Chapter 1

First Order
Differential Equations

1.1. Simplest Equations with Arbitrary Functions Integrable
in a Closed Form*

1.1.1. Equations of the Form y! = f(x)

Solution:** y:/f(x) dz +C.

1.1.2. Equations of the Form y/, = f(y)

. dy
Solution: z = [ —— +C.
()

Particular solutions: y = Ay, where Ay are roots of the algebraic equation f(Ay)=0.

1.1.3. Separable Equations y! = f(x)g(y)
Solution: /ﬂ :/f(x) dx + C.
9(y)

Particular solutions: y = Ay, where Ay are roots of the algebraic equation g(Ax) = 0.

Remark. The equation of the form f;(2)g1(y)y., = f2(x)g2(y) is reduced to the form
1.1.3 by dividing both sides by f1g1.

1.1.4. Linear Equation g(z)y., = fi(x)y + fo(x)

Solution:

= Cel" 4+ el eiF—fO(x) T wher T) = fl(x) x
y=Ce" + / g(m)d’ here F(x) /g(x)d'

* Special cases of equations 1.1.1-1.1.5 for concrete functions f, fo, f1, fa, and g are
not discussed in this book; such cases can be readily recognized by the appearance of
equations investigated, and the solution can be obtained using the general formulae given
in Section 1.1.

** Hereinafter we shall often use the term “solution” to mean “general solution.”
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1.1.5. Bernoulli Equation g(z)y., = fi(x)y + fn(x)y”™

Here, n is an arbitrary number.
The substitution w(z) = y*~™" leads to a linear equation:

wy = (1 =n)fi(@)w + (1 —n)fn(z).

Solution:

fi(z)
g9(z)

ylmm=Cel 4+ (1 - n)eF/e_an—(x) dr, where F(z)=(1-n)

g9(z)

dx.

1.1.6. Homogeneous Equation y/, = f(y/x)
The substitution u(z) =y/x leads to an equation with separation of variables: zu/, =
fu) =
. du
Solution: ———— =Injz|+C.
f(u) —u

Particular solutions: y = Az, where Ay are roots of the algebraic equation

Ay = f(Ax) = 0.

1.2. Riccati Equations: g(y)y), = f2()y*+ f1(z)y + fo(x)

1.2.1. Preliminary Comments

For fo =0, we obtain a linear equation (see 1.1.3), and for fy, =0, we have the Bernoulli
equation (see 1.1.4 with n = 2), whose solutions were given previously. Below we discuss
equations with fofo #Z 0.

1. Given a particular solution yo = yo(x) of the Riccati equation, the general solution
can be written as )
fa() }
dr|

g(z)

y=wla) + o) C - [ a(a)

where

o(o) = exp{ [ [2haohnle) + )] <5 |

To the particular solution yo(z) corresponds C' = co.

u(z) = exp<— / %y dx)

reduces the general Riccati equation to a second order linear equation:

2. The substitution

G faully + g fogh — 9(f2) — frfo]ul + fofsu =0,

which often may be easier to solve than the original Riccati equation.

3. Let g = fo =1, fi(z) and fo(z) be polynomials. If the degree of the polynomial
A = f? —2(f1),, —4fo is odd, the Riccati equation can not possess a polynomial solution.
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If the degree of A is even, the equation involved may possess only the following polynomial
solutions:

y=-3(n+[VA]),

where [\/Z ] denotes an integer rational part of the expansion of VA in decreasing powers

of z (for example, [Va? — 2z + 3] =z — 1).

4. The general Riccati equation, with the aid of the substitution

1 1R 1,71y filp)
T = ) :—w*——+—(—> , where F;(§) = , 1
(&), v 7 R AY P () ORG (1)
is reduced to the canonical form
W =w? + ¥ (&), (2)

where function ¥ is defined by the formula

1 1 1 F 3
V(€)= FoFy — —F2 + EF{ ——F = —(

FQ/ 2 1F2//
4 27 R 4

i 2 F

(prime denotes differentiation with respect to &).

Substitution (1) is determined by function ¢ = ¢(£) which may be arbitray. For a specific
original Riccati equation, different functions ¢ in (1) will generate different functions ¥ in
equation (2).

In the special case where the original equation has the canonical form

v =y + f(z),

transformation (1) is written as

1!

© L, L Y
r=9¢), y=—w—-——5,
AR PEAE

and the transformed equation (2) is determined by function W:

1 11
2 3 ( Pee\® 1 Peee
f(@) - Z / ? / N
Pe Pe

¥(E) = (9))

If the original Riccati equation is integrable by quadrature, we may obtain, specifying
different functions ¢, a variety of different integrable equations of the form (2). In Subsection
1.2.8, some useful transformations are given for specific functions .

5. The transformation (p, ¥1, 19, 13, and 14 are arbitrary functions)

Pa(§u+ Ps(§)

T=¢l) v= Pa(§u+ Y1 (€)

reduces the general Riccati equation to the Riccati equation.
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1.2.2. Equations Containing Power Functions

1. y.=ay*+bz+ec
For b= 0, we have an equation of the form 1.1.2. For b+ 0, the substitution bt = bz +c
leads to an equation of the form 1.2.2.4: y; = ay?® + bt.

2.  y, =y?—a’z?+ 3a.

Particular solution: o = ax — ™'

3. ys’c=y2—|—aw2—|—ba:—|—c.
This is a special case of equation 1.2.2.9 with o =0, 8 = 0.

4. y. =ay®+ bz".

Special Riccati equation, n is an arbitrary number.

1 u)
Solution: y:——u—a, where
a u
1 1 n+2
u(x)Z\/E[ClJ1 (—vabxq)+CgY1 (—vabxq)], q= )
20\ q 20 \ 4 2

Jm and Y, are Bessel functions, n # —2. With n = —2, see equation 1.2.2.36.

5.y, =y?+anz™ ! — a2z

Particular solution: gy = ax™.

6. vy, =ay®+bx® + ca™ L.
For n = —1, we have 1.2.2.36. For n # —1, the substitution

1

xn-{-l
n+1

n

&=

, nN=yr

leads to an equation of the form 1.2.2.25:

, 9 n c
—n=0b .
St +aln + nt1 &t n+1
7. y.=vy*+ax"y+ ax™ L
Particular solution: yo = —1/x.
8. vy, =y?>+az"y+ bzl
The substitution y = —ul, /u leads to a second order linear equation of the form

2.1.2.42:
u — ax"ul, 4+ ba" "ty = 0.

9. y. . =vy*+ (ax+B)y+az®+bx+ec

The substitution y = —ul /u leads to a second order linear equation of the form
2.1.2.28:
u?, — (ax + B)ul, + (az? + bx + c)u = 0.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Y, = y?> + az™y — abz™ — b>.

Particular solution: yg = b.

y, = az™y® 4+ bx~ "2

Solution:
du Vva n+1
Vabhmzr = | ———— 1 C h = Y gntl = )
ablnx /u2+ﬂu+1+ , where u \/Bx y, [ T

Y, = az™y? + bx™.

1°. For n # —1, the substitution ¢ = " *! leads to an equation of the form 1.2.2.4:

r__ ¢ 24 b gTZ;{L
Ye = 1Y n+1 '
2°. For n = —1 and m # —1, the transformation ¢ = 2™+, w = —1/y yields an
equation of the form 1.2.2.4:
b a
wp = w? -1
T om+1 + m+1 ¢
3°. For n=m = —1, the original equation is an equation with separation of variables.

In this case we have

dy
ln|x|:/m+0

vy, = y?> + k(ax + b)"(cx + d)~" %

The transformation

b 1
ot u= ——[(cx +d)?y + c(cx +d)], where A = ad — bc,

f:c:chd’ A

leads to an equation of the form 1.2.2.4: u; = u? + kAT2En,

Yy, = azx™y? + bma™ 1 — ab%x" 2™,

Particular solution: o = bz™.

Yy, = —(n+ 1)z"y? + az"t™" Ty — az™.

Particular solution: yo =z "L

Y, = az™y? + bx™y + bex™ — ac’z™.

Particular solution: yo = —c.

m—1

Yy, = az™y? — az™(bx™ + c)y + bmx

Particular solution: gy = ba™ + c.

y, = —anz™ 'y? + cz™(az™ + b)y — cx™.

Particular solution: gy = (az™ +b)~*.
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19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

Yy, = ax™y? + bx™y + ckx*~1 — bea™t* — acZxn 2k,

Particular solution: yo = cz®.

Yy, = (az®" 4+ bz 1)y?® + ¢

The substitution y = —1/w leads to an equation of the form 1.2.2.8:

w!, = cw?® + ax®™ + bz" 1.

zy! = ay® + by + cz?®.

The transformation t = 2, w = 2~y leads to an equation with separation of variables:
bw, = aw? + c.

zy!, = ay® + by + cz™.

The transformation ¢ = 2°, n = yz~° reduces this equation to the special Riccati
equation 1.2.2.4:

N = %772 + %f’”, where m = % - 2.
xzy, = ay? + (n + bzx™)y + cx®™.
The substitution y = wx™ leads to an equation with separation of variables:

/

Wy,

= 2" aw? + bw + ¢).

zy!, = zy® + ay + bx™.

The substitution y = —ul /u leads to a second order linear equation of the form
2.1.2.62: zul, — aul, + bz"u = 0.

zy!, + azzy® 4+ a2y + a1z + ag = 0.
The substitution azy = u/,/u leads to a second order linear equation of the form

2.1.2.59: zul, + asul, + as(a1z + ap)u = 0.

n

zy!, = az™y? + by + cx™".
The substitution w = ya™ leads to an equation with separation of variables: zw!, =

aw? + (b+n)w + c.

zy! = az™y? + my — ab "t

Particular solution: gy = bz™.

zy!, = 2®"y? + (m — n)y + «®™.

n+m

Solution: y=2""" tan( + C’).
n-—+m
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

zy! = axz™y?® + by + cz™.
The transformation & = 2”~°, n = ya? leads to the special Riccati equation1.2.2.4:

m—mn—2b

by = an? + c&* here k =
(n+ b = an” + c£”, where ——y>

zy! = az®"y? + (bz™ —n)y + c.
For n = 0, this is an equation with separation of variables. For n # 0, the solution is

d
n/in =z"+C, where w = yz".
aw? + bw + ¢

wy; — aw2n+my2 + (bwn-l—m _ n)y + cx™.

The substitution w = yx™ leads to an equation with separation of variables:

w), = "™ (aw? + bw + ¢).

(agx 4 b2) (yl, + Ay?) + (a1 + b1)y + aox + bo = 0.

The substitution Ay = u//u leads to a second order linear equationof the form
2.1.2.103:
(agz + bo)ul) . + (a1x + by)ul, + N aox + bo)u = 0.

(axz + ¢)y., = a(ay + bx)? + B(ay + bx) — bx + ~.

The substitution ¢t = ay + bz leads to a linear equation with respect to x = z(t):

(at® + Bat 4 va + be)z, = ax + c.

2z%y! = 2y? + zy — 2a°z.

Particular solution: 3 = av/z.

2z%y! = 2y? + 3zy — 2a°x.

x
Particular solution: o = avx — 5

z?y! = axz?y® +b.
Solution:

A 2a\ ax 2a\ -1
- - _ a o a C) ,
y T * <2aA+1m *

where )\ is a root of the quadratic equation aA? + XA+ b = 0.

z?y! = az?y® + bxy + c.
The substitution w = xy leads to an equation with separation of variables:
zw), = aw® + (b+ Dw +c.

z?y! = 2?y? — a’z* + a(1 — 2b)z® — b(b+ 1).

Particular solution: yo = ax + bz~ .
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39.

40.

41.

42.

43.

44.

45.

46.

z?y! = cx?y? + (ax® + bx)y + ax?® 4 Bz + 4.

The substitution cy = —u/, /u leads to a second order linear equation of the form
2.1.2.134:
22!l — x(ax + b)ul, + c(ax? + Bz +v)u = 0.

z?y! = az?y® + bz™ + c.

Having set w = xy + A, where A is a root of the quadratic equation a4? — A+c =0,
we arrive at an equation of the form 1.2.2.22: zw!, = aw? + (1 — 2aA)w + bz".

2. 2 2 1—n? 2m (p.m n
oy, =7y +T+am (bx™ + ¢)™.
The transformation
1 1—-m
= hp™ , _ = l-m —m
& ™+, w = x Y+ 5o x

leads to an equation of the form 1.2.2.4: wé = w? + a(bm) 2",

wzy; = ax?y? 4 bxy + cx™ + s.

The substitution ay = —u! /u leads to a second order linear equation of the form
2.1.2.127: 2%, — bzu!, + a(cx™ + s)u = 0.

z?y! = ax?y® + bxy + cx®™ + sz™.

The substitution ay = —ul /u leads to a second order linear equation of the form
2.1.2.128:

2, 1

zoul) . — brul, + ax™(cx™ + s)u = 0.

z?y! = cx?y? + (az™ + b)zy + az®™ + Bz™ + 7.

The substitution cy = —u/ /u leads to a second order linear equation of the form
2.1.2.141:
2l — (ax™ + b)zul, + c(ax®™ + Bx™ + v)u = 0.

x?y!, = (cx®” + Bx™ + v)y® + (az™ + b)xy + ca?.
The substitution y = —1/w leads to an equation of the form 1.2.2.44:

r*wl, = cx®w? — (az™ + b)zw + ar®™ + Bx™ + 7.
(® — 1)y, + A(y* — 22y + 1) = 0.
2A—1 1—A

T+ leads to an equation of the same form:
A A u(x)

The substitution y =

(2 — Dul, + (A= 1)(u? = 22u+1) = 0.

If A = n is a positive integer, then by using the above substitution, the original
equation can be reduced to an equation of the same form, wherein A = 1, i.e., to an
equation of the form 1.2.2.49 with a =1, b= —1.
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b
47. (ax® + b)y. + ay® + Bxy + ;(a +8) =0.

a+p
a

Particular solution: yo = — x.

48. (az?+ b)Yy, + ay® + Bzy + v = 0.

1
The substitution y = —Mx — leads to an equation of the same form:
e u(x)
(az? + by, + (’y - Mb)uz + (204 B)au+a =0.
@

49. (az?+b)y, +y*>* —2zy+ (1 —a)z® —b=0.

. dz -1
Solution: y=x+ </m+0> .

50. (ax?+ bx + o)yl = y?2 + 22z + b)y + A(A — a)x? + p.

Particular solutions:
Yo = —Ax + A, where Az%(—b:l:\/b2—4u—4/\c).

51. (az®4+bx+ c)y, =y + (ax + p)y — XN22? + A(b— p)z + Ac.

Particular solution: yg = Az.

52. (azx®+bax+c2)y,, =y?*+ (a12+b1)y—A(A+a1—az2)x?+A(bz —b1)z+ Ace.

Particular solution: yg = Az.

53. (a2x® + bez + c2)y., = y* + (a1 + b1)y + aoz? + box + co.
Let A and 3 be roots of the system of the quadratic equations

N+ Nay —a) +ag=0, (%4 Bb +co— Aeg =0,

that are solved consecutively (in the general case there are four roots). If some of
roots satisfy the condition 23 + Aby + Ba; + by — Abs = 0, the original equation
posesses a paticular solution: yy = Az + 3.

54. (z—a)(zx—b)y,+y*+k(y+x—a)(y+zx—0b)=0.
To the case of kK = 0 corresponds an equation with separation of variables. To the

case of k = —1 corresponds a linear equation. For k& % —1 and 0, with the aid of the
substitution ku(z) =y + k(y + =), we obtain the general solution:

y+k(y+ax—a) rx—a\k )
= f
y—l—k(y—i—x—b)(m—b) ¢ if a#b,

1 n 1
y+k(ly+x—a) x—a

=C if a=0a.
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55.

56.

57.

58.

59.

60.

61.

62.

63.

(caz? + box + az)(y., + Ay?) + (bix + a1)y + ap = 0.
The substitution Ay = u),/u leads to a second order linear equation of the form
2.1.2.166:

(cox® 4 box + ag)ull, + (b1 + ay)ul, + Aagu = 0.

z3y! = ax®y® + (bx? + c)y + szx.
The substitution ay = —ul /u leads to a second order linear equation of the form
2.1.2.170:

3u — (ba® + c)ul, + aszu = 0.

23y, = az®y® + z(bx + )y + oz + .

The substitution ay = —ul, /u leads to a second order linear equation of the form
2.1.2.173:
w3 — x(bx + c)u, + a(ax + B)u = 0.

xx

z(z? + a)(y,, + A\y?) + (bx? + )y + sz = 0.

The substitution Ay = w),/u leads to a second order linear equation of the form
2.1.2.177:
z(2® + a)ull, + (bx® + c)ul, + Aszu = 0.

z?(x 4 a)(y, + M\y?) + z(bx + c)y + az + 3 = 0.

The substitution Ay = u},/u leads to a second order linear equation of the form
2.1.2.181:

22(x + a)ul, + x(bx + c)ul, + Moz + B)u = 0.

(ax? + bz + c)(zy, —y) —y> +x*> =0.

— d
Solution: ln‘ y—2 ‘ =C+2/7m.
Y+ ax? +br +c

w4y; = —xty? — a2,

1
Solution: y= —+ % tan(i +0O).
r x

z2(z? + a) (v, + Ay?) + z(bz? + c)y + s = 0.
The substitution Ay = u),/u leads to a second order linear equation of the form

2.1.2.206:
2?(2? + a)ull, + x(ba? + c)ul, + \su = 0.

ar?(x — 1)2(y, + Ay?) + bz + cx + s = 0.
The substitution Ay = u),/u leads to a second order linear equation of the form

2.1.2.205:
az?(z — 1), + M\(b2?® + cx + s)u = 0.

T
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64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

a(z® — 1)%(y., + Ay?) + bz(z? — 1)y + cx® + de + s = 0.

The substitution Ay = ! /u leads to a second order linear equation of the form
2.1.2.213:

a(x? — 1)%ull, +bx(x? — Dul, + Aex? +dr + s)u = 0.
(ax? + bx + c)z(y; +y?3)+A=0.

The substitution y =u/, /u leads to a second order linear equation of the form 2.1.2.220:

(az? + bx + ¢)?ull, + Au = 0.

"y’ = ax®"y? 4 ba"y + cx™ + d.

Having set w = 2™y + A, where A is a root of the quadratic equation aA? — (b+n)A+
d = 0, we arrive at an equation of the form 1.2.2.22:

rwl, = aw? + (n + b — 2aA)w + ca™.

x(ax® + b)y., = az™y? + (B — anz®)y + vz~ ™.

The transformation t = 2™y, z = 2% leads to an equation with separation of variables:

[at? + (B + bn)t + 7]z, = —k(bz + a).

z?(ax® — 1)(y,, + Ay?) + (pz® + q@)zy + rz® + s = 0.

The substitution Ay = u},/u leads to a second order linear equation of the form
2.1.2.238:

22 (axb — D!, + (p2b + @)zul, + A(raz® + s)u = 0.
(az™ 4+ bx™ + )y, = cy®* — ba™ 'y + ax™ 2.

Particular solution: yo = —1/z.

(az™ 4+ bx™ + )y, = az™ 2y + bz ty + ¢

Particular solution: yg = x.

azx™ + bx™ + c)y’. = axky? 4+ Bxsy — aAzk + BAxs.
T

Particular solution: yg = —A.

(ax™ 4 bx™ + c)(zy), —y) + sk (y? — Az?) = 0.

Particular solutions: 3o = +zV/\.

(az™ 4 bx™ + ¢)(y., — y?) +an(n — 1)z" 2 + bm(m — 1)z™ "2 = 0.

anz™ 1 4+ bma™ 1

Particular solution: yg = —
ax™ + bx™ + ¢
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1.2.3. Equations Containing Exponential Functions

1.  y. =ay?+ be*®.
The substitution ¢ = e*® leads to an equation of the form 1.2.2.22: ty, = ay? + bt.

2. Yy, = y? + ade?® — a2e?®.

Particular solution: yo = ae™®.

3. y.=o0oy*+a+ ber® 4 ce? =T,
The substitution oy = —u/,/u leads to a second order linear equation of the form
2.1.3.5: v, + o(a+ be*® + ce? )y = 0.

4. y’m=0y2+ay—+—be‘”—|—c.
The substitution oy = —u/, /u leads to a second order linear equation of the form

2.1.3.10: u, — aul, + o(be® + c)u = 0.

5.yl =y?+by+a(X —b)er® — aZe??.

Particular solution: gy = ae™®.

6. vy, =y?+ ae*®y — abe ® — b
Particular solution: yy = 0.

7.yl =y®+ae?*(e’ £ bh)m — L)2

The transformation

1 A
5 _ e)\:v +b, w = X<67)\xy o Eefx\w)

leads to an equation of the form 1.2.2.4: w; = w? 4+ a\"2En,

8. y:/v — y2 + aeS)\m + beG)\m + ce4)\:z: _ A2.

The transformation

9. vy =y?+ axe*®y + ae’®.
Particular solution: yo = —1/z.
10. y! = ae*®y? + be*.
. dz A
Solution: /m =x+C, where 2z = e "y.

11.  y! = ae*®y? + be*®, k #0.
The substitution ¢ = e** leads to an equation of the form 1.2.2.4: ky, = ay® + bt*~*.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

y., = ber*y? + ale*® — g2pe(nt22)z

Particular solution: 7o = ae*.

Y, = ae*®y? + by + ce™**.

The substitution z = e’y leads to an equation with separation of variables:
az? + (b+ Nz +ec.

Y., = ael®y? + Ay — abZe(Ht2N)z,

Particular solution: gy = be*.

Y. = e*®y? + aely + adeh~ Nz,

Particular solution: vy = —Ae **.

Yy, = —Xer®y? 4 getTy — ae(h—Nz,

Particular solution: gy = e~ *.

Yy, = ael*y? + abePtWzy _ preP®,

Particular solution: yo = —be??,
Yy, = aek*y? 4+ by + ce®® + de k.
The substitution ¢ = e** leads to an equation of the form 1.2.2.42:
kt2yl = at®y? + bty 4+ ct*+/k L g,
Yy, = aePAtmzy2 4 [beo""“):’J — Ay + ce*™.
The substitution w = e’y leads to an equation with separation of variables:
w!, = eM T (qw? + bw + ¢).
y;} — aekwy2 + by + cekznw + dek(Zn—}-l)w.
The substitution ¢ = e** leads to an equation of the form 1.2.2.43:
kt?y) = at®y® + bty + ct" 1 4 dt>( Y,

Yy = el*(y — be*®)2 4 bAe?.

Particular solution: o = be*.

Y, = ae*®y? + bnz" ! — ab%e* ",

Particular solution: gy = bz™.

Y, = e*y? + az"y + arz"e AT,

Particular solution: yo = —Ae %,

© 1995 by CRC Press, Inc.



24. y! = —Xe**y? + ax"e’® — az™.

Particular solution: yo = e~ %,

25. y' = ae*®y? — abz™e*y + bnz" L.

Particular solution: yo = ba™.

26. y. = ax™y? + bre® — ab?z"e? .
Particular solution: o = be*.

27. vy, = az™y? + Ay — abz"e??.
Particular solution: yo = be?.

28. y! = az"y?® — abz"e "y + bre®.
Particular solution: o = be .

29. y. = —(k+ 1)z*y? + az*Tle y — ae®.

Particular solution: yo = *~ 1.

30. vy = az"y? — az™(be® + c)y + bre®.

Particular solution: yo = be™® + c.

31. y! = az"e?*y? + (bz"e ® — N)y + cz™.
The substitution w = e*®y leads to an equation with separation of variables:

/

w!, = 2" (aw? + bw + c).

32. y. =ae*(y —bz™ —c)? + bna" L.
Particular solution: yg = bz™ + c.
33. zy), = ae*®y? + ky + ab’z?*e®.

Solution: y = bz tan (ab/ 2Pt dr + C).

34. zy/, = az®™e y? + (bz"e ® — n)y + ce *.

d
Solution: /27711 = /x"‘lem dx + C, where w = a™y.
aw? + bw + ¢

35. (ae*® + bel® + o)yl = y? 4 ke¥®y — m? + kme’=.

Particular solution: yo = —m.

36. (ae*® 4 ber™ + ¢)(yl, — y?) + ar?e ™ 4 bu?er™ = 0.

ale*® 4 bueh®

Particular solution: =
Yo aer® + behT 4 ¢
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37.

38.

39.

40.

2 2
Yy, = y? + 2adze?® — a?e?* .

2
Particular solution: o = ae*® .

Yyl = ae=>*"y2 + Azy + ab?.

Solution: y = be*”/2 tan (ab/ e 2 gy 4 C’).

Ax?

Yy, = az™y? + Azy + ab’z"e

Solution: y = be**”/2 tan <ab/ 2" 2 dy 4 C’).

'y, —y?) =a+ bexp(%) + cexp(%).

The transformation ¢ = 1/x, w = —x?y — z leads to an equation of the form 1.2.3.3:
wé = w? + a + beFE 4 ce?FE.

1.2.4. Equations Containing Hyperbolic Functions

vy, = ay® + B+ vy coshz.

The transformation x = 2¢, ay = —ul, /u leads to the modified Mathieu equation
2.1.4.1:

uy, — (a — 2q cosh 2t)u = 0, where a = —4a83, q=2an.

y!, = y?® — a® + adsinh(Az) — a?sinh?(Az).

Particular solution: yg = acosh(Az).

vy, = y?> — A% + acosh™ (A\z) sinh ™" *(\x).

The transformation
1
¢ =coth(Azx), w= - sinh?(\z)y — sinh(\z) cosh(\z)
leads to an equation of the form 1.2.2.4: wé =w? + 72,

y. = y? + aX — a(a + ) tanh? (Az).

Particular solution: yo = atanh(Az).

Y, = y? + 3aX — A% — a(a + A) tanh®(\z).
Particular solution: yo = atanh(Az) — A coth(Az).

Y, =y + aX — a(a + ) coth’(Az).

Particular solution: yg = a coth(A\x).
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10.

11.

12.

13.

14.

15.

y. = y? — A% + 3aX — a(a + A) coth’(\z).
Particular solution: yo = acoth(Az) — Atanh(\z).

y’ = y? — 222 tanh?(Az) — 222 coth’(Az).
Particular solution: yo = Atanh(Az) + A coth(Az).

Y’ = y? 4+ aX + bX — 2ab — a(a + A) tanh?(Az) — b(b + ) coth?(Az).
Particular solution: yo = atanh(Az) + bcoth(Az).

y’ = Asinh(Az)y? — Asinh®(\z).

Particular solution: gy = cosh(A\x).

y!, = asinh(Az)y? + bsinh(Az) cosh™(Az).

The transformation £ = cosh(Az), w = %y leads to an equation of the form 1.2.2.4:
wé = w? + ab\ 2",

y’, = acosh(Az)y? + b cosh(Az) sinh™(Az).

The transformation £ = sinh(Az), w = %y leads to an equation of the form 1.2.2.4:

wé = w? + ab\2¢m.

y. = [asinh®(Az) — A]y? — asinh®’(Az) + A — a.

Particular solution: yo = coth(Az).

y. = [acosh?(Az) — A]y? + a + A — acosh’(A\z).

Particular solution: yo = tanh(A\z).

2y’ = [a — A + acosh(Az)]y? + a + A — a cosh(Az).

A
Particular solution: yo = tanh(Tx).

1.2.5. Equations Containing Logarithmic Functions

vy, = y®> 4+ aln(Bz)y — abIn(Bz) — b2

Particular solution: yo = b.

Y, = y?2 + axIn™(bx)y + aIn™(bx).

Particular solution: yo = —1/z.

y, = az"y? — abz" ' Inzy + blnz + b.

Particular solution: yg =bzlnz.
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4. y, =—(n+1)z"y? + az" ' (Inz)™y — a(lnz)™.

Particular solution: yo =z "L

5.  y. =a(nz)"y?+ bma™ ! — ab?z*™(Inz)".

Particular solution: gy = bz™.

6. vy, =a(nz)"y?— abz(Inz) "ty +blnzx + b.

Particular solution: yo = bxlnzx.

7. y. =a(lnz)*(y —bx™ —c)? + bnz" 1.

Particular solution: yo = ba™ + c.

8. y. =a(nz)"y?+b(Inz)™y + be(Inz)™ — ac?*(Inx)™.

Particular solution: yo = —c.

9. zy, =ay*+blnz+ec
The substitution x = e’ leads to an equation of the form 1.2.2.1: y, = ay® + bt + c.

10. =zy., =ay®*+b In® 2 4+ cIn?**2 .
The substitution ¢ = Inx leads to an equation of the form 1.2.2.6 with k = n — 1:
Y, = ay? + btk + ct?k+2,

11. zy! = (ay + blnzx)2

dz

Solution: Inz = [ ————
olution nx /azQ—i—bJr

C, where z=ay+blnx.

12. zy), = zy? — A?In’(Bz) + A.

Particular solution: yo = Aln(Bx).

13. =2y = zy? — A%z In**(Bzx) + AkIn* ' (Bz).

Particular solution: yo = Aln*(8z).

14. zy! = az™y? + b+ ab*z" In’ z.
Particular solution: yy =0blnz.
15. zy, = aln™(Az)y? + ky + ab®z?* In™ (A\z).

Solution: y = bz tan [ab/ 21 In™ (\z) dz + C|.

16. zy! = az™(y+blnxz)? —b.
1

Solution: —— + 1:1:" =C.
y+blnz n
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17. zy!, = az®*(Inz)y? + (bz"Inz — n)y + clnz.

d
Solution: /2711] = /x"‘l Inxzdx + C, where w = a™y.
aw? + bw + ¢

18. z?y!, = x*y* + aln’z +blnzx +c.
The transformation { = Inz, w = zy + % leads to an equation of the form 1.2.2.3:
wé =w?+af?+b6+c— 1.

19. 2%y, =2*y* +a(blnz+c)™ + %.

The transformation )
T
= bl R = — ]
& nr+c, w 5 Y+ %

leads to an equation of the form 1.2.2.4: wg = w? + ab=*¢".

20. 2%y, = a’z?y? —zy + b*In" x.

The substitution a?y = —u/, /u leads to an equation of the form a second order linear
equation of the form 2.1.5.24: x%u//, + zu/, + (ab)?In™ zu = 0.

21. z?In(ax)(y, —y?*) =1.

Particular solution: o = [z In(ax)] ™ .

22. (alnz +b)y, =y*>+ c(lnz)”y — A2 + Ac(Inz)™.

Particular solution: yo = —A\.

23. (alnz +b)y, = (In z)"y? + cy — A2(Inxz)™ + .

Particular solution: yg = —A.

1.2.6. Equations Containing Trigonometric Functions

1. vy, =oay®+ B+ ysin(Az).

