

Oracle SQL

Jumpstart with Examples

Powell_title.fm Page 1 Friday, July 30, 2004 10:10 AM

This page intentionally left blank

Oracle SQL

Jumpstart with Examples

 Gavin Powell
Carol McCullough-Dieter

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO•

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Powell_title.fm Page 3 Friday, July 30, 2004 10:10 AM

Elsevier Digital Press
200 Wheeler Road, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Application submitted.

ISBN: 1-55558-323-7

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

For information on all Digital Press publications
visit our Web site at www.digitalpress.com and www.bh.com/digitalpress

04 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Powell_title.fm Page 4 Friday, July 30, 2004 10:10 AM

v

Contents at a Glance

Foreword xix

Preface xxi

Acknowledgements xxix

1 Introduction to Oracle SQL 1

2 New Features of Oracle SQL 39

3 Oracle Database Architecture 51

4 The SELECT Statement 73

5 Filtering Rows 97

6 Sorting Rows 109

7 Operators, Conditions, and Pseudocolumns 123

8 Using SQL*Plus 137

9 Single-Row Functions 175

10 Joining Tables 205

11 Grouping and Summarizing Data 235

12 Subqueries 267

13 Unusual Query Types 285

14 Expressions 301

15 Data Manipulation Language (DML) 315

16 Datatypes and Collections 339

powellTOC2.fm Page v Thursday, July 29, 2004 9:56 PM

vi Contents at a Glance

17 XML in Oracle 357

18 Tables 383

19 Views 425

20 Constraints 447

21 Indexes and Clusters 471

22 Sequences and Synonyms 489

23 Security 503

24 Basic PL/SQL 531

Appendix A 569

Appendix B 623

Appendix C 625

Index 627

powellTOC2.fm Page vi Thursday, July 29, 2004 9:56 PM

vii

Table of Contents

Foreword xix

Preface xxi

Acknowledgements xxix

1 Introduction to Oracle SQL 1

1.1 A Little History 1
1.1.1 The Evolution of Database Modeling 1
1.1.2 The History of Relational Databases 5
1.1.3 The Evolution of Oracle Database 6

1.2 The Basics of Relational Data Modeling 8
1.2.1 Normalization 8
1.2.1.1 Referential Integrity 10
1.2.2 Denormalization 11
1.2.3 Different Forms of the Relational Data Model 13

1.3 Structured Query Language (SQL) 14
1.3.1 The Humble Origins of SQL 14
1.3.2 What Is Oracle SQL? 15
1.3.2.1 ANSI Standards and Oracle 15

1.4 Software Useful for Reading this Book 16
1.5 Syntax Conventions Used in This Book 17
1.6 SQL Tools 19

1.6.1 SQL*Plus in Command-Line Mode 19
1.6.2 SQL*Plus in Windows Mode 24
1.6.3 SQL*Plus Worksheet 28
1.6.4 iSQL*Plus 31

1.7 The MUSIC Schema 34
1.7.1 The MUSIC Schema Sales Data Warehouse 36

powellTOC.fm Page vii Thursday, July 29, 2004 9:57 PM

viii Table of Contents

2 New Features of Oracle SQL 39

2.1 New Features in Oracle Database 10g 39
2.1.1 Oracle SQL Improvements in Oracle Database 10g 39
2.1.2 PL/SQL Improvements in Oracle Database 10g 44
2.1.2.1 Java Improvements in Oracle Database 10g 45
2.1.3 XML Improvements in Oracle Database 10g 45
2.1.4 Some Utility Improvements in Oracle
Database 10g 45
2.1.5 Database Object Improvements in Oracle 10g 46

2.2 New Features in Oracle Database 9i 46
2.2.1 Oracle SQL Improvements in Oracle Database 9i 47
2.2.2 New PL/SQL Features in Oracle Database 9i 48

3 Oracle Database Architecture 51

3.1 The Basic Concepts 51
3.2 The Oracle Instance 58
3.3 Oracle Database Physical Architecture 60

3.3.1 Datafiles, Tablespaces, and Objects 60
3.3.2 Controlfiles, Logging, and Archiving 61
3.3.3 Rollback and Undo 62
3.3.4 Temporary Sort Space 64

3.4 Database Startup and Shutdown 65
3.5 Enhancing the Physical Architecture 67

3.5.1 Oracle Managed Files 67
3.5.2 Partitioning 67
3.5.3 Replication 68
3.5.4 Standby Databases 69
3.5.5 Clustering and Oracle RAC 70

4 The SELECT Statement 73

4.1 The Basic SELECT Statement 73
4.1.1 Uses of the SELECT Statement 73
4.1.2 Syntax Conventions 74
4.1.3 Some Simple Example SELECT Statements 76

4.2 Types of SELECT Queries 81
4.2.1 Simple Query 82
4.2.2 Filtered Query 82
4.2.3 Sorted Query 83
4.2.4 Grouping or Aggregated Query 83

powellTOC.fm Page viii Thursday, July 29, 2004 9:57 PM

Table of Contents ix

Contents

4.2.5 Join Query 84
4.2.6 Subquery 85
4.2.7 Table or View Creation Query 85
4.2.8 Hierarchical Query 86
4.2.9 Composite Queries 88

4.3 Other Aspects of the SELECT Statement 88
4.3.1 The DUAL Table 89
4.3.2 Using Functions 90
4.3.3 Arithmetic Operations 91
4.3.4 Using DISTINCT 92
4.3.5 Null Values 93
4.3.6 Using Pseudocolumns 94

5 Filtering Rows 97

5.1 WHERE Clause Syntax 97
5.1.1 Some Simple WHERE Clause Examples 98

5.2 WHERE Clause Expression Conditions 101
5.3 Logical Operators in the WHERE Clause 105
5.4 Top-N Queries 105

6 Sorting Rows 109

6.1 ORDER BY Clause Syntax 109
6.1.1 Some Simple ORDER BY Clause Examples 111

6.2 Sorting and Null Values 113
6.3 Sorting Methods 117

6.3.1 Sorting by Position 117
6.3.2 Sorting by Expression 119

7 Operators, Conditions, and Pseudocolumns 123

7.1 Precedence 124
7.2 Operators 124

7.2.1 Arithmetic Operators 125
7.2.2 Logical Operators 126
7.2.3 The Concatenation Operator 128
7.2.4 Hierarchical Query Operators 128
7.2.5 Set Operators 129
7.2.6 Multiset Operators 129
7.2.7 User-Defined Operators 131

7.3 Conditions 131
7.4 Pseudocolumns 134

powellTOC.fm Page ix Thursday, July 29, 2004 9:57 PM

x Table of Contents

8 Using SQL*Plus 137

8.1 Environmental Settings 137
8.2 Using Scripts and Variables 148
8.3 Formatting Query Output in SQL*Plus 153

8.3.1 Column Formatting and Headings 154
8.3.1.1 Formatting Dates 158
8.3.2 Lines, Pages, and Breaks 160

8.4 Using iSQL*Plus 165
8.4.1 Embedding Scripts in HTML 168
8.4.2 iSQL*Plus versus SQL*Plus 171
8.4.3 Troubleshooting iSQL*Plus 171
8.4.4 Customizing iSQL*Plus Display 172

9 Single-Row Functions 175

9.1 Types of Functions 176
9.2 Single-Row Functions 176

9.2.1 String Functions 180
9.2.2 Number Functions 182
9.2.2.1 Binary Floating-Point Number Functions 185
9.2.3 Date Functions 186
9.2.4 Datatype Conversion Functions 190
9.2.4.1 Number Conversion Function Formats 190
9.2.4.2 Date Conversion Function Formats 191
9.2.5 Miscellaneous Functions 194

9.3 Combining Functions 196

10 Joining Tables 205

10.1 Join Formats 206
10.1.1 Oracle’s Proprietary Format 206
10.1.2 ANSI Format 206

10.2 Types of Joins 207
10.3 Examining Different Types of Joins 210

10.3.1 Cross-Join or Cartesian Product 210
10.3.2 Natural or Inner Join 212
10.3.2.1 The USING clause 213
10.3.2.2 The ON clause 215
10.3.3 Outer Join 217
10.3.3.1 Left Outer Join 218
10.3.3.2 Right Outer Join 223

powellTOC.fm Page x Thursday, July 29, 2004 9:57 PM

Table of Contents xi

Contents

10.3.3.3 Full Outer Join 224
10.3.4 Self-Join 225
10.3.4.1 Grouping Self-Join 226
10.3.4.2 Hierarchical (Fishhook) Self-Join 228
10.3.5 Equi-Joins, Anti-Joins, and Range Joins 230
10.3.6 Mutable and Complex Joins 230

11 Grouping and Summarizing Data 235

11.1 GROUP BY Clause Syntax 235
11.2 Types of Group Functions 237

11.2.1 Aggregate Functions 237
11.2.1.1 Simple Summary Functions 238
11.2.1.2 Statistical Function Calculators 238
11.2.1.3 Statistical Distribution Functions 240
11.2.1.4 Ranking Functions 240
11.2.1.5 Grouping Functions 240
11.2.2 Enhancing Grouping Functions for Analysis 241
11.2.2.1 The OVER Clause 242

11.3 Special Grouping Function Behavior 245
11.3.1 Group Functions and Null Values 245
11.3.2 Selecting DISTINCT or ALL in Group Functions 246

11.4 Using the GROUP BY Clause 249
11.4.1 Grouping Rows 250
11.4.2 Filtering Grouped Results with the Having Clause 253
11.4.3 Extending the GROUP BY Clause Further 255
11.4.3.1 The ROLLUP Clause 256
11.4.3.2 The CUBE Clause 257
11.4.3.3 The GROUPING SETS Clause 258

11.5 The SPREADSHEET (MODEL) Clause 260
11.5.1 SPREADSHEET (MODEL) Clause Syntax 261
11.5.2 SPREADSHEET (MODEL) Clause Functions 261
11.5.3 Using the SPREADSHEET (MODEL) Clause 262

12 Subqueries 267

12.1 Types of Subqueries 267
12.2 Where Can Subqueries Be Used? 269
12.3 Comparison Conditions and Subqueries 269
12.4 Demonstrating Subqueries 270

12.4.1 Single-Row Subqueries 270
12.4.2 Multiple-Row Subqueries 272

powellTOC.fm Page xi Thursday, July 29, 2004 9:57 PM

xii Table of Contents

12.4.3 Multiple-Column Subqueries 276
12.4.4 Regular versus Correlated Subqueries 279
12.4.5 Nested Subqueries 280
12.4.6 Inline Views 281
12.4.7 Other Uses for Subqueries 282

13 Unusual Query Types 285

13.1 Composite Queries 285
13.1.1 Set Operators 285
13.1.2 Using Composite Queries 286

13.2 Hierarchical Queries 289
13.2.1 Hierarchical Query Operators 290
13.2.2 Hierarchical Query Pseudocolumns 290
13.2.3 Using Hierarchical Queries 290

13.3 Flashback and Versions Queries 292
13.3.1 Flashback Query Syntax 293
13.3.2 Versions Query Pseudocolumns 294
13.3.3 Using Flashback Queries 294

13.4 Parallel Queries 297

14 Expressions 301

14.1 Types of Expressions 302
14.2 Regular Expressions 305

14.2.1 Regular Expression Functions 305
14.2.2 Regular Expression Patterns 306
14.2.3 Using Regular Expressions 307

14.3 Oracle Expression Filter 309

15 Data Manipulation Language (DML) 315

15.1 What Is DML? 315
15.2 Transaction Control 317

15.2.1 Locks 318
15.2.2 The SET TRANSACTION Command 319
15.2.3 The SAVEPOINT Command 322

15.3 Adding Data (INSERT) 324
15.3.1 Inserting One Row 325
15.3.2 Inserting with a Subquery 326
15.3.3 The Multiple-Table INSERT Command 327

15.4 Changing Data (UPDATE) 330

powellTOC.fm Page xii Thursday, July 29, 2004 9:57 PM

Table of Contents xiii

Contents

15.4.1 Updating One Row 331
15.4.2 Updating Many Rows 331

15.5 Deleting Data (DELETE) 334
15.5.1 Deleting One Row 334
15.5.2 Deleting Many Rows 334
15.5.3 Deleting All Rows 336

15.6 Merging New and Old Data (MERGE) 336
15.6.1 How To Use MERGE 337

16 Datatypes and Collections 339

16.1 Simple Datatypes 339
16.2 Complex and Object Datatypes 342

16.2.1 Binary Object Datatypes 342
16.2.2 Reference Pointer Datatypes 343
16.2.2.1 Using the REF Datatype 344
16.2.2.2 Using the BFILE Datatype 345
16.2.3 User-Defined Datatypes 347
16.2.4 Object Collection Datatypes 348
16.2.4.1 Using VARRAY Collections 349
16.2.4.2 Using Nested Table Collections 350
16.2.5 Object Collection Functions 352
16.2.6 Metadata Views 354

16.3 Special Datatypes 355

17 XML in Oracle 357

17.1 What Is XML? 357
17.1.1 What Is XSL? 360

17.2 Using XML in Oracle 360
17.2.1 Creating XML Documents 361
17.2.1.1 The XMLType Datatype 361
17.2.1.2 Generating XML from Tables 362

The SQL/XML Standard 363
The SYS_XMLGEN Function 372

17.2.2 XML and the Database 373
17.2.2.1 New XML Documents 373
17.2.2.2 Retrieving from XML Documents 374
17.2.2.3 Changing and Removing XML Document Content 378

17.3 Metadata Views 380

powellTOC.fm Page xiii Thursday, July 29, 2004 9:57 PM

xiv Table of Contents

18 Tables 383

18.1 What Is a Table? 383
18.1.1 Types of Tables 383
18.1.2 Methods of Creating Tables 384
18.1.2.1 Scripted Method 385
18.1.2.2 CREATE TABLE ... AS Subquery 386
18.1.2.3 Tools 386

18.2 CREATE TABLE Syntax 387
18.3 Creating Different Table Types 388

18.3.1 Creating Relational Tables 388
18.3.2 Creating Object Tables 390
18.3.3 Creating Temporary Tables 393
18.3.4 Creating Index-Organized Tables (IOTs) 397
18.3.5 Creating External Tables 398
18.3.6 Creating Partitioned Tables 402
18.3.6.1 What Are the Types of Partitions? 402

Partition Indexing 402
18.3.6.2 CREATE TABLE Partition Syntax 403

CREATE TABLE Range Partition Syntax 403
CREATE TABLE List Partition Syntax 403
CREATE TABLE Hash Partition Syntax 404
CREATE TABLE Range-Hash Partition Syntax 405
CREATE TABLE Range-List Partition Syntax 405

18.4 Changing Table Structure 407
18.4.1 Adding, Modifying, and Removing Columns 408
18.4.2 Rebuilding a Table 412
18.4.3 Renaming a Table 413

18.5 Dropping a Table 414
18.5.1 Truncating Instead of Dropping Tables 415

18.6 Adding Comments to Tables 416
18.6.1 Adding Comments to Schema Objects 416
18.6.2 Scripting and SQL Code Comments 419

18.7 The Recycle Bin 420
18.8 Metadata Views 421

19 Views 425

19.1 What Is a View? 425
19.2 Types and Uses of Views 426
19.3 CREATE VIEW Syntax 427

19.3.1 Creating Simple Views 428

powellTOC.fm Page xiv Thursday, July 29, 2004 9:57 PM

Table of Contents xv

Contents

19.3.2 Creating Constraint Views 429
19.3.3 Creating Complex Views 430
19.3.3.1 Views with Joins 430
19.3.3.2 Inline Subquery Views 432

19.4 Changing and Dropping Views 433
19.5 Working with Views 435

19.5.1 Querying a View 435
19.5.2 Views and DML Commands 437
19.5.2.1 DML and Views with Joins 440

19.6 Metadata Views 441
19.7 Data Dictionary Views (Metadata) 442

20 Constraints 447

20.1 What Are Constraints? 448
20.1.1 Types and Uses of Constraints 448

20.2 Managing Constraints 449
20.2.1 CREATE TABLE Syntax 450
20.2.1.1 Primary Key and Unique Constraints 451
20.2.1.2 Foreign Key Constraints 452

Out-of-Line Primary and Foreign Keys 453
20.2.1.3 Check Constraints 456
20.2.1.4 REF Constraints 459
20.2.2 CREATE VIEW Syntax 460

20.3 Adding, Modifying, and Dropping Constraints 460
20.3.1 ALTER TABLE Syntax 460
20.3.2 ALTER VIEW Syntax 461
20.3.3 Working with Constraints and ALTER TABLE 461
20.3.3.1 Adding a Constraint to an Existing Table 462
20.3.3.2 Modifying Constraints on Existing Tables 463
20.3.3.3 Constraint States 463
20.3.4 Renaming a Constraint 464
20.3.5 Dropping Constraints 465
20.3.5.1 Dropping Constraints with CASCADE 466

20.4 Metadata Views 469

21 Indexes and Clusters 471

21.1 Indexes 471
21.1.1 What Is an Index? 471
21.1.2 Types of Indexes 474
21.1.2.1 Index Attributes 476

powellTOC.fm Page xv Thursday, July 29, 2004 9:57 PM

xvi Table of Contents

21.1.3 Creating Indexes 477
21.1.4 Changing and Dropping Indexes 482
21.1.5 More Indexing Refinements 483

21.2 Clusters 484
21.2.1 What is a Cluster? 484
21.2.2 Types of Clusters 485
21.2.3 Creating Clusters 485

21.3 Metadata Views 487

22 Sequences and Synonyms 489

22.1 Sequences 489
22.1.1 Creating Sequences 490
22.1.2 Changing and Dropping Sequences 493
22.1.3 Using Sequences 494
22.1.3.1 Using the CURRVAL and NEXTVAL Pseudocolumns 495
22.1.3.2 Using Sequences in an INSERT Statement 496
22.1.3.3 Other Uses of Sequences 497

22.2 Synonyms 498
22.2.1 Creating Public Synonyms 499
22.2.2 Creating Private Synonyms 500
22.2.3 Using Synonyms 500

22.3 Metadata Views 501

23 Security 503

23.1 Users 503
23.1.1 Users Provided by Oracle 504
23.1.2 Creating Users 505
23.1.3 Modifying User Passwords 508
23.1.4 Dropping Users 510

23.2 Privileges 511
23.2.1 Granting Privileges 511
23.2.2 Revoking Privileges 518
23.2.2.1 Revoked System Privileges DO NOT Cascade 520
23.2.2.2 Revoked Object Privileges DO Cascade 521

23.3 Grouping Privileges Using Roles 522
23.3.1 Creating and Altering Roles 523
23.3.2 Granting and Revoking Privileges on Roles 524
23.3.3 Setting User Roles 527
23.3.4 Dropping Roles 529

23.4 Metadata Views 530

powellTOC.fm Page xvi Thursday, July 29, 2004 9:57 PM

Table of Contents xvii

Contents

24 Basic PL/SQL 531

24.1 What is PL/SQL? 531
24.2 Why Is PL/SQL a Programming Language? 532

24.2.1 Blocks and Exception Trapping 533
24.2.2 Procedures, Functions, Triggers, and Packages 534
24.2.2.1 Using Named Procedures 535
24.2.2.2 Using Functions 535
24.2.2.3 Using Triggers 537
24.2.2.4 Using Packages 539

24.3 Variables and Datatypes in PL/SQL 541
24.4 Retrieving Data in PL/SQL 543

24.4.1 Explicit Cursors 543
24.4.2 Implicit Cursors 544
24.4.2.1 The Internal SQL Implicit Cursor 545
24.4.2.2 Single-Row SELECT Implicit Cursor 547
24.4.2.3 Cursor FOR Loop Implicit Cursor 547

24.5 Changing Data in PL/SQL 549
24.6 Dynamic SQL 550

24.6.1 Building Cursors Dynamically 552
24.7 Control Structures 553

24.7.1 Selection 554
24.7.1.1 The IF Statement 554
24.7.1.2 The CASE Statement 556

CASE Statement Search Condition 557
CASE Statement Selector and Expression 558

24.7.2 Iteration or Repetition 560
24.7.2.1 The FOR Loop 561
24.7.2.2 The WHILE Loop 564
24.7.2.3 The LOOP...END LOOP Construct 564
24.7.2.4 The FORALL Command 565
24.7.3 Sequence Controls 565
24.7.3.1 The GOTO Statement 566
24.7.3.2 The NULL Command 566

24.8 Objects and Methods 567
24.9 Oracle-Provided Packages 567
24.10 Metadata Views 568

Appendix A

Schema Scripting 569

Appendix B

Utility Scripts 623

powellTOC.fm Page xvii Thursday, July 29, 2004 9:57 PM

xviii Table of Contents

Appendix C

Sources of Information 625

Index 627

powellTOC.fm Page xviii Thursday, July 29, 2004 9:57 PM

xix

Foreword

As a consultant with more than 12 years of experience working with Oracle
databases on a daily basis, reviewing this book was a unique and enjoyable
experience. The SQL language is without doubt one of the most critical
database skills and it is best learned by example. This book addresses that
crucial need. Mr. Powell does an excellent job of clarifying the concepts by
using meaningful and easy to understand examples.

Frankly, I have not
come across any other book on SQL that is as good a compilation of SQL
concepts in a single source.

Oracle SQL Jumpstart with Examples will be a very useful reference and
should be a hit for anyone who may be using Oracle SQL. This book
should become very popular not only with Developers and DBAs but also
Database Managers, Designers and System Managers. Even busy executives
can use the book to quickly write queries on an occasional basis. Addition-
ally, the examples in the book provide a good reference for functional peo-
ple, (such as systems engineers and project leaders,) who want a better
understanding of the true capabilities of Oracle SQL, allowing for better
articulation and understanding of user and system requirements.

One comes across very few books that make a significant difference in
the fundamental understanding of a subject. This is one such book if you
want to understand a core database skill – Oracle SQL. This book deserves
a place in your secret library and you will find it a great reference not only
for learning SQL but also for learning data relationships, data organization,
data analysis possibilities and so forth. I feel that the title, Oracle SQL
Jumpstart with Examples, might be too simplistic to describe the content.
Read on, you will find the real value hidden inside this book.

– Ravi Sharma—Senior Principal Consultant

Foreword.fm Page xix Thursday, July 29, 2004 9:57 PM

This page intentionally left blank

xxi

Preface

Welcome to

Oracle SQL Jumpstart with Examples

!

The title of this book was originally Oracle SQL Reference, but during
the writing process, we set our hearts on the new title

Oracle SQL Jumpstart
with Examples

. Why “with Examples”? This book is still an Oracle SQL ref-
erence manual simply by the nature of its structure and content. However,
it is a reference manual with much added usefulness. The book contains an
absolute plethora of properly tested example Oracle SQL code.

In my years as a developer and database administrator, I have often
found that the quickest solution to a knotty coding problem is resolved by
finding simple working examples. Therefore this book is targeted at data-
base administrators (DBAs), developers, designers, and managers, both tell-
ing and showing how to solve problems with Oracle SQL. This book is
applicable to anyone who uses Oracle SQL on a daily basis or periodically,
be it for questions about data, application development, finding problems,
fine-tuning those problems, or otherwise.

This book is full of working examples. All examples have been

tested

 and

verified

 in Oracle Database 10

g

 on a Windows 2000 Intel platform. Exam-
ples applicable to Oracle Database 9

i

 are tested in an Oracle9

i

 database as
well as an Oracle10

g

 database. Because of the nature of Oracle SQL resid-
ing and executing from within an Oracle database, there should be no oper-
ating system differences or dependencies.

Note:

Different operating systems and platforms may require different Ora-
cle database releases, but it is still unlikely that there will be any differences

with respect to Oracle SQL.

This book is also written to include Oracle SQL contained in both Ora-
cle Database 10

g

 and Oracle Database 9

i

. Whenever you see that

Preface.fm Page xxi Thursday, July 29, 2004 9:58 PM

xxii Preface

indicates an Oracle Database 10

g

 update or enhancement. The differences
between Oracle Database 10

g

 and Oracle Database 9

i

 are easy to see in this
book. Many Oracle installed sites still run Oracle Database 9

i

, and perhaps
even Oracle Database 8

i

 and earlier versions. This means you can use this
book now and continue to use it when you upgrade to 10

g

 in the future.

This book is unique. Because I am an experienced techie myself, I tend
to write what I would like to read. Never in my career of pulling Oracle
books off a shelf and paging through them have I found a book with as
many examples, covering as many different aspects of Oracle SQL. Not to
toot my own horn, but this book is written as a book that people like me
would want to read because it is written by me, for me and my own per-
sonal use. To reiterate, this book is useful not only as a reference manual for
Oracle SQL but also as a basis for rapidly solving coding problems. Simply
look it up and copy the example!

In addition, this book also contains chapters covering Oracle SQL as
applied to XML in Oracle, some PL/SQL basics, Oracle Partitioning, plus
both Oracle Expression Filter and Regular Expressions.

All of the scripts written to create the MUSIC database that is used
throughout this book are found in Appendix A. In addition, you can find
the scripts listed on a simple menu on my website at the following URL:

1

www.oracledbaexpert.com/oracle/
OracleSQLJumpstartWithExamples/index.html

You will find scripts for other books I have written plus other informa-
tion as well, and of course, my resume.

So that is the reason for the title. The use of Oracle SQL applies to a
wide scope of Oracle products and disciplines falling under the umbrella
of Oracle Database 10

g

 and 9

i

. Most significant of these disciplines are
database administration and programming Oracle SQL code (develop-
ment), or other disciplines including any type of database access and appli-
cation programming.

So what is this book about?

 This book is about all aspects of Oracle
SQL, both for DBAs and developers. Essentially this book is all about Ora-
cle SQL with some interesting additions such as XML, basic PL/SQL pro-
gramming, and the basic facts about Oracle Database underlying
architecture.

Preface.fm Page xxii Thursday, July 29, 2004 9:58 PM

Preface xxiii

Preface

What is the objective of this book?

 The objective of this book is to
cover as many of the aspects of Oracle SQL as possible, with the intention
of providing a source of reference and proven examples to any type of Ora-
cle SQL user. The end result will hopefully make people’s jobs a little easier
and perhaps a little more productive as well.

What is the approach in this book?

 The approach in this book is to
present syntax, and then explain and prove by example. So there are two
ways in which this book is organized and written that make it unique among
all other Oracle SQL titles. First, it is organized like an Oracle SQL reference
manual. Second, it is chock full of tested, verified, working examples, cover-
ing nearly every aspect of Oracle SQL possible. This book is also unique
because it does not gloss over details to save paper; it’s all here. Readers of
computer books are constantly looking for simple examples that actually
work so they do not have to spend time thinking about solutions for prob-
lems. The examples in this book are all proofed on Oracle Database 10

g

.

Why is this book needed?

 This book is needed because many Oracle
SQL texts simply present facts without adequate example proof. A book
containing a thorough analysis of Oracle SQL, plus some of its toys and
tricks, is missing from bookshelves and the warehouses of online book
retailers. This book fills the void.

Who would benefit from reading this book?

 Anyone using Oracle
software, and specifically Oracle SQL users, would benefit from reading
this book. This book contains something for everyone from entry level to
more senior experienced Oracle DBAs and programmer/developers, across
a whole range of Oracle SQL tools and methods.

What Is in This Book?

Chapter 1. Introduction to Oracle SQL

This chapter discusses relational data modeling history, Normalization,
Denormalization, and the origins of SQL and different SQL tools. Also
included are Entity Relationship Diagrams for the MUSIC schema. The
MUSIC schema is used throughout this book for examples. The MUSIC
schema includes both transactional (OLTP) tables plus fact-dimensional
data warehouse tables. The database does not contain large amounts of
data. Quantity would be important for an Oracle SQL tuning book but not
an Oracle SQL book.

2

Preface.fm Page xxiii Thursday, July 29, 2004 9:58 PM

xxiv Preface

Chapter 2. New Features of Oracle SQL

This chapter covers new Oracle SQL and PL/SQL features for both Oracle
Database 10

g

 and Oracle Database 9

i

.

Chapter 3. Oracle Database Architecture

This chapter examines the basic architecture of Oracle Database, including
the Oracle Instance, datafile physical architecture, database startup and
shutdown, followed by brief descriptions of some advanced feature options
such as Oracle Partitioning and replication.

Chapter 4. The SELECT Statement

Here you will be introduced to the SELECT statement and different query
types from the mundane to the obscure. There is also some analysis on
some basic queries using simple facets of Oracle SQL such as the DUAL
table, DISTINCT, and NULLs.

Chapter 5. Filtering Rows

This chapter looks at filtering using the WHERE clause, including a brief
examination of expression conditions, logical operators, and Top-N queries.

Chapter 6. Sorting Rows

The ORDER BY clause is used for sorting data in various different man-
ners.

Chapter 7. Operators, Conditions, and Pseudocolumns

Containing referential facts about operators, conditions, and pseudocol-
umns in a single chapter is essential. This is necessary not only for refer-
ence purposes but also as a way of drawing facts together during the
reading process.

Chapter 8. SQL*Plus and iSQL*Plus Reporting

This chapter covers advanced environmental and formatting settings for
using SQL*Plus and iSQL*Plus.

Chapter 9. Single Row Functions

Single row functions used in queries operate as expressions once on each
row retrieved.

Preface.fm Page xxiv Thursday, July 29, 2004 9:58 PM

Preface xxv

Preface

Chapter 10. Joining Tables

The purpose of a join is to retrieve data from a relational structure in a read-
able or more usable format. The result is that joining tables can be fairly
complex, with various different types of joins possible.

Chapter 11. Grouping and Summarizing Data

Grouping and summarizing data is complex, involving various types of
grouping functions from simple aggregation to complex statistical analysis,
and OLTP type activities and even multidimensional spreadsheet and mod-
eling formats.

Chapter 12. Subqueries

Subqueries are perhaps one of the most complex aspects of Oracle SQL.
Subqueries can be used for simplification and tuning of Oracle SQL code.

Chapter 13. Unusual Query Types

Unusual query types encompass less used and specialized types of queries,
including composite queries, hierarchical queries, version flashbacks, and
parallel queries.

Chapter 14. Expressions

There are many types of simple expressions. Expressions are an integral part
of many aspects of Oracle SQL command structure. Additionally, this
chapter covers two factors new to Oracle Database 10

g

: Regular Expressions
and the Oracle Expression Filter.

Chapter 15. Data Manipulation Language (DML)

DML is the part of Oracle SQL allowing changes to data in an Oracle data-
base. Commands include INSERT, UPDATE, DELETE, MERGE, and
special transactional control commands.

Chapter 16. Datatypes and Collections

Datatypes range from simple datatypes containing simple numbers to
object reference pointers and collections. Oracle SQL collection functions
are also included in this chapter.

Preface.fm Page xxv Thursday, July 29, 2004 9:58 PM

xxvi Preface

Chapter 17. XML in Oracle

Oracle SQL allows for generation and manipulation of XML documents in
Oracle Database. This chapter introduces various aspects of using XML in
Oracle SQL.

Chapter 18. Tables

Tables are the primary and central structure for containing data in a rela-
tional database. As a result, table syntax and use is fairly complex. This
chapter begins a series of chapters covering Oracle Database object use and
manipulation.

Chapter 19. Views

A view is a logical overlay over one or more tables. A view does not contain
data but merely a query for accessing data from underlying tables.

Chapter 20. Constraints

Constraints are used to apply rules to data sets and between data sets. Con-
straints can be used on tables and to a more limited extent on views.

Chapter 21. Indexes and Clusters

Indexes are special performance-increasing options used as subsets of table
data sets, often sorted and organized with special high-speed searching
functionality such as binary search trees. Clusters group sets of data
together physically for use as preconstructed high-speed access data sources.

Chapter 22. Sequences and Synonyms

A sequence is a special Oracle Database object used to maintain sequential
counters. Sequences perform much better than manual counters. Synonyms
provide a way to allow reference of database objects across different schemas
and even different databases.

Chapter 23. Security

Security can be divided into two sections, namely users (same as a schema)
and the way in which users access things in a database. Access is controlled
by system and object privileges, sometimes grouped together using roles.

Chapter 24. Basic PL/SQL

This chapter introduces the basics of PL/SQL using syntax and example
coding.

Preface.fm Page xxvi Thursday, July 29, 2004 9:58 PM

Preface xxvii

Preface

Sample Database Used in This Book

The sample database used in this book is called the MUSIC schema. The
MUSIC schema contains a small amount of data with both OLTP and cli-
ent-server type transactional and data warehouse dimensional/fact tables.
Details on the MUSIC schema are covered with explanation and entity
relationship diagrams (ERDs) in Chapter 1 and schema creation scripts in
Appendix A. Scripts are available from a simple menu on my Web site at
www.oracledbaexpert.com/oracle/OracleSQLJumpstartWithExamples/
index.html.

Let’s get started.

Endnotes

1. Universal Resource Locator (Web page address in a browser such
as Internet Explorer)

2. Oracle Performance Tuning for 9i and 10g (ISBN: 1-555-58305-9)

Preface.fm Page xxvii Thursday, July 29, 2004 9:58 PM

This page intentionally left blank

xxix

Acknowledgements

For my wife and daughter who tolerated my nightly and often daily vigils at
the keyboard, and to my favorite cat for not trying to sit on the keyboard
too often.

—Gavin Powell

Many thanks to Gavin Powell for spear heading this project. His hard work
is evident throughout this fine book. And, as always, thanks to my hus-
band, Patrick, and son, Blue, for putting up with me even when I stay up
late and ignore them to meet a deadline.

—Carol McCullough-Dieter

Acknowledgements.fm Page xxix Thursday, July 29, 2004 9:58 PM

This page intentionally left blank

1

1

Introduction to Oracle SQL

In this chapter:

�

Examine the history and evolution of data models and relational and
Oracle Databases.

�

What is relational data modeling?

�

What is SQL?

�

What software do you need to have in order to use this book?

�

What are the tools for executing SQL?

�

Sample tables you use in the book

This chapter will examine data modeling, the origins of SQL, software
requirements, plus SQL tools and how to use them. Finally, we will present
the MUSIC schema, which is used throughout this book. Let’s begin with a
little history.

1.1 A Little History

1.1.1 The Evolution of Database Modeling

The history of databases is essentially the history of different data modeling
techniques. Data modeling techniques have evolved over the last 50 years
from use of simple file systems to relational, object, and object-relational
models. Figure 1.1 shows the evolution of data modeling techniques.

�

File System

. Operating system files or “flat” text files. There is no
logical overlay structure.

Chap1.fm Page 1 Thursday, July 29, 2004 9:59 PM

2

1.1

A Little History

�

Hierarchical

. A branch-leaf tree structure as shown in Figure 1.2
such that child tables can only have single parent tables. A child table
is completely dependent on the existence of its parent table. As a
result, one-to-many relationships are supported but not many-to-
many relationships. The primary disadvantage of a hierarchical struc-
ture is that everything must be accessed from the root node of the
tree. In Figure 1.2, accessing a Song would require retrieval of an Art-
ist and all of that artist’s songs.

Figure 1.1

The Evolution of
Data Modeling.

Figure 1.2

The Hierarchical
Data Model.

Chap1.fm Page 2 Thursday, July 29, 2004 9:59 PM

1.1

A Little History 3

Chapter 1

�

Network

. Refinement of the hierarchical model where many-to-
many relationships are permitted because child tables can have more
than a single parent table. This creates a “networked” structure of
tables as shown in Figure 1.3. A network structure is an improved
hierarchical or branch-leaf tree structure where many-to-many enti-
ties can be accessed, but access to a node still requires access to all par-
ent nodes from the root node.

�

Relational

. Any two tables can be linked irrespective of hierarchical
placement. Therefore, any table can be accessed directly without hav-
ing to access child tables through a hierarchy or network of parent
tables. Relatively complex and efficient data structures can be created
with the relational data model. The operative phrase for use of rela-
tional tables is rapid selection of groups of data rather than single
items. Relational databases are most effective for reporting. An exam-
ple relational structure is shown in Figure 1.4 where any table can be
retrieved from based on key values. Tables or entities are built from
those keys.

�

Object

. Directly addressed hierarchies of collections to any data item
within a structure. This assumes that the direct address or pointer is a
known value. The relational data model is most efficient for accessing
groups of data at once, such as in reporting. On the contrary, the
object data model is excellent for access to unique data items within
large, highly complex data sets or groups of interlinked objects. In
other words, the object data model is much more effective than the

Figure 1.3

The Network Data
Model.

Chap1.fm Page 3 Thursday, July 29, 2004 9:59 PM

4

1.1

A Little History

relational model with respect to extremely complex data structures.
Figure 1.5 shows an object data model.

�

Object-Relational

. Without losing efficiency, minimal object capa-
bilities can be included in a relational data model. Be warned that
relational and object data modeling is completely contrary, and
“building too many” objects in a relational database will likely result
in serious impact on general application performance. It is usually

Figure 1.4

The Relational
Data Model.

Figure 1.5

The Object Data
Model.

Chap1.fm Page 4 Thursday, July 29, 2004 9:59 PM

1.1

A Little History 5

Chapter 1

best to build relations in a relational database and reserve complex
object structure for application code. Figure 1.6 shows storing of
binary images into a relational database.

1.1.2 The History of Relational Databases

Relational databases began with several papers written by Dr. Edgar F.
Codd. Numerous other papers followed by various other researchers. Figure
1.7 shows several distinct branches of development. These branches were
DB2 from IBM, Oracle Database from Oracle Corporation, and a multi-
tude of relational databases stemming from Ingres, which was initially con-
ceived by two scientists at the University of California at Berkeley.

In Figure 1.7, the most important point to note about the general devel-
opment path of relational databases is as follows: Development from one
database to another resided usually in different companies and was charac-
terized by movement of personnel rather than of database source code. In
other words, the people invented the different databases, not the compa-
nies, where people moved between different companies. Additionally,
numerous object databases have been developed. Object databases generally

Figure 1.6

Including
Multimedia in a

Relational
Database.

Chap1.fm Page 5 Thursday, July 29, 2004 9:59 PM

6

1.1

A Little History

have distinct applications. Some object databases have their roots in rela-
tional technology, once again in terms of the movement of personnel skills.

1.1.3 The Evolution of Oracle Database

In the evolution of Oracle Corporation software, certain milestones were
significant:

�

1979

. RSI released the first version of Oracle using a version of SQL.
RSI is the original name of Oracle Corporation.

�

Early 1980s

. RSI was renamed Oracle Corporation, plus cross-plat-
form capabilities and portable toolsets were introduced.

�

Mid-1980s

. Client-server environments and 4GL were introduced.
4GL is an acronym for a fourth-generation programming language.

�

Late 1980s

. Oracle6 was released. The first application Oracle Finan-
cials was introduced, and PL/SQL or Programming Language for SQL

Figure 1.7

The Origins of
Databases.

Chap1.fm Page 6 Thursday, July 29, 2004 9:59 PM

1.1

A Little History 7

Chapter 1

was included. PL/SQL allows execution of SQL commands in blocks,
where sequentially executed lines of code can depend on previously
executed lines of code, much like a programming language. SQL is not
a programming language, however. SQL is a coded tool or shorthand
method of accessing groups of rows from a relational database.

�

Early 1990s

. Oracle7 was released. Oracle7 included Referential
Integrity, cost-based statistics for optimization, and clustering. Ref-
erential Integrity is important for automated maintenance of accu-
racy of related data sets. Cost-based optimization uses statistics,
providing a realistic picture rather than one based on “intelligent”
rules. Rule-based optimization is a best guess for query performance
optimization. Cost-based optimization is vastly superior to rule-
based optimization. Finally, clustering allows for fail-over, scalability,
and high availability.

�

Mid-1990s

. The release of Oracle8 introduced the concept of the
Object-Relational database for Oracle Corporation. Additionally,
thin client and application server capabilities were introduced.

�

Late 1990s

. The first Internet database Oracle Database 8

i

 was
released. Oracle Database 8

i

 was specifically designed for database
Internet access and performance. In addition, database kernel-exe-
cuted Java procedures were introduced. Java or Java Virtual Machine
(JVM) executed code is much more capable of complex coding than
PL/SQL. However, there is something to be said for maintaining
simplicity and sticking to only relational methodologies in a rela-
tional database. Mixing of relational and object methods can some-
times create more complexity than it solves. Object databases are
excellent tools for resolving complexity. Relational databases can
become drastically or even disastrously difficult to understand and
maintain when attempting to cater for complexity.

�

Y2K

. The second-generation Internet database Oracle Database 9

i

was released. Oracle Database 9

i

 has improvements over that of Ora-
cle Database 8

i

. Middle-tier application server and Oracle tools inte-
gration were also introduced.

�

2003.

Oracle Database 10

g

 is the Oracle Grid database designed for
use on grids of large numbers of computers. Grid computing allows
for enormously enhanced scalability, performance, versatility, integra-
tion, and automation. Oracle Database 10

g

 is the first version of Ora-
cle Database to cater to the power of grid computing. Oracle
Database 10

g

 grid computing capacity is limited with respect to grid

Chap1.fm Page 7 Thursday, July 29, 2004 9:59 PM

8

1.2

The Basics of Relational Data Modeling

technology, but that path has been set as the next leap in the com-
puter revolution. Oracle Corporation is pursuing a grid approach and
has always been visionary in the past.

Now let’s look at the basics of relational data modeling, which is impor-
tant because SQL is based on and stems from the relational data model.

1.2 The Basics of Relational Data Modeling

1.2.1 Normalization

Normalization

1,2,3

 is a process of removal of duplicated information.
Removal of duplication reduces the space used and enforces a logical struc-
ture. Relational data modeling utilizes a process called Normalization using
what are called Normal Forms. The three most commonly used Normal
Forms or NF are called 1NF, 2NF, and 3NF. There are other subsidiary and
often overly detailed Normal Forms called 4NF, 5NF, and even beyond
those. I always thought of the accepted definitions of the different Normal
Forms as being academic and far too complex to make any sense of, unless
they are read about five times each. Therefore, I like to simplify the explana-
tions of Normal Forms as follows:

Figure 1.8

First Normal Form
(1NF).

Chap1.fm Page 8 Thursday, July 29, 2004 9:59 PM

1.2

The Basics of Relational Data Modeling 9

Chapter 1

�

First Normal Form (1NF)

. Removes repetition by creating one-to-
many relationships between master and detail entities, as shown in
Figure 1.8.

Note:

An entity is synonymous with or the same thing as a table.

�

Second Normal Form (2NF)

. Creates many-to-one relationships
between static and dynamic entities, as shown in Figure 1.9.

�

Third Normal Form (3NF)

. Can be used to resolve many-to-many
relationships into unique values, as shown in Figure 1.10. This is
where Normal Forms begin to become a bit of a gray area. Sometimes
many-to-many 3NF entities are what I like to call many-to-many join
resolution entities. Many-to-many join resolution entities are often
not utilized by applications and are usually superfluous. Always be
sure that a many-to-many join resolution entity is actually required.
One simple method of being sure that these entities are useful is that
they have a meaningful name. The more entities that are created in a
data model, the more complex SQL code joins will become. Contrary

Figure 1.9

Second Normal
Form (2NF).

Chap1.fm Page 9 Thursday, July 29, 2004 9:59 PM

10

1.2

The Basics of Relational Data Modeling

to popular belief, SQL code joins are never tunable in comparison to
simple SELECT statements against a single table.

�

Fourth Normal Form (4NF)

. Now the concept of Normal Forms
gets even grayer, or perhaps just fuzzier. 4NF entities are often created
in order to remove potentially null-valued columns into separate enti-
ties, minimizing physical space. Because Oracle Database tables use
variable-length records, there is really no point in separating nulls
into separate entities because null is nothing anyway. Nothing occu-
pies no space whatsoever, and thus 4NF is even grayer than 3NF, or
as I said just fuzzy!

�

Fifth Normal Form (5NF) and Beyond

. As far as performance is
concerned, 5NF and beyond should simply be avoided. In fact, 3NF
and beyond are often commercially unviable, usually totally impracti-
cal, and nearly always detrimental to performance.

1.2.1.1 Referential Integrity

Referential Integrity

2

 is a mechanism used to validate data between primary
and foreign key columns in related tables. In order to explain Referential
Integrity briefly, we need to backtrack a little to both data modeling evolu-
tion and Normalization.

Figure 1.10

Third Normal
Form (3NF).

Chap1.fm Page 10 Thursday, July 29, 2004 9:59 PM

1.2 The Basics of Relational Data Modeling 11

Chapter 1

What are primary and foreign keys? Going back to Normalization, Nor-
malization separates tables and removes duplicate data values, creating par-
ent and child tables. At the heart of Normal Forms is the creation of unique
primary keys and their related child table foreign keys. A primary key
uniquely identifies a row in a table, namely a parent table. Thus a table can
have only one primary key, identifying each row in that table as being dif-
ferent from every other row in the same table (uniquely). A foreign key is
placed in a child table, being a copy of the primary key value in a related
parent table. The previous section on the evolution of data modeling stated
that the relational data model allows access to any table using key values,
where a table can be linked to any number of other tables. Therefore, a
child table can contain multiple foreign keys and as a result links to multi-
ple parent table primary keys.

So what is Referential Integrity? Referential Integrity is the process of
ensuring the integrity or correctness of data. First, primary key rows in par-
ent tables cannot be deleted unless foreign key child table rows are deleted
first. Second, rows cannot be added to child tables unless foreign key values
exist in parent tables. An exception to this second rule is where a foreign
key value can contain a null value, in the case of a one-to-many-or-zero
relationship. In other words, parent table rows must exist in order for the
child table row to exist but not always.

Referential Integrity is enforced using Oracle constraints, triggers, or
sometimes even at the application level. The most efficient and effective
method of enforcing Referential Integrity in an Oracle database is by
using constraints, which are centralized and only coded or applied once.
Triggers are extremely slow and either generically coded or overcoded.
Application level–coded Referential Integrity can be more difficult to
maintain than triggers.

1.2.2 Denormalization

Denormalization4 is often, but not always, the opposite of Normalization.
Denormalization should usually be applied to a data model in order to cre-
ate data warehouse or reporting-only type tables. Unfortunately, Denormal-
ization is often required to revive dying applications caused by dreadful
performance. This is often as a result of overzealous use of Normalization in
development of data models and applications. So Denormalization will
often attempt to reverse granularity created by overapplication of Normal
Forms during the Normalization process. Other factors helpful to perfor-
mance can be classified as Denormalization, however vaguely:

Chap1.fm Page 11 Thursday, July 29, 2004 9:59 PM

12 1.2 The Basics of Relational Data Modeling

� Specialized Oracle Database Objects. Clustering, presorting, and
physical preconstruction of data. The objective is to avoid repeating
the same tasks, targeting and tuning hard-hitting SQL code.

� Clusters. Duplicate the most commonly used indexing plus part
of data column values together in the same place physically, in the
desired order. Retrieving from a cluster avoids costly joins and
conflict with highly concurrent source tables.

� Index-Organized Tables. A table is constructed including both
index and data columns in the same physical space. The table
becomes both the index and the data because the table is con-
structed as a sorted binary tree, rather than just a heap or pile of
unorganized bits and pieces.

� Materialized Views. Duplicates, preconstructs, and stores the results
of grouping SQL statements avoiding repetitive SQL. Materialized
views “materialize” or precreate reusable data buckets by storing data
physically separated from source tables.

Note: Views are overlays and not duplications of data and will interfere
with underlying source tables. Views often cause far more in the way of per-
formance problems than the application design issues they ease.

� Copy Columns between Tables. Make copies of columns between
tables not directly related to each other. This can help avoid multiple
table joins between two tables where other tables must be passed
through in order to join the two desired tables.

� Place Summary Columns in Parent Tables. This can help avoid
costly grouping joins, but real-time updates can cause serious prob-
lems with hot blocks.

Note: A hot block is a very busy part of the database accessed much too
often by many different sessions.

� Separate Inactive from Active Data. Physical separation of historical
and perhaps seldom used or completely unnecessary data is often
ignored by data model designs. Avoid searching through data that is
no longer used in order to reduce the amount of physical space
searched through. Historical data can often be destroyed or trans-
ferred to a data warehouse or backups.

Chap1.fm Page 12 Thursday, July 29, 2004 9:59 PM

1.2 The Basics of Relational Data Modeling 13

Chapter 1

� Do Not Mix Heavily and Lightly Accessed Columns. Much like
separating inactive and active data at the table level, tables containing
columns with vastly different rates of access can be separated. This
avoids continual physical scanning of rarely used data column values,
especially when those values do not contain nulls. This is one poten-
tially sensible use of 4NF.

� Cache Data in Applications and Middle Tiers. Direct database
access of static data values can often be avoided.

1.2.3 Different Forms of the Relational Data Model

The relational data model2 has evolved from primary keys containing all
column values in all subsidiary child tables to modern use of surrogate pri-
mary and foreign keys, servicing object-coded online Java applications.

What are surrogate keys? Surrogate keys are abstracted identifying values
for table rows where the actual key values are complete abstractions to the
semantics or contents of the row values. Phew! I bet you would like that
one in English? For example, let’s briefly describe a simple table containing
customers. Your customers could be identified by long, variable-length cus-
tomer names or even unwieldy and difficult to remember customer codes.
A surrogate key is an extra column added to the Customer table. The surro-
gate key is a generated integer value created by an Oracle sequence object,
whenever a new Customer row is added. Customers are later retrieved using
pick lists and transparent access to the surrogate key integer values. In other
words, you do not need to type in the number but simply pick the name
from a list. No typing of long names or codes is required, which is much
easier and more efficient!

So surrogate keys are generated for each row and are usually identifying
integers or pointers to table rows, perhaps somewhat similar to object iden-
tifiers. However, they are not object identifiers. Addressed object identifiers
should never be used in a relational database to identify an object in an
application. Surrogate key integers can be generated extremely efficiently in
Oracle Database using sequence generators (Oracle sequence objects).

Note: Never use centralized tables to store the latest values of individual
sequence counters. This is nice for the application, but your database
might meet with its demise (die) from hot blocking that table. Your job
might join it!

Chap1.fm Page 13 Thursday, July 29, 2004 9:59 PM

14 1.3 Structured Query Language (SQL)

A surrogate key is the most effective and efficient method of both apply-
ing Referential Integrity and accessing single-row data items in OLTP-type,
high-concurrency transactional databases. Obviously, complex composite
primary key values are suited for data warehouse and reporting tables.
Why? Multiple-column indexes are presorted. The exception is where
reporting tables are accessed in more than a single sorted order. Of course,
specialized goodies such as clusters, index-organized tables, and material-
ized views can be utilized.

Next we will look at the origins of SQL and what Oracle SQL is.

1.3 Structured Query Language (SQL)

1.3.1 The Humble Origins of SQL

Why are we going backward in time looking at things no longer in use? In
order to understand SQL code effectively, we need to understand the most
basic forms of SQL, having much to do with why SQL was invented in the
first place. In short, SQL database access has evolved with data modeling
techniques, Oracle Database, and other databases. SQL is pronounced
“sequel” or “ess-queue-ell.” The acronym SQL represents the term Struc-
tured Query Language.

SQL is a language used to query a structured (Relational) data set in a
logically consistent manner.

Note: The query language used to access an Object database is called ODQL.
ODQL stands for Object Definitional Query Language. The acronym “QL”
thus means “query language,” a language used to query a database.

SQL in its most primitive form stems from the idea of a reporting lan-
guage devised in theory by the inventor of the Relational data model. The
roots of SQL lie in retrieval of data sets. What this means is that SQL is
intended as a language to retrieve many rows from one or many tables at
once, a result set. SQL was not originally intended to retrieve individual
rows from a relational database as exact row matches in transactional or
OLTP databases. However, SQL can now be used to do precisely that, and
fairly efficiently.

What does all of this mean without using another plethora of nasty long
words? SQL was developed as a shorthand method of retrieving informa-
tion from relational databases and has become the industry standard over

Chap1.fm Page 14 Thursday, July 29, 2004 9:59 PM

1.3 Structured Query Language (SQL) 15

Chapter 1

the last 20 years. Here is an example of a query (a question posed to the
database that asks for certain information) written in SQL:

SELECT NAME, STREET, CITY, COUNTRY

FROM ARTIST

WHERE COUNTRY IN ('USA','Canada');

1.3.2 What Is Oracle SQL?

Like many other relational database products, Oracle SQL is a proprietary
and exclusive form of SQL written for Oracle Database. ANSI standards
are generally adhered to. Most database vendors have specific characteris-
tics within their exclusive versions of SQL, and Oracle Corporation is no
exception.

Oracle SQL consists of three essential parts:

� SELECT. The SELECT statement is used to retrieve data from Ora-
cle Database objects such as tables, views, or clusters.

� DML. The Data Manipulation Language (DML) changes data in
tables in a database. Commands included are INSERT, UPDATE,
DELETE, and MERGE. All DML commands are subject to transac-
tional control. Transactional control includes the COMMIT and
ROLLBACK commands, which allow changes to be permanently
stored or undone, respectively.

� DDL. The Data Definition Language (DDL) allows changes to “def-
initional” data or metadata. Metadata is the data about the data.
Metadata is the definition of data objects such as tables along with
their column names, sizes, and data types of those column names. In
some relational databases, DDL-type commands can be undone
using a ROLLBACK command, but not in Oracle Database. DDL
commands cannot be committed or rolled back because they are
automatically and forcibly committed (permanently changed).

1.3.2.1 ANSI Standards and Oracle

The standard format of SQL was developed by the American National
Standards Institute (ANSI). ANSI works with companies like Oracle Cor-
poration to develop its standards, thus helping to gain support among com-
petitors for a unified standard that benefits everyone.

Chap1.fm Page 15 Thursday, July 29, 2004 9:59 PM

16 1.4 Software Useful for Reading this Book

Oracle Database provides full support for ANSI standard SQL and, like
most database vendors, adds extra features making SQL more robust and
versatile as a database access language. For example, Oracle Database con-
tains a rich set of functions. These functions can be used to alter column
data within queries. For instance, the UPPER function can convert all of
the letters in a word to capitals, and ADD_MONTH can add a month to a
date, among a comprehensive multitude of other function options.

Let’s digress a little and examine software that is useful to have for read-
ing this book.

1.4 Software Useful for Reading this Book

Oracle Database 10g or Oracle Database 10 Grid is the latest relational
database management system (RDBMS) from Oracle Corporation. Oracle
Database began in the 1970s and has grown to be the dominating force in
the database market.

Oracle Database 10g is delivered with an extensive a set of standard util-
ities, tools, and wizards, some of which help you get going quickly. The
Oracle Database 10g database engine is set up to run the same way on all
platforms. For example, Oracle Database 10g running on UNIX has all of
the same features as Oracle Database 10g running on Windows 2000 or
Windows 2003. Oracle Database 10g is available on Solaris, Windows NT/
2000/XP Pro, Linux, and AIX, to name a few.

Although Oracle Database 10g looks the same to you regardless of the
platform you use, on the inside each operating system’s version of Oracle
Database 10g is different. Oracle takes advantage of each computer’s unique
features for storage, reading, writing, and so on, in the programming of the
software.

To use this book and run all of the examples, experimenting with SQL
commands, you need the following software:

� Oracle Database 10g. When you install the software, you will have
some choices. First, be sure to select Oracle Database 10g. Next, you
can select any of the three editions of the database: (1) the Enterprise
Edition is for large, multiuser databases; (2) the Standard Edition is
for small workgroups; and (3) the Personal Edition is for a single user.
All three editions contain the same capabilities for the SQL work you
will do in this book. They have different licensing costs. Install
whichever edition fits your requirements the best.

Chap1.fm Page 16 Thursday, July 29, 2004 9:59 PM

1.5 Syntax Conventions Used in This Book 17

Chapter 1

� Internet Browser. One of the more recent features of Oracle Data-
base is the browser version of its SQL tool, called iSQL*Plus.

That’s it! If you need instructions on how to install Oracle Database
10g, refer to the online documentation found on Oracle’s Technet Web site
(otn.oracle.com). The Web site requires you to register, but registration is
free. Once registered, you have access to valuable resources.

� Installation guides. Go to this Web site and select the installation
guide under the database release number and operating system you
are using. The documentation is supplemented with an excellent
search tool that helps you zoom into areas of interest very quickly.

� Forums. Find out what other Oracle users have to say about the data-
base features and get feedback from Oracle technical support person-
nel for free.

� Temporarily licensed software. Download extras and demonstra-
tions to learn all you want about features such as XML in the data-
base, Java applications, and the Oracle Internet File System.

Note: The content of and manner in which online documentation and
downloads are accessed can change at any time. Downloads are generally
much too large for a modem connection. Temporarily licensed software can
usually be ordered on CD-ROM from Oracle Corporation for a nominal
shipping fee.

Now let’s look at syntax conventions used in this book.

1.5 Syntax Conventions Used in This Book

Syntax diagrams in this book utilize what is known as Backus-Naur Form
syntax notation convention. Backus-Naur Form has become the de facto
standard for most computer texts. Oracle SQL is used to describe the
notation.

� Angle brackets: < … >

Chap1.fm Page 17 Thursday, July 29, 2004 9:59 PM

18 1.5 Syntax Conventions Used in This Book

Angle brackets are used to represent names of categories (variable
substitution representation). In this example, <table> will be replaced
with a table name in a schema as shown:

SELECT * FROM <table>;

becomes:

SELECT * FROM ARTIST;

Note: Angle brackets are generally not used in this book unless stated as
such at the beginning of a chapter.

� OR: |

A pipe, or | character, represents an OR conjunction meaning either
can be selected. The asterisk (*) and curly braces are explained further
on. In this case, all or some columns can be retrieved, some meaning
one or more.

SELECT { * | { <column>, … } } FROM <table>;

� Optional: […]

In a SELECT statement, a WHERE clause is syntactically optional.

SELECT * FROM <table> [WHERE <column> = …];

� At least one of: { … | … | … }

In this example, the SELECT statement retrieval list must
include an asterisk (*), retrieving all columns in a table, or a list of
one or more columns.

SELECT { * | { <column>, … } } FROM <table>;

Chap1.fm Page 18 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 19

Chapter 1

Note: This is not a precise interpretation of Backus-Naur Form, where
curly braces usually represent zero or more. In this book, curly braces repre-
sent one or more iterations, never zero.

It’s time to look at some of the tools you can use for executing SQL
commands.

1.6 SQL Tools

Oracle has provided a user-friendly interactive tool for running SQL since
its first release. The SQL*Plus tool today has four variations from which to
choose:

� SQL*Plus Command Line. Use this when you don’t have a Win-
dows interface, such as when using telnet to reach a remote UNIX
database server.

� SQL*Plus Windows. Use this in a Windows-capable environment
(can be invoked using a network name from a client or directly on
the database server, regardless of the operating system).

� SQL*Plus Worksheet. This comes as part of Oracle Enterprise Man-
ager, a Windows-like user interface created to support the database
administrator and simplify many tasks.

� iSQL*Plus. This gives you the same interface as SQL*Plus Windows,
except it runs in a Web browser. Use this to run SQL commands and
automatically generate a report in HTML format.

The next sections show you how to start up all four of these tools and
try them out with some SQL commands. Any of the SQL tools can be
used.

1.6.1 SQL*Plus in Command-Line Mode

This is the most basic SQL interface you can use. It requires only a com-
mand line to run, which makes it useful for very quick access via a remote
dial-up connection or perhaps when a database is shut down.

Chap1.fm Page 19 Thursday, July 29, 2004 9:59 PM

20 1.6 SQL Tools

Before you begin the following steps, you will need these two pieces of
information about your database:

� The database name or network name. If you are running the
database on your own computer, this is the name you gave the data-
base when it was created. If you are not sure what you named it, go
to a command prompt (see step 1 to learn how) and then type this
command:

lsnrctl status

Look for a line that begins like this. The word in quotation marks
is your database name. In this example, the database SID name is
OLTP.

Instance "oltp", status READY, ...

If you are running from a client computer and using a remote
database on the network, you must use the network name defined in
your local Oracle Net configuration. The configuration file named
TNSNAMES.ORA has all of the network names available to you.
The file is located in $ORACLE_HOME/network/admin directory.
Here is an example of the text found in the TNSNAMES.ORA file
for the OLTP network name:

OLTP =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS =

 (PROTOCOL = TCP)

 (HOST = 1300server)

 (PORT = 1521)))

 (CONNECT_DATA =

 (SERVER = DEDICATED)

 (SERVICE_NAME = oltp)))

Chap1.fm Page 20 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 21

Chapter 1

� The password for the users named SYS and SYSTEM. The Oracle
Database Configuration Assistant in Oracle Database 10g allows set-
ting of SYS and SYSTEM passwords to the same value.

If you are running a database on your own computer or on a database
server, you can reach the database directly by omitting the database name.
When you omit the name, Oracle uses the bequeth protocol and the cur-
rent $ORACLE_SID variable setting to access the database. In Windows
the $ORACLE_SID variable is set in the registry, and on UNIX or Linux
in a user or root profile. Figure 1.11 shows a Win2K registry location.

When you use the database name, Oracle uses the transmission control
protocol (TCP). Follow these steps to start up SQL*Plus Command Line
and run an SQL command:

Note: The steps here, and throughout the book, use the sample tables and
data created especially for this book. Appendix A contains instructions for
locating and installing all of the sample tables.

1. Go to a command-line prompt on your computer. If you are
using Windows, click on Start/Programs/Accessories/Command
Prompt. A window appears with a blinking cursor. This is your

Figure 1.11
Win2K Registry
ORACLE_SID

Variable.

Chap1.fm Page 21 Thursday, July 29, 2004 9:59 PM

22 1.6 SQL Tools

command prompt. If you are using UNIX, you may be at the
command prompt when you log in. It looks like a dollar sign ($).
If you are not already at the UNIX command prompt, select Ter-
minal Window from your Utilities menu or execute an operating
system shell.

2. Type the following command, replacing pwd with the password
for the SYSTEM user and replacing name with your appropriate
network name, and press Enter.

sqlplus system/pwd@name

3. You will see status information about SQL*Plus and the database
and a message stating you are connected. Then your display’s
prompt changes to “SQL>”, indicating that you are now in
SQL*Plus. Figure 1.12 shows an example of the command
prompt window after starting up SQL*Plus.

4. Type the following SQL*Plus commands, and press Enter after
each line. These set up the column width displayed for the query
that follows. (More on SQL*Plus commands in Chapter 8.)

COL PRODUCT FORMAT A35

COL VERSION FORMAT A15

COL STATUS FORMAT A15

5. Type the following query and press Enter:

Figure 1.12
SQL*Plus

Command Line in
Windows 2000.

Chap1.fm Page 22 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 23

Chapter 1

SELECT * FROM PRODUCT_COMPONENT_VERSION;

The asterisk represents all of the columns. Thus all columns are
displayed in this query. Figure 1.13 shows the results. The actual
data may be different, depending on the shape of your Oracle
Database 10g installation.

6. Exit SQL*Plus by typing EXIT and pressing Enter. This returns
you to your command prompt.

7. Exit from the command prompt by typing EXIT and pressing
Enter.

One of the disadvantages of using the command-line mode of SQL*Plus
is the inability to use the mouse to correct your typing. You must erase using
the backspace key. Table 1.1 shows the editing commands you can use.

An advantage of the command-line mode is the ability to add parame-
ters to the sqlplus command. For example, you can run a script immedi-
ately upon startup, or start SQL*Plus without logging into any database
instance (this is useful for issuing SQL commands for starting and stopping
the database).

SQL*Plus does have a line editor built into it that you can use instead of
starting up an editor.

Figure 1.13
SQL*Plus SQL

Commands Return
Instant Results.

Chap1.fm Page 23 Thursday, July 29, 2004 9:59 PM

24 1.6 SQL Tools

Next, you will look at the Windows-like SQL*Plus tool.

1.6.2 SQL*Plus in Windows Mode

This version of SQL*Plus gives you a Windows-like interface with a few
environmental options. However, it still requires you to type a single line at
a time.

To try out SQL*Plus in Windows mode, follow these steps:

1. If you are using a Windows operating system, start the tool by
clicking Start/Programs/Oracle – Orahome10/Application Devel-
opment/SQL*Plus. If you are using another operating system, go
to a command-line prompt, type sqlplusw, and press Enter.

You will see a Log On window appear. You must log on with
valid credentials now.

2. Type SYSTEM in the User Name box, the current password for
SYSTEM in the Password box, and your database name in the
Host String box. Figure 1.14 shows the Log On window with the
information filled in. Notice that the password appears as a line of
asterisks. This is to keep your password private.

3. Click OK to log in. The SQL*Plus window appears. Just like
the command-line version, you see status information and get

Table 1.1 SQL*Plus Line Editing Commands.

Command Description

c/old/new Change old to new characters in current
line.

l or list List the SQL in the buffer.

l n Go to line n in the SQL buffer.

del n or del * or del n m Delete line n in the SQL buffer, or delete
the current line (*) or delete lines n
through m.

a text or append text Add text to the end of the current line.

i or input or i text or input text Insert a new line after the current line.
Add text to the line, if text is specified.

Chap1.fm Page 24 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 25

Chapter 1

an SQL> prompt telling you that SQL*Plus is ready to accept
commands.

4. Type the following command and press Enter. This is an
SQL*Plus command that tells the database to list the structure of
the table or view that you name. A view is a query stored with a
name in the database. It acts like a table but does not store any
data. (Chapter 19 covers views in detail).

DESC DBA_USERS

5. The screen shows the names and datatypes of all the columns in
this view. This is very useful when you are about to write an SQL
command and you need a quick reminder of the exact column
names in a table. Now type this query and press Enter after each
line. Notice that the prompt changed from “SQL>” to “2” on the
second line. This indicates that SQL*Plus knows you have started
a command and you are continuing it on the next line. The semi-
colon at the end of the second line signals to SQL*Plus that the
command is complete and should be immediately executed.

SELECT USERNAME, ACCOUNT_STATUS, CREATED

FROM DBA_USERS;

6. The results scroll by, and you can use the scroll bar on the right
side of the window to move up or down and view the results. Fig-
ure 1.15 shows the results from the query. The column headings

Figure 1.14
Log into Your
Database as a

Valid User.

Chap1.fm Page 25 Thursday, July 29, 2004 9:59 PM

26 1.6 SQL Tools

and report feedback are standard parts of every mode of
SQL*Plus; however, the scroll bar and the menu are features of
the Windows mode and not of the command-line mode. Some
operating systems will allow configuration changes to allow addi-
tion of scroll bars to command-line windows.

7. Click on Edit in the top menu and invoke the editor. A window
appears with an editing program and the text of the query you
wrote ready for editing. In Windows, the default editor is Note-
pad. In UNIX, Linux, and other operating systems, the default
editor can be configured in a user profile.

8. The editor can be used to change the command you created while
working in SQL*Plus. You can retrieve files with SQL commands
in them using the File/Open command on the menu. Selecting
the File/Run command from the menu will execute the most
recent SQL command. Modify the query by removing the CRE-
ATED column from the query.

9. Save the file and exit the editor. The modified query now appears
on the screen, ready to run if you choose. Figure 1.16 shows what
your SQL*Plus screen should look like now.

10. Before running the command, select File/Spool/Spool File from
the menu. A window opens in which you can select the file name
and location. This file will contain everything you type and
SQL*Plus returns from the moment you return to SQL*Plus

Figure 1.15
SQL*Plus in

Windows Mode
Has a Scroll Bar

and Menu.

Chap1.fm Page 26 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 27

Chapter 1

until you turn it off, or until you exit SQL*Plus. This is a handy
way to record your work. In addition, in Chapter 8, you will find
out how to write reports using this spooling technique. Navigate
to a directory of your choosing, such as C:\TEMP in Windows,
and then type “testing” as the file name and click Save. The file
will automatically receive a suffix of “.LST” on Windows and of
“.lis” on UNIX and other operating systems.

11. Type / (a forward slash) to run the query. The forward slash and
the semi-colon both tell SQL*Plus to execute a command. The
forward slash must be used alone on a line by itself, whereas the
semi-colon is used at the end of a line of code. The semi-colon
terminates and submits a single-line SQL command to the data-
base. The forward slash does the same and additionally compiles
and executes blocked sections of PL/SQL code.

12. The results scroll into the window as before.

13. Type the letter L and press Enter. This is the LIST command of
SQL*Plus. It displays whatever SQL command is currently in the
SQL*Plus buffer.

14. Select File/Spool/Spool off to end the spooling of data to the file.
This closes the file that has been receiving data from the
SQL*Plus session. Your spool file will be empty until this com-
mand is executed or you exit SQL*Plus.

Figure 1.16
Invoking

(Opening) the
Editor.

Chap1.fm Page 27 Thursday, July 29, 2004 9:59 PM

28 1.6 SQL Tools

15. Exit SQL*Plus by typing EXIT and pressing Enter or by clicking
the X at the top right corner of the window.

16. Navigate through Windows Explorer to find the TESTING.LST
file that was spooled in the location you chose. If you are using
UNIX, use the cd command or your File Directory window to
find the testing.lst file. Open the file with your editor and view
the results. You should see the forward slash (the first thing you
typed after turning on spooling), the query results, the “L” com-
mand, and the query in this file.

Spooling is useful for saving queries you develop in SQL*Plus. In
addition, with a few extra commands, you can create a report
(with headings, titles, summaries, and so on) from SQL queries
and spool the report to a file ready for printing.

17. Close the file.

Note: If you make a mistake and press Enter before fixing it, you sometimes
get a line number prompt instead of an SQL prompt. This means
SQL*Plus has interpreted your line as the beginning of a command and is
expecting you to complete the command before executing. To get out of
this continuing line mode, type a period (.) alone on a line and press Enter.
You will be returned to the SQL prompt so you can begin again.

Another form of the SQL*Plus tool can be found within Oracle Enter-
prise Manager.

1.6.3 SQL*Plus Worksheet

The Oracle Enterprise Manager (OEM) is a great set of tools for the data-
base administrator (DBA). The OEM Console gives you a bird’s-eye view of
your database, or many databases if you have access to more than one. The
SQL*Plus Worksheet is a standard part of the OEM suite that is installed
when you install Oracle Database 10g (Enterprise, Standard, or Personal
Editions).

To run the worksheet by itself, without going through the OEM Con-
sole, follow these instructions:

Chap1.fm Page 28 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 29

Chapter 1

1. Start SQL*Plus Worksheet from Windows by clicking Start/Pro-
grams/Oracle – Orahome10/Application Development/SQL*Plus
Worksheet. If you are using UNIX, Linux, or other platforms, go
to a command prompt and type:

oemapp worksheet

2. A login window appears. The window title is “Oracle Enterprise
Manager Login” because the same login window appears for the
OEM Console and other OEM tools. Select the “Connect
directly to the database” button.

Note: The Management Server is out of the scope of this book.

Type SYSTEM in the User Name box, the current password for
SYSTEM in the Password box, and your database name in the
Service Name box. Leave the Connect As box defaulting to “Nor-
mal.” Figure 1.17 shows the completed login window; click OK
to log into SQL*Plus Worksheet.

3. The SQL*Plus Worksheet window appears. The top windowpane
is your area for typing SQL commands. The lower pane displays
the results. Click Enter to clear the window.

4. Type the following query in the top pane:

SELECT FILE_NAME, BYTES FROM DBA_DATA_FILES;

Figure 1.17
Log into SQL*Plus

Worksheet.

Chap1.fm Page 29 Thursday, July 29, 2004 9:59 PM

30 1.6 SQL Tools

5. Click the Execute icon. The icon looks like a lightning bolt and is
located on the left side of the window. The results of the query
scroll down on the lower pane. Figure 1.18 shows the SQL*Plus
Worksheet window at this point.

6. Modify the query by changing “FILE_NAME” to “MAX-
BYTES.” Notice that you can edit directly in this tool without
resorting to an editor.

7. Run the changed command by clicking the Execute icon again.
The results appear in the lower pane.

8. Hold your mouse over each of the icons on the left side of the
window to see the other handy functions available in this tool.
For example, the icon just below the Execute icon can list up to
50 previous SQL commands.

9. Exit this tool by clicking the X in the top window or typing EXIT
and clicking the Execute icon.

The SQL*Plus Worksheet may be the most versatile of the SQL*Plus
variations. You may find it easier to work with than SQL*Plus Windows or
command-line versions and capable of more features than the Web version
found in the next section.

Figure 1.18
SQL*Plus

Worksheet Has
Useful Windows-

like Functions.

Chap1.fm Page 30 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 31

Chapter 1

Note: SQL*Plus Worksheet is the tool this book uses to guide you through
learning SQL and SQL*Plus commands. Feel free to use the other tools if
you prefer, although screenshots, when they are used, will display SQL*Plus
Worksheet window in most cases.

1.6.4 iSQL*Plus

The Web server, called Oracle HTTP Server, can be installed with Oracle
Database 10g. The HTTP Server is a miniature application server set up to
run the Web-based tools and programming aids that come with Oracle
Database 10g.

To start up the HTTP Server on UNIX, type this command at a com-
mand prompt:

$ORACLE_HOME/Apache/Apache/bin/apachectl start

In most cases, if you are using Windows, the Oracle HTTP Server is
already running when you boot up your computer. If you need to start it,
however, you can do so by selecting Start/Programs/Oracle – Orahome10/
Oracle HTTP Server/Start HTTP Server powered by Apache from the Task
bar. Alternatively, you can start it by clicking Start/Services/Control Panel
and opening the Services window (go to Administrative Controls first, if you
are running Windows 2000). Then start the Oracle HTTP Server service.

Note: If there are problems, see the troubleshooting section in Chapter 8.

Follow these steps to look around with the iSQL*Plus tool:

1. Open your browser.

2. Type in this address in the Location box of your browser and
press Enter. You must replace mymachine with the actual net-
work name of your computer and mydomain with the actual
domain name your computer is in (if none, leave this out). The
default port number is 7778, so try that first.

http://<mymachine>.<mydomain>:7778/isqlplus

Chap1.fm Page 31 Thursday, July 29, 2004 9:59 PM

32 1.6 SQL Tools

iSQL*Plus presents a login screen, as seen in Figure 1.19. If
you do not see this screen, read the section on troubleshooting in
Chapter 8.

3. Type SYSTEM in the Username box, the current password for
SYSTEM in the Password box, and your network name in the
Connection Identifier box. Figure 1.19 shows the boxes filled in.
As usual, the password is displayed as a string of asterisks for pri-
vacy. Click the Login button to go to the main screen.

4. The main screen for iSQL*Plus appears. Type the following query
into the box labeled “Enter statements,” and then scroll down
and click the Execute button.

SELECT VIEW_NAME, TEXT FROM USER_VIEWS;

The SQL command is executed, and the results appear at the bot-
tom of the screen. Scroll down to view the results, as shown in
Figure 1.20.

Figure 1.19
iSQL*Plus Gives

Direct Access to the
Database.

Chap1.fm Page 32 Thursday, July 29, 2004 9:59 PM

1.6 SQL Tools 33

Chapter 1

5. Scroll back to the top of the screen. Here are some control but-
tons to explore, as you see in Figure 1.21. The History button is
similar to the SQL History icon in SQL*Plus Worksheet. It lists
previous SQL commands and loads them back into the Work
Screen. The Preferences button displays a selection of settings
especially for the browser window, such as the width of the out-
put area and whether to place the results in the same browser win-
dow (the default) or in a new browser window. In addition, the
Preferences screen sets SQL*Plus environmental variables (com-
mon to all versions of SQL*Plus), such as LINESIZE, ECHO,
and HEADINGS. Learn more about these settings in Chapter 8.

6. Click on the Help icon in the top right corner of the window.
This brings up a directory of links to commands especially for
iSQL*Plus (in the first column), and links to SQL*Plus com-
mands that are used for all the versions of SQL*Plus in the sec-
ond and third columns. Use this if you are not sure how to do
SQL*Plus tasks such as setting the number of lines per page on a
report, automatically displaying (or suppressing) the SQL com-
mand before running the command, and so on.

7. Exit this window by clicking the X in the top right corner. The
main iSQL*Plus window is still open.

Figure 1.20
Query Results
Shown as an

HTML Table.

Chap1.fm Page 33 Thursday, July 29, 2004 9:59 PM

34 1.7 The MUSIC Schema

8. Exit the iSQL*Plus browser by clicking Logout link, and then
clicking the X in the top right corner when you see the iSQL*Plus
login screen.

Note: See Chapter 8 if you cannot reach the iSQL*Plus login screen.

1.7 The MUSIC Schema

The sample data described here will be used as a basis to write your own
SQL commands as you follow along with step-by-step exercises in every
chapter.

Figure 1.22 shows the database design structure of the tables, includ-
ing their primary keys (the columns that define a unique record) and their
columns.

This schema supports a fictional music studio. The music studio keeps
track of the musicians who use the studio and the time they spend in the
studio recording songs. Here is a short description of each table:

Figure 1.21
iSQL*Plus Is a

Rich Environment.

Chap1.fm Page 34 Thursday, July 29, 2004 9:59 PM

1.7 The MUSIC Schema 35

Chapter 1

� ARTIST. A musician who has either recorded a song or participated
in recording another musician’s song. Each artist record has the
name, address, and e-mail of the musician. Every artist has a unique
identification number (ARTIST_ID) assigned when the record was
entered into the database table. In addition, a special column called
INSTRUMENTS contains a list of musical instruments the musician
plays. This special column is a collection (a list of many values held in
a single column).

� SONG. The ARTIST_ID column identifies the owner of each song
in the table. Each song has a title, recording date, and playing time.
The RECORDING column contains the final recorded song in an
audio format, ready to play.

� MUSICCD and CDTRACK. A music CD has two tables for all the
information. First, the MUSICCD table holds the CD title, date it
was pressed, and the total playing time of the CD. Second, the
CDTRACK table contains all the songs for each CD and the order in
which that song appears on the CD. This arrangement of tables

Figure 1.22
The Music Studio

Schema.

Chap1.fm Page 35 Thursday, July 29, 2004 9:59 PM

36 1.7 The MUSIC Schema

allows one song to be included on more than one CD. For example,
The Beatles’ song “Let It Be” is on the White Album CD and on The
Beatles’ Greatest Hits CD.

� GENRE. Music CDs can be categorized into genres or types of
music. Genres are hierarchical in nature, where one genre can be a
subset of another genre.

� STUDIOTIME. When a musician (artist) comes into the studio to
record a song, the studio charges the artist for time spent in the stu-
dio. This table contains information needed for billing the artist. An
artist may have many studio sessions, and each session is a row in the
STUDIOTIME table.

� GUESTAPPEARANCE. A musician seldom records a song alone.
Even though the musician owns the song, he or she often asks other
musicians to collaborate on the recording. This table keeps track of
which musician (called the guest artist) played on what other musi-
cian’s songs.

� INSTRUMENTATION. When a guest artist plays on a song, he or
she plays one or more instruments. This table keeps track of which
instrument each guest artist played on each song. For example, Jim
played drums and sang backup vocals (the voice is considered an
“instrument” in these tables) on Amy’s song. Later Amy played guitar
on Jim’s song.

� INSTRUMENT. The instrument table assigns an identifying num-
ber to each instrument. The number is used in the INSTRUMEN-
TATION table. So, instruments are actually stored in two different
ways in the schema: (1) as a collection in the ARTIST table and (2)
as individual rows in the INSTRUMENT table. This is done to
illustrate the variety of methods you can use when designing a data-
base system.

1.7.1 The MUSIC Schema Sales Data Warehouse

The OLTP schema in Figure 1.22 is expanded in Figure 1.23 to create a
data warehouse5 structure for CD sales. In general, data warehouse tables
can be broken into dimension and fact tables. Fact tables contain facts
such as sales record history, and dimensions describe the facts such as the
countries in which sales took place. Roughly, dimensions are equivalent to
OLTP static tables such as a table of customers. Facts are roughly equiva-
lent to OLTP transactional tables such as sales transactions. A data ware-

Chap1.fm Page 36 Thursday, July 29, 2004 9:59 PM

1.7 The MUSIC Schema 37

Chapter 1

house data model should in its ideal form be in the structure of a star (star
schema) or in a less ideal form of a degraded star schema (snowflake). In
Figure 1.23 the SALES table is the fact table, and all other tables are
dimensions of those sales entries. The schema represented by the entity
relationship diagram is in fact a snowflake schema because of the relation-
ship between the CONTINENT and COUNTRY tables. This relation-
ship is not strictly necessary, but it was useful during the process of
writing this book.

� Dimension Tables. RETAILER, CONTINENT, and COUNTRY
are all purely dimensional entities of SALES.

� Partial Dimension Tables. The CUSTOMER table could be con-
strued as being a partial fact table describing SALES table entries,
apart from the fact that there is a link to the GENRE table in the
OLTP structure. Links are shown in Figure 1.24.

� Fact Tables. The SALES table is a fact table because it contains facts
about sales or, more simply put, sales transaction records. All dimen-
sions describe SALES such as what country a sale occurred in.

Figure 1.23
The Music Studio

Schema Sales Data
Warehouse.

Chap1.fm Page 37 Thursday, July 29, 2004 9:59 PM

38 1.8 Endnotes

There are links between the two sets of OLTP and data warehouse
tables, as highlighted in Figure 1.24.

All scripts used to create tables and their data are provided in Appendix A.

The next chapter will briefly list new features available for SQL in both
Oracle Database 10g and Oracle Database 9i.

1.8 Endnotes

1. www.oracledbaexpert.com/oracle/secure/Normalization.doc

2. Oracle Performance Tuning for 9i and 10g (ISBN: 1-555-58305-9)

3. My version of the Normalization is a highly simplified version. I
have twisted Normal Forms deliberately.

4. http://www.oracledbaexpert.com/oracle/secure/
Denormalization.doc

5. http://www.oracledbaexpert.com/oracle/secure/
TheVeryBasicsOfDataWarehouseDesign.doc

Figure 1.24
OLTP to Data

Warehouse Links.

Chap1.fm Page 38 Thursday, July 29, 2004 9:59 PM

39

2

New Features of Oracle SQL

In this chapter:

�

What are the new features of Oracle SQL in Oracle Database 10

g

?

�

What were the new features of Oracle SQL in Oracle Database 9

i

?

�

What PL/SQL improvements are there?

�

How is XML development better supported?

�

What’s new in Oracle SQL utilities?

This chapter takes a bird’s-eye view of Oracle SQL changes in both Ora-
cle Database 10

g

 and Oracle Database 9

i

. Without further ado, let’s get
started with Oracle Database 10

g

.

2.1 New Features in Oracle Database 10

g

Oracle Database 10

g

contains the following SQL and PL/SQL features.

2.1.1 Oracle SQL Improvements in Oracle Database 10g

�

Oracle documentation states that case sensitivity is no longer
required for filtering and sorting in SQL statements. Proving this
point is a tuning exercise and does not belong in this book.

�

The CONNECT BY clause now allows ancestor-descendant pairs as
opposed to only parent-child pairs. In other words, pairs can be
matched and returned where those pairs are not directly related
within a hierarchy but related from the top to the bottom of a hierar-
chy (see Chapter 13).

Chap2.fm Page 39 Thursday, July 29, 2004 9:59 PM

40

2.1

New Features in Oracle Database 10g

�

Object improvements include VARRAY resizing and splitting of
nested table type columns into different tablespaces (see Chapter 16).

�

A new row timestamp pseudocolumn called ORA_ROWSCN con-
tains a commit point timestamp or system change number (SCN).
For updates only, the SCN for a row must be retrieved to ensure that
no row change occurred between a row SELECT and subsequent
UPDATE.

�

The following new datatypes have been added (see Chapter 16):

�

BINARY_FLOAT and BINARY_DOUBLE allow 32-bit single
precision and 64-bit double precision floating-point numbers.

�

SDO_GEORASTER and SI_STILLIMAGE store raster and dig-
ital images, respectively (including object characteristics), for
object-relational multimedia storage.

�

A multitude of DDL commands have been altered and enhanced.
Most DDL command changes are relevant to database administra-
tion and not Oracle SQL.

�

Several SELECT statement and DML command syntax changes have
been introduced:

�

MERGE allows insertions, updates, or both. Previously, the
MERGE command always performed both insertions and
updates. Additionally, MERGE can also delete rows from the tar-
get table (see Chapter 15).

�

SELECT can be executed as a flashback or versions query, retriev-
ing data at a point in time in the past, based on an SCN or times-
tamp (see Chapter 13).

�

Grouped outer joins allow groupings on data where subset parts
may not exist.

Note:

Grouped outer joins are omitted from this book because syntax

documentation was not available at the time of writing.

�

The SPREADSHEET clause extends the SELECT statement,
allowing multiple dimensional array query result output. Calcu-
lations between resulting rows can be performed much like
cross-tabbing or interdimensional data warehouse reporting (see
Chapter 11).

Chap2.fm Page 40 Thursday, July 29, 2004 9:59 PM

2.1

New Features in Oracle Database 10g 41

Chapter 2

Note:

The SPREADSHEET clause has been renamed to the

MODEL clause.

�

Oracle Database 10

g

 has recycle bin technology (see Chapter 18):

�

Recovering a table from the recycle bin requires use of the
FLASHBACK TABLE command.

�

The PURGE command is used to permanently destroy objects
dropped into the recycle bin. Space is not released for dropped
objects until they are purged.

�

New built-in functions are as follows:

�

COLLECT creates a nested table from the row set result of a sin-
gle column in a table (see Chapter 16).

�

Nested tables have new collection functions (see Chapter 16):

�

CARDINALITY returns the number of elements in a collec-
tion for each row.

�

POWERMULTISET returns all set elements in a collection.

�

POWERMULTISET_BY_CARDINALITY combines the
previous two functions by returning all set elements with a
specified number of entries, for each collection in each row.
One could find every row in a table where that collection has
a specified number of entries.

�

SET converts a nested table (collection) for each row to a set.
A set contains unique values only such that duplicates are
removed within each collection in each row.

�

SPREADSHEET clause functions are used to facilitate cross cal-
culations between different rows. Functions include the following
(see Chapter 11):

�

CURRENTV returns a dimensional value or current value.

�

PRESENTNNV returns one expression if a value exists, oth-
erwise another.

�

PRESENTV is as for PRESENTNNV except allowing null
values.

�

PREVIOUS returns a value at the beginning of each iteration
or loop.

�

New binary floating-point number functions include the follow-
ing (see Chapter 9):

�

TO_BINARY_DOUBLE and TO_BINARY_FLOAT allow
for conversions.

Chap2.fm Page 41 Thursday, July 29, 2004 9:59 PM

42

2.1

New Features in Oracle Database 10g

�

NANVL returns a replacement value if the initial value is not
a number.

�

REMAINDER is a remainder or modulus function specifi-
cally for binary floating-point numbers.

�

Regular expression functions are REGEXP_INSTR,
REGEXPR_REPLACE, and REGEXPR_SUBSTR. These func-
tions essentially expand the search-and-replace capabilities of
INSTR, REPLACE, and SUBSTR to full pattern-matching reg-
ular expression capabilities. For more information, refer to the
section titled “Expressions” (on page 44) in this chapter and see
Chapter 14.

Note:

The essential difference between simple pattern matching and regular
expression matching is that simple pattern matching searches for patterns.
Regular expression matching searches for patterns allowing for replacement

and return of specific values found within a pattern.

�

New statistical aggregation functions are covered in detail in
Chapter 11. Statistical analysis can be extremely useful in data
warehouse and reporting environments. There is now extensive
capability in Oracle SQL for OLAP-type inter-row and cross-row
analysis, which was previously only available in expensive software
packages and add-ons such as Formula1.

�

CORR_{S | K} calculate Pearson’s correlation coefficient,
measuring the strength of a linear relationship between two
variables. Plotting two variables on a graph results in a lot of
dots plotted from two axes. Pearson’s correlation coefficient
can tell you how good the straight line is.

�

MEDIAN returns a median, middle, or interpolated value.
Quite literally, a median is the middle sequenced value in a
set of values. If a distribution is discontinuous and skewed or
just all over the place, the median will not be anywhere near a
mean or average of a set of values. A median is not always ter-
ribly useful.

�

Other statistical functions begin with “STATS.” The syntax
appears like this:

STATS_{BINOMIAL_TEST | CROSSTAB | F_TEST | KS_TEST |
MODE | MW_TEST | ONE_WAY_ANOVA | STATS_T_TEST_* |
STATS_WSR_TEST}

These functions provide various statistical goodies.

Chap2.fm Page 42 Thursday, July 29, 2004 9:59 PM

2.1

New Features in Oracle Database 10g 43

Chapter 2

�

The ORA_HASH function returns a hash value for an expression.

�

New and enhanced operators are as follows:

� Collections (nested tables and VARRAY objects) can now be com-
pared using equality (=) and inequality (<> | !=) operators.

� CONNECT_BY_ROOT helps extend hierarchical queries from
parent-child connections only, on to root and below connections
(see Chapter 13).

� Multiset operators MULTISET {EXCEPT | INTERSECT |
UNION} combine results of two collections. EXCEPT is similar
to the outer part of an outer join, including all elements in one
collection and not another. INTERSECT is the intersection of
two collections (the unique list of common values). UNION
combines all elements in both collections (see Chapters 7 and 16).

� New pseudocolumns are as follows (see Chapter 7):

� Hierarchical pseudocolumns CONNECT_BY_{ISLEAF | ISCY-
CLE} give an indication of contained child elements in a hierar-
chy.

� Version query pseudocolumns provide versioning information for
flashback version queries.

� New conditional operators are as follows (see Chapter 7):

� Floating-point conditions IS [NOT] {NAN | INFINITE} allow
undefined and infinite checks against floating-point number
expressions.

� IS [NOT] A SET implies that a collection is a set because it con-
tains unique values only.

� IS ANY qualifies SPREADSHEET clause dimensional values.
� IS [NOT] EMPTY checks for an empty collection, a nested table

containing no elements whatsoever, essentially a collection not as
yet instantiated.

� IS PRESENT ensures that a cell exists before the execution of a
SPREADSHEET clause.

� [NOT] MEMBER OF collection attempts to validate membership
within a collection.

� REGEXP_LIKE utilizes regular expressions as opposed to simple
pattern matching.

� SUBMULTISET indicates if one or more collection items are a
subset of another collection. See Chapters 7 and 16 for details on
collections such as nested tables and VARRAY objects.

Chap2.fm Page 43 Thursday, July 29, 2004 9:59 PM

44 2.1 New Features in Oracle Database 10g

� Expressions and the new EVALUATE operator permit what would
previously have been multiple-line SQL statements to be placed into
a single line of SQL or PL/SQL code. The term used by Oracle docu-
mentation is “describing user’s interest in data” (see Chapter 14).

� The Oracle Expression Filter uses an Expression datatype and the
EVALUATE operator. The EVALUATE operator allows concise
conditional expression evaluation.

� Portable operating system interface (POSIX) standard regular
expression capabilities allow search-and-replace functionality with
changes to the LIKE operator, REPLACE, and INSTR functions.
This search-and-replace capability is equivalent to search-and-
replace power in Unix scripting languages or something like the
SED editor or when using Perl.

2.1.2 PL/SQL Improvements in Oracle Database 10g

An intense examination of the details of PL/SQL is not required in an SQL
reference-type book, so some of the items listed here are not covered in this
book. However, a basic introduction to PL/SQL programming is covered in
Chapter 24.

� Everything possible in Oracle SQL with respect to SQL coding can
now be coded and executed from within PL/SQL. PL/SQL is now
fully syntactically equivalent with Oracle SQL. In other words, all
Oracle SQL commands can be coded into PL/SQL scripts.

� The PL/SQL compiler is better optimized including bulk binding
and native compilation. Native compilation stores PL/SQL units in
BLOB objects as a compiled binary form. Previously, PL/SQL was
interpreted PL/SQL code. Interpretation implies compilation or con-
version to binary at run-time; in the case of PL/SQL, coded com-
mands were read and parsed for every execution. Binary compilation
simply executes binary code at run-time and is therefore potentially
much quicker to execute.

� Using binary datatypes can help number-crunching performance.

Note: Number crunching or heavily computational code should not really
be constructed using a language such as PL/SQL. Java or even C is better
suited, and most commonly at the application level.

Chap2.fm Page 44 Thursday, July 29, 2004 9:59 PM

2.1 New Features in Oracle Database 10g 45

Chapter 2

� Extensive collection set operation capability encapsulates collection
testing and verification coding into single commands. See the previ-
ous section on Oracle SQL improvements in Oracle Database 10g.

� The PLSQL_WARNINGS database configuration parameter or the
DBMS_WARNINGS package can be used to enable or disable PL/
SQL compilation warnings.

� PL/SQL quoting of strings within strings no longer requires the use
of multiple sets of single quotation marks. A string delimiter charac-
ter can now be specified.

� The collection iteration FORALL statement is improved.

� SCN_TO_TIMESTAMP and TIMESTAMP_TO_SCN functions
can help with setting up flashback queries.

� The packages UTL_COMPRESS and UTL_MAIL are new. The
UTL_COMPRESS package allows data compression. The UTL_MAIL
package simplifies e-mail from within PL/SQL, where underlying pro-
tocol detail is not required.

2.1.2.1 Java Improvements in Oracle Database 10g

The Oracle Database kernel JVM is improved in Oracle Database 10g for
compliance with the latest version of Java, driver enhancements, connection
caching, and passing of parameters by name for PL/SQL, among various
other improvements. A discussion of the Oracle kernel JVM is a topic in
itself that is beyond the scope of this book.

2.1.3 XML Improvements in Oracle Database 10g

New operators can be used to convert between XML and SQL, allowing
creation of highly complex XML object document structures, and storage
of those XML documents. See the later section on Oracle SQL improve-
ments in Oracle Database 9i for a synopsis of XML functionality. Using
XML in Oracle SQL is covered in detail in Chapter 17.

2.1.4 Some Utility Improvements in Oracle
Database 10g

� SQL*Plus:

� The SPOOL [CREATE | REPLACE | APPEND] options
enhance the SPOOL command in SQL*Plus.

Chap2.fm Page 45 Thursday, July 29, 2004 9:59 PM

46 2.2 New Features in Oracle Database 9i

� SET SQLPROMPT can be set to values such as a schema and the
name of a database server.

� The login script in the $ORACLE_HOME/sqlplus/admin direc-
tory GLOGIN.SQL is now executed for every database connec-
tion, not only on opening the SQL*Plus utility.

� Contents of the recycle bin can be viewed.
� DBMS_OUTPUT functionality is more easily provided.

� iSQL*Plus now allows prompts for input values.

Now let’s look at changes made to various database objects, those
directly related to Oracle SQL, not database administration.

2.1.5 Database Object Improvements in Oracle 10g

� Tables can be purged such that they are dropped without being stored
in the recycle bin. Thus the DROP TABLE command now has a
PURGE clause, and a new command called the PURGE command
has been introduced (see Chapter 18).

� The FLASHBACK TABLE command can be used to restore a previ-
ous version of a table back to an SCN or timestamp, perhaps even
recover a mistakenly dropped table (see Chapter 18).

� These next two changes are interesting but more applicable to general
database administration than to Oracle SQL specifically:

� Multiple temporary tablespaces using tablespace groups can now
be set for a user (schema) within the CREATE USER command
syntax.

� Nested table and VARRAY types can now be changed.

Now let’s go backward in time and make a quick synopsis of Oracle
SQL and PL/SQL features introduced in Oracle Database 9i, perhaps put-
ting some of the changes for Oracle Database 10g into perspective.

2.2 New Features in Oracle Database 9i

Oracle Database 9i (Release 1 or Release 2) contained the following new
features for SQL and PL/SQL.

Chap2.fm Page 46 Thursday, July 29, 2004 9:59 PM

2.2 New Features in Oracle Database 9i 47

Chapter 2

2.2.1 Oracle SQL Improvements in Oracle Database 9i

� A new data warehousing command called MERGE.

� New features for data warehousing such as CUBE and ROLLUP
GROUP BY extensions and the RANK function. These features are
for use in summary and subtotal reports generated with SQL com-
mands.

� Columns and constraints can be renamed.

� A query of data at a point in time in the past (called a Flashback
query) is enhanced for use within an SQL command rather than
requiring an environmental session change.

� A new datatype called TIMESTAMP supports timezone-sensitive
dates and times.

� Nearly full support of SQL*Plus features in iSQL*Plus so you can
create Web-based reports.

� Support for the ANSI standard JOIN command among other new
ANSI standards.

� XML and partitioning enhancements when creating tables and views.

� XML functional capability enhancements allowing various new types
of operations on XML datatypes:

� XML conditions:
� EQUALS_PATH tries to find something in an XML path.
� UNDER_PATH finds something within an XML path.
� DEPTH and PATH are ancillary functions of

EQUALS_PATH and UNDER_PATH conditions. DEPTH
is the number of levels within a path and PATH is a relative
path specifier.

Note: An ancillary function is a subordinate part of whatever uses it. For
example, the DEPTH function can only be used with EQUALS_PATH
and is thus ancillary to the EQUALS_PATH function.

� XML functions:
� DEPTH and PATH (see previous explanation).
� Working with XML document objects:

� EXTRACTVALUE returns a scalar value from an XML
document object node.

Chap2.fm Page 47 Thursday, July 29, 2004 9:59 PM

48 2.2 New Features in Oracle Database 9i

� UPDATEXML returns an XML document object
including a change.

� Generating XML from Oracle SQL code:
� XMLAGG aggregates or merges multiple XML pieces

from an SQL row set.
� XMLCONCAT concatenates XML values from an SQL

row set into XML elements.
� XMLCOLATTVAL collates XML values into XML

structural elements from row sets.
� XMLELEMENT creates an XML element from an SQL

row set.
� XMLFOREST creates an XML hierarchical structure

from an SQL row set with an object for each row, and a
name-value pair (element) for each column value within
that row.

� Returning data from XML documents:
� XMLSEQUENCE returns an array of elements at a spe-

cific level or path (row identifier) within an XML docu-
ment.

� XMLTRANSFORM simply applies an XSL style sheet
to an XML document object.

Note: XML capabilities with Oracle SQL are covered in Chapter 17.

� Expression capabilities have been added to include CASE statements,
cursor expressions using CURSOR (subquery) syntax, and scalar sub-
queries returning an expression.

� Numerous new functions and enhancements to existing functions.

� Privilege and DDL command enhancements, most of which fall out-
side the scope of this book.

2.2.2 New PL/SQL Features in Oracle Database 9i

As already stated, an intense examination of the details of PL/SQL is not
required in an SQL reference book. Items in this list may or may not be
covered in this book in later chapters:

� A number of object-handling enhancements, a little beyond the
scope of this book.

� Most SQL syntax is supported in PL/SQL.

Chap2.fm Page 48 Thursday, July 29, 2004 9:59 PM

2.2 New Features in Oracle Database 9i 49

Chapter 2

� CASE statement expression, as already mentioned.

� Performance is improved by native PL/SQL code compilation as
opposed to direct interpretation.

� Temporary tables and cursors are no longer required to pass struc-
tured expressions between functions. Now a query can be executed
against a returned set of rows.

� Bulk SQL operations can be executed using the EXECUTE IMME-
DIATE command.

Note: Some Oracle Database l0g items listed in this chapter are not covered
in other chapters of this book. Some things are too obscure. Any omissions
are deliberate. Details can be found in Oracle documentation.

The next chapter introduces the basics of Oracle Database physical
architecture. A general understanding of underlying architecture is essential
to a thorough understanding of Oracle SQL.

Chap2.fm Page 49 Thursday, July 29, 2004 9:59 PM

This page intentionally left blank

51

3

Oracle Database Architecture

In this chapter:

�

What are the basic architectural concepts of Oracle Database?

�

What is the Oracle instance?

�

What is the physical structure of an Oracle database?

�

How do you start up and shut down a database?

�

Enhancing the basic physical architecture of an Oracle database.

Let’s begin with some very basic concepts.

3.1 The Basic Concepts

Oracle Database 10

g

 is a relational database management system
(RDBMS), which means that it is a set of software programs that handles
the storage of information, the security for access to the information, and
the connections between various portions of the information.

Once you have installed the RDBMS software, you can create an Oracle
instance and a database. Figure 3.1 shows all three of these elements installed
on one computer, which is the typical way to install and run the software.

The database is made up of datafiles stored on the hard disks of the
computer. This is where all of your information will be stored. To add
information into the database, you must start up an Oracle instance. Once
started, your computer will be running a set of background processes,
which manage and manipulate the datafiles, among other things. You also
have a memory area called the System Global Area (SGA) that is reserved
for Oracle’s use. Oracle stores as much information as possible in its mem-
ory to speed up the processing time of whatever operation you do, from
retrieving data in a special sorted format (which you will learn how to do in

Chap3.fm Page 51 Thursday, July 29, 2004 10:00 PM

52

3.1

The Basic Concepts

later chapters) to loading data from an online application. The computer
that contains all of these elements is called the

database server

.

Note:

When you install Oracle Database on a Windows 2000, NT, or XP
Pro system, the installation creates the Oracle instance and a database for
you and sets up the software so that the Oracle instance starts up every time
you start up your computer. On UNIX and Linux platforms, it is possible
to automate Oracle instance and database startup, which is not always done

by the Oracle Installer. See your installation guide.

What goes into those datafiles? In a relational database of any kind, the
basic storage unit within the database is called a

table

. Just like a spread-
sheet, a table has rows and columns. Columns define what categories of
information the table can store, and each row contains values for each of
the categories for one record or item in the table.

A database is different from a spreadsheet in these ways:

�

A database stores more data

. One Oracle Database 10

g

database can
store thousands of tables with millions of rows in each table.

Figure 3.1

A Typical Oracle
Database 10g

Database Server.

Chap3.fm Page 52 Thursday, July 29, 2004 10:00 PM

3.1

The Basic Concepts 53

Chapter 3

�

A database can interconnect tables

. Relationships between tables can be
defined in the database to enforce integrity rules called

constraints

(rules that make sure connections between tables are valid). Figure
3.2 shows three tables that are related to one another. An integrity
rule for these tables would make sure that every CD in the INVEN-
TORY table, for example, is connected to a CD in the CD table.

�

A database saves space by relating data rather than repeating data

. For
example, in Figure 3.2, the title, label, and artist are listed in the CD
table. The CD_ID in the fifth row of the INVENTORY table is 100.
By looking back at the CD table row for ID 100, you know that the
CDRock store has 44 copies of “Soak Up The Sun” by Sheryl Crow
on the A&M record label.

All tables have columns, and all columns have a name and a datatype.
The column’s name must be unique within the table and must comply with
Oracle’s naming standards.

�

In a nutshell, Oracle’s naming standards are as follows:

�

The name should be 1 to 30 characters long.

�

The name is interpreted as uppercase (unless enclosed in double
quotes).

Figure 3.2

Related Tables
Interconnect and

Save Space.

Chap3.fm Page 53 Thursday, July 29, 2004 10:00 PM

54

3.1

The Basic Concepts

�

The name must begin with a letter and must use only letters,
numbers, or these three symbols: $, #, _ (unless enclosed in dou-
ble quotes).

If enclosed in double quotes, a column name is case sensitive and can
begin with any character and include any letter, number, or symbol, includ-
ing a space character. For instance, if a column is created as double quote
enclosed and containing lowercase letters, then when selecting that named
column from a table, double quotes must be used. This first example shown
will cause an error (ORA-00904: invalid column name):

SELECT Column_xyz FROM MYTABLE;

You must add the double quotes like this to avoid an error:

SELECT "Column_xyz" FROM MYTABLE;

Let’s look at another example to make this point clearer and create a
table containing three different columns. The table is described using the
DESC command in Figure 3.3. The column called A appears as A, b
appears as B, “abc” is lowercase abc, and “a b c” is a b c.

CREATE TABLE TMP (A NUMBER, b NUMBER, "abc" NUMBER, "a b c"
NUMBER);

Figure 3.3

Table Column
Names and Double

Quotes (").

Chap3.fm Page 54 Thursday, July 29, 2004 10:00 PM

3.1

The Basic Concepts 55

Chapter 3

Selecting all of the columns would have to have any non-uppercase col-
umn names, including any with space characters, retrieved using double
quotes ("). In the following two SELECT statements, the first will cause an
error and the second will not:

SELECT A,B, abc, a b c FROM TMP;

SELECT A, B, "abc", "a b c" FROM TMP;

Figure 3.4 shows some typical column names. In addition to a name,
the column has a datatype, which tells Oracle Database 10

g

 the type of data
that will be stored in the column once a row is added to the table. Oracle
Database 10

g

 has many datatypes, which are described in detail in Chapter
16. Here are some examples of the more common datatypes:

�

NUMBER.

 Numbers of all kinds fit in here, from dollars to scientific
notations.

�

DATE.

 Calendar dates. Dates are stored as a Julian date. A Julian
date is a number in seconds from an internally specified date such as
January 1, 1970. You can subsequently access both date and time or
any parts thereof from this type of column depending on the format
applied.

�

VARCHAR2.

 Character data. You specify a maximum length; how-
ever, any trailing spaces are omitted from the data to save space.

�

BLOB.

 This type of column can store one value up to four gigabytes
in size. BLOBs are usually reserved for multimedia applications such
as storing a video or audio file.

Figure 3.4 shows the structure of the table called INVENTORY that
was displayed in Figure 3.2. As you can see, the table has a name, an owner.
Each column has a name and datatype.

Now you know the basic terminology for tables, rows, columns, and
databases. As you know, security is always an issue when it comes to infor-
mation. You may be familiar with some basic ways to protect your data: for
example, adding a password to your login so only you are allowed to use
your computer, or placing your files on a removable disk that you keep with
you rather than storing inside the hard drive. When using a database, how
do you keep track of who is allowed to do what?

Chap3.fm Page 55 Thursday, July 29, 2004 10:00 PM

56

3.1

The Basic Concepts

Many users, sometimes thousands, might share a single Oracle data-
base. A user is any person who can log into the database instance. There
are several ways to authenticate a user logging into the database (see Chap-
ter 23); the typical method is to assign each person a unique user name
and a password.

When so many individuals access the same database, the easiest way to
keep track of them is to group them together by duties or roles. Oracle pro-
vides the capability to assign privileges to a role and then assign the role to
one or more users.

For example, one user might be the database administrator (DBA). That
user has the authority to start and stop the database instance, add new
users, change passwords, assign other users various privileges, and so on.
Another user may need to create tables, while a third user might need only
to log in and view or modify data in someone else’s tables. Oracle Database
provides predefined roles for these typical groups of users:

�

CONNECT:

 This role gives users the right to log into the database.

�

RESOURCE:

 This role authorizes users to create tables (and other
structures, such as indexes) in the database.

Figure 3.4

Table Definitions
Include Table and

Column
Specifications.

Chap3.fm Page 56 Thursday, July 29, 2004 10:00 PM

3.1

The Basic Concepts 57

Chapter 3

Chapter 23 shows how to create roles of your own.

Note:

Future releases of Oracle may not include these roles. You can

create your own roles to serve these or any other purpose you need.

When a user creates a table, that user is the table’s owner. A schema is
the collection of all the tables owned by one user. For example, you log in as
the user STANLEY and you create a table called TREASURE_CHEST and
a table called JEWELRY. These two tables are in the STANLEY schema.

