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Manyphysical communications channels, suchas radio channels, accept a continuous-timewaveform
as input. Consequently, a sequence of source bits, representing data or a digitized analog signal, must
be converted to a continuous-time waveform at the transmitter. In general, each successive group of
bits taken from this sequence is mapped to a particular continuous-time pulse. In this chapter we
discuss the basic principles involved in selecting such a pulse for channels that can be characterized
as linear and time invariant with finite bandwidth.

4.1 Communications System Model

Figure 4.1a shows a simple block diagram of a communications system. The sequence of source bits
{bi} are grouped into sequential blocks (vectors) of m bits {bi}, and each binary vector bi is mapped
to one of 2m pulses, p(bi; t), which is transmitted over the channel. The transmitted signal as a
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function of time can be written as

s(t) =
∑

i

p(bi; t − iT ) (4.1)

where 1/T is the rate at which each group of m bits, or pulses, is introduced to the channel. The
information (bit) rate is therefore m/T .

Figure 4.1a Communication system model. The source bits are grouped into binary vectors, which are mapped to

a sequence of pulse shapes.

Figure 4.1b Channel model consisting of a linear, time-invariant system (transfer function) followed by additive

noise.

The channel in Fig. 4.1a can be a radio link, which may distort the input signal s(t) in a variety
of ways. For example, it may introduce pulse dispersion (due to finite bandwidth) and multipath, as
well as additive background noise. The output of the channel is denoted as x(t), which is processed
by the receiver to determine estimates of the source bits. The receiver can be quite complicated;
however, for the purpose of this discussion, it is sufficient to assume only that it contains a front-end
filter and a sampler, as shown in Fig. 4.1a. This assumption is valid for a wide variety of detection
strategies. The purpose of the receiver filter is to remove noise outside of the transmitted frequency
band and to compensate for the channel frequency response.

A commonly used channel model is shown in Fig. 4.1b and consists of a linear, time-invariant
filter, denoted as G(f ), followed by additive noise n(t). The channel output is, therefore,

x(t) = [g(t) ∗ s(t)] + n(t) (4.2)

where g(t) is the channel impulse response associated with G(f ), and the asterisk denotes convolu-
tion,

g(t) ∗ s(t) =
∫ ∞

−∞
g(t − τ)s(τ ) dτ

This channel model accounts for all linear, time-invariant channel impairments, such as finite band-
width and time-invariant multipath. It does not account for time-varying impairments, such as
rapid fading due to time-varying multipath. Nevertheless, this model can be considered valid over
short time periods during which the multipath parameters remain constant.

In Figs. 4.1a, and 4.1b, it is assumed that all signals are baseband signals, which means that
the frequency content is centered around f = 0 (DC). The channel passband, therefore, partially
coincides with the transmitted spectrum. In general, this condition requires that the transmitted
signal be modulated by an appropriate carrier frequency and demodulated at the receiver. In that
case, the model in Figs. 4.1a, and 4.1b still applies; however, baseband-equivalent signals must be
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derived from their modulated (passband) counterparts. Baseband signalling and pulse shaping refers
to the way in which a group of source bits is mapped to a baseband transmitted pulse.

As a simple example of baseband signalling, we can take m = 1 (map each source bit to a pulse),
assign a 0 bit to a pulse p(t), and a 1 bit to the pulse −p(t). Perhaps the simplest example of a
baseband pulse is the rectangular pulse given by p(t) = 1, 0 < t ≤ T , and p(t) = 0 elsewhere. In
this case, we can write the transmitted signal as

s(t) =
∑

i

Aip(t − iT ) (4.3)

where each symbol Ai takes on a value of +1 or −1, depending on the value of the ith bit, and 1/T

is the symbol rate, namely, the rate at which the symbols Ai are introduced to the channel.

Thepreceding example is called binarypulseamplitudemodulation(PAM), since thedata symbols
Ai are binary valued, and they amplitude modulate the transmitted pulse p(t). The information
rate (bits per second) in this case is the same as the symbol rate 1/T . As a simple extension of this
signalling technique, we can increase m and choose Ai from one of M = 2m values to transmit at
bit rate m/T . This is known as M-ary PAM. For example, letting m = 2, each pair of bits can be
mapped to a pulse in the set {p(t), −p(t), 3p(t), −3p(t)}.

In general, the transmitted symbols {Ai}, the baseband pulse p(t), and channel impulse response
g(t) can be complex valued. For example, each successive pair of bits might select a symbol from the
set {1, −1, j,−j}, where j = √−1. This is a consequence of considering the baseband equivalent
of passband modulation. (That is, generating a transmitted spectrum which is centered around
a carrier frequency fc.) Here we are not concerned with the relation between the passband and
baseband equivalent models and simply point out that the discussion and results in this chapter
apply to complex-valued symbols and pulse shapes.

As an example of a signalling technique which is not PAM, let m = 1 and

p(0; t) =
{ √

2sin(2πf1t) 0 < t < T

0 elsewhere

p(1; t) =
{ √

2sin(2πf2t) 0 < t < T

0 elsewhere

(4.4)

where f1 and f2 6= f1 are fixed frequencies selected so that f1T and f2T (number of cycles for each
bit) are multiples of 1/2. These pulses are orthogonal, namely,

∫ T

0
p(1; t)p(0; t) dt = 0

This choice of pulse shapes is called binary frequency-shift keying (FSK).

Another example of a set of orthogonal pulse shapes for m = 2bits/T is shown in Fig. 4.2. Because
these pulses may have as many as three transitions within a symbol period, the transmitted spectrum
occupies roughly four times the transmitted spectrum of binary PAM with a rectangular pulse shape.
The spectrum is, therefore, spread across a much larger band than the smallest required for reliable
transmission, assuming a data rate of 2/T . This type of signalling is referred to as spread-spectrum.
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FIGURE 4.2: Four orthogonal spread-spectrum pulse shapes.

