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9.1 Introduction

Every engineer strives for optimality in design. This is particularly true for communications engineers
since in many cases implementing suboptimal receivers and sources can result in dramatic losses in
performance. As such, this chapter focuses on design principles leading to the implementation of
optimum receivers for the most common communication environments.

The main objective in digital communications is to transmit a sequence of bits to a remote location
with the highest degree of accuracy. This is accomplished by first representing bits (or more generally
short bit sequences) by distinct waveforms of finite time duration. These time-limited waveforms
are then transmitted (broadcasted) to the remote sites in accordance with the data sequence.

Unfortunately, because of the nature of the communication channel, the remote location receives
a corrupted version of the concatenated signal waveforms. The most widely accepted model for the
communication channel is the so-called additive white Gaussian noise1 channel (AWGN channel).

1For thoseunfamiliarwithAWGN,a randomprocess (waveform) is formally said tobewhiteGaussiannoise if all collections
of instantaneous observations of the process are jointly Gaussian and mutually independent. An important consequence
of this property is that the power spectral density of the process is a constant with respect to frequency variation (spectrally
flat). For more on AWGN, see Papoulis [4].
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Mathematical arguments based upon the central limit theorem [7], together with supporting em-
pirical evidence, demonstrate that many common communication channels are accurately modeled
by this abstraction. Moreover, from the design perspective, this is quite fortuitous since design and
analysis with respect to this channel model is relatively straightforward.

9.2 Preliminaries

To better describe the digital communications process, we shall first elaborate on so-called binary
communications. In this case, when the source wishes to transmit a bit value of 0, the transmitter
broadcasts a specified waveform s0(t) over the bit interval t ∈ [0, T ]. Conversely, if the source seeks
to transmit the bit value of 1, the transmitter alternatively broadcasts the signal s1(t) over the same bit
interval. The received waveform R(t) corresponding to the first bit is then appropriately described
by the following hypotheses testing problem:

H0 : R(t) = s0(t) + η(t) 0 ≤ t ≤ T

H1 : R(t) = s1(t) + η(t)
(9.1)

where, as stated previously, η(t) corresponds to AWGN with spectral height nominally given by N0/2.
It is the objective of the receiver to determine the bit value, i.e., the most accurate hypothesis from
the received waveform R(t).

The optimality criterion of choice in digital communication applications is the total probability
of error normally denoted as Pe. This scalar quantity is expressed as

Pe = Pr( declaring 1 | 0 transmitted)P r(0 transmitted)

+ Pr( declaring 0 | 1 transmitted)P r(1 transmitted) (9.2)

The problem of determining the optimal binary receiver with respect to the probability of error
is solved by applying stochastic representation theory [10] to detection theory [5, 9]. The specific
waveform representation of relevance in this application is the Karhunen–Loève (KL) expansion.

9.3 Karhunen–Loève Expansion

The Karhunen–Loève expansion is a generalization of the Fourier series designed to represent a
random process in terms of deterministic basis functions and uncorrelated random variables de-
rived from the process. Whereas the Fourier series allows one to model or represent deterministic
time-limited energy signals in terms of linear combinations of complex exponential waveforms, the
Karhunen–Loève expansion allows us to represent a second-order random process in terms of a set
of orthonormal basis functions scaled by a sequence of random variables. The objective in this
representation is to choose the basis of time functions so that the coefficients in the expansion are
mutually uncorrelated random variables.

To be more precise, if R(t) is a zero mean second-order random process defined over [0, T ] with
covariance function KR(t, s), then so long as the basis of deterministic functions satisfy certain
integral constraints [9], one may write R(t) as

R(t) =
∞∑
i=1

Riφi(t) 0 ≤ t ≤ T (9.3)
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where

Ri =
∫ T

0
R(t)φi(t) dt

In this case theRi will bemutuallyuncorrelated randomvariableswith theφi beingdeterministic basis
functions that are complete in the space of square integrable time functions over [0, T ]. Importantly,
in this case, equality is to be interpreted as mean-square equivalence, i.e.,

lim
N→∞ E


(R(t) −

N∑
i=1

Riφi(t)

)2 = 0

for all 0 ≤ t ≤ T .

