do this is to construct an explicit model of outliers, which is usually
quite easy to do. We form a weighted sum of the likelihood P(measurements|model)
and a term for outliers P(outliers), to obtain:

(1 — \) P(measurements|model) + AP (outliers)

here A € [0, 1] models the frequency with which outliers occur, and P(outliers) is
some probability model for outliers; failing anything better, it could be uniform
over the possible range of the data.

L At least one author of a textbook on statistics claims to have two patents due to outliers [], p.
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Figure 17.6. Least squares line fitting is hideously sensitive to outliers, both in x and y
coordinates. At the top left, a good least-squares fit of a line to a set of points. Top-right
shows the same set of points, but with the z-coordinate of one point corrupted. In this
case, the slope of the fitted line has swung wildly. Bottom-left shows the same set of points,
but with the y-coordinate of one point corrupted. In this particular case, the x-intercept
has changed. These three figures are on the same set of axes for comparison, but this
choice of axes does not clearly show how bad the fit is for the third case; Bottom-right
shows a detail of this case — the line is clearly a very bad fit.

The natural way to deal with this model is to construct a variable that indicates
which component generated each point. With this variable, we have a complete
data likelihood function with an easy form. Of course, we don’t know this variable,
but this is a missing data problem, and we know how to proceed here using EM (you
provide the details in the exercises!). The usual difficulties with EM occur here,
too. In particular, it is easy to get trapped in local minima, and we may need to
be careful about the numerical representation adopted for very small probabilities.
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Figure 17.7. EM can be used to reject outliers; here we demonstrate a line fit to the
second data set of figure 17.6. The top row shows the correct local minimum, and the
bottom row shows another local minimum. The first column shows the line superimposed
on the data points using the same axes as figure 17.6; the second column shows a detailed
view of the line, indicating the region around the data points; and the third column shows
a plot of the probability that a point comes from the line, rather than from the noise
model, plotted against the index of the point. Notice that at the correct local minimum,
all but one point is associated with the line, whereas at the incorrect local minimum, there
are two points associated with the line and the others are allocated to noise.

17.2.2 M-estimators

The difficulty with modelling the source of outliers is that the model might be
wrong. Generally, the best we can hope for from a probabilistic model of a process
is that it is quite close to the right model. Assume that we are guaranteed that
our model of a process is close to the right model — say, the distance between
the density functions in some appropriate sense is less than e. We can use this
guarantee to reason about the design of estimation procedures for the parameters
of the model. In particular we can choose an estimation procedure by assuming that
nature is malicious and well-informed about statistics?. In this line of reasoning, we
assess the goodness of an estimator by assuming that somewhere in the collection
of processes close to our model is the real process, and it just happens to be the one
that makes the estimator produce the worst possible estimates. The best estimator
is the one that behaves best on the worst distribution close to the parametric model.
This is a criterion which can be used to produce a wide variety of estimators.

2Generally, sound assumptions for any enterprise; the world is full of opportunities for painful
and expensive lessons in practical statistics
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Figure 17.8. The function p(x;0) = 2°/(0® + x°), plotted for 0> = 0.1, 1 and 10, with
a plot of y = z? for comparison. Replacing quadratic terms with p reduces the influence
of outliers on a fit — a point which is several multiples of o away from the fitted curve
is going to have almost no effect on the coefficients of the fitted curve, because the value
of p will be close to 1 and will change extremely slowly with the distance from the fitted
curve.

An M-estimator estimates parameters by minimizing an expression of the form
> p(ri(@i, 0);0)
i

where 6 are the parameters of the model being fitted and r;(x;,0) is the residual
error of the model on the i’th data point. Generally, p(u; o) looks like u? for part
of its range, and then flattens out. A common choice is

’LL2

Pli0) = o

The parameter o controls the point at which the function flattens out; we have
plotted a variety of examples in figure 17.8. There are many other M-estimators
available. Typically, they are discussed in terms of their influence function, which
is defined as

dp

00

This is natural, because our criterion is

0
Zprz mz; 7 )82 0
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For the kind of problems we consider, we would expect a good influence function
to be antisymmetric — there is no difference between a slight over prediction and
a slight under prediction — and to tail off with large values — because we want to
limit the influence of the outliers.