The substitution 2t = 2\x + 7 leads to an equation of the form 1.2.6.2: Ay’ = ay? +
B + v cost.

2. y. . =oy*+ B+ ycosz.
The transformation x = 2¢, ay = —u!, /u leads to the Mathieu equation 2.1.6.4:

ull, + (a — 2qcos 2t)u = 0, where a =408, q= —2an.

rxr

3. vy, =1y?—a®+ aksin(Az) + a?sin’(Az).

Particular solution: yo = —acos(Az).

4.  y. =y? —a®+ aXcos(Ax) + a® cos?(Ax).

Particular solution: yo = asin(Az).
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10.

11.

12.

13.

14.

15.

16.

Y, = y? + A% 4 csin"(Az) cosT"4(Ax).
This is a special case of equation 1.2.6.6 with a =0, b = 7/2.

Yy, = y? 4+ A% + csin”(Az + a) sin” " *(Az + b).
The transformation

sin(Ax + a) sin?(\z +0) 1y
¢ sin(Az +b) ’ v sin(b — a) [ N e (Az+ )}

leads to an equation of the form 1.2.2.4:

we = w® + AE", where A = ¢[Asin (b — a)] 72

vy, = y® + asin(Bz)y + absin(Bz) — b>.

Particular solution: yo = —b.

vy, = y® + azsin™ (bz)y + asin™ (bx).
Particular solution: yo = —1/x.

vy, = y% + aX + a(X — a) tan?*(Az).
Particular solution: yo = atan(Ax).

vy, = y? + A% 4 3aX + a(X — a) tan’(Az).
Particular solution: yo = atan(Az) — Acot(A\x).
vy, = y? + aX + a(X — a) cot?*(Az).
Particular solution: yo = —acot(Az).

Y., = y* + A% + 3aX + a(X — a) cot?(Az).

Particular solution: yo = Atan(Az) — a cot(A\x).

’

Y, = ay? + btanzy + c.

Having set ay = —u/, /u, we obtain a second order linear equation of the form 2.1.6.29:
ull . — btanzul, + acu = 0.

Y, = ay® + 2ab tanz y + b(ab — 1) tan® z.

The substitution u = y + btanz leads to an equation of the form 1.1.2: v/, = au® +b.
y, =y? —ytanz + a(l — a) cot® z.
Particular solution: yo = —acot x.

Yy, = y®> — mytanz + b? cos*™ x.

Solution: y = —bcos™ x cot (b / cos™ xdr + C’).
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17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

y, = y?> — 2a cot(ax)y + b* — a®.

Particular solution: yo = acot(az) — bcot(bx).
vy, = y? + my cot z + b3(sinx)*™.

Solution: y = —bsin™ x cot (b / sin™ x dx + C).

Y, = y? — 2X% tan?(Az) — 2A% cot?(Az).

Particular solution: yo = Acot(Ax) — A tan(Az).

v, = y% + Aa + Ab + 2ab + a(X — a) tan?(Azx) + b(A — b) cot?*(Az).

Particular solution: yo = atan(Az) — bcot(Az).

Yy, = y? + ax tan™(bx)y + a tan™ (bzx).

Particular solution: yo = —1/x.

Yl = y? — 2% — 2% tan®(Ax) + a cos?(Az) sin” (Az).

The transformation

. ] sin(Azx)
— sin(\ _
¢ =sin(Az), w Acos(Ar)  2cos?(Ax)

leads to an equation of the form 1.2.2.4: wé = w? + a2

y. = Asin(Az)y? + Asin®(Az).

Particular solution: yo = — cos(Az).

Yy, = Acos(Az)y® + Acos®(Ax).

Particular solution: yo = sin(Az).
2y, = [A+ a — asin(Az)]y® + A — a — asin(Az).

. . Az s
Particular solution: yo = tan(T + Z)

2y, = [A+ a+ acos(Az)]y? + X — a + acos(Ax).
A
Particular solution: yo = tan(Tx).

Y. = A+ asin’(Az)]y? + X — a + asin’*(Az).

Particular solution: yo = — cot(Ax).

vy, = A+ acos?(Az)]y? + A — a + acos?(Az).

Particular solution: yo = tan(Ax).
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29. y/, = asin(Az)y? + bsin(Az) cos™(Ax).
The transformation { = cos(Az), w = —%y leads to an equation of the form 1.2.2.4:

w’g = w? + ab\ 2™,

30. ¥/, = Asin(Az)y? + acos™(Az)y — acos™ ! (Ax).
Particular solution: yo = 1/ cos(Az).
31. y. = acos(Ax)y? 4 bcos(Azx) sin™(Ax).
The transformation ¢ = sin(Az), w = %y leads to an equation of the form 1.2.2.4:

wé = w? + abA ™",

32. y! = Asin(Az)y? + asin(Az)y — atan(Ax).

Particular solution: yo = 1/ cos(Az).

33. y. = Asin(Az)y? 4 az™ cos(Az)y — ax™.

Particular solution: yo =1/ cos(Az).

34. y,=—(k+ 1)z*y? + azxkT(sinx)™y — a(sinz)™.
Particular solution: g =z %1,
35. y,=—(k+ 1)x*y? + ax**t!(tan )™y — a(tan x)™.

Particular solution: g =z~ %71,

36. y, = asin®(Az + p)(y — bz™ — ¢)? + bnz 1.

Particular solution: yo = ba™ + c.

37. y, = atan™(Az)y® — ab® tan™t?(Az) + bAtan?(Az) + bA.

Particular solution: yo = btan(Ax).

38. y’ = atan*(Az + p)(y — bz™ — c)? + bnz™ L.

Particular solution: yo = bz™ + c.
39. =zy! = asin™(Ax)y? + ky + ab®z?* sin™ (Azx).
Solution: y = ba* tan [ab/ 21 sin™ (\x)dx + C’} .
40. zy! = atan™(Ax)y? + ky + ab®z?* tan™ (Az).
Solution: 3 = ba* tan [ab/ 21 tan™ (\x)dx + C} .
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41. sin"t(2z)y’,, = ay?sin®" x + bcos?" z.

The substitution z = ytan™z leads to an equation of the form an equation with
separation of variables: 2" sin(2x)z), = az? + n2" 1z +b.

42. [asin(Az) + bly., = y? + csin(px)y — d? + cdsin(px).

Particular solution: yo = —d.

43. [atan(Az) + bly., = y? + ktan(pz)y — d? + kd tan(ux).

Particular solution: yy = —d.
1.2.7. Equations Containing Inverse Trigonometric Functions

» In the equations 1-9, function arccosx may be substituted for arcsinx.
1. y’ =y*>+ A(arcsinz)™y — a® 4 aA(arcsinz)™.

Particular solution: yo = —a.
2. y. =y?+ Az(arcsinz)™y + A(arcsinz)™.

Particular solution: yo = —1/x.

3.  y, = —(k+1)z*y? + A(arcsinz)”(zF 1y — 1).

Particular solution: yo =z %71,

4. y! = A(arcsinz)™y? + ay + ab — b*X(arcsinx)".

Particular solution: yg = —b.

5. y’. = Xarcsinz)"y? — bAz™ (arcsin z)"y + bmaz™ 1.

Particular solution: gy = bz™.

6. Y., = A(arcsin z)"y? + Bmz™ ! — A\B2x2™ (arcsin ).

Particular solution: yg = Bz™.

7. y. = X(arcsinz)"(y — ax™ — b)? + ama™ L.
Particular solution: yo = ax™ + b.

8. xy! = A(arcsinz)"y? + ky + Ab%z?*(arcsin z)™.
Solution: y = ba* tan [Ab/xk_l(arcsin )" dx + C.

9. zy. = (ax®'y® 4 bx™y + c)(arcsinz)™ — ny.

The substitution z = 2™y leads to an equation with separation of variables: 2! =

2" Y(arcsin2)™(az? + bz + ¢).
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» In the equations 10-18, function arccotx may be substituted for arctanz.

10. vy, = y*+ A(arctanz)™y — a® 4+ aX(arctanx)™.

Particular solution: o = —a.

11. y! = y? + Az(arctan z)"y + A(arctan z)™.
Particular solution: yo = —1/z.

12. y, = —(k+ 1)z*y? + A(arctan z)™(z* 1y — 1).

Particular solution: yo =z *~%.

13. y!. = X(arctanz)"y? + ay + ab — b*A(arctan z)™.
Particular solution: yo = —b.

14. y! = A(arctanz)"y? — bAz™ (arctan z)"y + bmaz™ .

Particular solution: yo = ba™.

15. y! = A(arctanz)"y? + bma™ ! — Ab%z?™ (arctan z)™.

Particular solution: yg = bz™.

16. y! = A(arctanz)™(y — axz™ — b)? + ama™ L.
Particular solution: gy = ax™ + b.
17. zy! = A(arctanz)"y? + ky + Ab%z?*(arctan z)™.

Solution: y = ba* tan [)\b / 21 (arctan 2)" da + C/|.

18. zy’! = (az®"y? + ba"y + c)(arctanz)™ — ny.

The substitution z = 2™y leads to an equation with separation of variables: z/ =

2" (arctan 2)™(az? + bz + ¢).

1.2.8. Equations Containing Arbitrary Functions

Notation: f = f(x) and g = g(x) are arbitrary functions; a, b, n, and X\ are arbitrary
parameters.

1. y'm=y2—|—fy—a2—af.

Particular solution: yo = a.

2.  y. = fy*+ay —ab—b3f.

Particular solution: yo = b.
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3. y.=v*+azfy+ 7.

Particular solution: yo = —1/x.

4. y. = fy? —az"fy+ anz™ '

Particular solution: yg = az™.
5.y, = fy*+anz" ' — a2z f.
Particular solution: yg = az™.

6. y,=—(n+z"y® +a"fy—f.

Particular solution: yo =z "%

7.  wxyl, = fy*+ny+ax®f.

Solution with @ > 0: y =+az" tan(\/a/w”_lf dx + C).
Solution with a < 0: y =4/|a|z" tanh(—\/|a| /x”_lfdx + C).

8. wy., =x*fy*+ (az™f —n)y + bf.
The substitution z = 2"y leads to an equation with separation of variables: z/ =

2" f(2) (2% + az + b).

9. vy, =fy’+gy—a*f —ag.

Particular solution: yy = a.

10. y. = fy*+ gy + anz™" ! — ax™g — a® f2*".

Particular solution: gy = ax™.

11. y., = fy?> — azgy + anz™ "' + a?z?*" (g — f).

Particular solution: gy = ax™.

12. yl.=—fly*+ fgy—g.

Particular solution: yo=1/f.

13. y. = fy* — fgy + 4.

Particular solution: yo = g.

4. y, =gy — 1>+ fi
Particular solution: yo = f.

15. y'm:f—; 2_ Ye

g’ T F

Particular solution: yo = —g/f.
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16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

2y, — iyt +g9(y—f) =0.

Particular solution: yg = f.

fll

’ 2 Tx

Ye =Y — .
I

Particular solution: yo = —f./f.

Y, = ae*®y? + ae fy + Af.

A
Particular solution: gy = ——e 7.
a

Y, = fy? — ae’*fy + ade’®.

Particular solution: vy = ae™”.

y:/v — fyz + a)‘e)\m _ a262)“”f.

Particular solution: yo = ae™?.

Y, = fy* + Ay + ae??* f.

Solution with @ > 0: 3y = Vae® tan(\/a/e/\mf dx + C’).
Solution with a < 0: y = y/|a| e tanh(—\/ |al /emf dx + C).

Y, = fy? — f(ae*® + b)y + are*®.

Particular solution: yo = ae™* +b.

yh, = e fy? + (af — Ny + be  * f.
The substitution z = e’y leads to an equation with separation of variables: z/ =

f(x)(22 +az +b).

y:/n = fy2 + aqy + a)\eAw — G,eAwg — a262Awf.

Particular solution: gy = ae™*.

ylm — chZ _ aekwgy + a}\eAm _+_ a2e2)\m(g _ f)

Particular solution: yo = ae™®.

Y. = fy® + 2a ze*™ — a?fe”.

2
Particular solution: o = ae*® .

v, = fy? + Azy + afer®.

Solution with a > 0: y = a e /2 tan(ﬁ/ A2 f dy + C).

Solution with @ < 0:  y = 4/|al /2 tanh(—\/ |al /e)‘zzﬂf dx + C).
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Yy = foy® + ae’® fy + ae”.
Particular solution: yo = —1/f.
Y, = fy* + gLy + afe®.

Solution with a > 0: y = v/ae? tan(\/a/feg dx + C).
Solution with @ < 0:  y = y/|ale? tanh(—q/ |al /feg dx + C’).

y. = fy? — atanh®’(A\z)(af + \) + aX.

Particular solution: yo = atanh(Az).

Y. = fy? — acoth’(Az)(af + ) + aX.

Particular solution: yo = acoth(\x).

Yy, = fy? — a®f + axsinh(Az) — a*f sinh?(\x).

Particular solution: yo = acosh(Az).

zy, = fy* + a+ a?f(Inzx)?

Particular solution: yg=alnz.

zy, = f(y+alnz)? —a.

Solution: 1 +/ f(=) dr = C.
y+alnz T
Yy, = fy> —azlnzfy+alnz+ a.

Particular solution: yo = axlnzx.

/

y, = —alnzy*+af(zlnz —x)y — f.
1

Particular solution: yyg = ————.
a(xlnz — x)

Y, = Asin(Az)y? + f cos(Az)y — f.
1

Particular solution: gy = ———.
cos(Ax)

y. = fy? — a®f + adsin(Az) + a?f sin’(A\z).

Particular solution: yo = —acos(Az).

Yy, = fy? — a®f + aXcos(Az) + a®f cos?(Ax).
Particular solution: yo = asin(Az).

y, = fy? — atan®*(A\z)(af — A) + aX.

Particular solution: yo = atan(Ax).

v, = fy?> — acot*(Az)(af — ) + al.

Particular solution: yo = —a cot(Az).
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1.2.9. Some transformations

Notation: f, g, and h are arbitrary functions of a complex argument which is written
in parentheses following the function name (the argument is a function of x).

1. vy, =vy*+a®f(az+0D).
The transformation { = ax + b, u = y/a leads to the equation u; = u? + f(6).

2. y,=9y’+ w“‘f(%)

The transformation £ = 1/x, w = —?y — x leads to the equation w’E =w? + f().

3. y,=y’+

+b
(cx + d)4 (Z;f—i-d)'

The transformation

b 1
ar t w = ——|[(cx 4+ d)*y + c(cx + d)], where A = ad — be,

€:c:lc—i—d’ A

leads to a simpler equation: wé =w? + AT2f(€).

4. 2%y =z*f(x)y® + 1.

1 1
The substitution u = ——— — — leads to the equation u, = u? + f(z).
2y x

1 — 2
5. wzy; = x%y? + Tn + 22" f(ax™ + b).

1—-n 1—

n _ . .
Y+ ™" leads to a simpler equation:
an 2an

The transformation £ = az™ 4+ b, w =
wi = w? + (an) "2 f(§).

6. y, = f(x)y® +g(=)y+ h(z).
The substitution y = —1/w leads to an equation of the same form: w!, = h(z)w? —

g(@)w + f(z).

)\2
7. Yy, =vy - e + e?* £ ().

The transformation ¢ = e, w = %e’”y - %e’” leads to a simpler equation:
wi = w? + A72f(8).
2 2z Az
8. y/:y2_>\_+ € <ae +b)
® 4 (cer® + d)* cer® +d
The transformation
Az Az 2 2 2)\x 2
ae™ +b (ce™ +d) e —d
S d YT T mew VT T aaew o Where Asadoie

leads to a simpler equation: wy = w? + (AX) 72 f(§).
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9. gy, =1y?— A% +sinh”*(Az)f(coth(Az)).

The transformation
1 . .4 1.
¢ = coth(Az), w= - sinh”(Az)y — 5 sinh(2\x)

leads to a simpler equation: wé =w? + \72f(€).

10. gy, =y® — A% 4 cosh™*(Ax) f (tanh(Az)).

The transformation

1 1
¢ =tanh(Az), w= X cosh?(\x)y + 5 sinh(2Az)

leads to a simpler equation: wy = w? + A2 f(£).

11. 2%y, = 2*y* + f(alnz 4+ b) + %.
1
The transformation £ = alnz + b, w = £y + 5 leads to a simpler equation: w’f =
a

2, -2 ¢
w* +a”* f(§).

12.  y! = y? + A% +sin”*(Az) f(cot(Ax)).

The transformation

€ =cot(\x), w = —sin*(\z) [% + COt()\.’L‘)}
leads to a simpler equation: wy = w? + A2 f(£).

13.  y., = y* + A2 + cos™*(Az) f (tan(Ax)).

The transformation

¢ =tan(\z), w = cos*(\zr) [% - tan()\x)]

leads to a simpler equation: wé =w? + A72f(€).

in(A
14. o, =y® + X2 +sin"*(Az + b)f(M)

sin(Az + b)

The transformation

sin(Az + a) sin?(\z +b) 1y
— = == |z t(Az + b
¢ sin(Az +b) ’ v sin(b — a) [ x e (Az + )}

leads to a simpler equation: wy = w? + [Asin(b — a)]~* f(£).
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TABLE 1.1

Solvable Abel equations of the form yy! — y = sz + Ax™,

A is an arbitrary parameter

m s Equation m s Equation
arbitrary —M 1.3.1.10 -1 0 1.3.1.16
(m+ 3)2
-7 15/4 1.3.1.56 -1/2 -2/9 1.3.1.26
—4 6 1.3.1.54 -1/2 —4/25 1.3.1.22
—5/2 12 1.3.1.47 -1/2 0 1.3.1.32
-2 0 1.3.1.33 -1/2 20 1.3.1.55
-2 2 1.3.1.19 0 arbitrary 1.3.1.2
—5/3 —3/16 1.3.1.30 0 0 1.3.1.1
—5/3 —9/100 1.3.1.23 1/2 —12/49 1.3.1.53
—5/3 63/4 1.3.1.48 2 —6/25 1.3.1.45
—7/5 —5/36 1.3.1.27 2 6/25 1.3.1.46

1.3. Abel Equations of the Second Kind

1.3.1. Equations of the Form yy! — y = f(x)

Preliminary comments. For the sake of convenience, in Tables 1.1-1.4 are listed
all the Abel equations discussed in Section 1.3. Tables 1.1-1.3 classify the Abel equations
wherein functions f are of the same form; Table 1.4 gives the other Abel equations. In
Table 1.1, equations are arranged in accordance with the growth of parameter m. In Table
1.2, equations are arranged in accordance with the growth of parameter s. In Table 1.3,
equations are arranged in accordance with the growth of parameter p. In the rightmost
columns of the tables are indicated equation numbers where the corresponding solutions
are written out.

Below in this section are given all the Abel equations united into groups wherein all
the solutions are expressed in terms of the same functions. A notation is given before each
group.

In most cases the solutions are presented in the parametric form

x = Fi(1,0C), y = Fy(7,C),

where 7 is a parameter, C is an arbitrary constant.

1. yy, —y=A

Solution: z=y— Alnly+ A|+C.

2. yy.,—y=Axz+ B, A #0.

Solution in the parametric form:

Tdr B TdTr
ICGXP(/m)T yCTeXp(/m)'
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TABLE 1.2
Solvable Abel equations of the form yy’, —y = sz + o A(az'/?2+BA+~A22~1/2),
A is an arbitrary parameter

s o @ 1) y Equation
arbitrary = 0 | arbitrary 0 arbitrary 0 1.3.1.2
?;m_ 3;3 (mf3)2 m(m+3) | 4m2+3m+9 3m(m+3) 1.3.1.12
—1/4 1/4 1 5 3 1.3.1.17
—30/121 3/242 21 35 6 1.3.1.29
—12/49 arbitrary | arbitrary 0 0 1.3.1.53
—12/49 1/98 25 41 10 1.3.1.25
—12/49 6/49 1 8 5 1.3.1.38
—12/49 2/49 5 34 15 1.3.1.24
—12/49 4/49 -10 27 10 1.3.1.31
—12/49 1/49 5 262 65 1.3.1.52
—12/49 6/49 -3 23 12 1.3.1.28
—12/49 2/49 1 166 55 1.3.1.58
—12/49 1 3/4943B | 12/49—15B/2 | 15/196+75B/16 | 1.3.1.64
—6/25 2/25 2 19 6 1.3.1.20
—6/25 6/25 2 7 4 1.3.1.39
—28/121 2/121 5 106 15 1.3.1.21
-2/9 arbitrary 0 arbitrary arbitrary 1.3.1.3
-2/9 arbitrary 0 0 arbitrary 1.3.1.26
—2/9 6 0 1 2 1.3.1.11
—10/49 2/49 4 61 12 1.3.1.57
—4/25 arbitrary 0 0 arbitrary 1.3.1.22
—4/25 1/50 7 49 6 1.3.1.59
0 arbitrary 0 0 arbitrary 1.3.1.32
0 arbitrary 1 2 arbitrary 1.3.1.36
0 n+2 1 2(n+2) (n+1)(n+3) 1.3.1.34
0 n+2 1 2(n+2) 2n+3 1.3.1.35
0 1 -1 2 0 1.3.1.37
0 2 1 4 3 1.3.14
0 arbitrary 0 arbitrary 0 1.3.1.1
2 2 -10 19 30 1.3.1.50
2 2 10 31 30 1.3.1.49
20 arbitrary 0 0 arbitrary 1.3.1.55

3. wyy,—y=-24+A+ Bz 12

1°. Solution in the parametric form with A > 0:

2k -1)CrF — (k=27 —k—1]"
= :—6
rea Crk+7+1 ¥ “

(k— 120+ 4 K20k ¢ 7
Crk+1+1

Y

where A = Za(k* —k+1), B= 2a*?(2k—1)(k—2)(k+1).
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TABLE 1.3
Solvable Abel equations of the form yy’ — y = sz + aAzP + BA%z9,

A is an arbitrary parameter

P q S «@ J6] Equation
-1 -3 arbitrary 1 -1 1.3.1.5
2m+1

-1 -3 I 1 -1 1.3.1.13

-1 -3 0 1 -1 1.3.1.7
-3/5 —7/5 —5/36 arbitrary arbitrary 1.3.1.63
—5/11 —13/11 —33/196 286A/3 —T770A/9 1.3.1.69
-1/3 —5/3 —3/16 arbitrary arbitrary 1.3.1.61
-1/3 —5/3 —3/16 3 —12 1.3.1.40
~1/3 —5/3 —3/16 5 ~12 1.3.1.15
~1/3 —5/3 15/4 6 -3 1.3.1.60
~1/5 —4/5 ~10/49 134/5 —7A/20 1.3.1.68

0 -1/2 -2/9 arbitrary arbitrary 1.3.1.3

2 3 4/9 2 2 1.3.1.14

2°. Solution in the parametric form with A < 0:

x=E2X e — (C1\ — 3Chw) sinwt — (3C 1w + Ca\) coswr)?,
y = 6£{(CF + CHw? — [C1(N? — w?) — 2CowA|e ™ sinwr
— [2C 1WA + C2(A? — w?)]e ™ coswT},
where A= $a(3w?—A?), B=2aX(9w?+5)?), {=a(e " +C sinwr+C; coswr) 2.
3°. See 1.3.1.26 for the solution with A = 0.

4.  yy! —y=2A(z'/? +4A + 3A2z71/2),

Solution in the parametric form:

x:%a(B:t%Li){ y=+ali(R2Ly +7), 14:_%(11/27
where J
/H;Q:arctanT—C, Ry =vV1+72,
-
L=
dr 1 T—1
AT e v
/72—1 g TG Re=veol
1 1
L—Z/Lz—ln +T‘—C, R_=V1-12
1—72 2 1—71

5. yy. —y=Ax+ Bz~! — B2z3.
Solution in the parametric form:

()"

B ) )"
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TABLE 14
Other solvable Abel equations of the form yy! —y = f(x)

Function f(z) Equation
1.3.1.6
k—1 k 2, 2k—1
Az — kBa” + kB"x (particular solution)
Az — % 1.3.1.44
2
%x _ %Axl/s n 314296—1/3 _ %A%—s/?) 1.3.1.66
6 31 100
Tt T Az\/3 4 ; St og2-1/3 T,4495—5/3 1.3.1.67
6 1/3 —1/3 —2/3
—gprtart bt M 4 du 1.3.1.65
(coefficients a, b, ¢, and d are related by an equality)
21
BT A2(123x_1/7 + 280 Az /T — 400 A%z =/7) 1.3.1.70
i 1.3.1.63
VAxz? 4+ Bx+C
A
m 1.3.1.18
3 9a? — 622 4
5 1.3.1.43
3, 62 +5a? 1.3.1.21
8 + 6 x2 +a2 0.1
3 622 + 94
g m 1.3.1.41
9 3022 + 334
3_ m 1.3.1.42
2
A+Bexp(—7x> 1.3.1.8
2
A[exp(%> _ 1] 1.3.1.9
1.3.1.73
2y 2 x Az
a”Ae”™ —a(bA+1)e™ +b (particular solution)
1.3.1.74
2y 2z Az Az
a“Xe”™ + adxe™” + be (particular solution)
1.3.1.75
2 . .
20°Asin(2z) + 2a sin(Az) (particular solution)
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where

2 21 +1
2 .
+7—A)e arctan if A<DO,
(r T )Xp{ " —A]
2
2 _ _ : _
v={00FT"+T A)exp( 2T+1> it A=0,
1
(72“_14){% VA]‘/Z if A>0,
214+ 14+ VA
2 21 +1
C+23/€Xp|: arctan dr if A<O,
vV=A Vv=A
2 .
W = C+2B/6Xp(_27+1)dT if A=0,
1
C+23/[w ”A}ﬂm it A0,
2r+ 1+ VA

where A =4A + 1.

6. yy,—y=Az""! — kBzk 4 kB2z?*~1.
A

Particul lution: =z — BzF — —.
articular solution Yo X X k‘B

7. yy,—y=Ax"' — A%z5

Solution in the parametric form:

z=ar Y1 —In|l+7| - )2

1 1
y:a[ aall (tr—In|l47|—C)/2 = ?T(T—ln|1+7'| —C)_I/Q},
where A = a?/2.

8. yy.,—y=A+ Be 2®/4

Solution in the parametric form:

| ‘ V2 1+ AB Aln|r+ V712 + AB|+C A
z=1In ) =7 — A
Alfr+v2taB+c| 7 VTt AB
9. yy. —y=A(e>®/4-1).
Solution in the parametric form:
2+1 A
x = Aln‘ Tt (arctanT — C)|, y=—[r+(r* = 1)(arctanT — O)].
T T

» In the solutions of equations 10-15, the following notation is used:

1
120 =/(1i7"‘“) =2dr —C,  Ep=En= /(1i¢m+1)_1/2d7—0,
R, =V1£rmtl F,=R,E, —T.
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_ 2(m +1)
(m + 3)?

Solution in the parametric form:

10. yy, —y= z + Az™.

2 2 9
Em L7 y=aE," ! (RmEm + 7'),
m—1

m+ 3
a
m—1

where A = £

m+1 (m—1>m+1 1em
2 m+3 @

11. gy, —y=—2x+6A%(1+ 24z~ 1/2), A > 0.
Solution in the parametric form:
r=A’RAE2(RPE+67'2)2, y=—124°R™*E~%(R%E - 27),

where E = E_1/273/2, R = R_l/g.

12 yy/ —y = Mw
S (m —3)*
2A 1/2 2 2. —1/2
+ m[m(m—l—&m + (4m® + 3m + 9)A + 3m(m + 3) A%z ]

Solution in the parametric form:

a

= mf"[(m —3)Rn By, + 372,
y=—2 g7 Bl (m — )7 By — 2B, + 27 R,
m—
1/2
where A = ——~
m—3
2m 41
13. yy, —y= 7-23: + Azt — A%g73,

4m
Solution in the parametric form:
1

——r YPRZETV A — [1F 2m + )T R

1 _ _
= ET 1/2Rm2E1/2’ y= 2ma m

E},
where a2 = —2mA, E = E 3/

14. yy., —y= %a: 4+ 2Ax2 + 2A2%23.

Solution in the parametric form:

1 _ 1 _
Tr = ﬁT 11'7‘37 Yy = ﬁT 2E3(7'R3 - Eg :|:T4E3).
15. gy, —y=—"2ax+5Az""/3 —12A42x75/3

Solution in the parametric form:
T = a71/2E73/2F3/2, y — %T1/2E73/2F71/2(F2 _ 2TF _ 7_72/3E2)’
where A = a'/3/24, E=FE_5,3, F = F_g,3.
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16.

17.

18.

19.

20.

21.

» In the solutions of equations 16—18, the following notation is used:

f= /exp(wg) dr—C,  g=27 U exp(F7°) dr — C| £ exp(F7?).

yy, —y = Az~ L
Solution in the parametric form:
r=af texp(¥7?), y=af! [exp(¥7’2) + 27']‘}7

where A = F2a2.

Yy, —y = —%:1: + %A(ml/z +5A 4+ 3A2.’13_1/2).

Solution in the parametric form:

v =-——[3+8fexp(+7)]?,  y=afexp(+72)[(27% + 1) f exp(£72) + 7],

nal
16
where 4 = +/a.

2a?
V2 £ 8aZ

Solution in the parametric form:

z=xa(fg) (¢ F2f?),  y=a(fg) exp(Fr?)g — 2f7].

yy, —y ==

» In the solutions of equations 19-21, the following notation is used:

= /7(r+1) - In|C(VT+ VT +1)],
R= TH, F:l—,/lelnyc(\/F+\/T+1)|.

T

yy., —y =2z + Az~ 2.

Solution in the parametric form:

243
——d

af/ 2
z:%E’Q/ST, y:aE*Z/‘g(gT—RE), where A= — 5

6 24
— (222 +19A + 64227 1/2),
35 =T 55 (37 194+ 647777

Solution in the parametric form:

Yy, —y = —

r=ar *(5RE —37)%, y=>5ar *E[(27 +3)E — 27°R], where A = —+/a.

2

! — :—:1:—|- ?4+a? - ———
YYy — Y \/ TN

Solution in the parametric form:

a FE?—27%F a 47F?— E?
= 5 y =
2V2 TEVF 42 T1EVF
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22,

23.

24.

25.

26.

27.

» In the solutions of equations 22-25, the following notation is used:
Py =+(r? - 1), Py =131 +C, Py = +(r* — 67 + 407 — 3).

Yy, —y = —ggx + Az~/2.

Solution in the parametric form:

_ _ 4
x=5aP2P; %y =4aP;Y}(P2—7P;),  where A= i?“\/s .

9 _
Yy, —y = —mw—i—Aa: 5/3,

Solution in the parametric form:
T = 1OaP§’/2P479/8, y= 9aP3:1/2P479/8(P32 — PyPy), where A = 494%(10a)?/3.