FACT 9.1 If R(t) is AWGN, then any basis of the vector space of square integrable signals over [0, T ]
results in uncorrelated and therefore independent Gaussian random variables.

The use of Fact 9.1 allows for a conversion of a continuous time detection problem into a finite-
dimensional detection problem. Proceeding, to derive the optimal binary receiver, we first construct
our set of basis functions as the set of functions defined over t ∈ [0, T ] beginning with the signals of
interest s0(t) and s1(t). That is,{

s0(t), s1(t), plus a countable number of functions which complete the basis
}

In order to insure that the basis is orthonormal, we must apply the Gramm–Schmidt procedure2 [6]
to the full set of functions beginning with s0(t) and s1(t) to arrive at our final choice of basis {φi(t)}.

FACT 9.2 Let {φi(t)} be the resultant set of basis functions.
Then for all i > 2, the φi(t) are orthogonal to s0(t) and s1(t). That is,∫ T

0
φi(t)sj (t) dt = 0

for all i > 2 and j = 0, 1.

Using this fact in conjunction with Eq. (9.3), one may recognize that only the coefficients R1 and
R2 are functions of our signals of interest. Moreover, since the Ri are mutually independent, the
optimal receiver will, therefore, only be a function of these two values.

Thus, through the application of the KL expansion, we arrive at an equivalent hypothesis testing
problem to that given in Eq. (9.1),

H0 : R =
[ ∫ T

0 φ1(t)s0(t) dt∫ T

0 φ2(t)s0(t) dt

]
+
[

η1
η2

]

H1 : R =
[ ∫ T

0 φ1(t)s1(t) dt∫ T

0 φ2(t)s1(t) dt

]
+
[

η1
η2

]
(9.4)

2The Gramm-Schmidt procedure is a deterministic algorithm that simply converts an arbitrary set of basis functions
(vectors) into an equivalent set of orthonormal basis functions (vectors).
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where it is easily shown that η1 and η2 are mutually independent, zero-mean, Gaussian random
variables with variance given by N0/2, and where φ1 and φ2 are the first two functions from our
orthonormal set of basis functions. Thus, the design of the optimal binary receiver reduces to a simple
two-dimensional detection problem that is readily solved through the application of detection theory.

9.4 Detection Theory

It is well known from detection theory [5] that under the minimum Pe criterion, the optimal detector
is given by the maximum a posteriori rule (MAP),

choosei largest pHi |R (Hi | R = r) (9.5)

i.e., determine the hypothesis that is most likely, given that our observation vector is r . By a simple
application of Bayes theorem [4], we immediately arrive at the central result in detection theory: the
optimal binary detector is given by the likelihood ratio test (LRT),

L(R) = pR |H1(R)

pR |H0(R)

H1
>

<

H0

π0

π1
(9.6)

where the πi are the a priori probabilities of the hypotheses Hi being true. Since in this case we have
assumed that the noise is white and Gaussian, the LRT can be written as

L(R) =

∏2
1

1√
πN0

exp

(
−1

2

(
Ri − s1,i

)2
N0/2

)

∏2
1

1√
πN0

exp

(
−1

2

(
Ri − s0,i

)2
N0/2

)
H1
>

<

H0

π0

π1
(9.7)

where

sj,i =
∫ T

0
φi(t)sj (t) dt

By taking the logarithm and cancelling common terms, it is easily shown that the optimum binary
receiver can be written as

2

N0

2∑
1

Ri

(
s1,i − s0,i

)− 1

N0

2∑
1

(
s2
1,i − s2

0,i

) H1
>

<

H0

ln
π0

π1
(9.8)

This finite-dimensional version of the optimal receiver can be converted back into a continuous time
receiver by the direct application of Parseval’s theorem [4] where it is easily shown that

