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10.1 Introduction

In 1948, Claude Shannon issued a challenge to communications engineers by proving that commu-
nication systems could be made arbitrarily reliable as long as a fixed percentage of the transmitted
signal was redundant [9]. He showed that limits exist only on the rate of communication and not
its accuracy, and went on to prove that errorless transmission could be achieved in an additive white
Gaussian noise (AWGN) environment with infinite bandwidth if the ratio of energy per data bit to
noise power spectral density exceeds the Shannon Limit. He did not, however, indicate how this
could be achieved. Subsequent research has led to a number of techniques that introduce redundancy
to allow for correction of errors without retransmission. These techniques, collectively known as
forward error correction (FEC) coding techniques, are used in systems where a reverse channel is
not available for requesting retransmission, the delay with retransmission would be excessive, the
expected number of errors would require a large number of retransmissions, or retransmission would
be awkward to implement [10].

A simplified model of a digital communication system which incorporates FEC coding is shown in
Fig. 10.1. The FEC code acts on a discrete data channel comprising all system elements between the
encoder output and decoder input. The encoder maps the source data to q-ary code symbols which
are modulated and transmitted. During transmission, this signal can be corrupted, causing errors
to arise in the demodulated symbol sequence. The FEC decoder attempts to correct these errors and
restore the original source data.
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FIGURE 10.1: Block diagram of a digital communication system with forward error correction.

A demodulator which outputs only a value for the q-ary symbol received during each symbol
interval is said to make hard decisions. In the binary symmetric channel (BSC), hard decisions are
made on binary symbols and the probability of error is independent of the value of the symbol. One
example of a BSC is the coherently demodulated binary phase-shift-keyed (BPSK) signal corrupted
by AWGN. The conditional probability density functions which result with this system are depicted
in Fig. 10.2. The probability of error is given by the area under the density functions that lies across
the decision threshold, and is a function of the symbol energy Es and the one-sided noise power
spectral density N0.

FIGURE 10.2: Hard and soft decision demodulation of a coherently demodulated BPSK signal
corrupted by AWGN. f (z | 1) and f (z | 0) are the Gaussianly distributed conditional probability
density functions at the threshold device.

Alternatively, the demodulator can make soft decisions or output an estimate of the symbol value
along with an indication of its confidence in this estimate. For example, if the BPSK demodulator uses
three-bit quantization, the two least significant bits can be taken as a confidence measure. Possible
soft-decision thresholds for the BPSK signal are depicted in Fig. 10.2. In practice, there is little to be
gained by using many soft-decision quantization levels.

Block andconvolutional codes introduce redundancyby addingparity symbols to themessagedata.
They map k source symbols to n code symbols and are said to have code rate R = k/n. With fixed
information rates, this redundancy results in increased bandwidth and lower energy per transmitted
symbol. At low signal-to-noise ratios, these codes cannot compensate for these impairments, and
performance is degraded. At higher ratios of information symbol energy Eb to noise spectral density
N0, however, there is coding gain since the performance improvement offered by coding more than
compensates for these impairments. Coding gain is usually defined as the reduction in required
Eb/N0 to achieve a specific error rate in an error-control coded system over one without coding.
In contrast to block and convolutional codes, trellis-coded modulation introduces redundancy by
expanding the size of the signal set rather than increasing the number of symbols transmitted, and
so offers the advantages of coding to band-limited systems.
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Each of these coding techniques is considered in turn. Following a discussion of interleaving and
concatenated coding, this chapter gives an overview of a recent and significant advance in coding,
the development of Turbo codes, and concludes with a brief overview of FEC applications.

10.2 Fundamentals of Block Coding

In block codes there is a one-to-one mapping between k-symbol source words and n-symbol code-
words. With q-ary signalling, qk out of the qn possible n-tuples are valid code vectors. The set of all
n-tuples forms a vector space in which the qk code vectors are distributed. The Hamming distance
between any two code vectors is the number of symbols in which they differ; the minimum distance
dmin of the code is the smallest Hamming distance between any two codewords.

There are two contradictory objectives of block codes. The first is to distribute the code vectors in
the vector space such that the distance between them is maximized. Then, if the decoder receives a
corrupted vector, by evaluating the nearest valid code vector it will decode the correct word with high
probability. The second is to pack the vector space with as many code vectors as possible to reduce
the redundancy in transmission.

