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1.1 Introduction

What is a general representation for bandpass digital and analog signals? How do we represent a
modulated signal? How do we evaluate the spectrum and the power of these signals? These are some
of the questions that are answered in this chapter.

A baseband waveform has a spectral magnitude that is nonzero for frequencies in the vicinity of
the origin (i.e., f = 0) and negligible elsewhere. A bandpass waveform has a spectral magnitude that
is nonzero for frequencies in some band concentrated about a frequency f = ±fc (where fc � 0),
and the spectral magnitude is negligible elsewhere. fc is called the carrier frequency. The value of
fc may be arbitrarily assigned for mathematical convenience in some problems. In others, namely,
modulation problems, fc is the frequency of an oscillatory signal in the transmitter circuit and is the
assigned frequency of the transmitter, such as 850 kHz for an AM broadcasting station.

In communication problems, the information source signal is usually a baseband signal—for
example, a transistor-transistor logic (TTL) waveform from a digital circuit or an audio (analog)
signal from a microphone. The communication engineer has the job of building a system that will
transfer the information from this source signal to the desired destination. As shown in Fig. 1.1, this

1Source: Couch, Leon W., II. 1997. Digital and Analog Communication Systems, 5th ed., Prentice Hall, Upper Saddle River,
NJ.
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usually requires the use of a bandpass signal, s(t), which has a bandpass spectrum that is concentrated
at ±fc where fc is selected so that s(t) will propagate across the communication channel (either a
wire or a wireless channel).

FIGURE 1.1: Bandpass communication system. Source: Couch, L.W., II. 1997. Digital and Analog
Communication Systems, 5th ed., Prentice Hall, Upper Saddle River, NJ, p. 227. With permission.

Modulation is the process of imparting the source information onto a bandpass signal with a carrier
frequency fc by the introduction of amplitude and/or phase perturbations. This bandpass signal
is called the modulated signal s(t), and the baseband source signal is called the modulating signal
m(t). Examples of exactly how modulation is accomplished are given later in this chapter. This
definition indicates that modulation may be visualized as a mapping operation that maps the source
information onto the bandpass signal s(t) that will be transmitted over the channel.

As the modulated signal passes through the channel, noise corrupts it. The result is a bandpass
signal-plus-noise waveform that is available at the receiver input, r(t), as illustrated in Fig. 1.1. The
receiver has the job of trying to recover the information that was sent from the source; m̃ denotes the
corrupted version of m.

1.2 Complex Envelope Representation

All bandpass waveforms, whether they arise from a modulated signal, interfering signals, or noise,
may be represented in a convenient form given by the following theorem. v(t) will be used to denote
the bandpass waveform canonically. That is, v(t) can represent the signal when s(t) ≡ v(t) , the
noise when n(t) ≡ v(t), the filtered signal plus noise at the channel output when r(t) ≡ v(t), or any
other type of bandpass waveform2.

THEOREM 1.1 Any physical bandpass waveform can be represented by

v(t) = Re
{
g(t)ejωct

}
(1.1a)

Re{·} denotes the real part of {·}. g(t) is called the complex envelope of v(t), and fc is the associated
carrier frequency (hertz) where ωc = 2πfc. Furthermore, two other equivalent representations are

2The symbol ≡ denotes an equivalence and the symbol
4= denotes a definition.
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v(t) = R(t) cos[ωct + θ(t)] (1.1b)

and

v(t) = x(t) cosωct − y(t) sinωct (1.1c)

where

g(t) = x(t) + jy(t) = |g(t)|ej 6 g(t) ≡ R(t)ejθ(t) (1.2)

x(t) = Re{g(t)} ≡ R(t) cosθ(t) (1.3a)

y(x) = Im{g(t)} ≡ R(t) sinθ(t) (1.3b)

R(t)
4= |g(t)| ≡

√
x2(t) + y2(t) (1.4a)

