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2.1 Introduction

To transmit analog message signals, such as speech signals or video signals, by digital means, the signal
has to be converted into digital form. This process is known as analog-to-digital conversion. The
sampling process is the first process performed in this conversion, and it converts a continuous-time
signal into a discrete-time signal or a sequence of numbers. Digital transmission of analog signals is
possible by virtue of the sampling theorem, and the sampling operation is performed in accordance
with the sampling theorem.

In this chapter, using the Fourier transform technique, we present this remarkable sampling the-
orem and discuss the operation of sampling and practical aspects of sampling.

2.2 Instantaneous Sampling

Suppose we sample an arbitrary analog signal m(t) shown in Fig. 2.1(a) instantaneously at a uniform
rate, once every Ts seconds. As a result of this sampling process, we obtain an infinite sequence of
samples {m(nTs)}, wheren takes on all possible integers. This form of sampling is called instantaneous
sampling. We refer to Ts as the sampling interval, and its reciprocal 1/Ts = fs as the sampling rate.
Sampling rate (samples per second) is often cited in terms of sampling frequency expressed in hertz.
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FIGURE 2.1: Illustration of instantaneous sampling and sampling theorem.

2.2.1 Ideal Sampled Signal

Let ms(t) be obtained by multiplication of m(t) by the unit impulse train δT (t) with period Ts

[Fig. 2.1(c)], that is,

ms(t) = m(t)δTs (t) = m(t)

∞∑
n=−∞

δ (t − nTs)

=
∞∑

n=−∞
m(t)δ (t − nTs) =

∞∑
n=−∞

m (nTs) δ (t − nTs) (2.1)
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where we used the property of the δ function, m(t)δ(t − t0) = m(t0)δ(t − t0). The signal ms(t)

[Fig. 2.1(e)] is referred to as the ideal sampled signal.

2.2.2 Band-Limited Signals

A real-valued signal m(t) is called a band-limited signal if its Fourier transform M(ω) satisfies the
condition

M(ω) = 0 for |ω| > ωM (2.2)

where ωM = 2πfM [Fig. 2.1(b)]. A band-limited signal specified by Eq. (2.2) is often referred to as
a low-pass signal.

2.3 Sampling Theorem

The sampling theorem states that a band-limited signal m(t) specified by Eq. (2.2) can be uniquely
determined from its values m(nTs) sampled at uniform interval Ts if Ts ≤ π/ωM = 1/(2fM). In
fact, when Ts = π/ωM, m(t) is given by

m(t) =
∞∑

n=−∞
m (nTs)

sinωM (t − nTs)

ωM (t − nTs)
(2.3)

which is known as the Nyquist–Shannon interpolation formula and it is also sometimes called the
cardinal series. The sampling interval Ts = 1/(2fM)is called the Nyquist interval and the minimum
rate fs = 1/Ts = 2fM is known as the Nyquist rate.

Illustration of the instantaneous sampling process and the sampling theorem is shown in Fig. 2.1.
The Fourier transform of the unit impulse train is given by [Fig. 2.1(d)]

F {
δTs (t)

} = ωs

∞∑
n=−∞

δ (ω − nωs) ωs = 2π/Ts (2.4)

Then, by the convolution property of the Fourier transform, the Fourier transform Ms(ω) of the
ideal sampled signal ms(t) is given by

Ms(ω) = 1

2π

[
M(ω) ∗ ωs

∞∑
n=−∞

δ (ω − nωs)

]

= 1

Ts

∞∑
n=−∞

M (ω − nωs) (2.5)

where ∗ denotes convolution and we used the convolution property of the δ-function M(ω) ∗ δ(ω −
ω0) = M(ω−ω0). Thus, the sampling has produced images of M(ω) along the frequency axis. Note
that Ms(ω) will repeat periodically without overlap as long as ωs ≥ 2ωM or fs ≥ 2fM [Fig. 2.1(f)].
It is clear from Fig. 2.1(f) that we can recover M(ω) and, hence, m(t) by passing the sampled signal
ms(t) through an ideal low-pass filter having frequency response