2∑
i=1

Risk,i =
∫ T

0
R(t)sk(t) dt

2∑
i=1

s2
k,i =

∫ T

0
s2
k (t) dt

(9.9)
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By applying Eq. (9.9) to Eq. (9.8) the final receiver structure is then given by

∫ T

0
R(t) [s1(t) − s0(t)] dt − 1

2
(E1 − E0)

H1
>

<

H0

N0

2
ln

π0

π1
(9.10)

where E1 and E0 are the energies of signals s1(t) and s0(t), respectively. (See Fig. 9.1 for a block
diagram.) Importantly, if the signals are equally likely (π0 = π1), the optimal receiver is independent
of the typically unknown spectral height of the background noise.

FIGURE 9.1: Optimal correlation receiver structure for binary communications.

One can readily observe that the optimal binary communication receiver correlates the received
waveform with the difference signal s1(t)− s0(t) and then compares the statistic to a threshold. This
operation can be interpreted as identifying the signal waveform si(t) that best correlates with the
received signal R(t). Based on this interpretation, the receiver is often referred to as the correlation
receiver.

As an alternate means of implementing the correlation receiver, we may reformulate the compu-
tation of the left-hand side of Eq. (9.10) in terms of standard concepts in filtering. Let h(t) be the
impulse response of a linear, time-invariant (LTI) system. By letting h(t) = s1(T − t) − s0(T − t),
then it is easily verified that the output of R(t) to a LTI system with impulse response given by h(t)

and then sampled at time t = T gives the desired result. (See Fig. 9.2 for a block diagram.) Since the
impulse response is matched to the signal waveforms, this implementation is often referred to as the
matched filter receiver.

FIGURE 9.2: Optimal matched filter receiver structure for binary communications. In this case
h(t) = s1(T − t) − s0(t − t).

c©1999 by CRC Press LLC



9.5 Performance

Because of the nature of the statistics of the channel and the relative simplicity of the receiver,
performance analysis of the optimal binary receiver in AWGN is a straightforward task. Since the
conditional statistics of the log likelihood ratio are Gaussian random variables, the probability of
error can be computed directly in terms of Marcum Q functions3 as

Pe = Q

(‖s0 − s1‖√
2N0

)

where the si are the two-dimensional signal vectors obtained from Eq. (9.4), and where ‖x‖ denotes
the Euclidean length of the vector x. Thus, ‖s0 − s1‖ is best interpreted as the distance between the
respective signal representations. Since theQ function ismonotonically decreasingwith an increasing
argument, one may recognize that the probability of error for the optimal receiver decreases with
an increasing separation between the signal representations, i.e., the more dissimilar the signals, the
lower the Pe.

9.6 Signal Space

The concept of a signal space allows one to view the signal classification problem (receiver design)
within a geometrical framework. This offers two primary benefits: first it supplies an often more
intuitive perspective on the receiver characteristics (e.g., performance) and second it allows for a
straightforward generalization to standard M-ary signalling schemes.

To demonstrate this, in Fig. 9.3, we have plotted an arbitrary signal space for the binary signal
classification problem. The axes are given in terms of the basis functions φ1(t) and φ2(t). Thus,
every point in the signal space is a time function constructed as a linear combination of the two
basis functions. By Fact 9.2, we recall that both signals s0(t) and s1(t) can be constructed as a linear
combination of φ1(t) and φ2(t) and as such we may identify these two signals in this figure as two
points.

Since the decision statistic given in Eq. (9.8) is a linear function of the observed vector R which is
also located in the signal space, it is easily shownthat the setof vectorsunderwhich the receiverdeclares
hypothesis Hi is bounded by a line in the signal space. This so-called decision boundary is obtained
by solving the equation ln[L(R)] = 0. (Here again we have assumed equally likely hypotheses.)
In the case under current discussion, this decision boundary is simply the hyperplane separating
the two signals in signal space. Because of the generality of this formulation, many problems in
communication system design are best cast in terms of the signal space, that is, signal locations and
decision boundaries.