12 24
I _y=—""x+ (522 4+ 34A + 15A%z~1/?).
Y¥. — Y AT + + )

Solution in the parametric form:
_  p—4 22 _ —4 2 2
x=aP; " (14T7P3s —9P3)", y=28aP, "P3(47°P3 — 37P5 F P, Ps),
where A = —3+/a.

12 A
Iy =——"ax+4+ —(252'/% + 414 + 10A%2~1/?).
Yy, — Y 9% T 98 + + )
Solution in the parametric form:
x = aP;*(21P, P, — 16P2)°, y = 21aP; *P;(9PZP, T P2 — 8P,P2),

where A = —8/a.

» In the solutions of equations 26-29, the following notation is used:

S) = exp(V37) + Csinr, Sy = 2exp(V37) — Csint 4+ V3 C cos,
S =2exp(V371) — CsinT — V3C cos, Sy =48,53 — S2.

yy, —y = —gx + Az~ /2
Solution in the parametric form:
r =3aS;2S3, y=2aS;%(S5 —25,S3), where A = 16(3a)*/2.

Yy, —y = —ox+ Ax~7/5.

Solution in the parametric form:

o= 480828,y =5a8; 75 V(853 — S$28u), where A = (48a)%/%4>.
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12 6A
28wy, —y=—wt - (-32"/7 + 234 +124%71/%),

Solution in the parametric form:
z=aS; (75,85 — 252)°, y = —7aS,S; (4528, — 48,52 + S253),
where A = \/a/2.

30 3A
29. I y=———x+ —(212'/%2 + 35A + 6 A%z 1/?).
Y —Y 211 22 ¢ +avA )

Solution in the parametric form:
z = aS; (115, — 645%)%, y = —11aS;65,(S2 — 5525, + 3253S,),
where A = —324/a.

» In the solutions of equations 30-31, the following notation is used:
Ty = tanh(r 4+ C) + tan T, T, = tanh(r 4+ C) — tan T,
01 = cosh 7 —sin(7 + (), 0y = sinh T + cos(7 + C), 03 = sinh 7 — cos(7 + C).
30. yy,—y= —%az + Ax—53/3,
Solution in the parametric form with A < 0:
x=8aT;*? y=3daT*?2-T\Ty), where A=—12a%/3.
Solution in the parametric form with A > 0:

x=4a6"760,%7  y=3a6,"60,%%(6? — 6,05),  where A =3a>(4a)*/?.

12 4A
31. yy!, —y=—"—x+ — (=102 4 274 + 104%2~1/2),
49 49
Solution in the parametric form with A < 0:
z=a(10 — TTo)°, y=T7aTy (T} +311T} —4Ty),  where A= —-2Va.
Solution in the parametric form with A > 0:

x = af] (70205 — 507), y = —Tab; *02(05 — 302035 + 20705),  where A= /a.

» In the solutions of equations 32—43, the following notation is used:

7 _ C1J, (1) + CY, (1)  for the upper sign (Bessel functions),
VYl Cil (1) + Co K, (1) for the lower sign (modified Bessel functions),

fl/:T(ZV)fr+VZl/7 ZZZl/Sa
Uy=717Z.+ 12, Uy =U?2 + 71222, Us =+2722° — 2U,U,.

Remark. The solutions of equations 32-43 contain only the ratio Z./Z. There-
fore, function Z is defined in terms of two “arbitray” constants C1 and Cy (instead,
we may set, for instance, C1 =1, Cy =C).
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32. yy, —y=Az"1/2
Solution in the parametric form:
x = aT_4/BZ_2U12, Y= ar =43 2720, where A = ;%aS/Q.
33. yy., —y=Ax"2
Solution in the parametric form:
T = 2aT4/3Z2U2_1, Y= :|:3a7'72/3271U2_1U3, where A = —36a°.
34. yy, —y=An+2)[z/2+2(n+2)A+ (n+1)(n + 3)A%2z~1/2].
Solution in the parametric form:
T = aZ;Q[fD - (V + 1)Zu}2a Y= aZ;2<fy2 - QVZufu + 7—223)7
where A = vy/a, v =

1
n+2 °

35. yy, —y=A(n+2)x"?+2(n+2)A+ (2n+3)A%1/2].

Solution in the parametric form:
T = afl,_2[T2Zl, +(2- V)fu]2v Y= ia72f172[f3 +2(1-v)Z, f, £ 7—223]7

_ _ 1
where A = Fvv/a, v = 15.

36. yy! —y= Az'/?2 +2A% + Bx~1/2.
Solution in the parametric form:
v = A2~ 2,7 y= KL - (0 F ),
where B = (1 — v?) A3, prime denotes differentiation with respect to 7.
37. yy. —y=2A% — Azl/2
Solution in the parametric form:
x=a(Zy) 20+ 270)°, y=+ar(Zy) 2T (Z4)? + 2202 + 723,

where A = /a, prime denotes differentiation with respect to 7.

12 6A
38. Iy = —— — (/2 + 8A + 5A2x1/?),
Yy, — Y T (z/°+8A+ x )

Solution in the parametric form:
x =3aU; (5U2 — 77222,y = 28ar2 22U 4 (372 2% — ZU, — 3U2),
where A = 2v/3a; Z and U; are expressed in term of modified Bessel functions.
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6
39. yy., —y= —Ew + (2:c1/2 +7A+ 4A%x _1/2)

Solution in the parametric form:

z=ar*Z (U Uy — 2U3)%, y=5ar *Z SU,(U3—UUs),  where A=—\/a/2.
40. yy. —y= —%:c + 3Ax~1/3 — 12A255/3,

Solution in the parametric form:

~3/2 5~ 3/2f3/2

T =ar N by
3a _ —3/2 ,—1/2
vy= 3/2Z3/2 f (f32/2 — 2732 f3/2 — T2Z§/2),

where Z3/5 and f3/, are expressed interms of modified Bessel functions, and A =
1,4/3
§a .

b2
41. yy;—y:—$+ \/d)zibz:tﬁ

Solution in the parametric form:

v = — Ll 7=y Ry (272 230,  3U2),

y=TF—7 127320 PUS (302 — 12030, + 472 23T,

where b? = 242

4 b2
42. yy,—y = +—vw2:Fb2:F7 eSS

Solution in the parametric form:
r = _%Tflzfs/ZU;‘q’/?Ugl/?(272ZBU3 +3U3),

y = ﬁ:%r’lZ’g/zUQ_W?U;l/g(i’)US F 122305 — 3U2),

where b = 6a2.

3 2
43. —y=——=x ——\/m2+a2—|——
Yy, — Y 32 2T T aZ
Solution in the parametric form:

_ —U_3/2U U2 -UP), y= %U2_3/2U§1(3U§ 1203 + 472 Z3U3).
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44.

45.

46.

47.

48.

49.

» In the solutions of equations 44-52, the following notation is used:

Ey=7°\/£4p> - 1) +37%pF1, Ey=71pF1,

By = /4493 — 1) £ 279%,  Ey=1y/%(4p3 - 1) + 2p.

Function p = p(1) is given implicitly as follows:

—Ch.

_ dp
T / VEAGE — 1)

The upper sign in this formula corresponds to the classical elliptic Weierstrass func-
tion p = (T + Cs, 0, 1).

9
—y=Az> — —A"".
Yo =¥ 625

Solution in the parametric form:

1 6
=5a(r*F o), y=ar’Ei,  whee A=+—_a’
x an:FQ y=ar“Fy where 125 °
Yy, —y = —ax + Az
Solution in the parametric form:
2 2 6
x=bat‘p, y=ar"Ey, where A=+4+——a .
125
Yy, —y = =z + Az?
Solution in the parametric form:
2 6
r=>5aFEy;, y=ar“Ey, where A = :N:Ea .

yy, —y = 12z + Az ~5/2

Solution in the parametric form:
x = ap_6/7E;4/7, Y= ap_6/7E;4/7(14@2E4 -3), where A = F14747/2.
vy, —y = Ga+ Az>/?
Solution in the parametric form:
w=2aE2 B8, y=aE;' P E;Y*(9E2 T 16pE?),
where A = —12842(24)%/3.

yy! —y = 2z + 2A(10z'/2 + 31A + 3042z 1/2).

Solution in the parametric form:

v =ap ?[ry/E(4p> 1) - 3@]2, y=—2arp 2 [p/E£(4p3 — 1) £ 2703 + 7],

where A = \/a.
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50.

51.

52.

53.

54.

55.

56.

yy; —y =2z + 2A(—10(c1/2 + 194 + 30A233_1/2),

Solution in the parametric form:
©=aE;%(E) — 6Ey)°, y=—2aE;%(+6E3 — E} + TE\Ey),  where A= —Va.

28 24
= (52?2 + 106A + 1542 1/2
21T 121( T + ):

Solution in the parametric form:

Yy, —y = ———

r=a(22p°Ey — 5)27 y = +44ap’ E3(TpFE3 F 27), where A = +2/a.

12
vy, —y = 5%t 29 (53;1/2 +262A + 65427 1/2),

Solution in the parametrlc form:

x = aB;*(280E2 7 15E2)°, y=56aE;‘EX(6pE, + E4),  where A= 7F3\/a.

» In the solutions of equations 53-60, the following notation is used:

d
4T incomplete elliptic integral of the second kind

(473 - 1) in the form of Weierstrass

R=\/+(47m3-1), L=1QIF7'R+C), Li=7YRI-1), I3=47I}FI3.

12
I _y=—""gx+ Az'/2
YYy, — Y 19 +
Solution in the parametric form:
27-4 —4 2 12
x="Tar* I~ %, y=—2al *(RI —27°), where A= :I:E\/hz.

yy, —y =6z + Az~

Solution in the parametric form:
x = aT_3/5I;2/57 y = aT_3/5I;2/5(5RI1 —2), where A = F150a°.

Yy, —y = 20z + Az~1/2,

Solution in the parametric form:

w=al[ P12, y=—4al[**(12F971?),  where A=+108a%>

yym —y= —a:+Aac_7

Solution in the parametric form:

_ Y 3
z=all?17%/%, y:%g SR2173/3 (1,0 — 312),  where A= i%
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57.

58.

59.

60.

61.

62.

63.

10
yyw —y = —Ew + (4:c1/2 + 614 + 1242%z _1/2)

Solution in the parametrlc form:

z=a(7TRI; —3)°, y=14al,[+(107° —1)[; — R],  where A= a.

12
Yy, —y = BTy —( /2 1 166A + 55A2271/2),
Solution in the parametric form:
w=aly (42712 $512)°, y=F84al2I;*(3rI2+ 1, F12721%),  where A=+\a.
4 z1/2 2 —1/2
yym—y——gw+—(7 + 49A + 6A°x ).

Solution in the parametric form:

w=al;*(5I15 — 1612)°, y=—bal; *Is(+313—I215+8I2I5),  where A=8\a.

yyl, —y =2+ 6Ax~1/3 — 3A2x75/3
Solution in the parametric form:

z =220y = ar PRI 2 1R 4 1y — 3722,
where A = —+a(2a)'/3.

Yy, —y=—->ax+ Ax~'/3 4 Bx=5/3
The substitution z = 73/2 leads to the equation
3 9 3 3
r_ _ 92 _-5/2 42 42_2pR
Wr=TyT VTR T Ty

coincident with equation 1.3.3.13 when n=—1/2,¢=0,b=3/4,d=3A/2, a®> = —3B.

yyé—y:—%m—l—Aw‘g’/S—Bm_”s, B > 0.
The transformation
A 1 —5/4 1/2 5
r=(wsg-gv7) L v=gu(gB) VA

leads to an equation of the form 1.3.1.3:

ww! fw:szJr%Jr( > )1/2 !
T 9 3B
vy, —y = k(Az? + Bz + C)~ /2,
The transformation
4(bgw? + byw + by) 4(bow? + byw + by)
- 4A — w? ’ 4A — w? ’
where parameters by, by, and by are found from the relations B = 4Aby — by and

C = b? — 4bybo, leads to the Riccati equation:
+thwg = (—F& + bo)w? + byw + AE + by.

y=£&+

For C > 0, we may set by = 0, by = V/C, by = —
In books by Zaitsev & Polyanin (1993, 1994) it is shown that the original equation
is reducible to the degenerate hypergeometric equation.
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64. yy,—y=—42x+3A(55+B)z'/?4+3A4%(5H5 —2B)+ 2 A3(5+2B)x~ /2

The substitution z = (£2 + %A)2 leads to an equation of the form 1.3.3.13 with n =3,
a=4/T,¢=0,b=A, d=12A(% - B):

yyh = (46> + 5A)ey — [1—254 + 12,4(% - 3)52 + 3A2}g3.

65. yy, —y= —%a:
+ £ B%[(2— A)z'/® — £B(2A +1) + B*(1 — 3A)z~'/3 — AB3z~2%/3].

The transformation

leads to the Riccati equation:

(e 2 farieos (e 2o 3o

66. yy, —y= %CE — %Aazl/3 + %Azw—1/3 _ 62275 Adp—5/3.

The transformation

3 1 1 w
w= AYZFS2 g3 (e 2 /T where f=——7-—,
( 25 2f 2f2) - L¢

leads to an equation of the form 1.3.1.46: wwé —w= %5 — &2

67. yy, —y= —%x + %Awl/3 + %Azcﬂ_l/3 — %A“w‘s/?ﬁ

Denote A = 1—80a and perform the transformation

2
37:53/2’ y_i(w—i-%f—?) ra )\/E, where fzz—ia.

) 59750 ¢ 10
As a result we obtain an equation of the form 1.3.4.30 with n = 1, ¢ = — 2 a:
3 8 9 1 1
[(z — 1—0a)w + 7z2 - az+ 7a2}w; = —§w2 + 22w.
68. yy, —y= —%w + %Azw_l/s — %A:"w—"‘/s.
Denote A = 8a~2. The transformation
5 1 4 39
V= (et = gue ) w= e -

leads to an equation of the form 1.3.1.64 with B = —1/49:

ww’T —w = —ET 39 2 15 a3771/2.

107 T 98" T Tsa

© 1995 by CRC Press, Inc.



69. yy, —y= —%w + 286 286 A2,,—5/11 _ %A:’»w—m/n.

Denote A = %a’Q. The transformatlon
_ 150 s/11 14 73/11) _ 3 g1 39 o
V= 448( 1"  WE T 56
leads to an equation of the form 1.3.1.64 with B = —1/49:

12039 5 15 5

! p— —_— —_— R —
T T
70. yy., —y=—"2-x+ T A%>(123z~ /7 4 280Ax~%/7 — 40042z ~/7).
Denote A = 1/a. The transformation
2 21
x=¢4, yz%(w—&-%—kl +%%)§_3/47 where 5:2—%@

leads to an equation of the form 1.3.4.30 with n =3, ¢ = —%a:

21 3

{(2—%a>w+4z — Taz + 3a } Zw2+2zw.

71. yy; —y = ax + bx™
1°. For m # 3, the transformation
r=B[(m-3)< +1} cw=2m =3B (b - L L)
x

leads to the equation

2 1)
wwl —w= ((mﬁ{T mBr2+2m—3—a(m—3)% B2+ [2—m+a(m—3)% | B3r~1/2}.
m
2°. Let m # 1 and a > —1/4. Assume
(n+2)(n+m+1) 1( m—1 >
a=— , whence nyo=—|t—=-m—3.

(2n +m + 3)? b2 V1+4a
Then, the transformations

n+2 m — 1 n+2 n + 2

= m—1 = -———— m—l =
T Y= Tt <€ o 1)’ n=he

reduce the original equation to the classical Emden—Fowler equation w = A"w™,

2n+m+3 . . .
where A = (71) b, which is discussed below in Section 2.3.

m —
m+1
72. Yy =——— x4+ Ax®™ 1 4 Ba3™m T
Yy, — Y (m 1 2)? + +
2
am m .
Assume A = 7m7 B = *m The transformation
2)2 2 2 1 2
VT = _7(771—1— ) byz " 4+ mt2 bx™™, w= 7(m+ )T—i—xm—i— m+2 a
m m+2
leads to the equation
2 1
ww!, —w= 2 ED e
(m+2)?

(see Table 1.2 with a = 0 in Subsection 1.3.1).
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73. yy., —y = a*Xe*** —a(bX + 1)e** + b.
Particular solution: yo = ae™® — b.
74. yy., —y = a*re®*® + adze® + ber?.

Particular solution: vy = ae™® +z + —.

a\

75. yy!, —y = 2a®Asin(2Az) + 2asin(Ax).

Particular solution: yo = —2asin(Az).
(f +b)°
76. yy, —y=ad*f.f’ — ngw’ f=7f(=z).
b b
Particular solutions: y; = af, + f%, yo = —af, + f; )

1.3.2. Equations of the Form yy! = f(x)y + 1

1. yy, = (ax+b)y+1.

The substitution £ = y — %ax2 — bx leads to the Riccati equation with respect to
v =x(§): z; = +az? +bx + &

2. yy. =(ax+b)2y+1
The substitution a¢é = —(az + b)~! leads to an equation of the form 1.3.1.33: yyé =
y+ (ag) =2

, 1
3. YY, = (a — E)y + 1.

The substitution £ = y — ax leads to the Bernoulli equation with respect to x = z(§):
fﬂcé +afr+a?z? =0.

4. yy' = (ax+b)"2y+1.

2

The substitution z = — (az + b)'/2 leads to an equation of the form 1.3.1.2: yy, =
a

Y+ %az.

5 yy, =3(ax®? +8x)" /2y + 1.

12

The substitution z = — (az'/2 +8)'/? leads to the equation of the form 1.3.1.10 with
a

2

2 a
m=3: yy;:y—gz—&— 518423'

6. yy,=(ax™?% - 2alz" 3y +1.

The transformation = = a3/ ?w?, y = & —w? leads to the Riccati equation: 3a3/2£wé =
€ —w?.
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7. yy,=ae y+1

The substitution £ = %e” leads to an equation of the form 1.3.1.16: yyé =y+(A\)~L.

8. yy, = (ae™® + be )y + 1.

The transformation

b
§:y+yef>\miie)\w7 w:e)\:c

leads to the Riccati equation: w’5 = aw? + Méw — b.

9. wyy., =aycoshx + 1.
This is a special case of equation 1.3.3.20 with b =0, ¢ = 1.

10. yy! = aysinhx + 1.
This is a special case of equation 1.3.3.21 with b =0, ¢ = 1.

11. yy. = acos(wz)y + 1.

The transformation

; U 8au

r = —— arctan — =T— ——>
w w Y 16u? 4+ w?
leads to the Riccati equation: u! = —27u? + au — %(.«)27'.

12. yy! = asin(wz)y + 1.

The substitution * = £ + 2L leads to an equation of the form 1.3.2.11: yyé. =
w
acos(wé)y + 1.

1.3.3. Equations of the Form yy! = fi(z)y + fo(x)

Preliminary comments. With the aid of the substitution £ = [ f1(z) dz, these equations
are reducible to the form

yye =y +f(§),  where f(§)= fo(z)/fi(z), (1)

and by means of the substitution z = [ fo(z) dx they can be reduced to the form

yy. =g(z)y+1,  where g(z) = fi(z)/fo(x). (2)

Concrete equations of the form (1) and (2) are outlined in Subsection 1.3.1 and 1.3.2,
respectively.
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1.  yy. = (az + 3b)y + cx® — abx? — 2b%x.
The substitution y = 2%t + bx leads to the linear equation with respect to x = x(t):
(—2t2 + at + )z}, =tz + b.

2.  yy. = (3azx + b)y — a®’z® — abz® + cx.
The substitution y = zw+az? leads to the Bernoulli equation with respect to x =z (w):
(—w? + bw + ¢)x!, = wx + ax?.

3.  2yy, = (Tax + 5b)y — 3a’z® — 2ca® — 3b%x.
This is a special case of equation 1.3.3.11 with m = 3/2, k = 1/2.

4. yy, =[B—-—m)xz—1ly+ (m —1)(z® — 2* — ax).

The transformation
r=w/z, y=-2""'4+22-z—a

leads to the equation ww), = w+az+2z™ whose solvable cases are outlined in Subsection
1.3.1 (see Table 1.1).

5.  yy. +xz(ax®+b)y+x=0.

1.2

The substitution 2z = —52? leads to an equation of the form 1.3.2.1: yy, =

(—2az +b)y + 1.

6. yy, = 3(azx +b)"/3x75/3y 4 3(ax + b) 7/ ~7/3.

11 b
The substitution w = — + g( ax +
x

variables: w}, = 71/3(az + b)~?/3(+a — 3uw?).

1/3
) leads to an equation with separation of

7.  3yy, = (—TAz + 65 — 2X\)z"1/3y
+ 2(Axz + 5A)(— Az + 3s + 4\)x'/3 + 6(Asz — 1)z —2/3,
where A = As(3s + 4A).

The transformation
= (E+ X)), y= (w4 4\ + 3s — Az)z?/?
leads to an equation of the form 1.3.4.12 with a = 1/3:

[(€ + Xs)w + (4X + 3s)EJwe = Fw” 4+ 2(3X + s)w + 2€.

8. yy., =az" (14 2n)z + anly — nz*"(z + a).

The transformation 1
w
r=—, y=-——+2"" +a2”
z Al

n

leads to an equation with separation of variables: w, = w™" — a.

9. yy. =a(x—nb)z" ly + clz? — (2n + 1)bz + n(n + 1)b?|z?"~L.

The substitution & = ax™ (% - b) leads to an equation of the form 1.3.1.2: yyfg. =
n
y+ (n+1)ca2¢.
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10.

11.

12.

13.

vy, = [a(2n + k)z* + blz" "'y + (—a?nz?* — abx® + )z~ 1.
The substitution y = 2™(w + az*) leads to the Bernoulli equation with respect to
r=x(w): (—nw?+bw+ c)r!, = wr + azktl.
yy. = [a(2m + k)x?* 4+ b(2m — k)]z™F 1y
— (a?ma®* + ca?* + b2m)a2m—2k-1,

The transformation z = z*, y = 2™ (t + az® + bz ~F) leads to the Riccati equation
with respect to z = z(t):

(—=mt? + 2abm — ¢)z, = akz* + ktz + bk. (1)
The substitution

mt? + ¢y w,
7= —— where c¢g = c— 2abm,
ak w

reduces equation (1) to a second order linear equation:
(mt? + co)?w}, + (2m + k)t(mt? + co)w, + abk*w = 0. (2)

The substitution

t
b= u=(1-8)" 2y, where p =
t2 4+ (co/m)

_m+k
2m

)

brings equation (2) to the Legendre equation:
(1 - €)uge — 26ug + [v(v +1) — (1 - ) u =0,

2 2 2

m* —k abk

where v is a root of the quadratic equation v? + v + s — = 0.
4m mcy

yy, = [(m+2l —3)xz+n—2l+ 3z~ ly
+(m+l—-1)z2+(n—m—20+3)z —n+1— 2]zt~

The transformation
T = %wé7 y = ASH_H_QU}"L—H_I _ LL'Z_Z + .%'1_l

leads to the generalized Emden—Fowler equation: wy = A{"w™ (wé)l, which is dis-
cussed in Section 2.5.

yy., = [a(2n + 1)z? + cx + b(2n — 1)]z" 2y
— (na?z* + acz® + dz? + bex + nb?)x?" 3,
where a, b, ¢, d, and n are arbitrary numbers.
The substitution y = £t + az™ T + bz™~! leads to the Riccati equation with respect
Y q P
to x = z(¢):
(—nt* 4 ct — d + 2nab)r, = ax® + tx + b.
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14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

yyl, = [a(n — 1)z + b(2A + n)]z> " (az + b) ">~y
— [anz + b\ + n)]x?* 1 (axz + b) 23,

The substitution )
1

- An -
w + x"(ax + b) v az+b)

y =
leads to an equation of the form 1.3.4.5:

(w4 az™ T + ba™)w!, = [anx™ + b\ +n)x" Hw.

vy, = (ae® + b)y + ce*®* — abe® — b>.

The transformation x = Inw, y = tw +b leads to a linear equation: (—t*+at +c)w} =
tw + b.

vy, = [a(2n + X)e ™ + bler®y + (—a?ue?*® — abe® + c)e?+®.

The substitution £ = e” leads to an equation of the form 1.3.3.10:

yye = [au+ NEN + bJeH Y + (—a®pg® — abet + )¢

vy, = (ae*® + b)y + c[a?e®*® + ab(Az + 1)e*® + b2Az].

The substitution £ = %e” +bx leads to an equation of the form 1.3.1.2: yyé =y+cAE.

Yy, = e*(2adx + a + b)y — e2*®(a?Az? + abx + c).

The substitution y = e** (£ + ax) leads to a linear equation with respect to x = z(£):
(=2 + bE — c)ac’5 =az +&.

yy. = e*®(2ax? + 2z + b)y + e***(—ax* — bx? + ¢).

The substitution y = e*® (£ +x?) leads to the Riccati equation with respect to x = x(£):
(—a&? + b€ + )y = x? + €.

yy., = (acoshzx + b)y — absinhz + c.

The transformation ¢ =y —asinh z, £ = e” leads to the Riccati equation: 2(bt+c)§; =
a&? + 2t — a.

yy., = (asinhx 4 b)y — abcoshzx + c.

The transformation t =y —a cosh z, £ = e” leads to the Riccati equation: 2(bt+c¢)&; =
a&? + 2t€ +a.

yy,=2nz+a+ 1)y + z(— In®*z — alnz + b).

The transformation z =e€", y = ({+w)e™ leads to a linear equation: (f§2+a§+b)wé =
w+ €.

vy, = (21n2m+21nw+a)y —|—a:(—ln4a: —aln’z + b).

Performing the transformation z = e%, y = (£ +w?)e®, we obtain the Riccati equation:
(—€2 4+ ak + b)wé =w? + ¢
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24. yy! = axcos(wz?)y + .

The substitution & = %mg leads to the Abel equation of the form 1.3.2.11: yyé =
acos(2wé) y + 1.

25. yy! = azrsin(wz?)y + =

The substitution & = %mQ leads to the Abel equation of the form 1.3.2.12: yyé =
asin(2wé)y + 1.

1.3.4. Equations of the Form
l91(®)y + g0(@)]y, = f2(2)y* + fr(2)y + fo()

Preliminary comments. With the aid of the substitution

w = (y + g—O)E, where FE = exp(— Sz dx), (1)
g1 g1
these equations are reducible to a simpler form:
ww!, = Fy(z)w + Fy(x), (2)

where

P = [i(9_0>+£290f2]E e (ﬁ wh | géfg)EQ
dz \ g1 g1 g2 ’ g1 92 P

Concrete Abel equations of the form (2) are outlined in 1.3.1-1.3.3. In the degenerate cases
with Fy = 0 or F; = 0, the variables in equation (2) are separable.

1. (Ay+ Bz +a)y, +By+kx+b=0.
Solution: Ay? + kx? + 2(Bxy + ay + br) = C.

2. (y+ax+b)y, = ay+ Bz + .

The substitution y = u — ax — b leads to the equation

wul, = (a + a)u+ (8 — aa)z +v — ba

which is separable with a = —a.
For a # —a, the substitution u = (a + a)w yields an equation of the form 1.3.1.1
or 1.3.1.2:

ww!, = w4+ A8 — aq)z + A2 (y — ba), where A=a+a.

3.  (y+ akz® + bz + c)y, = —ay? + 2akzy + my + k(k + b — m)xz + s.

The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):
[—az® + (m — k)z + s — ck|z, = aka® + (b+ k)x + 2z +c.
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10.

11.

12.

(y + Ax™ + a)y., + nAz" 1y + kx™ +b=0.

2k
Solution: y* + ———a™! + 2(Az"y 4 ay + bx) = C.
m+1

(y + az™™! + bz™)y!, = (anz™ + ca™ 1)y.

The substitution y = x™(w—>b) leads to the Bernoulli equation with respect to z =z (w):
[—nw? + (bn + c)w — bz!, = wx + az?.

zyy, = ay® + by + ca™ + s.

)

where A = —ab=2s, B = —ab~2¢, m = (a —n)/a (see Subsection 1.3.1).

The transformation { =z~ %, w= f%x*ay leads to the equation wwé =w+AE+ BE™,

zyy! = —ny® + a(2n + 1)zy + by — a*nz® — abx + c.

The substitution y = w + ax leads to the Bernoulli equation with respect to x = z(w):
(—nw? + bw + ¢)x!, = wr + az®.

2zyy., = (1 — n)y®* + [a(2n + 1)z + 2n — 1]y — a’nz? — bz — n.

The transformation = = €2, y = &t + a2 + 1 leads to the Riccati equation:

(—nt® 4 2an — b)&, = a&? +t& + 1.

(Azy — Aky + Bx — Bk)y!, = Cy? + Dzy + (B — Dk)y.

The transformation z = w + k, y = w leads to a linear equation with respect to
w = w(x):
[(C = A& + DEJwy = Afw + B.

[(Baz + As)y + (4X + 3s)z]y,, = 2ay® + 2(3X + s)y + 2=

The substitution w = ay® + (3\ + s)y + z leads to an equation of the form 1.3.3.3:
wa/y = (Tay + 5b)w — 3a®y® — 2cy? — 3b%y, where b=s+2)\, c= %a(13/\ + 6s).
[(4ax + As)y + (4X + 3s)z]y,, = Say® + 2(3X + s)y + 2.

The substitution w = %agf + (83X + $)y + « leads to an equation of the form 1.3.3.3:

waé = (Tay + 5b)w — 3a’y® — 2cy® — 3b%y, where b==s+2)\, c= %a(GO)\ + 255).

(2Azy + ay + bz + )y, = Ay® + Ak?*z® + my + k(ak + b — m)x + s.

The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):

[Az? + (m — ak)z + s — ck]z!, = 2Aka® + (242 + ak + b)x + az + c.
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13.

o

14.

15.

16.

17.

18.

19.

20.

21.

2(m +1) 1—m m—1

’ 2
= + + x.
3 Ye Yy Yy

2zy + (1 — m)Ay — > s

1—m 2_’_m—
5 Y

1
y~+x leads to an equation of the form 1.3.3.4:
m+3

The substitution w =

2(m+1)

b e - B 3 2 —A- = 7
wwy—[(3 m)y — 1w+ (m — 1)(y° — y* — ay), where a=A (m+3)2°

z(2ay + bx)y’, = a(2 — m)y? + b(1 — m)zy + cx? + Az™ 2.

The transformation z = y/z, w = —Ax™ +amz? 4+ bmz — ¢ leads to the equation with
separated variables: ww’ = m(2az + b)(amz? + bmz — c).

(zy + 2% + a)y, = y> +zy +b.
Solution: (z +y)? +a+ b= C(bx — ay)?.