H(ω) =
{

Ts, |ω| ≤ ωM

0, otherwise
(2.6)
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where ωM = π/Ts . Then
M(ω) = Ms(ω)H(ω) (2.7)

Taking the inverse Fourier transform of Eq. (2.6), we obtain the impulse response h(t) of the ideal
low-pass filter as

h(t) = sinωMt

ωMt
(2.8)

Taking the inverse Fourier transform of Eq. (2.7), we obtain

m(t) = ms(t) ∗ h(t)

=
∞∑

n=−∞
m (nTs) δ (t − nTs) ∗ sinωMt

ωMt

=
∞∑

n=−∞
m (nTs)

sinωM (t − nTs)

ωM (t − nTs)
(2.9)

which is Eq. (2.3).
The situation shown in Fig. 2.1(j) corresponds to the case where fs < 2fM . In this case there

is an overlap between M(ω) and M(ω − ωM). This overlap of the spectra is known as aliasing or
foldover. When this aliasing occurs, the signal is distorted and it is impossible to recover the original
signal m(t) from the sampled signal. To avoid aliasing, in practice, the signal is sampled at a rate
slightly higher than the Nyquist rate. If fs > 2fM , then as shown in Fig. 2.1(f), there is a gap between
the upper limit ωM of M(ω) and the lower limit ωs − ωM of M(ω − ωs). This range from ωM to
ωs −ωM is called a guard band. As an example, speech transmitted via telephone is generally limited
to fM = 3.3 kHz (by passing the sampled signal through a low-pass filter). The Nyquist rate is, thus,
6.6 kHz. For digital transmission, the speech is normally sampled at the rate fs = 8 kHz. The guard
band is then fs − 2fM = 1.4 kHz. The use of a sampling rate higher than the Nyquist rate also has
the desirable effect of making it somewhat easier to design the low-pass reconstruction filter so as to
recover the original signal from the sampled signal.

2.4 Sampling of Sinusoidal Signals

A special case is the sampling of a sinusoidal signal having the frequency fM . In this case we require
that fs > 2fM rather that fs ≥ 2fM . To see that this condition is necessary, let fs = 2fM . Now, if
an initial sample is taken at the instant the sinusoidal signal is zero, then all successive samples will
also be zero. This situation is avoided by requiring fs > 2fM .

2.5 Sampling of Bandpass Signals

A real-valued signal m(t) is called a bandpass signal if its Fourier transform M(ω) satisfies the
condition

M(ω) = 0 except for

{
ω1 < ω < ω2

−ω2 < ω < −ω1
(2.10)

where ω1 = 2πf1 and ω2 = 2πf2 [Fig. 2.2(a)].
The sampling theorem for a band-limited signal has shown that a sampling rate of 2f2 or greater

is adequate for a low-pass signal having the highest frequency f2. Therefore, treating m(t) specified
by Eq. (2.10) as a special case of such a low-pass signal, we conclude that a sampling rate of 2f2 is
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FIGURE 2.2: (a) Spectrum of a bandpass signal; (b) Shifted spectra of M (ω).

adequate for the sampling of the bandpass signal m(t). But it is not necessary to sample this fast. The
minimum allowable sampling rate depends on f1, f2, and the bandwidth fB = f2 − f1.