Spread-spectrum signals are more robust with respect to interference from other transmitted signals
than are narrowband signals.1

4.2 Intersymbol Interference and the Nyquist Criterion

Consider the transmission of a PAM signal illustrated in Fig. 4.3. The source bits {bi} are mapped
to a sequence of levels {Ai}, which modulate the transmitter pulse p(t). The channel input is,
therefore, given by Eq. (4.3) where p(t) is the impulse response of the transmitter pulse-shaping filter
P(f ) shown in Fig. 4.3. The input to the transmitter filter P(f ) is the modulated sequence of delta
functions

∑
i Aiδ(t − iT ). The channel is represented by the transfer function G(f ) (plus noise),

which has impulse response g(t), and the receiver filter has transfer function R(f ) with associated
impulse response r(t).

FIGURE 4.3: Baseband model of a pulse amplitude modulation system.

Let h(t) be the overall impulse response of the combined transmitter, channel, and receiver, which
has transfer function H(f ) = P(f )G(f )R(f ). We can write h(t) = p(t) ∗ g(t) ∗ r(t). The output

1This example can also be viewed as coded binary PAM. Namely, each pair of two source bits are mapped to 4 coded bits,
which are transmitted via binary PAM with a rectangular pulse. The current IS-95 air interface uses an extension of this
signalling method in which groups of 6 bits are mapped to 64 orthogonal pulse shapes with as many as 63 transitions
during a symbol.
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of the receiver filter is then
y(t) =

∑
i

Aih(t − iT ) + ñ(t) (4.5)

where ñ(t) = r(t) ∗ n(t) is the output of the filter R(f ) with input n(t). Assuming that samples are
collected at the output of the filter R(f ) at the symbol rate 1/T , we can write the kth sample of y(t)

as

y(kT ) =
∑

i

Aih(kT − iT ) + ñ(kT )

= Akh(0) +
∑
i 6=k

Aih(kT − iT ) + ñ(kT ) (4.6)

The first term on the right-hand side of Eq. (4.6) is the kth transmitted symbol scaled by the system
impulse response at t = 0. If this were the only term on the right side of Eq. (4.6), we could obtain the
source bits without error by scaling the received samples by 1/h(0). The second term on the right-
hand side of Eq. (4.6) is called intersymbol interference, which reflects the view that neighboring
symbols interfere with the detection of each desired symbol.

One possible criterion for choosing the transmitter and receiver filters is to minimize intersymbol
interference. Specifically, if we choose p(t) and r(t) so that

h(kT ) =
{

1 k = 0
0 k 6= 0

(4.7)

then the kth received sample is
y(kT ) = Ak + ñ(kT ) (4.8)

In this case, the intersymbol interference has been eliminated. This choice of p(t) and r(t) is called a
zero-forcing solution, since it forces the intersymbol interference to zero. Depending on the type of
detection scheme used, a zero-forcing solution may not be desirable. This is because the probability
of error also depends on the noise intensity, which generally increases when intersymbol interference
is suppressed. It is instructive, however, to examine the properties of the zero-forcing solution.

We now view Eq. (4.7) in the frequency domain. Since h(t) has Fourier transform

H(f ) = P(f )G(f )R(f ) (4.9)

where P(f ) is the Fourier transform of p(t), the bandwidth of H(f ) is limited by the bandwidth of
the channel G(f ). We will assume that G(f ) = 0, |f | > W . The sampled impulse response h(kT )

can, therefore, be written as the inverse Fourier transform

h(kT ) =
∫ W

−W

H(f )ej2πf kT df

Through a series of manipulations, this integral can be rewritten as an inverse discrete Fourier
transform,

h(kT ) = T

∫ 1/(2T )

−1/(2T )

Heq

(
ej2πf T

)
ej2πf kT df (4.10a)

where

c©1999 by CRC Press LLC



Heq(e
j2πf T ) = 1

T

∑
k

H

(
f + k

T

)

= 1

T

∑
k

P

(
f + k

T

)
G

(
f + k

T

)
R

(
f + k

T

)
(4.10b)

This relation states that Heq(z), z = ej2πf T , is the discrete Fourier transform of the sequence {hk},
wherehk = h(kT ). Sampling the impulse responseh(t) therefore changes the transfer functionH(f )

to the aliased frequency response Heq(e
j2πf T ). From Eqs. (4.10a–4.10b), and (4.6) we conclude that

Heq(z) is the transfer function that relates the sequence of input data symbols {Ai} to the sequence
of received samples {yi}, where yi = y(iT ), in the absence of noise. This is illustrated in Fig. 4.4.
For this reason, Heq(z) is called the equivalent discrete-time transfer function for the overall system
transfer function H(f ).

FIGURE 4.4: Equivalent discrete-time channel for the PAM system shown in Fig. 4.3 [yi =
y(iT ), ñi = ñ(iT )]

Since Heq(e
j2πf T ) is the discrete Fourier transform of the sequence {hk}, the time-domain, or

sequence condition (4.7) is equivalent to the frequency-domain condition

Heq

(
ej2πf T

)
= 1 (4.11)

This relation is called the Nyquist criterion. From Eqs. (4.10b) and (4.11) we make the following
observations.

1. To satisfy the Nyquist criterion, the channel bandwidth W must be at least 1/(2T ).
Otherwise, G(f + n/T ) = 0 for f in some interval of positive length for all n, which
implies that Heq(e

j2πf T ) = 0 for f in the same interval.