When code vectors differ in at least dmin positions, a decoder which evaluates the nearest code
vector to each received word is guaranteed to correct up to t random symbol errors per word if

dmin ≥ 2t + 1 (10.1)

Alternatively, all qn − qk illegal words can be detected, including all error patterns with dmin − 1
or fewer errors. In general, a block code can correct all patterns of t or fewer errors and detect all
patterns of u or fewer errors provided that u ≥ t and

dmin ≥ t + u + 1 (10.2)

If q = 2, knowledge of the positions of the errors is sufficient for their correction; if q > 2, the
decoder must determine both the positions and values of the errors. If the demodulator indicates
positions in which the symbol values are unreliable, the decoder can assume their value unknown
and has only to solve for the value of these symbols. These positions are called erasures. A block
code can correct up to t errors and v erasures in each word if

dmin ≥ 2t + v + 1 (10.3)

10.3 Structure and Decoding of Block Codes

Shannon showed that the performance limit of codes with fixed code rate improves as the block
length increases. As n and k increase, however, practical implementation requires that the mapping
from message to code vector not be arbitrary but that an underlying structure to the code exist.
The structures developed to date limit the error correcting capability of these codes to below what
Shannon proved possible, on average, for a code with random codeword assignments. Although
Turbo codes have made significant strides towards approaching the Shannon Limit, the search for
good constructive codes continues.

A property which simplifies implementation of the coding operations is that of code linearity. A
code is linear if the addition of any two code vectors forms another code vector, which implies that
the code vectors form a subspace of the vector space of n-tuples. This subspace, which contains
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the all-zero vector, is spanned by any set of k linearly independent code vectors. Encoding can be
described as the multiplication of the information k-tuple by a generator matrix G, of dimension
k × n, which contains these basis vectors as rows. That is, a message vector mi is mapped to a code
vector ci according to

ci = miG, i = 0, 1, . . . , qk − 1 (10.4)

where elementwise arithmetic is defined in the finitefield GF(q). In general, this encoding procedure
results in code vectors with nonsystematic form in that the values of the message symbols cannot be
determined by inspection of the code vector. However, if G has the form [I k, P ] where I k is the
k × k identity matrix and P is a k × (n − k) matrix of parity checks, then the k most significant
symbols of each code vector are identical to the message vector and the code has systematic form.
This notation assumes that vectors are written with their most significant or first symbols in time on
the left, a convention used throughout this chapter.

For each generator matrix there is an (n−k)×k parity checkmatrix H whose rows are orthogonal
to the rows in G, i.e., GH T = 0. If the code is systematic, H = [−P T , In−k]. Since all codewords
are linear sums of the rows in G, it follows that ciH

T = 0 for all i, i = 0, 1, . . . , qk − 1, and
that the validity of the demodulated vectors can be checked by performing this multiplication. If
a codeword c is corrupted during transmission so that the hard-decision demodulator outputs the
vector ĉ = c+e, where e is a nonzero error pattern, the result of this multiplication is an (n−k)-tuple
that is indicative of the validity of the sequence. This result, called the syndrome s, is dependent
only on the error pattern since

s = ĉH T = (c + e)H T = cH T + eH T = eH T (10.5)

If the error pattern is a code vector, the errors go undetected. For all other error patterns, however,
the syndrome is nonzero. Since there are qn−k − 1 nonzero syndromes, qn−k − 1 error patterns can
be corrected. When these patterns include all those with t or fewer errors and no others, the code is
said to be a perfect code. Few codes are perfect; most codes are capable of correcting some patterns
with more than t errors. Standard array decoders use lookup tables to associate each syndrome
with an error pattern but become impractical as the block length and number of parity symbols
increases. Algebraic decoding algorithms have been developed for codes with stronger structure.
These algorithms are simplified with imperfect codes if the patterns corrected are limited to those
with t or fewer errors, a simplification called bounded distance decoding.

Cyclic codes are a subclass of linear block codes with an algebraic structure that enables encoding
to be implemented with a linear feedback shift register and decoding to be implemented without
a lookup table. As a result, most block codes in use today are cyclic or are closely related to cyclic
codes. These codes are best described if vectors are interpreted as polynomials and the arithmetic
follows the rules for polynomials where the elementwise operations are defined in GF(q). In a cyclic
code, all codeword polynomials are multiples of a generator polynomial g(x) of degree n − k. This
polynomial is chosen to be a divisor of xn − 1 so that a cyclic shift of a code vector yields another
code vector, giving this class of codes its name. A message polynomial mi(x) can be mapped to a
codeword polynomial ci(x) in nonsystematic form as

ci(x) = mi(x)g(x), i = 0, 1, . . . , qk − 1 (10.6)

In systematic form, codeword polynomials have the form

ci(x) = mi(x)xn−k − ri(x), i = 0, 1, . . . , qk − 1 (10.7)

where ri(x) is the remainder of mi(x)xn−k divided by g(x). Polynomial multiplication and division
can be easily implemented with shift registers [5].
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The first step in decoding the demodulated word is to determine if the word is a multiple of g(x).
This is done by dividing it by g(x) and examining the remainder. Since polynomial division is a
linear operation, the resulting syndrome s(x) depends only on the error pattern. If s(x) is the all-
zero polynomial, transmission is errorless or an undetectable error pattern has occurred. If s(x) is
nonzero, at least one error has occurred. This is the principle of the cyclic redundancy check (CRC).
It remains to determine the most likely error pattern that could have generated this syndrome.