Let us consider the direct sampling of the bandpass signal specified by Eq. (2.10). The spectrum
of the sampled signal is periodic with the period ωs = 2πfs , where fs is the sampling frequency,
as in Eq. (2.4). Shown in Fig. 2.2(b) are the two right shifted spectra of the negative side spectrum
M (ω). If the recovering of the bandpass signal is achieved by passing the sampled signal through
an ideal bandpass filter covering the frequency bands (−ω2, −ω1) and (ω1, ω2), it is necessary that
there be no aliasing problem. From Fig. 2.2(b), it is clear that to avoid overlap it is necessary that

ωs ≥ 2 (ω2 − ω1) (2.11)

(k − 1)ωs − ω1 ≤ ω1 (2.12)

and
kωs − ω2 ≥ ω2 (2.13)

where ω1 = 2πf1, ω2 = 2πf2, and k is an integer (k = 1, 2, . . .). Since f1 = f2 − fB , these
constraints can be expressed as

1 ≤ k ≤ f2

fB

≤ k

2

fs

fB

(2.14)

and
k − 1

2

fs

fB

≤ f2

fB

− 1 (2.15)
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A graphical description of Eqs. (2.14) and (2.15) is illustrated in Fig. 2.3. The unshaded regions
represent where the constraints are satisfied, whereas the shaded regions represent the regions where
the constraints are not satisfied and overlap will occur. The solid line in Fig. 2.3 shows the locus of
the minimum sampling rate. The minimum sampling rate is given by

min {fs} = 2f2

m
(2.16)

where m is the largest integer not exceeding f2/fB . Note that if the ratio f2/fB is an integer, then
the minimum sampling rate is 2fB . As an example, consider a bandpass signal with f1 = 1.5 kHz
and f2 = 2.5 kHz. Here fB = f2 − f1 = 1 kHz, and f2/fB = 2.5. Then from Eq. (2.16) and Fig. 2.3
we see that the minimum sampling rate is 2f2/2 = f2 = 2.5 kHz, and allowable ranges of sampling
rate are 2.5 kHz ≤ fs ≤ 3 kHz and fs ≥ 5 kHz (= 2f2).
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FIGURE 2.3: Minimum and permissible sampling rates for a bandpass signal.
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2.6 Practical Sampling

In practice, the sampling of an analog signal is performed by means of high-speed switching circuits,
and the sampling process takes the form of natural sampling or flat-top sampling.

2.6.1 Natural Sampling

Natural sampling of a band-limited signal m(t) is shown in Fig. 2.4. The sampled signal mns(t) can
be expressed as

mns(t) = m(t)xp(t) (2.17)

where xp(t) is the periodic train of rectangular pulses with fundamental period Ts , and each rect-
angular pulse in xp(t) has duration d and unit amplitude [Fig. 2.4(b)]. Observe that the sampled
signal mns(t) consists of a sequence of pulses of varying amplitude whose tops follow the waveform
of the signal m(t) [Fig. 2.4(c)].
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FIGURE 2.4: Natural sampling.
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The Fourier transform of xp(t) is

Xp(ω) =
∞∑

n=−∞
cnδ (ω − nωs) ωs = 2π/Ts (2.18)

where

cn = d

Ts

sin(nωsd/2)

nωsd/2
e−jnωsd/2 (2.19)

Then the Fourier transform of mns(t) is given by

Mns(ω) = M(ω) ∗ Xp(ω) =
∞∑

n=−∞
cnM (ω − nωs) (2.20)

from which we see that the effect of the natural sampling is to multiply the nth shifted spectrum
M(ω − nωs) by a constant cn. Thus, the original signal m(t) can be reconstructed from mns(t) with
no distortion by passing mns(t) through an ideal low-pass filter if the sampling rate fs is equal to or
greater than the Nyquist rate 2fM .