2. For the minimum bandwidthW = 1/(2T ), Eqs. (4.10b) and (4.11) imply thatH(f ) = T

for |f | < 1/(2T )andH(f ) = 0elsewhere. This implies that the systemimpulse response
is given by

h(t) = sin(πt/T )

πt/T
(4.12)

(Since
∫∞
−∞ h2(t) dt = T , the transmitted signal s(t) = ∑

i Aih(t − iT ) has power equal

to the symbol variance E[|Ai |2].) The impulse response in Eq. (4.12) is called a minimum
bandwidth or Nyquist pulse. The frequency band [−1/(2T ), 1/(2T )] [i.e., the passband
of H(f )] is called the Nyquist band.

3. Suppose that the channel is bandlimited to twice the Nyquist bandwidth. That is, G(f ) =
0 for |f | > 1/T . The condition (4.11) then becomes
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H(f ) + H

(
f − 1

T

)
+ H

(
f + 1

T

)
= T (4.13)

Assume for the moment that H(f ) and h(t) are both real valued, so that H(f ) is an even
function of f [H(f ) = H(−f )]. This is the case when the receiver filter is the matched
filter (see Section 4.3). We can then rewrite Eq. (4.13) as

H(f ) + H

(
1

T
− f

)
= T , 0 < f <

1

2T
(4.14)

which states that H(f ) must have odd symmetry about f = 1/(2T ). This is illustrated
in Fig. 4.5, which shows two different transfer functions H(f ) that satisfy the Nyquist
criterion.

4. The pulse shape p(t) enters into Eq. (4.11) only through the product P(f )R(f ). Conse-
quently, either P(f ) or R(f ) can be fixed, and the other filter can be adjusted or adapted
to the particular channel. Typically, the pulse shape p(t) is fixed, and the receiver filter is
adapted to the (possibly time-varying) channel.

FIGURE 4.5: Two examples of frequency responses that satisfy the Nyquist criterion.

4.2.1 Raised Cosine Pulse

Suppose that the channel is ideal with transfer function

G(f ) =
{

1, |f | < W

0, |f | > W
(4.15)

To maximize bandwidth efficiency, Nyquist pulses given by Eq. (4.12) should be used where
W = 1/(2T ). This type of signalling, however, has two major drawbacks. First, Nyquist pulses
are noncausal and of infinite duration. They can be approximated in practice by introducing an ap-
propriate delay, and truncating the pulse. The pulse, however, decays very slowly, namely, as 1/t , so
that the truncation window must be wide. This is equivalent to observing that the ideal bandlimited
frequency response given by Eq. (4.15) is difficult to approximate closely. The second drawback,
which is more important, is the fact that this type of signalling is not robust with respect to sampling
jitter. Namely, a small sampling offset ε produces the output sample

y(kT + ε) =
∑

i

Ai

sin[π(k − i + ε/T )]
π(k − i + ε/T )

(4.16)
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Since the Nyquist pulse decays as 1/t , this sum is not guaranteed to converge. A particular choice
of symbols {Ai} can, therefore, lead to very large intersymbol interference, no matter how small the
offset. Minimum bandwidth signalling is therefore impractical.

The preceding problem is generally solved in one of two ways in practice:

1. The pulse bandwidth is increased to provide a faster pulse decay than 1/t .

2. A controlled amount of intersymbol interference is introduced at the transmitter, which
can be subtracted out at the receiver.

The former approach sacrifices bandwidth efficiency, whereas the latter approach sacrifices power
efficiency. We will examine the latter approach in Section 4.5. The most common example of a pulse,
which illustrates the first technique, is the raised cosine pulse, given by

h(t) =
[

sin(πt/T )

πt/T

] [
cos(απt/T )

1 − (2αt/T )2

]
(4.17)

which has Fourier transform

H(f ) =




T 0 ≤ |f | ≤ 1 − α

2T

T

2

{
1 + cos

[
πT

α

(
|f | − 1 − α

2T

)]}
1 − α

2T
≤ |f | ≤ 1 + α

2T

0 |f | >
1 + α

2T

(4.18)

where 0 ≤ α ≤ 1.
Plots of p(t) and P(f ) are shown in Figs. 4.6a, and 4.6b for different values of α. It is easily

verified that h(t) satisfies the Nyquist criterion (4.7) and, consequently, H(f ) satisfies Eq. (4.11).
When α = 0, H(f ) is the Nyquist pulse with minimum bandwidth 1/(2T ), and when α > 0, H(f )

has bandwidth (1+ α)/(2T ) with a raised cosine rolloff. The parameter α, therefore, represents the
additional, or excess bandwidth as a fraction of the minimum bandwidth 1/(2T ). For example,
when α = 1, we say that the pulse is a raised cosine pulse with 100% excess bandwidth. This is
because the pulse bandwidth 1/T is twice the minimum bandwidth. Because the raised cosine pulse
decays as 1/t3, performance is robust with respect to sampling offsets.

The raised cosine frequency response (4.18) applies to the combination of transmitter, channel,
and receiver. If the transmitted pulse shape p(t) is a raised cosine pulse, then h(t) is a raised cosine
pulse only if the combined receiver and channel frequency response is constant. Even with an ideal
(transparent) channel, however, the optimum (matched) receiver filter response is generally not
constant in the presence of additive Gaussian noise. An alternative is to transmit the square-root
raised cosine pulse shape, which has frequency response P(f ) given by the square-root of the raised
cosine frequency response in Eq. (4.18). Assuming an ideal channel, setting the receiver frequency
response R(f ) = P(f ) then results in an overall raised cosine system response H(f ).

4.3 Nyquist Criterion with Matched Filtering

Consider the transmission of an isolated pulse A0δ(t). In this case the input to the receiver in Fig. 4.3
is

x(t) = A0g̃(t) + n(t) (4.19)
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Figure 4.6a Raised cosine pulse.