Chapter 18 describes how to create your own tables. For now, how-
ever, you have some already existing tables with rows of data inside. Your
job is to learn how to retrieve that data using the programming language
called SQL.

Now let’s dig a little more seriously into the physical architecture of Ora-
cle Database. In its most simplistic form, an Oracle Database installation
consists of buffers, processes, files, network communication, and configura-
tion, as shown in Figure 3.5.

Figure 3.5

An Oracle
Database

Installation.

Chap3.fm Page 57 Thursday, July 29, 2004 10:00 PM

58

3.2

The Oracle Instance

3.2 The Oracle Instance

The Oracle instance is the part of an Oracle installation executing in mem-
ory when the database is mounted, running, and available for use. That
mounted and running database consists of memory structures or buffers
and several processes.

�

Memory structures are shown in Figure 3.6.

�

Much of the memory structure or buffers is known collectively as
the Shared Global Area (SGA). The SGA contains database buffer
caches, the shared pool, and the redo log buffer.

�

Somewhat more loosely connected are the large pool, the java
pool, and connection session memory or program global area
(PGA).

�

Processes:

�

Nonbackground or foreground processes are shown in Figure 3.7
and include network connectivity and client connection service
processing. These processes include listeners, agents, shared and
dedicated server processes, plus dispatcher processes. Although the
listener and agent processes are not part of an Oracle instance,
they execute on the database server.

Figure 3.6

Oracle Instance
Memory Buffers.

Chap3.fm Page 58 Thursday, July 29, 2004 10:00 PM

3.2

The Oracle Instance 59

Chapter 3

�

Background processes, as shown in Figure 3.8, provide processing
within the Oracle Database and communication with foreground
processing.

The next part to examine briefly is the basics of the underlying physical
and logical structure of an Oracle database.

Figure 3.7

Oracle Instance
Foreground

Processes.

Figure 3.8

Oracle Instance
Background

Processes.

Chap3.fm Page 59 Thursday, July 29, 2004 10:00 PM

60

3.3

Oracle Database Physical Architecture

3.3 Oracle Database Physical Architecture

Let’s break the physical and logical layers into sections:

�

Where and how is data stored? In datafiles, tablespaces, and objects.

�

What about recoverability? Controlfiles, logging, and archiving are
used.

�

How are changes undone? Rollback or undo spaces allow undoing of
changes.

�

How are large sorts handled? Specially formatted files are used for fast
on-disk sorting.

Each of these areas is discussed in the following sections.

3.3.1 Datafiles, Tablespaces, and Objects

Figure 3.9 shows the internal physical structure of an Oracle database,
showing the way in which data is stored.

Tablespaces

 are logical structural
overlays containing one or more datafiles. A

schema

 (owner or Oracle user)
is also a logical overlay structure. A schema can be spread across multiple
tablespaces and contains segments or database objects such as rollback seg-
ments, temporary segments or tables, and indexes.

Segments

 are physical or
logical subdivisions within schemas and can be accessed across different

Figure 3.9
Database Physical

Structure.

Chap3.fm Page 60 Thursday, July 29, 2004 10:00 PM

3.3 Oracle Database Physical Architecture 61

Chapter 3

schemas. Segments are physically broken up into extents. An extent is a
number of blocks added to a segment (datafile) when an object requires
more space.

Figure 3.10 shows the different types of segments, synonymous from
this perspective with a tablespace. In other words, in terms of functionality,
a rollback segment accomplishes the same objective as a rollback tablespace,
where rollback segments are created within rollback tablespaces.

Note: Rollback segments are generally referred to as undo or automated
undo segments in Oracle Database 10g. Manual rollback is deprecated.

The SYSTEM tablespace contains Oracle system metadata, or the data
about the data. Metadata contains table structures including column
names, lengths, and datatypes, among many other things. The SYSAUX
tablespace is new to Oracle Database 10g, containing various tool and util-
ity objects such as for Recovery Manager (RMAN). Generally, data (DATA)
and index (INDEX) tablespaces are split as shown in Figure 3.10 because
tables and indexes are usually scanned at the same time. The UNDO
tablespace contains data for undoing of transactions already executed plus
providing flashback capability. The TEMP tablespace is specially formatted
for fast on-disk sorting when memory capacity is exceeded for a sort. Tem-
porary sort space is used for other functions as well, such as consistent
exports. Partition tablespaces are both logically and physically split into
chunks, where separate chunks can be accessed individually or as multiple
groups executed in parallel.

The Controlfile, redo, and archive logs shown in Figure 3.10 are
described in the next section.

3.3.2 Controlfiles, Logging, and Archiving

Looking once again at Figure 3.10, there are arrows pointing from the Con-
trolfile to the redo logs and the archive logs. Redo logs and archive logs con-
tain records of past database changes; recoverability is provided by
Controlfile pointers to the redo logs and archive logs. When recovery is
attempted, changes are read from log files and applied to restored datafiles.
The Controlfile also contains pointers to datafiles. If datafile pointers in the
datafiles are behind the Controlfile pointers for the datafiles, then the data-
files can be recovered using log file entries. When datafiles are up to date,
pointers in the Controlfile, to the datafiles, and values in datafiles will be

Chap3.fm Page 61 Thursday, July 29, 2004 10:00 PM

62 3.3 Oracle Database Physical Architecture

the same. Thus the lines in Figure 3.10 represent those pointer links
between Controlfile, log files, and datafiles.

3.3.3 Rollback and Undo

It is important to Oracle SQL, both DML and DDL, to understand what
exactly happens when database changes are executed. Several issues need to
be covered briefly:

� Transactional control.

� Differences in the logging entries of DML and DDL.

� Differences between the COMMIT and ROLLBACK commands.

� The sequence of events when data is changed.

A transaction is a grouped (a BEGIN … END block) set of one or more
commands executed one after the other (sequentially). Dependencies may
or may not exist between commands. A transaction starts at the beginning
of a user session with the first executed command, or immediately after a

Figure 3.10
Different Segment

or Tablespace Types
and Their
Functions.

Chap3.fm Page 62 Thursday, July 29, 2004 10:00 PM

3.3 Oracle Database Physical Architecture 63

Chapter 3

previous transaction completes. A transaction is completed when a COM-
MIT or ROLLBACK command is executed, permanently storing changes
or undoing them, respectively. All DDL commands execute a COMMIT
command inherently. A disconnection from a session also executes an auto-
mated COMMIT command. This is an example transaction.

BEGIN

 INSERT INTO Artist(artist_id, name)

 VALUES(100,'A new artist');

 UPDATE Artist SET name='Delete this row'

 WHERE artist_id=100;

 DELETE FROM Artist WHERE artist_id=100;

 COMMIT;

END;

/

The COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSAC-
TION commands are used to control transactions. COMMIT stores
changes, ROLLBACK removes changes, and SAVEPOINT allows partial
rollback of some of the commands in a transaction. The SET TRANSAC-
TION command allows specific settings to be global for an entire transac-
tion. Transactional control is discussed more in Chapter 15.

DML means Data Manipulation Language and DDL means Data Defi-
nition Language. The only important thing to remember about DML and
DDL commands with respect to transactional control is that DDL com-
mands are always automatically committed (cannot be undone). This
means that DDL commands automatically end the current transaction, and
nothing from that transaction may be undone once the transaction has
been completed. DML commands can be committed or rolled back.

Comparing COMMIT and ROLLBACK commands is significant
because committing is always faster than rolling back. Why? Well, it should
be because one would hope that most applications execute far more com-
mits than rollbacks. In short, COMMIT is built to be faster than ROLL-
BACK because it is a much more likely event.

� What happens when a change is made to data in a table?

� Redo log entries are written, storing log entries for data that is
about to be changed.

Chap3.fm Page 63 Thursday, July 29, 2004 10:00 PM

64 3.3 Oracle Database Physical Architecture

� The database is changed, modifying the current value of data in
tables.

� Rollback entries are created, storing a list of rollback entries to be
applied in case a transaction is rolled back.

� What happens when a COMMIT command is executed?

� Rollback entries are deleted. Changes are already made. Nothing
else is required.

� What happens when a ROLLBACK command is executed?

� Rollback entries are written to the redo logs, namely “undo” redo
log entries.

� Rollback is applied to the database undoing previously made
changes.

� Rollback entries are deleted.

Note: Redo log entries are always written before any database changes to
ensure recoverability.

What happens when data is changed? Different DML commands have
different types of redo log entries made for them. These different log entries
are logical when one thinks about what needs to be stored in order to re-
create a change, if need be in recovery.

� INSERT will log the ROWID (pointer) plus the data content of the
entire row.

� UPDATE only needs to log the ROWID and individual column
changes.

� DELETE simply logs the ROWID.

It is not essential to know these facts, but the information is interesting
anyway in helping to understand how it all works.

Note: Precise syntax for COMMIT, ROLLBACK, SET TRANSACTION,
and SAVEPOINT commands are covered in Chapter 15.

3.3.4 Temporary Sort Space

A temporary tablespace is an overflow for sorting onto disk when in-mem-
ory sort space limits for an executing sort have been exceeded. Sorting is

Chap3.fm Page 64 Thursday, July 29, 2004 10:00 PM

3.4 Database Startup and Shutdown 65

Chapter 3

sometimes for large sorts in SQL statements, where sort space required
exceeds allocated session memory sorting limitations. Obviously, sorting on
disk is much slower than sorting in memory. However, resources may
require it. Additionally, temporary sort space is often used as a temporary
physical space for some Oracle utilities.

3.4 Database Startup and Shutdown

One of the most simple and fundamental things is starting up and shutting
down an Oracle database. You will not be doing much SQL code scripting
if you do not know how to start up your database. Let’s begin with the data-
base STARTUP command. Defaults are highlighted.

STARTUP [[NOMOUNT] | [MOUNT]

| [OPEN [READ WRITE | READ ONLY | RECOVER]]

[FORCE] [RESTRICT]

[PFILE = <configuration parameter file>];

Type the command STARTUP, and the database will start up opened in
read/write, unrestricted mode. Thus STARTUP OPEN executes the
NOMOUNT, MOUNT, and OPEN steps. NOMOUNT, MOUNT, and
OPEN are the three steps to starting up an Oracle database:

� STARTUP NOMOUNT simply starts up all of the background pro-
cesses and allocates space in virtual memory for all of the buffers.

� MOUNT mode is used for some low-level maintenance operations.
MOUNT mode opens only the Controlfile, allowing access to physi-
cal datafiles through Controlfile pointers.

� NOMOUNT mode is included in mounted mode, before mounting
the Controlfile.

After executing a STARTUP MOUNT operation, the ALTER DATA-
BASE OPEN command can be executed to open the database. ALTER
DATABASE MOUNT similarly applies to STARTUP NOMOUNT.

Other options are FORCE, forcing a SHUTDOWN ABORT (see later)
followed by a STARTUP OPEN command. Be frugal using abort because
it can ruin your database. RESTRICT starts up the database in restricted

Chap3.fm Page 65 Thursday, July 29, 2004 10:00 PM

66 3.4 Database Startup and Shutdown

mode, allowing DBA access only. The RECOVER option places a database
into recovery.

The PFILE parameter allows starting of the database with a specified
database configuration parameter file. Leaving the PFILE option out starts
up the database with whatever parameter file was used previously: a PFILE
text parameter file or an SPFILE binary parameter file.

Looking at the SHUTDOWN command, the following syntax applies.
Once again the default is highlighted.

SHUTDOWN [NORMAL | TRANSACTIONAL | IMMEDIATE | ABORT];

The NORMAL option waits for users to disconnect, does not allow new
connections, forcibly rolls back currently running transactions, and then
shuts down the database. A normal shutdown is the most prudent method
of rapidly shutting down an Oracle database and should always be used if
possible. The TRANSACTIONAL option automatically completes all
transactions, subsequently disconnecting all connected users and shutting
down the database. The IMMEDIATE option disconnects all users and
shuts down the database without committing or rolling back currently exe-
cuting transactions. Recovery may be required on database startup. The
ABORT option is abusive brute force and should never be used. Aborting
an Oracle database simply terminates all processes. The database will
require recovery on startup. The ABORT option can potentially corrupt an
Oracle database.

Note: Cleanup processing required by SHUTDOWN NORMAL is just as
fast as recovery processing caused to the following startup by SHUT-
DOWN ABORT. You will not save any time using SHUTDOWN
ABORT. Aborting a database causes similar recovery processing on startup.
Additionally, SHUTDOWN ABORT can corrupt your Oracle database.

Now let’s see how Oracle Database can be enhanced and expanded upon
using various optional add-on pieces. Additional options are used to achieve
and increase certain aspects for an Oracle installation. Buzzwords in this
arena are scalability, high availability, distribution, easy management, plus
backup and recovery enhancements, among numerous other options.

Chap3.fm Page 66 Thursday, July 29, 2004 10:00 PM

3.5 Enhancing the Physical Architecture 67

Chapter 3

3.5 Enhancing the Physical Architecture

Architecturally expanding options for Oracle Database we will briefly intro-
duce are as follows:

� Oracle Managed Files (OMF).

� Oracle Partitioning.

� Various forms of Replication.

� Standby/fail-over databases.

� Clustering technology.

3.5.1 Oracle Managed Files

Oracle Managed Files (OMF) will automatically create and drop datafiles,
redo logs, archives, and Controlfiles in the operating system. No administra-
tor intervention is required in the operating system. The big problem with
OMF is serious performance impact. The DB_CREATE_FILE_DEST con-
figuration parameter is used to specify placement of datafiles, redo logs, and
Controlfiles. Specifying the DB_CREATE_ONLINE_LOG_DEST_n
parameters overrides the DB_CREATE_FILE_DEST setting by managing
placement of Controlfiles and redo logs. If more than one (one to five)
DB_CREATE_ONLINE_LOG_DEST_n destinations are specified, then
both redo logs are duplexed and Controlfiles are multiplexed. Duplexing and
multiplexing being essentially the same thing in this situation.

3.5.2 Partitioning

Oracle Partitioning allows the splitting of large tables into separate physical
spaces. As a result, different physical spaces or partitions can be operated on
individually or in groups, running in parallel. Performance gains using Ora-
cle Partitioning can be substantial.

Partitions can be of various different types:

� Range partitions split a table based on distinct ranges of values such
as quarters in a year.

� List partitions split a table based on specific lists of values such as
state names in the United States. For example, a partition containing
data representing the Northeast United States could contain states
such as NY, NJ, and PA for New York, New Jersey, and Pennsylvania,

Chap3.fm Page 67 Thursday, July 29, 2004 10:00 PM

68 3.5 Enhancing the Physical Architecture

respectively. A partition for the West Coast could contain rows from
states such as CA (California) and OR (Oregon).

� Hash partitions divide up partition values evenly based on hash val-
ues calculated on a column value or values in each row of a table.

� Composite partitions are partitions containing other subset partitions
or subpartitions. There are two types of composite partitions:

� A range partition containing hash subpartitions or a range-hash
partition.

� A range partition containing list subpartitions or a range-list partition.

Other than the huge impact of parallel processing of multiple partitions
concurrently, or of pruning out of unwanted partitions, various tricks can
be performed with partitions. Various types of operations can be performed
on partitions individually, affecting only small physical parts of very large
tables. Individual partitions can be:

� Added to a group of partitions, dropped from a set of partitions, or
truncated as a single partition within a set of partitions. Thus we can
change a small part of a very large table. Efficient!

� Split into new multiple partitions or merged together.

� Renamed, moved, or exchanged (swap one partition for another).

3.5.3 Replication

Traditionally, replication is intended to link databases distributed over large
geographic areas where data is not only shared but specific chunks of data
are exclusive to specific sites. In general, replication occurs in two forms as
either master-to-slave replication or master-to-master replication, as shown
in Figure 3.11.

Master-to-slave replication implies that data travels in only one direc-
tion, and master-to-master replication has data traveling in both directions,
between two databases. There can be multiple databases in a set of repli-
cated databases. More specifically, using Oracle Replication software, in a
master-to-slave database environment, the slave database consists of a data-
base comprised solely of materialized views. Effectively, master-to-slave rep-
lication does not exist for the Oracle Replication option.

Chap3.fm Page 68 Thursday, July 29, 2004 10:00 PM

3.5 Enhancing the Physical Architecture 69

Chapter 3

One of the most significant problems with the Oracle Replication
option is that it is often used inappropriately for backup and fail-over data-
bases. Oracle Replication has a level of complexity not suited to fail-over
and backup management.

Another method of replication for Oracle Database involves using Ora-
cle Streams and Oracle Advanced Queuing. A stream or pipe is established
between two databases, where a master database would have a capture
queue and a slave database an application queue. Oracle Streams Replica-
tion or Transparent Replication can include both master-to-master and
master-to-slave replication.

3.5.4 Standby Databases

Standby database architecture is shown in Figure 3.12. Standby or fail-
over databases can exist in two forms: a physical standby or a logical
standby. A logical standby is far more comprehensive and far more flexi-
ble. Physical standby is simple but much easier to implement and main-
tain than logical standby.

Both physical and logical standby databases can be configured for maxi-
mum safety or maximum performance. Redo log entries for maximum

Figure 3.11
Master-to-Slave

versus Master-to-
Master Replication.

Chap3.fm Page 69 Thursday, July 29, 2004 10:00 PM

70 3.5 Enhancing the Physical Architecture

safety can be transferred to a standby as they are created using the Log
Writer (LGWR), filling a precreated archive log file on the standby data-
base. On the other hand, maximum performance can be achieved at the
expense of safety, thus potentially presenting possible data loss using the
Archiver (ARCn) to transfer log entries from primary to standby. In this
case, redo log entries are transferred when a primary database log switch
occurs, copying each archive log file to a standby database as it is created.
Using the Archiver, redo log entries are not copied as they are created but
only after primary database archiving.

Physical standby has disadvantages. A physical standby can only be
accessed externally in read-only mode, and it must duplicate the source
(primary) database exactly. A logical standby database is maintained in
read-write mode, a completely open and accessible database. Also, a logical
standby can have a subset of source database objects and can even contain
objects in addition to the primary database. Once again, logical standby is
much more flexible than physical standby.

3.5.5 Clustering and Oracle RAC

Clustering was previously called Oracle Parallel Server and is now called
Oracle Real Application Clusters (RAC). Oracle RAC allows for sharing of
a single large data source’s data across more than one Oracle instance, run-
ning on more than a single database server. Thus multiple database servers
share the same data, allowing for high availability, enormous scalability,
and flexibility.

Figure 3.12
Oracle Standby/

Fail-over Database
Architecture.

Chap3.fm Page 70 Thursday, July 29, 2004 10:00 PM

3.5 Enhancing the Physical Architecture 71

Chapter 3

So far, this book has examined the underlying logical and physical struc-
ture of Oracle Database plus new features available in both Oracle Database
10g and Oracle Database 9i. Now it’s time to begin looking into Oracle
SQL itself. The next chapter begins this process by examining the SELECT
statement.

Chap3.fm Page 71 Thursday, July 29, 2004 10:00 PM

This page intentionally left blank

73

4

The SELECT Statement

In this chapter:

�

How do you write a basic query using SELECT statements?

�

What types of SELECT statements are possible?

�

What else is interesting about SELECT statements?

In this chapter, we dive right into the syntax and use of the SELECT
statement to query the database. We also briefly discuss different types of
queries, finally examining specific aspects of queries such as using DIS-
TINCT and the DUAL table. So let’s begin with the basics of the SELECT
statement and some simple examples just to get into the swing of things.

4.1 The Basic SELECT Statement

SELECT is the beginning of the SQL command for querying (retrieving)
data from a database table, view, or object. Objects are similar to tables, but
they have a more complex structure.

4.1.1 Uses of the SELECT Statement

The SELECT statement is a specialized way to ask a question about the
data in a database. Thus a SELECT statement is also called a query
because it quite literally “queries” or asks questions of a database. There
are several uses for the SELECT statement that give you great flexibility
in the database:

�

Simple query

. A SELECT statement can be used alone to retrieve
data from a table or a group of related tables. You can retrieve all col-

Chap4.fm Page 73 Thursday, July 29, 2004 10:03 PM

74

4.1

The Basic SELECT Statement

umns or specify some columns. You can retrieve all rows or specify
which rows you want.

�

Complex query

. A SELECT statement can be embedded within
another SELECT statement. This lets you write a query within a
query. The possibilities are endless. Later chapters cover the details.

�

Create a view or table

. A SELECT statement can be used to create a
view or a new table. A view is a stored query that is executed when-
ever another SELECT statement retrieves data from the view by
using the view in a query. Views are very useful to enforce security by
limiting the columns or rows that particular users are allowed to see.

�

Insert, update, or delete data

. A SELECT statement can be used
within the INSERT, UPDATE, or DELETE statements to add
greater flexibility to these commands. Chapter 15 examines com-
mands for manipulating data.

Note:

There are numerous other more detailed types of queries using the
SELECT statement to be described briefly later in this chapter and in detail

in later chapters.

4.1.2 Syntax Conventions

In this section, and throughout the rest of the book, you will see SQL and
SQL*Plus commands listed first with their syntax and then with many
examples, some of which you could type yourself to help you better under-
stand the commands.

The

syntax

 of a command defines the set of rules governing the correct
form of a command. Some parts are required and never change, others are
optional, and others vary with each different statement. Figure 4.1 shows
the syntax of the basic SELECT statement with descriptions of the vari-
ous parts.

Here is the basic syntax of the SELECT statement in a textual form
(Backus-Naur Form), as shown in Figure 4.1. See Chapter 1 for details of
Backus-Naur syntax formatting.

SELECT { [alias.]column | expression | [alias.]* [, …] }

FROM [schema.]table [alias];

Chap4.fm Page 74 Thursday, July 29, 2004 10:03 PM

4.1

The Basic SELECT Statement 75

Chapter 4

Curly braces mean you must choose from one of the choices between
them. So, you can either write a list of column names, or write an expres-
sion, or use *. An asterisk (*) represents all column names within a query
when used in the SELECT statement.

Square brackets mean you can include the items within the square brack-
ets or leave them out entirely. In the SELECT command, you can list just
one column or many columns, or even simply an asterisk (*) if you choose.

The lowercase words are always replaced with actual names of tables,
columns, schemas, and so on. The words in the syntax give you a hint on
what should be used. This structure is just the bare bones of the SELECT
command. Other chapters cover all of the many variations and options
available for the SELECT command.

The complete syntax definition of the SELECT command in Oracle’s
SQL documentation takes up five pages. The description of all the variables
in the command takes up another 25 pages. In this book, you will build
gradually on your knowledge, chapter by chapter, until you have enough
knowledge of the SELECT command to write complex queries easily.

Note:

Details of Backus-Naur syntax conventions can be found in Chapter 1.
This book almost always follows a slight variation on that theme, described in
Chapter 1. Any variations are generally specific to particular chapters and

noted at the beginning of those chapters.

Let’s look at a few examples.

Figure 4.1

The Syntax of the
SELECT

Statement.

Chap4.fm Page 75 Thursday, July 29, 2004 10:03 PM

76

4.1

The Basic SELECT Statement

4.1.3 Some Simple Example SELECT Statements

The first example retrieves rows from an Oracle metadata view:

SELECT VIEW_NAME, TEXT FROM USER_VIEWS;

This statement has a list of two columns (VIEW_NAME and TEXT),
and the view queried is named USER_VIEWS. Tables and views are inter-
changeable in the SELECT command. No schema name is used because
the view in this case belongs to the user who is running the query. As a gen-
eral rule, any time you query a table or view that belongs to the user you log
in as, no schema name is required. Likewise, when you query a table or
view that is in another user’s schema, you must use the schema name. For
example, if you log in as JOE and you want to query a table name CARS
owned by SAM, you would have to add the schema name CARS.

SELECT * FROM SAM.CARS;

Note:

The semicolon is technically not considered part of the SQL state-
ment’s syntax. The semicolon marks the end of the statement and submis-
sion. A forward slash on a blank line following the SQL statement serves
the same purpose. Submission means submission to the SQL engine, in

other words “execute it!”

Now let’s do some simple SELECT statement examples using the
MUSIC schema.

Note:

Diagrams and scripts for the MUSIC schema are in Chapter 1 and

Appendix A.

Let’s begin with a query listing all the data in the MUSICCD table:

SELECT * FROM MUSICCD;

Figure 4.2 shows the result. Notice the blank spaces in certain columns.
This stands for a null value in the data. For example, the PLAYING_TIME
column for the first row (Soak Up the Sun) is NULL.

Chap4.fm Page 76 Thursday, July 29, 2004 10:03 PM

4.1

The Basic SELECT Statement 77

Chapter 4

To select specific columns, the asterisk could be changed to something
like PRESSED_DATE, TITLE, MUSICCD_ID, listing columns in the
sequence specified.

SELECT PRESSED_DATE, TITLE, MUSICCD_ID FROM MUSICCD;

The next query contains a calculation between two columns. You can
add, subtract, multiply, divide, and use parentheses to affect the calculation
order of factors in expressions. When you combine columns, include calcu-
lations, or other operations, an expression is created. Expressions can be
used in a SELECT statement anywhere you use a column.

SELECT ARTIST_ID, SESSION_DATE, AMOUNT_CHARGED-AMOUNT_PAID

FROM STUDIOTIME;

Observe that the column heading of the third column is
AMOUNT_CHARGED - AMOUNT_PAID. This is long, and if you

Figure 4.2

SQL*Plus Report
Layout.

Chap4.fm Page 77 Thursday, July 29, 2004 10:03 PM

78

4.1

The Basic SELECT Statement

were handing a report off to someone else, you might want a more descrip-
tive heading. To change the heading, add a column alias to the SELECT
statement. A column alias redefines a column’s heading in a SELECT state-
ment. In this example, we change the second line by adding the alias “Bal-
ance Due.”

AMOUNT_CHARGED-AMOUNT_PAID

"Balance Due"

Using double quotes preserves the upper and lowercase appearance of
the heading. Without double quotes, your alias will always appear in upper-
case letters in the report. Additionally, in this case because the words “Bal-
ance” and “Due” are separated by a space, “Due” will be interpreted as a
column name, causing an error. Figure 4.3 shows the output.

Now add aliases to all three columns and change the SELECT statement
again:

SELECT ARTIST_ID

Artist

, SESSION_DATE

"In Studio"

, AMOUNT_CHARGED-AMOUNT_PAID

"

Balance Due

"

FROM STUDIOTIME;

Figure 4.3

Column Aliases
Can Help Make

Queries More
Readable.

Chap4.fm Page 78 Thursday, July 29, 2004 10:03 PM

4.1

The Basic SELECT Statement 79

Chapter 4

Figure 4.4 shows the result. Headings have changed. Because the
ARTIST_ID alias Artist is not in double quotes, the heading is displayed as
uppercase even though it was typed in mixed case.

Now add an alias to the table name. Although this action does not affect
your report, it will be useful in the future when you create more complex
queries. A table alias

is a shortcut name that is used as a substitute for the
table name in the SELECT statement. The table alias is best being short
and simple, but it does not have to be.

Note:

I was once hired for a contract because I used single characters and
not table names for table aliases. Why? Using table names to reference col-
umns can make quite a mess of SQL statements. Using single-character
aliases makes for much more readable, ultimately debuggable and tunable

SQL code.

The table alias should be added to all of the table’s columns (not column
aliases) in the SELECT statement. This is a good habit to adopt because
you will be able to create more readable SQL when using table aliases.
Many of the examples in this book use table aliases. In this case, the letter

S

is used for the table alias:

Figure 4.4

Three Column
Aliases, with and
without Double

Quotes.

Chap4.fm Page 79 Thursday, July 29, 2004 10:03 PM

80

4.1

The Basic SELECT Statement

SELECT

S.

ARTIST_ID Artist,

S.

SESSION_DATE "In Studio"

,

S.

AMOUNT_CHARGED -

S.

AMOUNT_PAID "Balance Due"

FROM STUDIOTIME

S

;

You could even add a schema name and a table alias to the table name in
a SELECT command. For example, you are logged on as FRED and wish
to query the LONGBOAT table in ANGELA’s schema:

SELECT

BOAT.

BOAT_NAME,

BOAT.

DATE_CHRISTENED

FROM

ANGELA.

LONGBOAT

BOAT

;

Here are a few more tips on writing good queries:

�

Use parentheses in either the SELECT or the WHERE clause to con-
trol the order of evaluation of expressions. Expressions within paren-
theses are evaluated first. For example:

SELECT (TOTAL_MORTGAGE-(MONTHLY_PMT * MONTHS_PAID))/36

Evaluates differently to:

SELECT (TOTAL_MORTGAGE-(MONTHLY_PMT * MONTHS_PAID)/36)

�

Upper and lowercase make no difference so long as they are not in
quotation marks. For example, these three statements are identical as
far as Oracle Database 10

g

 is concerned:

SELECT Name, Street, City from artist;

Select name, street, city from ARTIST;

SelEct nAmE, strEet, CITy From aRTist;

�

When enclosed in quotation marks (single or double), then upper
and lowercase are considered different. For example, these two state-
ments are different:

SELECT * from artist where name like ('%C%');

SELECT * from artist where name like ('%c%');

�

Oracle Database 10

g

 ignores line breaks and spacing in SQL com-
mands. For example, the following two SELECT statements are iden-
tical when submitted in SQL*Plus, even though spacing and line
breaks make them look completely different from each other.

SELECT Name

, Street

Chap4.fm Page 80 Thursday, July 29, 2004 10:03 PM

4.2

Types of SELECT Queries 81

Chapter 4

, City

FROM artist;

SELECT Name , Street , City

 FROM artist ;

That’s enough simple examples for now. Subsequent chapters examine a
multitude of variations and adaptations for SELECT statements. Next we
examine the different types of SELECT statements you can use.

4.2 Types of SELECT Queries

Different types of SELECT statement queries are as follows:

� Simple queries simply retrieve rows, as we have already seen earlier in
this chapter.

� Filtered queries return a subset of rows using the WHERE clause to
filter out unwanted rows.

� Sorted queries use the ORDER BY clause to return rows in a speci-
fied order based on column values returned.

� Grouping or aggregated queries create groupings or summaries of
larger row sets.

� Join queries merge rows from more than one table, usually based on
matching column values between tables.

� Subqueries are queries executed within other queries: a SELECT
statement executed within another calling SELECT statement.

� Queries for table and view creation generate new tables and views
from the results of a SELECT statement.

� Hierarchical queries build tree-like hierarchical output row structures
from hierarchical data.

� Set operators and composite queries use special operators to concate-
nate results of different queries together.

� Flashback or versions queries allow access to data at a previous point
in time.

� Parallel queries execute SQL statements in parallel, preferably using
multiple CPU platforms and Oracle Partitioning.

Let’s look at some of the query types briefly, starting with the simple
query.

Chap4.fm Page 81 Thursday, July 29, 2004 10:03 PM

82 4.2 Types of SELECT Queries

4.2.1 Simple Query

Once again, here is a simple query. The result is shown in Figure 4.5.

SELECT ARTIST_ID, NAME FROM ARTIST;

4.2.2 Filtered Query

How can we filter the results retrieved with a query? Filtering eliminates
rows from a query and is done with the WHERE clause. Figure 4.6 shows
all rows with artists containing the vowel “a” in their names.

SELECT ARTIST_ID, NAME FROM ARTIST WHERE NAME LIKE '%a%';

Note: The percentage character (%) is used as a wild card character repre-
senting zero or more characters. Oracle SQL wild card characters used with
the LIKE clause are explained in Chapter 5 under the heading “WHERE
Clause Expression Conditions.”

Figure 4.5
A Simple Query.

Chap4.fm Page 82 Thursday, July 29, 2004 10:03 PM

4.2 Types of SELECT Queries 83

Chapter 4

4.2.3 Sorted Query

Now let’s sort. Figure 4.5 shows artists listed by their ARTIST_ID. The
order in Figure 4.5 is not because of a unique key but because that is the
order in which rows were inserted. Without an ORDER BY clause, the
sorted order of a query depends on columns selected and other criteria such
as the WHERE clause. Using the ORDER BY clause, Figure 4.7 shows art-
ists re-sorted in the order of their names (the NAME column values). Now,
the numbers in the ARTIST_ID column appear out of order.

SELECT ARTIST_ID, NAME FROM ARTIST ORDER BY NAME;

4.2.4 Grouping or Aggregated Query

Now let’s do a grouping. The COUNT function in this example causes an
aggregate or group on the COUNTRY column. The results are displayed in
Figure 4.8 summary rows: one for each unique value found in the COUN-
TRY column.

SELECT COUNT(COUNTRY), COUNTRY FROM ARTIST GROUP BY COUNTRY;

Figure 4.6
A filtered query.

Chap4.fm Page 83 Thursday, July 29, 2004 10:03 PM

84 4.2 Types of SELECT Queries

4.2.5 Join Query

The next query creates a join between the ARTIST and SONG tables. A
join does not simply retrieve all rows from multiple tables but can match
columns across tables. The result is shown in Figure 4.9, where 93 rows
retrieved by the join is equal to the total number of songs in the SONGS
table. The natural join joins the two tables on a column name or column

Figure 4.7
A Sorted Query.

Figure 4.8
A Grouping or

Aggregated Query.

Chap4.fm Page 84 Thursday, July 29, 2004 10:03 PM

4.2 Types of SELECT Queries 85

Chapter 4

name sequence present in both tables. In this case, the natural join con-
nected the two tables by matching values in the ARTIST_ID column found
in both tables.

SELECT NAME, TITLE FROM ARTIST NATURAL JOIN SONG;

4.2.6 Subquery

The query containing the subquery shown in Figure 4.10 returns the same
rows as the join query shown in Figure 4.9 but with only the title of the
song. A subquery cannot be used to display values in the results set unless
using a FROM clause embedded subquery, also known as an inline view.

SELECT TITLE FROM SONG WHERE ARTIST_ID IN

(SELECT ARTIST_ID FROM ARTIST);

4.2.7 Table or View Creation Query

We can create a new table using the join query from Figure 4.9. Selecting
the data from the new view would produce the same result as the query in
Figure 4.9:

CREATE VIEW SONGS AS

SELECT NAME, TITLE FROM ARTIST NATURAL JOIN SONG;

Figure 4.9
A Join Query.

Chap4.fm Page 85 Thursday, July 29, 2004 10:03 PM

86 4.2 Types of SELECT Queries

4.2.8 Hierarchical Query

Typically, hierarchical queries are used to retrieve data hierarchies placed
into a single table. A common modern-day use for hierarchies is data that is
obviously hierarchical in nature. Hierarchical data has parent rows contain-
ing closely related sibling rows, such as a family tree. In our case we can use
the INSTRUMENT table in our MUSIC schema. Figure 4.11 shows a
small section of this hierarchy.

This query will read a small section of the hierarchy including and con-
tained within the Guitar node as shown in Figure 4.11. The result is shown
in Figure 4.12.

SELECT LEVEL, SECTION_ID, NAME

FROM INSTRUMENT

START WITH NAME = 'Guitar'

CONNECT BY PRIOR INSTRUMENT_ID = SECTION_ID;

Figure 4.10
Using a Subquery.

Figure 4.11
The MUSIC

Schema
Instruments

Hierarchy.

Chap4.fm Page 86 Thursday, July 29, 2004 10:03 PM

4.2 Types of SELECT Queries 87

Chapter 4

We can improve on the query result from Figure 4.12 by altering it
accordingly, showing the result in Figure 4.13.

SELECT LEVEL

, (SELECT NAME FROM INSTRUMENT

 WHERE INSTRUMENT_ID = I.SECTION_ID) "Section"

, I.NAME AS Instrument

Figure 4.12
A Hierarchical

Query.

Figure 4.13
A Meaningful

Hierarchical
Query.

Chap4.fm Page 87 Thursday, July 29, 2004 10:03 PM

88 4.3 Other Aspects of the SELECT Statement

FROM INSTRUMENT I

START WITH I.NAME = 'Guitar'

CONNECT BY PRIOR I.INSTRUMENT_ID = I.SECTION_ID

ORDER BY 1,2;

4.2.9 Composite Queries

Composite queries use what are called set operators (UNION [ALL],
INTERSECT, MINUS) to concatenate (add together) the results of multi-
ple queries. Composite queries are not the same as joins. The following
query would simply concatenate the results of the two queries as a
UNION. The result would include all rows from both queries together in
the result regardless of any relationship between the two tables.

SELECT NAME, ARTIST_ID FROM ARTIST

UNION

SELECT TITLE, SONG_ID FROM SONG;

Now that we have examined query types, let’s look at some special
aspects of queries.

4.3 Other Aspects of the SELECT Statement

Various other aspects of SELECT statements are important to remember:

� The DUAL table is a dummy or temporary table used to execute
non-SQL-type commands with the SQL command interpreter.

� Using functions allows use of a large amount of built-in (provided)
functionality or even custom-written functions.

� Arithmetic is allowed in SQL using standard arithmetic operators.

� The DISTINCT function allows retrieval of unique values from a
row set containing duplicate values.

� Null values represent nothing. A space character and the value 0 are
not the same as NULL. A null value is never an unknown value but is
simply a value that has never been set.

� Pseudocolumns are special columns in Oracle Database that are cov-
ered in later chapters.

Chap4.fm Page 88 Thursday, July 29, 2004 10:03 PM

4.3 Other Aspects of the SELECT Statement 89

Chapter 4

� Top-N queries allow restricting the number of rows to be returned
from a row set by using the ROWNUM pseudocolumn in the
WHERE clause.

� Parallel queries are special queries designed to run faster in parallel
and are best executed on dual-CPU platforms, particularly with Ora-
cle Partitioning.

4.3.1 The DUAL Table

All DML statements create implicit cursors. Cursors are memory chunks
allocated for results of SQL statements. SELECT statements require a
source for an implicit cursor to operate on. Some types of SELECT state-
ments do not retrieve from any specific table. The DUAL table is a reposi-
tory for an expression result applied to a single value, acting as a temporary
repository for expression results, selected from the DUAL table.

The DUAL table can only be queried, never updated. The DUAL table
is owned by SYS but can be queried by any user. DUAL is useful when you
want to retrieve a constant or define a variable.

SELECT * FROM DUAL;

As you can see in Figure 4.14, the DUAL table contains a single col-
umn, a single row, and the value X in that single column. The column’s

Figure 4.14
The DUAL Table

Is Available for
Special Use.

Chap4.fm Page 89 Thursday, July 29, 2004 10:03 PM

90 4.3 Other Aspects of the SELECT Statement

name is DUMMY, and it is a VARCHAR2(1) datatype. This does not
seem like it helps much. However, the DUAL table can be used to view
constant values, such as the USER and SYSDATE values. Because it
returns one row, you only see these values once rather than many times
(once for each row returned).

We could modify the previous query as follows. The result is shown in
Figure 4.15.

SELECT USER, UID, ROWNUM, ROWID FROM DUAL;

Some other interesting examples are as follows, where the first joins the
results from the DUAL table to a MUSIC schema table and the second out-
puts a string:

SELECT d.*, a.* FROM DUAL d, ARTIST a;

SELECT 'Hello World!' FROM DUAL;

The DUAL table is primarily used to retrieve values in a SELECT state-
ment, where a value is retrieved such as in the following examples:

SELECT SYSDATE FROM DUAL;

SELECT USER FROM DUAL;

4.3.2 Using Functions

Functions can be placed in most parts of DML and SELECT statements.
Using functions will nearly always affect performance adversely. This is
especially true for custom-written functions. Even so, functions can provide
enormous flexibility. Functions can be divided into the following listed

Figure 4.15
None of This

Information Is
Found in the

DUAL Table.

Chap4.fm Page 90 Thursday, July 29, 2004 10:03 PM

4.3 Other Aspects of the SELECT Statement 91

Chapter 4

groups. There will be much more on using functions in later chapters, pri-
marily in Chapter 9 and Chapter 11.

� Single-row functions operate on one row at a time.

� Datatype conversion functions convert values such as numbers to
strings.

� Group functions apply specific functionality to grouping and sum-
mary queries.

� Object reference functions reference data across objects.

� User-defined functions are custom-written functions for specific tasks
not available in the functions that the Oracle Database provides.

An example function would be the use of the SUBSTR and INSTR
function in the following example, retrieving the first word of each artist’s
name.

SELECT SUBSTR(NAME,1,INSTR(NAME,' ')) FROM ARTIST;

4.3.3 Arithmetic Operations

Let’s use SYSDATE to calculate the time between a date stored in the data-
base and today’s date. The following query determines the number of days
between the due date and today. Figure 4.16 shows the result.

SELECT AMOUNT_CHARGED - AMOUNT_PAID BALANCE, DUE_DATE

, SYSDATE, SYSDATE - DUE_DATE DAYS_LATE

FROM STUDIOTIME

WHERE AMOUNT_CHARGED > AMOUNT_PAID;

In Figure 4.16, there are two subtraction expressions in the SELECT
clause:

� Subtracting two numbers (the AMOUNT_CHARGED and the
AMOUNT_PAID).

� Subtracting two dates (the SYSDATE and the DUE_DATE). When
you subtract dates, Oracle Database 10g will calculate the number of
days between the two dates. Dates are stored internally as Julian dates
and automatically converted with the default data display. A Julian
date is a number in seconds from a specified date, such as January 1,

Chap4.fm Page 91 Thursday, July 29, 2004 10:03 PM

92 4.3 Other Aspects of the SELECT Statement

1970. The fractions you see in the results are the fraction of a day
between the times in each date. Oracle Database 10g DATE
datatypes contain both a date and a time.

4.3.4 Using DISTINCT

DISTINCT will retrieve the first value of each group in multiple groups
containing duplicates. DISTINCT can operate on a single or multiple col-
umns. General syntax for DISTINCT is as follows.

SELECT DISTINCT column [, column ...] ...

SELECT DISTINCT (column [, column ...]) ...

SELECT [DISTINCT | ALL] expression ...

Let’s look at some examples using DISTINCT. Figure 4.17 shows the
output for the first of the three example syntax options using DISTINCT.

SELECT DISTINCT COUNTRY FROM ARTIST;

The following query would find all unique combinations of the two col-
umns STATE_PROVINCE and COUNTRY:

Figure 4.16
Date Arithmetic

Made Easy.

Chap4.fm Page 92 Thursday, July 29, 2004 10:03 PM

4.3 Other Aspects of the SELECT Statement 93

Chapter 4

SELECT DISTINCT STATE_PROVINCE, COUNTRY FROM ARTIST;

The parentheses require a single concatenated string. Other functions
could be used within the parentheses, so long as a single string or value is
produced.

SELECT DISTINCT (STATE_PROVINCE||COUNTRY) FROM ARTIST;

SELECT ALL as opposed to SELECT DISTINCT is the default for the
SELECT statement and is therefore seldom used. SELECT ALL simply
lists all values, repeating or not, as opposed to only unique values.

4.3.5 Null Values

Some facts about null values are important to remember:

� NULL represents nothing, not a space, not a zero (0), or even an
unknown value.

� A space character or a 0 value are not NULL.

� Null values are not included in binary tree (BTree) indexes.

Figure 4.17
Using DISTINCT.

Chap4.fm Page 93 Thursday, July 29, 2004 10:03 PM

94 4.3 Other Aspects of the SELECT Statement

� Most functions return null values when passed a null value.

� NULL can be tested for using the IS [NOT] NULL conditional
operator.

� An expression containing a null value always returns a null value.

� The NVL (value, replace) function replaces null values in expressions,
avoiding SQL errors. The SET NULL environment variable does the
same thing in SQL*Plus.

� Null values sort as the highest value by default.

4.3.6 Using Pseudocolumns

One or two simple examples will suffice with respect to the SELECT state-
ment. For example, the following query finds the ROWID (logical row
pointer) and ROWNUM (returned row number in current query) for each
row in the query. The result is shown in Figure 4.18.

SELECT ROWNUM, NAME, ROWID FROM ARTIST;

That is the basics of the SELECT statement, plus a few other small bits
and pieces. Subsequent chapters will cover many of the details introduced

Figure 4.18
Using

Pseudocolumns.

Chap4.fm Page 94 Thursday, July 29, 2004 10:03 PM

4.3 Other Aspects of the SELECT Statement 95

Chapter 4

in this chapter. This book is intended as a reference manual, building com-
plexity piece by piece. The next chapter looks at filtering what is returned
from a query.

Chap4.fm Page 95 Thursday, July 29, 2004 10:03 PM

This page intentionally left blank

97

5

Filtering Rows

In this chapter:

�

How do you filter rows out of a query?

�

What are conditional comparisons?

�

What are logical operators?

This chapter extends the syntax of the SELECT statement by examining
WHERE clause filtering, conditional comparisons, and logical operators.

Filtering

 is a process of retrieving a subset of the rows retrieved by the
SELECT statement.

5.1 WHERE Clause Syntax

We saw two of the primary parts (or clauses) of an SQL query in the previ-
ous chapter, namely the SELECT clause and the FROM clause. This chap-
ter adds the WHERE clause. Here is a quick description of each clause:

�

SELECT

. List all the columns you want to see in your report here.
Separate them with commas. Use an asterisk (*) instead of a list of
columns to automatically show all columns in the queried table.

�

FROM

. Put the table name here. Use an alias for easier referencing in
the SELECT and WHERE clauses.

�

WHERE (optional)

. Adds conditions that filter out rows. Use vari-
ous comparison conditions and logical operators between each filter.
A query without a WHERE clause returns all rows.

Chap5.fm Page 97 Thursday, July 29, 2004 10:03 PM

98

5.1

WHERE Clause Syntax

Figure 5.1 shows the basic syntax of the SELECT statement including
the WHERE clause. Examining the syntax diagram in Figure 5.1, we could
do any of the following:

SELECT * FROM ARTIST WHERE ARTIST_ID = 1;

SELECT A.* FROM ARTIST A WHERE A.ARTIST_ID = 1;

SELECT * FROM MUSIC.ARTIST WHERE MUSIC.ARTIST.ARTIST_ID = 1;

SELECT A.* FROM MUSIC.ARTIST A WHERE A.ARTIST_ID = 1;

SELECT MUSIC.ARTIST.* FROM MUSIC.ARTIST

WHERE MUSIC.ARTIST.ARTIST_ID = 1;

SELECT ARTIST.* FROM MUSIC.ARTIST

WHERE MUSIC.ARTIST.ARTIST_ID = 1;

5.1.1 Some Simple WHERE Clause Examples

Here is a query with a very simple WHERE clause restricting by date:

SELECT S.TITLE, S.RECORDING_DATE

FROM SONG S

WHERE S.RECORDING_DATE > '01-JUL-2001';

The query asks for a report of songs (listing the titles and recording
dates) that were recorded before July 1, 2001. Figure 5.2 shows the query
and the results. Notice in the WHERE clause, we used a column on the left

Figure 5.1

The SELECT
Statement Plus the
Optional WHERE

Clause.

Chap5.fm Page 98 Thursday, July 29, 2004 10:03 PM

5.1

WHERE Clause Syntax 99

Chapter 5

side of the comparison and a literal value on the right side. We can use liter-
als, expressions (such as adding two number columns), or another column
on either side of the condition.

Note:

For the sake of performance, it is always best to use functions not on

a side of the WHERE clause including a table or view column name.

1

Figure 5.3 shows a diagram of how the WHERE clause works to filter
out rows in the table. As you see in Figure 5.3, rows that meet the require-
ments are chosen, and those that fail the test are rejected.

The next example uses literals and expressions in the SELECT clause
plus columns not listed in the SELECT clause inside the WHERE clause
(columns not retrieved and displayed). In this query, the SELECT clause
contains two literals (in single quotes) and two columns. Once again the
column in the WHERE clause is not listed in the SELECT clause. Addi-
tionally, column headings are redundant and are disabled. Numerous other
things could be done to make this query more easily readable. The result is
shown in Figure 5.4.

SET HEADING OFF;

SELECT 'Song Name: ', S.TITLE

, 'Play time (M:SS): ', S.PLAYING_TIME

FROM SONG S

WHERE S.RECORDING_DATE > '01-JUL-2001';

Figure 5.2

Songs Are Listed
Only if Matching
WHERE Clause

Conditions.

Chap5.fm Page 99 Thursday, July 29, 2004 10:03 PM

100

5.1

WHERE Clause Syntax

More often than not, you will find that you need more than one filter or
condition to obtain the information you seek in a query. The previous
query can be augmented as such. The LIKE comparison operator compares

Figure 5.3

A Query’s WHERE
Clause Compares
Requirements to

Data.

Figure 5.4

Headings Do Not
Appear After

Running SET
HEADING OFF.

Chap5.fm Page 100 Thursday, July 29, 2004 10:03 PM

5.2

WHERE Clause Expression Conditions 101

Chapter 5

the text in the TITLE column of each row with the text on the right side of
the operator. The percentage signs (%) are wild cards. A wild card character
matches any character or string of characters. So, any title containing “Me”
anywhere within the song title will pass this test and be returned. The result
is shown in Figure 5.5.

SELECT S.TITLE, S.RECORDING_DATE

FROM SONG S

WHERE S.RECORDING_DATE > '01-JUL-2001'

AND S.TITLE LIKE '%Me%';

That’s enough examples for now. Let’s look at how we can build
WHERE clause comparisons between left and right sides of expressions.
Followed by that we will examine joining together multiple compared sets
using logical operators.

5.2 WHERE Clause Expression Conditions

Available in Oracle SQL are a number of what could be called

conditional
comparisons

:

Figure 5.5

A Second Filter
Reduces the Result
from 39 Rows to 4

Rows.

Chap5.fm Page 101 Thursday, July 29, 2004 10:03 PM

102

5.2

WHERE Clause Expression Conditions

�

Equi (=), anti (!=, <>), and range (<, >, =<, >=) comparison condi-
tions are used between two expressions. A table column name is an
expression.

expression [= | != | > | < | >= | <=] expression

For example:

SELECT * FROM ARTIST WHERE ARTIST_ID = 1;

SELECT * FROM ARTIST WHERE ARTIST_ID <> 1;

SELECT * FROM ARTIST WHERE ARTIST_ID <= 5;

A subquery is also an expression, so the following applies. This
comparison condition allows a single-row subquery only. A single-
row subquery returns a single row only. See Chapter 12 for details on
subqueries.

(subquery) [= | != | > | < | >= | <=] (subquery)

�

LIKE pattern-matches between strings, those strings being expres-
sions. LIKE also requires single-row subqueries if used with a sub-
query.

expression LIKE expression

For example:

SELECT * FROM ARTIST WHERE NAME LIKE '%a%';

The percentage sign (%) and the underscore/underbar (_) charac-
ters are pattern-matching wild card characters. A wild card character
can match any character. More specifically, the percentage sign (%) is
used as a pattern-matching character representing zero or more char-
acters in a subset of a string. The underscore/underbar character (_) is
used to represent one and only one character. The previous query
will find all artists with a letter “a” anywhere in their names. The next
example will only find artists with a letter “a” in the second position
of their names.

SELECT * FROM ARTIST WHERE NAME LIKE '_a%';

Chap5.fm Page 102 Thursday, July 29, 2004 10:03 PM

5.2

WHERE Clause Expression Conditions 103

Chapter 5

�

IN set membership evaluates an expression as being within a set of
elements. Because IN implies set membership, IN allows multiple-
row returning subqueries.

expression [NOT] IN (expression)

IN is often used to check membership of one element in a list of
elements. This example checks against a list of literal items:

SELECT NAME FROM ARTIST

WHERE COUNTRY IN ('USA', 'Canada');

This example uses a subquery to create the list for IN membership
to check against:

SELECT NAME FROM ARTIST WHERE ARTIST_ID IN

(SELECT GUESTARTIST_ID FROM GUESTAPPEARANCE);

�

EXISTS checks for membership as IN does with a few differences: (1)
EXISTS only allows an expression on the left; (2) EXISTS is some-
times faster; and (3) probably most significantly, EXISTS allows a
correlation and index matching between a calling query and a sub-
query. Like the IN condition, EXISTS implies set membership and
allows multiple-row returning subqueries.

[NOT] EXISTS (expression)

Note:

IN does allow passing of correlated values into subqueries but

EXISTS is the more efficient option.

1

In this example, the artist’s name is retrieved whenever the artist is
found in the GUESTAPPEARANCE table:

SELECT NAME FROM ARTIST WHERE EXISTS

(SELECT GUESTARTIST_ID FROM GUESTAPPEARANCE);

Chap5.fm Page 103 Thursday, July 29, 2004 10:03 PM

104

5.2

WHERE Clause Expression Conditions

This example modifies the previous one such that a correlated value
is passed from the calling query into the subquery. This effectively cre-
ates a link or correlation between calling query and subquery.

SELECT A.NAME FROM ARTIST A WHERE EXISTS

 (SELECT GUESTARTIST_ID FROM GUESTAPPEARANCE

 WHERE GUESTARTIST_ID = A.ARTIST_ID);

Note:

Queries using subqueries are sometimes called semi-joins when per-

forming the same or a similar function as a join.

�

BETWEEN validates an expression being between (inclusive of) two
values, such that the first value should be less than the second.
BETWEEN allows only single-row returning subqueries.

expression BETWEEN expression AND expression

SELECT NAME FROM ARTIST

WHERE ARTIST_ID BETWEEN 1 AND 10;

The next example would produce no result because there is noth-
ing between 1 and 10 when starting the count at 10.

SELECT NAME FROM ARTIST

WHERE ARTIST_ID BETWEEN 10 AND 1;

Correct this by rewriting the statement as follows:

SELECT NAME FROM ARTIST

WHERE ARTIST_ID BETWEEN 1 AND 10;

�

ANY, SOME, and ALL check set membership and allow subqueries
that return multiple rows. ANY checks for membership of any ele-
ment, and SOME looks for some elements. ANY and SOME are
identical. ALL only returns a result if all elements in both expressions
match; the two sets must be equal in size and content.

expression [= | != | > | < | >= | <=]

[ANY | SOME | ALL] expression

Chap5.fm Page 104 Thursday, July 29, 2004 10:03 PM

5.4

Top-N Queries 105

Chapter 5

SELECT NAME FROM ARTIST WHERE ARTIST_ID = ANY

(SELECT GUESTARTIST_ID FROM GUESTAPPEARANCE);

Those are the conditional comparisons available in Oracle SQL. Now
let’s look at what I like to call logical operators.

5.3 Logical Operators in the WHERE Clause

Logical operators in Oracle SQL are AND, OR, and NOT. They work to
concatenate multiple conditional expressions together. Precedence rules
apply in that expressions are evaluated from left to right, unless overridden
by parenthesised (bracketed) sections. NOT has higher precedence than
AND, followed by OR. In the following example, the two TITLE column
checks are bracketed and are thus evaluated first, followed by the
RECORDING_DATE using AND. The result is shown in Figure 5.6.

SELECT TITLE, RECORDING_DATE FROM SONG

WHERE RECORDING_DATE > '01-JUL-2001'

AND (TITLE LIKE '%Me%' OR TITLE LIKE '%You%');

Removing the brackets in the following code snippet, as shown in Figure
5.7, can produce a spurious or meaningless result.

SELECT TITLE, RECORDING_DATE FROM SONG

WHERE RECORDING_DATE > '01-JUL-2001'

AND TITLE LIKE '%Me%' OR TITLE LIKE '%You%';

Next we look at Top-N queries.

5.4 Top-N Queries

Database tables grow as more and more data is added to them. One of the
challenges of the DBA or application programmer is to be able to quickly
assess the contents of large tables. This sometimes requires a query on thou-
sands, even millions of rows. The Top-N query feature introduced in Oracle
Database 9

i

provides the capability to retrieve small sections of a large table
without having to write an application or use expensive third-party tools to
dig into voluminous or copious amounts of data.

Chap5.fm Page 105 Thursday, July 29, 2004 10:03 PM

106

5.4

Top-N Queries

A Top-N query uses an Inline view and the ROWNUM pseudocolumn
to retrieve data from a large table in a specified order. An Inline view is a
type of subquery (see Chapter 12).

The following query looks at the recording date and title of songs in the
SONG table. The query uses an Inline view in place of a table in the
FROM clause.

SELECT RECORDING_DATE, TITLE

FROM (SELECT RECORDING_DATE, TITLE

 FROM SONG

 WHERE RECORDING_DATE <= '24-JAN-01'

 ORDER BY RECORDING_DATE);

Let’s imagine that this table actually contains millions of rows and you
only want to see the first 10 rows that were recorded the earliest. The rows
will be sorted by date within the Inline view. By using the ROWNUM
pseudocolumn in the main query, you can quickly retrieve only the first few
rows of the table. Change the query to add the ROWNUM pseudocolumn
in the WHERE clause. The complete query should look as follows with the
change highlighted:

SELECT RECORDING_DATE, TITLE

FROM (SELECT RECORDING_DATE, TITLE

 FROM SONG

 WHERE RECORDING_DATE <= '24-JAN-01'

Figure 5.6

The Bracketed
Expression Is

Evaluated First.

Chap5.fm Page 106 Thursday, July 29, 2004 10:03 PM

5.4

Top-N Queries 107

Chapter 5

 ORDER BY RECORDING_DATE)

WHERE ROWNUM <= 10;

Thus the query retrieves the Top-N or first

n

 (first 10) rows of the query
in the Inline view. Use Top-N queries, for instance, in a large data ware-
house database where you simply want a sample of the data.

The only additional issue worth mentioning is that a Top-N query only
retrieves the first

n

 rows and cannot be used to retrieve the last

n

 rows.
Therefore, changing the WHERE clause to the following query would run
successfully, but no rows would be returned.

WHERE ROWNUM

>

 10;

That more or less covers the basics of WHERE clause filtering of
SELECT statement results. There are a few other points to remember about
using WHERE clauses:

� The WHERE clause is evaluated before the result of a row set being
returned. In other words, the WHERE clause is applied to and affects
physical input/output (I/O) disk reads. The WHERE clause can
therefore affect SELECT statement performance drastically because it

Figure 5.7
AND Has Higher

Precedence than
OR.

Chap5.fm Page 107 Thursday, July 29, 2004 10:03 PM

108 5.5 Endnotes

can help determine how much data the SELECT statement retrieves
physically from disk.

� In general terms, indexes are physically shortened, presorted versions
of table rows. A WHERE clause can allow the use of specific indexes
both for reading data and for applying inherent index sorts (pre-
sorted). Therefore, WHERE clause expression orders can be
extremely important to performance, particularly when matching
indexes or, more specifically, attempting to utilize and take advantage
of physical data ordering already available in an index. In Oracle
Database 9i, Oracle Database 10g, and beyond, the Optimizer is
intelligent to the point that WHERE clause expression sequences can
even ignore case sensitivity to a certain extent. However, strict adher-
ence to SQL coding standards is still advisable. Simply put, structur-
ing WHERE clauses in the right manner can make SQL code
enormously less complex and potentially much more efficient.

That is enough about the WHERE clause for now. The next chapter
deals with sorting query results and the ORDER BY clause.

5.5 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Chap5.fm Page 108 Thursday, July 29, 2004 10:03 PM

109

6

Sorting Rows

In this chapter:

�

How are rows in queries sorted both manually and automatically?

�

How are null values affected when sorting rows?

�

What are the types of sorting methods for the ORDER BY clause?

This chapter extends the syntax of the SELECT statement by examining
ORDER BY clause sorting and the various detailed aspects of SELECT
statement ORDER BY clauses.

6.1 ORDER BY Clause Syntax

Previous chapters have examined the SELECT, FROM, and WHERE
clauses. This chapter adds the ORDER BY clause to the SELECT state-
ment. Here is a quick description of each clause:

�

SELECT

. List all the columns you want to see in your report here.
Separate them with commas. Use an asterisk (*) instead of a list of
columns to automatically show all columns in the queried table.

�

FROM

. Put the table name here. Use an alias for easier referencing in
the other clauses.

�

WHERE (optional)

. Add conditions that filter out rows from your
report here. Use various comparison conditions and logical opera-
tors between each filter. A query without a WHERE clause returns
all rows.

Chap6.fm Page 109 Thursday, July 29, 2004 10:04 PM

110

6.1

ORDER BY Clause Syntax

�

ORDER BY (optional)

. Add sorting parameters, allowing rows to be
rearranged in a specified order.

Sorting query results helps make your report more readable and useful.
For example, it is very useful to list people in alphabetical order by last
name. The ORDER BY clause of the SELECT statement provides sorting
capability.

You can sort by any column or expression you use in your SELECT
clause. In addition, you can sort by any column in the table (or any expres-
sion based on any column) you are querying, even if the column is not
selected. You can sort by up to 255 columns or expressions in one SELECT
statement.

The ORDER BY clause appears after the WHERE clause. Figure 6.1
shows the syntax with comments explaining the parts.

Note:

The ORDER BY clause is an optional clause, as is the WHERE
clause. You can have an ORDER BY clause without a WHERE clause and

vice versa.

Figure 6.1

The SELECT
Statement

Optional ORDER
BY Clause.

Chap6.fm Page 110 Thursday, July 29, 2004 10:04 PM

6.1

ORDER BY Clause Syntax 111

Chapter 6

6.1.1 Some Simple ORDER BY Clause Examples

Here’s an example query with no ORDER BY clause:

SELECT A.NAME "Artist", S.DUE_DATE

, SYSDATE – S.DUE_DATE DAYS_LATE

, S.AMOUNT_CHARGED – S.AMOUNT_PAID BALANCE

FROM ARTIST A NATURAL JOIN STUDIOTIME S

WHERE S.AMOUNT_CHARGED > S.AMOUNT_PAID;

If you want to sort the results by DUE_DATE, you could simply add
this ORDER BY clause:

ORDER BY S.DUE_DATE;

Note:

The column in the ORDER BY clause is referenced by its table alias,

“S”.

The default order is ascending. Figure 6.2 shows the query and results in
ascending order by DUE_DATE.

Figure 6.2

Sorting by a Single
Column.

Chap6.fm Page 111 Thursday, July 29, 2004 10:04 PM

112

6.1

ORDER BY Clause Syntax

Now add the BALANCE column to the ORDER BY list. This time,
you want to first sort by DUE_DATE and then by BALANCE within
DUE_DATE. BALANCE can be sorted in descending order. This way, the
top of your report shows you which artists owe you the most money for the
longest amount of time. The ORDER BY clause can be changed as shown:

ORDER BY DUE_DATE, BALANCE DESC;

Note:

The column alias is not included in this code snippet. An alias is

optional in the ANSI standard natural join. Joins are covered in Chapter 10.

Figure 6.3 shows the query and results in descending order of BAL-
ANCE within ascending order by DUE_DATE.

That covers the basics of sorting in ascending order, descending order,
and using one or more columns. Now let’s look at some slightly more com-
plex aspects of sorting. We begin with looking at the behavior of null values
when sorting.

Figure 6.3

Sorting by Multiple
Columns.

Chap6.fm Page 112 Thursday, July 29, 2004 10:04 PM

6.2

Sorting and Null Values 113

Chapter 6

6.2 Sorting and Null Values

Null values, by definition, have an unknown value, so they cannot be logi-
cally placed in any order. To handle null values, Oracle Database 10

g

 has
established the following default sorting rules for null values:

�

If the column containing null values is being sorted in ascending
order, the rows with null values are listed at the end.

�

If the column containing null values is being sorted in descending
order, the rows with null values are listed at the beginning.

You can reverse either of these rules by using the NULLS FIRST or
NULLS LAST keywords in your ORDER BY clause. Let’s show how null
values and sorting interact. This query retrieves songs with titles that start
with A, B, or C and sorts by the playing time.

SELECT RECORDING_DATE, PLAYING_TIME, TITLE

FROM SONG

WHERE TITLE BETWEEN 'A' and 'C'

ORDER BY PLAYING_TIME;

Figure 6.4 shows the result. Notice that the rows with null values in
PLAYING_TIME appear last in the list, using the default ascending (ASC)
order.

Now we can add the NULLS FIRST parameter to the ORDER BY
clause and run the query again.

ORDER BY PLAYING_TIME NULLS FIRST;

Figure 6.5 shows the result. Notice that the rows with null values in
PLAYING_TIME now appear first in the list.

Remember that when you add comparisons in the WHERE clause, null
values do not match unless you specifically handle them. For example, the
next variation adds a WHERE clause to the query that looks for songs with
playing times of less than four minutes.

Chap6.fm Page 113 Thursday, July 29, 2004 10:04 PM

114

6.2

Sorting and Null Values

Figure 6.4

Null Values Are
Output Last when

Using Ascending
Sort Order.

Figure 6.5

Null Values Move
to the Top of the
List when Using
NULLS FIRST.

Chap6.fm Page 114 Thursday, July 29, 2004 10:04 PM

6.2

Sorting and Null Values 115

Chapter 6

SELECT RECORDING_DATE, PLAYING_TIME, TITLE

FROM SONG

WHERE TITLE BETWEEN 'A' and 'C'

AND PLAYING_TIME < '4:00'

ORDER BY PLAYING_TIME NULLS FIRST;

Figure 6.6 shows the result of the previous query. All of the rows con-
taining a null value in the PLAYING_TIME column were eliminated
because a null value cannot be compared successfully to a non-null value.

There are two ways to handle null values in the WHERE clause:

�

Use the IS NULL comparison operator to retrieve null value rows.

�

Use the NVL function to convert null values before comparing them.

Let’s try them both. First, we add another comparison to the WHERE
clause to handle null values:

WHERE TITLE BETWEEN 'A' and 'C'

AND (PLAYING_TIME < '4:00' OR PLAYING_TIME IS NULL)

Figure 6.7 shows the result such that one row has a playing time less
than four minutes, and five rows have null values in the PLAYING_TIME
column.

Figure 6.6

Null Values Are
Never Greater or

Less Than Any
Value.

Chap6.fm Page 115 Thursday, July 29, 2004 10:04 PM

116

6.2

Sorting and Null Values

Second, we can add an NVL function to convert any row with null val-
ues in the PLAYING_TIME column to some value before comparing it.
Let’s make a null value equal to zero playing time. Change the WHERE
clause as shown. The resulting query will have the same result as that in Fig-
ure 6.7 where null values are converted to a literal before the comparison.

WHERE TITLE BETWEEN 'A' and 'C'

AND NVL(PLAYING_TIME,'0:00') < '4:00'

One point to note about using the NVL function is that you must use
an expression (an expression can be a literal value) that matches the
datatype of the original column. For example, the code snippet below is
invalid because the literal cannot be translated into a date. There is no such
date with a value UNKNOWN.

NVL(RECORDING_DATE,'UNKNOWN')

Now let’s look at some different types of sorting methods, in addition to
sorting by single or multiple column names.

Figure 6.7

Null Values Always
Match the IS

NULL
Comparison.

Chap6.fm Page 116 Thursday, July 29, 2004 10:04 PM

6.3

Sorting Methods 117

Chapter 6

6.3 Sorting Methods

Other than sorting by single or multiple column names, the ORDER BY
clause can be used to sort in two other ways:

�

Sorting by position sorts by the position of a column or expression
within the SELECT statement columns list.

�

Sorting by expression allows the ORDER BY clause to contain an
expression such as a calculation.

6.3.1 Sorting by Position

The following query sorts in order of the second column, the third column,
and the first column. What’s that in English? PLAYING_TIME by TITLE
by RECORDING_DATE or RECORDING_DATE sorted within
TITLE, sorted within PLAYING_TIME.

Note:

Optional modifiers such as NULLS FIRST and DESC apply indi-

vidually to each sorted column in the ORDER BY clause.

Figure 6.8 shows the result.

SELECT RECORDING_DATE, PLAYING_TIME, TITLE

FROM SONG

WHERE TITLE LIKE '%a%'

AND TITLE LIKE '%e%'

AND TITLE LIKE '%i%'

ORDER BY 2 NULLS FIRST, 3 DESC, 1;

There are several points to take note of in Figure 6.8, including the three
annotations:

�

The PLAYING_TIME column (position 2) has NULLS FIRST and
thus null values are listed at the top.

�

The TITLE column (position 3) is sorted within the
PLAYING_TIME column (position 2) in descending (DESC) order.

Chap6.fm Page 117 Thursday, July 29, 2004 10:04 PM

118

6.3

Sorting Methods

This is evident for the first three null-valued PLAYING_TIME col-
umn rows where titles appear in reverse alphabetical order.

�

The PLAYING_TIME column has a side issue where
PLAYING_TIME is sorted as a string. The fifth and sixth rows are
sorted in the wrong order numerically. We will get to this shortly
when using expressions in the ORDER BY clause.

�

The RECORDING_DATE column (position 3) is last in the sorted
order using the default ASC and NULLS LAST options (no modifi-
ers). This is not apparent in the output of Figure 6.8 because there are
no duplicate values in the RECORDING_DATE column for this
particular output row set.

�

As already noted, each modifier such as NULLS FIRST and DESC
applies to each individual sorted column in the ORDER BY clause,
not to all ORDER BY columns as a whole.

Now let’s examine using expressions in the ORDER BY clause.

Figure 6.8

Sorting Using
SELECT List

Column Position
Numbers.

Chap6.fm Page 118 Thursday, July 29, 2004 10:04 PM

6.3

Sorting Methods 119

Chapter 6

6.3.2 Sorting by Expression

Now let’s make the query shown in Figure 6.8 a little more complex, utiliz-
ing an expression in the ORDER BY clause for the same query. In Figure
6.8, the PLAYING_TIME column (position 2) was sorted as a string. A
more sensible result would require an expression converting that string to a
number. Expressions can include built-in SQL functions or even user-
defined functions. This is the query used in Figure 6.8.

Note:

Using expressions in the ORDER BY clause can hurt performance.

1

SELECT RECORDING_DATE, PLAYING_TIME, TITLE

FROM SONG

WHERE TITLE LIKE '%a%'

AND TITLE LIKE '%e%'

AND TITLE LIKE '%i%'

ORDER BY 2 NULLS FIRST, 3 DESC, 1;

This is the change for the ORDER BY clause of the query sorting the
PLAYING_TIME column numerically, using a straightforward expression:

ORDER BY

TO_NUMBER(SUBSTR(PLAYING_TIME,1

,INSTR(PLAYING_TIME,':')-1))

 + TO_NUMBER(SUBSTR(PLAYING_TIME

,INSTR(PLAYING_TIME,':')+1))/60

NULLS FIRST, 3 DESC, 1;

Straightforward, I said. That is just nasty! That example does not really
look straightforward, now does it? Let’s make this a little easier, or per-
haps just a little better organized, utilizing a user-defined function (see
Chapter 24).

CREATE OR REPLACE FUNCTION GETTIME (pTIME IN VARCHAR2)

 RETURN NUMBER IS

 vSPLIT INTEGER DEFAULT 0;

 vHOURS INTEGER DEFAULT 0;

 vSECONDS INTEGER DEFAULT 0;

Chap6.fm Page 119 Thursday, July 29, 2004 10:04 PM

120

6.3

Sorting Methods

BEGIN

 vSPLIT := INSTR(pTIME,':');

 vHOURS := TO_NUMBER(SUBSTR(pTIME,1,vSPLIT-1));

 vSECONDS := TO_NUMBER(SUBSTR(pTIME,vSPLIT+1));

 RETURN vHOURS+(vSECONDS/60);

EXCEPTION WHEN OTHERS THEN

 RETURN 0;

END;

/

And now we can replace the ORDER BY clause with the function as an
expression, making for a much easier to read ORDER BY clause. The result
is shown in Figure 6.9.

ORDER BY GETTIME(PLAYING_TIME) NULLS FIRST, 3 DESC, 1;

Figure 6.9

Using an
Expression in the

ORDER BY
Clause.

Chap6.fm Page 120 Thursday, July 29, 2004 10:04 PM

6.3

Sorting Methods 121

Chapter 6

Obviously, a position number cannot be applied to the expression unless
the expression is placed into the SELECT list.

Note:

Copying the expression from the ORDER BY into the SELECT col-

umns list could possibly help performance.

We can change the query something like that shown following. The
expression GETTIME(PLAYING_TIME) has been added to the query,
and the ORDER BY clause has been changed to accommodate it. The
result in Figure 6.10 shows the same sorted order on the PLAYING_TIME
column value as shown in Figure 6.9.

SELECT RECORDING_DATE, PLAYING_TIME, GETTIME(PLAYING_TIME)

, TITLE

FROM SONG

WHERE TITLE LIKE '%a%'

AND TITLE LIKE '%e%'

AND TITLE LIKE '%i%'

ORDER BY 3 NULLS FIRST, 4 DESC, 1;

Figure 6.10
ORDER BY

Clause Expressions
Cannot Use

Positions.

Chap6.fm Page 121 Thursday, July 29, 2004 10:04 PM

122 6.4 Endnotes

You have now added most of the fundamental features to the SELECT
statement, namely the SELECT, FROM, WHERE, and ORDER BY
clauses. Later chapters expand on a multitude of other features and mecha-
nisms. The next chapter digresses somewhat and covers operators, condi-
tions, and pseudocolumns.

6.4 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Chap6.fm Page 122 Thursday, July 29, 2004 10:04 PM

123

7

Operators, Conditions, and Pseudocolumns

In this chapter:

�

What is precedence?

�

What is an operator and what is available?

�

What is a condition and what is available?

�

What are pseudocolumns and what is available?

Note:

Backus-Naur Form syntax angle brackets are used syntactically in this
chapter to represent substitution of all types. For example, <expression> =

<expression>.

Operators, conditions, and pseudocolumns are used and often explained
throughout this book. This chapter may duplicate parts of other chapters
with the intention of including all specific details in a single chapter. Addi-
tionally, some of the content of this chapter is common to many software
products. Need it be repeated? Yes, because this title is intended for use as
an SQL reference book.

Note:

This chapter may reclassify the categories of operators, conditions,
and pseudocolumns both with respect to Oracle documentation and other

chapters in this book.

Let’s begin with the simplest of things, precedence.

Chap7.fm Page 123 Thursday, July 29, 2004 10:04 PM

124

7.2

Operators

7.1 Precedence

One factor important with regards to both operators and conditions is that
of precedence. Precedence implies that one operator is executed before
another. Enclosing part of an expression in brackets (parentheses in mathe-
matical jargon) forces that part of the expression to be executed first, start-
ing with the lowest nested or parenthesized level. Let’s look at arithmetic
operator precedence to explain this concept.

In this first example expression, the multiplication will execute before
the addition because multiplication has higher precedence than (is executed
before) addition, even though reading from left to right, addition appears
before multiplication.

x + y

×

 z

Now let’s fix the precedence problem and force addition to execute first
by using parentheses.

(x + y)

×

 z

Similarly applying nesting of precedence in the next example, the sub-
traction will be executed first, followed by the addition and finally the mul-
tiplication, regardless of the precedence of the different operators.

(x + (y - p))

×

 z

That is precedence. Simple, right? Now let’s go onto operators.

7.2 Operators

Operators can be divided into several groups, as shown following:

�

Arithmetic operators allow things like 1 + 1 or 5 * 3, where + and *
are the arithmetic operators.

�

Logical operators allow merging of multiple expressions.

�

The concatenation operator is the || goodie allowing concatenation of
strings.

�

Hierarchical query operators are specialized for use in hierarchical
queries.

�

Set operators literally do things with sets of rows.

�

Multiset operators are set operators exclusively for use with nested
table objects.

�

User-defined operators allow creation of your own operators.

Chap7.fm Page 124 Thursday, July 29, 2004 10:04 PM

7.2

Operators 125

Chapter 7

7.2.1 Arithmetic Operators

An arithmetic operator allows for simple arithmetic calculations in the form
shown:

<expression> <operator> <expression>

�

* and / execute multiplication and division, respectively, both having
the same precedence and both having higher precedence than addi-
tion and subtraction.

�

+ and – execute addition and subtraction, respectively, both having
the same precedence.

This example shows use of an arithmetic operator in a SELECT state-
ment producing the “Owed” column. The result is shown in Figure 7.1

SELECT ARTIST_ID, SESSION_DATE, AMOUNT_CHARGED, AMOUNT_PAID

, AMOUNT_CHARGED - AMOUNT_PAID “Owed”

FROM STUDIOTIME;

Figure 7.1

Arithmetic
Operators.

Chap7.fm Page 125 Thursday, July 29, 2004 10:04 PM

126

7.2

Operators

7.2.2 Logical Operators

Logical operators are NOT, AND, and OR, in that order of precedence.
NOT implies that an expression must be false for a TRUE result; AND
implies that two expressions must be true for a TRUE result; and OR
implies that either of two expressions must be true for a TRUE result.
There are more examples in Chapter 5.

�

<expression> AND <expression> such that both expressions yield
TRUE. This example finds artists whose names contain the vowel “a”
and who live in the USA. Both conditions must be true for a row to
be returned. The result is shown in Figure 7.2.

SELECT NAME, COUNTRY FROM ARTIST

WHERE COUNTRY = 'USA' AND NAME LIKE '%a%';

Figure 7.2

The AND Logical
Operator.

Chap7.fm Page 126 Thursday, July 29, 2004 10:04 PM

7.2

Operators 127

Chapter 7

�

<expression> OR <expression> such that either expression yields
TRUE. This example is the same as the last except that either expres-
sion can be true. The result in Figure 7.3 shows any artists either in
the USA or with the vowel “a” in their names.

SELECT NAME, COUNTRY FROM ARTIST

WHERE COUNTRY = 'USA' OR NAME LIKE '%a%';

�

<expression> { AND | OR } NOT <expression> yields TRUE if both
expressions (AND), or either (OR), yield TRUE. Figure 7.4 shows
artists in the USA as long as the vowel “a” is not in their names.

SELECT NAME, COUNTRY FROM ARTIST

WHERE COUNTRY = 'USA' AND NOT NAME LIKE '%a%';

Figure 7.3

The OR Logical
Operator.

Chap7.fm Page 127 Thursday, July 29, 2004 10:04 PM

128

7.2

Operators

7.2.3 The Concatenation Operator

The concatenation operator (||) allows concatenation of strings. The exam-
ple following concatenates two strings from two separate tables in an SQL
join (see Chapter 10). The result is shown in Figure 7.5.

SELECT NAME||' WROTE '||TITLE

FROM ARTIST NATURAL JOIN SONG

WHERE TITLE LIKE '%A%';

7.2.4 Hierarchical Query Operators

There are two hierarchical query operators, which are discusssed in more
detail with examples in Chapter 13.

�

PRIOR is used with the CONNECT BY condition evaluating the
subsequent expression for each parent row of each current row, using
a current row column to hook into a parent row column.

�

CONNECT_BY_ROOT performs a similar function to that
of CONNECT BY PRIOR except using the root row of the hierar-
chy as opposed to the parent row.

Figure 7.4

The NOT Logical
Operator.

Chap7.fm Page 128 Thursday, July 29, 2004 10:04 PM

7.2

Operators 129

Chapter 7

7.2.5 Set Operators

The various set operators effectively allow the merging of results of two sep-
arate queries in the form of <query> operator <query> (more detail and
examples in Chapter 13).

�

UNION [ALL] retrieves all rows in both queries. The ALL modifier
includes all duplicates; otherwise only unique rows are retrieved.

�

INTERSECT returns the intersection of two queries, namely rows
common to both queries.

�

MINUS returns all unique rows in the first query but not in the sec-
ond query.

7.2.6 Multiset Operators

Where set operators do things with query results of two queries, multiset
operators perform a similar function between two nested tables. Require-

Figure 7.5

The Concatenation
(||) Operator.

Chap7.fm Page 129 Thursday, July 29, 2004 10:04 PM

130

7.2

Operators

ments are that the two nested tables must be of the same type, and thus
returning the same nested table type as well. All options default to ALL but
can return only DISTINCT values as well.

�

MULTISET EXCEPT returns exceptions in the first nested table and
not in the second, returning a nested table containing elements in the
first and not the second nested table.

<nested table> MULTISET EXCEPT [DISTINCT |

ALL

]

<nested table>

For example, the following procedure will output elements in
nested table P1 but not in nested table P2, namely the string “one”:

DECLARE

TYPE PCOLL IS TABLE OF VARCHAR2(32);

P1 PCOLL := PCOLL('one','two','three');

P2 PCOLL := PCOLL('two','three','four');

P3 PCOLL;

BEGIN

P3 := P1 MULTISET EXCEPT P2;

FOR i IN P3.FIRST..P3.LAST LOOP

DBMS_OUTPUT.PUT_LINE(P3(i));

END LOOP;

END;

/

�

MULTISET INTERSECT returns the intersection of two nested
tables or, in other words, elements common to both.

<nested table> MULTISET INTERSECT [DISTINCT |

ALL

]

<nested table>

�

MULTISET UNION returns all elements in both.

<nested table> MULTISET UNION [DISTINCT |

ALL

]

<nested table>

Chap7.fm Page 130 Thursday, July 29, 2004 10:04 PM

7.3

Conditions 131

Chapter 7

Note:

Nested tables are covered in Chapter 16.

7.2.7 User-Defined Operators

User-defined operators can be created using the DDL CREATE OPERA-
TOR command.

The next thing to look at is conditions.

7.3 Conditions

A

condition

 is a condition or state of the result of an expression. Because a
state is implied, a condition will return a Boolean result of TRUE or
FALSE, indicating something being on or off. Conditions can be divided
into the following listed groups:

� Comparison compares expressions as shown (see Chapter 5):

<expression> condition <expression>

Set membership using IN and EXISTS is a type of comparison in
that it verifies membership of an expression in a set of values. Once
again, examples are in Chapter 5.

<expression> member (<expression>, …, <expression>)

� The floating-point condition allows checking for a number as
being defined or undefined. The syntax is as follows such that NAN
represents Not A Number and INFINITE is undefined.

<expression> IS [NOT] { INFINITE | NAN }

� A NULL can be tested for using the NULL conditional comparison.

<expression> IS [NOT] NULL

In the example shown following, three different counts are made
counting songs with playing times not yet entered into the database
and not entered as zero or a space character. The sum of the row
counts returned by the second and third queries is identical to the
first query’s row count. The result is shown in Figure 7.6.

SELECT COUNT(*) FROM SONG;

SELECT COUNT(*) FROM SONG WHERE PLAYING_TIME IS NULL;

Chap7.fm Page 131 Thursday, July 29, 2004 10:04 PM

132 7.3 Conditions

SELECT COUNT(*) FROM SONG

WHERE PLAYING_TIME IS NOT NULL;

� XML conditions are EQUALS_PATH and UNDER_PATH.
EQUALS_PATH searches the entire path from the root node of an
XML object and UNDER_PATH a relative path. A relative path
begins at a specified node in an XML structure.

EQUALS_PATH (<column>, <path>) = <expression>

UNDER_PATH (<column> [, levels], <path>)

= <expression>

See Chapter 17 for more detail on using XML in Oracle SQL.

� Object collection conditions are as follows (see Chapter 16 for more
detail on nested tables):

Figure 7.6
The IS NULL

Comparison
Condition.

Chap7.fm Page 132 Thursday, July 29, 2004 10:04 PM

7.3 Conditions 133

Chapter 7

� IS A SET implies that a collection is a set because it con-
tains unique values only.

<nested table> IS [NOT] A SET

� IS EMPTY checks for an empty collection, a nested table
containing no elements whatsoever, essentially a collection not as
yet instantiated.

<nested table> IS [NOT] EMPTY

� MEMBER OF attempts to validate membership within a
collection.

<expression> [NOT] MEMBER OF <nested table>

� SUBMULTISET indicates if one or more collection items
are a subset of another collection.

<nested table> [NOT] SUBMULTISET [OF]

<nested table>

� IS OF TYPE checks object datatypes.

<expression> IS [NOT] OF [TYPE].

� Equality and inequality. Nested tables and VARRAY collec-
tions can be compared using equality (=) and inequality operators
(!=, <>).

� REGEXP_LIKE utilizes regular expressions as opposed to sim-
ple pattern matching (see Chapter 14).

<regular expression> REGEXP_LIKE (<source>

, <pattern>, <match>)

� The SPREADSHEET clause extends the SELECT statement
allowing for calculations between cells and rows (see Chapter 11).

� IS ANY qualifies SPREADSHEET clause dimensional values.

<dimension> IS ANY

� IS PRESENT ensures that a cell exists before the execution of a
SPREADSHEET clause.

<cell> IS PRESENT

Chap7.fm Page 133 Thursday, July 29, 2004 10:04 PM

134 7.4 Pseudocolumns

7.4 Pseudocolumns

Pseudocolumns are virtual columns or expression calculators, the expression
being a constant or another expression. To use a pseudocolumn, you simply
name it in the SQL statement. You can select a pseudocolumn or use it in
an expression or WHERE clause. You cannot insert, update, or delete the
value in a pseudocolumn.

Note: Contrary to popular belief, values such as SYSDATE, SYSTIMES-
TAMP, USER, and UID are not pseudocolumns but built-in functions.

Table 7.1 lists available pseudocolumns.

Table 7.1 Pseudocolumns in Oracle Database.

Classification Pseudocolumn Purpose

ROWID A relative pointer to a row in the database based
on logical and physical database objects. A concat-
enated set of numbers and letters comprising rela-
tive address pointers to a tablespace, a datafile
block within a tablespace, a row within a block,
and a tablespace datafile number. May also con-
tain a different format if the row is located outside
the database.

ROWNUM The sequence number of each row retrieved in a
query. Note that ROWNUM is evaluated after a
WHERE clause (before the ORDER BY clause).
The first row is 1, and so on.

Sequences <sequence>.CURRVAL Retrieves the current value of a sequence and must
be defined for the session first with NEXTVAL. See
Chapter 22.

Sequences <sequence>.NEXTVAL Retrieves the next value of a sequence. Used to
increment a sequence. See Chapter 22.

Hierarchical LEVEL Used only in hierarchical queries (using the CON-
NECT BY clause). This returns the level (1, 2, etc.)
of the row. See Chapter 13.

Hierarchical CONNECT_BY_{IS[LEAF|
CYCLE]}

These pseudocolumns determine if hierarchical
data can be expanded upon. Does an element have
ancestor and/or child entries? More on this in
Chapter 13.

Chap7.fm Page 134 Thursday, July 29, 2004 10:04 PM

7.4 Pseudocolumns 135

Chapter 7

That more or less covers any referential information on operators, condi-
tions, and pseudocolumns. The next chapter covers more detail using
SQL*Plus, particularly with respect to formatting. Further SQL*Plus output
formatting detail is essential to proper use and understanding of Oracle SQL.

XML XMLDATA Special holder for XML data to allow modifications
of storage parameters. XML will be covered in
detail in Chapter 17.

Flashback VERSIONS_{…} There are six different flashback version query
pseudocolumns. See Chapter 13.

OBJECT_ID Column object identifier.

OBJECT_VALUE System-generated column names.

Table 7.1 Pseudocolumns in Oracle Database. (continued)

Chap7.fm Page 135 Thursday, July 29, 2004 10:04 PM

This page intentionally left blank

137

8

Using SQL*Plus

In this chapter:

�

What are environmental settings for SQL*Plus formatting?

�

How are variables used in SQL*Plus?

�

How are scripts used in SQL*Plus?

�

How are reports formatted in SQL*Plus?

�

How is iSQL*Plus used for reporting?

This chapter shows you how to use the environmental settings, vari-
ables, and special SQL*Plus commands to generate acceptable output and
reports. Examples in this book use both SQL*Plus Worksheet and
SQL*Plus. SQL*Plus Worksheet is more of an end-user tool. A final part of
this chapter shows some brief example use of iSQL*Plus.

Let’s start by looking at some environmental settings.

8.1 Environmental Settings

An environmental variable is set for the duration of a session using the SET
command or as a default.

Note:

Defaults can be set for SQL*Plus in the GLOGIN.SQL configura-

tion file in the $ORACLE_HOME/sqlplus/admin directory.

The SET command changes the value of an environmental variable, and
the SHOW command displays its value. Detailed information on available
environmental variables is available in Oracle documentation.

Chap8.fm Page 137 Thursday, July 29, 2004 10:06 PM

138

8.1

Environmental Settings

SQL*Plus has a group of settings that define various aspects of your
working environment. These settings, as a group, are called

environmental
settings

. For example, the default setting for the width of the screen output
is 1,024 characters when using SQL*Plus Worksheet.

There are well in excess of 70 different environmental variables you can
set. Most environmental variables are SQL*Plus variables you adjust for
your Oracle Database 10

g

 session and can only be used with SQL*Plus
tools (i.e., SQL*Plus, SQL*Plus Worksheet, and iSQL*Plus).

Look at the entire list by running the following statement in SQL*Plus
Worksheet:

SHOW ALL

Figure 8.1 shows part of the results.

Figure 8.1

Environmental
Variables, Settings,

and Some
Explanations.

Chap8.fm Page 138 Thursday, July 29, 2004 10:06 PM

8.1

Environmental Settings 139

Chapter 8

If you want to view only a single variable, use the SHOW command
with that variable’s name as in SHOW { variable name }. For example, to
see the setting for PAGESIZE, type the following:

SHOW PAGES[IZE]

The page size can also be found using the abbreviation for PAGESIZE,
PAGES. Here is a list of some of the commonly used settings with their stan-
dard abbreviations (if any). Some of these environmental variables have
already been used in previous chapters, such as LINESIZE and HEADING.

Note:

Environmental settings usually have shortened versions for faster

access, some being as small as three characters.

�

AUTO[COMMIT]

. By default, AUTOCOMMIT is set to OFF. Set-
ting this variable to ON will commit all DML changes automatically.
If you ever plan to undo DML changes with a ROLLBACK com-
mand, do not tamper with this setting.

�

ARRAY[SIZE]

. Sets the number of rows SQL*Plus retrieves as a
block from the database. The default is 15 and the valid range is 1 to
5,000. Retrieving many rows at once can improve performance, but
Oracle advises that values higher than 100 do not help.

�

CMDS[EP]

. Sets the character that marks the end of a command
(command separator) when you allow multiple commands on one
line. The default is OFF, meaning you cannot have multiple com-
mands on one line. You can set it to ON, which allows multiple com-
mands on one line and sets the command separator to “;”. You can
also set it to a different character. For example, to set the command
separator to “

~

” and then use multiple commands on one line, exe-
cute these commands in SQL*Plus Worksheet:

SET CMDSEP ~

COL NAME HEADING "Artist" ~ COL CITY HEADING "Location"

SELECT NAME, CITY FROM ARTIST;

SET CMDSEP OFF

�

COLSEP

. Sets the character used between columns in a report. The
default is a blank space.

Chap8.fm Page 139 Thursday, July 29, 2004 10:06 PM

140

8.1

Environmental Settings

�

ECHO

. Tells SQL*Plus to either list the command before executing
it (ON) or to not list the command in the output (OFF). The default
is OFF. This command only affects commands that are run using the
START command, which you use to run a script stored in a file.

�

ESC[APE]

. An escape character allows a command-level character to
be used without executing its inherent command. ESCAPE ON sets
the default, a backslash (\).

�

FEED[BACK]

. Determines whether to display feedback (ON), sup-
press feedback (OFF), or display feedback only when the number of
rows returned is greater than whatever number you set. The default is
ON. The feedback is that informational line displayed in SQL*Plus,
such as “1 row returned” or “1 row inserted.” Suppressing feedback is
useful when producing carefully formatted reports.

�

HEAD[ING]

. Set to OFF for no column headings. Set to ON (the
default) to display column headings.

�

LINE[SIZE]

. The number of characters on one line before SQL*Plus
starts a new line. The default in SQL*Plus is 80, and the default in
SQL*Plus Worksheet is 1,024. Set it to any number from 1 to a max-
imum number that varies for different operating systems. Executing
the following commands would show different line size truncations.
Truncating chops off or removes characters from the output. Figure
8.2 shows the width of the line limited to 10 characters only, truncat-
ing large parts of artist names. This example is not particularly useful
and quite possibly humongously silly. However, the point about page
width is made. I usually set my default to 132 (see WRAP as well).
The result is shown in Figure 8.2.

SET LINESIZE 10

SELECT NAME, CITY FROM ARTIST;

�

LONG

. Set the default number of bytes retrieved and displayed for a
column with the LONG, CLOB, NCLOB, or XML type datatype.
The default is 80. The maximum is 2 gigabytes; this could produce
lots of nasty on-screen output, so you might want to be prepared to
kill your session if using as such.

Note:

XML documents are stored as CLOB objects. To view XML docu-

ments in a readable format, use SET LONG 2000 (see Chapter 17).

Chap8.fm Page 140 Thursday, July 29, 2004 10:06 PM

8.1

Environmental Settings 141

Chapter 8

�

MARK[UP] HTML

. Vaguely, this option can be used to generate
HTML script from SQL*Plus output.

�

NEWP[AGE]

. Sets the number of blank lines to print before print-
ing the title (if any) and headings on a new page. If setting NEW-
PAGE to NONE, SQL*Plus lists the report output as if it were on a
single very long page. This variable is not used in iSQL*Plus.

�

NULL

. Sets the string displayed when a null value is returned in a
report. The default is a blank space. The example in Figure 8.3
replaces null values in the POBOX column with a replacement
string.

SET NULL '---NONE---'

SELECT ARTIST_ID, POBOX FROM ARTIST;

Null value replacements can even be generated into a table, as in
the following example. The new table will be produced exactly as the
query is specified, replacing null values with the string value. This
environment setting can sometimes be used to replace time-consum-
ing functionality such as using DECODE and NVL functions.

Figure 8.2

Setting the Width,
Length, or Size of a

Line.

Chap8.fm Page 141 Thursday, July 29, 2004 10:06 PM

142

8.1

Environmental Settings

SET NULL '---NONE---'

CREATE TABLE TMP AS

SELECT ARTIST_ID, POBOX FROM ARTIST;

�

NUMF[ORMAT] { format }

. Apply a format to all output numbers.
For instance, SET NUMFORMAT '999,999,999,990.00' displays
all numbers with two decimal places, even if they are integers.

�

NUMW[IDTH]

. Reset the default of 10 for display width of num-
bers.

�

PAGES[IZE]

. Sets the number of lines per report page. This is most
important when you are printing out a report. The LINESIZE and
PAGESIZE must be set correctly to match the printable area of the
page. The default in SQL*Plus is 24 and in SQL*Plus Worksheet is
1,024. Execute SET PAGES 0 to suppress formatting, including
headings, titles and form feeding.

�

PAU[SE]

. This command only works in SQL*Plus and performs the
same type of function as the PAUSE or MORE command in various
operating systems. SET PAUSE ON will wait for the user to press

Figure 8.3

Replacing Null
Values Using SET

NULL.

Chap8.fm Page 142 Thursday, July 29, 2004 10:06 PM

8.1

Environmental Settings 143

Chapter 8

Enter before issuing a page break and displaying the next screen of
data.

�

RECSEP

. Can be set to WRAPPED to output a record separator
when a line wraps. Set to OFF to disable and EACH to include a
record separator for every line.

�

RECSEPCHAR

. This option allows resetting of the record separator.
Using the code following, Figure 8.4 changes the record separator
and separates each record with a line containing asterisks (*):

SET RECSEPCHAR '*'

SET RECSEP EACH

SELECT * FROM ARTIST;

�

SERVEROUT[PUT]

. Turns on or off the ability to display messages
on your screen. Use SET SERVEROUTPUT OFF when executing
scripts generating code into a spooled file; messages are suppressed.

Figure 8.4

Separating Records.

Chap8.fm Page 143 Thursday, July 29, 2004 10:06 PM

144

8.1

Environmental Settings

When running PL/SQL code, SET SERVEROUTPUT ON will
display buffered messages built within PL/SQL blocks using the
DBMS_OUTPUT.PUT procedures. These messages are useful for
debugging PL/SQL code but will only be displayed on completion
of a code block, not within the block. Additionally, the buffer has a
limited size of 2,000 characters. Increase buffer size to 1,000,000
characters using the DBMS_OUTPUT.ENABLE procedure. Thus
the following code snippet applies to large output quantities within
a PL/SQL block. The DBMS_OUTPUT.DISABLE procedure sets
the buffer back to 2,000 characters to reclaim memory space.

SET SERVEROUTPUT ON;

EXEC DBMS_OUTPUT.ENABLE(1000000);

DECLARE

 J INTEGER DEFAULT 1000;

BEGIN

 FOR I IN 1..J LOOP

 DBMS_OUTPUT.PUT_LINE(TO_CHAR(I)||' of '||TO_CHAR(J));

 END LOOP;

END;

/

EXEC DBMS_OUTPUT.DISABLE;

SET SERVEROUTPUT OFF;

Figure 8.5 shows the result of the previous script with the buffer
(DBMS_OUTPUT.DISABLE) set to its default of 2,000 characters.

�

SQLP[ROMPT]

. This option changes the SQL prompt. Use the
command SET SQLPROMPT ' ' to remove the prompt altogether.
Use SET SQLPPROMPT 'SQL> ' to return to the default. The
example as shown following sets an interesting prompt, resulting in
the prompt shown in Figure 8.6. Setting ESCAPE allows output of
the period character. See ESCAPE.

COLUMN INSTANCE NEW_VALUE _INSTANCE

COLUMN USERNAME NEW_VALUE _USERNAME

SELECT INSTANCE_NAME INSTANCE FROM V$INSTANCE;

SELECT USER USERNAME FROM DUAL;

SET ESCAPE ON

SET SQLPROMPT '&_INSTANCE\.&_USERNAME> '

SET ESCAPE OFF

Chap8.fm Page 144 Thursday, July 29, 2004 10:06 PM

8.1

Environmental Settings 145

Chapter 8

Note:

SET SQLPROMPT does not apply to SQL*Plus Worksheet because

SQL*Plus Worksheet has no command-line prompt.

Figure 8.5

Execute
DBMS_OUTPU
T.ENABLE(1000

000) To Avoid
Buffer Overflow.

Figure 8.6

Changing the
SQL*Plus Prompt.

Chap8.fm Page 145 Thursday, July 29, 2004 10:06 PM

146

8.1

Environmental Settings

� TERM[OUT]. Turns on or off the screen display. Useful when you
want to spool output to a file rather than seeing the output on the
screen. Not supported in SQL*Plus Worksheet or in iSQL*Plus.

� TIMI[NG]. Turns on or off the display of elapsed time after each
executed SQL command.

� WRAP. Word or line wrapping implies that text overflowing the
available page width (LINESIZE) is wrapped onto the next line.
WRAP OFF will truncate text greater than LINESIZE.

Let’s look at some more examples using different environmental settings
to slowly build into something useful. The first query, as shown in Figure
8.7, joins the MUSICCD, CDTRACK, SONG, and ARTIST tables to dis-
play the CD title, artist name, and song title of all songs on all CDs.

SELECT M.TITLE, A.NAME, S.TITLE

FROM MUSICCD M JOIN CDTRACK T ON (M.MUSICCD_ID=T.MUSICCD_ID)

JOIN SONG S ON (T.SONG_ID=S.SONG_ID)

JOIN ARTIST A ON (S.ARTIST_ID=A.ARTIST_ID)

ORDER BY 1,2,3;

Change some settings to see a different effect. We can simply edit the
query in the top pane of SQL*Plus Worksheet, adding the SET COLSEP =

Figure 8.7
The Default

Environmental
Settings (No

Changes).

Chap8.fm Page 146 Thursday, July 29, 2004 10:06 PM

8.1 Environmental Settings 147

Chapter 8

command on a line above the query, changing the column separator to an
equals sign.

SET COLSEP =

Figure 8.8 shows the result. Notice that the SET command appears just
above the query in the top pane of the worksheet. The column separator (=)
appears between the column headings and between each column in each
row of data in the report.

We could add SET FEEDBACK OFF such that the text “… rows
selected.” does not appear at the end of the returned rows. Additionally, we
can change the page size to repeat headings more often. If printed, there
would be a page feed at the end of each page and headings at the start of
each printed page. Figure 8.9 shows the result.

SET FEEDBACK OFF PAGESIZE 20;

There is just one more thing: Generally, I use SQL*Plus for administra-
tion. I find the default wrapping and page width settings of ON and 80,
respectively, extremely irritating. On every client machine I use, assuming I
am not stepping on anyone else’s toes, I add the line SET WRAP OFF

Figure 8.8
The Equals Sign Is
Now the Column

Separator.

Chap8.fm Page 147 Thursday, July 29, 2004 10:06 PM

148 8.2 Using Scripts and Variables

LINESIZE 132; to the end of the SQL*Plus configuration file called GLO-
GIN.SQL in the $ORACLE_HOME/sqlplus/admin directory. Rarely do I
need to use other settings. If so, I change these values manually, usually for
specific queries.

That’s enough about environmental variables. Let’s now look at using
scripts and variables.

8.2 Using Scripts and Variables
SQL*Plus supports a simple method of defining and prompting for variables
using ampersand characters (&). Any string beginning with & or && is a
variable! In programming, the act of replacing a variable with a value is
known as variable substitution. A named variable is a bucket or placeholder for
a value, where the variable is used to reference or access its contained value.

The & tells SQL*Plus to prompt for a value every time it encounters the
variable. The && tells SQL*Plus to use the same value of the variable it
already prompted for.

Note: Use SQL*Plus instead of SQL*Plus Worksheet when using variables
because you will be able to respond to prompts from SQL*Plus more easily.
It is possible, but not usually practical, to use variables with SQL*Plus
Worksheet. iSQL*Plus does not support variables yet.

Figure 8.9
Shorter Page Size

Affects the Page
Break or Page

Eject.

Chap8.fm Page 148 Thursday, July 29, 2004 10:06 PM

8.2 Using Scripts and Variables 149

Chapter 8

Let’s say you want to revise the query we have been using so that it dis-
plays only the artists and songs for one CD at a time. You must revise the
query’s WHERE clause. First, change the query so that it retrieves only the
songs for the CD with MUSICCD_ID = 1. An editing session can be initi-
ated from within SQL*Plus using the EDIT command.

EDIT

In the background, SQL*Plus writes a file named AFIEDT.BUF and
then opens the file with the editor. The exact editor used depends on plat-
form and configuration. For Windows, it is usually Notepad and for UNIX
quite often VI. Add a WHERE clause to the query.

SELECT M.TITLE, A.NAME, S.TITLE

FROM MUSICCD M JOIN CDTRACK T ON (M.MUSICCD_ID=T.MUSICCD_ID)

JOIN SONG S ON (T.SONG_ID=S.SONG_ID)

JOIN ARTIST A ON (S.ARTIST_ID=A.ARTIST_ID)

WHERE M.MUSICCD_ID = 1

ORDER BY 1,2,3

/

The file can then be saved and the editor exited. Execution immediately
returns to SQL*Plus with the modified query loaded into the workspace, as
shown in Figure 8.10.

Let’s say that you want to be able to tell SQL*Plus which CD to report
each time you run this query. Add a variable in the WHERE clause to
accomplish this task.

You can place the query in your editor again by typing ED (the shortcut
for the command EDIT). Then, change the WHERE clause so that instead

Figure 8.10
An Edited Script Is

Passed Back to
SQL*Plus.

Chap8.fm Page 149 Thursday, July 29, 2004 10:06 PM

150 8.2 Using Scripts and Variables

of specifying the number 1, you replace it with a variable called CDNUM.
Variables are identified by a preceding ampersand, & or && symbol, so
you must add that as well. The final query should look as follows:

SELECT M.TITLE, A.NAME, S.TITLE

FROM MUSICCD M JOIN CDTRACK T ON (M.MUSICCD_ID=T.MUSICCD_ID)

JOIN SONG S ON (T.SONG_ID=S.SONG_ID)

JOIN ARTIST A ON (S.ARTIST_ID=A.ARTIST_ID)

WHERE M.MUSICCD_ID = &CDNUM

ORDER BY 1,2,3

/

Once again, exiting the editor returns the query to SQL*Plus. A forward
slash will execute the query. SQL*Plus prompts you to enter a value for the
variable. Figure 8.11 shows how this looks.

Typing the number 1 and pressing Enter forces SQL*Plus to replace the
variable with a number 1 and execute the query. Figure 8.12 shows the
result.

Figure 8.11
SQL*Plus Can

Prompt for
Variable Values.

Figure 8.12
SQL*Plus Variable

Substitution.

Chap8.fm Page 150 Thursday, July 29, 2004 10:06 PM

8.2 Using Scripts and Variables 151

Chapter 8

You can also use the DEFINE command to set the value of the variable
before executing the query. It follows that the value of the CDNUM vari-
able can be predefined as a value, negating the need for a user prompt.

DEFINE CDNUM=2

/

And remove a defined variable from your session using the UNDEFINE
command.

UNDEFINE CDNUM

Use the SAVE command to write the SQL buffer contents to a file so
you can edit and run it whenever you want. This also allows you to add
SQL*Plus commands to the file, which do not get saved when working
only with the SQL buffer file.

SAVE CDREPORT

The file is named CDREPORT.SQL. The .SQL extension is a default. If
you specify the extension (suffix) in the SAVE command file name, the
default .SQL is overridden with the specified extension. Now that the query
is inside a file, you can edit the file with the following command:

EDIT CDREPORT

The editor is instantiated as before, but the file you are editing is now the
CDREPORT.SQL file, rather than the SQL buffer’s default file. You could
add the following line of code to the beginning of the file. The ACCEPT
command is another method of defining a variable that is used in a query.
The PROMPT variation can be added as an option to define the text
SQL*Plus displays when prompting you to enter a value for the variable.

ACCEPT CDNUM PROMPT 'What CD number do you want to see? '

Save the file and exit the editor to return to SQL*Plus. Notice that the
buffer was not re-displayed this time. To run the file you just edited, you
should use the START command because the SQL*Plus script is now in a

Chap8.fm Page 151 Thursday, July 29, 2004 10:06 PM

152 8.2 Using Scripts and Variables

file other than the SQL buffer file. A SQL*Plus script is a file containing a
combination of SQL commands, such as queries, and SQL*Plus commands
such as SET and ACCEPT.

The next command instructs SQL*Plus to retrieve and execute the
SQL*Plus script in the file CDREPORT.SQL.

START CDREPORT

Another way to run a script is to use the @ or RUN commands. For
example, you could type each of these two lines, entering the number 3
when prompted for the CD number, trying each variation.

@CDREPORT

RUN CDREPORT

All three of the commands: START, @, and RUN have the same effect.

A fourth way of executing a script is to use @@. This tells SQL*Plus to
run the script and, in addition, to look for any scripts called within this
script in the same directory. This is very useful when you are creating a
series of scripts that call one another. With this method you only need to
tell SQL*Plus where the first script is located and it can find all the others,
assuming you located them in the same directory. For example, imagine
you have three scripts named A.SQL, B.SQL, and C.SQL in the C:\TEMP
directory /tmp on UNIX. The script A.SQL has an SQL*Plus command to
run the B.SQL and B.SQL calls C.SQL. You could start the primary script
by typing this command. The other two scripts will be found because they
are stored in the same directory.