(2Azy + Bz? + by, = Ay? + k(Ak + B)z? + c.
The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):
(A2% + ¢ — bk)z!, = (2Ak + B)z? + 2Azx +b.
(Azy + Bx? + kx)y!, = Dy? + Exy + Fx? + ky.
The substitution y = zz leads to a linear equation with respect to = = z(z):
(D—A)2*>+(E-DB)z+ Fla, = (Az+ B)x + k

(Azy + Bx? + kx)y,, = Ay? + Bxy + (Ab + k)y + Bbx + bk.

This is a special case of equation 1.3.4.22.
Solutions: y=Cx—b and Ay+ Bx+k=0.

(2Azy + Bx? + kx)y!, = Ay? + Cxy + Da? + ky — CpBz — AB? — k0.
The substitution y = £x + 5 leads to a linear equation with respect to x = x(&):
[~ A& + (C — B)¢ + D]y = (2A + B)z + 243 + k.

(Azy + Bx? + kx)y), = Ay? + Czy + Dz? 4+ (k — AB)y — CPBx — kp.

The substitution y = £x + 5 leads to a linear equation with respect to x = x(&):

[(C — B)¢ + Dla, = (A€ + Bz + AB + k.

(Azy + Aky + Bz? + Bkz)y!, = Cy? + Dzy + k(D — B)y.

The transformation x = w — k, y = £w leads to a linear equation:

[(C = A)¢ + (D - B)¢Jw; = (A¢ + B)w — kB.
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22,

23.

24.

25.

26.

(Azy + Bx? 4+ a1z + byy + 1)yl = Ay? + Bxy + azx + by + c».
Jacobi equation.

1°. With the help of the transformation x = + «, y = §y + 3, where a and ( are the
parameters which are determined by solving the algebraic system

Aaf + Ba? + aja+ b3+ ¢ =0, AB% + Baf + asa+ ba3 + ¢ = 0,
we obtain the equation
(AZj + BZ? + a1 + b19)7s = AG> + BTy + o + bal,

where B
(_11=QBOZ+A[3+(11, bleOé—Fbl,

Gy = BB+ as, by = 2A8 + Ba + bs.
The transformation z = §/z, ( = 1/Z leads to a linear equation:
(0122 + (@1 — bo)z — a@2]¢. = (b1z + a1)¢ + Az + B.
2°. The original equation can be also rewritten in the form
(xyl, — y)(n3z + may + k3) — ¥, (n1x + myy + k1) + noz + may + ko = 0.

The solution of this equation in the parametric form can be obtained from the solution
of the following system of the constant-coefficient linear differential equations:

/

(x1); = niz1 + myze + ki3,
/

(x2); = naz1 + moxa + koxs,

(23); = naxy + maxa + kaxs,
using the formulae x(t) = x1/x3, y(t) = z2/x3.

(Azy + Bz? + ay + bx + ¢)y), = kAzy + kBz? + my + k(ak + b — m)x + s.
The substitution y = z + kz leads to the Riccati equation with respect to z = x(2):
[(m — ak)z + s — ck]z,, = (Ak + B)2? + (Az + ak + b)x +az + c.

(2Azy + Bz? + ay + bx + o)yl = Ay? + k(Ak + B)x? + aky + bkx + s.
The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):
(Az? + 5 — ck)xl, = (2Ak + B)2® 4+ (242 + ak + b)x + az + c.

(2Azy — Akz? 4+ ay + bz + ¢)y), = Ay? + my + k(ak + b — m)z + s.

The substitution y = z + kx leads to the Riccati equation with respect to x = x(2):
[A22 + (m — ak)z + 5 — ck]2!, = Akxz? + (242 + ak + D)z + az + c.

(2Azy + Bz? 4 ay — akz + b)y!, = Ay? + k(Ak + B)z? + my — mkx + s.

The substitution y = z + kz leads to the Riccati equation with respect to z = x(2):

[A22 + (m — ak)z + s — bk|z!, = (2AI<:—|—B)x2 +2Azx + az + c.

© 1995 by CRC Press, Inc.



27. (2Azy + Bz? + ay + bx + o)yl = Ay? + k(Ak + B)x? + by + ak?x + s.

The substitution y = z + kz leads to the Riccati equation with respect to = = x(2):

[A2% + (b— ak)z + s — ck]z!, = (2Ak + B)2® + (242 + ak + b)x + az + c.

28. [Azy + Bz? + (m — 1)Aay — (Abm + Ba)z]y/,
= Ay? + Bxy — (Ab + Bam)y + (m — 1) Bbz.

This is a special case of equation 1.3.4.22.
Solution in the parametric form:

at + ACt™  bt— BCH™
trc YT TarcC

The solution can be presented in an implicit form as well:

C™(Ay + Bx)™ + [A(b—y) + B(a — z)]™ *(ay — bx) = 0.

29. [(ax+c)y+ (1 —n)z? + (2n — 1)z — n]y,, = 2ay? + 2zy.
The substitution w = ay + x leads to an equation of the form 1.3.4.8:
2yww, = (1 - n)w? + [a(2n 4+ 1)y + 2n — 1w — a®*ny® — by — n,
where b = (2n — 1)a — c.

2n
30. [(z+c)y+ (n+1zx?—a(2n+ 1)z + a’nly, = ﬁyz + 2zy.
T —

The transformation

3n—11 n—1=x n
= — = +

n—1 vy’ v n—1 vy n—1
leads to an equation of the form 1.3.4.8:

2

2zww’, = (1 —n)w? + [a(2n + 1)z + 2n — 1w — a®*nz® — bz — n,

-1 2 1
where b = (3n )C—HT( nt1) .
n —

31. z(2azy+ b)y, = —a(m + 3)zy® — b(m + 2)y + cz™.
The transformation
z=ay, w=—cx™ +alm+1)2?y* +b(m+ 1)y

leads to the equation with separated variables: ww!, = (m + 1)?(2az + b)(az? + bz).

32. [(a2x® + a1z + ao)y + bax® + biz + boly,, = c2y? + c1y + co.

This is the Riccati equation with respect to = = x(y).
2 !
c c cyp W
The substitution r = — Ly taytco By yields a second order linear equation:
asy + bg w

fowly, = [(f2)y + frfalwy, + fofsw =0,

iy + b .
aiy + S =1, 2, 3.

where f;, = —————;
Ji coy? + a1y + o
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33.

34.

35.

36.

37.

38.

[(12a%2? — Tax + 1)y + 4cx® — 5bx]y’, = —2x(3a?y? + 2cy + 3b?).
The substitution w = x(3a%y? + 2cy + 3b) leads to an equation of the form 1.3.3.3:
2ww), = (Tay + 5b)w — 3a*y® — 2cy® — 3b%y.
z[(m — 1)(Az + B)y + m(Dz? + Ex + F)|y,

=[A(Q1 — n)x — Bn]y? + [D(2 — n)z? + E(1 — n)xz — Fnly.
Solution: Azy + Dx? + Ex + By + F = Ca"y™.

z?(2azxy + b)y,, = —4ax?y® — 3bzy + cx? + k.

The transformation z = zy, w = 2ax?y? + 2bxy — cx? — k leads to an equation with
separated variables: ww! = 2(2az + b)(2a2? + 2bz — k).

(zy + az™ + bx?)y’! = y* + ca™ + bxy.

The transformation t = y/z, z = 2" 2 leads to a linear equation: (c — at)z] =
(n—2)(az+t+0D).

z(2az™y + b)y,, = —a(3n + m)z"y?® — b(2n + m)y + Ax™ + cx™".

The transformation
z=z"y, w=—Az"" + (n+m)(az® +bz) — ¢

leads to an equation with separated variables:

r_ 2 2 ¢
ww, = (n+m) (Zaz—i—b)(az + bz n—i—m)'

yy, = —ny® + a(2n + 1)e®y + by — a’*ne?® — abe® + c.

Performing the transformation z =1n ¢, y = w+ a&, we obtain the Bernoulli equation:
(—nw? + bw + )&, = wé + a&?.

1.3.5. Some Types of First and Second Order Equations Reducible to

Abel Equations of the Second Kind

» Notation: f, g, h, p, ¢, ¥, ®, F, and G are arbitrary functions of their arguments.

1. Quasi-homogeneous equation

fz"y)z" Ty, + g(z¥y) + Az = 0.

In the particular case when A = 0 this equation is homogeneous. The transformation

z=a"y, v=Ax+g(2) —vzf(2)

leads to the Abel equation:

vl =[=(A+0)f +g. —vafl]v+ Mg —vzf).
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2. Quasi-homogeneous equation
F@"y)a" Ty, + g(x"y) + 2 [h(zy)z" 1y, + p(z”y)] = 0.
The transformation z = ¥y, { = 2~ leads to the Abel equation:
{lg(2) — v2f ()¢ +p(2) — vzh(2) }CL = A (2)C% + A (2)C.
3. Equations of the theory of chemical reactors and the combustion theory
Yow — oYy, = f(y)-
The substitution w(y) = y./a leads to the Abel equation:
wwy, —w = a"? f(y),

whose solvable cases are given in Subsection 1.3.1.

4. Equations of the theory of nonlinear oscillations
You + (W)Y, +y =0.
The substitution z(y) = y., leads to the Abel equation:
zzy +o(y)z+y =0, (1)
which is reduced, with the aid of the substitution 7 = %(a — y?), to the following form:

@(i\/a — 27)
Va—2r

Concrete cases of equation (2) are outlined in Subsection 1.3.2.

2zl =g(1)z + 1, where g(1) =+ (2)
5. Equations of the theory nonlinear oscillations
Yoo + 2(y;) +y =0.
The transformation z = ¢/, w = —y — ®(y,) leads to the Abel equation of the form (1):

wwl, + @, (2)w+ 2 = 0.

6. Homogeneous equation with respect to the independent variable

o?y! = zg(y)y, + f(y).

The substitution w(y) = zy., leads to the Abel equation:

ww, = [g(y) + w + f(y).

7. Homogeneous equation in the extended sense

wyl, = g(yz®)yl, + 7 F 71 f(ya).
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The transformation t = ya*, u = x*(zy), + ky) leads to the Abel equation:
wu) = [g(t) + 2k + Lu + f(t) — ktg(t) — k(k + 1)t.

To the Emden—Fowler equation, discussed in Section 2.3, correspond g(t) = —o, f(t)= At™,
k= n+2

m—1"°

8. Homogeneous equation in the extended sense

Yy = wo‘yﬁF< ) + yx~ 2G< w)
y )

X
n= gy,;, v =gyt

The transformation

leads to the Abel equation:
[E(m)v+G(n) +n—n’lo, = (B~ 1)n+ o+ 2Jv.
To the generalized Emden—Fowler equation, discussed in Section 2.5, correspond oo =n —1,
9. Exponential-homogeneous equation
Yoo = 2PV f(zyy) + 27 2g(2yy,).
The substitution ¢ = 27/, u = 272 leads to the Abel equation:

[F(Qu+g(Q) + CJug = (B¢ + a + 2)u.

10. Exponential-homogeneous equation

Yoo = €77 Bf( >+y (y”)
y y

The substitution & = ¢, /y, w = e**y”#~1 leads to the Abel equation:
f(©w+9(§) — EJwg = [(B—1)E + alw

1.4. Equations Containing Polinomial Functions of y

1.4.1. Abel Equations of the First Kind
Y. = f3(x)y® + f2(x)y® + f1(z)y + fo(zx)

Preliminary comments.
1. If yo = yo(x) is a particular solution of the equation in question, the substitution
y — yo = 1/w reduces it to the Abel equation of the second kind:

ww!, = —(3f3ya + 2fay0 + f1)w® — (3f3y0 + f2)w — f3,

which is discussed in Section 1.3. For fo(x) = 0, we may choose yg = 0 as a particular
solution.

2. The transformation

fz/ngQdac, U= ( —|—3f—;3)E_1, where E:exp{/(fl—Bf—i> dm],

brings the original equation to the normal form:

ug = u’ + ®(¢),
where of3
1 1 d /fa  Nife 2
= hE {f‘>+3dx<f3> 375 +27f§}
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1. v, =ay®+bx3/2

This is a special case of equation 1.4.1.9 with n = —1/2.

2.  y, =—y®+ 3a*z%y — 2a32> + a.

The substitution y = 1/w + az leads to the Abel equation of the form 1.3.2.1: ww/, =
3azw + 1.

3.  y,=-y*+ (az +b)y>
The substitution y = —1/w leads to the Abel equation of the form 1.3.2.1: ww/ =
(ax + b)w + 1.

4. y. =—y3+ (ax + b)"2y>
The substitution y = —1/w leads to the Abel equation of the form 1.3.2.2: ww/, =
(ax +b) 72w + 1.

5.y, = -9+ (ax+b)"/2y2
The substitution y = —1/w leads to the Abel equation of the form 1.3.2.4: ww/, =
(az + D)~ V2w + 1.

6. vy, =ay®+ 3abzy® — b — 2ab3x3.

This is a special case of equation 1.4.1.10 with n =0, m = 1.

7.  y, = axy®+ by
The substitution v = zy leads to an equation with separation of variables: zu! =
au® 4 bu? 4 u.

8. y. = azxy®+ 3abz?y? — b — 2ab3z?.

This is a special case of equation 1.4.1.10 with n =m = 1.

9. vy, =azx®>t1yd + b2

The substitution w = yz" ™! leads to an equation with separation of variables: zw/, =
aw® + (n + 1)w + b.

1
For a= —% and b= 2 A(n+1), the solution in the parametric form is written
as
F 1
cen(-E) yma(is e,
o exp(n+1) Y +T exp(~F)

where F =7 — +In|r+ |+ C.

10. vy, = az™y® + 3abz™T™y? — bma™ ! — 2ab3z" 3™,
The substitution w = y + bx™ leads to the Bernoulli equation: w! = az"w? —
3ab?x"H2my,

11. y), = az™y® + 3abz™T™y? 4 czFy — 2ab32™ 3™ + beax™F — bma™ T,

The substitution w = y + bx™ leads to the Bernoulli equation: w! = ax"w® +
(cx® — 3ab?z"+2m)w.
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12. 9y, = —z™(ax!™™ 4+ b)) 1y3 — 72 (9a + 2+ 9bmax™ 1) (ax! ™ 4+ b) A2,

With A = ;, the substitution
3a(l —m)

(3 1 1—m -
y—(5+ ax—l—bx’”)(agj +9)

leads to the equation ww!, = w + ax + baz™ outlined in Subsection 1.3.1.

13. =zy! = az*y® + (bz? — 1)y + cz.

The substitution w = zy leads to an equation with separation of variables: w! =

x(aw? + bw + ¢).

14. =zy! = ay® + 3abz™y? — bnz™ — 2ab3z>".

The substitution w = y + bz™ leads to the Beroulli equation: w! = az™'w? —

3ab?x? .

15. zy! = az®"ty® + (bx — n)y + cz' ™"
The substitution w = yz™ leads to an equation with separated variables: w’, = aw?® +
bw + c.

16. zy! = az"?y> 4 (ba™ — 1)y + cz™ L.
The substitution w = zy leads to an equation with separation of variables: w! =
2" L(aw? + bw + ¢).

17. 2%y, = y® — 3a’z?y + 2a*25 + 2ax3.

1 1
The transformation =z = z, y = — + az? leads to an equation of the form 1.3.2.2:
w

wwé = 3aé 2w + 1.

18. vy, = —(ax + bx™)y*® + y2.
The substitution y = —1/w leads to the equation ww!, = w + ax + ba™ outlined in
Subsection 1.3.1.

19. y’ = (Az? + Bz + C)~Y/2y3 4+ y2.
The substitution y = —1/w leads to the Abel equation of the form 1.3.1.63: ww, =
w — (A2 4+ Bx 4 C)~1/2,

20. y., = —y®+ ae**y?
The substitution y = —1/w leads to the Abel equation of the form 1.3.2.7: ww/ =
aew + 1.

21. y,=—y*+ 3a%e??*y — 2a3e3 A 4 ale?”.

1 .
The substitution y = — + ae™® leads to the Abel equation of the form 1.3.2.7:
w

ww!, = 3ae Mw + 1.
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292. y;=—%)\ 1 2)\:c 3_|_ 2A2 —)\ac

The solution in the parametric form is written as

F 1
T = y:—/\(1+—)e_F, where F=7—+In|r++|+C.
T
23. y. = ae?*y® + be*®y? + cy + de *®.

The substitution y = we™>* leads to an equation with separated variables: w/ =

aw® + bw? + (¢ + Nw + d.

24. y! = ae*®y3 + 3abe*y? + cy — 2ab®e*™ + be.

The substitution w = y+b yields the Bernoulli equation: w’, = ae’*w?+(c—3ab*e ) w

25. y. = ae*®y® + 3abePTWTy2 _ 2pBePMTINT _ pyene
The substitution w = y + be#® leads to the Bernoulli equation: w! = ae*®w?® —
3ab?eP 2Ty,

26. y! = ae*®yd + 3abePtWzy2 4 2qb2ePM 2y _ pper®,
The substitution w = y + be”* leads to the Bernoulli equation: w/, = ae**w?
ab2eA 2wy,

27. yl, = ae*®y? + 3abePMtWTy2 4 iy — 2ab3eP T30,
The substitution w = y + be"* leads to the Bernoulli equation: w! = ae**w?® +

(1 — 3ab?eP 2]y

28. yl = e*®y3 4+ 3abePtHzy? 4 [(3ab? + c)ePT2W= L 4]y
+ b(ab? + c)eP 3T & p(s — p)er=®.

The substitution w = y + be"® leads to the Bernoulli equation: w! = ae**w? +
[Ce(/\+2u)x —I—S]U}

29. y! =[a+ bexp(2z/a)ly® + ¥

The substitution y = —1/w leads to an equation of the form 1.3.1.9: ww), =w —a —
bexp(2z/a).
30. y., = —2ax'exp(2ax?)y® + (1 — §az?)exp(—ax?).

1
The substitution y = (2— —l—x) exp(—ax2) leads to an equation of the form 1.3.1.16:
aw

ww), = w + (6az) L.

31. y,, = —aexp(2az®)y® + (1 — 2ax3) exp(—az?).

2
The transformation £ = 22, y = (3— + x) exp(—az®) leads to an equation of the
aw

form 1.3.1.32: wwé =wxk 2(9a)71§71/2-
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32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

y, = —az~? exp(2az®)y® + 2z(1 — az®) exp(—azx?).

1

The substitution y = (3— —|—m2> exp(—ax®) leads to an equation of the form 1.3.1.33:
aw

ww!, = w + (9a) "1z~

vy, = ay® + bcosh(Az)y>.

b

The transformation ¢t = — + Xsinh(kx), ¢ = e leads to the Riccati equation:

208! = b2 — 2AtE — b.

1
Y

Y., = ay® + bsinh(Az)y?.

1 b

The transformation ¢ = — + Xcosh()\x), ¢ = e leads to the Riccati equation:
Y

2a€] = bE? — 2NtE + .

Yy, = —y3 + 3a2 cosh? x y — 2a3 cosh® x + asinh .

1
The substitution y = — + acoshx leads to the Abel equation of the form 1.3.2.9:
w

ww), = 3acoshzw + 1.

y, = —y3 + 3a? sinh? z y — 2a3 sinh® x + a cosh .

1
The substitution y = — + asinhx leads to the Abel equation of the form 1.3.2.10:
w

ww), = 3asinhzw + 1.

vy, = —y> + acos(wz)y?.

The substitution y = —1/w leads to the Abel equation of the form 1.3.2.11: ww), =
acos(wz)w + 1.

vy, = —y3 + asin(wz)y?.

The substitution y = —1/w leads to the Abel equation of the form 1.3.2.12: ww), =
asin(wz)w + 1.

vy, = —y3 4 3a® cos?(Az)y + adsin(Az) + 2a3 cos®(Az).
1

The substitution y = — — a cos(Azx) leads to the Abel equation of the form 1.3.2.11:
w

= —3acos(Azx)w + 1.

!/
WwWy,

y. = —y3 + 3a?sin’(Az)y + a) cos(Az) — 2a®sin®(A\z).

1

The substitution y = — +a sin(Az) leads to an equation of the form the Abel equation
w

of the form 1.3.2.12: ww!, = 3asin(Ax)w + 1.

Yy, =afy® + (bfg2 + %”")y +cfg®,  f=f(z), g=g(x).

The substitution y = gw leads to an equation with separation of variables: w’ =

fg?(aw® + bw + c).
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42. y, = fy* + 3fhy® + (9 + 3fh*)y + fh® + gh — R,
where f = f(x), g =g(z), h=h(x).

The substitution w = y + h(z) leads to the Bernoulli equation: w’, = g(z)w + f(z)w?.

’ ’

’ ga: 3 x ’
43. =— Y +—Fy+ , = f(x), g =g(x).
Vo= Fagrtp? T 1Y fa, f=Ff(=), g=g()
. du _ 1 B Y
Solution: /m+0—aln|ag+b|, where u_—f(ag—&—b)'
af + bg y—g y—f
4. y,=uy—f y—g(y— >h+ fr+ 9o
( 3 ) a+b fF—g g—f

where f = f(z), g=g(x), h=h(z).

af + bg
a+b

—a—b

Solution: |y — f|*|ly — g|b’y — = Cexp {aa——i)b /(f — g)zhdsc}

1.4.2. Equations of the Form
(A22y®+ Ar2zy+ A112°+ Ao)y,, = B22y®+ Biazy+ Buiz®+ By

Preliminary comments.

1. For Asy = 0, this is the Abel equation (see Subsection 1.3.4). For Bj; = 0, this is
the Abel equation with respect to x = z(y).

2. The transformation z = y/z, ( = z~2, leads to the Abel equation of the second kind:
[(Aoz — Bo)¢ + Ag22® + (A12 — Ba2)2” + (A11 — Bi2)z — B1](]
=2A40C* + 2(A22% + A12z + A11)C.

3. The transformation z = Z + «, y = § + [, where a and § are the parameters which
are determined by solving the second order algebraic system

A + Apaf+ A11a® + Ag =0,  B8? + BioaS + Biia® + By =0,
leads to the equation

[A227? + A12Z7 + A1 7 + (24228 + A120)7 + (24110 + A123)7)]7s
= Boo§* + B12%7 + B117* + (2B928 + B122)y + (2B11a + B123)7,

The transformation £ = §/%, w = 1/ reduces this equation to the Abel equation of the
second kind:

{[a2€% + (a1 — b2)& — by|w + A€ + (A1g — Bog)&? + (A1 — Bia)€ — Bll}wé
= (a2€ + a1)w? + (A€? + A€ + App)w.

where
ag = 2A203 + A1pa, by = 2Boa8 + Braa, a1 = 2An1a+ A3, by =2Biia+ Biaf.
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4. The substitution y = t + ex, where parameter ¢ is determined by solving the cubic
equation
(A2252 4+ Ajge + An)&‘ — 82282 — Bioe — B11 =0,

leads to the Abel equation of the second kind with recpect to x = x(t):
[Qtz+(Bag — Agoe)t? + By — Agelw, = (Agae® + Ao+ A1) w2 + (2Ag0e + Ao )t + Agat® + Ao,

where Q = 23226 + B12 — E(2A22€ + Alg).

1. (Ay? +2?)y, = —2zy + Bz®? + a.
Solution: Ay® — Bx3 + 3(22%y — ax) = C.

2.  (Ay®+ Bz? — a?B)y/, = Cy? + 2Buy.
The transformation z = w + a, y = £w leads to the linear equation:
(A& + C& + BEw, = (A + B)w + 2aB.

3. (Ay®+ Bzy + Cz?)y/, = Dy? + Exzy + Fz?.

Homogeneous equation. The substitution z = y/x leads to an equation with
separated variables:

w2, = (A2 + B2+ C) ' [-A2* + (D — B)z* + (E — C)z + F].
4. (Ay? — 2Akzy + Bkaz?)y, = —By? + 2Bkxy — Ak®*2? + a.
The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):
[—(Ak 4+ B)2* 4 alz’, = k(B — Ak)x® + A2
5. (Ay® 4+ 2Bzy + Ak*z?)y/, = By® + 2Ak*zy + Bk*z? + a.
The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):
(B — Ak)2? + a]z!, = 2k(Ak + B)x? + 2(Ak + B)zz + AZ>.
6. (Ay? + Bzy + Cx? + a)y), = Aky? + Bkxzy + Ckx? + b.
The substitution y = z + kz leads to the Riccati equation with respect to = = x(2):
(b — ak)x!, = (Ak* + Bk + O)x® + (2Ak + B)zzx + A2* +a.
7. (Ay? + 2Bzy + Dx? + a)y, = —By? — 2Dxy + Ex? + b.
Solution: Ay® — Ex3 + 3(Bxy? + Dx?y +ay — bx) = C.
8. (Ay® —2Axzy+ Bxz?*+ A — B)y!, = —Ay®? +2Bxy — Bz? + A — B.
This is a special case of equation 1.4.2.21 with a =1, b = 1.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

(Ay? + 2Azy + Bx®> + A — B)y! = Ay? + 2Bxy + Bx? — A + B.
This is a special case of equation 1.4.2.21 with a =1, b = —1.

(Ay? — 4Azy + Bx? + 4A — B)y! = —2Ay? + 2Bxy — 2Bz + 8A — 2B.
This is a special case of equation 1.4.2.21 with a =1, b = 2.

(Ay? + 4Azy + Bx? + 4A — B)y!, = 2Ay? + 2Bzy + 4Bx® — 8A + 2B.
This is a special case of equation 1.4.2.21 with a =1, b = —2.

(Ay? — 6Azy + Bxz? + 9A — B)y!, = —3Ay® + 2Bxy — 3Bx? + 27A — 3B.
This is a special case of equation 1.4.2.21 with a =1, b = 3.

(Ay®? + 6Azy + Bx? + 9A — B)y! = 3Ay? + 2Bzy + 3Bx? — 27A + 3B.

This is a special case of equation 1.4.2.21 with a =1, b = —3.

2(Ay? — Azy + Bx? + A — 4B)y/, = —Ay® + 4Bxy — Bx? + A — 4B.
This is a special case of equation 1.4.2.21 with a = 2, b = 1.

2(Ay? + Azy + Bz® + A — 4B)y), = Ay® + 4Bzy + Bz? — A + 4B.
This is a special case of equation 1.4.2.21 with a =2, b= —1.

(ay? — 2bzy + az?® + ab? — a®)y! = —by® + 2azy — bz? + b* — a?b.
This is a special case of equation 1.4.2.21 with A =1, B = 1.

(ay? — 2bzy — ax® + ab? + a®)y!, = —by?® — 2axy + bx? + b® + a?b.
This is a special case of equation 1.4.2.21 with A=1, B = —1.

(ay? — 2bzy + 2az? + ab®A — 2a®)y’, = —by? + 4dazy — 2bz? 4 b> — 2a°b.
This is a special case of equation 1.4.2.21 with A =1, B = 2.

(ay? — 2bzy — 2ax? 4 ab® + 2a®)y), = —by? — daxy + 2bx® 4 b> 4 2a2b.
This is a special case of equation 1.4.2.21 with A =1, B = —2.
(Ay? + Bzy + Cx® + a)y),

= Dy® + k(2Ak + B — 2D)zy + k(—Ak® + Dk + C)x? + b.
The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):

[(D — Ak)2* + b — ak]z!, = (Ak* + Bk + C)a® + (2Ak + B)zx + A2* + a.
(aAy? — 2bAzy + aBx? 4 ab*?A — a®B)y/,
= —bAy? + 2aBzy — bBz? + b2 A — a®bB.

The transformtion z = w + a, y = £w + b leads to the linear equation:

(—aAg® +bAE® 4+ aBE — bB)w; = (aAg® — 2bA¢ + aB)w + 20> B — 2b° A.
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1.4.3. Equations of the Form
(A22y? + Arazy + Anz?® + Asy + Ar2)y),
= B2y + Bi2zy + B112? + By + Biz*
Preliminary comments.

1. For Ay =0, this is the Abel equation (see Subsection 1.3.4). For By; = 0 this is the
Abel equation with respect to z = z(y).

2. The transformation £ = y/z, w = 1/x leads to the Abel equation of the second kind:

{[A26% + (A1 — B2)¢ — Bi]w + Ags€® + (A12 — Baa)&? + (A1 — Bia)€ — Bui Ju
= (A28 + A )w® + (A22€? + Aré + Ann)w.

3. In Paragraph 3 of Subsection 1.4.4, another thransformation is given which reduces
the original equation to the Abel equation of the second kind.

4. Dynamical systems of the second order

C(li_:f = P(.’E,y), ﬁ = Q(xay) (1)

dt
which describe the behavour of the simplest Lagrangian and Hamiltonian systems in me-
chanics are often reduced to equations of the considered type when

P(z,y) = f(z,y)(A2y® + Arazy + A1z® + Ay + Arz),

Q(z,y) = f(z,y)(Bany® + Biazy + Bia® + By + Bix), @
where f = f(x,y) is an arbitrary function.

In particular, dynamical systems (1) with functions (2) and f = 1 are met with in
analyzing complex equillibrium states. In this case, functions P and @) are substituted by
their Taylor-series expansions in the vicinity of the equallibrium state x = y = 0 with the
first and second order terms retained.

When obtained the solution of the ordinary differential equation

(Aoy® + Arozy + An12® + Aoy + A12)y), = Booy® + Bioxy + Bi12® + Bay + Bix

in the parametric form x = z(u,C1), y = y(u, C1), the solution of the system (1), (2) is
determined by the formulae

x), du
u, Cl): y(u7 Cl))

z=2xz(u,Cy), y=uy(u,Ch), t:/P(x( + Cs.

The latter relation defines the implicit dependence of parameter w on t: w = u(t, Cy,Cs),
and makes it possible to find, with the aid of two former formulae, the dependence of x and
y on t.

1. (y?®—2®+ay)y, = y* — 2% + ax.

Solution in the parametric form:

r=at+Clt| tet, y=—at+CJt|" e

* This section was written with A.I. Zhurov
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10.

2

(y® — =® + ay)y,, = 2y? — 2zy + ay.

Solution in the parametric form:
z=t+Ct?et, y=Ct2eVt.
(y®> — 2®> + ay — ax)y,, = y* — 2® — ay + ax.
Solution in the parametric form:
r=at+ Ce?, y=—at+ Ce*.
(y? — 2% 4+ ay + 2az)y,, = y*> — 2% + 2ay + ax.
Solution in the parametric form:
z = —at+ Clt]’e", y=at+ C|t]’e*.
(y? — 2% + ay + 2ax)y), = 2zy — 22% + ay + 2aw.
Solution in the parametric form:
z=t+Ct 2 Y y=—2t+Ct 2t

(y? — 2% 4+ ay — 2ax)y, = 4y® — 62y + 22% 4 ay — 2ax.