Figure 4.6b Raised cosine spectrum.

where g̃(t) is the inverse Fourier transform of the combined transmitter-channel transfer function
G̃(f ) = P(f )G(f ). We will assume that the noise n(t) is white with spectrum N0/2. The output
of the receiver filter is then

y(t) = r(t) ∗ x(t) = A0[r(t) ∗ g̃(t)] + [r(t) ∗ n(t)] (4.20)

The first term on the right-hand side is the desired signal, and the second term is noise. Assuming
that y(t) is sampled at t = 0, the ratio of signal energy to noise energy, or signal-to-noise ratio (SNR)
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at the sampling instant, is

SNR =
E
[|A0|2

] ∣∣∣∣
∫ ∞

−∞
r(−t)g̃(t) dt

∣∣∣∣
2

N0

2

∫ ∞

−∞
|r(t)|2 dt

(4.21)

The receiver impulse response that maximizes this expression is r(t) = g̃∗(−t) [complex conjugate
of g̃(−t)], which is known as the matched filter impulse response. The associated transfer function
is R(f ) = G̃∗(f ).

Choosing the receiver filter to be the matched filter is optimal in more general situations, such as
when detecting a sequence of channel symbols with intersymbol interference (assuming the additive
noise is Gaussian). We, therefore, reconsider the Nyquist criterion when the receiver filter is the
matched filter. In this case, the baseband model is shown in Fig. 4.7, and the output of the receiver
filter is given by

y(t) =
∑

i

Aih(t − iT ) + ñ(t) (4.22)

where the baseband pulse h(t) is now the impulse response of the filter with transfer function
|G̃(f )|2 = |P(f )G(f )|2. This impulse response is the autocorrelation of the impulse response of
the combined transmitter-channel filter G̃(f ),

h(t) =
∫ ∞

−∞
g̃∗(s)g̃(s + t) ds (4.23)

FIGURE 4.7: Baseband PAM model with a matched filter at the receiver.

With a matched filter at the receiver, the equivalent discrete-time transfer function is

Heq(e
j2πf T ) = 1

T

∑
k

∣∣∣∣G̃
(

f − k

T

)∣∣∣∣
2

= 1

T

∑
k

∣∣∣∣P
(

f − k

T

)
G

(
f − k

T

)∣∣∣∣
2

(4.24)

which relates the sequence of transmitted symbols {Ak} to the sequence of received samples {yk} in
the absence of noise. Note that Heq(e

j2πf T ) is positive, real valued, and an even function of f . If
the channel is bandlimited to twice the Nyquist bandwidth, then H(f ) = 0 for |f | > 1/T , and
the Nyquist condition is given by Eq. (4.14) where H(f ) = |G(f )P (f )|2. The aliasing sum in
Eq. (4.10b) can therefore be described as a folding operation in which the channel response |H(f )|2
is folded around the Nyquist frequency 1/(2T ). For this reason, Heq(e

j2πf T ) with a matched receiver
filter is often referred to as the folded channel spectrum.
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4.4 Eye Diagrams

One way to assess the severity of distortion due to intersymbol interference in a digital communica-
tions system is to examine the eye diagram. The eye diagram is illustrated in Figs. 4.8a and 4.8b, for a
raised cosine pulse shape with 25% excess bandwidth and an ideal bandlimited channel. Figure 4.8a
shows the data signal at the receiver

y(t) =
∑

i

Aih(t − iT ) + ñ(t) (4.25)

where h(t) is given by Eq. (4.17), α = 1/4, each symbol Ai is independently chosen from the set
{±1, ±3}, where each symbol is equally likely, and ñ(t) is bandlimited white Gaussian noise. (The
received SNR is 30 dB.) The eye diagram is constructed from the time-domain data signal y(t) as
follows (assuming nominal sampling times at kT , k = 0, 1, 2, . . .):

1. Partition the waveform y(t) into successive segments of length T starting from t = T/2.

2. Translate each of these waveform segments [y(t), (k + 1/2)T ≤ t ≤ (k + 3/2)T ,

k = 0, 1, 2, . . .] to the interval [−T/2, T /2], and superimpose.

The resulting picture is shown in Fig. 4.8b for the y(t) shown in Fig. 4.8a. (Partitioning y(t) into
successive segments of length iT , i > 1, is also possible. This would result in i successive eye
diagrams.) The number of eye openings is one less than the number of transmitted signal levels. In
practice, the eye diagram is easily viewed on an oscilloscope by applying the received waveform y(t)

to the vertical deflection plates of the oscilloscope and applying a sawtooth waveform at the symbol
rate 1/T to the horizontal deflection plates. This causes successive symbol intervals to be translated
into one interval on the oscilloscope display.

Each waveform segmenty(t), (k+1/2)T ≤ t ≤ (k+3/2)T , depends on the particular sequence of
channel symbols surrounding Ak . The number of channel symbols that affects a particular waveform
segment depends on the extent of the intersymbol interference, shown in Eq. (4.6). This, in turn,
depends on the duration of the impulse response h(t). For example, if h(t) has most of its energy
in the interval 0 < t < mT , then each waveform segment depends on approximately m symbols.
Assuming binary transmission, this implies that there are a total of 2m waveform segments that can
be superimposed in the eye diagram. (It is possible that only one sequence of channel symbols causes
significant intersymbol interference, and this sequence occurs with very low probability.) In current
digital wireless applications the impulse response typically spans only a few symbols.

The eye diagram has the following important features which measure the performance of a digital
communications system.