There are two tricky issues with using M-estimators. Firstly, the extremisation
problem is non-linear and must be solved iteratively. The standard difficulties
apply: there may be more than one local minimum; the method may diverge; and
the behaviour of the method is likely to be quite dependent on the start point. A
common strategy for dealing with this problem is to draw a subsample of the data
set, fit to that subsample using least squares, and use this as a start point for the
fitting process. We do this for a large number of different subsamples, enough to
ensure that there is a very high probability that in that set there is at least one
that consists entirely of good data points.

Secondly, as figures 17.9 and 17.10 indicate, the estimators require a sensible
estimate of o, which is often referred to as scale. Typically, the scale estimate is
supplied at each iteration of the solution method; a popular estimate of scale is

o™ = 1.4826median;|r™ (z:; 0 D)|

For s=1to s=k
draw a subset of r distinct points, chosen uniformly at random

Fit to this set of points using maximum likelihood
(usually least squares) to obtain

0

estimate 0¥ using ¢°

Until convergence (usually [0" — 60"~ !| is small):
take a minimising step using 67!, o77!
to get 07

now compute oy

report the best fit of this set, using the median of the
residuals as a criterion

Algorithm 17.5: Using an M-estimator to fit a probabilistic model

An M-estimator can be thought of as a trick for ensuring that there is more
probability in the tails than would otherwise occur with a quadratic error. The
function that is minimised looks like distance for small values of @ — thus, for
valid data points the behaviour of the M-estimator should be rather like maximum
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Figure 17.9. The top row shows lines fitted to the second dataset of figure 17.6 using a
weighting function that de-emphasizes the contribution of distant points (the function ¢
of figure 17.8). On the left, u has about the right value; the contribution of the outlier has
been down-weighted, and the fit is good. In the center, the value of u is too small, so that
the fit is insensitive to the position of all the data points, meaning that its relationship
to the data is obscure. On the right, the value of u is too large, meaning that the outlier
makes about the same contribution that it does in least-squares. The bottom row shows
close-ups of the fitted line and the non-outlying data points, for the same cases.

likelihood — and like a constant for large values of € — meaning that a component
of probability is given to the tails of the distribution. The strategy of the previous
section can be seen as an M-estimator, but with the difficulty that the influence
function is discontinuous, meaning that obtaining a minimum is tricky.

17.2.3 RANSAC

An alternative to modifying the generative model to have heavier tails is to search
the collection of data points for good points. This is quite easily done by an iterative
process: first, we choose a small subset of points and fit to that subset; then we see
how many other points fit to the resulting object. We continue this process until
we have a high probability of finding the structure we are looking for.

For example, assume that we have a data set that consists of about 50% outliers.
If we draw pairs of points uniformly and at random, then about 1/4 of these pairs
will consist entirely of good data points. We can identify these good pairs, by
noticing that a large collection of other points will lie close to the line fitted to such
a pair. Of course, a better estimate of the line could then be obtained by fitting a
line to the points that lie close to our current line.

This approach leads to an algorithm — search for a random sample that leads
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Figure 17.10. The top row shows lines fitted to the third dataset of figure 17.6 using a
weighting function that de-emphasizes the contribution of distant points (the function ¢
of figure 77?). On the left, u has about the right value; the contribution of the outlier has
been down-weighted, and the fit is good. In the center, the value of u is too small, so that
the fit is insensitive to the position of all the data points, meaning that its relationship
to the data is obscure. On the right, the value of u is too large, meaning that the outlier
makes about the same contribution that it does in least-squares. The bottom row shows
close-ups of the fitted line and the non-outlying data points, for the same cases.

to a fit on which many of the data points agree. The algorithm is usually called
RANSAC, for RANdom SAmple Consensus. To make this algorithm practical, we
need to be able to choose three parameters.

How Many Samples are Necessary?

Our samples will consist of sets of points drawn uniformly and at random from the
data set. Each sample will contain the minimum number of points required to fit
the abstraction we wish to fit; for example, if we wish to fit lines, we will draw pairs
of points; if we wish to fit circles, we will draw triples of points, etc. We assume that
we need to draw n data points, and that w is the fraction of these points that are
good (we will need only a reasonable estimate of this number). Now the expected
value of the number of draws k required to get one point is given by

E[k] = 1P(one good sample in one draw) + 2P(one good sample in two draws) + ...
= w" +2(1 —w™)w™ 4+ 3(1 — w"™)?w™ + ...