@@C:\TEMP\A

The double @@ command simply tells SQL*Plus to use the current
directory to search for contained scripts as in the following:

SET SERVEROUTPUT ON;

EXEC DBMS_OUTPUT.PUT_LINE('Executing A.SQL');

@@B.SQL;

EXEC DBMS_OUTPUT.PUT_LINE ('Completed A.SQL');

SET SERVEROUTPUT OFF;

Chap8.fm Page 152 Thursday, July 29, 2004 10:06 PM

8.3 Formatting Query Output in SQL*Plus 153

Chapter 8

The same effect can be obtained by hard-coding the path name into the
script using only a single @ character command as shown following. Obvi-
ously, calling B.SQL with a single @ command character would require the
B.SQL and C.SQL calls to be executed with full path names. The A.SQL
script looks as follows:

SET SERVEROUTPUT ON;

EXEC DBMS_OUTPUT.PUT_LINE('Executing A.SQL');

@C:\TEMP\B.SQL;

EXEC DBMS_OUTPUT.PUT_LINE ('Completed A.SQL');

SET SERVEROUTPUT OFF;

The script B.SQL looks as follows:

EXEC DBMS_OUTPUT.PUT_LINE('Executing B.SQL');

@@C.SQL;

EXEC DBMS_OUTPUT.PUT_LINE ('Completed B.SQL');

The script C.SQL looks as follows:

EXEC DBMS_OUTPUT.PUT_LINE('Executing C.SQL');

EXEC DBMS_OUTPUT.PUT_LINE ('Completed C.SQL');

Look at the execution of the three aforementioned scripts as shown in
Figure 8.13.

Creating and using scripting in SQL*Plus is easy. There are a few sim-
ple commands to remember. Now let’s go onto formatting of specific que-
ries or reports, as opposed to using environmental variables to change
global settings.

8.3 Formatting Query Output in SQL*Plus

Scripting with simple queries and variables is just the beginning of the
reporting process. In this section, you learn how to customize reports by
adding environmental settings to the script, changing column headings,
adding page headings, and creating reports with outlined structures. Let’s
start with column settings.

Chap8.fm Page 153 Thursday, July 29, 2004 10:06 PM

154 8.3 Formatting Query Output in SQL*Plus

8.3.1 Column Formatting and Headings

The syntax of the COLUMN command, which is used to adjust the width
and the heading of a column, is shown in Figure 8.14.

The CDREPORT script used previously in this chapter can be beauti-
fied for readability using COLUMN command settings. The columns seem
a little spread out, so let’s change the format of the columns. I have added
some column commands to the query by editing the CDREPORT file
(EDIT CDREPORT) previously created, as shown in the following script.
Changes are highlighted.

DEFINE CDNUM=9

COLUMN CDTITLE FORMAT A15 WRAP

COLUMN NAME FORMAT A12 TRUNCATE HEADING "Artist Name"

COLUMN SONGTITLE HEADING "Song|Title" FORMAT A20 WORD_WRAP

SELECT M.TITLE CDTITLE, A.NAME, S.TITLE SONGTITLE

FROM MUSICCD M JOIN CDTRACK T ON (M.MUSICCD_ID=T.MUSICCD_ID)

JOIN SONG S ON (T.SONG_ID=S.SONG_ID)

Figure 8.13
Executing Scripts

within Scripts.

Chap8.fm Page 154 Thursday, July 29, 2004 10:06 PM

8.3 Formatting Query Output in SQL*Plus 155

Chapter 8

JOIN ARTIST A ON (S.ARTIST_ID=A.ARTIST_ID)

WHERE M.MUSICCD_ID = &CDNUM

ORDER BY 1,2,3

/

UNDEFINE CDNUM

The query is executed again with column formatting as shown in Figure
8.15. Notice that the artist’s name is truncated and that some of the song
titles are on two lines. These were caused by the COLUMN commands,
before adjusting with wrapping such that the artist’s name is not truncated.

In Figure 8.15, a title is wrapped onto more than one line. There is
also a blank line after that song. The WORD_WRAP option as opposed
to the WRAP option wraps entire words to the subsequent line. Remov-
ing the blank line after the wrapped song title requires removal of the
RECSEP setting.

SET RECSEP OFF

Here is another query and COLUMN command. This query has a
number in it. Additionally, in this query the artist name will be formatted
the same way that it was for the CDREPORT script! This is because our

Figure 8.14
The COLUMN

Command Is
Exclusive to
SQL*Plus.

Chap8.fm Page 155 Thursday, July 29, 2004 10:06 PM

156 8.3 Formatting Query Output in SQL*Plus

new query has a column with the same name, which happens to be
“NAME,” that is used in the previous COLUMN command. To turn off
the column formatting for the NAME column, use the COLUMN NAME
OFF command as shown.

COLUMN NAME OFF

SELECT A.NAME, S.MINUTES_USED, S.AMOUNT_CHARGED,
S.AMOUNT_PAID

FROM ARTIST A, STUDIOTIME S

WHERE A.ARTIST_ID = S.ARTIST_ID

ORDER BY 1

/

In fact, you can turn off all of COLUMN command formatting by typ-
ing the CLEAR COLUMN command.

CLEAR COLUMN

Figure 8.15
Using the

COLUMN
Command.

Chap8.fm Page 156 Thursday, July 29, 2004 10:06 PM

8.3 Formatting Query Output in SQL*Plus 157

Chapter 8

Now we can add formatting to the three number columns by typing
these lines and executing again:

COLUMN MINUTES_USED FORMAT 99,999.99

COLUMN AMOUNT_CHARGED FORMAT $999,990.00

COLUMN AMOUNT_PAID FORMAT $000,000.00

/

Figure 8.16 shows the result. A zero in a column format is a placeholder,
padding with zeros when the value is not as large as the format. The nine
collapses or trims the number, moving the $ sign, for example, to the right
so it is next to the number. The comma is only used when needed if you
have nines around it and will always be displayed if you have zeros around
it. See the SQL*Plus COLUMN command syntax in Oracle’s documenta-
tion for a complete list of all the available formatting symbols for numbers.
Also see Chapter 9 for some detail on datatype conversion function format-
ting patterns.

Figure 8.16
Three Number

Column Format
Variations.

Chap8.fm Page 157 Thursday, July 29, 2004 10:06 PM

158 8.3 Formatting Query Output in SQL*Plus

A few notes about the COLUMN command:

� The COLUMN command uses the alias of the column in the query,
not the column prefixed with the schema. For example, in the
CDREPORT.SQL script file, use CDTITLE in the COLUMN com-
mand, not M.TITLE.

� The vertical bar (|) indicates a line break in the heading. See the
COLUMN command for the SONGTITLE column.

� WORD_WRAP makes column data break between words, whereas
WRAP always breaks at the exact width defined in the FORMAT.

� The COLUMN command should be on a single line. To make
SQL*Plus read a second line, add a dash or hyphen (-) to the end of
the first line, indicating that the second line is a continuation of the
first line. See the COLUMN command for the SONGTITLE column.

� A COLUMN command is in effect for your entire session or until
you issue another COLUMN command on the same column or
expression.

� The COLUMN command can be used to format character and num-
ber data but not dates. Format dates using the TO_CHAR function
in the query.

Let’s take a look at formatting of dates.

8.3.1.1 Formatting Dates

Here is a query containing a date column:

COLUMN TITLE FORMAT A30 WRAP

SELECT S.TITLE, S.RECORDING_DATE FROM SONG S

WHERE S.RECORDING_DATE > '01-JUL-2001';

Dates cannot be formatted with the COLUMN FORMAT command,
except to limit the width of the column. Let’s add general formatting for all
dates by adjusting the default date format for the current session.

ALTER SESSION SET NLS_DATE_FORMAT = 'Day, Month DD, YYYY';

Chap8.fm Page 158 Thursday, July 29, 2004 10:06 PM

8.3 Formatting Query Output in SQL*Plus 159

Chapter 8

Also, because all date formatting is changed globally, we have to alter the
previous query to comply with the required date formatting. Otherwise, the
query will produce an error.

COLUMN TITLE FORMAT A30 WRAP

SELECT S.TITLE, S.RECORDING_DATE FROM SONG S

WHERE S.RECORDING_DATE > 'Sunday, July 01, 2001';

The result of the query is shown in Figure 8.17.

Making global changes like that is a little drastic and can be dangerous
because other things can be altered, usually where you least expect it, very
likely causing headaches and problems. The better way to format a date is
by using the TO_CHAR function. However, using functions in queries can
cause performance problems. Restore the default date format by typing and
executing this command.

Figure 8.17
Formatting Dates

Globally for a
Session.

Chap8.fm Page 159 Thursday, July 29, 2004 10:06 PM

160 8.3 Formatting Query Output in SQL*Plus

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY';

What we could have done in the first place would have been as follows.
The result would be identical to that in Figure 8.17.

COLUMN TITLE FORMAT A30 WRAP

SELECT S.TITLE, TO_CHAR(S.RECORDING_DATE

, 'Day, Month DD, YYYY')

FROM SONG S

WHERE S.RECORDING_DATE > '01-JUL-2001';

That covers formatting of columns and headings in SQL*Plus using the
COLUMN command. The next section looks into lines, pages, and breaks
using the TTITLE, BREAK ON, and COMPUTE commands.

8.3.2 Lines, Pages, and Breaks

You have already seen how to adjust line width and page length using the
SET command. This section introduces page headings and summary
breaks. To add a page heading, use the TTITLE command, whose syntax is
shown in Figure 8.18. You can use the same syntax for BTITLE, which
places footers at the end of each page.

Figure 8.18
TTITLE and

BTITLE Set Page
Headers and

Footers.

Chap8.fm Page 160 Thursday, July 29, 2004 10:06 PM

8.3 Formatting Query Output in SQL*Plus 161

Chapter 8

Once again, we could edit the CDREPORT script (EDIT
CDREPORT) to add a title, adding highlighted lines.

DEFINE CDNUM=9

COLUMN CDTITLE FORMAT A15 WRAP

COLUMN NAME FORMAT A12 TRUNCATE HEADING "Artist Name"

COLUMN SONGTITLE HEADING "Song|Title" FORMAT A20 WORD_WRAP

SET LINESIZE 60

TTITLE LEFT 'Music CD # ' CDNUM -

CENTER 'User: ' SQL.USER RIGHT 'Page:' SQL.PNO SKIP 2

SELECT M.TITLE CDTITLE, A.NAME, S.TITLE SONGTITLE

FROM MUSICCD M JOIN CDTRACK T ON (M.MUSICCD_ID=T.MUSICCD_ID)

JOIN SONG S ON (T.SONG_ID=S.SONG_ID)

JOIN ARTIST A ON (S.ARTIST_ID=A.ARTIST_ID)

WHERE M.MUSICCD_ID = &CDNUM

ORDER BY 1,2,3

/

UNDEFINE CDNUM

Figure 8.19
The Report Now

Has a Title.

Chap8.fm Page 161 Thursday, July 29, 2004 10:06 PM

162 8.3 Formatting Query Output in SQL*Plus

We use a dash or hyphen (-) to continue the TTITLE command to a sec-
ond line. The CDNUM variable is defined in the script and therefore can be
used in the title. Do not include the ampersand (&) when naming a variable
in the title. LINESIZE was changed to 60, so the title can be seen more easily.
The result of executing this script is shown in Figure 8.19.

The final component of an SQL*Plus report is adding a break within
the report to cause an outlining effect, also called a master detail style
report. You probably have noticed that the CD Title in our report is output
for every line even though it is the same. This does look somewhat clumsy.
You can easily suppress the repeated title by adding the BREAK command.
This means that a repeating element is only printed once. The syntax of the
BREAK command is shown in Figure 8.20.

The BREAK command, like the TTITLE command and other
SQL*Plus commands, is used for your session until you log off or execute
another BREAK command. The following lines could be added to the
beginning of the CDREPORT file:

SET PAGESIZE 40

BREAK ON CDTITLE NODUPLICATES SKIP 2 ON NAME NODUPLICATES

The second line tells SQL*Plus to only display the CDTITLE at the top
of a page or when it changes, to skip 2 lines when it encounters a new
CDTITLE, and to only display the artist’s name (the NAME column) at
the top of each page or when it changes. On the first line, changing the
PAGESIZE to 40 lines makes it easier to see the report’s breaks.

Also change the WHERE clause so that you are returning all CDs less
than or equal to the number you enter. This will show you how the BREAK
works on the CD titles.

Figure 8.20
BREAK Command

Syntax.

Chap8.fm Page 162 Thursday, July 29, 2004 10:06 PM

8.3 Formatting Query Output in SQL*Plus 163

Chapter 8

WHERE M.MUSICCD_ID <= &CDNUM

You would have to remove the CDNUM variable definition (including
output in the header) from the CDREPORT.SQL script and enable an
ACCEPT command for the variable once again. Add the following line:

ACCEPT CDNUM PROMPT 'What CD number do you want to see? '

Remove the following lines:

DEFINE CDNUM=9

UNDEFINE CDNUM

Change the following line from:

TTITLE LEFT 'Music CD # ' CDNUM –

to:

TTITLE LEFT 'Music CD'.

The query in Figure 8.21 now displays part of the result of all CDs from
1 to 9.

There is another cool trick to add to this report in the form of summary
data (subtotals) added at the break points. Summary information is added
by using the COMPUTE command. This command can only be used in
conjunction with the BREAK command. The two work together to create a
report with breaks and summaries for each break. The syntax of the COM-
PUTE command is shown in Figure 8.22.

Like the BREAK command, you should keep the COMPUTE com-
mand on a single line or add a dash or hyphen (-) to continue the com-
mand to another line.

Using our CDREPORT.SQL example again, let’s add a count of the
number of songs on each CD to the break point between CDs. This line
can be added at the beginning of the CDREPORT.SQL script.

COMPUTE COUNT OF SONGTITLE ON CDTITLE

Chap8.fm Page 163 Thursday, July 29, 2004 10:06 PM

164 8.3 Formatting Query Output in SQL*Plus

Figure 8.21
The Report Shows

Multiple CDs.

Figure 8.22
COMPUTE Will

Only Function
Properly in

Conjunction with
the BREAK
Command.

Chap8.fm Page 164 Thursday, July 29, 2004 10:06 PM

8.4 Using iSQL*Plus 165

Chapter 8

Figure 8.23 shows part of the results. Because we did not specify a label,
the word “count” is displayed in the first column, and the count is listed in
the column that was counted (SONGTITLE).

You have seen how to generate a report with summaries, breaks, custom-
ized headings, and variables. Now let’s examine the report-generating possi-
bilities in another SQL*Plus tool, iSQL*Plus.

8.4 Using iSQL*Plus

As you know, iSQL*Plus is the Web-based version of SQL*Plus. It gives
you a way to write queries and other SQL commands via the Internet or
across a network, in a Web browser. An Oracle installation comes with a
miniature Web server, called HTTP Server, and is configured automatically
by Oracle Installer.

The HTTP Server that is provided as part of Oracle is usually automati-
cally started when you start up your computer. If not, you can start it up
yourself. In Windows, on the task bar, click Start/Programs/Oracle –
OraHome10/Oracle HTTP Server/Start HTTP Server powered by

Figure 8.23
The Report

Displays a Count of
Songs per CD.

Chap8.fm Page 165 Thursday, July 29, 2004 10:06 PM

166 8.4 Using iSQL*Plus

Apache. A window appears with status information. Minimize the window
by clicking the minus sign in the top right corner of the window. Do not
close the window; closing the window stops the HTTP Server. On UNIX,
type apache -k start in a command-line shell.

Start up your Web browser and type the address for the iSQL*Plus ser-
vice on the HTTP Server. On Windows and UNIX, the Web address is
usually as follows. Replace the hostname with the name of your database
server.

http://<hostname>:7778/isqlplus

Note: If there is no response from the browser, see the later section in this
chapter on “Troubleshooting iSQL*Plus.” on page 171.

Login requires username, password, and connection identifier, as shown
in Figure 8.24.

Figure 8.24
Log into

iSQL*Plus as with
SQL*Plus.

Chap8.fm Page 166 Thursday, July 29, 2004 10:06 PM

8.4 Using iSQL*Plus 167

Chapter 8

After clicking the Login button, the primary interface for iSQL*Plus
will appear in the browser, as shown in Figure 8.25.

iSQL*Plus output looks like an HTML table. Here is a simple query
example, which can be placed into the Enter Statements block in the
iSQL*Plus interface window, as shown in Figure 8.25.

SELECT SONG_ID, RECORDING_DATE, PLAYING_TIME, TITLE

FROM SONG

ORDER BY 1

/

Clicking the Execute button runs the query. iSQL*Plus processes the
query and returns the results in an HTML format in the browser. Scroll
down to the lower part of the screen to see the results, as shown in Figure
8.26.

Figure 8.25
iSQL*Plus Has

Features That
Mimic SQL*Plus

Functionality.

Chap8.fm Page 167 Thursday, July 29, 2004 10:06 PM

168 8.4 Using iSQL*Plus

The most apparent difference between SQL*Plus and iSQL*Plus is
appearance. Columns are formatted in an HTML table layout, not just as
plain text. The page breaks are simply displayed as a repetition of the col-
umn headings. Scroll to the end of the report, and you will see the record
count displayed after the end of the table of report records.

8.4.1 Embedding Scripts in HTML

A cool feature is the ability to create an HTML document that calls
iSQL*Plus and runs a predefined report. You have already created a report
in a file named CDREPORT.SQL previously in this chapter. You can
embed this report into your own customized HTML document. This can
be run by anyone who can access your HTTP Server.

The HTTP Server runs iSQL*Plus by accessing the iSQL*Plus Server
process that is automatically configured within it. The iSQL*Plus Server is
running whenever your HTTP Server is running. The architecture that
should be used for iSQL*Plus is called a three-tier architecture and is com-
monly used with Web-based applications. The client tier is your Web
browser; the middle tier is the HTTP Server; and the database tier is the
Oracle Database 10g Server. Each of the three tiers can be located on sepa-

Figure 8.26
Output in

iSQL*Plus Is
Different from

SQL*Plus.

Chap8.fm Page 168 Thursday, July 29, 2004 10:06 PM

8.4 Using iSQL*Plus 169

Chapter 8

rate computers, which makes this type of architecture portable, scalable,
and capable of connecting across the Internet with ease.

Here is an example of the HTML code to call our CDREPORT.SQL
script. You must change the hostname, port number, and database name to
suit your installation. The parts you must change are highlighted.

<HTML>

<HEAD><TITLE>CD Dynamic Report</TITLE></HEAD>

<BODY>

<H1>CD Dynamic Report</H1>

<H2>CDs with specified CD ID Numbers.</H2>

<FORM METHOD=get ACTION="http://hostname:7778/isqlplus">

<INPUT TYPE="hidden" NAME="userid" VALUE="music/music@SID">

<INPUT TYPE="hidden" NAME="script"

VALUE="http://hostname:7778/CDREPORT.SQL">

Enter the highest CD ID Number to report:

<INPUT TYPE="number" NAME="CDNUM" SIZE="4">

<INPUT TYPE="submit" VALUE="Run Report">

</FORM></BODY></HTML>

This HTML file, along with the script CDREPORT.SQL, should be
placed into the HTTP Server’s document directory on the server. The
default document directory location is $ORACLE_HOME/Apache/
Apache/htdocs. Before copying the two files, remove the following line
from the CDREPORT.SQL file because iSQL*Plus does not allow the
ACCEPT command:

ACCEPT CDNUM PROMPT 'What CD number do you want to see? '

After copying the two files to the document directory on the HTTP
server machine, go to the browser on the client machine and enter the URL
for the HTML page, changing the hostname and the port number as
needed.

http://<hostname>:7778/cdreport.html

Figure 8.27 shows the result.

Typing an appropriate number into the box and clicking the Run
Report button produces a result as shown in Figure 8.28. The script is exe-

Chap8.fm Page 169 Thursday, July 29, 2004 10:06 PM

170 8.4 Using iSQL*Plus

cuted within the browser HTML page, both of which are stored on the
server running the HTTP server process.

Figure 8.27
Your Customized
Report Running

Web Page.

Figure 8.28
The CDREPORT

Script Was Run
and Displayed.

Chap8.fm Page 170 Thursday, July 29, 2004 10:06 PM

8.4 Using iSQL*Plus 171

Chapter 8

This example placed the username, password, and Oracle database net-
work name (SID) in the source code. This is not necessarily a good idea in a
commercial environment from a security perspective. Anyone can view the
source code of an HTML document and retrieve information. It would be
better to modify the HTML in your document so that the user is required
to enter a username and password. Additionally, secure socket layers (SSL)
can be used to encrypt data traveling between a Web browser and the server.

8.4.2 iSQL*Plus versus SQL*Plus

The main features of iSQL*Plus are similar to the features of SQL*Plus or
SQL*Plus Worksheet:

� Enter SQL commands in a box and click the Execute button to dis-
play the results. Results can be displayed below the box or in a new
browser window.

� Adjust environment settings by clicking the Preferences button, using
a series of radio buttons and boxes to modify settings such as HEAD-
ING, RECSEP, and so on.

� Use variables just like SQL*Plus, except you cannot use the ACCEPT
or PROMPT commands to prompt for values. iSQL*Plus displays its
own prompt.

Note: iSQL*Plus allows prompts for input values.

� Review and retrieve previous SQL commands by clicking the History
button, much like SQL*Plus Worksheet.

8.4.3 Troubleshooting iSQL*Plus

If there are problems running iSQL*Plus, configuration settings and other
things can be checked on the server.

� Check that the port number is the default 7778 value in the file
HTTPD.CONF in the $ORACLE_HOME/Apache/Apache/conf
directory.

Chap8.fm Page 171 Thursday, July 29, 2004 10:06 PM

172 8.4 Using iSQL*Plus

� The port number should also be in the SETUPINFO.TXT file in the
directory $ORACLE_HOME/Apache/Apache. This file should con-
tain entries such as the following:

http://<hostname>:7778

http://<hostname>:4443

Note: Replace hostname as appropriate.

� The file called ORACLE_APACHE.CONF in the
$ORACLE_HOME/Apache/Apache/conf directory must include
the file ISQLPLUS.CONF in the ORACLE_HOME/sqlplus/admin
directory. The include command should be of the following form. Be
sure there are no comments (#) in unexpected places.

include "$ORACLE_HOME/sqlplus/admin/isqlplus.conf"

� Try stopping and restarting the HTTP Server, especially if you have
made any changes to any configuration files. A bug in Oracle 9.2 for
Windows 2000 caused errors when starting and stopping the HTTP
Server using both the Windows service and the Apache command on
the Start menu. A solution to this issue is to set the service to Manual
and always start and stop Apache and the HTTP Server with the fol-
lowing commands executed in a DOS shell (the command line):

C:\oracle\ora92\Apache\Apache\apache -k start

C:\oracle\ora92\Apache\Apache\apache - k shutdown

8.4.4 Customizing iSQL*Plus Display

Numerous preferences can be changed from the iSQL*Plus interface on the
client machine. Additionally, on the server there is an HTML cascading
style sheet.1 This style sheet can be altered to change output appearance.
The HTML cascading style sheet is called IPLUS.CSS and is located in the
$ORACLE_HOME/sqlplus/admin/iplus directory on the server. Changing
the style sheet allows customization of colors and fonts used by iSQL*Plus
when it formats output for queries. Using the same simple query used pre-

Chap8.fm Page 172 Thursday, July 29, 2004 10:06 PM

8.4 Using iSQL*Plus 173

Chapter 8

viously in Figure 8.26, Figure 8.29 has an altered appearance as a result of
changes to the style sheet file on the server.

In Figure 8.29, all text color is removed, all background colors apart
from that in the headings is removed, and all borders are removed from
everything but headings. The style sheet has numerous elements. I changed
the following two elements:

� The TH or HTML table heading tag or element is changed where
highlighted.

TH {

font : bold 10pt Arial, Helvetica, sans-serif;

color : black;

background : #f0f0f0;

padding : 0px 0px 0px 0px;

}

� The combination TABLE, TR, TD element is also changed where
highlighted.

TABLE, TR, TD {

font : 10pt Arial, Helvetica, sans-serif;

Figure 8.29
Changing the

iSQL*Plus Style
Sheet on the Server.

Chap8.fm Page 173 Thursday, July 29, 2004 10:06 PM

174 8.5 Endnotes

color : Black;

background : white;

border : 1

padding : 0px 0px 0px 0px;

margin : 0px 0px 0px 0px;

}

This is a quick introduction to iSQL*Plus that should help you get
started with your own experimentation. Remember to review the help
screens provided inside iSQL*Plus for more examples of code and quick
reference to SQL syntax.

This chapter has covered more detail on SQL*Plus and related tools, in
addition to the introductory information provided in Chapter 1. The next
chapter moves back into Oracle SQL and looks at functions, namely single-
row functions.

8.5 Endnotes

1. www.oracledbaexpert.com/menu/DHTML.html

Chap8.fm Page 174 Thursday, July 29, 2004 10:06 PM

175

9

Single-Row Functions

In this chapter:

�

What types of built-in functions are available?

�

What are single-row functions?

�

What are the categories of single-row functions?

�

How do functions work with queries?

�

What are the options when formatting strings, numbers, and dates?

�

What are data conversion functions?

�

How are functions combined?

This chapter uses the queries you have worked with in previous chapters
and expands the way you can use columns by introducing functions. You
will examine the types of functions used for different data types. Finally,
you will experiment with combining functions together for more flexibility.

A function is a built-in PL/SQL program that always returns a single
value. You can use the predefined functions (such as the ones discussed in
this chapter) or you can create your own (see Chapter 24). A function
always returns a single value, as opposed to a procedure, which is a similar
type of program but is able to return more than one value. You can call a
function within a query or other SQL command. You have already seen a
few functions in previous chapters (e.g., NVL and SYSDATE). Before we
examine single-row functions in detail, let’s look at Oracle-provided built-
in functions in general. Grouping functions are covered in Chapter 11, reg-
ular expression functions in Chapter 14, object reference functions in
Chapter 16, and XML functions in Chapter 17.

Chap9.fm Page 175 Thursday, July 29, 2004 10:06 PM

176

9.2

Single-Row Functions

9.1 Types of Functions

Oracle divides all functions into the following categories:

�

Single-Row Functions

. Functions that operate on a single row at a
time. This chapter examines this type of function. For example, the
UPPER() function converts characters to uppercase.

�

Grouping Functions

. Chapter 11 covers grouping functions in
detail.

�

Aggregate Functions

. Functions that operate on a group of rows
at one time and return a single row. For example, the COUNT()
function counts the number of rows in a table.

�

Analytical Functions

. Functions that operate on groups of rows
and return one or more summary rows. For example, the STD-
DEV() OVER() function returns the standard deviation rows
based on values in one or more columns.

�

Object Reference Functions

.

Functions that manipulate the value in
columns with the REF datatype in object tables. For example, the
DEREF() function returns the value of an attribute in the referenced
object table (see Chapter 16).

�

User-Defined Functions

. Functions that are built by you and per-
form whatever data manipulations you program them to do. Exam-
ples of user-defined functions are given throughout this book, with
syntactical details in Chapter 24.

This chapter covers many of the dozens of single-row functions available
for your use in queries.

9.2 Single-Row Functions

Single-row functions add a great deal of power to queries. Use functions in
the SELECT clause to modify the appearance of dates, for example. Add
functions to the WHERE clause to help determine which rows to include in
query results. Place functions in the ORDER BY clause to fine-tune sorting.

Chap9.fm Page 176 Thursday, July 29, 2004 10:06 PM

9.2

Single-Row Functions 177

Chapter 9

Note:

Placing functions in WHERE and ORDER BY clauses can be detri-

mental to performance.

1

There are so many single-row functions that there is not room to cover
them all in this chapter. However, you will gain experience with the com-
monly used functions. Other more obscure functions are detailed in Oracle
documentation. Single-row functions can be subdivided into the following
categories:

�

Character or String Functions

. Functions that require a character
value or string as input (see Figure 9.1).

�

Number Functions

. Functions that require a number as input.
Most of these return a number. For example, the SIGN function
returns -1 if the number is negative, 0 if it is zero, and 1 if it is posi-
tive (see Figure 9.2).

�

Binary Floating-Point Number Functions

. These func-
tions are new to Oracle Database 10

g

 and could possibly be
viewed as a subset of number functions, except that they operate
specifically on binary floating-point numbers (see Figure 9.2).

�

Datetime Functions

. Functions that require a date value as input
(see Figure 9.3).

�

Conversion Functions

. Functions that convert one datatype to
another. For example, the TO_CHAR function can convert a date or
number to a character value (see Figure 9.4).

�

Miscellaneous Functions

. Functions that perform unusual tasks. For
example, the DECODE function acts like an IF-THEN-ELSE con-
struct or CASE statement (see Figure 9.5).

Figures 9.1 through 9.5 show all the different types of single-row func-
tions. Functions highlighted and marked with an asterisk (

*INITCAP

) in
each figure are discussed in this chapter. Additionally, many functions are
referred to in other chapters.

Chap9.fm Page 177 Thursday, July 29, 2004 10:06 PM

178

9.2

Single-Row Functions

Figure 9.1

Single-Row String
Functions.

Figure 9.2

Single-Row
Number Functions.

Figure 9.3

Single-Row
Datetime

Functions.

Chap9.fm Page 178 Thursday, July 29, 2004 10:06 PM

9.2

Single-Row Functions 179

Chapter 9

Figure 9.4

Single-Row
Conversion
Functions.

Figure 9.5

Single-Row
Miscellaneous

Functions.

Chap9.fm Page 179 Thursday, July 29, 2004 10:06 PM

180

9.2

Single-Row Functions

The next sections define all of the functions highlighted in Figures 9.1
and 9.2, divided by their categories. Functions detailed in this chapter are
generally the more useful functions. As already stated, the remaining func-
tions tend to be obscure and seldom used. In fact, some functions included
in this chapter are obscure. Let’s begin with string functions.

9.2.1 String Functions

The string functions manipulate alphanumeric data. In this section, after
each function is defined, an example shows how the function is used and
what it returns.

�

CONCAT(expression, expression)

. Concatenation of strings is the
adding together of two strings. This function performs the same task
as the string concatenation operator || (see Chapter 7).

CONCAT('Oracle',' Database 10g') = 'Oracle Database 10g'

'Oracle'||' Database '||'10g' = 'Oracle Database 10g'

'My name is '||FIRST_NAME = 'My name is Jim'

�

LOWER(expression)

,

UPPER(expression

), and

 INITCAP(expres-
sion)

. LOWER converts to lowercase, UPPER to uppercase, and
INITCAP to mixed case (first letter of each word in uppercase).

INITCAP('oracle certified professional')

= 'Oracle Certified Professional'

�

INSTR(expression, substring [, position [, occurrence]])

. Returns
the position of a substring within a string (the first character in the
string is at position 1). The position and occurrence parameters are
optional. The position parameter determines a start point to search
from, and occurrence indicates which duplicate, if any, of the sub-
string should be matched. In the following example, the second
occurrence of the string 10g begins at position 19:

INSTR('oracle 10g oracle 10g oracle 10g','10g',1,2) = 19

�

LENGTH(expression)

. The length in characters of a string.

LENGTH('oracle certified professional') = 29

LENGTH(LAST_NAME) = length of the data in the column

�

LPAD(expression, n [, expression])

and

 RPAD(expression, n [,
expression])

. Left or right pad a string from the left or the right (start
or end of the string) with the specified characters in the second string,
up to a string length of

n

 characters.

Chap9.fm Page 180 Thursday, July 29, 2004 10:06 PM

9.2

Single-Row Functions 181

Chapter 9

LPAD('oracle',10,'X') = 'XXXXoracle'

RPAD('oracle',10,'X') = 'oracleXXXX'

Note:

Padding a string is sometimes referred to as filling a string.

�

TRIM([[LEADING|TRAILING|BOTH] character FROM]
expression), LTRIM(expression, string-set),

and

 RTRIM(expres-
sion, string-set)

. LTRIM and RTRIM will remove from the left and
the right of the string, respectively, any characters contained within
the string set, until a character not in the string set is found. The
LTRIM and RTRIM functions are less useful than the TRIM func-
tion. TRIM will remove characters from the string from the left, the
right, or both. In its simplest form, TRIM can be used to remove
leading and trailing spaces from a string.

TRIM(' oracle ') = 'oracle'

Remember that spaces embedded between other characters do not
get removed, until a character not in the string set is found. As a
result, for the next example there is no change.

TRIM(' o r a c l e ') = 'o r a c l e'

TRIM(LEADING '-' FROM '---608-444-3029') = '608-444-3029'

�

REPLACE(expression, search [, replace])

and

 TRANS-
LATE(expression, search [, replace])

. REPLACE will replace every
occurrence of the search string with the replacement string. Where
the REPLACE function matches any search string within the string,
TRANSLATE will match each character between the search and
replace strings by the position of characters in both the search and
replace strings. Phew! In simple terms, REPLACE replaces groups of
characters and TRANSLATE translates individual characters.

REPLACE(' o r a c l e',' ','') = 'oracle'

REPLACE('My dog has fleas.','as','odd')

 = 'My dog hodd fleodd.'

In the first TRANSLATE function example following, nothing is
changed because the space in the search string has no corresponding
value in the replace string.

TRANSLATE(' o r a c l e ','oracle ','12345X')

 = '12345X'

TRANSLATE('My dog has fleas.','agf','AGF')

 = 'My doG hAs FleAs.'

Chap9.fm Page 181 Thursday, July 29, 2004 10:06 PM

182

9.2

Single-Row Functions

�

SUBSTR(expression, [-]position[, length])

. The SUBSTR func-
tion returns a portion of a string. If the length parameter is omitted,
then all characters after the value of position are returned. If the posi-
tion parameter is positive, then the substring value is extracted from
the left of the string; otherwise, if the parameter is negative, the value
is extracted from the right (end) of the string.

SUBSTR('oracle certified professional', 8,9)

 = 'certified'

SUBSTR('oracle certified professional',-12,12)

 = 'professional'

Here is a quick example using some of the string functions men-
tioned previously. Figure 9.6 shows the results. The query shows the
complete value of the NAME column, followed by the length of the
value, a section of the name, and finally, the position of the second
occurrence of the letter “a” in the name. Notice that the INSTR func-
tion returns zero if it cannot find a match.

SELECT NAME, LENGTH(NAME) "Length"

, SUBSTR(NAME,5,5) "Letters 5 thru 9"

, INSTR(NAME,'a',1,2) "Second a"

FROM ARTIST;

Now let’s proceed to number functions.

9.2.2 Number Functions

Number functions require numbers, not strings, as input. They nearly
always return a numeric value.

� ABS(n). Finds an absolute value of a number. An absolute value
function returns the positive or unsigned value of a negative or posi-
tive number.

ABS(-125) = 125

ABS(125) = 125

� CEIL(n) and FLOOR(n). Ceiling and floor are similar to rounding
and truncating functions. Ceiling returns the next integer greater
than n. Floor returns the next integer less than n.

CEIL(1.1) = 2

Chap9.fm Page 182 Thursday, July 29, 2004 10:06 PM

9.2 Single-Row Functions 183

Chapter 9

FLOOR(1.9) = 1

� MOD(m, n). MOD is the modulus or remainder function, which
returns the remainder of the first value divided by the second value (m
divided by n). The first value is returned if the second value is zero.

MOD(5,2) = 1

MOD(4,0) = 4

MOD(9,3) = 0

MOD(23,4) = 3

� POWER(m, n). The exponential function raises m to the power of n
(the nth power).

POWER(2,3) = 8 (23 = 2 * 2 * 2 = 4 * 2 = 8)

� ROUND(n [, places]). ROUND is a proper mathematical rounding
function as opposed to the CEIL and FLOOR functions. For the
ROUND function, a decimal 5 and over will be rounded up and
below 5 will be rounded down. The third example following is
rounded to two decimal places and the fourth to three decimal places.

Figure 9.6
Some String

Functions.

Chap9.fm Page 183 Thursday, July 29, 2004 10:06 PM

184 9.2 Single-Row Functions

ROUND(1.4) = 1

ROUND(1.5) = 2

ROUND(1.42356,2) = 1.42

ROUND(1.42356,3) = 1.424

ROUND(18755.24,-2) = 18800

� SIGN(n). Returns –1 if negative, 0 if 0, and 1 if positive.

SIGN(-5032) = –1

SIGN(0) = 0

SIGN(5000) = 1

� SQRT(n). Calculates the square root of a number.

SQRT(4) = 2 (2 * 2 = 4)

� TRUNC(n [, places]). TRUNC is a truncate function. A truncate
function always rounds down by removing trailing numerals from a
number, effectively rounding down regardless of the .5 cutoff value.
TRUNC can also truncate both sides of the decimal point.

TRUNC(147.65,1) = 147.6

TRUNC(147.65,-2) = 100

� Other Mathematical Functions. The following functions perform
obscure mathematical or trigonometric calculations. These types of
functions are rarely used other than in financial or numerically
related applications. Some of these functions are listed here. There are
many other Oracle built-in functions to do all sorts of weird and
wonderful things (see Oracle documentation).

� SIN(n), COS(n), and TAN(n). Sine, cosine, and tangent.
� ASIN(n), ACOS(n), and ACOS(n). Arcsine, arccosine, and arctan-

gent (the inverse of sine, cosine, and tangent).
� SINH(n), COSH(n), and TANH(n). Hyperbolic sine, cosine, and

tangent.
� EXP(n), LN(n), and LOG(n). e raised to the nth power, the natural

logarithm, and the logarithm.

Here is a query using some of the number functions mentioned.
The query uses the STUDIOTIME table and applies various func-
tions to the AMOUNT_CHARGED column values. The result is
shown in Figure 9.7.

SELECT ST.ARTIST_ID, ST.AMOUNT_CHARGED "Amount"

 , ROUND(ST.AMOUNT_CHARGED,1) "Rounded to one decimal"

Chap9.fm Page 184 Thursday, July 29, 2004 10:06 PM

9.2 Single-Row Functions 185

Chapter 9

 , ROUND(ST.AMOUNT_CHARGED,-1) "Rounded to tens"

 , TRUNC(ST.AMOUNT_CHARGED) "Truncated"

FROM STUDIOTIME ST

WHERE ROWNUM < 15;

9.2.2.1 Binary Floating-Point Number Functions

As already mentioned, these functions are new to Oracle Database 10g and
could possibly be viewed as a subset of number functions, except that they
operate specifically on binary floating-point numbers. This section is par-
tially repeated from Chapter 2.

� TO_BINARY_DOUBLE(expression, format) and TO_BINARY_
FLOAT(expression, format) allow for conversions. Essentially, these
functions are conversion functions, but they are listed here because
they deal with binary floating-point numbers.

� NANVL(value, replace). NANVL returns a replacement value if the
initial value is not a number.

Figure 9.7
Number Functions

Return Results
Based on the

Column Value.

Chap9.fm Page 185 Thursday, July 29, 2004 10:06 PM

186 9.2 Single-Row Functions

� REMAINDER(n, m). This function is a remainder or modulus
function specifically for binary floating-point numbers.

The next section covers date functions.

9.2.3 Date Functions

� ADD_MONTHS(date, months), NEXT_DAY(date, weekday),
LAST_DAY(date), and MONTHS_BETWEEN(date, date).
ADD_MONTHS will add or subtract a number of months to a date
where differences in the number of days in months default to the last
day in the resulting month. NEXT_DAY finds the first day from the
date specified for the day of the week in the string contained in the
second parameter. LAST_DAY finds the last day in the month.
MONTHS_BETWEEN will return the number of months between
two dates.

ADD_MONTHS('27-AUG-02',4) = 27-DEC-02

NEXT_DAY('27-AUG-02','MONDAY') = 02-SEP-02

LAST_DAY('27-AUG-02') = 31-AUG-02

MONTHS_BETWEEN('27-AUG-02','01-JAN-02')

 = 7.83870968 months

Note: In the examples listed, note how dates are listed as strings and a
TO_DATE conversion function is not required. This is because DD-
MON-YY is the default date format and there is an implicit string-to-date
datatype conversion. The default date format can be altered. Datatypes are
covered in Chapter 16.

� SYSDATE, CURRENT_DATE, CURRENT_TIMESTAMP(preci-
sion), LOCALTIMESTAMP(precision), and SYSTIMESTAMP.
SYSDATE and CURRENT_DATE find the system date setting on
the database server where CURRENT_DATE is timezone sensitive.
The other functions all provide different variations on timestamps.

SQL> SELECT SYSDATE FROM DUAL;

SYSDATE

23-JAN-04

SQL> SELECT SYSTIMESTAMP FROM DUAL;

SYSTIMESTAMP

23-JAN-04 01.03.20.661000 AM -05:00

Chap9.fm Page 186 Thursday, July 29, 2004 10:06 PM

9.2 Single-Row Functions 187

Chapter 9

� ROUND(date [, format]) and TRUNC(date [, format]). These two
functions round up or truncate dates according to the format specifi-
cation. See Table 9.1 with date formatting rules for the ROUND and
TRUNC functions.

Some examples of date ROUND and TRUNC functions are as
follows. Let’s say that our current date is 26-AUG-02.

ROUND(SYSDATE,'YEAR') = 01-JAN-03

TRUNC(SYSDATE,'YEAR') = 01-JAN-02

ROUND(SYSDATE,'MONTH') = 01-SEP-02

TRUNC(SYSDATE,'MONTH') = 01-AUG-02

ROUND(SYSDATE,'WW') = 27-AUG-02

TRUNC(SYSDATE,'WW') = 20-AUG-02

� EXTRACT (format, date). The EXTRACT date function is proba-
bly one of the most useful and largely unknown date functions. For-
mat settings are simple, specific, and can be YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, or various TIMEZONE options.

Table 9.1 Some of the ROUND and TRUNC Function Date Formatting

Format Characters Rounding and Truncating

CC The first year in a century.

YYYY, YEAR, YY The nearest year, rounds up on July 1st.

Q The nearest quarter, rounds up on the 16th of month two.

MONTH, MON, MM The nearest month, rounds up on the 16th.

WW The same day of the week as the first day of the year.

W The same day of the week as the first day of the month.

DDD, DD The day.

DAY, D The first day of the week.

HH, HH12, HH24 The hour (HH24 is a 24-hour clock).

MI The minute.

Chap9.fm Page 187 Thursday, July 29, 2004 10:06 PM

188 9.2 Single-Row Functions

Two examples in the following two queries have their results shown
in Figure 9.8.

SELECT EXTRACT(YEAR FROM DATE '2004-02-09') AS YEAR

 , EXTRACT(MONTH FROM DATE '2004-02-09') AS MONTH

 , EXTRACT(DAY FROM DATE '2004-02-09') AS DAY

FROM DUAL;

SELECT EXTRACT(YEAR FROM SYSDATE) AS YEAR

 , EXTRACT(MONTH FROM SYSDATE) AS MONTH

 , EXTRACT(DAY FROM SYSDATE) AS DAY

FROM DUAL;

Looking at some general date function examples, the next query uses
several date functions. The final expression uses the SYSDATE function
and subtracts two dates. The results are in days, so to help compare the
MONTHS_BETWEEN function and the next column, that following col-

Figure 9.8
The EXTRACT

Function Retrieves
Parts of Dates.

Chap9.fm Page 188 Thursday, July 29, 2004 10:06 PM

9.2 Single-Row Functions 189

Chapter 9

umn is divided by the average number of days per month (30.44). The two
values Months-1 and Months-2 are very close but not identical. This is a
rather odd example, but Figure 9.9 shows the result.

SELECT SESSION_DATE

 , ADD_MONTHS(SESSION_DATE,3) "Plus 3 Months"

 , ROUND(SESSION_DATE,'Month') "Round off"

 , MONTHS_BETWEEN(SYSDATE,DUE_DATE) "Months-1"

 , (SYSDATE-DUE_DATE)/30.44 "Months-2"

FROM STUDIOTIME

WHERE ROWNUM < 15;

The next section examines datatype conversion functions.

Figure 9.9
Date Functions Use

Oracle Database
10g’s Standard

Date Output
Format.

Chap9.fm Page 189 Thursday, July 29, 2004 10:06 PM

190 9.2 Single-Row Functions

9.2.4 Datatype Conversion Functions

Before we get to examples and combining of functions, where we often use
conversion functions, we will describe the most useful datatype conversion
functions. Conversion functions are important in two ways:

1. The obvious is that they allow conversions between different
datatypes.

2. The more important and less obvious is that conversion functions
allow the combination of different datatypes into expressions to
produce a single datatype result.

The conversion functions we are most interested in are as listed here.

� Date conversion functions:

� TO_DATE(date[, format]). Converts a string representation of
a date to a date.

� TO_CHAR(date [, format]). Converts a date to a string.

� Number conversion functions:

� TO_CHAR(number [, format]). Converts a number to a string.
� TO_NUMBER(string [, format]). Converts a string to a number.

� Other conversion functions:

� TO_CLOB(string). Converts a simple string to a CLOB or
binary text object. Converting from a CLOB object to a string is
transparent. Transparent is a computerese jargon term meaning
automatic. No conversion function is required.

� TO_N{CHAR|DATE|NUMBER|CLOB}(expression [, format]).
This function can be used to convert an expression, string, date,
or number from the database character set to the national charac-
ter set. For example, TO_NCHAR converts an incoming value to
a national character set value.

Now we need to examine conversion function format options. Conver-
sion formats are applied as a datatype conversion takes place.

9.2.4.1 Number Conversion Function Formats

TO_CHAR(number[, format]) is used to convert from a number to a
string, and TO_NUMBER(string [, format]) is used to convert from a
string to a number. As with the ROUND and TRUNC functions, there are
numerous applicable formatting rules.

Chap9.fm Page 190 Thursday, July 29, 2004 10:06 PM

9.2 Single-Row Functions 191

Chapter 9

A number format implies a display format imposed on a number when
that number is converted to a string using the TO_CHAR function. The
conversion is required in order to format the number into an easily readable
form. Some of the available number conversion format modifiers are shown
in Table 9.2.

9.2.4.2 Date Conversion Function Formats

The TO_DATE(date[, format]) and TO_CHAR(date [, format]) functions
are used to convert between strings and dates. Converting a date to a string
requires that the string is a string representation of a date. As with the
ROUND, TRUNC, and number conversion functions, there are numerous
applicable formatting rules. Table 9.3 shows some of the date conversion
format modifiers.

Table 9.2 Some of the Number Formatting Models

Number Format Models What Is It?

9,999,999 Delimit thousands with commas (1000000 shows
1,000,000).

99.99 Number of decimal places (95.3359 shows 95.34).

$9999 Display a leading $ sign (1000 shows $1000).

09999, 99990 Leading and trailing zeros (05633 shows 05633).

99999 Format to a specified number of numerals (05633 shows
5633).

B9999.99 Integer shown as blanks (0.99 shows .99).

C999 Leading ISO currency symbol (839 shows USD839).

9.9EEEE Scientific notation (2000000 shows 2.0E+06).

9999MI Negative value has a trailing minus sign and positive a
trailing blank (-500 shows 500-).

9999PR Negative value in <999> and positive with a leading and
trailing blank (-500 shows <500>).

S9999, 9999S S replaces negative value with a minus sign or positive
sign depending on value (-500 shows –500 and 500
shows +500).

RN, rn Roman numerals in upper or lowercase (2002 shows
MMII).

Chap9.fm Page 191 Thursday, July 29, 2004 10:06 PM

192 9.2 Single-Row Functions

Here are some examples using datatype conversion functions. Figure
9.10 shows part of the results. The TO_CHAR function for dates allows
you to format the date in a huge variety of ways.

SELECT TO_CHAR(RECORDING_DATE,'Day, Month dd, YYYY')

"Spell the day"

 , TO_CHAR(RECORDING_DATE,'MM/DD/YY') "American style"

Table 9.3 Some of the Date Formatting Models

Date Format Models What Is It?

- / , . ; Permitted punctuation with date string representation.

YEAR The year (2002 shows TWO THOUSAND TWO).

YYYY 4-digit year.

YYY, YY & Y Last n digits of the year.

Q Quarter of year, 1 to 4.

MM Month, 01 to 12.

MONTH & MON Month name and abbreviated month name.

WW Week of year, 1 to 53.

W Week of month, 1 to 5.

D Week day, 1 to 7.

DAY & DY Day name and abbreviated day name.

DD Day of month, 1 to 31.

DDD Day of year, 1 to 366.

HH & HH12 Hour of day, 1 to 12.

HH24 24-hour clock, 0 to 23.

MI Minutes, 0 to 59.

SS Seconds, 0 to 59.

AM & PM AM or PM.

AD & BC BC or AD.

J Julian day or number of days since 01/01/4712 BC.

RM Roman month, I to XII.

Chap9.fm Page 192 Thursday, July 29, 2004 10:06 PM

9.2 Single-Row Functions 193

Chapter 9

 , TO_CHAR(RECORDING_DATE,'DY, MONTH MM, YEAR')

"Spell the year"

FROM SONG;

The next query shows the TO_CHAR function for numbers. Figure
9.11 shows part of the result.

SELECT ARTIST_ID, AMOUNT_CHARGED

,TO_CHAR(AMOUNT_CHARGED,'$9,999,990.00') FORMAT1

,TO_CHAR(AMOUNT_CHARGED,'0999990.9999') FORMAT2

FROM STUDIOTIME;

Figure 9.10
Three Variations

on the Date
Format with
TO_CHAR.

Chap9.fm Page 193 Thursday, July 29, 2004 10:06 PM

194 9.2 Single-Row Functions

The next section covers miscellaneous functions. These functions are
miscellaneous essentially because they cannot be classified as being part of
any of the previous sections.

9.2.5 Miscellaneous Functions

� COALESCE(expression). The COALESCE function retrieves the
first non-null-valued expression in a list of expressions.

COALESCE(NULL,NULL,'33','testing') = 33

� DECODE(expression, search, replace[, default]). This function is
similar to an IF-THEN-ELSE construct or CASE statement in pro-
gramming. There is also an inline CASE statement available in Ora-
cle SQL (see Chapter 14).

DECODE('Harry'

 ,'Harry','It is Harry!'

 ,'Joe','It is Joe!'

Figure 9.11
Numbers

Converted to
Characters Helps

Format Results.

Chap9.fm Page 194 Thursday, July 29, 2004 10:06 PM

9.2 Single-Row Functions 195

Chapter 9

 ,'Not Harry or Joe.') = 'It is Harry!'

DECODE('Joe'

 ,'Harry','It is Harry!'

 ,'Joe','It is Joe!'

 ,'Not Harry or Joe.') = 'It is Joe!'

DECODE('Mary'

 ,'Harry','It is Harry!'

 ,'Joe','It is Joe!'

 ,'Not Harry or Joe.') = 'Not Harry or Joe.'

� GREATEST(expression[, expression ...]) and LEAST(expression [,
expression ...]). These two functions return the greatest and least val-
ues, respectively, of a list of expressions.

GREATEST('Amy', 'Joe', 'ant', 'Giant') = 'ant'

LEAST(7,12, 2, 15) = 2

� NULLIF(expression, expression). Returns a null value when both
expressions are equal. If they are not equal, the first expression is
returned.

NULLIF('blue','green') = 'blue'

NULLIF('green','green') = NULL

� NVL(expression, replace) and NVL2(expression, replace, replace).
NVL exchanges a null-valued result with a replacement value. If the
expression is not NULL, the expression is returned unchanged.
NVL2, on the other hand, will return the first replacement expression
if not NULL and the second replacement expression if NULL.

NVL('Bird','NULL was found') = 'Bird'

NVL('','NULL was found') = 'NULL was found'

NVL2('This is not NULL','Not NULL','NULL') = 'Not NULL'

NVL2('','Not NULL','NULL') = 'NULL'

� USER and UID. These two functions return the Oracle username
(schema name) and unique user ID for the currently logged-in user,
respectively. These values can also be found in the USER_USERS
view and have no parameters. The first example requires that the cur-
rent session be logged in as the MUSIC user. The UID or user ID
value is very likely to be different for every session.

USER = MUSIC

UID = 101

� USERENV(parameter). Returns user session environmental settings
based on the input parameter value. This function is retained in Ora-
cle Database 10g for backward compatibility. Parameter values are

Chap9.fm Page 195 Thursday, July 29, 2004 10:06 PM

196 9.3 Combining Functions

numerous. Some of them are CLIENT_INFO, ENTRYID, ISDBA,
LANG, LANGUAGE, SESSIONID, and TERMINAL. The SES-
SIONID is likely to be different for every session.

USERENV('SESSIONID') = 1520

� VSIZE(expression). The number of bytes in an expression.

VSIZE('Oracle Certified Professional') = 29

VSIZE(100.234) = 5

Note: Regular expression functions are covered in Chapter 14. XML func-
tions are covered in Chapter 17. BFILENAME is covered in Chapter 16.

Let’s take a quick peek at the DECODE function. The next query uses
the home state of the artist in a whimsical DECODE statement, replacing
the name of the state with various phrases. For example, the state code
“OR” is replaced by the phrase “Tree hugger.” The default value is always
listed last after the search-and-replace value pairs. In this example, the
default is the phrase “Whatever!” Figure 9.12 shows the result.

SELECT STATE_PROVINCE

, DECODE(STATE_PROVINCE,'CA','Surfer',

 'NH','Snow bunny',

 'OR', 'Tree hugger',

 'FL', 'Retired',

 'Whatever!')

FROM ARTIST;

Now let’s look at combining various functions.

9.3 Combining Functions

So far in this chapter, we have looked at a lot of single-row function defini-
tions. Now let’s get to more practical uses for these functions by combining
various functions into single expressions. Remember, single-row functions
return a single value when passed various parameters and always work with
the values on one row of data at a time.

Let’s use a combination of SUBSTR and INSTR to retrieve the first
name of the artist. We know that there will always be a space between the
first name and the last name. So we use the INSTR function to determine
the location of the space and then use SUBSTR to return the characters

Chap9.fm Page 196 Thursday, July 29, 2004 10:06 PM

9.3 Combining Functions 197

Chapter 9

from the beginning of the NAME column, up to the space character. The
first two columns in the query are included to show the values being
worked with, helping understand what the combination of the two func-
tions returns Figure 9.13 shows the result.

SELECT NAME, INSTR(NAME,' ')

, SUBSTR(NAME,1,INSTR(NAME,' ')) FIRSTNAME

FROM ARTIST;

Now let’s find the last name, once again using the INSTR and SUBSTR
functions. The result is shown in Figure 9.14.

COLUMN LASTNAME FORMAT A20

Figure 9.12
The DECODE

Function Is Useful
for Short Lists of

Values.

Chap9.fm Page 197 Thursday, July 29, 2004 10:06 PM

198 9.3 Combining Functions

SELECT NAME, LENGTH(NAME), INSTR(NAME,' ')+1

, SUBSTR(NAME,(INSTR(NAME,' ')+1)) LASTNAME

FROM ARTIST;

This next example uses several functions. The PLAYING_TIME col-
umn contains the minutes and seconds of playing time for a song in the for-
mat m:ss (minutes:seconds). This query is built gradually in sections. First,
find the colon and separate minutes from seconds using the INSTR and
SUBSTR functions. Extract the minutes:

SUBSTR(PLAYING_TIME,1,INSTR(PLAYING_TIME,':')-1)

Extract the seconds:

SUBSTR(PLAYING_TIME,INSTR(PLAYING_TIME,':')+1)

Figure 9.13
Extract the First

Name from a
Column

Containing First
and Last Names.

Chap9.fm Page 198 Thursday, July 29, 2004 10:06 PM

9.3 Combining Functions 199

Chapter 9

In the next extract, when the minutes are NULL, the word “Unknown”
is substituted for the null value using the NVL function. Additionally, the
words “Minutes and ” are concatenated onto the minutes.

NVL(SUBSTR(PLAYING_TIME,1,INSTR(PLAYING_TIME,':')-1)

,'Unknown')||' Minutes and '

Next, seconds are extracted using SUBSTR and INSTR again. Then,
add the NVL function to substitute the word “Unknown” if the results are
NULL. In this case, there are trailing blanks, because the column is CHAR
datatype (rather than VARCHAR2, which excludes trailing blanks). So, add
the RTRIM function to remove the trailing blanks.

RTRIM(NVL(SUBSTR(PLAYING_TIME,INSTR(PLAYING_TIME,':')+1)

 ,'Unknown'))||' Seconds.'

Finally, concatenate the minutes to the seconds and additionally concat-
enate “ Seconds.” to the end of the whole thing. The first two columns are
displayed as reference points so you can see how the functions have worked

Figure 9.14
Start at the

Character
Following the

Blank Space to Get
the Last Name.

Chap9.fm Page 199 Thursday, July 29, 2004 10:06 PM

200 9.3 Combining Functions

on the original values in the PLAYING_TIME column. The following
query is the resulting script, and Figure 9.15 shows part of the result.

SELECT PLAYING_TIME, INSTR(PLAYING_TIME,':') DIVIDER

, NVL(

 SUBSTR(PLAYING_TIME,1,INSTR(PLAYING_TIME,':')-1)

 ,'Unknown')||' Minutes and '

||RTRIM(NVL(

 SUBSTR(PLAYING_TIME,INSTR(PLAYING_TIME,':')+1)

 ,'Unknown')

)||' Seconds.' PLAYING_TIME

FROM SONG;

Now let’s examine an example with the TRUNC and DECODE func-
tions. This query shows how to use DECODE to categorize the rows in the
STUDIOTIME table into ranges of values. First, the query uses the

Figure 9.15
Multiple Layers of

Functions Can Get
Complex to Follow

but Yield Useful
Results.

Chap9.fm Page 200 Thursday, July 29, 2004 10:06 PM

9.3 Combining Functions 201

Chapter 9

TO_DATE function to choose only those rows that fall in the year 2002
using a WHERE clause.

WHERE TO_CHAR(SESSION_DATE,'YYYY') = '2002'

To sift a range of values using DECODE, you need a finite list of num-
bers. The AMOUNT_CHARGED is converted into the next highest 100,
providing values such as 100, 500, 1200, and so on.

TRUNC(AMOUNT_CHARGED,-2)+100

The following list can be used in the DECODE function. We want the
DECODE function to sort values into the following categories:

� If the AMOUNT_CHARGED is less than $400, this is a “Low Risk”
amount.

� If the AMOUNT_CHARGED is at least $400 but less than $700,
this is a “Medium Risk” amount.

� Otherwise, this is a “High Risk” amount.

Here is the complete query, including the DECODE function. The
results are sorted by the AMOUNT_CHARGED and shown in Figure
9.16.

SELECT AMOUNT_CHARGED

,TRUNC(AMOUNT_CHARGED,-2)+100 NEXT_HIGHEST_HUNDRED

, DECODE (ROUND(AMOUNT_CHARGED,-2)+100,

 100, 'Low Risk',

 200, 'Low Risk',

 300, 'Low Risk',

 400, 'Low Risk',

 500, 'Med Risk',

 600, 'Med Risk',

 700, 'Med Risk',

 'High Risk') RISK_FACTOR

FROM STUDIOTIME

WHERE TO_CHAR(SESSION_DATE,'YYYY') = '2002'

ORDER BY 1;

Chap9.fm Page 201 Thursday, July 29, 2004 10:06 PM

202 9.3 Combining Functions

Note how amounts in Figure 9.16 are truncated and then $100 is added
to the amount. This expression is then used as the search parameter in the
DECODE function.

Note: Using functions in the WHERE clause will hurt performance unless
function-based indexes are used. However, be aware of overindexing with
function-based indexes. Creating too many indexes can hurt performance
as well. The best option is not to use functions in the WHERE clause, other
than with literal values, if possible.

Once again, further details on Oracle SQL single-row functions can be
found in Oracle documentation both online and in Oracle software docu-
mentation. Specific reference details of all functions can be found in the SQL
Reference Manual section under the Oracle documentation list of books.

Figure 9.16
Using the
TRUNC,

DECODE, and
TO_DATE
Functions.

Chap9.fm Page 202 Thursday, July 29, 2004 10:06 PM

9.4 Endnotes 203

Chapter 9

This chapter is intended to provide a good start on using single-row
functions. You have probably already thought of some good applications for
these functional tools. The next chapter describes joining tables into single-
result sets, which gives you even more power to manipulate data using
increasingly powerful and versatile queries.

9.4 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Chap9.fm Page 203 Thursday, July 29, 2004 10:06 PM

This page intentionally left blank

205

10

Joining Tables

In this chapter:

�

What is a join?

�

What is Oracle’s proprietary format for joins?

�

What is the ANSI join format?

�

What types of joins can be performed?

�

How can joins be implemented?

A join is retrieval of data from more than one table. This chapter shows
you how to merge rows from multiple tables into a single query. Merging of
rows is known as a

join

. This chapter experiments with example SELECT
statements containing many different types of joins.

In previous chapters you have explored the SELECT, FROM, WHERE,
and ORDER BY clauses. Both the American National Standards Institute
(ANSI) format JOIN clause and the Oracle proprietary format for joining
tables are used in all examples where possible. The JOIN clause is the ANSI
equivalent of the Oracle proprietary join syntax. We examine both formats
for the following reasons:

�

The Oracle proprietary format has not as yet been deprecated in favor
of the ANSI JOIN clause; therefore, it is important that even new
DBAs be familiar with its use. As a side issue, Oracle Certification
exams may test both formats.

�

Both formats are useful for explaining how joins behave and how to
select the most appropriate format. In addition, one type of join, the

Chap10.fm Page 205 Thursday, July 29, 2004 10:08 PM

206

10.1

Join Formats

full outer join, cannot be done in Oracle’s proprietary format. Thus
the ANSI format must be used at least to describe full outer joins.

Let’s begin by looking at the two different join formats in detail.

10.1 Join Formats

As already stated, the two join formats available are the Oracle proprietary
format and the ANSI standard join format.

10.1.1 Oracle’s Proprietary Format

Oracle’s proprietary join format may eventually be superseded by the
ANSI format JOIN clause syntax. At present, this is not the case. In the
Oracle proprietary format, join syntax is part of the WHERE clause.
Outer joins are handled by using an outer join operator

denoted by a plus
sign enclosed in parentheses, (+). The outer join operator is placed after a
column name reference in the WHERE clause on all columns belonging
to the table on the outer side of the join, the side deficient in information
or rows. Figure 10.1 shows the basic syntax of the SELECT statement,
including the WHERE clause and Oracle proprietary format join syntax
using the (+) operator.

10.1.2 ANSI Format

The ANSI format JOIN clause has been included in Oracle as optional
when joining tables. Figure 10.2 shows the syntax of the ANSI JOIN
clause. The following points should be noted:

Figure 10.1

Oracle’s Proprietary
Join Syntax Using
the (+) Operator.

Chap10.fm Page 206 Thursday, July 29, 2004 10:08 PM

10.2

Types of Joins 207

Chapter 10

�

More than two tables in a join forces specification of columns using
the USING or ON clauses, or both.

�

For the ANSI format, tables are joined from left to right. Thus join
conditions can only reference columns in the current join or from pre-
vious joins to the left. For the Oracle format, tables are joined from left
to right and top to bottom, allowing reference to any join condition in
the WHERE clause from anywhere in the WHERE clause.

Note:

When tuning using the Optimizer and the EXPLAIN PLAN com-
mand, in the deeper layers of Oracle tuning tools, these facts are not
always strictly true. For the purposes of this Oracle SQL book, these facts

will suffice.

1

Now let’s look at different types of joins you are able to build in Oracle.

10.2 Types of Joins

Let’s look at the available types of joins and what exactly they do:

�

Cross-join or Cartesian product.

Merges all data selected from both
tables into a single result set.

Figure 10.2

ANSI Join Syntax.

Chap10.fm Page 207 Thursday, July 29, 2004 10:08 PM

208

10.2

Types of Joins

�

Inner join.

Combines rows from both tables using matching column
names and column values. The result set includes only rows that
match.

�

Outer join.

Selects rows from both tables as with an inner join but
including rows from one or both tables that do not have matching
rows in the other table. Missing values are replaced with null values.

�

Left outer join.

All rows from the left table plus all matching
rows from the right table. Column values from the right table are
replaced with null values when the matching right-side row does
not exist in the left-side table.

�

Right outer join.

All rows from the table on the right plus match-
ing rows from the left table, the opposite of the left outer join.

�

Full outer join.

All rows from both tables, with null values
replacing missing values.

�

Self-join.

This joins a table to itself.

�

Equi-joins, anti-joins, and range joins.

An equi-join combines
table data based on equality (=), an anti-join matches data based on
inequality (!=, <> or NOT), and a range join compares data using a
range of values (<, > or BETWEEN).

�

Mutable and complex joins.

 A mutable join is a join of more than
two tables. A complex join is a mutable join with added filtering.

This is a lot of technical jargon. Let’s explain what joins are using simple
mathematical set theory. Relational database theory is based on set theory.
Do you remember learning set theory at school? A direct correlation can be
made between simple set theory and relational database joins.

Figure 10.3 shows two completely unrelated sets, Set A and Set B. That
is, the two sets are not related to one another in any way. You can see that

Figure 10.3

Two Unrelated
Sets.

Chap10.fm Page 208 Thursday, July 29, 2004 10:08 PM

10.2

Types of Joins 209

Chapter 10

some of the elements of each set appear in both sets. With respect to a rela-
tional database, until we create some kind of relationship between the two
sets, they are still unrelated.

In Figure 10.4, we can see the same two sets but now showing the inter-
section of those two sets. The intersection of Sets A and B would be the
equivalent of an inner join. An inner join contains only those elements
found in both sets.

Figure 10.5 shows all elements in Set A that are also in Set B (the inter-
section) plus all those elements in Set A that are not in Set B. This the
equivalent of a left outer join. As you can see, the picture contains the left
set outside the intersection area, plus only the parts of the right set that
match elements in the left set. “Why not just use Set A?” you ask. The
answer will be very clear when you begin using actual tables. Imagine these
examples as containing only one column each of two tables. Once matched,
you can find the values of all the other columns. For example, if Set A is a
table of cats and Set B is a table of dogs, you could use a left outer join to
list all the names of dogs (Set A) along with all the names of cats with the
same color fur as each dog (intersection, matching on fur color, of Set B).
You could not get this kind of list from Set A alone.

Figure 10.4

A Natural Join or
Intersection.

Figure 10.5

A Left Outer Join.

Chap10.fm Page 209 Thursday, July 29, 2004 10:08 PM

210

10.3

Examining Different Types of Joins

Figure 10.6 shows all elements in both sets including all elements in Set
B that are not in Set A. This is the equivalent of a right outer join. Visually,
it is easy to see why the diagram in Figure 10.6 is called a right outer join.

Finally, in Figure 10.7, all elements in both sets are included. This is the
equivalent of a full outer join.

So now we know what types of joins can be performed to join tables or
row sets together. Now let’s examine different join types in detail and by
example.

10.3 Examining Different Types of Joins

Let’s examine each type of join in turn using specific examples.

10.3.1 Cross-Join or Cartesian Product

A cross-join merges all data from all tables into a single result set regardless
of matching column names or their values. The select statement in Figure
10.8 is a cross-join creating a Cartesian product between the two tables.
Additionally, the SONG and MUSICCD tables are only indirectly related
through the many-to-many join resolution represented by the CDTRACK

Figure 10.6

A Right Outer
Join.

Figure 10.7

A Full Outer Join.

Chap10.fm Page 210 Thursday, July 29, 2004 10:08 PM

10.3

Examining Different Types of Joins 211

Chapter 10

table. The Cartesian product retrieves all music CDs with every song
regardless of whether a CD contains the song or not. The SONG table has
118 rows and the MUSICCD table has 13 rows. The resulting row count is
1,534 rows. This is because 118 Songs multiplied by 13 CDs gives us 1,534
combinations. Figure 10.8 shows the result of the following query:

SELECT S.TITLE, M.TITLE FROM SONG S, MUSICCD M;

Row counts selected can be verified with the following queries. The
third query contains a subquery (see Chapter 12) and counts the number of
rows returned by the cross-join.

SELECT COUNT(*) FROM SONG;

SELECT COUNT(*) FROM MUSICCD;

SELECT COUNT(*) FROM

(SELECT S.TITLE, M.TITLE FROM SONG S, MUSICCD M);

�

MUSICCD has 13 rows.

�

SONG has 118 rows.

�

The cross-join has 1,534 (13 * 118) rows.

This particular cross-join is typical. Most cross-joins are created in error.
The MUSICCD and SONG tables should have been related to one
another with the MUSICCD_ID column through the CDTRACK table.

Figure 10.8

A Cross-Join
Between the
SONG and

MUSICCD Tables.

Chap10.fm Page 211 Thursday, July 29, 2004 10:08 PM

212

10.3

Examining Different Types of Joins

Because the relationship was omitted from the query, Oracle assumes that
each row in the first table is related to every row in the second table: a Car-
tesian Product or multiplication of both tables.

10.3.2 Natural or Inner Join

The objective of joins is to allow the retrieval of rows from separate tables,
using an existing relationship. Thus, when selecting data from two tables, it
is best to link the rows in the tables together based on common values.
When selecting from the SONG and ARTIST tables, without linking the
songs to their respective artists, a meaningless result is returned. The entity
relationship diagram in Chapter 1 shows the SONG and ARTIST tables
linked by a common column called ARTIST_ID. Figure 10.9 shows the
result of the following query:

SELECT A.NAME, S.TITLE FROM ARTIST A, SONG S

WHERE A.ARTIST_ID = S.ARTIST_ID;

The result in Figure 10.9 shows a result of 118 rows. This is the correct
value because the SONG table has a total of 118 rows and the ARTIST
table has 15 rows. There is a one-to-many relationship between the ART-
IST and SONG tables. The maximum number of selectable rows using an
inner join between these two tables is the number of rows on the many side
of the relationship.

Figure 10.9

A Natural Join
Between the

ARTIST and
SONG Tables.

Chap10.fm Page 212 Thursday, July 29, 2004 10:08 PM

10.3

Examining Different Types of Joins 213

Chapter 10

The ANSI format would allow a natural join by matching the
ARTIST_ID column names on the ARTIST and SONG tables. Use cau-
tion with the ANSI format of the natural join. The NATURAL JOIN
clause matches all columns with identical column names in the two tables.
If columns have identical names but are not actually appropriate for join-
ing, such as the COMMENT_TEXT columns in the GUESTAPPEAR-
ANCE and INSTRUMENTATION tables, the ANSI format would match
the tables incorrectly. Similarly, if there are no matching column names, the
ANSI NATURAL JOIN format results in a Cartesian product. Because of
the potential problems with a natural join, we have to be able to define the
columns to be used in a join. This leads us to the ANSI join format USING
and ON clauses.

10.3.2.1 The USING clause

The USING clause can be added to the ANSI join format where columns
with identical names should be omitted from the join. The Oracle propri-
etary join format does not have the USING clause because you always
name the columns to be joined in the WHERE clause. The result of the fol-
lowing query is shown in Figure 10.10:

SELECT SONG_ID, GUESTARTIST_ID, INSTRUMENT_ID

FROM GUESTAPPEARANCE NATURAL JOIN INSTRUMENTATION;

Figure 10.10

A Natural Join
without the

USING Clause.

Chap10.fm Page 213 Thursday, July 29, 2004 10:08 PM

214

10.3

Examining Different Types of Joins

The query in Figure 10.10 returned a message indicating that no rows
were selected. This is because the NATURAL JOIN clause will attempt to
match the two tables on all column names common to both tables. Exam-
ine the Oracle format equivalent in Figure 10.10. Note how the
COMMENT_TEXT columns are included in the WHERE clause. The
Oracle format equivalent in this case is an exact interpretation of the ANSI
format for the purposes of clear explanation.

Note:

Aliases are not always required for the ANSI format example.

The result of the next query is shown in Figure 10.11:

SELECT GA.SONG_ID, GA.GUESTARTIST_ID, IA.INSTRUMENT_ID

FROM GUESTAPPEARANCE GA NATURAL JOIN INSTRUMENTATION IA;

The error is returned in Figure 10.11 because Oracle attempts the join
using the SONG_ID, GUESTARTIST_ID, and COMMENT_TEXT col-
umns; these three column names are common to both tables. The addition
of the alias to the column names in the previous query effectively changes
the names of the columns. Thus GA.SONG_ID is not the same as
IA.SONG_ID or SONG_ID.

Getting back to the original query: The ANSI format requires some
refinement to remove the unwanted COMMENT_TEXT column from
the join. This is done with the USING clause. The result is shown in Figure
10.12. Note the absence of the NATURAL keyword. This join is no longer
a purely naturally occurring join because column names are specified.

Figure 10.11

Join Column
Names not
Explicitly

Qualified Cause
Errors.

Chap10.fm Page 214 Thursday, July 29, 2004 10:08 PM

10.3

Examining Different Types of Joins 215

Chapter 10

SELECT GA.COMMENT_TEXT ||' and '||IA.COMMENT_TEXT

FROM GUESTAPPEARANCE GA JOIN INSTRUMENTATION IA

USING (SONG_ID, GUESTARTIST_ID);

Note:

||' and '|| concatenates the fields as trimmed strings. This is an alter-
native to preformatting of columns using the COLUMN clause. See Chap-

ter 8 for more information on formatting.

The previous example in Figure 10.12 demonstrates how to exclude
unwanted columns from a join. The USING clause was used to prevent
joining on the COMMENT_TEXT column between the INSTRUMEN-
TATION and GUESTAPPEARANCE tables. In some cases, the opposite
is required. The ON clause is used to join tables on column names where
the column names required in the join are not the same names in separate
tables. This therefore leads us to an analysis of the ANSI format ON clause.

10.3.2.2 The ON clause

The result of the following query is shown in Figure 10.13:

SELECT A.NAME, GA.COMMENT_TEXT FROM GUESTAPPEARANCE GA

NATURAL JOIN ARTIST A;

Figure 10.12

The JOIN Clause
and the USING

Clause.

Chap10.fm Page 215 Thursday, July 29, 2004 10:08 PM

216

10.3

Examining Different Types of Joins

The ARTIST table has 15 rows and the GUESTAPPEARANCE table
has 5 rows. When you execute the join, you get 75 rows: 15 multiplied by 5
equals 75 rows. This is another unwanted Cartesian product. The two
tables are not being joined correctly because there is no common column
name for the JOIN clause to utilize. There is a column in both tables hav-
ing related values, but the column name is different in each table. In the
ARTIST table it is called ARTIST_ID, and in the GUESTAPPEARANCE
table it is called GUESTARTIST_ID.

Another row count can now be verified.

SELECT COUNT(*) FROM GUESTAPPEARANCE;

� ARTIST has 15 rows.

� GUESTAPPEARANCE has 5 rows.

This Cartesian product in Figure 10.13 caused by lack of common col-
umn names can be resolved by utilizing the ON clause. The result of the
next query is shown in Figure 10.14:

SELECT A.NAME, GA.COMMENT_TEXT FROM GUESTAPPEARANCE GA

JOIN ARTIST A ON (GA.GUESTARTIST_ID = A.ARTIST_ID);

Figure 10.13
The JOIN Clause

without the ON
Clause.

Chap10.fm Page 216 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 217

Chapter 10

10.3.3 Outer Join

An outer join selects rows from both tables including rows from one or both
tables without matching rows in the other table. To show how outer joins
work, we will use the ARTIST, SONG, and GUESTAPPEARANCE tables.
The GUESTAPPEARANCE table contains some artists and some songs.

Examine the MUSIC schema entity relationship diagram in Chapter 1
again. An outer join is only useful if at least one side of the relationship can
be zero. In the diagram, the symbols or indicate that zero
rows only on the left side of the symbol may be related to the table on the
right side of the symbol. The many-to-many relationship between the
ARTIST and SONG tables through the GUESTAPPEARANCE table
effectively makes the relationship between the ARTIST and SONG tables a
zero, one- or many-to-zero, or one-to-many relationship. In other words,
one artist may have been a guest appearance artist on no songs, or on one
song, or on many songs. And a single song may have no guest appearances,
or one guest appearance, or many guest appearances. Thus by joining these
three tables, we can demonstrate the use of left, right, and full outer joins.

Before we execute join queries, we need to know which artist and song
rows are present on the GUESTAPPEARANCE table. The result in Figure
10.15 shows artists who do not appear as guests on any particular song.

SELECT NAME FROM ARTIST WHERE ARTIST_ID NOT IN

(SELECT GUESTARTIST_ID FROM GUESTAPPEARANCE);

Figure 10.14
The JOIN Clause

with the ON
Clause.

Chap10.fm Page 217 Thursday, July 29, 2004 10:08 PM

218 10.3 Examining Different Types of Joins

The result of the next query is shown in Figure 10.16, showing all songs
without guest appearances and including the word “Me” in the song title.
There is no longer a need to verify the health of join statements with row
counts. Filtering and sorting can now be implemented using the WHERE
and ORDER BY clauses, respectively. See Chapter 5 for filtering and Chap-
ter 6 for sorting.

SELECT TITLE FROM SONG WHERE SONG_ID NOT IN

(SELECT SONG_ID FROM GUESTAPPEARANCE)

AND (TITLE LIKE '%Me%' OR TITLE LIKE '%Me');

When creating outer joins, the examples used here contain three tables
in order to retrieve both artist names and song titles in the same query. Any
join made up of more than two tables is called a mutable join. Mutable
joins are explained at the end of this chapter. One format version of each
type of outer join will be used, along with each Oracle proprietary or ANSI
standard example, in order to explain both join formats with more clarity.

10.3.3.1 Left Outer Join

A left outer join will return all rows from the table on the left of the join
plus any matching rows from the table on the right. Rows from the table on

Figure 10.15
Artists not Making
Guest Appearances

on Any Song.

Chap10.fm Page 218 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 219

Chapter 10

the left with no matching rows in the table on the right will contain null
values for the columns from the table on the right side.

Three queries are used to explain left outer joins, each becoming pro-
gressively more complex. The result of the first query is shown in Figure
10.17 with a left outer join of the ARTIST and GUESTAPPEARANCE
tables. SONG_ID and GUESTARTIST_ID columns contain null values
for ARTIST rows that do not exist as guest appearances.

SELECT A.NAME, GA.SONG_ID, A.ARTIST_ID, GA.GUESTARTIST_ID

FROM ARTIST A, GUESTAPPEARANCE GA

WHERE A.ARTIST_ID = GA.GUESTARTIST_ID(+);

Note: The rule of thumb for the (+) operator is it appears on the side of the
join “deficient in information.” In plain English: The table “deficient in
information” is the table that cannot match every single row in the other
table. A null valued “row” is added to the deficient table, using the plus
sign, taking the place of the missing rows in the resulting join query. Put the
(+) symbol on the “deficient” table’s column found in the WHERE clause.
Remember, without the (+) symbol, only rows that match in BOTH tables
are selected.

Figure 10.16
All Songs without

Guest Appearances
Including the Word

“Me” in the Song
Title.

Chap10.fm Page 219 Thursday, July 29, 2004 10:08 PM

220 10.3 Examining Different Types of Joins

Refer back to Figure 10.15 to validate artists who do not have guest
appearances on any songs. You will see that these artists (starting with
Sheryl Crow and ending with James Taylor) appear in Figure 10.17 with a
blank space in the SONG_ID and GUESTARTIST_ID. The query could
not match any row in the GUESTAPPEARANCE table with these artists
in the ARTIST table. Oracle Database 10g automatically returns a null
value as a placeholder in the results for the unmatched rows.

Look at the last five rows in Figure 10.17. These are the artists who do
make guest appearances. Notice that the ARTIST_ID column and the
GUESTARTIST_ID column contain the same number in every row. This
makes sense because the query equates the values in the two columns. These
rows are finding themselves in the ARTIST table. Any row in the GUE-
STAPPEARANCE table must match a row in the ARTIST table.

The second left outer join query, shown following, is the ANSI version
of the first left outer join query. The result is shown in Figure 10.18. One
difference between the Oracle format join in Figure 10.17 and the ANSI
format join in Figure 10.18 is the sorted order of null values.

SELECT A.NAME, GA.SONG_ID, A.ARTIST_ID, GA.GUESTARTIST_ID

FROM ARTIST A LEFT OUTER JOIN GUESTAPPEARANCE GA

ON (A.ARTIST_ID = GA.GUESTARTIST_ID);

Figure 10.17
Oracle Format Left

Outer Join of
ARTIST and

GUESTAPPEARA
NCE Tables.

Chap10.fm Page 220 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 221

Chapter 10

The third and last left outer join query is a more complex variation of
the first two using the ANSI format and the DECODE function.

Note: The DECODE function is an embedded case statement (see
Chapter 9).

The following query lists all of the artists in the ARTIST table. It
returns one of two phrases, depending on whether the artist makes a guest
appearance on a song or not. If not, the phrase “ is an Artist.” follows the
artist’s name. If otherwise, the phrase “ made a guest appearance on …” fol-
lows the artist’s name, including the appropriate song title. The result as
shown in Figure 10.19 is a left outer join between all three ARTIST, GUE-
STAPPEARANCE, and SONG tables.

SELECT A.NAME||
DECODE (S.TITLE, NULL,' is an Artist.'

,' made a guest appearance on '||S.TITLE||'.'
) as "What they did"

FROM ARTIST A LEFT OUTER JOIN GUESTAPPEARANCE GA
ON (A.ARTIST_ID = GA.GUESTARTIST_ID)

LEFT OUTER JOIN SONG S ON (S.SONG_ID = GA.SONG_ID)
ORDER BY A.NAME, S.TITLE;

Figure 10.18
ANSI Format Left

Outer Join of the
ARTIST and

GUESTAPPEARA
NCE Tables.

Chap10.fm Page 221 Thursday, July 29, 2004 10:08 PM

222 10.3 Examining Different Types of Joins

Notice in the Oracle-formatted query in Figure 10.19 that the two left
outer joins are identified by the (+) symbol next to the appropriate columns
in the WHERE clause.

Here is another variation that returns the same result. In the following
query, the Oracle format uses an embedded subquery statement (see Chap-
ter 12) rather than a WHERE clause addition using the SONG and GUE-
STAPPEARANCE tables. SQL is very versatile. There are many options
available in SQL.

Figure 10.19
Left Outer Join

Between ARTIST,
GUESTAPPEAR

ANCE, and
SONG Tables.

Chap10.fm Page 222 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 223

Chapter 10

SELECT A.NAME||

DECODE(NVL(

(SELECT TITLE FROM SONG WHERE SONG_ID = GA.SONG_ID)

, NULL), NULL,' is an Artist.'

,' made a guest appearance on '

||NVL((SELECT TITLE FROM SONG

WHERE SONG_ID = GA.SONG_ID),NULL)||'.'

) AS "What they did"

FROM ARTIST A, GUESTAPPEARANCE GA

WHERE A.ARTIST_ID = GA.GUESTARTIST_ID(+)

ORDER BY A.NAME, GA.SONG_ID;

10.3.3.2 Right Outer Join

A right outer join is the converse of a left outer join. A right outer join
returns all rows from the table on the right of the join plus any matching
rows from the table on the left. Rows from the table on the right with no
matching rows in the table on the left will contain null values for the col-
umns from the table on the left side.

Following is an example of an ANSI-formatted right outer join state-
ment. The equivalent Oracle form with an outer join on three tables does
not exist unless a subquery is used (see Chapter 12). It is not possible to
execute an outer join between more than two tables in a single query using
the Oracle format; an error will result (ORA-01417: a table may be outer
joined to at most one other table).

The result of the following query is shown in Figure 10.20. The query in
Figure 10.20 is an ANSI format right outer join between all three ARTIST,
GUESTAPPEARANCE, and SONG tables.

SELECT A.NAME "Artist", S.TITLE "Song"

FROM GUESTAPPEARANCE GA RIGHT OUTER JOIN SONG S

ON (GA.SONG_ID = S.SONG_ID)

RIGHT OUTER JOIN ARTIST A

ON (GA.GUESTARTIST_ID = A.ARTIST_ID)

ORDER BY S.TITLE, A.NAME;

The query first performs a right outer join between the GUESTAP-
PEARANCE and SONG tables. Because the SONG table is on the right,
all songs are retrieved. Next, this result set is right outer joined to the ART-
IST table using the GUESTARTIST_ID. Because not all songs have a guest
appearance, those songs have null values in the GUESTARTIST_ID and

Chap10.fm Page 223 Thursday, July 29, 2004 10:08 PM

224 10.3 Examining Different Types of Joins

therefore are not able to match with a row in the ARTIST table. Because
the ARTIST table is now on the right, the final result returns all artists and
only the songs having a guest appearance.

The song “Stop” is listed three times because three artists played as
guests on “Stop”: Angie Aparo, Paul Doucette, and Tony Adams.

10.3.3.3 Full Outer Join

A full outer join will return all rows in both tables, filling in missing values
with null values when a row is not present on the other side of the join.

Note: There is no Oracle format equivalent for a full outer join.

The next query is an ANSI standard format, full outer join between the
ARTIST, GUESTAPPEARANCE, and SONG tables. The result is shown
in Figure 10.21.

Figure 10.20
A Right Outer Join
Between ARTIST,
GUESTARTIST,

and SONG Tables.

Chap10.fm Page 224 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 225

Chapter 10

COLUMN NAME FORMAT A32 HEADING "Artist"

COLUMN TITLE FORMAT A32 HEADING "Song"

SELECT A.NAME AS NAME, S.TITLE AS TITLE

FROM ARTIST A FULL OUTER JOIN GUESTAPPEARANCE GA

ON (A.ARTIST_ID = GA.GUESTARTIST_ID)

FULL OUTER JOIN SONG S ON (GA.SONG_ID = S.SONG_ID)

ORDER BY NAME, TITLE;

The query lists all artists and all songs, matching songs and artists
together if the artist makes a guest appearance on the related song. If an art-
ist does not make a guest appearance, the song title is NULL (outer join
between artists and guest appearances). If a song has no guest appearances,
the artist name is NULL (outer join between songs and guest appearances).

Figure 10.21 shows only part of the results, illustrating how either the
title or the name can be NULL. There are 130 rows returned in the query.

10.3.4 Self-Join

A self-join joins a table to itself. Table aliases must be used to distinguish
between two different copies of the same table. A table such as this would

Figure 10.21
A Full Outer Join
Between ARTIST,

GUESTAPPEARA
NCE, and SONG

Tables.

Chap10.fm Page 225 Thursday, July 29, 2004 10:08 PM

226 10.3 Examining Different Types of Joins

be a candidate for further Normalization or is a result of a Denormaliza-
tion performance improvement. Some examples of situations in which
self-joins might be useful would be grouping self-joins or hierarchical
(fishhook) self-joins.

Note: A fishhook is a table with a one-to-many relationship to its own pri-
mary key. Thus the primary key would be both primary key and a unique
foreign key.

10.3.4.1 Grouping Self-Join

A grouping self-join implies that some rows have a one-to-many relation-
ship with other rows in the same table. There is a “Best of” compilation CD
by Sheryl Crow in the MUSIC schema containing songs on other CDs.

The self-join query following lists SONG_ID values appearing on more
than one CD. Note that the line in the WHERE clause containing the ine-
quality operator will prevent any song from being listed twice. The result is
shown in Figure 10.22.

SELECT B.MUSICCD_ID, B.TRACK_SEQ_NO, A.SONG_ID

FROM CDTRACK A JOIN CDTRACK B ON (A.SONG_ID = B.SONG_ID)

WHERE B.MUSICCD_ID <> A.MUSICCD_ID

ORDER BY MUSICCD_ID, TRACK_SEQ_NO, SONG_ID;

This self-join searches for tracks (songs) that are found on more than
one CD. Picture in your mind’s eye two copies of the CDTRACK table
side by side. Each row in the left table (Table A) is matched with one row
(itself) or more than one row (same song on another CD) in the right table
(Table B). Eliminate the rows where you have matched a track to itself by
comparing the MUSICCD_ID in the two rows. If the SONG_ID values
are the same but the MUSICCD_ID values are different, the song is
selected in the query. The SONG_ID value 1 in Figure 10.22 appears on
two CDs: #1 and #11.

The next query contains all tracks by Sheryl Crow; the inequality opera-
tor is now missing. The result is shown in Figure 10.23.

SET PAGES 80 LINESIZE 132

COLUMN CD FORMAT A24 HEADING "CD"

COLUMN TRACK FORMAT 990 HEADING "Track"

Chap10.fm Page 226 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 227

Chapter 10

COLUMN SONG FORMAT A36 HEADING "Song"

SELECT CD.TITLE AS CD, T.TRACK_SEQ_NO AS TRACK

, S.TITLE AS SONG

FROM SONG S, CDTRACK T, MUSICCD CD, ARTIST A

WHERE A.NAME = 'Sheryl Crow'

AND A.ARTIST_ID = S.ARTIST_ID

AND S.SONG_ID = T.SONG_ID

AND T.MUSICCD_ID = CD.MUSICCD_ID

ORDER BY CD, SONG;

Including the CD and song titles in Figure 10.23 makes it easier to see
how the query works. The CD called “The Best of Sheryl Crow” has six
songs. Two of the songs are from the “Soak Up the Sun” CD and four of the
songs are from the “C’mon, C’mon” CD.

Figure 10.22
A Barebones Self-

Join on the
CDTRACK Table.

Chap10.fm Page 227 Thursday, July 29, 2004 10:08 PM

228 10.3 Examining Different Types of Joins

10.3.4.2 Hierarchical (Fishhook) Self-Join

A hierarchical or fishhook self-join is a tree-like structure where parent rows
have child rows, which can in turn be parent rows of other child rows. A
common use for this type of join is to represent family tree data. The
MUSIC schema used in this book has two tables containing hierarchical
structures: the INSTRUMENT and GENRE tables. Only the INSTRU-
MENT table contains hierarchical data, in addition to just structure.

SELECT PARENT.NAME "Parent", CHILD.NAME "Child"

FROM INSTRUMENT PARENT JOIN INSTRUMENT CHILD

Figure 10.23
Descriptive Form
of the Self-Join in

Figure 10.22.

Chap10.fm Page 228 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 229

Chapter 10

ON (PARENT.INSTRUMENT_ID = CHILD.SECTION_ID)

ORDER BY PARENT.NAME, CHILD.NAME;

Figure 10.24 contains the result of the query. Notice how the Alto
Horn, Baritone Horn, and Clarinet are part of Woodwind instruments.
Additionally, Woodwind instruments are part of Wind instruments. That is
a three-layer hierarchical representation.

Note: See Chapter 13 for details on hierarchical queries.

Figure 10.24
A Hierarchical
Data Fishhook

Self-Join.

Chap10.fm Page 229 Thursday, July 29, 2004 10:08 PM

230 10.3 Examining Different Types of Joins

10.3.5 Equi-Joins, Anti-Joins, and Range Joins

Equi-, anti-, and range joins are not join types in themselves but more oper-
ators applied within joins. A brief theoretical explanation is warranted
because of potential effects on performance.1

� Equi-Join. This join simply uses an equals sign = between two col-
umns in a join. An equi-join is the fastest join type because it can find
an exact match (a single row). An equi-join is best used on unique
indexes such as primary keys.

� Anti-Join. This type of join uses the “not equal to” symbols: <> or !=.
An anti-join can also use “NOT (a=b)” syntax to reverse an equi-join.
Anti-joins should be avoided if possible because they will read all rows
in a table. If you are trying to read a single row from one million rows,
a lot of time will be wasted finding a row not matching a condition.

� Range Join. In this case, a range scan is required using the <, >, or
BETWEEN operators.

� The [NOT] IN clause. The IN clause allows value checking against a
list of items and is sometimes known as a semi-join. A semi-join is
not really a join but more like a half-join. The IN list can be a list of
literal values or a subquery. Beware of a subquery returning a large
number of rows (see Chapter 12). The optional NOT clause implies
an anti-join. The IN clause is best used with a fixed number of pre-
defined literal values.

� The [NOT] EXISTS clause. See Chapter 12. EXISTS is similar to
IN except it can be more efficient. Again, because the NOT modifier
reverses the logic and creates an anti-join, avoid using NOT EXISTS
if possible.

10.3.6 Mutable and Complex Joins

Some mutable joins have already appeared in the section discussing outer
joins, but more detail is warranted at this point. A mutable join is a join of
more than two tables. The word mutable means “subject to change.” Per-
haps the person originally applying the term mutable to these types of joins
was implying that these types of joins should be changed. Multiple-table
mutable joins affect performance, usually adversely.

A complex join is by definition a two-table or mutable join containing
extra filtering using Boolean logic AND, OR, IN, and EXISTS clause filter-

Chap10.fm Page 230 Thursday, July 29, 2004 10:08 PM

10.3 Examining Different Types of Joins 231

Chapter 10

ing. Mutable joins are extremely common in modern-day object applica-
tions written in languages such as Java. Object applications and relational
databases require a complex mapping process between the two different
object and relational approaches. The reality is that object and relational
methodologies usually overlap. The result is mutable joins. At some point
mutable joins become complex joins. Complex joins can have 10 or even
more tables. Complex joins are usually indicative of other problems such as
a lack of Denormalization or use of a purely top-down design.

Following is a simple example of a multiple-table join using four tables.
Start by finding row counts. The only extra row count we have to find at
this stage is for the CDTRACK table.

SELECT COUNT(*) FROM CDTRACK;

� MUSICCD has 13 rows.

� CDTRACK has 125 rows.

� ARTIST has 15 rows.

� SONG has 118 rows.

� SONG_GUESTARTIST has 5 rows.

Let’s begin with an Oracle format query, the result of which is shown in
Figure 10.25. This query returns 125 rows, equivalent to the largest table,
validating this query as not being a Cartesian product.

COLUMN CD FORMAT A24 HEADING "CD"

COLUMN TRACK FORMAT 90 HEADING "Track"

COLUMN SONG FORMAT A40 HEADING "Song"

COLUMN NAME FORMAT A32 HEADING "Artist"

SELECT M.TITLE AS CD, C.TRACK_SEQ_NO AS TRACK

, S.TITLE AS SONG, A.NAME AS ARTIST

FROM ARTIST A, SONG S, CDTRACK C, MUSICCD M

WHERE A.ARTIST_ID = S.ARTIST_ID

AND S.SONG_ID = C.SONG_ID

AND C.MUSICCD_ID = M.MUSICCD_ID

ORDER BY 1,2,3,4;

Chap10.fm Page 231 Thursday, July 29, 2004 10:08 PM

232 10.3 Examining Different Types of Joins

Looking at Figure 10.25, it is obvious that some kind of formatting
eliminating all the repetition of the CD title and artist name would be
desirable.

The next three examples shown as follows are different versions of the
ANSI format for the join query of four tables in Figure 10.25. All of the
next three examples (except the first, which returns an error) give you the
same results as shown in Figure 10.25.

Note: The important thing to remember about ANSI mutable joins is that
tables are joined from left to right with join conditions able to reference col-
umns relating to the current join and those already executed from the left.
The converse applies to subqueries where conditions are passed down into
subqueries and not up to the calling query (see Chapter 12).

� First Example. Attempt to join four tables without specifying any
details of how the join is to be done.

SELECT M.TITLE CD, C.TRACK_SEQ_NO, S.TITLE, A.NAME

Figure 10.25
A Mutable Join of

Four Tables.

Chap10.fm Page 232 Thursday, July 29, 2004 10:08 PM

10.4 Endnotes 233

Chapter 10

FROM ARTIST A JOIN SONG S JOIN CDTRACK C

 JOIN MUSICCD M

ORDER BY 1, 2, 3, 4;

The previous query will return the error message ORA-00905:
missing keyword.

� Second Example. Add the USING clause to each JOIN clause. This
query will succeed and return 125 rows (one for each song in each
CD).

SELECT M.TITLE CD, C.TRACK_SEQ_NO, S.TITLE, A.NAME

FROM ARTIST A JOIN SONG S USING (ARTIST_ID)

JOIN CDTRACK C USING (SONG_ID)

JOIN MUSICCD M USING (MUSICCD_ID)

ORDER BY 1, 2, 3, 4;

� Third Example. Here, the USING clause is replaced by the ON
clause. The result of this query is identical to the second (previous)
example where 125 rows will be returned.

SELECT M.TITLE, C.TRACK_SEQ_NO, S.TITLE, A.NAME

FROM ARTIST A JOIN SONG S ON (A.ARTIST_ID = S.ARTIST_ID)

 JOIN CDTRACK C ON (S.SONG_ID = C.SONG_ID)

 JOIN MUSICCD M ON (C.MUSICCD_ID =M.MUSICCD_ID)

ORDER BY 1, 2, 3, 4;

This chapter has exposed you to a wide variety of methods and syntax
types for joining tables. Joins can get much more complicated than those
contained within this chapter. However, some highly complex mutable
joins can be simplified with the use of subqueries. Chapter 12 examines
subqueries.

The next chapter shows you how to summarize data using aggregate
functions with the GROUP BY clause.

10.4 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Chap10.fm Page 233 Thursday, July 29, 2004 10:08 PM

This page intentionally left blank

235

11

Grouping and Summarizing Data

In this chapter:

�

How do we group and sort with the GROUP BY clause?

�

What are group functions?

�

What are aggregate and analytic functions?

�

What does the HAVING clause do?

�

What do the ROLLUP, CUBE, and GROUPING SETS clauses do?

�

What is the SPREADSHEET

1

 clause?

This chapter shows you how to aggregate and summarize rows in queries
based on specific columns and expressions, using the GROUP BY clause in
conjunction with various types of functions. Functions can be placed into
various sections of a SELECT statement, including the WHERE clause (see
Chapter 5), the ORDER BY clause (see Chapter 6), the GROUP BY clause
(plus extensions), the HAVING clause, and finally the SPREADSHEET
clause. In this chapter, we start by examining the syntax of the GROUP BY
clause and its various additions, proceed onto grouping functions, and fin-
ish with the SPREADSHEET clause. The SPREADSHEET clause is new
to Oracle Database 10

g

.

11.1 GROUP BY Clause Syntax

In previous chapters you have explored the SELECT, FROM, WHERE,
and ORDER BY clauses, plus methods of joining tables using both an Ora-
cle proprietary join syntax and the ANSI JOIN clause syntax. This chapter
introduces summarizing of query results into groups using the GROUP BY

Chap11.fm Page 235 Thursday, July 29, 2004 10:09 PM

236

11.1

GROUP BY Clause Syntax

clause. Rows can be grouped using Oracle built-in functions or custom-
written functions.

The GROUP BY clause can be separated into a number of parts, as shown
in Figure 11.1, and as follows:

�

GROUP BY

. Group rows based on column value, returning a single
summary row for each group.

�

HAVING

. Filter to remove selected groups from the result, much like
the WHERE clause is used to filter rows retrieved by the SELECT
statement.

�

ROLLUP AND CUBE

. Further group the summary rows created by
the GROUP BY clause to produce groups of groups or super aggre-
gates.

�

GROUPING SETS

. Add filtering and the capability for multiple
super aggregates using the ROLLUP and CUBE clauses.

�

SPREADSHEET

. The SPREADSHEET clause allows representation
and manipulation of data into a spreadsheet-type format. The
SPREADSHEET clause literally allows the construction of a spread-
sheet from within SQL. The SPREADSHEET clause will be
explained later on in this chapter.

Figure 11.1

The Syntax of the
GROUP BY

Clause.

Chap11.fm Page 236 Thursday, July 29, 2004 10:09 PM

11.2

Types of Group Functions 237

Chapter 11

11.2 Types of Group Functions

Group functions are different from single-row functions in that group func-
tions work on data in sets, or groups of rows, rather than on data in a single
row. For example, you can use a group function to add up all payments
made in one month. You can combine single-row and group functions to
further refine the results of the GROUP BY clause.

There are many group functions available to use with the GROUP BY
clause. Functions operating on groups of rows fall into the following cate-
gories:

�

Aggregate Functions

. Functions that summarize data into a single
value, such as the MAX function, returning the highest value among
the group of rows.

�

Statistical Functions

. These functions are essentially aggregation
functions in that they perform explicit calculations on specified
groups of rows. However, statistical functions are appropriate to
both aggregation and analytics.

�

Analytic Functions

. Functions that summarize data into multiple
values based on a sliding window of rows using an analytic clause.
These structures are used most frequently in data warehousing to
analyze historical trends in data. For example, the statistical STD-
DEV function can be used as an analytic function that returns stan-
dard deviations over groups of rows.

�

SPREADSHEET Clause Functions

. SPREADSHEET clause func-
tions enhance the SPREADSHEET clause. These functions are cov-
ered later in this chapter in the section on the SPREADSHEET
clause.

Let’s begin with aggregate functions.

11.2.1 Aggregate Functions

An aggregate function applies an operation to a group of rows returning a
single value. A simple example of an aggregate function is in the use of the
SUM function as shown following. See the result in Figure 11.2.

SELECT SUM(AMOUNT_CHARGED), SUM(AMOUNT_PAID) FROM STUDIOTIME;

Chap11.fm Page 237 Thursday, July 29, 2004 10:09 PM

238

11.2

Types of Group Functions

What are the available aggregate functions and how are they used? Let’s go
through the definitions. Functions have been divided into different sections.

11.2.1.1 Simple Summary Functions

�

AVG(expression

). The average.

�

COUNT(*|expression)

. The number of rows in a query.

�

MIN(expression

). The minimum

.

�

MAX(expression

). The maximum.

�

SUM(expression)

. The sum.

An

expression

 can be anything: a column name, a single-row function
on a column name, or simple calculations such as two columns added
together. Anything you might place in the SELECT clause can be used as
an expression within a group function.

11.2.1.2 Statistical Function Calculators

�

STDDEV(expression

). The standard deviation is the average differ-
ence from the mean. The mean is similar to the average.

�

VARIANCE(expression)

. The variance is the square of the standard
deviation and thus the average squared difference from the mean, or
the average deviation from the mean.

�

STDDEV_POP(expression)

. The population standard deviation.

Figure 11.2

Using an Oracle
Built-in SQL

Aggregate
Function.

Chap11.fm Page 238 Thursday, July 29, 2004 10:09 PM

11.2

Types of Group Functions 239

Chapter 11

�

STDDEV_SAMP(expression)

. The sample standard deviation.

�

VAR_POP(expression)

. The population variance, excluding null
values.

�

VAR_SAMP(expression)

. The sample variance, excluding null values.

�

COVAR_POP(expression, expression)

. The population covariance
of two expressions. The covariance is the average product of differ-
ences from two group means.

�

COVAR_SAMP(expression, expression)

. The sample covariance of
two expressions.

�

CORR(expression, expression)

. The coefficient of correlation of
two expressions. A correlation coefficient assesses the quality of a
least-squares fitting to the data. The least-squares procedure finds the
best-fitting curve to a given set of values.

�

REGR_[SLOPE | INTERCEPT | COUNT | R2 | AVGX| AVGY |
SXX | SYY | SXY](expression, expression)

. Linear regression func-
tions fit a least-squares regression line to two expressions. Linear
regression is used to make predictions about a single value. Simple
linear regression involves discovering the equation for a straight line
that most nearly fits the given data. The discovered linear equation is
then used to predict values for the data. A linear regression curve is a
straight line through a set of plotted points. The straight line should
get as close as possible to all points at once.

�

CORR_{S | K}

. This function calculates Pearson’s correlation
coefficient, measuring the strength of a linear relationship between
two variables. Plotting two variables on a graph results in a lot of dots
plotted from two axes. Pearson’s correlation coefficient can tell you
how good the straight line is.

�

MEDIAN

. A median is a middle or interpolated value. A
median is the value literally in the middle of a set of values. If a distri-
bution is discontinuous and skewed or just all over the place, then the
median will not be anywhere near a mean or average of a set of values.
A median is not always terribly useful.

�

STATS_{BINOMIAL_TEST | CROSSTAB | F_TEST |
KS_TEST | MODE | MW_TEST | ONE_WAY_ANOVA |
STATS_T_TEST_* | STATS_WSR_TEST}

. These functions provide
various statistical goodies. Explaining what all of these very particular
statistics functions do is a little bit more of statistics than Oracle SQL
for this book.

Chap11.fm Page 239 Thursday, July 29, 2004 10:09 PM

240

11.2

Types of Group Functions

11.2.1.3 Statistical Distribution Functions

�

CUME_DIST(expression [, expression ...]) WITHIN GROUP
(ORDER BY expression [, expression])

. The cumulative distribu-
tion of an expression within a group of values. A cumulative fre-
quency distribution is a plot of the number of observations falling
within or below an interval, a histogram. The cumulative distribution
function is the probability that a variable takes a value less than or
equal to a given value.

�

PERCENTILE_{ CONT | DISC }(expression) WITHIN GROUP
(ORDER BY expression)

. The percent point function or the inverse
distribution function for a

CONT

inuous or a

DISC

rete distribution.
Because the percent point function is an inverse distribution func-
tion, we start with the probability and compute the corresponding
value for the cumulative distribution.

11.2.1.4 Ranking Functions

� RANK(expression [, expression ...]) WITHIN GROUP
(ORDER BY expression [, expression]). The rank of a value in a
group of values.

� PERCENT_RANK(expression [, expression ...]) WITHIN
GROUP (ORDER BY [, expression ...]). A cumulative distribution
ranking function. See CUME_DIST above.

� DENSE_RANK(expression [, expression ...]) WITHIN GROUP
(ORDER BY expression [, expression ...]). The rank of a row
within an ordered group of rows.

� FIRST | LAST (expression [, expression ...]) WITHIN GROUP
(ORDER BY expression [, expression ...]). The first and last rank-
ing row in a sorted group of rows.

11.2.1.5 Grouping Functions

Grouping functions are used with analysis enhancements to define the slid-
ing window of data used for analysis.

� GROUP_ID(). Filters duplicate groupings from a query.

� GROUPING(expression). Distinguishes between superset aggregate
rows and aggregate grouped rows.

Chap11.fm Page 240 Thursday, July 29, 2004 10:09 PM

11.2 Types of Group Functions 241

Chapter 11

� GROUPING_ID(expression [, expression ...]). Finds a GROUP
BY level for a particular row.

11.2.2 Enhancing Grouping Functions for Analysis

Analysis is used to calculate cumulative, moving, centered, and reporting
summary aggregate values often used in data warehouse environments.
Unlike aggregate functions, analytic functions return multiple rows for each
group. Each group of rows is called a window and is effectively a variable
group, consisting of a range of rows. The number of rows in a window can
be based on a specified row count or an interval such as a period of time.
Apart from the ORDER BY clause, analytic functions are always executed
at the end of a query statement.

The following functions allow analysis and thus analytics using tools
such as the windowing clause:

� COUNT, SUM, AVG, MIN, and MAX.

� FIRST_VALUE and LAST_VALUE.

� STDDEV, VARIANCE, and CORR.

� STDDEV_POP, VAR_POP, and COVAR_POP.

� STDDEV_SAMP, VAR_SAMP, and COVAR_SAMP.

Let’s examine syntax and demonstrate what Oracle means by analytics.
We will use a SUM function. In short, the SUM function adds things up,
and everyone knows what that means. We could use something like a STD-
DEV or VARIANCE function, but not everyone knows what those are. For
some, who cares? In Chapter 1, we built some data warehouse–type fact
and dimension tables. The SALES table is a fact table because it contains
facts about sales (a history of sales transactions). Thus the SALES table is
appropriate for some analysis of this nature.

Using the SUM function, let’s examine total sales as shown in Figure
11.3.