θ(t)
4= 6 g(t) = tan−1

(
y(t)

x(t)

)
(1.4b)

The waveforms g(t), x(t), y(t), R(t), and θ(t) are all baseband waveforms, and, except for g(t),
they are all real waveforms. R(t) is a nonnegative real waveform. Equation (1.1a–1.1c) is a low-pass-
to-bandpass transformation. The ejωct factor in (1.1a) shifts (i.e., translates) the spectrum of the
baseband signal g(t) from baseband up to the carrier frequency fc. In communications terminology
the frequencies in the baseband signalg(t) are said to be heterodyned up tofc. The complexenvelope,
g(t), is usually a complex function of time and it is the generalization of the phasor concept. That
is, if g(t) happens to be a complex constant, then v(t) is a pure sine wave of frequency fc and this
complex constant is the phasor representing the sine wave. If g(t) is not a constant, then v(t) is not
a pure sine wave because the amplitude and phase of v(t) varies with time, caused by the variations
of g(t).

Representing the complex envelope in terms of two real functions in Cartesian coordinates, we
have

g(x) ≡ x(t) + jy(t) (1.5)

where x(t) = Re{g(t)} and y(t) = Im{g(t)}. x(t) is said to be the in-phase modulation associated
with v(t), and y(t) is said to be the quadrature modulation associated with v(t). Alternatively, the
polar form of g(t), represented by R(t) and θ(t), is given by (1.2), where the identities between
Cartesian and polar coordinates are given by (1.3a–1.3b) and (1.4a–1.4b). R(t) and θ(t) are real
waveforms and, in addition, R(t) is always nonnegative. R(t) is said to be the amplitude modulation
(AM) on v(t), and θ(t) is said to be the phase modulation (PM) on v(t).

The usefulness of the complex envelope representation for bandpass waveforms cannot be overem-
phasized. In modern communication systems, the bandpass signal is often partitioned into two chan-
nels, one for x(t) called the I (in-phase) channel and one for y(t) called the Q (quadrature-phase)
channel. In digital computer simulations of bandpass signals, the sampling rate used in the simu-
lation can be minimized by working with the complex envelope, g(t), instead of with the bandpass
signal, v(t), because g(t) is the baseband equivalent of the bandpass signal [1].
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1.3 Representation of Modulated Signals

Modulation is the process of encoding the source information m(t) (modulating signal) into a band-
pass signal s(t) (modulated signal). Consequently, the modulated signal is just a special application
of the bandpass representation. The modulated signal is given by

s(t) = Re
{
g(t)ejωct

}
(1.6)

where ωc = 2πfc. fc is the carrier frequency. The complex envelope g(t) is a function of the
modulating signal m(t). That is,

g(t) = g[m(t)] (1.7)

Thus g[·] performs a mapping operation on m(t). This was shown in Fig. 1.1.
Table 1.1 gives an overview of the big picture for the modulation problem. Examples of the mapping

function g[m] are given for amplitude modulation (AM), double-sideband suppressed carrier (DSB-
SC), phase modulation (PM), frequency modulation (FM), single-sideband AM suppressed carrier
(SSB-AM-SC), single-sideband PM (SSB-PM), single-sideband FM (SSB-FM), single-sideband en-
velope detectable (SSB-EV), single-sideband square-law detectable (SSB-SQ), and quadrature mod-
ulation (QM). For each g[m], Table 1.1 also shows the corresponding x(t) and y(t) quadrature
modulation components, and the corresponding R(t) and θ(t) amplitude and phase modulation
components. Digitally modulated bandpass signals are obtained when m(t) is a digital baseband
signal—for example, the output of a transistor transistor logic (TTL) circuit.

Obviously, it is possible to use other g[m] functions that are not listed in Table 1.1. The question
is: Are they useful? g[m] functions are desired that are easy to implement and that will give desirable
spectral properties. Furthermore, in the receiver the inverse function m[g] is required. The inverse
should be single valued over the range used and should be easily implemented. The inverse mapping
should suppress as much noise as possible so that m(t) can be recovered with little corruption.

