
Vladimir Britanak "Discrete Cosine and Sine Transforms"
The Transform and Data Compression Handbook
Ed. K. R. Rao et al.
Boca Raton, CRC Press LLC, 2001

© 20001 CRC Press LLC

Chapter 4

Discrete Cosine and Sine Transforms

Vladimir Britanak

Slovak Academy of Sciences

4.1 Introduction

The discrete cosine transform (DCT) and discrete sine transform (DST) are mem-
bers of a family of sinusoidal unitary transforms. They have found applications in
digital signal and image processing and particularly in transform coding systems for
data compression/decompression. Among the various versions of DCT, types II and
III have received much attention in digital signal processing. Besides being real,
orthogonal, and separable, its properties are relevant to data compression and fast
algorithms for its computation have proved to be of practical value. Recently, DCT
has been employed as the main processing tool for data compression/decompression
in international image and video coding standards [31]. An alternative transform used
in transform coding systems is DST. In fact, the alternate use of modified forms of
DST and DCT has been adopted in the international audio coding standards MPEG-1
and MPEG-2 (Moving Picture Experts Group) [31].

In this chapter, the definitions and basic mathematical properties of four even
types of DCT and the DST are discussed. Then, the properties of DCT and DST
relevant to data compression are briefly outlined. For each DCT and DST, a fast
computational algorithm is described, and a corresponding regular generalized signal
flow graph is shown, followed by its implementation in C. Finally, to illustrate the
compression capability of DCT, a real DCT-based data compression application is
considered. The simple and efficient JPEG (Joint Photographic Experts Group) DCT-
based image compression and decompression system [31] and its implementation is
described in detail. Generally, this chapter contains many implemented algorithms
that can be useful not only in data compression applications but also in any other
DCT- and DST-related applications.

4.2 The Family of DCTs and DSTs

DCTs and DSTs are members of the class of sinusoidal unitary transforms devel-
oped by Jain [1]. A sinusoidal unitary transform is an invertible linear transform
whose kernel describes a set of complete, orthogonal discrete cosine and/or sine ba-
sis functions. The well-known Karhunen–Loève transform (KLT) [30], generalized
discrete Fourier transform [2], generalized discrete Hartley transform [3] or equiva-
lently generalized discrete W transform [4], and various types of the DCT and DST
are members of this class of unitary transforms.

The set of DCTs and DSTs introduced by Jain [1] is not complete. The complete set
of DCTs and DSTs, so-called discrete trigonometric transforms, has been described
by Wang and Hunt [4]. The family of discrete trigonometric transforms consists of
8 versions of DCT and corresponding 8 versions of DST [13, 14]. Each transform
is identified as even or odd and of type I, II, III, and IV. All present digital signal
and image processing applications (mainly transform coding and digital filtering of
signals) involve only even types of the DCT and DST. Therefore, this chapter considers
four even types of DCT and DST.

4.2.1 Definitions of DCTs and DSTs

In subsequent sections, N is assumed to be an integer power of 2, i.e., N = 2m. A
subscript of a matrix denotes its order, while a superscript denotes the version number.

Four normalized even types of DCT in the matrix form are defined as [4]

DCT − I :
[
C

I

N+1

]
nk

=
√

2

N

[
εn εk cos

πnk

N

]
, (4.1a)

n, k = 0, 1, . . . , N,

DCT − II :
[
C

II

N

]
nk

=
√

2

N

[
εk cos

π(2n + 1)k

2N

]
, (4.1b)

n, k = 0, 1, . . . , N − 1,

DCT − III :
[
C

III

N

]
nk

=
√

2

N

[
εn cos

π(2k + 1)n

2N

]
, (4.1c)

n, k = 0, 1, . . . , N − 1,

DCT − IV :
[
C

IV

N

]
nk

=
√

2

N

[
cos

π(2n + 1)(2k + 1)

4N

]
, (4.1d)

n, k = 0, 1, . . . , N − 1,

where

εp =
{

1√
2

p = 0 or p = N

1 otherwise

and the corresponding four normalized even types of the DST are defined as [4]

DST − I :
[
S
I

N−1

]
nk

=
√

2

N

[
sin

π(n + 1)(k + 1)

N

]
, (4.2a)

n, k = 0, 1, . . . , N − 2,

DST − II :
[
S
II

N

]
nk

=
√

2

N

[
εk sin

π(2n + 1)(k + 1)

2N

]
, (4.2b)

n, k = 0, 1, . . . , N − 1,

DST − III :
[
S
III

N

]
nk

=
√

2

N

[
εn sin

π(2k + 1)(n + 1)

2N

]
, (4.2c)

n, k = 0, 1, . . . , N − 1,

DST − IV :
[
S
IV

N

]
nk

=
√

2

N

[
sin

π(2n + 1)(2k + 1)

4N

]
, (4.2d)

n, k = 0, 1, . . . , N − 1,

where

εq =
{

1√
2

q = N − 1

1 otherwise.

The DCT-I introduced by Wang and Hunt [5] is defined for the order N + 1. It can be
considered a special case of symmetric cosine transform introduced by Kitajima [6].
The DST-I introduced by Jain [7] is defined for the order N − 1 and constitutes the
basis of a technique called recursive block coding [35]. The DCT-II and its inverse,
DCT-III, first reported by Ahmed, Natarajan, and Rao [8], has an excellent energy
compaction property, and among the currently known unitary transforms it is the
best approximation for the optimal KLT. The DST-II and its inverse, DST-III, have
been introduced by Kekre and Solanki [9]. DST-II is a complementary or alternative
transform to DCT-II used in transform coding. DCT-IV and DST-IV introduced by
Jain [1] have found applications in the fast implementation of lapped orthogonal
transform for the efficient transform/subband coding [12].

4.2.2 Mathematical Properties

The basic mathematical properties of discrete transforms are fundamental for their
use in practical applications. Thus, properties such as scaling, shifting, and convo-
lution are readily applied in the discrete transform domain. In the following, we
briefly summarize the most relevant mathematical properties of the family of DCTs
and DSTs.

DCT and DST matrices are real and orthogonal. All DCTs and DSTs are separa-
ble transforms; the multidimensional transform can be decomposed into successive
application of one-dimensional (1-D) transforms in the appropriate directions.

The Unitarity Property

The following relations hold for inverse DCT matrices[
C

I

N+1

]−1 =
[
C

I

N+1

]T =
[
C

I

N+1

]
(4.3a)[

C
II

N

]−1 =
[
C

II

N

]T =
[
C

III

N

]
(4.3b)[

C
III

N

]−1 =
[
C

III

N

]T =
[
C

II

N

]
(4.3c)[

C
IV

N

]−1 =
[
C

IV

N

]T =
[
C

IV

N

]
(4.3d)

and for inverse DST matrices[
S
I

N−1

]−1 =
[
S
I

N−1

]T =
[
S
I

N−1

]
(4.4a)[

S
II

N

]−1 =
[
S
II

N

]T =
[
S
III

N

]
(4.4b)[

S
III

N

]−1 =
[
S
III

N

]T =
[
S
II

N

]
(4.4c)[

S
IV

N

]−1 =
[
S
IV

N

]T =
[
S
IV

N

]
(4.4d)

If the nonsingular matrix is real and orthogonal, its inverse is obtained as its trans-
pose. In the definitions of DCT and DST, matrices given by Eqs. (4.1a)–(4.1d) and
Eqs. (4.2a)–(4.2d), respectively, the normalization factors

√
(2/N) can be merged

as 2/N , and it can be moved to either the forward or inverse transform. By merg-
ing these normalization factors, the family of DCT and DST matrices are no longer
orthonormal. They are, however, still orthogonal. The DCT-I, DCT-IV, DST-I, and
DST-IV matrices are involutory, i.e., they are orthogonal and symmetric. The sym-
metry of an orthogonal matrix indicates that algorithms for the forward and inverse
transform computation will be the same except for the normalization. On the other
hand, DCT-II and DCT-III are inverses of each other. The same property holds for
DST-II and DST-III.

The Linearity Property

Since matrix multiplication is a linear operation, i.e.,

M (α g + β f) = α M g + β M f (4.5)

for a matrix M , constants α and β, and vectors g and f , all DCTs and DSTs are linear
transforms.

The Convolution-Multiplication Property

All DCTs and DSTs possess convolution — multiplication property which is a
powerful tool for performing digital filtering in the transform domain. The convolu-
tion operation in the transform domain realized by taking an inverse transform of the

product of forward transforms of two data sequences is equivalent to symmetric con-
volution of those symmetrically extended sequences in the spatial domain [13, 14].
Let {xn} and {yn} be two input data sequences to be convolved. Generally, the relation
between the symmetric convolution and transform domain convolution-multiplication
property can be expressed by the following equation

{xn} < sc > {yn} = T −1

c [Ta {xn} × Tb {yn}] , (4.6)

where < sc > is the operator of symmetric convolution, × denotes element-by-
element multiplication of its operands, and Ta{xn} denotes a specified transform Ta
of the sequence {xn}. As an example, the convolution-multiplication property for

the DCT-II is obtained by substituting Ta = Tb = [CII

N] and Tc = [CI

N+1]
−1

into
Eq. (4.6). Definition of the symmetric convolution and convolution-multiplication
properties for the entire family of discrete trigonometric transforms are given in
references [13, 14], and [15].

The Shift Property, Scaling, and Difference Property

For the family of DCTs and DSTs, the reader can find the complete derivations of
the shift property in references [10, 11], and [30] and scaling in time and the difference
property in [30].

4.2.3 Relations to the KLT

The performance of DCTs and DSTs, particularly important in transform coding,
is associated with the KLT. KLT is an optimal transform for data compression in a
statistical sense because it decorrelates a signal in the transform domain, packs the
most information in a few coefficients, and minimizes mean-square error between the
reconstructed and original signal compared to any other transform. However, KLT is
constructed from the eigenvalues and the corresponding eigenvectors of a covariance
matrix of the data to be transformed; it is signal-dependent, and there is no general
algorithm for its fast computation. There is asymptotic equivalence of the family of
DCTs and DSTs with respect to KLT for a first-order stationary Markov process in
terms of the transform size and the adjacent (interelement) correlation coefficient ρ.
For finite length data, DCTs and DSTs provide different approximations to KLT, and
the best approximating transform varies with the value of correlation coefficient ρ.
For example, when ρ = 1 the KLT is reduced to DCT-II (DCT-III) [16, 17, 30], for
ρ = 0 the KLT is reduced to DST-I [7, 17, 18], and for ρ = −1 it is reduced to
DST-II (DST-III) [19]. On the other hand, if the transform size N increases (i.e., N
tends to infinity), it can be shown that KLT is reduced to DCT-I or DCT-IV [30]. This
asymptotic behavior implies that DCTs and DSTs can be used as substitutes for KLT
of certain random processes.

In general, there are several characteristics that are desirable in a transform when
it is used for the purpose of data compression [36]:

• Data decorrelation: The ideal transform completely decorrelates the data in a
sequence/block; i.e., it packs the most amount of energy in the fewest number of
coefficients. In this way, many coefficients can be discarded after quantization
and prior to encoding. It is important to note that the transform operation itself
does not achieve any compression. It aims at decorrelating the original data and
compacting a large fraction of the signal energy into relatively few transform
coefficients.

• Data-independent basis functions: Owing to the large statistical variations
among data, the optimum transform usually depends on the data, and finding
the basis functions of such transform is a computationally intensive task. This
is particularly a problem if the data blocks are highly nonstationary, which
necessitates the use of more than one set of basis functions to achieve high
decorrelation. Therefore, it is desirable to trade optimum performance for a
transform whose basis functions are data-independent.

• Fast implementation: The number of operations required for an n-point trans-
form is generally of the order O(n2). Some transforms have fast implementa-
tions, which reduce the number of operations to O(n log n). For a separable
n × n 2-D transform, performing the row and column 1-D transforms succes-
sively reduces the number of operations from O(n4) to O(2n2 log n).

Among the family of DCTs and DSTs, the performance of DCT-II is closest to
the statistically optimal KLT based on a number of performance criteria (variance
distribution, energy packing efficiency, residual correlation, rate distortion, and max-
imum reducible bits and generalized Wiener filtering) [30]. The importance of DCT-
II is further accentuated by its superiority in bandwidth compression (redundancy
reduction) of a wide range of signals and by existence of fast algorithms for its im-
plementation. Owing to powerful performance in the bit-rate reduction, DCT-II and
its inversion, DCT-III, have been employed in the international image/video coding
standards: JPEG for compression of still images, MPEG for compression of motion
video including HDTV (High Definition Television), H.261 for compression of video
telephony and teleconferencing, and H.263 for visual communication over ordinary
telephone lines [31].

4.3 A Unified Fast Computation of DCTs and DSTs

The DCT and DST matrices defined in Section 4.2 are orthonormal. The normal-
ization factor

√
(2/N) in the forward and the inverse transforms can be merged as

2/N and moved to the forward transform. By merging these normalization factors
the family of DCT and DST matrices are orthogonal. Without loss of generality, in
this section orthogonal DCT and DST matrices will be considered.

A unified fast computation of even types of DCT (DCT-I, -II, -III, -IV) and DST
(DST-I, -II, -III, -IV) is based on a universal computational structure both for DCT-

II/DST-II and DCT-III/DST-III computation [26]. This DCT-II/DST-II (DCT-III/
DST-III) universal computational structure is used as the basic computational unit (a
potential DCT/DST processor) in fast algorithms defined by sparse matrix factoriza-
tions. The fast algorithms are simple, numerically stable and efficient. For each type
of the DCT and DST computation, the corresponding regular generalized signal flow
graph is shown. Generalized signal flow graphs are enabled to realize computation
of given DCT and DST for any N = 2m, m > 0 (N being the length of the data
sequence). The unified fast computation of DCTs and DSTs provides simple and
compact transform building blocks. Finally, computer programs for each even type
of the DCT and DST computation are presented.

4.3.1 Definitions of Even-Odd Matrices

Even-Odd Transform Matrix

AJ =

I J−1
2

Ī J−1
2

1
Ī J−1

2
−I J−1

2

 for J odd , (4.7)

where IN is the identity matrix. Blanks in the even-odd transform matrix Eq. (4.7)
represent null submatrices and

ĪN =

0 · · · 0 0 0 1
0 · · · 0 0 1 0
0 · · · 0 1 0 0
0 · · · 1 0 0 0
...

...
...

...
...

1 · · · 0 0 0 0

(4.8)

is the reflection matrix. The orthogonal even-odd transform matrix Eq. (4.7) converts
data sequences into their symmetric (even) and anti-symmetric (odd) parts.

Even-Odd Permutation Matrices

PJ =

1 0 0 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0 0
0 0 0 0 1 · · · 0 0 0

...
...

0 0 0 0 0 · · · 0 1 0
0 0 0 0 0 · · · 0 0 1
0 0 0 0 0 · · · 1 0 0

...
...

0 0 0 1 0 · · · 0 0 0
0 1 0 0 0 · · · 0 0 0

for J even , (4.9a)

PJ =

1 0 0 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0 0
0 0 0 0 1 · · · 0 0 0

...
...

0 0 0 0 0 · · · 1 0 0
0 0 0 0 0 · · · 0 0 1
0 0 0 0 0 · · · 0 1 0

...
...

0 0 0 1 0 · · · 0 0 0
0 1 0 0 0 · · · 0 0 0

for J odd . (4.9b)

The permutation matrix PJ reorders the data sequence such that the first half of even-
numbered data is arranged in the natural order, while the last half of odd-numbered
data is arranged in the reversed order.

4.3.2 DCT-II/DST-II and DCT-III/DST-III Computation

The DCT-II for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [8]

z
II

k = 2εk
N

N−1∑
n=0

xn cos

[
π(2n + 1)k

2N

]
, k = 0, 1, . . . , N − 1 (4.10)

and the inverse DCT-II (DCT-III) is defined by

xn =
N−1∑
k=0

εkz
II

k cos

[
π(2n + 1)k

2N

]
, n = 0, 1, . . . , N − 1 , (4.11)

where

εk =
{

1√
2

k = 0

1 otherwise.

DCT-II and its inverse, DCT-III, given by Eqs. (4.10) and (4.11), respectively, can be
rewritten as [23]

z
II

k = 2εk
N

N−1∑
n=0

x̃n cos

[
π(4n + 1)k

2N

]
, k = 0, 1, . . . , N − 1 , (4.12)

x̃n =
N−1∑
k=0

εkz
II

k cos

[
π(4n + 1)k

2N

]
, n = 0, 1, . . . , N − 1 , (4.13)

where

x̃n = x2n

x̃N−n−1 = x2n+1, n = 0, 1, . . . ,
N

2
− 1 . (4.14)

The reordering in Eq. (4.14) corresponds to the permutation matrix PN given by
Eq. (4.9a) applied to the input data vector.