COLUMN SALES FORMAT $999,990.00

SELECT SUM(SALE_PRICE) AS SALES FROM SALES;

Chap11.fm Page 241 Thursday, July 29, 2004 10:09 PM

242 11.2 Types of Group Functions

Once again using the SUM function, let’s examine total sales by country
and restrict to two continents, namely North America and Europe, as
shown in Figure 11.4.

COLUMN COUNTRY FORMAT A16

SELECT CY.NAME AS COUNTRY, SUM(S.SALE_PRICE) AS SALES

FROM CONTINENT CT, COUNTRY CY, SALES S

WHERE CT.NAME IN ('North America', 'Europe')

AND CT.CONTINENT_ID = S.CONTINENT_ID

AND CY.COUNTRY_ID = S.COUNTRY_ID

GROUP BY CY.NAME;

11.2.2.1 The OVER Clause

Now we get to the analytic part. The OVER clause in the following query
forces a cumulative sum on the SALES grouped result column, resulting in
a total sales number for each continent plus a cumulative sales number for
all rows returned so far, for every row returned. The result is shown in Fig-
ure 11.5. Neat, huh?

COLUMN CUMULATIVE FORMAT $999,990.00

SELECT COUNTRY, SALES

, SUM(SALES) OVER (ORDER BY COUNTRY) AS CUMULATIVE

FROM (

SELECT CY.NAME AS COUNTRY, SUM(S.SALE_PRICE) AS SALES

FROM CONTINENT CT, COUNTRY CY, SALES S

WHERE CT.NAME IN ('North America', 'Europe')

AND CT.CONTINENT_ID = S.CONTINENT_ID

Figure 11.3
A Simple SUM

Function.

Chap11.fm Page 242 Thursday, July 29, 2004 10:09 PM

11.2 Types of Group Functions 243

Chapter 11

AND CY.COUNTRY_ID = S.COUNTRY_ID

GROUP BY CY.NAME);

There is a lot more to the OVER clause than the query in Figure 11.5.
Figure 11.6 shows the syntax for the OVER clause as demonstrated by the
previous example shown in Figure 11.5.

� PARTITION BY. This clause can be used to break the query into
groups.

� ORDER BY. This clause we have already seen.

� Windowing Clause. The windowing clause syntax allows placement
of a window or subset picture onto a set of data, applying analysis to
that data window subset only.

In fact, looking at the syntax diagram in Figure 11.6, the mind boggles
at what can be done with the OVER clause.

Figure 11.4
Grouping and

Filtering a SUM
Function.

Chap11.fm Page 243 Thursday, July 29, 2004 10:09 PM

244 11.2 Types of Group Functions

Figure 11.5
A Cumulative

Aggregation Using
the OVER Clause.

Figure 11.6
OVER Clause

Syntax.

Chap11.fm Page 244 Thursday, July 29, 2004 10:09 PM

11.3 Special Grouping Function Behavior 245

Chapter 11

11.3 Special Grouping Function Behavior

Two factors that should be briefly discussed are the way that group func-
tions behave with null values and the use of DISTINCT. Let’s begin with
null values.

11.3.1 Group Functions and Null Values

Most functions, except for COUNT(*) and GROUPING, when passed a
null value, will return a NULL result. COUNT(*) will always return one
row. Any other function returns a null value if no rows are found. The NVL
function can be used to replace a NULL with a value as shown in the query
following. The result is shown in Figure 11.7.

SELECT A.NAME, NVL(ST.MINUTES_USED,0) FROM ARTIST A

NATURAL LEFT OUTER JOIN STUDIOTIME ST;

By converting NULLs into zeros, you can then use the rows with zeros
in the group function. For example, calculating the average time per artist
will yield a different result if you use zero for artists without studio time (by
using the NVL function), rather than calculating the average time per artist
where NULL rows are thrown out before the average is done.

Figure 11.7
Group Functions
and Null Values.

Chap11.fm Page 245 Thursday, July 29, 2004 10:09 PM

246 11.3 Special Grouping Function Behavior

11.3.2 Selecting DISTINCT or ALL in Group Functions

Most single-expression grouping functions accept the DISTINCT or ALL
(the default) clauses. DISTINCT or ALL is executed on the expression after
the resolution of that expression. All of the functions listed as follows allow
selecting of DISTINCT or ALL values. DISTINCT or ALL clauses are
applied to the expression argument of each function, in the case of an SQL
statement, each row.

� AVG ([DISTINCT | ALL] expression).

� COUNT ({ * | [DISTINCT | ALL] expression }).

� MAX ([DISTINCT | ALL] expression).

� MIN ([DISTINCT | ALL] expression).

� SUM ([DISTINCT | ALL] expression).

� STDDEV ([DISTINCT | ALL] expression).

� VARIANCE ([DISTINCT | ALL] expression).

The following query specifies ALL within the COUNT function. The
GROUP BY clause is discussed later in this chapter. See the result in Figure
11.8.

SELECT A.ARTIST_ID, A.NAME "Artist"

, COUNT(ALL ST.ARTIST_ID) "Studio Visits"

FROM ARTIST A, STUDIOTIME ST

WHERE A.ARTIST_ID = ST.ARTIST_ID(+)

GROUP BY A.ARTIST_ID, A.NAME

ORDER BY COUNT(ALL ST.ARTIST_ID) DESC;

Note three points about the query in Figure 11.8:

� The ALL default has been explicitly specified in COUNT(ALL
ST.ARTIST_ID).

� The COUNT function will always return one row (see Group Func-
tions and Null Values previously in this chapter). The COUNT func-
tion never returns a null value. If the column being counted has null
values, COUNT returns a zero.

Chap11.fm Page 246 Thursday, July 29, 2004 10:09 PM

11.3 Special Grouping Function Behavior 247

Chapter 11

� The ORDER BY clause is sorting using the result of the COUNT
function.

� Now we execute the same query by applying the DISTINCT clause
modifier to the COUNT function as shown in the next query, to see
the difference.

SELECT A.ARTIST_ID, A.NAME "Artist"

, COUNT(DISTINCT ST.ARTIST_ID) "Studio Visits"

FROM ARTIST A, STUDIOTIME ST

WHERE A.ARTIST_ID = ST.ARTIST_ID(+)

GROUP BY A.ARTIST_ID, A.NAME

ORDER BY COUNT(DISTINCT ST.ARTIST_ID) DESC;

Figure 11.8
Number of Studio

Visits for All
Artists.

Chap11.fm Page 247 Thursday, July 29, 2004 10:09 PM

248 11.3 Special Grouping Function Behavior

Figure 11.9 shows the result. Notice that because the COUNT function
is counting DISTINCT values of the ARTIST_ID, it returns 1 for artists
with one or more visits.

To show how this feature can be useful, add the DECODE function to
the query to list artists as having either worked in the studio or not worked
in the studio, based on the value of the COUNT function. The following
query does this. See the result in Figure 11.10.

COLUMN ID FORMAT 90 HEADING "ID";

COLUMN ARTIST FORMAT A32 HEADING "Artist";

COLUMN VISITS FORMAT A32 HEADING "Atleast 1 Visit ?"

SELECT A.ARTIST_ID AS ID, A.NAME AS ARTIST

, DECODE(COUNT(DISTINCT

(ST.ARTIST_ID)),1,'Yes','No') AS VISITS

FROM ARTIST A, STUDIOTIME ST

WHERE A.ARTIST_ID = ST.ARTIST_ID(+)

GROUP BY A.ARTIST_ID, A.NAME;

Figure 11.9
Multiple Rows
with the Same

ARTIST_ID Are
Counted Once.

Chap11.fm Page 248 Thursday, July 29, 2004 10:09 PM

11.4 Using the GROUP BY Clause 249

Chapter 11

Note in Figure 11.10 how functions can call other functions where, for
instance, the DECODE function calls the COUNT function.

11.4 Using the GROUP BY Clause

We have seen a lot of use of the GROUP BY clause so far in this chapter.
Let’s now attempt to explain what the GROUP BY clause is and what it
does. In its simplest form, the GROUP BY clause can be used to summa-
rize rows into a group or groups of rows based on a grouping function
placed into the SELECT clause. The HAVING clause can then be used to
filter out unwanted groups much like the WHERE clause (see Chapter 5)
applied to a SELECT statement. The ROLLUP and CUBE clauses are
used to produce groups of groups or super aggregates, and the GROUP-
ING SETS clause can make grouping more efficient by removing rows
before aggregation.

Figure 11.10
Artists Who Have
Spent Time in the

Studio.

Chap11.fm Page 249 Thursday, July 29, 2004 10:09 PM

250 11.4 Using the GROUP BY Clause

There are a few standard rules to remember about the GROUP BY
clause:

� The GROUP BY clause column list must include all columns in the
SELECT statement not affected by any aggregate functions.

� The expression for the SELECT statement must include at least one
grouping function such as COUNT().

� The GROUP BY clause cannot use the column positional specifica-
tion like the ORDER BY clause because the result set columns do
not exist when the GROUP BY clause is executed and do exist when
the ORDER BY clause is executed. The GROUP BY clause summa-
rizes rows for output, and the ORDER BY clause sorts the result set
of a query.

Note: The GROUP BY clause is executed during query execution, and the
ORDER BY clause runs after retrieval and grouping of all rows. The
ORDER BY clause will always add performance overhead to a query.
Implicit or inherent sorting can often be executed in the WHERE and
GROUP BY clauses.

11.4.1 Grouping Rows

The example in Figure 11.2 showed how to apply an aggregate function to
all rows in a table, by summing up all amounts on the STUDIOTIME
table. Now we can take this a step further by breaking down the query in
Figure 11.2 into subset groups as in the next query. The result is shown in
Figure 11.11.

SELECT ARTIST_ID, SUM(AMOUNT_CHARGED), SUM(AMOUNT_PAID)

FROM STUDIOTIME

GROUP BY ARTIST_ID;

Now let’s take the same query a little further, modify and beautify it.
The result is shown in Figure 11.12.

COLUMN ARTIST FORMAT A20 HEADING "Artist"

COLUMN OUTSTANDING FORMAT $999990.00 -

Chap11.fm Page 250 Thursday, July 29, 2004 10:09 PM

11.4 Using the GROUP BY Clause 251

Chapter 11

Figure 11.11
Grouping on a

Single Table Query.

Figure 11.12
Grouping on a

Two-Table Join
Query.

Chap11.fm Page 251 Thursday, July 29, 2004 10:09 PM

252 11.4 Using the GROUP BY Clause

HEADING "Outstanding"

SELECT A.NAME AS ARTIST

, SUM(ST.AMOUNT_CHARGED) - SUM(ST.AMOUNT_PAID) AS OUTSTANDING

FROM STUDIOTIME ST NATURAL JOIN ARTIST A

GROUP BY A.NAME;

Sorting with the GROUP BY Clause

Did you notice how rows were sorted by the name of the artist in Figure
11.12? The GROUP BY clause will sort by the elements listed in the
GROUP BY clause. Let’s change that sort order by changing the GROUP
BY clause. The result of the following query is shown in Figure 11.13.

COLUMN ARTIST FORMAT A24 HEADING "Artist"

COLUMN EMAIL FORMAT A24 HEADING "Email Address"

COLUMN OUTSTANDING FORMAT $999990.00 –

HEADING "Outstanding";

SELECT A.NAME AS ARTIST, A.EMAIL AS EMAIL

, SUM(ST.AMOUNT_CHARGED) - SUM(ST.AMOUNT_PAID) AS OUTSTANDING

FROM STUDIOTIME ST NATURAL JOIN ARTIST A

GROUP BY A.EMAIL, A.NAME;

Figure 11.13
Changing the Sort

Order Using the
GROUP BY

Clause.

Chap11.fm Page 252 Thursday, July 29, 2004 10:09 PM

11.4 Using the GROUP BY Clause 253

Chapter 11

Notice that the GROUP BY clause in Figure 11.13 now contains both
the EMAIL and NAME columns from the ARTIST table. The clause
GROUP BY A.EMAIL, A.NAME will force the query to sort primarily by
the e-mail addresses of the artists, not their names as in Figure 11.12.

Note: The GROUP BY clause column list in Figure 11.13 includes all col-
umns listed in the SELECT statement (ARTIST.NAME and ART-
IST.EMAIL) not affected by any aggregate functions.

11.4.2 Filtering Grouped Results with the Having Clause

The HAVING clause is used as an extension to the GROUP BY clause to
remove selected groups from the result, much like the WHERE clause is
used to filter rows retrieved by the SELECT clause (the WHERE clause fil-
ters rows at the source of data retrieval). The HAVING clause filters the
result of the GROUP BY clause. The GROUP BY clause executes on all
data retrieved after the WHERE clause has filtered the initial selection.

Note: Filtering using the WHERE clause will nearly always outperform the
HAVING clause. Never replace a WHERE clause with a HAVING clause
as in the query in Figure 11.14.

The result of the following query is shown in Figure 11.14.

COLUMN ARTIST FORMAT A24 HEADING "Artist"

COLUMN EMAIL FORMAT A24 HEADING "Email Address"

COLUMN OUTSTANDING FORMAT $999990.00 -

HEADING "Outstanding"

SELECT A.NAME AS ARTIST, A.EMAIL AS EMAIL

, SUM(ST.AMOUNT_CHARGED) - SUM(ST.AMOUNT_PAID) AS OUTSTANDING

FROM STUDIOTIME ST NATURAL JOIN ARTIST A

GROUP BY A.NAME, A.EMAIL

HAVING (A.NAME BETWEEN 'A%' AND 'P%');

For best performance, use the WHERE clause to filter out rows before
grouping whenever possible. For example, the query shown in Figure 11.14
could be revised to use the WHERE clause instead of the HAVING clause

Chap11.fm Page 253 Thursday, July 29, 2004 10:09 PM

254 11.4 Using the GROUP BY Clause

as shown in the following query. The result of the next query will be identi-
cal to that of Figure 11.14.

SELECT A.NAME AS ARTIST, A.EMAIL AS EMAIL

, SUM(ST.AMOUNT_CHARGED) - SUM(ST.AMOUNT_PAID) AS OUTSTANDING

FROM STUDIOTIME ST NATURAL JOIN ARTIST A

WHERE (A.NAME BETWEEN 'A%' AND 'P%')

GROUP BY A.NAME, A.EMAIL;

So what is the best time to use the HAVING clause? When you want to
eliminate certain groups of rows based on the results of an aggregate func-
tion. For example, continuing with the previous situation, let’s say that
you want to see only the artists who have an outstanding balance greater
than $4,000. Change the query by adding the last line as follows. Execute
the query. Note that in this case as well, the WHERE clause would proba-
bly still be a better choice with respect to performance. Figure 11.15 shows
the result.

SELECT A.NAME AS ARTIST, A.EMAIL AS EMAIL

, SUM(ST.AMOUNT_CHARGED) - SUM(ST.AMOUNT_PAID) AS OUTSTANDING

FROM STUDIOTIME ST NATURAL JOIN ARTIST A

Figure 11.14
Restricting Groups

with the HAVING
Clause.

Chap11.fm Page 254 Thursday, July 29, 2004 10:09 PM

11.4 Using the GROUP BY Clause 255

Chapter 11

WHERE (A.NAME BETWEEN 'A%' AND 'P%')

GROUP BY A.NAME, A.EMAIL

HAVING SUM(ST.AMOUNT_CHARGED) - SUM(ST.AMOUNT_PAID) > 4000;

You can even use HAVING with aggregate functions not listed in the
SELECT clause. For example, change the HAVING clause in the query so
that you are listing only artists with more than five visits. The following
query achieves this task, with its result shown in Figure 11.16.

SELECT A.NAME AS ARTIST, A.EMAIL AS EMAIL

, SUM(ST.AMOUNT_CHARGED) - SUM(ST.AMOUNT_PAID) AS OUTSTANDING

FROM STUDIOTIME ST NATURAL JOIN ARTIST A

WHERE (A.NAME BETWEEN 'A%' AND 'P%')

GROUP BY A.NAME, A.EMAIL

HAVING COUNT(*) > 5;

That is the basics of the HAVING clause. Now let’s go a little deeper
and examine the ROLLUP, CUBE, and GROUPING SETS clauses.

11.4.3 Extending the GROUP BY Clause Further

A ROLLUP or CUBE clause can be used as a much more efficient substi-
tute for numerous SELECT statements merged together, for instance, with
a UNION ALL clause. The ROLLUP clause is best suited to hierarchical
data, and the CUBE clause is best for multidimensional data.

Figure 11.15
Using the

HAVING Clause
with Aggregate

Functions.

Chap11.fm Page 255 Thursday, July 29, 2004 10:09 PM

256 11.4 Using the GROUP BY Clause

11.4.3.1 The ROLLUP Clause

Rollup is an extension to the GROUP BY clause and is used to create
super aggregates or groupings of groupings. The ROLLUP clause is com-
monly used to create subtotals plus a grand total, on multiple levels for all
columns listed in the GROUP BY clause. Totals are based on the order of
columns listed in the GROUP BY clause, moving through the GROUP
BY clause from the right to the left. Rollup can be very useful for creation
of summary tables or materialized views. The result of the next query is
shown in Figure 11.17.

Note: The user-defined function GETTIME is described in Chapter 24
(PL/SQL). GETTIME is required for the next query.

CREATE OR REPLACE FUNCTION GETTIME(pTIME IN VARCHAR2)

RETURN NUMBER IS

vLEN INTEGER DEFAULT 0;

vSPLIT INTEGER DEFAULT 0;

vHOURS INTEGER DEFAULT 0;

vSECONDS INTEGER DEFAULT 0;

BEGIN

vSPLIT := INSTR(pTIME,':');

vLEN := LENGTH(pTIME);

vHOURS := TO_NUMBER(SUBSTR(pTIME,1,vSPLIT-1));

Figure 11.16
The HAVING

Clause Can Use Its
Own Aggregate

Functions.

Chap11.fm Page 256 Thursday, July 29, 2004 10:09 PM

11.4 Using the GROUP BY Clause 257

Chapter 11

vSECONDS := TO_NUMBER(SUBSTR(pTIME,vSPLIT+1,vLEN-vSPLIT));

RETURN vHOURS+(vSECONDS/60);

EXCEPTION WHEN OTHERS THEN

RETURN 0;

END;

/

Here is the query:

COLUMN CD FORMAT A24 HEADING "CD";

COLUMN SONG FORMAT A40 HEADING "Song";

COLUMN TIME FORMAT 99990.00 HEADING "Time(mins)";

SELECT M.TITLE AS CD, S.TITLE AS SONG,

SUM(GETTIME(S.PLAYING_TIME)) AS TIME

FROM MUSICCD M JOIN CDTRACK T USING (MUSICCD_ID)

JOIN SONG S USING (SONG_ID)

WHERE S.PLAYING_TIME IS NOT NULL AND M.TITLE LIKE 'Th%'

GROUP BY ROLLUP (M.TITLE, S.TITLE);

The query in Figure 11.17 shows rollup grouping on the title of a CD
and the title of its song. Because a song is at the lowest level of grouping
detail, no subtotal is shown for each song. Do you see the subtotals for both
CDs plus the grand total at the end?

Note: The function GETTIME() is custom written and can be found in
Chapter 24. GETTIME() is necessary to convert a string value of minutes
and seconds to a real (floating-point) number value. The use of the GET-
TIME() function shows that custom functions can be used in GROUP
BY clauses.

11.4.3.2 The CUBE Clause

Unlike the ROLLUP clause, which can be used to produce subtotals and
grand totals for subset groups, the CUBE clause can be used to produce all
combinations for a GROUP BY expression. The CUBE clause can be used
to create three-dimensional cross-tabulation reports. The result of the fol-
lowing query is shown in Figure 11.18.

COLUMN COUNTRY FORMAT A10 HEADING "Country";

COLUMN STATE FORMAT A10 HEADING "State";

Chap11.fm Page 257 Thursday, July 29, 2004 10:09 PM

258 11.4 Using the GROUP BY Clause

COLUMN TIME FORMAT 99990.00 HEADING "Time(mins)";

SELECT A.COUNTRY AS COUNTRY, A.STATE_PROVINCE AS STATE

, SUM(ST.MINUTES_USED) AS STUDIOTIME

FROM ARTIST A JOIN STUDIOTIME ST USING (ARTIST_ID)

WHERE A.STATE_PROVINCE IS NOT NULL

GROUP BY CUBE (A.STATE_PROVINCE, A.COUNTRY);

Note how the query in Figure 11.18 contains subtotals for each state
and subtotals for each country, in addition to the grand total.

Note: ROLLUP and CUBE clauses can be implemented on all columns in
the GROUP BY clause (GROUP BY ROLLUP | CUBE (column [, column
...]}) or partially using (GROUP BY column [, column ...]} ROLLUP |
CUBE (column [, column ...]).

11.4.3.3 The GROUPING SETS Clause

The GROUPING SETS clause extends the GROUP BY clause by allowing
specification of multiple groups and removal of unwanted aggregations pro-
duced by ROLLUP or CUBE clauses. The result of the following query is
shown in Figure 11.19.

Figure 11.17
GROUP BY Using

the ROLLUP
Clause To Create

Group Totals.

Chap11.fm Page 258 Thursday, July 29, 2004 10:09 PM

11.4 Using the GROUP BY Clause 259

Chapter 11

COLUMN COUNTRY FORMAT A10 HEADING "Country";

COLUMN STATE FORMAT A10 HEADING "State";

COLUMN TIME FORMAT 99990.00 HEADING "Time(mins)";

SELECT A.COUNTRY AS COUNTRY, A.STATE_PROVINCE AS STATE

, SUM(ST.MINUTES_USED) AS STUDIOTIME

FROM ARTIST A JOIN STUDIOTIME ST USING (ARTIST_ID)

WHERE A.STATE_PROVINCE IS NOT NULL

GROUP BY GROUPING SETS(

(A.STATE_PROVINCE, A.COUNTRY),

(A.STATE_PROVINCE),

(A.COUNTRY));

Note in Figure 11.19 that the GROUPING SETS clause creates subto-
tals for all three of states within countries, states, and finally countries.
There is much more to ROLLUP, CUBE, and GROUPING SETS, but we
will pass on further detail.

Figure 11.18
GROUP BY and

the CUBE Clause.

Chap11.fm Page 259 Thursday, July 29, 2004 10:09 PM

260 11.5 The SPREADSHEET (MODEL) Clause

The next great leap is the SPREADSHEET clause, and a giant leap it
most certainly is! The SPREADSHEET clause is introduced in Oracle
Database 10g.

11.5 The SPREADSHEET (MODEL) Clause

The SPREADSHEET clause1 can be used to create spreadsheet-style out-
put and can be extremely complex. The SPREADSHEET clause extends
the SELECT statement, allowing multidimensional array query output.
Calculations between resulting rows can be performed much like cross-tab-
bing or interdimensional data warehouse reporting. The result is a spread-
sheet or model. Let’s look briefly at syntax.

Figure 11.19
GROUP BY and
the GROUPING

SETS Clause.

Chap11.fm Page 260 Thursday, July 29, 2004 10:09 PM

11.5 The SPREADSHEET (MODEL) Clause 261

Chapter 11

11.5.1 SPREADSHEET (MODEL) Clause Syntax

Refer to Oracle documentation for more specific details, particularly with
respect to cell measures. Figure 11.20 shows a brief picture of SPREAD-
SHEET clause syntax. That’s brief?

The PARTITION BY clause effectively creates multiple arrays. The
DIMENSION BY clause is a subset of partitions in that it creates identify-
ing columns for each row within each of multiple partitions. The MEA-
SURE clause defines the cells in the rows (dimensions) within each array
(partitions). Some examples will explain more shortly. Now let’s look at
some SPREADSHEET clause-specific functions.

11.5.2 SPREADSHEET (MODEL) Clause Functions

The SPREADSHEET clause is new to Oracle Database 10g. There are sev-
eral SPREADSHEET clause-specific functions also introduced in Oracle
Database 10g. These new functions apply to interrow calculations and only
as part of SPREADSHEET clause rules.

� CURRENTV2(dimension). Returns a dimensional value or current
value.

� PRESENTNNV(cell, expression, expression). Returns one expres-
sion if a value exists, otherwise another.

� PRESENTV(cell, expression, expression). As for PRESENTNNV,
but allowing null values.

Figure 11.20
SPREADSHEET

Clause Syntax.

Chap11.fm Page 261 Thursday, July 29, 2004 10:09 PM

262 11.5 The SPREADSHEET (MODEL) Clause

� PREVIOUS(cell). Returns a value at the beginning of each iteration
or loop.

� ITERATION_NUMBER. Returns a completed loop iteration
sequence number; the subscript of a loop.

11.5.3 Using the SPREADSHEET (MODEL) Clause

So how do we demonstrate use of the SPREADSHEET clause in a simplis-
tic manner? Good question. Looks nasty, doesn’t it? Well, it is! However,
without a tool such as the SPREADSHEET clause, this would be much
more complicated. Let’s once again use our data warehouse SALES fact
table. Here’s a simple query, creating a view (best in a data warehouse as a
materialized view) on the SALES table, with various dimensions thrown in.
The query summarizes sales, breaking them down into continent, country,
and year, including sales quantities and revenues.

CREATE VIEW SALESSUM AS

SELECT CT.NAME AS CONTINENT, CY.NAME AS COUNTRY

, TO_NUMBER(TO_CHAR(S.SALE_DATE, 'YYYY')) AS YEAR

, COUNT(S.SALE_QTY) AS SALES

, SUM(S.SALE_PRICE) AS REVENUE

FROM CONTINENT CT, COUNTRY CY, SALES S

WHERE CT.CONTINENT_ID = S.CONTINENT_ID

AND CY.COUNTRY_ID = S.COUNTRY_ID

GROUP BY CT.NAME, CY.NAME, TO_CHAR(S.SALE_DATE, 'YYYY');

Now let’s take a quick peek at the data in the view, limiting to North
America only, as shown in Figure 11.21.

COLUMN CONTINENT FORMAT A16

COLUMN COUNTRY FORMAT A16

COLUMN YEAR FORMAT 9999

COLUMN SALES FORMAT 990

COLUMN REVENUE FORMAT $999,999.00

SELECT * FROM SALESSUM WHERE CONTINENT IN ('North America');

Now let’s use the 2003 and 2004 figures to project estimates into 2005,
as shown in Figure 11.22. The following script is the query. Note the calcu-
lation of the 2005 quarterly projection as being the following (((2004 –

Chap11.fm Page 262 Thursday, July 29, 2004 10:09 PM

11.5 The SPREADSHEET (MODEL) Clause 263

Chapter 11

2003) / 2004) + 1) * 2004. Thus the numbers for Canada plugged into the
equation would be (((38 – 12) / 38) + 1)38 = 1.68 + 38 = 64 (an increase in
sales quantities of about 168%).

SELECT COUNTRY, YEAR, Q FROM SALESSUM S

WHERE CONTINENT IN ('North America')

SPREADSHEET

 PARTITION BY (COUNTRY)

 DIMENSION BY (YEAR)

 MEASURES (S.SALES Q)

 RULES(Q[2005]=(((Q[2004]-Q[2003])/Q[2004])+1)*Q[2004])

ORDER BY COUNTRY, YEAR;

Thus in Figure 11.21, we have rows for 2003 and 2004, Canada shows
sales quantities of 12 for 2003 and 38 for 2004. Therefore, the projected
sales quantity for Canada for 2005 is 64 items, as already described.

Let’s look at a slightly more detailed example. The following query ana-
lyzes both quarterly sales and quarterly revenues, selecting two continents
and partitioning by both continent and country. A partial result is shown in
Figure 11.23. Continents are sorted in descending order to show the break
between North America and Europe.

Figure 11.21
Some Summarized

Data.

Chap11.fm Page 263 Thursday, July 29, 2004 10:09 PM

264 11.5 The SPREADSHEET (MODEL) Clause

Figure 11.22
A SPREADSHEET

Clause Projection.

Figure 11.23
A more detailed

SPREADSHEET
clause projection.

Chap11.fm Page 264 Thursday, July 29, 2004 10:09 PM

11.5 The SPREADSHEET (MODEL) Clause 265

Chapter 11

COLUMN QS FORMAT 9990 HEADING "Sales"

COLUMN QR FORMAT $9,990.99 HEADING "Revenue"

SELECT CONTINENT, COUNTRY, YEAR, QS, QR FROM SALESSUM S

WHERE CONTINENT IN ('Europe', 'North America')

SPREADSHEET

 PARTITION BY (CONTINENT, COUNTRY)

 DIMENSION BY (YEAR)

 MEASURES (S.SALES QS, S.REVENUE QR)

 RULES

 (

 QS[2005]=(((QS[2004]-QS[2003])/QS[2004])+1)*QS[2004]

 ,QR[2005]=(((QR[2004]-QR[2003])/QR[2004])+1)*QR[2004]

)

ORDER BY CONTINENT DESC, COUNTRY, YEAR;

Using the SPREADSHEET clause, one can even use for loops to scroll
through sets of rows and create multidimensional cross-tabulations of all
cells in a query. The example in Figure 11.24 shows 2003 and 2004 figures
summed into 2005, for all countries. Unlike Figures 11.22 and 11.23, the
example in Figure 11.24 is a sum rather than a projection based on the

Figure 11.24
For Loops in the

SPREADSHEET
Clause.

Chap11.fm Page 265 Thursday, July 29, 2004 10:09 PM

266 11.6 Endnotes

incremental percentage increase between two previous years. The SPREAD-
SHEET clause is extremely versatile and can become highly complex. Once
again, the SPREADSHEET clause resolves some perplexing and highly
complex coding problems.

In the next chapter you will learn all about subqueries. Subqueries are,
in some respects, the most powerful aspect of SQL, particularly with respect
to tuning and managing complexity.

11.6 Endnotes

1. The SPREADSHEET clause has been renamed to the MODEL
clause.

2. The CURRENTV function is renamed to CV.

Chap11.fm Page 266 Thursday, July 29, 2004 10:09 PM

267

12

Subqueries

In this chapter:

�

What is a subquery?

�

What are the types of subqueries?

�

Where can subqueries be used?

�

Why do we need subqueries?

Subqueries are probably one of the more complex aspects of SQL. Sub-
queries are often used to resolve complexity by breaking down large queries
into many smaller queries, which interact with each other. In some situa-
tions, subqueries can also be used to improve SQL statement performance.
Let’s begin by looking at types of subqueries.

12.1 Types of Subqueries

I like to think of subqueries such that there are two methods of categorizing
subqueries. The first method of categorization is that a subquery can be sca-
lar, correlated, nested, or an inline view. We will get to some of these types of
subqueries later on. I am going to define subquery types based on the second
method of categorization, including some of the first. I find the second
method clearer. Following is my second method of categorization. Note that
the different types of subqueries as defined here can be combinations of sev-
eral types. At the end of this chapter you should understand why.

A subquery is an SQL statement called from another query or another
subquery. Subqueries can return various result sets and can be defined based
on what they return.

Chap12.fm Page 267 Thursday, July 29, 2004 10:09 PM

268

12.1

Types of Subqueries

�

Single Row / Single Column

. This type of subquery can be used to
find a single value (e.g., the ARTIST_ID of a particular song).

�

Multiple Rows / One Column Each

. This type of subquery returns
a list of values (e.g., the SONG_IDs of all songs by a specific artist).

�

Multiple Columns / Single or Multiple Rows

. This is the most
complex variation. For example, a subquery with multiple columns as
a single row could return the STATE and COUNTRY of one artist
from the ARTIST table. An example of a subquery with multiple col-
umns and multiple rows could return a list of the STATE and
COUNTRY for all artists.

Note:

A single-row query or subquery returning a single value can also be
referred to as a scalar query or subquery, scalar meaning returning a single

scalar or literal value, often TRUE, FALSE, or NULL.

A subquery can be of a regular or correlated format, correlated implying
a connection between calling and called queries (subqueries):

�

Regular Subquery

. A self-contained query implying that there is no
direct relationship between the calling query and the called query.

�

Correlated Subquery

. The word

correlation

 is used to describe a rela-
tionship between the calling query and the subquery. The rule to
remember with correlated subqueries is that a correlating column
must be passed down into the subquery from the calling query, not
the other way around. Thus a correlated subquery is always depen-
dent on the calling query.

Subqueries can also be defined as nested or as inline views:

�

Nested Subquery

. Subqueries can call other subqueries and so on ad
infinitum. In other words, subqueries can be nested within subque-
ries, within subqueries.

�

Inline View

. An inline view is a subquery embedded in the FROM
clause of a calling SELECT statement, which by the way is also a sub-
query. Values can be passed from the inline view to the calling query,
or subquery.

Chap12.fm Page 268 Thursday, July 29, 2004 10:09 PM

12.3

Comparison Conditions and Subqueries 269

Chapter 12

That covers different subquery types and the combinations thereof.
Now let’s examine where subqueries can be used.

12.2 Where Can Subqueries Be Used?

Subqueries can be used almost anywhere in an SQL statement, in any SQL
command where an expression can be placed. Following are listed SQL
statement clauses in which a subquery can be placed:

�

SELECT clause.

�

WHERE clause.

�

ORDER BY clause.

�

FROM clause (Inline view).

�

VALUES clause of an INSERT statement.

�

UPDATE statement SET clause = (subquery).

�

CASE statement expression.

�

Function parameter.

�

The SPREADSHEET clause.

The next step is to look again at comparison conditions as described in
Chapters 5 and 7, except now exclusively as applied to subqueries.

12.3 Comparison Conditions and Subqueries

Many comparison conditions are applicable to subqueries. A subquery syn-
tax diagram is shown in Figure 12.1. The type of results allowed from a sub-
query depends on the comparison operator that you use. In Figure 12.1, the
highlighted operators require single-row subqueries. This includes the
equality and inequality operators (=, <=, >=, >, <, and !=), plus the LIKE
and BETWEEN operators. Other operators allow multiple rows to be
returned from the subquery. Multiple rows are allowed for the IN, NOT
IN, EXISTS, NOT EXISTS, plus equality operators combined with ANY,
SOME, or ALL.

We now know about different types of subqueries, where subqueries can
be used, and some basic comparison condition syntax for using subqueries.

Chap12.fm Page 269 Thursday, July 29, 2004 10:09 PM

270

12.4

Demonstrating Subqueries

A subquery itself is generally syntactically equivalent to a SELECT state-
ment. Chapters 4, 5, 6, and 11 apply to subqueries in this respect.

So far in this chapter, we have seen a lot of information. The easiest way
to explain subqueries is simply to demonstrate.

12.4 Demonstrating Subqueries

This section demonstrates use of the different types of subqueries:

�

Single-row subqueries.

�

Multiple-row subqueries.

�

Multiple-column subqueries.

�

Regular versus correlated subqueries.

�

Nested subqueries.

�

Inline views or FROM clause embedded subqueries.

�

Subqueries can be used in numerous SQL code commands and their
subset clauses.

12.4.1 Single-Row Subqueries

A single-row subquery is exactly as its name implies: a subquery that returns
a single row. If more than one row is returned, an error will result (ORA-
01427: single-row subquery returns more than one row). Simple (equality),
LIKE, and Range (BETWEEN) comparison conditions are restricted to
single-row subquery results. See the syntax diagram in Figure 12.1.

Figure 12.1

Subquery
Comparison

Condition Syntax.

Chap12.fm Page 270 Thursday, July 29, 2004 10:09 PM

12.4

Demonstrating Subqueries 271

Chapter 12

Here is an easy way of understanding the concept of the single-row sub-
query. You can ask if “Apple Pie” equals “Apple Pie,” but you cannot ask if
“Apple Pie” is equal to both “Apple Pie” and “Pumpkin Pie” because you get
two different answers at once. Apple pie is equal to apple pie but not equal
to pumpkin pie. The same applies to testing for a number, say 10, being
BETWEEN five other numbers because it does not make sense. For exam-
ple, 10 BETWEEN 5 AND (20, 4, 30) cannot be evaluated because it is
both true and false. The same applies to the LIKE clause because a single
LIKE comparison condition can only be used to match a single pattern, not
many patterns.

Following is an example of a single-row subquery. The ROWNUM
pseudocolumn is used to restrict the subquery to a single row no matter
how many rows it returns. See the result in Figure 12.2.

SELECT SONG_ID, GUESTARTIST_ID, INSTRUMENT_ID

FROM INSTRUMENTATION WHERE INSTRUMENT_ID =

(SELECT INSTRUMENT_ID FROM INSTRUMENT

WHERE NAME = 'Acoustic Guitar');

In the next example, the query in Figure 12.2 is altered to ensure that
multiple rows are returned from the subquery. Removing the WHERE
clause filter from the query in Figure 12.2 results in an error, as shown in
Figure 12.3. The subquery in Figure 12.3 returns all rows in the INSTRU-
MENT table.

Figure 12.2

A Single-Row
Subquery.

Chap12.fm Page 271 Thursday, July 29, 2004 10:09 PM

272

12.4

Demonstrating Subqueries

12.4.2 Multiple-Row Subqueries

A multiple-row subquery returns multiple rows. The IN, EXISTS, and
Group (ANY, ALL, SOME) comparison conditions allow multiple-row
subquery results. See the syntax diagram in Figure 12.1.

�

A multiple-row subquery can provide the set of values needed for the
IN comparison condition.

�

The EXISTS comparison condition usually uses indexes to match
values in the subquery to values in the calling query. Regardless of
correlated indexed columns between calling and subquery, EXISTS
will stop execution of the subquery when the appropriate value is
found. IN will build all values in the set for the subquery before pass-
ing its result back to the calling query. Using EXISTS rather than IN
often results in better performance of the query. EXISTS may not
perform better than IN when the set produced by the subquery is a
limited set of literal values or a very small number of rows.

�

ANY, ALL, and SOME imply any value, all values, and some values,
respectively. Because these subquery comparison conditions test
against a set of values, a multiple-row query can in reality return zero,
one, or many rows.

Note:

It is important to note that a multiple-row subquery can return zero
rows because the Membership, Exists, and Group comparison conditions
return a set of values. That set of values can be an empty set. An empty set is a

valid set.

Figure 12.3

A Single-Row
Subquery

Returning More
Than One Row

Returns an Error.

Chap12.fm Page 272 Thursday, July 29, 2004 10:09 PM

12.4

Demonstrating Subqueries 273

Chapter 12

Following are some multiple-row subquery examples, perhaps allowing for
a better understanding of multiple-row subquery comparison conditions.

This query returns the names of all instruments in the INSTRUMENT
table that are used by artists doing guest appearances. The subquery is a reg-
ular (noncorrelated) multiple-row subquery using the IN comparison con-
dition. The result is shown in Figure 12.4.

SELECT NAME FROM INSTRUMENT

WHERE INSTRUMENT_ID IN

(SELECT INSTRUMENT_ID FROM INSTRUMENTATION);

This query returns the name of instruments played when ARTIST_ID
of 1 made a guest appearance. Because ARTIST_ID 1 made no guest
appearances on any songs, no rows are returned by the subquery. This
shows that a subquery returning a NULL set of rows is valid. The subquery
is a regular, multiple-row subquery using the IN comparison condition.
The result is shown in Figure 12.5.

SELECT NAME FROM INSTRUMENT WHERE INSTRUMENT_ID IN

(SELECT INSTRUMENT_ID FROM INSTRUMENTATION

WHERE GUESTARTIST_ID = 1);

Figure 12.4

The IN
Comparison
Condition.

Chap12.fm Page 273 Thursday, July 29, 2004 10:09 PM

274

12.4

Demonstrating Subqueries

This query lists artists who never made guest appearances on any songs.
The subquery is a correlated multiple-row subquery and uses the NOT
EXISTS comparison condition. The result is shown in Figure 12.6.

SELECT NAME FROM ARTIST A WHERE NOT EXISTS

(SELECT GA.GUESTARTIST_ID

 FROM GUESTAPPEARANCE GA

 WHERE GA.GUESTARTIST_ID = A.ARTIST_ID);

This query returns the names of artists who recorded songs before May
1, 2001. The subquery is a regular multiple-row subquery using the ANY
comparison condition. If you want to list the recording date in your query
results, you must use a join or a FROM clause subquery. The result is
shown in Figure 12.7.

SELECT NAME FROM ARTIST A WHERE A.ARTIST_ID = ANY

(SELECT S.ARTIST_ID FROM SONG S

 WHERE S.RECORDING_DATE < '01-MAY-2001');

This query returns the titles of CDs that have songs with a guest appear-
ance. The subquery is a regular multiple-row subquery using the SOME
comparison condition (SOME is identical to ANY). The result is shown in
Figure 12.8.

Figure 12.5

The IN
Comparison

Condition with No
Rows Returned in

the Subquery.

Chap12.fm Page 274 Thursday, July 29, 2004 10:09 PM

12.4

Demonstrating Subqueries 275

Chapter 12

SELECT DISTINCT M.TITLE FROM MUSICCD M

JOIN CDTRACK CT ON (M.MUSICCD_ID = CT.MUSICCD_ID)

WHERE CT.SONG_ID = SOME

(SELECT SONG_ID FROM GUESTAPPEARANCE GA);

Figure 12.6

NOT EXISTS
with a Correlated

Subquery.

Figure 12.7

= ANY with a
Subquery.

Chap12.fm Page 275 Thursday, July 29, 2004 10:09 PM

276

12.4

Demonstrating Subqueries

This example returns the names of artists who have not been in the stu-
dio after January 1, 2000. The subquery is a correlated multiple-row sub-
query using the ALL comparison condition.

Note:

Note: If you want to list the session date in your query results, you
must use a join or a FROM clause subquery (inline view) instead of a sub-
query in the WHERE clause.

The result is shown in Figure 12.9.

SELECT A.NAME FROM ARTIST A WHERE '01-JAN-2000' > ALL

(SELECT ST.SESSION_DATE FROM STUDIOTIME ST

 WHERE ST.ARTIST_ID = A.ARTIST_ID);

12.4.3 Multiple-Column Subqueries

A multiple-column subquery can return a single or multiple rows. It simply
returns more than one column for each row. Typically, a multiple-column
subquery is used to validate a set of columns against another set of columns
in a WHERE clause or as a tuned FROM clause row filter (inline view), as
shown in the two examples following.

The first example following uses the IN set membership comparison to
find a row set of two columns from the ARTIST table where the name of the

Figure 12.8
= SOME with a

Subquery.

Chap12.fm Page 276 Thursday, July 29, 2004 10:09 PM

12.4 Demonstrating Subqueries 277

Chapter 12

artist contains a lowercase letter “u”. See the result in Figure 12.10. Notice
that the subquery SELECT clause contains two columns. Notice also that the
calling query WHERE clause filter has a list, in parentheses, of two columns
that are to be compared to the two columns returned by the subquery.

SELECT A.ARTIST_ID, A.NAME, S.TITLE FROM ARTIST A, SONG S

WHERE (A.ARTIST_ID, A.NAME) IN

(SELECT ARTIST_ID, NAME FROM ARTIST

 WHERE NAME LIKE '%u%') AND A.ARTIST_ID = S.ARTIST_ID;

The next and second example of a multiple-column subquery will pro-
duce the same result as shown in Figure 12.10. In Figure 12.11, an element
of the FROM clause contains the same subquery as in the first example in
Figure 12.10.

Note: This example is better than the previous one for a very large ARTIST
table because the filter is executed before the join of the ARTIST rows with
the SONG rows. The query will perform better because the join occurs on
a smaller number of rows.1

Figure 12.9
> ALL with a

Subquery.

Chap12.fm Page 277 Thursday, July 29, 2004 10:09 PM

278 12.4 Demonstrating Subqueries

SELECT A.ARTIST_ID, A.NAME, S.TITLE FROM SONG S,

(SELECT ARTIST_ID, NAME

 FROM ARTIST WHERE NAME LIKE '%u%') A

 WHERE A.ARTIST_ID = S.ARTIST_ID;

Figure 12.10
The WHERE

Clause Contains a
Multiple-Column

Subquery.

Figure 12.11
The FROM Clause

Contains a
Multiple-Column

Subquery.

Chap12.fm Page 278 Thursday, July 29, 2004 10:09 PM

12.4 Demonstrating Subqueries 279

Chapter 12

12.4.4 Regular versus Correlated Subqueries

This section discusses the pros and cons of using regular or correlated sub-
queries.

A correlated subquery allows the correlation or matching of a column
between a calling query and a subquery. The calling query can pass an
aliased column name into the subquery, not the other way around. Queries
are parsed from left to right and from top to bottom. The SQL parser will
not understand what to do with an attempt to pass a column alias from
bottom to top and will produce a syntax (SQL parse) error. A subquery is
parsed and executed before its calling query or subquery. For example, the
following query has a SELECT clause that references a column from a cor-
related subquery found in the WHERE clause. The following query passes
the ARTIST_ID column value from the calling query into the subquery,
matching each ARTIST table row with related STUDIOTIME table rows.

SELECT A.NAME FROM ARTIST A

WHERE '01-JAN-2000' > ALL

(SELECT ST.SESSION_DATE FROM STUDIOTIME ST

 WHERE ST.ARTIST_ID = A.ARTIST_ID);

The most common use for correlated subqueries is using the EXISTS
comparison condition as in the script shown following. The ARTIST_ID
column value is passed from the calling query into the subquery. A correla-

Figure 12.12
Values Can Be
Passed from a

Calling Query into
a Correlated

Subquery.

Chap12.fm Page 279 Thursday, July 29, 2004 10:09 PM

280 12.4 Demonstrating Subqueries

tion or match is drawn between the ARTIST.ARTIST_ID and GUESTAP-
PEARANCE.GUESTARTIST_ID column values. This query is a variation
on a similar query shown previously in this chapter in Figure 12.6. The
query in Figure 12.6 is slightly different in that it uses NOT EXISTS as
opposed to EXISTS.

SELECT NAME FROM ARTIST A WHERE EXISTS

(SELECT GA.GUESTARTIST_ID

 FROM GUESTAPPEARANCE GA

 WHERE GA.GUESTARTIST_ID = A.ARTIST_ID);

Regular subqueries maintain no relationship or correlation between the
calling query and the subquery. A regular subquery will execute before the
calling query such that the calling query will operate on the result set pro-
duced by the subquery. You cannot reference any columns within the sub-
query from the calling query. For example, this query has a regular
subquery, a variation on the query in Figure 12.12 except excluding the cor-
related columns, passed from the calling query into the subquery.

SELECT S.RECORDING_DATE FROM SONG S

WHERE S.RECORDING_DATE > ALL

(SELECT ST.SESSION_DATE FROM STUDIOTIME ST);

Regardless of when Oracle parses the subquery, the calling query cannot
contain references to any columns that belong to the subquery. The only
exception to this rule is when the subquery is in the FROM clause. In that
case, the subquery columns are available to the calling query and can be
used in the SELECT and WHERE clauses of the calling query.

12.4.5 Nested Subqueries

A nested subquery is a subquery nested or buried within another subquery.
For example, the following query has a nested subquery executed against
the CDTRACK table, called from the subquery executed against the MUS-
ICCD table. The result is shown in Figure 12.13.

SELECT GENRE FROM GENRE WHERE GENRE_ID IN

(SELECT GENRE_ID FROM MUSICCD WHERE MUSICCD_ID IN

(SELECT MUSICCD_ID FROM CDTRACK));

Chap12.fm Page 280 Thursday, July 29, 2004 10:09 PM

12.4 Demonstrating Subqueries 281

Chapter 12

12.4.6 Inline Views

Demonstrating an inline view is simple. Let’s modify the example used in Fig-
ure 12.13. In the example in Figure 12.13, only columns from the GENRE
table can be retrieved. In most cases, column values cannot be passed from
subquery to calling query, except for subqueries placed in the FROM clause.
This type of query is commonly known as an Inline View. Let’s alter the
query in Figure 12.13 and retrieve a column value from each of the subque-
ries. The result of this following query is shown in Figure 12.14.

SELECT G.GENRE_ID, M.TITLE, M.TRACK_SEQ_NO

FROM GENRE G

, (SELECT MCD.GENRE_ID, MCD.TITLE, CD.TRACK_SEQ_NO

 FROM MUSICCD MCD

 , (SELECT MUSICCD_ID, TRACK_SEQ_NO FROM CDTRACK) CD

WHERE CD.MUSICCD_ID = MCD.MUSICCD_ID) M

WHERE M.GENRE_ID = G.GENRE_ID;

Figure 12.13
A Multilayer

Nested Subquery.

Chap12.fm Page 281 Thursday, July 29, 2004 10:09 PM

282 12.4 Demonstrating Subqueries

The query in Figure 12.14 has many more rows than the query in Figure
12.13 because Figure 12.14 retrieves the join between the three tables and
Figure 12.13 represents on DISTINCT genres from the GENRE table.

12.4.7 Other Uses for Subqueries

We have already seen that subqueries can be used in many places, syntacti-
cally speaking, as listed previously in this chapter.

Note: In Oracle Database 8i, use of subqueries was limited. In Oracle Data-
base 9i and Oracle Database 10g, restrictions are almost completely lifted.

Two significant uses of subqueries not covered in this chapter so far are
DML command subqueries, as in the INSERT and UPDATE statements.
Placing subqueries in the VALUES clause of an INSERT statement and in
UPDATE statements can be useful. Be aware of performance impact when
using subqueries in ORDER BY clauses, CASE statement expressions, the
SPREADSHEET clause, and as function parameters. Here is an example of
an INSERT statement with a subquery that returns the ARTIST_ID of

Figure 12.14
A Multilayer

Nested Inline View
(FROM Clause

Subquery).

Chap12.fm Page 282 Thursday, July 29, 2004 10:09 PM

12.4 Demonstrating Subqueries 283

Chapter 12

Sheryl Crow for inserting into the SONG row. This statement would add a
new song by Sheryl Crow.

INSERT INTO SONG(SONG_ID,ARTIST_ID, TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

, (SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Where are you?');

The next command will update the song just inserted with a playing
time. The statement makes the PLAYING_TIME for “Where are you?”
equal to the PLAYING_TIME of the song named “Safe and Sound.”

UPDATE SONG SET PLAYING_TIME =

(SELECT PLAYING_TIME FROM SONG

 WHERE TITLE = 'Safe And Sound')

WHERE TITLE = 'Where are you?';

Figure 12.15 shows the resulting inserted and subsequently updated row
for Sheryl Crow.

That completes this chapter on subqueries. The next chapter looks at
the more unusual or less used query types, including composites, hierarchi-
cal queries, flashback versions, and parallel queries.

Figure 12.15
Subqueries in
INSERT and

UPDATE
Statements.

Chap12.fm Page 283 Thursday, July 29, 2004 10:09 PM

284 12.5 Endnotes

12.5 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Chap12.fm Page 284 Thursday, July 29, 2004 10:09 PM

285

13

Unusual Query Types

In this chapter:

�

What is a composite query and what are set operators?

�

What is a hierarchical query?

�

What are versions queries and what is flashback?

�

What are parallel queries?

Unusual query types are detailed in this chapter because they may be
rarely used. On the other hand, certain types of queries do not really belong
in previous chapters because they are either so obscure or just too compli-
cated, until now. We begin with composite queries.

13.1 Composite Queries

So what is a composite query? A composite query is simply a composite or
concatenation of two queries. Special set operators are used to concatenate
the results of two separate queries. There are certain restrictions, such as:
both SELECT column sets in the two queries, must have the same number
of columns, and datatypes must be compatible, dependent on SELECT
column list position. So what are the available set operators?

13.1.1 Set Operators

As already stated, set operators are used to combine two separate queries
into a single result set.

�

UNION ALL

. Retrieves all rows from both queries including dupli-
cates. Duplicate rows are rows returned by both queries.

Chap13.fm Page 285 Thursday, July 29, 2004 10:10 PM

286

13.1

Composite Queries

�

UNION

. Same as for UNION ALL, but duplicate rows are only
returned once. In other words, duplicate rows are removed.

�

INTERSECT

. Returns distinct rows from both queries. An intersec-
tion is a little like an inner join.

�

MINUS

. Returns one query less the other, a little like the outer part
of a left outer join where only distinct rows in the first query are
returned.

13.1.2 Using Composite Queries

In order to demonstrate a sensible use of composite queries, let’s create a
view, removing all styles from genres in the GENRES view. Styles in the
GENRE table are numbered as GENRE_ID 1, 2, and 3; the GENRES
view will include only these rows.

CREATE VIEW GENRES AS

SELECT GENRE_ID AS ID, GENRE

FROM GENRE WHERE STYLE_ID IS NOT NULL;

The following query concatenates the GENRE table and GENRES
view. We are trying to retrieve duplicated rows. The resulting row count
includes all rows in the GENRE table and the GENRES view. The result-
ing duplicated rows can be clearly seen in Figure 13.1. The ORDER BY
clause is used to show duplications (see Chapter 6).

SELECT GENRE_ID, GENRE FROM GENRE

UNION ALL

SELECT * FROM GENRES

ORDER BY 1;

Now let’s change the query in Figure 13.1 and remove the duplications
as in the following query using the UNION set operator instead of the
UNION ALL operator. The result is shown in Figure 13.2.

SELECT GENRE_ID, GENRE FROM GENRE

UNION

SELECT * FROM GENRES

ORDER BY 1;

Chap13.fm Page 286 Thursday, July 29, 2004 10:10 PM

13.1

Composite Queries 287

Chapter 13

The INTERSECT operator returns an intersection or natural join type
result between two queries. In the following example, all nonstyle entries
are returned from the GENRE table. The result is shown in Figure 13.3.

SELECT GENRE_ID, GENRE FROM GENRE

INTERSECT

SELECT * FROM GENRES;

In the next example, the MINUS operator is used to remove all genres
from the GENRE table using the GENRES view, returning only GENRE
style rows 1, 2, and 3. The result is shown in Figure 13.4.

SELECT GENRE_ID, GENRE FROM GENRE

MINUS

SELECT * FROM GENRES;

Figure 13.1

Duplicating Rows
with UNION

ALL.

Chap13.fm Page 287 Thursday, July 29, 2004 10:10 PM

288

13.1

Composite Queries

Figure 13.2

Removing
Duplicates with

UNION.

Figure 13.3

INTERSECT
Returns Rows

Common to Both
Queries.

Chap13.fm Page 288 Thursday, July 29, 2004 10:10 PM

13.2

Hierarchical Queries 289

Chapter 13

That covers composite queries using set operators. Now let’s look at
hierarchical queries.

13.2 Hierarchical Queries

A hierarchical query allows display of hierarchical data in a single table. The
MUSIC schema described in Chapter 1 contains two tables with a hierar-
chical structure, namely the INSTRUMENT and GENRE tables. How-
ever, the INSTRUMENT table contains hierarchical data, while the
GENRE table does not. The GENRE table contains a single-level hierarchy
and the INSTRUMENT table contains multiple levels. Before we look at
any examples, there are various hierarchical operators and pseudocolumns
we should examine (see Chapter 7).

Note:

The CONNECT BY clause now allows ancestor-descendant
pairs as opposed to only parent-child pairs. In other words, pairs can be
matched and returned where those pairs are not directly related within a

hierarchy but related from the top to the bottom of a hierarchy.

Figure 13.4

MINUS Returns
Rows in the First

Query Only.

Chap13.fm Page 289 Thursday, July 29, 2004 10:10 PM

290

13.2

Hierarchical Queries

13.2.1 Hierarchical Query Operators

�

PRIOR

. Used with the CONNECT BY condition evaluating the
subsequent expression for each parent row of each current row, using
a current row column to hook into a parent row column.

�

CONNECT_BY_ROOT

. Performs a similar function to that
of CONNECT BY PRIOR except using the root row of the hierar-
chy as opposed to the parent row.

13.2.2 Hierarchical Query Pseudocolumns

�

LEVEL

. Used only in hierarchical queries (using the CONNECT BY
clause). This returns the level (1, 2, etc.) of the row.

�

CONNECT_BY_ISLEAF and CONNECT BY_ISCYCLE

.
These pseudocolumns determine if hierarchical data can be expanded
upon. Does an element have ancestor and/or child entries?

Now let’s demonstrate use of hierarchical queries.

13.2.3 Using Hierarchical Queries

In this first example, PRIOR is used with the CONNECT BY condition
evaluating the subsequent expression for each parent row of each current
row, using a current row column to hook into a parent row column. Figure
13.5 shows the result. The START WITH modifier simply begins at a spe-
cific point within the hierarchy.

SELECT INSTRUMENT_ID, NAME, SECTION_ID, LEVEL

FROM INSTRUMENT

START WITH INSTRUMENT_ID = 10

CONNECT BY PRIOR INSTRUMENT_ID = SECTION_ID

ORDER BY 4, 2;

Notice in Figure 13.5 that the LEVEL column is included in the query.
All the brass instruments are in the brass section. The row Brass is therefore
level 1 and the other rows, the brass instruments section, are all level 2.

The following second example shows CONNECT_BY_ROOT
performing a similar function to that of CONNECT BY PRIOR except
using the root row of the hierarchy as opposed to the parent row. The previ-
ous query is changed, as shown with the result in Figure 13.6.

SELECT CONNECT_BY_ROOT NAME "Section"

Chap13.fm Page 290 Thursday, July 29, 2004 10:10 PM

13.2

Hierarchical Queries 291

Chapter 13

, NAME "Instrument", LEVEL

FROM INSTRUMENT

START WITH INSTRUMENT_ID = 10

CONNECT BY PRIOR INSTRUMENT_ID = SECTION_ID

ORDER BY 1, 2;

The third and fourth examples, shown next, demonstrate the use of the
new CONNECT_BY_ISCYCLE and CONNECT_BY_
ISLEAF pseudocolumns. CONNECT_BY_ISCYCLE will return 1 if a row
has a child where that child row is also an ancestor of the row. Thus in the
third example shown following the result is 0 and no further rows are
shown, because none are both children and ancestors at the same time. The
result is shown in Figure 13.7.

SELECT CONNECT_BY_ISCYCLE “IsCycle”

, INSTRUMENT_ID, NAME, SECTION_ID, LEVEL

FROM INSTRUMENT

START WITH INSTRUMENT_ID = 10

CONNECT BY NOCYCLE INSTRUMENT_ID = SECTION_ID

ORDER BY 4, 2;

Figure 13.5

A Hierarchical
Query on

Hierarchical Data.

Chap13.fm Page 291 Thursday, July 29, 2004 10:10 PM

292

13.3

Flashback and Versions Queries

The CONNECT_BY_ISLEAF pseudocolumn returns a 1 when part of
the CONNECT BY row set, indicating expansion possibilities.

Thus for the
fourth example, in the following query (the result in Figure 13.8), both
instrument number 10 and its child instruments are shown. However, only
instrument 10 has leaves; the other instruments are child rows, and they
have no further children.

SELECT CONNECT_BY_ISLEAF "IsLeaf"

, INSTRUMENT_ID, NAME, SECTION_ID, LEVEL

FROM INSTRUMENT

START WITH INSTRUMENT_ID = 10

CONNECT BY PRIOR INSTRUMENT_ID = SECTION_ID

ORDER BY 4, 2;

Next we look at flashback and versions queries.

13.3 Flashback and Versions Queries

A flashback query literally allows flashing back to the state that data was in
at a previous point in time. Oracle Database 9

i

allowed AS OF flashback
queries back to a point in time using a timestamp or SCN. Oracle Database

Figure 13.6

The
CONNECT

_ BY_ROOT
Operator.

Chap13.fm Page 292 Thursday, July 29, 2004 10:10 PM

13.3

Flashback and Versions Queries 293

Chapter 13

10

g

 additionally allows what are called

flashback versions queries

. A flashback
versions query can be used to return more than one version of a single row
both before and after a change.

Note:

Flashback queries require automated undo. Manual rollbacks, now

desupported, will not support flashback queries.

13.3.1 Flashback Query Syntax

Figure 13.9 shows the syntax for flashback queries.

Note:

The DBMS_FLASHBACK package can be used to create flashback

queries at the session level.

Figure 13.7

The
CONNECT

BY ISCYCLE
Pseudocolumn.

Figure 13.8

The
CONNECT

BY ISLEAF
Pseudocolumn.

Chap13.fm Page 293 Thursday, July 29, 2004 10:10 PM

294

13.3

Flashback and Versions Queries

13.3.2 Versions Query Pseudocolumns

Several versions query pseudocolumns allow retrieval of identifying infor-
mation about different versions of the same row in a flashback query:

�

ORA_ROWSCN

. Returns a row SCN.

�

VERSIONS_{START|END}TIME

. First and last version timestamp.

�

VERSIONS_{START|END}SCN

. First and last version SCN.

�

VERSIONS_XID

. Transaction identifier.

�

VERSIONS_OPERATION

. Returns (I)nsert, (U)pdate, or (D)elete.

Now let’s look at some simple examples of flashback queries.

13.3.3 Using Flashback Queries

First I add a new row to the CONTINENT table.

INSERT INTO CONTINENT VALUES(CONTINENT_ID_SEQ.NEXTVAL

, 'South East Asia');

Now I use an AS OF flashback query to look at all continents before
inserting South East Asia. Figure 13.10 shows that the row did not exist
yesterday.

SELECT * FROM CONTINENT

AS OF TIMESTAMP(SYSTIMESTAMP - INTERVAL '1' DAY);

Figure 13.9

Flashback AS OF
and

VERSIONS
Query Syntax.

Chap13.fm Page 294 Thursday, July 29, 2004 10:10 PM

13.3

Flashback and Versions Queries 295

Chapter 13

Now let’s update an existing row, not the one we previously inserted, so
that we can execute a flashback versions query.

UPDATE CONTINENT SET NAME = 'Australia and New Zealand'

WHERE NAME = 'Australasia';

Now we execute a flashback versions query. Figure 13.11 shows two ver-
sions of rows for Australasia plus Australia and New Zealand.

SELECT * FROM CONTINENT

VERSIONS BETWEEN TIMESTAMP MINVALUE AND MAXVALUE;

The following script, as shown in Figure 13.12, simply adds in all of the
versions flashback query pseudocolumns.

COLUMN ID FORMAT 990

COLUMN CONTINENT A16

COLUMN STIME FORMAT A5

COLUMN ETIME FORMAT A5

COLUMN DML FORMAT A6

SELECT CONTINENT_ID "ID", NAME "CONTINENT"

Figure 13.10
An AS OF

Flashback Query.

Chap13.fm Page 295 Thursday, July 29, 2004 10:10 PM

296 13.3 Flashback and Versions Queries

 , TO_CHAR(VERSIONS_STARTTIME, 'HH24:MI:SS') "STime"

 , TO_CHAR(VERSIONS_ENDTIME, 'HH24:MI:SS') "ETime"

 , VERSIONS_STARTSCN "SSCN"

 , VERSIONS_ENDSCN "ESCN"

 , VERSIONS_OPERATION

, DECODE(VERSIONS_OPERATION,'I','Insert','U'

,'Update','D','Delete','Error') "DML"

FROM CONTINENT VERSIONS BETWEEN TIMESTAMP

MINVALUE AND MAXVALUE

ORDER BY CONTINENT_ID;

Oracle Database 10g now allows both FLASHBACK DATABASE
and FLASHBACK TABLE operations, as in the following syntax:

FLASHBACK [STANDBY] DATABASE [database]

TO { SCN | TIMESTAMP } expression;

FLASHBACK TABLE { [schema.]table , ... }

TO { SCN | TIMESTAMP } expression

Figure 13.11
A Flashback

Versions Query.

Chap13.fm Page 296 Thursday, July 29, 2004 10:10 PM

13.4 Parallel Queries 297

Chapter 13

[{ ENABLE | DISABLE } TRIGGERS];

FLASHBACK DATABASE and FLASHBACK TABLE allow restore of
either the entire database or a single table back to—and in the case of a
table, even forward to—a different SCN.

The next step is to examine parallel queries.

13.4 Parallel Queries

In an ideal world, parallel queries are useful on multiple CPU platforms
when Oracle Partitioning is being used with separate disks or RAID arrays.
Generally, parallel queries are only an advantage for very large tables or in
very large databases such as data warehouses. Using parallel queries on
small, highly active concurrent OLTP databases can sometimes cause rather

Figure 13.12
A Flashback

Versions Query
Including

Pseudocolumns.

Chap13.fm Page 297 Thursday, July 29, 2004 10:10 PM

298 13.4 Parallel Queries

than solve performance problems. The following types of SQL can be exe-
cuted in parallel1:

� Any query with at least a single table scan using SELECT, INSERT,
UPDATE, and DELETE commands.

� The CREATE INDEX and ALTER INDEX REBUILD commands.

� The CREATE TABLE command when generating a table from a
SELECT command.

� Any query on partitions with local indexes, where a local index is an
index created on each separate partition.

There are two ways to execute queries against tables in parallel. The first
involves the PARALLEL hint and the second involves the CREATE
TABLE or ALTER TABLE commands including the parallel clause. For
instance, the PARALLEL hint can be used as follows to execute two parallel
processes, executing the query:

SELECT /*+ PARALLEL(SALES, 2) */ * FROM SALES;

The CREATE TABLE and ALTER TABLE commands can be used with
the following syntax:

{ CREATE | ALTER } TABLE … [NOPARALLEL | PARALLEL [n]];

Thus the SALES table could be altered to have a degree of parallelism of
2 with the following command:

ALTER TABLE SALES PARALLEL 2;

Note: No parallel query examples are given in this book, because parallel
queries tend to execute with improved performance only when using Ora-
cle Partitioning. Further detail and examples on Oracle Partitioning and
parallel queries can be found in my other book, Oracle Performance Tuning
for 9i and 10g (ISBN 1-55558-305-9).

Chap13.fm Page 298 Thursday, July 29, 2004 10:10 PM

13.5 Endnotes 299

Chapter 13

That completes this chapter on composite, hierarchical, flashback, and
parallel queries. The next chapter examines Oracle Expressions, new to
Oracle Database 10g.

13.5 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Chap13.fm Page 299 Thursday, July 29, 2004 10:10 PM

This page intentionally left blank

301

14

Expressions

In this chapter:

�

How can expressions be classified?

�

What are regular expressions?

�

What is the Oracle Expression Filter?

There are three distinct parts to this chapter. The first part covers details
of expressions in Oracle, which are covered more or less throughout this
book. This chapter attempts to simply break things into logical parts. The
second part of this chapter deals with regular expressions catering for text
pattern matching and searching. The third part briefly covers the Oracle
Expression Filter.

A fundamental but often difficult to answer question is this: What is an
expression? There is a simple explanation. Anything resulting in a value is
an expression. An expression can consist of a single scalar value or a highly
complex formula. Here are some example expressions:

1 is an expression.

x + y is an expression.

mc

2

 is an expression.

The subquery (highlighted) in the following query is a list of expressions:

SELECT * FROM COUNTRY WHERE CONTINENT_ID IN

(SELECT CONTINENT_ID FROM CONTINENT)

;

Chap14.fm Page 301 Thursday, July 29, 2004 10:11 PM

302

14.1

Types of Expressions

Brackets, or, as mathematically termed, parentheses, are used to change
the sequence of evaluation within expressions, effectively creating expres-
sions within expressions. The sequence of evaluation is called

precedence

.
See Chapter 7 for details on precedence. Let’s try to classify expressions.

14.1 Types of Expressions

Most of expression classification is simple common sense, and so often by
both DBA and programmer alike, is taken for granted.

�

Basic

. In Oracle SQL, a basic expression is really only a string, a
value, a column, or perhaps a sequence reference within a SELECT
statement list. For example, ‘My name is Joe.’

�

Compounding

. A compound expression is multiple expressions put
together with operators. For example, 10 + 20 or P(1 + r)

n

, a formula
for compound interest calculations.

�

Lists

. A list of expressions such as (1, 2, x + y, (SELECT * FROM
COUNTRY), ‘My name is Joe’).

�

Functions

. Any built-in or user-defined function comprises a func-
tional expression. For example, the function POWER(2, 3) will
return 8.

�

Dates, Times, and Intervals

. Uses various functions and formats to
return a Datetime. Intervals return times between dates.

�

Scalar Subqueries

. A scalar subquery returns a single value, regard-
less of the number of rows (see Chapter 12).

�

CURSOR

. A SELECT statement can contain a CURSOR expres-
sion of the form as shown:

SELECT CY.NAME, CURSOR

(SELECT NAME FROM CONTINENT

 WHERE CONTINENT_ID = CY.CONTINENT_ID)

FROM COUNTRY CY;

�

CASE Statements

. A CASE statement can be used as an inline
expression within an SQL query, similar to an IF-THEN-ELSE pro-
gramming construct. The syntax for an inline CASE statement is as

Chap14.fm Page 302 Thursday, July 29, 2004 10:11 PM

14.1

Types of Expressions 303

Chapter 14

shown in Figure 14.1. See Chapter 24 for the PL/SQL version of the
CASE statement.

Chapter 9 contained a DECODE example based on the states in which
artists live, duplicated here for convenience:

SELECT STATE_PROVINCE

, DECODE(STATE_PROVINCE,'CA','Surfer',

 'NH','Snow bunny',

 'OR', 'Tree hugger',

 'FL', 'Retired',

 'Whatever!')

FROM ARTIST;

Now let’s convert the Chapter 9 DECODE example to use an inline
CASE statement rather than the DECODE function. The following exam-
ple contains a simple CASE statement format, which will produce the same
result as the DECODE example in Chapter 9, Figure 9.12:

SELECT STATE_PROVINCE

, CASE STATE_PROVINCE

 WHEN 'CA' THEN 'Surfer'

 WHEN 'NH' THEN 'Snow bunny'

 WHEN 'OR' THEN 'Tree hugger'

 WHEN 'FL' THEN 'Retired'

 ELSE 'Whatever!' END

FROM ARTIST;

Figure 14.1

SQL Inline CASE
Statement Syntax.

Chap14.fm Page 303 Thursday, July 29, 2004 10:11 PM

304

14.1

Types of Expressions

Here is a second example of an inline CASE statement expression using
a searched CASE statement format. The result is shown in Figure 14.2.

SELECT COUNTRY, SUM(REVENUE)

 ,CASE

 WHEN SUM(REVENUE) BETWEEN 200 AND 300 THEN 'Negligible'

 WHEN SUM(REVENUE) BETWEEN 301 AND 500 THEN 'Market Research'

 WHEN SUM(REVENUE) >= 500 THEN 'A Winner!'

 ELSE 'Non-Existent' END

FROM SALESSUM GROUP BY COUNTRY;

�

Objects

. Objects are accessed as TABLE.TYPE.ATTRIBUTE. In
other words, a table containing a type definition (collection or struc-
ture) will have type column names accessed by the table, the type
name, and followed by the name of the attribute (column) defined
within the type. Object datatypes are covered in Chapter 16.

Figure 14.2

An SQL Inline
Searched CASE

Statement
Example.

Chap14.fm Page 304 Thursday, July 29, 2004 10:11 PM

14.2

Regular Expressions 305

Chapter 14

�

Modeling

. Model expressions are part of the SPREADSHEET clause
(see Chapter 11).

Note:

The SPREADSHEET clause is renamed as the MODEL clause.

�

Object Type Constructors

. Expression to instantiate an object from
a type.

There are other expression types, but they are either trivial or repre-
sented fully in other chapters in this book. What we are really interested in
for this chapter are regular expressions and the Oracle Expression Filter.
Let’s start with regular expressions.

14.2 Regular Expressions

Oracle regular expressions conform to and enhance POSIX

1

 standards,
much like regular expression support in a programming language such as
Perl. There are two parts to using regular expressions in Oracle SQL. The
first part is the functions that execute regular expression matching, and the
second part is the matching patterns. I am reversing the accepted approach
and examining the functions first. It makes more sense to me to understand
what all of these wonderful patterns are used for before presenting a large
set of meaningless characters.

14.2.1 Regular Expression Functions

Regular expression functions can be used anywhere a function is used, both
built-in and user-defined. Duplicated parameters in the following list are
not explained more than once.

�

REGEXP_INSTR (source, pattern [, position [, occurrence [,
return [, parameter]]]])

. Finds the position of a string within a
string.

�

Position

. Represents the position in a string to begin searching.
Defaulted at position 1.

�

Occurrence

. Implies that if a pattern exists more than once, then
a position after the first can be found. The default is 1. If a search
passes all occurrences or if there are none, then 0 is returned.

Chap14.fm Page 305 Thursday, July 29, 2004 10:11 PM

306

14.2

Regular Expressions

�

Return

. 0 (the default) returns the position of the target pattern,
and 1 returns the position after the target pattern.

�

Parameter

. This value can be set to three different values: c = case
sensitive, i = case insensitive, m = more than one line in the
source.

�

REGEXP_SUBSTR (source, pattern [, position [, occurrence [,
parameter]]])

. Extracts a string from a string.

�

REGEXP_REPLACE (source, pattern [, replace [, position [,
occurrence [, parameter]]]])

. Replaces a string within a string.

Regular expression functions are much like their relative Oracle built-in
string functions. See Chapter 9 for Oracle built-in string functions.

14.2.2 Regular Expression Patterns

Regular expression patterns are POSIX standard with some additions by
Oracle. It is not necessary to detail expression pattern-matching characters
because they can be found in Oracle documentation and online. The basics
are as shown in Table 14.1.

Table 14.1

Basic Regular Expression Pattern-Matching Characters.

Character What Is It?

*

Zero or more.

.

Any character (not null).

?

Zero or one.

+

One or more.

|

OR

^

Start of line.

$

End of line.

[…]

List of elements allowing match of any
expression contained within.

(…)

Expression parentheses.

{ i }, { i, },
and

{ i, j }

i matches exactly, at least i matches, and at
least i matches but <= j.

Chap14.fm Page 306 Thursday, July 29, 2004 10:11 PM

14.2

Regular Expressions 307

Chapter 14

14.2.3 Using Regular Expressions

The following example uses REGEXP_INSTR to find the position of all
song titles containing a capital letter A. The result is shown in Figure 14.3.

COLUMN TITLE FORMAT A32

SELECT TITLE, VAL FROM(SELECT TITLE

,REGEXP_INSTR(title, 'A(/*)') AS VAL FROM SONG

) WHERE VAL > 0;

The following SQL code statement would find the same result as that in
Figure 14.3.

SELECT TITLE FROM SONG WHERE TITLE LIKE '%A%';

Where the INSTR (REGEXP_INSTR) function retrieves the position
of a string, the SUBSTR (REGEXP_SUBSTR) function retrieves a por-
tion of a string. The following script will retrieve the second occurrence of
every song title where the string is enclosed by spaces. Therefore, a string

Figure 14.3

REGEXP_INSTR
and Finding the

Position of All Song
Titles Containing

the Letter A.

Chap14.fm Page 307 Thursday, July 29, 2004 10:11 PM

308

14.2

Regular Expressions

with three words returns the middle word; a string with four words returns
the middle two words; and strings with either one or two words are not
returned at all. In other words, the first and last words are removed as long
as there are three words or more to the song title. The result is shown in
Figure 14.4.

SELECT TITLE, VAL FROM(SELECT TITLE

, REGEXP_SUBSTR(title, ' [^,]+ ', 2) AS VAL FROM SONG

) WHERE VAL IS NOT NULL;

The next example uses the REGEXP_REPLACE function to replace all
occurrences of the capital letter A in song titles with a string of three aster-
isks. The result is shown in Figure 14.5.

SELECT TITLE, VAL FROM(SELECT TITLE

, REGEXP_REPLACE(title, 'A(/*)', '***\1') AS VAL

FROM SONG

) WHERE VAL LIKE '%***%';

Figure 14.4

REGEXP_SUBSTR
and Finding Song
Titles with Three

or More Words.

Chap14.fm Page 308 Thursday, July 29, 2004 10:11 PM

14.3 Oracle Expression Filter 309

Chapter 14

That is the rudimentary basics of regular expressions. It is strongly sug-
gested that if you want to use regular expression functions and syntax, that
you do more research first. The point is made that Oracle SQL now has reg-
ular expression capability. Now let’s look at the Oracle Expression Filter.

14.3 Oracle Expression Filter

Oracle Expression Filter in its simplest form allows application of generi-
cally formed WHERE clauses stored in a table. The easiest way to explain
this concept is to demonstrate it functioning. Let’s start off by creating a
view against the MUSIC data warehouse schema SALES table, plus some of
the dimension tables. Three important attributes are highlighted; why will
soon be explained.

CREATE OR REPLACE VIEW SALESDATA AS(

 SELECT S.SALES_ID AS SALE, G.GENRE AS GENRE

 , CT.NAME AS CONTINENT, CY.NAME AS COUNTRY

 , S.SALE_PRICE, S.SALE_QTY

 , TO_NUMBER(TO_CHAR(S.SALE_DATE, 'MM')) AS MONTH

 ,TO_NUMBER(TO_CHAR(S.SALE_DATE, 'YYYY')) AS YEAR

 FROM SALES S JOIN MUSICCD M ON(S.MUSICCD_ID = M.MUSICCD_ID)

Figure 14.5
REGEXP_REPLA
CE and Changing

Song Titles.

Chap14.fm Page 309 Thursday, July 29, 2004 10:11 PM

310 14.3 Oracle Expression Filter

 JOIN GENRE G ON(M.GENRE_ID = G.GENRE_ID)

 JOIN CONTINENT CT ON(CT.CONTINENT_ID = S.CONTINENT_ID)

 JOIN COUNTRY CY ON(CY.COUNTRY_ID = S.COUNTRY_ID));

So now there is a view on a part of the sales data with various other
attributes included. Typically, in a data warehouse, this view might be cre-
ated as a materialized view. Now we need to create a few goodies for the
expression filters to function. We have to create what is called an attribute
set, essentially an Oracle TYPE object (class or structure). The following
anonymous PL/SQL procedure (see Chapter 24) uses an Oracle-provided
package called DBMS_EXPFIL. An attribute set or type called HitCD is
created, and three attributes are added: Continent, Country, and Genre.

BEGIN

 DBMS_EXPFIL.CREATE_ATTRIBUTE_SET(ATTR_SET=>'HitCD');

 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(ATTR_SET=>'HitCD'

 , ATTR_NAME=>'Continent', ATTR_TYPE=>'VARCHAR2(32)');

 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(ATTR_SET=>'HitCD'

 , ATTR_NAME=>'Country', ATTR_TYPE=>'VARCHAR2(32)');

 DBMS_EXPFIL.ADD_ELEMENTARY_ATTRIBUTE(ATTR_SET=>'HitCD'

 , ATTR_NAME=>'Genre', ATTR_TYPE=>'VARCHAR2(32)');

END;

/

Now we create a table to contain the filters (WHERE clauses) and assign
the attribute set to that new table and filter column using another anony-
mous PL/SQL procedure.

CREATE TABLE SALESANALYSIS(Filter VARCHAR2(4000));

BEGIN

DBMS_EXPFIL.ASSIGN_ATTRIBUTE_SET(ATTR_SET=>'HitCD'

, EXPR_TAB=>'SALESANALYSIS', EXPR_COL=>'FILTER');

END;

/

Now we create the filter rows in the SALESANALYSIS table. The first
filter is highlighted.

Chap14.fm Page 310 Thursday, July 29, 2004 10:11 PM

14.3 Oracle Expression Filter 311

Chapter 14

INSERT INTO SALESANALYSIS VALUES('CONTINENT=''North America''
AND COUNTRY = ''United States'' and GENRE=''American Soft
Rock''');

INSERT INTO SALESANALYSIS VALUES('CONTINENT=''North America''
AND COUNTRY = ''Mexico'' and GENRE=''American Soft Rock''');

INSERT INTO SALESANALYSIS VALUES('CONTINENT=''Europe'' AND
COUNTRY = ''United Kingdom'' and GENRE=''American Soft
Rock''');

INSERT INTO SALESANALYSIS VALUES('CONTINENT=''South America''
AND COUNTRY = ''Argentina'' and GENRE=''American Soft
Rock''');

COMMIT;

Now let’s look at a summary of all American Soft Rock rows in the
SALESDATA view. All expression filters are created as American Soft Rock. It
is important for subsequent queries to understand the full extent of the data.
In short, we need to see these rows first. The result is shown in Figure 14.6.

COLUMN CONTINENT FORMAT A16

COLUMN COUNTRY FORMAT A16

SELECT SD.CONTINENT, SD.COUNTRY, COUNT(*) FROM SALESDATA SD

WHERE SD.GENRE = 'American Soft Rock'

GROUP BY SD.CONTINENT, SD.COUNTRY;

Figure 14.6
Sales Data

Summarized by
Continent and

Country.

Chap14.fm Page 311 Thursday, July 29, 2004 10:11 PM

312 14.3 Oracle Expression Filter

So Figure 14.6 shows us what data we have, with a restriction. Now let’s
run a very simple query, grouping by country and applying all the expres-
sion filters stored in the SALESANALYSIS table. The EVALUATE operator
applies expression filters. The result is shown in Figure 14.7.

SELECT DISTINCT SD.CONTINENT, COUNT(*)

FROM SALESANALYSIS SA, SALESDATA SD

WHERE EVALUATE(SA.FILTER

 , HitCD.getVarchar(SD.CONTINENT, SD.COUNTRY, SD.GENRE))=1

GROUP BY SD.CONTINENT, SD.COUNTRY;

Examining the SALESANALYSIS table filter entries and Figure 14.6, it
should be obvious that all expression filters have been applied in Figure
14.7. Only the United States, Mexico, and Argentina have SALESDATA
view rows for American Soft Rock; the United Kingdom does not. This is
shown with greater clarity by going a small step further and grouping by
both continent and country. The script following will suffice. The result is
shown in Figure 14.8.

SELECT SD.CONTINENT, SD.COUNTRY, COUNT(*)

FROM SALESANALYSIS SA, SALESDATA SD

WHERE EVALUATE(SA.FILTER

 , HitCD.getVarchar(SD.CONTINENT,SD.COUNTRY, SD.GENRE))=1

GROUP BY SD.CONTINENT, SD.COUNTRY;

Figure 14.7
Apply the

Expression Filters
in the

SALESANALYSIS
Table.

Chap14.fm Page 312 Thursday, July 29, 2004 10:11 PM

14.3 Oracle Expression Filter 313

Chapter 14

Now let’s look at a more complex example, using all of the relevant
SALESDATA view columns, once again using the SALESANALYSIS table
expression filters. The result is shown in Figure 14.9.

COLUMN YEAR FORMAT 9990

COLUMN MONTH FORMAT 99990

COLUMN SALES FORMAT 99990

COLUMN REVENUE FORMAT $990.00

SELECT SD.YEAR, SD.MONTH, SD.CONTINENT, SD.COUNTRY

, SUM(SD.SALE_QTY) AS SALES

, SUM(SD.SALE_PRICE) AS REVENUE

FROM SALESANALYSIS SA, SALESDATA SD

WHERE EVALUATE(SA.FILTER

,HitCD.getVarchar(SD.CONTINENT,SD.COUNTRY,SD.GENRE))=1

AND SD.MONTH = 10

GROUP BY SD.YEAR, SD.MONTH, SD.CONTINENT, SD.COUNTRY;

That wraps up expressions. We have examined general expression types,
regular expressions, and Oracle Expression Filter, the latter two of which are
new to Oracle Database 10g.

Note: Because regular expressions and Oracle Expression Filter are new to
Oracle Database 10g, coverage thereof is deliberately scant in this chapter.

Figure 14.8
More Detail in

Addition to That
in Figure 14.7.

Chap14.fm Page 313 Thursday, July 29, 2004 10:11 PM

314 14.4 Endnotes

The next chapter looks into using the Data Manipulation Language
(DML), changing data in Oracle.

14.4 Endnotes

1. www.opengroup.org/onlinepubs/007904975/toc.htm

Figure 14.9
Listing the

SALESDATA
Using Expression

Filters.

Chap14.fm Page 314 Thursday, July 29, 2004 10:11 PM

315

15

Data Manipulation Language (DML)

In this chapter:

�

What are DML and transaction control?

�

How do you use the INSERT command?

�

How do you update existing rows?

�

How do you delete one or more rows?

�

How do you merge two tables together?

This chapter demonstrates the Data Manipulation Language (DML),
showing the syntax and plenty of examples. DML commands are used in
SQL to add, modify, and remove rows of data in database tables. Transac-
tion control using ROLLBACK and COMMIT commands, among others,
plus the MERGE command, are also covered in this chapter.

In previous chapters we have explored a wide variety of methods and
variations of data retrieval. Now, it is time to learn how to make up your
own data!

15.1 What Is DML?

Data Manipulation Language (DML)

is the blanket term for any command
that modifies data in an Oracle database.

The four types of commands that fall under the DML umbrella are as
follows:

�

INSERT.

Add a new row.

�

UPDATE.

Modify the data in one or more columns of an existing row.

Chap15.fm Page 315 Thursday, July 29, 2004 10:11 PM

316

15.1

What Is DML?

�

DELETE.

Eliminate a row.

�

MERGE

. Insert all the rows in one table into another table that
already has existing rows. If the key of the incoming row matches an
existing row, update the existing row instead of inserting a new row.

Note:

MERGE was a new feature of Oracle Database 9

i

. The MERGE

command is improved in Oracle Database 10

g

.

Note:

Data Definition Language (DDL) commands are SQL commands
that modify the structure of the database (the database metadata) by adding,

removing, or changing tables, views, or other objects (see Chapters 18 to 23).

Here are some pointers that are common for all DML commands:

�

DML commands are usually executed against a single table at a time.
The only exceptions to this rule are rare multiple-table inserts, a vari-
ation of the INSERT command and the MERGE command. Multi-
ple-table inserts are typically used for repetitive data warehouse
Denormalization or logical archiving of table rows into separate his-
torical tables or partitions.

�

You must have permission to use DML commands on tables that you
do not own (see Chapter 23). For this chapter, assume you always
own the tables you are working on, so you automatically have the
privileges needed.

�

Oracle Database enforces constraints defined for the table (such as
unique primary key values) whenever you use DML commands on a
table. Constraints are rules that the database keeps track of for each
table you create. Chapter 20 covers constraints in detail.

�

One constraint that you will see very often is the NOT NULL con-
straint, placed on a column. This means that no row in the table can
have a null value in any column with a NOT NULL constraint. The
DESCRIBE command tells you whether the column has a NOT
NULL constraint or not. If it says NOT NULL, the column cannot
contain any null values. Otherwise, it can contain null values.

Chap15.fm Page 316 Thursday, July 29, 2004 10:11 PM

15.2

Transaction Control 317

Chapter 15

�

You can undo your DML commands with the ROLLBACK com-
mand. There are some conditions for this operation, which are dis-
cussed in the next section.

So before going into the precise details of DML commands and chang-
ing database data, we need to examine what is called

transaction control

.
Transaction control literally allows the control of transactions.

15.2 Transaction Control

So what is a transaction? A

transaction

 is a set of one or more SQL com-
mands that change data. A transaction begins when you execute an SQL
command, changing something in the database. As you make further
changes to table data, you execute additional SQL commands. All of these
commands can be considered part of a single transaction for two reasons:
(1) because changes may depend on each other, and (2) because as long as a
COMMIT or ROLLBACK command is not executed, those changes are
not set in stone and can be undone.

It is possible to query tables and view changes before saving them. Dur-
ing your transaction, all the changes you make to tables are actually made to
the database. The precise details of how to use the rollback and undo func-
tions can be found in Chapter 3 under the section titled “Rollback and
Undo” (Oracle Database Architecture).

In simple terms, when you change something in a table, before commit-
ting the changes, Oracle writes changes to both the table and what is called
a rollback or undo file. When you save your changes using the COMMIT
command, Oracle will simply remove the undo record, because the changes
have already been made to your table. If you were to use the ROLLBACK
command instead of the COMMIT command and undo your changes,
Oracle will apply the undo record to the already changed table. Think
about this carefully. The execution of a COMMIT command is always
faster than the execution of a ROLLBACK command because the COM-
MIT command is doing less work, and less work is better performance.

A transaction ends and will execute a COMMIT or a ROLLBACK
command when you do any one of these things:

1. Save your changes to the database with the COMMIT command.

2. Undo your changes with the ROLLBACK command.

Chap15.fm Page 317 Thursday, July 29, 2004 10:11 PM

318

15.2

Transaction Control

3. Execute any DDL command, table (object level), and control
level (ALTER DATABASE).

4. Exit SQL*Plus.

5. Lose your database connection because of system failure.

6. Execute any DML command in an SQL*Plus session where the
environment has been changed to commit automatically. The
SET AUTOCOMMIT ON command causes this behavior. The
default is set to OFF.

An interesting feature of transaction control is called

read consistency

.
While you are making changes to a table, another user, in a separate session,
might query the same table. Your changes do not appear in the query results
of the other user. The other user sees the table as it was before you started
your transaction. Read consistency is provided by a combination of table
data and undo records. Read consistency helps concurrent users share the
database. The term

concurrent users

 implies concurrency, things happening
at the same time.

15.2.1 Locks

Older databases would sometimes lock out any queries on a table while you
made changes to it. The lock was then released when your transaction
ended. With the advent of read consistency, other users are allowed to query
the table you are changing, and they will not even know you are working on
that table. If two users try to update the same row or rows of a table, Oracle
Database 10

g

 makes the second user wait until the first user completes his
or her work. This greatly reduces the chances of two users interfering with
each other’s work. Two users can update the same table, so long as they are
not updating the same rows at the same time.

When you update a row in a table, your transaction obtains a

row-level
lock

. This lock prevents others from updating the row you have updated
until you end the transaction.

Another type of lock, called a

table-level lock

, reserves the entire table
for your changes so no other user can make changes to any row in the
table. Table-level locks have several degrees of exclusivity, ranging from
very strict (exclusive lock) to very unrestricted (row-share lock). Usually,
allowing Oracle Database 10

g

to handle locking works the best. However,
in special cases, you can use the LOCK TABLE command to impose a spe-
cific lock mode on a table. The syntax for the LOCK TABLE command is

Chap15.fm Page 318 Thursday, July 29, 2004 10:11 PM

15.2

Transaction Control 319

Chapter 15

shown in Figure 15.1. Annotations in Figure 15.1 adequately describe the
various options available for the LOCK TABLE command. Nothing more
needs to be said.

Now let’s look at explicit transaction control using the SET TRANSAC-
TION command.

15.2.2 The SET TRANSACTION Command

You can use an optional command called SET TRANSACTION to modify
default behavior for a particular transaction. For example, you can cause

Figure 15.1

LOCK TABLE
Command Syntax

(Rare Situations
Only).

Figure 15.2

Use SET
TRANSACTION

(Special
Circumstances

Only).

Chap15.fm Page 319 Thursday, July 29, 2004 10:11 PM

320

15.2

Transaction Control

your DML command to fail rather than wait if another user is updating the
same row you try to update. Another common use is assigning large trans-
actions to very large rollback segments. Figure 15.2 shows the syntax of the
SET TRANSACTION command

Let’s query an ARTIST row and start a read-only transaction using the
following commands. SQL*Plus Worksheet displays “Transaction set.” in
the lower pane. The result is shown in Figure 15.3.

SELECT ARTIST_ID, NAME, ZIP FROM ARTIST

WHERE NAME = 'Puddle of Mudd';

SET TRANSACTION READ ONLY;

Now let’s try to change the zip code using the following script.

UPDATE ARTIST SET ZIP='10099'

WHERE NAME = 'Puddle of Mudd';

Figure 15.4 shows an error message. No changes can be made to the
database inside a read-only transaction. In addition, a read-only transaction
does not see changes to the database made by other users after the transac-
tion starts. This might be useful when you are generating a set of reports
that summarize data and must be consistent from beginning to end. For

Figure 15.3

A Transaction Is
Set.

Chap15.fm Page 320 Thursday, July 29, 2004 10:11 PM

15.2

Transaction Control 321

Chapter 15

example, you run a summary of sales from the beginning of the year up to
today and then (in the same transaction) run a detail report of sales activity.
If users are updating the SALES table between your first and second
reports, the two reports will not match. Use a read-only transaction to pre-
serve the state of the database when you begin the first report.

Note:

Setting read-only transactions can cause serious concurrency issues
for other users. Applications will not be able to respond properly when
other users preserve data for exclusive use. This type of activity is inadvis-

able because it could upset end users (your clients).

The default transaction setting is READ WRITE, which allows
changes and sees other users’ changes immediately after being committed.
The current transaction can be completed using the COMMIT or
ROLLBACK commands.

Other options are transaction isolation levels, which can be set to SERI-
ALIZABLE or READ COMMITTED. The default mode is ISOLATION
LEVEL READ COMMITTED, where SQL will wait until any locks on
data it wants to modify are released. Using the SET TRANSACTION ISO-
LATION LEVEL SERIALIZABLE command, SQL commands handle
locking differently. If a problem is encountered, the SERIALIZABLE
option will cause a transaction to fail immediately without waiting. This
can be useful in a batch job that runs overnight, where it is preferable to
stop the entire batch job as opposed to risking the overnight job spilling
over into daytime hours.

Figure 15.4

Read-Only
Transactions

Prevent Database
Changes.

Chap15.fm Page 321 Thursday, July 29, 2004 10:11 PM

322

15.2

Transaction Control

Note:

Once again, be aware of conflict with concurrent applications and

potentially upsetting clients.

15.2.3 The SAVEPOINT Command

Another transaction-related command you may want to use is the SAVE-
POINT command. The syntax is simply as follows, where the label implies
a point within a transaction to undo changes back to:

SAVEPOINT label;

SAVEPOINT is useful when you are making many changes to the data-
base and you want the ability to undo only part of the changes made. For
example, you have inserted some testing rows into a table specifically to test
an UPDATE command. You want to be able to undo the UPDATE com-
mand while keeping the inserted rows. This way, you can repeat the
UPDATE command.

Demonstrating using the SAVEPOINT command, we can do the fol-
lowing: Begin by updating a zip code and creating a target label (SAVE-
POINT). Then make a different change to the same row already updated
and query to see row changes. The result of the following script is shown in
Figure 15.5.

UPDATE ARTIST SET ZIP='10099'

WHERE NAME = 'Puddle of Mudd';

SAVEPOINT AFTERUPDATE;

UPDATE ARTIST SET NAME='Mud Puddle'

WHERE NAME = 'Puddle of Mudd';

SELECT ARTIST_ID, NAME, ZIP FROM ARTIST

WHERE NAME = 'Mud Puddle';

In the next script, we undo (rollback) the name change, done after the
SAVEPOINT label, and query again. We see that the name change no
longer exists, but the zip code is still changed. In other words, the first
update is stored and the second is removed. The result of the following
script is shown in Figure 15.6.

Chap15.fm Page 322 Thursday, July 29, 2004 10:11 PM

15.2

Transaction Control 323

Chapter 15

ROLLBACK TO SAVEPOINT AFTERUPDATE;

SELECT ARTIST_ID, NAME, ZIP FROM ARTIST

WHERE NAME = 'Mud Puddle';

SELECT ARTIST_ID, NAME, ZIP FROM ARTIST

WHERE NAME = 'Puddle of Mudd';

Finally, we can undo the remaining change from the first UPDATE
command and end the transaction using a ROLLBACK command.

The rest of this chapter deals with making changes to the database using
DML commands to add, change, and remove data. We begin with the
INSERT command.

Figure 15.5

Two Updates to the
Same Row with a

SAVEPOINT
Label Between the

Updates.

Chap15.fm Page 323 Thursday, July 29, 2004 10:11 PM

324

15.3

Adding Data (INSERT)

15.3 Adding Data (INSERT)

Adding new rows into a table is done with the INSERT command. The
INSERT command can be used to add to a single table or multiple tables.
The syntax of the single-table INSERT command is shown in Figure 15.7.

You can insert one row into a table using expressions, individual subque-
ries for each column, or a single subquery for all columns. For a single sub-
query filling all columns, use a subquery that retrieves multiple rows instead
of a list of literal values. We cover the multiple-table INSERT command
shortly. The RETURNING portion of the INSERT, UPDATE, and
DELETE statements is essentially PL/SQL (see Chapter 24) but is covered
here as well for the sake of completeness.

Note:

Any literal value such as “hello” or the number 50,000 is an expres-

sion. See Chapter 14 for more information on expressions.

Figure 15.6

Undo Changes
Back to a

SAVEPOINT
Label.

Chap15.fm Page 324 Thursday, July 29, 2004 10:11 PM

15.3

Adding Data (INSERT) 325

Chapter 15

15.3.1 Inserting One Row

Let’s start with an easy example, adding a single row to the INSTRU-
MENT table.

INSERT INTO INSTRUMENT

 VALUES (INSTRUMENT_ID_SEQ.NEXTVAL

 ,(SELECT INSTRUMENT_ID FROM INSTRUMENT

 WHERE NAME = 'String')

 , 'Harp');

You do not need to list what value goes into which column if you list the
values in the same order as columns appear in the table, and all table col-
umns are filled. In this case, there are only three columns to worry about.

The first column uses a sequence that generates a number that is used as
the unique identifier for the instrument. See Chapter 22 for details on
sequences. The NEXTVAL function always returns the next available value
from a sequence. The second column finds the strings section in the
INSTRUMENTS table, the same table. The third column adds a new
instrument name.

Here is an example in which you list the columns in a different order
than they appear in the table, additionally omitting columns.

INSERT INTO MUSICCD (MUSICCD_ID, TITLE, PLAYING_TIME)

VALUES (MUSICCD_ID_SEQ.NEXTVAL, 'SPIDER-MAN','60:35');

Figure 15.7

Single Table
INSERT

Command Syntax.

Chap15.fm Page 325 Thursday, July 29, 2004 10:11 PM

326

15.3

Adding Data (INSERT)

When you omit columns, Oracle Database 10

g

sets missing columns
to null values except when a default value is defined for a column. In that
case, Oracle fills the column with the default value. If you omit any non-
nullable columns, which do not have a default value setting, then an error
will result.

15.3.2 Inserting with a Subquery

You can also insert a group of rows all at once using a subquery instead of
a list of values. Each row returned by the subquery becomes a row
inserted into the table. In this example, we create a table and insert rows
using a subquery.

CREATE TABLE TESTMUSICCD(

 TITLE VARCHAR2(32

)

,

 ARTIST_NAME VARCHAR2(32) NOT NULL

,

PRESSED_DATE DATE

, ARTIST_COUNTRY VARCHAR2(32));

Now we use an INSERT statement to query the ARTIST and MUS-
ICCD tables and load the resulting rows into the new table.

INSERT INTO TESTMUSICCD

SELECT DISTINCT M.TITLE, A.NAME, M.PRESSED_DATE

, A.COUNTRY

FROM ARTIST A , SONG S, CDTRACK T, MUSICCD M

WHERE A.ARTIST_ID = S.ARTIST_ID

AND S.SONG_ID = T.SONG_ID

AND T.MUSICCD_ID = M.MUSICCD_ID;

This INSERT command creates 13 rows at once. Figure 15.8 shows the
new rows using the following simple query:

SELECT * FROM TESTMUSICCD;

The rows in the table have not yet been saved to the database. We could
save them by executing a COMMIT command. And now that you have
some data in a new table, you can experiment with updates and deletes.
However, first let’s examine multiple-table inserts.

Chap15.fm Page 326 Thursday, July 29, 2004 10:11 PM

15.3 Adding Data (INSERT) 327

Chapter 15

15.3.3 The Multiple-Table INSERT Command

Figure 15.9 describes the syntax for the multiple-table form of the INSERT
command.

Now let’s look at an example, once again using the data warehouse
SALES table as a basis. The following query shows a breakdown for the
SALES table by retailer. Next, we use the SALES table to create three sepa-
rate empty tables. Following that we insert rows into all of the three sepa-
rate tables at once. The rows will originate from the SALES table, using a
single multiple-table INSERT command, inserting into the three tables
based on the retailer data in each row. The initial query is shown in Figure
15.10, showing the breakdown of the SALES table based on retailers
(RETAILER_ID).

SELECT (SELECT NAME FROM RETAILER

WHERE RETAILER_ID = S.RETAILER_ID) "Retailer"

, COUNT(S.RETAILER_ID) "Sales"

FROM SALES S GROUP BY S.RETAILER_ID;

Now we can create three empty tables from the SALES table. The
WHERE clause using the ROWNUM < 1 condition is a simple method of
copying the structure of the SALES table without copying any rows. See
Top-N queries in Chapter 5.

Figure 15.8
The New Rows

Were Derived from
a Subquery Join on

Four Tables.

Chap15.fm Page 327 Thursday, July 29, 2004 10:11 PM

328 15.3 Adding Data (INSERT)

CREATE TABLE AMAZON AS SELECT * FROM SALES WHERE ROWNUM < 1;

CREATE TABLE BANDN AS SELECT * FROM SALES WHERE ROWNUM < 1;

CREATE TABLE CDSHOP AS SELECT * FROM SALES WHERE ROWNUM < 1;

Figure 15.9
Multiple-Table

INSERT
Command Syntax.

Figure 15.10
SALES Table

Entries Are
Distributed Among

Three Different
Retailers.

Chap15.fm Page 328 Thursday, July 29, 2004 10:11 PM

15.3 Adding Data (INSERT) 329

Chapter 15

The following script is the multiple-table INSERT command, filling all
three tables with the appropriate rows in the three new tables. In this case,
an ELSE clause is not required, and the FIRST option can be used.

INSERT FIRST

WHEN RETAILER_ID = (SELECT RETAILER_ID FROM RETAILER

WHERE NAME = 'Amazon') THEN INTO AMAZON

WHEN RETAILER_ID = (SELECT RETAILER_ID FROM RETAILER

WHERE NAME = 'Barnes and Noble') THEN INTO BANDN

WHEN RETAILER_ID = (SELECT RETAILER_ID FROM RETAILER

WHERE NAME = 'CD Shop') THEN INTO CDSHOP

SELECT * FROM SALES;

Figure 15.11 shows resulting table counts after the execution of the mul-
tiple-table INSERT command, distributing sales entries to the three sepa-
rate retailer tables. The correct row counts can be verified by comparing row
counts between those shown in Figures 15.10 and 15.11.

That covers the INSERT command and adding data. Let’s look at other
DML commands, starting with the UPDATE command used to change
existing data.

Figure 15.11
SALES Table

Entries Distributed
into Three Separate

Retailer Tables.

Chap15.fm Page 329 Thursday, July 29, 2004 10:11 PM

330 15.4 Changing Data (UPDATE)

15.4 Changing Data (UPDATE)

The syntax for the UPDATE command is as shown in Figure 15.12.

You can update all rows in the table by omitting the WHERE clause.
List any or all column settings in the updated table after the SET keyword.
Any subquery must be a single-row subquery. A subquery can be a corre-
lated or regular subquery. Several UPDATE commands will be demon-
strated in the next sections.

Use the NULL keyword to set a column to a null value. Use the
DEFAULT keyword to set a column to its default value (as defined in the
table).

15.4.1 Updating One Row

You find out that Jewel now lives in Brazil, so you update the row contain-
ing Jewel’s data. Note that we are using the TESTMUSICCD table created
in the previous section on the INSERT command.

UPDATE TESTMUSICCD SET ARTIST_COUNTRY='Brazil'

WHERE ARTIST_NAME = 'Jewel';

SQL*Plus Worksheet will reply, “1 row updated.” The same syntax can
be used to update more than one row.

Figure 15.12
UPDATE

Command Syntax.

Chap15.fm Page 330 Thursday, July 29, 2004 10:11 PM

15.4 Changing Data (UPDATE) 331

Chapter 15

15.4.2 Updating Many Rows

There are three rows with the name and country of Sheryl Crow because
there are three of her CDs in the table we created. Update all three at once,
changing her country to Canada.

UPDATE TESTMUSICCD SET ARTIST_COUNTRY='Canada'

WHERE ARTIST_NAME = 'Sheryl Crow';

SQL*Plus Worksheet will reply, “3 rows updated.”

Another method of updating data is to use subqueries. For example, let’s
say you want to update ARTIST_COUNTRY column values in TEST-
MUSICCD with data from the ARTIST table. You can use a correlated
subquery to match the artist’s name between the ARTIST and TESTMUS-
ICCD tables to find the country. The following query removes the changes
to countries of residence for both Jewel and Sheryl Crow.

UPDATE TESTMUSICCD T SET ARTIST_COUNTRY=

(SELECT COUNTRY FROM ARTIST A

 WHERE A.NAME = T.ARTIST_NAME);

SQL*Plus Worksheet will reply, “13 rows updated.”

Note: Updated rows must comply with any constraints defined for a table.
If one row does not comply, all rows updated by the statement are automat-
ically rolled back.

You can also update more than one column, whether you are updating
one row or many rows. For example, change the title and the country with
one update command. In the next example, we change the
ARTIST_NAME column of each TESTMUSICCD table row to uppercase
using a function, and change the PRESSED_DATE using a correlated sub-
query that finds the most recent RECORDING_DATE from the songs on
the CD (TESTMUSICCD table). You also use a WHERE clause in the
UPDATE command so that you only update Sheryl Crow’s three rows.

UPDATE TESTMUSICCD T

SET ARTIST_NAME=UPPER(ARTIST_NAME),

 PRESSED_DATE = (SELECT MAX(RECORDING_DATE)

Chap15.fm Page 331 Thursday, July 29, 2004 10:11 PM

332 15.4 Changing Data (UPDATE)

 FROM SONG S, CDTRACK C, MUSICCD M

WHERE M.TITLE = T.TITLE

AND M.MUSICCD_ID = C.MUSICCD_ID

AND C.SONG_ID = S.SONG_ID)

WHERE ARTIST_NAME = 'Sheryl Crow';

SQL*Plus Worksheet will reply, “3 rows updated.”

Let’s illustrates several points about the UPDATE command:

� The data in the current row is available for use, so you can update a
value using itself or other values in the current row. This refers to the
correlating column alias called T.TITLE shown in the previous query,
passed from the calling query to the subquery.

� The WHERE clause (in the UPDATE command) can reference col-
umns that are updated, using the value before the update.

� You can use a mixture of literals, subqueries, and functions in the
same UPDATE command.

Figure 15.13
Sheryl Crow Is

Now Uppercase as
a Result of an

UPDATE
Command.

Chap15.fm Page 332 Thursday, July 29, 2004 10:11 PM

15.5 Deleting Data (DELETE) 333

Chapter 15

Figure 15.13 shows the result of all changes made using the UPDATE
command, using the following query against the TESTMUSICCD table.

COLUMN ARTIST_NAME FORMAT A20;

COLUMN ARTIST_COUNTRY FORMAT A10;

SELECT ARTIST_NAME, ARTIST_COUNTRY, PRESSED_DATE FROM
TESTMUSICCD;

The rows updated in the table have not yet been saved to the database.
They could be saved using the COMMIT command.

Removing rows using the DELETE command is easier than inserting
and updating rows.

15.5 Deleting Data (DELETE)

The syntax for the DELETE command is as shown in Figure 15.14.

As with the UPDATE command, use the WHERE clause to delete
selected rows from a table, and omit the WHERE clause to delete all the
rows in a table.

Figure 15.14
DELETE

Statement Syntax.

Chap15.fm Page 333 Thursday, July 29, 2004 10:11 PM

334 15.5 Deleting Data (DELETE)

15.5.1 Deleting One Row

Using the WHERE clause, you can specify one row when deleting. In the
TESTMUSICCD table, delete the row for the “C’mon, C’mon” CD by
typing this DELETE command:

DELETE FROM TESTMUSICCD

WHERE TITLE = 'C''mon, C''mon';

SQL*Plus Worksheet will reply: “1 row deleted.”