1.4 Generalized Transmitters and Receivers

A more detailed description of transmitters and receivers as first shown in Fig. 1.1 will now be
illustrated.

There are two canonical forms for the generalized transmitter, as indicated by (1.1b) and (1.1c).
Equation (1.1b)describes anAM-PMtype circuit as shown inFig. 1.2. Thebaseband signalprocessing
circuit generates R(t) and θ(t) from m(t). The R and θ are functions of the modulating signal m(t),
as given in Table 1.1, for the particular modulation type desired. The signal processing may be
implemented either by using nonlinear analog circuits or a digital computer that incorporates the R

and θ algorithms under software program control. In the implementation using a digital computer,
one analog-to-digital converter (ADC) will be needed at the input of the baseband signal processor
and two digital-to-analog converters (DACs) will be needed at the output. The remainder of the
AM-PM canonical form requires radio frequency (RF) circuits, as indicated in the figure.

Figure 1.3 illustrates the second canonical form for the generalized transmitter. This uses in-phase
and quadrature-phase (IQ) processing. Similarly, the formulas relating x(t) and y(t) to m(t) are
shown in Table 1.1, and the baseband signal processing may be implemented by using either analog
hardware or digital hardware with software. The remainder of the canonical form uses RF circuits as
indicated.

Analogous to the transmitter realizations, there are two canonical forms of receiver. Each one
consists ofRFcarrier circuits followedbybaseband signalprocessingas illustrated inFig. 1.1. Typically
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TABLE 1.1 Complex Envelope Functions for Various Types of Modulationa

Corresponding Quadrature Modulation
Type of Mapping Functions

Modulation g(m) x(t) y(t)

AM Ac[1 + m(t)] Ac[1 + m(t)] 0

DSB-SC Acm(t) Acm(t) 0

PM Ace
jDpm(t) Ac cos[Dpm(t)] Ac sin[Dpm(t)]

FM Ace
jDf

∫ t−∞ m(σ)dσ
Ac cos

[
Df

∫ t−∞ m(σ)dσ
]

Ac sin
[
Df

∫ t−∞ m(σ)dσ
]

SSB-AM-SCb Ac[m(t) ± jm̂(t)] Acm(t) ±Acm̂(t)

SSB-PMb Ace
jDp [m(t)±jm̂(t)] Ace

∓Dpm̂(t) cos[Dpm(t)] Ace
∓Dpm̂(t) sin[Dpm(t)]

SSB-FMb Ace
jDf

∫ t−∞[m(σ)±jm̂(σ )]dσ
Ace

∓Df
∫ t−∞ m̂(σ )dσ

cos
[
Df

∫ t−∞ m(σ)dσ
]

Ace
∓Df

∫ t−∞ m̂(σ )dσ
sin

[
Df

∫ t−∞ m(σ)dσ
]

SSB-EVb Ace
{ln[1+m(t)]±j ˆln|1+m(t)|} Ac[1 + m(t)] cos{ ˆln[1 + m(t)]} ±Ac[1 + m(t)] sin{ ˆln[1 + m(t)]}

SSB-SQb Ace
(1/2){ln[1+m(t)]±j ˆln|1+m(t)|} Ac

√
1 + m(t) cos{ 1

2
ˆln[1 + m(t)]} ±Ac

√
1 + m(t) sin{ 1

2
ˆln[1 + m(t)]}

QM Ac[m1(t) + jm2(t)] Acm1(t) Acm2(t)

c©1999
by

C
R

C
P
ress

L
LC



TABLE 1.1 Complex Envelope Functions for Various Types of Modulationa (Continued)
Corresponding Amplitude

and Phase Modulation
Type of

Modulation R(t) θ(t) Linearity Remarks

AM Ac |1 + m(t)|
{

0, m(t) > −1
180◦, m(t) < −1 Lc m(t) > −1 required for envelope de-

tection

DSB-SC Ac |m(t)|
{

0, m(t) > 0
180◦, m(t) < 0 L Coherent detection required

PM Ac Dpm(t) NL Dp is the phase deviation constant
(rad/volt)