4.4.1 Vertical Eye Opening

The vertical openings at any time t0, −T/2 ≤ t0 ≤ T/2, represent the separation between signal
levels with worst-case intersymbol interference, assuming that y(t) is sampled at times t = kT + t0,

k = 0, 1, 2, . . . . It is possible for the intersymbol interference to be large enough so that this vertical
opening between some, or all, signal levels disappears altogether. In that case, the eye is said to
be closed. Otherwise, the eye is said to be open. A closed eye implies that if the estimated bits
are obtained by thresholding the samples y(kT ), then the decisions will depend primarily on the
intersymbol interference rather than on the desired symbol. The probability of error will, therefore,
be close to 1/2. Conversely, wide vertical spacings between signal levels imply a large degree of
immunity to additive noise. In general, y(t) should be sampled at the times kT + t0, k = 0, 1, 2, . . . ,
where t0 is chosen to maximize the vertical eye opening.
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Figure 4.8a Received signal y(t).

Figure 4.8b Eye diagram for received signal shown in Fig. 4.8a.

4.4.2 Horizontal Eye Opening

The width of each opening indicates the sensitivity to timing offset. Specifically, a very narrow eye
opening indicates that a small timing offset will result in sampling where the eye is closed. Conversely,
a wide horizontal opening indicates that a large timing offset can be tolerated, although the error
probability will depend on the vertical opening.
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4.4.3 Slope of the Inner Eye

The slope of the inner eye indicates sensitivity to timing jitter or variance in the timing offset.
Specifically, a very steep slope means that the eye closes rapidly as the timing offset increases. In
this case, a significant amount of jitter in the sampling times significantly increases the probability
of error.

The shape of the eye diagram is determined by the pulse shape. In general, the faster the baseband
pulse decays, the wider the eye opening. For example, a rectangular pulse produces a box-shaped eye
diagram (assuming binary signalling). The minimum bandwidth pulse shape Eq. (4.12) produces an
eye diagram which is closed for all t except for t = 0. This is because, as shown earlier, an arbitrarily
small timing offset can lead to an intersymbol interference term that is arbitrarily large, depending
on the data sequence.

4.5 Partial-Response Signalling

To avoid the problems associated with Nyquist signalling over an ideal bandlimited channel, band-
width and/or power efficiency must be compromised. Raised cosine pulses compromise bandwidth
efficiency to gain robustness with respect to timing errors. Another possibility is to introduce a con-
trolled amount of intersymbol interference at the transmitter, which can be removed at the receiver.
This approach is called partial-response (PR) signalling. The terminology reflects the fact that the
sampled system impulse response does not have the full response given by the Nyquist condition
Eq. (4.7).

To illustrate PR signalling, suppose that the Nyquist condition Eq. (4.7) is replaced by the condition

hk =
{

1 k = 0, 1
0 all other k

(4.26)

The kth received sample is then
yk = Ak + Ak−1 + ñk (4.27)

so that there is intersymbol interference from one neighboring transmitted symbol. For now we focus
on the spectral characteristics of PR signalling and defer discussion of how to detect the transmitted
sequence {Ak} in the presence of intersymbol interference. The equivalent discrete-time transfer
function in this case is the discrete Fourier transform of the sequence in Eq. (4.26),

Heq(e
j2πf T ) = 1

T

∑
k

H

(
f + k

T

)

= 1 + e−j2πf T = 2e−jπf T cos(πf T ) (4.28)

As in the full-response case, for Eq. (4.28) to be satisfied, the minimum bandwidth of the channel
G(f ) and transmitter filter P(f ) is W = 1/(2T ). Assuming P(f ) has this minimum bandwidth
implies

H(f ) =
{

2T e−jπf T cos(πf T ) |f | < 1/(2T )

0 |f | > 1/(2T )
(4.29a)

and
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h(t) = T { sinc (t/T ) + sinc [(t − T )/T ]} (4.29b)

where sinc x = (sinπx)/(πx). This pulse is called a duobinary pulse and is shown along with the
associated H(f ) in Fig. 4.9. [Notice that h(t) satisfies Eq. (4.26).] Unlike the ideal bandlimited
frequency response, the transfer function H(f ) in Eq. (4.29a) is continuous and is, therefore, easily
approximated by a physically realizable filter. Duobinary PR was first proposed by Lender, [7], and
later generalized by Kretzmer, [6].

FIGURE 4.9: Duobinary frequency response and minimum bandwidth pulse.
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The main advantage of the duobinary pulse Eq. (4.29b), relative to the minimum bandwidth
pulse Eq. (4.12), is that signalling at the Nyquist symbol rate is feasible with zero excess bandwidth.
Because the pulse decays much more rapidly than a Nyquist pulse, it is robust with respect to timing
errors. Selecting the transmitter and receiver filters so that the overall system response is duobinary
is appropriate in situations where the channel frequency response G(f ) is near zero or has a rapid
rolloff at the Nyquist band edge f = 1/(2T ).

As another example of PR signalling, consider the modified duobinary partial response

hk =



1 k = −1
−1 k = 1
0 all other k

(4.30)

which has equivalent discrete-time transfer function

Heq

(
ej2πf T

)
= ej2πf T − e−j2πf T

= j2 sin(2πf T ) (4.31)

With zero excess bandwidth, the overall system response is

H(f ) =
{

j2T sin(2πf T ) |f | < 1/(2T )

0 |f | > 1/(2T )
(4.32a)

and

h(t) = T {sinc [(t + T )/T ] − sinc [(t − T )/T ]} (4.32b)

These functions are plotted in Fig. 4.10. This pulse shape is appropriate when the channel response
G(f ) is near zero at both DC (f = 0) and at the Nyquist band edge. This is often the case for wire
(twisted-pair) channels where the transmitted signal is coupled to the channel through a transformer.
Like duobinary PR, modified duobinary allows minimum bandwidth signalling at the Nyquist rate.