Notice the use of quotation marks in the title. The title has two single
quotes in it where the data actually has a single quote. This is called a string
escape sequence. Because Oracle Database 10g uses single quote marks to
delimit literal values, you must indicate that the single quote in the middle
is not a delimiter by typing two single quote marks together. Remember
that two single quotes are not the same as one double quotation mark.

15.5.2 Deleting Many Rows

Just like the UPDATE command, simply revising the WHERE clause to
select more rows enables you to delete multiple rows in one command. For
example, deleting all CDs by the Goo Goo Dolls can be accomplished
using the following command:

DELETE FROM TESTMUSICCD

WHERE ARTIST_NAME = 'Goo Goo Dolls';

SQL*Plus Worksheet will reply: “2 rows deleted.”

The following query will show that rows for the Goo Goo Dolls and for
the CD named “C’mon, C’mon” are no longer in the table. Figure 15.15
shows the result.

SELECT * FROM TESTMUSICCD;

If a table is the parent of another table, such as the MUSICCD table,
which is the parent to the CDTRACK table, you cannot delete a row in the
MUSICCD table that has related child rows (CD tracks) in the
CDTRACK table. You should remove the child rows first and the parent
row last.

Chap15.fm Page 334 Thursday, July 29, 2004 10:11 PM

15.5 Deleting Data (DELETE) 335

Chapter 15

Note: This is not always strictly true if CASCADE DELETE is used with
constraints. See Chapter 1 for details on Referential Integrity and Chapter
20 for information on constraints.

15.5.3 Deleting All Rows

You can delete all the rows in a table by leaving out the WHERE clause.
The following command will delete all rows in the TESTMUSICCD table:

DELETE FROM TESTMUSICCD;

SQL*Plus Worksheet will reply, “8 rows deleted.”

You could also finally remove the temporarily created table TESTMUS-
ICCD by dropping it.

DROP TABLE TESTMUSICCD;

The final section in this chapter discusses the MERGE command, a new
feature of Oracle Database 9i and much improved in Oracle Database 10g.

Figure 15.15
Three Rows Were

Deleted by Two
DELETE

Commands.

Chap15.fm Page 335 Thursday, July 29, 2004 10:11 PM

336 15.6 Merging New and Old Data (MERGE)

The MERGE command enables a combination insert and update to a table
using a single DML command.

15.6 Merging New and Old Data (MERGE)

There are some enhancements to the MERGE command between Oracle
Database 9i and Oracle Database 10g. The purpose of the MERGE com-
mand is to allow you to build on an already existing table’s rows. For exam-
ple, you have a central database that tracks contact information for clients.
Your salespeople have handheld palmtop units that they use to record con-
tact information for new and existing clients. The palmtop’s client table has
only half the data for existing customers, because that is all the salespeople
need in the field. When salespeople return to the central office, they plug in
their palmtops and dump the data about all their clients. The central com-
puter must determine whether the client is new or already existing in the
central database client table. Then, if it is new, a row is inserted. If it already
exists, the existing row is updated, preserving the data in columns that are
not provided in the palmtop record.

In the past, a merging or migration process would have required an
application program, perhaps even custom coding and scripting. Now, you
can use the MERGE command to handle these issues. Figure 15.16 shows

Figure 15.16
Merge Looks

Complex but Has
Familiar

Components.

Chap15.fm Page 336 Thursday, July 29, 2004 10:11 PM

15.6 Merging New and Old Data (MERGE) 337

Chapter 15

the syntax of the MERGE command, including updates for Oracle Data-
base 10g.

As you can see, there are two tables used in a MERGE command: (1)
the target table, which receives the inserts and updates, and (2) the source
table, which is used to determine whether to insert or update the target
table. Usually, the source table provides the data to be inserted or updated
in the target table, but you can also provide literal values, expressions, and
so on.

15.6.1 How To Use MERGE

Use the MERGE command when you need to handle ongoing inserts and
updates into a table. For an easy example of the MERGE command, first
create a new table that is an exact copy of the STUDIOTIME table, but
contains only nine of the rows. This simulates a situation where a copy of
the STUDIOTIME table was created at the end of the year 2000.

CREATE TABLE HISTORY_STUDIOTIME AS

SELECT * FROM STUDIOTIME

WHERE SESSION_DATE <= '31-DEC-00';

Now, let’s imagine that it is the end of the year 2002 and you want to
add all the remaining rows into the HISTORY_STUDIOTIME table. In
addition, because payments were made on sessions from the year 2000,
imagine that some of the rows that already exist in the history table need to
be updated with some of the data from the current table. The MERGE
command would look as in the following script:

MERGE INTO HISTORY_STUDIOTIME HS

USING STUDIOTIME S ON (S.STUDIOTIME_ID = HS.STUDIOTIME_ID)

WHEN MATCHED THEN UPDATE

SET DUE_DATE = S.DUE_DATE,

 AMOUNT_PAID = S.AMOUNT_PAID,

 AMOUNT_CHARGED = S.AMOUNT_CHARGED

WHEN NOT MATCHED THEN INSERT VALUES

(S.STUDIOTIME_ID, S.ARTIST_ID, S.SESSION_DATE,

 S.MINUTES_USED, S.DUE_DATE,

 S.AMOUNT_CHARGED, S.AMOUNT_PAID);

SQL*Plus Worksheet will reply, “86 rows merged.”

Chap15.fm Page 337 Thursday, July 29, 2004 10:11 PM

338 15.6 Merging New and Old Data (MERGE)

Looking closely at the previous statement, observe these points:

� The target table (the one receiving rows) is the
HISTORY_STUDIOTIME table.

� The source table (the one sending rows) is the STUDIOTIME table.

� The two tables are matched on the value of the STUDIOTIME_ID.

� When both tables contain a row with matching STUDIOTIME_ID,
three columns in the HISTORY_STUDIOTIME table are updated
with values from columns in the STUDIOTIME table.

� When only the STUDIOTIME table has a row, and there is no
matching row in the HISTORY_STUDIOTIME table, a row is
inserted into the HISTORY_STUDIOTIME table using values in
the STUDIOTIME table’s row.

The MERGE command can be very useful in situations that otherwise
would require separate INSERT and UPDATE commands.

Note: Rows in the target table that do not match those in the source table
are not affected by a MERGE command.

This chapter has covered the Data Manipulation Language (DML),
comprising commands to change data in tables in an Oracle database. We
have covered the INSERT, UPDATE, DELETE, and MERGE commands.

The next chapter examines datatypes in detail.

Chap15.fm Page 338 Thursday, July 29, 2004 10:11 PM

339

16

Datatypes and Collections

In this chapter:

�

What are datatypes?

�

What are simple datatypes?

�

What are complex datatypes?

�

What is a user-defined datatype?

�

What are object datatypes?

�

What types of object collection functionality exist?

�

What are special Oracle datatypes?

This chapter examines simple, complex, and object datatypes. Addition-
ally, this chapter includes user-defined datatypes plus details of special
object datatype functions. Object functions are included in this chapter
because they are specific to object datatypes. Object functions do not
belong with single-row functions in Chapter 9 or with grouping functions
in Chapter 11.

Like Chapter 7, this chapter contains some information found in other
chapters, but it also contains new information. It is necessary to place this
information in a single chapter in order to put everything in one place.

Let’s begin with what could be termed simple datatypes.

16.1 Simple Datatypes

I like to classify simple datatypes as those containing single scalar values,
such as strings, numbers, and dates. Table 16.1 shows a summary of Oracle
simple datatypes.

Chap16.fm Page 339 Thursday, July 29, 2004 10:12 PM

340

16.1

Simple Datatypes

Table 16.1

Oracle Simple Datatypes.

Datatype Parameters Example

VARCHAR2(n)

n = 1 to 4,000 VARCHAR2(25)

Text string with variable length up to 4,000 bytes. If the col-
umn data’s length is shorter than

n

, Oracle adjusts the length
of the column to the size of the data. Trailing blanks are trun-
cated. Use VARCHAR2 in favor of CHAR to avoid wasting
space. VARCHAR is still a valid datatype but is replaced in
favor of VARCHAR2.

CHAR(n)

n = 1 to 2000 CHAR(14)

Same as VARCHAR2 except it holds up to 2,000 bytes and is
a static (fixed-length) text string, regardless of the length of the
data. Trailing blanks are preserved. Shorter data is padded to
right with blanks. CHAR is the same as CHAR(1). Use
CHAR rather than VARCHAR2 for short strings of a semi-
fixed length or precisely known number of characters.

NVARCHAR2(n)

n = 1 to 4,000 NVARCHAR2(65)

Same as VARCHAR2, except that it stores characters for any
language (national character set) supported by Oracle.

NCHAR(n)

n = 1 to 2,000 NCHAR(30)

Same as CHAR, except that the characters stored depend on a
national character set (e.g., Chinese characters).

NUMBER(p,s)

p = 1 to 38, s = -84 to 127 NUMBER(10,2)

Precision (

p

) is the total number of digits, and the scale (

s

) is
the number of digits to the right of the decimal. Oracle rounds
data you insert if it has too many decimal places.

INTEGER

38-byte number Creates the same datatype as
NUMBER(38).

SMALLINT

38-byte number Creates the same datatype as
NUMBER(38).

FLOAT(p)

p = 1 to 126 FLOAT(20)

A floating-point or real number.

DATE

None DATE

Chap16.fm Page 340 Thursday, July 29, 2004 10:12 PM

16.1

Simple Datatypes 341

Chapter 16

Valid dates range from January 1, 4712

B

.

C

. to December 31,
9999

A

.

D

. Oracle stores DATE datatype values internally as 7-
byte numbers including the time in hours, minutes, and sec-
onds. If no time is specified when inserting a date, the time is
set to midnight.

TIMESTAMP(p)

p = fractions of a second TIMESTAMP(3)

Same range as a DATE datatype, except this contains fractions
of a second. For example, TIMESTAMP(4) has precision to 1/
1000th of a second.

TIMESTAMP(p)
WITH TIME ZONE

p = fractions of a second TIMESTAMP(4) WITH
TIME ZONE

Same as TIMESTAMP except the value includes the time zone
of the user that inserts or updates the value.

TIMESTAMP(p)
WITH LOCAL TIME
ZONE

p = fractions of a second TIMESTAMP(4) WITH
LOCAL TIME ZONE

Same as TIMESTAMP except the value converts the date to
the time zone of the database, and displays the time in the
local time zone for the viewer.

ROWID

None ROWID

Internal Oracle datatype that stores the physical locator string
or logical pointer for a row of data.

UROWID

None

Universal ROWID. Hexadecimal string containing ROWID
values for an index-organized table, object table, or non-Ora-
cle entity. Can be up to 4,000 bytes.

BINARY_FLOAT

None BINARY_FLOAT

32-bit binary precision floating-point number including val-
ues for infinity and NaN. NaN means “not a number.”

BINARY_DOUBLE

None BINARY_DOUBLE

64-bit binary precision floating-point number including val-
ues for infinity and NaN. NaN means “not a number.”

Table 16.1

Oracle Simple Datatypes. (continued)

Chap16.fm Page 341 Thursday, July 29, 2004 10:12 PM

342

16.2

Complex and Object Datatypes

16.2 Complex and Object Datatypes

From my perspective, a complex datatype is any datatype not containing a
single scalar value. Thus a complex datatype can be a binary object, a refer-
ence (a pointer, not a ROWID), or a structural definition. At this stage,
complex and object datatypes are broken into multiple separate sections,
starting with straightforward binary object storage datatypes.

16.2.1 Binary Object Datatypes

Binary object datatypes are shown in Table 16.2. This table includes some
now-desupported binary object datatypes for the sake of consistency. BLOB
datatypes can be used to store multimedia objects such as images, video,
and sound files (see BFILE pointers in the next section on reference
datatypes). CLOB objects can be used to store string data values that are
too large for VARCHAR2 datatypes.

Table 16.2

Oracle Complex Binary Object Datatypes.

Datatype Parameters Example

BLOB

None

BLOB

Stores unstructured data in binary format, up to 4 GB.

CLOB

None

CLOB

Character data up to 4 GB. Used for high-volume text data.

NCLOB

None

NCLOB

Stores large (up to 4 GB) data in unicode or a national charac-
ter set.

LONG

None

LONG

(Desupported)

Maximum size is 2 GB. Used for text data. You should use
BLOB instead of LONG when creating new tables.

RAW(n)

n = 1 to 2,000

RAW(500)

(Desupported)

Raw binary data of variable length, up to 2,000 characters.
Use CLOB instead.

LONG RAW

None

LONG RAW

(Desupported)

Raw binary data of variable length. The maximum length is 2
GB. Use BLOB instead.

Chap16.fm Page 342 Thursday, July 29, 2004 10:12 PM

16.2

Complex and Object Datatypes 343

Chapter 16

Note:

The BLOB, CLOB, and NCLOB datatypes are only available in
Oracle 8 and up. The LONG, RAW, and LONG RAW datatypes will even-
tually be removed in a future release in favor of the LOB datatypes. LOB

stands for “large object” or “binary large object.”

16.2.2 Reference Pointer Datatypes

A reference pointer datatype is used to point to a point in space. Nothing
Einsteinian is implied; the space exists only somewhere in an Oracle data-
base. The reference pointer datatype can be used to gain access to the value
referenced by the reference pointer. Reference pointer datatypes are shown
in Table 16.3.

Note:

BFILE or BFILENAME pointers became available in Oracle 8 and

should be used in favor of any LONG or RAW datatypes.

A BFILE pointer is commonly used to store static multimedia objects.
Generally, unless multimedia objects are annotated or continually altered,
they can be considered static. A BFILE pointer only stores a reference to
an object such as an image. The image is stored external to the database
on disk. From a database perspective, storing multimedia outside the
database is the most efficient method available for both storage and subse-
quent access.

Table 16.3

Oracle Reference Pointer Datatypes.

Datatype Parameters Example

BFILE

None

BFILE

Stores pointers to an external file, such as an audio track. Ora-
cle provides predefined functions for reading, storing, and
writing a BFILE column. Requires a directory object in order
to function.

REF

REF schema.objname

REF
MUSIC.INSTRUMENT_OBJ

Reference object identifier. Used for object tables to define a
referential or object-parent to another object table, similar to a
foreign key.

Chap16.fm Page 343 Thursday, July 29, 2004 10:12 PM

344

16.2

Complex and Object Datatypes

16.2.2.1 Using the REF Datatype

The MUSIC schema ARTIST table contains an address, split into separate
columns. Let’s begin by creating a TYPE structure to contain an address. To
illustrate the REF datatype, we create two object tables: ADDRESSES con-
taining artist addresses and ARTIST2 containing the artist names and a ref-
erence to the ADDRESSES table.

CREATE OR REPLACE TYPE TADDRESS AS OBJECT(

 STREET VARCHAR2(32), POBOX CHAR(20), CITY VARCHAR2(32)

, STATE_PROVINCE VARCHAR2(32), COUNTRY VARCHAR2(32)

, ZIP CHAR(10), EMAIL VARCHAR2(32));

/

Now we create a table based on the TADDRESS type structure we just
created:

CREATE TABLE ADDRESSES OF TADDRESS;

Now we create a new table for artists from the original ARTIST table
using the type we just created:

CREATE TABLE ARTIST2 AS

SELECT ARTIST_ID, NAME, INSTRUMENTS FROM ARTIST;

Now add the new addresses substructure to the new artists table:

ALTER TABLE ARTIST2 ADD (ADDRESS REF TADDRESS SCOPE IS
ADDRESSES);

Fill up the ADDRESSES table:

INSERT INTO ADDRESSES

SELECT STREET, POBOX, CITY, STATE_PROVINCE

, COUNTRY, ZIP, EMAIL FROM ARTIST;

Now update the REF column in the new artists table with the reference
pointer to each relative address in the ADDRESSES table, establishing the
REF pointer link between the ARTIST2 table and the ADDRESSES table:

Chap16.fm Page 344 Thursday, July 29, 2004 10:12 PM

16.2

Complex and Object Datatypes 345

Chapter 16

UPDATE ARTIST2 A2 SET A2.ADDRESS = (

SELECT REF(AD) FROM ADDRESSES AD JOIN ARTIST A

ON(AD.STREET = A.STREET)

WHERE A.ARTIST_ID = A2.ARTIST_ID);

The following script finds the REF pointer for each address in the new
artists table, between the ARTIST2 and ADDRESSES tables. The result is
shown in Figure 16.1.

SELECT NAME, ADDRESS FROM ARTIST2;

Now we could use the DEREF function to dereference or access the
value in the ADDRESSES table for each row in the ARTISTS2 table. The
result is shown in Figure 16.2.

Other less-used REF pointer functions are MAKE_REF, VALUE, and
REFTOHEX.

16.2.2.2 Using the BFILE Datatype

As already stated, a BFILE datatype is used as a pointer to a binary object,
such as multimedia, stored externally to a database. The MUSIC schema

Figure 16.1

REF Stored the
Pointer Value

between Tables.

Chap16.fm Page 345 Thursday, July 29, 2004 10:12 PM

346

16.2

Complex and Object Datatypes

has a RECORDING column in the SONG table. Obviously, this table
contains no data because that would infringe on copyright regulations. In
the MUSIC schema, the SONG.RECORDING column is a BLOB
datatype. Like in the previous section, for the sake of example we will cre-

Figure 16.2

The DEREF
Function Finds a

Pointer Value.

Figure 16.3
A BFILE Datatype

in the SONG2
Table.

Chap16.fm Page 346 Thursday, July 29, 2004 10:12 PM

16.2 Complex and Object Datatypes 347

Chapter 16

ate a copy of the SONG table called SONG2. This way we can re-create
the RECORDING column as a BFILE pointer. Figure 16.3 shows the
structure of the new SONG2 table, where the BFILE datatype is shown as
a BINARY FILE LOB.

CREATE TABLE SONG2 AS SELECT SONG_ID, ARTIST_ID, TITLE

, RECORDING_DATE, PLAYING_TIME

FROM SONG;

ALTER TABLE SONG2 ADD (RECORDING BFILE);

A BFILE datatype uses the BFILENAME function for instantiation.
The syntax is as follows:

BFILENAME ('directory', 'filename'). The directory is an Oracle
DIRECTORY object, essentially being an alias type full path name pointer
to a directory on a server.

CREATE DIRECTORY MULTIMEDIA

AS 'c:\oracle\ora10\oltp\multimedia';

Note: The CREATE ANY DIRECTORY system privilege may be required.

UPDATE SONG2 SET RECORDING =

BFILENAME('MULTIMEDIA', 'recording.wav')

WHERE SONG_ID = 1;

The next section examines user-defined datatypes.

16.2.3 User-Defined Datatypes

Creating an object type with the CREATE TYPE command, such as a
VARRAY or nested table type, creates a user-defined datatype. Oracle some-
times refers to user-defined datatypes as user types. All these user-defined
datatypes are available for use in column definitions, just like the standard
Oracle Database 10g datatypes. You will see how this works when you reach
Chapter 18 and begin creating your own tables. There will be much more on
VARRAY and nested table collection datatypes later in this chapter.

The following commands describe the ARTIST table’s definition and a
collection object contained therein. The first DESC command shows the
ARTIST table, and the second DESC command displays the structure of
the INSTRUMENTSCOLLECTION type. The INSTRUMENTSCOL-

Chap16.fm Page 347 Thursday, July 29, 2004 10:12 PM

348 16.2 Complex and Object Datatypes

LECTION type was created as a user-defined datatype using the CREATE
TYPE command. The results are shown in Figure 16.4.

SET LINESIZE 100

DESC ARTIST

DESC INSTRUMENTSCOLLECTION

The INSTRUMENTSCOLLECTION datatype is a VARRAY or fixed-
length array that can hold up to 10 values with the datatype of
VARCHAR2(32).

Now that we have looked at simple user-definable datatypes, let’s look in
more detail at object collection datatypes.

16.2.4 Object Collection Datatypes

An object collection is a referenced set of elements contained within an
array. These arrays can be fixed length, dynamic, or indexed dynamic. A
dynamic array is an array where the number of array iterations is undeter-
mined. Therefore, a dynamic array is essentially a pointer. Object collection
datatypes are shown in Table 16.4.

Let’s look at some examples, beginning with the simplest to use,
VARRAY collections.

Figure 16.4
Users Can Create

Their Own
Datatypes, also
Called Object,
Array, or Table

Types.

Chap16.fm Page 348 Thursday, July 29, 2004 10:12 PM

16.2 Complex and Object Datatypes 349

Chapter 16

16.2.4.1 Using VARRAY Collections

The ARTIST table contains a VARRAY collection object called INSTRU-
MENTSCOLLECTION. We have already been introduced to the
INSTRUMENTSCOLLECTION datatype in this chapter. The following
script snippets are a small section of the MUSIC schema creation script (see
Appendix A). The first thing we do is create a type for the collection of
instruments. The INSTRUMENTSCOLLECTION type has a fixed num-
ber of 10 elements for each ARTIST table entry.

CREATE OR REPLACE TYPE INSTRUMENTSCOLLECTION

AS VARRAY(10) OF VARCHAR2(32);

/

Next we create the ARTIST table including the INSTRUMENTSCOL-
LECTION type. Because the INSTRUMENTSCOLLECTION is effec-
tively a new datatype (user-defined type), it simply becomes the datatype
definition for the INSTRUMENTS column.

CREATE TABLE ARTIST(

 ARTIST_ID NUMBER NOT NULL

, NAME VARCHAR2(32) NOT NULL, STREET VARCHAR2(32)

, POBOX CHAR(20), CITY VARCHAR2(32)

, STATE_PROVINCE VARCHAR2(32), COUNTRY VARCHAR2(32)

Table 16.4 Oracle Object Collection Datatypes.

Datatype Parameters Example

VARRAY (subscript) Object(subscript)

Fixed-length array or reserved chunk of memory for a fixed
number of array elements. VARRAY collections can be
resized and used in temporary tables.

Nested Table TABLE(…) TABLE (SELECT …)

Dynamic array or pointer to a variable number of array ele-
ments. Nested table columns can be divided into sepa-
rate tablespaces.

Associative Array Only available in PL/SQL. PL/SQL is covered in Chapter 24.

Indexed dynamic array. Faster access than a nested table using
an index.

Chap16.fm Page 349 Thursday, July 29, 2004 10:12 PM

350 16.2 Complex and Object Datatypes

, ZIP CHAR(10), EMAIL VARCHAR2(32)

, INSTRUMENTS INSTRUMENTSCOLLECTION

, CONSTRAINT XPKARTIST PRIMARY KEY (ARTIST_ID));

CREATE UNIQUE INDEX XUK_ARTIST_NAME ON ARTIST (NAME);

Accessing the collection from the ARTIST table is shown following. The
result is shown in Figure 16.5. PL/SQL can be used to access individual
VARRAY elements. See Chapter 24 for details on PL/SQL.

SELECT INSTRUMENTS FROM ARTIST;

16.2.4.2 Using Nested Table Collections

A nested table is effectively created as a table within another table. You will
notice in this section frequent use of the keyword TABLE. The TABLE key-
word is used to access the table within the table, the former being the
nested table object collection or dynamic array.

For the purposes of example, we create yet another copy of the ARTIST
table, except this time we use a nested table collection as opposed to a

Figure 16.5
The MUSIC

Schema ARTIST
Table

INSTRUMENTS
COLLECTION

Datatype.

Chap16.fm Page 350 Thursday, July 29, 2004 10:12 PM

16.2 Complex and Object Datatypes 351

Chapter 16

VARRAY collection for the INSTRUMENTSCOLLECTION datatype
column. First, we make a copy of the ARTIST table, excluding the
INSTRUMENTS column:

CREATE TABLE ARTIST3 AS SELECT ARTIST_ID, NAME, STREET

, POBOX, CITY, STATE_PROVINCE, COUNTRY, ZIP

, EMAIL FROM ARTIST;

Now we create a new type to contain the instruments collection:

CREATE OR REPLACE TYPE NEWCOLLECTION AS TABLE OF
VARCHAR2(32);

/

Now we add the nested table collection, NEWCOLLECTION, to the
ARTIST3 copy table:

ALTER TABLE ARTIST3 ADD(INSTRUMENTS NEWCOLLECTION)

NESTED TABLE INSTRUMENTS STORE AS INSTRUMENTSTABLE;

Now we can add the instruments collection from the original ARTIST
table into the new ARTIST3 table:

UPDATE ARTIST3 SET INSTRUMENTS =
NEWCOLLECTION('Vocals','Acoustic Guitar','Electric Guitar')
WHERE ARTIST_ID = 1;

UPDATE ARTIST3 SET INSTRUMENTS =
NEWCOLLECTION('Piano','Vocals') WHERE ARTIST_ID = 2;

UPDATE ARTIST3 SET INSTRUMENTS = NEWCOLLECTION('Vocals')
WHERE ARTIST_ID = 3;

UPDATE ARTIST3 SET INSTRUMENTS =
NEWCOLLECTION('Vocals','Acoustic Guitar') WHERE ARTIST_ID =
8;

UPDATE ARTIST3 SET INSTRUMENTS =
NEWCOLLECTION('Vocals','Acoustic Guitar') WHERE ARTIST_ID =
10;

UPDATE ARTIST3 SET INSTRUMENTS = NEWCOLLECTION('Background
Vocals') WHERE ARTIST_ID = 11;

UPDATE ARTIST3 SET INSTRUMENTS = NEWCOLLECTION('Background
Vocals') WHERE ARTIST_ID = 12;

Chap16.fm Page 351 Thursday, July 29, 2004 10:12 PM

352 16.2 Complex and Object Datatypes

UPDATE ARTIST3 SET INSTRUMENTS = NEWCOLLECTION('Percussion')
WHERE ARTIST_ID = 13;

UPDATE ARTIST3 SET INSTRUMENTS = NEWCOLLECTION('Drums') WHERE
ARTIST_ID = 14;

UPDATE ARTIST3 SET INSTRUMENTS = NEWCOLLECTION('Acoustic
Guitar') WHERE ARTIST_ID = 15;

This is how items are retrieved from a nested table collection. Figure
16.6 shows the result.

SELECT INSTRUMENTS FROM ARTIST3 WHERE ARTIST_ID = 1;

SELECT * FROM TABLE(SELECT INSTRUMENTS FROM ARTIST3 WHERE
ARTIST_ID = 1);

16.2.5 Object Collection Functions

In the previous two sections entitled “Using VARRAY Collections” and
“Using Nested Table Collections,” you may have noticed some rather odd
scripting, or at least convoluted and overly complicated scripting. There are
object collection functions that can make things easier, particularly when
dealing with VARRAY and nested table objects at the same time. These
object collection functions are the following:

Figure 16.6
Retrieving the
Contents of a
Nested Table

Collection Object.

Chap16.fm Page 352 Thursday, July 29, 2004 10:12 PM

16.2 Complex and Object Datatypes 353

Chapter 16

� CAST ({ collection | MULTISET (subquery) } AS type). Changes
one datatype into another datatype or changes one type into another
type. The CAST function, in object-oriented design parlance, is a
typecasting function. A typecasting function casts one datatype into
another or changes one type to another. The following example sim-
ply typecasts or converts from a numeric to a string value. Obviously,
converting from a string to a number would require numerals. There-
fore, the first query will work and the second will not.

SELECT CAST(ARTIST_ID AS VARCHAR2(38)) FROM ARTIST); --valid

SELECT CAST('abc' AS NUMBER) FORM DUAL; --invalid

The CAST function, the MULTISET operator, and a subquery
can be used to create a nested table from a relational table. MULTI-
SET operators are explained in Chapter 7.

CREATE OR REPLACE TYPE tINSTRUMENT AS OBJECT(

 INSTRUMENT_ID NUMBER

, SECTION_ID NUMBER, NAME VARCHAR2(32));

/

CREATE OR REPLACE TYPE tINSTRUMENTS AS TABLE OF tINSTRUMENT;

/

SELECT CAST(MULTISET(SELECT * FROM INSTRUMENT) AS
tINSTRUMENTS) FROM DUAL;

� COLLECT (columnar expression). Returns a nested table
from the row set result of a column expression in a table. The follow-
ing queries are valid:

SELECT COLLECT(NAME) FROM INSTRUMENT;

SELECT COLLECT(TO_CHAR(SECTION_ID)||’,’||NAME)

FROM INSTRUMENT;

The following query is not valid because a columnar expression is
required:

SELECT COLLECT(*) FROM INSTRUMENT;

Chap16.fm Page 353 Thursday, July 29, 2004 10:12 PM

354 16.2 Complex and Object Datatypes

� SET (nested table). Returns a set of the unique values in a
nested table.

SELECT SET(INSTRUMENTS) FROM ARTIST3;

� CARDINALITY (nested table). Returns the number of ele-
ments in a nested table.

SELECT CARDINALITY(INSTRUMENTS) FROM ARTIST3;

� POWERMULTISET (nested table). Returns all set elements
in a collection.

� POWERMULTISET_BY_CARDINALITY (nested table,
cardinality). This function combines the POWERMULTISET and
CARDINALITY functions by returning all set elements with a spec-
ified number of entries for each collection in each row. One could
find every row in a table where that collection has a specified num-
ber of entries.

16.2.6 Metadata Views

This section simply describes metadata views applicable to complex and
object datatypes. Chapter 19 describes the basis and detail of Oracle Data-
base metadata views.

� USER_TYPES. Structure of user-defined types.

� USER_TYPE_ATTRS. A subset of USER_TYPES except showing
type attributes.

� USER_TYPE_METHODS. Once again, a subset of USER_TYPES
except showing methods. A method is a chunk of executable code
attached to and executable by an instance of a type, much like a class
method in an object structure.

� USER_NESTED_TABLES and USER_NESTED_TABLE_COLS.
These views describe the structure of nested tables.

� USER_VARRAYS. This view describes the structure of VARRAYs.

Chap16.fm Page 354 Thursday, July 29, 2004 10:12 PM

16.3 Special Datatypes 355

Chapter 16

We have already seen plenty of collection examples in this chapter, so no
additional examples are shown here. Now let’s look briefly at some other,
perhaps extremely complex or unusual, datatypes.

16.3 Special Datatypes

Special datatypes used in Oracle are shown in Table 16.5. These special
datatypes are often specific to a particular environment or application type.

This chapter has covered various different datatypes plus some object col-
lection datatype functionality not appropriate to be covered elsewhere in this
book. The next chapter delves into the details of using XML with Oracle.

Table 16.5 Special Oracle Datatypes.

Datatype Description

XML XML documents can be stored, retrieved, and manipulated as XML
documents (see Chapter 17).

Spatial Special spatially oriented datatypes allowing for multiple dimensions
such as for graphic (geographic) information systems (maps), archi-
tectural and construction design, and various other types of geomet-
ric modeling data.

Media Special multimedia datatypes of which there are numerous different
datatypes.

Any Unknown or generic datatypes.

Chap16.fm Page 355 Thursday, July 29, 2004 10:12 PM

This page intentionally left blank

357

17

XML in Oracle

In this chapter:

�

What is XML?

�

What is XSL?

�

What are the different XML generation methods for Oracle SQL?

�

How do we create XML objects from database tables?

�

How can XML document objects stored in the database be viewed
and altered?

As in many modern databases, there is immense capability in Oracle
SQL for utilizing the power of XML. This chapter only covers XML as
directly related to Oracle SQL. In other words, we examine how XML doc-
uments can be created, accessed, and manipulated directly from within
Oracle SQL. To begin with, let’s briefly summarize exactly what XML is. To
accomplish this, we have to start at the root of browser scripting languages,
HTML. So what is XML?

17.1 What Is XML?

Hypertext Markup Language (HTML) is limited to a predefined set of tags.
Those tags allow the creation of documents that are generally executable in
a Web browser.

1

 This is a very simple HTML document:

<HTML>

<HEAD>

<P>This is the document header.</P>

</HEAD>

Chap17.fm Page 357 Thursday, July 29, 2004 10:12 PM

358

17.1

What Is XML?

<BODY>

<H1>Headings Layer 1</H1>

<P>This is section 1.</P>

<H2>Headings Layer 2</H2>

<P>This is section 1.1.</P>

</BODY>

</HTML>

An extension of HTML is DHTML

2

 or Dynamic HTML. Dynamic
HTML extends HTML using a combination of technologies. This combi-
nation of technologies exists in the document object model plus client- and
server-based scripting languages such as JavaScript, Active Server Pages
(ASP), and Java Servlets (JSP), among many others. DHTML allows cre-
ation of Web pages with much more flexibility than HTML.

The flexibility of DHTML leads us to the definition of the eXtensible
Markup Language (XML). XML essentially allows for a context-sensitive
interface. What is this in English? It allows Web pages to vary based on who
is reading them and the specific needs of the person browsing a Web page.
Thus XML can be used as a Web page scripting language, sensitive to
unique requirements of individual people.

Ultimately, XML

3

 is not limited to a predefined set of tags as in
HTML. XML allows for creation of customized tags, on the fly, based on
data content, and more specifically based on the content of a database. The
content of a database is flexible in terms of what information is stored in
that database. Therefore, the advantages of using XML are flexibility for
data and Web page integration, open standards, enhanced scalability, and
compression in Web page delivery. Additionally, the order of tags within
an XML document is not that important to XML, apart from the fact that
all elements must be contained within other elements, except for the root
node, of course. eXtensible Style Sheets (XSL) extend XML, perhaps in a
similar way to that in which DHTML extends HTML. XSL allows for
consistent patterns or pictures to be applied to data with consistent pat-
terns, namely rows from a query. Once again, what is all that in English? It
is best to demonstrate.

The following script shows a simple XML document, listing things
about various cities. Figure 17.1 shows the same code but from the perspec-
tive of what this document looks like in a Web browser.

<?xml version="1.0"?>

<world>

Chap17.fm Page 358 Thursday, July 29, 2004 10:12 PM

17.1

What Is XML? 359

Chapter 17

 <countries>

 <country>

 <name>Canada</name>

 <states>

 <state>

 <name>Quebec</name>

 <cities>

 <city>

 <name>Montreal</name>

 <type>French</type>

 </city>

 </cities>

 </state>

 …

</world>

Figure 17.1

A Simple XML
Document in a

Web Browser.

Chap17.fm Page 359 Thursday, July 29, 2004 10:12 PM

360

17.2

Using XML in Oracle

17.1.1 What Is XSL?

XSL extends XML by applying repetitive transformations for repeating
groups. What does that mean? A relational database table can be used to
produce multiple XML elements, repeating groups or rows (each row in a
table has the same structure of columns). Thus XSL can be used to apply a
common style or appearance to each of those rows. XSL basically applies a
template to each row and makes it look nice. Once again, let’s demonstrate.
The following XSL script in Figure 17.2 shows a style sheet applicable to
the example in Figure 17.1. The result of combining the XML page data
and the style sheet is shown in Figure 17.3.

So now we very briefly know what HTML, DHTML, XML, and XSL
all are. Now let’s look into XML as applied to Oracle SQL.

17.2 Using XML in Oracle

In its most basic form, XML in Oracle SQL consists of the XMLType
datatype and several functions. The XMLType stores the text of XML docu-
ments and allows access to the XML document object model. The docu-
ment object model allows access to all of the elements in an XML
document programmatically.

The objective of this chapter is to briefly introduce using XML in Ora-
cle SQL. So in order to keep it simple, let’s look at it this way: What would

Figure 17.2

An XSL
Document.

Chap17.fm Page 360 Thursday, July 29, 2004 10:12 PM

17.2

Using XML in Oracle 361

Chapter 17

we want to do with XML documents in Oracle SQL, without digging up
too much detail?

�

Create XML documents.

�

Store and retrieve XML documents.

�

Add to, make changes in, and destroy XML documents.

17.2.1 Creating XML Documents

The obvious first step is to look at the XMLType datatype.

17.2.1.1 The XMLType Datatype

The XMLType datatype is a special datatype for storing XML documents.
An XMLType can be stored in a specially built table, in a column in a table,
or in something like a CLOB object. Note that even for a table or a col-
umn, the default storage mode for an XMLType datatype is a CLOB object.
So, for example, we could create a table as being of XMLType datatype.

Figure 17.3

Applying a Style
Sheet to an XML

Document.

Chap17.fm Page 361 Thursday, July 29, 2004 10:12 PM

362

17.2

Using XML in Oracle

CREATE TABLE XMLDOCUMENT OF XMLTYPE;

We could also create a table containing an XMLType datatype column.

CREATE TABLE XML (ID NUMBER NOT NULL, XML XMLTYPE

, CONSTRAINT XPK_XML PRIMARY KEY (ID));

We can also use XMLType datatypes in PL/SQL (see Chapter 24).

DECLARE

XML XMLTYPE;

BEGIN

NULL;

END;

/

That is all we need to know about the XMLType datatype with respect
to Oracle SQL. The XMLType datatype is merely a storage medium and
has little to do with actually “doing things” to XML structures, with Oracle
SQL commands. We want to know the “what” and not the “how.” In other
words, what can we do with XML documents in Oracle SQL, not how are
they stored. The “how” part is another book all by itself.

17.2.1.2 Generating XML from Tables

The following are various methods of generating XML code from tables in
an Oracle database:

�

SQL/XML Standard

. Various SQL/XML functions and attributes
adhere to the SQL Standard for XML standardized by INCITS

4

(International Committee for Information Technology Standards).
Basic functions create elements (tags), assign attributes to elements
(attributes within individual tags), and various other functions.

�

DBMS_XMLGEN

. This package is complex and creates an XML
document based on an entire query.

�

SYS_XMLGEN

. This function creates an XML document for each
row read.

�

XSU

. The Java XML SQL utility.

Chap17.fm Page 362 Thursday, July 29, 2004 10:12 PM

17.2

Using XML in Oracle 363

Chapter 17

�

Various Other Methods

. Beyond the scope of this book.

Because the SQL/XML functions are the accepted standard, we shall
examine these functions in detail.

17.2.1.2.1 The SQL/XML Standard

As already stated, SQL/XML adheres to SQL/XML INCITS standards.
The following functions are available to Oracle SQL:

�

XMLELEMENT ([NAME] identifier [, attributes] [, expression
[, ...]])

. Creates XML tag elements such as <Name> … </Name>.

�

XMLATTRIBUTES (expression [AS alias] [, ...])

. Assigns
attribute values into tags such as <Artist Name= "...">…</Artist>.

�

XMLCONCAT (XMLType object)

. This function concatenates
multiple XML element tags.

�

XMLAGG (XMLType object [ORDER BY ...])

. This function
creates a single column or expression from multiple rows by aggregat-
ing them into a single row and XML tag. For example:

<Artist><Name>Angie Aparo</Name><Name>Avril Lavigne</Name>

… </Artist>

�

XMLSEQUENCE (XMLType object)

. Returns an array of XML-
Type objects.

�

XMLCOLATTVAL (expression [AS alias] [, ...])

. This particu-
lar function might seem a little odd at first with respect to applicabil-
ity to XML. However, it attempts to standardize for relational
structure. Every subset unit is given the tag “column,” and the origi-
nal name of the tag becomes an attribute of the column tag. For
example, <Name> Sheryl Crow</Name> becomes <column name =
"NAME">Sheryl Crow</column>.

�

XMLFOREST (expression [AS alias] [, ...])

. Functions the
same way as multiple XMLELEMENT executions, where each ele-
ment is created as a tag, containing their respective values.

�

XMLTRANSFORM (XMLType object, XMLType object)

. Exe-
cutes a transformation for repeating groups in an XML document,

Chap17.fm Page 363 Thursday, July 29, 2004 10:12 PM

364

17.2

Using XML in Oracle

applying an eXtensible Style Sheet (XSL) to each repeating group
item in the XML document.

Let’s explain various functions by example, that being the easiest method
to communicate details. The first example shown by the following script
and in Figure 17.4 simply creates XML element tags for three columns in
the ARTIST table:

SELECT XMLELEMENT("Artist"

,

XMLELEMENT

("Name", A.NAME)

,

XMLELEMENT

("City", A.CITY)

,

XMLELEMENT

("Country", A.COUNTRY)).GETSTRINGVAL()

FROM ARTIST A;

The next example shown following and in Figure 17.5 shows a mixture
of elements and tag attributes for the same columns shown in Figure 17.4:

SELECT XMLELEMENT(

 "Artist",

XMLATTRIBUTES

(A.NAME AS "Name")

Figure 17.4

XML Element
Tags.

Chap17.fm Page 364 Thursday, July 29, 2004 10:12 PM

17.2

Using XML in Oracle 365

Chapter 17

,

XMLELEMENT

("City", A.CITY)

,

XMLELEMENT

("Country", A.COUNTRY)).GETSTRINGVAL()

FROM ARTIST A;

Multiple child tags occurring in more than one parent tag can be aggre-
gated into a single parent tag. In the following script, all artist names are
placed within a single Artist tag, as shown in Figure 17.6.

SELECT XMLELEMENT("Artist"

,

XMLAGG

(XMLELEMENT("Name", A.NAME))).GETSTRINGVAL()

FROM ARTIST A;

The only downside to the XMLAGG function is that only a single col-
umn can be aggregated. Thus the next example will cause an error because
more than one XML tag is created.

SELECT XMLELEMENT("Artist"

, XMLAGG(XMLELEMENT("Name", A.NAME)

, XMLELEMENT("City", A.CITY))).GETSTRINGVAL()

FROM ARTIST A;

Figure 17.5
XML Element Tags

with Tag
Attributes.

Chap17.fm Page 365 Thursday, July 29, 2004 10:12 PM

366 17.2 Using XML in Oracle

The next example will not cause an error because the two columns are
concatenated into a single element tag. However, in this case the result
probably is not particularly useful because two distinctly different types of
data are returned as single items.

SELECT XMLELEMENT("Artist"

, XMLAGG(XMLELEMENT("Artist", A.NAME||' '||A.CITY))

).GETSTRINGVAL() FROM ARTIST A;

The result of the next script is shown in Figure 17.7 and uses the XML-
COLATTVAL function. Figure 17.7 provides explanation.

The next example uses the XMLFOREST function to effectively create
multiple XML element tags at once. The result is shown in Figure 17.8 and
is identical to the result shown in Figure 17.4.

SELECT XMLELEMENT("Artist"

, XMLFOREST(A.NAME AS "Name", A.CITY AS "City"

, A.COUNTRY AS "Country")).GETSTRINGVAL()

FROM ARTIST A;

Figure 17.6
Aggregating into a
Single Parent Tag.

Chap17.fm Page 366 Thursday, July 29, 2004 10:12 PM

17.2 Using XML in Oracle 367

Chapter 17

Figure 17.7
Changing Tag
Names Using

XMLCOLATTVAL.

Figure 17.8
Creating Multiple

Tags at Once Using
XMLFOREST.

Chap17.fm Page 367 Thursday, July 29, 2004 10:12 PM

368 17.2 Using XML in Oracle

Now let’s look at a much more complex application example. We start
out with a mutable join of five tables, as shown in the following query and
the result in Figure 17.9.

SELECT A.NAME "Artist", A.CITY "City", A.COUNTRY "Country"

 , CD.TITLE "CD", G.GENRE "Genre"

, CD.PRESSED_DATE "Released", CD.LIST_PRICE "Price"

 , S.TITLE "Song", T.TRACK_SEQ_NO "Track"

, S.RECORDING_DATE "Recorded", S.PLAYING_TIME "Length"

 FROM ARTIST A

 JOIN SONG S ON(S.ARTIST_ID = A.ARTIST_ID)

 JOIN CDTRACK T ON(T.SONG_ID = S.SONG_ID)

 JOIN MUSICCD CD ON(CD.MUSICCD_ID = T.MUSICCD_ID)

 JOIN GENRE G ON(G.GENRE_ID = CD.GENRE_ID);

Now let’s push that complex join query into an XML generation format,
as shown in the following script. The result is shown in Figure 17.10. Note
how the number of rows in Figure 17.10 are the same as in Figure 17.9.

SELECT XMLELEMENT("Artist", XMLATTRIBUTES(A.NAME "Name")

 , XMLFOREST(A.CITY "City", A.COUNTRY "Country")

 , XMLELEMENT("CD", XMLATTRIBUTES(CD.TITLE "Title"

Figure 17.9
A Complex Join of

Five Tables.

Chap17.fm Page 368 Thursday, July 29, 2004 10:12 PM

17.2 Using XML in Oracle 369

Chapter 17

, G.GENRE "Genre")

 , XMLFOREST(CD.PRESSED_DATE "Released"

, CD.LIST_PRICE "Price")

 , XMLELEMENT("Song", XMLATTRIBUTES(S.TITLE "Title"

, T.TRACK_SEQ_NO "Track")

 , XMLFOREST(S.RECORDING_DATE "Recorded"

, TRIM(S.PLAYING_TIME) "Length")

))).GETSTRINGVAL()

FROM ARTIST A

 JOIN SONG S ON(S.ARTIST_ID = A.ARTIST_ID)

 JOIN CDTRACK T ON(T.SONG_ID = S.SONG_ID)

 JOIN MUSICCD CD ON(CD.MUSICCD_ID = T.MUSICCD_ID)

 JOIN GENRE G ON(G.GENRE_ID = CD.GENRE_ID);

Now we need to look at the detail of the XML produced in Figure
17.10. Exchanging the GETSTRINGVAL() function with the
EXTRACT('/*') function and the command SET LONG <lots> (the
default is 80) will create a beautified picture of XML. We will get to that

Figure 17.10
The Complex Join
in Figure 17.9 in

XML.

Chap17.fm Page 369 Thursday, July 29, 2004 10:12 PM

370 17.2 Using XML in Oracle

later in this chapter. For now all I have done is copy the first two rows in
Figure 17.10 and pasted and annotated them into Figure 17.11.

Most relational database interpretation of XML is direct and dumps
rows into two dimensions, as results would appear in row form, such as in
this join.

Note: Two-dimensional data is useful for platform-independent transfer
between multiple databases. However, there are other, faster methods for
achieving this task with Oracle Database.

The beauty of XML is its potential object hierarchical nature, effectively
allowing removal of duplicated data. Figure 17.11 clearly shows that dupli-
cation is present in abundance. What can we do about this? We can use a
function called XMLAGG to aggregate data. In its simplest form,
XMLAGG is limited, because it appears to be capable of descending only
into a single level of a hierarchy. XMLCONCAT does not help either in
this respect because of conflict between the aggregation functions and the
GROUP BY clause. The result of the following query as shown in Figure
17.12 is much better than that of Figure 17.11, but it is still not correct, as
can be seen by appropriate annotations in Figure 17.12, because artists
remain duplicated.

SELECT XMLELEMENT("Artist", XMLATTRIBUTES(A.NAME "Name")

Figure 17.11
Duplicating Parent

Tags.

Chap17.fm Page 370 Thursday, July 29, 2004 10:12 PM

17.2 Using XML in Oracle 371

Chapter 17

 , XMLFOREST(A.CITY "City", A.COUNTRY "Country")

 , XMLELEMENT("CD", XMLATTRIBUTES(CD.TITLE "Title"

, G.GENRE "Genre")

 , XMLFOREST(CD.PRESSED_DATE "Released"

, CD.LIST_PRICE "Price")

 , XMLAGG(XMLELEMENT("Song"

, XMLATTRIBUTES(S.TITLE "Title"

, T.TRACK_SEQ_NO "Track")

 , XMLFOREST(S.RECORDING_DATE "Recorded"

, TRIM(S.PLAYING_TIME) "Length"))

))).GETSTRINGVAL()

FROM ARTIST A

 JOIN SONG S ON(S.ARTIST_ID = A.ARTIST_ID)

 JOIN CDTRACK T ON(T.SONG_ID = S.SONG_ID)

 JOIN MUSICCD CD ON(CD.MUSICCD_ID = T.MUSICCD_ID)

 JOIN GENRE G ON(G.GENRE_ID = CD.GENRE_ID)

GROUP BY A.NAME, A.CITY, A.COUNTRY, CD.TITLE, G.GENRE

, CD.PRESSED_DATE, CD.LIST_PRICE;

Figure 17.12
XMLAGG

Removes Lowest-
Level Duplication

Layer.

Chap17.fm Page 371 Thursday, July 29, 2004 10:12 PM

372 17.2 Using XML in Oracle

The point to make about Figure 17.12 is that all duplication cannot be
removed; thus the duplicated artist tags cannot be removed. The reason
why is as follows: Even if an XMLAGG function could contain another
embedded XMLAGG function, the GROUP BY clause cannot have more
than a single layer. There are alternative methods of solving this multilay-
ered duplication issue. Obviously, other XML generation methods can be
used. Additionally, a CAST(MULTISET(… into a nested table for each
subset may help. Other obvious answers are a FROM clause inline view
embedded subquery and using PL/SQL, which may be the best option.
Another point to make is that if programming languages have to be resorted
to at the second layer of a hierarchy, then something like PL/SQL may be
the better option than SQL/XML. In PL/SQL or another programming
language, the complex query we have been using would be a simple multi-
layered nested cursor procedure, dumping values using the
DBMS_OUTPUT procedure. Therefore, I will not pursue this topic any
further using SQL/XML. See Chapter 24 for details on PL/SQL.

The SYS_XMLGEN function in the next section shows multilayered
capabilities using CAST(MULTISET(… functionality and user-defined
types. I still think PL/SQL might be easier to code.

17.2.1.2.2 The SYS_XMLGEN Function
The SYS_XMLGEN function creates an XML document for each row
read. Unfortunately, this function does not appear to work properly in my
current release of Oracle Database 10g, but this is more or less how it is sup-
posed to work. In general, it passes subset row arrays into subset type arrays
(nested tables).

CREATE OR REPLACE TYPE tSONG AS OBJECT(

TITLE VARCHAR2(64), RECORDING_DATE DATE

, PLAYING_TIME CHAR(10));

/

CREATE OR REPLACE TYPE tSONG_LIST AS TABLE OF tSONG;

/

CREATE OR REPLACE TYPE tARTIST AS OBJECT(

 NAME VARCHAR2(32), CITY VARCHAR2(32)

, COUNTRY VARCHAR2(32), SONG_LIST tSONG_LIST);

/

SELECT SYS_XMLGEN(tARTIST(A.NAME, A.CITY, A.COUNTRY,

CAST(MULTISET(SELECT tSONG(S.TITLE

, S.RECORDING_DATE, S.PLAYING_TIME)

Chap17.fm Page 372 Thursday, July 29, 2004 10:12 PM

17.2 Using XML in Oracle 373

Chapter 17

FROM SONG S

WHERE S.ARTIST_ID = A.ARTIST_ID)

AS tSONG_LIST))).GETCLOBVAL()

AS ARTISTXML FROM ARTIST A;

Now let’s look at how XML documents can be changed in an Oracle
database.

17.2.2 XML and the Database

In this section we examine XML and Oracle Database in three ways: (1)
creating new XML documents in the database; (2) retrieving XML docu-
ments stored in the database, both in whole and in part; and (3) changing
XML documents stored in the database.

17.2.2.1 New XML Documents

This command creates a table to store XML documents. This same table
creation command has already been shown earlier in this chapter but is
repeated here for convenience.

CREATE TABLE XML (ID NUMBER NOT NULL, XML XMLType

, CONSTRAINT XPK_XML PRIMARY KEY (ID));

There are various methods of adding XML data to a database. In short,
an XML document string can be added as a CLOB object, typecast as
XMLType datatype from a string, or added using XMLELEMENT and
similar SQL/XML functions. The XMLELEMENT function produces an
XMLType datatype. In this case, the query shown following is described by
the XML document shown in Figure 17.12. This INSERT command will
create an XMLType data object in the XML table just created.

INSERT INTO XML(ID,XML)

 SELECT CD.MUSICCD_ID, XMLELEMENT("Artist"

 , XMLATTRIBUTES(A.NAME "Name")

 , XMLFOREST(A.CITY "City", A.COUNTRY "Country")

 , XMLELEMENT("CD", XMLATTRIBUTES(CD.TITLE "Title"

 , G.GENRE "Genre")

 , XMLFOREST(CD.PRESSED_DATE "Released"

 , CD.LIST_PRICE "Price")

 , XMLAGG(XMLELEMENT("Song", XMLATTRIBUTES(S.TITLE "Title"

Chap17.fm Page 373 Thursday, July 29, 2004 10:12 PM

374 17.2 Using XML in Oracle

 , T.TRACK_SEQ_NO "Track")

 , XMLFOREST(S.RECORDING_DATE "Recorded"

 , TRIM(S.PLAYING_TIME) "Length")))))

FROM ARTIST A

 JOIN SONG S ON(S.ARTIST_ID = A.ARTIST_ID)

 JOIN CDTRACK T ON(T.SONG_ID = S.SONG_ID)

 JOIN MUSICCD CD ON(CD.MUSICCD_ID = T.MUSICCD_ID)

 JOIN GENRE G ON(G.GENRE_ID = CD.GENRE_ID)

GROUP BY CD.MUSICCD_ID, A.NAME, A.CITY, A.COUNTRY, CD.TITLE

 , G.GENRE, CD.PRESSED_DATE, CD.LIST_PRICE;

That was easy! Now let’s find out how to retrieve XML data.

17.2.2.2 Retrieving from XML Documents

XMLType datatype column values can be retrieved using SQL SELECT
commands, XML extraction functions, and special Oracle text operators.

When extracting CLOB values, the SET LONG <lots> command is
required in SQL*Plus in order to show enough of the string value in the
CLOB object. SET LONG 80 is the default and restricts width to 80 char-
acters, which is not much when it comes to XML. Here are four simple
examples for showing entire XML value contents. The first two examples
will return the entire XML value in a single row on a single line. The third
and fourth examples will beautify the result, as shown in Figure 17.13. The
fourth example specifically must have SET LONG <lots> applied, other-
wise only one row will be returned.

SET LONG 2000;

SELECT X.XML.GETSTRINGVAL() AS Artist FROM XML X WHERE ID = 4;

SELECT X.XML.GETCLOBVAL() AS Artist FROM XML X WHERE ID = 4;

SELECT X.XML.EXTRACT('/*') AS Artist FROM XML X WHERE ID = 4;

SELECT XML FROM XML WHERE ID = 4;

Now let’s examine how to extract individual pieces from within an XML
document. XML document subset parts are searched for and retrieved
using pattern-matching methods and various functions. Pattern-matching
methods are similar to regular expressions (see Chapter 14). An XML docu-
ment is effectively parsed for specific strings or tags and then the parts
within the matched patterns are returned. Various standard pattern-match-
ing characters are used for XML subset searches:

Chap17.fm Page 374 Thursday, July 29, 2004 10:12 PM

17.2 Using XML in Oracle 375

Chapter 17

� /. Specifies a root node either as the root of an entire XML tree or a
subtree, and used as a multiple-path specification separation charac-
ter. Thus Artist/CD/Song/Length finds all CDs with a Length tag.

� //. Finds all child elements from a specified root. Therefore, /Artist//
Length finds once again all CDs with a Length tag.

� […]. Used to build predicates within expressions such as /Art-
ist[City="Vienna" or City="Boston"], which finds all artists resident
in Vienna and Boston.

� @. The @ sign is used in XML to access tag attributes. /Artist/
@Name will find the name Mozart in the tag <Artist
Name="Mozart">.

Before we show some examples, there are several functions we need to
cover in addition to pattern-matching characters already described.

Figure 17.13
Beautifying

XMLType Datatype
Output.

Chap17.fm Page 375 Thursday, July 29, 2004 10:12 PM

376 17.2 Using XML in Oracle

� EXISTSNODE (XMLType object, search path, expression).
Searches for the expression in a path (search path) within an XML
document XMLType object. This function will return 1 if a node
exists.

� EXTRACT (XMLType object, search path, expression). As already
seen, the EXISTSNODE function verifies the presence of a string.
The EXTRACT function returns the tag and its contents.

� EXTRACTVALUE (XMLType object, search path, expression).
This function finds the same strings or patterns as the EXTRACT
function except it returns scalar values, as opposed to tags. Therefore,
where the EXTRACT function returns <City>Los Angeles</City>,
the EXTRACTVALUE function returns the value between the City
tags, namely Los Angeles.

Now let’s demonstrate by example. The first example finds the CD iden-
tifier where that CD has at least one Length value
(SONG.PLAYING_TIME) in its structure:

SELECT ID FROM XML WHERE EXISTSNODE(XML

, 'Artist/CD/Song/Length') = 1;

This query will verify the previous query by looking at the data in the
tables. Figure 17.14 shows both of these queries put together.

Figure 17.14
Demonstrating /, //,

and
EXISTSNODE.

Chap17.fm Page 376 Thursday, July 29, 2004 10:12 PM

17.2 Using XML in Oracle 377

Chapter 17

SELECT DISTINCT(MUSICCD_ID) FROM CDTRACK WHERE SONG_ID IN

(SELECT SONG_ID FROM SONG

WHERE PLAYING_TIME IS NOT NULL);

The next example extracts every City tag and the value within every City
tag for all entries in the XML document. The result is shown in Figure
17.15.

COLUMN TAG FORMAT A32

COLUM CITY FORMAT A20

SELECT ID, EXTRACT(XML, '/Artist/City') AS Tag

, EXTRACTVALUE(XML, '/Artist/City') AS City

FROM XML;

The next two examples use EXTRACT to retrieve, EXISTSNODE to
validate and predicate pattern matching to find multiple elements. Results
are shown in Figures 17.16 and 17.17.

Figure 17.15
Demonstrating

EXTRACT and
EXTRACTVALUE.

Chap17.fm Page 377 Thursday, July 29, 2004 10:12 PM

378 17.2 Using XML in Oracle

SELECT ID, EXTRACT(XML, '/Artist[City="Vienna"]') FROM XML

WHERE EXISTSNODE(XML, '/Artist[City="Vienna"]') = 1;

SELECT ID, EXTRACT(XML, '/Artist[City="Vienna" or
City="Boston"]')

FROM XML WHERE EXISTSNODE(XML, '/Artist[City="Vienna"

or City="Boston"]') = 1;

That covers data retrieval for XML documents in Oracle SQL.

17.2.2.3 Changing and Removing XML Document Content

An XML document is stored internally as a CLOB or large binary text
object. As a result, updating the contents of an XML document in an

Figure 17.16
Demonstrating

EXTRACT,
EXISTSNODE,

and a Single-Value
Pattern Match.

Figure 17.17
Demonstrating

EXTRACT,
EXISTSNODE,
and a Multiple-

Value Pattern
Match.

Chap17.fm Page 378 Thursday, July 29, 2004 10:12 PM

17.2 Using XML in Oracle 379

Chapter 17

XMLType datatype simply replaces the entire document. The easiest
method of changing XML document content is using the UPDATEXML
function.

� UPDATEXML(XMLType object, search path, expression [, search
path, expression], 'replace string'). The UPDATEXML function can
be used to change pattern-matched parts of XML documents.

There are some important things to remember about the UPDA-
TEXML function:

� UPDATEXML can be used to update single tags, tag attributes, and
even entire subtrees.

� Deleting XML document content is essentially the same as updating.
If a value is to be removed, simply find it and set it to NULL using
UPDATEXML.

� Remember that the UPDATEXML function can only find and
update what already exists in the XML structure. If some values are
null valued when initially creating an XML document from relational
tables, those values will not exist in the XML document at all, not
even as tags. The only method of using UPDATEXML in this situa-
tion is to edit an entire parent tag.

Let’s change Mozart’s name and city as shown in Figures 17.15, 17.16,
and 17.17. The result is shown in Figure 17.18.

SET LONG 2000 WRAP ON LINESIZE 5000;

UPDATE XML SET XML =

UPDATEXML(XML, '/Artist/City/text()', 'Wien')

WHERE ID = 12;

UPDATE XML SET XML =

UPDATEXML(XML, '/Artist/@Name', 'Wolfgang Amadeus Mozart')

WHERE ID = 12;

SELECT X.XML.EXTRACT('/*') FROM XML X WHERE X.ID = 12;

Chap17.fm Page 379 Thursday, July 29, 2004 10:12 PM

380 17.3 Metadata Views

Now let’s remove Mozart’s single CD from the XML document alto-
gether, as shown in the following script and in Figure 17.19.

SET LONG 2000 WRAP ON LINESIZE 5000;

UPDATE XML SET XML = UPDATEXML(XML, '/Artist//CD', NULL)

WHERE ID = 12;

SELECT X.XML.EXTRACT('/*') FROM XML X WHERE X.ID = 12;

To add Mozart’s CD back into the XML document, we can either re-
create from the source tables or update the entire node with the original
XML subtree.

17.3 Metadata Views

This section describes metadata views applicable to XML tables. Chapter
19 examines the basis and detail of Oracle Database metadata views.

� USER_XML_TABLES and USER_XML_TAB_COLS. The struc-
ture of XML tables from the perspective of both tables and columns.

Figure 17.18
Using

UPDATEXML to
Change XML

Documents.

Chap17.fm Page 380 Thursday, July 29, 2004 10:12 PM

17.4 Endnotes 381

Chapter 17

� USER_XML_VIEWS and USER_XML_VIEW_COLS. The struc-
ture of XML views and their columns structures.

� USER_XML_SCHEMAS. Registered XML schemas.

This chapter has attempted to introduce the use of XML directly from
within Oracle SQL. XML is vastly more complex and detailed than pre-
sented in this chapter, both with respect to XML itself and to that of Oracle
software. This chapter is merely included to present the usefulness of XML
with respect to both Oracle Database and relational databases in general.
The next chapter will begin coverage of Data Definition Language (DDL)
commands by looking at tables.

17.4 Endnotes

1. www.oracledbaexpert.com/menu/HTML.html

2. www.oracledbaexpert.com/menu/DHTML.html

3. www.oracledbaexpert.com/menu/xml.html

4. www.incits.org

Figure 17.19
UPDATEXML
Can Delete an
Entire Subtree.

Chap17.fm Page 381 Thursday, July 29, 2004 10:12 PM

This page intentionally left blank

383

18

Tables

In this chapter:

�

What is a table?

�

How do we create a table?

�

How do we change and destroy tables?

�

How are comments added to tables?

�

What is the recycle bin?

This chapter shows you how to do all sorts of stuff with tables. Creating
and changing of tables includes defining and creating structure within
tables and making changes to those structures. Subsequent chapters cover
views and constraints. This chapter concentrates solely on tables.

18.1 What Is a Table?

Tables are used as structural definitions of data. The structure of a table
defines what kind of data can be stored in the table. Rows of repeating data
items are stored in tables in an Oracle schema. A schema is the Oracle user
that owns the tables. A user and a schema are the same thing as far as Oracle
Database is concerned. An Oracle relational database can contain many
Oracle schemas

.

 A schema in Oracle is the equivalent of a single database in
other relational databases such as Sybase or Ingres.

18.1.1 Types of Tables

Oracle Database 10

g

 supports many different types of tables. The easiest
method of explanation is to list the different available table types as follows:

Chap18.fm Page 383 Thursday, July 29, 2004 10:13 PM

384

18.1

What Is a Table?

�

Relational Table

. The basic structure and core of a relational data-
base, holding user data.

�

Object Table

. A table using an object type for its column definition,
or it can contain instances of strictly typed objects, such as type struc-
tures, collections, or binary objects.

�

Temporary Table

. Temporary tables are available to all sessions, but a
separate data set is temporarily available for each session using a tem-
porary table.

�

Index-Organized Table

. Index-Organized tables are often called
IOTs. A simple relational table, described previously, holds table data
in one physical object and index data in another physical object. For
an IOT, all columns in the table, not just the indexed columns, are
stored as a BTree index, based on the primary key. The data rows are
organized in the order of the index. This can improve performance in
some situations.

�

Cluster

. Used to store multiple indexes of frequently joined tables
into a single, physical object. A cluster is similar to an IOT where
more data than usual is stored with indexes, increasing data access
performance. Performance especially improves when the joined tables
are most commonly accessed together, such as in a view or join query.
A cluster is much more of an index than an IOT is and therefore is
covered in detail in Chapter 21.

�

External Table

. A read-only table storing data external to the data-
base, such as in a text file.

�

XMLType Table

. A table with an Oracle internally managed XML
datatype structure, either as the table or in a column of a table. XML
is covered in Chapter 17.

�

Partitioned Table

. Tables can be subdivided into partitions and sub-
partitions. Partitions are an effective performance-tuning approach
for dividing large tables on a range, list value, or hashing algorithm
basis. Partitioned tables are useful in data warehouse environments or
very large databases where parallel processing and rapid datafile
movement can be utilized.

18.1.2 Methods of Creating Tables

Tables can be created in one of three ways:

Chap18.fm Page 384 Thursday, July 29, 2004 10:13 PM

18.1

What Is a Table? 385

Chapter 18

�

Scripted

. The CREATE TABLE command can be used to list each
column’s attributes.

�

CREATE TABLE ... AS subquery

. The CREATE TABLE command
can be executed as a creation from a subquery.

�

Tools

. There are numerous tools available, which can be used to cre-
ate tables both in a graphical user interface (GUI) or as generated,
modifiable scripting.

18.1.2.1 Scripted Method

Examine the script shown following. This example is a part of the script
used to create the ARTIST table for the MUSIC schema (see Appendix A).

CREATE OR REPLACE TYPE

INSTRUMENTSCOLLECTION AS VARRAY(10) OF VARCHAR2(32);

/

CREATE TABLE ARTIST(

 ARTIST_ID NUMBER NOT NULL

, NAME VARCHAR2(32) NOT NULL

, STREET VARCHAR2(32)

, POBOX CHAR(20)

, CITY VARCHAR2(32)

, STATE_PROVINCE VARCHAR2(32)

, COUNTRY VARCHAR2(32)

, ZIP CHAR(10)

, EMAIL VARCHAR2(32)

, INSTRUMENTS INSTRUMENTSCOLLECTION

, CONSTRAINT XPKARTIST PRIMARY KEY (ARTIST_ID)

);

CREATE UNIQUE INDEX XUK_ARTIST_NAME ON ARTIST (NAME);

Each column has a name, a datatype, a size (if needed for the datatype),
and a position in the table. There are several points to note about the ART-
IST table creation script:

�

The ARTIST table is by definition an object table and not a rela-
tional table. Why? A very simple reason. The ARTIST table contains
an object as one of its object types. The INSTRUMENTS column is
an object collection column of the user-defined structural type
INSTRUMENTSCOLLECTION.

Chap18.fm Page 385 Thursday, July 29, 2004 10:13 PM

386

18.1

What Is a Table?

�

The XPKARTIST column is a primary key constraint. Constraints
are covered in Chapter 20. This particular constraint is a primary key
placed onto the ARTIST_ID column. Being a primary key column,
the ARTIST_ID can never be the same for more than a single row in
the ARTIST table.

�

The final command in the script shown previously is an index cre-
ation command. Indexes are covered in Chapter 21. The only impor-
tant point to note about this index at this point is that the NAME
column, like the primary key ARTIST_ID column, must be unique.
This index simply enforces that uniqueness of names.

18.1.2.2 CREATE TABLE ... AS Subquery

The subquery table creation method creates a copy of an existing table or
tables using a subquery. In the next example shown, we create a new table as
a join between five of the MUSIC schema tables. The output shows guest
appearances and then drops the table at the end because we do not want to
keep it. The result is shown in Figure 18.1.

CREATE TABLE EXTRAS AS

SELECT S.TITLE AS SONG, A.NAME AS ARTIST

, I.NAME AS INSTRUMENT

FROM GUESTAPPEARANCE GA, ARTIST A, SONG S

, INSTRUMENTATION IA, INSTRUMENT I

WHERE GA.GUESTARTIST_ID = A.ARTIST_ID

AND GA.GUESTARTIST_ID = S.SONG_ID

AND IA.SONG_ID = GA.SONG_ID

AND IA.GUESTARTIST_ID = GA.GUESTARTIST_ID

AND I.INSTRUMENT_ID = IA.INSTRUMENT_ID;

SELECT ARTIST||' played '||INSTRUMENT||' on '

||SONG AS "Who Played What?" FROM EXTRAS;

DROP TABLE EXTRAS;

18.1.2.3 Tools

Other methods of creating tables include use of tools such as Oracle Enter-
prise Manager, which provides a GUI for database object creation, includ-
ing table creation. Additionally, data modeling tools such as ERwin can be
utilized to generate scripts, which create entire application table sets. Figure
18.2 shows the table creation tool in Oracle Enterprise Manager.

Chap18.fm Page 386 Thursday, July 29, 2004 10:13 PM

18.2

CREATE TABLE Syntax 387

Chapter 18

So far we have looked at different types of tables and various methods for
creating those different table types. Now we examine syntax for the CREATE
TABLE command, which is used for, you guessed it, creating tables.

18.2 CREATE TABLE Syntax

The syntax of the CREATE TABLE command is highly complex at first
glance in Oracle documentation. However, the focus of this book is on
Oracle SQL and not database administration. Database administration
functionality for the CREATE TABLE command includes any physical
storage parameters such as tablespace locations and most types of physical
properties. Therefore, we get to leave a lot of the syntax out because we are
only dealing with Oracle SQL. This makes it a lot easier, but unfortunately
not easy enough. So syntax for the CREATE TABLE command has to be
divided into sections. Let’s begin with a very simple form of the syntax, per-
haps it could be called a pseudo-like syntax, for creating tables, as shown in
Figure 18.3.

What we do from this point onward is to pass through each table type in
turn, examining syntax and describing by example.

Figure 18.1

Demonstrating
CREATE TABLE

... AS Subquery.

Chap18.fm Page 387 Thursday, July 29, 2004 10:13 PM

388

18.3

Creating Different Table Types

18.3 Creating Different Table Types

An easy way of simplifying CREATE TABLE syntax is to divide it up into
the different table types, as already briefly described in this chapter. XML-
Type tables will be ignored in this section because they are extremely simple
and covered in Chapter 17.

Note:

It is important to remember that different table types do not always
fit precisely within the classifications assigned to them here. For example,
an IOT or a temporary table can be relational or object tables and vice
versa. The table types are simply divided neatly to facilitate ease of compre-

hension for the reader.

18.3.1 Creating Relational Tables

A relational table is termed

relational

 because of the way in which tables are
linked together. We get to that shortly and in more detail in Chapter 20
when discussing constraints. The syntax for creating a simple relational

Figure 18.2

Creating a Table
Using Oracle

Enterprise
Manager.

Chap18.fm Page 388 Thursday, July 29, 2004 10:13 PM

18.3

Creating Different Table Types 389

Chapter 18

table is shown in Figure 18.4. Inline and out-of-line constraints are covered
in detail in Chapter 20.

We have already looked at the ARTIST table in this chapter. Let’s look
at the data warehouse section SALES table. The SALES table has more col-
umns than the ARTIST table and many more different datatypes for its col-
umns. Once again, all primary and foreign keys are constraints and are
covered in Chapter 20. Additionally, NOT NULL is a constraint prohibit-
ing a column from being empty within a row. Other than those points, the
only thing to note is that DEFAULT clauses have been added to allow for
column values with nothing added to them. Various numeric columns will
be set to zero if a row is added to the SALES where those defaulted columns
are not specified. In these cases, null values will be replaced with default val-
ues specified. Note that the DEFAULT clauses are not included in the
MUSIC schema table creation scripts. The DEFAULT clause is rarely used.

CREATE TABLE SALES (

 SALES_ID NUMBER NOT NULL

, MUSICCD_ID NUMBER NOT NULL

, CUSTOMER_ID NUMBER NOT NULL

, RETAILER_ID NUMBER

, CONTINENT_ID NUMBER

, COUNTRY_ID NUMBER

, LIST_PRICE FLOAT DEFAULT 0

, DISCOUNT FLOAT DEFAULT 0

Figure 18.3

A CREATE
TABLE Pseudo-

like Syntax.

Chap18.fm Page 389 Thursday, July 29, 2004 10:13 PM

390

18.3

Creating Different Table Types

, SALE_PRICE FLOAT DEFAULT 0

, SALE_DATE DATE DEFAULT SYSDATE

, SALE_QTY NUMBER DEFAULT 0

, SHIPPING_COST FLOAT DEFAULT 0

, CONSTRAINT XPKSALES PRIMARY KEY (SALES_ID)

, CONSTRAINT FKSALES_1 FOREIGN KEY (RETAILER_ID)

REFERENCES RETAILER

, CONSTRAINT FKSALES_2 FOREIGN KEY (CONTINENT_ID)

REFERENCES CONTINENT

, CONSTRAINT FKSALES_3 FOREIGN KEY (COUNTRY_ID)

REFERENCES COUNTRY);

CREATE INDEX XFK_SALES_1 ON SALES (RETAILER_ID);

CREATE INDEX XFK_SALES_2 ON SALES (CONTINENT_ID);

CREATE INDEX XFK_SALES_3 ON SALES (COUNTRY_ID);

18.3.2 Creating Object Tables

Creating an object table has a slightly different syntax from that of a rela-
tional table. Figure 18.5 shows the CREATE TABLE command syntax,
highlighting aspects particular to object tables.

Figure 18.4

CREATE TABLE
Syntax for a

Relational Table.

Chap18.fm Page 390 Thursday, July 29, 2004 10:13 PM

18.3

Creating Different Table Types 391

Chapter 18

Let’s run through some simple examples. We can create a table similar to
an existing table as an object table. First, let’s create a new type duplicating
the structure of the MUSIC schema INSTRUMENT table.

CREATE OR REPLACE TYPE INSTRUMENTTYPE AS OBJECT(

 INSTRUMENT_ID NUMBER

, SECTION_ID NUMBER

, NAME VARCHAR2(32));

/

Second, create a table using the new type.

CREATE TABLE INSTRUMENTS OF INSTRUMENTTYPE;

Let’s try something else. First, drop the INSTRUMENT table and then
re-create it, but this time using a specified index for a system-generated
object identifier (OID), which is presumed to be unique throughout an
entire database. The index is shown in Figure 18.6. The query used exam-
ines all of a current user’s indexes and is included in Appendix B.

DROP TABLE INSTRUMENTS;

CREATE TABLE INSTRUMENTS OF INSTRUMENTTYPE

OBJECT IDENTIFIER IS SYSTEM GENERATED

OIDINDEX OIDX_INSTRUMENTS;

Figure 18.5

CREATE TABLE
Syntax for an
Object Table.

Chap18.fm Page 391 Thursday, July 29, 2004 10:13 PM

392

18.3

Creating Different Table Types

Now let’s create multiple layers of types and make subtypes noninsert-
able. We must drop tables and types in the proper order. We will also clean
up at the end of the script.

DROP TABLE INSTRUMENTS;

DROP TYPE INSTRUMENTTYPE;

CREATE OR REPLACE TYPE INSTRUMENTTYPE AS OBJECT(

 INSTRUMENT_ID NUMBER

, NAME VARCHAR2(32));

/

CREATE OR REPLACE TYPE SECTIONTYPE AS OBJECT(

SECTION_ID NUMBER);

/

CREATE TABLE SECTIONS OF SECTIONTYPE

NOT SUBSTITUTABLE AT ALL LEVELS

(SECTION_ID PRIMARY KEY)

OBJECT IDENTIFIER IS PRIMARY KEY;

DROP TYPE INSTRUMENTTYPE;

DROP TABLE SECTIONS;

DROP TYPE SECTIONTYPE;

Figure 18.6

A System-
Generated OID

Index
(OIDX_INSTRU

MENTS).

Chap18.fm Page 392 Thursday, July 29, 2004 10:13 PM

18.3

Creating Different Table Types 393

Chapter 18

What do all of these object table examples prove? Not much! Personally,
I prefer to avoid using too much pure object-like structure in a relational
database because object and relational structure are completely different in
nature. I prefer to save the object-things for applications or even an object
database.

18.3.3 Creating Temporary Tables

Figure 18.7 shows a syntax diagram containing syntax details for creating
temporary tables.

A global temporary table is used to store data temporarily for a specific
session. The GLOBAL keyword dictates that the structure of the table is
available to all sessions but not the rows. Rows created in a temporary table
can be made available, with the ON COMMIT PRESERVE ROWS modi-
fier, for the life of the session that created rows in that temporary table. ON
COMMIT DELETE ROWS is the default and will remove all session-spe-
cific rows from the table on execution of a COMMIT command.

Note:

When two sessions create rows in the same temporary table, each ses-
sion is able to use only the rows it created. The other session’s rows are not

available.

Figure 18.7

CREATE TABLE
Syntax for a

Temporary Table.

Chap18.fm Page 393 Thursday, July 29, 2004 10:13 PM

394

18.3

Creating Different Table Types

In the following examples, we execute from two sessions and show how
temporary tables function in a session-specific manner. These examples use
two sessions by opening up a second SQL*Plus Worksheet instance, which
is necessary to show how temporary tables function.

In the first SQL*Plus Worksheet, the following script is executed. (If
you already have a table called TEMP, drop that table first by typing the
command DROP TABLE TEMP;.) See the result of the script in Figure
18.8.

CREATE GLOBAL TEMPORARY TABLE temp (col1 number)

ON COMMIT PRESERVE ROWS;

INSERT INTO TEMP(col1) VALUES(1);

INSERT INTO TEMP(col1) VALUES(2);

INSERT INTO TEMP(col1) VALUES(3);

COMMIT;

SELECT * FROM TEMP;

We have created a temporary table named TEMP with one column
called COL1. By using the ON COMMIT PRESERVE ROWS clause
when creating the table, we tell the database that we want rows inserted or
updated to remain in place after issuing a COMMIT command. The
default setting for temporary tables is ON COMMIT DELETE ROWS,
which deletes all of a session’s rows whenever a COMMIT command is exe-
cuted. Next we inserted three rows into the table with column values of 1,
2, and 3. Then the transaction was completed using the COMMIT com-
mand. Finally the TEMP table was queried displaying the three rows
inserted, as shown in Figure 18.8.

In the second SQL*Plus Worksheet instance, we execute the second
script as shown following . See the result in Figure 18.9.

INSERT INTO TEMP(col1) VALUES(1);

INSERT INTO TEMP(col1) VALUES(4);

INSERT INTO TEMP(col1) VALUES(5);

INSERT INTO TEMP(col1) VALUES(6);

COMMIT;

SELECT * FROM TEMP;

We do not create another temporary table in the second session. Instead,
we use the temporary table created in the first session. Because we are

Chap18.fm Page 394 Thursday, July 29, 2004 10:13 PM

18.3

Creating Different Table Types 395

Chapter 18

logged in as MUSIC in both sessions, both sessions share the same schema
and can use the TEMP table.

We then insert four rows into the TEMP table in the second session
with values 1, 4, 5, and 6 in the column, and then commit the transaction
and query the TEMP table once again. The result is shown in Figure 18.9.

Here are some important points demonstrated in this example:

�

Rows added in either of the two sessions are not visible to the other
session; only the structure of the table is visible to both sessions.

� The row value 1 in the first session and the second session are not the
same rows, even though their values are the same.

Figure 18.8
Create a Temporary

Table and Add
Some Rows in the

First Session.

Chap18.fm Page 395 Thursday, July 29, 2004 10:13 PM

396 18.3 Creating Different Table Types

� When selecting rows in the first session, the select statement retrieves
only rows created in the first session. Conversely, when selecting rows
in the second session, the select statement retrieves only rows created
in the second session.

The temporary table must be removed using the following sequence of
steps. These steps are needed because one session cannot drop a temporary
table that another session is using.

1. In the second session. TRUNCATE TABLE TEMP;

2. In the first session. TRUNCATE TABLE TEMP;

3. In either session. DROP TABLE TEMP;

Figure 18.9
Add Some Rows

into the Same
Temporary Table in

a Second Session.

Chap18.fm Page 396 Thursday, July 29, 2004 10:13 PM

18.3 Creating Different Table Types 397

Chapter 18

18.3.4 Creating Index-Organized Tables (IOTs)

An index-organized table (IOT) simply organizes data in the table in the
order of the primary key index, in a BTree structure. In other words, the
entire table becomes a sorted BTree index. That sorted table can subse-
quently be accessed as an index in index-sorted order. The obvious perfor-
mance benefit is primary key sorted order scanning. The downside is that
an IOT is more likely to be a better performer when reading rather than
changing data, although the word out there is that IOTs can perform very
well in even OLTP databases.1

Figure 18.10 shows a syntax diagram containing syntax details relevant
to creating IOTs.

As an example, we create an IOT version of the MUSIC schema SALES
table called SALESIOT.

CREATE TABLE SALESIOT(

 SALES_ID NUMBER NOT NULL

, MUSICCD_ID NUMBER NOT NULL

, CUSTOMER_ID NUMBER NOT NULL

, RETAILER_ID NUMBER

, CONTINENT_ID NUMBER

, COUNTRY_ID NUMBER

, LIST_PRICE FLOAT

, DISCOUNT FLOAT

, SALE_PRICE FLOAT

, SALE_DATE DATE

Figure 18.10
CREATE TABLE

Syntax for an
Index-Organized

Table.

Chap18.fm Page 397 Thursday, July 29, 2004 10:13 PM

398 18.3 Creating Different Table Types

, SALE_QTY NUMBER

, SHIPPING_COST FLOAT

, CONSTRAINT XPKSALESIOT PRIMARY KEY (SALES_ID))

ORGANIZATION INDEX;

INSERT INTO SALESIOT SELECT * FROM SALES;

An IOT is a single table, organized in the order of a BTree index. In
other words, the data space columns are added into the index structure leaf
blocks of a binary tree. An IOT is effectively a BTree table where the entire
table is the index. The same block space is occupied by both data and index
values.

18.3.5 Creating External Tables

An external table is read-only data stored externally to or outside the logical
structure of an Oracle database, at the operating system level. Figure 18.11
shows a syntax diagram containing syntax details relevant to creating exter-
nal tables.

Let’s create an external version of the data warehouse SALES table. The
first thing we have to do is create a directory object.

CREATE OR REPLACE DIRECTORY DATA AS 'c:\oracle\ora10\oltp\
data';

Figure 18.11
CREATE TABLE

Syntax for External
Tables.

Chap18.fm Page 398 Thursday, July 29, 2004 10:13 PM

18.3 Creating Different Table Types 399

Chapter 18

Now we can create an externally organized table. All constraints have
been removed, including the NOT NULL and primary key constraint.
External tables do not appear to allow these constraints. See Chapter 20 for
details on constraints. The default directory is the DATA directory on the
database server machine.

CREATE TABLE SALESEXT(

 SALES_ID NUMBER

, MUSICCD_ID NUMBER

, CUSTOMER_ID NUMBER

, RETAILER_ID NUMBER

, CONTINENT_ID NUMBER

, COUNTRY_ID NUMBER

, LIST_PRICE FLOAT

, DISCOUNT FLOAT

, SALE_PRICE FLOAT

, SALE_DATE DATE

, SALE_QTY NUMBER

, SHIPPING_COST FLOAT)

ORGANIZATION EXTERNAL

(

DEFAULT DIRECTORY data

LOCATION ('salesext.txt')

)

REJECT LIMIT UNLIMITED;

To put data into the SALESEXT table, do the following in SQL*Plus:

SET COLSEP, REPSEP OFF LINESIZE 5000 PAGESIZE 5000 HEAD OFF;

SPOOL C:\TMP\SALESEXT.TXT;

SELECT * FROM SALES;

SPOOL OFF;

Then parse-replace all space characters in a text editor to make the text
file look like this:

1,12,1,3,7,24,7.98,0,7.98,03-NOV-03,1,0

2,11,2,3,7,22,19.99,0,19.99,03-NOV-03,1,0

3,8,3,2,7,17,19.99,.05,18.99,03-NOV-03,1,0

…

996,3,5,1,2,6,14.99,.2,11.99,17-DEC-03,1,0

Chap18.fm Page 399 Thursday, July 29, 2004 10:13 PM

400 18.3 Creating Different Table Types

Then copy the SALESEXT.TXT file to your database server into the
directory defined by the DATA directory object already created. At that
point, you can read rows directly from the SALESEXT table using
SQL*Plus, which in turn reads from the SALESEXT.TXT file in the oper-
ating system on the database server machine. The following query demon-
strates this process, with the result shown in Figure 18.12.

SELECT * FROM SALESEXT WHERE ROWNUM < 15;

We could expand on the SALESEXT table definition to include the
ACCESS PARAMETERS clause. The SALESEXT table must be dropped
first because it has already been created. Dropping the external table defini-
tion in the database does not affect the SALESEXT.TXT file on the server
or the DATA directory object.

DROP TABLE SALESEXT;

CREATE TABLE SALESEXT(

 SALES_ID INTEGER

, MUSICCD_ID INTEGER

, CUSTOMER_ID NUMBER

, RETAILER_ID NUMBER

, CONTINENT_ID NUMBER

Figure 18.12
Reading an
Externally

Organized Table’s
Data.

Chap18.fm Page 400 Thursday, July 29, 2004 10:13 PM

18.3 Creating Different Table Types 401

Chapter 18

, COUNTRY_ID NUMBER

, LIST_PRICE FLOAT

, DISCOUNT FLOAT

, SALE_PRICE FLOAT

, SALE_DATE DATE

, SALE_QTY NUMBER

, SHIPPING_COST FLOAT)

ORGANIZATION EXTERNAL

(

DEFAULT DIRECTORY data

ACCESS PARAMETERS

(

FIELDS TERMINATED BY ","

(

 SALES_ID INTEGER EXTERNAL(5)

, MUSICCD_ID INTEGER EXTERNAL(5)

, CUSTOMER_ID INTEGER EXTERNAL(5)

, RETAILER_ID INTEGER EXTERNAL(5)

, CONTINENT_ID INTEGER EXTERNAL(5)

, COUNTRY_ID INTEGER EXTERNAL(5)

, LIST_PRICE FLOAT EXTERNAL

, DISCOUNT FLOAT EXTERNAL

, SALE_PRICE FLOAT EXTERNAL

, SALE_DATE DATE "DD-MON-YY"

, SALE_QTY INTEGER EXTERNAL(5)

, SHIPPING_COST FLOAT EXTERNAL

)

)

LOCATION ('salesext.txt')

)

REJECT LIMIT UNLIMITED;

Note: Access parameter field definitions require INTEGER datatypes to be
declared as an EXTERNAL(n) datatype, not EXTERNAL as for
SQL*Loader. There are no strings in the SALES table, but all strings would
have to be represented as CHAR(n) fixed-length strings, n representing a
maximum length.

Executing another query would give the same result as that shown in
Figure 18.12.

Chap18.fm Page 401 Thursday, July 29, 2004 10:13 PM

402 18.3 Creating Different Table Types

18.3.6 Creating Partitioned Tables

Partitioned tables are part and parcel of an add-on option called Oracle Par-
titioning. Oracle Partitioning working in concert with parallel processing
and separate disk spindles or RAID arrays can provide fairly substantial per-
formance improvements. Oracle Partitioning and parallelism is an immense
subject all by itself.2 Additionally, numerous interesting tricks can be done
when using Oracle Partitioning. All we want to do in this section is demon-
strate using partitions from the Oracle SQL perspective, namely syntax and
some examples.

18.3.6.1 What Are the Types of Partitions?

There are five different types of partitions as follows:

� Range. Divides up rows based on ranges of values.

� Values List. Divides up rows based on sets of literal values.

� Hash. Uses a hashing algorithm to divide rows, resulting in the most
consistently sized partitions.

� Composite Partitions. Contains subpartitions within each separate
partition:

� Range-Hash. A range partition containing hash subpartitions
within each range partition.

� Range-List. A range partition containing list value subpartitions
within each range partition.

18.3.6.1.1 Partition Indexing
Partitions can have indexes. How are indexes built for partitions? There are
two types of partitioning indexes:

� Local Index. These indexes have the same structure as their relative
table partitions. Local indexes are preferred because of their more
automated maintenance. A local partition index applies to each parti-
tion.

� Global Index. These indexes are created on partitioned tables but are
not the same structure as the partitioning key. A global index applies
to all partitions in a partitioned table.

Chap18.fm Page 402 Thursday, July 29, 2004 10:13 PM

18.3 Creating Different Table Types 403

Chapter 18

Note: There is a new type of global partition index called a hash
partitioned global index. A hash algorithm allows for an even spread of
index values.

18.3.6.2 CREATE TABLE Partition Syntax

The syntax diagrams listed in this section on Oracle Partitioning do not
contain all available table creation partitioning syntax. There is simply too
much detail to include in this book. Examples will suffice to get you started
syntactically. Refer to Oracle documentation for more information.

Note: CREATE TABLE partition syntax is shown in Figures 18.13 to
18.17. These syntax diagrams are cumulative with respect to annotations.
In other words, annotations present in Figure 18.13 may still apply to Fig-
ure 18.17 but may not be present in Figure 18.17 for the sake of avoiding
diagrams being just too cluttered.

18.3.6.2.1 CREATE TABLE Range Partition Syntax
The following script creates a very simple range partition using a subquery
from the SALES table:

CREATE TABLE SALESRANGE PARTITION BY RANGE(SALE_DATE)(

 PARTITION S2001 VALUES LESS THAN

(TO_DATE('2002-01-01','YYYY-MM-DD'))

, PARTITION S2002 VALUES LESS THAN

(TO_DATE('2003-01-01','YYYY-MM-DD'))

, PARTITION S2003 VALUES LESS THAN(MAXVALUE))

AS SELECT * FROM SALES;

We could also create a partition index where indexing is local to each
partition, but this is a little advanced for this book.

CREATE INDEX LK_SALESRANGE_1 ON SALESRANGE

(SALE_DATE, CONTINENT_ID, COUNTRY_ID) LOCAL;

18.3.6.2.2 CREATE TABLE List Partition Syntax
The following script creates a simple list partition using a subquery from
the SALES table:

Chap18.fm Page 403 Thursday, July 29, 2004 10:13 PM

404 18.3 Creating Different Table Types

CREATE TABLE SALESLIST PARTITION BY LIST (CONTINENT_ID)(

 PARTITION EuropeAndAmerica VALUES (1,2,3,4)

,PARTITION EverywhereElse VALUES (5,6,7,8,9,10))

AS SELECT * FROM SALES;

Figure 18.14 displays the CREATE TABLE list partition index.

18.3.6.2.3 CREATE TABLE Hash Partition Syntax
Once again, another simple example except this time using a hash partition
created as a subquery from the SALES table. (See Figure 18.15 for a dia-
gram of the syntax.)

CREATE TABLE SALESHASH

PARTITION BY HASH (SALES_ID) PARTITIONS 10

Figure 18.13
CREATE TABLE
Syntax for Range

Partitions.

Figure 18.14
CREATE TABLE

Syntax for List
Partitions.

Chap18.fm Page 404 Thursday, July 29, 2004 10:13 PM

18.3 Creating Different Table Types 405

Chapter 18

AS SELECT * FROM SALES;

18.3.6.2.4 CREATE TABLE Range-Hash Partition Syntax
This time we have a simple example but of a range-hash partition or a set of
hash subpartitions contained within each range partition, created as a sub-
query from the SALES table. (See Figure 18.16 for a diagram of the syntax.)

CREATE TABLE SALESRANGEHASH

PARTITION BY RANGE(SALE_DATE)

SUBPARTITION BY HASH(CONTINENT_ID)

(PARTITION S2001 VALUES LESS THAN

 (TO_DATE('2002-01-01','YYYY-MM-DD'))

 , PARTITION S2002 VALUES LESS THAN

 (TO_DATE('2003-01-01','YYYY-MM-DD'))

, PARTITION S2003 VALUES LESS THAN(MAXVALUE))

AS SELECT * FROM SALES;

18.3.6.2.5 CREATE TABLE Range-List Partition Syntax
Finally, the following is an example of a range-list partition or a set of list
subpartitions contained within each range partition, as with all the others,
created as a subquery from the SALES table. (See Figure 18.17 for a dia-
gram of the syntax.)

CREATE TABLE SALESRANGELIST

PARTITION BY RANGE(SALE_DATE) SUBPARTITION BY
LIST(CONTINENT_ID) (

 PARTITION S2001 VALUES LESS THAN (TO_DATE('2002-01-
01','YYYY-MM-DD'))

 (SUBPARTITION S2001EuropeAndAmerica VALUES (1,2,3,4)

Figure 18.15
CREATE TABLE

Syntax for Hash
Partitions.

Chap18.fm Page 405 Thursday, July 29, 2004 10:13 PM

406 18.3 Creating Different Table Types

 , SUBPARTITION S2001EverywhereElse VALUES (5,6,7,8,9,10))

, PARTITION S2002 VALUES LESS THAN (TO_DATE('2003-01-
01','YYYY-MM-DD'))

 (SUBPARTITION S2002EuropeAndAmerica VALUES (1,2,3,4)

 , SUBPARTITION S2002EverywhereElse VALUES (5,6,7,8,9,10))

, PARTITION S2003 VALUES LESS THAN(MAXVALUE)

 (SUBPARTITION S2003EuropeAndAmerica VALUES (1,2,3,4)

 , SUBPARTITION S2003EverywhereElse VALUES (5,6,7,8,9,10)))

AS SELECT * FROM SALES;

That more or less covers everything about creating tables using the
CREATE TABLE command. Now let’s look at changing tables using the
ALTER TABLE command.

Figure 18.16
CREATE TABLE
Syntax for Range-

Hash Partitions.

Figure 18.17
CREATE TABLE
Syntax for Range-

List Partitions.

Chap18.fm Page 406 Thursday, July 29, 2004 10:13 PM

18.4 Changing Table Structure 407

Chapter 18

18.4 Changing Table Structure

As a designer, you will discover that there are many reasons why the struc-
ture of a table must be changed after it is initially designed and created. For
example, a table storing information on credit applications may contain a
column that is no longer used because the application form has been
changed. Occasionally, the datatype of a column was incorrectly specified in
the original design or the column’s name was misspelled.

Many attributes and properties of tables can be changed. We focus on
these types of changes:

� Table Changes. The name of a table can be changed and a table can
be moved. Moving a table is a database administration task because it
is commonly used to relocate tables between different tablespaces.

� Adding or Changing Columns. A column’s datatype, length, or
name can be changed. You can change a column from nullable to not
nullable as well.

� Removing Columns. Removing a column from a table can remove
both or either of the column or its data from existing rows.

� Rebuilding Tables. An Oracle-supplied package in Oracle Database
9i allowed changes that previously required a great deal of effort.
Changes such as reordering the columns in a table, adding columns
between existing columns, and changing the primary key of a table
can be done with this package.

Figure 18.18 is a general syntax diagram for the ALTER TABLE state-
ment. Altering of constraints is covered in Chapter 20. Looking at the com-
plexity of the syntax diagram in Figure 18.18 should tell you why the
syntax is broken into small pieces for the CREATE TABLE command. In
my mind, too much complexity at once simply creates confusion, so it’s eas-
ier to break things into smaller, more manageable pieces.

Note: Constraints are covered in Chapter 20.

Chap18.fm Page 407 Thursday, July 29, 2004 10:13 PM

408 18.4 Changing Table Structure

18.4.1 Adding, Modifying, and Removing Columns

First we create a new table using a subquery on some of the MUSIC schema
tables. The following script creates a table named RELEASESIN2001. The
table has five columns: CD, ARTIST, COUNTRY, SONG, and
RELEASED.

CREATE TABLE RELEASESIN2001 (CD,ARTIST,COUNTRY,SONG,RELEASED)

AS SELECT CD.TITLE AS "CD", A.NAME AS "ARTIST"

, A.COUNTRY AS "COUNTRY", S.TITLE AS "SONG"

, CD.PRESSED_DATE AS RELEASED

FROM MUSICCD CD, CDTRACK T, ARTIST A, SONG S

WHERE CD.PRESSED_DATE BETWEEN '01-JAN-01' AND '31-DEC-01'

AND T.MUSICCD_ID = CD.MUSICCD_ID

AND S.SONG_ID = T.SONG_ID

AND A.ARTIST_ID = S.ARTIST_ID;

Now we need to examine the table we have just created. See the result in
Figure 18.19.

SET LINESIZE 100

DESC RELEASESIN2001

Figure 18.18
ALTER TABLE

syntax.

Chap18.fm Page 408 Thursday, July 29, 2004 10:13 PM

18.4 Changing Table Structure 409

Chapter 18

Let’s add a column to the RELEASESIN2001 table. This column will
contain only the month part of the release date of the CD. See the result in
Figure 18.20.

ALTER TABLE RELEASESIN2001

ADD(RELEASE_MONTH CHAR(10) NOT NULL);

The previous ALTER TABLE command produced an error. The
RELEASE_MONTH column is non-nullable. When you create a new col-
umn in a table that already has rows, the column is created with null values
in all existing rows. We tried to create a column that does not allow null val-
ues (because of the NOT NULL constraint, see Chapter 20). Because there
are rows in the table, the ALTER TABLE statement in Figure 18.20
attempts to add a non-nullable column to a table while placing null values
into that column for all existing rows; this causes the error.

There is, of course, another way to accomplish the task of adding a non-
nullable column to a table. You first add the column, allowing null values.
Then you populate the column with values. And finally, you change the
column to NOT NULL.

We can accomplish all three steps using the following script:

ALTER TABLE RELEASESIN2001 ADD(RELEASE_MONTH CHAR(10));

UPDATE RELEASESIN2001 SET RELEASE_MONTH =

INITCAP(TO_CHAR(RELEASED,'MONTH'));

ALTER TABLE RELEASESIN2001

MODIFY(RELEASE_MONTH CHAR(10) NOT NULL);

Figure 18.19
Describing the

RELEASESIN2001
Table.

Chap18.fm Page 409 Thursday, July 29, 2004 10:13 PM

410 18.4 Changing Table Structure

Note: The CHAR(10) datatype was used for the new RELEASE_MONTH
column because the length of the value to be placed in this column is known,
the longest value being “September.” Using a VARCHAR2(10) datatype
would be misleading. VARCHAR2 datatypes are intended for storing vari-
able-length strings of up to 4,000 characters.

Look at the results, shown in Figure 18.21, by executing these com-
mands. The SELECT DISTINCT statement simply retrieves a month of
release for each individual CD.

SET WRAP OFF HEADING OFF;

DESC RELEASESIN2001;

SELECT DISTINCT CD||' was released in '

||RELEASE_MONTH "Month of Release"

FROM RELEASESIN2001;

We added a column to the RELEASESIN2001 table, and then we put
some data into it and finally modified the column to be non-nullable. To
remove the column added, type the ALTER TABLE command shown as
follows. You can execute the DESC RELEASESIN2001; command again
to make sure that the column RELEASE_MONTH has been dropped.

ALTER TABLE RELEASESIN2001 DROP (RELEASE_MONTH);

Take another look at the ALTER TABLE syntax diagram in Figure
18.18. Here are some points regarding column changes:

Figure 18.20
Cannot Add a
Non-nullable
Column to a

Nonempty Table.

Chap18.fm Page 410 Thursday, July 29, 2004 10:13 PM

18.4 Changing Table Structure 411

Chapter 18

� Columns can be renamed within a table.

� Columns can be set as unused. Setting a column to unused marks the
column and its data as being inaccessible from SQL. The data is not
removed. This option is effective for extremely large tables. Removing
a column from a table requires extensive physical restructuring and
can be very time consuming.

� Unused columns can be dropped. At some stage, unused columns
could occupy excessive physical space. The original motivation for
setting the column unused rather than simply dropping it could be
outweighed by a need for space. In addition, you can render columns
inaccessible right away and then perform the time-consuming task of
removing columns overnight or over the weekend when your users
will not be disturbed.

Note: On a modern global scale, OLTP database downtime might be a rarity.

Opting to set columns as unused, as opposed to dropping them, avoids
data restructuring. What is restructuring of data? Every row occupies physi-
cal space on a disk. This physical space equates to a row length for each row.
This row length can be fixed or variable for each table, depending on col-
umn datatypes. Therefore, variable row lengths are assumed. Restructuring
of data as a result of column length changes or column additions in tables

Figure 18.21
Add a Non-

nullable Column to
a Nonempty Table.

Chap18.fm Page 411 Thursday, July 29, 2004 10:13 PM

412 18.4 Changing Table Structure

requires that data will have to be moved. The performance implications of
restructuring can be enormous.

18.4.2 Rebuilding a Table

It is possible to rebuild a table online using a package introduced in Oracle
Database 9i called DBMS_REDEFINITION. Rebuilding a table online
implies that the table and its rows can still be accessed during the rebuild of
the table. In Oracle Database 8i, rebuilding a table would have required the
following steps:

1. Restrict access to the first table.

2. Copy the first table and its rows into a second table using a CRE-
ATE TABLE AS subquery statement.

3. Make changes to the second table.

4. Drop the first table.

5. Re-create the first table from the altered second table or remove
rows from the first table and insert from the second table.

6. Re-create all constraints, indexes, and object privileges that were
dropped automatically when the first table was dropped.

7. Drop the second temporary table.

From Oracle Database 9i, you can now redefine tables online, as already
stated, by executing procedures in the DBMS_REDEFINITION package
as shown in the following steps:

1. Check to see if you can redefine the table:

EXECUTE DBMS_REDEFINITION.CAN_REDEF_TABLE

('MUSIC','<original table>');

This step must succeed in order to use the package. Certain table struc-
tures, such as tables containing object types, are not yet supported by the
package.

2. Create a copy of the table with the new structure. Use any of the
three methods (i.e., script, subquery, or tools) to create the table
exactly as you want it to appear after the restructuring. This step
creates an interim table.

Chap18.fm Page 412 Thursday, July 29, 2004 10:13 PM

18.4 Changing Table Structure 413

Chapter 18

3. Place the contents of the old table into the interim table:

EXECUTE DBMS_REDEFINITION.START_REDEF_TABLE

('MUSIC','<original table>','<interim table>',NULL);

4. Add constraints you want to the interim table, such as foreign
keys, using the ALTER TABLE command. These will be carried
over to the new, restructured table.

5. Remove the original table, rename the interim table, and clean up
other intermediate structures used behind the scenes:

EXECUTE DBMS_REDEFINITION.FINISH_REDEF_TABLE

('MUSIC','<original table>','<interim table>');

Note: DBMS_REDEFINITION works for purely relational tables only,
not object tables or relational tables containing object columns. Addition-
ally, DBMS_REDEFINITION requires special privileges.

Explicit details and examples are not given for the
DBMS_REDEFINITION package, because it is not precisely Oracle SQL
and perhaps a little beyond the scope of this book.

18.4.3 Renaming a Table

Take another quick peek at the ALTER TABLE syntax diagram in Figure
18.18. Can you see the RENAME TABLE section? Let’s rename the table
called RELEASESIN2001 that we created in the previous section.

ALTER TABLE RELEASESIN2001 RENAME TO NEW_RELEASES_FOR_2001;

Using the following commands, you can see that the table
RELEASESIN2001 no longer exists and has been renamed to
NEW_RELEASES_FOR_2001. See the result in Figure 18.22. The first
DESC command produced an error.

DESC RELEASEIN2001

DESC NEW_RELEASES_FOR_2001

That covers changing table structure. Next we examine dropping and
truncating tables.

Chap18.fm Page 413 Thursday, July 29, 2004 10:13 PM

414 18.5 Dropping a Table

18.5 Dropping a Table

Dropping a table is a very simple command, as shown in the DROP table
command that follows. Figure 18.23 shows syntax for the DROP TABLE
command.

DROP TABLE NEW_RELEASES_FOR_2001;

When you drop a table, the following items are automatically dropped
along with the table:

� Indexes on the table.

� Constraints on the table, including any primary key and foreign key
constraints.

� Object privileges granted on the table (Chapter 23 contains informa-
tion about object privileges and security in general.)

When you drop a table, these items are not dropped, but are marked
invalid and must be corrected later:

� Views containing the table.

� Foreign keys in other tables referencing the dropped table.

� Synonyms referencing the table (see Chapter 22).

� All PL/SQL named procedures, functions, and triggers that reference
the dropped table (see Chapter 24).

Figure 18.22
The Table

RELEASESIN2001
Renamed to

NEW_RELEASES
_IN_2001.

Chap18.fm Page 414 Thursday, July 29, 2004 10:13 PM

18.5 Dropping a Table 415

Chapter 18

Sometimes DBAs will need to clear a table completely. Using the
TRUNCATE command can be a better option than dropping and re-creat-
ing the same table. Dropping and re-creating a table implies using the
DROP TABLE and CREATE TABLE commands. Using the TRUNCATE
command will prevent you from having to re-create all indexes and con-
straints on the table.

18.5.1 Truncating Instead of Dropping Tables

Sometimes you need to remove all the rows in a table without disturbing
the table’s structure. For example, you may have a table that is loaded with
rows from an external file of billing data at the beginning of each month’s
billing cycle. The rows from last month’s billing cycle must be removed
before inserting this month’s data.

There are three ways to remove all the rows in a table: DELETE,
TRUNCATE, or DROP TABLE plus CREATE TABLE. The TRUN-
CATE command has the same effect as deleting all the rows in a table
except that it preserves table structure, unlike the DROP TABLE com-
mand. For large tables, the DELETE command is too slow. Figure 18.24
shows the syntax of the TRUNCATE command.

So let’s compare between the TRUNCATE and DELETE commands
when completely clearing a table’s rows. There are several differences
between using the TRUNCATE command or the DELETE command to
remove all rows in a table. These differences make the TRUNCATE com-
mand much faster but also irreversible.

� TRUNCATE does not produce rollback entries. This means that you
cannot undo from a TRUNCATE command using the ROLLBACK
command. A DELETE command can be undone using rollback.

Figure 18.23
DROP TABLE

Command Syntax.

Chap18.fm Page 415 Thursday, July 29, 2004 10:13 PM

416 18.6 Adding Comments to Tables

� You cannot use a WHERE clause filter with a TRUNCATE com-
mand like you can with a DELETE command. Thus TRUNCATE
will always delete all rows from a table.

You can use the TRUNCATE command to remove all rows from the
table NEW_RELEASES_FOR_2001 as shown following:

TRUNCATE TABLE NEW_RELEASES_FOR_2001;

Note: TRUNCATE is a DDL command. All DDL commands commit
changes automatically, instantly upon completion. TRUNCATE is not
reversible!

Now let’s examine adding comments to tables.

18.6 Adding Comments to Tables

Comments can also be called remarks. As their name implies, comments are
informational text added to either a script or a schema object. Comments
can be included in both SQL and PL/SQL scripts and can be attached to
schema objects.

18.6.1 Adding Comments to Schema Objects

See the syntax diagram in Figure 18.25 for details on adding comments to
database schema objects, such as tables and table columns.

Let’s add some brief comments to some of the tables in the MUSIC
schema.

Figure 18.24
TRUNCATE

Command Syntax.

Chap18.fm Page 416 Thursday, July 29, 2004 10:13 PM

18.6 Adding Comments to Tables 417

Chapter 18

COMMENT ON TABLE ARTIST IS 'Artists';

COMMENT ON TABLE CDTRACK IS 'Tracks';

COMMENT ON TABLE INSTRUMENTATION

IS 'Guest Instruments Played';

COMMENT ON TABLE INSTRUMENT IS 'Musical Instruments';

COMMENT ON TABLE MUSICCD IS 'Audio Compact Disks';

COMMENT ON TABLE SONG IS 'Songs';

COMMENT ON TABLE GUESTAPPEARANCE IS 'Guest Artists';

COMMENT ON TABLE STUDIOTIME IS 'Studio Recording Time';

Comments added to tables can be viewed by querying the
USER_TAB_COMMENTS metadata view. These commands will show
the comments added. Figure 18.26 shows the results.