FM Ac Df

∫ t−∞ m(σ)dσ NL Df is the frequency deviation con-
stant (rad/volt-sec)

SSB-AM-SCb Ac

√
[m(t)]2 + [m̂(t)]2 tan−1[±m̂(t)/m(t)] L Coherent detection required

SSB-PMb Ace
±Dpm̂(t) Dpm(t) NL

SSB-FMb Ace
±Df

∫ t−∞ m̂(σ )dσ
Df

∫ t−∞ m(σ)dσ NL

SSB-EVb Ac |1 + m(t)| ± ˆln[1 + m(t)] NL m(t) > −1 is required so that the
ln(·) will have a real value

SSB-SQb Ac
√

1 + m(t) ± 1
2

ˆln[1 + m(t)] NL m(t) > −1 is required so that the
ln(·) will have a real value

QM Ac

√
m2

1(t) + m2
2(t) tan−1[m2(t)/m1(t)] L Used in NTSC color television; re-

quires coherent detection

Source: Couch, L.W., II, 1997, Digital and Analog Communication Systems, 5th ed., Prentice Hall, Upper Saddle River, NJ, pp.
231-232. With permission.

a Ac > 0 is a constant that sets the power level of the signal as evaluated by use of (1.11); L, linear; NL, nonlinear; and [·̂] is the

Hilbert transform (a −90◦ phase-shifted version of [·]). For example, m̂(t) = m(t) ∗ 1
πt = 1

π

∫ ∞−∞
m(λ)
t−λ

dλ.

b Use upper signs for upper sideband signals and lower signals for lower sideband signals.

c In the strict sense, AM signals are not linear because the carrier term does not satisfy the linearity (superposition) condition.

FIGURE 1.2: Generalized transmitter using the AM-PM generation technique. Source: Couch, L.W.,
II. 1997. Digital and Analog Communication Systems, 5th ed., Prentice Hall, Upper Saddle River, NJ,
p. 278. With permission.

the carrier circuits are of the superheterodyne-receiver type which consist of an RF amplifier, a down
converter (mixer plus local oscillator) to some intermediate frequency (IF), an IF amplifier and then
detector circuits [1]. In the first canonical form of the receiver, the carrier circuits have amplitude and
phase detectors that output R̃(t) and θ̃ (t), respectively. This pair, R̃(t) and θ̃ (t), describe the polar
form of the received complex envelope, g̃(t). R̃(t) and θ̃ (t) are then fed into the signal processor
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FIGURE 1.3: Generalized transmitter using the quadrature generation technique. Source: Couch,
L.W., II. 1997. Digital and Analog Communication Systems, 5th ed., Prentice Hall, Upper Saddle River,
NJ, p. 278. With permission.

which uses the inverse functions of Table 1.1 to generate the recovered modulation, m̃(t). The second
canonical form of the receiver uses quadrature product detectors in the carrier circuits to produce
the Cartesian form of the received complex envelope, x̃(t) and ỹ(t). x̃(t) and ỹ(t) are then inputted
to the signal processor which generates m̃(t) at its output.

Once again, it is stressed that any type of signal modulation (see Table 1.1) may be generated
(transmitted) or detected (received) by using either of these two canonical forms. Both of these forms
conveniently separate baseband processing from RF processing. Digital techniques are especially
useful to realize the baseband processing portion. Furthermore, if digital computing circuits are
used, any desired modulation type can be realized by selecting the appropriate software algorithm.