Single error correcting binary codes can use the syndrome to immediately locate the bit in error.
More powerful codes use this information to determine the locations and values of multiple errors.
The most prominent approach of doing so is with the iterative technique developed by Berlekamp.
This technique, which involves computing an error-locator polynomial and solving for its roots, was
subsequently interpreted by Massey in terms of the design of a minimum-length shift register. Once
the location and values of the errors are known, Chien’s search algorithm efficiently corrects them.
The implementation complexity of these decoders increases only as the square of the number of errors
to be corrected [4] but does not generalize easily to accommodate soft-decision information. Other
decoding techniques, including Chase’s algorithm and threshold decoding, are easier to implement
with soft-decision input [6]. Berlekamp’s algorithm can be used in conjunction with transform-
domain decoding, which involves transforming the received block with a finite field Fourier-like
transform and solving for errors in the transform domain. Since the implementation complexity
of these decoders depends on the block length rather than the number of symbols corrected, this
approach results in simpler circuitry for codes with high redundancy [13].

Other block codes have also been constructed, including codes that are based on transform-domain
spectral properties, codes that are designed specifically for correction of burst errors, and codes that
are decodable with straightforward threshold or majority logic decoders [5, 6, 7].

10.4 Important Classes of Block Codes

When errors occur independently, Bose–Chaudhuri–Hocquenghem (BCH) codes provide one of the
best performances of known codes for a given block length and code rate. They are cyclic codes with
n = qm − 1, where m is any integer greater than 2. They are designed to correct up to t errors per
word and so have designed distance d = 2t + 1; the minimum distance may be greater. Generator
polynomials for these codes are listed in many texts, including [6]. These polynomials are of degree
less than or equal to mt , and so k ≥ n − mt . BCH codes can be shortened to accommodate system
requirements by deleting positions for information symbols.

Some subclasses of these codes are of special interest. Hamming codes are perfect single error
correcting binary BCH codes. Full length codes have n = 2m − 1 and k = n − m for any m

greater than 2. The duals of these codes are maximal-length codes, with n = 2m − 1, k = m, and
dmin = 2m−1. All 2m − 1 nonzero code vectors in these codes are cyclic shifts of a single nonzero
code vector. Reed–Solomon (RS) codes are nonbinary BCH codes defined over GF(q), where q is
often taken as a power of two so that symbols can be represented by a sequence of bits. In these cases,
correction of even a single symbol allows for correction of a burst of bit errors. The block length is
n = q − 1, and the minimum distance dmin = 2t + 1 is achieved using only 2t parity symbols. Since
RS codes meet the Singleton bound of dmin ≤ n − k + 1, they have the largest possible minimum
distance for these values of n and k and are called maximum distance separable codes.

The Golay codes are the only nontrivial perfect codes that can correct more than one error. The (11,
6) ternary Golay code has minimum distance 5. The (23, 12) binary code is a triple error correcting
BCH code with dmin = 7. To simplify implementation, it is often extended to a (24, 12) code through
the addition of an extra parity bit. The extended code has dmin = 8.
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The (23, 12) Golay code is also a binary quadratic residue code. These cyclic codes have prime
length of the form n = 8m±1, with k = (n+1)/2 and dmin ≥ √

n. Some of these codes are as good
as the best codes known with these values of n and k, but it is unknown if there are good quadratic
residue codes with large n [5].

Reed-Muller codes are equivalent to binary cyclic codes with an additional overall parity bit. For
any m, the rth-order Reed-Muller code has n = 2m, k = 6r

i=0

(
m
i

)
, and dmin = 2m−r . The rth-order

and (m − r − 1)th-order codes are duals, and the first-order codes are similar to maximal-length
codes. These codes, and the closely related Euclidean geometry and projective geometry codes, can
be decoded with threshold decoding.

The performance of several of these block codes is shown in Fig. 10.3 in terms of decoded bit error
probability vs. Eb/N0 for systems using coherent, hard-decision demodulated BPSK signalling.
Many other block codes have also been developed, including Goppa codes, quasicyclic codes, burst
error correcting Fire codes, and other lesser known codes.