Solution in the parametric form:

T=+t+ CltPeslt, y= 2+ Clt]/3ee/.
(y? — 2% + ay + 3ax)y), = —y* + 4wy — 3z% + ay + 3azx.
Solution in the parametric form:

T=4t+ Clt| e/t y=— S+ Clt|~te o/t

(y® — zy + ay + ax)y,, = zy — 2* + ay + a=x.

Solution in the parametric form:
x=—t+Clt| eVt y=t+Clt| et
(y* — 2y + ay + ax)y, = y* — zy + 2ay.
Solution in the parametric form:
= —at + Cte!, y=Ct%e.
(y? — zy + ay — 2ax)y), = 3y? — 5zy + 222 + ay — 2ax.
Solution in the parametric form:

T = %t+0|t\1/zea/t, Y =t+C|t|1/Qe“/t.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

(y? + zy — 222 + ay + ax)y), = y* + vy — 2% + 2ax.

Solution in the parametric form:

r=at+ Ct 2%, y=—2at+ Ct 2.

(y® 4+ zy — 222 + ay + ax)y), = 2y*> — zy — 2 + ay + ax.

Solution in the parametric form:

z=1t+CltPet, y=—t+C|t]Pe¥t.

(y? + zy — 222 + ay — ax)y), = y* + vy — 22% — 2ay + 2azx.

Solution in the parametric form:

z=at+ Ce¥, y=—2at+ Ce3.

(y? + zy — 222 + ay — 2ax)y., = 5y? — Tzy + 222 + ay — 2ax.

Solution in the parametric form:

z =Lt Ittt y= LiqCppftest.

(y? — 2zy + 2% + ay)y,, = ay.
a
Solution: = _
olution: = =y + C—ln|y|
(y? — 2zy + 2% + ay + ax)y), = —y* + 22y — 2® + ay + a=.
Solution in the parametric form:

a

a
" Lo oy=—"_ 4o
ol Y +

21n |¢|
(y? — 2zy + 2% + ay + 2ax)y), = —2(y? — 2zy + z2) + ay + 2a=x.

Solution in the parametric form:

a 2a
=——+ Ct
Y= 3t

- " Lo
3111|t\+ ’

(y? — 22y + 22 + ay — 2ax)y., = 2(y? — 2zy + 2?) + ay — 2azx.

Solution in the parametric form:

a 2a
T |¢] teh Y=g I¢] +

(y® + 2zy + 22 + ay + 2ax)y., = —y? — 22y — 2® + 2ay + a=x.

Solution in the parametric form:

4¢2 Y
x:02<t1/3+—)+0t, y:—C2(t1/3+—>+Ot, a#0.
5a 5a
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20. (y*+2zy + 2?4+ ay — ax)y,, = —y*® — 2zy — 2 + ay — ax.

Solution in the parametric form:

. 4¢3 . 4¢3
x:cﬂ/1f¥+0%, y:—CS\/l—ngC%, a#0.

21. (y* +2zy + 2% + ay — 2ax)y,, = —y? — 2zy — =? — 2ay + a=x.

Solution in the parametric form:

x:C’Q(tB—I—%)—&-Ct, yz—Cz(t3+%>+Ct, a 0.

22. (y*+2zy — 32% + ay + ax)y, = 3y? — 2zy — 12? + ay + ax.
Solution in the parametric form:

r=+t+ Ct?et, z= —5t+ Ct2e?/t.

23. (y? +2zy — 32% + ay + ax)y), = y? + 2zy — 32% — ay + 3ax.
Solution in the parametric form:
x=at+ COt|'e¥, y=—3at+ C|t| " e¥.
24. (y* 4+ 2zy — 32% + ay + 2ax)y,, = y* + 2zy — 3z? + 3ax.
Solution in the parametric form:
x=at+Clt| e, y=—3at+ C|t| e

25. (y? — 2%+ ay + bx)y, = y*> — 2® + by + ax.

Solution in the parametric form:
_atb _atb
r=(a—bt+Clt| abet y=(b—a)t+COlt] abel a #b.

26. (y* —zy+ay+bx)y, =y> —zy + (a + b)y.

Solution in the parametric form:
a+b a-+b
r=-bt+CJt| b e, y=Clt| v €, b # 0.

27. (y* 4+ zy — 22% 4+ ay + ba)y., = y* + zy — 22% 4+ (b — a)y + 2ax.

Solution in the parametric form:
__atb _ _a+b
r= (20 —b)t + C|t|” 2a-0 %y =2(b—2a)t+ Ct|” 2a-b %, b # 2a.

28. (y? — 2zy + 2® 4 ay — abx)y), = b(y? — 22y + z?) + ay — abzx.
Solution in the parametric form:

a 1 ab 1
Y o y=-2 " 0ot b#L
T Ty Y VT T 7

© 1995 by CRC Press, Inc.



29.

30.

31.

32.

33.

34.

35.

36.

(y? + 2zy — 322 + ay + bx)y), = y*> + 2zy — 322 + (b — 2a)y + 3ax.

Solution in the parametric form:
__atb _ _atb
= (3a—b)t + C|t|” 3a=be® 4 =3(b—3a)t+ C|t| 3a—b 0t b # 3a.

(y? — 3zy + 222 + ay + bx)y), = y*> — 3zy + 222 + (3a + b)y — 2ax.

Solution in the parametric form:
_atb_ _atb_
= (2a+b)t + Clt|2a+tb ety =2(2a + b)t + CJt| 2a+b e " b # —2a.

(y® + 3zy — 422 + ay + ba)y!, = y* + 3zy — 42> + (b — 3a)y + 4az.

Solution in the parametric form:
__atb _ _a+b
x = (4a — D)t + C|t|” 4a=0 'y =4(b— da)t + C|t|” Fa—b 2>, b # 4a.

[y + Azy — (A+1)x? + by — 2bx]y), = (A+4)y? — (A+6)zy+ 222 + by — 2bx.

Solution in the parametric form:

t

- b/t
Clt| A+3 e/* A # 3.
A+ 3 + | | € b #

A+2 2t
Clt|a+3 e/t y =
TOH AT v =

xr =

(y? — 2Azy + A%2? 4 by — bx)y!, = Ay? — 2A%zy + A%2® 4 by — ba.

Solution in the parametric form:

x:C3\/1+%t3+Czt, y:AC3\/1+%t3+C’2t, b+#0.

[y? —2Axzy+ (2A —1)z? + by — Abz]y!, = (2 — A)y? — 2zy + Ax? + by — Abzx.
Solution in the parametric form:

At
1-A4A

t

- + Ot A£1

+ Oty =

xr =

(y*—2Azy+A%z®+ay+bx)y, = A(y* —2Axzy+ A%2?)+ (aA+a+b)y—aAzx.

Solution in the parametric form:

aA+b (1— A)2 aA+b (1— A)2

=C?|t atb - T 42 = 214 atb = ) 42
r=C"|t +(2—A)a+bt +Ct, y=AC"|t +(2—A)a—|—bt +Ct,

where a +b# 0 and (2— A)a+ b # 0.

Y2 — (A+2)zy + (A + 1)x? 4+ by — Abz)y), = —Azxy + Az? + by — Abz.
Solution in the parametric form:

At
T 1-A

t

CtA (A-1)b/t
T—a tCle ’

+ Ot|AeA-Dot A £,

xr =
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37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

[Ay? + 2y — (A + 1)z + by + bxly!, = (A + 1)y? — xzy — Az? + by + bzx.

Solution in the parametric form:
r=1t+ C’|7§\2A'*'1eb/t7 y=—t+ C|t\2A+1eb/t.
(Ay? + Bzy + Cz? + kx)y!, = Dy? + Exy + Fz? + ky.
The substitution y = zz leads to a linear equation with respect to z = x(z):
[~Az3 +(D — B)2? + (E — C)z + Flz!, = (A2 + Bz + O)x + k.

(Ay®? + Bzy + Cx? — aBy — aCxz)y!, = Dy? + Exzy + a(C — E)y.

The transformation x = w + «a, y = £w leads to a linear equation:

[—AE + (D — B)& + (B — O)¢Jw; = (Ag® + BE+ C)w + aC.

(Ay? + 2Bzy + Ak*x? 4 ay + bx)y, = By? + 2Ak?*zy + Bk*x? 4 by + ak?z.
This is a special case of equation 1.4.3.57 with C' = Ak2.

(Ay? 4+ 2Bzy + Ak?z? + ay + bx)y), = By? + 2Ak*zy + Bk?2? + aky + bkx.
This is a special case of equation 1.4.3.62 with C' = Ak2.

(Ay?+2Bzy+ Ak?*z? 4+ ay — akz)y!, = By? + 2Ak?*zy + Bk*z? + my — mkzx.
This is a special case of equation 1.4.3.61 with C' = Ak2.

(Ay? + 2Bzy — Bkz? 4 ay + bx)y!, = By® + 2Ak?*zy — Ak*x? + by + ak’x.

This is a special case of equation 1.4.3.58 with m = b.

(Ay? + 2Bxy — Bkaz? + ay + bx)y), = By? + 2Ak?*zy — Ak®*2? + aky + bkx.
This is a special case of equation 1.4.3.62 with C' = —Bk.

(Ay? 4+ 2Bzy — Bka? + ay — akz)y! = By? + 2Ak*zy — Ak3z? + my — mkzx.
This is a special case of equation 1.4.3.61 with C = —Bk.

(Ay? + 2Akzy + Cx? + ay + bx)y,, = Aky? + 2Ak>*zy + Cka? + by + ak’z.
This is a special case of equation 1.4.3.57 with B = Ak.

(Ay? + 2Akzy + Cx? + ay + bx)y!, = Aky? + 2Ak*zy + Cka? + aky + bkx.
This is a special case of equation 1.4.3.62 with B = Ak.

(Ay? +2Akzy + Cx? + ay — akx)y!, = Aky® + 2Ak*zvy + Ckx? + my — mkzx.
This is a special case of equation 1.4.3.61 with B = Ak.

(Ay? — 2Akzy + Bkx? + ay + bx)y!, = —By® + 2Bkxy — Ak3z? 4 by + ak?z.

This is a special case of equation 1.4.3.59 with m = b.

© 1995 by CRC Press, Inc.



50.

51.

52.

53.

54.

55.

56.

57.

(Ay? —2Akzy + Bkx? + ay + bx)y!, = —By? + 2Bkaxy — Ak32? 4 aky + bkx.

This is a special case of equation 1.4.3.59 with m = ak.

[y? + 2Azy + A%z? + (A — 1)By — 2ABz]y,
= —A(y? + 2Azy + A%2?) — (A2 +1)By + A(A — 1)Bz.

Solution in the parametric form:

A+l
x:cﬂPA+ i Bt1+{%, y:—AOQPA+

A+1
AT A2, B£0.
7= Bt}+cu £2, B#0

(A-2)

[y? — 2Azy + A%2? + (B — 1)ky + (A — B)kzly,
= A(y? — 2Azy + A%x?) + (AB — 1)ky — A(B — 1)kz.

Solution in the parametric form:

—1
x:Cﬂﬁ— kﬁ}%m y:ACﬂﬁ—

A-1

B-2)

[2y* — (A + 3)zy + (A + 1)2* + By — ABz]y,,
=(A+1)y?> - (3A+ 1)zy + 2Ax2 + By — ABz.

Solution in the parametric form:

At
+Clt| e B,y = — Clt|~te B/t A#1.

Toa
[2y? — (3A + 1)zy + (3A — 1)z? + By — ABzy/,
=B —-A)y? - (A+3)ry +2Az% + By — ABx.

Solution in the parametric form:

At

+O|t|36B/t7 Y= 1_A

Clt|3eB/t,  A#1.

. t
T4
[A(y? — 2zy + z?) — A(A — B)y + B(A — B)z]y,,

= B(y® — 2zy + 2?) — A(A — B)y + B(A — B)z.
Solution in the parametric form:

A B
mpg T VTt

x
n t]

(Ay?+ Bzy+ Cz?+ay+bx)y., = Aky? + Bkzy+ Ckx?® +ny+ (ak+b—n)z.

The substitution y = z + kx leads to the Riccati equation with respect to x = x(2):
(n — ak)za!, = (Ak* + Bk + O)x? + [(2Ak + B)z + ak + bz + A2* + az.
(Ay? + 2Bzy + Cz? + ay + bx)y,,
= By? + 2Ak%zy + k(—Ak? + Bk + C)z? + by + ak?z.

The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):

(B — Ak)z + b — ak]zx, = (Ak® + 2Bk + C)2® + [2(Ak + B)z + ak + bz + Az2* + az.
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58.

59.

60.

61.

62.

63.

64.

65.

(Ay? + 2Bzy — Bkz? + ay + bx)y,,
= By® + 2Ak*zy — Ak*z? + my + k(ak + b — m)w.

The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):
[(B — Ak)z +m — ak]za!, = (Ak® + Bk)x? + [2(Ak + B)z + ak + blx + Az* + az.
(Ay? — 2Akzy + Bkz? + ay + bx)y.,
= —By? + 2Bkxy — Ak3z? + my + k(ak + b — m)zx.
The substitution y = z + kz leads to the Riccati equation with respect to z = x(2):
[—(Ak + B)z +m — ak]za!, = k(B — Ak)x® + (ak + b)x + A2* + az.
(Ay? + 2Bzy + Ak?*z? 4 ay + bx)y,
= By? + 2Ak%zy + Bk?z2 + my + k(ak + b — m)=x.
The substitution y = z + kx leads to the Riccati equation with respect to x = x(2):
(B — Ak)z +m — ak]zz!, = 2k(Ak + B)x? + [2(Ak + B)z + ak + bla + A2* + az.
(Ay? + 2Bzy + Cz? 4 ay — akx)y),
= By? + 2Ak%zy + k(—Ak? + Bk + C)z? + my — mkz.
The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):

(B — Ak)2* +m — ak]zz!, = (Ak* + 2Bk + C)z* + 2(Ak + B)zx + A2® + az.

(Ay? + 2Bzy + Cxz? + ay + bx)y.,
= By? + 2Ak%xy + k(—Ak? + Bk + C)x? + aky + bkzx.

The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):

(B — Ak)z%2), = (Ak* + 2Bk + C)z* + [2(Ak + B)z + ak + bz + A2* + az.

{(A-1)y? +[2 — A(k + 1)]zy + (Ak — 1)z® + By — Bkz}y,
= (A —-k)y? + [2k — A(k + 1)]zy + (A — 1)kz? + By — Bkz.

Solution in the parametric form:

kt

- +Clt|AeBt, K #£1.

_t A B/t _
x—l_k-l—cwe , Y=
[A(ay® + Bzy + v2?) + (20 — A%0)y + (B — ABo)zly,

+ B(ay? + By +v2?) + (8 — ABo)y + (2v — B?0)z = 0.
Solution: ay? + Bay + y2? — Aoy — Box + 0 = Cexp(—Ay — Bx).

(A22y? + Arpzy + Anz® + Azy + Ar2)y),
= Bay? + k(2A22k + A12 — 2Bas)zy + k(—A22k? + Baxk + Aq1)x?
—+ B2y + k(Agk + A1 — BQ)CII

The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):

[(Ba2 — Ag2k)z + By — Ask]za,
= (Ag2k?® + Arok + A11)z? + [2(Aok + A12)z + Ask + Ay]z + A2® + Az
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» In equations 66-70, the following notation is used:

A=Ab—aB, 6= Ab+ aB.

66. (Aa’y? —2Aabry + Ab%x? — AAay + AaBz)y.,
= a?’By? — 2aBbxy + Bb*x? — AAby + ABbzx.

Solution in the parametric form:

B

= ——+bCt.
In |¢| *

A
2L ac
TS g TV

67. [kAa®’y®? — kbaxy + kaBbz? — mAAay + (maB — A)Az]y!,
= kAaby? — kébxy + kBb%z? — (mAb + A)Ay + mABbzx.

Solution in the parametric form:

x = At + aCt|™ ekt y = Bt + bC|t|™ ekt
68. [mAa?y? — a(mé — A)zy + b(maB — A)z? + kAAay — kAaBz]y,
= a(mBb + A)y? — b(mé + A)zy + mBb?*z? + kA Aby — kA Bbzx.

Solution in the parametric form:

& = At 4 aC|t|™ 1 eP/t, y = Bt + bC|t|™ ek,

69. (kA3y? — 2kA2Bxy + kAB?*2? — 2Aa%y + 2Aabx)y),
= kA?By? — 2kAB?xy + kB3x2 — 2Aaby + 2Ab%x.

Solution in the parametric form:

= AC?\/+kt3 + 14 aC?t, y = BC®\/Lkt> +1+bC>t.

70. [kA3y? — 2kA?Bxy + kAB?z? + mAAay — (mAb + A)Axz]y),
= kA%2By? — 2kAB2zy + kB3z? 4+ (maB — A)Ay — mABbz.

Solution in the parametric form:

k k
r=AC? (tm“ + mﬂ) +aCt, y= BC? (tm“ + mﬁ) +bC't, m# 1.

1.4.4. Equations of the Form
(A22y? + Arpzy + A11z? + Asy + A1z + Ao)y),
= Basy? + Biawy + Buix? + Bay + Bix + By

Preliminary comments.

1. With Ags = 0, this is the Abel equation (see Subsection 1.3.4). With By = 0, this
is the Abel equation with respect to z = z(y).

See Subsection 1.4.2 for the case A = Ay = B, = B; = 0.

See Subsection 1.4.3 for the case Ag = By = 0.
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2. The transformation x = T + «, y = §y + §, where a and 3 are the parameters which
are determined by solving the second order algebraic system

Apf? + ApafB + Ana® + Ao+ Aja+ Ay = 0,
By f8? + Biza + Biia® + B8 + Bia+ By = 0,
leads to the equation
(A22§” + A122y + AnZ® + az§ + ar2)J; = Boo§® + Bioay + Buz® + boy + bz, (1)

where
as = 2A208 4+ Arpa + Aa, a1 = 2Ana+ Apf + Ay,

by = 2B923 + Bisa + Bo, by = 2B+ B2 + By.

The transformation £ = §/Z, w = 1/Z reduces equation (1) to the Abel equation of the
second kind:

{[a28? + (a1 — b2)€ — bi]w + A92€” + (A1g — B22)&” + (A11 — B12)€ — Bu b
= (ag€ + ar)w? + (Age€® + A12€ + Ann)w.

3. The substitution y = z 4 ex, where parameter ¢ is determined by solving the cubic
equation
(A22€2 + Az + A11)E - 32282 — Bise — B11 =0,

leads to the Abel equation of the second kind with respect to x = x(z):
[(Qz + R)x + (Bas — Agge)z” + (By — Ase)z + By — Ael,
= (A2262 + A12€ + A11)£U2 + [(214225 + A12)Z + A2€ + Al]ZL' + A2222 + AQZ + AQ,

where
Q = 2Bgse + B1a — £(2A492¢ + A12), R = Boe + By —e(Aze + Al).

1.  (y+az+b)?y, = (ay+ Bz +v)>

This is a special case of equation 1.7.1.6 with f(z) = 272,

2.  (Ay® 4 Bzy — aBy + kx — ak)y!, = Cy® + Dxzy + (k — aD)y.

The transformation x = w 4+ «, y = wé leads to a linear equation with respect to
w=w(): [~A + (C — B)E? + DeJw, = (A + Bé)w + k.

3. (Ay? +2Azy+ Bx?*+ A— B)y!, = Ay*+2Bxy+ Da2?*+2(B—D)x+ D — A.
The transformtion z = w+ 1, y = fw — 1 leads to a linear equation:
(—AE — AL + BE + D)w; = (AE” 4+ 2A¢ + B)w + 2(B — A).
4. (Ay®*—2Azy+Bz*+A—B)y, =—Ay*+2Bzxy+Cz?>+2(B+C)z+A+C.
The transformtion z = w — 1, y = {w — 1 leads to a linear equation:

(—AE + A + BE + C)wy = (AE? — 2A¢ + B)w + 2(A — B).
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10.

11.

12.

13.

14.

(Ay?+2Azy+ Bz?+ A — B)y! = Ay?+2Bzy+Cz?+2(C—-B)zr— A+C.

The transformtion z = w — 1, y = {w + 1 leads to a linear equation:

(—AE® — A + B+ C)wg = (AE? + 2A¢ + B)w + 2(A — B).

(Ay? —2Azy+ Bz?+ A— B)y! = —Ay*+2Bxy+Cx*—2(B+C)z+A+C.

The transformtion z = w + 1, y = {w + 1 leads to a linear equation:
(—AE + A + BE + C)wp = (AE? — 2A¢ + B)w + 2(B — A).
(Ay? — 2Azy + Bz? + A — B)y/,

= Cy? 4+ 2By + D2z? — 2(A+ C)y — 2(B + D)z + 2A 4+ C + D.

The transformtion z = w + 1, y = {w + 1 leads to a linear equation:
(—AE + (2A+ C)&* + BE+ D)), = (A® — 24 + B)w + 2(B — A).
(2Ay? — 2Azy + Bz? + 2A — 4B)y.,

= —Ay? 4+ 2Bzy + Dz? — 2(B 4+ 2D)xz + A + 4D.
This is a special case of equation 1.4.4.34 with « =2, =1, C = —A.

(Ay?+4Azy+Bxz?+4A—B)y!, =2Ay*+2Bxy+C2?—2(C—2B)z+C—8A.

The transformtion z = w + 1, y = Ew — 2 leads to a linear equation:

(—AE® — 2A€% + BE + O)w, = (AL + 4A¢ + B)w + 2B — 8A.

(Ay?—4Azy+Bx*+4A—B)y,, = —2Ay*+2Bxy+Cz?*—2(2B+C)xz+8A+C.

The transformtion x = w + 1, y = &w + 2 leads to a linear equation:
(— A€ + 2A€% + BE + O)w, = (AE? — 4A¢ + B)w + 2B — 8A.
(Ay? + 4Azy + Bx? + 4A — B)y.,
= Cy? + 2Bzy + 2Bx2 + 4(C — 2A)y + 2B + 4C — 16A.

The transformtion x = w + 1, y = E&w — 2 leads to a linear equation:
[—AE + (C — 4A)€* + BE + 2BJw; = (AE? + 4AE + B)w + 2B — 8A.

(2Ay?+2Axy+Bx?+2A—4B)y! = Ay*+2Bxy+Dxz?*+2(B—2D)x+4D—A.
This is a special case of equation 1.4.4.34 with « =2, 8= -1, C = A.

(2Ay*+2Azy— Bx?+2A+4B)y), = Ay>*—2Bxy—Dz?+2(B—2D)x— A—4D.
This is a special case of equation 1.4.4.34 with a = -2, =1, C = —A.

(Ay? + 2Bzy + Ak*z? 4 ay + bz + m)y,
= By? + 2Ak%zy + Bk%x? + by + ak?x + s.

This is a special case of equation 1.4.4.27 with C' = Ak?.
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15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

(Ay? + 2Bzy + Ak?z? + ay + bx + m)y/,
= By? + 2Ak*xy + Bk?xz? 4 aky + bkx + s.

This is a special case of equation 1.4.4.32 with C' = Ak2.
(Ay? + 2Bzxy + Ak?%x? + ay — akx + b)y.,

= By? + 2Ak%zy + Bk%x? + my — mkx + s.
This is a special case of equation 1.4.4.31 with C' = Ak2.

(Ay2+ZBwy—Bk:E2+ay+ba:+c)y; = By?+2Ak%xy— Ak3x? +by+ak?xc+s.

This is a special case of equation 1.4.4.28 with m = b.

(Ay2+2Bwy—Bka:2—|—ay—i—ba:—|—m)y; =By?+2Ak%xy— Ak3x%24+-aky+bkx+s.
This is a special case of equation 1.4.4.32 with C' = —Bk.
(Ay? + 2Bzy — Bkxz? 4 ay — akx + b)y/,

= By? + 2Ak%zy — Ak32%2 + my — mkx + s.
This is a special case of equation 1.4.4.31 with C' = —Bk.

(Ay2—|—2Al€:;r:y—|—C’ar:2—I—ay—l—b:/c—i—m,)y:’c = Aky?4+2Ak%xy+4+-Ckx?+by+ak?z+s.
This is a special case of equation 1.4.4.27 with B = Ak.

(Ay2—I—2Ak::cy—+—C’:132—|—ay—}—bac—I—Tn)y;3 = Aky?4+2Ak%xy+Ckx?4-aky+bkx+s.
This is a special case of equation 1.4.4.32 with B = Ak.
(Ay? + 2Akzy + Cz? + ay — akz + b)Yy,

= Aky? 4+ 2Ak%*zy + Ckz? + my — mkx + s.
This is a special case of equation 1.4.4.31 with B = Ak.
(Ay? — 2Akzy + Bkxz? + ay + bx + ¢)y,

= —By? 4 2Bkay — Ak3x? + by + ak?x + s.
This is a special case of equation 1.4.4.29 with m = b.
(Ay? — 2Akxy + Bkx? + ay + bx + o)y,

= —By? 4 2Bkxy — Ak3z? + aky + bkx + s.
This is a special case of equation 1.4.4.29 with m = ak.
(Ay? + 2Bzy + Cx® — 2A8y + kx + AB?)y,,

= By? + Exy + Fx? + ky — EBx — BB3? — k3.

The substitution w = y — 3 leads to an equation of the form 1.4.3.38:

(Aw? + 2Bzw + Cx? + kx)w!, = Bw? + Exw + Fa? + kw,

where k = k + 2Bg.
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26.

27.

28.

29.

30.

31.

32.

33.

(Ay? + Bzy + Cx? + ay + bz + m)y,,
= Aky? + Bkzy + Ckx? + ny + (ak + b — n)x + s.

The substitution y = z + kx leads to the Riccati equation with respect to = = x(2):
[(n—ak)z + s —mk]x!, = (Ak* + Bk 4 C)a? +[(2Ak + B)z + ak + blx + Az* + az +m.
(Ay? + 2Bzy + Cxz? + ay + bx + m)y,,

= By? + 2Ak%zy + k(—Ak? + Bk + C)x? + by + ak?z + s.
The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):

(B — Ak)2* 4 (b — ak)z + s — mk]z!, =
(Ak? + 2Bk + O)x? + [2(Ak + B)z + ak + blz + A2* + az + m.

(Ay? + 2Bxy — Bkz? + ay + bx + o)y,
= By? 4+ 2Ak%*zy — Ak3z? + my + k(ak + b —m)x + s.

The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):
[(B—Ak)2*+(m—ak)z+s—cklz!, = (Ak*+ Bk)x?+[2(Ak+B) z+ak+blz+ Az +az+c.
(Ay? — 2Akxy + Bkx? + ay + bx + o)y,

= —By? + 2Bkxy — Ak®x2? + my + k(ak + b — m)x + s.

The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):
[—(Ak + B)2* 4+ (m — ak)z + s — ck]z!, = k(B — Ak)z* + (ak +b)x + A2* + az +c.
(Ay? + 2Bzy + Ak*z? 4 ay + bz + )y,

= By? + 2Ak?*xzy + Bk?z% + my + k(ak + b — m)x + s.

The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):
[(B—Ak)z*+(m—ak)z+s—ck|x, = 2k(Ak+B)x*+[2(Ak+ B) z+ak-+blz+Az* +az+c.
(Ay? + 2Bzy + Cz? 4 ay — akx + b)y.,

= By? + 2Ak?%zy + k(—Ak? 4+ Bk + C)z? + my — mkx + s.

The substitution y = z + kz leads to the Riccati equation with respect to = = z(2):
[(B—Ak)2* +(m—ak)z+s—bk|z, = (Ak* + 2Bk +C)2* + 2(Ak+ B)zz + Az* + az +b.
(Ay? + 2Bzy + Cz? 4 ay + bz + m)y,

= By? + 2Ak?’zy + k(—Ak? + Bk + C)x? + aky + bkx + s.

The substitution y = z + kz leads to the Riccati equation with respect to = = z(2):
[(B— Ak)z* +s—mk]x, = (Ak* +2Bk+C)2* + [2(Ak + B)z +ak +blz + Az* +az +m.

[A(ay? + Bzy + vx?) + (Ab + 20)y + (Ae + B)x + Ao + 6]y,
+ B(ay? + Bzy + vz2%) + (Bé + B)y + (Be + 2v)x + Bo + & = 0.

Solution:  ay? + Bay + yz? + 6y + ex + 0 = Cexp(—Ay — Bx).
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34. (aAy® —2BAzy + Bz? + af?A — o®>B)y),
= Cy*+2Bxy+ Dz* - 2B(BA+C)y —2(aD+BB)z+a?’D +3%(28A+C).

The substitution z = w + «, y = Ew + B leads to a linear equation:

[—aAE® + (2BA + C)&* + BE + Dlwg = (2 AE® — 2BA¢ + B)w + 2(aB — °A).

35. (A2:y® + Apzy + Anix® + Ay + A1z + Ao)y),
= Bay® + k(2A22k + A12 — 2Ba2)wy + k(—A22k? + Bask + Aqq)x?
+ B2y + k:(Azk + Al — Bz)(l? + B().

The substitution y = z + kx leads to the Riccati equation with respect to z = x(2):
[(B22 — AQQk)ZQ —+ (BQ — Agk)z —+ BO — Aok}fﬁlz =
(AQQ]CQ + Algk + A11)$2 =+ [Q(Aggk‘ + Alg)Z + Agk' + Al]l‘ + A2222 + AQZ + Ao.

36. (Azy? + Apzy + Ap1z? + Ay + Az + Ap)y),
= B2y? + Biazy + Bi12? + By + Biz + Bo.

Here A;j, B;j, and A; are arbitrary parameters, and the other parametes are defined
by the equations

Ay = —Ajpa — 2420,

Ag = —Ana® + Apf® — Aja,

By = (2A11 — Bia)a+ (A2 — 2B32) 3 + Ay,

By = —2B11a — B3,

By = Bi1a? 4 (Bia — 2411)afB + (Bas — A12) 8% — A1 B,

(a, B are arbitrary parameters).
The transformation x = w + «, y = Ew + § leads to a linear equation:

[~ A28 4 (Bag — A12)€% + (Bia — A11)é + B11]w2 = (Ae&® + A€ + Ap)w + k,
where k = 2A11a + Algﬁ + Al-

1.5. Nonlinear Equations of the Form f(x,vy)y, = g(x,vy)
Containing Arbitrary Parameters

1.5.1. Equations Containing Power Functions

1. vy, =A/y+ Bz"1/2
The substitution w = (2/A),/y leads to the Abel equation of the form 1.3.1.32: ww/, =
w4+ 2BA 2z 1/2,

2. y.=A/y+ BxL
Let A= +2a='vb, B = F4b (b > 0).