9.7 Standard Binary Signalling Schemes

The framework just described allows us to readily analyze the most popular signalling schemes in
binary communications: amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-

3The Q function is the probability that a standard normal random variable exceeds a specified constant, i.e., Q(x) =∫∞
x 1/

√
2π exp(−z2/2) dz.
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FIGURE 9.3: Signal space and decision boundary for optimal binary receiver.

shift keying (PSK). Each of these examples simply constitute a different selection for signals s0(t) and
s1(t).

In the case of ASK, s0(t) = 0, while s1(t) = √
2E/T sin(2πfct), where E denotes the energy of the

waveform and fc denotes the frequency of the carrier wave with fcT being an integer. Because s0(t)

is the null signal, the signal space is a one-dimensional vector space with φ1(t) = √
2/T sin(2πfct).

This, in turn, implies that ‖s0 − s1‖ = √
E. Thus, the corresponding probability of error for ASK is

Pe( ASK) = Q

(√
E

2N0

)

For FSK, the signals are given by equal amplitude sinusoids with distinct center frequencies, that
is, si(t) = √

2E/T sin(2πfit) with fiT being two distinct integers. In this case, it is easily verified
that the signal space is a two-dimensional vector space with φi(t) = √

2/T sin(2πfit) resulting in
‖s0 − s1‖ = √

2E. The corresponding error rate is given to be

Pe(FSK) = Q

(√
E

N0

)

Finally, with regard to PSK signalling, the most frequently utilized binary PSK signal set is an ex-
ample of an antipodal signal set. Specifically, the antipodal signal set results in the greatest separation
between the signals in the signal space subject to an energy constraint on both signals. This, in turn,
translates into the energy constrained signal set with the minimum Pe. In this case, the si(t) are
typically given by

√
2E/T sin[2πfct + θ(i)], where θ(0) = 0 and θ(1) = π . As in the ASK case,

this results in a one-dimensional signal space, however, in this case ‖s0 − s1‖ = 2
√

E resulting in
probability of error given by

Pe(PSK) = Q

(√
2E

N0

)

In all three of the described cases, one can readily observe that the resulting performance is a
function of only the signal-to-noise ratio E/N0. In the more general case, the performance will be a
function of the intersignal energy to noise ratio. To gauge the relative difference in performance of
the three signalling schemes, in Fig. 9.4, we have plotted the Pe as a function of the SNR. Please note
the large variation in performance between the three schemes for even moderate values of SNR.
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FIGURE 9.4: Pe vs. the signal to noise ratio in decibels [dB = 10 log(E/N0)] for amplitude-
shift keying, frequency-shift keying, and phase-shift keying; note that there is a 3-dB difference in
performance from ASK to FSK to PSK.

9.8 M-ary Optimal Receivers

In binary signalling schemes, one seeks to transmit a single bit over the bit interval [0, T ]. This is to be
contrasted with M-ary signalling schemes where one transmits multiple bits simultaneously over the
so-called symbol interval [0, T ]. For example, using a signal set with 16 separate waveforms will allow
one to transmit a length four-bit sequence per symbol (waveform). Examples of M-ary waveforms
are quadrature phase-shift keying (QPSK) and quadrature amplitude modulation (QAM).

The derivation of the optimum receiver structure for M-ary signalling requires the straightforward
application of fundamental results in detection theory. As with binary signalling, the Karhunen–
Loève expansion is the mechanism utilized to convert a hypotheses testing problem based on con-
tinuous waveforms into a vector classification problem. Depending on the complexity of the M

waveforms, the signal space can be as large as an M-dimensional vector space.
By extending results from the binary signalling case, it is easily shown that the optimum M-ary

receiver computes

ξi[R(t)] =
∫ T

0
si(t)R(t) dt − Ei

2
+ N0

2
ln πi i = 1, . . . , M

where, as before, the si(t) constitute the signal set with the πi being the corresponding a priori
probabilities. After computing M separate values of ξi , the minimum probability of error receiver
simply chooses the largest amongst this set. Thus, the M-ary receiver is implemented with a bank of
correlation or matched filters followed by choose-largest decision logic.