A particular partial response is often identified by the polynomial

K∑
k=0

hkD
k

where D (for delay) takes the place of the usual z−1 in the z transform of the sequence {hk}. For
example, duobinary is also referred to as 1 + D partial response.

In general, more complicated system responses than those shown in Figs. 4.9 and 4.10 can be
generated by choosing more nonzero coefficients in the sequence {hk}. This complicates detection,
however, because of the additional intersymbol interference that is generated.

Rather than modulating a PR pulse h(t), a PR signal can also be generated by filtering the sequence
of transmitted levels {Ai}. This is shown in Fig. 4.11. Namely, the transmitted levels are first passed
through a discrete-time (digital) filter with transfer function Pd(ej2πf T ) (where the subscript d

indicates discrete). [Note that Pd(ej2πf T ) can be selected to be Heq(e
j2πf T ).] The outputs of this

filter form the PAM signal, where the pulse shaping filter P(f ) = 1, |f | < 1/(2T ) and is zero
elsewhere. If the transmitted levels {Ak} are selected independently and are identically distributed,
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FIGURE 4.10: Modified duobinary frequency response and minimum bandwidth pulse.

then the transmitted spectrum is σ 2
A|Pd(ej2πf T )|2 for |f | < 1/(2T ) and is zero for |f | > 1/(2T ),

where σ 2
A = E[|Ak|2].

Shaping the transmitted spectrum to have nulls coincident with nulls in the channel response po-
tentially offers significant performance advantages. By introducing intersymbol interference, how-
ever, PR signalling increases the number of received signal levels, which increases the complexity of
the detector and may reduce immunity to noise. For example, the set of received signal levels for
duobinary signalling is {0, ± 2} from which the transmitted levels {± 1} must be estimated. The
performance of a particular PR scheme depends on the channel characteristics, as well as the type of
detector used at the receiver. We now describe a simple suboptimal detection strategy.
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FIGURE 4.11: Generation of PR signal.

4.5.1 Precoding

Consider the received signal sample Eq. (4.27) with duobinary signalling. If the receiver has correctly
decoded the symbol Ak−1, then in the absence of noise Ak can be decoded by subtracting Ak−1
from the received sample yk . If an error occurs, however, then subtracting the preceding symbol
estimate from the received sample will cause the error to propagate to successive detected symbols.
To avoid this problem, the transmitted levels can be precoded in such a way as to compensate for the
intersymbol interference introduced by the overall partial response.

FIGURE 4.12: Precoding for a PR channel.

TABLE 4.1 Example of Precoding for Duobinary PR.

{bi }:  1 0 0 1 1 1 0 0 1 0

{b′
i
}: 0 1 1 1 0 1 0 0 0 1 1

{Ai }: −1 1 1 1 −1 1 −1 −1 −1 1 1

{yi }:  0 2 2 0 0 0 −2 −2 0 2

We first illustrate precoding for duobinary PR. The sequence of operations is illustrated in Fig. 4.12.
Let {bk} denote the sequence of source bits where bk ∈ {0, 1}. This sequence is transformed to the
sequence {b′

k} by the operation
b′
k = bk ⊕ b′

k−1 (4.33)

where ⊕ denotes modulo 2 addition (exclusive OR). The sequence {b′
k} is mapped to the sequence

of binary transmitted signal levels {Ak} according to

Ak = 2b′
k − 1 (4.34)

That is, b′
k = 0 (b′

k = 1) is mapped to the transmitted level Ak = −1 (Ak = 1). In the absence of
noise, the received symbol is then

yk = Ak + Ak−1 = 2
(
b′
k + b′

k−1 − 1
)

(4.35)

and combining Eqs. (4.33) and (4.35) gives

bk =
(

1

2
yk + 1

)
mod 2 (4.36)
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That is, if yk = ±2, then bk = 0, and if yk = 0, then bk = 1. Precoding, therefore, enables the
detector to make symbol-by-symbol decisions that do not depend on previous decisions. Table 4.1
shows a sequence of transmitted bits {bi}, precoded bits {b′

i}, transmitted signal levels {Ai}, and
received samples {yi}.

The preceding precoding technique can be extended to multilevel PAM and to other PR channels.
Suppose that the PR is specified by

Heq(D) =
K∑

k=0

hkD
k

where the coefficients are integers and that the source symbols {bk} are selected from the set
{0, 1, . . . , M − 1}. These symbols are transformed to the sequence {b′

k} via the precoding oper-
ation

b′
k =

(
bk −

K∑
i=1

hib
′
k−i

)
mod M (4.37)

Because of the modulo operation, each symbol b′
k is also in the set {0, 1, . . . , M − 1}. The kth

transmitted signal level is given by

Ak = 2b′
k − (M − 1) (4.38)

so that the set of transmitted levels is {−(M − 1), . . . , (M − 1)} (i.e., a shifted version of the set of
values assumed by bk). In the absence of noise the received sample is

yk =
K∑

i=0

hiAk−i (4.39)

and it can be shown that the kth source symbol is given by

bk = 1

2

(
yk + (M − 1) · Heq(1)

)
mod M (4.40)

Precoding the symbols {bk} in this manner, therefore, enables symbol-by-symbol decisions at the
receiver. In the presence of noise, more sophisticated detection schemes (e.g., maximum likelihood)
can be used with PR signalling to obtain improvements in performance.

4.6 Additional Considerations

In many applications, bandwidth and intersymbol interference are not the only important considera-
tions for selecting baseband pulses. Here we give a brief discussion of additional practical constraints
that may influence this selection.

