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Chapter 8

Compression of Wavelet Transform
Coefficients

Xiaolin Wu
University of Western Ontario

8.1 Introduction

Mathematical transforms are widely used in signal compression, particularly in
compression of sensory data such as audio, image, and video. Although sensory
signals are typically sampled and presented to users in the spatial/time domain, a
direct signal representation in the spatial/time domain creates a huge volume of data
with excessive redundancy. Clearly, signals in original sample form are unsuitable
for transmission or storage. Transform coding is a proven paradigm for signal com-
pression. In transform coding, signal samples are mapped from spatial/time domain
into another space, typically a frequency or joint time-frequency domain in which
statistical and subjective redundancies in the samples can be better understood, ex-
ploited, and removed. Transformed samples are thus more amenable to compression.
This paradigm of transform-based signal compression is exemplified by the current
and commercially successful industrial standards for image compression (JPEG stan-
dard [19]) and video compression (MPEG standards [4, 5]) [21]. A schematic de-
scription of a typical transform coding system is given in Fig. 8.1. The compression
(encoding) process is completed in three major steps: transform of signal samples,
quantization of transform coefficients, and entropy coding of quantized coefficients.
The decompression (decoding) process is a reverse of the compression process.

The JPEG and MPEG standards use discrete cosine transform (DCT) in the trans-
form step of the compression system. The acronyms JPEG and MPEG stand for the
Joint Photographic Experts Group and the Moving Picture Experts Group. The two
groups consist of members from both the International Standards Organization (ISO)
and the International Telecommunications Union (ITU). They are charged respec-
tively with the missions of developing international standards for the coded represen-
tation of compressed still images, and of compressed moving pictures and associated



FIGURE 8.1
Schematic description of a typical transform coding system.

audio. Their efforts are instrumental for the prevalence of digital visual communi-
cations in multimedia and Internet applications. Due to the popularity of JPEG and
MPEG compression standards and products, the DCT-based coding system is now
considered a matured and effective technology for image and video compression.
In 1988 when the JPEG members evaluated various image compression schemes
and decided on the JPEG standard, the DCT-based image codecs offered the best
compromise between compression performance, computational complexity (hard-
ware complexity in particular), and coder flexibility, among other competing image
compression technologies at that time, specifically vector quantization (VQ) [14] and
DPCM (differential pulse coding modulation) coding.

Since the standardization of DCT-based compression technology, the past few
years have seen rapidly increasing sophistication and maturity of wavelet-based im-
age compression methods. Wavelet-based image codecs have so far delivered the
best lossy compression performance in both peak signal to noise ratio (PSNR) and
visual quality, over bit rates from 0.05 bits/pixel (summary quality for browsing) to
2.00 bits/pixel (visually indistinguishable from the original). During the same period,
research on VQ compression and fractal compression has also advanced. But in im-
age compression, neither VQ nor fractal compression methodology has matched the
rate-distortion performance of wavelet-based image codecs at the time of this writing.
Indeed, the recent success of wavelet transform in image compression has reinforced
the dominance of widely practiced transform coding paradigm for signal compres-
sion. Only in the realm of lossless image compression, adaptive predictive coding
has slightly (about 3%) higher compression ratio than lossless transform coding such
as reversible integer wavelet codecs [34]. But this small advantage of predictive loss-
less coding becomes even more marginal in the presence of other unique features of
wavelet lossless codecs, on which we elaborate later.

Within the transform coding family, discrete wavelet transform is threatening to
unseat DCT as the transform of choice, at least for image compression applica-



tions. The current state-of-the-art wavelet image codecs significantly outperform the
existing DCT-based JPEG standard in PSNR measure and subjective image qual-
ity, particularly for low bit rates at which the block effects of DCT are notice-
able [25, 28, 30, 29, 36, 37]. Being encouraged by the improvements brought on
by wavelet-based image compression techniques over DCT, and prompted by in-
creasing acceptance of wavelet compression technology by industry, the JPEG com-
mittee has developed a new wavelet-based still image compression standard called
JPEG 2000 [2]. Also, in 1993 the FBI chose a wavelet-based image codec to be the
standard for fingerprint image compression [1].

The superior compression performance of wavelet-based image coding systems
over their DCT-based counterpart might suggest that the improved performance was
primarily made by replacing DCT with wavelet transform, and hence the choice of
transform would matter the most to coding efficiency. However, in strict technical
terms, all existing transforms used in signal compression by themselves do not lead
to any data reduction. Both DCT and dyadic wavelet transforms, the two most widely
used types of transforms in image and video compression, generate as many coef-
ficients as the number of samples. Furthermore, while the original sample values
of digital signals are integers, the transform coefficients are nonintegers. Therefore,
without efficient coding of transform coefficients, a transform not only cannot com-
press but can even expand the data. The main benefit of transform to data compression
is from its property of energy packing. A suitable transform can transfer the majority
of signal energy into a few transform coefficients, resulting in a large number of zero
and near-zero coefficients. In other words, the probability distribution of transform
coefficients is much more biased than that of original samples. The more biased the
distribution, the easier it is to compress signals by entropy coding. Despite the well-
accepted folklore that lossy signal compression is better done via transform coding,
it is the process of entropy coding that actually achieves data reduction. Informally,
entropy coding refers to a family of coding techniques that uses shorter codewords
for more probable symbols (smaller transform coefficients), and longer codewords
for less probable symbols (larger transform coefficients). An optimal variable length
code can achieve an average code length that approaches the information theoretic
lower bound called entropy, hence the term entropy coding. Entropy coding is also
referred to as noiseless or lossless coding since the coding process is perfectly re-
versible. It is a key machinery of information theory, a field fathered by Shannon [27]
half a century ago and that has guided data compression engineering ever since. For
background and rigorous treatment of entropy coding, we refer readers to textbooks
such as Cover and Thomas [10].

In terms of energy packing capability, the principal component transform (also
known as Karhunen-Loève transform [15]) is optimal in the sense that it distributes
the largest amount of signal energy into the direction of the eigenvector of the largest
eigenvalue (the direction of largest sample variance), and the second largest amount
of signal energy into the second largest eigenvector direction, and so on. Therefore, if
one is to choose only k coefficients to best approximate the original signal inL2 metric,
then the optimal choice will be the k coefficients corresponding to the eigenvectors



of the k largest eigenvalues. DCT has been shown to be very close to the principal
component transform when applied to the first order stationary Markov process [22].
This justifies the wide use of DCT in data compression. The energy packing capability
of wavelet transform was studied by DeVore, Jawerth, and Lucier [11] who showed
that wavelet bases are optimal among all possible basis functions in minmax nonlinear
approximation obtained by retaining the k largest coefficients and discarding the
remaining. Both DCT and wavelet transforms possess some good properties in terms
of energy packing.

Wavelet transforms have two additional advantages over DCT that are important
for coefficient compression. The first is the multiresolution representation of the
signal by wavelet decomposition that greatly facilitates subband coding, a notion
that existed long before the popularity of wavelets [32]. Fig. 8.2 shows an image
pyramid associated with wavelet decomposition. It can be seen from the figure that
wavelet transform preserves to some extent spatial signal features in subbands of
different scales and creates self-similarities between the subbands of the same spatial
orientation. This fractal-like structure reveals sample dependencies across scales to
the benefit of statistical context modeling and coding of wavelet coefficients. In fact,
the well-known zerotree techniques precisely exploit the self-similarity of regions of
zero and near-zero coefficients. The second advantage of wavelet transform is that
it reaches a good compromise between frequency and time resolutions of the signal.
From the perspective of energy packing, statistically short-term signal constructs such
as image edges, or transients in signal processing terminology, have much higher
energy concentration in time domain; hence they can be modeled and coded far
more efficiently in the time domain than in the frequency domain. However, the
exact opposite is true for long-term signal constructs such as smooth shades and
regular textures in images. Wavelet transforms are superior to DCT in that their
basis functions offer good frequency resolution in the lower frequency range, and at
the same time they yield good time resolution at a higher frequency range (see the
well-preserved edge information in the three highest subbands in Fig. 8.2).