Let C
II

N be the N ×N orthogonal DCT-II matrix. Then a reordered DCT-II matrix

Ĉ
II

N with permuted rows and columns is given by

Ĉ
II

N = RN C
II

N [PN]T , (4.15)

where RN is the bit reversal permutation matrix and [PN]T is the transpose of the
permutation matrixPN . A fast, recursive algorithm for DCT-II (DCT-III) computation
with a regular structure is based on a block matrix factorization of the reordered DCT-
II matrix Ĉ

II

N . The reordered DCT-II matrix Ĉ
II

N has a recursive structure; higher order
matrices can be generated from lower order ones, and its block matrix factorization
has the following form [28, 30]

Ĉ
II

N =
[

IN
2

0

0 KN
2

]
 Ĉ

II

N
2

0

0 Ĉ
II

N
2

 [

IN
2

0

0 QN
2

] [
IN

2
IN

2

IN
2

−IN
2

]
, (4.16)

where KN
2

is an N
2 × N

2 matrix given by

KN
2

= RN
2
LN

2
RN

2
, (4.17)

where RN
2

is the bit reversal permutation matrix, LN
2

is the lower triangular matrix

LN
2

=

1 0 0 0 · · · 0
−1 2 0 0 · · · 0

1 −2 2 0 · · · 0
−1 2 −2 2 · · · 0
...

...
...

...
...

−1 2 −2 2 · · · 2

,

QN
2

is the N
2 × N

2 diagonal matrix

QN
2

= diag [cosφm] ,

φm =
(
m + 1

4

) (
2π

N

)
, m = 0, 1, . . . ,

N

2
− 1 . (4.18)

The block matrix factorization Eq. (4.16) defines Hou’s fast, recursive, and numer-
ically stable algorithm for DCT-II (DCT-III) computation which can be represented
in the matrix form as [23]

 ẑ
II

e

ẑ
II

o

 = 2

N
Ĉ

II

N

 x̃p

x̃r

 , (4.19)

where

x̃p = [
x0, x2, x4, . . . , xN−4, xN−2

]T
,

x̃r = [
xN−1, xN−3, xN−5, . . . , x3, x1

]T
,

ẑ
II

e = RN
2

z
II

e ,

ẑ
II

o = RN
2

z
II

o ,

z
II

e = [
z0, z2, z4, . . . , zN−4, zN−2

]T
,

z
II

o = [
z1, z3, z5, . . . , zN−3, zN−1

]T
,

where z
II

e is the even half and z
II

o is the odd half of the DCT-II transformed sequence
both arranged in the natural order. T denotes transposition.

A regular generalized signal flow graph based on this algorithm for DCT-II and
its inverse, DCT-III, for any N = 2m, m > 0 has been described by Britanak [24].
It is shown for N = 16 in Fig. 4.1. Full lines represent transfer factors +1, while
broken lines represent transfer factors −1. © represents addition, ↓ represents mul-
tiplication by cosine coefficients C

k

n = cos(kφn), φn = π(4n+1)
2N , and → represents

multiplication by 2. The normalization factor is not included in the signal flow graph.
The generalized signal flow graph consists of two regular parts. The first part is
related to the butterfly structure, and the second one, after bit-reversal permutation,
is mapped into a pipeline structure. This pipeline structure is related to a simple
recurrent relation for any N = 2m, m > 0 [24].

The DST-II for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [9]

s
II

k = 2εk
N

N−1∑
n=0

xn sin

[
π(2n + 1)(k + 1)

2N

]
, k = 0, 1, . . . , N − 1 (4.20)

and the inverse DST-II (DST-III) is defined as

xn =
N−1∑
k=0

εks
II

k sin

[
π(2n + 1)(k + 1)

2N

]
, n = 0, 1, . . . , N − 1 , (4.21)

where

εk =
{

1√
2

k = N − 1

1 otherwise.

Let C
II

N and S
II

N be orthogonal N × N DCT-II and DST-II matrices, respectively.

According to Wang [20] S
II

N is related to C
II

N by

S
II

N = ĪN C
II

N DN , (4.22)

FIGURE 4.1
DCT-II/DST-II (DCT-III/DST-III) universal computational structure for N =
16. ©Slovak Academic Press Ltd.

N is the diagonal odd sign-changing matrix

DN =

1 0 0 0 · · · 0
0 −1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 −1 · · · 0
...

...
...

...
...

0 0 0 0 · · · −1

. (4.23)

The DN matrix applied to the input data sequence given by Eq. (4.14) corresponds
to the reordering and sign changes:

x̃n = x2n

x̃N−n−1 = − x2n+1, n = 0, 1, . . . ,
N

2
− 1 . (4.24)

From Eq. (4.22) it follows that the generalized signal flow graph for the DCT-II
computation can also be used for the DST-II computation for any N = 2m, m >

0. The output DST-II transformed sequence, after the DCT-II computation for the
input data sequence given by Eq. (4.24), is in reversed order; i.e., the final DST-II
transformed sequence is obtained as

s
II

k = z
II

N−1−k, k = 0, 1, . . . , N − 1 . (4.25)

Hence, by the same computational structure, both the DCT-II and DST-II computation
can be effectively realized for any N = 2m, m > 0 simply by changing the input and
output data sequences. Because both DCT-II and DST-II are orthogonal transforms,
the algorithm for DST-III computation is obtained by transposing of Eq. (4.22). The
generalized signal flow graph for DCT-II/DST-II and their inverse computations, so
called DCT-II/DST-II (DCT-III/DST-III) universal computational structure, is shown
forN = 16 in Fig. 4.1. The symbols in brackets correspond to DST-II (DST-III) com-
putation. DCT-II/DST-II (DCT-III/DST-III) universal computational structure [25]
represents the unified DCT-II/DST-II and their inverse computations, DCT-III/DST-
III for any N = 2m, m > 0. The universality of DCT-II/DST-II computational
structure is related to the fact that it can be used as the basic computational unit
for the fast implementation of the entire class of discrete sinusoidal transforms, i.e.,
generalized discrete Fourier transform, generalized discrete Hartley transforms, and
the other types of the DCT and DST, respectively [26, 27]. We note that for fast
computation of other discrete sinusoidal transforms, the bidirectional DCT-II/DST-II
(DCT-III/DST-III) universal computational structure is used without the proper nor-
malization. If DCT-II (DCT-III) or DST-II (DST-III) computation is required, the
proper normalization should be applied to the input and output data sequences.

4.3.3 DCT-I and DST-I Computation

DCT-I for a given data sequence {xn}, n = 0, 1, . . . , N is defined as [5]

z
I

k = 2εk
N

N∑
n=0

εnxn cos

[
πnk

N

]
, k = 0, 1, . . . , N (4.26)

and the inverse DCT-I (IDCT-I) is defined by

xn = εn

N∑
k=0

εkz
I

k cos

[
πnk

N

]
, n = 0, 1, . . . , N , (4.27)

where

εp =
{

1√
2

p = 0 or p = N

1 otherwise.

DCT-I and IDCT-I are defined for data sequences of length N + 1. Let C
I

N+1 be the

orthogonal DCT-I matrix of order N + 1. Then for N = 2m, m ≥ 1, C
I

N+1 can be
decomposed into the following recursive matrix form [21]

C
I

N+1 = PN+1

 C

I

N
2 +1

0

0 Ī N
2
C

III

N
2
Ī N

2

AN+1 , (4.28)

where AN+1 and PN+1 are matrices given by Eq. (4.7) and Eq. (4.9b), respectively.
C

I

N
2 +1

is the DCT-I matrix of order N
2 + 1. The matrix product Ī N

2
C

III

N
2
Ī N

2
denotes

N
2 × N

2 DCT-III matrix with reversed order for both its rows and columns. The
permutation matrix PN+1 applied to the data vector corresponds to the reordering:

x̃0 = x0

x̃n+1 = x2n+2

x̃N−n = x2n+1, n = 0, 1, . . . ,
N

2
− 1 . (4.29)

Because C
I

N+1 is a symmetric matrix, the algorithms for the DCT-I and IDCT-I
computation are the same except for the normalization. The generalized signal flow
graph for the DCT-I and IDCT-I computation for N + 1 = 17 is shown in Fig. 4.2.
Here α = 1√

2
, and the normalization factor is again not incl uded in the signal flow

graph.
The DST-I for a given data sequence {xn}, n = 0, 1, . . . , N − 2 is defined as [7]

s
I

k = 2

N

N−2∑
n=0

xn sin

[
π(n + 1)(k + 1)

N

]
, k = 0, 1, . . . , N − 2 , (4.30)

FIGURE 4.2
DCT-I and IDCT-I generalized signal flow graph for N + 1 = 17. ©Slovak
Academic Press Ltd.

and the inverse DST-I (IDST-I) is defined by

xn =
N−2∑
k=0

sIk sin

[
π(n + 1)(k + 1)

N

]
, n = 0, 1, . . . , N − 2 . (4.31)

DST-I and IDST-I are defined for data sequences of length N − 1. Let S
I

N−1 be the

orthogonal DST-I matrix of order N − 1. Then for N = 2m, m > 1, S
I

N−1 can be

decomposed into the following recursive matrix form [21]

S
I

N−1 = PN−1

 S

III

N
2

0

0 Ī N
2 −1S

I

N
2 −1

Ī N
2 −1

AN−1 , (4.32)

where S
III

N
2

is the N
2 × N

2 DST-III matrix. The matrix product Ī N
2 −1S

I

N
2 −1

Ī N
2 −1 denotes

the DST-I matrix of order N
2 − 1 with reversed order for both its rows and columns.

The permutation matrixPN−1 applied to the data vector corresponds to the reordering

x̃0 = x0

x̃n+1 = x2n+2

x̃N−2−n = x2n+1, n = 0, 1, . . . ,
N

2
− 2 . (4.33)

Because S
I

N−1 is a symmetric matrix, the algorithms for the DST-I and IDST-I are the
same except for the normalization. The generalized signal flow graph for the DST-I
and IDST-I computation for N − 1 = 15 is shown in Fig. 4.3. The normalization
factor is not included in the signal flow graph.

4.3.4 DCT-IV/DST-IV Computation

The DCT-IV for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [1]

z
IV

k = 2

N

N−1∑
n=0

xn cos

[
π(2n + 1)(2k + 1)

4N

]
, k = 0, 1, . . . , N − 1 (4.34)

and the inverse DCT-IV (IDCT-IV) is defined by

xn =
N−1∑
k=0

z
IV

k cos

[
π(2n + 1)(2k + 1)

4N

]
, n = 0, 1, . . . , N − 1 . (4.35)

Let C
IV

N be the orthogonal N × N DCT-IV matrix. Then for N = 2m, m ≥ 1, C
IV

N

can be decomposed into the following sparse matrix product [22]

C
IV

N = TN

 C

III

N
2

0

0 Ī N
2
S
III

N
2
Ī N

2

PN BN , (4.36)

where C
III

N
2

is the N
2 × N

2 DCT-III matrix. The matrix product Ī N
2
S
III

N
2
Ī N

2
denotes

N
2 × N

2 DST-III matrix with reversed order for both its rows and columns. TN is the

FIGURE 4.3
DST-I and IDST-I generalized signal flow graph for N − 1 = 15. ©Slovak
Academic Press Ltd.

rotation matrix given by

TN =

cos π
4N sin π

4N
. .

cos (N−1)π
4N sin (N−1)π

4N

sin (N−1)π
4N − cos (N−1)π

4N
. .

sin π
4N − cos π

4N

(4.37)

and BN is the tridiagonal matrix given by

BN =

1 0 0 0 · · · 0
0 1 −1 0 · · · 0
0 1 1 0 · · · 0
...

. . .
...

0 · · · 0 1 −1 0
0 · · · 0 1 1 0
0 · · · 0 0 0 1

. (4.38)

As can be seen, the decomposition of the matrix C
IV

N depends on the DCT-III and

DST-III matrices of half size. Because C
IV

N is a symmetric matrix, the algorithms
for the DCT-IV and IDCT-IV computation are the same except for the normalization.
The generalized signal flow graph for the DCT-IV and IDCT-IV computation for
N = 16 is shown in Fig. 4.4. The normalization factor is not included in the signal
flow graph. The matrix product PNBN can be realized by one butterfly stage in the
generalized signal flow graph.

The DST-IV for a given data sequence {xn}, n = 0, 1, . . . , N − 1 is defined as [1]

s
IV

k = 2

N

N−1∑
n=0

xn sin

[
π(2n + 1)(2k + 1)

4N

]
, k = 0, 1, . . . , N − 1 , (4.39)

and the inverse DST-IV (IDST-IV) is defined by

xn =
N−1∑
k=0

s
IV

k sin

[
π(2n + 1)(2k + 1)

4N

]
, n = 0, 1, . . . , N − 1 . (4.40)

Let C
IV

N and S
IV

N be the N × N DCT-IV and DST-IV matrices, respectively. The

matrix S
IV

N is related to C
IV

N by [21]

S
IV

N = ĪN C
IV

N DN . (4.41)

Because S
IV

N is also a symmetric matrix, the algorithms for the DST-IV and IDST-IV
computation are the same except for the normalization. From relation Eq. (4.41) it
follows that the generalized signal flow graph for the DCT-IV computation can be
also used for the DST-IV computation by changing only the input and output data
sequences. The output DST-IV transformed sequence, after the DCT-IV computation
for the input data sequence given by Eq. (4.24), is order reversed; the final DST-IV
transformed data sequence is obtained as

s
IV

k = z
IV

N−1−k, k = 0, 1, . . . , N − 1 . (4.42)

The generalized signal flow graph for the DCT-IV/DST-IV and IDCT-IV/IDST-IV
computation for N = 16 is shown in Fig. 4.4, where the symbols in brackets cor-
respond to DST-IV/IDST-IV computation. This generalized signal flow graph rep-
resents the unified DCT-IV/DST-IV and their inverse computations for any N =
2m,m > 0.

FIGURE 4.4
DCT-IV/DST-IV and IDCT-IV/IDST-IV generalized signal flow graph for N =
16. ©Slovak Academic Press Ltd.

4.3.5 Implementation of the Unified Fast Computation of DCTs and
DSTs

All developed algorithms have been implemented in the C language, and they
can be used in practical applications. Implemented algorithms are able to compute
the DCT/DST orthogonal transform of a given type for real data sequence up to

size 1024. By minor modification (macro SIZE and LOG2SIZE) in program modules,
any DCT/DST can be computed for the required size. In the implementation of DCT-
II/DST-II (DCT-III/DST-III) universal computational structure, the normalization is
optional. All computations are performed in double precision.

The orthonormal versions of the DCT and DST have the normalization factor√
2/N in both the forward and inverse transforms. Therefore, for the computation of

orthonormal DCTs and DSTs, the implemented algorithms can be easily modified.

Computer Program for the Fast DCT-II/DST-II and DCT-III/DST-III Compu-
tation

/*---*
*Module: The 1-D Fast Discrete Cosine II and III *
* Transform (DCT) and Discrete Sine II *
* and III Transform (DST) *
* *
*Algorithm: DCT/DST universal computational *
* structure for the 1-D DCT-II/DST-II and *
* DCT-III/DST-III Transform Computation *
* *
*Note that the DCT/DST universal computational *
*structure in algorithms for discrete sinusoidal *
*transforms computation is used without the *
*normalization. This module simulates a potential *
*DCT/DST processor. *
---/

/*--- Prototypes to be included in calling program---*/
int dct_processor (
double *pdct, /* input/output vector of length 2**m */
int m, /* m = log_2 (N)

E.g. for N = 256 --> m = 8 */
int norm, /* norm = 0 normalization is disabled

norm != 0 normalization is enabled */
int flag); /* Transform computation:

flag = 1 1-D DCT-II
flag = -1 1-D DCT-III
flag = 2 1-D DST-II
flag = -2 1-D DST-III */

/* NOTE: Function returns into calling program
following value:

0 - successful processing
-1 - invalid length of input vector or

invalid type transform computation */
/*------------------- Includes ----------------------*/
#include <math.h>
/*-------------------- Defines ----------------------*/
#define SIZE 1024 /* max length 1024 */
#define LOG2SIZE 10 /* log_2 (SIZE) */
#define PI 3.141592653589793 /* pi */
#define DCT_II 1
#define DCT_III -1
/*---------------- Local Variables ------------------*/
static double ac [SIZE]; /* working vector */
static double cs [SIZE-1];/*table of cos coefficients*/
static int length;
/* --- Beginning of the DCT/DST processor module ---*/

int dct_processor(double *pdct, int m, int norm,
int flag)

{
int i,j,k,n,n1,n2,r,s,f0,f1,f2,f3,ip,ic,half,base;
double arg,fi,scale,tmp,*pc1,*pc2,*pac = &ac [0];
/* Verification of the input vector length (SIZE) */
if (m < 1 || m > LOG2SIZE)

return (-1);
/* Verification of the transform type computation */
if (flag < -2 || flag == 0 || flag > 2)

return (-1);
/* Initialize input vector length and variables */
n = 1 << m;
n1 = n - 1;
n2 = n >> 1;
/* Generate the table of cosine coefficients Table

is updated for new value of N */
if (length != n)
{

scale = 1.0 / (double) (n << 1);
for (s = base = 0; s < m; s++, base += ip)
{

half = n >> s;
ip = half >> 1;
ic = n / half;
arg = (double) ic * PI * scale;
for (i = 0; i < ip; i++)
{

fi = (double) (4 * i + 1) * arg;
cs [base+i] = cos (fi);

}
}
length = n;

}
/* Test type of computation - Forward or Inverse

transform */
if (flag < 0)

goto inv;
/*

==
THE 1-D FAST DCT-II OR DST-II TRANSFORM==

*/
/* Reordering of the original input data sequence */
for (i = 0; i < n2; i++)
{

*(pac + i) = *(pdct + 2 * i);
if (flag == DCT_II)

*(pac + n - 1 - i) = *(pdct + 2 * i + 1);
else

*(pac + n - 1 - i) = - *(pdct + 2 * i + 1);
}
/* Implementation of the butterfly structure */
for (s = base = 0; s < m; s++, base += ip)
{

half = n >> s;
ip = half >> 1;
for (j = 0; j < ip; j++)

for (i = j; i < n; i += half)

{
pc1 = pac + i;
pc2 = pc1 + ip;
tmp = *pc1 + *pc2;
*pc2 = (*pc1 - *pc2) * cs [base+j];
*pc1 = tmp;

}
}
/* Bit reversal permutation */
for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = *(pac + i);
*(pac + i) = *(pac + j);
*(pac + j) = tmp;

}
}
/* Implementation of the pipeline structure */
if (m > 1)
{

for (i = 0; i < m - 1; i++)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
for (j = 1; j <= f2; j++)
{

ip = f0 - j;
ic = f1 - j;
pc1 = pac + ip;
pc2 = pac + ic;
*pc1 += *pc1 - *pc2;
k = 1;
while (k <= f3)
{

ip += f1;
ic += f1;
pc1 = pac + ip;
pc2 = pac + ic;
*pc1 += *pc1 - *pc2;
k++;

}
}

}
}

/*--
The normalization of the transformed data sequence.
If DCT-II/DST-II transform is required, then parameter
norm != 0. The block is not used for other discrete
sinusoidal transforms computation. Then norm = 0.
---*/

if (norm)
{

scale = 2.0 / (double) n;
*pac *= 1.0 / sqrt (2.0);
for (i = 0; i < n; i++)

*(pac + i) *= scale;
}
/* Reverse order of the data sequence for DST-II */
if (flag == DCT_II)

for (i = 0; i < n; i++)
*(pdct + i) = *(pac + i);

else
for (i = 0; i < n; i++)

*(pdct + i) = *(pac + n - 1 - i);
return (0);

/*
===

THE 1-D FAST DCT-III OR DST-III TRANSFORM===
*/
inv:

/* Reverse order of the data sequence for DST-III */
if (flag == DCT_III)

for (i = 0; i < n; i++)
*(pac + i) = *(pdct + i);

else
for (i = 0; i < n; i++)

*(pac + n - 1 - i) = *(pdct + i);
/*--

The normalization of the DC term. If DCT-III/DST-III
transform is required, then parameter norm != 0. The
block is not used for other discrete sinusoidal
transforms computation. Then norm = 0.