COLUMN TABLE_NAME FORMAT A32 HEADING "Table";

COLUMN COMMENTS FORMAT A32 HEADING "Comments";

SELECT TABLE_NAME, COMMENTS FROM USER_TAB_COMMENTS

WHERE COMMENTS IS NOT NULL;

Now we add some comments to the columns in a single table. Let’s use
the ARTIST table.

COMMENT ON COLUMN ARTIST.ARTIST_ID

IS 'Artist unique identifier (internally generated)';

COMMENT ON COLUMN ARTIST.NAME IS 'The Artist';

COMMENT ON COLUMN ARTIST.STREET IS 'Street address';

Figure 18.25
Adding Comments

to Database
Schema Objects.

Chap18.fm Page 417 Thursday, July 29, 2004 10:13 PM

418 18.6 Adding Comments to Tables

COMMENT ON COLUMN ARTIST.POBOX IS 'Post office box number';

COMMENT ON COLUMN ARTIST.CITY IS 'City';

COMMENT ON COLUMN ARTIST.STATE_PROVINCE IS 'State';

COMMENT ON COLUMN ARTIST.COUNTRY IS 'Country';

COMMENT ON COLUMN ARTIST.ZIP IS 'Zip code';

COMMENT ON COLUMN ARTIST.EMAIL IS 'Electronic mail address';

COMMENT ON COLUMN ARTIST.INSTRUMENTS

IS 'Artist instruments collection';

Column comments can be viewed through the
USER_COL_COMMENTS metadata dictionary view. The following query
shows the comments added to some ARTIST table columns. See the result in
Figure 18.27.

COLUMN TABLE_NAME FORMAT A16 HEADING "Table";

COLUMN COLUMN_NAME FORMAT A16 HEADING "Column";

COLUMN COMMENTS FORMAT A48 HEADING "Comments";

SELECT TABLE_NAME, COLUMN_NAME, COMMENTS

FROM USER_COL_COMMENTS WHERE TABLE_NAME='ARTIST';

Figure 18.26
Adding Comments

to all of the
MUSIC Schema

Tables.

Chap18.fm Page 418 Thursday, July 29, 2004 10:13 PM

18.6 Adding Comments to Tables 419

Chapter 18

To remove a comment, you simply change the comment to a null-val-
ued string. Remove the comment from the CDTRACK table by typing and
executing the following command:

COMMENT ON TABLE CDTRACK IS '';

18.6.2 Scripting and SQL Code Comments

There are several methods for adding comments to a script, an SQL com-
mand, or a PL/SQL command. A script is a list of multiple SQL or PL/
SQL commands and is usually stored in a file:

� Multiple-Line Comments. Create multiple-line comments by
enclosing a commented area between /* and */ character strings. This
is useful for longer documentation, such as listing the creator of a
script, the date it was created, its purpose, and so on.

� Inline Comments. Precede inline comments with two consecutive
hyphen marks (--). This method marks everything found after the
double hyphens on the same line as a comment. You can comment an
entire line by placing the hyphens at the beginning of the line. You

Figure 18.27
Adding Comments

to the ARTIST
Table.

Chap18.fm Page 419 Thursday, July 29, 2004 10:13 PM

420 18.7 The Recycle Bin

can also add a comment to the end of a line of code by placing the
hyphens after all executable code.

� Single-Line Comments. Precede a line with the REM or REMARK
keyword to mark that line as a comment.

The following query demonstrates all three types of comments. See the
result in Figure 18.28.

REM This query looks for Artists with

REM a letter "a" in their names.

SELECT

/* Ignore this line

and this line

and this line too

*/

NAME

--this is the FROM clause

FROM ARTIST

WHERE NAME LIKE '%a%' --and this is the WHERE clause

;

In a color graphic, the comments would be highlighted in red within
SQL*Plus Worksheet. This makes them much easier to see. I have high-
lighted commented sections by boxing them, as shown in Figure 18.28.

The penultimate section in this chapter on tables will examine the recy-
cle bin, which is newly introduced in Oracle Database 10g.

18.7 The Recycle Bin

Oracle Database 10g introduces a recycle bin. This feature is certainly use-
ful from the perspective of database administration, but it could cause
problems with space and perhaps performance if the recycle bin is not regu-
larly monitored and cleared. There are several changes to various DDL
commands associated with the recycle bin as listed below. The syntax dia-
gram in Figure 18.29 shows generally applicable recycle bin syntax.

� The DROP TABLE command now requires a PURGE option if an
object is not to be retained in the recycle bin.

Chap18.fm Page 420 Thursday, July 29, 2004 10:13 PM

18.8 Metadata Views 421

Chapter 18

� The new PURGE command is required to allow clearing the recycle
bin.

� The Oracle Database 10g SQL Reference Manual states that the
FLASHBACK TABLE command is used to recover a table from the
recycle bin.

This chapter concludes with a short section on database metadata as
directly applicable to this chapter.

18.8 Metadata Views

This section lists metadata views allowing access into the structural details
of tables. Chapter 19 describes the basis and detail of Oracle Database
metadata views.

� USER_TABLES. Table structural definitions.

� USER_TAB_COLS and USER_TAB_COLUMNS. Table column
definitions where USER_TAB_COLS includes hidden columns.

Figure 18.28
Commenting SQL

Code.

Chap18.fm Page 421 Thursday, July 29, 2004 10:13 PM

422 18.8 Metadata Views

� USER_TAB_COMMENTS and USER_COL_COMMENTS.
Comments on table columns.

� USER_UNUSED_COL_TABS. This view shows columns in tables
marked as SET UNUSED and not physically dropped from tables.

� DBA_RECYCLEBIN and USER_RECYCLEBIN. These two
metadata views represent all recycle bins for all users and the specific
connected user recycle bin. The RECYCLEBIN view is often referred
to and is simply a synonym for the USER_RECYCLEBIN view. See
Chapter 22 for details on synonyms.

� USER_OBJECT_TABLES. Object type table structures.

� USER_TAB_PARTITIONS and USER_TAB_SUBPARTITIONS.
Table partition and subpartition structures.

� USER_PART_TABLES. Table partitioning details of tables at the
partition rather than the table level, as is the case for the
USER_TAB_PARTITIONS and USER_TAB_SUBPARTITIONS
views.

Figure 18.29
Syntax for the

Recycle Bin.

Chap18.fm Page 422 Thursday, July 29, 2004 10:13 PM

18.9 Endnotes 423

Chapter 18

The script executed in Figure 18.30 matches all tables and table col-
umns for the currently logged-in user. This gives an example of the power
of metadata views. The script is included in Appendix B.

That covers all we want to cover about tables at present. Chapter 20 cov-
ers constraints and partially returns to the subject of tables. The next chap-
ter looks at views.

18.9 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Figure 18.30
Querying

USER_TABLES
and

USER_TAB_COL
UMNS.

Chap18.fm Page 423 Thursday, July 29, 2004 10:13 PM

This page intentionally left blank

425

19

Views

In this chapter:

�

What is a view?

�

What types of views are available?

�

How do we use views?

�

What are metadata views?

There are various examples of views in other chapters. This chapter
describes views in detail. A view is an overlay onto one or more other data
sources. A data source can be a table, view, or multiples thereof.

19.1 What Is a View?

Imagine that you are working in an insurance company, where part of your
job duties are to help users who have trouble writing queries for reports.
The users have had basic training in writing SQL queries, but they often get
stuck when they must join many tables or use subqueries. If you could set
up the join or subquery ahead of time, then the users would have no trou-
ble adding to it to refine their report requirements. This is one of the best
reasons to create a view.

Note:

This approach can, however, be bad for performance because the
entire query in the view will always be executed, whatever filtering is placed

on a query against a view.

1

A

view

 is a query that is stored in the database and executed to create a
virtual table. A view is given a name, is owned by a schema, and is executed

Chap19.fm Page 425 Thursday, July 29, 2004 10:13 PM

426

19.2

Types and Uses of Views

whenever a query or other SQL command uses the view. The tables refer-
enced in the view’s query are called

base tables

.

Views do not contain any data of their own, and therefore do not
require storage. Views belong to a schema, and you can grant privileges
such as SELECT, INSERT, UPDATE, and DELETE on views, even if the
user does not have any privileges on the base table(s) used in the view.

Views are most often used for security purposes and as an aid to query-
ing the database; however, some views can be used to insert, update, and
delete data in the underlying table.

19.2 Types and Uses of Views

Here are some of the more common reasons for creating a view:

�

Security

. Create a view with a limited subset of the rows and/or col-
umns in a table or tables and give the user permission to use the view,
but not the base tables.

�

Simplicity

. Create a view that combines tables that have complex
relationships so users writing queries do not need to understand the
relationships.

�

Complex Joins

. Sometimes queries cannot be done without great
difficulty unless you create a view in something like a temporary table
first. For example, you can create a view with a GROUP BY clause
that summarizes data. You can join that summary data with other
tables only by using a view.

�

Materialized Views

. This is not a view as such because the data in the
view is physically stored in the materialized view, thus the term

materi-
alized

. Materialized views are a little too specialized for this book.

Regardless of why a view is created, it falls into one of three basic catego-
ries or types of views:

�

Simple View

. A simple view contains a query on a single table. For
example, a view that lists the names, addresses, and zip codes of all
artists in the USA is a simple view because only the ARTIST table is
queried in the view. Simple views can be used to narrow the focus or
visible data window of a specific user from the entire table to a subset

Chap19.fm Page 426 Thursday, July 29, 2004 10:13 PM

19.3

CREATE VIEW Syntax 427

Chapter 19

of the rows or a subset of the columns. The best explanation for this
type of view is security where, for instance, different customers shar-
ing the same database can only view their own data. With a few
restrictions (examined later in this chapter), you can update the table
on which the view is built by updating the view. You can also insert
and delete rows in the base table through the view.

�

Constraint View

. A constraint view can be used to insert a new row
into the underlying table as long as the row would be returned by the
query, or the row exists for the view. For example, if the view only
looks at ARTIST rows in the USA, you could not insert an ARTIST
row where the artist is in France. The same rule applies to rows that
are updated via the constraint view. Most constraint views are based
on simple views, although certain complex views can also be used as
constraint views. Constraint views are most often used as an easy way
to enforce business rules in applications without the application
developer doing any extra coding.

Note:

This approach applies views to ease of application coding rather than
security. Views are possibly more applicable in client-server environments.

Scalability issues may arise for large, very busy OLTP databases.

�

Complex View

. A complex view contains a query on more than one
table. This type of view allows you to wrap complexities inside the
view’s query so they are hidden from the user or application devel-
oper. Complex views are most often used for simplifying end-user
reporting by providing a table-like structure for users to query. For
example, you could create a view that displays the CD title, artist
name, and song title (which are found in three different tables).
Complex views usually cannot be used to insert, update, or delete
rows from the underlying tables.

19.3 CREATE VIEW Syntax

Figure 19.1 shows the syntax of the CREATE VIEW statement. The same
syntax applies to all types of views.

The next three sections look at how to create each of the three types of
views: simple, constraint, and complex.

Chap19.fm Page 427 Thursday, July 29, 2004 10:13 PM

428

19.3

CREATE VIEW Syntax

19.3.1 Creating Simple Views

A simple view is the easiest type of view to create.

CREATE VIEW USARTISTS AS

SELECT ARTIST_ID, NAME, CITY, STATE_PROVINCE, ZIP

FROM ARTIST WHERE COUNTRY = 'USA';

The view we have just created can be queried as if it were a table. When
you execute a query on a view, the entire query contained within the view
definition is executed to retrieve the columns and rows of the subquery,
Then your query is applied to the view and the final results are displayed.
Query the view by executing these format commands and query. Figure
19.2 shows the result.

COLUMN NAME FORMAT A20

COLUMN CITY FORMAT A15

COLUMN STATE_PROVINCE FORMAT A10

SELECT * FROM USARTISTS;

You can use a view in a join as if it were another table. For example, you
can list all U.S. artist names and their song titles with this query:

SELECT NAME, TITLE FROM USARTISTS NATURAL JOIN SONG

ORDER BY 1,2;

Figure 19.1

CREATE VIEW
Syntax Is Fairly

Simple.

Chap19.fm Page 428 Thursday, July 29, 2004 10:13 PM

19.3

CREATE VIEW Syntax 429

Chapter 19

Now let’s take the simple view and add a constraint clause. The result
will be a constraint view.

19.3.2 Creating Constraint Views

A simple view usually allows you to update data in the underlying table
through the view. You will examine this capability later in this chapter.
There is a problem that sometimes crops up when using views to insert or
update data: You can create a record that does not fit the view’s query and
therefore does not appear in the view. For example, imagine that you use
the USARTISTS view to update the country from USA to Canada for one
of the artists. You want to check the results, but querying the view no
longer displays the record. It is as if the record disappeared after you
updated it. Obviously, the record is in the table and simply is not displayed
in the view. However, this fact may not be obvious to other users who are
not familiar with the query that is used by the view.

To prevent users from updating or inserting records not fitting within
the view, you create a constraint view. Another good reason to use a con-
straint view is that it provides a form of security. Views are frequently used
to limit a user’s access to certain rows and columns within the base table.
The user should not be able to update rows not appearing in the view, but

Figure 19.2

Querying a View Is
Just Like Querying

a Table.

Chap19.fm Page 429 Thursday, July 29, 2004 10:13 PM

430

19.3

CREATE VIEW Syntax

without the constraint clause, this could happen and could be a violation of
your business rules.

Create a constraint view that looks like the simple view, except it
includes the WITH CHECK OPTION clause, by running the following
command:

CREATE VIEW CONSTRAINT_USARTISTS AS

SELECT ARTIST_ID, NAME, CITY, STATE_PROVINCE, ZIP, COUNTRY

FROM ARTIST WHERE COUNTRY = 'USA'

WITH CHECK OPTION CONSTRAINT AMERICANARTIST;

You can leave out the “CONSTRAINT AMERICANARTIST” portion
of the constraint clause. If you omit it, Oracle Database 10

g

 will assign a
system-generated name for the constraint. Next we insert a row for a Mexi-
can artist:

INSERT INTO CONSTRAINT_USARTISTS VALUES

(ARTIST_ID_SEQ.NEXTVAL, 'Chrystal Perez',

'Mexico City', NULL, NULL, 'Mexico');

Figure 19.3 shows the result. The error message tells you that the row to
be inserted has failed to comply with the WHERE clause of the view.

You would get the same error if you tried to update one of the rows in
the view with a country other than USA.

Now, let’s look at some more interesting things you can do using com-
plex views.

19.3.3 Creating Complex Views

Complex views have more than one base table. Complex views include a
wide variety of queries. Two common ones are views with joins and views
with inline subqueries.

19.3.3.1 Views with Joins

Let’s dive right in by creating a complex view that displays artist guest
appearances and the instrument they played.

CREATE VIEW INSTRUMENTS(ARTIST_NAME, INSTRUMENT) AS

Chap19.fm Page 430 Thursday, July 29, 2004 10:13 PM

19.3

CREATE VIEW Syntax 431

Chapter 19

 SELECT A.NAME, I.NAME

 FROM ARTIST A JOIN INSTRUMENTATION IA

 ON (IA.GUESTARTIST_ID = A.ARTIST_ID)

 JOIN INSTRUMENT I ON (IA.INSTRUMENT_ID = I.INSTRUMENT_ID);

Now let’s look at the rows returned from the view issuing the following
query.

SELECT * FROM INSTRUMENTS;

The view joins three tables and displays two columns of information.
Notice the list of columns just after the view name. This is needed for the
view because the two columns in the SELECT clause happen to have the
same name. By listing different names for each of the two columns, the
view can be created.

Here is a view that summarizes an artist’s billing for studio time.

CREATE VIEW ARTIST_MONTHLY_STATEMENT AS

SELECT ARTIST_ID, NAME

, TO_CHAR(DUE_DATE,'MON/YY') BILLING_MONTH

, SUM(AMOUNT_CHARGED) DUE, SUM(AMOUNT_PAID) PAID

, SUM(AMOUNT_CHARGED) - SUM(AMOUNT_PAID) BALANCE

FROM ARTIST NATURAL JOIN STUDIOTIME

GROUP BY ARTIST_ID, NAME, TO_CHAR(DUE_DATE,'MON/YY');

Figure 19.3

Constraint Views
Require Inserted

Rows to Fit Inside
the View.

Chap19.fm Page 431 Thursday, July 29, 2004 10:13 PM

432

19.3

CREATE VIEW Syntax

This view shows how you can use grouping and functions in a view. In
addition, notice that column aliases are used as a way to give the columns
more appropriate names rather than using a column list in front of the
query. Expressions, such as the columns with functions or group functions
on them, must be given a valid name when the view is created.

Imagine that you need to know which artists have balances over $500
for any month after 2000. The following query simplifies the work required
by selecting from a view:

SELECT NAME, BALANCE, BILLING_MONTH

FROM ARTIST_MONTHLY_STATEMENT

WHERE BALANCE > 500

AND TO_DATE(BILLING_MONTH, 'MON/YY') > '31-DEC-2000'

ORDER BY BALANCE DESC;

Figure 19.4 shows the result of this query. The BILLING_MONTH
column is converted to a date in the WHERE clause. This is needed
because it was converted to a character field in the view. If you did not con-
vert it to a date, it would be compared as a character field (alphabetically)
when evaluating the WHERE clause.

19.3.3.2 Inline Subquery Views

Another example of a complex view is one that contains a subquery. Sub-
queries can be used in the SELECT, FROM, and WHERE clauses of a
query. A view based on a query with a subquery in any of these SQL com-
mand clause locations is valid.

CREATE VIEW CD_SONGS AS

SELECT M.MUSICCD_ID, M.TITLE, T.TRACK_SEQ_NO,

(SELECT TITLE FROM SONG S

 WHERE T.SONG_ID = S.SONG_ID) SONG_TITLE

FROM MUSICCD M JOIN CDTRACK T

ON (M.MUSICCD_ID = T.MUSICCD_ID);

The following script queries the view. Figure 19.5 shows the result.

COLUMN TITLE FORMAT A25

COLUMN SONG_TITLE FORMAT A40

SELECT TITLE, TRACK_SEQ_NO, SONG_TITLE FROM CD_SONGS

Chap19.fm Page 432 Thursday, July 29, 2004 10:13 PM

19.4

Changing and Dropping Views 433

Chapter 19

WHERE TITLE='Soak Up the Sun' ORDER BY 1,2;

19.4 Changing and Dropping Views

Syntax for changing and dropping views is as shown in Figure 19.6. Note
that nearly all syntax for the ALTER VIEW command applies to con-
straints. Constraints are covered in Chapter 20.

What happens if you drop a table that is used in a view? The view
becomes marked invalid and must be repaired.

Sometimes you may have a new requirement from users that calls for a
change in a view. Views are much easier to change than tables because they
are generally nothing more than a stored query. Revise the stored query, and
you have revised the view!

To change a view, you revise the query and use the OR REPLACE
option in the CREATE VIEW command, as in CREATE OR REPLACE
VIEW. This assumes, of course, that constraint changes are not required.

Figure 19.4

A Complex Query
Is Simplified with a

View.

Chap19.fm Page 433 Thursday, July 29, 2004 10:13 PM

434

19.4

Changing and Dropping Views

The next view combines the SONG, CDTRACK, and MUSICCD tables
to show the title of the CD along with details about each song on the CD.

CREATE VIEW CD_DETAILS AS

SELECT CD.TITLE CDTITLE, CD.PRESSED_DATE

, CT.TRACK_SEQ_NO ,S.TITLE SONGTITLE, A.NAME

, S.PLAYING_TIME

FROM MUSICCD CD, CDTRACK CT, SONG S, ARTIST A

WHERE CD.MUSICCD_ID = CT.MUSICCD_ID

AND CT.SONG_ID = S.SONG_ID

AND S.ARTIST_ID = A.ARTIST_ID

ORDER BY 1, 3;

This view has column aliases for the two TITLE columns (one in the
MUSICCD table and the other in the SONG table); it has an ORDER BY
clause; and it uses Oracle’s proprietary syntax for the join.

Figure 19.5

Views Can
Contain

Subqueries of Their
Own.

Figure 19.6

ALTER VIEW and
DROP VIEW

Syntax.

Chap19.fm Page 434 Thursday, July 29, 2004 10:13 PM

19.5

Working with Views 435

Chapter 19

Imagine that the users who wanted this view for reporting asked you to
add the playing time of the CD into the view. Revise the view by making
changes requested to the original CREATE VIEW command and using
CREATE OR REPLACE instead of CREATE. The following script high-
lights changes:

CREATE

OR REPLACE

 VIEW CD_DETAILS AS

SELECT CD.TITLE CDTITLE, CD.PRESSED_DATE

,

CD.PLAYING_TIME CD_TIME

, CT.TRACK_SEQ_NO

, S.TITLE SONGTITLE, A.NAME, S.PLAYING_TIME

FROM MUSICCD CD, CDTRACK CT, SONG S, ARTIST A

WHERE CD.MUSICCD_ID = CT.MUSICCD_ID

AND CT.SONG_ID = S.SONG_ID

AND S.ARTIST_ID = A.ARTIST_ID

ORDER BY 1, 3;

Note:

You can create a brand-new view using CREATE OR REPLACE

VIEW instead of CREATE VIEW.

To drop a view, simply use the DROP VIEW command. The
CD_DETAILS view can be dropped executing the following command:

DROP VIEW CD_DETAILS;

Dropping a view does not affect the base table or tables referenced by
the view.

19.5 Working with Views

Most views are used to query the base tables on which they are built. Some
views are used to insert, update, and delete data in the base tables. The next
sections show you how to query views and how to make changes to data
using views. Following this section, we deal with Oracle Database metadata
data dictionary views.

19.5.1 Querying a View

A query on a view looks just like a query on a table. Behind the scenes,
however, the Oracle Database 10

g

 Optimizer merges the query that defines

Chap19.fm Page 435 Thursday, July 29, 2004 10:13 PM

436

19.5

Working with Views

the view with the query that uses the view, into a single query. This query is
parsed and stored in the shared SQL memory. Then the query is executed
and the data retrieved. Figure 19.7 illustrates this activity.

Let’s try some examples. Create the following view joining three tables
to list a song and the artist, including any artists making guest appearances.

CREATE VIEW ALLSONGS AS

SELECT S.TITLE, A1.NAME ARTIST, GA.GUESTARTIST_ID

FROM SONG S JOIN ARTIST A1

ON (S.ARTIST_ID = A1.ARTIST_ID)

LEFT OUTER JOIN GUESTAPPEARANCE GA

ON (S.SONG_ID = GA.SONG_ID);

We would like to see the name of the artist making a guest appearance.
The following query joins the view with the ARTIST table, which would
become a very complex query without the view. The complexity is simply
passed on to Oracle Database, potentially hurting performance in larger,
busier environments. Figure 19.8 shows part of the result.

SELECT V.ARTIST, V.TITLE, A.NAME GUEST

FROM ALLSONGS V LEFT OUTER JOIN ARTIST A

ON (V.GUESTARTIST_ID = A.ARTIST_ID)

ORDER BY ARTIST;

Figure 19.7

A Query
Combined with the

View’s Query.

Chap19.fm Page 436 Thursday, July 29, 2004 10:13 PM

19.5 Working with Views 437

Chapter 19

19.5.2 Views and DML Commands

Although views have no data of their own, it is possible in certain cases to
use views to modify data in the base table that is queried by the view. This
can be very useful for tables for which the user does not have permission to
access the base table but has access to a view.

Oracle Database has rules that it tests against any view to determine
whether it is inherently updatable. An inherently updatable view is one in
which some or all of the view’s columns pass the test and can be used to update
the base table. Some of the rules for simple views include the following:

� The view must not be created with the WITH READ ONLY clause.

� The view cannot contain GROUP BY, group functions, ORDER BY,
or DISTINCT.

� The view cannot contain a subquery in the SELECT clause.

� The view must include the primary key and all NOT NULL col-
umns, unless there are provisions (such as default values or a trigger)
that plug values into the NOT NULL columns.

Figure 19.8
Joining Four Tables
Is Easy When Three

Are Joined in a
View.

Chap19.fm Page 437 Thursday, July 29, 2004 10:13 PM

438 19.5 Working with Views

The data dictionary table USER_UPDATABLE_COLUMNS lists
each view and its columns, specifying whether the column can be refer-
enced when updating, inserting, or deleting through the view. Execute
this query to see which views are updatable, including their respective
changeable columns. The query is shown in Figure 19.9, including the
page size altered to show the CONSTRAINT_USARTISTS view and
headings in the same image.

COLUMN COLUMN_NAME FORMAT A20

SELECT TABLE_NAME, COLUMN_NAME, UPDATABLE, INSERTABLE

, DELETABLE

FROM USER_UPDATABLE_COLUMNS U

WHERE EXISTS (SELECT VIEW_NAME FROM USER_VIEWS V

 WHERE U.TABLE_NAME = V.VIEW_NAME)

ORDER BY 1, 2;

Note: The complete syntax of the INSERT, UPDATE, and DELETE com-
mands can be found in Chapter 15. The same syntax applies to both views
and tables.

Figure 19.9
The

CONSTRAINT_
USARTISTS View

Can Be Updated,
Inserted into, and

Deleted from.

Chap19.fm Page 438 Thursday, July 29, 2004 10:13 PM

19.5 Working with Views 439

Chapter 19

Now let’s continue and perform some inserts, updates, and deletes using
the views USARTISTS and CONSTRAINT_USARTISTS created earlier
in the chapter. Let’s say you have a new artist who will be using your studio
to record her latest song. The following command will insert a row into the
ARTIST table using the CONSTRAINT_USARTISTS view:

INSERT INTO CONSTRAINT_USARTISTS VALUES

(ARTIST_ID_SEQ.NEXTVAL, 'Judy Madrid', 'Madison'

, 'WI','53887', 'USA');

When inserting or updating rows using a constraint view, like the
CONSTRAINT_USARTISTS view, the new or modified row must still fit
within the view. In this case, because the WHERE clause of the view is
WHERE COUNTRY='USA', that means the row’s COUNTRY column
must be USA.

Here is another important point about inserting data with a view: You
can only insert values into the columns listed in the view. All other columns
will be NULL or assigned a default value. In this example, the following
columns will be NULL in the newly inserted row: STREET, POBOX,
EMAIL, and INSTRUMENTS.

Now try updating the row just inserted using the USARTISTS view:

UPDATE USARTISTS SET ZIP = '53200'

WHERE NAME = 'Judy Madrid';

Finally, delete the row using the CONSTRAINT_USARTISTS view:

DELETE FROM CONSTRAINT_USARTISTS

WHERE NAME = 'Judy Madrid';

Views that have columns made up of functions or other expressions can
still be used to modify the base table. This view can illustrate that point:

CREATE OR REPLACE VIEW SONG_VIEW AS

SELECT SONG_ID, ARTIST_ID, TITLE, RECORDING_DATE

, SUBSTR(PLAYING_TIME,1,1) MINUTES

, SUBSTR(PLAYING_TIME,3) SECONDS

FROM SONG;

Chap19.fm Page 439 Thursday, July 29, 2004 10:13 PM

440 19.5 Working with Views

The last two columns break up the PLAYING_TIME column into min-
utes and seconds. If you try to insert a new row using those last two col-
umns, an error will be returned (ORA-01733: virtual column not allowed
here). Nonetheless, you can still use the other columns to insert a row as in
the following script:

INSERT INTO SONG_VIEW (SONG_ID, ARTIST_ID, TITLE

, RECORDING_DATE)

VALUES (SONG_ID_SEQ.NEXTVAL,

(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

, 'Happy Birthday','15-JUL-02');

Notice that a list of columns was included in the INSERT command to
specify which of the view’s columns to use in the insert.

Many simple views are capable of being used to modify data in the base
table. Sometimes, this is not the intent of the view. To ensure that the view
is never used for updating, you can create it with the WITH READ ONLY
clause as in the following example:

CREATE OR REPLACE VIEW OLDMUSIC_VIEW AS

SELECT MUSICCD_ID, TITLE CDNAME

, PRESSED_DATE, PLAYING_TIME

FROM MUSICCD

WHERE PRESSED_DATE < '01-JUL-01'

WITH READ ONLY;

Simple views and simple constraint views are really not too much differ-
ent from inserting into the base table itself, simply having more limitations.

19.5.2.1 DML and Views with Joins

Modifying data through a view that joins two tables is tricky. In addition to
all the rules that Oracle Database 10g imposes on simple views, there are
still more rules for views with joins. The most important ones to know are
as follows:

� All the rules for simple views.

� The primary key column(s) must be included for one of the tables.

Chap19.fm Page 440 Thursday, July 29, 2004 10:13 PM

19.6 Metadata Views 441

Chapter 19

� If there is no primary key, all the columns of a unique index on one
of the tables must be included.

The next view is an example of an updatable join view:

CREATE OR REPLACE VIEW STUDIOARTISTS AS

SELECT S.STUDIOTIME_ID, A.NAME, S.ARTIST_ID

, S.SESSION_DATE, MINUTES_USED, AMOUNT_CHARGED

FROM STUDIOTIME S JOIN ARTIST A

ON (A.ARTIST_ID = S.ARTIST_ID);

The columns from the STUDIOTIME table are updatable. The follow-
ing command will insert a new row:

INSERT INTO STUDIOARTISTS (STUDIOTIME_ID, ARTIST_ID

, SESSION_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL

, (SELECT ARTIST_ID FROM ARTIST

 WHERE NAME = 'Barry Manilow'), '15-MAY-02', 180);

The view can be updated with a script such as this one:

UPDATE STUDIOARTISTS SET AMOUNT_CHARGED =

MINUTES_USED*6

WHERE AMOUNT_CHARGED IS NULL;

And finally, delete using the view:

DELETE FROM STUDIOARTISTS WHERE MINUTES_USED=180;

19.6 Metadata Views

� USER_VIEWS. Describes view and view column details.

� USER_UPDATABLE_COLUMN. Joins view columns, which can
be updated or can have underlying table column values changed
using DML commands.

Chap19.fm Page 441 Thursday, July 29, 2004 10:13 PM

442 19.7 Data Dictionary Views (Metadata)

19.7 Data Dictionary Views (Metadata)

Metadata views applicable for specific chapters are presented at the end of
those chapters. This section describes what the metadata views are. Oracle
Database contains a set of predefined views that contain information about
tables, views, users, storage, and more.

There are two sets of metadata views. More distinctly, there are metadata
views and performance views. The metadata views look at database dictio-
nary data or data about the data. The data about the data are the tables and
their columns, indexes, clusters, and so on. The meaning of the word meta-
data is data describing data. A database’s metadata is all the objects created in
a database to contain your actual data about your business and applications.

In general, metadata views are named as ALL_name, DBA_name, and
USER_name. ALL_ implies all users, DBA_ implies only accessible by a
DBA user, and USER_ implies the current user. Performance views are
generally named as V$name. V$ views store and track all types of perfor-
mance statistics and data in the database. Performance views relate to tun-
ing an Oracle Database2 and are largely out of the scope for this book on
Oracle SQL.

All of the metadata views overlay and access the metadata from system
tables stored either in the SYS, SYSTEM, or SYSAUX schemas. The data-
base system tables are complex and can sometimes have cryptic names and
even more cryptic column names.

As a DBA or programmer, you need some of this information. How do
you find the names of users or tables in the database, for example? Oracle
Database provides a set of views that are easily accessible, with readable view
names and column names. These views are called, collectively, the data dic-
tionary views.

So metadata or data dictionary views can be roughly divided into four
groups, based on the prefix of the name of the view:

� DBA_name. These require special privileges to view. They generally
give information covering the entire database system. For example,
DBA_TABLES lists all tables created by any user in the database.
DBA_name views require DBA privileges to access.

� USER_name. These are accessible by any user. They give informa-
tion about the user and objects owned by the user, the currently con-
nected user. For example, USER_TABLES lists all tables created by

Chap19.fm Page 442 Thursday, July 29, 2004 10:13 PM

19.7 Data Dictionary Views (Metadata) 443

Chapter 19

the current user. USER_name views access information available to
and about the currently logged-in user; in our case, the user is the
same as our schema, MUSIC.

� ALL_name. These are accessible by any user and show information
about any object that the current user either owns or has privileges to
use. For example, ALL_TABLES lists all tables created by the user
plus those created by other users where the user has received permis-
sion to access the table.

� Other Views. These have names that do not follow the naming pat-
terns above. Some are for the DBA and others are for all users. Some
of these views are holdovers from previous releases of the database
and will gradually be removed in future releases. These views can also
cover obscure optional Oracle add-on packages or be newly devel-
oped and not yet completely incorporated.

Let’s look at some queries. One of the most important metadata and
performance view queries is a query that lists all of the metadata and perfor-
mance views:

SELECT TABLE_NAME FROM DICTIONARY ORDER BY TABLE_NAME;

If I wanted to show all metadata views for the current logged-in user, I
could use a query such as this one:

SELECT TABLE_NAME FROM DICTIONARY

WHERE TABLE_NAME LIKE 'USER_%' ORDER BY TABLE_NAME;

Now let’s look at some specific examples. The following query lists all of
the tables owned by the currently connected user.

SELECT TABLE_NAME FROM USER_TABLES;

Next we can find out how many other tables the currently logged-in user
has permission to see. Note that this query uses the ALL_TABLES view to
find all accessible tables, not just tables owned by the current user.

SELECT OWNER, TABLE_NAME FROM ALL_TABLES

WHERE OWNER <> USER;

Chap19.fm Page 443 Thursday, July 29, 2004 10:13 PM

444 19.7 Data Dictionary Views (Metadata)

Figure 19.10 shows the result. Most of the owners you see here are
users created by Oracle Database 10g for special functions during the
installation of the database. Similarly, we could use both the
USER_VIEWS and ALL_VIEWS metadata views to find information on
views as opposed to tables.

Another interesting metadata view is the USER_OBJECTS view. Figure
19.11 shows the result of the following query:

COL OBJECT_NAME FORMAT A16 HEADING "Object"

COL OBJECT_TYPE FORMAT A24 HEADING "Type"

SELECT OBJECT_NAME, OBJECT_TYPE, STATUS

FROM USER_OBJECTS ORDER BY 1,2;

In the current release of Oracle Database 10g, the query SELECT
COUNT(*) FROM DICTIONARY yields a count of 600 data dictionary
metadata and performance views. As you work with Oracle Database, you
will learn more about at least some of these views.

This chapter has described views, changing views, and using views to
make changes to a database. Additionally, the meaning and structure of

Figure 19.10
The USER

Pseudocolumn Was
Used to Eliminate

Tables You Own
from the Query

Results.

Chap19.fm Page 444 Thursday, July 29, 2004 10:13 PM

19.8 Endnotes 445

Chapter 19

Oracle Database metadata data dictionary views was also discussed. The
next chapter examines constraints, which can be placed on both tables and
views.

19.8 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

2. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Figure 19.11
The

USER_OBJECTS
Metadata View.

Chap19.fm Page 445 Thursday, July 29, 2004 10:13 PM

This page intentionally left blank

447

20

Constraints

In this chapter:

�

What is Referential Integrity?

�

What are constraints and how are they used to implement Referential
Integrity?

�

How are constraints placed into tables?

�

What else can constraints do?

This chapter shows you how to define constraints on tables. Constraints
perform validation on data both within and between tables and, to a lesser
degree, with views.

Primary and foreign key constraints are probably the most significant of
constraints. These constraints can be used to enforce the validity (integrity)
of relationships (references) between rows in tables (entities). A primary key
reference is placed on a unique identifying column in a superset entity. A
foreign key is placed on a subset table, which contains a copy of the primary
key value from the superset entity. Oracle uses primary and foreign key con-
straints to validate values between superset and subset tables. Referential
Integrity can be enforced using constraints or triggers, or can be coded at
the application level. My personal recommendation is to use constraints.

Note:

A superset contains a subset. The superset contains a primary key and
the subset contains a foreign key. A foreign key can have many iterations of

a primary key.

So let’s move on to looking at constraints in detail.

Chap20.fm Page 447 Thursday, July 29, 2004 10:14 PM

448

20.1

What Are Constraints?

20.1 What Are Constraints?

A

constraint

, as the word implies, constrains or applies a rule to an object or
a part of an object. In Oracle Database 10

g

, constraints are used to restrict
values in tables or make validation checks on one or more columns in a
table, or check values between columns in different tables.

20.1.1 Types and Uses of Constraints

There are two levels of constraints you can place on relational tables:

�

Inline Constraint

. A constraint that applies to an individual column
in a table.

�

Out-of-Line Constraint

. A constraint that applies to a table as a
whole or to multiple columns in a table.

The six types of constraints are listed as follows. Some of these are
always inline constraints, whereas others can be either inline or out-of-line,
depending on how they are defined.

�

NOT NULL

. This constraint is always an inline constraint and will
produce an error if no value is placed into this column when you
insert or update a row in the table.

�

Unique

. Enforces uniqueness on a column value and can be inline or
out of line. When you create a unique constraint, Oracle Database
10

g

 will create an internal unique index if no index is available to
enforce the constraint. Whenever you insert a row or update a row,
the value in the column belonging to a unique constraint is verified as
being different from any other value in the column for every other
row in the table. You can define a unique constraint that checks more
than one column. In this case, the value of both columns combined
must be unique.

Note:

A unique column does not have to be declared as NOT NULL, but
it should be. Null values in a column are considered identical by the unique
constraint, so allowing unique constraints to be nullable is probably poor

design practice.

Chap20.fm Page 448 Thursday, July 29, 2004 10:14 PM

20.2

Managing Constraints 449

Chapter 20

�

Check

. Applies a condition to a column value where that value must
evaluate to TRUE and can be inline or out-of-line. A condition is of
the form

expression condition expression

,

such as

columnA = 5

.
See Chapter 7 for details on comparison conditions and how to con-
struct conditions.

�

Primary Key

. A primary key defines the column or set of columns
that uniquely identify each row in a table. The primary key can be
referenced by and validated against foreign keys in other tables (or
in a different column or set of columns in the same table). It can be
defined either inline (if it uses one column) or out-of-line (if it uses
one or more columns). Because a primary key uniquely identifies a
superset entity relationship, it must be unique. Therefore, a primary
key automatically contains a unique constraint. Additionally, a pri-
mary key cannot be a null value because null values are not
included in indexes. Indexes are covered in Chapter 21. Remember,
a primary key inherently has both a unique constraint and a NOT
NULL constraint.

�

Foreign Key

. A foreign key defines the relationship between the par-
ent (superset) table and the child (subset) table. The foreign key
resides in the child table. A foreign key must reference the primary
key (or a unique key) of the referenced table. A foreign key constraint
requires that the column value in the foreign key must be identical to
a primary key value in the referenced table. Like the primary and
unique key constraints, a foreign key can use one column or a set of
columns. A foreign key constraint must be defined out-of-line if it
contains more than a single column and can be either inline or out-
of-line if it uses a single column.

�

REF

. A REF constraint is a reference between an object and an
object type.

20.2 Managing Constraints

A constraint can be applied to an individual column in a table or, in some
cases, to a table as a whole. Constraints can even be used in views. An indi-
vidual column constraint is known as an inline constraint because it only
applies to that specific column. A table-level constraint is known as an out-
of-line constraint because it applies to the table as a whole.

So how do we create and maintain constraints? Constraints can be
applied and used in the CREATE TABLE, CREATE VIEW, ALTER

Chap20.fm Page 449 Thursday, July 29, 2004 10:14 PM

450

20.2

Managing Constraints

TABLE, and ALTER VIEW commands. CREATE TABLE and CREATE
VIEW commands obviously only allow constraint creation. The ALTER
TABLE and ALTER VIEW commands allow creation of constraints on
existing tables and views, plus modification of existing constraints. Let’s
examine the syntax of each command in detail. This chapter is intended to
focus on constraints only and thus syntax for the aforementioned com-
mands is in addition to that in Chapters 18 and 19.

20.2.1 CREATE TABLE Syntax

Let’s begin with inline and out-of-line constraints. As you can see clearly in
Figure 20.1, an inline constraint is attached to a column, whereas an out-
of-line constraint can be pictured as being a column in itself.

Getting a little more complicated, Figure 20.2 shows the details of CRE-
ATE TABLE syntax for inline constraints, out-of-line constraints, and con-
straint states.

Note:

Constraint states are covered in detail later in this chapter under the

section on the ALTER TABLE command.

Let’s look at some examples. Constraints can be added to tables when
tables are created using the CREATE TABLE statement. Let’s experiment
with different types of constraints.

Figure 20.1

CREATE TABLE
with Constraints

Syntax.

Chap20.fm Page 450 Thursday, July 29, 2004 10:14 PM

20.2

Managing Constraints 451

Chapter 20

20.2.1.1 Primary Key and Unique Constraints

A unique constraint forces a column value to be unique within all rows of a
table. A primary key is forced to be a unique value and can reference foreign
key column values in subset tables.

Let’s start by creating a table similar to the ARTIST table in the MUSIC
schema, using inline constraints.

CREATE TABLE ARTISTS(

 ARTIST_ID NUMBER

PRIMARY KEY

, NAME VARCHAR2(32) NOT NULL

UNIQUE

);

Notice how the NAME column has the NOT NULL constraint
whereas the primary key column, ARTIST_ID, does not. The primary key
column has an inherent NOT NULL constraint. The primary key con-
straint has no name and is defined inline (for one specific column). The
unique constraint on the NAME column is also defined inline and has no
name. When no name is specified for the constraint, Oracle Database 10

g

will assign a name of its own.

Figure 20.2

CREATE TABLE
with Detailed

Constraints Syntax.

Chap20.fm Page 451 Thursday, July 29, 2004 10:14 PM

452

20.2

Managing Constraints

The main difference between the primary key constraint and a unique
constraint is that a primary key can be linked to foreign keys in subset tables
where the foreign key value is the same as the primary key. Additionally, a
unique constraint allows null values. Most of the time, it makes sense to add
NOT NULL to the unique column because this ensures that all values in
the column will be added to the constraint’s index. Indexes make queries on
the column run faster. Occasionally, a unique column can be left nullable
(by omitting the NOT NULL constraint). For example, a table may carry a
unique column containing the old inventory number for a store item. All
items have been assigned a new inventory number, which is stored in the
primary key. New items have a new inventory number (in the primary key
column) but have null values in the old inventory number column.

20.2.1.2 Foreign Key Constraints

Now let’s create a table similar to the SONG table in the MUSIC schema.
This new table will have a foreign key. The foreign key references the
ARTIST_ID column in the ARTISTS table. The ARTISTS table was cre-
ated in the previous section as a copy of the original ARTIST table.

CREATE TABLE SONGS(

 SONG_ID NUMBER PRIMARY KEY

, ARTIST_ID NUMBER NOT NULL

REFERENCES ARTISTS (ARTIST_ID)

, TITLE VARCHAR2(64) NOT NULL UNIQUE);

In the new SONGS table, we have used only inline constraints and have
allowed Oracle Database 10

g

 to name the constraints. The constraints cre-
ated are as follows:

�

A primary key constraint on the SONG_ID column, indicating that
every song must have a unique value as its SONG_ID.

�

A foreign key constraint and a NOT NULL constraint on the
ARTIST_ID column, indicating that an ARTIST_ID value in this
table must have a matching value found in the ART-
ISTS.ARTIST_ID column.

�

A unique constraint and a NOT NULL constraint on the TITLE col-
umn, indicating that every song must have a title and the title must
be unique compared to all other songs in the table.

Chap20.fm Page 452 Thursday, July 29, 2004 10:14 PM

20.2

Managing Constraints 453

Chapter 20

The foreign key constraint must name the table referenced by the for-
eign key. Optionally, it can name the primary key or unique key column
referenced as well. A foreign key constraint created inline is not allowed to
have a name you define. Out-of-line foreign key constraints can be named.

Notice how this foreign key column is declared as NOT NULL. It is
possible to declare a foreign key column as being nullable, but this require-
ment is rare in reality unless your data model uses one-to-many or zero-
entity relationships. This type of relationship is common in multidimen-
sional, multiple-inheritance object structures and sometimes in data ware-
house fact tables (e.g., MUSIC schema SALES table). As far as objects are
concerned, Oracle Database is a relational database, not an object database.
The ARTIST_ID foreign key column will automate validation between the
ARTIST_ID columns in both of the new ARTISTS and SONGS tables.

20.2.1.2.1 Out-of-Line Primary and Foreign Keys

We have used inline, column-level constraints in the previous two table cre-
ation scripts for the ARTISTS and SONGS tables. We could have used out-
of-line or table-level constraints for all but the NOT NULL constraints in
these tables. Table-level constraints are applied to the table as a whole after
all columns have been created. For the ARTISTS and SONGS tables, it is
not necessary to use table-level constraints.

Situations where table-level constraints are required can involve con-
straints created on multiple columns. The CDTRACK table in the MUSIC
schema is a perfect example. Let’s create a copy of the CDTRACK table
called CDTRACKS.

CREATE TABLE CDTRACKS(

 MUSICCD_ID NUMBER NOT NULL

, SONG_ID NUMBER NOT NULL

, TRACK_SEQ_NO NUMBER NOT NULL

,

CONSTRAINT

 PKCDTRACKS

PRIMARY KEY

 (MUSICCD_ID,SONG_ID)

,

CONSTRAINT

FKCDTRACKS_SONG

FOREIGN KEY

 (SONG_ID) REFERENCES SONGS

,

CONSTRAINT

 FKCDTRACK_CD

FOREIGN KEY

 (MUSICCD_ID) REFERENCES MUSICCD);

Out-of-line constraints are defined immediately after the column defini-
tions. You can place them before the column definitions as well, although

Chap20.fm Page 453 Thursday, July 29, 2004 10:14 PM

454

20.2

Managing Constraints

locating them after the column definitions is the most commonly used
method. All of these out-of-line constraints have names.

Note how the primary key constraint (named PKCDTRACKS) names
two columns: MUSICCD_ID and SONG_ID. A primary key with multi-
ple columns is sometimes called a

composite primary key

.

The two foreign keys have also been created at table level for the sake of
consistency, even though they are both single-column keys.

Note:

The same column can be named in a primary key and a foreign key.

Now let’s try something interesting going through a sequence of steps.
Drop and re-create the CDTRACKS table as in the following script. We are
adding a new column, called TRACK_ID, which will become the primary
key later. Note how all the columns are now declared as nullable because all
NOT NULL constraints have been removed. Also, both the primary and
foreign keys have been removed.

DROP TABLE CDTRACKS;

CREATE TABLE CDTRACKS(TRACK_ID NUMBER, MUSICCD_ID NUMBER

, SONG_ID NUMBER, TRACK_SEQ_NO NUMBER);

The resulting table’s description using the DESC command is shown in
Figure 20.3. All of the columns in the CDTRACKS table are allowed to
contain null values.

Figure 20.3

The CDTRACKS
Copy of the

CDTRACK Table
with No

Constraints.

Chap20.fm Page 454 Thursday, July 29, 2004 10:14 PM

20.2

Managing Constraints 455

Chapter 20

Now let’s put the table-level primary and foreign key constraints back
into the creation of the CDTRACKS table without the NOT NULL con-
straints and see what happens to the nullability of the columns. This time,
we will name the TRACK_ID column as the primary key and keep the for-
eign key constraints the same as before.

These commands drop the table and create it with primary and foreign
keys. There are no NOT NULL constraints added.

DROP TABLE CDTRACKS;

CREATE TABLE CDTRACKS(TRACK_ID NUMBER, MUSICCD_ID NUMBER

, SONG_ID NUMBER, TRACK_SEQ_NO NUMBER

, CONSTRAINT PKCDTRACKS PRIMARY KEY (TRACK_ID)

, CONSTRAINT FKCDTRACKS_SONG

FOREIGN KEY (SONG_ID) REFERENCES SONGS

, CONSTRAINT FKCDTRACK_CD

FOREIGN KEY (MUSICCD_ID) REFERENCES MUSICCD);

Now let’s view the CDTRACKS table again using the DESC command
as shown in Figure 20.4.

Notice in Figure 20.4 how the primary key column has been forced to
have the NOT NULL constraint, even though the NOT NULL constraint
was not specified for the column when creating the CDTRACKS table.
The foreign key columns still remain nullable.

Figure 20.4

A NOT NULL
Constraint Is

Automatically
Added to the
Primary Key

Column.

Chap20.fm Page 455 Thursday, July 29, 2004 10:14 PM

456

20.2

Managing Constraints

�

Primary key constraints cannot be NULL and will force the addition
of a NOT NULL constraint.

�

Foreign key constraints can be nullable. A foreign key constraint
should only be nullable where a row in the foreign key table does not
have to have a parent row in a primary key table. This somewhat
negates the use of Referential Integrity in the first place. However,
data warehouse fact tables and object structures sometimes do this
sort of thing. I do not recommend allowing foreign key columns to
be nullable.

20.2.1.3 Check Constraints

A check constraint applies a condition to an expression of a row, such as
checking a column value. If the result is not TRUE and evaluated as a null
value, then an error results and the SQL statement involving the row fails.
Typically, a check constraint can be used for validation of a column in a row
or a check across multiple columns in the same row.

A check constraint can be inline or out-of-line. An inline check con-
straint must apply as a check on an individual column, whereas an out-of-
line check constraint could apply to a single column or multiple columns.
Let’s go ahead and create a copy of the ARTISTS table again and demon-
strate some check constraints. We want to start by dropping the ARTISTS
table copy of the ARTIST table first. Because the ARTISTS table is linked
to the SONGS table by a referential relationship using primary and foreign
keys, and the SONGS table is in turn linked to the CDTRACKS table,
simply dropping the ARTISTS table will produce an error. Thus we have to
drop all three tables in the correct sequence, from the bottom of the refer-
ential hierarchy, upward.

DROP TABLE CDTRACKS;

DROP TABLE SONGS;

DROP TABLE ARTISTS;

Note: We could have used the DROP TABLE ... CASCADE CON-
STRAINTS statement to drop only the ARTISTS table and all related con-
straints in other tables. This would result in only the ARTISTS table being
dropped. We would still have to drop the other tables. Avoiding the CAS-
CADE option is cleaner and perhaps a little more logically safe because it
does not use brute force!

Chap20.fm Page 456 Thursday, July 29, 2004 10:14 PM

20.2 Managing Constraints 457

Chapter 20

Now we can create the ARTISTS table again, but this time we add a few
more columns and some check constraints into the script.

CREATE TABLE ARTISTS(

 ARTIST_ID NUMBER PRIMARY KEY

 , NAME VARCHAR2(32) NOT NULL, CITY VARCHAR2(32)

 , STATE_PROVINCE VARCHAR2(32) CONSTRAINT STATE CHECK

 (LENGTH(STATE_PROVINCE) >= 2 OR STATE_PROVINCE IS NULL)

 , COUNTRY VARCHAR2(32) CONSTRAINT COUNTRY CHECK

 (COUNTRY IN('USA','Canada','England','Australia'))

 , MEDIA_ROYALTIES FLOAT, RECORD_SALES_ROYALTIES FLOAT

 , PERFORMANCE_PROFITS FLOAT

 , CONSTRAINT ROYALTIES CHECK (MEDIA_ROYALTIES

 + RECORD_SALES_ROYALTIES + PERFORMANCE_PROFITS > 0));

The constraints created in the ARTISTS table are as follows:

� An inline primary key constraint on the ARTIST_ID column.

� An inline NOT NULL constraint on the NAME column.

� An inline CHECK constraint named STATE that checks the length
of the STATE_PROVINCE column. If the length of the value is
greater than or equal to 2, or if the value is NULL, the value passes
the test.

� An inline CHECK constraint named COUNTRY that looks for cer-
tain values. If the value in the COUNTRY column is in the list of
four countries provided, the value passes; otherwise it fails.

� An out-of-line CHECK constraint named ROYALTIES that looks at
an expression. If the sum of MEDIA_ROYALTIES,
RECORD_SALES_ROYALTIES, and PERFORMANCE_PROFITS
is greater than zero, the row passes the test; otherwise it fails.

Now we want to show the use of the CHECK constraints added to the
newly created ARTISTS table. Two of the following five INSERT com-
mands will add a row. The other three will produce an error. See the output
in Figure 20.5. Invalid values (if any) in each of the INSERT commands are
highlighted.

Chap20.fm Page 457 Thursday, July 29, 2004 10:14 PM

458 20.2 Managing Constraints

INSERT INTO ARTISTS VALUES

(1,'Paul McCartney','London',NULL,'Japan',1,0,0);

INSERT INTO ARTISTS VALUES

(1,'Paul McCartney','London',NULL,'England',0,0,0);

INSERT INTO ARTISTS VALUES

(1,'Paul McCartney','London',NULL,'England',1,0,0);

INSERT INTO ARTISTS VALUES

(2,'Rickie Lee Jones','New York','N','USA',1,0,0);

INSERT INTO ARTISTS VALUES

(2,'Rickie Lee Jones','New York','NY','USA',1,0,0);

In Figure 20.5, for the first INSERT command, Japan is not an allowed
country. For the second INSERT command, at least one of the three mone-
tary amounts must be greater than zero to make their sum greater than zero.
In the fourth INSERT command, the state is incorrectly typed as a single
character and thus violates both the two-character length limit and the
NULL check constraint.

Figure 20.5
Using CHECK

Constraints.

Chap20.fm Page 458 Thursday, July 29, 2004 10:14 PM

20.2 Managing Constraints 459

Chapter 20

20.2.1.4 REF Constraints

A REF constraint is used to control a relationship determined by a REF
datatype column and the table being referenced (see Chapter 16 for details
on REF datatypes). REF constraint syntax is shown in Figure 20.6.

A REF constraint consists of either a scope definition, a ROWID
pointer, or a Referential Integrity validation between REF column
datatype primary and foreign key definitions. Let’s examine these three
options in turn:

� SCOPE IS. Scope defines a single table where a referenced row can
be found. Why? A REF datatype is for all intents and purposes an
object pointer. An object pointer can point to any data item in a data-
base, thus it can point to other tables. SCOPE IS simply limits
searching to a single table.

� WITH ROWID. This option stores a ROWID pointer value with a
REF datatype value. It should make for faster access but less efficient
use of storage space.

� REFERENCES. This option simply allows a foreign key REF
datatype column to be referentially validated against a primary key
superset table using the REF datatype column and a special object
identifier column in the parent table.

Having worked with both object application SDKs and object databases
in the past, I shudder at the thought of creating object structures in a rela-
tional database. This is a personal preference. My reasoning for this prefer-
ence is as follows: PL/SQL should never be used for number crunching.

Figure 20.6
REF Constraints

Syntax.

Chap20.fm Page 459 Thursday, July 29, 2004 10:14 PM

460 20.3 Adding, Modifying, and Dropping Constraints

Java is a better option. Database modeling is an even deeper layer than PL/
SQL for a relational database. Therefore, building object structures in a
relational database is somewhat counterintuitive because object applications
and particularly object databases thrive on complex structures. Relational
databases can collapse in a pile of rubble in complex environments but
thrive on simplicity. How many of us have seen ERDs (Entity Relationship
Diagrams) covering the entire wall of an office? In a relational database,
complexity usually leads to more complexity, and so on, ad infinitum.

20.2.2 CREATE VIEW Syntax

Constraint syntax for the CREATE VIEW command is shown in Figure
20.7. The way in which constraints are handled for the CREATE VIEW
command is the same as for the CREATE TABLE command. As a result,
no examples in addition to those in Chapter 19 are required in this chapter.
See Chapter 19 for details.

20.3 Adding, Modifying, and Dropping Constraints

20.3.1 ALTER TABLE Syntax

Let’s begin with the ALTER TABLE command syntax including only con-
straint details. The syntax diagram is shown in Figure 20.8. Examining Fig-
ure 20.8, we can see that constraints can be renamed, modified, added new,
or dropped using the ALTER TABLE syntax.

Figure 20.7
CREATE VIEW

Constraints Syntax.

Chap20.fm Page 460 Thursday, July 29, 2004 10:14 PM

20.3 Adding, Modifying, and Dropping Constraints 461

Chapter 20

20.3.2 ALTER VIEW Syntax

As with the CREATE TABLE and CREATE VIEW commands, constraint
syntax for the ALTER VIEW command is similar to that of the ALTER
TABLE command. ALTER VIEW command syntax is shown in Figure
20.9. Once again, please see Chapter 19 for details on working with con-
straints and views.

20.3.3 Working with Constraints and ALTER TABLE

Now let’s explain using constraints by using some ALTER TABLE com-
mand examples.

Once you have created a table, you can add new constraints, modify,
and drop existing constraints using the ALTER TABLE command.

Figure 20.8
ALTER TABLE

Constraints Syntax.

Figure 20.9
ALTER VIEW

Constraints Syntax.

Chap20.fm Page 461 Thursday, July 29, 2004 10:14 PM

462 20.3 Adding, Modifying, and Dropping Constraints

Note: Constraints can only be added, modified, or dropped at the table
level (out-of-line constraints). The exception to this rule is the NOT NULL
constraint where the column is modified. For example, to add a NOT
NULL constraint to the NAME column, the command is: ALTER TABLE
ARTISTS MODIFY (NAME VARCHAR2(32) NOT NULL).

Once again, let’s use the three tables: ARTISTS, SONGS, and
CDTRACKS. First, drop the ARTISTS table again so that we can start
with a clean slate.

DROP TABLE ARTISTS;

Now let’s go ahead and create the ARTISTS and SONGS tables without
any constraints.

CREATE TABLE ARTISTS(ARTIST_ID NUMBER, NAME VARCHAR2(32));

CREATE TABLE SONGS(SONG_ID NUMBER, ARTIST_ID NUMBER

, TITLE VARCHAR2(64));

20.3.3.1 Adding a Constraint to an Existing Table

Now we need to add the constraints for the ARTISTS and SONGS tables.
Add a primary key constraint to the ARTISTS table on the ARTIST_ID
column:

ALTER TABLE ARTISTS ADD CONSTRAINT PK_ARTISTS

PRIMARY KEY(ARTIST_ID);

Add a unique constraint to the ARTISTS table on the NAME column:

ALTER TABLE ARTISTS ADD CONSTRAINT UK_ARTISTS UNIQUE(NAME);

Add a primary key constraint to the SONGS table on the SONG_ID
column:

ALTER TABLE SONGS ADD CONSTRAINT PK_SONGS

PRIMARY KEY(SONG_ID);

Chap20.fm Page 462 Thursday, July 29, 2004 10:14 PM

20.3 Adding, Modifying, and Dropping Constraints 463

Chapter 20

Add a foreign key constraint to the SONGS table on the ARTIST_ID
column, referencing the ARTISTS table:

ALTER TABLE SONGS ADD CONSTRAINT FK_ARTISTS

FOREIGN KEY(ARTIST_ID) REFERENCES ARTISTS;

Add a unique constraint to the SONGS table on the TITLE column.
This constraint will be given a system-generated name because the CON-
STRAINT keyword is omitted.

ALTER TABLE SONGS ADD UNIQUE(TITLE);

20.3.3.2 Modifying Constraints on Existing Tables

Let’s modify the ARTISTS and SONGS tables to make sure that names and
titles are non-nullable.

ALTER TABLE ARTISTS MODIFY (NAME VARCHAR2(32) NOT NULL);

ALTER TABLE SONGS MODIFY (TITLE VARCHAR2(64) NOT NULL);

Note: When changing constraints other than the NULL constraint, only
the state of a constraint can be modified.

This leads us to constraint states.

20.3.3.3 Constraint States

The state of a constraint determines how a constraint is handled. Each of
the constraint settings following applies to an individual constraint placed
onto a table. Most but not all constraint states can be set using all of the
CREATE TABLE, CREATE VIEW, ALTER TABLE, and ALTER VIEW
commands. Several constraint states are very specific.

� ENABLE | DISABLE. Switch constraint checking on (ENABLE) or
off (DISABLE), for a specific constraint. ENABLE is obviously the
default state.

� [NO]VALIDATE. This state applies when a constraint is enabled.
VALIDATE column values in a table for both existing and newly
inserted rows. NOVALIDATE validates only new rows, avoiding
validation of already existing rows. Validation depends on the con-
straint being enabled (ENABLE). VALIDATE is the default state.

Chap20.fm Page 463 Thursday, July 29, 2004 10:14 PM

464 20.3 Adding, Modifying, and Dropping Constraints

� [NOT] DEFERRABLE. Validation of the constraint can be done at
the end of a transaction instead of immediately when the row is
inserted, updated, or deleted. The default state is NOT DEFERRA-
BLE or immediately. Changing the DEFERRABLE constraint state
requires table re-creation.

� INITIALLY { IMMEDIATE | DEFERRED }. This state func-
tions with deferrable constraints only. IMMEDIATE initiates a
check at the end of every SQL command and DEFERRED at the
completion of every transaction. It is only relevant when the con-
straint is also DEFERRABLE. The default state is INITIALLY
IMMEDIATE.

� RELY. Applicable to data marts and materialized views in data ware-
housing. When RELY is selected, a NOVALIDATE (nonvalidated)
constraint state specifies a constraint as being valid for query
rewrites, thus materialized views. It is only usable in the ALTER
TABLE command.

� USING INDEX clause. Allows index specification for primary and
unique key constraints. Indexing is covered in Chapter 21.

� EXCEPTIONS clause. Stores ROWID values for all rows violating
any current constraint states into an exceptions table providing a
record of errors.

Let’s try disabling a constraint in the SONGS table. Disable the foreign
key constraint on the ARTIST_ID column.

ALTER TABLE SONGS MODIFY CONSTRAINT FK_ARTISTS DISABLE;

Note: Constraint states can be implemented using both table and view
DDL commands.

20.3.4 Renaming a Constraint

Constraints can be renamed without modification to the table, avoiding
any time-consuming data restructuring or table modifications. In the previ-
ous section on adding constraints to an existing table, we created a unique
constraint named UK_ARTISTS on the ARTISTS table that is a unique
constraint on the NAME column.

Chap20.fm Page 464 Thursday, July 29, 2004 10:14 PM

20.3 Adding, Modifying, and Dropping Constraints 465

Chapter 20

The term “UK_” implies “unique key.” Technically, this constraint is
actually better termed as an alternate key rather than a unique key, because
the table already has a unique identifier in the form of a primary key created
on the ARTIST_ID column. So we could change the name of the con-
straint from UK_ARTISTS to AK_ARTISTS using the ALTER TABLE
command shown as follows:

ALTER TABLE ARTISTS RENAME CONSTRAINT UK_ARTISTS

TO AK_ARTISTS;

20.3.5 Dropping Constraints

As we can see in Figure 20.8, constraints can be dropped with the ALTER
TABLE command.

Currently, we should still have the SONGS and ARTISTS tables in the
MUSIC schema. Let’s go ahead and drop all of the constraints on those two
tables. We will start with the unique (alternate) keys on the
SONGS.TITLE and the ARTISTS.NAME columns. Note the two differ-
ent methods of dropping the unique constraints. The first does not use the
constraint name. This is useful when the constraint was created without a
specific name. The actual constraint name was system-generated and is
something like SYS_C004463 and can be found by querying the
USER_CONSTRAINTS data dictionary view (more on this later).

ALTER TABLE SONGS DROP UNIQUE(TITLE);

ALTER TABLE ARTISTS DROP CONSTRAINT AK_ARTISTS;

Now let’s drop Referential Integrity constraints between the ARTISTS
and SONGS tables. We have to drop the foreign key on the SONGS table
before we drop the primary key on the ARTISTS table. If we try to drop
the primary key on the ARTISTS table first, we will get an error because the
foreign key on the SONGS table depends on the primary key on the ART-
ISTS table. Again, notice that the first and third commands use only the
type of constraint, not the name.

ALTER TABLE SONGS DROP PRIMARY KEY;

ALTER TABLE SONGS DROP CONSTRAINT FK_ARTISTS;

ALTER TABLE ARTISTS DROP PRIMARY KEY;

Chap20.fm Page 465 Thursday, July 29, 2004 10:14 PM

466 20.3 Adding, Modifying, and Dropping Constraints

You can also specify the KEEP or DROP INDEX options when drop-
ping primary and foreign key constraints. The KEEP INDEX option
retains index files for the constraints while still removing the constraints
from the tables. The default behavior is to drop the index when the primary
key is dropped.

20.3.5.1 Dropping Constraints with CASCADE

Both tables and constraints can be dropped with the CASCADE clause.
With respect to Referential Integrity, the term CASCADE implies that
when one constraint is dropped, any dependent constraints will be
dropped as well. Cascading generally applies a domino effect of dropping
any foreign key constraints, referentially related to the constraint of the
table being dropped. For example, dropping the primary key on the ART-
ISTS table with the CASCADE clause also drops the ARTIST_ID foreign
key constraint on the SONGS table. The result is that the ARTIST_ID
column and its data still exist in the SONGS table, but the foreign key
constraint is gone.

We can demonstrate this using the ARTISTS and SONGS tables. First,
we drop and re-create the ARTISTS and SONGS table to start with a fresh
copy of the tables.

DROP TABLE SONGS;

DROP TABLE ARTISTS;

CREATE TABLE ARTISTS(ARTIST_ID NUMBER PRIMARY KEY

, NAME VARCHAR2(32) NOT NULL UNIQUE);

CREATE TABLE SONGS(SONG_ID NUMBER PRIMARY KEY

, ARTIST_ID NUMBER NOT NULL

REFERENCES ARTISTS (ARTIST_ID)

, TITLE VARCHAR2(64) NOT NULL UNIQUE);

The following query shows resulting constraint details as shown in Fig-
ure 20.10.

SELECT TABLE_NAME "Table"

,DECODE(CONSTRAINT_TYPE,'P','Primary'

,'R','Foreign','') "Key"

FROM USER_CONSTRAINTS

WHERE TABLE_NAME IN ('ARTISTS','SONGS')

AND CONSTRAINT_TYPE IN ('P','R');

Chap20.fm Page 466 Thursday, July 29, 2004 10:14 PM

20.3 Adding, Modifying, and Dropping Constraints 467

Chapter 20

In Figure 20.10, the USER_CONSTRAINTS query shows the primary
and foreign key constraints on the ARTISTS and SONGS tables created
above. Now go ahead and drop the ARTISTS table primary key with the
CASCADE option.

ALTER TABLE ARTISTS DROP PRIMARY KEY CASCADE;

Now we will use the USER_CONSTRAINTS query in Figure 20.10
once again to verify that the primary key has been removed from the
ARTISTS table and the related foreign key has been removed from the

Figure 20.10
Primary and
Foreign Key

Constraints on
ARTISTS and

SONGS Tables.

Figure 20.11
Primary Key Drop

with Constraints
Cascade on the

ARTISTS Table.

Chap20.fm Page 467 Thursday, July 29, 2004 10:14 PM

468 20.3 Adding, Modifying, and Dropping Constraints

SONGS table. As shown in Figure 20.11, only the primary key on the
SONGS table remains.

Cascading of constraints can also be applied in the DROP TABLE state-
ment where all dependent constraints in the current and referentially
dependent tables are dropped in order to allow the dropped table to be suc-
cessfully removed. For instance, the DROP TABLE statement that follows
would drop the ARTISTS table plus the foreign key constraint on the
SONGS.ARTIST_ID column and any other related subset foreign key
constraints. This can be verified using the same USER_CONSTRAINTS
query as used in the previous example. (You would have to once again drop
and create the ARTISTS and SONGS tables, including their respective pri-
mary and foreign keys.)

DROP TABLE ARTISTS CASCADE CONSTRAINTS;

Figure 20.12
Querying

USER_CONSTR
AINTS and

USER_CONS_
COLUMNS.

Chap20.fm Page 468 Thursday, July 29, 2004 10:14 PM

20.4 Metadata Views 469

Chapter 20

20.4 Metadata Views

This section simply describes metadata views applicable to constraints.
Chapter 19 describes the basis and detail of Oracle Database metadata
views.

� USER_CONSTRAINTS. Structure of constraints, such as who owns
it, its type, the table it is attached to, and states, among other details.

� USER_CONS_COLUMNS. Describes all columns in constraints.

The script executed in Figure 20.12 matches constraints and constraint
columns for the currently logged-in user. The script is included in Appen-
dix B.

This chapter has dealt with constraints, their states, and adding, modify-
ing, and destroying them. The next chapter looks at indexes.

Chap20.fm Page 469 Thursday, July 29, 2004 10:14 PM

This page intentionally left blank

471

21

Indexes and Clusters

In this chapter:

�

What is an index and what is the purpose of an index?

�

What types of indexes are there, and how do they work?

�

What are the special attributes of indexes?

�

What is a cluster?

Recent chapters have discussed various database objects such as tables,
views, and constraints. This fourth chapter on database objects covers
indexing and clustering. Understanding database objects is essential to a
proper understanding of Oracle SQL, particularly with respect to building
efficient SQL code; tuning is another subject.

1

 It is important to under-
stand different database objects, indexes and clusters included.

21.1 Indexes

Let’s start by briefly discussing what exactly an index is, followed by some
salient facts about indexing.

21.1.1 What Is an Index?

An index is a database object, similar to a table, that is used to increase read
access performance. A reference book, for instance, having an index, allows
rapid access to a particular subject area on a specific page within that book.
Database indexes serve the same purpose, allowing a process in the database
quick access directly to a row in the table.

An index contains copies of specific columns in a table where those col-
umns make up a very small part of the table row length. The result is an

Chap21.fm Page 471 Thursday, July 29, 2004 10:14 PM

472

21.1

Indexes

index. An index object is physically much smaller than the table and is
therefore faster to search through because less I/O is required. Additionally,
special forms of indexes can be created where scanning of the entire index is
seldom required, making data retrieval using indexes even faster as a result.

Note:

A table is located in what is often called the data space and an index

in the index space.

Attached to each row in an index is an address pointer (ROWID) to the
physical location of a row in a table on disk. Reading an index will retrieve
one or more table ROWID pointers. The ROWID is then used to find the
table row precisely. Figure 21.1 shows a conceptual view of a table with an
index on the NAME column. The index stores the indexed column
(NAME) and the ROWID of the corresponding row. The index’s rows are
stored in sorted order by NAME. The table’s data is not stored in any sorted
order. Usually, rows are stored into tables sequentially as they are inserted,
regardless of the value of the NAME or any other column. In other words, a
table is not ordered, whereas an index is ordered.

Figure 21.1

Each Index Entry
Points to a Row of
Data in the Table.

Chap21.fm Page 472 Thursday, July 29, 2004 10:14 PM

21.1

Indexes 473

Chapter 21

Continuing with the example in Figure 21.1, here is a query on the
CUSTOMER table:

SELECT VOCATION FROM CUSTOMER WHERE NAME = 'Ned';

Because the WHERE clause contains the indexed column (NAME), the
Optimizer should opt to use the index. Oracle Database 10

g

searches the
index for the value “Ned”, and then uses the ROWID as an address pointer
to read the exact row in the table. The value of the VOCATION column is
retrieved (“Pet Store Owner”) and returned as the result of the query.

A large table search on a smaller index uses the pointer (ROWID) found
in the index to pinpoint the row physical location in the table. This is very
much faster than physically scanning the entire table.

When a large table is not searched with an index, then a full table scan is
executed. A full table scan executed on a large table, retrieving a small num-
ber of rows (perhaps even retrieving a single row), is an extremely inefficient
process.

Note:

Although the intent of adding an index to a table is to improve per-
formance, it is sometimes more efficient to allow a full table scan when que-
rying small tables. The Optimizer will often assess a full table scan on small
tables as being more efficient than reading both index and data spaces, espe-

cially when a table is physically small enough to occupy a single data block.

Many factors are important to consider when creating and using
indexes. This shows you that simply adding an index may not necessarily
improve performance but usually does:

�

Too many indexes per table can improve read access and degrade the
efficiency of data changes.

�

Too many table columns in an index can make the Optimizer con-
sider the index less efficient than reading the entire table.

�

Integers, such as a social security number, are more efficient to index
than items such as dates or variable data like a book title.

�

Different types of indexes have specific applications. The default
index type is a BTree index, the most commonly used index type.

Chap21.fm Page 473 Thursday, July 29, 2004 10:14 PM

474

21.1

Indexes

BTree indexes are often the only index type used in anything but a
data warehouse.

�

The Optimizer looks at the SQL code in the WHERE, ORDER BY,
and GROUP BY clauses when deciding whether to use an index. The
WHERE clause is usually the most important area to tune for index
use because the WHERE clause potentially filters out much
unwanted information before and during disk I/O activity. The
ORDER BY clause, on the other hand, operates on the results of a
query, after disk I/O has been completed. Disk I/O is often the most
expensive phase of data retrieval from a database.

�

Do not always create indexes. Small tables can often be read faster
without indexes using full table scans.

�

Do not index for the sake of indexing.

�

Do not overindex.

�

Do not always include all columns in a composite index. A composite
index is a multiple-column index. The recommended maximum
number of columns in a composite index is three columns. Including
more columns could make the index so large as to be no faster than
scanning the whole table.

Next we discover what types of indexes there are, plus how and where
those different types of indexes can be used.

21.1.2 Types of Indexes

Oracle Database 10

g

 supports many different types of indexes. You should
be aware of all these index types and their most appropriate or common
applications. As already stated, the most commonly used indexed structure
is a BTree index.

�

BTree Index

. BTree stands for binary tree. This form of index stores
dividing point data at the top and middle layers (root and branch
nodes) and stores the actual values of the indexed column(s) in the
bottom layer (leaf nodes) of the index structure. The branch nodes
contain pointers to the lower-level branch or leaf node. Leaf nodes
contain index column values plus a ROWID pointer to the table row.
Oracle Database 10

g

 will attempt to balance the branch and leaf
nodes so that each branch contains approximately the same number

Chap21.fm Page 474 Thursday, July 29, 2004 10:14 PM

21.1

Indexes 475

Chapter 21

of branch and leaf nodes. Figure 21.2 shows a conceptual view of a
BTree index. When Oracle Database 10

g

 searches a BTree index, it
travels from the top node, through the branches, to the leaf node in
three or four quick steps. Why three or four quick steps? From top
node to leaf nodes implies what is called a

depth-first search

. Oracle
Database BTree indexes are generally built such that there are
between 0 and 2 branch levels with a single leaf node level. In other
words, a depth-first search on a single row will read between one and
three blocks, no matter how many rows are in the index. BTree
indexes are efficient even when the number of rows indexed is in the
millions, if used correctly.

�

Bitmap Index

. A bitmap contains binary representations for each
row. A 0 bitmap value implies that a row does not have a specified
value, and a bitmap value of 1 denotes a row having the value. Bit-
maps are very likely susceptible to overflow over long periods of use
in OLTP systems and are probably best used for read-only data such
as in data warehouses. They are best suited to indexing columns that
have a small number of distinct values, such as days of the week, gen-
der, and similar columns. However, bitmap indexes have been known
to be relatively successful in large data warehouse tables with up to
thousands of distinct values.

�

Function-Based Index

. Contains the result of an expression precal-
culated on each row in a table and stored as the expression result in a
BTree index structure. This type of index makes queries with an
indexed expression in the WHERE clause much faster. Often, func-
tions in the WHERE clause cause the Optimizer to ignore indexes. A
function-based index provides with the Optimizer the ability to use
an index in queries that otherwise would require full table scans.

�

Index-Organized Table (IOT)

. Physical clustering of index and data
spaces together for a single table, in the order of the index, usually the
primary key. An IOT is a table as well as an index; the table and the
index are merged. This works better for tables that are static and fre-
quently queried on the indexed columns. However, large OLTP sys-
tems do use IOTs with some success, and these IOTs are likely to be
for tables with a small number of columns or short row length (see
Chapter 18).

�

Cluster

. A clustered index contains values from joined tables rather
than a single table. A cluster is a partial merge of index and data
spaces, ordered by an index, not necessarily the primary key. A cluster
is similar to an IOT except that it can be built on a join of two or

Chap21.fm Page 475 Thursday, July 29, 2004 10:14 PM

476

21.1

Indexes

more tables. Clusters can be ordered using binary tree structures or
hashing algorithms. A cluster is perhaps conceptually both a table
and an index because clustering partially merges index and data
spaces into single physical chunks (clusters).

�

Bitmap Join Index

. Creates a single bitmap used for one of the
tables in a join.

�

Domain Index

. Specific to certain application types using contextual
or spatial data, among other variations.

Note:

It usually is best, especially for OLTP systems, to use only BTree and
function-based index types. Other index types are more appropriate to data

warehouse systems that have primarily static, read-only tables.

21.1.2.1 Index Attributes

In addition to the type of index, Oracle Database 10

g

 supports what I like
to call index attributes. Most types of indexes can use these attributes. You
will practice using some of these attributes as you work through this chapter
creating and modifying indexes.

�

Ascending or Descending

. Indexes can be ordered in either direction.

Figure 21.2

A BTree Index on
Numbers 1 to 100.

Chap21.fm Page 476 Thursday, July 29, 2004 10:14 PM

21.1

Indexes 477

Chapter 21

�

Uniqueness

. Indexes can be unique or nonunique. Primary key con-
straints and unique constraints use unique indexes. Other indexed
columns, such as names or countries, sometimes need unique indexes
and sometime need nonunique indexes.

�

Composites

. A composite index is made up of more than one col-
umn in a table.

�

Compression

. Applies to BTree indexes and not bitmap indexes
where duplicated prefix values are removed. Compression speeds up
data retrieval but can slow down table changes.

�

Reverse keys

. Bytes for all columns in the index are reversed without
changing the column order. Reverse keys can help performance in
clustered server environments (Oracle Real Application Clusters, for-
merly Oracle Parallel Server) by ensuring that changes to similar key
values will be better physically spread. Reverse key indexing can apply
to rows inserted into OLTP tables using sequence integer generators,
where each number is very close to the previous number. Inserting
groups of rows with similar sequence numbers can cause some con-
tention because sequential values might be inserted into the same
block at the same time.

�

Null values

. If all of the indexed columns in a row contain null val-
ues, rows are not included in an index.

�

Sorting

. The NOSORT clause tells Oracle Database 10

g

 that the
index being built is based on data that is already in the correct sorted
order. This can save a great deal of time when creating an index, but
will fail if the data is not actually in the order needed by the index.
This assumes that data space is physically ordered in the desired man-
ner, and the index will copy the physical order of the data space.

You are ready to begin creating some indexes.

21.1.3 Creating Indexes

Figure 21.3 shows a syntax diagram detailing the CREATE INDEX command.

Let’s start by creating a table called RELEASESIN2001.

CREATE TABLE RELEASESIN2001 (CD,ARTIST,COUNTRY,SONG,RELEASED)

AS SELECT CD.TITLE AS "CD", A.NAME AS "ARTIST"

, A.COUNTRY AS "COUNTRY", S.TITLE AS "SONG"

Chap21.fm Page 477 Thursday, July 29, 2004 10:14 PM

478

21.1

Indexes

, CD.PRESSED_DATE AS RELEASED

FROM MUSICCD CD, CDTRACK T, ARTIST A, SONG S

WHERE CD.PRESSED_DATE BETWEEN '01-JAN-01' AND '31-DEC-01'

AND T.MUSICCD_ID = CD.MUSICCD_ID

AND S.SONG_ID = T.SONG_ID

AND A.ARTIST_ID = S.ARTIST_ID;

The table is created with a subquery, so data is inserted as the table is
created. Look at the rows created in the new RELEASESIN2001 table you
have just created. The result of the query is shown in Figure 21.4.

SET WRAP OFF LINESIZE 100

COLUMN CD FORMAT A16

COLUMN ARTIST FORMAT A12

COLUMN COUNTRY FORMAT A8

COLUMN SONG FORMAT A36

SELECT * FROM RELEASESIN2001;

Now let’s create some indexes on our RELEASESIN2001 table. First,
create an index on the CD column. This is a nonunique index because the
CD name repeats for each song on the CD.

CREATE INDEX RELEASES_CD ON RELEASESIN2001 (CD);

Figure 21.3

CREATE INDEX
Syntax.

Chap21.fm Page 478 Thursday, July 29, 2004 10:14 PM

21.1

Indexes 479

Chapter 21

Next, create an index on both the CD and the SONG columns and
compress the index to save space.

CREATE INDEX RELEASES_CD_SONG

ON RELEASESIN2001 (CD, SONG) COMPRESS;

The following index is a compound index on three columns. The CD
column is sorted in descending order.

CREATE INDEX RELEASES_CD_ARTIST_SONG

ON RELEASESIN2001 (CD DESC, ARTIST, SONG);

This index is a unique index on the SONG table. Each song in this table
is unique, allowing you to create a unique index.

CREATE UNIQUE INDEX RELEASES_SONG

ON RELEASESIN2001 (SONG);

This final index is a bitmap index on the COUNTRY column. This col-
umn has very low cardinality. Low cardinality means that there are a small
number of distinct values in relation to the number of rows in the table. A
bitmap index may be appropriate.

CREATE BITMAP INDEX RELEASES_COUNTRY

Figure 21.4
Selecting the Rows

in the
RELEASESIN2001

Table.

Chap21.fm Page 479 Thursday, July 29, 2004 10:14 PM

480 21.1 Indexes

ON RELEASESIN2001 (COUNTRY);

Note: Be very careful using bitmap indexes in place of BTree indexes.

We have just created five indexes on the RELEASESIN2001 table.

Note: Every DML operation (INSERT, UPDATE, or DELETE) would
change the table and five indexes: six updates in total! Having so many
indexes on one table is not advisable with respect to performance. However,
for a data warehouse table it is fine, because changes to the tables are usually
done in batches periodically. You could possibly remove the indexes during
updates and then re-create the indexes afterward.

Now let’s get a little more specialized and create a function-based index.
The following example creates a function-based index on the MUSIC
schema SALES data warehouse fact table.

CREATE INDEX XAKFB_SALES_1

ON SALES((SALE_PRICE-SHIPPING_COST)*SALE_QTY);

We could then query the SALES table and probably persuade the Opti-
mizer to access the index in the WHERE clause with a query something
like the following. The result is shown in Figure 21.5.

SELECT CD.TITLE "CD"

, SUM(S.SALE_PRICE-S.SHIPPING_COST) "Net Price"

, SUM(S.SALE_QTY) "Qty"

, SUM((SALE_PRICE-SHIPPING_COST)*SALE_QTY) "Revenue"

FROM MUSICCD CD JOIN SALES S USING (MUSICCD_ID)

WHERE ((SALE_PRICE-SHIPPING_COST)*SALE_QTY) > 10

GROUP BY CD.TITLE;

There are some points to note about function-based indexes. Some spe-
cific settings are required in Oracle Database to allow use of function-based
indexes.

� Cost-based optimization is required.

Chap21.fm Page 480 Thursday, July 29, 2004 10:14 PM

21.1 Indexes 481

Chapter 21

� The user must have the following:

� The QUERY_REWRITE system privilege.
� Execute privileges on any user-defined functions.

� Oracle Database configuration parameters must be set as follows:

� QUERY_REWRITE_ENABLED = TRUE.
� QUERY REWRITE_INTEGRITY = TRUSTED.

Now let’s try a bitmap join index. The previous query demonstrating a
function-based index joined the MUSICCD table and the SALES fact
table. The MUSICCD table in this case could be considered a dimension of
the SALES fact table. Thus a bitmap index would be created on the SALES
table MUSICCD_ID column and joined to the MUSICCD_ID primary
key column on the MUSICCD facts table.

CREATE BITMAP INDEX XAKBJ_SALES_2

ON SALES (S.MUSICCD_ID)

FROM MUSICCD CD, SALES S

WHERE S.MUSICCD_ID = CD.MUSICCD_ID;

Figure 21.5
Using a Function

Based Index.

Chap21.fm Page 481 Thursday, July 29, 2004 10:14 PM

482 21.1 Indexes

What this command has done is to create what is effectively a prejoined
index between the SALES and MUSICCD tables. The ON clause identifies
the SALES table as the fact table, including both fact and dimension tables
in the FROM clause, and the WHERE clause performs the join. Voilà! A
bitmap join index.

Now let’s look into changing and dropping indexes.

21.1.4 Changing and Dropping Indexes

The indexes we created in the previous section were adequate, but they can
be improved. Many index improvements and alterations can be made using
the ALTER INDEX command, whose syntax is shown in Figure 21.6.
What about those improvements to our indexes created on the
RELEASESIN2001 table? Some of the indexes cannot be changed using
the ALTER INDEX command. Some index changes have to be made by
dropping and re-creating the index. The syntax for the DROP INDEX
command is very simple and is also shown in Figure 21.6.

Let’s go ahead and change some of the indexes we created in the previ-
ous section. First, compress the index you created on the CD column. The
ONLINE option creates the index in temporary space, only replacing the
original index when the new index has completed rebuilding. This mini-
mizes potential disruption between building an index and DML or query
activity during the index rebuild. If, for example, an index build fails

Figure 21.6
ALTER INDEX

and DROP
INDEX Syntax.

Chap21.fm Page 482 Thursday, July 29, 2004 10:14 PM

21.1 Indexes 483

Chapter 21

because of lack of space, and nobody notices, any subsequent queries using
the index, as instructed to do so by the Optimizer, will simply not find table
rows not rebuilt into the index.

ALTER INDEX RELEASES_CD REBUILD COMPRESS ONLINE;

In fact, to rebuild an index, with all defaults, simply execute the follow-
ing command. The ONLINE option is a good idea in an active environ-
ment but not a syntactical requirement.

ALTER INDEX RELEASES_CD REBUILD ONLINE;

Next, we want to change the index on CD and SONG to a unique
index. An index cannot be altered from nonunique to unique using the
ALTER INDEX command. We must drop and re-create the existing index
in order to change the index to a unique index. The new index is also cre-
ated as a compressed index.

DROP INDEX RELEASES_CD_SONG;

CREATE UNIQUE INDEX RELEASES_CD_SONG

ON RELEASESIN2001 (CD, SONG) COMPRESS;

Incidentally, compression can be instituted using the ALTER INDEX
command, so we compress the index using the ALTER INDEX command
as shown in the following command:

ALTER INDEX RELEASES_CD REBUILD ONLINE COMPRESS;

Finally, rename the index on CD, ARTIST, and SONG.

ALTER INDEX RELEASES_CD_ARTIST_SONG RENAME TO RELEASES_3COLS;

21.1.5 More Indexing Refinements

Here are a few more points you should know about using indexes:

� Primary, Foreign, and Unique Keys. Primary and unique key con-
straints have indexes created automatically by Oracle Database. It is
recommended to create indexes for all foreign key constraints.

Chap21.fm Page 483 Thursday, July 29, 2004 10:14 PM

484 21.2 Clusters

� Matching WHERE Clauses to Indexes. If your query’s WHERE
clause contains only the second column in an index, Oracle Database
10g may not use the index for your query because you don’t have the
first column in the index included in the WHERE clause. Consider
the columns used in the WHERE clauses whenever adding more
indexes to a table.

� Skip Scanning Indexes. A new feature introduced in Oracle Database
9i called Index Skip Scanning may help the Optimizer use indexes,
even for queries not having the first indexed column in the WHERE
clause. In other words, Index Skip Scanning is employed by the Opti-
mizer to search within composite indexes, without having to refer to
the first column in the index, commonly called the index prefix.

� Bitmap Indexes and the WHERE Clause. Using bitmap indexes
allows optimized SQL statement parsing and execution, without hav-
ing to match WHERE clause order against composite index orders.
In other words, multiple bitmap indexes can be used in a WHERE
clause. However, bitmap indexes can only be used for equality com-
parisons (e.g., COUNTRY='USA'). The Optimizer will not use a bit-
map index if the WHERE clause has range comparisons (e.g.,
COUNTRY LIKE 'U%') on the indexed columns.

Refer to the Oracle documentation for more details on how the Opti-
mizer evaluates the WHERE clause for index usage.2

The next section delves briefly into using clusters.

21.2 Clusters

A cluster is somewhat like an IOT and somewhere between an index and a
table. A cluster, a little like a bitmap join index, can also join multiple tables
to get prejoined indexes.

21.2.1 What is a Cluster?

A cluster is literally a clustering or persistent “joining together” of data from
one or more sources. These multiple sources are tables and indexes. A clus-
ter places data and index space rows together into the same object. Obvi-
ously, clusters can be arranged such that they are very fast performers for
read-only data. Any type of DML activity on a cluster will overflow. Rows

Chap21.fm Page 484 Thursday, July 29, 2004 10:14 PM

21.2 Clusters 485

Chapter 21

read from overflow will be extremely heavy on performance. Clusters are
intended for data warehouses.

A standard cluster stores index columns for multiple tables and some or
all nonindexed columns. A cluster simply organizes parts of tables into a
combination index and data space sorted structure. Datatypes must be con-
sistent across tables.

21.2.2 Types of Clusters

� Regular Cluster. This is simply a cluster.

� Hash Cluster. A cluster indexed using a hashing algorithm. Hash
clusters are more efficient than standard clusters and are even more
appropriate for read-only type data. In older relational databases,
hash indexes were often used against integer values for better data
access speed. If data was changed, the hash index had to be rebuilt.

� Sorted Hash Cluster. Uses the SORT option shown in Figure
21.7, essentially breaking up data into groups of hash values. Hash
values are derived from a cluster key value, forcing common rows to
be stored in the same physical location. A sorted hash cluster has an
additional performance benefit for queries accessing rows in the order
in which the hash cluster is ordered, thus the term sorted hash cluster.

21.2.3 Creating Clusters

I always find it a little confusing attempting to classify a cluster as a table or an
index. Because clusters have aspects of both, I find it wise to include an expla-
nation of clusters with that of indexing, after tables have been explained.
Tables are covered in Chapter 18. In simple terms, a cluster is a database
object that when created has tables added to it. A cluster is not a table, even
though it is created using a CREATE TABLE command. Figure 21.7 shows a
syntax diagram containing syntax details relevant to creating a cluster.

Note: There is an ALTER CLUSTER command, but it only allows physical
changes; thus, it is database administration and irrelevant to the Oracle
SQL content of this book.

Let’s look at a simple example. Note that in the following example, we
have created both a cluster and a cluster index.

Chap21.fm Page 485 Thursday, July 29, 2004 10:14 PM

486 21.2 Clusters

Note: The CREATE TABLE and CREATE CLUSTER system privileges
are required.

CREATE CLUSTER SALESCLU (SALES_ID NUMBER);

CREATE INDEX XSALESCLU ON CLUSTER SALESCLU;

Now we add two dimension tables to the fact cluster:

CREATE TABLE CONTINENT_SALESCLU CLUSTER
SALESCLU(CONTINENT_ID)

AS SELECT * FROM CONTINENT;

CREATE TABLE COUNTRY_SALESCLU CLUSTER SALESCLU(COUNTRY_ID)

AS SELECT * FROM COUNTRY;

We could add a join to the cluster. Because the structure of the cluster
is being altered, we need to drop the tables already added to the cluster
and drop and re-create the cluster, because of the table content of the
join. This cluster joins two dimensions, continent and country, to the
SALES fact table.

DROP TABLE CONTINENT_SALESCLU;

DROP TABLE COUNTRY_SALESCLU;

DROP CLUSTER SALESCLU;

CREATE CLUSTER SALESCLU (CONTINENT_ID NUMBER

, COUNTRY_ID NUMBER, CUSTOMER_ID NUMBER

Figure 21.7
CREATE TABLE

Syntax for a
Cluster.

Chap21.fm Page 486 Thursday, July 29, 2004 10:14 PM

21.3 Metadata Views 487

Chapter 21

, SALES_ID NUMBER);

CREATE INDEX XSALESCLU ON CLUSTER SALESCLU;

CREATE TABLE JOIN_SALESCLU CLUSTER SALESCLU

(CONTINENT_ID, COUNTRY_ID, CUSTOMER_ID, SALES_ID)

AS SELECT S.CONTINENT_ID AS CONTINENT_ID

, S.COUNTRY_ID AS COUNTRY_ID

, S.CUSTOMER_ID AS CUSTOMER_ID

, S.SALES_ID AS SALES_ID

FROM CONTINENT CT, COUNTRY CY, CUSTOMER C, SALES S

WHERE CT.CONTINENT_ID = S.CONTINENT_ID

AND CY.COUNTRY_ID = S.COUNTRY_ID

AND C.CUSTOMER_ID = S.CUSTOMER_ID;

Note: Note how not all columns in all tables are added into the cluster from
the join. A cluster is intended to physically group the most frequently
accessed data and sorted orders.

That’s enough about clusters as far as Oracle SQL is concerned.

21.3 Metadata Views

This section simply describes metadata views applicable to indexes and
clusters. Chapter 19 describes the basis and detail of Oracle Database meta-
data views.

� USER_INDEXES. Structure of indexes.

� USER_IND_COLUMNS. Column structure of indexes.

� USER_IND_EXPRESSIONS. Contains function-based index
expressions.

� USER_JOIN_IND_COLUMNS. Join indexes such as bitmap join
indexes.

� USER_PART_INDEXES. Index information at the partition level.

� USER_IND_PARTITIONS. Partition-level indexing details.

� USER_IND_SUBPARTITIONS. Subpartition-level indexing
details.

� USER_CLUSTERS. Structure of constraints such as who owns it, its
type, the table it is attached to, and states, among other details.

Chap21.fm Page 487 Thursday, July 29, 2004 10:14 PM

488 21.4 Endnotes

� USER_CLU_COLUMNS. Describes all columns in constraints.

� USER_CLUSTER_HASH_EXPRESSIONS. Hash clustering
functions.

The script executed in Figure 21.8 matches indexes and index columns
for the currently logged-in user. The script is included in Appendix B.

This chapter has described both indexing and clustering. Indexes are of
paramount importance to building proper Oracle SQL code and general
success of applications. The next chapter covers sequences and synonyms.

21.4 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

2. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Figure 21.8
Querying

USER_INDEXES
and USER_IND_

COLUMNS.

Chap21.fm Page 488 Thursday, July 29, 2004 10:14 PM

489

22

Sequences and Synonyms

In this chapter:

�

What is a sequence object?

�

What are the uses of sequences?

�

What is a synonym?

In recent chapters we have examined tables, views, constraints, indexes,
and clusters. Last but not least of the database objects we shall deal with
directly in this book are sequences and synonyms.

Let’s begin this chapter with sequences, usually called Oracle sequence
objects.

22.1 Sequences

A sequence allows for generation of unique, sequential values. Sequences
are most commonly used to generate unique identifying integer values for
primary and unique keys. Sequences are typically used in the types of SQL
statements listed as follows:

�

The VALUES clause of an INSERT statement.

�

A subquery SELECT list contained within the VALUES clause of an
INSERT statement.

�

The SET clause of an UPDATE statement.

�

A query SELECT list.

Chap22.fm Page 489 Thursday, July 29, 2004 10:15 PM

490

22.1

Sequences

A sequence is always accessed using the CURRVAL and NEXTVAL
pseudocolumns in the format as shown:

�

sequence.CURRVAL

. Returns the current value of the sequence.
The sequence is not incremented by the CURRVAL pseudocolumn.

�

sequence.NEXTVAL

. Returns the value of the sequence and
increases the sequence one increment. Usually, sequences increase by
increments of one each time; however, you can set a sequence to a dif-
ferent increment if needed.

22.1.1 Creating Sequences

A sequence can be created as shown in the syntax diagram in Figure 22.1.

Creating a sequence does not require any parameters other than the
sequence name. Executing the command shown as follows will create a
sequence called A_SEQUENCE in the current schema with an initial value
of zero and an incremental value of one. See the result of the following
commands in Figure 22.2.

CREATE SEQUENCE A_SEQUENCE;

SELECT A_SEQUENCE.NEXTVAL FROM DUAL;

Figure 22.1

CREATE
SEQUENCE

Syntax.

Chap22.fm Page 490 Thursday, July 29, 2004 10:15 PM

22.1

Sequences 491

Chapter 22

We could, of course, create a sequence including START WITH and
INCREMENT BY parameters without relying on the defaults. We can even
set the INCREMENT BY value to a negative value and make the sequence
count backward

.

 Let’s drop the sequence we just created and demonstrate
this point. See the result of the following commands in Figure 22.3.

DROP SEQUENCE A_SEQUENCE;

CREATE SEQUENCE A_SEQUENCE INCREMENT BY -1;

SELECT A_SEQUENCE.NEXTVAL FROM DUAL;

SELECT A_SEQUENCE.NEXTVAL FROM DUAL;

SELECT A_SEQUENCE.NEXTVAL FROM DUAL;

Other parameters for sequence creation, so far not discussed but shown
in the syntax diagram in Figure 22.1, are as listed. All of these parameters
are switched off by default.

�

MINVALUE

. Sets a minimum value for a sequence. The default is
NOMINVALUE. This is used for sequences that decrease rather than
increase.

Figure 22.2

Create a Sequence
and Select the Next

Value.

Chap22.fm Page 491 Thursday, July 29, 2004 10:15 PM

492

22.1

Sequences

�

MAXVALUE

. Sets a maximum value for a sequence. The default is
NOMAXVALUE. Be aware that a column datatype may cause an
error if the number grows too large. For example, if the sequence is
used to populate a column of NUMBER(5) datatype, once the
sequence reaches 99999, then the next increment will cause an error.

�

CYCLE

. Causes a sequence to cycle around to its minimum when
reaching its maximum for an ascending sequence, and to cycle
around to its maximum when reaching its minimum for a descending
sequence. The default is NOCYCLE. If you reach the maximum
value on a sequence having NOCYCLE, you will get an error on the
next query that tries to increment the sequence.

�

CACHE

. This option caches precalculated sequences into a buffer. If
the database crashes, then those sequence values will be lost. Unless it

Figure 22.3

Create a Sequence
That Counts

Backward.

Chap22.fm Page 492 Thursday, July 29, 2004 10:15 PM

22.1

Sequences 493

Chapter 22

is absolutely imperative to maintain exact sequence counters, then
the default of CACHE 20 is best left as it is.

�

ORDER

. Ordering simply guarantees that sequence numbers are cre-
ated in precise sequential order. In other words, with the
NOORDER option, sequence numbers can possibly be generated
out of sequence sometimes, when there is excessive concurrent activ-
ity on the sequence.

22.1.2 Changing and Dropping Sequences

When changing a sequence, the only parameter not changeable is the
START WITH parameter. It is pointless to start an already started sequence.
Therefore, resetting the sequence to an initial value requires either recycling
(CYCLE) or dropping and re-creating the sequence. The syntax for chang-
ing a sequence is as shown in the syntax diagram in Figure 22.4.

Let’s change the sequence A_SEQUENCE we created in the previous
section, currently a descending sequence, into an ascending sequence. The
result of the following commands is shown in Figure 22.5.

ALTER SEQUENCE A_SEQUENCE INCREMENT BY 1;

SELECT A_SEQUENCE.NEXTVAL FROM DUAL;

SELECT A_SEQUENCE.NEXTVAL FROM DUAL;

We can drop the sequence A_SEQUENCE to clean up.

DROP SEQUENCE A_SEQUENCE;

Figure 22.4

ALTER
SEQUENCE

Syntax.

Chap22.fm Page 493 Thursday, July 29, 2004 10:15 PM

494

22.1

Sequences

22.1.3 Using Sequences

Sequences are valuable as unique key generators because they never issue a
duplicate value, even when many users are retrieving numbers from the
sequence. For example, let’s imagine that you have 10 operators entering
customer information into your online system. Each time a new customer
row is inserted, it uses a number from the CUSTOMER_SEQ for the pri-
mary key, using CUSTOMER_SEQ.NEXTVAL. Even if all 10 operators
simultaneously insert a new customer, Oracle Database 10

g

 will give each
session a unique number. There are never any duplicates.

Another interesting feature of sequences is that they never use the same
number again, even if the user cancels the transaction that retrieved the
number. Continuing with the operators entering customer information,
let’s imagine that the tenth operator gets the customer entered and it has
retrieved the number 101 from the CUSTOMER_SEQ sequence. Then
the operator cancels the transaction (say, the customer changes his mind
and hangs up the phone). The next operator to retrieve a sequence gets 102.
When using sequences, there may be gaps in the numbers you see in the
table caused by retrieving a sequence number and then not actually com-
mitting the insert. Obviously, this can have serious implications for

Figure 22.5

Change a Reverse-
Counting Sequence

to a Forward-
Counting
Sequence.

Chap22.fm Page 494 Thursday, July 29, 2004 10:15 PM

22.1

Sequences 495

Chapter 22

accounting systems (e.g., where perhaps tax laws require all numbers to
exist as transactions).

22.1.3.1 Using the CURRVAL and NEXTVAL Pseudocolumns

Whenever referring to a sequence within a session, use of the CURRVAL
pseudocolumn must be preceded by using the NEXTVAL pseudocolumn.
NEXTVAL initializes the sequence for the current session. The very first
time a sequence is accessed, NEXTVAL will return its initial value; every
subsequent access will return its next incremental value.

Let’s use, for example, the ARTIST_ID_SEQ sequence in the MUSIC
schema. This sequence is used to generate a primary key identifier value for
every row in the ARTIST table. Let’s try to find its current value using the
following query. See the result in Figure 22.6.

SELECT ARTIST_ID_SEQ.CURRVAL FROM DUAL;

Looking at Figure 22.6, we can see that we get an error. A sequence
must always be initialized for a session using the NEXTVAL pseudocolumn
before the CURRVAL pseudocolumn can be used.

Now let’s change the previous command and add a first use of the NEX-
TVAL pseudocolumn into the SQL*Plus Worksheet session before use of
the CURRVAL pseudocolumn on the ARTIST_ID_SEQ sequence. The
following script has its result in Figure 22.7. The actual number you see
may be different if other DML commands are accessing the sequence con-
currently.

SELECT ARTIST_ID_SEQ.NEXTVAL FROM DUAL;

SELECT ARTIST_ID_SEQ.CURRVAL FROM DUAL;

Figure 22.6

NEXTVAL
Required before

CURRVAL to
Initialize the

Sequence for the
Session.

Chap22.fm Page 495 Thursday, July 29, 2004 10:15 PM

496

22.1

Sequences

22.1.3.2 Using Sequences in an INSERT Statement

Sequences can be used to generate primary and foreign keys in INSERT
statements. There is plenty of use of sequences in Appendix A, containing
the MUSIC schema generation scripts. Following is a sample of one of
those scripts called the SONGANDTRACK.SQL script file. This script
sample adds a single row to the CDTRACK table. The CDTRACK table
has two foreign keys: MUSICCD_ID and SONG_ID.

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES(

 (

SELECT MUSICCD_ID FROM MUSICCD

 WHERE TITLE='Soak Up the Sun'

)

, (

SELECT SONG_ID FROM SONG

 WHERE TITLE='Soak Up The Sun (Album Version)'

)

, 1);

There are two subqueries in the previous script sample; each subquery
populates a foreign key column with the value of a primary key in another
table. The values in the primary key were originally generated from
sequences. The first subquery finds the MUSICCD_ID for the CD titled
“Soak up the Sun.” The second subquery selects the SONG_ID for the
song “Soak Up The Sun (Album Version)” by Sheryl Crow.

Figure 22.7

Initializing a
Sequence for a
Session Using
NEXTVAL.

Chap22.fm Page 496 Thursday, July 29, 2004 10:15 PM

22.1

Sequences 497

Chapter 22

What about the primary keys? The sample script that follows, again
taken from the SONGANDTRACK.SQL script, shows the INSERT com-
mand that created the primary key value for a row in the SONG table using
a sequence number. The song is “Soak up the Sun (Album Version)” by
Sheryl Crow. This unique identifier is the primary key column for the
SONG table. Incidentally, the SONG table contains a foreign key to the
ARTIST table in the SONG.ARTIST_ID column. The foreign key in the
following script is also highlighted and is selected using a subquery from the
ARTIST table:

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE, PLAYING_TIME)

VALUES(

SONG_ID_SEQ.NEXTVAL

 , (

SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow'

)

 , 'Soak Up The Sun (Album Version)','11:20');

22.1.3.3 Other Uses of Sequences

We have so far used sequences in SELECT statements, INSERT state-
ments, and subqueries. Sequences can be used in UPDATE statements, in a
similar fashion to that of INSERT statements, where a sequence already
inserted into a primary key column can be used to retrieve a description
column value based on an identifier value. For example, you have an order
system where a customer can enter a new mailing address when he or she
makes a new order (stored in the ORDERS table). Later, your database sys-
tem updates the master CUSTOMER table with new mailing addresses
from the ORDERS table.

UPDATE CUSTOMER SET LATEST_ADDRESS =

(SELECT MAILING_ADDRESS FROM ORDERS

 WHERE ORDERS.CUST_ID = CUSTOMER.CUST_ID);

The CUST_ID column in the CUSTOMER table was originally
assigned using a sequence.

Another common use for sequences is more indirect than those already
mentioned. Sometimes it is useful to retrieve the NEXTVAL of a sequence
and use it to insert rows in two related tables (e.g., ARTIST and SONG).
When using PL/SQL code (see Chapter 24), you can place a sequence
number into a variable and use it within the PL/SQL code. Here is a sample
snippet of PL/SQL code, showing an INSERT command using a variable
for assigning the primary key (ID) in a table:

Chap22.fm Page 497 Thursday, July 29, 2004 10:15 PM

498

22.2

Synonyms

INSERT INTO table (ID NUMBER) VALUES (sequence.NEXTVAL)

RETURNING ID INTO vID;

This brings us to the second topic of discussion for this chapter, synonyms.

22.2 Synonyms

A synonym can effectively provide an alias to any object in any schema in
the database, assuming that the user has privileges to view the underlying
objects. It makes an object appear as if you own it, because you do not have
to use a schema prefix when querying or performing other tasks with the
object. Synonyms can provide the following benefits:

�

Transparency

. A synonym masks the name of the schema owning the
object. The object can even be in a remote database when you include
a database link in the definition of the synonym. A database link is a
direct gateway from one database to another database.

�

Simplified SQL code

. Code is simplified because schema names do
not have to be included for table accesses where objects are in differ-
ent schemas.

�

Easy Changes

. Moving objects to different schemas or databases in
distributed environments does not require application changes
because only synonyms need to be changed.

There is one potential problem with using too many synonyms: A table
is a logical overlay on top of physical data on disk. A synonym is another
overlay onto a table, a logical overlay overlaying a logical overlay (the table).
Why can this be a problem? Let’s put it into perspective using a large-scale
environment. Assume that you run a database for an online bookstore.
Every time a user accesses a table, the application code accesses the table
through the synonym. If there are thousands of concurrent users, then both
the synonym and table are accessed thousands of times per second. That
makes for double the number of system queries into database metadata.
Large-scale systems could have problems as a result. No amount of buffer
tuning and physical organization will solve an issue such as this one. The
same concept applies to views (see Chapter 19). Always be aware of poten-
tially sacrificing database performance for the sake of ease and neatness of
application coding.