4.6.1 Average Transmitted Power and Spectral Constraints

The constraint on average transmitted power varies according to the application. For example,
low-average power is highly desirable for mobile wireless applications that use battery-powered
transmitters. In many applications (e.g., digital subscriber loops, as well as digital radio), constraints
are imposed to limit the amount of interference, or crosstalk, radiated into neighboring receivers and
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communications systems. Because this type of interference is frequency dependent, the constraint
may take the form of a spectral mask that specifies the maximum allowable transmitted power as a
function of frequency. For example, crosstalk in wireline channels is generally caused by capacitive
coupling and increases as a function of frequency. Consequently, to reduce the amount of crosstalk
generated at a particular transmitter, the pulse shaping filter generally attenuates high frequencies
more than low frequencies.

In radio applications where signals are assigned different frequency bands, constraints on the trans-
mitted spectrum are imposed to limit adjacent-channel interference. This interference is generated
by transmitters assigned to adjacent frequency bands. Therefore, a constraint is needed to limit the
amount of out-of-band power generated by each transmitter, in addition to an overall average power
constraint. To meet this constraint, the transmitter filter in Fig. 4.3 must have a sufficiently steep
rolloff at the edges of the assigned frequency band. (Conversely, if the transmitted signals are time
multiplexed, then the duration of the system impulse response must be contained within the assigned
time slot.)

4.6.2 Peak-to-Average Power

In addition to a constraint on average transmitted power, a peak-power constraint is often imposed
as well. This constraint is important in practice for the following reasons:

1. The dynamic range of the transmitter is limited. In particular, saturation of the output
amplifier will “clip” the transmitted waveform.

2. Rapid fades can severely distort signals with high peak-to-average power.

3. The transmitted signal may be subjected to nonlinearities. Saturation of the output
amplifier is one example. Another example that pertains to wireline applications is the
companding process in the voice telephone network [5]. Namely, the compander used to
reduce quantization noise for pulse-code modulated voice signals introduces amplitude-
dependent distortion in data signals.

The preceding impairments or constraints indicate that the transmitted waveform should have a low
peak-to-average power ratio (PAR). For a transmitted waveform x(t), the PAR is defined as

PAR = max |x(t)|2
E
{|x(t)|2}

where E(·) denotes expectation. Using binary signalling with rectangular pulse shapes minimizes the
PAR. However, this compromises bandwidth efficiency. In applications where PAR should be low,
binary signalling with rounded pulses are often used. Operating RF power amplifiers with power
back-off can also reduce PAR, but leads to inefficient amplification.

For an orthogonal frequency division multiplexing (OFDM) system, it is well known that the
transmitted signal can exhibit a very high PAR compared to an equivalent single-carrier system.
Hence more sophisticated approaches to PAR reduction are required for OFDM. Some proposed
approaches are described in [8] and references therein. These include altering the set of transmitted
symbols and setting aside certain OFDM tones specifically to minimize PAR.

4.6.3 Channel and Receiver Characteristics

The type of channel impairments encountered and the type of detection scheme used at the receiver
can also influence the choice of a transmitted pulse shape. For example, a constant amplitude
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pulse is appropriate for a fast fading environment with noncoherent detection. The ability to track
channel characteristics, such as phase, may allow more bandwidth efficient pulse shapes in addition
to multilevel signalling.

High-speed data communications over time-varying channels requires that the transmitter and/or
receiver adapt to the changing channel characteristics. Adapting the transmitter to compensate
for a time-varying channel requires a feedback channel through which the receiver can notify the
transmitter of changes in channel characteristics. Because of this extra complication, adapting the
receiver is often preferred to adapting the transmitter pulse shape. However, the following examples
are notable exceptions.

1. The current IS-95 air interface for direct-sequence code-division multiple access adapts
the transmitter power to control the amount of interference generated and to compensate
for channel fades. This can be viewed as a simple form of adaptive transmitter pulse
shaping in which a single parameter associated with the pulse shape is varied.

2. Multitone modulation divides the channel bandwidth into small subbands, and the trans-
mitted power and source bits are distributed among these subbands to maximize the in-
formation rate. The received signal-to-noise ratio for each subband must be transmitted
back to the transmitter to guide the allocation of transmitted bits and power [1].

In addition to multitone modulation, adaptive precoding (also known as Tomlinson–Harashima
precoding [4, 11]) is another way in which the transmitter can adapt to the channel frequency
response. Adaptive precoding is an extension of the technique described earlier for partial-response
channels. Namely, the equivalent discrete-time channel impulse response is measured at the receiver
and sent back to the transmitter, where it is used in a precoder. The precoder compensates for
the intersymbol interference introduced by the channel, allowing the receiver to detect the data by
a simple threshhold operation. Both multitone modulation and precoding have been used with
wireline channels (voiceband modems and digital subscriber loops).

4.6.4 Complexity

Generation of a bandwidth-efficient signal requires a filter with a sharp cutoff. In addition,
bandwidth-efficient pulse shapes can complicate other system functions, such as timing and car-
rier recovery. If sufficient bandwidth is available, the cost can be reduced by using a rectangular pulse
shape with a simple detection strategy (low-pass filter and threshold).

4.6.5 Tolerance to Interference

Interference is one of the primary channel impairments associated with digital radio. In addition
to adjacent-channel interference described earlier, cochannel interference may be generated by other
transmitters assigned to the same frequency band as the desired signal. Cochannel interference can
be controlled through frequency (and perhaps time slot) assignments and by pulse shaping. For
example, assuming fixed average power, increasing the bandwidth occupied by the signal lowers
the power spectral density and decreases the amount of interference into a narrowband system
that occupies part of the available bandwidth. Sufficient bandwidth spreading, therefore, enables
wideband signals to be overlaid on top of narrowband signals without disrupting either service.
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4.6.6 Probability of Intercept and Detection

The broadcast nature of wireless channels generally makes eavesdropping easier than for wired chan-
nels. A requirement for most commercial, as well as military applications, is to guarantee the privacy
of user conversations (low probability of intercept). An additional requirement, in some applications,
is that determining whether or not communications is taking place must be difficult (low probability
of detection). Spread-spectrum waveforms are attractive in these applications since spreading the
pulse energy over a wide frequency band decreases the power spectral density and, hence, makes the
signal less visible. Power-efficient modulation combined with coding enables a further reduction in
transmitted power for a target error rate.