---*/
if (norm)

*pac *= 1.0 / sqrt (2.0);
/* Implementation of the pipeline structure */
if (m > 1)
{

for (i = m - 2; i >= 0; i--)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
for (j = f2; j > 0; j--)
{

k = f3;
ip = f0 - j + k * f1;
ic = f1 - j + k * f1;
pc1 = pac + ic;
pc2 = pac + ip;
*pc1 -= *pc2;
*pc2 += *pc2;
while (k > 0)
{

k--;
ip -= f1;
ic -= f1;
pc1 = pac + ic;
pc2 = pac + ip;

*pc1 -= *pc2;
*pc2 += *pc2;

}
}

}
}
/* Bit reversal permutation */
for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = *(pac + i);
*(pac + i) = *(pac + j);
*(pac + j) = tmp;

}
}

/* Implementation of the butterfly structure */
for (s = 0, base = n - 2; s < m; s++, base -= half)

{
half = 1 << (s + 1);
ip = half >> 1;
for (j = 0; j < ip; j++)

for (i = j; i < n; i += half)
{

pc1 = pac + i;
pc2 = pc1 + ip;
tmp = *pc2 * cs [base+j];
*pc2 = *pc1 - tmp;
*pc1 = *pc1 + tmp;

}
}

/* Reordering of output samples for DCT-III/DST-III */
for (i = 0; i < n2; i++)
{

*(pdct + 2 * i) = *(pac + i);
if (flag == DCT_III)

*(pdct + 2 * i + 1) = *(pac + n - 1 - i);
else

*(pdct + 2 * i + 1) = - *(pac + n - 1 - i);
}
return (0);

}
/*------- End of the DCT/DST processor module -------*/

Computer Program for the Fast DCT-I Computation

/*--*
*Module: The 1-D Fast Discrete Cosine I Transform *
* *
*Algorithm: The Forward and Inverse 1-D DCT-I *
* Transform Computation *
* *
*Note that the DCT-I matrix of order N + 1 and it is *
*symmetric. Thus, the forward and inverse transforms *

*are the same except for the normalization. *
--/
/*--- Prototypes to be included in calling program ---*/
int fdcti1d (

double *x, /* input/output vector of length 2**m+1 */
int m, /* m = log_2 (N)

E.g. for N = 256 --> m = 8 */
int flag); /* Forward or Inverse DCT-I computation:

flag = 0 Forward 1-D DCT-I
flag = 1 Inverse 1-D DCT-I */

/* NOTE: Function returns into calling program
following

value:
0 - successful processing
-1 - invalid length of input vector

/*------------------- Includes -----------------------*/
#include <math.h>
/*-------------------- Defines -----------------------*/
#define SIZE 1024 /* max length SIZE+1*/
#define LOG2SIZE 10 /* log_2 (SIZE) */
/* NOTE: Actual transform size is SIZE + 1 */
int dct_processor (double *, int, int, int);
/*------------------ Local Variables -----------------*/
static double y [SIZE+1];

/*working vector of length N+1*/
/*------ Beginning of the 1-D Fast DCT-I module-------*/
int fdcti1d (double *x, int m, int flag)
{

int i,j,n,n1,n2,n3,nc;
double scale,tmp;
/* Verification of the input vector length (SIZE+1)*/
if (m < 1 || m > LOG2SIZE)

return (-1);
/* Initialize the input vector length */
n = 1 << m;
/* Multiply x[0] and x [n] by 1 / sqrt(2) */
scale = 1.0 / sqrt (2.0);
x [0] *= scale;
x [n] *= scale;

/* Implementation of generalized signal flow graph */
n1 = n >> 1;
n2 = n;
n3 = n << 1;
nc = m - 1;
do
{

/* Butterflies for even-odd transform matrix A(N) */
for (i = 0; i < n1; i++)

{
tmp = x [i];
x [i] = tmp + x [n2 - i];
x [n2 - i] = tmp - x [n2 - i];

}
/* Reverse order of the input data sequence */
for (i = n1 + 1, j = i + n1 - 1; i < j; i++, j--)

{
tmp = x [i];
x [i] = x [j];

x [j] = tmp;
}

/* Compute the DCT-III transform */
dct_processor (&x [n1+1],nc,0,-1);

/* Reverse order of the transformed data sequence */
for (i = n1 + 1, j = i + n1 - 1; i < j; i++, j--)

{
tmp = x [i];
x [i] = x [j];
x [j] = tmp;

}
n1 >>= 1;
n2 >>= 1;
nc--;

/* The last butterfly - 2x2 transform matrix */
if (n2 == 1)
{

tmp = x [0];
x [0] = tmp + x [1];
x [1] = tmp - x [1];

}
}
while (n2 > 1);

/* Reorder data sequence by permutation matrix P(N) */
n2 = 2;
n1 = n2 >> 1;
do
{

for (i = 0; i < n2 + 1; i++)
y [i] = x [i];

for (i = 0; i < n1; i++)
{

x [2 * i + 2] = y [i + 1];
x [2 * i + 1] = y [n2 - i];

}
n2 <<= 1;
n1 <<= 1;

}
while (n2 < n3);
/* Multiply x[0] and x [n] by 1 / sqrt(2) */
x [0] *= scale;
x [n] *= scale;

/* Normalization of the transformed data sequence */
if (!flag)
{

scale = 2.0 / (double) n;
for (i = 0; i < n + 1; i++)

x [i] *= scale;
}
return (0);

}
/*--------- End of the 1-D Fast DCT-I module--------*/

Computer Program for the Fast DST-I Computation

/*--*
*Module: The 1-D Fast Discrete Sine I Transform *
* *
*Algorithm: The Forward and Inverse 1-D DST-I *
* Transform Computation *

* *
*Note that the DST-I matrix of order N - 1 and it is *
*symmetric. Thus, the forward and inverse transforms *
*are the same except for the normalization. *
--/
/*--- Prototypes to be included in calling program ---*/
int fdsti1d (

double *x, /* input/output vector of length 2**m-1 */
int m, /* m = log_2 (N)

E.g. for N = 256 --> m = 8 */
int flag); /* Forward or Inverse DST-I computation:

flag = 0 Forward 1-D DST-I
flag = 1 Inverse 1-D DST-I */

/*NOTE: Function returns into calling program following
value:
0 - successful processing
-1 - invalid length of input vector

/*------------------ Defines -------------------------*/
#define SIZE 1024 /* max length SIZE-1*/
#define LOG2SIZE 10 /* log_2 (SIZE) */
/* NOTE: Actual transform size is SIZE - 1 */
int dct_processor (double *, int, int, int);
/*----------------- Local Variables ------------------*/
static double y [SIZE-1];

/* working vector of length N-1*/
/*------ Beginning of the 1-D Fast DST-I module-------*/
int fdsti1d (double *x, int m, int flag)
{

int i,j,n,n1,n2,nb,nc;
double scale,tmp;
/* Verification of the input vector length (SIZE-1)*/
if (m < 2 || m > LOG2SIZE)

return (-1);
/* Trivial case m = 1 */
if (m == 1)

return (0);
/* Initialize the input vector length */
n = 1 << m;
/* Implementation of generalized signal flow graph */
n1 = n >> 1;
n2 = n;
nc = m - 1;
nb = 0;
while (n2 > 2)
{
/* Butterflies for even-odd transform matrix A(N) */

if (n == n2)
for (i = 0; i < n1 - 1; i++)
{

tmp = x [i];
x [i] = tmp + x [n - 2 - i];
x [n - 2 - i] = tmp - x [n - 2 - i];

}
/* Butterflies for even-odd transform matrix A(N)

with reversed order of its columns */
else

for (i = 0; i < n1 - 1; i++)
{

tmp = x [nb + i];
x [nb + i] = x [n - 2 - i] + tmp;
x [n - 2 - i] = x [n - 2 - i] - tmp;

}
/* Compute the DST-III transform */

dct_processor (&x [nb],nc,0,-2);
n2 >>= 1;
n1 >>= 1;
nb += (1 << nc);
nc--;

}
/* Reorder of data sequence by permutation matrix P(N)*/

n2 = 2;
nc = 1;
nb = n - 2 - (1 << nc);
while (n2 < n)
{

for (i = nb; i < n - 1; i++)
y [i] = x [i];

for (i = 0; i < n2 - 1; i++)
{

x [nb + 2 * i + 2] = y [nb + i + 1];
x [nb + 2 * i + 1] = y [n - 2 - i];

}
/* Reverse order of the permuted data sequence */

if (nb != 0)
for (i = nb, j = n - 2; i < j; i++, j--)
{

tmp = x [i];
x [i] = x [j];
x [j] = tmp;

}
n2 <<= 1;
nc++;
nb -= (1 << nc);

}
/* Normalization of the transformed data sequence */
if (!flag)
{

scale = 2.0 / (double) n;
for (i = 0; i < n - 1; i++)

x [i] *= scale;
}
return (0);

}
/*--------- End of the 1-D Fast DST-I module---------*/

Computer Program for the Fast DCT-IV/DST-IV Computation

/*--*
*Module: The 1-D Fast Discrete Cosine IV and *
* Discrete Sine IV Transform *
* *
Algorithm: The Forward and Inverse 1-D DCT-IV/DST-IV
* Transform Computation *
* *
*Note that the DCT-IV and DST-IV matrices are *
*symmetric. Thus, the forward and inverse transforms *
*are the same except for the normalization. *
--/

/* --- Prototypes to be included in calling program --*/
int fdcstiv1d (

double *x, /* input/output vector of length 2**m */
int m, /* log_2 vector length

E.g. N = 256 --> m = 8 */
int flag); /* Forward or Inverse DCT-IV/DST-IV

computation:
flag = 1 Forward 1-D DCT-IV
flag = -1 Inverse 1-D DCT-IV
flag = 2 Forward 1-D DST-IV
flag = -2 Inverse 1-D DST-IV */

/* NOTE: Function returns into calling program
following

value:
0 - successful processing
-1 - invalid length of input vector

invalid type transform computation */
/* -------------------- Includes ---------------------*/
#include <math.h>
/* --------------------- Defines ---------------------*/
#define SIZE 1024 /* max length 1024 */
#define LOG2SIZE 10 /* log_2 (SIZE) */
#define PI 3.141592653589793 /* pi */
int dct_processor (double *, int, int, int);
/* ---------------- Local Variables ----------------- */
static double y [SIZE]; /* working vector of length N */
static double as [SIZE/2];/* table of sine values */
static double cc [SIZE/2];

/* table of cosine+sine values*/
static double ss [SIZE/2];

/* table of sine-cosine values*/
static int length;
/*-- Beginning of the 1-D Fast DCT-IV/DST-IV module --*/
int fdcstiv1d (double *x, int m, int flag)
{

int i,j,n,n2,n4;
double arg,dev,argc,args,scale,tmp;
/* Verification of the input vector length (SIZE) */
if (m < 1 || m > LOG2SIZE)

return (-1);
/* Verification of the type transform computation */

if (flag < -2 || flag == 0 || flag > 2)
return (-1);

/* Initialize the input vector length and variables */
n = 1 << m;
n2 = n >> 1;
n4 = n >> 2;

/* Generate tables of sines and cosines for rotation
matrix R(N). Table is updated for new value of N */
if (length != n)
{

arg = PI / (double) (n << 2);
dev = PI / (double) (n << 1);
for (i = 0; i < n2; i++, arg += dev)
{

argc = cos (arg);
args = sin (arg);
as [i] = args;

cc [i] = argc + args;
ss [i] = args - argc;

}
length = n;

}
/* Reordering of data sequence by permutation matrix

P(N). For DST-IV computation odd-numbered samples
are sign-changed */
for (i = 0; i < n2; i++)
{

y [i] = x [2 * i];
if (flag == 1 || flag == -1)

y [n - 1 - i] = x [2 * i + 1];
else

y [n - 1 - i] = - x [2 * i + 1];
}

/* Butterflies corresponding to the matrix product
P(N) B(N) */

for (i = 1; i < n2; i++)
{

tmp = y [n - i] - y [i];
y [i] = y [n - i] + y [i];
y [n - i] = tmp;

}
/* Get DCT-III transform of the first n/2 samples */

dct_processor (&y [0],m-1,0,-1);
/* Reverse order of the last n/2 samples */

for (i = n2, j = n - 1; i < j; i++, j--)
{

tmp = y [i];
y [i] = y [j];
y [j] = tmp;

}
/* Get the DST-III of the last n/2 samples */

dct_processor (&y [n2],m-1,0,-2);
/* Reverse order of the last n/2 samples */

for (i = n2, j = n - 1; i < j; i++, j--)
{

tmp = y [i];
y [i] = y [j];
y [j] = tmp;

}
/* Butterflies for the rotation matrix T(N) */

for (i = 0; i < n2; i++)
{

tmp = (y [i] - y [n - 1 - i]) * as [i];
x [i] = y [i] * cc [i] - tmp;
x [n - 1 - i] = y [n - 1 - i] * ss [i] + tmp;

}
/* DST-IV computation -

reverse order of data sequence */
if (flag == 2 || flag == -2)

for (i = 0, j = n - 1; i < j; i++, j--)
{

tmp = x [i];
x [i] = x [j];
x [j] = tmp;

}

/* Normalization of the transformed data sequence */
if (flag > 0)
{

scale = 2.0 / (double) n;
for (i = 0; i < n; i++)

x [i] *= scale;
}
return (0);

}
/*---- End of the 1-D Fast DCT-IV/DST-IV module ----*/

4.4 The 2-D DCT/DST Universal Computational Structure

Section 4.3 presented fast algorithms for 1-D computation of a given type of
DCT/DST (I, II, III, IV) together with their implementations. For digital image pro-
cessing applications, the fast 2-D algorithms are more significant than 1-D ones. For
simplicity, in this section DCT and DST refer to types II and III only. The 2-D DCT
and its inverse are used as the basic processing elements in international image/video
coding standards [31].

Generally, there are two approaches to computation of the 2-D DCT: indirect and
direct. In the indirect approach, the 2-D DCT computation can be realized via other
2-D discrete orthogonal transforms, such as the discrete Fourier transform or the
Walsh–Hadamard transform [30]. There are two methods of direct approach which is
based on direct 2-D DCT computation. The first, a so called row-column method, is
based on the separability property of the 2-D DCT kernel, which sequentially uses any
fast 1-D DCT algorithm on rows and columns of the input data matrix. The second is a
vector radix method which uses a 2-D decomposition process. An algorithm obtained
by this method outperforms the conventional row-column method in computational
efficiency and works directly on 2-D data sets.

In this section, a generalized signal flow graph, the 2-D DCT/DST universal compu-
tational structure, is described. It represents a unified approach to the direct 2-D DCT
and 2-D DST computation and their inverses for any square block of size 2m × 2m.
The computer program implementing the direct 2-D DCT/DST is also presented.