10.5 Principles of Convolutional Coding

Convolutional codesmap successive informationk-tuples to a series ofn-tuples such that the sequence
of n-tuples has distance properties that allow for detection and correction of errors. Although these
codes can be defined over any alphabet, their implementation has largely been restricted to binary
signals, and only binary convolutional codes are considered here.

In addition to the code rate R = k/n, the constraint length K is an important parameter for these
codes. Definitions vary; we will use the definition that K equals the number of k-tuples that affect
formation of each n-tuple during encoding. That is, the value of an n-tuple depends on the k-tuple
that arrives at the encoder during that encoding interval as well as the K − 1 previous information
k-tuples.

Binary convolutional encoders can be implemented with kK-stage shift registers and n modulo-2
adders, an example of which is given in Fig. 10.4(a) for a rate 1/2, constraint length 3 code. The
encoder shifts in a new k-tuple during each encoding interval and samples the outputs of the adders
sequentially to form the coded output.

Although connection diagrams similar to that of Fig. 10.4(a) completely describe the code, a more
concise description can be given by stating the values of n, k, and K and giving the adder connections
in the form of vectors or polynomials. For instance, the rate 1/2 code has the generator vectors
g1 = 111 and g2 = 101, or equivalently, the generator polynomials g1(x) = x2 + x + 1 and
g2(x) = x2 + 1. Alternatively, a convolutional code can be characterized by its impulse response,
the coded sequence generated due to input of a single logic-1. It is straightforward to verify that the
circuit in Fig. 10.4(a) has the impulse response 111011. Since modulo-2 addition is a linear operation,
convolutional codes are linear, and the coded output can be viewed as the convolution of the input
sequence with the impulse response, hence the name of this coding technique. Shifted versions of the
impulse response or generator vectors can be combined to form an infinite-order generator matrix
which also describes the code.

Shift register circuits can be modeled as finite state machines. A Mealy machine description of a
convolutional encoder requires 2k(K−1) states, each describing a different value of the K −1k-tuples
which have most recently entered the shift register. Each state has 2k exit paths which correspond to
the value of the incoming k-tuple. A state machine description for the rate 1/2 encoder depicted in
Fig. 10.4(a) is given in Fig. 10.4(b). States are labeled with the contents of the two leftmost register
stages; edges are labeled with information bit values and their corresponding coded output.

The dimension of time is added to the description of the encoder with tree and trellis diagrams.

c©1999 by CRC Press LLC



FIGURE 10.3: Block code performance. Source: Sklar, B., 1988, Digital Communications: Funda-
mentals and Applications, c© 1988, p. 300. Reprinted by permission of Prentice-Hall, Inc., Englewood
Cliffs, NJ.

The tree diagram for the rate 1/2 convolutional code is given in Fig. 10.4(c), assuming the shift
register is initially clear. Each node represents an encoding interval, from which the upper branch
is taken if the input bit is a 0 and the lower branch is taken if the input bit is a 1. Each branch is
labeled with the corresponding output bit sequence. A drawback of the tree representation is that it
grows without bound as the length of the input sequence increases. This is overcome with the trellis
diagram depicted in Fig. 10.4(d), Again, encoding results in left-to-right movement, where the upper
of the two branches is taken whenever the input is a 0, the lower branch is taken when the input is a 1,
and the output is the bit sequence which weights the branch taken. Each level of nodes corresponds
to a state of the encoder as shown on the left-hand side of the diagram.
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FIGURE 10.4: A rate 1/2, constraint length 3 convolutional code.
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FIGURE 10.4: (Continued).

If the received sequence contains errors, it may no longer depict a valid path through the tree or
trellis. It is the job of the decoder to determine the original path. In doing so, the decoder does not
so much correct errors as find the closest valid path to the received sequence. As a result, the error
correcting capability of a convolutional code is more difficult to quantify than that of a block code; it
depends on how valid paths differ. One measure of this difference is the column distance dc(i), the
minimum Hamming distance between all coded sequences generated over i encoding intervals which
differ in the first interval. The nondecreasing sequence of column distance values is the distance
profile of the code. The column distance after K intervals is the minimum distance of the code and
is important for evaluating the performance of a code that uses threshold decoding. As i increases,
dc(i) approaches the free distance of the code, dfree, which is the minimum Hamming distance in
the set of arbitrarily long paths that diverge and then remerge in the trellis.

With maximum likelihood decoding, convolutional codes can generally correct up to t errors
within three to five constraint lengths, depending on how the errors are distributed, where

dfree ≥ 2t + 1 (10.8)

The free distance can be calculated by exhaustively searching for the minimum-weight path that
returns to the all-zero state, or evaluating the term of lowest degree in the generating function of the
code.