However, neither the multiresolution property nor the frequency-time character-
istics of wavelets suffices for signal compression. Whether and how much signal
compression can benefit from the good properties of wavelets largely depends on
statistical context modeling (implicit or explicit) and entropy coding of wavelet co-
efficients. The difference in rate-distortion performance between the DCT-based
JPEG codec and wavelet-based image codecs is mostly caused by the differences
in entropy coding of transform coefficients between the two methods. Indeed, be-
fore Shapiro’s zerotree technique (EZW) in 1993 [28], a landmark work on wavelet
coefficient coding, wavelet transforms had not won over DCT in rate-distortion per-
formance. More recently, particularly during the ongoing JPEG 2000 standardization
process, further advances have been made in statistical context modeling and adaptive
entropy coding of wavelet coefficients. The modern wavelet coefficient coding tech-
niques [25, 36, 29, 41, 37] significantly outperform the pioneer EZW coder for any
given wavelet transform. The new techniques have better rate-distortion performance
over EZW because they overcome a weakness of zerotree. That is, while being an



FIGURE 8.2
Dyadic wavelet decomposition of a test image.



effective technique to remove data redundancy in the form of a long-term trend, ze-
rotree is less efficient to describe short-term signal constructs than the more advanced
statistical modeling techniques discussed later in this chapter.

In summary, it is the increasing sophistication of coefficient coding, not the trans-
forms alone, that contributes the most to the success enjoyed by wavelet image com-
pression technology. Compression of coefficients is perhaps the most critical issue
for any transform-based signal compression system. This chapter is dedicated to the
problem of compression of transform coefficients. In order to make our discussions
concrete and lucid, we focus on compression of wavelet coefficients in the setting
of image coding. The general principles and techniques of this chapter, however,
are applicable to compression of other transform coefficients and also effective with
other types of signals, such as video and audio.

The structure of this chapter is as follows. Section 8.2 discusses the problem of
compressing transform coefficients in wavelet-based image compression systems.
Specifically, we introduce the popular approach of embedded bit-plane coding of
quantized wavelet coefficients. Section 8.3 formulates the problem of statistical con-
text modeling of wavelet coefficient and explains why this is the single most important
issue that determines the compression performance. Since wavelet transforms can-
not achieve total decorrelation between the signal samples, particularly when sample
correlation is nonlinear, high-order statistical dependencies exist between wavelet
coefficients. Therefore, optimum compression performance can be made possible
only by high-order statistical context modeling of wavelet coefficients. However, if
not treated with care, the number of Markov conditioning states can grow exponen-
tially in the order of the model. This leads to a so-called problem of context dilution,
addressed in Section 8.4. The challenge is how to maintain a modest number of
conditioning states while still making high-order statistics available to aid entropy
coding. Section 8.5 discusses how to discriminatingly choose modeling contexts in
wavelet subbands as a means to control model cost. Section 8.6 introduces the pro-
cess of context quantization to reduce drastically the number of conditioning states.
The essence of context quantization is to merge different conditioning states that have
similar symbol probability distributions. The subject is further pursued in Section 8.7,
which investigates how to optimize context quantization for minimum code length.
We borrow a common strategy of nonparametric multivariate statistical analysis to
overcome high model cost: data projection in the direction of statistical dominance.
Specifically, Fisher’s linear discriminant [12] is used to guide context quantization.
Section 8.8 presents a context quantizer design algorithm via dynamic programming
that can minimize conditional entropy for a given number of conditioning states. Sec-
tion 8.9 turns to the computational aspect of context modeling. Efficient algorithm
techniques are developed to compute modeling contexts. We demonstrate that the
time complexity of forming a modeling context is O(1), independent of the order of
the model, and thus high-order statistical context modeling is made computationally
feasible. The chapter concludes with experimental results that provide convincing
empirical evidence for the importance and effectiveness of context modeling and
conditional entropy coding of wavelet coefficients in practical compression systems.



FIGURE 8.3
Embedded bit stream of coefficients.

8.2 Embedded Coefficient Coding

Like most transform coding systems a typical wavelet-based signal compression
system consists of three cascaded modules, as depicted by Fig. 8.1, first wavelet
transform, followed by quantization of wavelet coefficients, and finally entropy cod-
ing of quantized coefficients. To improve coding efficiency, one can perform adap-
tive wavelet transforms for better energy packing or optimal quantization for rate-
distortion considerations. But most of the coding gains are usually made by condi-
tional entropy coding of wavelet coefficients coupled with universal statistical context
modeling. This is because transforms can remove only linear correlations between
samples, whereas universal statistical context modeling can discover and remove more
complex types of sample dependencies. In the ongoing JPEG 2000 standardization
process, entropy coding of wavelet coefficients is by far the hottest subject being stud-
ied and debated by participating parties. It has been established empirically that the
best rate-distortion results can be obtained by adaptive entropy coding of coefficients
even with a fixed wavelet transform and uniform scalar coefficient quantization.

In order to focus this chapter on the last system component of coefficient entropy
coding, in the following discussions we assume that the standard dyadic wavelet
transform due to Mallat [17] is used in the transform module, and that simple uniform
scalar quantization of wavelet coefficients is used in the quantization module. The
input of entropy coder is the quantization indices of the coefficient magnitudes plus
the signs of the coefficients. The quantized coefficients of dyadic transform are thus
signed integers arranged in a two-dimensional layout of subbands as in Fig. 8.2. Image
compression is finally achieved by lossless entropy coding of quantized coefficients.

A breakthrough of wavelet-based image compression technology is a coding
scheme called embedded bit plane coding that was pioneered by Shapiro [28] in
1993 and then improved very rapidly by many other authors [25, 30, 43, 36, 37].
The idea is simple. Instead of coding all coefficients in one pass, and coding each
coefficient once, we scan the coefficients in multiple passes, one bit plane per pass,
from the most to the least significant bit, as illustrated in Fig. 8.3. Within a bit plane,
the order of traversing wavelet coefficients in a two-dimensional subband layout can
be arbitrary. A common traversal order is from the lowest frequency or the most
coarse subband to the highest frequency or the most detailed subband, as depicted by
Fig. 8.4. The binary sequence generated by such a traversal is called the embedded
bit stream. An important property of the embedded bit stream is its scalability in



FIGURE 8.4
A traversal of subbands within a bit plane.

both spatial resolution and sample fidelity. Truncating an embedded bit stream at
any point means approximating all wavelet coefficients at a certain precision; hence,
the truncated bit stream can reconstruct the image at a corresponding fidelity — the
longer the bit stream being used in the reconstruction, the higher the fidelity. The
effect of successive refinement of a coded image via progressive transmission of an
embedded bit stream is illustrated in Fig. 8.5. Scalable image and video compression
allows transmission and distribution of the same source material at different quality
levels to meet different bandwidth and storage capacity requirements, and the ability
to do so with a single unified code stream. This feature is highly desirable in many
applications, such as Internet, multimedia, medical imaging, prepress imaging, and
image databases. With scalable coding one needs only to archive one master copy
of the material in the database to support applications at different quality levels and
under different constraints — from fast browsing to professional high quality repro-
duction — instead of maintaining multiple copies of the same materials at different
bit rates for different bandwidths and quality trade-offs.