4.4.1 The Fast Direct 2-D DCT/DST Computation

The 2-D DCT for an N × N input data matrix {xm,n}, m, n = 0, 1, . . . , N − 1 is
defined by the following relation [30]

zk,l = 4εkεl
N2

N−1∑
m=0

N−1∑
n=0

xm,n cos

[
π(2m + 1)k

2N

]
cos

[
π(2n + 1)l

2N

]
, (4.43)

k, l = 0, 1, . . . , N − 1,

and the inverse 2-D DCT (2-D IDCT)

xm,n =
N−1∑
k=0

N−1∑
l=0

εkεlzk,l cos

[
π(2m + 1)k

2N

]
cos

[
π(2n + 1)l

2N

]
, (4.44)

m, n = 0, 1, . . . , N − 1,

where

εp =
{

1√
2

p = 0

1 otherwise

and N is assumed to be an integer power of 2. The corresponding 2-D DST is defined
by

sk,l = 4εkεl
N2

N−1∑
m=0

N−1∑
n=0

xm,n sin

[
π(2m + 1)(k + 1)

2N

]
sin

[
π(2n + 1)(l + 1)

2N

]
,

k, l = 0, 1, . . . , N − 1, (4.45)

and the inverse 2-D DST (2-D IDST)

xm,n =
N−1∑
k=0

N−1∑
l=0

εkεlsk,l sin

[
π(2m + 1)(k + 1)

2N

]
sin

[
π(2n + 1)(l + 1)

2N

]
,

m, n = 0, 1, . . . , N − 1, (4.46)

where

εp =
{

1√
2

p = N − 1,

1 otherwise.

The recursive 1-D DCT/DST algorithm and its corresponding generalized signal flow
graph with regular structure for any value of N = 2m (1-D DCT/DST universal
computational structure) enable the formulation by the vector radix method of direct
2-D DCT/DST fast, recursive algorithm that possesses a regular structure for any
N ×N block size. By extension of reordering Eq. (4.14) to a 2-D case, the 2-D DCT
and 2-D IDCT defined by Eqs. (4.43) and (4.44), respectively, can be rewritten in the
following form [30]

zk,l = 4εkεl
N2

N−1∑
m=0

N−1∑
n=0

x̃m,n cos

[
π(4m + 1)k

2N

]
cos

[
π(4n + 1)l

2N

]
, (4.47)

k, l = 0, 1, . . . , N − 1 ,

x̃m,n =
N−1∑
k=0

N−1∑
l=0

εkεlzk,l cos

[
π(4m + 1)k

2N

]
cos

[
π(4n + 1)l

2N

]
, (4.48)

m, n = 0, 1, . . . , N − 1 ,

where

x̃m,n = x2m,2n

x̃m,N−n−1 = x2m,2n+1

x̃N−m−1,n = x2m+1,2n (4.49)

x̃N−m−1,N−n−1 = x2m+1,2n+1, m, n = 0, 1, . . . ,
N

2
− 1 .

By reordering Eq. (4.49) anN×N input data matrix X is decomposed into four N
2 × N

2
submatrices, as even-even, even-odd, odd-even, and odd-odd indexed elements. After
reordering the input data and output transform matrix, a fast recursive algorithm for
direct N × N 2-D DCT/DST computation is given in matrix form as [28]

ẑee
ẑeo
ẑoe
ẑoo

 = (ĈN ⊗ ĈN)

x̃pp
x̃pr
x̃rp
x̃rr

 , (4.50)

where

ẑe = (R ⊗ R) ze, ẑe =
[

ẑee
ẑeo

]
, ze =

[
zee
zeo

]
,

ẑo = (R ⊗ R) zo, ẑo =
[

ẑoe
ẑoo

]
, zo =

[
zoe
zoo

]
,

x̃ =

x̃pp
x̃pr
x̃rp
x̃rr

 = (PN ⊗ PN) x .

⊗ denotes the Kronecker matrix product. ze and zo are vectors consisting of trans-
posed even and odd row vectors of the output transform matrix, both of which are
arranged in the natural order, respectively. x denotes the vector consisting of trans-
posed row vectors of the input data matrix. The direct product R ⊗ R performs
2-D bit reversal permutation, and PN ⊗ PN performs 2-D rearrangement defined by

Eq. (4.49). For clarity of Eq. (4.50), an example for N = 4 is shown

z00
z02
z01
z03
−−
z20
z22
z21
z23
−−
z10
z12
z11
z13
−−
z30
z32
z31
z33

=
(
Ĉ4 ⊗ Ĉ4

)

x00
x02
x03
x01
−−
x20
x22
x23
x21
−−
x30
x32
x33
x31
−−
x10
x12
x13
x11

.

Substituting the block matrix factorization of the DCT matrix ĈN Eq. (4.16) into
Eq. (4.50) and using properties of the Kronecker matrix product the direct, fast and
recursive 2-D DCT/DST algorithm is developed [28]

ĈN ⊗ ĈN ={[
IN

2
0

0 KN
2

]
⊗

[
IN

2
0

0 KN
2

]} {[
Ĉ N

2
0

0 Ĉ N
2

]
⊗

[
Ĉ N

2
0

0 Ĉ N
2

]}
{[

IN
2

0

0 QN
2

]
⊗

[
IN

2
0

0 QN
2

]} {[
IN

2
IN

2

IN
2

−IN
2

]
⊗

[
IN

2
IN

2

IN
2

−IN
2

]}
,

(4.51)

where KN
2

and QN
2

are N
2 × N

2 matrices given by Eqs. (4.17) and (4.18), respectively.

From Eq. (4.22) it follows that by this algorithm the direct 2-D DST computation can
be realized merely by sign changes on the input data matrix (direct productDN ⊗DN)
and after the 2-D DCT computation, reversing order along both rows and columns of
the output transformed DCT data matrix (direct product ĪN ⊗ ĪN).

The detailed analysis of the intrinsic structure of the algorithm given by Eqs. (4.50)
and (4.51) results in a highly regular 2-D DCT/DST generalized signal flow graph,
the 2-D DCT/DST universal computational structure, representing the unified di-
rect 2-D DCT and 2-D DST computation and their inverses for any N × N block
size [29]. It is shown for a 16 × 16 block in Fig. 4.6. The 2-D DCT/DST univer-
sal computational structure consists of two regular parts. The first part is related to

FIGURE 4.5
1-D DCT/DST universal computational structure forN = 16. ©Springer–Verlag
London Ltd.

FIGURE 4.6
2-D DCT/DST universal computational structure for 16 × 16 block size.
©Springer–Verlag London Ltd.

the 2-D butterfly structure, and the second one, after the 2-D bit reversal permuta-
tion, is mapped into a 2-D pipeline structure. This 2-D pipeline structure can be
represented by a regular computational scheme of the same type for any block size
2m × 2m [29]. In order to show a one-to-one relationship between the 2-D DCT/DST
universal computational structure and its 1-D counterpart, for a given N × N block
size it is partitioned into blocks 2-D BN×N

i , 2-D T N×N
i , i = 1, 2, . . . , log2 N

related to the 2-D butterfly structure and the block 2-D V N×N related to the 2-
D pipeline structure. All blocks indicated by BN

i , T N
i , i = 1, 2, . . . , log2 N

and the block V N are defined in the 1-D DCT/DST universal computational struc-
ture (Fig. 4.5). Heavy lines in Fig. 4.6 denote vector operations on rows of the
input data matrix, xi = [xi,0, xi,2, . . . , xi,N−2, xi,N−1, . . . , xi,3, xi,1]T and zi =
[zi,0, zi,1, . . . , zi,N−2, zi,N−1]T for i = 0, 1, . . . , N − 1. The symbols in brackets
correspond to the 2-D DST computation and z̄ = Ī z.

Recall that in the international image/video coding standards [31] the 2-D DCT
and its inverse are defined for fixed 8 × 8 blocks as [43]

zk,l = εkεl

4

7∑
m=0

7∑
n=0

xm,n cos

[
π(2m + 1)k

16

]
cos

[
π(2n + 1)l

16

]
, (4.52)

k, l = 0, 1, . . . , 7

xm,n = 1

4

7∑
k=0

7∑
l=0

εkεlzk,l cos

[
π(2m + 1)k

16

]
cos

[
π(2n + 1)l

16

]
, (4.53)

m, n = 0, 1, . . . , 7

The 2-D DCT given by Eq. (4.52) is identical to Eq. (4.43) for N = 8 except for a
scaling factor of 4.

4.4.2 Implementation of the Direct 2-D DCT/DST Computation

The 2-D DCT/DST universal computational structure has been implemented in C. It
can compute 2-D DCT or 2-D DST and their inverses for any square 2m×2m, m > 0
block size. The cosine coefficients for a given N = 2m are precomputed and stored
in tables. The tables are updated if the program calls for a new value of N . If
a larger block size is required for 2-D DCT/DST computation, then macros SIZE
and LOG2SIZE should be redefined in the program. In the implementation of the
2-D DCT/DST universal computational structure, the normalization is optional. All
computations are performed in double precision.

The transposition of the input data matrix required in Eq. (4.50) and its reordering
given by Eq. (4.49) can be realized simultaneously as follows:

x̃n,m = x2m,2n

x̃n,N−m−1 = x2m,2n+1

x̃N−n−1,m = x2m+1,2n (4.54)

x̃N−n−1,N−m−1 = x2m+1,2n+1, m, n = 0, 1, . . . ,
N

2
− 1 .

/*--*
* Module: The 2-D Fast Discrete Cosine/Sine *
* Transform (2-D DCT/DST Universal *
* Computational Structure) *
* *
* Algorithm: The Forward and Inverse 2-D DCT/DST *
* computation by vector-radix structured *
* approach for block sizes N x N, i.e., *
* square blocks. N is assumed to be an *
* integer powers of 2. *
--/

/* --- Prototypes to be included in calling program --*/
int fdcst2d (

double **x, /* input/output matrix of dimension NxN */
int m, /* m = log_2 (N) for N x N block size

e.g., length = 8 -> m = 3 */
int norm, /* norm = 0 normalization is disabled

norm != 0 normalization is enabled */
int flag); /* Forward or Inverse DCT/DST computation:

flag = 1 2-D DCT-II
flag = -1 2-D DCT-III
flag = 2 2-D DST-II
flag = -2 2-D DST-III

DECLARATION OF THE INPUT MATRIX: Let N = 8 --> then
m = 3. Input matrix 8x8 must be declared in calling
program as follows:

double block [8*8]; /declarations
double *x [8];
for (i = 0; i < 8; i++)

x [i] = block + i * 8; /pointers to rows
of the block

fdcst2d (&x,3,1, 1); / DCT-II computation
fdcst2d (&x,3,1,-1); /IDCT-II computation
fdcst2d (&x,3,1, 2); / DST-II computation
fdcst2d (&x,3,1,-2); /IDST-II computation

NOTE: Function returns into calling program following

value:
0 - successful processing
-1 - invalid dimension of input matrix
-2 - invalid transform type */

/* --------------------- Includes --------------------*/
#include <math.h>
/* ---------------------- Defines --------------------*/
#define SIZE 32 /* max dimension 32x32 */
#define LOG2SIZE 5 /* log_2 max dimension */
#define PI 3.141592653589793 /* pi */
#define SQRT2 0.707106781186547 /* sqr (1/2) */
#define DCT 1
#define IDCT -1
/* ----------------- Local Variables -----------------*/
static double ac [SIZE*SIZE]; /* working array */
static double *z [SIZE]; /* array of pointers */
static int ntab_cs = 0;
static double tc1 [SIZE-1];

/* tables of cos coefficients*/
static double tc2 [SIZE*SIZE/3];
static int tab1_len = 0;
static int tab2_len = 0;

/*---- Beginning of the Fast 2-D DCT/DST module ----- */
int fdcst2d (double **x, int m, int norm, int flag)
{

int i,j,k,n,n1,n2,r,s,t,u,f0,f1,f2,f3,ip,ic,half;
int b1,b2;
double arg,fi1,fi2,scale,scl,tmp,*ptr,*z1,*z2;
/* Verification of the input matrix dimension

(SIZE x SIZE) */
if (m < 0 || m > LOG2SIZE)

return (-1);
/* Verification of the transform type computation */
if (flag < -2 || flag == 0 || flag > 2)

return (-2);
/* Trivial transform if m = 0 */
if (m == 0)

return (0);
/* Initialize input matrix dimension and variables */
n = 1 << m;
n1 = n - 1;
n2 = n >> 1;
/* Initialize pointers on rows of the input matrix */
for (i = 0; i < n; i++)

z [i] = ac + i * n;
/* Compute tables of cosine coefficients for new

value of N */
if (ntab_cs != n)
{

b1 = b2 = tab1_len = tab2_len = 0;
scale = 1.0 / (double) (n << 1);
for (s = ip = 1; s <= m; s++, ip <<= 1)
{

ic = n >> s;
arg = (double) ip * PI * scale;
for (i = 0; i < ic; i++)
{

fi1 = (double) (4 * i + 1) * arg;
tc1 [b1+i] = cos (fi1);
tab1_len++;

}
for (i = u = 0; i < ic; i++, u = i * ic)

for (j = 0; j < ic; j++)
{
fi2 = (double) (4 * j + 1) * arg;
tc2 [b2+u+j] = tc1 [b1+i] * cos (fi2);
tab2_len++;

}
b1 += ic;
b2 += ic * ic;

}
ntab_cs = n;

}
/* Test type of 2-D DCT/DST computation */
if (flag < 0)

goto inv;
/*

===
THE 2-D FAST FORWARD DISCRETE COSINE/SINE TRANSFORM
===

*/

/* Reordering and transposition of input data matrix
--- */
for (i = 0; i < n2; i++)

for (j = 0; j < n2; j++)
{

z [j] [i] = x [2*i] [2*j];
z [n-j-1] [n-i-1] = x [2*i+1] [2*j+1];
if (flag == DCT)
{

z [n-j-1] [i] = x [2*i] [2*j+1];
z [j] [n-i-1] = x [2*i+1] [2*j];

}
else
{

z [n-j-1] [i] = -x [2*i] [2*j+1];
z [j] [n-i-1] = -x [2*i+1] [2*j];

}
}

/* Implementation of the 2-D butterfly structure
-- */

for (s = b1 = b2 = 0; s < m; s++)
{

half = n >> s;
ip = half >> 1;

/* Butterflies along rows of the data matrix */
for (i = 0, z1 = z [0]; i < n; i++, z1 = z [i])

for (j = 0; j < ip; j++)
for (k = j; k < n; k += half)
{

tmp = z1 [k] + z1 [k+ip];
z1 [k+ip] = z1 [k] - z1 [k+ip];
z1 [k] = tmp;

}
/* Butterflies between rows of the data matrix */

for (j = u = 0; j < ip; j++, u = j*ip)
for (k = j; k < n; k += half)
{

z1 = z [k];
z2 = z [k+ip];
for (i = 0; i < n; i++)
{

tmp = *z1 + *z2;
*z2++ = *z1 - *z2;
*z1++ = tmp;

}
/* Multiplications by cosine coefficients */

z1 = z [k];
z2 = z [k+ip];
for (r = 0; r < ip; r++)

for (t = r; t < n; t += half)
{

z1 [t+ip] *= tc1 [b1+r];
z2 [t] *= tc1 [b1+j];
z2 [t+ip] *= tc2 [b2+u+r];

}
}
b1 += ip;
b2 += ip * ip;

}

/* The 2-D bit reversal permutation
------------------------------- */

for (t = 0, z1 = z [0]; t < n; t++, z1 = z [t])
for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = z1 [i];
z1 [i] = z1 [j];
z1 [j] = tmp;

}
}

for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

ptr = z [i];
z [i] = z [j];
z [j] = ptr;

}
}
/* Implementation of the 2-D pipeline structure

--- */
if (m > 1)
{

/* Pipelines along rows of the data matrix */
for (i = 0; i < m - 1; i++)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
z1 = z [0];
for (t = 0; t < n; t++, z1 = z [t])

for (j = 1; j <= f2; j++)
{

ip = f0 - j;
ic = f1 - j;
z1 [ip] += z1 [ip] - z1 [ic];
k = 1;
while (k <= f3)
{

ip += f1;
ic += f1;
z1 [ip] += z1 [ip] - z1 [ic];
k++;

}
}

/* Pipelines between rows of the data matrix */
for (j = 1; j <= f2; j++)
{

ip = f0 - j;
ic = f1 - j;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z1++)

*z1 += *z1 - *z2++;
k = 1;
while (k <= f3)
{

ip += f1;
ic += f1;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z1++)

*z1 += *z1 - *z2++;
k++;

}
}

}
}

/*--
The normalization of the transformed data sequence.
If DCT-II/DST-II is required, then parameter
norm != 0. The block is not used for other discrete
sinusoidal transforms computation. Then norm = 0.
--*/

if (norm)
{

scale = 4.0 / ((double) n * (double) n);
for (i = 0, z [0] [0] *= SQRT2; i < n; i++)

for (j = 0; j < n; j++)
{

z [i] [j] *= scale;
if (i == 0 || j == 0)

z [i] [j] *= SQRT2;
}

}
/* Reverse rows and columns of the transformed data

matrix for the DST
-- */
for (i = 0; i < n2; i++)

for (j = 0; j < n; j++)
if (flag == DCT)
{

x [j] [i] = z [i] [j];
x [n-1-j] [n-1-i] = z [n-1-i] [n-1-j];