1.5 Spectrum and Power of Bandpass Signals

The spectrum of the bandpass signal is the translation of the spectrum of its complex envelope.
Taking the Fourier transform of (1.1a), the spectrum of the bandpass waveform is [1]

V (f ) = 1

2

[
G (f − fc) + G∗ (−f − fc)

]
(1.8)

where G(f ) is the Fourier transform of g(t),

G(f ) =
∫ ∞

−∞
g(t)e−j2πf tdt ,

and the asterisk superscript denotes the complex conjugate operation. The power spectra density
(PSD) of the bandpass waveform is [1]

Pv(f ) = 1

4

[Pg (f − fc) + Pg (−f − fc)
]

(1.9)

where Pg(f ) is the PSD of g(t).
The average power dissipated in a resistive load is V 2

rms/RL or I2
rmsRL where Vrms is the rms

value of the voltage waveform across the load and Irms is the rms value of the current through the

c©1999 by CRC Press LLC



load. For bandpass waveforms, Equation (1.1a–1.1c) may represent either the voltage or the current.
Furthermore, the rms values of v(t) and g(t) are related by [1]

v2
rms =

〈
v2(t)

〉
= 1

2

〈
|g(t)|2

〉
= 1

2
g2

rms (1.10)

where 〈·〉 denotes the time average and is given by

〈[ ]〉
= lim

t→∞
1

T

∫ T/2

−T/2

[ ]
dt

Thus, if v(t) of (1.1a–1.1c) represents the bandpass voltage waveform across a resistive load, the
average power dissipated in the load is

PL = v2
rms

RL

= 〈v2(t)〉
RL

= 〈|g(t)|2〉
2RL

= g2
rms

2RL

(1.11)

where grms is the rms value of the complex envelope and RL is the resistance of the load.

1.6 Amplitude Modulation

Amplitude modulation (AM) will now be examined in more detail. From Table 1.1 the complex
envelope of an AM signal is

g(t) = Ac[1 + m(t)] (1.12)

so that the spectrum of the complex envelope is

G(f ) = Acδ(f ) + AcM(f ) (1.13)

Using (1.6), we obtain the AM signal waveform

s(t) = Ac[1 + m(t)] cosωct (1.14)

and, using (1.8), the AM spectrum

S(f ) = 1

2
Ac [δ (f − fc) + M (f − fc) + δ (f + fc) + M (f + fc)] (1.15)

where δ(f ) = δ(−f ) and, because m(t) is real, M∗(f ) = M(−f ). Suppose that the magnitude
spectrum of the modulation happens to be a triangular function, as shown in Fig. 1.4(a). This
spectrum might arise from an analog audio source where the bass frequencies are emphasized. The
resulting AM spectrum, using (1.15), is shown in Fig. 1.4(b). Note that because G(f − fc) and
G∗(−f − fc) do not overlap, the magnitude spectrum is

|S(f )| =



1
2Acδ (f − fc) + 1

2Ac |M (f − fc)| , f > 0

1
2Acδ (f + f )c + 1

2Ac

∣∣M (−f − f )c
∣∣ , f < 0

(1.16)

The 1 in
g(t) = Ac[1 + m(t)]
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FIGURE 1.4: Spectrum of an AM signal. Source: Couch, L.W., II. 1997. Digital and Analog Commu-
nication Systems, 5th ed., Prentice Hall, Upper Saddle River, NJ, p. 235. With permission.

causes delta functions to occur in the spectrum at f = ±fc, wherefc is the assigned carrier frequency.
Also, from Fig. 1.4 and (1.16), it is realized that the bandwidth of the AM signal is 2B. That is, the
bandwidth of the AM signal is twice the bandwidth of the baseband modulating signal.

The average power dissipated into a resistive load is found by using (1.11).