2.6.2 Flat-Top Sampling

The sampled waveform, produced by practical sampling devices that are the sample and hold types,
has the form [Fig. 2.5(c)]

mfs(t) =
∞∑

n=−∞
m (nTs) p (t − nTs) (2.21)

where p(t) is a rectangular pulse of duration d with unit amplitude [Fig. 2.5(a)]. This type of
sampling is known as flat-top sampling. Using the ideal sampled signal ms(t) of Eq. (2.1), mfs(t)

can be expressed as

mfs(t) = p(t) ∗
[ ∞∑

n=−∞
m (nTs) δ (t − nTs)

]
= p(t) ∗ ms(t) (2.22)

Using the convolution property of the Fourier transform and Eq. (2.4), the Fourier transform of
mfs(t) is given by

Mfs(ω) = P(ω)Ms(ω) = 1

Ts

∞∑
n=−∞

P(ω)M (ω − nωs) (2.23)

where

P(ω) = d
sin(ωd/2)

ωd/2
e−jωd/2 (2.24)

From Eq.(2.23) we see that by using flat-top sampling we have introduced amplitude distortion and
time delay, and the primary effect is an attenuation of high-frequency components. This effect is
known as the aperture effect. The aperture effect can be compensated by an equalizing filter with a
frequency response Heq(ω) = 1/P (ω). If the pulse duration d is chosen such that d � Ts , however,
then P(ω) is essentially constant over the baseband and no equalization may be needed.
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FIGURE 2.5: Flat-top sampling.

2.7 Sampling Theorem in the Frequency Domain

The sampling theorem expressed in Eq. (2.4) is the time-domain sampling theorem. There is a dual
to this time-domain sampling theorem, i.e., the sampling theorem in the frequency domain.

Time-limited signals: A continuous-time signal m(t) is called time limited if

m(t) = 0 for |t | > |T0| (2.25)

Frequency-domain sampling theorem: The frequency-domain sampling theorem states that the
Fourier transform M(ω) of a time-limited signal m(t) specified by Eq. (2.25) can be uniquely deter-
mined from its values M(nωs) sampled at a uniform rate ωs if ωs ≤ π/T0. In fact, when ωs = π/T0,
then M(ω) is given by

M(ω) =
∞∑

n=−∞
M (nωs)

sinT0 (ω − nωs)

T0 (ω − nωs)
(2.26)

2.8 Summary and Discussion

The sampling theorem is the fundamental principle of digital communications. We state the sampling
theorem in two parts.
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THEOREM 2.1 If the signal contains no frequency higher than fM Hz, it is completely described by
specifying its samples taken at instants of time spaced 1/2fM s.

THEOREM 2.2 The signal can be completely recovered from its samples taken at the rate of 2fM

samples per second or higher.

The preceding sampling theorem assumes that the signal is strictly band limited. It is known that
if a signal is band limited it cannot be time limited and vice versa. In many practical applications, the
signal tobe sampled is time limited and, consequently, it cannotbe strictly band limited. Nevertheless,
we know that the frequency components of physically occurring signals attenuate rapidly beyond
some defined bandwidth, and for practical purposes we consider these signals are band limited. This
approximation of real signals by band limited ones introduces no significant error in the application
of the sampling theorem. When such a signal is sampled, we band limit the signal by filtering before
sampling and sample at a rate slightly higher than the nominal Nyquist rate.

Defining Terms

Band-limited signal: A signal whose frequency content (Fourier transform) is equal to zero
above some specified frequency.

Bandpass signal: A signal whose frequency content (Fourier transform) is nonzero only in a
band of frequencies not including the origin.

Flat-top sampling: Sampling with finite width pulses that maintain a constant value for a time
period less than or equal to the sampling interval. The constant value is the amplitude of
the signal at the desired sampling instant.

Ideal sampled signal: A signal sampled using an ideal impulse train.

Nyquist rate: The minimum allowable sampling rate of 2fM samples per second, to reconstruct
a signal band limited to fM hertz.

Nyquist-Shannon interpolation formula: The infinite series representing a time domain
waveform in terms of its ideal samples taken at uniform intervals.

Sampling interval: The time between samples in uniform sampling.

Sampling rate: The number of samples taken per second (expressed in Hertz and equal to the
reciprocal of the sampling interval).

Time-limited: A signal that is zero outside of some specified time interval.
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Further Information

For a tutorial review of the sampling theorem, historical notes, and earlier references see Jerri [6].
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