In many cases of practical importance, the signal sets are selected so that the resulting signal space
is a two-dimensional vector space irrespective of the number of signals. This simplifies the receiver
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structure in that the sufficient statistics are obtained by implementing only two matched filters. Both
QPSK and QAM signal sets fit into this category. As an example, in Fig. 9.5, we have depicted the
signal locations for standard 16-QAM signalling with the associated decision boundaries. In this
case we have assumed an equally likely signal set. As can be seen, the optimal decision rule selects
the signal representation that is closest to the received signal representation in this two-dimensional
signal space.

9.9 More Realistic Channels

As is unfortunately often the case, many channels of practical interest are not accurately modeled as
simply an AWGN channel. It is often that these channels impose nonlinear effects on the transmitted
signals. The best example of this are channels that impose a random phase and random amplitude
onto the signal. This typically occurs in applications such as in mobile communications, where one
often experiences rapidly changing path lengths from source to receiver.

Fortunately, by the judicious choice of signal waveforms, it can be shown that the selection of the
φi in the Karhunen–Loève transformation is often independent of these unwanted parameters. In
these situations, the random amplitude serves only to scale the signals in signal space, whereas the
random phase simply imposes a rotation on the signals in signal space.

Since the Karhunen–Loève basis functions typically do not depend on the unknown parameters,
we may again convert the continuous time classification problem to a vector channel problem where
the received vector R is computed as in Eq. (9.3). Since this vector is a function of both the unknown
parameters (i.e., in this case amplitude A and phase ν), to obtain a likelihood ratio test independent
of A and ν, we simply apply Bayes theorem to obtain the following form for the LRT:

L(R) = E
[
pR |H1,A,ν (R | H1, A, ν)

]
E
[
pR |H0,A,ν (R | H0, A, ν)

]
H1
>

<

H0

π0

π1

where the expectations are taken with respect to A and ν, and where pR|Hi,A,ν are the conditional
probability density functions of the signal representations. Assuming that the background noise is
AWGN, it can be shown that the LRT simplifies to choosing the largest amongst

ξi[R(t)] = πi

∫
A,ν

exp

{
2

N0

∫ T

0
R(t)si(t | A, ν) dt − Ei(A, ν)

N0

}
pA,ν(A, ν) dA dν

i = 1, . . . , M (9.11)

It should be noted that in the Eq. (9.11) we have explicitly shown the dependence of the transmitted
signals si on the parameters A and ν. The final receiver structures, together with their corresponding
performance are, thus, a functionof both the choiceof signal sets and theprobability density functions
of the random amplitude and random phase.

9.9.1 Random Phase Channels

If we consider first the special case where the channel simply imposes a uniform random phase on
the signal, then it can be easily shown that the so-called in-phase and quadrature statistics obtained
from the received signal R(t) (denoted by RI and RQ, respectively), are sufficient statistics for the

c©1999 by CRC Press LLC



FIGURE 9.5: Signal space representation of 16-QAM signal set. Optimal decision regions for equally
likely signals are also noted.

FIGURE 9.6: Optimum receiver structure for noncoherent (random or unknown phase) ASK de-
modulation.
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signal classification problem. These quantities are computed as

RI (i) =
∫ T

0
R(t) cos[2πfc(i)t ] dt

and

RQ(i) =
∫ T

0
R(t) sin [2πfc(i)t ] dt

where in this case the index i corresponds to the center frequencies of hypotheses Hi , (e.g., FSK
signalling). The optimum binary receiver selects the largest from amongst

ξi[R(t)] = πi exp

(
− Ei

N0

)
I0

[
2

N0

√
R2

I (i) + R2
Q(i)

]
i = 1, . . . , M

where I0 is a zeroth-order, modified Bessel function of the first kind. If the signals have equal energy
and are equally likely (e.g., FSK signalling), then the optimum receiver is given by

R2
I (1) + R2

Q(1)

H1
>

<

H0

R2
I (0) + R2

Q(0)

One may readily observe that the optimum receiver bases its decision on the values of the two

envelopes of the received signal
√

R2
I (i) + R2

Q(i) and, as a consequence, is often referred to as an

envelope or square-law detector. Moreover, it should be observed that the computation of the
envelope is independent of the underlying phase of the signal and is as such known as a noncoherent
receiver.