}
else
{

x [j] [i] = z [n-1-i] [n-1-j];
x [n-1-j] [n-1-i] = z [i] [j];

}
return (0);

/*
==
THE 2-D FAST INVERSE DISCRETE COSINE/SINE TRANSFORM
==

*/
inv:

/* Reverse rows and columns of the transformed data
matrix for the IDST
-- */
for (i = 0; i < n2; i++)

for (j = 0; j < n; j++)
if (flag == IDCT)
{

z [j] [i] = x [i] [j];
z [n-1-j] [n-1-i] = x [n-1-i] [n-1-j];

}
else
{

z [j] [i] = x [n-1-i] [n-1-j];
z [n-1-j] [n-1-i] = x [i] [j];

}
/* --

The normalization of the DC term. If DCT-III/DST-III
is required, then parameter norm != 0. The block is
not used for other discrete sinusoidal transforms
computation. Then norm = 0.
--*/

if (norm)
for (i = 0, z [0] [0] *= SQRT2; i < n; i++)

for (j = 0; j < n; j++)
if (i == 0 || j == 0)

z [i] [j] *= SQRT2;
/* Implementation of the 2-D pipeline structure

--- */
if (m > 1)
{
/* Pipelines between rows of the data matrix */

for (i = m - 2; i >= 0; i--)
{

f0 = n / (1 << i);
f1 = f0 >> 1;
f2 = f1 >> 1;
f3 = ((1 << i) - 1) << 1;
for (j = f2; j > 0; j--)
{

k = f3;
u = k * f1;
ip = f0 - j + u;
ic = f1 - j + u;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z2++)
{

*z2 -= *z1;
*z1 += *z1++;

}
while (k > 0)
{

k--;
ip -= f1;
ic -= f1;
z1 = z [ip];
z2 = z [ic];
for (t = 0; t < n; t++, z2++)

{
*z2 -= *z1;
*z1 += *z1++;

}
}

}
/* Pipelines along rows of the data matrix */

z1 = z [0];
for (t = 0; t < n; t++, z1 = z [t])

for (j = f2; j > 0; j--)
{

k = f3;
u = k * f1;
ip = f0 - j + u;
ic = f1 - j + u;
z1 [ic] -= z1 [ip];
z1 [ip] += z1 [ip];
while (k > 0)
{

k--;
ip -= f1;
ic -= f1;
z1 [ic] -= z1 [ip];
z1 [ip] += z1 [ip];

}
}

}
}
/* The 2-D bit reversal permutation

------------------------------- */
for (t = 0, z1 = z [0]; t < n; t++, z1 = z [t])

for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

tmp = z1 [i];
z1 [i] = z1 [j];
z1 [j] = tmp;

}
}

for (i = 1; i < n1; i++)
{

for (k = j = 0, r = i; k < m; k++)
{

s = r >> 1;
j = j + j + r - s - s;
r = s;

}
if (i < j)
{

ptr = z [i];
z [i] = z [j];
z [j] = ptr;

}

}
/* Implementation of the 2-D Butterfly structure

-- */
b1 = tab1_len;
b2 = tab2_len;
for (s = 0; s < m; s++)
{

half = 1 << (s + 1);
ip = half >> 1;
b1 -= ip;
b2 -= ip * ip;

/* Multiplications by cosine coefficients */
for (j = u = 0; j < ip; j++, u = j*ip)

for (k = j; k < n; k += half)
{

z1 = z [k];
z2 = z [k+ip];
for (r = 0; r < ip; r++)

for (t = r; t < n; t += half)
{

z1 [t+ip] *= tc1 [b1+r];
z2 [t] *= tc1 [b1+j];
z2 [t+ip] *= tc2 [b2+u+r];

}
/* Butterflies between rows of the data matrix */

z1 = z [k];
z2 = z [k+ip];
for (i = 0; i < n; i++)
{

tmp = *z2;
*z2++ = *z1 - tmp;
*z1++ = *z1 + tmp;

}
}

/* Butterflies along rows of the data matrix */
z1 = z [0];
for (i = 0; i < n; i++, z1 = z [i])

for (j = 0; j < ip; j++)
for (k = j; k < n; k += half)
{

tmp = z1 [k+ip];
z1 [k+ip] = z1 [k] - tmp;
z1 [k] = z1 [k] + tmp;

}
}

/* Reordering and transposition of DCT/DST output
data matrix

-- */
for (i = 0; i < n2; i++)

for (j = 0; j < n2; j++)
{

x [2*i] [2*j] = z [j] [i];
x [2*i+1] [2*j+1] = z [n-j-1] [n-i-1];

if (flag == IDCT)
{
x [2*i] [2*j+1] = z [n-j-1] [i];
x [2*i+1] [2*j] = z [j] [n-i-1];
}
else

{
x [2*i] [2*j+1] = -z [n-j-1] [i];
x [2*i+1] [2*j] = -z [j] [n-i-1];
}

}
return (0);

}
/*-------- End of Fast 2-D DCT/DST module ----------- */

4.5 DCT and Data Compression

The amount of information in its many forms (images, text, speech, video, audio,
etc.) that is handled is increasing at a phenomenal rate. As a result, the ability to
access, store, and transmit information in an efficient manner has become crucial,
particularly in the case of digital images. Although representing images in digital
form allows visual information to be easily manipulated in useful and novel ways,
there is one potential problem with digital images — the large number of bits required
to represent even a single digital image directly. In order to utilize digital images
effectively, specific techniques are needed to reduce the number of bits required for
their representation. Fortunately, digital images in their canonical representation
generally contain a significant amount of redundancy (spatial, spectral, or temporal
redundancy). Image data compression (the art/science of efficient coding of the
picture data) aims at taking advantage of this redundancy to reduce the number of bits
required to represent an image. This can result in significantly reducing the memory
needed for image storage and channel capacity for image transmission [36].

The need for image compression becomes apparent when we compute the number
of bits per image resulting from typical sampling and quantization schemes. We
consider the amount of storage for the “Lena” digital image shown in Fig. 4.7. The
monochrome (grayscale) version of this image with a resolution 512 × 512 × 8
bits/pixel requires a total of 2,097,152 bits, or equivalently 262,144 bytes. The color
version of the same image in RGB format (red, green, and blue color bands) with a
resolution of 8 bits/color requires a total of 6,291,456 bits, or 786,432 bytes. Such
an image should be compressed for efficient storage or transmission.

Image compression methods can be classified into two fundamental groups: loss-
less and lossy [34, 36, 37]. In lossless compression, the reconstructed image after
compression is identical to the original image. However, only a modest amount of
compression is possible; typically 1:2 or 1:3 compression ratios are achieved. In lossy
compression, the reconstructed image contains degradations relative to the original.
Generally, more compression is obtained at the expense of more distortion. As a re-
sult, much higher compression can be achieved by lossy techniques than by lossless
techniques. The most used lossy compression technique is transform coding [32]. A
general transform coding scheme involves subdividing an N ×N image into smaller
nonoverlapping n× n sub-image blocks and performing a unitary transform on each

FIGURE 4.7
Monochrome 512 × 512 × 8 bits/pixel “Lena” digital image. Reproduced by
Special Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

block. The transform operation itself does not achieve any compression. It aims at
decorrelating the original data and compacting a large fraction of the signal energy
into a relatively small set of transform coefficients (energy packing property). In this
way, many coefficients can be discarded after quantization and prior to encoding.

Most practical transform coding systems are based on DCT of types II and III,
which provides good compromise between energy packing ability and computational
complexity. The energy packing property of DCT is superior to that of any other
unitary transform. Transforms that redistribute or pack the most information into the
fewest coefficients provide the best sub-image approximations and, consequently, the
smallest reconstruction errors. DCT basis images are fixed (image independent) as
opposed to the optimal KLT which is data dependent. Moreover, when compared
to the other image independent transforms, DCT has the advantages of having been
implemented in a single integrated circuit [30] and minimizing the blocklike appear-
ance (blocking artifact) that results when the boundaries between sub-image blocks
become visible. This last property is particularly important in comparison with the
other sinusoidal transforms [34]. Important properties of DCT have proved to be of
practical value, and, therefore, it has become the basic processing unit for data com-
pression in the international image/video coding standards [30, 31, 39, 40, 41, 42].

4.5.1 DCT-Based Image Compression/Decompression

For the purposes of using DCT in real data compression applications, we have se-
lected the JPEG DCT-based image compression and decompression technique. There
are several reasons for this selection. JPEG is the first established/emerging inter-
national digital compression standard for continuous-tone (multilevel) still images,
both monochrome and color [31, 43, 44]. It has been recently recognized as the

most popular, simple, and efficient transform coding technique that yields a satis-
factory solution to most of the practical image coding problems. Furthermore, the
JPEG standard played a considerable role in the development of other international
video coding standards. From the methodological viewpoint, the JPEG standard en-
ables one to simply illustrate the compression capability of DCT. Finally, the JPEG
DCT-based coding approach is the basis of hybrid intraframe/interframe MC (motion
compensated)/DPCM (differential pulse code modulation)/DCT coding scheme used
in the international video coding standards: H.261 video coder, MPEG-1 audiovisual
coder for digital storage media, MPEG-2/H.262 digital video coder, MPEG-4 and
H.263 coders for very low-bit rate video coding, digital HDTV standards, and the
CMTT.723 digital broadcasting standard for transmission of television signals [31].

The JPEG standard specifies the basic encoding and decoding operations by means
of specific functions and defines the syntax and semantics of encoded bit stream [31,
43, 44]. Detailed requirements such as file format, spatial resolution, and color space
are not defined by the standard. It is only necessary that the encoding processes
comply with the functions defined by the standard and they produce the valid bit
stream. Thus, there is freedom and flexibility in the actual design and development
of the JPEG compression and decompression system.

The JPEG standard has four main processing modes: sequential, progressive, loss-
less, and hierarchical. The sequential mode provides the variability of coding oper-
ations from a baseline system to an extended one. For simplicity, we consider the
JPEG sequential baseline system. The extended system allows the baseline system to
satisfy a broader range of applications. Input and output data precision in the baseline
system is limited to 8 bits. RGB color images prior to compression are converted
into a monochrome compatible luminance component and two chrominance compo-
nents. The luminance component contains the shades of gray and is a monochrome
image. Two chrominance components together contain the color information. En-
coding/decoding operations in the JPEG baseline system are performed for luminance
and chrominance components.

All compression systems consist of two distinct structural blocks: an encoder and
a decoder. An input image is fed into the encoder, which creates encoded com-
pressed representation of the input data. After transmission over the channel, the
encoded representation is fed into the decoder, where the reconstructed output image
is generated.

The block diagram of the encoder and decoder for JPEG DCT-based image com-
pression and decompression is shown in Fig. 4.8. For processing the luminance
component of an image the algorithm generally consists of the following steps [31,
34, 36, 43, 47]:

• The source image is partitioned into nonoverlapping n× n pixel blocks which
are processed sequentially in a raster scan fashion, left to right and top to bottom.
The JPEG standard uses the fixed block size 8 × 8. Each block is first level
shifted and transformed using DCT. In principle, DCT introduces no loss to
the source samples, it merely transforms them to a domain in which they can
be more efficiently encoded.

FIGURE 4.8
Block diagram of encoder and decoder for JPEG DCT-based image compression
and decompression.

• The 2-D DCT array of coefficients is uniformly quantized. The top left coeffi-
cient in the 2-D DCT array with zero frequency in both dimensions is referred
to as the DC coefficient, and it is proportional to the average brightness of the
spatial block. The remaining coefficients are called the AC coefficients. Prior to
quantization, transform coefficients can be weighted according to their visual
importance using HVS (Human Visual System) sensitivity models [47, 48].

• The quantization of the AC coefficients produces many zeros, especially at
the higher frequencies. To take advantage of these zeros, the 2-D DCT array
of quantized coefficients is reordered using a zigzag pattern [see Fig. 4.9(a)]
to form a 1-D sequence. This rearranges the coefficients in approximately
decreasing order of their average energy (as well as in order of increasing
spatial frequency) with the aim of creating large runs of zero values. The
quantization is a key operation because the combination of the quantization
and runlength coding contributes to most of the compression.

• The final processing step at the encoder is entropy coding. This step achieves
additional compression losslessly by encoding the quantized coefficients more
compactly based on their statistical characteristics. The quantized DCT co-
efficients are variable-length coded using two global different predetermined
Huffman coding tables, one for DC and one for AC coefficients.

At the decoder, after the encoded bit stream is Huffman decoded and the 2-D array
of quantized DCT coefficients is recovered and dezigzag reordered, each coefficient
is inverse quantized. The resulting array is transformed by inverse 2-D DCT and
inverse level shifted to yield an approximation of the original sub-image block. The
same quantization table and Huffman coding tables are used in both the encoder and
decoder.

Each chrominance component of a color image is processed and encoded indepen-
dently in the same way as the luminance component, except that it is downsampled
by a factor of two or four in both horizontal and vertical directions prior to DCT
operation. At the decoder, the reconstructed chrominance component is bilinearly
interpolated to the original size.

The following sections describe the JPEG DCT-based image compression and
decompression system. The description is restricted to one sub-image block only
because the same encoding and decoding operations are performed on each block.
Although required algorithms in the JPEG standard are based on fixed block size
(8 × 8), the system described in this chapter can use larger blocks. In fact, the 2-D
DCT/DST universal computational structure offers the flexibility of computing the
2-D DCT and its inverse for any 2m × 2m block size. The encoding and decoding op-
erations are described in detail followed by an implementation in C. Where necessary,
the input and output data samples are provided; they can be useful for verification of
the correctness of a given program module. Low-level routines — setting quantiza-
tion table, computation of Huffman coding/decoding tables, Huffman encoding and
Huffman decoding — are based on shareware generated by Independent JPEG group
(Thomas G. Lane) [49]. Program modules together provide the simple, efficient, and

low-cost image compression and decompression system which the reader can use in
his or her own data compression applications.

4.5.2 Data Structures for Compression/Decompression

One of the most important aspects of image/video coding standards is to define
data structures so that a decoder can decode the received bit stream efficiently and
without any ambiguity. This section shows header files that contain definitions and
declarations of data structures for an image compression and decompression system.

The header file JPEGDEF.H contains macro definitions and the definition of data
structure for the Huffman coding/decoding table.

/*
JPEGDEF.H

*/
#define SIZE 16 /* max dimension of the block */
#define I_LEVEL 256 /* the number of gray levels */
#define DCT 1 /* 2-D DCT computation */
#define DISABLE_NORM 0 /* disable DCT normalization */
#define SQRT2 0.707106781186547 /* sqrt (2) */
#define LOOKAHEAD 8 /* # of bits of lookahead */
#define MIN_GET_BITS 15 /* minimum allowable value */
/* --- */
/* Huffman coding and decoding table */
/* --*/
struct huff_table {
/* bits [k] = # of symbols with codes of length k bits,

bits [0] is unused */
unsigned char bits [17];
/* Symbols in order of incremental code length */
unsigned char hufval [256];
/* ENCODING TABLES */
unsigned int hufcode [256]; /* code for each symbol */
char hufsize [256]; /* and its length */
/* DECODING TABLES */
/* Basic tables: element [0] of each array is unused */
long int mincode [17]; /* smallest code of length k */
long int maxcode [18];

/* and largest code (-1 if none) */
/* Index of 1st symbol of length k */
int valptr [17];

/* Lookahead tables: indexed by the next
LOOKAHEAD bits of the input data stream. If the next
Huffman code is no more than LOOKAHEAD bits long, it
can be obtained its length and the corresponding
symbol directly from these tables */

int look_nbits [1<<LOOKAHEAD];
/* # bits,or 0 if too long */

unsigned int look_sym [1<<LOOKAHEAD];
/* symbol,or unused */

};

The header file JPEGDATA.H contains declarations of variables and arrays for the
image compression and decompression system. Declarations for JPEG luminance
sample quantization table, zigzag, and dezigzag scanning patterns are shown for 8×8

block size only. For larger block sizes, the user must specify the corresponding arrays
for a given block size. The JPEG DCT-based image compression and decompression
system has two optional parameters: the block size and a quality factor for scaling
the quantization table.