The objective of a convolutional code is to maximize these distance properties. They generally
improve as the constraint length of the code increases, and nonsystematic codes generally have better
properties than systematic ones. Goodcodeshavebeen foundby computer search andare tabulated in
many texts, including [6]. Convolutional codes with high code rate can be constructed by puncturing
or periodically deleting coded symbols from a low rate code. A list of low rate codes and perforation
matrices that result in good high rate codes can be found in many sources, including [13]. The
performance of good punctured codes approaches that of the best convolutional codes known with
similar rate, and decoder implementation is significantly less complex.

Convolutional codes can be catastrophic, having the potential to generate an unlimited number
of decoded bit errors in response to a finite number of errors in the demodulated bit sequence.
Catastrophic error propagation is avoided if the code has generator polynomials with a greatest
common divisor of the form xa for any a or, equivalently, if there are no closed-loop paths in the
state diagram with all-zero output other than the one taken with all-zero input. Systematic codes
are not catastrophic.
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10.6 Decoding of Convolutional Codes

In 1967, Viterbi developed a maximum likelihood decoding algorithm that takes advantage of the
trellis structure to reduce the complexity of the evaluation. This algorithm has become known as
the Viterbi algorithm. With each received n-tuple, the decoder computes a metric or measure of
likelihood for all paths that could have been taken during that interval and discards all but the most
likely to terminate on each node. An arbitrary decision is made if path metrics are equal. The metrics
can be formed using either hard or soft decision information with little difference in implementation
complexity.

If the message has finite length and the encoder is subsequently flushed with zeros, a single decoded
path remains. With a BSC, this path corresponds to the valid code sequence with minimum Hamming
distance from the demodulated sequence. Full-length decoding becomes impractical as the length of
the message sequence increases. The most likely paths tend to have a common stem, however, and
selecting the trace value four or five times the constraint length prior to the present decoding depth
results in near-optimum performance. Since the number of paths examined during each interval
increases exponentially with the constraint length, the Viterbi algorithm also becomes impractical for
codes with large constraint length. To date, Viterbi decoding has been implemented for codes with
constraint lengths up to ten. Other decoding techniques, such as sequential and threshold decoding,
can be used with larger constraint lengths.

Sequential decoding was proposed by Wozencraft, and the most widely used algorithm was devel-
oped by Fano. Rather than tracking multiple paths through the trellis, the sequential decoder operates
on a single path while searching the code tree for a path with high probability. It makes tentative
decisions regarding the transmitted sequence, computes a metric between its proposed path and the
demodulated sequence, and moves forward through the tree as long as the metric indicates that the
path is likely. If the likelihood of the path becomes low, the decoder moves backward, searching
other paths until it finds one with high probability. The number of computations involved in this
procedure is almost independent of the constraint length and is typically quite small, but it can be
highly variable, depending on the channel. Buffers must be provided to store incoming sequences
as the decoder searches the tree. Their overflow is a significant limiting factor in the performance of
these decoders.

Figure 10.5 compares the performance of the Viterbi and sequential decoding algorithms for several
convolutional codes operating on coherently demodulated BPSK signals corrupted by AWGN. Other
decoding algorithms have also been developed, including syndrome decoding methods such as table
look-up feedback decoding and threshold decoding [6]. These algorithms are easily implemented
but offer suboptimal performance. Techniques such as the one discussed by [1] have been developed
to support both soft input and soft output, but these decoding techniques typically increase decoder
complexity.

10.7 Trellis-Coded Modulation

Trellis-coded modulation (TCM) has received considerable attention since its development by Unger-
boeck in the late 1970s [11]. Unlike block and convolutional codes, TCM schemes achieve coding gain
by increasing the size of the signal alphabet and using multilevel/phase signalling. Like convolutional
codes, sequences of coded symbols are restricted to certain valid patterns. In TCM, these patterns
are chosen to have large Euclidean distance from one another so that a large number of corrupted
sequences can be corrected. The Viterbi algorithm is often used to decode these sequences. Since the
symbol transmission rate does not increase, coded and uncoded signals require the same transmis-
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FIGURE 10.5: Convolutional code performance. Source: Omura, J.K. and Levitt, B.K., c© 1982 IEEE,
“Coded Error Probability Evaluation for Antijam Communication Systems,” IEEE Trans. Commun.,
vol. COM-30, no. 5, pp. 896–903. Reprinted by permission of IEEE.

sion bandwidth. If transmission power is held constant, the signal constellation of the coded signal
is denser. The loss in symbol separation, however, is more than overcome by the error correction
capability of the code.