The computation of the error rate for this detector is a relatively straightforward exercise resulting
in

Pe( noncoherent) = 1

2
exp

(
− E

2N0

)
As before, note that the error rate for the noncoherent receiver is simply a function of the SNR.

9.9.2 Rayleigh Channel

As an important generalization of the described random phase channel, many communication
systems are designed under the assumption that the channel introduces both a random ampli-
tude and a random phase on the signal. Specifically, if the original signal sets are of the form
si(t) = mi(t) cos(2πfct) where mi(t) is the baseband version of the message (i.e., what distinguishes
one signal from another), then the so-called Rayleigh channel introduces random distortion in the
received signal of the following form:

si(t) = Ami(t) cos(2πfct + ν)

where the amplitude A is a Rayleigh random variable4 and where the random phase ν is a uniformly
distributed between zero and 2π .

4The density of a Rayleigh random variable is given by pA(a) = a/σ2 exp(−a2/2σ2) for a ≥ 0.
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To determine the optimal receiver under this distortion, we must first construct an alternate
statistical model for si(t). To begin, it can be shown from the theory of random variables [4] that if
XI and XQ are statistically independent, zero mean, Gaussian random variables with variance given
by σ 2, then

Ami(t) cos(2πfct + ν) = mi(t)XI cos(2πfct) + mi(t)XQ sin (2πfct)

Equality here is to be interpreted as implying that both A and ν will be the appropriate random
variables. From this, we deduce that the combined uncertainty in the amplitude and phase of the
signal is incorporated into the Gaussian random variables XI and XQ. The in-phase and quadrature
componentsof the signal si(t) are givenby sI i(t) = mi(t) cos(2πfct) and sQi(t) = mi(t) sin(2πfct),
respectively. By appealing to Eq. (9.11), it can be shown that the optimum receiver selects the largest
from

ξi[R(t)] = πi

1 + 2Ei

N0
σ 2

exp


 σ 2

1

2
+ Ei

N0
σ 2

(
〈R(t), sI i(t)〉2 + 〈

R(t), sQi(t)
〉2)



where the inner product

〈R(t), Si(t)〉 =
∫ T

0
R(t)si(t) dt

Further, if we impose the conditions that the signals be equally likely with equal energy over the
symbol interval, then optimum receiver selects the largest amongst

ξi[R(t)] =
√

〈R(t), sI i(t)〉2 + 〈
R(t), sQi(t)

〉2
Thus, much like for the random phase channel, the optimum receiver for the Rayleigh channel

computes the projection of the received waveform onto the in-phase and quadrature components
of the hypothetical signals. From a signal space perspective, this is akin to computing the length of
the received vector in the subspace spanned by the hypothetical signal. The optimum receiver then
chooses the largest amongst these lengths.

As with the random phase channel, computing the performance is a straightforward task resulting
in (for the equally likely, equal energy case)

Pe( Rayleigh) =
1

2(
1 + Eσ 2

N0

)

Interestingly, in this case the performance depends not only on the SNR, but also on the variance
(spread) of the Rayleigh amplitude A. Thus, if the amplitude spread is large, we expect to often
experience what is known as deep fades in the amplitude of the received waveform and as such expect
a commensurate loss in performance.