= w_n

(where the last step takes a little manipulation of algebraic series). Now we would
like to be fairly confident that we have seen a good sample, so we would wish to
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draw rather more than w™" samples; a natural thing to do is to add a few standard
deviations to this number (see section ?? for an inequality that suggests why this
is the case). The standard deviation of k can be obtained as

v1—wn
SD(k) = —
wn
An alternative approach to this problem is to choose to look at a number of samples
that guarantees a low probability z of seeing only bad samples. In this case, we
have

(1— ") = (1-2)

which means that

b — log(1l — 2)
~ log(1 — wn)

How Far Away is Agreement?

We need to determine whether a point lies close to a line fitted to a sample. We will
do this by determining the distance between the point and the fitted line, and testing
that distance against a threshold d; if the distance is below the threshold, then
the point lies close. In general, specifying this parameter is part of the modelling
process. For example, when we fitted lines using maximum likelihood, there was a
term o in the model (which disappeared in the manipulations to find an maximum).
This term gives the average size of deviations from the model being fitted.

In general, obtaining a value for this parameter is relatively simple. We generally
need only an order of magnitude estimate, and the same value will apply to many
different experiments. The parameter is often determined by trying a few values
and seeing what happens; another approach is to look at a few characteristic data
sets, fitting a line by eye, and estimating the average size of the deviations.

How Many Points Need to Agree?

Assume that we have fitted a line to some random sample of two data points. We
need to know whether that line is good or not. We will do this by counting the
number of points that lie within some distance of the line (the distance was deter-
mined in the previous section). In particular, assume that we know the probability
that an outlier lies in this collection of points; write this probability as y. We should
like to choose some number of points ¢ such that ' is small (say, less than 0.05).

There are two ways to proceed. One is to notice that y < (1 —w), and to choose
t such that (1 —w)’ is small. Another is to get an estimate of y from some model of
outliers — for example, if the points lie in a unit square, the outliers are uniform,
and the distance threshold is d, then y < 2v/2d.

These observations lead to algorithm 6, originally due to [?].
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Determine n, t, d and k as above

Until there is a good fit or k iterations have occurred
draw a sample of n points from the data
uniformly and at random

fit to that set of n points
for each data point outside the sample

test the distance from the point to the line
against ¢; if the distance from the point to the line
is less than t, the point is close

end
if there are d or more points close to the line
then there is a good fit. Refit the line using all
these points, and terminate

end

Algorithm 17.6: RANSAC: fitting using random sample consensus

17.3 How Many are There?

In all the discussion above, we have assumed that the number of components (lines,
etc.) was known. This is hardly ever the case in practice. Instead, we need to
refer to some statistical procedure to infer the number of components from the data
and the model. This is another instance of model selection (which we discussed in
section 21). We adopt a strategy of searching over the number of components —
perhaps restricting the search to a reasonable range for reasons of computational
complexity — and evaluating a score for each case. The best score gives the number
of components.

Generally, the value of the negative log-likelihood is a poor guide to the number
of components because, in general, a model with more parameters will fit a dataset
better than a model with fewer parameters. This means that simply minimizing the
negative log-likelihood as a function of the number of components will tend to lead
to too many components. For example, we can fit a set of lines extremely accurately
by passing a line through each pair of points — there may be a lot of lines, but the
fitting error is zero. We resolve this difficulty by adding a term that increases with
the number of components — this penalty compensates for the decrease in negative
log-likelihood caused by the increasing number of parameters.

It is important to understand that there is no canonical model selection pro-
cess. Instead, we can choose from a variety of techniques, each of which uses a
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different discount corresponding to a different extremality principle (and different
approximations to these criteria!).

17.3.1 Basic ldeas

Model selection is a general problem in fitting parametric models. The problem can
be set up as follows: there is a data set, which is a sample from a parametric model
which is itself a member of a family of models. We wish to determine (1) which
model the data set was drawn from and (2) what the parameters of that model
were. A proper choice of the parameters will predict future samples from the model
— a test set — as well as the data set (which is often called the training set);
unfortunately, these future samples are not available. Furthermore, the estimate of
the model’s parameters obtained using the data set is likely to be biased, because
the parameters chosen ensure that the model fits the training set — rather than
the entire set of possible data — optimally. The effect is known as selection bias.
The training set is a subset of the entire set of data that could have been draw