The solution in the parametric form is written as

z=af(r), y=b2r+f(n)
-1
where f(7) = exp(F71?) [/ exp(Fr?)dr +C
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10.

11.

y, = Ay + Bx~2.

The substitution w =2A7!,/y leads to the Abel equation of the form 1.3.1.33: ww/, =
w+2BA 2072

Yyl = a/y + bx + cx™.

The substitution w = 2a_1\/17 leads to the Abel equation of the second kind: ww/, =
w + 2a72(bx + cx™), whose special cases are outlined in Subsection 1.3.1.

Yy, = ay™ + bx -7

Solution:

d 1
/ Ul} =In|z| +C, where w =yzn-1.

y, = Ay*® — Bz*.
1

1 B\~
The transformation =z = (w;) kly= )\(ﬂ) ® . where \ = (I) . leads to the
z

generalized Emden—Fowler equation:

which is discussed in Section 2.5 (in the classification table, one should search for the
equations satisfying the condition n +m + 1 = 0).

y., = (ax + by + c)™.
This is a special case of equation 1.7.1.1 with f(§) = ™.

dw a
/7w"7)\w+1 —&—C’—b,/?ln|x|,
1
where w = Wgygc_m_l7 \ = m+ 1”/3.
b b a

y:/v — awn—lym—f—l + bmnk—lymk—‘rl.

Solution:

This is the homogeneous equation in the extended sense of the form 1.7.1.3 with

F(€) = a& + bk

Y, = az®y/y + bz™y + cx® /Y.

This is a special case of equation 1.7.1.4 with f(x) = az*, g(z) = ba™, h(z) = ca®,
n=1/2.

Yy, = azFy' T + bx™y + cxtyl .

This is a special case of equation 1.7.1.4 with f(z) = ax®, g(z) = ba™, h(z) = cz®.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

ylw — wn—lyl—m(awn _|_bym)k
This is a special case of equation 1.7.1.7 with f(¢) = &,

zy! =y + ax" " "y™ + ba" kyk.

The substitution y = zw leads to an equation with separation of variables: w! =

"2 (aw™ + bw).
(ay™ + bx)y!, = 1.
Solution: = e (C + a/y”eiby dy) .

z(zy™ + a)y,, + by = 0.
Solution: nb—a = :L'(Cy“/b + y")

z(ay™ + m)y., = y[bm"(k_l)ym)‘ —n|.
This is a special case of equation 1.7.1.15 with (&) = a&, g(€) =1, h(€) = b&*, k =n.

(az™ 4 bx® + cxy)y), = kx™ + bxy + cy?.

The transformation ¢t = y/x, z = 2"~ 2 leads to a linear equation: (k — at)z] =
(n—2)(az+ b+ ct).

(ay™ + bx? + cxy)y., = ky™ + bxy + cy>.

The transformation ¢ = y/x, 2 = "2 leads to a linear equation: t"(k — at)z, =
(n—2)(at"z + b+ ct).

(az™ + by™ + 2)y), = axky™* + Ba™y" " 4 y.
The transformation t = y/x, z = 2"~ ! leads to a linear equation:
(™% 4 gt — pt" M —at)z) = (n — 1)(bt" +a)z +n — 1.
(az™ + by™ + Ax? + Bzxy)y!, = az®y"* + Bz™y" ™ + Azy + By?.
The transformation ¢ = y/x, 2 = 2"~ ? leads to a linear equation:
(™% 4 g™ — bt —at)z) = (n — 2)(bt" + a)z + (n — 2)(Bt + A).

[(ax + by)™ + bx]y., = c(ax + by)™ — ax.
This is a special case of equation 1.7.1.13 with f(§) =&, g(&) =1, h(§) = c€™.

[(az + by)™ + byly, = c(ax + by)™ — ay.
This is a special case of equation 1.7.1.14 with f(§) =&, g(&) =1, h(§) = c€™.

(az + By + )"y, = (az + by + )™
This is a special case of equation 1.7.1.6 with f(§) = £™.
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

(amn _+_b,ym)y;C — :Bn—l,yl—m.
This is a special case of equation 1.7.1.7 with f(£) = 1/€.

(ay™ + bx™ + s)y’, + az® + bnx" "y 4+ B =0.

Solution:
ap(y) + ap(x) + ba™y + sy + Br = C,
where
merl k+1
if -1, if k£ -1,
ey) =4 m+1 it m # P = kT+1 | 7
In|y| if m= -1, Injz| ifk=-1.

(az?y™ + bxy™ + cy®)y., = oay? + By? + .

This is the Riccati equation with respect to = = x(y).

(az™y™ + )y, = bakyntm—Fk 4 4

The transformation t =y /z, z = 2"~ leads to a linear equation: t™(bt" =% —at)z] =
(n+m—1)(at™z +1).

z(axy™ + o)y, + y(bz"y™ + B) = 0.

Solution:
(yea)A  (y*aP)B mp — na mb — na

= h A=—— B=—78#+—+.
A + B = whete afl —ba ’ af3 — ba

z(anz*y"t* + s)y! + y(bmaz™Tryk + s5) = 0.
Solution: aky™ + bka™ — s(xy)~F = C.

(az™y™ + Ax? + Bzy)y!, = ba*y"t™ "k + Azy + By?.

tn—k

The transformation t =y /x, z = 2"+t™~2 leads to a linear equation: t™(b —at)z, =

(n+m—2)(at™z+ Bt + A).

(amzmy™ ! + by*)y’, + anz™"1y™ + cz® = 0.

S

This is a special case of equation 1.7.1.18 with f(y) = by*, g(z) = cx*.

(az™y™ + bxy*)y!, = ay® + 6.

This is the Bernoulli equation with respect to z = z(y) (see Subsection 1.1.5).

z(ax™ ky™ + m)y! = y(bx A —kyrm _ n).

This is a special case of equation 1.7.1.15 with f(¢) = a€, g(&) = 1, h(§) = b .

w(awnym—k _|_ m)y; — y(bwkny)\m—k _ TL)

This is a special case of equation 1.7.1.16 with f(¢) = a€, g(&) = 1, h(&) = b .
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85. (agtlym—1 4 bgnktiygmholyyr — gnsyms,
xT
This is a special case of equation 1.7.1.3 with f(£) = c&%(a& + b€F) L.

36. (az™ + by™)*y! = ca" 1yl

This is a special case of equation 1.7.1.7 with f(£) = c¢~*.

37. zy, =y +a\y?+ bx2.
Solution: ¥y + 1/y2 + bx2 = Czot!.
T+a rT—a € €
38. (61 3 T e2—— >y;—y<—;+—§>=0,
[ TS LT T2
where 77 = (z+a)®’+y? 2= (z—a)’+y>

This is the equation of force lines corresponding to the Coulomb law.
x+a T—a
Solution: e; + + eg =C.
T1 )

1.5.2. Equations Containing Exponential Functions

1. Yy, = ae¥ 4 be”.

Solution in the parametric form:

ebT
x=Inr, y:bT—ln(C—a/ dT).
T

Solution in the parametric form:

with n #£ —1,

1 b —_n_ b
reTm y_n+171n{cnil/7 nHeXp(n—Zl)dT}

withn = —1, b# —1,

2.  y. = aeY 4 bx".

3. y. =ay '+ be”.

Solution in the parametric form:
r=In(AE") F 77, y = B[2 + exp(F7%)E],
where a = F2B%, b=+A"'B, E= [exp(Fr?)dr +C.
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10.

11.

12.

13.

14.

15.

y, = Aevte® — g,

This is a special case of equation 1.7.1.2 with f(¢) = Aef, n=1,b=0.

Y, = ae’® TV 4 ber®.

This is a special case of equation 1.7.2.5 with f(z) = ae”®, g(x) = be!®.

Yy, = ae’Tt A 4 ppm,

This is a special case of equation 1.7.2.5 with f(z) = ae”®, g(x) = bx".

Yy, = ax™e ¥ + be’®.

This is a special case of equation 1.7.2.5 with f(x) = az™, g(x) = be"*.

Yy = ax™e¥ + bx™.

This is a special case of equation 1.7.2.5 with f(z) = az”, g(x) = bx™.

Yyl = aeVTtAv 4 perr—Ay,

This is a special case of equation 1.7.2.8 with f(z) = ae”®, g(x) = 0, h(z) = be!*.

Yy, = ax™er + bx™e MY,

This is a special case of equation 1.7.2.8 with f(x) = az™, g(z) = 0, h(z) = bz™.

Y, = (y + ae*®)™ — are®.
This is a special case of equation 1.7.2.10 with f(§) = ™.

Y. = (ae¥ + bx—*)1/k,

Solution in the parametric form:

kdr

x:exp{rf%[f(r)+0]}, y=f(r)+C,  where f(T):/

k(b + ae’”)fl/k +1

v, = (ay® + be”) /",

Solution in the parametric form:

kdr

xz=f(r)+C, y:exp{T—&—%[f(T)—i—C”, where f(T):/ @ T be T

y; — awn—lekny + bwm—lekmy.

This is a special case of equation 1.7.2.2 with f(£) = a&”~! + b¢™m 1.

ylm — amn—leay + bmnm—leamy.

This is a special case of equation 1.7.2.4 with f(§) = a& + b&™.
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16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

y,w — ae)m,wyn—i-l + be— =,

This is a special case of equation 1.7.2.1 with f(&) = a&™™t + b.

y; — aeawym-i-l + beanmynm-l-l'

This is a special case of equation 1.7.2.3 with f(£) = a& + b&™.

ylm — ae)\nmyn—{-l + bekmmym—{-l_

This is a special case of equation 1.7.2.1 with f(§) = a&™+! + b¢m+1L,

Y., = ae?*®=PY 4 pe® 4 ce®—PY,

This is a special case of equation 1.7.2.9 with f(§) =& +c.

Y, = az™y* + bz"e* Yyt — ay.

This is a special case of equation 1.7.2.7 with f(§) =¢&", g(§) =a+ b5, m = 1.

y; — ae)\myl—{-n + be,umy_i_ceumyl—n-

This is a special case of equation 1.7.1.4 with f(z) = ae?®, g(z) = be"*, h(z) = ce’?.

y:/v — ae)\acy1+n + be;_m:y_i_cwmyl—n.

m

This is a special case of equation 1.7.1.4 with f(z) = ae’*, g(x) = bet®, h(x) = cx

ylm — awky1+n + bekmy_i_cmmyl—n.

This is a special case of equation 1.7.1.4 with f(z) = az®, g(z) = be’*, h(z) = ca™.

ylm — ae)\:cyl—{—n _|_ bxmy+ceumy1—n.
This is a special case of equation 1.7.1.4 with f(z) = ae**, g(z) = ba™, h(z) = cet?.

y:/v — ae)\my1+n + ba:my-i-c:ckyl_".

This is a special case of equation 1.7.1.4 with f(z) = ae*?, g(x) = bx™, h(x) = cz*.

zy! = az™t*e¥ + bx"™tke™V — n.

This is a special case of equation 1.7.2.6 with f(z) = 2*~1, g(&) = a& + b&™.

(by 4+ N)yl, = ce*® Y — ay.
This is a special case of equation 1.7.1.14 with f(&) = X, g(§) = 1, h(£) = ce®.

ryy, = ax™e¥ — ny.

This is a special case of equation 1.7.2.11 with f(§) = a€, a = 1.

zy?y! = az™e? — ny?.

This is a special case of equation 1.7.2.12 with f(§) = a&, a = 1.
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30. (ae¥ +be®)y, =1.

Solution in the parametric form:

xzm’—ln(C’—b/e dr
31. (ay™ 4+ be®)y., =

Solution in the parametric form:
with n # —1:

a b __n_ at _1
_1 C— n+1 ( )d , — n+1 -
n+1T n[ n+1/T exp —— T:| Yy=r

with n = -1, a # —1:

), y=Inr.

xTr =

b
T = fln(Ce*“T — 67), y=e";
withn =—-1, a=—1:

x=—71—1In(C —b7), y=¢e'.

32. (ae¥ +bx)y, =1

Solution in the implicit form:

1—b

{Ceby+ eV ifb#1,
T =
eY(C + ay) if b=1.

33. (ae¥ +bx?)y, = 1.
Solutions in the parametric form:
— L rzy 1(72) Z = C1Jo(7) + CoYo(r)
xr = 2b7’n - y_n4ab = U1do\T 2Y0\T

and
2

1 T
v=—grZ),, y=i(-2—),  Z=Cil(r)+CaKo(r),

where Jy and Yy are Bessel functions, Iy and Ky are modified Bessel functions.
34. (ae¥ +bx~ ')y, =1.
Let a = £A/B, b = F2A2. The solution in the parametric form is written as

= A[2T + GXp(:FTQ)f(T)], y=In [Bf(T)] F 72

-1

where f(r) = [ / exp(F72) dr + C

35. (be®¥ + c)y! = et — ge2V.
This is a special case of equation 1.7.2.13 with f(¢) = ¢, g(¢) =1, h(£) = €°.
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36. (ae®® + bePV)y! = =Py,
This is a special case of equation 1.7.2.9 with f(¢) = £71.

37. (e®t 4+ aB)yl, + be’*tPY 4 ga = 0.

vx

This is a special case of equation 1.7.2.15 with f(y) = €V, g(x) = be

38. (et 4 bx)y’! = ce?®tY — az.

This is a special case of equation 1.7.1.13 with f(&) = €, g(&) = 1, h(§) = ceb.

39. (et 4 by)y! = ce®® TP — ay.
This is a special case of equation 1.7.1.14 with f(&) = €%, g(¢) = 1, h(€) = cef.

40. (ae**y™ 4+ b)y. =vy.
This is a special case of equation 1.7.2.3 with f(§) = (a€ + b)~ 1.

41. (e*®y™ 4 aB)y’, + be’*tPY + aa = 0.
This is a special case of equation 1.7.2.15 with f(y) =y, g(z) = be”*.

42. (e*®y™ + aB)y), + bx™ePY + aa = 0.
This is a special case of equation 1.7.2.15 with f(y) =y, g(x) = ba™.

43. (e**y™ 4+ ma)y. = y(be**y"™ — ax).
This is a special case of equation 1.7.2.17 with f(§) =&, g(§) = 1, h(§) = b&™.

44. z(x"e¥ 4+ ay)y., = bx""e*™Y — ny.

This is a special case of equation 1.7.2.16 with f(§) =&, g(§) = 1, h(§) = b&™.

45. (az™eM¥ 4 bxetV)y! = eV.

This is the Bernoulli equation with respect to z = z(y) (see 1.1.5).

46. (az™e Y + bxy™)y. = eMv.

This is the Bernoulli equation with respect to x = z(y).

47. (az™y™ + bxeMV)y! = y*.

This is the Bernoulli equation with respect to = = z(y).

48. (az™y™ + bzy*)y, = V.

This is the Bernoulli equation with respect to = = x(y).

49. (amz"y™ ! + b)y. + anz™ " ly™ + ce® = 0.

This is a special case of equation 1.7.1.18 with f(y) = b, g(x) = ce’*.
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50.

51.

52.

53.

(amzmy™—1 + beAy)y; +anz™ ly™ +c=0.

This is a special case of equation 1.7.1.18 with f(y) = be*?, g(x) = c.

(amzmy™ ! + by*)y’, + anz" " ly™ + ce* = 0.

This is a special case of equation 1.7.1.18 with f(y) = by*, g(z) = ce?®.

[(ax + by)™ + be*”]y! = c(ax + by)™ — ae™".
This is a special case of equation 1.7.2.14 with f(§) =&, g(x) =1, h(§) = c€™.

[(ax + by)™ + be*?]y. = c(ax + by)™ — ae*Y.
This is a special case of equation 1.7.2.13 with f(§) = £, g(z) = 1, h(€§) = c£™.

1.5.3. Equations Containing Hyperbolic Functions

Y., = acosh(Ay) + bcosh(vz).
This is a special case of equation 1.7.2.18 with f(x) =0, g(z) = a, h(z) = bcosh(vx).

Y., = asinh(\y) + bsinh(vz).
This is a special case of equation 1.7.2.18 with f(z) = a, g(x) =0, h(zx) = bsinh(vx).

Yy, = az™ cosh(Ay) + bz™.
This is a special case of equation 1.7.2.18 with f(z) =0, g(z) = az™, h(z) = ba™.

Y., = ax™ sinh(Ay) 4 bz™.
This is a special case of equation 1.7.2.18 with f(z) = az™, g(x) =0, h(z) = ba™.

Yy, = ay'™™ 4 by + csinh(Az)y' ™.
This is a special case of equation 1.7.1.4 with f(z) = a, g(x) = b, h(z) = csinh(\x).

vy, = ay'™™ 4+ bsinh(Az)y + cy* ™.
This is a special case of equation 1.7.1.4 with f(z) = a, g(x) = bsinh(A\x), h(z) = c.

Yy, = ycoshz(ay™™ sinh™ ™!z + by™).
This is a special case of equation 1.7.2.20 with f(§) = a&™ + b€.

Yy, = ysinhx(ay™™ cosh™ 'z 4 by™).
This is a special case of equation 1.7.2.22 with f(§) = a&™ + b€.

zy! = (azx™ coshy + b) cothy.
This is a special case of equation 1.7.2.23 with f(§) = a& + b.
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10. zy! = (ax™sinhy 4 b) tanhy.
This is a special case of equation 1.7.2.21 with f(£) = a€ + b.

11. (ay™coshz + b)y’ = y™*t!sinhz.
This is a special case of equation 1.7.2.22 with (&) = £(aé +b) L.

12. (ay™sinhz + b)y, = y™*! coshz.
This is a special case of equation 1.7.2.20 with f(&) = &(aé + b) L.

13. (az™ 4 bz cosh™ y)y’, = y*.

This is the Bernoulli equation with respect to x = z(y) (see Subsection 1.1.5).

14. (az™ + bz tanh™ y)y’, = y*.

This is the Bernoulli equation with respect to = = x(y).

15. (az™ + bx cosh™ y)y’, = cosh®(Ay).

This is the Bernoulli equation with respect to = = z(y).

16. (az™ 4 bxtanh™ y)y! = tanh®(\y).

This is the Bernoulli equation with respect to z = x(y).

17. (amz"y™ ! + b)y,, + anz™ 'y™ + csinh*(Az) = 0.
This is a special case of equation 1.7.1.18 with f(y) = b, g(z) = csinh*(\z).

18. (amz™y™ ' + b)y,, + anz™ 'y™ + ctanh*(\z) = 0.

This is a special case of equation 1.7.1.18 with f(y) = b, g(z) = ctanh®(\z).

19. (az™y™ + bx)y!, = cosh*(\y).

This is the Bernoulli equation with respect to z = z(y).

20. (az™y™ + bx)y., = tanh®(\y).

This is the Bernoulli equation with respect to x = x(y).

21. (az”cosh™y + bx)y’, = sinh*(\y).

This is the Bernoulli equation with respect to = = x(y).

22. (az™tanh™y + bx)y’ = y*.

This is the Bernoulli equation with respect to z = z(y).

23. (amz™y™ ' + bsinh® y)y’, + anz" ly™ +c = 0.

This is a special case of equation 1.7.1.18 with f(y) = bsinh" y, g(z) =c.

24. (ama™y™ ! + btanh® Y)Yy, + anz™ ty™ 4+ c = 0.
This is a special case of equation 1.7.1.18 with f(y) = btanh® y, g(z) = c.

© 1995 by CRC Press, Inc.



1.5.4. Equations Containing Logarithmic Functions

1. y. =ylax+mlny+ 3).
This is a special case of equation 1.7.2.3 with f(£) =In¢ + .

2. y. =azF""lyFm Tl (nlnz + miny).
This is a special case of equation 1.7.1.3 with f(¢) = a¢* In¢.

3. Yy, = ax™y In? y + bz™yIny + czky.

This is a special case of equation 1.7.3.1 with f(x) = az™, g(z) = bz™, h(z) = cz*.

4. =zy., =(ay+nlnz)™ 4 .
This is a special case of equation 1.7.2.4 with f(£) =1In"™ & + 3.

5. zy. =y(nlnzx 4+ miny).
This is a special case of equation 1.7.1.3 with f(§) = In¢.

6. mzxy., = az*y®*(nlnx + miny) — ny.

a

This is a special case of equation 1.7.1.5 with f(z) = 22571 g(¢) =1In&.

7. (z*+ by, =yz* ' +c(lny — Inz).
This is a special case of equation 1.7.1.12 with f(£§) = b, g(§) = cln&, h(§) = 1.

8. z(ay+ By, =nlnz+ (a—n)y.
This is a special case of equation 1.7.2.16 with f(§) = 3, g(§) = 1, h(§) = In&.

9. z(a+ mz*)y, =y(bnlnz + bmlny — nz®).
This is a special case of equation 1.7.1.15 with f(§) =a, g(§) =1, h(§) = bIn¢.

10. z(a + my*)y. = y(bnlnz + bmIny — ny*).

This is a special case of equation 1.7.1.16 with f(§) = a, g(¢) =1, h(§) = bln¢&.
11. (amz"y™ ! + b)y,, + anz™ ly™ + cln*(\z) = 0.

This is a special case of equation 1.7.1.18 with f(y) = b, g(z) = cIn*(\z).

12. (alny+bx)y, = 1.

Solution in the parametric form:

—br
m:ebT(%/e dT—l—C)—%lnT, Yy=rT.
T

13. z(lny)y, = y(az™*y* 4+ bz"y) — nylny.
This is a special case of equation 1.7.3.7 with f(¢) = a&® +b¢, m = 1.
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14. z(a+mlny)y, = y(bz"y™ —nlny + c).
This is a special case of equation 1.7.3.9 with f(§) =a, g(§) =1, h(§) = b€ + c.

15. (az™ + bz In™y)y’, = In*(\y).

This is the Bernoulli equation with respect to x = z(y).

16. z(az"y™ + mlnz)y, = y(bz™*y™* — nlnz).

This is a special case of equation 1.7.3.10 with f(&) = a&, g(¢) = 1, h(€) = b¢F.

17. z(az™y™ + mlny)y, = y(bz"*y™* — nlny).
This is a special case of equation 1.7.3.9 with f(¢) = a&, g(€) = 1, h(&) = bek.

18. (amz"y™ ' + bln* y)y! + ana™"ly™ 4+ c = 0.

This is a special case of equation 1.7.1.18 with f(y) = bIn" y, g(z) =c

19. (az™In™y + bx)y’, = In*(\y).

This is the Bernoulli equation with respect to = = x(y).
20. (az™In™y + bxIn® Yy, = y°.

This is the Bernoulli equation with respect to = = z(y).
1.5.5. Equations Containing Trigonometric Functions

1. y! = acos(ay) + Bcos(bx).
This is a special case of equation 1.7.4.11 with f(z) = «, g(x) =0, h(z) = [ cos(bx).

2. y. = sin(ax) cos(by) + cos(ax) sin(by).
This is a special case of equation 1.7.1.1 with f(§) =sin¢, ¢ = 0.

3. y. = atan(bxy).

The solution is given by the relation

/ exp(%t2) cos(@zt) dt = cexp(%aba:z), where w = y4/ %.
0

4. y! = bx"cos(ay) + cx™.
This is a special case of equation 1.7.4.11 with f(z) = bz™, g(x) =0, h(z) = ca™.

5. y. = bx"sin(ay) + cx™.
This is a special case of equation 1.7.4.11 with f(z) =0, g(z) = bz™, h(z) = cz™.
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6. y, =ycosx(ay™™ sin” ' x 4 by™).
This is a special case of equation 1.7.4.4 with f(£) = a&™ + b€.

’

7. y. =ysinz(ay™™ cos™ 'z + by™).
This is a special case of equation 1.7.4.3 with f(£) = a&™ + b€.

sin?y cos?y

cos2 ¢ sin? z

/

8. Y, = a

This is a special case of equation 1.7.4.14 with f(§) = a& + b&~ 1.

9. vy, =ay't"™ + by + csin(Az)y' ™.
This is a special case of equation 1.7.1.4 with f(z) = a, g(z) = b, h(z) = csin(A\z).

10. y! = ay't™ + bsin(Az)y + cy' ™.
This is a special case of equation 1.7.1.4 with f(z) = a, g(x) = bsin(Ax), h(z) = c.

11. zy! + asin(bx + cy) = 0.

b
The substitution w = x tan % leads to the Riccati equation of the form 1.2.2.22:

2zw!, — bw? + 2(ac — 1)w — bx? = 0.

12. zy! = az?tan(by) + y.

The substitution y = zw leads to an equation of the form 1.5.5.3: w), = atan(bzxw).

13. zy! = azx™ cos?y + bcosysiny.

This is a special case of equation 1.7.4.8 with f(¢§) = %(af +b).

14. zy! = azx™ sin? y + bcosysiny.

This is a special case of equation 1.7.4.7 with f(§) = %(aﬁ +b).

2—k

15. zy! = az™ sin® Yy cos Yy — nsin 2y.

This is a special case of equation 1.7.4.18 with f(z) = az™2"*~1 g(¢) = ¢F.

16. (14 tan®y)y), = atan™t!y + btany + cx™ tan' "™ y.

This is a special case of equation 1.7.4.19 with f(z) = a, g(z) = b, h(z) = cz™.

17. (amaz™y™ ' + b)y., + anz™ " y™ + csin®*(A\z) = 0.

This is a special case of equation 1.7.1.18 with f(y) = b, g(z) = ¢sin®(\z).

18. (amz"y™ ! + b)Yy’ + anz™ly™ + ctan®(Az) = 0.

This is a special case of equation 1.7.1.18 with f(y) = b, g(z) = ctan®(\z).
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19. (az™y™ + bx)y’, = cos*(Ay).
This is the Bernoulli equation with respect to z = z(y) (see 1.1.5).

20. (az"y™ + bx)y’, = tan*(\y).

This is the Bernoulli equation with respect to = = z(y).

m-+41

21. (ay™cosxz +b)y., =y sin x.

This is a special case of equation 1.7.4.3 with f(£) = &(a& +b)7L.

22. (ay™sinz 4 b)y, = y™ T cosz.
This is a special case of equation 1.7.4.4 with f(¢) = &(a& +b)7L.

23. (az™ + bx cos™ y)y. = y*.

This is the Bernoulli equation with respect to z = z(y).

24. (az™ + bz cos™ y)y’ = cos®(Ay).

This is the Bernoulli equation with respect to = = x(y).

25. (amz"y™ ! 4+ beos* y)y. + anz" " ly™ + c = 0.
This is a special case of equation 1.7.1.18 with f(y) = bcos* y, g(x) = c.

26. (az™cos™y + bx)y! = cosF(Ay).

This is the Bernoulli equation with respect to = = x(y).

27. (az™ + bz tan™ y)y. = y*.

This is the Bernoulli equation with respect to x = z(y).

28. (az™ + bxtan™ y)y, = tan*(\y).

This is the Bernoulli equation with respect to x = z(y).

29. (amz"y™ ! + btan® y)y’. + anz™ ly™ 4+ c = 0.
x

This is a special case of equation 1.7.1.18 with f(y) = btan®y, g(z) = c.

30. (az™tan™y + bz)y, = tan*(\y).

This is the Bernoulli equation with respect to z = z(y).

1.5.6. Equations Containing Combinations of Exponential, Hyperbolic,
Logarithmic, and Trigonometric Functions

1. Yy, = azx™e* + bln™ .

This is a special case of equation 1.7.2.5 with f(z) = az™, g(x) = bln™ x.
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2. y. =aln™(vz)e + bz™.

This is a special case of equation 1.7.2.5 with f(z) = aIn"(vz), g(x) = bx™.

3. vy, =ae*(Ay+Inz)™.
This is a special case of equation 1.7.2.2 with f(§) = aln™¢&.

4. y,. =ae Az +Iny)™.
This is a special case of equation 1.7.2.1 with f(¢) = aln™ €.

/

5. Yy, = ay In?y + by Iny + ce*®y.
This is a special case of equation 1.7.3.1 with f(z) = a, g(x) = b, h(z) = ce*.

6. y.=ay In? y + be**yIny + cy.
This is a special case of equation 1.7.3.1 with f(z) = a, g(z) = be*®, h(z) = c.

7. Yy, = aeYsinx 4 btanzx.

This is a special case of equation 1.7.5.6 with f(£) = a§ + b.

8. y. = (ae®siny + b)tany.
This is a special case of equation 1.7.5.4 with f(§) = a& + b.

9. 1y’ = ae®sin’y+ be * cos? y.

This is a special case of equation 1.7.5.8 with f(£) = %(ai +b/8).

10. y! = acos™(ux)er¥ + bx™.
This is a special case of equation 1.7.2.5 with f(z) = acos™(ux), g(z) = ba™.

11. y’ = az™e*¥ + bcos™(ux).

n

This is a special case of equation 1.7.2.5 with f(z) = az™, g(z) = bcos™ (uzx).

12. y! = az™e¥ + btan™(px).

n

This is a special case of equation 1.7.2.5 with f(z) = az™, g(x) = btan™ (uz).

13. y/ = atan™(pzx)e? + bz™.

This is a special case of equation 1.7.2.5 with f(z) = atan™(ux), g(z) = ba™.

14. y/ = Ae** cos(ay) + Bel® sin(ay) + Aer®.

The substitution w = tan(4ay) leads to a linear equation: w), = aBe!®w + aAe®.

15. y! = asin(px) sinh(Ay) 4 bcos(px) cosh(Ay).

This is a special case of equation 1.7.2.18 with f(x) = asin(uz), g(x) = bcos(ux),
h(z) = 0.
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16. y’ = ayln’y + bylny + csin™(Az)y.
This is a special case of equation 1.7.3.1 with f(x) = a, g(x) = b, h(z) = c¢sin™(\x).

17. (14 tan®y)y), = atan't™ y + btany + ce*® tan' "™ y.
This is a special case of equation 1.7.4.19 with f(z) = a, g(z) = b, h(x) = ce**.

18. (ae®cosy + b)y. = coty.
This is a special case of equation 1.7.5.5 with f(¢) = (a& +b)~!

19. (ae®siny + b)y., = tany.
This is a special case of equation 1.7.5.4 with f(§) = (a€ +b)~!

20. (aeYcosx + b)Yy, = tanzx.
This is a special case of equation 1.7.5.6 with f(¢) = (a& +b)~!

21. (aeYsinz + b)y! = cotx.
This is a special case of equation 1.7.5.7 with f(§) = (a€ +b)~!

22. (e*®y™ + aP)y., + bePY In™ x + aa = 0.
This is a special case of equation 1.7.2.15 with f(y) = y™, g(z) = bIn" x.

23. (e**y™ 4+ aPB)y., + bePY cos™ x + aa = 0.
This is a special case of equation 1.7.2.15 with f(y) = y™, g(x) = bcos™ x

24. (e*®cos™y + aB)y’, + bePY cos™(Azx) + aa = 0.
This is a special case of equation 1.7.2.15 with f(y) = cos™y, g(z) = bcos™(\x).

1.6. Equations Not Solved for Derivative

1.6.1. Equations of the Second Degree in y/,

1. (¥.)% = ay + ba?.
See equation 1.6.3.43.

2. (y’m)2 =y+ax?+bx+ec
The substitution w = 24/y + az? 4+ bx + ¢ leads to an equation of the form 1.3.1.2:
ww!, —w = 4ax + 20b.

3. (v )2 = ay® + by + c.

Solution: z=C =+ /

v ay? +by+c
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4. (y:’c)2 = ay + by/x.
See equation 1.6.3.26.

5. (y‘fc)2 = ay + b/ + c, a#0.

The substitution aw = 2y/ay + b\/x + ¢ leads to the Abel equation of the form
1.3.1.32: ww!, —w = ba"22~1/2.

6. (y.)°+ay,+by=0.

Solution in the parametric form:

br = -2t —alnt+ C, by = —t? — at.

7. (y;c)2 + ayy!, =bx +c.

Differentiate the equation with respect to x, take y as the independent variable, and
assume £ = .. As a result we obtain a linear equation with respect to y = y(€):

(ag? — b)y; +aly + 262 = 0.

2
8. (¥.)"+ azy, + by + cx® = 0.
The transformation = = e, y = z?u leads to an autonomous equation:

2

2
(ué—&—Qu—!—%) z%—c—bu.

Having extracted the root and carried over the terms 2u + %a from the left-hand side
to the right-hand side, we obtain an equation of the form 1.1.2.

9. y:my;+am2+b(y;)2+cy’w+d, a #0.

Differentiating with respect to x and changing to new variables t =y, and w(t) = —2ax,
we arrive at the Abel equation of the form 1.3.1.2: ww; — w = —4abt — 2ac.

10. (y’w)2—|— (ax + b)Yy, —ay +c =0, a #0.
Solutions:
y = (ax +b)C +aC? +ca™! and 4ay = 4c — (ax + b)*.
11.  (v.)? + (ay + bx)y’, + abzy = 0.
This equation can be factorized:
( + ay)(y; + bx) = 0.
Therefore, the solutions are

y=_Ce " and y= —%bxz +C.
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12. (y:’c)2 + az?y/, + bxy = 0.

The transformation z = Inz, u = yz > leads to an equation not depending implicitly
on z:
(ul)? + (a + 6u)ul, + (3a + b + Ju)u = 0.

Rewriting the latter equation to solve for v/, we obtain an equation of the form 1.1.2.

m—+1

2
- b
2(m + 3)2 S

13. (y'w)2 =y +azx™t! —

The substitution
m+1 1/2

2
_— b
dm+32°
leads to the Abel equation of the form 1.3.1.10:

w = 2[3/ + axm-‘rl _

2(m+1)

/o —
WW, — W 7(m+3)2

x4 2a(m + 1)a™.
14. (y’m)2 =y 4+ az? + bz™t! +c

With A # 0, the substitution Aw = 2(A\y 4+ az? + bz™*! + ¢)'/? leads to the Abel
equation:
ww!, —w = 4a\" 2z + 26A "% (m + 1)a™

which is outlined in Subsection 1.3.1.
The special cases of the original equation are equations 1.6.1.1, 1.6.1.2, 1.6.1.4,
1.6.1.5, and 1.6.1.13.

2
15. a(y.)” —yy, —z=0.
Solution in the parametric form:

t I x

16. ac(y'm)2 = ary + b.
See equation 1.6.3.32.

17. a/:(y;:)2 = azy + bx + c, a # 0.

The substitution aw = 2+/ay + b+ cx—! leads to the Abel equation of the form
1.3.1.33: ww), — w = —2ca" 2z~ 2

18. :c(y;c)2 —ayy, +b=0.

With a # 1, the solution in the parametric form is written as

1

z=Cth + .
a—1

2, aty = xt? + b, where k =
2a —1

With a = 1, the solution is C(y — Cz) = b.
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19.

20.

21.

22,

23.

24.

25.

w(yr’z)2 + ayy!, + bx = 0.
With a # —1, the solution in the parametric form is written as

a+2

v = Ctlfat D40 TS,y = -T2 )
a
. . . b
In addition, there is the solution y = +x P
a
With a = —1, the solution in the parametric form is written as
t2 b
— Ctexp(—5-), —a(t+ 7).
x exp % y=x(t+ ;

z(y,)* — vy, + ay = 0.
Solution in the parametric form:
x = C(t—a)exp(—t/a), y = Ct* exp(—t/a),

In addition, there is the solution y = 0.

z(y,)? —yy, +az?y, + by, +c=0, a#0.

Divide the both sides by .. and differentiate with respect to x. Changing to new
variables t = ¢/, and w(t) = —2ax, we arrive at the Abel equation of the form 1.3.1.33:
ww), —w = act™2.

y(y.)? + azy’, + by = 0.

Solution in the parametric form is defined by the relations

a+2b
2(a+0b)°

In addition, there is the solution y = +x+v/—a — b corresponding to the limit C' — oco.

art +y(b+1*) =0, Cy{t*+a+b)™ = tb/(atb) where m =

z(y,)* + (@ —y)y, +b=0.
Solutions: C(Cz—y+a)+b=0 and (y—a)?=4bz.

tmr:(y'z)2 + (bx — ay + k)y., — by = 0.
kC

aC +b’
In addition, there is the exceptional solution which may be written in the para-

metric form as

Solution: y=Cz +

bk kt

S - = at :
(at + b)?”’ 4 erat—I—b

ax(y,)” — (ay + bz — a — b)y, + by = 0.
Differetiating with respect to x and factorizing, we obtain
(2axy), —ay — bz +a+b)y,, = 0.
Equating both factors to zero and integrating, we arrive at the solutions:

C(a+0b)

y=Crt+ =53

and (ay + bz —a — b)? — dabxy = 0.
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26. w(yr’z)2 + ayy!, + bx"y™ = 0.
The substitution z = e’ leads to an equation of the form 1.6.1.56: (y,)* + ayy, +
be(ntDtym —

27. a:z(y’m)2 — (2zy +a)y, +y> =0.

Solutions:
a

y=aC%*z+aC and y=——om.
4x

28. a:1r;2(ys’c)2 — 2azyy,, +y?> —a(a — 1)z? = 0.

y+ \/m = Cz'tk, where k= M-

29. (a? — 1):132(1,/;)2 + 2zyy!, — y* + a*z? = 0.

Solutions:

Solution in the parametric form:
r=Ct*+1)"2(t+ \/152—1—1)_1/(17 y=xt+ax\t2 + 1.

30. :cz(y:',c)2 + (az?y® 4+ b)y), + aby® = 0.
The equation can be factorized:
(v + ay®)(«®y;, +b) = 0.
Equating each of the factors to zero, we obtain the solutions:

y* =2ar +C and y=b/z+C.

31. awy(y;)2 — (ay® 4+ bz? + k)y’, + bxy = 0.

This differential equation presents an equation of curvature lines of a surface defined
by the relation
Az? + By  + C22 =1,

where
a=AB(C—-B), b=ABA-0C), k=C(B-A).

Solutions:  (aC — b)y? = C(aC — b)a? — kC and ay? = bax? £ 22/ —bk — k.

32. yZ(y;)2 = ax?y? 4+ b.
See equation 1.6.3.34.

33. y2(y.)? = az—2/5y% +b.
See equation 1.6.3.28.

34. y2(v.)? + 2azyy’, + (1 — a)y? + az® + (a — 1)b = 0.

Solutions:

v +ar? —b=(a—1)(x+C)* and y*+ax®—-b=0.
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35.

36.

37.

38.

39.

40.

41.

42.

(a— b)y2(y:’0)2 — 2bxyy’, + ay? — bx? — ab = 0.
Solutions:

a—"b 4

>+ y?=Cx+b— P and (a —b)y* — bz = (a — b)b.
a

(z2 — a)(y,)? — 2zyy, — x? = 0.
Solving for y, differentiating with respect to x, and setting w(z) = y.,, we obtain a

factorized equation:

(zw), — w)(z*w? + 22 — aw?) = 0.

Equating each of the factors to zero, we arrive at the solutions:

1

:f(xQ—a—CQ) and y?+2%=a (y#0).

Y

(z% — a?)(y,)? + 2zyy’, + y> = 0.

The equation can be factorized:
(zyy + ayy +y) (Y, — ay, +y) = 0.
Equating each of the factors to zero, we obtain the solutions:
(r4+a)y=C and (z—a)y=C.

(2 + a)(y,)* — 2zyy,, + y*> + b =0.

Differentiating with respect to x, we obtain a factorized equation:
(2 + @)y, — zylyz, = 0.
Therefore, the solutions of the original equation are
y=Cix + Cs, where aC’f+C’22+b:0; bx2+ay2+ab:0.

(ay — 2?)(y})” + 22yy), — y* = 0.
Solution: (Cy + )% = 4ay.

(ay® + ba)(y))* = 1.
See equation 1.6.3.44.

(az? + by)(y,,)" = 22y,
See equation 1.6.3.46.

(azy +b)(y,)* = v.
See equation 1.6.3.33.
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43.

44.

45.

46.

47.

48.

49.

50.

51.

(y? — a®2?)(y.,)? + 2zyy,, + (1 — a®)z? = 0.

Solution in the parametric form:

Ot C
T=—F, y=aC - ——.
t24+1 241
(ay — bx)?[a®(y.)? + b%] — k2(ay), + b)2 = 0.

Solve the equation for ay — bx and differentiate with respect to z. Setting w(z) =y,
we obtain a factorized equation with respect to w(x):

(aw — b)[(a*w? + b?)3/2 + abkw')] = 0.
Equating each of the factors to zero and integrating, we arrive at the solutions:

(b —C)? +(ay—C)? =k* and ay—bxr = +kV2.

a:3(y'm)2 + z%yy. +a=0.

Solutions:
Cry=C%*t+a and zy®=4a.

zy?(y,)? = ay® + ba.
See equation 1.6.3.45.

(az?y® 4 b)(y,)* = =2,

See equation 1.6.3.35.

(zy!, 4+ a)? — 2ay + 22 =0, a#0.

The substitution 2ay — 2% = u? leads to the equation zuu!, — a(u — a) + x? = 0.

Next assuming u — a = rw(zr), we obtain (zw + a)w), + w? + 1 = 0. Taking w as the
independent variable, we arrive at a linear equation whose solution is

x:(w2+1)_1/2[0—aln(w+ w2 +1)].

(zyl, +y + 2az)? = 4(zy + ax? + b).
The substitution u = 2y + ax? + b leads to an equation of the form 1.1.2: v/, = £2/u.

(av/g + ba)(y,)* = 1.
See equation 1.6.3.27.

(az?y3/® + by) (y,)* = 22y.
See equation 1.6.3.29.
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52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

(a2x + b2y + €2)(y,)* + (@12 + b1y + 1)y, + aox + boy + co = 0.
The Legendre transformation z = u}, y = tu; — u (y,, = ¢) leads to a linear equation:
[f(t) +tg()]u; = g(t)u + h(t),
where
f(lf) = a2t2 + a1t + ag, g(t) = b2t2 + b1t + by, h(t) = —Cth —c1t — ¢p.

(y,)* = ae¥ +b.
See equation 1.6.3.3 with k£ = 2.

(y,)* = a+ be™.
See equation 1.6.3.4 with k£ = 2.

(v,)* = ay? + be®.
See equation 1.6.3.8 with k£ = 2.

(y.)? + ayy,, + be**y™ = 0.
With m # 2, solving for y/, and performing the substitution w = e**y™~2 we arrive
at an equation with separated variables of the form 1.1.2:

wh, = dw + m(a:l: a? — 4bw )w.

With m = 2, solving the original equation for ¥/, we obtain an equation with
separation of variables:

2y, =y(—a =+ Va? —4be ).

x2(y.)? = az?e? + b.

See equation 1.6.3.9 with k£ = 2.

(e + ba?)(yl)* = 1.
See equation 1.6.3.9 with k = —2.

(ae®y? +b)(y})* = 2.
See equation 1.6.3.8 with k = —2.

(y;c)2 =—ay+blnz.
See equation 1.6.3.13.

@) =Xy +alnz+b, X#O0.

The substitution A\w = 24/Ay +alnx + b leads to the Abel equation of the form
1.3.1.16: ww!, — w = 2aX" 2z~ 1.

(¥,)* — zyy, + y* In(ay) = 0.
Solutions:
ay = exp(Cz — C?) and ay = exp(+z?).

(alny + b2)(y,)* = 1.
See equation 1.6.3.14.
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1.6.2. Equations of the Third Degree in y/,

1. (yc’c)3+am+by+c:0.
This is a special case of equation 1.8.1.13 with f(w) = w?>.

2. a(y’m)3 + byl = x.

This is a special case of equation 1.8.1.1 with f(w) = aw® + bw.

3. a(W)’+by, =y

This is a special case of equation 1.8.1.2 with f(w) = aw?® + bw.

3
4. a(y,)” +zy, =vy.
3

This is a special case of equation 1.8.1.6 with f(w) = aw?.

5. a(yl)’+bay, =y
This is a special case of equation 1.8.1.7 with f(w) = bw, g(x) = aw?.

6. (v.)%—azy, +a3=0, a#0.

Solution in the parametric form:

7. (y’w)3 — azyy! + 2ay® = 0.

Differentiating with respect to x and eliminating y, we obtain a factorized equation
with respect to w(x) = y:

[2(w))? — azwl, + aw](9w — az?) = 0.

Equating each of the factors to zero and integrating, we find the solutions:

a 3

_ Yoz — )2 -2
y—4C’(m ) and y= 55z

8. a(y,)’+b(y,) ==

This is a special case of equation 1.8.1.1 with f(w) = aw® + bw?.

9. a(y.)’+b,)’ =y

This is a special case of equation 1.8.1.2 with f(w) = aw® + bw?.

10.  (v.)® +a(y.,)® + by +abx +d = 0.

Solution in the parametric form:
20 = —3t2 + 2at — 2a* In(t 4 a) + C, by = —abx — t* — at* — d,
In addition, there is the solution by = —abz — d.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

a(y’)® +b(y.)* + ey, =y +d.

Solution in the parametric form:
v =C+ 2at® +2bt + cln|t|, y = at® + bt* +ct —d.

a(yl)® +bx(yl)’ = y.
3

This is a special case of equation 1.8.1.7 with f(w) = bw?, g(z) = aw?.

ax(y.)® + by, =y.

This is a special case of equation 1.8.1.7 with f(w) = aw?, g(w) = bw.

azx(y,)’ + b(y,)* = y.
2

This is a special case of equation 1.8.1.7 with f(w) = aw?, g(w) = bw?.

(az + by + ¢)(y,)® = az + By + 7.

Dividing both sides by az + by + ¢ and raising to the power 1/3, we finally arrive at
an equation of the form 1.7.1.6 with f(w) = w=1/5.

aw3/2(y;)3 + 2zy! = y.

Solution: (y — aC3/2)2 =4Cx.

(% — a2)(y},)® + ba(a? — a2)(y})® + ), + ba = 0.

The equation can be factorized:
(v, + b2)[(y,)* (2" = a®) + 1] = 0,
whence we find the solutions:
1., .
y:—gbx +C and y = tarcsin — + C.
a

3
ax™(y,)” +xy, =y.

This is a special case of equation 1.8.1.8 with f(w) = aw™.

(zy!, — y)®> + ay + bz = 0.
This is a special case of equation 1.8.1.10 with f(w) =1, g(w) = a, h(w) =b, n = 3.

(zy;, — v)* + ayy;, + bx = 0.
This is a special case of equation 1.8.1.10 with f(w) =1, g(w) = aw, h(w) =b, n = 3.

(zy., — y)® + azy’ + by = 0.
This is a special case of equation 1.8.1.10 with f(w) =1, g(w) = b, h(w) = aw, n = 3.
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1.6.3. Equations of the Form (y;)k = f(y) + g(x)
Preliminary comments.

1. In the general case, the equation

(o) = fly) + g() (1)

is reduced, with the aid of the transformation

t= [t ae, u= [(rw)

to the same form .
(up)” = F(u) +G(),

where functions F'= F'(u) and G = G(t) are defined parametrically by the following formulae:

IR o
Flu) = 5. / )% dy,

= 1 = T l/k X
6=~ 1= [l e

2. Taking y as the independent variable, we obtain from equation (1) an equation of
the same class for z = z(y):

()% = g(@) + f(y)-
3. The equation
Yo =ayy+gx) (k=1 f=ayy)

is reduced, with the aid of the substitution w(z) =2a~!,/y, to the Abel equation ww), —w =
2a~2g(x) which is outlined in Subsection 1.3.1.

4. The equation
Yo=y ' Hgle) (k=1 f=y7")

is an alternative form of writing the Abel equation yy, = g(x)y + 1 which is outlined in
Subsection 1.3.2.

5. The equation
Yo =ay’ +g(x) (k=1 f=ay’)

is reduced, with the aid of the substitution w =y — [ g(z) dz followed by raising both sides
of the equation to the power of 1/s, to an equation of the class in question:

W) = wt [ gla)da.

6. The equation

W) =ay+glx) (k=2 f=ay, a#0)

is reduced, with the aid of the substitution aw = 2y/ay + g(x), to the Abel equation of the
second kind:
ww!, = w + p(x), where ¢ = 2a72¢. (z),
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which is outlined in Subsection 1.3.1.

7. The equation

W) P =ay+g@)  (k=1/2. f=ay)

is reduced, by squaring both sides and performing the substitution z = ay + g(z), to the
Riccati equation
2 =az’ +g,.

For some specific functions g = g(z), the solutions of the latter equation are given in
Section 1.2.

8. The equation

)2 =ay? 4 gx)  (k=1/2, f=ay"?)

can be reduced, by squaring both sides and performing the substitution y = exp(a?z)¢, to
the Abel equation of the second kind:

€€, = aexp(—4a’z)gé + + exp(—a’z)g®

(see Subsection 1.3.3).
9. The equation

W)= fly) +az  (k=-1/2, g=ax)

can be reduced, by squaring both sides and performing the substitution v = f(y) + az, to
the Riccati equation:
v, = av® + fy-

For some specific functions g = g(x), the solutions of the latter equation are given in
Section 1.2.

10. For the sake of convenience, in Tables 1.5-1.9 are listed all the equations outlined
in Subsection 1.6.3. Five classification tables are given below which classfy the equations
wherein functions f and g are of the same form. The rightmost columns of the tables
present the numbers of equations where the corresponding solutions are given. After the
tables follow the equations—they are combined into groups so that the solutions of the
equations within each group are expressed in terms of the functions indicated before the
groups as a notation list.

1. (¥)* =Ay"+B.
Solution: z = /(Ays +B) Yray +C.
2. (y,)"=A+ Bz

Solution: y = /(A—FB:CT)l/k dz + C.

3. (y;)k = AeY + B.

Solution: z = /(Aey +B) Y*dy+C.
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TABLE 1.5

Solvable equations of the form (y;)k = Ay® 4+ Bz"
k s r Equation k ] r Equation
. arbitrary ks
arbitrary (s£Fk) - 1.6.3.7 —1 1 -1 1.6.3.23
arbitrary | arbitrary 0 1.6.3.1 -1 1 1/2 1.6.3.42
arbitrary k k arbitrary
— 1.6.3. —-1/2 1 1.6.3.1
(k#-1,1)| T1—%& 1+k 6.3.6 2| (s -1, 0) 6.3.17
arbitrary 0 arbitrary | 1.6.3.2 || —1/2 -1 1 1.6.3.38
. arbitrary
arbitrary 1 1 1.6.3.5 1/2 1 (r—1,0) 1.6.3.16
-2 -1 -2 1.6.3.46 1/2 1 -1 1.6.3.37
-2 -1 1 1.6.3.33 1 -1 -2 1.6.3.20
—2 —2/5 -2 1.6.3.29 1 -1 —1/2 1.6.3.39
-2 1/2 1 1.6.3.27 1 -1 1 1.6.3.22
-2 2 -2 1.6.3.35 1 1/2 -2 1.6.3.30
-2 2 1 1.6.3.44 1 1/2 -1 1.6.3.11
arbitrary
-1 1 1.6.3.10 1 1/2 —-1/2 1.6.3.24
(5+0) / /
arbitrary
-1 (s# -2, 0) 2 1.6.3.15 1 1/2 1 1.6.3.41
-1 -2 —1 1.6.3.21 2 -2 —1 1.6.3.45
-1 -2 1/2 1.6.3.31 2 -2 —2/5 1.6.3.28
-1 -2 2 1.6.3.36 2 -2 2 1.6.3.34
—1 —1 1/2 1.6.3.12 2 1 —1 1.6.3.32
-1 -1/2 —1 1.6.3.40 2 1 1/2 1.6.3.26
1 ~1/2 1/2 | 16325 || 2 1 2 1.6.3.43
4. (y;)k = A + Be”.
Solution: y = /(A+Be‘"”)1/k dx + C.
5. (y:’c)k = Ay + Bzx.
Solution in the parametric form:
1

x = /(ATl/k +B) tdr + C,
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TABLE 1.6

Solvable equations of the form
(y,)" = Ae¥ + Ba"

TABLE 1.7

Solvable equations of the form
(u,)" = Ay* + Be

k r Equation k S Equation
arbitrary —k 1.6.3.9 arbitrary k 1.6.3.8
arbitrary 0 1.6.3.3 arbitrary 0 1.6.3.4

-1 -1 1.5.2.34 -1 arbitrary 1.5.2.31

-1 1 1.5.2.32 1/2 1 1.6.3.18

-1 2 1.5.2.33 1 -1 1.5.2.3

-1/2 1 1.6.3.19
arbitrary 1.5.2.2
TABLE 1.9
Solvable equations containing
TABLE 1.8

Solvable equations of the form

logarithmic function

(y;)k = Ae¥ + Be® Form of equation Equation
k Equation (y.)* = Alny + Bz 1.6.3.14
1 1.5.2.30 ()" = Alny + Bz 1.5.4.12
1 1.5.2.1 (y.)? = Ay + Blnz 1.6.3.13
6. (y.)*= Ayﬁ + Bac_HLk, |k| # 1.
Solution in the parametric form:
ktl k—1

l‘zali/(’}/Tl/k—Fﬁ)_ldT-i-C:l * )

where

y:b[r—ﬂ/w”’“+ﬁ)—1dr—60] -

k k k _ k
A—a  THFHTF 3B, B:aH—k{ib(k 1)7}.

ks
7. (y,)" = Ay® + BaF—s,

k # s.

Solution in the parametric form:

S

a(k+1)

k—s ks \ T -t
x:Ck_sexp/[ (A—l—BTﬁ) F —T:| dr,

y= Ck{rexp/[%(
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8. (y:’c)k = Ay* + Be®.

Solution in the parametric form:

1
v = /[(A—i—Be"”)l/k - %} dr + C,

_ 1 e 1/k 1771 c
y—eXp{T—i—z/{(A%—Be ) —Z] dT—F?}.

9. (y’w)’c = AeY + Bz~k.

Solution in the parametric form:

B 1 e -1k 1771
$€Xp{7?/[(B+A6 ) +E} dTJrC},

—1/k 1}*1(1 C

yz/[(B—i-AekT) +E T

10. (y’w)_1 = Ay® + Bx.

Solution: z = eBY <A/ySeBy dy + C).

» In the solutions of equations 11-14, the following notation is used:

F= [/ exp(Fr?)dr + C} 71.

11. y, = Ay'/?2 + Bz~ L.
Solution in the parametric form:
r = aF exp(F7?), y =027+ FeXP(:FTQ)]Q»
where A = +24710Y/2, B = F4b.

12. (v)) '= Ay~ + Bz'/2

Solution in the parametric form:
2
]

r = a2T + Fexp(F7)], y = bF exp(F7?),

where A = F4a, B = +2a'/2p .

13. (y:’c)2 = Ay + Blnz.
Solution in the parametric form:
x = aF exp(F7?), y=b{[2r + Fexp($72)}2 +4In(aF) — 477},
where A = 4a72b, B = T4bA.

14. (y’w)_2 = Alny + Bz.
Solution in the parametric form:
z=af{[2r + Fexp(:|I7'2)]2 +4In(bF) — 47’2}7 y = bF exp(F72),
where A = T4aB, B = 4ab~2.
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15.

16.

17.

18.

19.

» In the solutions of equations 15-19, the following notation is used:

[ C1du(7) + C2Y, () for the upper sign,

 \CLL(7) + CoLK, (1) for the lower sign,

where J, andY, are Bessel functions, I, and K, are modified Bessel functions.
Remark. The solutions of equations 15-19 contain only the ratio Z_./Z = (In Z)!..

Therefore, for the sake of symmetric appearance, two “arbitrary” constants C1 and Co

are indicated in the definition of function Z (instead, we may set, for instance, C1 =1
and Cy =C).

(y,)"' = Ay* + Ba?,  s# -2, s#£0.
Solution in the parametric form:
;(;:61,7'_21/[7'(111Z);—‘y-l/]7 y:bTQV,

1 2 2
where v = ——, A=F st ab™'7*, B= fiafllfl.
s+2 2 2

(y,)"> = Ay + Ba", r# -1, s#0.

Solution in the parametric form:

1
xr =ar?, y:bTQ"[T(an)’T+1/:I: T; 7—2],
r
1 [ (r+1)bqt/2 r+1 _
ey = L A [T ey,
where v — o T o a
(y,) "> = Ay* + Bz, s# -1, s #0.
Solution in the parametric form:
1
SU:aT2V T(an)fr—’_V:t S;_ T2:|7 y:bT2U7
s
1 1 1 11/2
where v = 1 A= ¥%ab_sB, B=a"t [—7(8 ;b )a} .

(v.)'/? = Ay + Be®.
Solution in the parametric form:
1
x = In(at?), y= b[T(ln Z) + 572 ,
b )1/2 1

where v =0, A=0b""1 (—5 B= :Ffa_le'

(y,)"'/* = Ae¥ + Buz.
Solution in the parametric form:
1
x:a[T(an)’T:t 572], y = bln(r?),

1 1/2
where v =0, A= $§ab_lB7 B=aqa! (_%) )
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20.

21.

22,

23.

24.

25.

26.

» In the solutions of equations 20-35, the following notation is used:

[ CuJuys(T) + CoYyy3(T)  for the upper sign,
N Cily3(7) + CaKyy3(1)  for the lower sign,

where Jy /3 and Yy 3 are Bessel functions, I3 and K13 are modified Bessel functions;
=72+ %2, Uy =U%+ 71272 Us = +27223 — 20U, Us.

Remark. The solutions of equations 15-19 contain only the ratio Z./Z = (In Z)"..
Therefore, for the sake of symmetric appearance, two “arbitrary” constants C1 and Cy
are indicated in the definition of function Z (instead, we may set, for instance, C1 =1
and Cy =C).

y, = Ay~' 4+ Bz 2.

Solution in the parametric form:

r=ar 32720, y=0br"23Z71U; U3, where A =2a"'0?, B=FZab.

(w,) "' = Ay~? + Ba~.

Solution in the parametric form:

r=ar 2BZ7US U, y=br=3Z720,, where A=FZab, B=2a%"".
y, = Ay~' + Buz.

Solution in the parametric form:

r=ar 2727, y=brY3Z272U,, where A=F2a"'0?, B=2a"%.

(y;)"' = Ay + Ba~.

Solution in the parametric form:

x=ar 322U, y=0br"232"1U, where A =2a"2%h, B= :F%aQbfl.

Yy, = Ay'/?2 4+ Bx—1/2,
Solution in the parametric form:

r=ar 3727202, y=br"8/3274U2, where A=2a"'0'2, B=F2a"1/%.

(v,) ™t = Ay~1/2 + Ba/2.

Solution in the parametric form:

x:ctng/?’Zf‘LUQZ7 y:bT’4/3Z72U12, where A::F%abfl/z, B =2a'/?b1.

(y,)* = Ay + Ba'/2.
Solution in the parametric form:
v=ar V327208, y=0br83Z-YU3 + £12230,),

where A =4a7%b, B = F4a '/?bA.
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27.

28.

29.

30.

31.

32.

33.

34.

35.

(v,) "2 = Ay'/? + Ba.
Solution in the parametric form:

v=ar ¥BZ7NUZ £ +72230,), y=br V327202,
where A = F4ab~'/2B, B =4ab~2.

(u,)* = Ay~2 + Ba~2/5,
Solution in the parametric form:
w=ar 37752002y = b 4B 72U £ A2 230,)1 2,

where A = :F%a—z/ssz’ B = é_ga—8/5b2'

(W)™ = Ay2/5 4 Ba2,
Solution in the parametric form:
x=arBZ2UF £ £022300)%, y=br /372752072,

where A = %azb*S/E’, B= q:%azb*Q/E’A,

y, = Ay'/? + Bx~2
Solution in the parametric form:

T = a7'4/3Z2U2_1, y= bT_4/SZ_2U2_2U§, where A= :I:%a_lbl/Q, B = —4ab.

(y,)"' = Ay=2 4+ Bal/2.
Solution in the parametric form:

T = a7'_4/3Z_2U2_2U§7 Y= bT4/3Z2U2_1, where A= —4ab, B= :I:%al/Qb_l.

(y,)* = Ay + Bz~
Solution in the parametric form:

v=ar?PZ2U;", y=br=Y3Z72U;?(U2-4U3),  where A=18a"2b, B=4abA.

(y,)"* = Ay™' + Ba.
Solution in the parametric form:

v=ar V377202 (UZ-4U3), y=br¥3Z2%U;",  where A=4abB, B=18ab~2

(W) = Ay~? + Ba?.
Solution in the parametric form:

w=ar?BzU; P,y =br B2 U (UR — AUR) V2,
where A = 4a’0?B, B = ‘Ja~1b%

(1) = Ay? + Ba~>.
Solution in the parametric form:

w = ar P27 UF - 4U)V?, y = br23zu; 2,
where A = 24?074, B = 4a?b?A.
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» In the solutions of equations 36—46, the following notation is used:

Citv + Cot™" for the upper sign,
R= ¢ Cisin(vint)+ Cycos(vinT) for the lower sign,
Cilnt+ Cy forv=0.
(1+v)Cim7 4+ (1 —v)Cor™ for the upper sign,
Q=1 (C, —vCy)sin(vinT)+ (Co + vCi)cos(vinT) for the lower sign,
Cilnt+Cy+ Cy forv=0.

Remark. The expressions for R and Q contains two “arbitrary” constants Cy
an Cy. One of them may be fized to set it equal to any nonzero number (for example,
we may set Cy = £1), while another constant remains arbitrary.

36. (y.) ' = Ay~ 2 + Bz?
Solution in the parametric form:
r=ar R71Q, y=>br v=+/|1 -—4AB],
1¥02 1
where A = —lah B=——a1b7t.
2 2
37. (v.)"? = Ay + Bz,
Solution in the parametric form:

1 2
T =ar? y:bT_Q(R_lQ— 2V )7

1/2 1 2
where A =b~! <—i) , B= T abA.
2a 2
38. (y;c)_l/2 = Ay~! + Bz.
Solution in the parametric form:
1 2
r=ar? (R_lQ — :';V ), y = br?,
1 2 1/2
where A = v abB, B=a"! (,i) .
2b
39. y, = Ay '+ Bz~1/2
Solution in the parametric form:
b2
r=ar’R?, y=0brQ, where A = (—liuz)%, B =a"?.
40. (y:'c)_1 = Ay~Y2 4 Bz~
Solution in the parametric form:
b2
r=arQ, y=D0br’R2 where A=ab"'/?, B= (71:|:1/2)2—.
a
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41.

42.

43.

44.

45.

46.

y!, = Ay'/? 4 Bz.

Solution in the parametric form:
r=arR, y=0br2Q>, where A=2(-1+ V2)a_1b1/2, B = 4a™%b.
(y:’c)_1 = Ay + Bax'/2
Solution in the parametric form:
r=ar’Q? y=>brR, where A =4ab"2, B=2(-1+ Vg)a1/2b_1.
(v,)* = Ay + Ba?.
Solution in the parametric form:
r=arR, y=br%[Q*—(—1+v*)R?, where A=16a"%b, B=(—141v%)a %bA.
(v.)"* = Ay* + Ba.
Solution in the parametric form:
r=ar?[Q*—(—-1+v*)R?, y=0brR, where A= (—1+v?)ab 2B, B=16ab"".
(yv,)* = Ay=2 + Ba ™.
Solution in the parametric form:
22 _ 2 2\ p271/2
x=at’R*, y=0br[Q°—(-1+v*)R*]"",
where A = (=1 +1v?)a"1'?’B, B =a 1%
(4,) ™2 = Ay~ + Ba~2,

Solution in the parametric form:

1/2
9,

r=ar[Q* — (-1 +v*)R? y = br?R?,

where A = a?b~!, B = (-1+v?)a?b 1A,

1.6.4. Other equations

1.

y==zy., +az®+ by, +c, a#0.

Differentiating the equation with respect to z and changing to new variables t =y, and
w(t) = —2ax, we arrive at the Abel equation of the form 1.3.1.32: ww;—w= —abt=1/2,

y=zy, +az® +by,)’ +c(y,) " +d, a0

Differentiating the equation with respect to « and changing to new variables t = ¥/,
and w(t) = —2ax, we arrive at the Abel equation:

ww, — w = —4abt — 2ac(m + 1)t™,

whose solvable case are outlined in Subsection 1.3.1.
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3. a()"+by,)" ==
Solution in the parametric form:
with n #£ —1, m # —1,

b
z=at" + b, y=0C4 L gl O ymel
n+1 m+1
withn=—-1, m # —1,
a bm
=2 =C+aln|t| + ——t™+L,
z=—+0",  y=Ctalft|+———
4. a(y)" +by)" =y
Solution in the parametric form:
withn #1, m# 1,
b
yzC—Fﬂt”*l—F—mtm*l, y = at"™ + bt"™;
n—1 m—1
withn =1, m # 1,
b
y=C+alnlt| + m tmL y = at + bt™.
m—1

5. y=ugzy, +a(y,)".
_n_
Solution: y = Cx + aC™. In addition, there is the solution y = Ax n—1, where

aA" Ip" = —(n—1)"" 1 n#£ 1.

6. y=u=zy, +az"(y,)".

This is a special case of equation 1.8.1.8 with f(w) = aw™.

7. y= aw"(y’m)2" + 2zy..
This is a special case of equation 1.8.1.9 with f(w) = aw™.

8. y, =ax"(zy, —y)"
The Legendre transformation = = w}, y = tw;, — w (y, = t) leads to the equation
t = aw™(w,)™. By integrating, we obtain the solution in the parametric form:

with m # —n, n # —1,

= ([ e

a n+1

1-m /¢t L m+n [t 1 _mnln
y = t(—)n—C t(—)n—l—C’ ;

1+n a n+1 a

with m = —n, n # —1,
1

rme(B) ool (D7) = ()T e e(2) ]

with m # —n, n = —1,

x:% a(l—=m)Inft|+C] T-m, y=tz—[a(l—m)n|t|+C] T-m;

a

y=Cga-1,
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10.

11.

12.

13.

14.

15.

16.

17.

18.

z = aexp(Ay;) + bexp(pyy,).
This is a special case of equation 1.8.1.1 with f(w) = aexp(Aw) + bexp(pw).

y = aexp(Ay;) + bexp(pny;,).
This is a special case of equation 1.8.1.2 with f(w) = aexp(Aw) + bexp(pw).

y = zy., + ax™ exp(Ay.,).
This is a special case of equation 1.8.1.8 with f(w) = aexp(Aw).

y = azexp(Ay,,) + bexp(nyy,).
This is a special case of equation 1.8.1.7 with f(w) = aexp(Aw), g(w) = bexp(uw).

Iny, +zy! +ay+b=0.
Solution in the parametric form:

with a # 0 and # —1,

1 1 1
r=—+Ct atl y=——(zt+Int+b);
at a
with a = 0,
Int+b 1
mz_n;f . y=CH =Dt + (0%
with a = —1,

y=Czx+InC+b and y=In(—1/z)+b—1

y==zy, +az®>+blny, +c, a#0.

Differentiating the equation with respect to z and changing to new variables t =y, and
w(t) = —2azx, we arrive at the Abel equation of the form 1.3.1.16: ww, —w = —2abt ™.

y = zy), + ax™ In"(Ay.).
This is a special case of equation 1.8.1.8 with f(w) = aIn™(Aw).

y = Yy, + azx™sin" (ky,).

This is a special case of equation 1.8.1.8 with f(w) = asin™ (kw).

y = xy., + ax™ cos™(ky.).

This is a special case of equation 1.8.1.8 with f(w) = a cos™ (kw).

y = xy., + ax™ tan™ (ky.).

This is a special case of equation 1.8.1.8 with f(w) = atan™ (kw).
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1.7. Equations of the Form F(x,y)y., = G(x,y)
Containing Arbitrary Functions

Notation: f, g, and h are arbitrary composite functions whose argument, indicated
after the function name, may depend on both x an y.

1.7.1. Equations Containing Power Functions

1. y. = f(ax + by + ¢).

With b = 0, we have an equation of the form 1.1.1. With b # 0, the substitution
u(z) = ax + by + ¢ leads to an equation of the form 1.1.2: u!, = bf(u).

2.  y. = f(y+az™+b) —anz™ 1.
The substitution u = y + az™ + b leads to an equation of the form 1.1.2: u), = f(u).
y n,,m
3.y, =—_f(="y™).
T
Homogeneous equation in the extended sense.

The substitution z = z"y™ leads to an equation with separation of variables:
xzh, = nz +mzf(z).

4.y, = f@)y"t" +g(x)y + h(x)y' "
The substitution w=y" leads to the Riccati equation: w), =nf(z)w?+ng(z)w+nh(x).

n y n m
5. y; = _;; + ykf(m)g(m y™).

The substitution z = z"y™ leads to an equation with separation of variables: z., =
n—nk k+m—1
mz-m f(z)z m g(z).

, axr + by + ¢
6. ymzf(—).

azx + By +~
by — o —
With A = af8 — ba # 0, the transformation x = u + 'chﬂ, y =v(u)+ COZA(W
yields
;o au + bv
v“_f(oqurﬁv)'

Dividing both the numerator and denominator of the fraction on the right-hand side
by u, we obtain a homogeneous equation of the form 1.1.6.
With A =0, b # 0, the substitution v(x) = ax + by + ¢ leads to an equation of the

form 1.1.2: )
L= asbf ()
Ve = atbf Bv+by—cf
With A =0, 8 # 0, the substitution v(z) = ax + By + v also leads to an equation
of the form 1.1.2: b b
v, :a+,6’f(7v+cﬁ_ 7).
Bv
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10.

11.

12.

13.

14.

15.

16.

17.

Y, = "y ™ f(ax™ + by™).

The substitution w = azx™ + by™ leads to an equation with separation of variables:
w!, = 2" YHan + bm f(w)].

y"y, +az” + g(x) f(y" ! + az"tt) = 0.

The substitution w = y"*! + az™*! leads to an equation with separation of variables:

wl, + (n+ 1)g(x) f(w) = 0.

[z (y) + zg(v)]y; = h(y).
This is the Bernoulli equation with respect to z = z(y) (see 1.1.5).

[z* + = f(y) + 9(¥)]y;, = h(y).
This is the Riccati equation with respect to z = z(y) (see Section 1.2).

y, = [f(x)y + g(x)]\/(y — a)(y — b).

The substitution u? = (y — a)/(y — b) leads to the Riccati equation:

+2u;, = [bf (2) + g(2)]u® — af(z) - g().

i a i ’r i a—1 g
() +en( ) we = o() +van ()
The substitution y = xt leads to the Bernoulli equation with respect to x = x(t):
lg(t) —tf ()]} = f(t)x + h(t)zF.

[f(az + by) + bag(az + by)ly, = h(az + by) — azg(az + by).

The substitution ¢ = ax + by leads to a linear equation with respect to x = z(¢):
[af(t) + bh(t)]z; = bg(t)z + f(1).

[f(az + by) + byg(az + by)ly,, = h(azx + by) — ayg(az + by).

The substitution ¢t = ax + by leads to a linear equation with respect to y = y(t):
[af(t) + bh(t)]yt = —ag(t)y + h(?).

z[f(z"y™) + marg(z"y™)ly, = y[h(z"y™) — nztg(z"y™)].

The transformation ¢t = 2"y™, z = 27" leads to a linear equation: t[nf(t)+mh(t)]z, =
—kf(t)z — kmg(t).

z[f(x"y™) + my*g(z"y™)]y; = y[h(z"y™) — ny*g(z"y™)].

The transformation t = z"y™, z =y~* leads to a linear equation: t[nf(t)+mh(t)]z, =
—kh(t)z + kng(t).

z[sf(z"y™) — mg(z*y®)]y;, = ylng(z*y*) — kf(z"y™)].

The transformation t = z"y™, w = 2*y* leads to an equation with separated variables:
tf(t)wi = wg(w).
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18. [f(y) + amw"ym_l]y; + g(z) + anz™ " ly™ = 0.

Solution: /f(y) dy—f—/g(x) dz + az™y™ = C.

o 13)
19. f(xz,y)y, +9g(z,y) =0, where o7 =29
ox oy

Total differential equation.
Solution:

’y xr
F(wo.t)di + / olt,y)di = C,

Yo 0

where zg and yg are arbitrary numbres.

1.7.2. Equations Containing Exponential and Hyperbolic Functions

1.  y. =ef(ery).

The substitution u = e**y leads to an equation of the form 1.1.2: v/, = f(u) + \u.

2.  y, =eNf(eMa).

The substitution u = ez leads to an equation with separated variables: zu =
Au? f(u) + u.

3.  y.L=yf(e*y™).

Exponential homogeneous equation.
The substitution z = e**y™ leads to an equation of the form 1.1.2: 2, = az +

mzf(z).

1
4. y. = —f(z"e™).
T
Exponential homogeneous equation.
The substitution z = z"e*¥ leads to an equation with separated variables: xz] =

nz + azf(z).

5.y, = f(z)e* +g(x).

The substitution u = e~*¥ leads to a linear equation: u/, = —Ag(x)u — Af(z).

6.y, =——+f(@)g("e).

The substitution z = z"e¥ leads to an equation with separation of variables: z, =

F@)z(z).
T Y= ——y+ 3 f@)g(ey™).

The substitution z = e**y™ leads to an equation with separation of variables:

2l = mexp [%(1 — k)z} f(x)z%g(z)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

y, = f(z)e* + g(z) + h(z)e V.
The substitution u = e*¥ leads to the Riccati equation: u/, = \f(z)u?+Ag(z)u-+Mh(z).

Y, = e**=PY f(ae® + bePV).
The substitution w = ae®® + be”? leads to an equation with separated variables:

wl, = e“lac + bBf(w)].

vy, = f(y + ae*® + b) — are?™.
The substitution w = y + ae*® + b leads to an equation of the form 1.1.2: w’, = f(w).

n | f(@"e™)
Yy =———+ :
ax Ty

The substitution ¢ = z"e*? leads to a linear equation with respect to y = y(¢):
a’tf(tyy; = —ny + af(t).

,__n o fane)

Y, = — 5

ar Ty

The substitution ¢ = 2™ leads to the Riccati equation: o?tf(t)y; = —ny? + af(t).

[f(ax 4 by) + be*Yg(ax + by)]y., = h(ax + by) — ae*Yg(ax + by).

The transformation t = ax+ by, z = e~ ¥ leads to a linear equation: [af(t)+bh(t)]z; =
—ah(t)z + aag(t).

[ (az + by) + be**g(az + by)ly,, = h(az + by) — ac*g(ax + by).

The transformation t = ax+by, z = e~ ** leads to a linear equation: [af(t)+Dbh(t)]z; =
—af(t)z — abg(t).

[e*®f(y) + aBly;, + e’¥g(z) + aa = 0.

Solution:

/eiﬁyf(y) dy + /efamg(x) dx — ae~** =PV = O,

z[f(xz"e) + ayg(z"e™)ly, = h(z"e¥) — nyg(z™e™?).

The substitution ¢t =2"e*¥ leads to a linear equation with respect to y =y(t): ¢t[nf(t)+
ah(t)]y; = —ng(t)y + h(t).

[f (e>®y™) + maxg(e*®y™)]y, = y[h(e*"y™) — axg(e*Ty™)].
The substitution ¢ = e**y™ leads to a linear equation with respect to x = z(¢):
tlaf(t) + mh(t)]z, = mg(t)x + f(t).

¥, = f(x) sinh(Ay) + g() cosh(Ay) + h().

The substitution u = e*¥ leads to the Riccati equation: 2u, = A(f + g)u® + 2 hu +
Ag = f)-
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19.

20.

21.

22,

23.

y!, = f(x)sinh®(A\y) + g(z) cosh®(Ay) + h(z) sinh(2)y) + s(z).

The substitution w = tanh(Ay) leads to the Riccati equation: w!, = A(f + s)w? +
2Xhw + A(g — 9).

y., = ycothz f(y™ sinhx).

The transformation ¢t = sinhz, z = y™ leads to an equation of the form 1.7.1.3:
tz; = mzf(tz).

y, = = ! tanhy f(z™ sinhy).

The transformation ¢ = z™, z = sinhy leads to an equation of the form 1.7.1.3:
ntz, = zf(tz).

Yy, = ytanhx f(y™ coshz).

The substitution ¢ = coshx leads to an equation of the form 1.7.1.3: ty, = yf(ty™).

/

y,, = = ! cothy f(z™ coshy).

The substitution z = coshy leads to an equation of the form 1.7.1.3: zz), = zf(z"z2).

1.7.3. Equations Containing Logarithmic Functions

y, = f(@)yIn®y + g(z)yIny + h(z)y.
The substitution u = Iny leads to the Riccati equation: u/, = f(x)u? + g(z)u + h(x).
y, =z Yyt f(y™ Inz).

The substitution ¢ = In x leads to an equation of the form 1.7.1.3: y, = %[tymf(tym)].
Y, = x " lyf(z™ Iny).

The substitution z = Iny leads to an equation of the form 1.7.1.3: 2, = ———
x  a"z

y, =z 'eVf(eYInx).
1
The substitution ¢ = Inz leads to an equation of the form 1.7.2.4: y; = 7[teyf(tey)}.

Yy, =ye " f(e®Iny).
flerz)

e’z

The substitution z = Iny leads to an equation of the form 1.7.2.3: 2/, = z

y, = —nz 'ylny + yf(x)g(z" Iny).

The substitution w(z) = z™Iny leads to an equation with separation of variables:
w;, = " f(x)g(w).

© 1995 by CRC Press, Inc.



ny yf(="y™)

7. = —
Yo m T zlny
The transformation ¢t = z"y™, 2z = Iny leads to a linear equation: m2tf(t)z, =
—nz +mf(t).
ny yf(z"y™
PR i)
m x z(Iny)

The transformation ¢ = z"y™, z = Iny leads to the Riccati equation: m?tf(t)z; =
—nz?2 +mf(t).

9. z[f(z"y™) +minyg(z"y™)]y, = y[h(z"y™) — nlnyg(z"y™)].
The transformation ¢t = z™y™, z =Iny leads to a linear equation: t[nf(¢t)+mh(t)]|z, =
—ng(t)z + h(t).

10. z[f(z"y™) + mInzg(z"y™)]y;, = ylh(z"y™) — nlnz g(z"y™)].
The transformation ¢t = z"y™, z =Inz leads to a linear equation: t[nf(t) +mh(t)]z; =
myg(t)z + f(t).

1.7.4. Equations Containing Trigonometric Functions

1. vy, =y™TlsinzF(y™ cosz).

This is an equation of the form 1.7.4.3 with f(§) = £F(&).

2. y, =ymTlcoszF(y™"sinz).

This is an equation of the form 1.7.4.4 with f(§) = £F(£).

3. y. =ytanzf(y™ cosx).

The substitution ¢ = cos z leads to an equation of the form 1.7.1.3: y; = —%f(tym).

4. y! =ycotxf(y™sinx).

The substitution ¢ = sin z leads to an equation of the form 1.7.1.3: y, = ﬂf(tym).

t

5. y, ==z 'tanyf(z"siny).
The transformation ¢t = 2", z = siny leads to an equation of the form 1.7.1.3: ntz; =
zf(tz).

6. y., ==z 'cotyf(xz™cosy).
The transformation ¢t = 2", z = cos y leads to an equation of the form 1.7.1.3: ntz; =
—zf(tz).

7. y. =z lsin2yf(z"tany).
The transformation ¢t = 2™, z = tany leads to an equation of the form 1.7.1.3: ntz; =

2z f(tz).
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

y, = x~'sin2yf(z™ cot y).
The transformation ¢ = 2™, z = cot y leads to an equation of the form 1.7.1.3: ntz; =

—2zf(tz).

Y, = Y

- f(y™ tanx).
sin 2x

The substitution ¢ = tanz leads to an equation of the form 1.7.1.3: 2ty; = yf(ty™).

’ Y m
= cotx).
Ya sin 2z Fly )

The substitution ¢ = cot = leads to an equation of the form 1.7.1.3: 2ty; = —yf(ty™).

Yy, = f(=) cos(ay) + g(=) sin(ay) + h(z).
The substitution u = tan(ay/2) leads to the Riccati equation: 2u/, = a(h — f)u? +
2ag9u + a(f + h).

yl, = () cos?(ay) + g(x) sin®(ay) + h(z) sin(2ay) + s(z).
The substitution u = tan(ay) leads to the Riccati equation: u), = a(g+ s)u®+ 2ahu +
a(f +s).

y, = f(y + atanz) — atan®z.
The substitution © =y + a tan z leads to an equation of the form 1.1.2: u), = a+ f(u).

sin 2
= — Y f(tanx tany).
sin 2z

The transformation ¢ = tanz, z = tany leads to an equation of the form 1.7.1.3:
tzy = zf(tz).

’
T

Yy, = cotxtanyf(sinzsiny).

The transformation ¢t = sinx, z = siny leads to an equation of the form 1.7.1.3:
tzy = zf(tz).

/

x
Yy, = —cotxtany 4 Mg(sin:csiny).
cosy

The substitution w(z) = sinxsiny leads to an equation with separated variables:
wl, =sinz f(z)g(w).

sin 2y

Y, = + cos® yf(z)g(tan z tany).

sin 2x
The substitution w(xz) = tanztany leads to an equation with separated variables:
wl, = tanz f(x)g(w).

y, = —nx~!sin 2y + cos® y f(z)g(z*" tany).

The substitution w(x) = z?"tany leads to an equation with separated variables:
wy, = 2" f(w)g(w).

(1 + tan? y)y, = f(z) tan™ ! y + g(z) tany + h(z) tan' "™ y.

The substitution u = tan™

mh(x).

y leads to the Riccati equation: u), = mf(z)u® +mg(z)u+
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1.7.5. Equations Containing Combinations of Exponential, Logarithmic,

10.

11.

12.

and Trigonometric Functions

Y, = —sin2y + cos? yf(x)g(e** tany).

The substitution w(z) = €2*tany leads to the equation with separated variables:
wy, = ** f(2)g(w).

/

F(e” cosy)
Y= ——

e*siny

This is an equation of the tipe 1.7.5.5 with f(§) = F(§)/¢.

Yy, = eY cosx F(e¥sinx).

This is an equation of the tipe 1.7.5.7 with f(§) = £F(€)

Yy, = tany f(e”siny).

The substitution z = siny leads to an equation of the form 1.7.2.3: 2/, = zf(e®z).

Yy, = coty f(e” cosy).

The substitution z = cosy leads to an equation of the form 1.7.2.3: 2., = —zf(e*2).

Yy, = tanz f(eY cosx).

The substitution ¢t = cosx leads to an equation of the form 1.7.2.4: ty; = — f(te?).

Yy, = cotx f(eYsinzx).

The substitution ¢ = sin leads to an equation of the form 1.7.2.4: ty; = f(te¥).

y,, = sin 2y f(e® tany).

The substitution z = tan z leads to an equation of the form 1.7.2.3: 2z = 2zf(e*2).

y., = sin 2y f(e® cot y).

The substitution z = cot x leads to an equation of the form 1.7.2.3: 2z, = —2zf(e%z2).

/

T

F(e”siny)
e cosy .

This is an equation of the form 1.7.5.4 with f(§) = F(&£)/¢.

Yy, = eYsinz F(eY cos x).

This is an equation of the from 1.7.5.6 with f(§) = £F(€).

_ f(eYtanz)
- sin2z
The substitution ¢ = tanz leads to an equation of the form 1.7.2.4: 2ty; = f(te¥).

/
xr
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13.

14.

15.

f(e¥cotx)

sin 2x

[

T

The substitution ¢ = cot = leads to an equation of the form 1.7.2.4: 2ty; = —f(te?).

Y, = e f(Az + Iny).
The substitution u = Az+1n y leads to an equation of the form 1.1.2: u}, =e™" f(u)+A.

y, = N fOy + Ina).

The substitution © = Ay + In z leads to the equation with separated variables: zu!, =
et f(u) + 1.

1.8. Equations of the Form F(x,y,y.) = 0 Not Solved for

the Derivative and Containing Arbitrary Functions

1.8.1. Some Equations

1.

z = f(yl).

The solution is written in the parametric form:
z = f(t), y:/tfg(t)dt+c.

y = f(y,).

The solution is written in the parametric form:

o= [0 e y=i0).

n, m Ty,
z"y =f< >
Y

This is an equation of the form 1.7.2.3. Change to a new variable w(z) = zy/, /y; divide

both sides of the equation by z"y™ and differentiate with respect to x. As a result

we arrive at an equation with separation of variables: zf! (w)w! = (mw + n) f(w).
The solution is written in the parametric form:

_ fip(w) dw 2™ — Fw
ln\:v|f/ (v ) @) +C, y" = f(w).

—n/m

In addition, there are solutions y = Aix , where Ay are roots of the equation

A7 — f(=n/m) = 0.

ane = f(wyl).

The substitution y = Inu leads to an equation of the form 1.8.1.3: z"u® = f(zul, /u).

Y™ = f(y,/v)-
The substitution = Int leads to an equation of the form 1.8.1.3: t*y™ = f(ty;/y).
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10.

11.

12.

13.

y = zy), + f(yl,).
The Clerot equation.

Solution: y = Cz+ f(C).

In addition, there is a particular solution which may be written in the parametric
form as

z=—filt), y=—tfi@)+f1).

y =xf(y,) + 9(vz)-
The Lagrange—d’Alembert equation.

With f(t) = t, see equation 1.8.1.6. Having differentiated with respect to x, we
arrive at a linear equation with respect to x = x(t), where ¢t = y/:

[t = f(®)]z; = fi()z + gi(t).

y=z"f(y,) + zy,.
Differentiating with respect to x and denoting ¢ = y/,, we obtain the Bernoulli equation

for z = x(t):

B TR IO

/ 1 ft/(t) 1 2—n =0

y = f(e(y,)?) + 2xy,,.
Solution: [y — f(C)]? = 4Cxz.

y = flz(y,)") + ni Y

nC n—1
x n
n—1

Solution: y = f(C™) +

(wyl, —y)"f(yL) + y9(y,,) + zh(y,) = 0.

With the aid the Legendre transformation = = u}, y = tu} —u (y,, = t), we obtain the
Bernoulli equation:

[tg(t) + h(t)]uy = g(t)u + f(t)u".

(¥,)" + [f(2) + g(2)]y,, + f(2)g(z) = 0.
The equation can be factorized: [y, + f(x)][y, +g(x)] =0, i.e., it falls into two simpler
equations y!. + f(z) = 0 and y, + g(x) = 0. Therefore, the solutions are

y—I—/f(x)dx:C and y+/g(m)dx:C.

W)+ 2fyy, + 9y® = (g — f?) exp(—2/ fdw>, f=7f(x), g=g(x).
Solution:

exp(—/xqu:)sin(/x\/g—fzdx-i-C) if g > f2,

y= Cexp(—/wfdx) if g = £2,

exp(/ifd:v> cosh</$ \/ngd:E+C’) if g < f2.
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14.

15.

16.

17.

18.

f(y,) +ax+by+s=0.

Solution in the parametric form:
fi(t) dt
a+ bt

In addition, there is a particular solution y = ax + 3, where a and 3 are determined
by solving the system of two algebraic equations a + bav = 0 and f(«) + b8+ s = 0.

z=C

, by = —ax — s — f(t).

Fyy, + ) = y?[(y,)* +1].
Setting u(z) = yy., + x and differentiating with respect to z, we obtain
W[ (w) — 20+ 20] = 0. 1)

Equating the first factor to zero, after integrating we find y?> = —(x — C)? + B.
Substituting the latter into the original equation, we have B = f(C'). As a result we
obtain the solution: y? = f(C) — (z — C)%.

There is also an exceptional solution that corresponds to equating the second
factor of (1) to zero. The solution in the parametric form is written as

r=u—+fiw), o= flu) - L)

2
y=a(y,)” + f(z — 2ay,).
This is a special case of equation 1.8.1.18 with n = 2.
Solution:

y=F(O) + 5z~ O).

In addition, there is the following solution written in the parametric form:

z=t+2f/t), y=FO+a[fi®)]"

y = 2a(y,)" + f(z — 3a(yl)?).
This is a special case of equation 1.8.1.18 with n = 3.
Solution:

y = f(C) +2a($7 ¢ )3/2.

In addition, there is the following solution written in the parametric form:

v=t+3alf0]",  y=f0)+2[f0)]"

y=a(n—1)(y,)" + f(z — an(y,)" ).
Differentiating with respect to x, we obtain a factorized equation:
n—2
[1—an(n—1)(y)" Yo [y — fi(H)] =0, (1)

where t =z — an(y;)nfl. Equate the first factor to zero and integrate the obtained
equation. Substituting the expression obtained into the original equation, we find the
solution:

O\ 2
= C+an—1( )n_l.
y=f(C)+aln-1(——
Equating the second factor in (1) to zero, we have another solution which can be
written in the parametric form as

n—1

z=t+an[f(t)]",  y=ft)+aln-1)[f®)]".
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19.

20.

F@2+y)/ (W) +1==y, —v.

Setting « = r(t) cost, y = r(t) sint and integrating, we obtain the solution:

‘o f(r?)dr

+C.
o 1o}
(fot fu¥p F—2(fa+ fuyz)) =0, f=f(zy), fo= % Tu = a—i

Differentiating with respect to x, we obtain
(fz + fyy;)ic(q)u —z®,) =0,

0 oP
where &, = — and ®, = —— are partial derivatives of function ®(u,v). Equating
v

u
the first factor to zero, we find the solution:
flz,y) =Cx+ A, where &(C,A) =0.

It remains to be checked whether the equation ®, — x®, = 0 possesses any solutions
and which of them satisfy the original equation.

1.8.2. Some Transformations

x = f(y,y.,).

Substituting ¢ = y,. and differentiating both sides of the equation with respect to z,
we obtain an equation with respect to y = y(t):

0
[1 - tfy(ya t)]y;, = tft(yv t)7 where ft = a—{a fy = X5 -

If y = y(t) is the solution of the latter equation, the solution of the original equation
may be presented in the parametric form as

T = f(y(t)7 t)’ Yy = y(t)

y = f(z,yp).
Differentiating with respect to x and setting ¢ =y, we obtain an equation with respect

to x = x(t):

[t — folz, O)]z; = fi(z, 1), where f, = %, fy = %

If x = x(t) is the solution of the latter equation, the solution of the original equation
may be presented in the parametric form as
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n, m S wy;}
3. z"y :f(:l:ky , 7)

Y,

Set z=x"y* and w= . Divide both sides of the equation by 2™y"" and differentiate

Yy
with respect to z. As a result we arrive at the following equation with respect to
w = w(z):

25w+ R)(fo + fuwl) = (mw+n)f,  where f= f(z, w),
which is usually is simpler than the the original equation, since it is readily solved for

the derivative. If w = w(z) is the solution of the equation obtained, the solution of
the original equation is written in the parametric form as

iyt =2, 2"y = f(z, w(2)).

4. z"e™ = f(x™ePY, xy.).

The substitution y = Inu leads to an equation of the form 1.8.2.3:

!
TU

z"u® = f(xmuﬁ, z )
U

5. ey = f(ePry™, y./y).
The substitution z = Int leads to an equation of the form 1.8.2.3:

ty,
= (0 S

6. f(ma my; - Y, ylm) =0.

The Legandre transformation z = v}, y = tu; — u (y, = ¢), where u = u(t), leads to
the equation f(u;, u, t) =0. The inverse transformation: ¢t =y, u=zy, —y, u} = x.

7. ()% =Xy + f(x).

With A # 0, the substitution Aw = 2/A\y + f(x) leads to the Abel equation of the
second kind:
ww!, = w + p(x), where ¢ = 2\72f! (),

which is outlined in Subsection 1.3.1 for specific functions .

8. y=ugay,+az?®+ f(y), a # 0.

Differentiating the equation with respect to « and changing to new variables ¢ = v/,
and w = —2ax, we arrive at the Abel equation of the second kind:

wwy, = w + p(t), where ¢ = —2af(t),

which is outlined in Subsection 1.3.1 for specific functions ¢.
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