Ungerboeck investigated the increase in channel capacity that can be obtained by increasing the
size of the signal set and restricting the pattern of transmitted symbols, and concluded that almost all
of the additional capacity can be gained by doubling the number of points in the signal constellation.
This is accomplished by encoding the binary data with a rate R = k/(k + 1) code and mapping
sequences of k + 1 coded bits to points in a constellation of 2k+1 symbols. For example, the rate 2/3
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encoder of Fig. 10.6(a) encodes pairs of source bits to three coded bits. Figure 10.6(b) depicts one
stage in the trellis of the coded output where, as with the convolutional code, the state of the encoder
is defined by the values of the two most recent bits to enter the shift register. Note that unlike the
trellis for the convolutional code, this trellis contains parallel paths between nodes.

FIGURE 10.6: Rate 2/3 trellis-coded modulation.

The key to improving performance with TCM is to map the coded bits to points in the signal
space such that the Euclidean distance between transmitted sequences is maximized. A method that
ensures improved Euclidean distance is the method of set partitioning. This involves separating
all parallel paths on the trellis with maximum distance and assigning the next greatest distance to
paths that diverge from or merge onto the same node. Figures 10.6(c) and 10.6(d) give examples of
mappings for the rate 2/3 code with 8-PSK and 8-PAM signal constellations, respectively.

As with convolutional codes, the free distance of a TCM code is defined as the minimum distance
between paths through the trellis, where the distance of concern is now Euclidean distance rather
than Hamming distance. The free distance of an uncoded signal is defined as the distance between
the closest signal points. When coded and uncoded signals have the same average power, the coding
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gain of the TCM system is defined as

coding gain = 20 log10

(
dfree, coded

dfree, uncoded

)
(10.9)

It canbe shownthat the simple, rate2/38phase-shift keying (PSK)and8pulse-amplitudemodulation
(PAM) TCM systems provide gains of 3 dB and 3.3 dB, respectively, [6]. More complex TCM systems
yield gains up to 6 dB. Tables of good codes are given in [11].

10.8 Additional Measures

When the demodulated sequence contains bursts of errors, the performance of codes designed to
correct independent errors improves if coded sequences are interleaved prior to transmission and
deinterleaved prior to decoding. Deinterleaving separates the burst errors, making them appear more
random and increasing the likelihood of accurate decoding. It is generally sufficient to interleave
several block lengths of a block coded signal or several constraint lengths of a convolutionally encoded
signal. Block interleaving is the most straightforward approach, but delay and memory requirements
are halved with convolutional and helical interleaving techniques. Periodicity in the way sequences
are combined is avoided with pseudorandom interleaving.

Serially concatenated codes, first investigated by Forney, use two levels of coding to achieve a
level of performance with less complexity than a single coding stage would require. The inner code
interfaces with the modulator and demodulator and corrects the majority of the errors; the outer
code corrects errors that appear at the output of the inner-code decoder. A convolutional code with
Viterbi decoding is usually chosen as the inner code, and an RS code is often chosen as the outer
code due to its ability to correct the bursts of bit errors which can result with incorrect decoding of
trellis-coded sequences. Interleaving and deinterleaving outer-code symbols between coding stages
offers further protection against the burst error output of the inner code.

Product codes effectively place the data in a two dimensional array and use FEC techniques over
both the rows and columns of this array. Not only do these codes result in error protection in two
dimensions, but the manner in which the array is constructed can offer advantages similar to those
achieved through interleaving.

10.9 Turbo Codes

The most recent significant achievement in FEC coding is the development of Turbo codes [3].
The principle of this coding technique is to encode the data with two or more constituent codes
concatenated in parallel form. The received sequence is decoded in an iterative, serial approach using
soft-input, soft-output decoders. This iterative decoding approach involves feedback of information
in a manner similar to processes within the turbo engine, giving this coding technique its name.

Turbo codes effectively result in the construction of relatively long codewords with few codewords
being close in terms of Hamming distance, while at the same time constraining the implementa-
tion complexity of the decoder to practical limits. The first Turbo codes developed used recursive
systematic convolutional codes as the constituent codes, and punctured them to improve the code
rate. The use of other constituent codes has since been considered. Two or more of these codes are
concatenated in parallel,where code concatenation is combined with interleaving in order to increase
the independence of the data sequences encoded by the constituent encoders. This apparent increase
in randomness, implemented with simple interleavers, is an important contributing factor to the
excellent performance of the decoders.
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As in other multi-stage coding techniques, the complexity of the decoder is limited through use
of separate decoding stages for each constituent code. The input to the first stage is the soft output
of the demodulator for a finite-length received symbol sequence. Subsequent stages use both the
demodulator output and an output of the previous decoding stage which is indicative of the reliability
of the symbols. This information, gleaned fromsoft-outputdecoders, is calledextrinsic information.