/*
JPEGDATA.H

*/
unsigned char out_buffer [256];

/* output bit stream buffer */
int bytes_in_buf;

/* and # of bytes in it */
int encode_bits;

/* # of bits for compressed block */
int exp_val; /* log2 value of block size */
int blk_size; /* block size */
int center_samp; /* center sample value */
int tdc_last; /* the last DC value for encoder */
int rdc_last; /* the last DC value for decoder */
int q_factor; /* quality factor */
long int total_bits;

/* total # of bits for original data */
long int total_bytes;

/* total # of bytes for original data */
long int cmprs_bits;

/* total # of bits for compressed data */
long int cmprs_bytes;

/* total # of bytes for compressed data */
double dct_block [SIZE*SIZE];

/* 2-D DCT block of coefficients */
double *dctptr [SIZE]; /* pointers to its rows */
double scaling; /* scale factor for DCT normalization */
double bit_rate; /* the # of bits per pixel (bpp) */
double cmprs_ratio; /* compression ratio */
/* # of symbols with codes of length k bits

(lumbits [k]) and symbols in order of incremental
code length (lumval [k]) for DC luminance
values - valid for 8-bit data precision */

unsigned char dc_lumbits [17] =
{0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0};

unsigned int dc_lumval [12]
= {0,1,2,3,4,5,6,7,8,9,10,11};

/* # of symbols with codes of length k bits
(lumbits [k]) and symbols in order of incremental
code length (lumval [k]) for AC luminance
values - valid for 8-bit data precision */

unsigned char ac_lumbits [17] =
{0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d};

unsigned char ac_lumval [162] =
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,

0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,

0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };

struct huff_table dc_table; /* Huffman DC code table */
struct huff_table ac_table; /* Huffman AC code table */
/* luminance sample quantization table for 8 x 8 DCT */
int qbase8_tbl [8*8] =

{ 16, 11, 10, 16, 24, 40, 51, 61,
12, 12, 14, 19, 26, 58, 60, 55,
14, 13, 16, 24, 40, 57, 69, 56,
14, 17, 22, 29, 51, 87, 80, 62,
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 59, 64, 81, 104, 113, 92,
49, 64, 78, 87, 103, 121, 120, 101,
72, 92, 95, 98, 112, 100, 103, 99 };

/* zigzag scanning pattern for an 8 x 8 DCT transform */
int zag8 [8*8] =

{ 0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63 };

/* dezigzag scanning pattern for an
8 x 8 DCT transform */

int dezag8 [8*8] =
{ 0, 1, 8, 16, 9, 2, 3, 10,

17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63 };

4.5.3 Setting the Quantization Table

JPEG gives simple and easy quantization methods and suggests informative tables
for DC and AC coefficients [31]. One such informative quantization table for the
luminance component is shown in the header file JPEGDATA.H. Although default
quantization tables are provided by the JPEG standard for both luminance and chromi-
nance processing, the user is free to design custom tables which can be adapted to the
characteristics of the image to be compressed.

The quantization of the DCT coefficients is based on properties of the HVS which
tolerates more quantization errors at higher frequencies than at lower frequencies. It
means that the transform coefficients have different visual sensitivities; visual per-

ception is less sensitive to the high frequency coefficients and more sensitive to low
frequency coefficients. Thus, the weighting factors are selected to produce coarser
quantization of high frequency coefficients and finer quantization of the low frequency
coefficients.

The quantization table can be scaled to provide a variety of compression levels.
JPEG specifies the following possible bit rates and quality rates [31]:

0.25 ∼ 0.50 bpp: moderate to good quality
0.50 ∼ 0.75 bpp: good to very good quality
0.75 ∼ 1.50 bpp: excellent images
1.50 ∼ 2.00 bpp: indistinguishable images (visually lossless)

The quantization table in the JPEG DCT-based image compression and decompres-
sion system is scaled according to a specified quality factor. The quality factor takes
values in the range 0–100 (given as percentage) with the scaling value of 50 corre-
sponding to the basic quantization table. The value of 100 will cause elements of
the quantization table to be equal to 1 for an 8 × 8 block size and to equal to 2 for a
16 × 16 block size. The elements of the quantization table are in the range from 1
to 255.

The following program sets the user quantization table according to the specified
quality factor.

/*--
SET USER QUANTIZATION TABLE ACCORDING TO DEFINED
’QUALITY’
Set a quantization table equal to the basic table times
a scale factor (given as a percentage). The basic table
is used as-is (scaling 100) for a quality of 50. Values
of the basic table produce "good" quality, and when
divided by 2, "very good" quality. These two settings
are selected by quality = 50 and quality = 75,
respectively. Qualities 50 ... 100 are converted to
scaling percentage 200 - 2*Q. Note that at Q = 100 the
scaling is 0, which will cause qnt_tbl to make all the
table entries 1 (no quantization loss).
--
*/
#include "jpegdef.h"
void set_qtable (

int *qnt_tbl, /* user quantization table */
int blksize, /* block size */
int *qbase_tbl, /* basic quantization table */
int quality) /* quality factor */

{
int i;
long int temp;

/* Safety limit on quality factor (convert 0 to 1 to
avoid zero divide) */
if (quality <= 0)

quality = 1;
else

if (quality > 100)

quality = 100;
/* Convert a user-specified quality rating 0-100 to a

percentage scaling factor. Qualities 1 ... 50 are
converted to scaling percentage 5000/Q */
if (quality < 50)

quality = 5000 / quality;
else

quality = 200 - quality * 2;
/* Set quantization table equal to the qbasic_tbl

times a scale factor. Limit the values to the
valid range */
for (i = 0; i < blksize * blksize; i++)
{
temp = ((long int) qbase_tbl [i]

* quality + 50L) / 100L;
if (temp <= 0L)
{

temp = 1L;
if (blksize == SIZE)

temp = 2L;
}

if (temp > 255L)
temp = 255L;

qnt_tbl [i] = (int) temp;
}

}

4.5.4 Standard Huffman Coding/Decoding Tables

The JPEG baseline system uses only the Huffman coding method for encoding the
quantized DCT coefficients, and it suggests standard Huffman coding tables for the
luminance and chrominance DCT coefficients, two DC and two AC Huffman coding
tables [31].

Based on data structures defined in the header file JPEGDATA.H for DC and AC
luminance values (structures specifying the number of symbols with codes of length
k bits and code symbols), the following program generates standard Huffman cod-
ing/decoding tables. The program must be called separately for the DC and AC coding
tables (see Section 4.5.7). These DC and AC Huffman coding/decoding tables are
valid for 8-bit data precision and can be found in Rao and Hwang [31].

/*---
COMPUTE HUFFMAN CODING AND DECODING TABLES---

*/
#include <string.h>
#include "jpegdef.h"
void fix_huftbl (

struct huff_table *htbl) /* Huffman code table */
{

int p,i,j,k,lastp,size,lookbits;
char huffsize [257];
unsigned int huffcode [257],code;

/* Make table of Huffman code length for each symbol
in code-length order */
for (k = 1, p = 0; k <= 16; k++)

for (i = 1; i <= (int) htbl->bits [k]; i++)
huffsize [p++] = (char) k;

huffsize [p] = 0;
lastp = p;

/* Generate the codes themselves in code-length order */
code = p = 0;
size = huffsize [0];
while (huffsize [p])
{

while (((int) huffsize [p]) == size)
{

huffcode [p++] = code;
code++;

}
code <<= 1;
size++;

}
/* Generate encoding tables. These are code and size

indexed by symbol value. Set any codeless symbols
to have code length 0. This allows emit_bits () to
detect any attempt to emit such symbols */
memset (htbl->hufsize,0,sizeof (htbl->hufsize));
for (p = 0; p < lastp; p++)
{

htbl->hufcode [htbl->hufval [p]] = huffcode [p];
htbl->hufsize [htbl->hufval [p]] = huffsize [p];

}
/* Generate decoding tables for bit-sequential

decoding */
for (k = 1, p = 0; k <= 16; k++)

if (htbl->bits [k])
{
htbl->valptr [k] = p;
htbl->mincode [k] = huffcode [p]; /* min code */
p += htbl->bits [k];
htbl->maxcode [k] = huffcode [p-1];/* max code */
}
else
htbl->maxcode [k] = -1; /* -1 if no codes */

/* Ensures that huff_decode () terminates */
htbl->maxcode [17] = 0xFFFFFL;

/* Compute lookahead tables to speed up decoding.
First set all the table entries to 0, indicating
"too long"; then iterate through the Huffman codes
that are short enough and fill in all the entries
that correspond to bit sequences starting with that
code; k = current code’s length, p = its index in
hufcode [] & hufval []. Generate left-justified code
followed by all possible bit sequences */

memset (htbl->look_nbits,0,sizeof (htbl->look_nbits));
for (k = 1, p = 0; k <= LOOKAHEAD; k++)

for (i = 1; i <= (int) htbl->bits [k]; i++, p++)
{

lookbits = huffcode [p] << (LOOKAHEAD - k);
for (j = 1 << (LOOKAHEAD - k); j > 0; j--)
{
htbl->look_nbits [lookbits] = k;
htbl->look_sym [lookbits] = htbl->hufval [p];

lookbits++;
}

}
}

4.5.5 Compression of One Sub-Image Block

Having defined and prepared all required data structures, we can concentrate on
the image compression process. For simplicity, we consider the compression of one
sub-image block because the same operations are performed for each extracted block
from the source image. For processing the luminance component of the image, the
following steps are performed at the encoder for each block.

1. The data in the block is first level shifted by subtracting the quantity 2p−1, where
2p is the maximum number of gray levels and p is the precision parameter of
the image intensity in bits. In the JPEG baseline system, p = 8 and the level
shift is 128.

2. The level-shifted block is transformed by the forward 2-D DCT.

3. The 2-D DCT array of coefficients is uniformly quantized by rounding to the
nearest integer. Specifically, the quantized DCT coefficients, C̄uv , are defined
by the following equation:

C̄uv = nearest integer

(
Cuv

Quv

)
, (4.55)

where Cuv is the DCT coefficient and Quv is the corresponding element in the
quantization table.

4. The 2-D array of quantized DCT coefficients is scanned and formatted into a
1-D sequence using the zigzag pattern shown in Fig. 4.9(a). The DC coefficient
is sensitive to spatial frequency response of the HVS and is treated separately
from the remaining AC coefficients. Prior to encoding, the DC coefficient is
differenced by the following first-order prediction:

DIFF = DCi − DCi−1 , (4.56)

where DCi and DCi−1 are DC coefficients in the current and previous blocks,
respectively. The initial starting DC value at the beginning of the image is set
to zero.

We note that in international image/video coding standards two scan methods of
quantized DCT coefficients are used: the zigzag scan [Fig. 4.9(a)] which is typi-
cal for progressive (noninterlaced) mode processing (in JPEG, MPEG-1, and H.261
standards) and alternate scan [Fig. 4.9(b)] which is more efficient for interlaced video
format (adopted in MPEG-2 and HDTV standards). The structure of an alternate scan
seems like a vertical scan since the correlation along the horizontal direction is higher
than along the vertical direction [31].

DC coefficient DC coefficient

FIGURE 4.9
Scanning patterns of quantized DCT coefficients: (a) zigzag scan; (b) alternate
scan.

The following program compresses one sub-image block according to steps de-
scribed previously.

/*---
COMPRESSION OF ONE SUB-IMAGE BLOCK

Level shifting, forward 2-D DCT, quantization, zigzag
reordering and Huffman encoding the quantized
coefficients.---
*/
#include "jpegdef.h"
extern int exp_val; /* log2 value of block size*/
extern int center_samp; /* center sample value */
extern double scaling;/* scaling for DCT normalization*/
extern int tdc_last;/*the last DC value for encoder*/
extern int encode_bits;

/* # of bits for compressed block */
void cmprs_blk (

int *qnt_blk,
/* input/quantized data block */

int blksize,
/* block size */

int *qnt_tbl,
/* user quantization table */

int *zigzag, /* zigzag pattern */
double **dctb, /* 2-D DCT block */
struct huff_table *dctbl,/* DC Huffman code table */
struct huff_table *actbl)/* AC Huffman code table*/

{
int i,j,k,temp,*q_ptr;

double coef,*dctptr;
/* Level shift of samples in the sub-image block */

for (i = 0, q_ptr = qnt_blk; i < blksize; i++)
for (j = 0, dctptr = dctb [i]; j < blksize; j++)

*dctptr++ = (double) (*q_ptr++ - center_samp);
/* Perform forward 2-D DCT computation and

normalization of transform coefficients */
fdcst2d (dctb,exp_val,DISABLE_NORM,DCT);
for (i = 0, dctb [0] [0] *= SQRT2; i < blksize; i++)

for (j = 0; j < blksize; j++)
{

dctb [i] [j] *= scaling;
if ((i == 0) || (j == 0))

dctb [i] [j] *= SQRT2;
}

/* Quantization of the transform DCT coefficients
and zigzag reordering */
for (i = k = 0; i < blksize; i++)

for (j = 0, dctptr = dctb [i]; j < blksize; j++)
if ((coef = *dctptr++ / *qnt_tbl++) > 0.0)

qnt_blk [zigzag [k++]] = (int) (coef + 0.5);
else
qnt_blk [zigzag [k++]] = (int) (coef - 0.5);

/* Huffman encoding the quantized coefficients. The DC
coefficient is converted to a difference value */
temp = qnt_blk [0];
qnt_blk [0] -= tdc_last;
tdc_last = temp;
encode_bits = encode_blk(qnt_blk, blksize,

dctbl,actbl);
}

As an example, the following 8 × 8 data block is selected from the “Lena” digital
image [31]:

79 75 79 82 82 86 94 94
76 78 76 82 83 86 85 94
72 75 67 78 80 78 74 82
74 76 75 75 86 80 81 79
73 70 75 67 78 78 79 85
69 63 68 69 75 78 82 80
76 76 71 71 67 79 80 83
72 77 78 69 75 75 78 78

After level shifting, this block transformed by the forward 2-D 8 × 8 DCT is given
by

-404.375 -29.971 8.623 1.909 1.625 -3.936 0.893 1.516
23.226 -7.184 -4.327 -0.438 7.346 0.010 -2.266 -3.186
11.798 -0.278 5.197 -4.772 -3.572 4.160 -0.261 -3.507
2.299 -10.742 5.495 0.791 -1.029 7.603 3.791 2.820
6.375 2.511 -1.549 -1.074 -3.625 -0.797 0.506 8.723
0.739 2.612 0.717 2.530 -0.926 3.206 -2.945 -2.792

-9.081 -1.660 -4.511 1.743 2.156 1.549 -1.697 2.055
-3.626 2.241 5.355 -1.960 0.899 -1.370 1.828 -3.314

By applying the basic luminance quantization table (quality factor is equal to 50),
the 2-D array of quantized coefficients is

-25 -3 1 0 0 0 0 0
2 -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Assuming that the quantized DC coefficient of the previous block is 34, the DC
differencing and the reordering 2-D array of quantized coefficients into a 1-D sequence
based on zigzag scan result in

-59 -3 2 1 -1 1 0 0 0 0 0 -1 EOB

The 1-D sequence of quantized DCT coefficients is prepared for Huffman encoding.
The encoder employs one DC and one AC Huffman table lookups for luminance DCT
coefficients. All codes consist of a set of Huffman codes with a maximum length of
16 bits followed by appended additional bits for representing the exact value of the
coefficient.

Coding the DC and AC Coefficients

The DIFF values as defined by Eq. (4.56) are classified into 12 categories, each
category written by two’s complement expression. A Huffman DC coding/decoding
table is generated for each category. The difference values in category k are in the
range < −2k + 1, 2k − 1 >, where 0 ≤ k ≤ 11. Thus, k denotes the number of
bits needed for the magnitude of the coefficient. In the case of k = 0 (DIFF = 0),
the current DC coefficient is the same as the previous DC coefficient, and additional
bits are not required. For the other categories, extra bits are needed to express the
exact value in the category, consisting of the sign and magnitude of the DIFF value.
When DIFF is positive, the sign bit is 1 and k low-order bits of DIFF are appended
to the Huffman code. When DIFF is negative, the sign bit is 0 and k low-order
bits of (DIFF-1) are appended to the Huffman code. A (DIFF-1) operation implies
one’s complement representation to avoid all 1 bits of two’s complement operation.
This procedure for appending the additional bits is also applied to encoding the AC
coefficients.

To encode the AC coefficients, each nonzero coefficient is first described by a
composite 8-bit value of the form “RRRRSSSS” in binary notation. The Huffman
AC coding/decoding table is generated for each composite value. The four least
significant bits, “SSSS,” define a category for the coefficient magnitude. The values

in category k are in the range < −2k + 1, 2k − 1 >, where 1 ≤ k ≤ 10 resulting
in 10 categories. The four most significant bits in the composite value, “RRRR,”
give the position of the current coefficient relative to the previous nonzero coefficient,
i.e., the runlength of zero coefficients between successive nonzero coefficients. The
runlenghts specified by “RRRR” can range from 0 to 15, and a separate symbol
“11110000” (11-bits ZRL code = 11111111001) is defined to represent a runlength
of 16 zero coefficients. If the runlength is greater than 16, it is coded by using
multiple symbols. In addition, if all remaining coefficients in the block are zero,
a special symbol “00000000” is used to code the end of block (4-bits EOB code =
1010).

By the following program, the 1-D sequence of quantized coefficients is Huffman
encoded. The result is stored in the output bit stream buffer.