Scalable wavelet coding can also unify lossy and lossless compressions. If re-
versible integer wavelet transforms [8] are used, all coefficients are integers in the
first place. No coefficient quantization is necessary; hence, there will be no quan-
tization errors. In this case an embedded bit stream can eventually achieve perfect
lossless decompression if every bit is received, while any truncation of the bit stream
corresponds to a lossy decompression. The use of reversible integer wavelets for
lossy to lossless scalable image compression was proposed by Zandi et al. [43] and
Said and Pearlman [26]. This approach has very recently been extended to lossy and
lossless compression of image sequences such as three-dimensional medical data,
multi/hyperspectral remote sensing data, and video [18, 42].



FIGURE 8.5
Progressive image reconstruction via scalable embedded code stream. Repro-
duced by Special Permission of Playboy magazine. Copyright ©1972, 2000 by
Playboy.

The first published work on embedded bit plane coding of wavelet coefficients
was Shapiro’s zerotree algorithm [28]. Shapiro developed his embedded zerotree
of wavelets (EZW) by observing that large blocks of zero coefficients exist in high
frequency subbands and at bit planes of high significance. Furthermore, a block
of zero coefficients statistically tends to reside in the same spatial location across
different scales. If we consider a coefficient at a coarser subband as parent, and the
four coefficients corresponding to the spatial location of the parent coefficient at the
next finer subband as children, then coefficients of a dyadic wavelet transform can be
naturally organized into quadtree data structures, as shown in Fig. 8.6. The conditional
probability for all four children to be 0 given that the parent is 0 is much higher than
given that the parent is 1. This statistical inheritance of 0 across different scales tends
to form quadtrees of all 0 nodes, with their roots at upper levels of the multiresolution
hierarchy and their leaves at the bottom level. Therefore, one can code a large number
of 0 coefficients very compactly with a special code symbol for such zerotrees. This
technique is very much like the zigzag technique of the existing DCT-based JPEG
standard for coding long runs of 0 coefficients. In essence, the EZW technique
compresses wavelet coefficients using a prior statistical model, i.e., assuming that



FIGURE 8.6
Coefficient quadtrees across different scales. Zerotrees are those quadtrees
whose nodes are all 0.

zero and near-zero coefficients are clustered in both spatial and frequency domains,
and that the regions of low sample energy are self-similar across different scales. The
rate-distortion performance of the EZW technique was improved by a variant of the
zerotree coder called SPIHT, proposed by Said and Pearlman [25]. Unlike the EZW
algorithm that forms and codes zerotrees in a fixed spatial scanning order, SPIHT
codes the zerotrees in an order that is beneficial to rate-distortion performance; those
trees that are likely to generate higher reduction in distortion are coded first. The
better performance of SPIHT over EZW is also due to the use of a finer tree-based
classification of source symbols and the use of joint entropy (specifically, coding four
binary symbols in a block).

But the best image compression results reported so far in the literature were not
generated by zerotree-based methods, but rather by a sample-by-sample bit plane
coding technique called ECECOW (embedded conditional entropy coding of wavelet)
coefficients [36, 41]. A drawback of the zerotree, or similar quadtree type of data
structures used by EZW [28] and SPIHT [25] algorithms, is that the tree imposes
an artificial structure on the wavelet coefficients. Only contexts of square shape in
the spatial domain can be used, whereas statistically related wavelet coefficients may
form regions of arbitrary shapes. Moreover, like any run-length type codes, quadtree
code cannot efficiently describe statistically short-term signal constructs, such as
edges, because the implicit statistical model used by zerotree breaks down on transient
sample behavior. Relative to sample-by-sample coding, zerotree can be considered



as a block-based entropy code. It largely ignores the sample dependency between
neighboring quadtree nodes. This limitation is particularly regrettable considering
that wavelet transform represents a fundamental departure from block-based DCT.
The first technique of embedded bit plane coding of wavelet coefficients without
any tree constraints seems to be Taubman and Zakhor’s layered zero coding (LZC)
algorithm [30]. Another early wavelet image coder, called CREW (Compression via
Reversible Embedded Wavelets) [43], also did not confine the formation of modeling
contexts to quadtree nodes. Compared with its predecessors, the main strength of the
ECECOW algorithm is its using higher-order context modeling of embedded wavelet
coefficient symbol streams.

8.3 Statistical Context Modeling of Embedded Bit Stream

This section formulates the problem of entropy coding of embedded wavelet bit
streams, namely, coding uniformly quantized wavelet coefficients bit plane by bit
plane, scanning from the most to the least significant bits. Within each bit plane
there are many possibilities of traversing different subbands, and different ways of
traversing a subband other than raster scan. Flexible bit traversal can support many
desirable functionalities such as region of interests, error resilience, and rate-distortion
optimization [29]. The context modeling and entropy coding techniques developed
in this chapter all support any traversals within a bit plane. For simplicity, we assume
a raster scan in the following descriptions.

The bit plane coding deals with only two source symbols: 0 or 1. However,
accompanying the most significant bit of a coefficient, its sign should also be coded.
Since the sign is a binary event, we again have only two possible source symbols
in this situation. Therefore, in bit plane coding, all wavelet coefficients of an image
can be conveniently converted into a sequence of binary symbols: x1, x2, . . . , xn,
xi ∈ {0, 1}. The minimum code length of the binary sequence in bits is given by

− log2

n∏
i=1

P
(
xi |xi−1

)
, (8.1)

where xi−1 denotes the sequence xi−1, xi−2, . . . , x1. If the conditional probability
P(xi |xi−1) is known, then arithmetic coding can approach this minimum rate. Arith-
metic coding is a powerful entropy coding technique with an arbitrarily high coding
efficiency (limited only by the precision of arithmetic operations). It was pioneered by
Rissanen and Langdon [23] and popularized by Witten, Neal, and Cleary [31]. Since
embedded wavelet symbol sequence is binary, it can be compressed by adaptive bi-
nary arithmetic coding, the simplest and fastest version of adaptive arithmetic coding.
Efficient, good approximation algorithms, such as QM coder [20], for adaptive bi-
nary arithmetic coding have been well studied and can be easily implemented by both
software and hardware. Indeed, QM coder and other variants of binary arithmetic



coding are used in many image compression standards, such as the new lossless JPEG
standard JPEG-LS (JPEG-LS high-performance extension, LS mean lossless) [3], the
JBIG (Joint Binary Image Group) lossless binary image compression standard [7],
the JPEG 2000 standard [2], and others [21]. In addition to facilitating binary arith-
metic coding, the binarization of the wavelet coefficients also offers great operational
advantages for high-order context modeling, as appreciated in subsequent sections.

With arithmetic coding, we can separate the entropy coding completely from statis-
tical context modeling, i.e., the problem of estimating P(xi |xi−1). Given a probabil-
ity estimate P̂ (xi |xi−1), arithmetic coding can achieve the code length − log2

∏n
i=1

P̂ (xi |xi−1). The remaining problem, also a far more difficult one, is how to reach a
good estimate P̂ (xi |xi−1) of P(xi |xi−1), where xi−1 denotes a subsequence of xi−1

that consists of past samples of statistical significance to xi . Note that the most rele-
vant past subsequence xi−1 is not necessarily a prefix of xi−1. In image coding, xi−1

or a causal template for xi consists of adjacent symbols in both time and frequency.
The estimated conditional probability mass function P̂ (xi |xi−1) serves as a statistical
model of the source. The modeling context is the set of past observations xi−1 on
which the probability of the current symbol is conditioned.