Decoding proceeds by iterating through constituent decoders, each forwarding updated extrinsic
information to the next decoder, until a predefined number of iterations has been completed or
the extrinsic information indicates that high reliability has been achieved. This approach results
in very good performance at low values of Eb/N0. Simulations have demonstrated error rates of
10−5 at signal-to-noise ratios appreciably less than 1 dB. At higher values of Eb/N0, however, the
performance curves can exhibit flattening if constituent codes are chosen in a manner that results in
an overall small Hamming distance for the code.

Although this coding technique has shown great promise, there remains considerable work with
regard to optimizing code parameters. Great strides have been made over the last few years in
understanding the structure of these codes and relating them to serially concatenated and product
codes, but many researchers are still examining these codes in order to advance their development.
With this research will come optimization of the Turbo code process and application of these codes
in various communication systems.

10.10 Applications

FEC coding remained of theoretical interest until advances in digital technology and improvements in
decodingalgorithmsmade their implementationpossible. Ithas sincebecomeanattractivealternative
to improving other system components or boosting transmission power. FEC codes are commonly
used in digital storage systems, deep-space and satellite communication systems, terrestrial radio and
band limited wireline systems, and have also been proposed for fiber optic transmission. Accordingly,
the theory and practice of error correcting codes now occupies a prominent position in the field of
communications engineering.

Deep-space systems began using forward error correction in the early 1970s to reduce transmis-
sion power requirements, and used multiple error correcting RS codes for the first time in 1977 to
protect against corruption of compressed image data in the Voyager missions [12]. The Consultative
Committee for Space Data Systems (CCSDS) has since recommended use of a concatenated coding
system which uses a rate 1/2, constraint length 7 convolutional inner code and a (255, 223) RS outer
code.

Coding is now commonly used in satellite systems to reduce power requirements and overall
hardware costs and to allow closer orbital spacing of geosynchronous satellites [2]. FEC codes play
integral roles in the VSAT, MSAT, INTELSAT, and INMARSAT systems [13]. Further, a (31, 15)
RS code is used in the joint tactical information distribution system (JTIDS), a (7, 2) RS code is
used in the air force satellite communication system (AFSATCOM), and a (204, 192) RS code has
been designed specifically for satellite time division multiple access (TDMA) systems. Another code
designed for military applications involves concatenation of a Golay and RS code with interleaving to
ensure an imbalance of 1’s and 0’s in the transmitted symbol sequence and enhance signal recovery
under severe noise and interference [2].

TCM has become commonplace in transmission of data over voiceband telephone channels.
Modems developed since 1984 use trellis coded QAM modulation to provide robust communi-
cation at rates above 9.6 kb/s. Various coding techniques are used in the new digital cellular and
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personal communication standards, with an emphasis on convolutional and cyclic redundancy check
codes [8].

FEC codes have also been widely used in digital recording systems, most prominently in the
compact disc digital audio system. This system uses two levels of coding and interleaving in the
cross-interleaved RS coding (CIRC) system to correct errors that result from disc imperfections
and dirt and scratches which accumulate during use. Steps are also taken to mute uncorrectable
sequences [12].

Defining Terms

Binary symmetric channel: A memoryless discrete data channel with binary signalling, hard-
decision demodulation, and channel impairments that do not depend on the value of the
symbol transmitted.

Bounded distance decoding: Limiting the error patterns which are corrected in an imperfect
code to those with t or fewer errors.

Catastrophic code: A convolutional code in which a finite number of code symbol errors can
cause an unlimited number of decoded bit errors.

Code rate: The ratio of source word length to codeword length, indicative of the amount of
information transmitted per encoded symbol.

Coding gain: The reduction in signal-to-noise ratio required for specified error performance in
a block or convolutional coded system over an uncoded system with the same information
rate, channel impairments, and modulation and demodulation techniques. In TCM, the
ratio of the squared free distance in the coded system to that of the uncoded system.

Column distance: The minimum Hamming distance between convolutionally encoded se-
quences of a specified length with different leading n-tuples.

Constituent codes: Two or more FEC codes that are combined in concatenated coding tech-
niques.

Cyclic code: A block code in which cyclic shifts of code vectors are also code vectors.

Cyclic redundancy check: When the syndrome of a cyclic block code is used to detect errors.

Designed distance: The guaranteed minimum distance of a BCH code designed to correct up
to t errors.

Discrete data channel: The concatenation of all system elements between FEC encoder output
and decoder input.

Distance profile: The minimum Hamming distance after each encoding interval of convolu-
tionally encoded sequences which differ in the first interval.