4.7 Examples

We conclude this chapter with a brief description of baseband pulse shapes used in existing and
emerging standards for digital mobile cellular and Personal Communications Services (PCS).

4.7.1 Global System for Mobile Communications (GSM)

The European GSM standard for digital mobile cellular communications operates in the 900-MHz
frequency band, and is based on time-division multiple access (TDMA) [9]. The U.S. version operates
at 1900 MHz, and is called PCS-1900. A special variant of binary FSK is used called Gaussian
minimum-shift keying (GMSK). The GMSK modulator is illustrated in Fig. 4.13. The input to the
modulator is a binary PAM signal s(t), given by Eq. (4.3), where the pulse p(t) is a Gaussian function
and |s(t)| < 1. This waveform frequency modulates the carrier fc, so that the (passband) transmitted
signal is

w(t) = Kcos

[
2πfct + 2πfd

∫ t

−∞
s(τ ) dτ

]

The maximum frequency deviation from the carrier is fd = 1/(2T ), which characterizes minimum-
shift keying. This technique can be used with a noncoherent receiver that is easy to implement.
Because the transmitted signal has a constant envelope, the data can be reliably detected in the
presence of rapid fades that are characteristic of mobile radio channels.

FIGURE 4.13: Generation of GMSK signal; LPF is low-pass filter.

4.7.2 U.S. Digital Cellular (IS-136)

The IS-136 air interface (formerly IS-54) operates in the 800 MHz band and is based on TDMA [3].
There is alsoa1900MHzversionof IS-136. Thebasebandsignal is givenbyEq. (4.3)where the symbols
are complex-valued, corresponding to quadrature phase modulation. The pulse has a square-root
raised cosine spectrum with 35% excess bandwidth.
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4.7.3 Interim Standard-95

The IS-95 air interface for digital mobile cellular uses spread-spectrum signalling (CDMA) in the 800-
MHz band [10]. There is also a 1900 MHz version of IS-95. The baseband transmitted pulse shapes
are analogous to those shown in Fig. 4.2, where the number of square pulses (chips) per bit is 128.
To improve spectral efficiency the (wideband) transmitted signal is filtered by an approximation to
an ideal low-pass response with a small amount of excess bandwidth. This shapes the chips so that
they resemble minimum bandwidth pulses.

4.7.4 Personal Access Communications System (PACS)

Both PACS and the Japanese personal handy phone (PHP) system are TDMA systems which have
been proposed for personal communications systems (PCS), and operate near 2 GHz [2]. The
baseband signal is given by Eq. (4.3) with four complex symbols representing four-phase quadra-
ture modulation. The baseband pulse has a square-root raised cosine spectrum with 50% excess
bandwidth.

Defining Terms

Baseband signal: A signal with frequency content centered around DC.

Equivalent discrete-time transfer function: A discrete-time transfer function (z transform)
that relates the transmitted amplitudes to received samples in the absence of noise.

Excess bandwidth: That part of the baseband transmitted spectrum which is not contained
within the Nyquist band.

Eye diagram: Superposition of segments of a received PAM signal that indicates the amount
of intersymbol interference present.

Frequency-shift keying: A digital modulation technique in which the transmitted pulse is
sinusoidal, where the frequency is determined by the source bits.

Intersymbol interference: The additive contribution (interference) to a received sample from
transmitted symbols other than the symbol to be detected.

Matched filter: The receiver filter with impulse response equal to the time-reversed, complex
conjugate impulse response of the combined transmitter filter-channel impulse response.

Nyquist band: The narrowest frequency band that can support a PAM signal without inter-
symbol interference (the interval [−1/(2T ), 1/(2T )] where 1/T is the symbol rate).

Nyquist criterion: A condition on the overall frequency response of a PAM system that ensures
the absence of intersymbol interference.

Orthogonal frequency division multiplexing (OFDM): Modulation technique in which the
transmitted signal is the sum of low-bit-rate narrowband digital signals modulated on
orthogonal carriers.

Partial-response signalling: A signalling technique in which a controlled amount of inter-
symbol interference is introduced at the transmitter in order to shape the transmitted
spectrum.

Precoding: A transformation of source symbols at the transmitter that compensates for inter-
symbol interference introduced by the channel.

Pulse amplitude modulation (PAM): A digital modulation technique in which the source bits
are mapped to a sequence of amplitudes that modulate a transmitted pulse.
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Raised cosine pulse: A pulse shape with Fourier transform that decays to zero according to a
raised cosine; see Eq. (4.18). The amount of excess bandwidth is conveniently determined
by a single parameter (α).

Spread spectrum: A signalling technique in which the pulse bandwidth is many times wider
than the Nyquist bandwidth.

Zero-forcing criterion: A design constraint which specifies that intersymbol interference be
eliminated.
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Further Information

Baseband signalling and pulse shaping is fundamental to the design of any digital communications
system and is, therefore, covered in numerous texts on digital communications. For more advanced
treatments see E.A. Lee and D.G. Messerschmitt, Digital Communication, Kluwer 1994, and J.G.
Proakis, Digital Communications, McGraw-Hill 1995.
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