In fact, statistical context modeling in the form of probability estimation lies at the
heart of any compression system. Ultimately it is the model quality, or the precision
of probability estimate, that determines the rate-distortion performance. The true
magic of wavelet transforms to compression is in their support of context modeling
of sample dependencies via the localization of signal energy in both frequency and
time/spatial domains. Specifically, wavelet coefficients of similar magnitudes sta-
tistically cluster in frequency subbands and in time/spatial locations. Large wavelet
coefficients in different frequency subbands tend to register at the same spatial lo-
cations. This localization property makes statistical context modeling of the image
signals much easier in wavelet domain than in time/spatial domain or other transform
spaces. Specifically, the choice of relevant modeling context xi−1 becomes easier in
the wavelet domain, as explained below.

We take a universal source coding approach to compression of the binary sequence
xn, assuming no prior knowledge about P(xi |xi−1). The central task is to estimate
the conditional probability P(xi |xi−1) “on the fly” based on the past coded bits and
to use the estimate P̂ (xi |xi−1) to drive an adaptive binary arithmetic coder. For easy
reference to individual samples xi in the binary sequence xn, we denote the b-th bit
of a coefficient c by cb, the i-th through j -th bits of c, j > i, by cj..i , and all the
bits of c that are above the b-th bit by c..b+1. In the sequel, the notation cj..i always
refers to the bits in the binary encoding of coefficient magnitude |c|. The sign of c is
denoted by c̃. Note that the bits of cj..i are not consecutive in an embedded wavelet
bit stream but are scattered around. If the most significant bit of c is lower than b,
then c..b is considered to be 0. We use directional notations n, w, s, e, nw, ne, nn,
ww, and so on, to denote the coefficients to the north, west, south, east, northwest,
northeast, northnorth, and westwest of the current coefficient c. Similarly, we denote
the parent coefficient by p, and those coefficients in the parent subband to the north,
west, south, and east of p by pn, pw, ps, and pe.



In coding of the b-th bit plane, we may condition cb on

c..b+1,n..b,w..b, s..b+1, e..b+1,nw..b,ne..b,

nn..b,ww..b, p..b, pn..b, ps..b, pw..b, pe..b, . . . (8.2)

We treat all the known bits, up to the moment of coding cb, of the neighboring
coefficients in current and parent subbands as potential feature events in modeling
context xi−1 of xi = cb. Unlike in the EZW and SPIHT algorithms, our modeling
context of cb contains some future information if one considers that the octave-raster
scanning of coefficients produces a time series. Specifically, this refers to the use
of s..b+1, e..b+1, ps..b, pe..b, and the like in context modeling of cb. The ability of
looking into the future in a time series significantly reduces the uncertainty of cb.

8.4 Context Dilution Problem

The modeling context of Eq. (8.2) leads to a statistical model

P (cb|n..b,w..b, s..b+1, e..b+1,nw..b,ne..b, p..b · · · ) (8.3)

of very high order or long memory. High-order context modeling is necessary for opti-
mal compression performance because image features such as edges can involve pixels
that are spatially far apart. Given a modeling context (n..b,w..b, s..b+1, e..b+1,nw..b,
ne..b, p..b · · · ), the average code length of cb is bounded from below by the conditional
entropy

H (cb|n..b,w..b, s..b+1, e..b+1, . . . )

= −E {logP (cb|n..b,w..b, s..b+1, e..b+1, . . . )} . (8.4)

The fact that conditional entropy is monotonically nonincreasing [10] seems to suggest
that the higher the order of the context model, the shorter the code length. But this is
not necessarily true.

In universal source coding we do not have prior knowledge of the source. The
model itself must be either explicitly sent to the decoder or learned on the fly from the
samples. In the former case, we need to add side information to the total description
length of the source. In the latter case, the learning requires a large number of samples
to fit a statistical model to the source. The number of possible conditioning states
grows exponentially with the order of the context, an image of finite resolution may
not provide sufficient samples to reach a robust estimate of the underlying conditional
probability

P̂ (cb|n..b,w..b, s..b+1, e..b+1,nw..b,ne..b, p..b · · · ) . (8.5)

In order words, too high an order of modeling context spreads sample statistics too
thin among all possible modeling states to yield statistical significance. The code



length will actually increase when the order of modeling context gets too high. Thus,
from an implementation point of view, high order of context modeling is more than a
problem of high time and space complexity. It can reduce coding efficiency as well.
This problem is commonly known as context dilution and formulated by Rissanen
analytically as model cost [24]. Intuitively, the higher the model complexity (i.e.,
the more model parameters), the longer the time the model takes to learn from the
samples to set the parameters right. Before the model converges to the underlying
statistics via online learning, entropy coding cannot achieve the minimum code length
of Eq. (8.1). Therefore, the context model has an inherent cost to the total description
length, either in the form of side information to describe the model, as in two-pass
coding, or in the form of extra code length due to model mismatch in the beginning
of the learning process, as in one-pass coding.

By now, one may appreciate an advantage of turning the wavelet coefficients into a
binary sequence. Since a conditional binary probability has only two parameters, we
do not need nearly as many samples to obtain a good probability estimate as for a large
symbol alphabet. But even with cb being binary, we still have to reduce Eq. (8.2) to
a modest number of conditioning states; otherwise the benefits of context modeling
will be negated by high model cost. Indeed, in his original EZW paper [28], Shapiro
remarked that Markov conditioning did not offer significant coding gains over “single
histogram strategy” (entropy coding based on symbol probability without context
modeling). In their original SPIHT paper [25], Said and Pearlman also implied that in
their experiments high-order context modeling made only marginal coding gains over
the simple Huffman coding. But their observations did not mean the lack of high-order
statistical dependencies between samples in the wavelet domain. Their experimental
results with context modeling were somewhat disappointing only because the problem
of context dilution was not considered. The challenge is to reduce the model cost and
still capture statistically significant structures of high orders between the samples.

8.5 Context Formation

One way to reduce the number of model parameters, and thus to reduce the model
cost, is to include into the modeling context only those past samples that are statisti-
cally related to the current sample being coded. For one-dimensional sources, such as
text, speech, and audio, the modeling context selection criterion can be some prefix
of the current sample because the amount of sample dependency is proportional to
the distance between the samples. Similarly, for image and video sources the general
practice is to choose a spatial and temporal neighborhood to form the modeling con-
text. However, as we pointed out in the previous section, the resulting context can
be of a very high order. A more selective rule than k nearest neighbors, where k is
the size of context template, should be used if we have any prior knowledge about
sample structures.



FIGURE 8.7
Modeling contexts in different subbands.