Erasure: A position in the demodulated sequence where the symbol value is unknown.

Extrinsic information: The output of a constituent soft decision decoder that is forwarded as
input to the next decoding stage in iterative decoding of Turbo codes.

Finite field: A finite set of elements and operations of addition and multiplication that satisfy
specific properties. Often called Galois fields and denoted GF(q), where q is the number
of elements in the field. Finite fields exist for all q which are prime or the power of a
prime.

Free distance: The minimum Hamming weight of convolutionally encoded sequences that
diverge and remerge in the trellis. Equals the maximum column distance and the limiting
value of the distance profile.

c©1999 by CRC Press LLC



Generator matrix: A matrix used to describe a linear code. Code vectors equal the information
vectors multiplied by this matrix.

Generator polynomial: The polynomial that is a divisor of all codeword polynomials in a cyclic
block code; a polynomial that describes circuit connections in a convolutional encoder.

Hamming distance: The number of symbols in which codewords differ.

Hard decision: Demodulation that outputs only a value for each received symbol.

Interleaving: Shuffling the coded bit sequence prior to modulation and reversing this operation
following demodulation. Used to separate and redistribute burst errors over several
codewords (block codes) or constraint lengths (trellis codes) for higher probability of
correct decoding by codes designed to correct random errors.

Linear code: A code whose code vectors form a vector space. Equivalently, a code where the
addition of any two code vectors forms another code vector.

Maximum distance separable: A code with the largest possible minimum distance given the
block length and code rate. These codes meet the Singleton bound of dmin ≤ n − k + 1.

Metric: A measure of goodness against which items are judged. In the Viterbi algorithm,
an indication of the probability of a path being taken given the demodulated symbol
sequence.

Minimum distance: In a block code, the smallest Hamming distance between any two code-
words. In a convolutional code, the column distance after K intervals.

Parity check matrix: A matrix whose rows are orthogonal to the rows in the generator matrix
of a linear code. Errors can be detected by multiplying the received vector by this matrix.

Perfect code: A t error correcting (n, k) block code in which qn−k − 1 = 6t
i=1

(
n
i

)
.

Puncturing: Periodic deletion of code symbols from the sequence generated by a convolutional
encoder for purposes of constructing a higher rate code. Also, deletion of parity bits in a
block code.

Set partitioning: Rules for mapping coded sequences to points in the signal constellation that
always result in a larger Euclidean distance for a TCM system than an uncoded system,
given appropriate construction of the trellis.

Shannon Limit: The ratio of energy per data bit Eb to one-sided noise power spectral density
N0 in an AWGN channel above which errorless transmission is possible when bandwidth
limitations are not placed on the signal and transmission is at channel capacity. This limit
has the value ln 2 = 0.693= −1.6 dB.

Soft decision: Demodulation that outputs an estimate of the received symbol value along with
an indication of the reliability of this value. Usually implemented by quantizing the
received signal to more levels than there are symbol values.

Standard array decoding: Association of an error pattern with each syndrome by way of a
lookup table.

Syndrome: An indication of whether or not errors are present in the demodulated symbol
sequence.

Systematic code: A code in which the values of the message symbols can be identified by
inspection of the code vector.

Vector space: An algebraic structure comprised of a set of elements in which operations of
vector addition and scalar multiplication are defined. For our purposes, a set of n-tuples
consisting of symbols from GF(q) with addition and multiplication defined in terms of
elementwise operations from this finite field.
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Viterbi algorithm: A maximum-likelihood decoding algorithm for trellis codes that discards
low-probability paths at each stage of the trellis, thereby reducing the total number of
paths that must be considered.
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Further Information

There is now a large amount of literature on the subject of FEC coding. An introduction to the
philosophy and limitations of these codes can be found in the second chapter of Lucky’s book
Silicon Dreams: Information, Man, and Machine, St. Martin’s Press, New York, 1989. More practical
introductions can be found in overview chapters of many communications texts. The number of texts
devoted entirely to this subject also continues to grow. Although these texts summarize the algebra
underlying block codes, more in-depth treatments can be found in mathematical texts. Survey papers
appear occasionally in the literature, but the interested reader is directed to the seminal papers by
Shannon, Hamming, Reed and Solomon, Bose and Chaudhuri, Hocquenghem, Wozencraft, Fano,
Forney, Berlekamp, Massey, Viterbi, Ungerboeck, Berrou and Glavieux, among others. The most
recent advances in the theory and implementation of error control codes are published in IEEE
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Transactions on Information Theory, IEEE Transactions on Communications, and special issues of IEEE
Journal on Selected Areas in Communications.
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