PL = A2
c

2RL

〈
|1 + m(t)|2

〉
= A2

c

2RL

[
1 + 2〈m(t)〉 +

〈
m2(t)

〉]

If we assume that the dc value of the modulation is zero, 〈m(t)〉 = 0, then the average power
dissipated into the load is

PL = A2
c

2RL

〈
1 + m2

rms

〉
(1.17)

where mrms is the rms value of the modulation, m(t). Thus, the average power of an AM signal
changes if the rms value of the modulating signal changes. For example, if m(t) is a sine wave test
tone with a peak value of 1.0 for 100% modulation,

mrms = 1/
√

2 .

Assume that Ac = 1000volts and RL = 50ohms, which are typical values used in AM broadcasting.
Then the averagepower dissipated into the 50 � load for this AM signal is

PL = (1000)2

2(50)

[
1 + 1

2

]
= 15,000watts (1.18)
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The Federal Communications Commission (FCC) rated carrier power is obtained when m(t) = 0.
In this case, (1.17) becomes PL = (1000)2/100 = 10,000 watts and the FCC would rate this as a
10,000 watt AM station. The sideband power for 100% sine wave modulation is 5,000 watts.

Now let the modulation on the AM signal be a binary digital signal such that m(t) = ±1where +1
is used for a binary one and −1 is used for a binary 0. Referring to (1.14), this AM signal becomes
an on-off keyed (OOK) digital signal where the signal is on when a binary one is transmitted and off
when a binary zero is transmitted. For Ac = 1000 and RL = 50 �, the average power dissipated
would be 20,000 watts since mrms = 1 for m(t) = ±1.

1.7 Phase and Frequency Modulation

Phase modulation (PM) and frequency modulation (FM) are special cases of angle-modulated sig-
nalling. In angle-modulated signalling the complex envelope is

g(t) = Ace
jθ(t) (1.19)

Using (1.6), the resulting angle-modulated signal is

s(t) = Ac cos[ωc + θ(t)] (1.20)

For PM the phase is directly proportional to the modulating signal:

θ(t) = Dpm(t) (1.21)

where the proportionality constant Dp is the phase sensitivity of the phase modulator, having units
of radians per volt [assuming that m(t) is a voltage waveform]. For FM the phase is proportional to
the integral of m(t):

θ(t) = Df

∫ t

−∞
m(σ)dσ (1.22)

where the frequency deviation constant Df has units of radians/volt-second. These concepts are
summarized by the PM and FM entries in Table 1.1.

By comparing the last two equations, it is seen that if we have a PM signal modulated by mp(t),
there is also FM on the signal corresponding to a different modulating waveshape that is given by

mf (t) = Dp

Df

[
dmp(t)

dt

]
(1.23)

where the subscripts f and p denote frequency and phase, respectively. Similarly, if we have an FM
signal modulated by mf (t), the corresponding phase modulation on this signal is

mp(t) = Df

Dp

∫ t

−∞
mf (σ)dσ (1.24)

By using (1.24), a PM circuit may be used to synthesize an FM circuit by inserting an integrator in
cascade with the phase modulator input.

Other properties of PM and FM are that the real envelope, R(t) = |g(t)| = Ac, is a constant, as
seen from (1.19). Also, g(t) is a nonlinear function of the modulation. However, from (1.21) and
(1.22), θ(t) is a linear function of the modulation, m(t). Using (1.11), the average power dissipated
by a PM or FM signal is the constant

PL = A2
c

2RL

(1.25)
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That is, the average power of a PM or FM signal does not depend on the modulating waveform, m(t).
The instantaneous frequency deviation for an FM signal from its carrier frequency is given by the

derivative of its phase θ(t). Taking the derivative of (1.22), the peak frequency deviation is

1F = 1

2π
Df Mp Hz (1.26)

where Mp = max[m(t)] is the peak value of the modulation waveform and the derivative has been
divided by 2π to convert from radians/sec to Hz units.