The feature orientations of different wavelet subbands are the kind of prior knowl-
edge that is useful for reducing the model cost. For instance, the LH subband exhibits
predominantly vertical sample structures, while the HL subband exhibits predomi-
nantly horizontal sample structures. Therefore, we choose a subset of Eq. (8.2):

SLH = {n..b,w..b,nw..b,ne..b,nn..b, s..b+1, p..b, pn..b, ps..b} (8.6)

to be the modeling context of cb in LH subbands. This choice of conditioning events
forms a vertically prolonged modeling context. Similarly, we use a horizontally
prolonged modeling context

SHL = {n..b,w..b,nw..b,ne..b,ww..b, e..b+1, p..b, pw..b, pe..b} (8.7)

in modeling of cb in HL subbands.
Note that we include corner samples nw..b and ne..b in the northwest and northeast

directions, but not sw..b+1 and se..b+1 in the southwest and southeast directions. The
reason is that the former two samples have one bit more precision and are therefore
statistically more significant than the latter two samples in the raster scan of bit planes.
In our experiments, including two more samples at the southwest and southeast corner
did not bring any compression gains, and in some cases it could even increase the code
length due to the effect of context dilution. In practice, when choosing a modeling
context one can monitor the resulting code length as the order of modeling context
increases. This will empirically detect the point where the increased model cost just



starts to have negative impact on compression. Thus one can choose an appropriate
order of the model by not adding to the modeling context samples of less statistical
significance to c.

In HH subbands, sample structures tend to be much weaker than in LH and HL
subbands. A smaller modeling context can be used without reducing compression
performance. In our experiments, we found that maximum coding gains can be made
by conditioning a cb in an HH subband on the following set of samples:

SHH = {n..b,w..b,nw..b,ne..b, s..b+1, e..b+1, p..b, cHL, cLH } (8.8)

where cHL and cLH are two sister coefficients of c that are at the same spatial location
in the HL and LH subbands of the same scale. The different shapes and orientations
of modeling contexts used in different subbands are illustrated in Fig. 8.7.

Due to the use of ubiquitous L2 metric in wavelet approximation, samples in all
subbands except the one in the lowest frequency are drawn from zero mean processes.
The coefficient sign c̃ has equal probability to be positive and negative. Consequently,
we haveH(c̃) = 1; i.e., the self entropy of coefficient sign is at the maximum. But this
does not necessarily mean that the signs are uncompressible. In fact, the conditional
entropy of the signs can be significantly lower than 1. The waveform structures of the
input image are often exhibited by sign patterns of wavelet coefficients. In Fig. 8.8
we plot the spatial distributions of signs for parts of two popular test images, “Barb”
and “Lena” that have high textures. The clearly visible structures of signs suggest
that the sign bits of wavelet coefficients can be modeled as a Markov process and
compressed by conditional entropy coding.

During embedded bit plane coding, the sign ˜c..b of a wavelet coefficient c has three
states: +, −, and 0. At the b-th bit plane, ˜c..b is still unknown to the decoder if
c..b = 0; i.e., the most significant bit of c is below b. In this case the coder assigns
state 0 to ˜c..b; otherwise it assigns + or − to ˜c..b by the conventional meanings of
sign. Here the state 0 is a dynamic concept; it may change to + or − as the coding
process advances to deeper bit planes. We distinguish 0 from + and − because such
a distinction yields a more revealing modeling context for the signs. The use of three
states of signs in context modeling exploits the correlation between the signs and the
magnitudes of neighboring wavelet coefficients because ˜c..b = 0 indicates a relatively
small |c|. The modeling context for c̃ commonly consists of sign status of c’s four
immediate neighboring samples, namely it is the set

S̃ = { ˜n..b, w̃..b, ˜s..b, ˜e..b
}
. (8.9)

8.6 Context Quantization

Careful selection of past samples to be used in modeling context based on subband
orientations is only a screening process. The number of possible conditioning states of



FIGURE 8.8
Sign patterns in parts of “Barb” (top) and “Lena” (bottom). The triangles are
for negative signs, + for positive signs, and spaces for insignificant coefficients
up to the current bit plane.



the chosen context is still far too large. Context dilution remains a serious problem. A
rule of thumb for the right number of conditioning states in embedded wavelet image
coding is about 64. The use of more than 100 conditioning states hardly makes any
compression gain, and in many cases it can even increase the bit rate. A common
technique of reducing the number of conditioning states for entropy coding is context
quantization. The idea is to merge conditioning states in which the sample probability
distributions are close in terms of Kullback-Leibler distance or relative entropy [10].

A simple scheme is scalar quantization of samples in the modeling context. In
a modeling context that consists of eight or so samples, such as those in Eqs. (8.6)
and (8.7), scalar quantization has to be very coarse in order to bring the number of
conditioning states under 100. Indeed, many of the wavelet image coders reported
in the literature use binary quantization of feature samples [43, 29]. In other words,
feature samples n..b, w..b, s..b, e..b, etc. are entered into the context as either 1 (already
significant at the current bit plane) or 0 (not yet significant at the current bit plane).
Such a coarse quantization can obscure some subtleties in correlations between c and
the energy level of the neighboring coefficients.

In order to capture the correlation between c and its neighbors in the wavelet
domain, we use a linear estimator � of the magnitude of c, one for each of three
orientations (LH, HL, and HH) of subbands:

�θ =
∑
zi∈Sθ

αθ,izi , θ ∈ {LH,HL,HH } , (8.10)

where the terms zi are conditioning events in the context chosen for the given subband
of c as described above. The parameters αθ,i are determined by linear regression so
that�θ is the least-squares estimate of c in the given subband orientation. The linear
regression can be done offline for a general set of training images, a given class
of images, and even for a given image. Of course in the last case, the optimized
parameters have to be sent as side information.

For each of�θ we can design an optimal quantizerQθ to minimize the conditional
entropy

H (c|Qθ (�θ)) = E {logP (c|Qθ (�θ))} . (8.11)

Since �θ is a scalar random variable, the optimal quantizer Qθ to achieve mini-
mum conditional entropy can be computed via a standard dynamic programming
process [33]. The optimization is carried out offline using a training set, and the
quantizer parameters are stored and available at both the encoder and decoder. (In
order not to interrupt the flow of our presentation we defer the details of dynamic
programming process for designing minimum conditional entropy quantizers to Sec-
tion 8.8.)

Besides the correlation between c and the local energy level �, the wavelet co-
efficient c also has dependence on spatial patterns of its neighboring coefficients,
particularly at locations of strong edges or high textures. This dependence is due
to the fact that a wavelet transform offers certain time resolution of the signal at the
expense of frequency resolution. Therefore it is necessary to model the spatial sample



patterns in the wavelet domain to maximize coding gains. Again the required statisti-
cal modeling has to be done without drastically increasing the number of conditioning
states. To achieve this, we quantize the sample spatial pattern around c into a binary
vector (bit pattern) Tb = t4t3t2t1t0 by

t0 = n..b > c..b+1?0 : 1 ;
t1 = w..b > c..b+1?0 : 1 ;
t2 = s..b+1 > c..b+1?0 : 1 ; (8.12)

t3 = e..b+1 > c..b+1?0 : 1 ;
t4 =

{
p..b + pn..b + ps..b > 6c..b+1?0 : 1 in LH subbands ;
p..b + pw..b + pe..b > 6c..b+1?0 : 1 in HL subbands .

The type of binary context quantization as in Eq. (8.12), as we mentioned earlier,
is directly used to form conditioning states in many embedded wavelet image/video
coders [29, 30, 43]. But significantly higher compression gains can be made by com-
bining quantized energy level Qθ(�θ) and the spatial pattern Tb of c’s neighboring
coefficients to form conditioning states in entropy coding of c. Specifically, c is
coded by an adaptive binary arithmetic coder driven by probability estimate

P̂ (cb|Qθ (�θ) , Tb) . (8.13)

8.7 Optimization of Context Quantization

The previous section introduced context quantization as a necessary component for
statistical modeling and entropy coding of wavelet coefficients and presented some
context quantization techniques. However, these techniques are largely based on
heuristics, albeit being proven to be useful in practice. This section investigates the
problem of context quantization in a multivariate analysis approach of statistics and
develops algorithms for designing optimum context quantizer for minimum condi-
tional entropy.