9.10 Dispersive Channels

The dispersive channel model assumes that the channel not only introduces AWGN but also distorts
the signal through a filtering process. This model incorporates physical realities such as multipath
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effects and frequency selective fading. In particular, the standard model adopted is depicted in the
block diagram given in Fig. 9.7. As can be seen, the receiver observes a filtered version of the signal
plus AWGN. If the impulse response of the channel is known, then we arrive at the optimum receiver
design by applying the previously presented theory. Unfortunately, the duration of the filtered signal
can be a complicating factor. More often than not, the channel will increase the duration of the
transmitted signals, hence, leading to the description, dispersive channel.

FIGURE 9.7: Standard model for dispersive channel. The time varying impulse response of the
channel is denoted by hc(t, τ ).

However, if the designers take this into account by shortening the duration of si(t) so that the
duration of s∗

i (t) is less than T , then the optimum receiver chooses the largest amongst

ξi(R(t)) = N0

2
lnπi + 〈

R(t), s∗
i (t)

〉− 1

2
E∗

i

If we limit our consideration to equally likely binary signal sets, then the minimum Pe matches the
received waveform to the filtered versions of the signal waveforms. The resulting error rate is given
by

Pe( dispersive) = Q

(∥∥s∗
0 − s∗

0

∥∥
√

2N0

)

Thus, in this case the minimum Pe is a function of the separation of the filtered version of the signals
in the signal space.

The problem becomes substantially more complex if we cannot insure that the filtered signal
durations are less than the symbol lengths. In this case we experience what is known as intersymbol
interference (ISI). That is, observations over one symbol interval contain not only the symbol
information of interest but also information from previous symbols. In this case we must appeal
to optimum sequence estimation [5] to take full advantage of the information in the waveform.
The basis for this procedure is the maximization of the joint likelihood function conditioned on the
sequence of symbols. This procedure not only defines the structure of the optimum receiver under ISI
but also is critical in the decoding of convolutional codes and coded modulation. Alternate adaptive
techniques to solve this problem involve the use of channel equalization.

Defining Terms

Additive white Gaussian noise (AWGN) channel: The channel whose model is that of cor-
rupting a transmitted waveform by the addition of white (i.e., spectrally flat) Gaussian
noise.
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Bit (symbol) interval: The period of time over which a single symbol is transmitted.

Communication channel: The medium over which communication signals are transmitted.
Examples are fiber optic cables, free space, or telephone lines.

Correlation or matched filter receiver: The optimal receiver structure for digital communica-
tions in AWGN.

Decision boundary: The boundary in signal space between the various regions where the
receiver declares Hi . Typically a hyperplane when dealing with AWGN channels.

Dispersive channel: A channel that elongates and distorts the transmitted signal. Normally
modeled as a time-varying linear system.

Intersymbol interference: The ill-effect of one symbol smearing into adjacent symbols thus
interfering with the detection process. This is a consequence of the channel filtering the
transmitted signals and therefore elongating their duration, see dispersive channel.

Karhunen–Loève expansion: A representation for second-order random processes. Allows
one to express a random process in terms of a superposition of deterministic waveforms.
The scale values are uncorrelated random variables obtained from the waveform.

Mean-square equivalence: Two random vectors or time-limited waveforms are mean-square
equivalent if and only if the expected value of their mean-square error is zero.

Orthonormal: The property of two or more vectors or time-limited waveforms being mutually
orthogonal and individually having unit length. Orthogonality and length are typically
measured by the standard Euclidean inner product.

Rayleigh channel: A channel that randomly scales the transmitted waveform by a Rayleigh
random variable while adding an independent uniform phase to the carrier.

Signal space: An abstraction for representing a time limited waveform in a low-dimensional
vector space. Usually arrived at through the application of the Karhunen–Loève trans-
formation.

Total probability of error: The probability of classifying the received waveform into any of the
symbols that were not transmitted over a particular bit interval.
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Further Information

The fundamentals of receiver design were put in place by Wozencraft and Jacobs in their seminal
book. Since that time, there have been many outstanding textbooks in this area. For a sampling
see [1, 2, 3, 8, 12]. For a complete treatment on the use and application of detection theory in
communications see [5, 9]. For deeper insights into the Karhunen–Loève expansion and its use in
communications and signal processing see [10].
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