1

 In large OLTP and data warehouse environments, this

Chap22.fm Page 498 Thursday, July 29, 2004 10:15 PM

22.2

Synonyms 499

Chapter 22

type of thing can cause serious performance problems, but not in smaller-
scale client-server environments.

Synonyms can be created as publicly or privately available. All users
automatically have access to public synonyms. Private synonyms are avail-
able to the schema they are created in, although access can be granted to
other users. Access privileges and security are covered in Chapter 23.

22.2.1 Creating Public Synonyms

In the syntax diagram in Figure 22.8, the PUBLIC option determines if a
synonym is created publicly or not.

To create a public synonym, you would have to have the system privilege
CREATE PUBLIC SYNONYM. Use your SQL*Plus Worksheet session to
perform these steps so the MUSIC user is able to create a public synonym.
You would have to be logged in as a database administration user such as
SYS or SYSTEM to execute these commands.

GRANT CREATE SYNONYM TO MUSIC;

GRANT CREATE PUBLIC SYNONYM TO MUSIC;

To create a public synonym for the ARTIST table in the MUSIC
schema, available to all users, the following command would be executed:

CREATE PUBLIC SYNONYM CD FOR MUSICCD;

Figure 22.8

CREATE
SYNONYM

Syntax.

Chap22.fm Page 499 Thursday, July 29, 2004 10:15 PM

500

22.2

Synonyms

Once the synonym exists, you can change the table it references by using
the CREATE OR REPLACE form of the CREATE SYNONYM com-
mand. For example, if you had misspelled ARTIST in the previous com-
mand, you could fix it by running the following command:

CREATE OR REPLACE PUBLIC SYNONYM CD FOR MUSICCD;

Note:

The act of creating a public synonym does not actually give access to
the underlying table’s data. Although the synonym is available to all public
users, the underlying table is not available, unless specifically granted to a

user or a role. Granting privileges is covered in Chapter 23.

22.2.2 Creating Private Synonyms

To create a private synonym, simply create a synonym as before, excluding
the PUBLIC keyword, as shown in the following command. Note that if
you attempt to create a synonym called ARTIST, Oracle Database will
return an error because you cannot create a synonym with the same name as
an already existing object, the ARTIST table.

CREATE OR REPLACE SYNONYM MYARTISTS FOR MUSIC.ARTIST;

The most common use for private synonyms is to create a synonym for a
table in another schema. If the table does not have a public synonym, and
you use it in queries, you must include the schema name and the table
name. Creating a private synonym is like creating an alias that you can use
instead of the full schema and table name in your own queries. For exam-
ple, you can create a private synonym for an object (in this case, for a public
synonym) with a long name, as shown in the following command:

CREATE SYNONYM MYCOLS FOR USER_TAB_COLUMNS;

22.2.3 Using Synonyms

We have already created a private synonym in the MUSIC schema called
MYARTISTS, a synonym for the ARTIST table. Let’s prove that it works.
The following commands should suffice. See the result in Figure 22.9.

--Select from the ARTIST table

SELECT ARTIST_ID, NAME FROM ARTIST WHERE NAME LIKE '%u%';

Chap22.fm Page 500 Thursday, July 29, 2004 10:15 PM

22.3 Metadata Views 501

Chapter 22

--Select from the ARTISTS synonym

SELECT ARTIST_ID, NAME FROM MYARTISTS WHERE NAME LIKE '%u%';

As you can see, both queries return exactly the same results.

22.3 Metadata Views

This section simply describes metadata views applicable to sequences and
synonyms. Chapter 19 describes the basis and detail of Oracle Database
metadata views.

� USER_SEQUENCES. Current user sequence objects.

� USER_SYNONYMS. Private synonym details.

Figure 22.9
Selecting Rows

from a Table and a
Synonym on That

Table.

Chap22.fm Page 501 Thursday, July 29, 2004 10:15 PM

502 22.4 Endnotes

This chapter has described sequences and synonyms, completing chap-
ters on Oracle database objects commonly used directly by Oracle SQL.
The next chapter discusses security, users, and privileges.

22.4 Endnotes

1. Oracle Performance Tuning for 9i and 10g (ISBN: 1-55558-305-9)

Chap22.fm Page 502 Thursday, July 29, 2004 10:15 PM

503

23

Security

In this chapter:

�

How do you create a user?

�

How do you change a user, and what can be changed?

�

What are privileges?

�

How are privileges classified?

�

How do roles group privileges?

�

When are roles and privileges used?

This chapter covers general Oracle Database 10

g

 access privilege and
security issues. You will find out how to share your table data with others
using privileges and roles. You will also learn the DBA tasks of creating new
users and giving them authority to perform various kinds of work within
the database. Creating and managing users and privileges are often DBA
tasks. As a result, many DBA-type options are omitted from this chapter.
On the other hand, simple security and access skills are very useful for Ora-
cle SQL programmers, especially in isolated development environments.

23.1 Users

You might have been practicing throughout reading this book on a database
using the MUSIC schema. You know, of course, that you have been logging
into Oracle Database as an Oracle user. The user has a name, such as
MUSIC, and a password. The MUSIC user has authority to create tables in
its own schema. The MUSIC user was created by another user, who has
authority to create users and assign them the capabilities they need, such as
the ability to create a table.

Chap23.fm Page 503 Thursday, July 29, 2004 10:15 PM

504

23.1

Users

One of the most important reasons for creating more users is so you can
isolate and limit the privileges of the person who logs into the database, giv-
ing that person only the privileges needed to perform his or her duties and
nothing more. After all, you don’t want the intern you just hired to be
allowed to drop an entire schema full of tables by mistake.

Typically, the DBA creates an Oracle user for each person who needs to
use the database. This user has a unique password, which should be kept
secret and should be known only by the DBA and the user. This gives you
the most flexibility in designing your security around the specific tasks each
person carries out in the database. For example, one person enters cus-
tomer orders while working on the company’s toll-free phone line. Another
person processes the orders and uses the database to update the customer
orders with a shipping date. A third person handles customer billing and
returns, updating the customer’s account information as needed for pay-
ments or refunds.

Note:

In the age of the Internet, Oracle usernames are generally shared
among many users through the use of connection pooling, application serv-

ers, and Web servers.

How do you get started creating users? You start with a small group of
users that was already created when you began using your database.

23.1.1 Users Provided by Oracle

To create a user, you must log into the database as a DBA user. The SYS-
TEM user, created as part of the Oracle Database 10

g

database creation
process, is a DBA user. So, you can log in as SYSTEM to create more users.
Oracle Database 10

g

 comes with a multitude of predefined users that have
specific uses. For the purposes of Oracle SQL, we are interested in the SYS
and SYSTEM users only, and obviously your application usernames, such
as the MUSIC schema.

�

SYS

. SYS is the internal table owner. This user owns most of the
tables that are used internally for the database’s functioning. This user
has the greatest amount of access to all areas of the database. Be care-
ful when logged in as SYS because you have the power to do things
that can completely disable your database. For example, SYS can
drop an internal table or modify data in an internal table, possibly

Chap23.fm Page 504 Thursday, July 29, 2004 10:15 PM

23.1

Users 505

Chapter 23

rendering the database useless. Log in as the SYS user primarily when
performing these tasks. A SYS user connection always requires the
SYSDBA or SYSOPER (special system privileges) to perform the fol-
lowing tasks:

�

Exporting and importing data.

�

Shutting down and starting up the database.

�

Database recovery.

�

SYSTEM

. SYSTEM is the database administrator. This user is fre-
quently used by the DBA to perform day-to-day tasks of monitoring
and administering the database. SYSTEM can do many of the same
tasks as the SYS user, without the danger of accidentally damaging
internal tables or bouncing the database. Log in as the SYSTEM user
when performing these tasks:

�

Creating new users, changing user passwords.

�

Assigning system privileges to users or roles (you will understand
what this means when you get further into this chapter).

�

Monitoring database activity and performance.

�

Adjusting database parameters (usually to improve performance).

�

Adding more space to the database.

�

Feature-Related Users

. These users are the owners of tables and other
objects related to specific Oracle Database 10

g

 features such as replica-
tion, spatial support, and advanced queuing. Depending on how many
features were installed with your database, there may be quite a few of
these users. Do not log in as any of these users unless specifically
instructed to do so by Oracle Database 10

g

 documentation.

Note:

In the past, passwords for SYS and SYSTEM were defined as part of
the database creation process and defaulted to “change_on_install” and
“manager,” respectively. Oracle Database 10

g

 forces password definition on
installation. You know what they are if you installed the database. If not,
ask the person who did the installation for the passwords. If you need those

passwords, they will be given to you.

23.1.2 Creating Users

The syntax for creating users is much easier than the syntax for creating a
table! There are far fewer options. Figure 23.1 shows the syntax.

Chap23.fm Page 505 Thursday, July 29, 2004 10:15 PM

506

23.1

Users

There are three methods available for Oracle Database 10

g

 user
authentication:

�

IDENTIFIED BY password

. Assigning a password to the user is the
most commonly used method. This password is only good for log-
ging onto the database and must be used every time you log on. The
password is stored in the database as an encrypted string that even the
DBA cannot decrypt.

�

IDENTIFIED EXTERNALLY

. This method tells Oracle Database
10

g

 to ask the operating system to tell it who is logging in. This
means that if you log into your Windows 2000 computer as CARO-
LINE, then Oracle Database 10

g

 logs you in as CAROLINE. Some-
times a prefix is added to the username, just so you can tell the
difference between users identified by passwords or by external
names. The default prefix is OPS$, so Oracle Database 10

g

 actually
logs CAROLINE into the database with the username OPS$CARO-
LINE. Oracle Database 10

g

 does not store any password information
for this type of user.

�

IDENTIFIED GLOBALLY AS 'name'

. This method tells Oracle
Database 10

g

 to look for a global variable (stored in the network
somewhere) that has your user name in it. This feature of Oracle
Database 10

g

 allows a user to log into a remote site and access a data-
base at another site without having to provide an additional user-
name and password. Oracle Database 10

g

 does not store password
information for this type of user.

Figure 23.1

Creating a User Is
Straightforward.

Chap23.fm Page 506 Thursday, July 29, 2004 10:15 PM

23.1

Users 507

Chapter 23

Note:

In this book, you work only with users who are assigned a password.

You must be logged into the database as a user who has authority to cre-
ate new users. The SYSTEM user has this capability. Let’s say you have a
person who wants to view the CDs that you have in the MUSIC schema.
The first step in allowing the user access to the tables is to give him or her
access to the database.

Note:

Passwords can include numbers, letters, and even characters to make

them harder to crack.

Let’s create a new user. First, I connect as my SYSTEM user, allowing
me to create a user. Replace the password and network connection string
(OLTP) with values appropriate for your database:

CONNECT SYSTEM/password@OLTP;

The following command creates a new user with the name JACKIE and
her password set to J25RX:

CREATE USER JACKIE IDENTIFIED BY J25RX;

JACKIE is now an Oracle user, but she cannot actually log in until she is
given the basic privilege to do so. The CREATE SESSION privilege allows
a user to connect to the database. Connecting to the database creates a ses-
sion.

GRANT CREATE SESSION TO JACKIE;

JACKIE would now be able to log in to the database using a CON-
NECT command.

CONNECT JACKIE/J25RX@OLTP;

Chap23.fm Page 507 Thursday, July 29, 2004 10:15 PM

508

23.1

Users

Once logged in as JACKIE, you could check your username by typing
the following command. Figure 23.2 shows the result of the four com-
mands executed previously plus the following simple query:

SELECT USER FROM DUAL;

Once a user is created and given the CREATE SESSION privilege, he or
she can log on but cannot do much of anything else. One thing any user
can do, however, is to change his or her password.

23.1.3 Modifying User Passwords

A user can change his or her password at any time. In addition, the SYS-
TEM user (or another user with the appropriate privileges) can change any
user’s password. The syntax for changing a password is shown in Figure
23.3. The syntax is identical, whether you are changing your own password
or another user’s password.

Figure 23.2

JACKIE Is
Logged On.

Chap23.fm Page 508 Thursday, July 29, 2004 10:15 PM

23.1

Users 509

Chapter 23

Now let’s change the password for Jackie. If not already logged in as
JACKIE, then the first command will do that:

CONNECT JACKIE/J25RX@OLTP;

Now let’s change Jackie’s password to JACKIE001:

ALTER USER JACKIE IDENTIFIED BY JACKIE001;

You could then test the change by reconnecting with the new password:

CONNECT JACKIE/JACKIE001@OLTP;

Now we could reconnect to the SYSTEM user to practice changing
another user’s password:

CONNECT SYSTEM/password@OLTP;

We could once again change Jackie’s password by running the same
command that Jackie ran. This time, change the password to JACKIE#1:

ALTER USER JACKIE IDENTIFIED BY JACKIE#1;

We could verify Jackie’s new password by connecting with the new pass-
word:

CONNECT JACKIE/JACKIE#1@OLTP;

Figure 23.3

Change the
Password with the

ALTER USER
Command.

Chap23.fm Page 509 Thursday, July 29, 2004 10:15 PM

510

23.1

Users

�

That was easy!

Note:

No one can view a password stored in the database, not even the SYS

or SYSTEM users.

Let’s imagine that a DBA must remove old users from the database.
Some employees may have quit or retired. Others may have moved to dif-
ferent jobs, no longer requiring database access.

23.1.4 Dropping Users

When you remove a user, it is called dropping the user. The syntax is shown
in Figure 23.4, and this is about as brief as it gets.

If a user has created tables, indexes, or other objects, you must add the
CASCADE keyword to the command so that all of the user’s objects are
dropped first, followed by the user.

Here are a few rules about dropping users:

�

You cannot drop yourself.

� You cannot drop a user who is logged on.

� You cannot drop the SYS or SYSTEM users.

The user JACKIE can be removed from the database by running the fol-
lowing command:

DROP USER JACKIE;

Figure 23.4
Dropping a User
Must Be Done by

the DBA.

Chap23.fm Page 510 Thursday, July 29, 2004 10:15 PM

23.2 Privileges 511

Chapter 23

As you can see, adding and removing users is very easy. Giving the
appropriate privileges to the appropriate users gets a bit more complex. So
let’s now examine privileges.

23.2 Privileges

A privilege gives a user permission to perform certain tasks or access specific
objects in the database. There are two types of privileges:

� System Privileges. These give a user the capability to do something
in the database, such as create tables or create views.

� Object Privileges. These give a user access to the data in an object,
such as the privilege to select or update rows in a specific table.

When you assign (grant) a privilege, you can give a user the ability to
assign the privilege to others. You have to be logged on with a user who has
the privilege and has the right to assign that privilege as well. The SYSTEM
user, being a DBA, has just about every privilege needed to assign privileges
to others.

23.2.1 Granting Privileges

The syntax for granting system and object privileges is very similar. Figure
23.5 shows both system and object privileges.

Roles are discussed later in this chapter. For now, focus on the com-
mands as they are used to grant system and object privileges to users. Some
important differences to note between granting system privileges and grant-
ing object privileges are as follows:

� When granting system privileges, the WITH ADMIN OPTION can
be used.

� When granting object privileges, the WITH GRANT OPTION can
be used.

� Only object privileges name a specific object, such as a table, with the
ON clause.

Now let’s demonstrate executing granting of privileges. Once again, we
begin by connecting as the SYSTEM user.

Chap23.fm Page 511 Thursday, July 29, 2004 10:15 PM

512 23.2 Privileges

CONNECT SYSTEM/password@OLTP;

Start by creating two new users on which to experiment by running the
following commands. The PRINCE user will be creating tables, so he needs
additional parameters that allow him to use a tablespace for the tables.

CREATE USER ARIEL IDENTIFIED BY MERMAID;

CREATE USER PRINCE IDENTIFIED BY CHARMING

DEFAULT TABLESPACE USERS QUOTA 2M ON USERS;

Note: The DEFAULT TABLESPACE and QUOTA options are DBA
things but necessary to allow creation of stuff like tables.

Grant the system privilege that allows these two users to connect to the
database.

GRANT CREATE SESSION TO ARIEL, PRINCE;

Figure 23.5
Granting System

and Object
Privileges Uses

Similar Syntax.

Chap23.fm Page 512 Thursday, July 29, 2004 10:15 PM

23.2 Privileges 513

Chapter 23

You can grant a system privilege to several users at once.

Let’s say that PRINCE needs to be able to create his own tables and
views. Plus, you want PRINCE to be allowed to give these privileges to
other users. The following command gives him the privileges needed:

GRANT CREATE TABLE, CREATE VIEW TO PRINCE

WITH ADMIN OPTION;

As you can see, it is possible to list more than one system privilege in a
single GRANT command.

Now, let’s say that ARIEL needs to be able to run queries and modify
data in the MUSICCD table. Because ARIEL does not own the table, she
must be granted object privileges. Both the DBA user and the owner of a
table can grant object privileges on a table. So we can connect to the
MUSIC schema and grant privileges to other users.

CONNECT MUSIC/MUSIC@OLTP;

Now run this command to give ARIEL the capabilities she needs:

GRANT SELECT, INSERT, UPDATE, DELETE

ON MUSIC.MUSICCD TO ARIEL;

You decide that the information about artists should be viewable by any
user who can log onto the database. The PUBLIC user group is a special
group accessible by all users. Rather than granting privileges to all users
individually, use PUBLIC. Any privilege granted to PUBLIC is granted to
all users, even users that are created after you issue the GRANT command.
The next command gives all users the ability to query the ARTIST table:

GRANT SELECT ON MUSIC.ARTIST TO PUBLIC;

Now you could log in as ARIEL and test out what you are allowed to see
in the MUSIC schema.

CONNECT ARIEL/MERMAID@OLTP;

Chap23.fm Page 513 Thursday, July 29, 2004 10:15 PM

514 23.2 Privileges

Test the ability of ARIEL to query the ARTIST table in the MUSIC
schema by executing a query while logged in as ARIEL. The result of this
query is shown in Figure 23.6.

SELECT NAME, COUNTRY, EMAIL FROM MUSIC.ARTIST

ORDER BY 1;

Now we could query the SONG table, which ARIEL has no privileges
to view, still logged in as ARIEL.

SELECT TITLE, RECORDING_DATE FROM MUSIC.SONG

ORDER BY 1;

Figure 23.7 shows the result. Oracle Database 10g tells us the table does
not exist! This may seem confusing, but it is intended to prevent hackers
from trying to find tables in the database. If Oracle Database 10g gave the
unauthorized user even a hint that he had found the name and schema of a
table, but simply did not have access to it, that could give the user enough
information to continue attempting to access the table. The deliberately
vague message discourages snooping.

Figure 23.6
Add the Schema

Name to the Table
Name when

Querying Tables
You Do Not Own.

Chap23.fm Page 514 Thursday, July 29, 2004 10:15 PM

23.2 Privileges 515

Chapter 23

A different message appears when you do not have the system privi-
lege needed to perform a task. We could create a simple table, such as the
following:

CREATE TABLE SEASHELLS (SHELLNAME VARCHAR2(20));

Figure 23.8 shows the result. ARIEL has not been granted the CREATE
TABLE system privilege, and therefore Oracle Database 10g issues an error
message stating “insufficient privileges.”

Figure 23.7
A Table That

Really Exists Is
Invisible to an
Unauthorized

User.

Figure 23.8
Cannot Create a

New Table without
the CREATE

TABLE System
Privilege.

Chap23.fm Page 515 Thursday, July 29, 2004 10:15 PM

516 23.2 Privileges

Now let’s connect to PRINCE and experiment with his privileges.

CONNECT PRINCE/CHARMING@OLTP;

Let’s create a small table owned by PRINCE.

CREATE TABLE MYHORSES (NAME VARCHAR2(30) PRIMARY KEY

, STALL NUMBER);

Now grant the object privilege to ARIEL, for querying this new table.

GRANT SELECT ON MYHORSES TO ARIEL;

SQL*Plus will reply with, “Grant succeeded.” The owner of a table,
PRINCE, can grant object privileges on that table.

Additionally, PRINCE has WITH ADMIN OPTION on the CREATE
TABLE and CREATE VIEW system privileges, so he can grant them to
others. The next command will allow PRINCE to grant the ability to create
views to ARIEL.

GRANT CREATE VIEW TO ARIEL;

Let’s take a small step back for a moment and look briefly at system and
object privileges. There are a multitude of system privileges. For a complete
list, see Oracle documentation. As far as Oracle SQL is concerned, you do

Table 23.1 System Privileges

System Privilege Description

CREATE ANY TABLE Create a table in any user’s schema.

CREATE TABLE Create a table in your own schema only.

CREATE USER Create a new Oracle user.

ALTER DATABASE Modify database settings with the ALTER DATA-
BASE command.

CREATE ANY INDEX Create an index on a table in any schema.

Chap23.fm Page 516 Thursday, July 29, 2004 10:15 PM

23.2 Privileges 517

Chapter 23

not need to know about all available privileges. However, you should know
the more common ones. Table 23.1 lists commonly used system privileges.

Object privileges are much easier to swallow because there are far fewer
of them. The basic object privileges available on tables are as shown in Table
23.2.

There are slightly different object privileges for different types of objects.
For example, views have nearly the same privileges as tables because they are
similar in structure. Packages and procedures, on the other hand, have

EXECUTE ANY PROCEDURE Run any procedure (useful for the DBA, who may
need to run Oracle-provided procedures).

CREATE ROLE Create a role (see the next section in this chapter).

CREATE SEQUENCE Create a sequence in your own schema.

SELECT ANY SEQUENCE Query a sequence, using CURRVAL and
NEXTVAL, in any schema.

SELECT ANY TABLE Query any schema’s tables.

CREATE PUBLIC SYNONYM Create a public synonym.

Table 23.2 Object Privileges

Object Privilege Description

SELECT Allows retrieval of rows from a table.

INSERT Allows adding of new rows to a table.

UPDATE Allows changing of rows in a table.

DELETE Allows deletion of rows from a table.

INDEX Allows a user to create an index on a table using
the CREATE INDEX command.

ALTER With respect to tables, allow execution of the
ALTER TABLE command and table structural
changes.

REFERENCES Allows creation of table references constraints.

Table 23.1 System Privileges (continued)

System Privilege Description

Chap23.fm Page 517 Thursday, July 29, 2004 10:15 PM

518 23.2 Privileges

entirely different privileges, such as EXECUTE, because they are a different
type of database object.

What if you have granted a privilege (system or object) to PUBLIC and
later decide that you would rather only grant that privilege to a small set of
users? You must remove the privilege you originally granted. This brings us
to the REVOKE command.

23.2.2 Revoking Privileges

You use the REVOKE command to remove both system privileges and
object privileges. Like the GRANT command, the REVOKE command
has two similar formats: one for revoking system privileges and one for
revoking object privileges. Figure 23.9 shows the syntax for the REVOKE
command.

� Revoke System Privileges. To revoke a system privilege, you must
have been granted the same system privilege WITH ADMIN
OPTION. The SYSTEM user has this privilege.

Figure 23.9
Revoking

Privileges.

Chap23.fm Page 518 Thursday, July 29, 2004 10:15 PM

23.2 Privileges 519

Chapter 23

� Revoke Object Privileges. To revoke an object privilege, you must
either have granted the privilege originally or you must have the
GRANT ANY OBJECT PRIVILEGE system privilege.

As with the GRANT command, let’s go through a sequence of steps
demonstrating use of the REVOKE command. Let’s revoke privileges from
the two users, PRINCE and ARIEL.

First, connect as PRINCE.

CONNECT PRINCE/CHARMING@OLTP;

Now we can revoke an object privilege that was granted by PRINCE.
Revoke the SELECT privilege on the MYHORSES table from ARIEL.
ARIEL will no longer be able to read PRINCE’s MYHORSES table.

REVOKE SELECT ON MYHORSES FROM ARIEL;

Next we can connect to the SYSTEM user and revoke a system privilege
granted earlier.

CONNECT SYSTEM/password@OLTP;

We have decided that PRINCE should not be allowed to create views.

REVOKE CREATE VIEW FROM PRINCE;

What happens to ARIEL’s ability to create views (granted by PRINCE)
when PRINCE loses his privilege to create views? System privileges remain
until specifically revoked from a user, even if the granting user loses the
privilege. We can verify this fact by connecting to ARIEL.

CONNECT ARIEL/MERMAID@OLTP;

Now create a view on the MUSIC.ARTIST table by running the next
command. ARIEL has the ability to SELECT from that table because the
object privilege was granted to PUBLIC. This verifies that even though
PRINCE has been denied the ability to create views, ARIEL has not.

Chap23.fm Page 519 Thursday, July 29, 2004 10:15 PM

520 23.2 Privileges

PRINCE originally granted the CREATE VIEW privilege to ARIEL.
Revoked system privileges do not cause cascading revokes; only object priv-
ilege revokes can do that.

CREATE VIEW CA_ARTISTS AS

SELECT * FROM MUSIC.ARTIST WHERE STATE_PROVINCE='CA';

We will now examine some rules about revoking privileges. Using
graphic examples, here are some key points to remember about how revok-
ing of privileges works.

23.2.2.1 Revoked System Privileges DO NOT Cascade

When you revoke a system privilege, the revoke affects only the user you are
naming and does not affect any objects or users created. For example, SYS-
TEM grants the CREATE USER privilege WITH ADMIN OPTION to
ASSISTANT. Then ASSISTANT creates a user named INTERN and
grants her the CREATE USER privilege. Now, INTERN creates another
user named JOE. Figure 23.10 illustrates these events.

Figure 23.10
One New User Is

Created by Each of
These Users:

SYSTEM,
ASSISTANT, and

INTERN.

Chap23.fm Page 520 Thursday, July 29, 2004 10:15 PM

23.2 Privileges 521

Chapter 23

Now, as the DBA, you decide that your assistant does not need to create
users at this point, so you revoke the CREATE USER privilege from
ASSISTANT.

ASSISTANT can no longer create users; however, the users she created
still exist. And, INTERN, who received the system privilege CREATE
USER from ASSISTANT, retains that privilege. Figure 23.11 illustrates this
idea by showing that ASSISTANT cannot create a user, while INTERN
can create a user.

23.2.2.2 Revoked Object Privileges DO Cascade

Revoking an object privilege does result in a cascading set of revoked privi-
leges. For example, imagine that SYSTEM grants SELECT on
MUSIC.ARTIST to ASSISTANT using the WITH GRANT OPTION
clause. Then ASSISTANT grants the same object privilege to INTERN
who in turn grants the privilege (without the WITH GRANT OPTION)
to JOE. Figure 23.12 shows the scenario.

After careful thought, you decide that your assistant no longer requires
the SELECT privilege on the MUSIC.ARTIST table, so you revoke the
privilege. The revoke actually cascades and revokes the privilege from
INTERN, and then it cascades again and revokes the privilege from JOE.

Figure 23.11
ASSISTANT

Failed to Create
MATTHEW, but
INTERN Created

BETH.

Chap23.fm Page 521 Thursday, July 29, 2004 10:15 PM

522 23.3 Grouping Privileges Using Roles

Now, only SYSTEM can successfully query the MUSIC.ARTIST table.
Figure 23.13 shows how this works.

Remember that revoked system privileges do not cascade and revoked
object privileges do cascade.

One of the more repetitive DBA tasks is that of granting the proper
privileges to new users and maintaining privileges for all existing users. Very
often, a group of users has identical privileges. The next section shows you
how to take advantage of this with roles. Roles allow groupings of privileges
and subsequent granting of privilege groups with a single granting or revoke
of a role.

23.3 Grouping Privileges Using Roles

A role is a set or grouping of object and/or system privileges that is assigned
a name. Once a role is established, you can grant the role instead of grant-
ing all of the individual privileges to a user. This capability saves a great deal
of time!

Figure 23.12
SYSTEM,

ASSISTANT, and
INTERN Grant

Object Privileges.

Chap23.fm Page 522 Thursday, July 29, 2004 10:15 PM

23.3 Grouping Privileges Using Roles 523

Chapter 23

Note: PL/SQL code blocks may not recognize database access through
roles. Explicit object privileges may be required for PL/SQL. PL/SQL is
covered in Chapter 24.

23.3.1 Creating and Altering Roles

Figure 23.14 shows the syntax of the CREATE ROLE and ALTER ROLE
commands. Options are identical for both commands. Any user with the
CREATE ROLE system privilege can create a role. The SYSTEM user, of
course, has this privilege. The DBA often grants this privilege to users who
own tables, so that users can create roles associated with their tables and
grant those roles to other users.

A role that will contain sensitive privileges can be assigned a password.
Any user who wants to use that role must provide the password (except
when the role is one of the user’s default roles). You will find out more
about default roles later. At this stage, all we will do is lay some groundwork
for later and create two roles, substitute strings where appropriate.

Figure 23.13
Revoking an Object

Privilege Cascades
to Other Users to

whom the Revokee
Granted the Same

Object Privilege.

Chap23.fm Page 523 Thursday, July 29, 2004 10:15 PM

524 23.3 Grouping Privileges Using Roles

CONNECT SYSTEM/password@OLTP;

CREATE ROLE MINIDBA;

CREATE ROLE MUSIC_ACCESS;

The MINIDBA role will be a highly privileged role, thus I am
using the ALTER ROLE command to restrict access using a pass-
word.

ALTER ROLE MINIDBA IDENTIFIED BY DBA#9876;

Note: The password is the only portion of a role that can be altered. You can
add, change, or remove the password on a role. If you want to change the
name of a role, you must drop and then re-create it with the changed name.

Once roles are created, privileges can be granted to them as if they are
users. Then roles can be granted to users. Once a user has a role granted, he
or she inherits all of the privileges assigned to that role.

23.3.2 Granting and Revoking Privileges on Roles

Granting privileges to a role is exactly the same (syntax-wise) as granting
privileges to a user. Figures 23.5 and 23.9 show the syntax of granting and
revoking privileges to and from roles. Roles can be granted to a user, a role,
or PUBLIC.

Let’s grant some privileges. First connect to the SYSTEM user.

Figure 23.14
A New Role Does
Not Contain Any
Privileges at First.

Chap23.fm Page 524 Thursday, July 29, 2004 10:15 PM

23.3 Grouping Privileges Using Roles 525

Chapter 23

CONNECT SYSTEM/password@OLTP;

Now we give the MINIDBA role three system privileges that you wish
to delegate to an assistant DBA.

GRANT CREATE USER, CREATE SESSION, CREATE ROLE

TO MINIDBA;

Connect to the MUSIC user to grant some object privileges to the other
role.

CONNECT MUSIC/MUSIC@OLTP;

Let’s say that you are the designer for the MUSIC schema’s application
and you know that all users need to be able to change and query some
tables and only query other tables.

GRANT SELECT ON ARTIST TO MUSIC_ACCESS;

GRANT SELECT ON SONG TO MUSIC_ACCESS;

GRANT SELECT ON MUSICCD TO MUSIC_ACCESS;

GRANT SELECT, INSERT, UPDATE, DELETE

ON STUDIOTIME TO MUSIC_ACCESS;

GRANT SELECT, INSERT, UPDATE, DELETE

ON GUESTAPPEARANCE TO MUSIC_ACCESS;

Now that roles are configured, we should now grant the roles to users.
Granting a role to a user uses the same syntax as granting a system privilege.
Refer to Figures 23.5 and 23.9 again. Notice that you can grant a system
privilege, a role, or ALL PRIVILEGES. A role can even be granted to
another role! This can be useful when you have subsets of privileges that can
be logically grouped together under a single role.

So we have added privileges to both roles and now wish to grant roles to
users. The MUSIC user did not create any roles and does not have the
GRANT ANY ROLE system privilege. We have to connect to SYSTEM
again.

CONNECT SYSTEM/password@OLTP;

Chap23.fm Page 525 Thursday, July 29, 2004 10:15 PM

526 23.3 Grouping Privileges Using Roles

Let’s say that you want PRINCE to be allowed to use the MUSIC appli-
cation. In addition, PRINCE will be allowed to grant the role to other
users. Grant the appropriate role to PRINCE using this command:

GRANT MUSIC_ACCESS TO PRINCE WITH ADMIN OPTION;

Granting a role to a user has the same syntax as granting system privi-
leges; therefore, you use the WITH ADMIN OPTION when you want the
user to be able to grant the role to others.

We also decide that the MINIDBA role should have all privileges
granted to the MUSIC_ACCESS role in addition to the system privileges
already granted to it. Grant the MUSIC_ACCESS role to the MINIDBA
role.

GRANT MUSIC_ACCESS TO MINIDBA;

Now, grant the MINIDBA role to ARIEL.

GRANT MINIDBA TO ARIEL;

ARIEL has all privileges from both roles.

Connect to PRINCE.

CONNECT PRINCE/CHARMING@OLTP;

PRINCE is allowed to grant the MUSIC_ACCESS role. He grants it to
ARIEL.

GRANT MUSIC_ACCESS TO ARIEL;

After doing this, we realize that ARIEL already has the
MUSIC_ACCESS role because it is included in the MINIDBA role. So
PRINCE can revoke the redundant role.

REVOKE MUSIC_ACCESS FROM ARIEL;

Chap23.fm Page 526 Thursday, July 29, 2004 10:15 PM

23.3 Grouping Privileges Using Roles 527

Chapter 23

Note: Roles can be granted to other roles, establishing groups of groupings
of privileges.

23.3.3 Setting User Roles

A role, once assigned to a user, can be either enabled or disabled in the
user’s session. By default, any role assigned to a user is enabled. The DBA
can adjust which roles are enabled by default for each user when that user
logs in, using the ALTER USER command. In addition, a user can enable a
role using the SET ROLE command.

The ALTER USER command syntax is shown in Figure 23.15. The
ALTER USER command has many other uses. Figure 23.15 shows only
portions of syntax catering to user default roles.

When a user starts a session (connects to a database), roles are enabled
according to settings made by the DBA using the ALTER USER command.
A user can modify his or her session and change the enabled role set using
the SET ROLE command. Figure 23.16 shows the syntax for the SET
ROLE command.

Let’s show some use of role allocation. First, reconnect to SYSTEM
using this command:

CONNECT SYSTEM/password@OLTP;

Figure 23.15
Modify a User’s

Default Roles with
ALTER USER.

Chap23.fm Page 527 Thursday, July 29, 2004 10:15 PM

528 23.3 Grouping Privileges Using Roles

All roles assigned to a user start out enabled by default, including roles
with passwords. If you want the user to be required to use the password
before enabling the role, you must remove the role from the user’s list of
default roles. The MINIDBA role has a password and has been granted to
ARIEL. Remove this role from ARIEL’s default roles.

ALTER USER ARIEL DEFAULT ROLE ALL EXCEPT MINIDBA;

Now connect to ARIEL replacing the variable as usual.

CONNECT ARIEL/MERMAID@OLTP;

ARIEL cannot perform any tasks that need the system privileges found
in the MINIDBA role (such as creating new users), because the role is dis-
abled. She enables the MINIDBA role by using the SET ROLE command,
including the appropriate password.

SET ROLE MINIDBA IDENTIFIED BY DBA#9876;

Note: Be careful to include all of the roles you wish to enable in your SET
ROLE command.

Figure 23.16
Users Can Only

Enable Roles
Previously Granted

to Them.

Chap23.fm Page 528 Thursday, July 29, 2004 10:15 PM

23.3 Grouping Privileges Using Roles 529

Chapter 23

Roles not included in the SET ROLE command become disabled. For
example, let’s say you have three roles enabled by default (VIEWMUSIC,
UPDATEMUSIC, and DELETEMUSIC) and one role (INSERTMUSIC)
disabled by default. If the command SET ROLE INSERTMUSIC is exe-
cuted, you will enable the INSERTMUSIC role and disable the VIEW-
MUSIC, UPDATEMUSIC, and DELETEMUSIC roles. Oracle Database
10g provides some predefined roles you can use if you wish. There are many
predefined roles. Some of them are listed as follows:

� CONNECT. System privileges needed to log on and work as a data-
base developer. Privileges include CREATE TABLE, CREATE
VIEW, CREATE SESSION, CREATE CLUSTER, and so on. Each
operating system has a slightly different group of privileges, but gen-
erally, you have all you need to do basic database work.

� RESOURCE. System privileges needed for other database develop-
ment, such as creating types. Privileges include CREATE TYPE and
CREATE PROCEDURE. Like the CONNECT role, the exact priv-
ileges vary from system to system.

� SELECT_CATALOG_ROLE. Allows access to data dictionary
metadata and performance views, the catalog.

Use these to help you get started in administering your database. Oracle
recommends, however, that you study the underlying privileges and create
your own roles for most tasks. The CONNECT and RESOURCE roles
may not be created automatically in future releases of Oracle.

23.3.4 Dropping Roles

This final section on roles involves removing roles. Whenever you remove a
role, it is revoked from all users who currently have the role. Syntax for the
DROP ROLE command is shown in Figure 23.17.

Roles are an excellent way to consolidate privileges needed for running
applications.

Figure 23.17
Dropping a Role
Also Revokes the
Role from Users.

Chap23.fm Page 529 Thursday, July 29, 2004 10:15 PM

530 23.4 Metadata Views

23.4 Metadata Views

This section simply describes metadata views applicable to users, privileges,
and roles. Chapter 19 describes the basis and detail of Oracle Database
metadata views.

� USER_USERS. Information on the logged-in user. ALL_USERS
and DBA_USERS detail information for all users currently existing
in the database.

� USER_SYS_PRIVS. Granted system privileges.

� USER_TAB_PRIVS[_MADE|RECD]. All object privileges (granted
to and from plus owned). MADE and RECD implies granted object
privileges and grantee object privileges, respectively.

Note: The term grantee implies that a user has been granted a privilege by
another user.

� USER_COL_PRIVS[_MADE|RECD]. As for USER_TAB_PRIVS
but as applied to specific columns only, not entire tables.

� ROLE_PRIVS. Roles granted to a user, both enabled and disabled.

� USER_ROLE_PRIVS. Roles granted to the connected user, both
enabled and disabled.

� SESSION_ROLES. A connected session’s enabled roles.

� ROLE_ROLE_PRIVS. Roles granted to other roles.

� ROLE_TAB_PRIVS. Object privileges granted to roles.

� ROLE_SYS_PRIVS. System privileges granted to roles.

� DBA_ROLE_PRIVS. Roles granted to users and other roles, who or
which role granted it to the user or role, respectively, and whether the
user has WITH ADMIN OPTION for the role.

This chapter has described security and controlling database access using
users, both system and object privileges, and finally privilege groupings
using roles. The next chapter, the final chapter in this book, digresses from
Oracle SQL more so than this chapter, examining the very basics of Pro-
gramming Language/SQL (PL/SQL).

Chap23.fm Page 530 Thursday, July 29, 2004 10:15 PM

531

24

Basic PL/SQL

In this chapter:

�

What is PL/SQL?

�

What are variables and PL/SQL datatypes?

�

What are procedures, functions, triggers, and packages?

�

How is data retrieved from the database using PL/SQL?

�

What programming control structures exist in PL/SQL?

�

What is dynamic or generic SQL?

This chapter covers basic reference material and examples on how to
write programs in PL/SQL. It should be noted that the PL/SQL is a wrap-
per extension of Oracle SQL in that its original purpose was that of data-
base access only. However, in recent years, PL/SQL has been expanded
voluminously to become more of a programming language.

24.1 What is PL/SQL?

PL/SQL is an acronym for Programming Language/SQL. Structured
Query Language (SQL) is a scripting language. A scripting language usually
does not allow any dependencies between separate, following commands.

Note:

This is not strictly true for all scripting languages. Even though
UNIX shell scripting has many features, attempting to write complex appli-

cations using only UNIX shell scripting can lead to expensive problems.

Chap24.fm Page 531 Thursday, July 29, 2004 10:16 PM

532

24.2

Why Is PL/SQL a Programming Language?

PL/SQL extends SQL with programming controls and features such as
procedures, variables, and control structures. Let’s begin the meat of this
chapter by asking: Why is PL/SQL classified as a programming language?

24.2 Why Is PL/SQL a Programming Language?

PL/SQL is a programming language because, unlike SQL, it allows depen-
dencies to exist between multiple SQL commands, within the same block
of code. In Oracle SQL, each SQL statement cannot pass a result on to
another SQL statement or control structure, but PL/SQL can. Also, per-
haps more important, a programming language block structure allows one
procedure to call another, allowing for a modular, compartmentalized, or
perhaps even pseudo-object hierarchical programming structure.

Therefore, PL/SQL is a programming language because it contains the
ability to do the following things:

�

Allows dependencies between commands within the same block of
code.

�

Allows for parameter passing up and down code block hierarchies. It
allows for structure, namely modular.

�

Contains a definition of variable scope across code block hierarchies,
strict data typing, and allows use of commonly used programming
control structures.

The downside of PL/SQL is that it should be primarily used as a data-
base access programming language. PL/SQL does not perform well as a
number cruncher like C or Java.

One more point to make is as follows: PL/SQL is becoming increasingly
more capable as an object-like programming language, where the Oracle
relational database allows for hierarchical object data structures. It tries to
anyway. For what it is worth in my experienced opinion, I would avoid
using Oracle Database or PL/SQL to manage objects. If you want to use
object methodologies to manage complexity, put it at the application level
using something like Java or use an object database.

Chap24.fm Page 532 Thursday, July 29, 2004 10:16 PM

24.2

Why Is PL/SQL a Programming Language? 533

Chapter 24

24.2.1 Blocks and Exception Trapping

A block of code is a group of lines of SQL or PL/SQL code enclosed
between BEGIN and END statements. A block of code is parsed and exe-
cuted after the END statement is submitted using the front slash (/) charac-
ter. The following SQL block consists of a variable declaration section
followed by a BEGIN to END code block. See the result in Figure 24.1.
This block of code queries the ARTIST table for the ARTIST_ID of Sheryl
Crow. It stores the ARTIST_ID in a variable and then uses the variable to
find the title of the first song of Sheryl Crow in the SONG table. It stores
the title in another variable. Then it displays the title and completes.

SET SERVEROUTPUT ON;

DECLARE

vARTIST_ID ARTIST.ARTIST_ID%TYPE;

vTITLE SONG.TITLE%TYPE;

BEGIN

SELECT ARTIST_ID INTO vARTIST_ID FROM ARTIST

 WHERE NAME='Sheryl Crow';

SELECT TITLE INTO vTITLE FROM SONG

 WHERE ARTIST_ID = vARTIST_ID AND ROWNUM = 1;

DBMS_OUTPUT.PUT_LINE(vTITLE);

EXCEPTION WHEN OTHERS THEN

RAISE;

END;

/

SET SERVEROUTPUT OFF;

Note:

The statement SET SERVEROUTPUT ON is essential for the
proper functioning of the DBMS_OUTPUT.PUT_LINE packaged proce-
dure. DBMS_OUTPUT is an Oracle-provided package. The PUT_LINE
procedure within that package sends a line to the output. SET SERVER-

OUTPUT OFF switches output off.

Note:

%TYPE sets a variable to the datatype of the specified

TABLE.COLUMN.

Chap24.fm Page 533 Thursday, July 29, 2004 10:16 PM

534

24.2

Why Is PL/SQL a Programming Language?

The block of code in Figure 24.1 is an anonymous PL/SQL block,
which is effectively an unnamed procedure without parameters. It is exe-
cuted by the front slash (/) character, is not stored, and thus cannot be exe-
cuted again as a stored, named object.

The last two lines in Figure 24.1 before the block END statement com-
prise an error exception trap. Any errors occurring between the BEGIN
statement and the EXCEPTION statement will cause control to pass to the
EXCEPTION trap, which executes the RAISE statement. The RAISE
statement does nothing in this procedure, passing an exception to the call-
ing block. If no calling block exists, then an error called

unhandled exception

will be returned to the calling application. In our case, SQL*Plus Work-
sheet is the calling application.

24.2.2 Procedures, Functions, Triggers, and Packages

Unlike an anonymous block, stored procedures are named, compiled, and
stored in the database. They can be executed repeatedly in the future by
executing the procedure name. PL/SQL stored objects include procedures,
functions, triggers, and packages. What are the differences between these
four compiled, executable database objects? They are as follows:

�

Procedure

. Allows by value and by reference parameters with no
return value.

Figure 24.1

PL/SQL Block
Structure and

Exception
Trapping.

Chap24.fm Page 534 Thursday, July 29, 2004 10:16 PM

24.2

Why Is PL/SQL a Programming Language? 535

Chapter 24

�

Function

. Like a procedure but allows a return value.

�

Trigger

. No transactional termination commands allowed and exe-
cuted automatically by database event occurrences. Triggers are
known as event-driven procedures.

�

Package

. Groups multiple procedures and functions together into
blocked units.

24.2.2.1 Using Named Procedures

The following named procedure is a slightly more sophisticated copy of the
anonymous procedure presented previously. The procedure now has a
name, accepts a parameter, is stored in the database, and can be executed
repeatedly by executing the procedure name as shown in the following
script. The result is shown in Figure 24.2.

CREATE OR REPLACE PROCEDURE GETSONG (pARTIST IN VARCHAR2) AS

vARTIST_ID ARTIST.ARTIST_ID%TYPE;

vTITLE SONG.TITLE%TYPE;

BEGIN

SELECT ARTIST_ID INTO vARTIST_ID FROM ARTIST

 WHERE NAME=pARTIST;

SELECT TITLE INTO vTITLE FROM SONG

 WHERE ARTIST_ID = vARTIST_ID AND ROWNUM = 1;

DBMS_OUTPUT.PUT_LINE(vTITLE);

EXCEPTION WHEN OTHERS THEN

RAISE;

END;

/

SET SERVEROUTPUT ON;

EXEC GETSONG('Sheryl Crow');

EXEC GETSONG('Avril Lavigne');

SET SERVEROUTPUT OFF;

24.2.2.2 Using Functions

Following are two versions of a function used previously in this book. This
function will split a string time value of HH:SS into its hours and seconds
constituent parts and convert them to a real number.

CREATE OR REPLACE FUNCTION GETTIME(pTIME IN VARCHAR2)

 RETURN NUMBER IS

--variable declaration section

Chap24.fm Page 535 Thursday, July 29, 2004 10:16 PM

536

24.2

Why Is PL/SQL a Programming Language?

vLEN INTEGER DEFAULT 0;

vSPLIT INTEGER DEFAULT 0;

vHOURS INTEGER DEFAULT 0;

vSECONDS INTEGER DEFAULT 0;

BEGIN

 --execution section

 vSPLIT := INSTR(pTIME,':');

 vLEN := LENGTH(pTIME);

 vHOURS := TO_NUMBER(SUBSTR(pTIME,1,vSPLIT-1));

 vSECONDS := TO_NUMBER(SUBSTR(pTIME,

 vSPLIT+1,vLEN-vSPLIT));

 RETURN vHOURS+(vSECONDS/60);

EXCEPTION WHEN OTHERS THEN

--exception trap section

RETURN 0;

END;

/

Figure 24.2

PL/SQL Block
Structure and

Exception
Trapping.

Chap24.fm Page 536 Thursday, July 29, 2004 10:16 PM

24.2

Why Is PL/SQL a Programming Language? 537

Chapter 24

Note:

Note in the previous PL/SQL code how variables are accessed as vari-

able := value; This is PL/SQL syntax.

Here is a single-line version of the same function showing how best to
write properly performing PL/SQL code:

CREATE OR REPLACE FUNCTION GETTIME(pTIME IN VARCHAR2)

 RETURN NUMBER IS

BEGIN

RETURN TO_NUMBER(SUBSTR(pTIME,1,INSTR(pTIME,':')-
1))+(TO_NUMBER(SUBSTR(pTIME,INSTR(pTIME,':')+1,LENGTH(pTIME)-
INSTR(pTIME,':')))/60);

EXCEPTION WHEN OTHERS THEN RETURN 0;

END;

/

I can execute the GETTIME function on the SONG table
PLAYING_TIME column (SONG.PLAYING_TIME) using the following
script. The result is shown in Figure 24.3.

SELECT PLAYING_TIME, GETTIME(PLAYING_TIME) FROM SONG

WHERE PLAYING_TIME IS NOT NULL;

Note:

The GETTIME function is also known as a custom-written or user-

defined function.

24.2.2.3 Using Triggers

Here are some simple example triggers. The first trigger detects insertions to
the ARTIST table, the second updates, and the third deletions. Figure 24.4
shows the response from an INSERT, an UPDATE, and a DELETE com-
mand, one after the other.

CREATE OR REPLACE TRIGGER iARTIST

AFTER INSERT ON ARTIST FOR EACH ROW

BEGIN

DBMS_OUTPUT.PUT_LINE('New Artist '||:NEW.NAME||'
added.');

Chap24.fm Page 537 Thursday, July 29, 2004 10:16 PM

538

24.2

Why Is PL/SQL a Programming Language?

EXCEPTION WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM(SQLCODE));

RAISE;

END;

/

CREATE OR REPLACE TRIGGER uARTIST

AFTER UPDATE OF NAME ON ARTIST FOR EACH ROW

BEGIN

DBMS_OUTPUT.PUT_LINE('Artist changed from '

||:OLD.NAME||' to '||:NEW.NAME);

EXCEPTION WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM(SQLCODE));

RAISE;

END;

/

CREATE OR REPLACE TRIGGER dARTIST

AFTER DELETE ON ARTIST FOR EACH ROW

BEGIN

DBMS_OUTPUT.PUT_LINE('Artist '||:OLD.NAME

||' has been deleted');

EXCEPTION WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE(SQLERRM(SQLCODE));

RAISE;

END;

Figure 24.3

Executing a
Named, Stored
Procedure from

within SQL.

Chap24.fm Page 538 Thursday, July 29, 2004 10:16 PM

24.2

Why Is PL/SQL a Programming Language? 539

Chapter 24

/

SET SERVEROUTPUT ON;

INSERT INTO ARTIST(ARTIST_ID,NAME)

VALUES(100,'Robert Alan Zimmerman');

UPDATE ARTIST SET NAME='Bob Dylan'

WHERE NAME='Robert Alan Zimmerman';

DELETE FROM ARTIST WHERE NAME='Bob Dylan';

SET SERVEROUTPUT OFF;

24.2.2.4 Using Packages

Packages can be used to group commonly stored PL/SQL units into a single
chunk of code. A package must have a declaration section and a body sec-
tion. The declaration simply defines named units within the package, and
the package body contains the actual procedures. The following script is a
simple package converting temperatures between degrees Fahrenheit (F˚),
degrees Celsius (C˚), and degrees Kelvin (K˚). Example executions of the
various functions are shown in Figure 24.5.

CREATE OR REPLACE PACKAGE TEMPERATURE AS

FUNCTION cTOf(c VARCHAR2 DEFAULT 0) RETURN VARCHAR2;

FUNCTION fTOc(f VARCHAR2 DEFAULT 0) RETURN VARCHAR2;

Figure 24.4

Executing Triggers
from DML

Commands.

Chap24.fm Page 539 Thursday, July 29, 2004 10:16 PM

540

24.2

Why Is PL/SQL a Programming Language?

FUNCTION fTOK(f VARCHAR2 DEFAULT 0) RETURN VARCHAR2;

FUNCTION KTOf(K VARCHAR2 DEFAULT 0) RETURN VARCHAR2;

FUNCTION cTOK(c VARCHAR2 DEFAULT 0) RETURN VARCHAR2;

FUNCTION KTOc(K VARCHAR2 DEFAULT 0) RETURN VARCHAR2;

END;

/

CREATE OR REPLACE PACKAGE BODY TEMPERATURE AS

FUNCTION cTOf(c VARCHAR2 DEFAULT 0) RETURN VARCHAR2 AS

BEGIN

RETURN TO_CHAR(c)||'C˚ = '||ROUND(32+((9/
5)*c),0)||'F˚';

END;

FUNCTION fTOc(f VARCHAR2 DEFAULT 0) RETURN VARCHAR2 AS

BEGIN

RETURN TO_CHAR(f)||'F˚ = '||ROUND((5/9)*(f-
32),0)||'C˚';

END;

FUNCTION fTOK(f VARCHAR2 DEFAULT 0) RETURN VARCHAR2 AS

BEGIN

RETURN TO_CHAR(f)||'F˚ = '||ROUND(32+((9/5)*f)-
273.15,0)||'K˚';

END;

FUNCTION KTOf(K VARCHAR2 DEFAULT 0) RETURN VARCHAR2 AS

BEGIN

RETURN TO_CHAR(K)||'K˚ = '||ROUND((5/9)*(K+273.15-
32))||'F˚';

END;

FUNCTION cTOK(c VARCHAR2 DEFAULT 0) RETURN VARCHAR2 AS

BEGIN

RETURN TO_CHAR(c)||'C˚ = '||ROUND(c-273.15,0)||'K˚';

END;

FUNCTION KTOc(K VARCHAR2 DEFAULT 0) RETURN VARCHAR2 AS

BEGIN

RETURN TO_CHAR(K)||'K˚ = '||ROUND(K+273.15,0)||'C˚';

END;

END;

/

Now let’s look into variables and datatypes for PL/SQL.

Chap24.fm Page 540 Thursday, July 29, 2004 10:16 PM

24.3

Variables and Datatypes in PL/SQL 541

Chapter 24

24.3 Variables and Datatypes in PL/SQL

PL/SQL contains all of the predefined datatypes included in SQL, as
explained in Chapter 16, plus some additional datatypes. Some of these
additional datatypes are listed as follows:

�

NUMBER Datatypes

. There are numerous NUMBER subtypes
provided for ANSI standard compliance. These subtypes will all con-
vert to NUMBER or FLOAT datatypes both for Oracle table col-
umns and internally in PL/SQL. For example, INTEGER and
SMALLINT.

�

BINARY_INTEGER

. Stores a signed integer value. There are various
subtypes.

�

BOOLEAN

. Stores a TRUE, FALSE, or null value.

�

RECORD

. Composite structure similar to a VARRAY or TABLE
datatype allowing the creation of a table row structure in memory.
The following line uses ROWTYPE to duplicate the column struc-
ture of an ARTIST table row into the RECORD called RARTIST.

Figure 24.5

Using a Package to
Group Procedures.

Chap24.fm Page 541 Thursday, July 29, 2004 10:16 PM

542

24.3

Variables and Datatypes in PL/SQL

RARTIST ARTIST%ROWTYPE;

In the following code, a new record structure is built using one
new field (ID), the ARTIST.NAME field, and the SONG.NAME
field. A RECORD datatype is then declared as having the structure
of the new type, TARTISTSONGS.

TYPE TARTISTSONGS IS RECORD (ID INTEGER

, ARTISTS ARTIST.NAME%TYPE

, SONGS SONG.TITLE%TYPE);

RARTISTSONGS TARTISTSONGS;

There are examples using RECORD datatypes later in this chap-
ter when discussing cursors.

�

Reference Datatypes

. In addition to the REF object pointer type,
PL/SQL also includes a REF cursor. A REF cursor is a by reference
cursor (byref), which implies that a variable is a pointer and can be
passed into as well as out of a procedure, including returning any
changes made to the REF cursor within the procedure. There will be
more on cursors later in this chapter.

�

Associative Arrays

. Associative arrays are currently only allowed in
PL/SQL and not Oracle SQL. An associative array is a dynamic array
much like a nested table object (see Chapter 16). The only difference
is that an associative array is indexed and thus capable of much better
performance than a nested table. The following script snippet shows
how an associative array is declared in PL/SQL as opposed to
VARRAYs and nested tables:

DECLARE

 TYPE tTable IS TABLE OF VARCHAR2(32);

 TYPE tVARRAY IS VARRAY(100) OF INTEGER;

 TYPE tITable IS TABLE OF VARCHAR2(32) INDEX BY
BINARY_INTEGER;

 vPointer tTable;

 vArray tVARRAY;

 vIndexedPointer tITable;

BEGIN

NULL;

END;

/

Chap24.fm Page 542 Thursday, July 29, 2004 10:16 PM

24.4

Retrieving Data in PL/SQL 543

Chapter 24

The next thing we should deal with is retrieving data from the database
from within PL/SQL.

24.4 Retrieving Data in PL/SQL

What is a cursor? A

cursor

 is a temporary area in memory used to store the
results of a query. Oracle Database calls the area of memory in which a cur-
sor is temporarily placed a Work Area. In programming terms, a cursor is a
pointer to an address in memory, a chunk of memory. Query and DML
command results are placed into and processed in cursors during execution.
In PL/SQL, cursors can be created as programming data structures. Cursors
can be used for queries returning one or many rows and can be of two
types: implicit and explicit cursors. An implicit cursor is declared automati-
cally by PL/SQL, and an explicit cursor is declared by the programmer. An
explicit cursor gives more control to the programmer.

24.4.1 Explicit Cursors

An explicitly declared cursor allows more programmer access to a cursor, for
each row in that cursor, using the cursor OPEN, FETCH, and CLOSE
commands.

What is an explicit cursor? Let’s explain it in steps: the first step is to
declare a cursor. This example names the cursor CARTIST. The query
(SELECT * FROM ARTIST) retrieves rows of data and places them in the
cursor’s memory area. At the same time, we declare a RECORD type to
contain each row retrieved. We use the record type called RARTIST, seen
before in this chapter, to retrieve each row of data from the cursor.

SET SERVEROUTPUT ON;

DECLARE

CURSOR CARTIST IS SELECT * FROM ARTIST;

RARTIST ARTIST%ROWTYPE;

The second step is to open the cursor. This parses the query and loads
the first portion of rows into the cursor in preparation for retrieval by the
program:

BEGIN

OPEN CARTIST;

Chap24.fm Page 543 Thursday, July 29, 2004 10:16 PM

544 24.4 Retrieving Data in PL/SQL

Now we loop through the open cursor, selecting each row. There will be
more about loops later in this chapter. This loop has three commands. The
first one places the next row from the cursor into the RARTIST record vari-
able. The second command causes the looping to end if the status of the
cursor is NOTFOUND (meaning there are no rows left to retrieve.) The
third line places a line on the screen that displays the artist name. This line
is executed only if there was a row retrieved from the cursor. The three lines
are repeated for every row retrieved from the cursor:

LOOP

FETCH CARTIST INTO RARTIST;

EXIT WHEN CARTIST%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(RARTIST.NAME);

END LOOP;

Do not forget to close your cursor! Explicit cursors should be closed as
soon as they are no longer needed to improve performance, prevent locking
issues, and ensure that cursor limits are not reached.

CLOSE CARTIST;

END;

/

SET SERVEROUTPUT OFF;

The execution of the pieces of the anonymous procedure looping
through the explicit cursor just described is shown in Figure 24.6.

There are other variations of how explicit cursors can be coded, but we
do not need to go into any further detail.

24.4.2 Implicit Cursors

Every SQL statement both in SQL and inside a PL/SQL block not declared
explicitly as a cursor is an implicit cursor. An implicit cursor is opened and
closed by SQL or PL/SQL and is used to process INSERT, UPDATE,
DELETE, and SELECT statements. A special type of implicit cursor exclu-
sive to PL/SQL is called a cursor FOR loop. A cursor FOR loop is an
implicit cursor on the basis that it does not require use of the OPEN,
FETCH, and CLOSE statements.

Chap24.fm Page 544 Thursday, July 29, 2004 10:16 PM

24.4 Retrieving Data in PL/SQL 545

Chapter 24

Following are three example PL/SQL anonymous blocks: the first con-
tains INSERT and UPDATE statements, the second a SELECT … INTO
statement, and the third a cursor FOR loop.

24.4.2.1 The Internal SQL Implicit Cursor

The results of the most recently executed implicit cursor are stored in an
internal Oracle cursor called SQL. Note how the first example uses
SQL%NOTFOUND to decide on executing the INSERT statement. The
block begins by updating all rows in the ARTIST table where the artist’s
name is the band called Chicago. We know that there are no artists by that
name in our MUSIC database. The update does not succeed, and the
implicit cursor used for the update has a status of NOTFOUND. The
block checks the implicit cursor status using SQL%NOTFOUND and
inserts a row into the artist table with a name of Chicago.

In Figure 24.7, you can see output at the end displaying one occurrence
of “Inserted Chicago” and two occurrences of “Updated Chicago.” The
anonymous block is executed three times. The IF statement is used in this
script, the syntax of which is explained later in this chapter.

Figure 24.6
Using an Explicit

Cursor.

Chap24.fm Page 545 Thursday, July 29, 2004 10:16 PM

546 24.4 Retrieving Data in PL/SQL

SET SERVEROUTPUT ON;

BEGIN

UPDATE ARTIST SET CITY = 'Chicago'

 , STATE_PROVINCE = 'IL'

WHERE NAME = 'Chicago';

IF SQL%NOTFOUND THEN

INSERT INTO ARTIST(ARTIST_ID, NAME, CITY

 , STATE_PROVINCE)

 VALUES(ARTIST_ID_SEQ.NEXTVAL, 'Chicago'

 , 'Chicago','IL');

DBMS_OUTPUT.PUT_LINE('Inserted Chicago');

ELSE

DBMS_OUTPUT.PUT_LINE('Updated Chicago');

END IF;

EXCEPTION WHEN OTHERS THEN

DBMS_OUTPUT.PUT_LINE('Exception thrown');

END;

/

SET SERVEROUTPUT OFF;

Figure 24.7
Using Implicit

Cursors.

Chap24.fm Page 546 Thursday, July 29, 2004 10:16 PM

24.4 Retrieving Data in PL/SQL 547

Chapter 24

Note: Note that the UPDATE statement in the PL/SQL block does not
throw an exception when the row searched for is not found, but it does set
the cursor SQL to being NOTFOUND.

24.4.2.2 Single-Row SELECT Implicit Cursor

When using an implicit cursor with a query, the query must return no more
than one row. If it returns multiple rows, the procedure will fail. You can
use an explicit cursor or a cursor FOR loop (see the next example) for que-
ries returning multiple rows.

For a single-row SELECT statement, the INTO clause must be used.
When selecting a single row in a PL/SQL block, the value or values
retrieved by the query are placed into variables declared within the PL/
SQL block, as shown following in the second example. In this example,
four variables are declared: one for each of the four columns in the
SELECT statement. The query uses the INTO clause to place each col-
umn value into each corresponding variable. The variables are then used to
construct a line that is displayed on the screen. See the result of the follow-
ing code in Figure 24.8.

SET SERVEROUTPUT ON;

DECLARE

VARTIST_ID ARTIST.ARTIST_ID%TYPE;

VNAME ARTIST.NAME%TYPE;

VCITY ARTIST.CITY%TYPE;

VSTATE_PROVINCE ARTIST.STATE_PROVINCE%TYPE;

BEGIN

 SELECT ARTIST_ID,NAME,CITY,STATE_PROVINCE

 INTO VARTIST_ID,VNAME,VCITY,VSTATE_PROVINCE

 FROM ARTIST WHERE NAME = 'Chicago';

 DBMS_OUTPUT.PUT_LINE('OUTPUT IS : '||TO_CHAR(VARTIST_ID)

||' '||VNAME||' '||VCITY||' '||VSTATE_PROVINCE);

END;

/

SET SERVEROUTPUT OFF;

24.4.2.3 Cursor FOR Loop Implicit Cursor

A cursor FOR loop is often used as a substitute for an explicit cursor,
thereby simplifying code. In the example shown following, note how the

Chap24.fm Page 547 Thursday, July 29, 2004 10:16 PM

548 24.4 Retrieving Data in PL/SQL

cursor declaration section creates a RECORD object called RARTIST and
that no opening and closing cursor operations are required.

In this example, the cursor is declared and has a name of CARTIST.
However, instead of declaring a record variable and using OPEN,
FETCH, and CLOSE to retrieve rows, all that is needed is the FOR
clause. The loop automatically opens the cursor and reads each row and
places it into the RARTIST variable. Inside the loop, the artist’s name is
displayed on the screen. When no more rows are found, the loop automat-
ically closes the cursor and ends the loop. The result of the following code
is shown in Figure 24.9.

SET SERVEROUTPUT ON;

DECLARE

CURSOR CARTIST IS SELECT * FROM ARTIST ORDER BY NAME;

BEGIN

FOR RARTIST IN CARTIST LOOP

DBMS_OUTPUT.PUT_LINE(RARTIST.NAME);

END LOOP;

END;

/

SET SERVEROUTPUT OFF;

Figure 24.8
The SELECT …
INTO Statement.

Chap24.fm Page 548 Thursday, July 29, 2004 10:16 PM

24.5 Changing Data in PL/SQL 549

Chapter 24

Now let’s describe some small facts about changing data from within
PL/SQL blocks.

24.5 Changing Data in PL/SQL

Not only can data in tables be changed from within PL/SQL blocks, but
there are some small additions making coding a little easier and more effi-
cient. One of these additions is the RETURNING INTO clause, as shown
in the combined syntax for INSERT, UPDATE, and DELETE commands
in Figure 24.10.

In general. the RETURNING INTO clause can be used to return
expressions used in DML statements back into variables in the calling PL/
SQL block. These variables can be used by subsequent commands in the
PL/SQL block. In the code snippet shown as follows, the first INSERT
command effectively passes the ARTIST_ID directly to the second
INSERT command. Without the RETURNING INTO clause, the
ARTIST_ID value would have to be retrieved using a SELECT command
between the two INSERT commands.

Figure 24.9
An Implicit Cursor

FOR Loop.

Chap24.fm Page 549 Thursday, July 29, 2004 10:16 PM

550 24.6 Dynamic SQL

DECLARE

VARTIST_ID ARTIST.ARTIST_ID%TYPE;

BEGIN

INSERT INTO ARTIST(ARTIST_ID,NAME)

 VALUES(ARTIST_ID_SEQ.NEXTVAL,'The Goanna Band')

RETURNING ARTIST_ID INTO VARTIST_ID;

INSERT INTO SONG(SONG_ID, ARTIST_ID, TITLE)

 VALUES(SONG_ID_SEQ.NEXTVAL, VARTIST_ID

 , 'The Razor''s Edge');

END;

/

The next section looks at dynamic SQL. Dynamic SQL is SQL or PL/
SQL code generated on the fly, usually generically from within an applica-
tion or some other calling process.

24.6 Dynamic SQL

Dynamic or generic programming is a term applied to programming where
portions of the code are constructed at run-time. As a result, dynamic SQL
is flexible based on user or parameter input. Two types of dynamic SQL can
be used:

� The EXECUTE IMMEDIATE command.

Figure 24.10
Syntax for the

DML
RETURNING
INTO Clause.

Chap24.fm Page 550 Thursday, July 29, 2004 10:16 PM

24.6 Dynamic SQL 551

Chapter 24

� The DBMS_SQL package. This option is out of date, and the EXE-
CUTE IMMEDIATE command is now recommended.

The command EXECUTE IMMEDIATE is used to submit a string
value as an Oracle SQL command to the Oracle SQL parser from inside a
PL/SQL block. In this example, you are creating a stored procedure named
GETROWS that you can call, passing a value to the procedure for the
input parameter VTABLE. The procedure then executes a query that
counts the rows in whatever table you named in the VTABLE parameter.
The second and third last lines are commands that call the procedure you
created. See the result in Figure 24.11.

SET SERVEROUTPUT ON;

CREATE OR REPLACE PROCEDURE GETROWS (VTABLE IN VARCHAR2) AS

VCOUNT INTEGER;

BEGIN

EXECUTE IMMEDIATE 'SELECT COUNT(*) FROM '||VTABLE

 INTO VCOUNT;

DBMS_OUTPUT.PUT_LINE('There are '||TO_CHAR(VCOUNT)

||' rows in the '||VTABLE||' table');

END;

/

EXEC GETROWS('ARTIST');

EXEC GETROWS('SONG');

SET SERVEROUTPUT OFF;

The next example shows the use of the EXECUTE IMMEDIATE com-
mand to execute a DDL command inside a PL/SQL block. All DDL com-
mands executed from within a PL/SQL block should be executed using the
EXECUTE IMMEDIATE command.

BEGIN

EXECUTE IMMEDIATE 'ALTER INDEX XUK_ARTIST_NAME REBUILD';

END;

/

Note: Previous versions of Oracle used a provided package called
DBMS_SQL to execute dynamic SQL code inside PL/SQL blocks.
DBMS_SQL can still be used, but the recommended method is the EXE-
CUTE IMMEDIATE statement.

Chap24.fm Page 551 Thursday, July 29, 2004 10:16 PM

552 24.6 Dynamic SQL

24.6.1 Building Cursors Dynamically

Cursors can also be executed dynamically. The following example uses a
REF cursor. There are other methods of coding dynamic cursors in PL/
SQL, but a simple example will suffice here. The result of the following
code is shown in Figure 24.12.

SET SERVEROUTPUT ON;

CREATE OR REPLACE PROCEDURE GETROWS

 (VCOUNTRY IN ARTIST.COUNTRY%TYPE) AS

TYPE TARTIST IS REF CURSOR;

CARTIST TARTIST;

RARTIST ARTIST%ROWTYPE;

BEGIN

OPEN CARTIST FOR 'SELECT * FROM ARTIST

 WHERE COUNTRY = '''||VCOUNTRY||'''';

LOOP

FETCH CARTIST INTO RARTIST;

EXIT WHEN CARTIST%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(RARTIST.NAME

||' comes from '||RARTIST.COUNTRY);

END LOOP;

CLOSE CARTIST;

END;

/

EXEC GETROWS('CAN');

Figure 24.11
Using EXECUTE
IMMEDIATE to

Execute SQL DML
PL/SQL Blocks.

Chap24.fm Page 552 Thursday, July 29, 2004 10:16 PM

24.7 Control Structures 553

Chapter 24

EXEC GETROWS('England');

SET SERVEROUTPUT OFF;

24.7 Control Structures

Any program can be coded using basic control structures. PL/SQL contains
all of the necessary requirements. Basic control structures include these ele-
ments: selection, iteration, and sequence controls. Control structures allow
for modular programming. This makes it easier to share code with other
programmers or to divide a larger, more complex program into smaller,
more easily understood components. In PL/SQL, the control structures are
as follows:

� Selection. IF and CASE statements.

� Iteration or Repetition. Multiple types of loops, sometimes includ-
ing completion conditions, such as a WHILE loop.

� Sequence Controls. GOTO and NULL. A GOTO statement jumps
from any point in a block of code to another. The NULL command
simply does nothing at all and can be used as a placeholder.

Figure 24.12
Using a REF

Cursor.

Chap24.fm Page 553 Thursday, July 29, 2004 10:16 PM

554 24.7 Control Structures

Note: Avoid using GOTO statements. Purist modular programming does
not allow use of GOTO statements. It is always possible to construct a
piece of code properly without using GOTO statements. GOTO state-
ments lead to spaghetti code.

24.7.1 Selection

The IF and the CASE statements allow you to execute different code
depending on the value of some expression. The expression must be a Bool-
ean expression. That is, the expression must always evaluate to true, false, or
NULL, where NULL is equivalent to false.

24.7.1.1 The IF Statement

Each branch of an IF statement will be executed based on a condition. The
situation where all conditions fail is covered by the default ELSE clause.
Every condition can be a different Boolean expression. The syntax of the IF
statement is shown in Figure 24.13.

Now let’s use an IF statement to display total dollars due based on due
dates for outstanding amounts of money. In this example, we define a date
called TODAY. The IF statement causes an addition to a total based on the
due date of each row. See the result in Figure 24.14.

SET SERVEROUTPUT ON

DECLARE

TODAY DATE DEFAULT '01-JUL-2001';

Figure 24.13
IF Statement

Syntax.

Chap24.fm Page 554 Thursday, July 29, 2004 10:16 PM

24.7 Control Structures 555

Chapter 24

CURSOR CSTUDIO IS

 SELECT A.COUNTRY,A.NAME,S.DUE_DATE

 ,NVL(S.AMOUNT_CHARGED - NVL(S.AMOUNT_PAID,0),0)

 AS AMOUNT

 FROM ARTIST A JOIN STUDIOTIME S USING (ARTIST_ID)

 ORDER BY 1,2,3;

 AT90DAYS INTEGER DEFAULT 0;

 AT60DAYS INTEGER DEFAULT 0;

 AT30DAYS INTEGER DEFAULT 0;

 NOTDUE INTEGER DEFAULT 0;

BEGIN

/* Loop through all the rows, adding amounts to the

 4 variables. */

FOR RSTUDIO IN CSTUDIO LOOP

IF TODAY - RSTUDIO.DUE_DATE > 90 THEN

AT90DAYS := AT90DAYS + RSTUDIO.AMOUNT;

ELSIF TODAY - RSTUDIO.DUE_DATE > 60 THEN

AT60DAYS := AT60DAYS + RSTUDIO.AMOUNT;

ELSIF TODAY - RSTUDIO.DUE_DATE > 30 THEN

AT30DAYS := AT30DAYS + RSTUDIO.AMOUNT;

ELSE

 NOTDUE := NOTDUE + RSTUDIO.AMOUNT;

END IF;

END LOOP;

/* Print results now */

DBMS_OUTPUT.PUT_LINE('90 + days: '||TO_CHAR(AT90DAYS,'$999,999.99'));
DBMS_OUTPUT.PUT_LINE('60 - 89 days: '||TO_CHAR(AT60DAYS,'$999,999.99'));
DBMS_OUTPUT.PUT_LINE('30 - 59 days: '||TO_CHAR(AT30DAYS,'$999,999.99'));
DBMS_OUTPUT.PUT_LINE('< 30 days: '||TO_CHAR(NOTDUE,'$999,999.99'));

END;

/

24.7.1.2 The CASE Statement

The CASE statement can be used in place of lengthy IF statements where a
condition is tested against a single Boolean expression. Internally, a CASE
statement is more efficient than an IF statement. There are two forms of the
CASE statement in PL/SQL. Both forms of the CASE statement will yield
a Boolean result (TRUE, FALSE, or NULL) for each option. The syntax of
both forms of the CASE statement is shown in Figure 24.15.

Chap24.fm Page 555 Thursday, July 29, 2004 10:16 PM

556 24.7 Control Structures

� Search Condition. A search condition with no selector. This form of
the CASE statement is very similar to the IF statement shown in Fig-
ure 24.14.

� Selector and Expression. A selector with an expression result for the
selector.

24.7.1.2.1 CASE Statement Search Condition
To demonstrate the use of the CASE statement, we can show a modifica-
tion of the PL/SQL block we created to demonstrate use of the IF state-
ment. This CASE statement example will use the search condition version
of the CASE statement. Change the IF statement code of the previous
example. See the result in Figure 24.16.

Figure 24.14
Splitting Results

Using an IF
Statement.

Chap24.fm Page 556 Thursday, July 29, 2004 10:16 PM

24.7 Control Structures 557

Chapter 24

Figure 24.15
CASE statement

syntax.

Figure 24.16
Splitting Results

Using a
Nonselector-type

CASE Statement.

Chap24.fm Page 557 Thursday, July 29, 2004 10:16 PM

558 24.7 Control Structures

SET SERVEROUTPUT ON

DECLARE

TODAY DATE DEFAULT '01-JUL-2001';

CURSOR CSTUDIO IS

 SELECT A.COUNTRY,A.NAME,S.DUE_DATE

 ,NVL(S.AMOUNT_CHARGED - NVL(S.AMOUNT_PAID,0),0)

 AS AMOUNT

 FROM ARTIST A JOIN STUDIOTIME S USING (ARTIST_ID)

 ORDER BY 1,2,3;

 AT90DAYS INTEGER DEFAULT 0;

 AT60DAYS INTEGER DEFAULT 0;

 AT30DAYS INTEGER DEFAULT 0;

 NOTDUE INTEGER DEFAULT 0;

BEGIN

/* Loop through all the rows, adding amounts to the

 4 variables. */

FOR RSTUDIO IN CSTUDIO LOOP

CASE

WHEN TODAY - RSTUDIO.DUE_DATE > 90 THEN

AT90DAYS := AT90DAYS + RSTUDIO.AMOUNT;

WHEN TODAY - RSTUDIO.DUE_DATE > 60 THEN

AT60DAYS := AT60DAYS + RSTUDIO.AMOUNT;

WHEN TODAY - RSTUDIO.DUE_DATE > 30 THEN

AT30DAYS := AT30DAYS + RSTUDIO.AMOUNT;

ELSE

 NOTDUE := NOTDUE + RSTUDIO.AMOUNT;

END CASE;

END LOOP;

/* Print results now */

DBMS_OUTPUT.PUT_LINE('90 + days: '||TO_CHAR(AT90DAYS,'$999,999.99'));

DBMS_OUTPUT.PUT_LINE('60 - 89 days: '||TO_CHAR(AT60DAYS,'$999,999.99'));

DBMS_OUTPUT.PUT_LINE('30 - 59 days: '||TO_CHAR(AT30DAYS,'$999,999.99'));

DBMS_OUTPUT.PUT_LINE('< 30 days: '||TO_CHAR(NOTDUE,'$999,999.99'));

END;

/

24.7.1.2.2 CASE Statement Selector and Expression
The next example shows the selector version of the CASE statement.
Change the CASE statement code of the previous example. In this example,
we have divided the output based on the COUNTRY column. Addition-
ally, the ELSE clause is not used because we know we do not have any

Chap24.fm Page 558 Thursday, July 29, 2004 10:16 PM

24.7 Control Structures 559

Chapter 24

countries other than Canada, England, or the USA, and we have no null-
valued countries as well. See the result in Figure 24.17.

SET SERVEROUTPUT ON

DECLARE

TODAY DATE DEFAULT '01-JUL-2001';

CURSOR CSTUDIO IS

 SELECT A.COUNTRY,A.NAME,S.DUE_DATE

 ,NVL(S.AMOUNT_CHARGED - NVL(S.AMOUNT_PAID,0),0)

 AS AMOUNT

 FROM ARTIST A JOIN STUDIOTIME S USING (ARTIST_ID)

 ORDER BY 1,2,3;

 CANADA INTEGER DEFAULT 0;

 USA INTEGER DEFAULT 0;

 ENGLAND INTEGER DEFAULT 0;

 OTHER INTEGER DEFAULT 0;

BEGIN

/* Loop through all the rows, adding amounts to the

 4 variables. */

FOR RSTUDIO IN CSTUDIO LOOP

 CASE RSTUDIO.COUNTRY

 WHEN 'CAN' THEN CANADA:=CANADA+RSTUDIO.AMOUNT;

 WHEN 'England' THEN ENGLAND:=ENGLAND+RSTUDIO.AMOUNT;

 WHEN 'USA' THEN USA:=USA+RSTUDIO.AMOUNT;

 ELSE OTHER:=OTHER+RSTUDIO.AMOUNT;

 END CASE;

END LOOP;

/* Print results now */

DBMS_OUTPUT.PUT_LINE(

 'Canada: '||TO_CHAR(CANADA,'$999,999.99'));

DBMS_OUTPUT.PUT_LINE(

 'USA: '||TO_CHAR(USA,'$999,999.99'));

DBMS_OUTPUT.PUT_LINE(

 'England: '||TO_CHAR(ENGLAND,'$999,999.99'));

DBMS_OUTPUT.PUT_LINE(

 'Other: '||TO_CHAR(OTHER,'$999,999.99'));

END;

/

Chap24.fm Page 559 Thursday, July 29, 2004 10:16 PM

560 24.7 Control Structures

24.7.2 Iteration or Repetition

In programming, loops are either FOR loops, WHILE loops, or UNTIL
loops:

� FOR Loop. Iterate through a known set of values.

� WHILE Loop. Iterate as long as a condition is true.

� LOOP...END LOOP Construct. A potentially infinite loop iterating
without a condition on the loop statement. This construct can be
used as an UNTIL loop (iterates until a condition is true) by placing
an EXIT WHEN clause just before the END LOOP statement.

� FORALL Command. The FORALL command is exclusive to PL/
SQL and is a collection iteration or looping command. It allows scan-
ning through the elements of a VARRAY, nested table, or associative
array. There are improvements in Oracle Database 10g.

Figure 24.17
Splitting Results

Using a Selector-
type CASE
Statement.

Chap24.fm Page 560 Thursday, July 29, 2004 10:16 PM

24.7 Control Structures 561

Chapter 24

24.7.2.1 The FOR Loop

Loops a known number of times and can be aborted using the EXIT
WHEN clause. The range values can be integers, variables containing inte-
gers, or expressions resulting in integer values. The syntax of the FOR loop
is shown in Figure 24.18.

Following are some example FOR loops. Example screenshots are not
included for these FOR loop examples. The first example counts forward
from 1 to 5.

DECLARE

STEP INTEGER;

BEGIN

FOR STEP IN 1..5 LOOP

DBMS_OUTPUT.PUT_LINE(TO_CHAR(STEP));

END LOOP;

END;

/

The second example counts in reverse from 2 back to –2. Note how
even the reverse-counting loop places the lower-valued integer first and the
higher-valued integer last. This is shown in the syntax diagram for the FOR
loop in Figure 24.18.

Figure 24.18
FOR Loop

Statement Syntax.

Chap24.fm Page 561 Thursday, July 29, 2004 10:16 PM

562 24.7 Control Structures

DECLARE

STEP INTEGER;

BEGIN

FOR STEP IN REVERSE -2..2 LOOP

DBMS_OUTPUT.PUT_LINE(TO_CHAR(STEP));

END LOOP;

END;

/

The third example shows the use of variables and expressions in FOR
loop range counters. The result is a FOR loop that iterates five times from 1
to 5.

DECLARE

STEP INTEGER;

J INTEGER DEFAULT 1;

K INTEGER DEFAULT 1;

BEGIN

FOR STEP IN J..(K+4) LOOP

DBMS_OUTPUT.PUT_LINE(TO_CHAR(STEP));

END LOOP;

END;

/

The last example shows use of labels and the loop EXIT command.
Note how the EXIT command forces control out of two nested loops. This
nested FOR loop will execute 10 times through the outer loop and from 1
to 10 times through the inner loop before being terminated by the EXIT
command.

DECLARE

OUTER INTEGER;

INNER INTEGER;

BEGIN

DBMS_OUTPUT.PUT_LINE('Start of Nested FOR loops');

<<outerloop>>

FOR OUTER IN 1..10 LOOP

FOR INNER IN 1..10 LOOP

IF OUTER > INNER THEN

EXIT outerloop;

Chap24.fm Page 562 Thursday, July 29, 2004 10:16 PM

24.7 Control Structures 563

Chapter 24

END IF;

DBMS_OUTPUT.PUT_LINE(TO_CHAR(OUTER)||' '||TO_CHAR(INNER));

END LOOP;

END LOOP outerloop;

DBMS_OUTPUT.PUT_LINE('Done with nested FOR loops');

END;

/

Note: Forcing control out of a loop using an EXIT command is poor mod-
ular programming practice. Doing the same from more than a single nested
loop level is worse, but it can be done in PL/SQL.

24.7.2.2 The WHILE Loop

The WHILE loop is executed as long as a condition at the start of the loop
is false and can be aborted using the EXIT WHEN clause. WHILE loop
syntax is shown in Figure 24.19.

The example WHILE loop following will iterate through the loop nine
times. The variable STEP starts at 1 because of the DEFAULT 1 clause in
the variable definition. When the WHILE loop condition reaches 10, the
condition fails and control is passed to the line after the END LOOP state-

ment (the WHILE loop counts from 1 to 9). An example screenshot is not
included for this example as with the FOR loop examples.

DECLARE

STEP INTEGER DEFAULT 1;

Figure 24.19
WHILE Loop

Statement Syntax.

Chap24.fm Page 563 Thursday, July 29, 2004 10:16 PM

564 24.7 Control Structures

BEGIN

WHILE STEP < 10 LOOP

DBMS_OUTPUT.PUT_LINE(TO_CHAR(STEP));

STEP := STEP + 1;

END LOOP;

END;

/

Note: Note the presence of the counter (STEP := STEP + 1) in the WHILE
loop example. A FOR loop counts automatically.

24.7.2.3 The LOOP...END LOOP Construct

This loop is usually called the Infinite Loop and is the simplest of all the
looping constructs. The EXIT WHEN clause is used to abort the loop from
anywhere within that loop. The syntax for the LOOP…END LOOP con-
struct is shown in Figure 24.20.

The following example counts forward from 1 to 5. An example screen-
shot is not included for this LOOP…END LOOP example.

DECLARE

STEP INTEGER DEFAULT 1;

BEGIN

Figure 24.20
LOOP ... END

LOOP Statement
Syntax.

Chap24.fm Page 564 Thursday, July 29, 2004 10:16 PM

24.7 Control Structures 565

Chapter 24

LOOP

DBMS_OUTPUT.PUT_LINE(TO_CHAR(STEP));

STEP := STEP + 1;

IF STEP > 5 THEN EXIT; END IF;

END LOOP;

END;

/

Note: Note the presence of the counter (STEP := STEP + 1) in the WHILE
loop example. A FOR loop counts automatically.

24.7.2.4 The FORALL Command

The syntax for the FORALL command is shown in Figure 24.21. The
FORALL is essentially a loop, looping through and executing on the ele-
ments of a collection as opposed to a coded loop such as with a FOR loop.

24.7.3 Sequence Controls

� The GOTO Statement. Allows branching from one point in a block
of code to another point where the target line is denoted by a label.

� The NULL Statement. This does nothing and passes control on to
the following statement.

24.7.3.1 The GOTO Statement

A pseudocode example of use of the GOTO statement is shown as follows.
Once again, please note that proper coding practices generally will never
require the use of GOTO statements.

BEGIN

<<labelone>>

Figure 24.21
FORALL

Command Syntax.

Chap24.fm Page 565 Thursday, July 29, 2004 10:16 PM

566 24.8 Objects and Methods

statements…;

IF condition THEN GOTO labelone; END IF;

statements…;

IF condition THEN GOTO labeltwo; END IF;

statements…;

<<labeltwo>>

statements…;

END;

24.7.3.2 The NULL Command

The NULL command does nothing. A common use for the NULL com-
mand is to ignore an error trap (no error is returned). In the following code
sample, the SELECT statement will cause an SQL error because the
ARTIST_ID value of 0 does not exist in the ARTIST table. The result is
that the second DBMS_OUTPUT.PUT_LINE procedure will not be exe-
cuted because control is passed out of the PL/SQL block. See the result in
Figure 24.22.

DECLARE

VNAME ARTIST.NAME%TYPE;

BEGIN

DBMS_OUTPUT.PUT_LINE('Start');

SELECT NAME INTO VNAME FROM ARTIST

WHERE ARTIST_ID = 0;

DBMS_OUTPUT.PUT_LINE('Finish');

EXCEPTION WHEN OTHERS THEN NULL;

END;

/

24.8 Objects and Methods

There is capability in PL/SQL for creation of classes and attached methods.
Object-oriented PL/SQL code can be constructed. However, this area of
PL/SQL coding is extremely complex and perhaps one arena that is a little
beyond the scope of this book.

Chap24.fm Page 566 Thursday, July 29, 2004 10:16 PM

24.9 Oracle-Provided Packages 567

Chapter 24

24.9 Oracle-Provided Packages

Oracle Database provides access to an enormous number of extra and
optional features. Many of these features are provided by add-on packaged
PL/SQL routines. A scant few of the more interesting and general-use pack-
ages are described as follows:

� DBMS_REDEFINITION. Online redefinition of tables.

� DBMS_LOB. Manipulate LOB objects.

� DBMS_OUTPUT. Can be used to produce output from PL/SQL
blocks; often used for debugging.

� DBMS_SQL. Allows for coding of dynamically generated SQL code,
superseded by the EXECUTE IMMEDIATE command.

� UTL_FILE. Output to files in the operating system from Oracle
Database.

� UTL_HTTP. Similar type of function to UTL_FILE, except calls
over an HTTP protocol from SQL and PL/SQL.

� DBMS_PIPE. A pipe permits interprocess communication, in the
case of Oracle Database intersession communication.

� DBMS_JOB. Scheduling of jobs.

Figure 24.22
Demonstrating the
Use of the NULL

Command.

Chap24.fm Page 567 Thursday, July 29, 2004 10:16 PM

568 24.10 Metadata Views

� DBMS_WARNINGS. Use this package to enable or disable
PL/SQL compilation warnings. The PLSQL_WARNINGS database
configuration parameter performs the same function.

� UTL_COMPRESS. Allows data compression.

� UTL_MAIL. Simplifies e-mail from within PL/SQL such that
protocol detail is no longer required.

24.10 Metadata Views

This section simply describes metadata views applicable to PL/SQL objects.
Chapter 19 describes the basis and detail of Oracle Database metadata
views.

� USER_OBJECTS. Shows all object types. A good method of search-
ing for PL/SQL objects such as procedures, functions, and triggers.

� USER_PROCEDURES. Shows procedure details.

� USER_TRIGGERS. Shows trigger details.

� USER_TRIGGER_COLS. Trigger column usage.

� USER_SOURCE. Stored blocks source code.

� USER_ERRORS. Most recent errors. When compiling a procedure
with an error, either access USER_ERRORS or type the command
SHOW ERRORS into SQL*Plus.

This chapter has described the basics of PL/SQL as a programming lan-
guage for constructing database stored procedures. Additionally, this chap-
ter ends this book covering Oracle SQL for Oracle Database 10g. I hope
you have enjoyed reading this book as much as I have enjoyed writing it.

Chap24.fm Page 568 Thursday, July 29, 2004 10:16 PM

569

A

MUSIC schema scripts can be found from a simple menu on my website at
the following URL, along with many other goodies including my resume.

http://www.oracledbaexpert.com/oracle/
OracleSQLJumpstartWithExamples/index.html.

A.1 MUSICMASTER.SQL

SET ECHO OFF

UNDEF DBNAME

PROMPT WHAT IS THE DATABASE OR NETWORK NAME? (SUCH AS: ORADB10)

ACCEPT DBNAME

PROMPT CONNECTING TO SYSTEM NOW.

CONNECT SYSTEM@&&DBNAME

@CREATEUSER.SQL

CONNECT MUSIC/MUSIC@&&DBNAME

@SCHEMAOLTP.SQL

@SEQUENCES.SQL

@INSTRUMENT.SQL

@ARTIST.SQL

@GENRE.SQL;

@MUSICCD.SQL

@SONGANDTRACK.SQL

@GUESTARTIST.SQL

@STUDIOTIME.SQL

@UPDATEDATA.SQL

@CHECKDATA.SQL

@SCHEMADW.SQL

@DIMENSIONS.SQL

@FACTS.SQL

EXIT;

Appendix_A.fm Page 569 Thursday, July 29, 2004 10:17 PM

570

A.3

SCHEMAOLTP.SQL

A.2 CREATEUSER.SQL

SPOOL log/CREATEUSER.LOG;

DROP USER MUSIC CASCADE;

CREATE USER MUSIC IDENTIFIED BY MUSIC

DEFAULT TABLESPACE USERS

TEMPORARY TABLESPACE TEMP

QUOTA UNLIMITED ON USERS

QUOTA UNLIMITED ON TEMP;

GRANT CONNECT,RESOURCE TO MUSIC;

GRANT UNLIMITED TABLESPACE TO MUSIC;

SPOOL OFF;

A.3 SCHEMAOLTP.SQL

SPOOL log/SCHEMA_OLTP.LOG;

DROP TABLE INSTRUMENT CASCADE CONSTRAINTS;

CREATE TABLE INSTRUMENT

(

 INSTRUMENT_ID NUMBER NOT NULL

 ,SECTION_ID NUMBER NULL

 ,NAME VARCHAR2(32) NOT NULL

 ,CONSTRAINT XPKINSTRUMENT PRIMARY KEY (INSTRUMENT_ID)

 ,CONSTRAINT FKI_1 FOREIGN KEY (SECTION_ID) REFERENCES INSTRUMENT

);

CREATE UNIQUE INDEX XUK_INSTRUMENT_NAME ON INSTRUMENT (NAME);

CREATE INDEX XFK_I_1 ON INSTRUMENT (SECTION_ID);

DROP TABLE ARTIST CASCADE CONSTRAINTS;

CREATE OR REPLACE TYPE INSTRUMENTSCOLLECTION AS VARRAY(10) OF VARCHAR2(32);

/

CREATE TABLE ARTIST

(

 ARTIST_ID NUMBER NOT NULL

 ,NAME VARCHAR2(32) NOT NULL

 ,STREET VARCHAR2(32)

 ,POBOX CHAR(20)

 ,CITY VARCHAR2(32)

 ,STATE_PROVINCE VARCHAR2(32)

 ,COUNTRY VARCHAR2(32)

 ,ZIP CHAR(10)

 ,EMAIL VARCHAR2(32)

 ,INSTRUMENTS INSTRUMENTSCOLLECTION

Appendix_A.fm Page 570 Thursday, July 29, 2004 10:17 PM

A.3

SCHEMAOLTP.SQL 571

Appendix A

 ,CONSTRAINT XPKARTIST PRIMARY KEY (ARTIST_ID)

);

CREATE UNIQUE INDEX XUK_ARTIST_NAME ON ARTIST (NAME);

DROP TABLE SONG CASCADE CONSTRAINTS;

CREATE TABLE SONG

(

 SONG_ID NUMBER NOT NULL

 ,ARTIST_ID NUMBER NOT NULL

 ,TITLE VARCHAR2(64) NOT NULL

 ,RECORDING_DATE DATE

 ,PLAYING_TIME CHAR(10)

 ,RECORDING BLOB

 ,CONSTRAINT XPKSONG PRIMARY KEY (SONG_ID)

 ,CONSTRAINT FKSONG_1 FOREIGN KEY (ARTIST_ID) REFERENCES ARTIST

);

CREATE INDEX XFK_SONG_1 ON SONG (ARTIST_ID);

CREATE UNIQUE INDEX XUK_SONG_TITLE ON SONG (TITLE);

DROP TABLE GUESTAPPEARANCE CASCADE CONSTRAINTS;

CREATE TABLE GUESTAPPEARANCE

(

 SONG_ID NUMBER NOT NULL

 ,GUESTARTIST_ID NUMBER NO NULL

 ,COMMENT_TEXT VARCHAR2(256)

 ,CONSTRAINT XPKGUESTAPPEARANCE PRIMARY KEY (SONG_ID,GUESTARTIST_ID)

 ,CONSTRAINT FKGUESTAPPEARANCE_1 FOREIGN KEY (GUESTARTIST_ID) REFERENCES ARTIST

 ,CONSTRAINT FKGUESTAPPEARANCE_2 FOREIGN KEY (SONG_ID) REFERENCES SONG

);

CREATE INDEX XFK_GUESTAPPEARANCE_1 ON GUESTAPPEARANCE (GUESTARTIST_ID);

CREATE INDEX XFK_GUESTAPPEARANCE_2 ON GUESTAPPEARANCE (SONG_ID);

DROP TABLE INSTRUMENTATION CASCADE CONSTRAINTS;

CREATE TABLE INSTRUMENTATION

(

 SONG_ID NUMBER NOT NULL

 ,GUESTARTIST_ID NUMBER NOT NULL

 ,INSTRUMENT_ID NUMBER NOT NULL

 ,COMMENT_TEXT VARCHAR2(256)

 ,CONSTRAINT XPKISG PRIMARY KEY (SONG_ID,GUESTARTIST_ID,INSTRUMENT_ID)

 ,CONSTRAINT FKISG_1 FOREIGN KEY (SONG_ID,GUESTARTIST_ID) REFERENCES GUESTAPPEARANCE

 ,CONSTRAINT FKISG_2 FOREIGN KEY (INSTRUMENT_ID) REFERENCES INSTRUMENT

);

CREATE INDEX XFK_ISG_1 ON INSTRUMENTATION (INSTRUMENT_ID);

CREATE INDEX XFK_ISG_2 ON INSTRUMENTATION (SONG_ID, GUESTARTIST_ID);

Appendix_A.fm Page 571 Thursday, July 29, 2004 10:17 PM

572

A.3

SCHEMAOLTP.SQL

DROP TABLE GENRE CASCADE CONSTRAINTS;

CREATE TABLE GENRE

(

 GENRE_ID NUMBER NOT NULL

 ,STYLE_ID NUMBER

 ,GENRE VARCHAR2(32)

 ,CONSTRAINT XPKGENRE PRIMARY KEY (GENRE_ID)

 ,CONSTRAINT FKG_1 FOREIGN KEY (STYLE_ID) REFERENCES GENRE

);

CREATE INDEX XFK_G_1 ON GENRE (STYLE_ID);

DROP TABLE MUSICCD CASCADE CONSTRAINTS;

CREATE TABLE MUSICCD

(

 MUSICCD_ID NUMBER NOT NULL

 ,GENRE_ID NUMBER

 ,TITLE VARCHAR2(32)

 ,PRESSED_DATE DATE

 ,PLAYING_TIME CHAR(10)

 ,LIST_PRICE FLOAT

 ,CONSTRAINT XPKMUSICCD PRIMARY KEY (MUSICCD_ID)

 ,CONSTRAINT FKMCD_1 FOREIGN KEY (GENRE_ID) REFERENCES GENRE

);

CREATE UNIQUE INDEX XUK_MUSICCD_TITLE ON MUSICCD (TITLE);

CREATE INDEX XFK_MCD_1 ON MUSICCD (GENRE_ID);

DROP TABLE CDTRACK CASCADE CONSTRAINTS;

CREATE TABLE CDTRACK

(

 MUSICCD_ID NUMBER NOT NULL

 ,SONG_ID NUMBER NOT NULL

 ,TRACK_SEQ_NO NUMBER NOT NULL

 ,CONSTRAINT XPKCDTRACK PRIMARY KEY (MUSICCD_ID,SONG_ID)

 ,CONSTRAINT FKCDTRACK_1 FOREIGN KEY (SONG_ID) REFERENCES SONG

 ,CONSTRAINT FKCDTRACK_2 FOREIGN KEY (MUSICCD_ID) REFERENCES MUSICCD

);

CREATE INDEX XFK_CDTRACK_1 ON CDTRACK (SONG_ID);

CREATE INDEX XFK_CDTRACK_2 ON CDTRACK (MUSICCD_ID);

CREATE UNIQUE INDEX XAK_CDTRACK_TRACK ON CDTRACK (MUSICCD_ID,TRACK_SEQ_NO);

DROP TABLE STUDIOTIME CASCADE CONSTRAINTS;

CREATE TABLE STUDIOTIME

(

 STUDIOTIME_ID NUMBER NOT NULL

 ,ARTIST_ID NUMBER NOT NULL

Appendix_A.fm Page 572 Thursday, July 29, 2004 10:17 PM

A.5

INSTRUMENT.SQL 573

Appendix A

 ,SESSION_DATE DATE

 ,MINUTES_USED NUMBER(10,2)

 ,DUE_DATE DATE

 ,AMOUNT_CHARGED NUMBER(10,2)

 ,AMOUNT_PAID NUMBER(10,2)

 ,CONSTRAINT XPKSTUDIOTIME PRIMARY KEY (STUDIOTIME_ID)

 ,CONSTRAINT FKSTUDIOTIME_1 FOREIGN KEY (ARTIST_ID) REFERENCES ARTIST

);

CREATE INDEX XFK_STUDIOTIME_1 ON STUDIOTIME (ARTIST_ID);

SPOOL OFF;

A.4 SEQUENCES.SQL

SPOOL log/SEQUENCES.LOG;

DROP SEQUENCE ARTIST_ID_SEQ;

DROP SEQUENCE SONG_ID_SEQ;

DROP SEQUENCE INSTRUMENT_ID_SEQ;

DROP SEQUENCE STUDIOTIME_ID_SEQ;

DROP SEQUENCE MUSICCD_ID_SEQ;

DROP SEQUENCE GENRE_ID_SEQ;

DROP SEQUENCE continent_ID_SEQ;

DROP SEQUENCE country_ID_SEQ;

DROP SEQUENCE retailer_ID_SEQ;

DROP SEQUENCE CUSTOMER_ID_SEQ;

DROP SEQUENCE SALES_ID_SEQ;

CREATE SEQUENCE ARTIST_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE SONG_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE INSTRUMENT_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE STUDIOTIME_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE MUSICCD_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE GENRE_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE continent_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE country_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE retailer_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE CUSTOMER_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

CREATE SEQUENCE SALES_ID_SEQ START WITH 1 INCREMENT BY 1 NOMAXVALUE NOCYCLE;

SPOOL OFF;

A.5 INSTRUMENT.SQL

SPOOL log/INSTRUMENT.LOG;

Appendix_A.fm Page 573 Thursday, July 29, 2004 10:17 PM

574

A.5

INSTRUMENT.SQL

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'Guitar');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'General');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'Percussion');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'Piano');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'String');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'Vocals');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'Wind');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,NULL,'Orchestra');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Guitar') ,'Acoustic Guitar');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Guitar') ,'Electric Guitar');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Wind') ,'Brass');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Wind'),'Woodwind');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Woodwind'),'Alto Horn');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass'),'Alto Saxophone');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Vocals') ,'Background Vocals');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'Baritone / Bass Saxophone');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Woodwind') ,'Baritone Horn');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Electric Guitar') ,'Bass Guitar');

Appendix_A.fm Page 574 Thursday, July 29, 2004 10:17 PM

A.5

INSTRUMENT.SQL 575

Appendix A

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='String') ,'Cello');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Woodwind') ,'Clarinet');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Percussion') ,'Cymbals');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='String') ,'Double Bass');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='General') ,'Double Reeds');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Percussion') ,'Drum Machines');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Percussion') ,'Drums');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Percussion') ,'Electronic Drums');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='String') ,'Fiddle');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Wind') ,'Flugelhorn');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Wind') ,'Flute');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'French Horn');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Piano') ,'Keyboards');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Percussion') ,'Latin Percussion');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Electric Guitar') ,'Lead Guitar');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='General') ,'Mellophone');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Wind') ,'Piccolo');

Appendix_A.fm Page 575 Thursday, July 29, 2004 10:17 PM

576

A.6

ARTIST.SQL

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Acoustic Guitar') ,'Rhythm Guitar');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'Soprano Saxophone');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'Sousaphone');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Acoustic Guitar') ,'Steel Guitar');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'Tenor Saxophone');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'Trombone');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'Trumpet');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='Brass') ,'Tuba');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='String') ,'Viola');

INSERT INTO INSTRUMENT(INSTRUMENT_ID,SECTION_ID,NAME)
VALUES(INSTRUMENT_ID_SEQ.NEXTVAL,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE
NAME='String') ,'Violin');

COMMIT;

SPOOL OFF;

A.6 ARTIST.SQL

SPOOL log/ARTIST.LOG;

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Sheryl Crow'

,INSTRUMENTSCOLLECTION('Vocals','Acoustic Guitar','Electric Guitar'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Barry Manilow'

,INSTRUMENTSCOLLECTION('Vocals','Piano'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Avril Lavigne'

,INSTRUMENTSCOLLECTION('Vocals'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Goo Goo Dolls',null);

Appendix_A.fm Page 576 Thursday, July 29, 2004 10:17 PM

A.7

GENRE.SQL 577

Appendix A

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Puddle of Mudd',null);

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Nickelback',null);

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Matchbox Twenty',null);

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS) VALUES(ARTIST_ID_SEQ.NEXTVAL,'Jewel'

,INSTRUMENTSCOLLECTION('Vocals','Acoustic Guitar'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)
VALUES(ARTIST_ID_SEQ.NEXTVAL,'Mozart',NULL);

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS) VALUES(ARTIST_ID_SEQ.NEXTVAL,'James
Taylor',INSTRUMENTSCOLLECTION('Vocals','Acoustic Guitar'));

COMMIT;

SPOOL OFF;

A.7 GENRE.SQL

SPOOL log/GENRE.LOG;

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES
(GENRE_ID_SEQ.NEXTVAL,NULL,'Classical');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES
(GENRE_ID_SEQ.NEXTVAL,NULL,'Folk');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES
(GENRE_ID_SEQ.NEXTVAL,NULL,'Popular');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Popular'),'Rock');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Popular'),'Blues');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Popular'),'Contemporary');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Popular'),'Motown');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Popular'),'Reggae');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Rock'),'Heavy Rock');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Rock'),'Intellectual Rock');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Rock'),'Grunge');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Rock'),'American Soft Rock');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Rock'),'Weird Rock');

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Rock'),'More Weird Rock');

Appendix_A.fm Page 577 Thursday, July 29, 2004 10:17 PM

578

A.8

MUSISCD.SQL

INSERT INTO GENRE (GENRE_ID,STYLE_ID,GENRE) VALUES (GENRE_ID_SEQ.NEXTVAL,(SELECT
GENRE_ID FROM GENRE WHERE genre='Rock'),'Manic Rock');

COMMIT;

SPOOL OFF;

A.8 MUSISCD.SQL

SPOOL log/MUSICCD.LOG;

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='American Soft
Rock'),'Soak Up the Sun','28-FEB-2001',9.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='Manic
Rock'),'Complicated','15-DEC-2001',19.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='Weird
Rock'),'Here Is Gone Pt.1','11-JUN-2002',14.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='More Weird
Rock'),'Here Is Gone Pt.2','15-NOV-2001',9.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,PLAYING_TIME,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='American Soft
Rock'),'C''mon, C''mon','23-JAN-2002','56:32',19.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,PLAYING_TIME,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE
GENRE='Popular'),'Come Clean','09-JAN-02','48:03',14.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,PLAYING_TIME,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE
GENRE='Rock'),'Silver Side Up','14-JUL-2002','39:08',9.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,PLAYING_TIME,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE
GENRE='Contemporary'),'Ultimate Manilow','25-MAR-2002','77:43',19.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='Grunge'),'Mad
Season',14.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PLAYING_TIME,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='Blues'),'This
Way','58:42',9.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,PLAYING_TIME,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='Intellectual
Rock'),'The Best of Sheryl Crow','15-SEP-02','44:54',19.99);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE
GENRE='Classical'),'Requiem','16-MAY-90',7.98);

INSERT INTO MUSICCD (MUSICCD_ID,GENRE_ID,TITLE,PRESSED_DATE,LIST_PRICE)

VALUES (MUSICCD_ID_SEQ.NEXTVAL,(SELECT GENRE_ID FROM GENRE WHERE GENRE='Folk'),'Sweet
Baby James','25-OCT-90',10.99);

Appendix_A.fm Page 578 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 579

Appendix A

COMMIT;

SPOOL OFF;

A.9 SONGANDTRACK.SQL

SPOOL log/SONGANDTRACK.LOG;

SET ECHO OFF

--Soak up the Sun by Sheryl Crow

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE, PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Soak Up The Sun (Album Version)','11:20');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE, PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Soak Up The Sun (Sunsweep Radio Mix)','3:20');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Soak Up The Sun (Sunsweep Club Mix)','22:30');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE, PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Soak Up The Sun (Sunsweep Dub)','15:30');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Soak Up the Sun')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Soak Up The Sun (Album Version)'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Soak Up the Sun')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Soak Up The Sun (Sunsweep Radio Mix)'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Soak Up the Sun')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Soak Up The Sun (Sunsweep Club Mix)'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Soak Up the Sun')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Soak Up The Sun (Sunsweep Dub)'),4);

COMMIT;

Appendix_A.fm Page 579 Thursday, July 29, 2004 10:17 PM

580

A.9

SONGANDTRACK.SQL

--Complicated by Avril Lavigne

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST

WHERE NAME='Avril Lavigne'),'Complicated');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Complicated')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Complicated'),1);

COMMIT;

--Here is Gone Pt.1 by Goo Goo Dolls

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Goo Goo Dolls')