Context quantization is a special form of vector quantization whose criterion should
ideally be minimum conditional entropy. It is well-known that optimal vector quan-
tization is NP-complete — a problem is said to be NP-complete if its exact solution
requires an amount of computations that increases exponentially in the input size [13].
In other words, for a large training set which is required if the derived VQ solution is
to have any statistical significance, designing the globally optimal vector is compu-
tationally intractable. Thus, we necessarily resort to alternative techniques that are
computationally feasible. Since high dimensionality is the main cause for the com-
plexity of the problem, we would naturally like to reduce the dimensionality of the
problem. A classical approach in multivariate analysis is to project sample vectors of
high dimensions onto a lower dimensional space that contains most of the statistical
variations.



A high-order modeling context such as the one in Eq. (8.2) can be viewed as a
modeling event vector v = (v1, v2, . . . , vd), where vi is a modeling event. Let
V = {v1, v2, . . . , vk} be a training set of event vectors. V can be the set of all
event vectors observed so far in an online learning process, or an offline training set.
The former is necessary if the context quantizer is designed on the fly in one-pass
coding, whereas the latter is for offline context quantizer design. We partition V into
V0 and V1, where subset V0 (V1) contains all the modeling event vectors associated
with cb = 0 (cb = 1). If there exists a hyperplane or some other surface in the
d-dimensional event space that can completely separate V0 and V1, then the binary
symbol cb to be coded is uniquely determined by its modeling context. In this ideal
case the conditional entropy of cb is 0. In reality, however, the two point subsets V0
and V1 are mingled in the event space in a complicated way. To simplify the problem,
we can project all training event vectors onto a line and hope that V0 and V1 form
distinct clusters along the line. This approach is due to Fisher [12]. Let the projection
be

ui = aT vi , i = 1, 2, . . . , |V | . (8.14)

Given a training set V , we want to determine the projection direction a such that

G(a) = (µ0 − µ1)
2

σ 2
0 + σ 2

1

(8.15)

is maximized, where

µj = E {
ui |vi ∈ Vj

} = E
{

aT vi |vi ∈ Vj
}
, j = 0, 1 (8.16)

and

σ 2
j = E

{(
aT vi − µj

)2 |vi ∈ Vj
}
, j = 0, 1 . (8.17)

The criterion of maximumG(a) can be intuitively understood as maximum separation
of V0 and V1. The numerator demands maximum distance between the projected
means of V0 and V1 in direction a, whereas the denominator requires minimum
overlap of V0 and V1 along the projection line.

We use a well-known procedure in multivariate analysis literature for maximizing
G(a) based on sample event vectors. We rewrite Eq. (8.15), by scaling, in terms of
sample scatter matrices S0 and S1 for V0 and V1, respectively,

G(a) = (µ0 − µ1)
2

aT (S0 + S1) a
. (8.18)

The scatter matrix is defined by

Si =
∑
v∈Vi
(v − mi )(v − mi )T , i = 0, 1 (8.19)



where

mi = 1

|Vi |
∑
v∈Vi

v, i = 0, 1 . (8.20)

We also express the numerator of Eq. (8.15) in terms of sample means:

(µ0 − µ1)
2 = aT (m0 − m1) (m0 − m1)

T a . (8.21)

LettingM = (m0 − m1)(m0 − m1)
T and S = S0 + S1, we have

G(a) = aTMa
aT Sa

. (8.22)

Differentiating G(a) and setting ∂G/∂a = 0 to determine the direction â that maxi-
mizes G(a), we arrive at

âTM â

âT Sâ
Sâ = M â . (8.23)

Now the underlying optimization problem reduces to one of an eigenvalue with the
scalar term λ = (âTM â)/(âT Sâ). If S−1 exists, the direction of â is given by

â = S−1M â . (8.24)

SinceM â has the direction of m0 − m1, it follows that

â = S−1 (m0 − m1) . (8.25)

The simple solution above is made possible by the binarization of source symbols
via embedded bit plane coding. The binarization conveniently lends Fisher’s linear
classifier with two classes to our context quantization problem. In Fisher’s original
work, the objective is to find a linear discriminant to classify between V0 and V1 for
minimum classification error. But in reality, the projected samples of V0 and V1 in the
direction of â can be intermingled in such complicated ways that Fisher’s discriminant
leaves a significant degree of uncertainty. Much finer context quantization is required
to further resolve the uncertainty and to approach rate-distortion optimality.

8.8 Dynamic Programming for Minimum Conditional Entropy

Once the direction of maximum separation â is determined, we project all training
event vectors onto a line in this direction. On this line the projection establishes an or-
der of training event vectors by their projection values ui = âT vi , i = 1, 2, . . . , |V |,
namely vi ≤ vj if ui ≤ uj . This linear ordering enables a constrained optimization



approach of dynamic programming to design a K-level context quantizer. The con-
straint is that all quantizer cells are perpendicular to direction â. Under the constraint,
the K-level context quantizer can be globally optimized for minimum conditional
entropy, which is better than a gradient descent method that may be trapped in a
local minimum. It is easy to see that in Section 8.6, the least-square estimator �
of Eq. (8.10) also corresponds to a projection in high-dimensional feature space and
establishes an order of training event vectors via the projection. Therefore, the same
dynamic programming process to be developed in this section can be used to solve
the optimization problem posted around Eq. (8.11) as well.

Let u = mini ui , ū = maxi ui , and denote by Q(τ, k) the set of all possible
k-dimensional vectors q = (q1, q2, . . . , qk) such that

u ≡ q0 < q1 < q2 < · · · < qk−1 < qk = τ < ū . (8.26)

In designing the context quantizer, we associate each modeling event vector v ∈ V
with the random variable cb ∈ {0, 1} being modeled. Then the optimal context
quantizer that minimizes conditional entropy is given by

q̂ = arg min
q∈Q(ū,K)

K∑
k=1

P (ui ∈ (qk−1, qk])H (cb|ui ∈ (qk−1, qk]) (8.27)

where

H (cb|ui ∈ (qk−1, qk]) = −E {logP (cb|ui ∈ (qk−1, qk])} . (8.28)

In the formulation, the k-th quantizer cell corresponds to a subset (k = {vi |qk−1 <

ui ≤ qk} of training event vectors. Denote by n0(qk−1, qk] the number of modeling
event vectors in (k that are associated with cb = 0, and by n1(qk−1, qk] = |(k| −
n0(qk−1, qk] the number associated with cb = 1. Also let

L0
(
qk−1, qk

] = n0
(
qk−1, qk

]
log n0

(
qk−1, qk

]
L1

(
qk−1, qk

] = n1
(
qk−1, qk

]
log n1

(
qk−1, qk

]
L

(
qk−1, qk

] = ∣∣(k∣∣ log
∣∣(k∣∣ . (8.29)

When working with the training setV and using the notations above, the minimization
problem of Eq. (8.27) becomes

q̂ = arg min
q∈Q(ū,K)

K∑
k=1

(
L

(
qk−1, qk

] − L0
(
qk−1, qk

] − L1
(
qk−1, qk

])
. (8.30)

The optimal K-level context quantizer q̂ as given by Eq. (8.30) can be efficiently



computed by observing the following recursion:

min
q∈Q(r,j)

j∑
k=1

(
L

(
qk−1, qk

] − L0
(
qk−1, qk

] − L1
(
qk−1, qk

])

= min
τ<r

{
min

q∈Q(τ,j−1)

j−1∑
k=1

(
L

(
qk−1, qk

] − L0
(
qk−1, qk

] − L1
(
qk−1, qk

])

+L(τ, r] − L0(τ, r] − L1(τ, r]
}
. (8.31)

The recursion means that the solution for the problem of size j can be constructed
on the solutions of subproblems of size j − 1. Because of this property (called
the principle of optimality, in optimization literature), we can use a straightforward
dynamic programming algorithm to solve Eq. (8.30). The primitive operations in the
dynamic programming process are those in Eq. (8.29). We can precompute and store
L0, L1, and L for all possible subsets in O(|V |2) time. The expensive logarithmic
computations can be done via table lookup. After the preprocessing, the dynamic
programming algorithm takes O(K|V |2) time.