For FM and PM signals, Carson’s rule estimates the transmission bandwidth containing approxi-
mately 98% of the total power. This FM or PM signal bandwidth is

BT = 2(β + 1)B (1.27)

whereB is bandwidth (highest frequency)of themodulation. Themodulation indexβ, isβ = 1F/B

for FM and β = max[Dpm(t)] = DpMp for PM.
The AMPS (Advanced Mobile Phone System) analog cellular phones use FM signalling. A peak

deviation of 12 kHz is specified with a modulation bandwidth of 3 kHz. From (1.27), this gives a
bandwidth of 30 kHz for the AMPS signal and allows a channel spacing of 30 kHz to be used. To
accommodate more users, narrow-band AMPS (NAMPS) with a 5 kHz peak deviation is used in
some areas. This allows 10 kHz channel spacing if the carrier frequencies are carefully selected to
minimize interference to used adjacent channels. A maximum FM signal power of 3 watts is allowed
for the AMPS phones. However, hand-held AMPS phones usually produce no more than 600 mW
which is equivalent to 5.5 volts rms across the 50 � antenna terminals.

The GSM (Group Special Mobile) digital cellular phones use FM with minimum frequency-shift-
keying (MSK) where the peak frequency deviation is selected to produce orthogonal waveforms for
binary one and binary zero data. (Digital phones use a speech codec to convert the analog voice source
to a digital data source for transmission over the system.) Orthogonality occurs when 1F = 1/4R

where R is the bit rate (bits/sec) [1]. Actually, GSM uses Gaussian shaped MSK (GMSK). That is,
the digital data waveform (with rectangular binary one and binary zero pulses) is first filtered by a
low-pass filter having a Gaussian shaped frequency response (to attenuate the higher frequencies).
This Gaussian filtered data waveform is then fed into the frequency modulator to generate the GMSK
signal. This produces a digitally modulated FM signal with a relatively small bandwidth.

Other digital cellular standards use QPSK signalling as discussed in the next section.

1.8 QPSK Signalling

Quadrature phase-shift-keying (QPSK) is a special caseofquadraturemodulationas shown inTable1.1
where m1(t) = ±1 and m2(t) = ±1 are two binary bit streams. The complex envelope for QPSK is

g(t) = x(t) + jy(t) = Ac [m1(t) + jm2(t)]

where x(t) = ±Ac and y(t) = ±Ac. The permitted values for the complex envelope are illustrated
by the QPSK signal constellation shown in Fig. 1.5a. The signal constellation is a plot of the permitted
values for the complex envelope, g(t). QPSK may be generated by using the quadrature generation
technique of Fig. 1.3 where the baseband signal processor is a serial-to-parallel converter that reads
in two bits of data at a time from the serial binary input stream, m(t) and outputs the first of the
two bits to x(t) and the second bit to y(t). If the two input bits are both binary ones, (11), then
m1(t) = +Ac and m2(t) = +Ac. This is represented by the top right-hand dot for g(t) in the signal
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constellation for QPSK signalling in Fig. 1.5a. Likewise, the three other possible two-bit words, (10),
(01), and (00), are also shown. The QPSK signal is also equivalent to a four-phase phase-shift-keyed
signal (4PSK) since all the points in the signal constellation fall on a circle where the permitted phases
are θ(t) = 45◦, 135◦, 225◦, and 315◦. There is no amplitude modulation on the QPSK signal since
the distances from the origin to all the signal points on the signal constellation are equal.

For QPSK, the spectrum of g(t) is of the sinx/x type since x(t) and y(t) consists of rectangular
data pulses of value ±Ac. Moreover, it can be shown that for equally likely independent binary one
and binary zero data, the power spectral density of g(t) for digitally modulated signals with M point
signal constellations is [1]

Pg(f ) = K

(
sinπf `Tb

πf `Tb

)2

(1.28)

where K is a constant, R = 1/Tb is the data rate (bits/sec) of m(t) and M = 2`. M is the number of
points in the signal constellation. For QPSK, M = 4 and ` = 2. This PSD for the complex envelope,
Pg(f ), is plotted in Fig. 1.6. The PSD for the QPSK signal (` = 2) is given by translating Pg(f ) up
to the carrier frequency as indicated by (1.9).