/*---
HUFFMAN ENTROPY ENCODING ROUTINES---

*/
#include "jpegdef.h"
extern unsigned char out_buffer [];

/* bit stream buffer */
extern int bytes_in_buf;

/* # of bytes in it */
static long int hufput_buf = 0L;

/* bit accumulator buffer */
static int hufput_bits = 0;

/* # of bits in buffer */
static void emit_bits (unsigned int, int);
/*---

ENCODE A SINGLE BLOCK OF COEFFICIENTS
It is assumed that DC coefficient in a block was
converted to a difference value. Function returns the
total number of bits for encoded block of
coefficients.---

*/
int encode_blk (
int *block, /* quantized data block */
int blksize, /* block size */
struct huff_table *dctbl, /* DC Huffman code table */
struct huff_table *actbl) /* AC Huffman code table */
{

int i,k,nbits,run,temp,temp2,num_bits = 0;
/*
===

ENCODE THE DC COEFFICIENT===
*/

if ((temp = temp2 = block [0]) < 0)
{

temp = -temp; /* abs value of input */
temp2--;

/* negative value is bitwise complement */
}

/* Find the number of bits for magnitude of the
coefficient */
nbits = 0;
while (temp)

{
nbits++;
temp >>= 1;

}
/* Emit the Huffman coded symbol for the number

of bits */
emit_bits (dctbl->hufcode [nbits],

dctbl->hufsize [nbits]);
num_bits += dctbl->hufsize [nbits];

/* Emit the number of bits of the coefficient value
(positive value) or complement of its magnitude
(negative value). Reject if nbits = 0 */
if (nbits)
{

emit_bits ((unsigned int) temp2,nbits);
num_bits += nbits;

}
/*

===
ENCODE THE AC COEFFICIENTS===

*/
for (k = 1, run = 0; k < blksize * blksize; k++)
{

if ((temp = block [k]) == 0)
run++;

else
{

/* If run length > 15 then emit special run-length
codes (0xF0) */
while (run > 15)

{
emit_bits (actbl->hufcode [0xF0],

actbl->hufsize [0xF0]);
num_bits += actbl->hufsize [0xF0];

run -= 16;
}
if ((temp2 = temp) < 0)

{
temp = -temp;
temp2--;

}
/* Find the number of bits needed for the magnitude of

the coefficient. The number of bits must be at least
1 bit */

nbits = 1;
while (temp >>= 1)

nbits++;
/* Emit the Huffman symbol for

(run length / number of bits) */
i = (run << 4) + nbits;
emit_bits (actbl->hufcode [i],

actbl->hufsize [i]);
num_bits += actbl->hufsize [i];

/* Emit the number of bits of the coefficient value
(positive value) or complement of its magnitude
(negative value) */

emit_bits ((unsigned int) temp2,nbits);
num_bits += nbits;
run = 0;

}

}
/* If the last coefficients were zero, emit EOB code */

if (run > 0)
{

emit_bits (actbl->hufcode [0],
actbl->hufsize [0]);

num_bits += actbl->hufsize [0];
}

/* Fill any partial byte with ones and reset
bit-buffer */
emit_bits (0x7F,7);
hufput_buf = 0L;
hufput_bits = 0;
return (num_bits);

}
/*--

OUTPUT HUFFMAN COMPRESSED COEFFICIENTS
Only the right 24 bits of hufput_buf are used.
The valid bits are left justified. At most 16 bits
can be passed to emit_bits () in one call and is
never retained more than 7 bits in accumulator buffer
between calls.--

*/
static void emit_bits (

unsigned int code,
int size)

{
long int put_buffer = code;
int put_bits = hufput_bits,byte;

/* Mask off excess bits in put_buffer */
put_buffer &= (((long int) 1) << size) - 1;
put_bits += size; /* new # of bits in buffer */
put_buffer <<= 24 - put_bits;/* align incoming bits */
put_buffer |= hufput_buf; /* merge with old buffer */

/* Load byte into output bit stream buffer and count
the number of bytes. Update bit accumulator buffer */
while (put_bits >= 8)
{
byte = (unsigned int) ((put_buffer >> 16) & 0xFF);
out_buffer [bytes_in_buf++] = (unsigned char) byte;

put_buffer <<= 8;
put_bits -= 8;

}
hufput_buf = put_buffer;
hufput_bits = put_bits;

}

For our example of 1-D sequence of the quantized DCT coefficients, the program
generates the following output-encoded bit stream (last unused bits are set to 1):

The number of bits 39 (5 bytes)
Bit stream buffer (hex) E1 11 88 3E 95
11100001 00010001 10001000 00111110 1001010/1

4.5.6 Decompression of One Sub-Image Block

At the decoder (see Fig. 4.8) for each sub-image block, the inverse operations of
the encoder are followed but in reverse order. The quantization table and Huffman
coding/decoding tables are the same at both the encoder and decoder.

Each of the Huffman codes is uniquely defined and the quantized DCT coefficients
are decoded by the Huffman decoding procedure. The DC coefficient is reconstructed
from the differential value. The initial starting DC value at the beginning is set to
zero. The reconstructed 1-D sequence of quantized coefficients is dezigzag reordered
to form a 2-D array. Each DCT coefficient, C̄uv , in the 2-D array is inverse quantized
by multiplying it by the corresponding element of the quantization table as follows:

Ĉuv = C̄uv . Quv . (4.57)

The resulting array is transformed by the inverse 2-D DCT. Inverse level shift restores
the samples in the original block to the unsigned 8-bit representation.

With the following program, the sub-image block is reconstructed from the encoded
bit stream.

/*--
DECOMPRESSION OF ONE SUB-IMAGE BLOCK

Huffman decoding, inverse quantization, inverse 2-D DCT,
and reconstruction of the original sub-image block.
--
*/
#include "jpegdef.h"
extern int exp_val; /* log2 value of block size */
extern int center_samp; /* center sample value */
extern double scaling;/* scaling for DCT normalization*/
extern int rdc_last;/* last DC value for decoder */
void decmprs_blk (

int *qnt_blk,
/* quantized/output data block */

int blksize, /* block size */
int *qnt_tbl,

/* user quantization table */
int *dezigzag, /* dezigzag pattern */
double **dctb, /* 2-D IDCT block */
struct huff_table *dctbl,/* DC Huffman code table */
struct huff_table *actbl)/* AC Huffman code table*/

{
int i,j,k,*q_ptr;
double pixel,*dctptr;

/* Huffman decoding the quantized coefficients and
dezigzag ordering. Convert DC difference to actual
value and update the last DC value */
decode_blk (qnt_blk,blksize,dezigzag,dctbl,actbl);
qnt_blk [0] += rdc_last;
rdc_last = qnt_blk [0];

/* Inverse quantization of the coefficients */
for (i = k = 0; i < blksize; i++)

for (j = 0, dctptr = dctb [i]; j < blksize; j++)
*dctptr++ = (double) (qnt_blk [k++] * *qnt_tbl++);

/* Perform denormalization and inverse 2-D DCT

computation */
for (i = 0, dctb [0] [0] *= SQRT2; i < blksize; i++)

for (j = 0; j < blksize; j++)
{

dctb [i] [j] *= scaling;
if ((i == 0) || (j == 0))

dctb [i] [j] *= SQRT2;
}

fdcst2d (dctb,exp_val,DISABLE_NORM,-DCT);
/* Reconstruction of the original sub-image block */

for (i = 0, q_ptr = qnt_blk; i < blksize; i++)
{

dctptr = dctb [i];
for (j = 0; j < blksize; j++, q_ptr++)

if ((pixel = *dctptr++ + center_samp) > 0.0)
{

if ((*q_ptr = (int) (pixel + 0.5))
> I_LEVEL - 1)

*q_ptr = I_LEVEL - 1;
}
else

*q_ptr = 0;
}

}

For our example the inverse quantized block is

400 -33 10 0 0 0 0 0
24 -12 0 0 0 0 0 0
14 0 0 0 0 0 0 0
0 -17 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

This 2-D array transformed by the inverse 2-D 8 × 8 DCT is given by

-53.992 -53.111 -51.068 -47.587 -42.784 -37.390 -32.641 -29.846
-51.247 -51.084 -50.368 -48.621 -45.696 -42.036 -38.614 -36.537
-50.225 -50.684 -51.118 -50.873 -49.573 -47.415 -45.143 -43.689
-53.805 -54.156 -54.390 -53.884 -52.300 -49.881 -47.408 -45.846
-58.944 -58.765 -58.018 -56.232 -53.263 -49.563 -46.111 -44.018
-59.846 -59.558 -58.611 -56.564 -53.311 -49.350 -45.697 -43.496
-55.036 -55.370 -55.573 -55.027 -53.401 -50.941 -48.438 -46.859
-49.611 -50.664 -52.194 -53.382 -53.633 -52.908 -51.732 -50.872

and after inverse level shift the reconstructed sub-image block is (for easy comparison
the original sub-image block is also given)

74 75 77 80 85 91 95 98 79 75 79 82 82 86 94 94
77 77 78 79 82 86 89 91 76 78 76 82 83 86 85 94
78 77 77 77 78 81 83 84 72 75 67 78 80 78 74 82

74 74 74 74 76 78 81 82 74 76 75 75 86 80 81 79
69 69 70 72 75 78 82 84 73 70 75 67 78 78 79 85
68 68 69 71 75 79 82 85 69 63 68 69 75 78 82 80
73 73 72 73 75 77 80 81 76 76 71 71 67 79 80 83
78 77 76 75 74 75 76 77 72 77 78 69 75 75 78 78

The following program module contains routines for Huffman decoding the quantized
DCT coefficients from the encoded bit stream.

/*---
HUFFMAN ENTROPY DECODING ROUTINES---

*/
#include "jpegdef.h"
extern unsigned char out_buffer [];

/* bit stream buffer */
static unsigned char *out_buf; /* and pointer to it */
static long int get_buffer = 0L;

/* bit-extraction buffer */
static int bits_left = 0; /* # of unused bits */
static void fill_buf (int);
static int huff_decode (struct huff_table *);
static int slow_decode (struct huff_table *, int);
/*

+++
DECODE A SINGLE BLOCK OF COEFFICIENTS
Data block for the coefficients should be zeroed
before. Output coefficients are in dezigzagged
(natural) order.
+++

*/
void decode_blk (

int *block, /* decoded block */
int blksize, /* block size */
int *dezigzag, /* dezigzag pattern */
struct huff_table *dctbl, /* DC Huffman code table */
struct huff_table *actbl) /* AC Huffman code table */

{
int k,s,r;
out_buf = out_buffer;

/*
==

DECODE THE DC COEFFICIENT
Extract Huffman symbol from input bit stream and
get the number of bits of DC coefficient difference.
Extract bits of the DC coefficient difference and
extend sign.
===

*/
if (s = huff_decode (dctbl))
{

if (bits_left < s)
fill_buf (s);

bits_left -= s;
r = (int) ((get_buffer >> bits_left))

& ((1 << s) - 1);
s = (r < (1 << (s - 1))) ? r

+ ((-1 << s) + 1) : r;
}
block [0] = s;

/*
==

DECODE THE AC COEFFICIENTS
Extract Huffman symbol from input bit stream and
get value of (run length / number of bits).
==

*/
for (k = 1; k < blksize * blksize; k++)
{

s = huff_decode (actbl);
r = s >> 4;
if (s &= 15)
{

k += r;
/* Extract bits of AC coefficient magnitude and

extend sign */
if (bits_left < s)

fill_buf (s);
bits_left -= s;
r = (int) ((get_buffer >> bits_left))

& ((1 << s) - 1);
s = (r < (1 << (s - 1))) ? r

+ ((-1 << s) + 1) : r;
block [dezigzag [k]] = s;

}
/* The code EOB was detected - the last coefficients

are zeros */
else
{

if (r != 15)
break;

k += 15;
}

}
/* Reset bit-extraction buffer to empty */

get_buffer = 0L;
bits_left = 0;

}
/* ---

LOAD UP THE BIT BUFFER TO A DEPTH OF AT LEAST nbits
Source bytes are read into get_buffer and bits are
doled out as needed. If get_buffer already contains
enough bits, they are fetched in-line. When there
are not enough bits, fill_buf () is called.

*/
static void fill_buf (

int nbits)
{

int c;
/* Attempt to load at least MIN_GET_BITS into

get_buffer */
while (bits_left < MIN_GET_BITS)
{

/* There are enough bits still left in get_buffer */
if (nbits > 0 && bits_left >= nbits)

break;
/* Load byte from input bit stream buffer into

get_buffer */
c = *out_buf++;

get_buffer = (get_buffer << 8) | c;
bits_left += 8;

}
}
/*---
EXTRACT NEXT HUFFMAN-CODED SYMBOL FROM INPUT BIT STREAM
Lookahead table is used to process codes of up to
LOOKAHEAD bits without looping. Usually, more than 95%
of the Huffman codes will be 8 or fewer bits long. The
few overlength codes are handled with a loop.

*/
static int huff_decode (

struct huff_table *htbl)
{

int nb,look,result,b = LOOKAHEAD;
/* 1.The first if-test is coded to call fill_buf ()

only when necessary.
2.If the lookahead succeeds, is needed only

decrement bits_left to remove the proper number
of bits from get_buffer.

3.If the lookahead table contains no entry, the
next code must be more than LOOKAHEAD bits long */

if (bits_left >= LOOKAHEAD ||
(fill_buf (0),bits_left >= LOOKAHEAD))

{
nb = bits_left - b;
look = (int) ((get_buffer >> nb)) & ((1 << b) - 1);

if ((nb = htbl->look_nbits [look]) != 0)
{

bits_left -= nb;
result = htbl->look_sym [look];

}
else

result = slow_decode (htbl,LOOKAHEAD+1);
}
else

result = slow_decode (htbl,1);
return (result);

}
static int slow_decode (

struct huff_table *htbl,
int min_bits)

{
int k = min_bits,rs;
long int code;

/* huff_decode () has determined that the code is at
least min_bits long, so fetch that many bits in one
swoop */
if (bits_left < k)

fill_buf (k);
bits_left -= k;
code = (int) ((get_buffer >> bits_left))

& ((1 << k) - 1);
/* Collect the rest of the Huffman code one bit at

a time */
while (code > htbl->maxcode [k])
{

code <<= 1;

if (bits_left < 1)
fill_buf (1);

code |= (int) ((get_buffer >> (--bits_left))) & 1;
k++;

}
rs = htbl->valptr [k] + (int)

(code - htbl->mincode [k]);
return (htbl->hufval [rs]);

}

4.5.7 Image Compression/Decompression

This section shows a sample program for compression and decompression of an
image. It performs all described steps of the JPEG DCT-based coding technique
for image compression and decompression. One extracted sub-image block is first
compressed, immediately decompressed, and displayed on the screen. The displaying
routine is not shown. If any dimension of the processed image is not a multiple of
the block size, the remaining elements in the block are set to zeros. These additional
elements are removed during decompression. No file for the compressed image is
created.

/*---
IMAGE COMPRESSION AND DECOMPRESSION---

*/
#include <string.h>
#include "jpegdef.h"
extern unsigned char _huge *img_ptr [];

/* ptrs to image rows */
extern unsigned char dc_lumbits [17];
extern unsigned int dc_lumval [12];
extern unsigned char ac_lumbits [17];
extern unsigned int ac_lumval [162];
extern double dct_block [SIZE*SIZE];
extern double *dctptr [SIZE];
extern unsigned char out_buffer [];
extern int bytes_in_buf;
extern int encode_bits;
extern long int cmprs_bits;
extern int tdc_last;
extern int rdc_last;
extern struct huff_table dc_table;
extern struct huff_table ac_table;
static int q_blk [SIZE*SIZE];

/* input/quantized/output block */
static int q_tbl [SIZE*SIZE];

/* user quantization table */
void process_img (

int xsize, /* image xsize */
int ysize, /* image ysize */
int *qbase_tbl, /* basic quantization table */
int *zag, /* zigzag pattern */
int *dezag, /* dezigzag pattern */
int blksize, /* block size */

int quality) /* quality factor */
{

int i,j,k,l,m,n,*q_ptr;
int xp,yp,xpos,ypos,hblk,hrest,vblk;
struct huff_table *dctbl = &dc_table;
struct huff_table *actbl = &ac_table;

/* Set up quantization table according to user
specified ’quality’ factor */
set_qtable (q_tbl,blksize,qbase_tbl,quality);

/* Compute standard Huffman DC and AC code tables */
memcpy (&dctbl->bits ,dc_lumbits,sizeof (dc_lumbits));
memcpy (&dctbl->hufval,dc_lumval ,sizeof (dc_lumval));
memcpy (&actbl->bits ,ac_lumbits,sizeof (ac_lumbits));
memcpy (&actbl->hufval,ac_lumval ,sizeof (ac_lumval));
fix_huftbl (dctbl);
fix_huftbl (actbl);

/* Initialize variables for compression/decompression */
tdc_last = 0; /* the last DC value for encoder */
rdc_last = 0; /* the last DC value for decoder */
cmprs_bits = 0L;/* # of bits for compressed data */
bytes_in_buf = 0; /* # of bytes in output buffer */

/* Set the number of subblocks horizontally
and vertically */
hblk = xsize / blksize;
if ((hrest = xsize % blksize))

hblk++;
vblk = ysize / blksize;
if (ysize % blksize)

vblk++;
for (i = 0; i < blksize; i++)

dctptr [i] = dct_block + i * blksize;
/* Extract the 2-D blocks from source image, one block

at the time and do compression/decompression */
for (i = 0; i < vblk; i++)
{

ypos = i * blksize;
for (j = 0; j < hblk; j++)
{

xpos = j * blksize;
memset (q_blk,0,blksize * blksize

* sizeof (int));
q_ptr = &q_blk [0];
for (m = 0, yp = ypos; m < blksize;

m++, yp++)
if (yp < ysize)

for (n = 0, xp = xpos; n
< blksize; n++, xp++)

if (xp < xsize)
*q_ptr++ = (int)

*(img_ptr [yp] + xp);
else
{

q_ptr += (blksize - hrest);
break;

}
/* Compression of a single sub-image block */

cmprs_blk (q_blk,blksize,q_tbl,zag,
&dctptr [0],dctbl,actbl);

cmprs_bits += encode_bits;
/* Decompression of the single sub-image block */

memset (q_blk,0,blksize * blksize
* sizeof (int));

decmprs_blk (q_blk,blksize,q_tbl,dezag,
&dctptr

[0],dctbl,actbl);
/* Display reconstructed sub-image block */

display_block (xsize,ysize,xpos,ypos,hrest,q_blk);
/* Clear output bit stream buffer and byte counter */

while (bytes_in_buf > 0)
out_buffer [bytes_in_buf--] = 0;

}
}

}

4.5.8 Compression of Color Images

In many imaging applications, it is necessary to deal with color images. Although
the RGB representation of images is typical of color displays, it is not the best repre-
sentation from the viewpoint of compression. RGB images are converted into more
suitable YCBCR color format using the following equations [31]:

Y = 0.299 R + 0.587 G + 0.114 B

CB = −0.169 R − 0.331 G + 0.500 B = 0.564 (B − Y) (4.58)

CR = 0.500 R − 0.419 G − 0.081 B = 0.713 (R − Y) ,

where Y represents a monochrome compatible luminance component, and CB , CR

represent chrominance components containing color information. Most of
image/video coding standards adopt YCBCR color format as an input image sig-
nal [31]. This color conversion has the desirable property of packing most of the
signal energy into Y and significantly less energy into the chrominance components.
Furthermore, the HVS is much more sensitive to variations in the luminance com-
ponent. These properties suggest a compression scheme for color images. The
luminance component is encoded with high fidelity while larger errors are allowed in
the chrominance components.