8.9 Fast Algorithms for High-Order Context Modeling

High-order context modeling is indispensable for good rate-distortion performance
of wavelet image coders. But if care is not taken in algorithm design and implemen-
tation, the formation of high-order modeling contexts can be both CPU and memory
intensive, creating a computation bottleneck for wavelet coding systems. Indeed, our
earlier research prototype of ECECOW, a high-order embedded conditional entropy
coder of wavelet coefficients, spent 70% of its execution time on context modeling.
It is unacceptable for most applications that a module of a wavelet image codec is
six times more expensive than the wavelet transform itself. In this section, we focus
on the operational aspects of high-order statistical context modeling and introduce
some fast algorithmic techniques that can drastically reduce both time and space
complexities of high-order context modeling in the wavelet domain.

Two computationally intensive parts in context formation are the linear combina-
tion Eq. (8.10) of neighboring samples and the texture pattern extraction Eq. (8.12)
from neighboring samples. Once� is computed, its quantization is very fast via table
lookup. Although Eq. (8.10) and Eq. (8.12) involve only basic arithmetic and logic
operations — namely additions, comparisons, and bit manipulations — straightfor-
ward computations of Eq. (8.10) and Eq. (8.12) require a large number of operations
per binary symbol. Furthermore, forming a high-order context that spans over several



scan lines needs to access data (modeling events) stored in distant memory locations.
This activity can cause excessive cache misses on modern hardware architecture,
slowing down the computation. The high computational complexity is seemingly
inherent in high-order context modeling. In order to speed up context formation
we have to question if the computational complexity of statistical context modeling
is necessarily proportional to the order of the model. The answer is pleasantly, if
somewhat surprisingly “no,” as we will see shortly.

8.9.1 Context Formation via Convolution

By tracing the major causes of high computational complexity, we come to the
following key observation. High-order modeling contexts for neighboring samples
have large overlaps in the wavelet domain. This means that samples are accessed and
operated on repetitively. We can improve computational efficiency by eliminating
repetitive arithmetic, logic, and memory operations in spatially overlapped modeling
contexts. This idea leads to an incremental algorithm to compute � in O(1) time
independent of the order of modeling context. Given that the wavelet coefficients are
coded in raster scan order at a given bit plane and in a given subband, we denote the
coefficient vector in the current row by x0[t], where t = 0, 1, . . . represents spatial
locations. The coefficient vector in the next row is denoted by x1[t], and likewise
in the previous two rows by x−1[t] and x−2[t], respectively. The x values are up to
the current decoded precision in bit plane coding, i.e., in the notations of previous
sections, x−2[·], x−1[·], and x0[τ ], τ < t , are c..b, while x0[τ ], τ ≥ t , and x1[·] are
c..b+1. We drop the subscripts for bit ranges ..b, ..b + 1 because they are clearly
implied in spatial locations of the wavelet coefficients x.

FIGURE 8.9
Convolution kernel effected by the incremental � computation of Eq. (8.32).



In sequential coding of x0[t] for increasing t , we compute incrementally

αt = x−1[t + 1] + x1[t + 1]
βt = βt−1

2
+ αt−1 + x0[t − 1] + x0[t + 1] + x−2[t]

2

�t = αt

2
+ βt . (8.32)

Expanding the recursion above reveals

�t = x−1[t] + x1[t] + x0[t − 1] + x0[t + 1]
+x0[t]

2

x−2[t] + x−1[t − 1] + x−1[t + 1] + x1[t − 1] + x1[t + 1] + x0[t − 2]
2

+βt−2 + x−2[t − 1]
4

. (8.33)

This corresponds to a high-order linear filter whose kernel is graphically depicted in
Fig. 8.9. Note that Fig. 8.9 illustrates only the part of the filter kernel with coefficients
larger than 1/4 — the 14 most important modeling events with respect to x0[t]. We
can see that �t is a weighted sum of n, w, s, e, nw, ne, sw, se, nn, ww, and
many other past observations with the weights proportional to their distances to x0[t].
Therefore,�t offers a modeling context of x0[t] of order higher than 14. But�t can
be computed by the incremental algorithm of Eq. (8.32) in only six additions, five
memory accesses, and two bit shifts — less than half the number of operations required
by a direct implementation of Eq. (8.10). In fact, the computational complexity of
the proposed incremental algorithm is independent of the order of modeling contexts.
Indeed, we can rewrite the second line of Eq. (8.32) as

βt = λβt−1 + · · · (8.34)

where λ is a forgetting factor. Increasing λ gives higher weights to the past observa-
tions and hence increases the order of modeling context. Therefore, we derived an
O(1) time algorithm for computing �t that can increase the order of context mod-
eling for a fixed number of operations. The optimal value of λ is determined by the
length of memory in the source. In practice, we empirically found that λ = 1/2 gave
very close to optimal compression results on natural images while avoiding divisions.
The incremental computations of Eq. (8.32) have a simple convolution structure, and
hence particularly suitable for hardware implementation.

8.9.2 Shared Modeling Context for Signs and Textures

Next we consider efficient computations of Eq. (8.12) and Eq. (8.9) and introduce
algorithmic techniques to greatly reduce the amount of computation and memory
accesses to set up spatial texture patterns Tb and sign contexts. As we did for �,
we dropped the references to parent subband in Tb, i.e., not using t4 in Eq. (8.12).
Then there are four status bits t3t2t1t0 to be set depending on the outcomes of four



comparisons between c..b+1 and n..b, w..b, s..b+1, and e..b+1. By a careful organization
of computations in Eq. (8.12) and Eq. (8.9), we can save the comparison and bit setting
operations. The basic idea is to let sign modeling and texture modeling share as much
context information as possible.

For each coefficient c, we introduce a syndrome byteSb = s7s6 · · · s1s0:

s0 = n..b > 0?1 : 0 , s4 = ñ ;
s1 = w..b > 0?1 : 0, s5 = w̃ ;
s2 = s..b+1 > 0?1 : 0, s6 = s̃ ;
s3 = e..b+1 > 0?1 : 0; s7 = ẽ . (8.35)

where n, w, s, e are the four neighbors of c. Syndrome bytes for all coefficients are
initialized to 0 and updated if necessary for decreasing bit planes. Syndrome bytes
Sb support context modeling of signs by allowing three dynamic states of signs in
embedded bit plane coding. Specifically, in Sb if bit si = 0, i = 0, 1, 2, 3, then the
status bit si+4 is not used or is only a “don’t care” bit (although the bit is physically
set to 0 at initialization). In sign modeling for x0[t], the coder needs to fetch only the
syndrome byte Sb of x0[t] and then uses it as the modeling context for signs.