Referring to Fig. 1.6 or using (1.28), the first-null bandwidth of g(t) is R/` Hz. Consequently, the
null-to-null bandwidth of the modulated RF signal is

Bnull = 2R

`
Hz (1.29)

For example, if the data rate of the baseband information source is 9600 bits/sec, then the null-to-null
bandwidth of the QPSK signal would be 9.6 Hz since ` = 2.

Referring toFig. 1.6, it is seen that the sidelobesof the spectrumare relatively large so, inpractice, the
sidelobes of the spectrum are filtered off to prevent interference to the adjacent channels. This filtering
rounds off the edges of the rectangular data pulses and this causes some amplitude modulation on
the QPSK signal. That is, the points in the signal constellation for the filtered QPSK signal would be
fuzzy since the transition from one constellation point to another point is not instantaneous because
the filtered data pulses are not rectangular. QPSK is the modulation used for digital cellular phones
with the IS-95 Code Division Multiple Access (CDMA) standard.

Equation (1.28) and Fig. 1.6 also represent the spectrum for quadrature modulation amplitude mod-
ulation (QAM)signalling. QAMsignallingallowsmore than twovalues forx(t)andy(t). For example
QAM where M = 16has 16 points in the signal constellation with 4 values for x(t) and 4 values for
y(t) such as, for example, x(t) = +Ac, −Ac, +3Ac, −3Ac and y(t) = +Ac, −Ac, +3Ac, −3Ac.
This is shown in Fig. 1.5b. Each point in the M = 16 QAM signal constellation would represent a
unique four-bit data word, as compared with the M = 4QPSK signal constellation shown in Fig. 1.5a
where each point represents a unique two-bit data word. For a R = 9600bits/sec information source
data rate, a M = 16QAM signal would have a null-to-null bandwidth of 4.8 kHz since ` = 4.

For OOK signalling as described at the end of Section 1.6, the signal constellation would consist
of M = 2 points along the x axis where x = 0, 2Ac and y = 0. This is illustrated in Fig. 1.5c. For a
R = 9600bit/sec information source data rate, an OOK signal would have a null-to-null bandwidth
of 19.2 kHz since ` = 1.

Defining Terms

Bandpass waveform: The spectrum of the waveform is nonzero for frequencies in some band
concentrated about a frequency fc � 0; fc is called the carrier frequency.
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FIGURE 1.5: Signal constellations (permitted values of the complex envelope).
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FIGURE 1.6: PSD for the complex envelope of MPSK and QAM where M = 2` and R is bit rate
(positive frequencies shown). Source: Couch, L.W., II. 1997. Digital and Analog Communication
Systems, 5th ed., Prentice Hall, Upper Saddle River, NJ, p. 350. With permission.

Baseband waveform: The spectrum of the waveform is nonzero for frequencies near f = 0.

Complex envelope: The function g(t) of a bandpass waveform v(t) where the bandpass wave-
form is described by

v(t) = Re
{
g(t)ejωct

}

Fourier transform: If w(t) is a waveform, then the Fourier transform of w(t) is

W(f ) = =[w(t)] =
∫ ∞

−∞
w(t)e−j2πf tdt

where f has units of hertz.

Modulated signal: The bandpass signal

s(t) = Re
{
g(t)ejωct

}

where fluctuations of g(t) are caused by the information source such as audio, video, or
data.

Modulation: The information source, m(t), that causes fluctuations in a bandpass signal.

Real envelope: The function R(t) = |g(t)| of a bandpass waveform v(t) where the bandpass
waveform is described by

v(t) = Re
{
g(t)ejωct

}

Signal constellation: The permitted values of the complex envelope for a digital modulating
source.
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