We have described the JPEG DCT-based coding technique for the luminance com-
ponent. The chrominance components are similarly processed except for some minor
modifications. Each chrominance component is subsampled by a factor of 2 or 4 in
both the horizontal and vertical directions prior to compression. At the decoder, the
reconstructed chrominance components are bilinearly interpolated back to their orig-
inal size. Then, the image in YCBCR color format is transformed into RGB format
using the following equations:

R = Y + 1.402 CR

G = Y − 0.344 CB − 0.714 CR

B = Y + 1.772 CB

(4.59)

For compression and decompression of color images, the user needs the header file
JPEGCOLOR.H containing the definitions of data structures for computation of stan-

dard Huffman chrominance DC and AC coding and decoding tables and the definition
of the chrominance sample quantization table.

/*
JPEGCOLOR.H

*/
/* # of symbols with codes of length k bits (lumbits

[k]) and symbols in order of incremental code length
(lumval [k]) for DC chrominance values - valid
for 8-bit data precision */

unsigned char dc_chrombits [17] =
{0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0};

unsigned char dc_chromval [12]
= {0,1,2,3,4,5,6,7,8,9,10,11};

/* # of symbols with codes of length k bits (lumbits
[k]) and symbols in order of incremental code length
(lumval [k]) for AC chrominance values - valid for
8-bit data precision */

unsigned char ac_chrombits [17] =
{0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77};

unsigned char ac_chromval [162] =
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,

0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
0xf9, 0xfa };

struct huff_table dc_ctable; /* Huffman DC code table */
struct huff_table ac_ctable; /* Huffman AC code table */
/* chrominance sample quantization table for

an 8 x 8 DCT */
int qcbase8_tbl [8*8] =

{ 17, 18, 24, 47, 99, 99, 99, 99,
18, 21, 26, 66, 99, 99, 99, 99,
24, 26, 56, 99, 99, 99, 99, 99,
47, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99 };

Assuming that each chrominance component was subsampled, the program from
Section 4.5.7 can be used for compression and decompression. It is necessary only to
substitute proper identifiers for the quantization table and Huffman coding/decoding
tables.

4.5.9 Results of Image Compression

The performance of a compression algorithm can be evaluated in a number of
different ways:

• Implementation complexity (algorithm complexity, computational speed, and
memory requirements).

• The amount of compression expressed by the compression ratio.

• The average number of bits required to represent a single sample; this is gen-
erally referred to as bit rate.

• How closely the reconstruction resembles the original; this is related to the
reconstructed image quality.

In evaluating the reconstructed image quality, a frequently used measure is the root-
mean-square-error (RMSE) as an error metric [36]. Denoting the original N × N

image by fij and the compressed/decompressed image by f̂ij , RMSE is given by

RMSE =

√√√√√ 1

N2

N−1∑
i=0

N−1∑
j=0

(
fij − f̂ij

)2
,

and represents the standard deviation of the error image. Error images represent the
difference between the original and reconstructed images. The error image, gij , can
be generated using

gij = k

∣∣∣fij − f̂ij

∣∣∣ ,

where the scaling factor k is included to make any error more visible.
The results of applying the JPEG DCT-based coding technique are summarized

in Tables 4.1 and 4.2 for the monochrome “Lena” image. Recall that the original
512 × 512 monochrome “Lena” image requires a total of 2,097,152 bits, or 262,144
bytes. In the JPEG DCT-based image compression and decompression system, two
block sizes have been used — 8 × 8 and 16 × 16. Table 4.1 summarizes results
of compression using the 8 × 8 block size, and Table 4.2 summarizes results of
compression using the 16 × 16 block size for several values of the quality factor.
From the tables it is evident that for 16 × 16 block size the compression ratios are
about two-fold better than for 8×8 block size. On the other hand, at very low bit rates
the blocking artifact is more visible for the larger block size. Actual reconstructed
and corresponding error images using 8 × 8 and 16 × 16 blocks for some values of
the quality factor (its definition is given in Section 4.5.3) are shown in Figs. 4.10
and 4.11, respectively.

FIGURE 4.10
Reconstructed and corresponding error images using 8 × 8 DCT block size for
the quality factor: (a) 25%, (b) 50%, (c) 75%. Error images are magnified by a
factor of 8. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.

FIGURE 4.11
Reconstructed and corresponding error images using 16×16 DCT block size for
the quality factor: (a) 25%, (b) 50%, (c) 75%. Error images are magnified by a
factor of 8. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.

Table 4.1 Results of the “Lena” Image Compression for 8 × 8
Block Size

Quality The number of compressed Bit Compression RMSE
factor bits (bytes) rate ratio error

25% 96 351 (12 044) 0.368 21.766 4.774
50% 148 132 (18 517) 0.565 14.157 3.734
60% 170 878 (21 360) 0.652 12.273 3.470
75% 230 924 (28 866) 0.881 9.082 2.965
90% 422 392 (52 799) 1.611 4.965 2.124

100% 1 212 625 (151 579) 4.626 1.729 0.289

Table 4.2 Results of “Lena” Image Compression for 16 × 16
Block Size

Quality The number of compressed Bit Compression RMSE
factor bits (bytes) rate ratio error

25% 47 101 (5 888) 0.180 44.525 6.234
50% 77 868 (9 734) 0.297 26.932 4.778
60% 91 272 (11 409) 0.348 22.977 4.428
75% 126 850 (15 857) 0.484 16.533 3.817
90% 244 865 (30 609) 0.934 8.565 2.808

100% 926 585 (115 824) 3.535 2.263 0.644

4.6 Summary

The definitions and properties of four types of the even DCT and corresponding
even DST have been discussed and the unified fast computation of DCTs and DSTs
has been presented. For each type of DCT and DST, the fast computational algo-
rithm was described and the corresponding regular generalized signal flow graph was
shown followed by its implementation in C. Among the DCTs, DCT of types II and
III have been employed as the main compression tool in the international image/video
coding standards. To illustrate the compression capability of DCT, a real data com-
pression application is considered. The JPEG DCT-based image compression and
decompression system with its implementation is described in detail. This simple,
efficient, and low-cost image compression and decompression system can be used in
real data compression applications. Finally, the results of image compression were
presented. We believe that all implemented algorithms will be useful in any other
DCT- and DST-related applications.

References

[1] Jain, A.K., A sinusoidal family of unitary transforms, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 1, 356, 1979.

[2] Bongiovanni, G., Corsini, P. and Frosini, G., One-dimensional and two-
dimensional generalized discrete Fourier transform, IEEE Trans. on Acoustics,
Speech and Signal Processing, 24, 97, 1976.

[3] Wang, Z., Comments on generalized discrete Hartley transforms, IEEE Trans.
on Signal Processing, 43, 1711, 1995.

[4] Wang, Z. and Hunt, B.R., The discrete W transform, Applied Mathematics and
Computation, 16, 19, 1985.

[5] Wang, Z. and Hunt, B.R., The discrete cosine transform — a new version, Proc.
IEEE ICASSP, Boston, MA, 1256, 1983.

[6] Kitajima, H., A symmetric cosine transform, IEEE Trans. on Computers, 29,
317, 1980.

[7] Jain, A.K., A fast Karhunen–Loève transform for a class of random processes,
IEEE Trans. on Communications, 24, 1023, 1976.

[8] Ahmed, N., Natarajan, T., and Rao, K.R., Discrete cosine transform, IEEE
Trans. on Computers, 23, 90, 1974.

[9] Kekre, H.B. and Solanki, J.K., Comparative performance of various trigono-
metric unitary transforms for transform image coding, Int. J. Electronics, 44,
305, 1978.

[10] Yip, P. and Rao, K.R., On shift property of DCTs and DSTs, IEEE Trans. on
Acoustics, Speech, and Signal Processing, 35, 404, 1987.

[11] Wu, L.N., Comments on shift property of DCTs and DSTs, IEEE Trans. on
Acoustics, Speech, and Signal Processing, 38, 186, 1990.

[12] Malvar, H.S., Lapped transforms for efficient transform/subband coding, IEEE
Trans. on Acoustics, Speech, and Signal Processing, 38, 969, 1990.

[13] Martucci, S.A., Convolution-multiplication properties for the entire family of
discrete sine and cosine transforms, Proc. Twenty-Sixth Annual Conf. on Infor-
mation Sciences and Systems, Princeton, NJ, 399, 1992.

[14] Martucci, S.A., Symmetric convolution and the discrete sine and cosine trans-
forms, IEEE Trans. on Signal Processing, 42, 1038, 1994.

[15] Martucci, S.A., Digital filtering of images using the discrete sine or cosine
transform, Optical Engineering, 35, 119, 1996.

[16] Clarke, R.J., Relation between the Karhunen–Loève and cosine transforms,
IEEE Proc. Part F: Communications, Radar and Signal Processing, 128, 359,
1981.

[17] Ahmed, N. and Flickner, M., Some considerations of the discrete cosine trans-
form, 16th Asilomar Conf. on Circuits, Systems and Computers, Pacific Grove,
CA, 295, 1982.

[18] Clarke, R.J., Relation between the Karhunen–Loève and sine transforms, Elec-
tronics Letters, 20, 12, 1984.

[19] Zou, F. and Gallagher, R.R., A new transform with symmetrical coding per-
formance for Markov(1) signals, IEEE Trans. on Signal Processing, 43, 2195,
1995.

[20] Wang, Z., A fast algorithm for the discrete sine transform implemented by the
fast cosine transform, IEEE Trans. on Acoustics, Speech, and Signal Processing,
30, 814, 1982.

[21] Wang, Z., Fast algorithms for the discrete W transform and discrete Fourier
transform, IEEE Trans. on Acoustics, Speech, and Signal Processing, 32, 803,
1984.

[22] Wang, Z., On computing the discrete Fourier and cosine transform, IEEE Trans.
on Acoustics, Speech, and Signal Processing, 33, 1341, 1985.

[23] Hou, H.S., A fast recursive algorithm for computing the discrete cosine trans-
form, IEEE Trans. on Acoustics, Speech, and Signal Processing, 35, 1455,
1987.

[24] Britanak, V., On the discrete cosine transform computation, Signal Processing,
40, 183, 1994.

[25] Britanak, V., A unified discrete cosine and discrete sine transform computation,
Signal Processing, 43, 333, 1995.

[26] Britanak, V., A unified approach to fast computation of discrete sinusoidal
transforms I: DCT and DST transforms, Computers and Artificial Intelligence,
17, 583, 1998.

[27] Britanak, V., A unified approach to fast computation of discrete sinusoidal
transforms II: DFT and DWT transforms, Computers and Artificial Intelligence,
18, 19, 1999.

[28] Wu, H.R. and Paoloni, F.J., A two-dimensional fast cosine transform algorithm
based on Hou’s approach, IEEE Trans. on Signal Processing, 39, 544, 1991.

[29] Britanak, V., A generalized signal flow graph for the 2-D DCT computation,
Applied Signal Processing, 1, 76, 1994.

[30] Rao, K.R. and Yip, P., Discrete Cosine Transform: Algorithms, Advantages,
Applications, Academic Press, Boston, 1990.

[31] Rao, K.R. and Hwang, J.J., Techniques and Standards for Image, Video and
Audio Coding, Prentice-Hall, Upper Saddle River, NJ, 1996.

[32] Clarke, R.J., Transform Coding of Images, Academic Press, London, 1990.

[33] Poularikas, A.D., The Transforms and Application Handbook, CRC Press and
IEEE Press, Boca Raton, FL, 1996.

[34] Gonzalez, R.C. and Woods, R.E., Digital Image Processing, Addison–Wesley,
Reading, MA, chap. 6, 1992.

[35] Jain, A.K., Fundamentals of Digital Image Processing, Prentice-Hall, Engle-
wood Cliffs, NJ, chap. 5 and 11, 1989.

[36] Rabbani, M. and Jones, P.W., Digital Image Compression Techniques, Volume
TT7 of Tutorial Texts Series, SPIE Optical Engineering Press, Bellingham,
WA, 1991.

[37] Sayood, K., Introduction to Data Compression, Morgan Kaufmann, San Fran-
cisco, CA, 1996.

[38] Madisetty, V.K. and Williams, D.B., The Digital Signal Processing Handbook,
CRC Press and IEEE Press, Boca Raton, FL, 1998.

[39] Bhaskaran, V. and Konstantinides, K., Image and Video Compression Stan-
dards: Algorithms and Architecture, Kluwer Academic, Norwell, MA, 1995.

[40] Kou, W., Digital Image Compression — Algorithms and Standards, Kluwer
Academic, Hingham, MA, 1995.

[41] Gibson, J.D., Berger, T., Lookabaugh, T., Lindbergh, D., and Baker, R.L., Dig-
ital Compression for Multimedia: Principles and Standards, Morgan Kauf-
mann, San Francisco, CA, 1998.

[42] Symes, P.D., Video Compression: Fundamental Compression Techniques and
Overview of the JPEG and MPEG Compression Systems, McGraw-Hill, New
York, 1998.

[43] Wallace, G.K., JPEG Technical Specification, Revision 5, JPEG Joint Photo-
graphic Experts Group ISO/IEC JTC1/SC2/WG8 CCITT SGVIII, JPEG-8-R5,
January 2, 1990.

[44] Wallace, G.K., The JPEG still picture compression standard, Communications
of the ACM, 34, 31, 1991.

[45] Le Gall, D., MPEG: A video compression standard for multimedia applications,
Communications of the ACM, 34, 47, 1991.

[46] Liou, M., Overview of the p × 64kbit/s video coding standard, Communica-
tions of the ACM, 34, 60, 1991.

[47] Rabbani, M. and Dally, S., An optimized image data compression technique
utilized in the Kodak SV9600 still video transceiver, SPIE Proc. Vol. 1071
Optical Sensors and Electronic Photography, Bellingham, WA, 246, 1989.

[48] Chitprasert, B. and Rao, K.R., Human visual weighted progressive image trans-
mission, IEEE Trans. on Communications, 38, 1040, 1990.

[49] Murray, J.D. and VanRyper, W., Encyclopedia of Graphics File Formats,
O’Reilly and Associates, Sebastopol, CA, 1994.

	The Transform and Data Compression Handbook
	Table of Contents
	Discrete Cosine and Sine Transforms
	4.1 Introduction
	4.2 The Family of DCTs and DSTs
	4.2.1 Definitions of DCTs and DSTs
	4.2.2 Mathematical Properties
	The Unitarity Property
	The Linearity Property
	The Convolution-Multiplication Property
	The Shift Property, Scaling, and Difference Property

	4.2.3 Relations to the KLT

	4.3 A Unified Fast Computation of DCTs and DSTs
	4.3.1 Definitions of Even-Odd Matrices
	Even-Odd Transform Matrix
	Even-Odd Permutation Matrices

	4.3.2 DCT-II/DST-II and DCT-III/DST-III Computation
	4.3.3 DCT-I and DST-I Computation
	4.3.4 DCT-IV/DST-IV Computation
	4.3.5 Implementation of the Unified Fast Computation of DCTs and DSTs
	Computer Program for the Fast DCT-II/DST-II and DCT-III/DST-III Compu-tation
	Computer Program for the Fast DCT-I Computation
	Computer Program for the Fast DST-I Computation
	Computer Program for the Fast DCT-IV/DST-IV Computation

	4.4 The 2-D DCT/DST Universal Computational Structure
	4.4.1 The Fast Direct 2-D DCT/DST Computation
	4.4.2 Implementation of the Direct 2-D DCT/DST Computation

	4.5 DCT and Data Compression
	4.5.1 DCT-Based Image Compression/Decompression
	4.5.2 Data Structures for Compression/Decompression
	4.5.3 Setting the Quantization Table
	4.5.4 Standard Huffman Coding/Decoding Tables
	4.5.5 Compression of One Sub-Image Block
	Coding the DC and AC Coefficients

	4.5.6 Decompression of One Sub-Image Block
	4.5.7 Image Compression/Decompression
	4.5.8 Compression of Color Images
	4.5.9 Results of Image Compression

	4.6 Summary
	References

	© 2001 CRC Press LLC:

