

chapter 5

System Development
Framework — Technical

It is not the critic who counts, not the man who points out how the strong man
stumbled, or where the doer of deeds could have done them better. The credit belongs
to the man who is actually in the arena; whose face is marred by dust and sweat

and blood; who strives valiantly; who errs and comes short again and again;
who knows the great enthusiasms, the great devotions, and spends himself in a

worthy cause; who, at the best, knows in the end the triumph of high achievement;
and who, at worst, if he fails, at least fails while daring greatly, so that his place shall

never be with those cold and timid souls who know neither victory nor defeat.
—Theodore Roosevelt

In this chapter, a detailed decomposition of the System Development
Framework (SDF) building block is developed, which was discussed in
the preceding chapters. An example, loosely drawn from a conceptual
spacecraft study done in the early 1990s, is included in order to clarify
the application of the SDF. The primary focus of the example is functional
analysis and decomposition. The spacecraft mission from which this exam-
ple was drawn was the operation of an astronomical telescope in a low
earth orbit. The example is simplified in order to keep attention focused
on explaining the application of the SDF to a real development activity.
In order to maintain clarity of the SDF discussion, the example will be
applied at the end of each section. This spacecraft system will be referred
to as Example Sat or ESAT for short. The task for the ESAT program is to
develop the spacecraft bus — that portion of the satellite that supports
the telescope in space.

As discussed in Chapter 1, the term “system” has been defined as “any
entity within prescribed boundaries that performs work on an input in order
to generate an output.” Using this definition, it is asserted that at any level
of the development hierarchy there exist one or more “systems.” At the level
below the top level, or system level, these are commonly called subsystems.
©2000 CRC Press LLC

Each of these subsystem development activities is perpetuated as its own
“system,” applying the structured approach herein described as the SDF.
Therefore, it is further asserted that while the specific inputs and outputs
may change with hierarchical levels, the general activities delineated in this
chapter do not change at each level. Thus this process is applicable to all
levels of the hierarchy. In the discussion below, it is assumed that each of
the activities described is applied to each development activity at each
respective hierarchical level.

In order to keep the following discussion in the context of the total SDF,
Figures 2.2 and 3.2 from the preceding chapters will be used in various
sections to highlight the activity under discussion.

I. Develop Requirements —
Determine “What” the System Must Do

Figure 5.1 highlights the “Develop Requirements” activity at each level in
the system hierarchy. This serves to illustrate that the same basic process is
applied to each system element at each hierarchical level.

The Requirements Development set of activities addresses the question,
“What must the system do?” These activities include:

Figure 5.1 “Develop Requirements” in the System Hierarchy.
©2000 CRC Press LLC

• Collect and analyze imposed requirements
• Derive requirements through context analysis, functional analysis,

design, allocation, and decomposition
• Manage requirements derived during the development process
• Communicate requirements and requirements changes
• Determine and track how and where in the system build-up the

requirements will be verified
• Achieve customer consensus regarding interpretation of the

customer-imposed requirements
• Maintain traceability of requirements

It is important to maintain traceability of requirements throughout the
development for several reasons:

• Cost Minimization — Avoid over-design; that is, adding cost by in-
cluding functionality that is not necessary; or under-design, i.e., not
providing functionality that is required by the customer

• Cycle Time Reduction — Facilitates a coordinated effort that “does it
right the first time”

• Change Impact Analyses — Provides a logical and systematic ap-
proach to assessing the impacts of changes to the design

• Customer Requirement — Many customers require demonstrated
traceability

• Consistency, Clarity, and Completeness Ensured — Early detection
and correction of requirements issues

Figure 5.2 illustrates the decomposition of the Requirements Develop-
ment (RD) activity, derived in Chapter 2, Figure 2.2. The RD activity is
organized as a rework cycle as discussed in Chapter 4. It comprises two
work generation activities: “Derive Context Requirements” and “Generate
Functional Description,” as well as two rework discovery activities:
“Analyze Requirements” and “Analyze Functional Description.”

As the RD activity progresses, it is continually or periodically assessed for
convergence. Convergence occurs when the design team is able to reach a
reasonable solution with the input data. There are several indicators that can
be employed to assess if convergence is occurring: monitoring key Technical
Performance Measures (e.g., technical budgets, remaining margin on key
parameters), program risk assessments, various technical analyses, estimates
to complete, and periodic design reviews and audits. If convergence is not
occurring at an acceptable rate, changes may be required to enhance the quality
of the work performed, and/or to accelerate the rework discovery activities.

RD rework discovered elsewhere in the process may feed back to the
RD activity as “work to do” or as issues to be addressed with the customer
who generated the input requirements. This is indicated by the “discovered
©2000 CRC Press LLC

rework” box. Rework discovered in other areas may be the result of difficulty
implementing the requirements as defined in the functional description. This
may force work previously defined as complete to be redone. This is indi-
cated by the “forced rework” box.

A. Inputs

Requirements originate from many sources in varying forms, both explicit
and implicit. These include technical, cost, and schedule concerns. All
requirements must be considered to maximize success. The following is
a nonexhaustive list of potential requirement sources that ought to be
considered.

• Immediate customer
• The division
• Business development
• Subcontractors
• Procuring organization
• The corporation

Figure 5.2 The “Develop Requirements” Activity Decomposed.
©2000 CRC Press LLC

• Heritage designs
• New technology
• User community
• The department
• Competitors

Some of the properties that compose a good requirement include:

• Clarity — unambiguous
• Consistency — no mutually exclusive or conflicting requirements
• Completeness — provides all necessary information
• Verifiability/Quantifiability — compliance demonstrable
• Traceability — necessity demonstrable
• Functionally oriented — maximizes design creativity/flexibility

The requirements management discipline has a nomenclature of its own.
Some of the key terms are:

• Parent — A requirement from which other requirements have been
derived

• Child — A requirement derived from a parent
• Orphan — A non-top-level requirement having no identified parent

(otherwise described as a problem child)

Each of these are illustrated in Figure 5.3.

Figure 5.3 Requirements Relationships.
©2000 CRC Press LLC

Other important terms in a requirements document include: shall, will,
and may or should. In most contexts, employment of the term “shall” indi-
cates that there is no flexibility in terms of the design providing that
particular function and that function performing according to the specified
level. Where there is some flexibility regarding the customer’s expectations,
other words are generally used such as “will,” “may,” or “should.” Therefore,
it is important for all the stakeholders to define these terms up front and to
use them consistently so that any trade-offs can be performed according to
the right priorities.

As discussed above, requirements originate from many different sources.
Table 5.1 provides an abbreviated listing of some of the initial requirements
defined by the customer at the beginning stages of the ESAT conceptual
study. Some of these were recorded in presentation packages provided by
the customer, others were mentioned in telephone or other informal conver-
sations.41 This is not unusual and it is important, even at this early stage in
the program, to maintain traceability. Therefore, as shown below, the source
of the requirement is recorded with each requirement.

B. Work Generation Activities
Figure 5.4 highlights the Work Generation activities that are performed
within the Develop Requirements activity.

1. Derive Context Requirements
The focus of this activity is to determine context in which the system must
function over its complete life cycle. This is accomplished by:
41 Most of these requirements are taken from the study; some are fabricated to facilitate the
usefulness of this example.

Figure 5.4 “Develop Requirements” Work Generation Activities.
©2000 CRC Press LLC

Table 5.1 ESAT Customer-Imposed Requirements Set

No. Title Text Source

1.0 General Program
1.1 Launch Date The spacecraft shall support a

launch date of October 1998
Presentation

Package
1.2 Operational Orbit The operational orbit shall be

800 Km altitude, 28 degrees
inclination

Presentation
Package

1.3 Mission Life The spacecraft bus shall
provide full functionality for a
minimum of 2 full years’
operation on orbit after
initialization

Presentation
Package

2.0 Space Segment
2.1 Payload Instrument

2.1.1 Fine Star Sensor (FSS)
Accuracy

The instrument shall provide
FSS data to the spacecraft bus
with an accuracy of 1/2 Hz.
0.33 arcsec (1 sigma) and a 20
arcmin field of view

Presentation
Package

2.1.2 Instrument Mass The instrument mass shall not
exceed 1500 pounds mass

Presentation
Package

2.2 Spacecraft Bus
2.2.1 Instrument Data Interface The spacecraft bus shall

provide a 4 to 300 kbps data
interface

Presentation
Package

2.2.2 Slew Rate The spacecraft shall be able to
slew 90 degrees within
45 minutes of initialization

Presentation
Package

2.2.3 Contamination The cleanliness level 500A shall
be maintained during
integration and test of the
system

Presentation
Package

2.2.4 Command and
Telemetry Interface

The spacecraft shall provide
MIL-STD-1553 and MIL-STD-
1773 command and telemetry
data bus interfaces

Presentation
Package

2.2.5 On-Board Data Storage A minimum of 100 megabytes
of data storage shall be
provided by the spacecraft

Telecon w/
Program
Manager

2.2.6 Mechanical Interface The spacecraft mechanical
interface shall be a 4 point
attachment on a 48 inch bolt
circle

Presentation
Package

2.2.7 Electrical Power The spacecraft bus shall be
capable of providing up to
300 watts of power at 28 +/- 7 v
End Of Life

Telecon w/
Program
Manager
©2000 CRC Press LLC

• Identifying all mission phases, modes, and states
• Identifying and characterizing all external interfaces, by mission

phase
• Defining the environments to which the system will be subjected, by

mission phase
• Identifying critical issues by mission phase (events, technologies, etc.)
• Developing the concept of operations

Output

• Specification(s)
• Operations Concept
• Context Diagram(s)
• Entity Relation Diagram(s)
• Event List(s)
• External ICDs

Figure 5.5 illustrates some of the key parameters that define the context
within which the system must function over its life cycle. The various phases
of the program are identified as columns ranging from “womb-to-tomb.”
Key parameters are identified as rows in the matrix. This provides an orga-
nized framework to begin deriving context requirements.

2.2.8 Attitude Control The spacecraft shall point the
telescope to an accuracy of
±0.01o on all three axes

Presentation
Package

3.0 Launch Segment
3.1 Spacecraft Bus Volume The spacecraft bus volume

shall not exceed 108 inches in
diameter and 36 inches height
above the separation plane

Presentation
Package

3.2 Total Deliverable Mass The maximum deliverable
mass to the operational orbit
shall be 3000 pounds

Presentation
Package

3.3 Fairing Volume The maximum fairing volume
shall be 108 inch diameter,
TBD inches height

Presentation
Package

3.4 Minimum First Mode The minimum first mode shall
be 12 Hz

Presentation
Package

4.0 Ground Segment
4.1 Antenna Configuration The ground system antenna

shall be a dichroic design,
5 meters in diameter

Telecon w/
Program
Manager

Table 5.1 (continued) ESAT Customer-Imposed Requirements Set

No. Title Text Source
©2000 CRC Press LLC

Key Point

It is necessary to consider all phases of the program
early in the development process because each phase
may impose unique requirements to the system. During
manufacturing, assembly, and test activities or integra-
tion and test activities, for example, special interfaces
may be required. This analysis should also expose in-
compatibilities among certain interfaces. The earlier in
the design process that these things can be addressed,
the higher the probability the system will be successful.

2. Generate Functional Description
As requirements are developed, the Functional Analysis activity seeks to
arrange the functions into a coherent system. This can be done in several
ways, one of which is computer simulation. A key goal is to ensure that there
are no mutually exclusive or conflicting requirements.

This activity generates the specification of the system. A key concern here
is proper protocols, and timing of input and output data. Outputs include:

• Identification of all functional requirements flowing out of imposed
and derived requirements

• Development of the specification(s)
• Determination of performance requirements of each function and the

relationships (interfaces, interdependencies, etc.) between functions

Figure 5.5 ESAT Mission/Context Definition
©2000 CRC Press LLC

Key Point

The way in which the customer defined his system-
level requirements reveals his selection of a particular
implementation of the system. He has determined that
the telescope requires a dedicated spacecraft bus to
support it; that a particular launch vehicle will be re-
quired; and that a particular ground station configu-
ration will be used.

Figure 5.6 illustrates the mapping of the customer-defined system-level
implementation of the program. Each major segment identified in the
requirements corresponds to a function that must be performed by the
system.

Figure 5.6 illustrates the primary functions that must be performed from
a top-level system perspective during the launch and orbit acquisition phase
of the mission. Notice that each function description begins with a verb. This
is important because it emphasizes the essence of a function — it is something
the system must do.

Key Point

A functional description is not primarily concerned
with defining “how” the system ought to be de-
signed. Its purpose is to describe “what” the system
must do. Such definition facilitates new ways of im-
plementing systems — thinking “out of the box,”
which nourishes an environment conducive to
design breakthroughs.

Figure 5.6 Mapping Selected Implementation to Functions.
©2000 CRC Press LLC

As the system is developed, the N2 Diagram format will be loosely
followed.42 Figure 5.7 provides an illustration of the N2 format, which is a
convenient way of developing interfaces between system elements, whether
functions or implementation. System elements are placed along the diagonal,
inputs and outputs are indicated on the outer-sides of the chart, and inter-
faces are defined as shown.

During the Orbit Acquisition Phase, the ESAT system comprises three
major segments: ground, space, and launch. Figure 5.8 illustrates the deri-
vation of three major system functions from these major pieces of the system:
Perform Satellite Operations, Perform Launcher Operations, and Perform
Ground Operations. In keeping with the N2 format, the functions are
arranged diagonally with interfaces, inputs, and outputs described as shown.

Figure 5.9 illustrates the importance of defining system functions for
each distinct phase. While both Figure 5.8 and Figure 5.9 describe the ESAT
program at the same system level, they are quite different. Figure 5.9 does
not have the same functions or interfaces as those shown in Figure 5.8.
During the Launch Phase, the Launch Operations function is a major func-
tion with critical interfaces identified. Obviously, after the spacecraft achieves
its operational orbit, the Launch Operations function is no longer required.

Figure 5.7 The N2 Diagram.

42 Cf. the Systems Engineering Management Guide, January 1990, Section 6.3.2 for a discussion of
the N2 Diagram. As noted in that reference, it was developed by TRW and is described in “The
N2 Chart,” R. Lano, Copyright 1977 TRW Inc.
©2000 CRC Press LLC

Figure 5.8 ESAT System-level Functional Block Diagram — Orbit Acquisition Phase.

Figure 5.9 Operations Phase.
©2000 CRC Press LLC

Key Point

This is a simple example, but the point is important —
the implementation required at each level of the hier-
archy may be very different for each phase of the life
of the system. Therefore, system functions must be
defined for each mission phase.

As discussed in the preceding chapters, requirements come first, then
functions are identified from those requirements, and finally implementa-
tions are developed that provide the necessary functionality at the required
performance level. By the way the customer defined the initial requirements
set, it is apparent that he or she has conceptualized a design in which a
spacecraft bus will support the telescope. It is this knowledge about how
the system is to be implemented that enables the decomposition of the
“Perform Satellite Operations” function into two sub-functions: “Perform
Payload Operations” and “Support Payload Operations.” The latter function,
of course, is implemented by the spacecraft bus, which is the focus of this
example development activity. This decomposition is depicted in Figure 5.10.

Notice that the inputs (operational orbit environment, and uplinked com-
mands and ephemeris data) and outputs (high rate data, low rate data, and
S/C telemetry) defined for the “Perform Satellite Operations” function in
Figure 5.9 are still present in its decomposition depicted in Figure 5.10. How-
ever, they are applied more specifically to the “Support Payload Operations”
function in the decomposition.

Figure 5.10 also shows the development of the interfaces between the
two functions identified in the decomposition. As defined in the requirements
in Table 5.1, the payload requires commands, electrical power, navigation
data, attitude data, a controlled physical environment, and a particular orbit

Figure 5.10 “Perform Satellite Operations” Function Decomposition.
©2000 CRC Press LLC

and attitude within that orbit. In addition, the telescope must provide data
to the spacecraft bus. Thus attitude data, high and low rate data, and telescope
telemetry must be provided to the spacecraft bus.

As the decomposition of the “Support Payload Operations” function
shown in Figure 5.11 indicates, the spacecraft bus must provide functions that
perform the tasks required by the requirements set. Applying the same N2

methodology again, each function is placed along the diagonal of the matrix.
The matrix guides the design team to determine which, if any, interfaces are
required between the various functions included in the decomposition.

Figure 5.12 illustrates the continuity between the various levels of
decomposition. Also indicated is the implementation assumed that enabled
each decomposition. The design assumption that enabled the decomposition
of the “Perform Mission Operations” function was the concept of a separate
spacecraft bus. This enabled a decomposition to two main functions at the
next level down: “Support Payload Operations” and “Perform Payload
Operations.” The “Support Payload Operations” function, which is the
spacecraft bus itself, was decomposed by assuming that the standard space-
craft bus subsystems would be implemented. These functions are identified
along the diagonal, according to the N2 format.

Operations Concept — The generation of the Operations Concept is
initiated during the development of the functional description of the system.
It typically describes how this system fits within the overall program in terms
of specific capabilities and functions provided. It discusses management of
the system during all operational modes for each mission phase and how
the data is handled and generated by the system. This would include pro-
cessing, storage, and distribution of the data. Other issues such as program
organization, specific types of personnel and job functions necessary, equip-
ment, and training are also addressed.

Figure 5.11 Support Payload Operations Decomposition.
©2000 CRC Press LLC

Output

Specification(s)
Functional models (block diagrams, flow diagrams, behavior diagrams,

simulations)

Figure 5.12 Decomposition Continuity.
©2000 CRC Press LLC

3. Digression: Why Functional Analysis?
Before proceeding to the discussion concerning Rework Discovery activities,
the question “Why spend precious program resources performing functional
analysis and functional decomposition?” is addressed.

Competitiveness — One important reason is competitiveness. A cus-
tomer is generally more concerned with obtaining the functionality and
performance levels desired than with the way in which that functionality is
implemented. This, of course, assumes all else being equal, such as reliability
issues. If a company is to remain competitive in an environment where
technology is rapidly changing, it must focus on the functionality it is pro-
viding to its customers and not become overly enamored with its particular
implementation or design. As an example, consider the slide rule. Since its
invention in the early 1600s, it remained an important tool in the hands of
scientists and engineers even well into the “space age.” Many a slide rule
was used in the design of the Space Shuttle. It was pervasive into the 1980s,
but by the 1990s slide rules were little more than collector’s items. What
happened? More to the point of this discussion, what happened to the
companies that manufactured them?

The slide rule was a calculator. Users purchased them for their func-
tionality — performing mathematical calculations. Users were not so much
concerned with the quality of the ivory and the fineness of the scales as
they were with being able to perform calculations quickly, easily, and
accurately. This was proven when the electronic calculator came on the
scene. Within about a decade slide rules were a thing of the past. How
many companies engaged in the manufacture of slide rules jumped into
the electronic calculator market? Could it be that if those companies had
understood their core competency as providing the functionality needed
to perform mathematical calculations, they would have vigorously pur-
sued technologies that better perform those functions? This is the danger
with thinking primarily in terms of a particular design or implementation.
An organization can become so consumed with its own method of provid-
ing a particular set of functions that it cannot leverage new technologies
that might better perform that functionality. This leaves such a company
vulnerable to competition that might be more agile. How much more is
this true in those markets where technology is changing and advancing at
unprecedented rates?

Specification Development — Specifications should focus on function-
ality and performance, not implementation. This gives the experts, those
engineers receiving and responding to the specification, the flexibility to
design an optimal solution. Presumably they understand the pertinent
technologies and are therefore in the best position to develop an optimal
design.

Exploitation of New Tools — Also, there are an increasing number of
tools available to the designer to simulate functionality and performance.
Among other things, this provides a means for validating a specification —
©2000 CRC Press LLC

ensuring that it is self-consistent and complete before committing design
resources to what could be faulty input data.

Focus Research and Development (R&D) Efforts — Finally, if function-
ality and performance can be identified for future systems, research and
development (R&D) efforts can be directed toward developing designs that
provide them. In this way, direction can be given to R&D efforts in terms of
identifying where resources should be directed in the development of new
core competencies with the highest leverage for the organization.

C. Rework Discovery Activities

Figure 5.13 highlights the Rework Discovery activities that are performed
within the Develop Requirements activity.

1. Analyze Requirements
This activity determines the validity of both the imposed and derived
requirements. The goal is to ensure that the requirements are complete, self-
consistent, unambiguous, and verifiable or measurable. In addition, it must
be determined how the requirements will be verified and at what level
verification will take place in the system build-up.

The task of analyzing the requirements set for problems is obviously a
Rework Discovery activity. In terms of the logic of the overall SDF, Rework
Discovery activities follow Work Generation activities — data must be gen-
erated before it can be analyzed for potential rework. Nevertheless, this task
should be performed whenever new or changed requirements are input to

Figure 5.13 “Develop Requirements” Rework Discovery Activities.
©2000 CRC Press LLC

the development activity. This is illustrated in Figure 5.13 by the arrow from
the “identified work to do” bucket, indicating work is flowing not only to
the Work Generation activities, but also directly to the Requirements Anal-
ysis activity. Because the sooner rework is discovered the less its potential
impact to the program, input requirements are analyzed as soon as they are
introduced.

Output

• Identification of all “To Be Determined” (TBD) holes in the require-
ments, with a closure plan

• Identification of conflicting or inconsistent requirements, with a clo-
sure plan

• Interpretation of vague or ambiguous requirements in order to review
them with the customer and gain consensus

• Determination of the verification method (test, analysis, demonstra-
tion, simulation, inspection) that will be used for each requirement

• Determination of where in the system build-up each requirement will
be verified

• Implementation of Configuration Management activities

2. Analyze Functional Description
The main task is to develop and validate the functional description of the
system before resources are spent developing the design. This may involve
simulation of the identified functions with their respective interfaces in order
to verity that the specification is valid in terms of self-consistency. The main
activities here include:

• Determination if the specifications are complete and self-consistent
• Identification of all functional requirements flowing out of imposed

and derived requirements
• Determination of performance requirements of each function and the

relationships (interfaces, interdependencies, etc.) between functions

Output

Validated specification(s)
Functional models (block diagrams, flow diagrams, behavior diagrams,

simulations)

Key Point

It should be noted here specifically that functional de-
composition does not occur in the Requirements De-
velopment activity. A function cannot be decomposed
©2000 CRC Press LLC

without some knowledge and/or assumption regard-
ing how it might be implemented.43

In the preceding discussion, several decompositions were developed.
The first showed the entire ESAT system which included the space segment,
ground segment, and launch segment, then the system was decomposed
down to the spacecraft bus level. During the process, each assumed imple-
mentation that facilitated each decomposition was pointed out. In this way,
the principle that functional decomposition cannot be performed apart
from some knowledge or assumption about the implementation was rein-
forced. This discussion was presented in the context of the Requirements
Development activity in order to show how the customer-imposed require-
ments for the spacecraft bus were derived by the customer before the
Spacecraft Bus Development activity was initiated. This in no way implies
that functional decomposition is performed in the Requirements Develop-
ment activity. Rather, this discussion sought to emphasize the fact that
functional decomposition is performed under the assumption of a partic-
ular implementation — which is developed in the Synthesis activity. Func-
tional decomposition follows definition of the “how,” which is developed
in the Synthesis activity.

Other authors assert similar ideas. For example, Hatley and Pirbhai
conclude:

[H]igher levels of the system always provide the re-
quirements for the lower levels. For systems contain-
ing hardware and software, this means that we need
to know system-level requirements, decide on the sys-
tem-level architecture, and then decide on the alloca-
tion of system requirements to hardware and software
before we can establish the software requirements.44

In another portion of the book discussing similar issues, they note:

This leveled repetition of functional requirements def-
inition, followed by physical allocation, is fundamental
to the nature of large systems development.45

43 The author does not offer a formal proof of this sometimes debated point. However, to argue
from practical experience, this author is not aware of any credible example of a functional
decomposition, of either hardware or software, that has been performed without some reference
to a design or design concept.
44 Hatley, Derek J. and Imtiaz A. Pirbhai, Strategies For Real Time System Specification, New York:
Dorset House, 1988, p. 264.
45 Ibid., p. 7.
©2000 CRC Press LLC

Similarly, Professor Nam Suh states:

There are two very important facts about design and
the design process, which should be recognized by all
designers:

1. FRs [Functional Requirements] and DPs [Design Parameters, i.e.,
implementation] have hierarchies, and they can be decomposed.

2. FRs at the ith level cannot be decomposed into the next level
of the FR hierarchy without first going over to the physical
domain and developing a solution that satisfies the ith level FRs
with all the corresponding DPs. That is, we have to travel back
and forth between the functional domain and the physical
domain in developing the FR and DP hierarchies.46

Functions and their respective implementation are intimately inter-
twined and necessarily dependent. Therefore, it is not possible to specify
requirements that are independent from implementation in any absolute
sense.47 This has implications regarding the development of specifications
in a multileveled hierarchy.

Key Point

• First, a specification is directly coupled to the implemen-
tation at the level above. It is therefore not implemen-
tation independent and cannot be so. It is incorrect to
hold the notion that a specification can be written with
no reference to implementation.

• Second, the System Development process cannot replace,
nor is it intended to replace, technical expertise. In fact,
because of the necessary connection between require-
ments and implementation, the SDF cannot be effectively
applied without significant technical expertise.

• Third, a change in the functional description above will
likely necessitate a change in the dependent implemen-
tation adjacent to it. Likewise, a change in the implemen-
tation above will likely necessitate a change in the de-
pendent functional description of the system(s) below it
(cf. Figure 5.30).

Output → Functional Description

46 Suh, Nam P., The Principles of Design, New York: Oxford University Press, 1990, p. 36.
47 This is in contrast to those who emphasize the necessity of specifying requirements in such
a way that they are independent from implementation.
©2000 CRC Press LLC

Customer Consensus — Although customer consensus is critical
throughout the system development, because requirements drive the system
design, concurrence from the customer community is especially crucial and
is therefore specially noted here as an essential component to the Require-
ments Development activity.

II. Synthesis
The etymology of the word “synthesis” is συν + τιθεναι , “together with” +
“to place”. Synthesis means, therefore, “to place together with.”48 Synthesis
has to do with the integrating of the elements of the solution into a coherent
whole. Therefore, subsumed under this primary activity are all the
subactivities involved in designing, analyzing, and verifying the system
implementation. Figure 5.14 highlights the “Synthesize” activity in the con-
text of the system hierarchy.

Figure 5.15 illustrates the decomposition of the Synthesize activity
derived in Chapter 2. It comprises the Work Generation activity “Design,
Analyze, and Integrate,” and the Rework Discovery activity “Verify Design.”

Figure 5.14 The “Synthesize” Activity in the System Hierarchy.

48 Merriam-Webster’s Collegiate Dictionary, Tenth Edition, Springfield MA: Merriam-Webster, 1996,
p. 1197.
©2000 CRC Press LLC

As mentioned previously, the System Development activity considers not
only the development of the deliverable product itself, but also all the asso-
ciated hardware, software, procedures, processes, etc. needed to produce,
integrate, test, deploy, operate, support, and dispose of the system.

A. Work Generation Activities: Design and Integration

Determine “How” to Implement the “What” — Figure 5.16 highlights the
“Work Generation” activities performed within the Synthesize activity. The
activities identified are focused on generating the outputs needed at a partic-
ular point on the program timeline. As the program moves forward, the focus
shifts from parametric analyses aimed at defining the available design space
to detailed solutions in response to the increasingly detailed requirements.

1. Design
The Design activity is narrowly defined here as the set of activities that
defines the initial design space, develops concepts or solutions in response

Figure 5.15 The “Synthesize” Activity Decomposed.
©2000 CRC Press LLC

to the requirements, generates the design documentation, and performs
analyses needed in the development of the solution.

• Quantify Design Space (H/W and S/W)
• Parametric analyses
• New technologies and heritage designs are surveyed for applica-

bility
• Generate Preliminary and Detail Design

• Block diagrams, schematics, drawings, etc.
• Internal ICDs

• Risk Management → Identify and Assess Risk
• Technical performance, cost, schedule
• Preliminary mitigation approaches

• Configuration management of all design documentation

Output → H/W & S/W concept(s) and/or design(s), risk assessment

As indicated above, the first activity performed in the Design activity is
to quantify the design space: That is, to define the major system interfaces
and environments for each mission phase as well as to quantify critical
design parameters in order to understand the cause-and-effect relationships
between them. Figure 5.17 defines the top-level implementation of the ESAT
system for the Launch and Orbit Acquisition Phase. The three top-level

Figure 5.16 The “Synthesize” Work Generation Activities.
©2000 CRC Press LLC

elements of the system are now described as nouns to indicate implemen-
tation, instead of verbs which are used to signify functionality. Thus there
is direct traceability from the top-level functions to the top-level design or
implementation. The major system elements are the ESAT space system, the
ground system, and, during the Launch and Orbit Acquisition Phase, the
launch system. Also included in Figure 5.17 are the interfaces between the
system elements.

Figures 5.18 through 5.26 illustrate some of the various top-level archi-
tectures that have been implemented in the past and present, which could be
employed as potential solutions for the ESAT spacecraft bus concept. For the
ESAT example, the focus will be on the Attitude Determination and Control
Subsystem (ADACS) to illustrate functional decomposition to the subsystem
level. The attitude control requirements for a spacecraft play a significant role
in determining many aspects of the bus design. The figures depict five dif-
ferent spacecraft types — all driven primarily by ADACS requirements. Some
spacecraft missions require no attitude control. The Environmental Research
Satellite (ERS), illustrated in Figure 5.18, was just such a spacecraft.

Some missions require that only one axis of the spacecraft be pointed
toward the earth to a fairly loose tolerance. This can be accomplished by a
“gravity gradient” design. The GEOSAT spacecraft, shown in Figure 5.19,
took advantage of this concept. It was designed to measure sea surface
heights.

Figure 5.17 Interfaces — Launch and Orbit Acquisition Phase.
©2000 CRC Press LLC

Other missions require a single axis be pointed toward the earth, but
with a higher degree of accuracy. Spin-stabilization is often employed in
these situations. The DSP (Defense Support Program) spacecraft — a military
early warning system — is one example. Another example is the Television
Infrared Observation Satellite (TIROS) II,49 a meteorological satellite. These
are depicted in Figures 5.20 and 5.21 respectively.

For those missions where all three axes must be stabilized, there are two
primary designs: bias momentum and zero momentum. The bias momentum
design is often used in geo-synchronous missions. One example is NASA’s
Tracking and Data Relay Satellite System (TDRSS), shown in Figure 5.22.

Especially in low earth orbit remote sensing missions, where a high
degree of pointing accuracy is required, the zero-momentum design is often
implemented. The Compton Gamma Ray Observatory (CGRO) and the
Hubble Space Telescope (HST), shown in Figures 5.23 and 5.24, respectively,
are examples.

Figures 5.18 through 5.24 illustrate an important aspect of system design:
a thorough examination of existing designs to see if anything already devel-
oped might be suitable. This is a good approach because there is inherently
less risk in designs that have already been proven, not to mention that the

Figure 5.18 The Environmental Research Satellite. (Photo Courtesy TRW, Inc.)

49 Newer TIROS satellites are three-axis stabilized, zero-momentum systems.
©2000 CRC Press LLC

cost to adapt an existing design is often less than developing a whole new
concept. Of course, it is not always the case that an existing design is directly
applicable. In such circumstances, the development of hybrids from existing
designs might be appropriate. Other situations might necessitate that the
design team start with a “clean sheet of paper” and develop a new concept
from scratch.

In the early stages of development, parametric analyses are often per-
formed. This is helpful where certain parameters are coupled in such a way
that increasing or improving one parameter may have adverse effects on one
or more other parameters. These kinds of analyses show how changes ripple
through the design in terms of their effects on other parameters.

For example, for a mission in which high resolution images will be taken,
there will be trade-offs between the resolution (sharpness) of the images
taken and the footprint or coverage of each image (an entire geographic
region or a small city block). This trade-off must also consider on-board data
storage and/or downloading the data to ground stations. Depending upon
the downlink, a fixed amount of data can be transmitted to the ground at
any given opportunity for ground contact. This will limit the amount of data
that should be generated by the telescope. The trade-off then becomes one

Figure 5.19 The GEOSAT Spacecraft. (Photo Courtesy Applied Physics Lab, Johns
Hopkins University.)
©2000 CRC Press LLC

of resolution vs. image size. If the downlink capacity is too restrictive, this
analysis may indicate a trade-off of data quality vs. the cost of adding more
downlink capacity. This is just one simple example of what sort of parametric
analyses can be performed to quantify design space.

2. Analysis
Figure 5.25 highlights the Analysis and Allocation activities in the context
of the “Design, Analyze, Integrate” activity. The “Analysis” activity includes
any and all analyses necessary to support quantification of design space
and design parameters, as well as to ascertain technical, cost, schedule, and
risk performance of the system. Since the goal of this book is simply to
establish a framework for complex system design, it is beyond the scope of
this discussion to elaborate on these. Therefore, only some of the myriad
analyses that might take place on a given system development program are
listed:

• Mission, system, electrical, digital, analog, RF, mechanical, etc.
• Simulations
• FMECA (Failure Modes Effects and Criticality Analysis)

Figure 5.20 The Defense Support Program (DSP) Spacecraft. (Photo Courtesy TRW, Inc.)
©2000 CRC Press LLC

3. Allocation
Allocation involves not only technical elements, but also the cost and sched-
ule components of the system development. There are also several manage-
rial activities that are associated with the allocation activity. Thus, allocation
involves the following:

• Allocate functionality, performance, constraints to H/W and S/W
elements

• Define budgets
• Technical: mass, power, throughput, memory, RF links, etc.
• Reliability, contamination, etc.
• Margin and contingency rules

• Configuration management — Controlling the budgets
• Risk management — Assessing convergence, as per Figure 5.26
• Performance monitoring, metrics development, defining/refining

TPMs
• Cost and schedule management

Figure 5.21 TIROS II Spacecraft. (Photo Courtesy NASA.)
©2000 CRC Press LLC

Figure 5.22 Tracking and Data Relay Satellite (TDRS). (Photo Courtesy TRW, Inc.)

Figure 5.23 The Compton Gamma Ray Observatory (CGRO). (Photo Courtesy TRW, Inc.)
©2000 CRC Press LLC

Some important questions arise in any discussion concerning margin
and its role in the allocated budgets: How much margin should be included?
How should this change over time? Figure 5.26 provides a notional depiction
of how margin should converge to a small percentage of the budget as
uncertainty in the design decreases. The point of the figure is not to prescribe
specific numbers, but rather to suggest that margin must be factored into the
development activity and monitored to ensure that the system is converging upon
a low-risk solution. The upper and lower curves represent reasonable amounts
of uncertainty as the development progresses. If these bounds are exceeded,
unforeseen risk may be indicated.

Output → Budgets, technical performance measures

Figure 5.27 illustrates how functionality is derived directly from the
input requirements and that the implementation is driven by the function-
ality and associated performance required. Defining functionality without
defining the required performance is not useful to the designer. As discussed

Figure 5.24 Hubble Space Telescope (HST). (Photo Courtesy NASA.)
©2000 CRC Press LLC

above, the ADACS implementation chosen is based primarily upon the
accuracy the subsystem must provide to the spacecraft. Some spacecraft
require no ADACS system because the payload is not dependent upon
pointing the satellite in any particular direction.

Figure 5.25 The “Analyze” and “Allocate” Activities.

Figure 5.26 Notional Convergence of Margin and Reduction in Uncertainty.
©2000 CRC Press LLC

Key Point

The point here is that there must be traceability be-
tween requirements, functionality, and implementa-
tion. Functions must be allocated to specific elements
of the design. This ensures that the design is appropri-
ate for the intended use. Resources are not wasted by
over-design and the mission is not unsuccessful be-
cause of insufficient capability.

If a certain system element has no functionality allocated to it, the ques-
tion ought to be raised as to why that element is included in the system. Of
course, where heritage designs are used, it may be cost and schedule effective
to retain functionality that is not required, simply because it is cheaper
and/or more schedule efficient not to eliminate it from the existing design.

As shown in Figure 5.27, seven subsystems have been identified for
ESAT: attitude determination and control system (ADACS), orbit determi-
nation and control system (ODACS), command and data handling (C&DH)
subsystem, electrical power subsystem (EPS), communications (COM), pro-
pulsion subsystem (PRS), structures and mechanisms subsystem (SMS), and
the thermal control subsystem (TCS).50

Figure 5.27 Allocation of Functionality to Implementation.

50 Software is not identified as a separate subsystem, but is included in the implementation of
each appropriate system element. The spacecraft bus as a system includes both hardware and
software, as do most or all of the major subsystems. Allocation of a function or set of functions
to hardware or software is a decision made during the design development. While software
may be developed by a distinct functional organization, it is not viewed herein as a separate
subsystem in terms of the design itself. System-level software is managed at the system level
of the design; subsystem-level software is managed at the subsystem-level of the design; and
so on. When a particular subsystem is discussed, it is assumed that it is comprised of all its
constituent elements, including both hardware and software.
©2000 CRC Press LLC

At the spacecraft bus hierarchical level, technical budgets are generated
for each identified subsystem. The technical budgets define mass, electrical
power, memory, throughput, etc. for each subsystem. These budgets are very
important because, at the early stages of the development, they can be used
to determine the risk level of the program to a significant degree. Early in
the program, the design effort focuses on the upper levels of the design.
Often, budgets are allocated to lower-level system elements without detailed
analyses to validate the budgets. There is, therefore, risk introduced into the
program because there is some probability that those system elements cannot
be accommodated within their assigned budgets. An element may require
more allocation of mass, power, or other resources. Hopefully, such a prob-
lem can be accommodated by reallocation of margin or contingency. If not,
the ripple effects can be significant.

Figure 5.28 depicts a matrix where each allocated resource is represented
as a column and each subsystem as a row. The figure illustrates only mass
and power. However, resource budgets should include not only these two,
but also all others as well. Other resources might include: memory, through-
put, communication links, etc. The matrix should include the current value
of the resource used by the element, the current budget, and the margin
remaining for each. Risk areas can be identified based upon the rate at which
a particular resource is being consumed as the design matures.

4. Functional Decomposition
Figure 5.29 highlights the “Decompose” activity of the “Design, Analyze,
Integrate” activity.

As discussed previously, a function cannot be decomposed without some
knowledge of “how” the system will be implemented. Therefore, functional
decomposition to the next level down in the hierarchy logically follows the
generation of concepts at the level above. Thus, it is here in the overall
process that functional decomposition is performed. The following series of
activities are necessary to properly decompose a system or system element.

• Receive function and performance requirements from the Require-
ments Development activity

• Develop design concepts that implement the identified functions at
the required performance levels

• Decompose the implementation into subfunctions for the next-level-
down activity

• Identify the interfaces between the subfunctions
• Partition subfunctions into logical groups (potential subsystems);

group the functions such that interfaces are minimized between logical
groups

• Generate the functional model and verify the functional definition
• Generate function and performance requirements (specifications and

ICDs) for each logical grouping of functions
©2000 CRC Press LLC

• Release function and performance requirements to lower-level devel-
opment activities

• Receive feedback from lower-level development activities and refine
specifications and ICDs

• Iterate as necessary

In Figure 5.30, L0 indicates Level 0 which, for this example, represents
the top level of the system hierarchy. L1 indicates the next level down, or the
subsystem level of the hierarchy. Notice that there are three subsystems indi-
cated in the figure at level L1; often there are many more. Again, making use
of the above definition of “system,” it is asserted that this approach to func-
tional decomposition is applicable to all levels of the system hierarchy. First,
imposed requirements are input to the Requirements Development activity.
Next, the functions with their performance requirements are analyzed and

Figure 5.28 Allocation of Technical Budgets.
©2000 CRC Press LLC

coalesced into a functional model and input to the Synthesis activity. Then,
implementations are developed in response to the functional model. Finally,
with a concept in mind, functional decomposition is performed as next-level-
down functions are derived from the implementation candidate. These func-
tions and required performance parameters are then collated into a require-
ments set as input to the next-level-down Requirements Development activity
and the cycle is repeated as necessary.

Figure 5.31 illustrates the organic connection between implementation
and functionality. Within the same level of the hierarchy, the requirements
set (or functional architecture) drives the implementation architecture.
Between tiers, the implementation at the tier above drives the functional

Figure 5.29 The Decompose Activity.

Figure 5.30 Functional Decomposition Methodology.
©2000 CRC Press LLC

architecture of the subsystems below. Notice in the figure that more than
one function can be allocated to the same design element. However, only
one element implements any particular function. In other words, neglecting
issues such as redundancy, the exact same function should not be provided
by multiple components of the system. This could lead to confusion and
cause malfunctioning of the system. This may not be the case, however,
where the same function is needed in differing contexts.

One of the key issues involved in the decomposition of an implementa-
tion is the partitioning of the derived functions into subsystems. Pimmler
and Eppinger note, “For a complex product . . . there are thousands of
possible decompositions which may be considered. Each of these alternative
decompositions defines a different set of integration challenges.”51 A key
criterion to optimize the partitioning is the minimization of the number of
interfaces or interdependencies between the identified functions in order to
minimize the integration problem.52

Figure 5.32 illustrates an overview of the development by decomposition
process, focusing on the attitude determination and control subsystem. The
relevant input requirement originates with the customer’s telescope. It
requires that the spacecraft bus control the telescope attitude along all three
axes to an accuracy of 0.01 degrees (requirement 2.2.8 from Table 5.1). Thus
the function flowing from this requirement is “control instrument attitude.”
This function must be achieved at a performance level of 0.01 degrees along
all three axes. This portion of the functional analysis is complete now that
the function has been identified with its respective performance requirement.
With the function identified, candidate designs can be generated. There are
often many ways to implement a particular set of functions. In this simple
example that is the case. There are several ADACS architectures that can be
considered to implement the required functionality. Four potential design

Figure 5.31 The “How” and “What” Relationship.

51 Pimmler, Thomas U. and Steven D. Eppinger, Integration Analysis of Product Decomposi-
tions, Design Theory and Methodology, DE-Vol. 68, ASME 1994, p. 343.
52 The Design Structure Matrix (DSM) provides a useful tool for determining the best segregation
of functional elements into collected sub-elements. Cf. Robert P. Smith, Steven D. Eppinger,
“Identifying Controlling Features of Engineering Design Iteration,” Management Science, vol. 43,
no. 3, pp. 276-293, March 1997.
©2000 CRC Press LLC

solutions have been identified: gravity gradient, spin stabilization, bias
momentum, and zero momentum.

While this is certainly not a book about spacecraft attitude control, it
might be helpful to give a brief explanation of how each of these designs
work.

Gravity Gradient — Gravity gradient uses the force of the earth’s gravity
field to cause the spacecraft to point one axis toward the earth. The mass of
the spacecraft bus and payload components is typically concentrated at one
end of the spacecraft (Figure 5.19). Usually a second mass, less than the first,
is deployed a relatively large distance from the first. The force of gravity on
the first mass is greater than that on the second and it is this “gradient” that
causes the minor axis of the spacecraft to point in the proper direction within
a few degrees. In general, there is no control of spin along the axis pointed
toward the earth.

Spin Stabilization — Spin stabilization is implemented by spinning the
spacecraft about the axis pointed toward the earth (Figures 5.20 and 5.21).
The inertial force created by the spinning motion creates a stabilizing force
along the spin axis, much like a spinning top or gyroscope. The downside
of this control system is that the spacecraft, or a portion of it, must spin
(some spacecraft implement a “despun platform” to offset this problem).
This is adequate for certain missions but not for others.

Bias Momentum — Bias momentum uses the same inertial force as the
spin stabilized spacecraft, but it is contained in a device called a momentum
wheel (Figure 5.22). The momentum wheel spins, but the spacecraft itself

Figure 5.32 Second Level Decomposition.
©2000 CRC Press LLC

does not. This allows all three axes to be stabilized. Momentum stored in
the momentum wheel is managed by thrusters and/or torque rods that
leverage the forces of the earth’s magnetic field. One of the major drawbacks
of spin stabilized and bias momentum stabilized systems is that maneuver-
ability is difficult. A second drawback is that the spinning motion can induce
disturbances (vibrations) into the payload.

Zero Momentum — Zero momentum systems also stabilize all three
axes but without using any spinning motion for that purpose (Figures 5.23
and 5.24). The small disturbances encountered are taken out by storing the
momentum created by those disturbances in devices called reaction wheels.
Most zero momentum systems have one reaction wheel on each axis that is
used to store momentum induced on that axis. Magnetic torque rods are
used to “dump” momentum periodically. At opportune points in the orbit,
torque rods are turned on that generate a magnetic dipole which interacts
with the earth’s magnetic field to apply the appropriate torque to the satellite.
This torque allows the reaction wheel to slow down, or “dump,” its momen-
tum with minimal net disturbance to the spacecraft.

This explanation of spacecraft attitude control systems has been neces-
sarily brief. The purpose is simply to facilitate an understanding of design
by decomposition, using the spacecraft attitude control system as an exam-
ple. If the reader requires a more extensive understanding of spacecraft
attitude control systems, there are a number of excellent texts that can be
consulted.53

Consider again the example illustrated in Figure 5.32. Once a subsystem
architecture has been identified it can be decomposed into subfunctions.
Notice that each ADACS architecture has a different decomposition since
the functions required to implement each architecture are different. The
gravity gradient architecture requires only that the mass of the spacecraft be
distributed in a certain way; no other sensors or effectors are necessary. The
spin stabilization and bias momentum architectures require similar function-
ality since both use rotational inertia created by a spinning mass and both
require that the attitude of the roll and pitch or yaw axes be determined.
The key difference between them, in terms of basic functionality, is that the
bias momentum system requires that the source of the rotational inertia, the
momentum wheel, be decoupled from the rest of the spacecraft. This decou-
pling allows the spacecraft to remain fixed relative to the earth while the
rotating momentum wheel generates and maintains the stabilizing rotational
inertia. Finally, the zero momentum architecture requires that the attitude of
all three axes be determined and that the momentum of all three axes be
maintained at zero.

At this point functional analysis is commenced by identifying the inter-
faces between the identified functions. The focus will be on the zero momen-
tum architecture as this example is continued. Figure 5.33 represents the

53 See, for example, Wertz, James R., Ed., Spacecraft Attitude Determination and Control, D. Reidel,
Dordrecht, The Netherlands, 1997 reprint.
©2000 CRC Press LLC

decomposition of the zero momentum architecture. There are two primary
functions necessary: determine attitude and maintain attitude. The figure
depicts these two functions and their interfaces.

As has been emphasized, in order to perform decomposition there must
be some understanding as to what the implementation will be.54 As the
decomposition of the function “Determine Attitude” is approached, the
question arises, “how might this be implemented?” Several different meth-
ods for determining spacecraft attitude could be conceived: rate integration
using gyroscopes, data from the Global Positioning System, uplink attitude
data from the ground. For different reasons, these concepts may or may not
be viable. The basic questions that must be considered here are “What
resources are available?” and “What performance level is required?”

For ESAT, the focus will be determining attitude by exploiting the avail-
ability of celestial bodies. Now that a concept has been identified, a functional
decomposition can be performed because the functions that must be per-
formed in order to determine attitude using celestial bodies are now known.
First, the celestial bodies must be sensed and the appropriate data must be
generated, allowing the spacecraft to make use of that information. Second,
the spacecraft needs to receive the data concerning the sensed celestial bod-
ies, so that it can process it to determine its attitude. Finally, appropriate
commands must be generated and distributed that will tell the spacecraft
effectors what to do in order to maintain the desired attitude. As before, the
interfaces between these functions must be identified and characterized.
Figure 5.34 depicts the results of this process.

Figure 5.35 shows the functional decomposition of the “Maintain Atti-
tude” function. In order to counter disturbances the spacecraft will experi-
ence, the system must be able to generate rotational momentum opposite

Figure 5.33 “Control Attitude” Function Decomposed.

54 To reiterate, this does not imply that great detail must be provided. The point is simply that
at least a concept of how the function will be implemented is necessary before decomposition
can commence.
©2000 CRC Press LLC

the direction of the disturbance. Therefore, the “Generate Rotational Momen-
tum” function is included in the system. Second, any momentum removed
from the satellite must be stored until it can be dumped, thus a “Store
Rotational Momentum” function is provided. Finally, because the rotational
momentum storage devices will not have infinite capacity, a function is
needed to “dump” rotational momentum periodically. The interfaces
between these functions must also be identified and characterized.

The preceding discussion provides an example of one of the architecture
candidates (zero momentum). If the other architectures were serious candi-
dates, similar diagrams for each would be developed. The next step in the
framework is to develop requirements for the next-level-down Requirements
Development activity.

Figure 5.34 “Determine Attitude” Function Decomposed.

Figure 5.35 “Maintain Attitude” Function Decomposed.
©2000 CRC Press LLC

Output → Lower-level validated specifications and ICD(s), lower-level
simulation

5. Inter-Level Interface
It is at this point in the SDF where the vertical interface between system
elements occurs. This is the interface between the System and Subsystem
activities, for example. This same interface occurs at all vertical interfaces.55

Requirements are passed down the hierarchy and design data and other data
are fed back here.

Information Flow-Down — Without elaboration (this is beyond the scope
of this book) it is suggested that any “design-to” data must be configuration
controlled to some degree. The formality and rigor of the configuration
management effort must be commensurate with the program need.

Data Feedback — Development issues relating to reallocation and
redesign must be managed. In order to reallocate effectively, knowledge of
where margin and contingency reside in the system is necessary. Therefore,
this information must be documented in the system budgets.

Output → Configuration controlled documentation

6. Integration
Figure 5.36 highlights the “Integrate and Plan Verification” activity that is
performed within the “Design, Analyze, Integrate” activity.

The Integration activity is a key one. This is the point in the process at
which all the elements of the design are integrated or synthesized into a
coherent whole. A major concern of the integration task is interfacing
between the various system elements. This task is primarily concerned with
synthesizing the design by updating design data, and managing the activities
identified previously and bulleted below.

• Identify and characterize interfaces
• Note specifications, ICDs, databases, etc.
• Update design definition
• Update mission timeline and operations concept
• Block diagrams, schematics, drawings, layouts
• Management activities

• Performance Measurement — Budgets, etc.
• Subcontract Management
• Risk Management — Identification, assessment, and mitigation

approaches
• Configuration Management — Configuration Control Board (CCB)

Output → Integrated design that includes the data generated above

55 This is also depicted in Chapter 6 in Figure 6.4, “Program Team Interactions.”
©2000 CRC Press LLC

Figure 5.37 provides a view of the integrated ESAT spacecraft in the form
of a system block diagram, integrating the zero momentum ADACS architec-
ture. Both the telescope and the spacecraft bus are shown, with key interfaces
between them identified. The payload system is identified as such in the figure;
all else represents the spacecraft bus. Each subsystem is shown with major
components. Both the internal and external interfaces are identified.

B. Rework Discovery Activities: Design Verification
Assess “How-Well” — Figure 5.38 highlights the Rework Discovery activi-
ties performed within the Synthesize activity. The primary focus is verifica-
tion of the developing design.

Verification involves two basic activities: Design Verification which
focuses on the developing design, and Product Verification which focuses
on the deployed system. Verification is accomplished by performing test,
analysis, simulation, demonstration, or inspection. In this section, the pri-
mary concern is with Design Verification in order to show how it is involved
in the development of the system design.

Key Point

The Verification activity is an important part of the
SDF. It is performed at the earliest stages of develop-
ment and continues through the entire design phase.

Figure 5.36 The “Integrate and Plan Verification” Activity.
©2000 CRC Press LLC

1. Analysis and Test

a. Analysis
Those analyses aimed at determining “how well” the current design meets its
requirements; these are in contrast to those analyses aimed at defining design
space which are performed as described previously in the design activity.

b. Test
• Planning Activities (e.g., test requirements, test flow, resource planning,

etc.)
• Testing Activities (e.g., engineering test models, prototypes, breadboards)

2. Producibility, Testability, and Other Specialty
Engineering Activities

This activity assesses those areas of the design commonly called “specialty
engineering” concerns.

• Is the design testable within resource and time constraints?
• Is the design producible within resource and time constraints?
• Is the design acceptable with respect to EMI/EMC, reliability, main-

tainability, affordability, supportability, etc. parameters?

Figure 5.37 Integrated Spacecraft System: A Notional System Block Diagram.
©2000 CRC Press LLC

Output → The output of the Design Verification activity is a design that
has been assessed as to how well it meets all the requirements.

III. Trade Analysis
Figure 5.39 illustrates where Trade Analyses are performed in terms of the
logical sequencing of activities. Trades logically occur after Synthesis because
the trade criteria (technical, cost, schedule, risk)56 must be developed in order
to make the selection.

This in no way implies that trade studies must wait until competing
designs are complete. The reader is reminded that the present discussion
takes place in the context of the Logical Domain, not the Time Domain. Only
the logical sequencing of activities on the micro-time scale is in view here
(recall Figure 3.1 and related discussion). Although generally emphasized in
the early phases of development, trade analyses can occur during all devel-
opment phases as the SDF is performed and iterated. The point here is that
trade studies are dependent upon technical, cost, schedule, and risk criteria
which can only be developed with reference to implementation. Absent such
criteria, there is no basis for making a selection.

Figure 5.38 The “Synthesize” Rework Discovery Activities.

56 Chestnut concurs, “Commonly accepted bases for judging the value of a system: (a) perfor-
mance; (b) cost; (c) time; (d) reliability; (e) maintainability.” Harold Chestnut, System Engineering
Tools, New York: John Wiley & Sons, 1965, p. 11.
©2000 CRC Press LLC

There are many selection methodologies that can be employed in the
selection process.57 It is not the purpose here to discuss the pros and cons of
the various trade methodologies found in the literature, but simply to delin-
eate where in the System Development process Trade Analyses occur. The
amount of rigor applied to the Selection process should be commensurate
with customer requirements, program need, and other criteria as determined
by the development team.

If multiple candidates emerge from the design and analysis activity, the
selection process is implemented. However, if multiple candidates are com-
pliant and equally acceptable to the design team, integrate each into the
element of the level above and analyze for system benefit there. The selection
is then made at that above level.

Here in the Trade Analysis section, it is appropriate to highlight the
classic trade-off that occurs in most any System Development activity: cost,
schedule, and technical performance. Issues relating to risk, robustness,
safety, etc. could also be included, but certainly cost, schedule, and technical
performance are central concerns. This is illustrated in Figure 5.40.

It is not often that all three of these issues can be improved simulta-
neously. In general, one or two can be improved at the price of the third or
other two. The author once worked with an engineer who had a similar

Figure 5.39 The “Do Trades” Activity.

57 e.g., Pugh; DSMC; McCumber, William H., System Performance Representation: Standard Scoring
Functions, NCOSE 1995, P003; Ulrich and Eppinger, pp. 105-122.
©2000 CRC Press LLC

graphic in his office. It had the caption, “faster, better, cheaper — pick any
two!” While this may not be an absolute truth in every situation, it does
serve to emphasize the non-trivial trade-off that often must take place.

Returning again to the ESAT example, the relative merits of each of the
four concepts identified above are considered. Figure 5.4158 describes the
four ADACS architectures with a brief critique of each. The key requirement
here is the pointing accuracy, customer input requirement 2.2.8 from
Table 5.1. That requirement states that the spacecraft bus shall point the
telescope to an accuracy of ±0.01° on all three axes. The only architecture
that has the capability of meeting such a requirement is the zero momentum
design. Therefore, the zero-momentum concept is the design of choice.59

IV. Optimization and Tailorability
A. Optimization

Similar to the argument just asserted for Trade Analyses, optimization tech-
niques are myriad and can be very specialized. It is not the purpose of this
book to discuss various optimization approaches. Rather, the purpose is to
describe where optimization occurs in the process and how it impacts the
overall development process.

Figure 5.40 The Classic Trade-Off.

58 Attitude control accuracy numbers are taken from Larson, Wiley J. and James R. Wertz, Space
Mission Analysis and Design, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992,
Table 11-4, p. 346.
59 In this simple example the selection was made purely on the basis of technical performance.
As has been discussed above, in the real world cost and schedule must also be considered.
Note also that, as is often the case, there are several ways to implement the selected system. A
zero momentum attitude control system is no exception and this will likely lead to more trade-
offs.
©2000 CRC Press LLC

Figure 5.41 ADACS Candidate Architectures.60

60 Note that while the design elements identified in the figure are representative of the design of the spacecraft shown, they do not
necessarily represent the exact design of the actual spacecraft depicted in the figure.
©2000 CRC Press LLC

Optimization, by definition, implies a change to the system. This change
may be reflected in the requirements, which, as has been emphasized above,
are organically connected to the implementation. Therefore, if optimization
is to be done, the SDF provides a feedback to the Design and/or Requirements
Development activities (Figure 5.42). While optimization can occur within
virtually every element of the process, it is explicitly addressed here because
the options being considered are “complete” in the sense that they have been
defined to the point that technical, cost, and schedule criteria have been
developed. At the other points in the process, each option is in the process
of being developed so optimization occurs as a natural part of the Require-
ments Development and Synthesis activities through the iterations that
occur.

B. Tailorability

Tailorability is usually a topic of discussion when a generic system engineer-
ing process is to be applied to a specific development program. At this point,
it is asserted that, to the level of decomposition provided above, the SDF is
applied to each hierarchical level and for each development phase. While
not all activities represent significant effort in every situation, generally all
are performed to some level of fidelity. Therefore, tailoring is not achieved
by changing the process. Rather, it is achieved by:

• Modulating the kinds and extent of documentation required
• Modulating the level of detail and the scope of the activities per-

formed
• Prudent partitioning of the system hierarchy to effectively satisfy

program needs.

V. The Integrated System Development Framework
Figure 5.42 represents the fully-integrated, second-level decomposition of
the basic SDF building block. It provides a two-tiered view of the SDF,
defining the flow-down and feedback paths both within the same level and
between levels of the system hierarchy.

Initial inputs are fed into the “Identified Work to Do” bucket. The first
steps of the process involve both Work Generation activities as well as
Rework Discovery activities. Because it is desirable to discover any problems
with the requirements as early as possible, the “Analyze Requirements”
activity is initiated. The Work Generation activities are also initiated.
Progress is periodically assessed for convergence. If the Requirements Devel-
opment activity is failing to converge, it may be the result of a discrepancy
in the input requirements. A feedback to the “input” is shown in the figure,
indicating that the customer should be consulted in order to review the input
for consistency, clarity, and completeness. Nonconvergence may also be the
result of less-than-adequate quality and/or insufficient effort focused on
©2000 CRC Press LLC

discovering rework. As discussed in Chapter 4, these are the control mech-
anisms with the highest leverage for enabling convergence.

If the Requirements Development activity is converging, the output data
is passed along to the Synthesis activity. A key decision must be made
regarding the timing of the release of the output data to the Synthesis activity.
Data released prematurely will result in more rework generated than data
released in good condition, albeit later on the timeline. Once data is passed
to the Synthesis activity, the Work Generation activities commence. A deci-
sion block in the process asks if supporting work at the next level down is
necessary. If the answer is “yes,” requirements are generated and released
to the lower-level activities. If the answer is “no,” the effort moves to the
“Integrate and Plan Verification” activity, where input from lower-level activ-
ities is integrated into the system design. As the design development ensues,
the Verify Design activities commence. Most of the rework discovered will
likely be redone in the Synthesis activity. However, there is the potential that
some of the rework discovered may be Requirements Development rework.
There is, therefore, feedback to the Requirements Development activity via
the RD Rework decision box. It is shown as the “Discovered Rework” box.
Note also the inclusion of a box called “Forced Rework.” This occurs in those
cases where the output from the preceding activity is valid in and of itself,
but cannot be implemented or is difficult to implement for some reason. This
situation can arise, for example, when technologies included in the design
are obsolete or are otherwise unobtainable. Or, due to technical, cost, and/or
schedule concerns, a change in the requirements set or current design is
called for. Both the “Forced Rework” and “Discovered Rework” feedback boxes
also occur as feedback from the lower levels to the upper-level Synthesis
activity as shown in Figure 5.42. If the Synthesis activity is not converging,
the same controls of quality and rework discovery effort can be adjusted to
facilitate convergence.

As discussed earlier in this chapter, the “Do Trades” activity commences
as needed after two or more designs emerge from the Synthesis activity. If
optimization is necessary, there is feedback to the Synthesis activity.

Figure 5.43 depicts the basic SDF building block along its one-level-down
decomposition. It is provided in order to emphasize the consistency of the
decompositions, as described in the foregoing.
©2000 CRC Press LLC

SynthesizeDevelop Requirements
Figure 5.42 The System Development Framework (SDF), Second Level Decomposition.

Input Identified
Work To Do

UnDisc'd
Rework

Work
Completed

Disc'd
Rework

No

Yes
Input

Rework?

Derive
Context
Rqmts

Generate
Functional
Description

Analyze
Functional
Description

Analyze
Rqmts

Forced
Rework

No

Yes

Converging? Rqmts Devel
Work Done

Synthesis
Work
To Do

Synthesis
Work

Completed
Synthesis
Work Done

No

Yes
RD

Rework?

Design

Analyze

Allocate

Decompose

Next
Level?

No

Yes

Integrate &
Plan Verif

Synthesis
UD Rework

Verify by
Analysis

Verify
by Test

Verify Design

Specialty
Engr'g

Analysis

Discovered
Rework

Forced
Rework

Converging?

Yes

No

Multiple
Designs?

Perform
Trade

Analysis

Optimize?

No

Yes

Selected
Design

DesignRqmts

Do Trades
Design, Analyze, Integrate

Input Identified
Work To Do

UnDisc'd
Rework

Work
Completed

Disc'd
Rework

No

Yes
Input

Rework?

Derive
Context
Rqmts

Generate
Functional
Description

Analyze
Functional
Description

Analyze
Rqmts

Forced
Rework

No

Yes

Converging? Rqmts Devel
Work Done

Synthesis
Work
To Do

Synthesis
Work

Completed
Synthesis
Work Done

No

Yes
RD

Rework?

Design

Analyze

Allocate

Decompose

Next
Level?

No

Yes

Integrate &
Plan Verif

Synthesis
UD Rework

Verify by
Analysis

Verify
by Test

Verify Design

Specialty
Engr'g

Analyses

Discovered
Rework

Forced
Rework

Converging?

Yes

No

Multiple
Designs?

Perform
Trade

Analysis

Optimize?

No

Yes

Selected
Design(s)

DesignRqmts

Do Trades
Design, Analyze, Integrate

SynthesizeDevelop Requirements

Data
OK?

Subsystem A

Subsystem B

Subsystem N
©2000 CRC Press LLC

Figure 5.43 SDF Decomposition Consistency.

Input Identified
Work To Do

UnDisc'd
Rework

Work
Completed

Disc'd
Rework

No

Yes
Input

Rework?

Derive
Context
Rqmts

Generate
Functional
Description

Analyze
Functional
Description

Analyze
Rqmts

Forced
Rework

No

Yes

Converging? Rqmts Devel
Work Done

Synthesis
Work
To Do

Synthesis
Work

Completed
Synthesis
Work Done

No

Yes
RD

Rework?

Design

Analyze

Allocate

Decompose

Next
Level?

No

Yes

Integrate &
Plan Verif

Synthesis
UD Rework

Verify by
Analysis

Verify
by Test

Verify Design

Specialty
Engr'g

Analyses

Discovered
Rework

Forced
Rework

Converging?

Yes

No

Multiple
Designs?

Perform
Trade

Analysis

Optimize?

No

Yes

Selected
Design

DesignRqmts

Do Trades
Design, Analyze, Integrate

SynthesizeDevelop Requirements

SDP Level 1 Decomposition

SDP Level 0 Decomposition

Input Develop
Rqmts

Converge? Converge?
Design,
Analyze,
Integrate

Synthesize

Verify
Design

Do
Trades

Selected
Design
©2000 CRC Press LLC

	A Framework for Complex System Development
	Content
	Chapter 5: System Development Framework — Technical
	I. Develop Requirements — Determine “What” the System Must Do
	A. Inputs
	B. Work Generation Activities
	1. Derive Context Requirements
	2. Generate Functional Description
	3. Digression: Why Functional Analysis?

	C. Rework Discovery Activities
	1. Analyze Requirements
	2. Analyze Functional Description

	II. Synthesis
	A. Work Generation Activities: Design and Integration
	1. Design
	2. Analysis
	3. Allocation
	4. Functional Decomposition
	5. Inter-Level Interface
	6. Integration

	B. Rework Discovery Activities: Design Verification
	1. Analysis and Test
	2. Producibility, Testability, and Other Specialty Engineering Activities

	III. Trade Analysis
	IV. Optimization and Tailorability
	A. Optimization
	B. Tailorability

	V. The Integrated System Development Framework