Note that in the embedded bit plane coding, the most significant bit and the sign
of a wavelet coefficient are set at the same time. It is then immediate from Eq. (8.12)
and Eq. (8.35) that

Tb = t3t2t1t0 = s3s2s1s0 = Sb, if c..b+1 = 0. (8.36)

Therefore, syndrome byte Sb can be used not only directly for modeling signs, but
also for modeling textures. The entropy coder simply extracts the last four bits of
Sb and sets texture pattern Tb = s3s2s1s0, if c..b+1 = 0. All the computations of
Eq. (8.12) become unnecessary and can be saved.

Each bit in syndrome byte Sb for x0[t] is set at most once. Two bits, si and si+4,
are set when the most significant bit and the sign of one of the four neighbors n, w, s,
e of x0[t] are scanned and coded. This means that the sign of a coefficient will never
be accessed and examined more than once in embedded bit plane coding. Likewise,
no coefficients will be accessed and tested more than once for their significance in
setting Tb for decreasing b. The proposed algorithm has therefore minimized the
number of arithmetic operations and memory accesses in context formation. This
optimality in time complexity is achieved by eliminating repetitive computations in
spatially overlapped contexts, and it is operationally realized by the use of syndrome
bytes Sb. Clearly, the number of syndrome bytes is the same as the number of wavelet
coefficients in the buffer to be coded. This working memory is very modest in size
and well justified by the great savings in computation.

Before leaving the subject discussed above, we would like to point out that the
JPEG 2000 verification model also uses a collection of status bits for each wavelet
coefficient which have similar roles as the syndrome bytes [29].

The algorithmic techniques for fast context formation presented above have led to
an efficient wavelet-based image coder [38] that is 20% faster than the popular SPIHT



image coder (its arithmetic coded version), and at the same time it outperforms SPIHT
in rate-distortion performance, as we see in the following section.

8.10 Experimental Results

In order to demonstrate the effects of different techniques for context modeling and
conditional entropy coding of wavelet coefficients on coding efficiency, we present
compression results of some well-known and recently published wavelet image com-
pression algorithms and compare them with the algorithms that are described in
this chapter. We evaluate both lossy and lossless compression performance of these
wavelet image coders.

8.10.1 Lossy Case

For the sake of common references, we use in our evaluation two JPEG test images,
“Lena” and “Barbara,” that are widely used for rate-distortion comparisons in the im-
age compression literature. Image qualities, measured by PSNR, of various wavelet
image coding algorithms at different bit rates are tabulated in Tables 8.1 and 8.2. In
the tables, EZW and SPIHT algorithms are well-known and were introduced earlier
in this chapter. SFQ is the space-frequency quantization method by Xiong, Ram-
chandran, and Orchard [40], EQ is an estimation-quantization method by LoPresto,
Ramchandran, and Orchard [16], and C/B is a context-based entropy coding method
by Chrysafis and Ortega [9]. ECECOW is a coder based on techniques presented in
Sections 8.5 and 8.6, and also in Wu [36]. The best results were obtained by replac-
ing the context quantizer of ECECOW with the context quantization scheme guided
by Fisher’s linear discriminant and via dynamic programming [37], as described in
Sections 8.7 and 8.8. This algorithm is identified as “NEW” in the tables.

Table 8.1 Rate(bpp)/PSNR(dB) Results for “Lena”
rate EZW SPIHT SFQ EQ C/B ECECOW NEW

0.25 33.17 34.13 34.33 34.57 34.31 34.81 34.89
0.50 36.28 37.24 37.36 37.68 37.52 37.92 38.02
1.00 39.55 40.45 40.52 40.88 40.80 40.85 41.01

The NEW method outperforms all others in terms of rate-distortion performance,
although by smaller margins against ECECOW. We need to stress that the good per-
formances of the NEW and ECECOW methods are solely due to high-order adaptive
context modeling. In our experiments, both coders used dyadic wavelet transform of
the popular bi-orthogonal 9/7 filter [17]. Neither filter kernel nor coefficient quantizer
was optimized for specific images. On the other hand, some of the other methods in



Table 8.2 Rate(bpp)/PSNR(dB) Results for “Barbara”
rate EZW SPIHT SFQ C/B ECECOW NEW

0.25 26.77 27.57 27.20 28.48 28.85 29.21
0.50 30.53 31.39 31.33 32.63 32.69 33.06
1.00 35.14 36.41 36.96 37.61 37.65 38.05

our comparison group used much longer filter kernels. Furthermore, ECECOW is an
embedded coding scheme, like EZW and SPIHT, while SFQ, EQ, and C/B are not.
Our experimental results clearly demonstrate the importance of high-order context
modeling in compressing wavelet coefficients.

8.10.2 Lossless Case

Since entropy coding of coefficients is independent of wavelet transforms and co-
efficient quantization, the NEW method can be readily applied to invertible wavelet
transforms [8] for lossless image compression. Invertible wavelet transforms map
integer pixel values to integer wavelet coefficients. Thus no coefficient quantization
is required prior to coefficient coding. Because of the absence of quantization distor-
tion, entropy decoding of wavelet coefficients followed by inverse transform leads to
lossless reconstruction. Table 8.3 compares the lossless compression performance of
the NEW method with other state-of-art lossless image coders on an ISO set of test
images. In the comparison group JPEG-LS is the new lossless JPEG standard [6].
CALIC is a well-known lossless image coder that seems to have the best compression
performance among practical lossless image coders [34, 35]. But one needs to keep
in mind that both JPEG-LS and CALIC are predictive coding schemes without pro-
gressive transmission capability. The S+P algorithm, by Said and Pearlman [26], is a
pioneer work in wavelet-based, embedded lossless image compression. On average,
the NEW method obtains only about 2% less lossless compression than CALIC, but
it outperforms all others.

8.11 Summary

For typical transform-based signal compression systems, data reduction is mostly
achieved by entropy coding of transform coefficients. If context-based adaptive arith-
metic coding is used to compress the transform coefficients, then the pivotal issue that
determines the compression performance is statistical context (Markov) modeling of
the coefficients, or, more specifically, how to estimate the underlying conditional
probability of the coefficients. In this chapter, we introduced a number of modern
techniques for context modeling and adaptive entropy coding of wavelet coefficients.



Table 8.3 Lossless Rates (bits/pixel) of ECECOW
Compared with Other Lossless Image Coders on an ISO
Set of Test Images

Image NEW ECECOW S+P CALIC JPEG-LS

Balloon 2.85 2.86 2.97 2.78 2.90
Barb 1 4.30 4.34 4.53 4.33 4.69
Zelda 3.69 3.71 3.84 3.72 3.89
Hotel 4.36 4.38 4.53 4.22 4.38
Barb 2 4.53 4.57 4.71 4.49 4.69
Board 3.61 3.62 3.82 3.50 3.68
Girl 3.79 3.81 3.96 3.71 3.93
Gold 4.41 4.42 4.56 4.38 4.48
Boats 3.85 3.86 4.03 3.77 3.93
Lena 4.07 4.09 4.16 4.04 4.24

Average 3.96 3.98 4.12 3.89 4.08

These techniques are used in some state-of-the-art wavelet image codecs. Although
the chapter mostly relates to wavelet-based image compression for the concrete-
ness of the discussions, the principles and techniques described here can be used in
conjunction with other transforms, such as DCT, and are also readily applicable to
compression of other types of signals, such as audio and video.
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