,'Here Is Gone');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Goo Goo Dolls')

,'We Are The Normal');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Goo Goo Dolls')

,'Burnin Up');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Goo Goo Dolls')

,'Video');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Here Is Gone Pt.1')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Here Is Gone'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Here Is Gone Pt.1')

,(SELECT SONG_ID FROM SONG WHERE TITLE='We Are The Normal'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Here Is Gone Pt.1')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Burnin Up'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Here Is Gone Pt.1')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Video'),4);

COMMIT;

Appendix_A.fm Page 580 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 581

Appendix A

--Here is Gone Pt.2 by Goo Goo Dolls

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Goo Goo Dolls')

,'Here Is Gone Reprise');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Goo Goo Dolls')

,'Two Days In February');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Goo Goo Dolls')

,'Girl Right Next To Me');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Here Is Gone Pt.2')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Here Is Gone Reprise'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Here Is Gone Pt.2')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Two Days In February'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Here Is Gone Pt.2')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Girl Right Next To Me'),3);

COMMIT;

--Cmon Cmon by Sheryl Crow

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Steve McQueen','3:25');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Soak Up The Sun','4:52');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'You''re An Original','4:18');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Safe And Sound','4:32');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

Appendix_A.fm Page 581 Thursday, July 29, 2004 10:17 PM

582

A.9

SONGANDTRACK.SQL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'C''mon, C''mon','4:45');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'It''s So Easy','3:24');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Over You','4:38');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Lucky Kid','4:02');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Diamond Road','4:09');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'It''s Only Love','5:05');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Abilene','4:05');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Hole In My Pocket','4:37');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sheryl Crow')

,'Weather Channel','4:40');

COMMIT;

--Mozart: Requiem

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: I. Introitus -
Requiem');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: II. Kyrie');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: III. Sequenz - No.1 -
Dies irae');

Appendix_A.fm Page 582 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 583

Appendix A

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: III. Sequenz - No. 2
- Tuba mirum');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: III. Sequenz - No. 3
- Rex tremendae');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: III. Sequenz - No. 4
- Recordare');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: III. Sequenz - No. 5
- Confutatis');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: III. Sequenz - No. 6
- Lacrimosa');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: IV. Offertorium - No.
1 - Domine Jesu');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: IV. Offertorium - No.
2 - Hostias');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: V. Sanctus');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: VI. Benedictus');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: VII. Agnus Dei');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='Mozart'),'Requiem in D Minor: VIII. Communio - Lux
aeterna');

COMMIT;

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Sweet Baby James');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Lo and Behold');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Sunny Skies');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Steamroller');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Country Road');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Oh Susanna');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Fire and Rain');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Blossom');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Anywhere Like Heaven');

Appendix_A.fm Page 583 Thursday, July 29, 2004 10:17 PM

584

A.9

SONGANDTRACK.SQL

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Oh Baby, Don''t You Loose Your Lip
on Me');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE) VALUES(SONG_ID_SEQ.NEXTVAL,(SELECT
ARTIST_ID FROM ARTIST WHERE NAME='James Taylor'),'Suite for 20 G');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Steve McQueen'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Soak Up The Sun'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='You''re An Original'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Safe And Sound'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='C''mon, C''mon'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='It''s So Easy'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Over You'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Lucky Kid'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Diamond Road'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='It''s Only Love'),10);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Abilene'),11);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Hole In My Pocket'),12);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='C''mon, C''mon')

Appendix_A.fm Page 584 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 585

Appendix A

,(SELECT SONG_ID FROM SONG WHERE TITLE='Weather Channel'),13);

COMMIT;

--Come Clean by Puddle of Mudd

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Control','3:50');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Drift and Die','4:25');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Out Of My Head','3:43');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Nobody Told Me','5:21');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Blurry','5:04');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'She Hates Me','3:36');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Bring Me Down','4:02');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Never Change','3:58');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Basement','4:21');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'Said','4:05');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

Appendix_A.fm Page 585 Thursday, July 29, 2004 10:17 PM

586

A.9

SONGANDTRACK.SQL

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Puddle of Mudd')

,'It All Away','5:38');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Control'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Drift and Die'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Out Of My Head'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Nobody Told Me'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Blurry'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='She Hates Me'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Bring Me Down'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Never Change'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Basement'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Said'),10);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Come Clean')

,(SELECT SONG_ID FROM SONG WHERE TITLE='It All Away'),11);

COMMIT;

--Silver Side Up by Nickelback

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Never Again','4:20');

Appendix_A.fm Page 586 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 587

Appendix A

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'How You Remind Me','3:43');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Woke Up This Morning','3:50');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Too Bad','3:52');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Just For','4:03');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Hollywood','3:04');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Money Bought','3:24');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Where Do I Hide','3:38');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Hangnail','3:54');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Nickelback')

,'Good Times Gone','5:20');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Never Again'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='How You Remind Me'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

Appendix_A.fm Page 587 Thursday, July 29, 2004 10:17 PM

588

A.9

SONGANDTRACK.SQL

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Woke Up This Morning'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Too Bad'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Just For'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Hollywood'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Money Bought'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Where Do I Hide'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Hangnail'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Silver Side Up')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Good Times Gone'),10);

COMMIT;

--Ultimate Manilow by Barry Manilow

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Mandy','3:17');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'It''s A Miracle','3:51');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Could It Be Magic','6:47');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'I Write The Songs','3:50');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

Appendix_A.fm Page 588 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 589

Appendix A

,'Bandstand Boogie','2:50');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Tryin'' To Get The Feeling Again','3:50');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'This One''s For You','3:26');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Weekend In New England','3:45');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Looks Like We Made It','3:32');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Daybreak','3:05');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Can''t Smile Without You','3:07');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Even Now','3:26');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Copacabana (At The Copa)','5:40');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Somewhere In The Night','3:23');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Ready To Take A Chance','2:57');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Ships','4:00');

Appendix_A.fm Page 589 Thursday, July 29, 2004 10:17 PM

590

A.9

SONGANDTRACK.SQL

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'I Made It Through The Rain','4:19');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'The Old Songs','4:41');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'When October Goes','3:58');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Barry Manilow')

,'Somewhere Down The Road','3:59');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Mandy'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='It''s A Miracle'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Could It Be Magic'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='I Write The Songs'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Bandstand Boogie'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Tryin'' To Get The Feeling Again'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='This One''s For You'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Weekend In New England'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

Appendix_A.fm Page 590 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 591

Appendix A

,(SELECT SONG_ID FROM SONG WHERE TITLE='Looks Like We Made It'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Daybreak'),10);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Can''t Smile Without You'),11);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Even Now'),12);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Copacabana (At The Copa)'),13);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Somewhere In The Night'),14);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Ready To Take A Chance'),15);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Ships'),16);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='I Made It Through The Rain'),17);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='The Old Songs'),18);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='When October Goes'),19);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Ultimate Manilow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Somewhere Down The Road'),20);

COMMIT;

--Mad Season By Matchbox Twenty

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty'),'Angry');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'Black and White People');

Appendix_A.fm Page 591 Thursday, July 29, 2004 10:17 PM

592

A.9

SONGANDTRACK.SQL

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty'),'Crutch');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'Last Beautiful Girl');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'If You''re Gone');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'Mad Season');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'Rest Stop');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'The Burn');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty'),'Bent');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'Bed Of Lies');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty'),'Leave');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty'),'Stop');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Matchbox Twenty')

,'You Won''t Be Mine');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Angry'),1);

Appendix_A.fm Page 592 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 593

Appendix A

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Black and White People'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Crutch'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Last Beautiful Girl'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='If You''re Gone'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Mad Season'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Rest Stop'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='The Burn'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Bent'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Bed Of Lies'),10);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Leave'),11);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Stop'),12);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='Mad Season')

,(SELECT SONG_ID FROM SONG WHERE TITLE='You Won''t Be Mine'),13);

COMMIT;

--This Way by Jewel

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Standing Still','4:30');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

Appendix_A.fm Page 593 Thursday, July 29, 2004 10:17 PM

594

A.9

SONGANDTRACK.SQL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Jesus Loves You','3:20');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Everybody Needs Someone Sometime','4:08');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel'),'Break Me','4:04');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Do You Want To Play ?','2:55');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Till We Run Out Of Road','4:45');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Serve The Ego','4:57');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel'),'This Way','4:16');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel'),'Cleveland','4:09');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'I Won''t Walk Away','4:45');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Love Me, Just Leave Me Alone','3:47');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'The New Wild West','4:47');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Grey Matter (Live)','4:35');

INSERT INTO SONG(SONG_ID,ARTIST_ID,TITLE,PLAYING_TIME)

VALUES(SONG_ID_SEQ.NEXTVAL

Appendix_A.fm Page 594 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 595

Appendix A

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Jewel')

,'Sometimes It Be That Way (Live)','3:44');

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Standing Still'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Jesus Loves You'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Everybody Needs Someone Sometime'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Break Me'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Do You Want To Play ?'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Till We Run Out Of Road'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Serve The Ego'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='This Way'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Cleveland'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='I Won''t Walk Away'),10);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Love Me, Just Leave Me Alone'),11);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='The New Wild West'),12);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Grey Matter (Live)'),13);

Appendix_A.fm Page 595 Thursday, July 29, 2004 10:17 PM

596

A.9

SONGANDTRACK.SQL

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD WHERE TITLE='This Way'),

(SELECT SONG_ID FROM SONG WHERE TITLE='Sometimes It Be That Way (Live)'),14);

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD

WHERE TITLE='The Best of Sheryl Crow')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Soak Up The Sun (Album Version)'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD

WHERE TITLE='The Best of Sheryl Crow')

,(SELECT SONG_ID FROM SONG

WHERE TITLE='Soak Up The Sun (Sunsweep Dub)'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD

WHERE TITLE='The Best of Sheryl Crow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='It''s So Easy'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD

WHERE TITLE='The Best of Sheryl Crow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Over You'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD

WHERE TITLE='The Best of Sheryl Crow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Diamond Road'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD

WHERE TITLE='The Best of Sheryl Crow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Hole In My Pocket'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO)

VALUES ((SELECT MUSICCD_ID FROM MUSICCD

WHERE TITLE='The Best of Sheryl Crow')

,(SELECT SONG_ID FROM SONG WHERE TITLE='Weather Channel'),7);

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: I. Introitus - Requiem'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: II. Kyrie'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: III. Sequenz - No.1 - Dies irae'),3);

Appendix_A.fm Page 596 Thursday, July 29, 2004 10:17 PM

A.9

SONGANDTRACK.SQL 597

Appendix A

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: III. Sequenz - No. 2 - Tuba mirum'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: III. Sequenz - No. 3 - Rex tremendae'),5);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: III. Sequenz - No. 4 - Recordare'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: III. Sequenz - No. 5 - Confutatis'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: III. Sequenz - No. 6 - Lacrimosa'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: IV. Offertorium - No. 1 - Domine Jesu'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: IV. Offertorium - No. 2 - Hostias'),10);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: V. Sanctus'),11);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: VI. Benedictus'),12);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: VII. Agnus Dei'),13);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Requiem'),(SELECT SONG_ID FROM SONG WHERE TITLE='Requiem in D
Minor: VIII. Communio - Lux aeterna'),14);

COMMIT;

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE TITLE='Sweet
Baby James'),1);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE TITLE='Lo and
Behold'),2);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE TITLE='Sunny
Skies'),3);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE
TITLE='Steamroller'),4);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE
TITLE='Country Road'),5);

Appendix_A.fm Page 597 Thursday, July 29, 2004 10:17 PM

598

A.10

GUESTARTIST.SQL

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE TITLE='Oh
Susanna'),6);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE TITLE='Fire
and Rain'),7);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE
TITLE='Blossom'),8);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE
TITLE='Anywhere Like Heaven'),9);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE TITLE='Oh
Baby, Don''t You Loose Your Lip on Me'),10);

INSERT INTO CDTRACK(MUSICCD_ID,SONG_ID,TRACK_SEQ_NO) VALUES ((SELECT MUSICCD_ID FROM
MUSICCD WHERE TITLE='Sweet Baby James'),(SELECT SONG_ID FROM SONG WHERE TITLE='Suite
for 20 G'),11);

COMMIT;

SPOOL OFF;

A.10 GUESTARTIST.SQL

SPOOL log/GUESTARTIST.LOG;

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Angie Aparo'

,INSTRUMENTSCOLLECTION('Background Vocals'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Peter Stuart'

,INSTRUMENTSCOLLECTION('Background Vocals'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Sam Bacco'

,INSTRUMENTSCOLLECTION('Percussion'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Tony Adams'

,INSTRUMENTSCOLLECTION('Drums'));

INSERT INTO ARTIST(ARTIST_ID,NAME,INSTRUMENTS)

VALUES(ARTIST_ID_SEQ.NEXTVAL,'Paul Doucette'

,INSTRUMENTSCOLLECTION('Acoustic Guitar'));

COMMIT;

INSERT INTO GUESTAPPEARANCE(COMMENT_TEXT,SONG_ID,GUESTARTIST_ID) VALUES('Arrived
late'

,(SELECT SONG_ID FROM SONG WHERE TITLE='Stop')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Angie Aparo'));

Appendix_A.fm Page 598 Thursday, July 29, 2004 10:17 PM

A.10

GUESTARTIST.SQL 599

Appendix A

INSERT INTO GUESTAPPEARANCE(COMMENT_TEXT,SONG_ID,GUESTARTIST_ID) VALUES('Very
professional when meeting with the band'

,(SELECT SONG_ID FROM SONG WHERE TITLE='The Burn')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Peter Stuart'));

INSERT INTO GUESTAPPEARANCE(SONG_ID,GUESTARTIST_ID)

VALUES((SELECT SONG_ID FROM SONG WHERE TITLE='Last Beautiful Girl')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sam Bacco'));

INSERT INTO GUESTAPPEARANCE(SONG_ID,GUESTARTIST_ID)

VALUES((SELECT SONG_ID FROM SONG WHERE TITLE='Stop')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Tony Adams'));

INSERT INTO GUESTAPPEARANCE(COMMENT_TEXT, SONG_ID,GUESTARTIST_ID) VALUES('Agreed to
work on this song for free'

,(SELECT SONG_ID FROM SONG WHERE TITLE='Stop')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Paul Doucette'));

COMMIT;

INSERT INTO INSTRUMENTATION

(COMMENT_TEXT,SONG_ID,GUESTARTIST_ID,INSTRUMENT_ID)

VALUES('Best crooning on the CD'

,(SELECT SONG_ID FROM SONG WHERE TITLE='Stop')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Angie Aparo')

,(SELECT INSTRUMENT_ID FROM INSTRUMENT

WHERE NAME='Background Vocals'));

INSERT INTO INSTRUMENTATION

(SONG_ID,GUESTARTIST_ID,INSTRUMENT_ID)

VALUES((SELECT SONG_ID FROM SONG WHERE TITLE='The Burn')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Peter Stuart')

,(SELECT INSTRUMENT_ID FROM INSTRUMENT

WHERE NAME='Background Vocals'));

INSERT INTO INSTRUMENTATION(SONG_ID,GUESTARTIST_ID,INSTRUMENT_ID) VALUES((SELECT
SONG_ID FROM SONG WHERE TITLE='Last Beautiful Girl')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Sam Bacco')

,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE NAME='Percussion'));

INSERT INTO INSTRUMENTATION

(COMMENT_TEXT,SONG_ID,GUESTARTIST_ID,INSTRUMENT_ID)

VALUES('This song would not have happened without Tony'

,(SELECT SONG_ID FROM SONG WHERE TITLE='Stop')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Tony Adams')

,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE NAME='Drums'));

INSERT INTO INSTRUMENTATION

(COMMENT_TEXT,SONG_ID,GUESTARTIST_ID,INSTRUMENT_ID)

VALUES('Great guitar solo'

,(SELECT SONG_ID FROM SONG WHERE TITLE='Stop')

,(SELECT ARTIST_ID FROM ARTIST WHERE NAME='Paul Doucette')

,(SELECT INSTRUMENT_ID FROM INSTRUMENT WHERE NAME='Acoustic Guitar'));

Appendix_A.fm Page 599 Thursday, July 29, 2004 10:17 PM

600

A.11

STUDIOTIME.SQL

COMMIT;

SPOOL OFF;

A.11 STUDIOTIME.SQL

SPOOL log/STUDIOTIME.LOG;

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,4,'08-MAY-00','07-JUN-00',120);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'08-MAY-00','07-JUN-00',280);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'12-MAY-00','11-JUN-00',1200);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'12-MAY-00','11-JUN-00',480);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'12-MAY-00','11-JUN-00',348);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'12-MAY-00','11-JUN-00',189);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'13-MAY-00','12-JUN-00',548);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'11-NOV-00','11-DEC-00',760);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'15-DEC-00','14-JAN-01',885.5);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'15-JAN-01','14-FEB-01',332.25);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'19-JAN-01','18-FEB-01',110.5);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'19-JAN-01','18-FEB-01',100);

Appendix_A.fm Page 600 Thursday, July 29, 2004 10:17 PM

A.11

STUDIOTIME.SQL 601

Appendix A

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'20-JAN-01','19-FEB-01',230);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'21-JAN-01','20-FEB-01',350);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'21-JAN-01','20-FEB-01',567);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'22-JAN-01','21-FEB-01',875);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'22-JAN-01','21-FEB-01',125);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'23-JAN-01','22-FEB-01',106);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'23-JAN-01','22-FEB-01',600);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'24-JAN-01','23-FEB-01',750.4);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'01-FEB-01','03-MAR-01',800);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'12-FEB-01','14-MAR-01',1000);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'20-FEB-01','22-MAR-01',850.5);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'11-MAR-01','10-APR-01',245);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'11-MAR-01','10-APR-01',650);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'11-MAR-01','10-APR-01',122);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'13-MAR-01','12-APR-01',540);

Appendix_A.fm Page 601 Thursday, July 29, 2004 10:17 PM

602

A.11

STUDIOTIME.SQL

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'13-MAR-01','12-APR-01',300);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,4,'17-MAR-01','16-APR-01',90);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,4,'17-MAR-01','16-APR-01',45.5);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'01-MAY-01','31-MAY-01',900);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'01-MAY-01','31-MAY-01',345);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'04-MAY-01','03-JUN-01',450.5);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'05-MAY-01','04-JUN-01',396);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'06-MAY-01','05-JUN-01',200);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'07-MAY-01','06-JUN-01',690);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'18-MAY-01','17-JUN-01',400);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'02-JUN-01','02-JUL-01',300);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'11-JUN-01','11-JUL-01',441);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'12-JUN-01','12-JUL-01',450);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'13-JUN-01','13-JUL-01',200);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'14-JUN-01','14-JUL-01',795.5);

Appendix_A.fm Page 602 Thursday, July 29, 2004 10:17 PM

A.11

STUDIOTIME.SQL 603

Appendix A

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'15-JUN-01','15-JUL-01',328);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'15-JUN-01','15-JUL-01',200);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'16-JUN-01','16-JUL-01',440);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'05-JUL-01','04-AUG-01',820);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'05-JUL-01','04-AUG-01',100);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'05-JUL-01','04-AUG-01',15);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'09-AUG-01','08-SEP-01',1000);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,4,'30-AUG-01','29-SEP-01',460);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,4,'30-AUG-01','29-SEP-01',200);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,6,'30-AUG-01','29-SEP-01',30);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'12-SEP-01','12-OCT-01',159);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'15-SEP-01','15-OCT-01',345.45);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'15-SEP-01','15-OCT-01',20.5);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,4,'25-SEP-01','25-OCT-01',340.25);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'25-SEP-01','25-OCT-01',100.5);

Appendix_A.fm Page 603 Thursday, July 29, 2004 10:17 PM

604

A.11

STUDIOTIME.SQL

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'25-SEP-01','25-OCT-01',223.25);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,3,'12-OCT-01','11-NOV-01',410);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'14-OCT-01','13-NOV-01',210);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'14-OCT-01','13-NOV-01',120.5);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'15-OCT-01','14-NOV-01',1000);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'16-OCT-01','15-NOV-01',100);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'18-OCT-01','17-NOV-01',210);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'19-OCT-01','18-NOV-01',90);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'20-OCT-01','19-NOV-01',360);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'21-OCT-01','20-NOV-01',250);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'21-OCT-01','20-NOV-01',101.35);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'21-OCT-01','20-NOV-01',90.25);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'21-OCT-01','20-NOV-01',30);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'22-OCT-01','21-NOV-01',458);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'23-OCT-01','22-NOV-01',333.5);

Appendix_A.fm Page 604 Thursday, July 29, 2004 10:17 PM

A.11 STUDIOTIME.SQL 605

Appendix A

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'17-NOV-01','17-DEC-01',249);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'20-NOV-01','20-DEC-01',100);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'25-NOV-01','25-DEC-01',120);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'03-DEC-01','02-JAN-02',1200);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'03-DEC-01','02-JAN-02',199);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'03-DEC-01','02-JAN-02',439.26);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,2,'03-DEC-01','02-JAN-02',25);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,1,'19-DEC-01','18-JAN-02',230);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'04-JAN-02','03-FEB-02',220);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,4,'11-JAN-02','10-FEB-02',450);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'13-JAN-02','12-FEB-02',340);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,5,'08-JAN-02','07-FEB-02',224);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,8,'09-JAN-02','08-FEB-02',553);

INSERT INTO STUDIOTIME

(STUDIOTIME_ID, ARTIST_ID, SESSION_DATE, DUE_DATE, MINUTES_USED)

VALUES (STUDIOTIME_ID_SEQ.NEXTVAL,7,'29-DEC-01','29-JAN-02',100);

COMMIT;

SPOOL OFF;

Appendix_A.fm Page 605 Thursday, July 29, 2004 10:17 PM

606 A.12 UPDATEDATA.SQL

A.12 UPDATEDATA.SQL

SPOOL log/UPDATES.LOG

PROMPT ARTIST

UPDATE MUSIC.ARTIST

 SET STREET = '122 North Wells' , CITY = 'Corvalis' ,

 STATE_PROVINCE = 'OR' , COUNTRY = 'USA' , ZIP = '99887'

 , EMAIL = 'ccc@sheryl.net'

 WHERE NAME='Sheryl Crow';

UPDATE MUSIC.ARTIST

 SET STREET = '102341 High Road' , POBOX = 'PO Box 195' ,

 CITY = 'West Palm Beach' , STATE_PROVINCE = 'FL' ,

 COUNTRY = 'USA' , ZIP = '21987' , EMAIL =

 'gogo@whoknew.org'

 WHERE NAME= 'Barry Manilow';

UPDATE MUSIC.ARTIST

 SET STREET = '5A North Queens Ave' , CITY = 'London' ,

 COUNTRY = 'England' , ZIP = '1A4-5RA' , EMAIL = 'wendsday@thursday.com'

 WHERE NAME= 'Avril Lavigne';

UPDATE MUSIC.ARTIST SET STREET = '400 West Hollywood Blvd' ,

 CITY = 'Hollywood' , STATE_PROVINCE = 'CA' , COUNTRY = 'USA' ,

 ZIP = '87654' , EMAIL = 'googoo@googoo.net'

 WHERE NAME= 'Goo Goo Dolls';

UPDATE MUSIC.ARTIST SET STREET = '3498 S. Barnes Rd.' ,

 POBOX = 'PO Box 982356' , CITY = 'Treeville' , STATE_PROVINCE = 'NH' ,

 COUNTRY = 'USA' , ZIP = '10098-4998' , EMAIL = 'pompom@mmm.org'

 WHERE NAME= 'Puddle of Mudd';

UPDATE MUSIC.ARTIST SET STREET = 'PO Box 332244', POBOX = 'PO Box 332244' , CITY =
'South Emery' ,

 STATE_PROVINCE = 'Quebec' , COUNTRY = 'CAN' , ZIP = '4DQ-A3E' ,

 EMAIL = 'buddy@pals.pal'

 WHERE NAME= 'Nickelback';

UPDATE MUSIC.ARTIST SET STREET = '4398 SE 415th Ave' , POBOX = 'Suite 134' ,

 CITY = 'Portland' , STATE_PROVINCE = 'OR' , COUNTRY = 'USA' ,

 ZIP = '98765-0134' , EMAIL = 'm20@matchesboxes.org'

 WHERE NAME= 'Matchbox Twenty';

UPDATE MUSIC.ARTIST SET STREET = '10049 Sunset Blvd' , CITY = 'Los Angeles' ,

 STATE_PROVINCE = 'CA' , COUNTRY = 'USA' , ZIP = '60292' ,

 EMAIL = 'jjjewel@jewel.hk'

 WHERE NAME= 'Jewel';

UPDATE MUSIC.ARTIST SET STREET = '539 Smithsonian Rd' , POBOX = 'Apt 400' ,

 CITY = 'New York' , STATE_PROVINCE = 'NY' , COUNTRY = 'USA' ,

 ZIP = '10022' , EMAIL = 'Angie@parao.tk'

Appendix_A.fm Page 606 Thursday, July 29, 2004 10:17 PM

A.12 UPDATEDATA.SQL 607

Appendix A

 WHERE NAME= 'Angie Aparo';

UPDATE MUSIC.ARTIST SET STREET = '100 North Wells Place' ,

 POBOX = 'PO Box 100' , CITY = 'Dallas' , STATE_PROVINCE = 'TX' ,

 COUNTRY = 'USA' , ZIP = '43455' , EMAIL = 'pstuart@dallas.mr'

 WHERE NAME= 'Peter Stuart';

UPDATE MUSIC.ARTIST SET STREET = '98-B Hillside Lane' , CITY = 'Charlotte' ,

 STATE_PROVINCE = 'NC' , COUNTRY = 'USA' , ZIP = '54098' ,

 EMAIL = 'sambacco@shatsup.org'

 WHERE NAME= 'Sam Bacco';

UPDATE MUSIC.ARTIST

 SET STREET = '159 Browning Drive' , CITY = 'Madison' ,

 STATE_PROVINCE = 'WI' , COUNTRY = 'USA' , ZIP = '53998' ,

 EMAIL = 'tony@adamshouse.com'

 WHERE NAME= 'Tony Adams';

UPDATE MUSIC.ARTIST SET STREET = '544 156th Ave' , CITY = 'Seattle' ,

 STATE_PROVINCE = 'WA' , COUNTRY = 'USA' , ZIP = '96777' ,

 EMAIL = 'pdoucette@pdoucette.com'

 WHERE NAME= 'Paul Doucette';

UPDATE MUSIC.ARTIST SET STREET = 'The JT Fan Club' , CITY = 'Boston' ,

 STATE_PROVINCE = 'MA' , COUNTRY = 'USA' , ZIP = '' ,

 EMAIL = 'info@jamestaylor.com'

 WHERE NAME= 'James Taylor';

UPDATE MUSIC.ARTIST SET STREET = 'Wien Strasse' , CITY = 'Vienna' ,

 STATE_PROVINCE = '' , COUNTRY = 'Austria' , ZIP = '' ,

 EMAIL = 'info@friendsofmozart.com'

 WHERE NAME= 'Mozart';

COMMIT;

PROMPT STUDIOTIME

UPDATE STUDIOTIME

SET AMOUNT_CHARGED = MINUTES_USED*1.5,

 AMOUNT_PAID = MINUTES_USED*1.5*TO_NUMBER(SUBSTR(MINUTES_USED,1,1))*.1;

COMMIT;

PROMPT SONG

PROMPT UPDATE SONG

UPDATE MUSIC.SONG SET RECORDING_DATE='19-JAN-01' WHERE TITLE='Abilene';

UPDATE MUSIC.SONG SET RECORDING_DATE='20-FEB-01' WHERE TITLE='Angry';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-MAR-01'

WHERE TITLE='Bandstand Boogie';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-JAN-01' WHERE TITLE='Basement';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-MAY-00' WHERE TITLE='Bed Of Lies';

UPDATE MUSIC.SONG SET RECORDING_DATE='04-JAN-02' WHERE TITLE='Bent';

UPDATE MUSIC.SONG SET RECORDING_DATE='05-JUL-01'

Appendix_A.fm Page 607 Thursday, July 29, 2004 10:17 PM

608 A.12 UPDATEDATA.SQL

WHERE TITLE='Black and White People';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-MAR-01' WHERE TITLE='Blurry';

UPDATE MUSIC.SONG SET RECORDING_DATE='25-NOV-01' WHERE TITLE='Break Me';

UPDATE MUSIC.SONG SET RECORDING_DATE='20-NOV-01' WHERE TITLE='Bring Me Down';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-JAN-02' WHERE TITLE='Burnin Up';

UPDATE MUSIC.SONG SET RECORDING_DATE='19-DEC-01'

WHERE TITLE='C''mon, C''mon';

UPDATE MUSIC.SONG SET RECORDING_DATE='21-OCT-01'

WHERE TITLE='Can''t Smile Without You';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-OCT-01' WHERE TITLE='Cleveland';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-OCT-01' WHERE TITLE='Complicated';

UPDATE MUSIC.SONG SET RECORDING_DATE='02-JUN-01' WHERE TITLE='Control';

UPDATE MUSIC.SONG SET RECORDING_DATE='17-NOV-01'

WHERE TITLE='Copacabana (At The Copa)';

UPDATE MUSIC.SONG SET RECORDING_DATE='13-MAR-01'

WHERE TITLE='Could It Be Magic';

UPDATE MUSIC.SONG SET RECORDING_DATE='13-JAN-02' WHERE TITLE='Crutch';

UPDATE MUSIC.SONG SET RECORDING_DATE='03-DEC-01' WHERE TITLE='Daybreak';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-SEP-01' WHERE TITLE='Diamond Road';

UPDATE MUSIC.SONG SET RECORDING_DATE='03-DEC-01'

WHERE TITLE='Do You Want To Play ?';

UPDATE MUSIC.SONG SET RECORDING_DATE='25-SEP-01' WHERE TITLE='Drift and Die';

UPDATE MUSIC.SONG SET RECORDING_DATE='09-AUG-01' WHERE TITLE='Even Now';

UPDATE MUSIC.SONG SET RECORDING_DATE='08-MAY-00'

WHERE TITLE='Everybody Needs Someone Sometime';

UPDATE MUSIC.SONG SET RECORDING_DATE='17-MAR-01'

WHERE TITLE='Girl Right Next To Me';

UPDATE MUSIC.SONG SET RECORDING_DATE='30-AUG-01'

WHERE TITLE='Good Times Gone';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-SEP-01'

WHERE TITLE='Grey Matter (Live)';

UPDATE MUSIC.SONG SET RECORDING_DATE='01-MAY-01' WHERE TITLE='Hangnail';

UPDATE MUSIC.SONG SET RECORDING_DATE='08-MAY-00' WHERE TITLE='Here Is Gone';

UPDATE MUSIC.SONG SET RECORDING_DATE='30-AUG-01'

WHERE TITLE='Here Is Gone Reprise';

UPDATE MUSIC.SONG SET RECORDING_DATE='13-MAR-01'

WHERE TITLE='Hole In My Pocket';

UPDATE MUSIC.SONG SET RECORDING_DATE='24-JAN-01' WHERE TITLE='Hollywood';

UPDATE MUSIC.SONG SET RECORDING_DATE='22-JAN-01'

WHERE TITLE='How You Remind Me';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-JUN-01'

WHERE TITLE='I Made It Through The Rain';

UPDATE MUSIC.SONG SET RECORDING_DATE='21-OCT-01'

WHERE TITLE='I Won''t Walk Away';

UPDATE MUSIC.SONG SET RECORDING_DATE='06-MAY-01'

Appendix_A.fm Page 608 Thursday, July 29, 2004 10:17 PM

A.12 UPDATEDATA.SQL 609

Appendix A

WHERE TITLE='I Write The Songs';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-JUN-01'

WHERE TITLE='If You''re Gone';

UPDATE MUSIC.SONG SET RECORDING_DATE='21-JAN-01' WHERE TITLE='It All Away';

UPDATE MUSIC.SONG SET RECORDING_DATE='05-MAY-01'

WHERE TITLE='It''s A Miracle';

UPDATE MUSIC.SONG SET RECORDING_DATE='21-OCT-01'

WHERE TITLE='It''s Only Love';

UPDATE MUSIC.SONG SET RECORDING_DATE='05-JUL-01' WHERE TITLE='It''s So Easy';

UPDATE MUSIC.SONG SET RECORDING_DATE='16-OCT-01'

WHERE TITLE='Jesus Loves You';

UPDATE MUSIC.SONG SET RECORDING_DATE='23-JAN-01' WHERE TITLE='Just For';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-JUN-01'

WHERE TITLE='Last Beautiful Girl';

UPDATE MUSIC.SONG SET RECORDING_DATE='13-MAY-00' WHERE TITLE='Leave';

UPDATE MUSIC.SONG SET RECORDING_DATE='18-MAY-01'

WHERE TITLE='Looks Like We Made It';

UPDATE MUSIC.SONG SET RECORDING_DATE='22-OCT-01'

WHERE TITLE='Love Me, Just Leave Me Alone';

UPDATE MUSIC.SONG SET RECORDING_DATE='21-OCT-01' WHERE TITLE='Lucky Kid';

UPDATE MUSIC.SONG SET RECORDING_DATE='16-JUN-01' WHERE TITLE='Mad Season';

UPDATE MUSIC.SONG SET RECORDING_DATE='04-MAY-01' WHERE TITLE='Mandy';

UPDATE MUSIC.SONG SET RECORDING_DATE='01-MAY-01' WHERE TITLE='Money Bought';

UPDATE MUSIC.SONG SET RECORDING_DATE='21-JAN-01' WHERE TITLE='Never Again';

UPDATE MUSIC.SONG SET RECORDING_DATE='19-JAN-01' WHERE TITLE='Never Change';

UPDATE MUSIC.SONG SET RECORDING_DATE='03-DEC-01'

WHERE TITLE='Out Of My Head';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-MAR-01' WHERE TITLE='Over You';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-JUN-01'

WHERE TITLE='Ready To Take A Chance';

UPDATE MUSIC.SONG SET RECORDING_DATE='05-JUL-01'

WHERE TITLE='Safe And Sound';

UPDATE MUSIC.SONG SET RECORDING_DATE='20-JAN-01' WHERE TITLE='Said';

UPDATE MUSIC.SONG SET RECORDING_DATE='19-OCT-01' WHERE TITLE='Serve The Ego';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-SEP-01' WHERE TITLE='She Hates Me';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-JUN-01' WHERE TITLE='Ships';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-MAY-00'

WHERE TITLE='Soak Up The Sun';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-NOV-00'

WHERE TITLE='Soak Up The Sun (Album Version)';

UPDATE MUSIC.SONG SET RECORDING_DATE='01-FEB-01'

WHERE TITLE='Soak Up The Sun (Sunsweep Club Mix)';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-FEB-01'

WHERE TITLE='Soak Up The Sun (Sunsweep Dub)';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-DEC-00'

Appendix_A.fm Page 609 Thursday, July 29, 2004 10:17 PM

610 A.12 UPDATEDATA.SQL

WHERE TITLE='Soak Up The Sun (Sunsweep Radio Mix)';

UPDATE MUSIC.SONG SET RECORDING_DATE='14-JUN-01'

WHERE TITLE='Somewhere Down The Road';

UPDATE MUSIC.SONG SET RECORDING_DATE='01-MAY-01'

WHERE TITLE='Somewhere In The Night';

UPDATE MUSIC.SONG SET RECORDING_DATE='15-OCT-01'

WHERE TITLE='Standing Still';

UPDATE MUSIC.SONG SET RECORDING_DATE='25-SEP-01' WHERE TITLE='Steve McQueen';

UPDATE MUSIC.SONG SET RECORDING_DATE='14-OCT-01' WHERE TITLE='Stop';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-MAY-00' WHERE TITLE='The Burn';

UPDATE MUSIC.SONG SET RECORDING_DATE='23-OCT-01'

WHERE TITLE='The New Wild West';

UPDATE MUSIC.SONG SET RECORDING_DATE='11-JUN-01' WHERE TITLE='The Old Songs';

UPDATE MUSIC.SONG SET RECORDING_DATE='07-MAY-01'

WHERE TITLE='This One''s For You';

UPDATE MUSIC.SONG SET RECORDING_DATE='20-OCT-01' WHERE TITLE='This Way';

UPDATE MUSIC.SONG SET RECORDING_DATE='18-OCT-01'

WHERE TITLE='Till We Run Out Of Road';

UPDATE MUSIC.SONG SET RECORDING_DATE='23-JAN-01' WHERE TITLE='Too Bad';

UPDATE MUSIC.SONG SET RECORDING_DATE='07-MAY-01'

WHERE TITLE='Tryin'' To Get The Feeling Again';

UPDATE MUSIC.SONG SET RECORDING_DATE='25-SEP-01'

WHERE TITLE='Two Days In February';

UPDATE MUSIC.SONG SET RECORDING_DATE='30-AUG-01' WHERE TITLE='Video';

UPDATE MUSIC.SONG SET RECORDING_DATE='17-MAR-01'

WHERE TITLE='We Are The Normal';

UPDATE MUSIC.SONG SET RECORDING_DATE='03-DEC-01'

WHERE TITLE='Weather Channel';

UPDATE MUSIC.SONG SET RECORDING_DATE='01-MAY-01'

WHERE TITLE='Weekend In New England';

UPDATE MUSIC.SONG SET RECORDING_DATE='13-JUN-01'

WHERE TITLE='When October Goes';

UPDATE MUSIC.SONG SET RECORDING_DATE='01-MAY-01'

WHERE TITLE='Where Do I Hide';

UPDATE MUSIC.SONG SET RECORDING_DATE='22-JAN-01'

WHERE TITLE='Woke Up This Morning';

UPDATE MUSIC.SONG SET RECORDING_DATE='14-OCT-01'

WHERE TITLE='You Won''t Be Mine';

UPDATE MUSIC.SONG SET RECORDING_DATE='12-MAY-00'

WHERE TITLE='You''re An Original';

COMMIT;

SPOOL OFF;

Appendix_A.fm Page 610 Thursday, July 29, 2004 10:17 PM

A.14 SCHEMADW.SQL 611

Appendix A

A.13 CHECKDATA.SQL

SPOOL log/VIEW_DATA.LOG;

SET TIMING OFF LINESIZE 132 PAGESIZE 40;

SELECT INSTRUMENT_ID,NAME "Instrument" FROM INSTRUMENT ORDER BY NAME;

SELECT ARTIST_ID,NAME,INSTRUMENTS FROM ARTIST ORDER BY NAME;

SELECT S.SONG_ID,S.TITLE,S.PLAYING_TIME,A.NAME "Artist" FROM SONG S,ARTIST A

WHERE A.ARTIST_ID = S.ARTIST_ID ORDER BY A.NAME,S.TITLE;

SELECT * FROM MUSICCD;

SELECT M.TITLE,C.TRACK_SEQ_NO,S.TITLE FROM SONG S,MUSICCD M,CDTRACK C

WHERE S.SONG_ID = C.SONG_ID AND C.MUSICCD_ID = M.MUSICCD_ID ORDER BY 1,2;

SELECT A.NAME "GuestArtist",S.TITLE "Song Title",I.NAME "Instrument"

FROM ARTIST A, SONG S, GUESTAPPEARANCE SG,

INSTRUMENTATION ISG,INSTRUMENT I

WHERE A.ARTIST_ID = SG.GUESTARTIST_ID

AND S.SONG_ID = SG.SONG_ID

AND SG.GUESTARTIST_ID = ISG.GUESTARTIST_ID

AND SG.SONG_ID = ISG.SONG_ID

AND ISG.INSTRUMENT_ID = I.INSTRUMENT_ID;

SPOOL OFF;

A.14 SCHEMADW.SQL

SPOOL log/SCHEMA_DW.LOG;

--

--dimensions

--

DROP TABLE CONTINENT CASCADE CONSTRAINTS;

CREATE TABLE CONTINENT

(

 CONTINENT_ID NUMBER NOT NULL

 ,NAME VARCHAR2(32)

 ,CONSTRAINT XPKCONTINENT PRIMARY KEY (CONTINENT_ID)

);

CREATE UNIQUE INDEX XUK_CONTINENT_NAME ON CONTINENT(NAME);

Appendix_A.fm Page 611 Thursday, July 29, 2004 10:17 PM

612 A.14 SCHEMADW.SQL

DROP TABLE COUNTRY CASCADE CONSTRAINTS;

CREATE TABLE COUNTRY

(

 COUNTRY_ID NUMBER NOT NULL

 ,CONTINENT_ID NUMBER

 ,NAME VARCHAR2(32)

 ,CONSTRAINT XPKCOUNTRY PRIMARY KEY (COUNTRY_ID)

 ,CONSTRAINT FKCOUNTRY_1 FOREIGN KEY (CONTINENT_ID) REFERENCES CONTINENT

);

CREATE UNIQUE INDEX XUK_COUNTRY_NAME ON COUNTRY(NAME);

CREATE INDEX XFKCOUNTRY_1 ON COUNTRY (CONTINENT_ID);

DROP TABLE RETAILER CASCADE CONSTRAINTS;

CREATE TABLE RETAILER

(

 RETAILER_ID NUMBER NOT NULL

 ,NAME VARCHAR2(32)

 ,DISCOUNT FLOAT

 ,URL VARCHAR2(128)

 ,CONSTRAINT XPKRETAILER PRIMARY KEY (RETAILER_ID)

);

CREATE UNIQUE INDEX XUK_RETAILER_NAME ON RETAILER(NAME);

--

--dimension oltp links

--

CREATE OR REPLACE TYPE PREFERENCESCOLLECTION AS TABLE OF VARCHAR2(32);

/

DROP TABLE CUSTOMER CASCADE CONSTRAINTS;

CREATE TABLE CUSTOMER

(

 CUSTOMER_ID NUMBER NOT NULL

 ,NAME VARCHAR2(32) NOT NULL

 ,USERNAME CHAR(8)

 ,PASSWORD CHAR(8)

 ,SHIPPING_ADDRESS CLOB

 ,BILLING_ADDRESS CLOB

 ,CREDIT_CARD CLOB

 ,PREFERENCES PREFERENCESCOLLECTION

 ,CONSTRAINT XPKCUSTOMER PRIMARY KEY (CUSTOMER_ID)

) NESTED TABLE PREFERENCES STORE AS PREFERENCESTAB;

CREATE UNIQUE INDEX XUK_CUSTOMER_NAME ON CUSTOMER(NAME);

Appendix_A.fm Page 612 Thursday, July 29, 2004 10:17 PM

A.15 DIMENSIONS.SQL 613

Appendix A

--ALTER TABLE CUSTOMER ADD(PREFERENCES PREFERENCESCOLLECTION) NESTED TABLE
PREFERENCES STORE AS PREFERENCES;

--

--facts

--

DROP TABLE SALES CASCADE CONSTRAINTS;

CREATE TABLE SALES

(

 SALES_ID NUMBER NOT NULL

 ,MUSICCD_ID NUMBER NOT NULL

 ,CUSTOMER_ID NUMBER NOT NULL

 ,RETAILER_ID NUMBER

 ,CONTINENT_ID NUMBER

 ,COUNTRY_ID NUMBER

 ,LIST_PRICE FLOAT

 ,DISCOUNT FLOAT

 ,SALE_PRICE FLOAT

 ,SALE_DATE DATE

 ,SALE_QTY NUMBER

 ,SHIPPING_COST FLOAT

 ,CONSTRAINT XPKSALES PRIMARY KEY (SALES_ID)

 ,CONSTRAINT FKSALES_1 FOREIGN KEY (RETAILER_ID) REFERENCES RETAILER

 ,CONSTRAINT FKSALES_2 FOREIGN KEY (CONTINENT_ID) REFERENCES CONTINENT

 ,CONSTRAINT FKSALES_3 FOREIGN KEY (COUNTRY_ID) REFERENCES COUNTRY

 ,CONSTRAINT FKSALES_4 FOREIGN KEY (CUSTOMER_ID) REFERENCES CUSTOMER

);

CREATE INDEX XFK_SALES_1 ON SALES (RETAILER_ID);

CREATE INDEX XFK_SALES_2 ON SALES (CONTINENT_ID);

CREATE INDEX XFK_SALES_3 ON SALES (COUNTRY_ID);

CREATE INDEX XFK_SALES_4 ON SALES (CUSTOMER_ID);

SPOOL OFF;

A.15 DIMENSIONS.SQL

SPOOL log/DIMENSIONS.LOG;

--continent

INSERT INTO CONTINENT(CONTINENT_ID,NAME) VALUES(CONTINENT_ID_SEQ.NEXTVAL,'North
America');

INSERT INTO CONTINENT(CONTINENT_ID,NAME) VALUES(CONTINENT_ID_SEQ.NEXTVAL,'Europe');

Appendix_A.fm Page 613 Thursday, July 29, 2004 10:17 PM

614 A.15 DIMENSIONS.SQL

INSERT INTO CONTINENT(CONTINENT_ID,NAME) VALUES(CONTINENT_ID_SEQ.NEXTVAL,'Central
America');

INSERT INTO CONTINENT(CONTINENT_ID,NAME) VALUES(CONTINENT_ID_SEQ.NEXTVAL,'South
America');

INSERT INTO CONTINENT(CONTINENT_ID,NAME) VALUES(CONTINENT_ID_SEQ.NEXTVAL,'Oceania');

INSERT INTO CONTINENT(CONTINENT_ID,NAME) VALUES(CONTINENT_ID_SEQ.NEXTVAL,'Africa');

INSERT INTO CONTINENT(CONTINENT_ID,NAME) VALUES(CONTINENT_ID_SEQ.NEXTVAL,'Asia');

INSERT INTO CONTINENT(CONTINENT_ID,NAME)
VALUES(CONTINENT_ID_SEQ.NEXTVAL,'Australasia');

COMMIT;

--country

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='North
America'),'United States');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='North
America'),'Canada');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='North
America'),'Mexico');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Europe'),'United Kingdom');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Europe'),'France');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Europe'),'Czech Republic');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Europe'),'Germany');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Europe'),'Netherlands');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Europe'),'Spain');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Europe'),'Sweden');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='South
America'),'Argentina');

Appendix_A.fm Page 614 Thursday, July 29, 2004 10:17 PM

A.15 DIMENSIONS.SQL 615

Appendix A

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='South
America'),'Brazil');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='South
America'),'Chile');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='South
America'),'Colombia');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='South
America'),'Peru');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE NAME='South
America'),'Venezuela');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'Singapore');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'South Korea');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'Taiwan');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'Israel');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'Kuwait');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'Qatar');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'United Arab Emirates');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Asia'),'India');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Australasia'),'Australia');

INSERT INTO COUNTRY(COUNTRY_ID,CONTINENT_ID,NAME)
VALUES(COUNTRY_ID_SEQ.NEXTVAL,(SELECT CONTINENT_ID FROM CONTINENT WHERE
NAME='Australasia'),'New Zealand');

COMMIT;

Appendix_A.fm Page 615 Thursday, July 29, 2004 10:17 PM

616 A.16 FACTS.SQL

--retailer

INSERT INTO RETAILER(RETAILER_ID,NAME,DISCOUNT,URL)
VALUES(RETAILER_ID_SEQ.NEXTVAL,'Amazon',0.2,'http://www.amazon.com');

INSERT INTO RETAILER(RETAILER_ID,NAME,DISCOUNT,URL)
VALUES(RETAILER_ID_SEQ.NEXTVAL,'Barnes and Noble',0.05,'http://
www.barnesandnoble.com');

INSERT INTO RETAILER(RETAILER_ID,NAME,DISCOUNT,URL)
VALUES(RETAILER_ID_SEQ.NEXTVAL,'CD Shop',0,NULL);

COMMIT;

SPOOL OFF;

A.16 FACTS.SQL

SPOOL log/FACTS.LOG;

create or replace procedure delay(limit IN integer) as

 i integer;

begin

 for i in 1..limit loop

 null;

 end loop;

end;

/

create or replace function rand(n IN NUMBER DEFAULT 1) return integer is

 f float default 0;

 rand integer default 0;

begin

 --gives a random number between 1 and 1000000000

 select to_number(to_char(SYSTIMESTAMP,'FF9'))+1 into f from dual;

 f := (f*n)/1000000000;

 rand := ROUND(f,0);

 if rand = 0 then rand := 1; end if;

 if rand > n then rand := n; end if;

 return ROUND(rand,0);

exception when others then

 dbms_output.put_line('FUNC: rand '||SQLERRM(SQLCODE));

end;

/

@@lastname.sql;

@@firstname.sql;

Appendix_A.fm Page 616 Thursday, July 29, 2004 10:17 PM

A.16 FACTS.SQL 617

Appendix A

create or replace function getRetailer return integer is

 i integer;

begin

 select max(retailer_id) into i from retailer;

 return (rand(i));

exception when others then

 dbms_output.put_line('FUNC: getRetailer '||SQLERRM(SQLCODE));

end;

/

create or replace function getMusicCDID return integer is

 i integer;

begin

 select max(musiccd_id) into i from musiccd;

 return (rand(i));

exception when others then

 dbms_output.put_line('FUNC: getMusicCDID '||SQLERRM(SQLCODE));

end;

/

create or replace function getGenreID (i IN integer) return integer is

 j integer;

begin

 select genre_id into j from musiccd where MUSICCD_ID = i;

 return (j);

exception when others then

 dbms_output.put_line('FUNC: getGenreID '||SQLERRM(SQLCODE));

end;

/

create or replace function getListPrice (i IN integer) return float is

 f float;

begin

 select list_price into f from musiccd where MUSICCD_ID = i;

 return (f);

exception when others then

 dbms_output.put_line('FUNC: getListPrice '||SQLERRM(SQLCODE));

end;

/

create or replace function getGenre (i IN integer) return varchar is

 v varchar2(32);

begin

 select genre into v from genre where GENRE_ID = i;

Appendix_A.fm Page 617 Thursday, July 29, 2004 10:17 PM

618 A.16 FACTS.SQL

 return (v);

exception when others then

 dbms_output.put_line('FUNC: getGenre '||SQLERRM(SQLCODE));

end;

/

create or replace function getCountryID return integer is

 i integer;

begin

 select max(country_id) into i from country;

 return (rand(i));

exception when others then

 dbms_output.put_line('FUNC: getCountryID '||SQLERRM(SQLCODE));

end;

/

create or replace function getContinentID (i IN integer) return integer is

 j integer;

begin

 select continent_id into j from country where COUNTRY_ID = i;

 return (j);

exception when others then

 dbms_output.put_line('FUNC: getContinentID '||SQLERRM(SQLCODE));

end;

/

create or replace function getCustomerName return varchar2 is

 i integer;

 fname varchar2(32);

 lname varchar2(32);

begin

 select count(*) into i from firstname;

 select name into fname from firstname where ID = rand(i);

 select count(*) into i from lastname;

 select name into lname from lastname where ID = rand(i);

 return (fname||' '||lname);

exception when others then

 dbms_output.put_line('FUNC: getCustomerName '||SQLERRM(SQLCODE));

end;

/

create or replace function getDiscount (i IN integer) return float is

 f float;

begin

 select discount into f from retailer where RETAILER_ID = i;

Appendix_A.fm Page 618 Thursday, July 29, 2004 10:17 PM

A.16 FACTS.SQL 619

Appendix A

 return (f);

exception when others then

 dbms_output.put_line('FUNC: getDiscount '||SQLERRM(SQLCODE));

end;

/

--customer

create or replace procedure factsGenerate as

 id integer;

 vmusiccd_id integer default 0;

 vgenre_id number;

 vlist_price float;

 vcustomer_id integer;

 vretailer_id integer;

 vcontinent_id integer;

 vcountry_id integer;

 vdiscount float;

 vgenre varchar2(32);

 vfullname varchar2(64);

 vPreferences PreferencesCollection;

 i integer;

 j integer default 0;

 dte date;

begin

 vmusiccd_id := getMusicCDID();

 vgenre_id := getGenreID(vmusiccd_id);

 vlist_price := getListPrice(vmusiccd_id);

 vgenre := getGenre(vgenre_id);

 vretailer_id := getRetailer();

 vcountry_id := getCountryID;

 vcontinent_id := getContinentID(vcountry_id);

 vdiscount := getDiscount(vretailer_id);

 vfullname := getCustomerName();

 begin

 select customer_id into id from customer where NAME = vfullname;

 select preferences into vPreferences from customer where CUSTOMER_ID = id;

 j := 0; for i in vPreferences.first..vPreferences.last loop

 if vPreferences(i) = vgenre then j := 1; end if;

 end loop;

 if j = 0 then

 insert into table(select preferences from customer where CUSTOMER_ID = id)
values(vgenre);

Appendix_A.fm Page 619 Thursday, July 29, 2004 10:17 PM

620 A.16 FACTS.SQL

 end if;

 exception when NO_DATA_FOUND then

 insert into customer(customer_id,name,preferences)

 values(customer_id_seq.nextval,vfullname,PREFERENCESCOLLECTION(vgenre))

 returning customer_id into id;

 end;

 vcustomer_id := id;

 --dte := TO_DATE('31-12-2004','DD-MM-YYYY') - rand(500);

 --dbms_output.put_line(to_char(vcountry_id));

 dte := (SYSDATE + 300) - rand(500);

 dbms_output.put_line(to_char(vcountry_id)||','||dte);

 insert into sales

 (

 sales_id

 ,musiccd_id

 ,customer_id

 ,retailer_id

 ,continent_id

 ,country_id

 ,list_price

 ,discount

 ,sale_price

 ,sale_date

 ,sale_qty

 ,shipping_cost

)

 values

 (

 sales_id_seq.nextval

 ,vmusiccd_id

 ,vcustomer_id

 ,vretailer_id

 ,vcontinent_id

 ,vcountry_id

 ,vlist_price

 ,vdiscount

 ,ROUND(vlist_price * (1 - vdiscount),2)

 ,dte

 ,1

 ,0

);

 commit;

Appendix_A.fm Page 620 Thursday, July 29, 2004 10:17 PM

A.16 FACTS.SQL 621

Appendix A

exception when others then

 dbms_output.put_line('PROC: factGenerate '||SQLERRM(SQLCODE));

 rollback;

end;

/

create or replace procedure facts (i IN integer) is

 j integer;

begin

 for j in 1..i loop

 factsGenerate;

 delay(10000000);

 --dbms_output.put_line('Facts: '||to_char(j));

 end loop;

end;

/

set serveroutput on;

exec dbms_output.enable(10000000);

set timing on;

truncate table sales;

exec facts(1000);

exec dbms_output.disable;

set serveroutput off;

declare

 cursor cSales is select * from sales order by sale_qty;

begin

 for rSales in cSales loop

 update sales set sale_date = (SYSDATE + 300) - rand(500);

 commit;

 end loop;

end;

/

SPOOL OFF;

Appendix_A.fm Page 621 Thursday, July 29, 2004 10:17 PM

This page intentionally left blank

623

B

Please note that these scripts should be tested before use in a production
environment.

B.1 Tables

set wrap off linesize 132 pages 80

column tab format a20

column col format a15

column pos format 990

column typ format a10

column tbs format a25

BREAK ON tab NODUPLICATES SKIP 2 ON NAME NODUPLICATES

select t.table_name "Tab"

,c.column_name "Col"

,c.column_id "Pos"

,c.data_type "Typ"

,DECODE(c.nullable,'N','NOT NULL',NULL) "Null"

,t.tablespace_name "Tbs"

from user_tables t, user_tab_columns c

where t.table_name = c.table_name

order by t.table_name, c.column_id;

B.2 Constraints

set wrap off linesize 132 pages 80

column tab format a20

column key format a10

column cons format a20

column col format a10

Appendix_B.fm Page 623 Thursday, July 29, 2004 10:17 PM

624

B.3

Indexes

column pos format 990

BREAK ON tab NODUPLICATES SKIP 2 ON NAME NODUPLICATES

select t.table_name "Tab"

,decode(t.constraint_type,'P','Primary','R','Foreign','U','Alternate','Unknown')
"Key"

,t.constraint_name "Cons"

,c.column_name "Col"

,c.position "Pos"

from user_constraints t, user_cons_columns c

where t.constraint_type in ('P','R','U')

and t.table_name = c.table_name

and t.constraint_name = c.constraint_name

order by t.table_name, t.constraint_type, c.position;

B.3 Indexes

set wrap off linesize 132 pages 80

column tab format a25

column typ format a5

column ind format a25

column col format a20

column pos format 990

column tbs format a25

BREAK ON tab NODUPLICATES SKIP 2 ON NAME NODUPLICATES

Select t.table_name "Tab"

,decode(t.index_type,'NORMAL','BTree','BITMAP','Bitmap','FUNCTION-BASED
NORMAL','Function-Based BTree',t.index_type) "Typ"

,t.index_name "Ind"

,c.column_name "Col"

,c.column_position "Pos"

,t.tablespace_name "Tbs"

from user_indexes t, user_ind_columns c

where t.table_name = c.table_name

and t.index_name = c.index_name

and t.index_type not in ('IOT - TOP','LOB')

order by t.table_name, t.index_name, c.column_position;

Appendix_B.fm Page 624 Thursday, July 29, 2004 10:17 PM

625

C

The authors of this book can be contacted at the following e-mail addresses:

�

oracledbaexpert@earthlink.net

�

carolmdieter@yahoo.com

Oracle Technology Network at http://technet.oracle.com or http://
otn.oracle.com is an excellent source for entire Oracle reference docu-
mentation sets.

Metalink at http://metalink.oracle.com is also excellent and a source of
current information from support calls, questions, and answers placed by
both Oracle users and Oracle support staff. The information on this site is
well worth the Oracle licensing fees required.

Search for a term such as “free buffer waits” in search engines such as
www.yahoo.com. Be aware that not all information will be current and might
be incorrect. Verify any information found on Oracle Technet. If no results
are found using Yahoo, try the full detailed listings on www.google.com.

Try www.amazon.com and www.barnesandnoble.com, where many
Oracle titles can be found.

C.1 Other titles by the authors:

Gavin Powell (www.oracledbaexpert.com)

Oracle Performance Tuning for 9

i

 and 10

g

 (ISBN: 1-555-58305-9).

Introduction to Oracle 9

i

 and Beyond: SQL & PL/SQL (ISBN: 1-932-
07224-1).

Appendix_C.fm Page 625 Thursday, July 29, 2004 10:18 PM

626

C.1

Other titles by the authors:

Oracle Database Administration Fundamentals I (ISBN: 1-932-07253-5).

Oracle Database Administration Fundamentals II (ISBN: 1-932-07284-5).

Oracle SQL Exam Cram 2 (ISBN: 0-789-73248-3).

Carol McCullough-Dieter

Oracle9i Database Administrator: Implementation and Administration
(ISBN: 0-619-15900-6).

Oracle9i for Dummies (ISBN: 0-764-50880-6).

Oracle8i DBA Bible (ISBN: 0-764-54623-6).

Oracle8i for Dummies (ISBN: 0-764-50798-2).

Several other out-of-print books

MUSIC schema scripts can be found from a simple menu on my Web
site at the following URL, along with many other goodies, including my
resume:

www.oracledbaexpert.com/oracle/
OracleSQLJumpstartWithExamples/index.html

www.oracledbaexpert.com/resume/resume.doc

Software accreditations:

�

Microsoft Word, Powerpoint, Excel, Win2K.

�

ERWin.

�

Paintshop.

�

Oracle Database 10

g

 and Oracle Database 9

i

.

Appendix_C.fm Page 626 Thursday, July 29, 2004 10:18 PM

627

Index

; (semicolon), 7
<...> (angle brackets), 17–18
"" (double quotes, 78
/ (forward slash), 76
% (percentage character), 82, 102
| (pipe character), 18
_ (underscore character), 102

ABS function, 182
ADD_MONTHS function, 186
Aggregate functions

AVG, 238
CORR, 239
COUNT, 238
COVAR_POP, 239
COVAR_SAMP, 239
CUME_DIST, 240
defined, 176, 237
DENSE_RANK, 240
GROUP_ID, 240
grouping, 240
GROUPING(), 240
GROUPING_ID, 241
HAVING clause with, 255
MAX, 238
MEDIAN, 239
MIN, 238
Oracle, using, 238
PERCENTILE, 240

PERCENT_RANK, 240
RANK, 240
ranking, 240
REGR, 239
simple summary, 238
statistical calculators, 238–39
statistical distribution, 240
STATS, 239
STDDEV, 238
STDDEV_POP, 238
STDDEV_SAMP, 239
SUM, 238, 242
VARIANCE, 238
VAR_POP, 239
VAR_SAMP, 239

See also

 Group functions
Aliases

column, 78, 79, 112
table, 79

ALL clause, 246–49
ALTER CLUSTER command, 485
ALTER INDEX command, 482

syntax, 482
using, 483

ALTER ROLE command, 523–24
ALTER SEQUENCE command, 493
ALTER TABLE command, 298, 450, 460–

61
constraints and, 461–64
constraints syntax, 461

index.fm Page 627 Thursday, July 29, 2004 10:37 PM

628 Index

syntax, 408
ALTER USER command, 509
ALTER VIEW command, 434, 450

constraints syntax, 461
syntax, 534

American National Standards Institute
(ANSI), 15–16

JOIN clause, 206–7
mutable joins, 232

Analytical functions, 176
AND operator, 105, 107, 126

example, 126
illustrated, 126

See also

 Logical operators
Angle brackets (<...>), 17–18
Anti-joins, 230

avoiding, 230
defined, 208

Archiving, 61–62
Arithmetic operations, 91–92
Arithmetic operators, 125

defined, 124
example, 125
illustrated, 125

See also

 Operators
Associative arrays, 542
AVG function, 238

Backus-Naur syntax conventions, 75
Base tables, 426
BETWEEN conditional comparison, 104
BFILE datatype

BFILENAME function, 347
defined, 343
example, 345–47
use illustration, 346
use of, 343
using, 345–47

BFILENAME function, 347
BINARY_DOUBLE datatype, 341

BINARY_FLOAT datatype, 341
Binary floating-point number, 185–86
BINARY_INTEGER datatype, 541
Bitmap indexes

defined, 477
WHERE clause and, 486

See also

 Indexes
Bitmap join indexes, 478, 483
BLOB datatype, 55, 342, 343
BOOLEAN datatype, 541
BREAK command

COMPUTE command and, 164
defined, 162
example, 162, 163
syntax, 162

BTITLE command, 160
BTree indexes, 474–75

defined, 474–75
illustrated, 476

CARDINALITY function, 354
CASCADE clause, 466–68
CASE statements, 556–60

defined, 302
search condition, 556, 557–58
searched, 304
selector and expression, 556, 558–60
syntax, 303, 557
use of, 556

See also

 Control structures
CAST function, 353
CEIL function, 182
CHAR datatype, 340, 401
Check constraints, 456–58

defined, 449
inline, 456
out-of-line, 456
using, 458

See also

 Constraints
CLOB datatype, 342, 343, 374

index.fm Page 628 Thursday, July 29, 2004 10:37 PM

Index 629

Index

Clustering, 70–71
Clusters, 484–87

CREATE TABLE syntax for, 486
creating, 485–87
defined, 386, 475–76, 484–85
hash, 485
regular, 485
sorted hash, 485
types of, 485

See also

 Indexes
COALESCE function, 194
COLLECT function, 353
Collections, 43

nested table, 350–52
object, 348–54

COLUMN command
column alias, 158
formatting, turning off, 156
settings, 154
on single line, 158
syntax, 154
use illustration, 156
using, 155–56

Columns
adding, 408–09
aliases, 78, 79, 112
changing, 409–11
datatypes, 53, 55
formatting, 154–60
names, 53–54
non-nullable, 411
removing, 411–12
renaming, 411
selecting, 55
unused, 411
updating, 332

See also

 Rows; Tables
Comments

adding, 416–20
inline, 419–20
multiple-line, 419

for schema objects, 416–19
single-line, 420

See also

 Tables
COMMIT command, 62–64

execution, 63, 64, 317
ROLLBACK command comparison, 63–

64
saving changes with, 317

Comparison conditions
defined, 131
EXISTS, 272
IN, 273, 274
multiple-row subqueries, 272
subqueries and, 269–70

Complex joins, 230–33
defined, 208, 230–31
illustrated, 368, 369

See also

 Joins
Complex views

creating, 430–33
defined, 427

See also

 Views
Composite partitions, 68, 402
Composite queries, 88

defined, 81, 285
example, 88
set operators, 285–86
using, 286–89

See also

 Queries
Compound expressions, 302
COMPUTE command, 163

BREAK command and, 164
defined, 163
syntax, 164

Concatenation operator, 128
defined, 124
example, 128

See also

 Operators
CONCAT function, 180
Conditional comparisons

ALL, 104–5

index.fm Page 629 Thursday, July 29, 2004 10:37 PM

630 Index

anti (!=, <>), 102
ANY, 104–5
BETWEEN, 104
defined, 101
equi (=), 102
EXISTS, 103–4
IN, 103
LIKE, 102
range (<, >, =<, >=), 102
SOME, 104–5
types of, 102–5

Conditions, 131–33
comparison, 131, 269–70
defined, 131
floating-point, 131
NULL, 131–32
object collection, 132–33
XML, 132

CONNECT BY clause, 39
CONNECT_BY_ROOT operator

defined, 128, 290
illustrated, 292
using, 290–92

Constraints, 447–69
adding, to existing tables, 462–63
ALTER TABLE command and, 461–64
applying, 449
cascading of, 468
check, 449, 456–58
defined, 448
dropping, 465–68
dropping, with CASCADE clause, 466–68
ENABLE/DISABLE states, 463–64
EXCEPTIONS clause, 464
foreign key, 447, 449, 452–56
function of, 447
inline, 448
managing, 449–60
metadata views, 469
modifying, on existing tables, 463
NOT NULL, 448

out-of-line, 448, 453–56
primary key, 447, 449, 451–52
REF, 449, 459–60
Referential Integrity, 465
RELY state, 464
renaming, 464–65
states, 463–64
types, 448–49
unique, 448, 451–52
uses, 448–49
USING INDEX clause, 464

Constraint views
creating, 429–30
defined, 427
inserted rows requirement, 431
inserting/updating rows with, 439

See also

 Views
Controlfiles, 61
Control structures, 553–67

CASE statement, 556–60
FORALL command, 561, 565
FOR loop, 560, 561–63
GOTO statement, 565, 566
IF statement, 554–56
iteration/repetition, 554, 560–65
LOOP...END LOOP, 561, 564–65
NULL statement, 565, 566–67
selection, 553, 554–60
sequence controls, 554, 565–67
types of, 553–54
WHILE loop, 560, 563–64

Conversion functions, 190–94
date formats, 191–94
defined, 177
illustrated, 179
importance, 190
number formats, 190–91
TO_CHAR, 190, 193
TO_CLOB, 190
TO_DATE, 190, 201, 202
TO_N, 190

index.fm Page 630 Thursday, July 29, 2004 10:37 PM

Index 631

Index

TO_NUMBER, 190

See also

 Single-row functions
Correlated subqueries

defined, 268, 279
regular subqueries vs., 279–80
values passed into, 279

See also

 Subqueries
CORR function, 239
COUNT function, 238
COVAR_POP function, 239
COVAR_SAMP function, 239
CREATE INDEX command, 477, 478
CREATE ROLE command, 523
CREATE SEQUENCE command, 490
CREATE SESSION privilege, 507, 508
CREATE SYNONYM command, 499, 500
CREATE TABLE command, 298, 385, 386

with constraints syntax, 450
with detailed constraints syntax, 451
pseudo-like syntax, 389
as subquery, 387
syntax, 387–88
syntax for clusters, 486
syntax for external table, 398
syntax for hash partitions, 404–5
syntax for IOT, 397
syntax for list partitions, 403–4
syntax for object table, 391
syntax for range-hash partitions, 405, 406
syntax for range-list partitions, 405–6
syntax for range partitions, 403, 404
syntax for relational table, 390
syntax for temporary table, 393

CREATE VIEW command
constraints syntax, 460
OR REPLACE option, 433
syntax, 427–33
WITH CHECK OPTION clause, 430

Cross-joins, 210–12
creation in error, 211
data merge, 210

defined, 207
example, 211

See also

 Joins
CUBE clause, 257–58

example, 257–58
implementation, 258
use of, 255, 257

CUME_DIST function, 240
CURRENT_DATE function, 186
CURRENT_TIMESTAMP function, 186
CURRENTV function, 261
CURRVAL pseudocolumn, 490, 495
CURSOR expression, 302
Cursor FOR loop implicit cursor, 547–49

defined, 547–48
example, 547–49
illustrated, 549

See also

 Implicit cursors
Cursors, 543–49

building, dynamically, 552–53
explicit, 543–44
implicit, 544–49
REF, 553

Database modeling
evolution, 1–5
file system, 1
hierarchical, 2
network, 3
object, 3–4
object-relational, 4–5
relational, 3, 4, 8–14

Databases
name, 20
Oracle, evolution of, 6–8
origin, 6
relational, 5–6
spreadsheets vs., 52–53
standby, 69–70
XML and, 373–80

index.fm Page 631 Thursday, July 29, 2004 10:37 PM

632 Index

Data Definition Language.

See

 DDL
Data dictionary views, 442–45

defined, 442
groups, 442–43

Datafiles, 61
Data Manipulation Language.

See

 DML
commands

DATA tablespace, 61
Datatypes, 341–55

associative arrays, 542
BFILE, 343, 345–47
BINARY_DOUBLE, 341
BINARY_FLOAT, 341
BINARY_INTEGER, 541
binary object, 342–43
BLOB, 55, 342, 343
BOOLEAN, 541
CHAR, 342, 403
CLOB, 342, 343
column, 53, 55
complex, 342–55
DATE, 55, 340–41
FLOAT, 340
INTEGER, 340, 401
LONG, 342
LONG RAW, 342
NCHAR, 340
NCLOB, 342
NUMBER, 55, 340, 541
NVARCHAR2, 340
object collection, 348–52
PL/SQL, 541–43
RAW, 342
RECORD, 541–42
REF, 343, 344–45
reference, 542
reference pointer, 343–47
ROWID, 341
simple, 339–41
SMALLINT, 340
special, 355

TIMESTAMP, 341
user-defined, 347–48
VARCHAR2, 55, 340
XMLType, 361–62

DATE datatype, 55, 340–41
Dates

column, 158
formatting, 158–60

Datetime functions, 186–89
ADD_MONTHS, 186
CURRENT_DATE, 186
CURRENT_TIMESTAMP, 186
defined, 177
EXTRACT, 187–89
illustrated, 178
LAST_DAY, 186
LOCALTIMESTAMP, 186
MONTHS_BETWEEN, 186
NEXT_DAY, 186
ROUND, 187
SYSDATE, 186
SYSTIMESTAMP, 186
TRUNC, 187, 200, 202

See also

 Single-row functions
DBMS_REDEFINITION package, 412–13
DBMS_SQL package, 551
DDL, 15

automatic command commitment, 63
commands, 316
Oracle Database 10

g,

 40
DECODE function, 194–95, 197, 200, 201,

202
DEFINE command, 151
DELETE command, 334–36

for all rows, 336
defined, 316
for multiple rows, 334–35
for one row, 334
syntax, 333

Deleting rows, 334–36
all, 336

index.fm Page 632 Thursday, July 29, 2004 10:37 PM

Index 633

Index

many, 334–35
one, 334

See also

 Rows
Denormalization, 11–13

defined, 11
performance factors, 12–13
requirement, 11

DENSE_RANK function, 240
DESC command, 454
DISTINCT function, 88, 92–93

group functions and, 246–49
using, 92–93

DML commands, 315–39
commit/rollback, 63
defined, 15, 315
DELETE, 316, 334–36
executing triggers from, 539
INSERT, 315, 324–30
with joins, 440–41
MERGE, 316, 336–39
NOT NULL constraint, 316
pointers, 316–17
syntax changes, 40
undoing, 217
UPDATE, 315, 330–34
views and, 437–41

Domain indexes, 476
Double @@ command, 152
Double quotes (""), 78
DREF function, 345
DROP INDEX command, 482
Dropping tables, 414–16

with DROP TABLE, 414–15
truncating vs., 415–16

DROP TABLE command, 414–15
DROP VIEW command, 434, 435
DUAL table, 88, 89–90

defined, 88
illustrated, 89
information, 90
queries, 89

use of, 90
Dynamic HTML (DHTML), 358
Dynamic SQL, 550–53

Environmental settings
adjusting, 171
ARRAY[SIZE], 139
AUTO[COMMIT], 139
CMDS[EP], 139
COLSEP, 139
default, 146
defined, 138
ECHO, 140
ESC[APE], 140
HEAD[ING], 140
LINE[SIZE], 140
LONG, 140
MARK[UP] HTML, 141
NEWP[AGE], 141
NULL, 141–42
NUMF[ORMAT], 142
NUMW[IDTH], 142
PAGES[IZE], 142
PAU[SE], 142–43
RECSEP, 143
RECSEPCHAR, 143
SERVEROUT[PUT], 143–44
SQLP[ROMPT], 144
TERM[OUT], 146
TIMI[NG], 146
WRAP, 146

See also

 SQL*Plus
Environmental variables, 137
Equi-joins, 230

defined, 208
uses, 230

EVALUATE operator, 44, 312
Exception trapping, 533–34
EXECUTE IMMEDIATE command

defined, 550

index.fm Page 633 Thursday, July 29, 2004 10:37 PM

634 Index

uses, 551
using, 552

EXISTS clause, 103, 230, 272
EXISTSNODE function, 376
Explicit cursors, 543–44

programmer access, 543
using, 545
variations, 544

See also

 Cursors
Expressions, 301–14

basic, 302
brackets, 302
CASE statements, 302–4
compounding, 302
copying, into SELECT columns list, 121
CURSOR, 302
defined, 301
functions, 302
lists, 302
modeling, 305
objects, 304
object type constructors, 305
Oracle Expression Filter and, 309–14
in ORDER BY clause, 119, 120
regular, 305–9
scalar subqueries, 302
types of, 302

eXtensible Markup Language.

See

 XML
eXtensible Style Sheets (XSL), 358

defined, 360
documents, 360

External tables
CREATE TABLE syntax, 398
creating, 398–401
defined, 384
reading, 400

See also

 Tables
EXTRACT function, 187–89, 369, 376, 377

defined, 187, 376
demonstrating, 377, 378
examples, 188

illustrated, 188
multiple-value pattern match and, 378
single-value pattern match and, 378

EXTRACTVALUE function
defined, 376
demonstrating, 377, 378
multiple-value pattern match and, 378
single-value pattern match and, 378

Feature-related users, 505
Fifth Normal Form (5NF), 10
Filtered queries, 82–83

defined, 81
example, 82
illustrated, 83

See also

 Queries
First Normal Form (1NF), 8, 9
Fishhook self-joins, 228–29
Flashback queries, 292–97

automated undo requirement, 293
defined, 81, 292
execution, 295
illustrated, 295
syntax, 293–94
using, 294–97
versions, 293
versions, illustrated, 296
versions, with pseudocolumns, 297
versions query pseudocolumns, 294

See also

 Queries
FLOAT datatype, 340
Floating-point condition, 131
FLOOR function, 182–83
FORALL command, 561, 565
Foreign key constraints, 447, 452–56

defined, 449
indexes, 483
nullable, 456
out-of-line, 453–56
table name, 453

index.fm Page 634 Thursday, July 29, 2004 10:37 PM

Index 635

Index

See also

 Constraints
FOR loop, 560, 561–63

defined, 560
examples, 561–63
nested, 562
statement syntax, 561

See also

 Control structures
Formatting

breaks, 160–65
column, 154–60
COLUMN command, 156
date models, 192
dates, 158–60
lines, 160–65
number models, 191
pages, 160–65
query output, 153–65

Forward slash (/), 76
Fourth Normal Form (4NF), 10
FROM clause

defined, 97
multiple-column subquery, 278

Full outer joins, 224–25
defined, 208
example, 225
illustrated, 210
returns, 224

See also

 Outer joins
Function-based indexes

defined, 475
using, 481

See also

 Indexes
Functions, 88

aggregate, 176
analytical, 176
combining, 196–203
datatype conversion, 91
defined, 175
group, 91, 237–49
grouping, 176
object collection, 352–54

object reference, 91, 176
placement, 176–77
single-row, 91, 175–203
user-defined, 91, 176
using, 90–91

See also

specific functions

Functions (PL/SQL)
defined, 535
using, 535–37

GETSTRINGVAL function, 369
GETTIME function, 256, 257, 537
GOTO statement, 565, 566

defined, 565
example, 566

GRANT command, 513, 518
Granting privileges, 511–18

object, 512
on roles, 524–27
several users at once, 513
system, 512

See also

 Privileges
GREATEST function, 195
GROUP BY clause, 249–60

column list, 250, 253
CUBE clause, 257–58
execution, 250
extending, 255–60
GROUPING SETS clause, 258–60
HAVING clause, 253–55
parts, 236
ROLLUP clause, 256–57
rules, 250
sort order, 252
syntax, 235–36
uses, 249
using, 249–60

Group functions, 91, 237–49
aggregate, 237–44
ALL clause and, 246–49

index.fm Page 635 Thursday, July 29, 2004 10:37 PM

636 Index

analytic, 237
categories, 237
defined, 91
DISTINCT clause and, 246–49
enhancing, 241–45
null values and, 245
SPREADSHEET clause, 237
statistical, 237

See also

 Functions
GROUP_ID function, 240
Grouping/aggregated queries, 83, 84

defined, 81
example, 83
illustrated, 84

See also

 Queries
GROUPING function, 240
Grouping functions, 176
GROUPING_ID function, 241
Grouping rows, 250–53

in single table query, 251
in two-table query, 251

GROUPING SETS clause, 258–60
defined, 258
example, 259
subtotals, 259

Hash clusters, 485
Hash partitions, 68

CREATE TABLE syntax, 404–5
defined, 402

See also

 Partitions
HAVING clause, 236

with aggregate functions, 255
filtering grouped results with, 253–55
restricting groups with, 254

Hierarchical data model, 2
Hierarchical queries, 86–88, 289–92

CONNECT_BY_ROOT, 128
defined, 81, 289
example, 86–88, 290–92

illustrated, 87, 291
meaningful, 87
pseudocolumns, 290
uses, 86
using, 290–92

See also

 Queries
Hierarchical query operators, 128–29, 290

CONNECT_BY_ROOT, 290
defined, 124
illustrated, 129
PRIOR, 128, 290

See also

 Operators
Hierarchical self-joins, 228–29

defined, 228
example, 229

See also

 Self-joins
HTML, embedding scripts in, 168–71
HTTP Server

document directory, 169
installation, 31
running iSQL*Plus, 168
starting, 31
stopping/restarting, 172

Hypertext Markup Language (HTML), 357
documents, 357–58
Dynamic (DHTML), 358

IF statement, 554–56
example, 554–56
splitting results using, 556
syntax, 554

Implicit cursors, 544–49
cursor FOR loop, 547–49
execution results, 545
internal SQL, 545–47
opening/closing, 544
single-row SELECT, 547
using, 546

See also

 Cursors
IN clause, 230

index.fm Page 636 Thursday, July 29, 2004 10:37 PM

Index 637

Index

comparison condition, 273, 274
use of, 230

Indexes, 471–84
ascending, 476
attributes, 476–77
bitmap, 475, 484
bitmap join, 476, 481
BTree, 474–75
changing, 482–83
cluster, 475–76, 484–87
composites, 477
compression, 477
contents, 471–72
creating, 477–82
defined, 471–72
descending, 476
domain, 476
dropping, 482–83
entries, 472
function-based, 475, 481
index-organized table (IOT), 475
null values, 477
prefix, 484
reverse keys, 477
Skip Scanning, 484
sorting, 477
too many, 473
types of, 474–77
uniqueness, 477
use factors, 473–74
use intent, 473
WHERE clauses and, 484

Index-organized tables
as BTree tables, 398
CREATE TABLE syntax, 397
creating, 397–398
defined, 384, 397

See also

 Tables
Index-organized tables (IOTs), 475
INDEX tablespace, 61
INITCAP function, 180

Inline comments, 419–20
Inline constraints

check, 456
defined, 448

Inline views, 281–82
defined, 268
example, 281–82
multilayer nested, 282
subquery, 432–33

See also

 Subqueries
Inner joins, 212–17

defined, 208
illustrated, 209

INSERT command, 324–30, 457, 458
defined, 313
multiple-table, 325–28
in queries, 324–25
sequences in, 496–97
subqueries, 281

Inserting rows
with INSERT command, 324–30
one, 325–26
with subquery, 326–27

See also

 Rows
IN set membership, 103
INSTR function, 180
INTEGER datatype, 340, 401
INTERSECT operator

defined, 129, 286
returns, 287, 288

IS ANY, 133
IS A SET condition, 133
IS EMPTY, 133
IS OF TYPE, 133
IS PRESENT, 133
ISQL*Plus, 17, 31–34

defined, 19
direct database access, 32
display, customizing, 172–74
environment, 34
environmental settings, 171

index.fm Page 637 Thursday, July 29, 2004 10:37 PM

638 Index

HTTP Server running, 168
logging into, 166
login screen, 32
mains screen, 32–33
mimic features, 167
output, 168
primary interface, 167
query processing, 167
query results, 33
SQL*Plus vs., 168, 171
steps, 31–34
troubleshooting, 171–72
using, 165–74
variables, 171

See also

 SQL tools
ITERATION_NUMBER function, 262

Java, improvements in Oracle Database 10

g,

45

JOIN clause, 205, 206–7
with ON clause, 217
syntax, 207
use of, 207
without ON clause, 216

Joining tables, 205–33
Join queries, 84–85

defined, 81
example, 84–85
illustrated, 85

See also

 Queries
Joins

ANSI format, 206–7
anti, 208, 230
complex, 208, 230–33, 368
cross, 207, 210–12
DML and views with, 440–41
equi, 208, 230
formats, 206–7
full outer, 208, 210, 224–25
left outer, 208, 209, 218–23

mutable, 208, 230–33
natural, 208, 209, 212–17
objective, 212
Oracle proprietary format, 206
outer, 208, 209, 210, 217–25
range, 208, 230
right outer, 208, 210, 223–24
self, 208, 225–29
types of, 207–10
views with, 430–32

LAST_DAY function, 186
Left outer joins, 218–23

ANSI format, 221
defined, 208
example, 222
illustrated, 209
Oracle format, 220
returns, 218–19

See also

 Outer joins
LENGTH function, 180
LIKE comparison operator, 100, 102
List partitions, 67–68

CREATE TABLE syntax, 403–4
defined, 402

See also

 Partitions
Lists, 300
LOCALTIMESTAMP function, 186
Locks, 318–19

defined, 318
table-level, 318

LOCK TABLE command, 318–19
Logging, 61–62
Logical operators, 126–28

AND, 105, 107, 126
defined, 124
NOT, 105, 128
OR, 105, 107, 127
precedence, 126

See also

 Operators

index.fm Page 638 Thursday, July 29, 2004 10:37 PM

Index 639

Index

Logical standby databases, 69–70
LONG datatype, 342
LONG RAW datatype, 342
LOOP...END LOOP, 561, 564–65

defined, 561
example, 565
statement syntax, 564

LOWER function, 180
LPAD function, 180–81
LTRIM function, 181

Master-to-slave replication, 68, 69
Materialized views, 426
MAX function, 238
Media datatype, 355
MEDIAN function, 239
MEMBER OF, 133
MERGE command, 47, 336–39

defined, 316
enhancements, 336
uses, 338
using, 337–39

Metadata views
constraints, 469
datatypes, 354–55
defined, 442
groups, 442–43
indexes/clusters, 487–88
listing, 443
naming, 442
PL/SQL, 568
security, 530
sequences/synonyms, 501
tables, 421–23
views, 441

See also

specific views

MIN function, 238
MINUS operator

defined, 129, 286
returns, 289

using, 287
Miscellaneous functions, 194–96

COALESCE, 194
DECODE, 194–95, 197, 200, 201, 202
defined, 177
GREATEST, 195
illustrated, 179
NULLIF, 195
NVL, 115, 116, 195, 199
UID, 195
USER, 195
USERENV, 195–96
VSIZE, 196

See also

 Single-row functions
MODEL clause, 41
Model expressions, 305
MOD function, 183
MONTHS_BETWEEN function, 186
Multiple columns subqueries, 276–78

defined, 268
examples, 276–78
FROM clause, 278
return, 276
WHERE clause, 278

See also

 Subqueries
Multiple-line comments, 419
Multiple rows subqueries, 272–76

comparison conditions, 272
defined, 268
returns, 272
using, 273–76

See also

 Subqueries
Multiple-table INSERT command, 327–30

entries, 329, 330
example, 327–30
script, 329
syntax, 328

See also

 INSERT command
MULTISET EXCEPT operator, 130
MULTISET INTERSECT operator, 130
Multiset operators, 43

index.fm Page 639 Thursday, July 29, 2004 10:37 PM

640 Index

defined, 124
MULTISET EXCEPT, 130
MULTISET INTERSECT, 130
MULTISET UNION, 130

MULTISET UNION operator, 130
MUSIC schema, 34–38

ARTIST, 35
GENRE, 36
GUESTAPPEARANCE, 36
illustrated, 35
INSTRUMENT, 36
INSTRUMENTATION, 36
MUSICCD/CDTRACK, 35–36
Sales Data Warehouse, 36–38
SONG, 35
STUDIOTIME, 36

Mutable joins, 230–33
ANSI, 232
defined, 208, 230
example, 231
illustrated, 232

See also

 Joins

NANVL function, 115, 116, 185
Natural joins, 212–17

defined, 208
example, 212
illustrated, 209
ON clause, 215–17
USING clause, 213–15
without USING clause, 213

See also

 Joins
NCHAR datatype, 340
NCLOB datatype, 342
Nested subqueries, 280–81

defined, 268, 280
example, 280–81
multilayer, 281

See also

 Subqueries
Nested table collections, 350–52

defined, 350
example, 350–52
retrieving contents of, 352

See also

 Collections
Network data model, 3
NEXT_DAY function, 186
NEXTVAL function, 325
NEXTVAL pseudocolumn, 490, 495–96
Normalization, 8–11

defined, 8
Fifth Normal Form (5NF), 10
First Normal Form (1NF), 8, 9
Fourth Normal Form (4NF), 10
Referential Integrity, 10–11
Second Normal Form (2NF), 9
Third Normal Form (3NF), 9–10

NOT NULL constraints, 448, 455
NOT operator, 105, 128

example, 127
illustrated, 128

See also

 Logical operators
NULL condition, 131–32
NULLIF function, 195
NULL statement, 565, 566–67

defined, 565
example, 566–67

Null values, 88, 93–94
defined, 88
facts, 93–94
group functions and, 245
handling, 113
handling methods, 115
index, 477
output, 114
sorting and, 113–16

NUMBER datatype, 55, 340, 541
Number functions, 182–86

ABS, 182
ACOS, 184
ASIN, 184
binary floating-point number, 185–86

index.fm Page 640 Thursday, July 29, 2004 10:37 PM

Index 641

Index

CEIL, 182
COS, 184
COSH, 184
defined, 177
EXP, 184
FLOOR, 182–83
illustrated, 178
LN, 184
LOG, 184
MOD, 183
NANVL, 115, 116, 185
POWER, 183
REMAINDER, 186
ROUND, 183–84
SIGN, 184
SIN, 184
SINH, 184
SQRT, 184
TAN, 184
TANH, 184
TO_BINARY_DOUBLE, 185
TO_BINARY_FLOAT, 185
TRUNC, 184, 200, 202

See also

 Single-row functions
NVACHAR2 datatype, 340
NVL function, 115, 116, 195, 199

Object collections
associative array, 349
CARDINALITY function, 354
CAST function, 353
COLLECT function, 353
conditions, 132–33
datatypes, 348–52
defined, 348
functions, 352–54
nested table, 350–52

POWERMULTISET_BY_CARDI
NALITY function, 354

POWERMULTISET function, 354
SET function, 354
VARRAY, 349–50

Object data model
defined, 3–4
illustrated, 4

See also

 Database modeling
Object Definitional Query Language

(ODQL), 14
Object privileges

defined, 511
granting, 511, 512
list of, 517
revoked, DO cascade, 521–22
revoking, 519

See also

 Privileges
Objects

defined, 302
schema, adding comments to, 416–19

Object tables
CREATE TABLE syntax, 391
creating, 390–93
defined, 384

See also

 Tables
Object type constructors, 305
ON clause, 215–17

JOIN clause with, 217
JOIN clause without, 216

Online Transaction Processing (OLTP), 38
Operators, 124–31

arithmetic, 124, 125
concatenation, 124, 128
hierarchical query, 124, 128–29
logical, 105, 107, 124, 126–28
multiset, 43, 124, 129–31
precedence, 124
set, 124, 129, 285–86
types of, 124
user-defined, 124, 131

Oracle
Advanced Queuing, 69

index.fm Page 641 Thursday, July 29, 2004 10:37 PM

642 Index

ANSI standards and, 15–16
Managed Files (OMF), 67
Partitioning, 297, 402
Real Application Clusters (RAC), 70–71
Streams, 69
Technet Web site, 17

Oracle Database
9

i,

 46–49
10

g,

 16, 39–46
architecture, 51–71
basic concepts, 51–57
database object improvements, 46
database server, 52
evolution, 6–8
installation, 57
Java improvements, 45
physical architecture, 60–65
physical architecture enhancement, 67–71
PL/SQL improvements, 44–45, 48–49
recycle bin technology, 41, 420–21
startup/shutdown, 65–66
utility improvements, 45–46
on Windows 2000, NT, XP, 52
XML improvements, 45

Oracle Enterprise Manager (OEM), 28, 386–
87

Console, 28
in table creation, 388

Oracle Expression Filter, 44, 309–14
applying, 312
defined, 309
listing with, 314
using, 309–14

See also

 Expressions
Oracle instance, 58–59

background processes, 59
defined, 58
foreground processes, 59
memory buffers, 58

Oracle SQL
defined, 15

functions, 363
introduction, 1–38
parts, 15

ORDER BY clause, 81, 109–12
defined, 110
examples, 111–12
expressions in, 119, 120
functions, 176
illustrated, 110
NULLS FIRST keyword, 113
NULLS LAST keyword, 113
as optional clause, 110
sorting by expression and, 117, 119–21
sorting by position and, 117–18

OR operator, 105, 107, 127
example, 127
illustrated, 127

See also

 Logical operators
Outer joins, 217–25

creating, 218
defined, 208, 217
full outer, 208, 210, 224–25
left outer, 208, 209, 218–23
right outer, 208, 210, 223–24
types of, 208, 209, 210

See also

 Joins
Out-of-line constraints

check, 456
defined, 448
definition, 453–54
foreign key, 453–56
primary key, 453–56

See also

 Constraints
OVER clause, 242–44

cumulative aggregation using, 244
defined, 242
syntax, 244

Packages
declaration section, 539

index.fm Page 642 Thursday, July 29, 2004 10:37 PM

Index 643

Index

defined, 535
for grouping procedures, 541
Oracle-provided, 567–68
using, 539–41

Parallel queries, 297–99
defined, 81, 89
execution methods, 298
SQL types and, 298
use of, 297–98

See also

 Queries
Partitioned tables

creating, 402–6
defined, 384

Partitions, 67–68
composite, 68, 402
hash, 68, 402, 404–5
indexing, 402–3
list, 67–68, 402
range, 67, 402
range-hash, 68, 402, 405, 406
range-list, 68, 402, 405–6
types of, 402
working with, 68

Passwords, user
changing, with ALTER USER command,

509
modifying, 509–10

Percentage character (%), 82, 102
PERCENTILE function, 240
PERCENT_RANK function, 240
Performance views

defined, 442
listing, 443

Physical standby databases, 70
PL/SQL, 531–68

blocks and exception trapping, 533–34
changing data in, 549–50
compiler, 44
control structures, 553–67
datatypes, 541–43
defined, 531

downside, 532
dynamic SQL, 550–53
functions, 175, 535–37
improvements in Oracle Database 9

i,

 48–
49

improvements in Oracle Database 10

g,

44–45

objects and methods, 567
Oracle-provided packages, 567–68
packages, 535, 539–41
procedures, 534, 535
as programming language, 532–41
quoting of strings, 45
retrieving data in, 543–49
triggers, 535, 537–39
variables, 537, 542–43

Portable operating system interface (POSIX),
44

POWER function, 183
POWERMULTISET_BY_CARDINALITY

function, 354
POWERMULTISET function, 354
Precedence

defined, 124
logical operators, 126
nesting of, 124

PRESENTNNV function, 261
PRESENTV function, 261
PREVIOUS function, 262
Primary key constraints, 447, 452–53

defined, 449
dropping, 467
indexes, 483
out-of-line, 453–56
unique constraints vs., 452

See also

 Constraints
PRIOR operator

defined, 128, 290
using, 290

Privileges, 511–22
CREATE SESSION, 507, 508

index.fm Page 643 Thursday, July 29, 2004 10:37 PM

644 Index

granting, 511–18
grouping, by roles, 522–29
object, 511, 512, 517
revoking, 518–22
system, 511, 512, 516–17

Procedures
defined, 534
executing, 538
grouping, 541
named, using, 535

See also

 PL/SQL
Pseudocolumns, 43, 88, 94–95

CONNECT_BY_ISCYCLE, 290
CONNECT_BY_ISLEAF, 290
CURRVAL, 490, 495
defined, 134
LEVEL, 290
list of, 134–35
NEXTVAL, 490, 495–96
ORA_ROWSCN, 294
ROWNUM, 106
USER, 444
using, 94–95
VERSIONS_OPERATION, 294
versions query, 294
VERSIONS_SCN, 294
VERSIONS_TIME, 294
VERSIONS_XID, 294

Queries
column aliases and, 78
complex, 74
composite, 81, 88, 285–89
filtered, 81, 82–83
flashback, 81, 292–97
grouping/aggregated, 81, 83, 84
hierarchical, 81, 86–88, 289–92
join, 81, 84–85
output formatting, 153–65
parallel, 81, 89, 297–99

SELECT, 81–88
simple, 73–74, 81, 82
sorted, 81
subqueries, 81, 85, 86, 104, 267–84
table/view creation, 81, 85
Top-N, 89, 105–8
unusual, 285–99
view, 436
writing tips, 80–81

Range-hash partitions, 68
CREATE TABLE syntax, 405, 406
defined, 402

See also

 Partitions
Range joins, 208, 230
Range-list partitions, 68

CREATE TABLE syntax, 405–6
defined, 402

See also

 Partitions
Range partitions, 67

CREATE TABLE syntax, 403, 404
defined, 402

See also

 Partitions
RANK function, 47, 240
RAW datatype, 342
Read-only transactions, 321
RECORD datatype, 541–42
Recovery Manager (RMAN), 61
Recycle bin, 420–21

defined, 420
syntax, 420–21, 422
technology, 41

REF constraints, 459–60
defined, 449
REFERENCES, 459
SCOPE IS, 459
syntax, 459
use of, 459
WITH ROWID, 459
See also Constraints

index.fm Page 644 Thursday, July 29, 2004 10:37 PM

Index 645

Index

REF cursor, 553
REF datatype

defined, 343
example, 344–45
use illustration, 345
using, 344–45

Reference datatypes, 542
Reference pointer datatypes, 343–47

BFILE, 343, 345–47
REF, 343, 344–45
See also Datatypes

Referential Integrity, 10–11
constraints, 465
defined, 10, 11
enforcement, 11, 447

REGEXP_INSTR function, 305–6, 307
REGEXP_REPLACE function, 306, 308–9
REGEXP_SUBSTR function, 306, 308
Regular clusters, 485
Regular expression matching, 42
Regular expressions, 305–9

functions, 42, 305–6
patterns, 306
REGEXP_INSTR function, 305–6, 307
REGEXP_REPLACE function, 306, 308–

9
REGEXP_SUBSTR function, 306, 308
using, 307–9

Regular subqueries
correlated subqueries vs., 279–80
defined, 268

Relational databases
history, 5–6
management system (RDBMS), 51

Relational data model
defined, 3
Denormalization, 11–13
forms, 13–14
illustrated, 4
Normalization, 8–11
See also Database modeling

Relational tables
CREATE TABLE syntax, 390
creating, 388–90
defined, 384
See also Tables

REMAINDER function, 186
REPLACE function, 181
Replication, 68–69

master-to-master replication, 69
master-to-slave, 68, 69

RETURNING INTO clause, 549–50
defined, 549
syntax, 550

REVOKE command, 518
Revoking privileges, 518–22

object, 519
on roles, 524–27
system, 519
See also Privileges

Right outer joins, 223–24
defined, 208
example, 224
illustrated, 210
returns, 223
See also Outer joins

Roles, 522–29
allocation, 527–28
altering, 523–24
CONNECT, 529
creating, 523–24
defined, 522
disabling, 527
dropping, 529
enabling, 527, 528
granting, to other roles, 527
granting privileges on, 524–27
predefined, 529
RESOURCE, 529
revoking privileges on, 524–27
SELECT_CATALOG_ROLE, 529
user, setting, 527–29

index.fm Page 645 Thursday, July 29, 2004 10:37 PM

646 Index

See also Privileges
ROLLBACK command, 62–64

COMMIT command comparison, 63–64
execution, 64, 317

ROLLUP clause, 256–57
example, 256–57
as GROUP BY clause extension, 256
implementation, 258
use of, 255

ROUND function, 183–84, 187
ROWID datatype, 341
ROWNUM pseudocolumn, 106
Rows

adding, 324–30
deleting, 334–36
filtering, 97–108
grouping, 250–53
sorting, 109–22
updating, 330–34
See also Columns; Tables

RPAD function, 180–81
RTRIM function, 181, 199

Sales data warehouse, 36–38
defined, 36–37
illustrated, 37
OLTP to links, 38

SAVE command, 151
SAVEPOINT command, 322–24

defined, 322
example, 322–24
label, 322, 323, 324
uses, 322

Scalar subqueries, 302
Schemas

adding comments to, 416–19
defined, 60
MUSIC, 34–38

Scripts, 151–53
embedding, in HTML, 168–71

running, 151–52
within scripts, 154

Second Normal Form (2NF), 9
Secure socket layers (SSL), 171
Security, 503–30

privileges, 511–22
roles, 512–29
users, 503–11

Segments, 60–61
defined, 60
extents, 61

SELECT clause
defined, 97
functions, 176
WHERE clause and, 99

SELECT DISTINCT statement, 412
SELECT statement, 15, 73–95

basic, 73–81
in complex query, 74
for data insert/update/delete, 74
example, 76–81
execution, 40
Oracle Database 10g syntax changes, 40
ORDER BY clause, 81, 109–12
queries, 81–88
retrieval list, 18
in simple query, 73–74
SPREADSHEET clause, 40
syntax conventions, 74–75
syntax illustration, 75
use of, 73–74
in view/table creation, 74
WHERE clause, 18, 97–105

Self-joins, 225–29
defined, 208, 225–26
descriptive form, 228
example, 227
grouping, 226–28
hierarchical, 228–29
query, 226
See also Joins

index.fm Page 646 Thursday, July 29, 2004 10:37 PM

Index 647

Index

Semicolon (;), 76
Semi-joins. See Subqueries
Sequences, 489–498

accessing, 490
changing, 493–94
creating, 490–93
cycling, 492
defined, 489
dropping, 493–94
features, 494
in INSERT statement, 496–97
maximum value, 492
minimum value, 491
ordering, 493
precalculated, caching, 492–93
uses, 489, 497–498
using, 494–498

SET command, 137
SET function, 354
SET LONG command, 374
Set operators

defined, 124
INTERSECT, 129, 286
MINUS, 129, 286
UNION, 129, 286
UNION ALL, 285
See also Operators

SET ROLE command, 529
SET TRANSACTION command, 319–21

defined, 319
example, 319–21
syntax, 319

SHUTDOWN command, 65, 66
SIGN function, 184
Simple pattern matching, 42
Simple queries, 73–74

defined, 81
illustrated, 82
scripting with, 153
See also Queries

Simple views

creating, 428–29
defined, 426–27
rules, 437
See also Views

Single-line comments, 420
Single-row functions, 176–96

categories, 177
conversion, 177, 179
datetime, 177, 178
defined, 91
miscellaneous, 177, 179
number, 177, 178
power, 176
string, 177, 178
See also Functions

Single-row SELECT implicit cursor, 547
Single row subqueries, 270–72

defined, 268, 270
examples, 271
illustrated, 271
returning multiple rows, 272
See also Subqueries

SMALLINT datatype, 340
Sorted hash clusters, 485
Sorted queries

defined, 81
example, 83
illustrated, 84
See also Queries

Sorting
by expression, 119–21
with GROUP BY clause, 252
indexes, 477
methods, 117–21
by multiple columns, 112
null values and, 113–16
by position, 117–18
rows, 109–22
by single column, 111
temporary space, 64–65

Spatial datatype, 355

index.fm Page 647 Thursday, July 29, 2004 10:37 PM

648 Index

SPREADSHEET clause, 40, 41, 133, 260–
66

CURRENTV function, 261
detailed projection, 264
functions, 237, 261–62
ITERATION_NUMBER function, 262
for loops, 265
PRESENTNNV function, 261
PRESENTV function, 261
PREVIOUS function, 262
projection, 264
syntax, 261
use of, 260
using, 262–66
versatility, 266

SQL
defined, 14
origins, 14–15

SQL*PLUS
environmental settings, 137–48
iSQL*Plus vs., 168, 171
query output format, 153–65
report layout, 77
scripts, 151–53
using, 137–74
variables, 148–51

SQL*Plus Command Line
disadvantages, 23
line editing commands, 24
startup steps, 21–23
use of, 19
in Windows 2000, 22
See also SQL tools

SQL*Plus Windows, 24–28
menu, 26
screen illustration, 27
scroll bar, 26
steps, 24–28
use of, 19
See also SQL tools

SQL*Plus Worksheet, 28–31

defined, 19
logging into, 29
starting, 29
steps, 29–30
versatility, 30
Windows-like functions, 30
See also SQL tools

SQL tools, 19–34
iSQL*Plus, 19, 31–34
SQL*Plus Command Line, 19–24
SQL*Plus Windows, 19, 24–28
SQL*Plus Worksheet, 19, 28–31

SQL/XML standard, 363–72
SQRT function, 184
Standby databases, 69–70

logical, 69–70
physical, 70

STARTUP command, 65
STATS function, 239
STDDEV function, 238
STDDEV_POP function, 238
STDDEV_SAMP function, 239
String functions, 180–82

CONCAT, 180
defined, 177
illustrated, 178, 183
INITCAP, 180
INSTR, 180
LENGTH, 180
LOWER, 180
LPAD, 180–81
LTRIM, 181
REPLACE, 181
RPAD, 180–81
RTRIM, 181, 199
SUBSTR, 182, 196, 197, 198
TRANSLATE, 181
TRIM, 181
UPPER, 180
See also Single-row functions

Structured Query Language. See SQL

index.fm Page 648 Thursday, July 29, 2004 10:37 PM

Index 649

Index

SUBMULTISET, 133
Subqueries, 85, 86, 267–84

comparison conditions and, 269–70
correlated, 268, 279–80
defined, 81, 267
demonstrating, 270–83
example, 85
illustrated, 86
inline view, 268, 281–82
inserting with, 324–25
in INSERT statement, 283
multiple-column, 268, 276–78
multiple-row, 268, 272–76
nested, 268, 280–81
regular, 268, 279–80
scalar, 302
single-row, 268, 270–277
types of, 267–69
in UPDATE statement, 283
users, 269
views, 434
See also Queries

SUBSTR function, 182, 196, 197, 198
SUM function, 238, 242

grouping/filtering, 243
simple, 242

Surrogate keys, 13–14
defined, 13
effectiveness, 14

Synonyms, 498–502
benefits, 498
creating, 499–500
defined, 498
private, creating, 500
public, creating, 499–500
too many, 498
using, 500–1

Syntax conventions, this book, 17–19
SYS, 504–5
SYSDATE function, 186
SYSTEM, 505

System Global Area (SGA), 51
System privileges

defined, 511
granting, 511, 512
list of, 516–17
revoked, DO NOT cascade, 520–21
revoking, 518
for several users, 513
See also Privileges

SYSTEM tablespace, 61
SYSTIMESTAMP function, 186
SYS_XMLGEN function, 372–73

defined, 362, 372
example, 372–73

Tables, 383–423
adding constraints to, 462–63
aliases, 79
base, 426
centralized, 13
cluster, 384
comments, 416–20
creating, 388–406
creation methods, 384–87
defined, 383
definitions, 56
dropping, 414–16
DUAL, 88, 89–90
external, 384, 398–401
generating XML from, 362–73
index-organized, 384, 397–398
joining, 205–33
modifying constraints on, 463
object, 384, 390–93
OEM creation method, 388
partitioned, 384, 402–6
rebuilding, 412–13
relational, 384, 388–90
renaming, 413–14
scripted creation method, 385–86

index.fm Page 649 Thursday, July 29, 2004 10:37 PM

650 Index

structure, changing, 407–14
TEMP, 61
temporary, 384, 393–96
types of, 383–84
UNDO, 61
XMLType, 384
See also Columns; Rows

Tablespaces
DATA, 61
defined, 60
INDEX, 61
SYSTEM, 61
TEMP, 61
temporary, 64
UNDO, 61

Table/view creation queries, 85
defined, 81
example, 85
See also Queries

Temporary tables
adding rows in first session, 395
adding rows in second session, 396
CREATE TABLE syntax, 393
creating, 393–96
defined, 384
global, 393
removing, 396
See also Tables

TEMP tablespace, 61
Third Normal Form (3NF), 9–10
TIMESTAMP datatype, 47, 341
TITLE command

continuing, 162
defined, 160
example, 161
syntax, 160

TO_BINARY_DOUBLE function, 185
TO_BINARY_FLOAT function, 185
TO_CHAR function, 190, 193
TO_CLOB function, 190
TO_DATE function, 190, 201, 202

TO_N function, 190
TO_NUMBER function, 190
Top-N queries, 105–8

defined, 89
Inline view, 106
See also Queries

Transaction control, 317–24
Transactions

defined, 317
read-only, 321

TRANSLATE function, 181
Triggers

defined, 435
example, 537–39
executing, from DML commands, 539
using, 537–39

TRIM function, 181
TRUNCATE command, 415–16

DELETE command vs., 415
rollback entries and, 415
syntax, 416
WHERE clause filter and, 416

TRUNC function, 184, 187, 200, 202

UID function, 195
Underscore character (_), 102
UNDO tablespace, 61
UNION ALL operator, 285, 286

defined, 285
duplicating rows with, 287

UNION operator
defined, 129, 286
removing duplicates with, 288
using, 286

Unique constraints, 451–52
defined, 448
indexes, 483
primary key constraints vs., 452
See also Constraints

UPDATE command, 330–36

index.fm Page 650 Thursday, July 29, 2004 10:37 PM

Index 651

Index

defined, 315
results, 333
subqueries, 283
syntax, 330
WHERE clause, 332

UPDATEXML function, 379–80
defined, 379
illustrated, 380
subtree deletion, 381
use guidelines, 379

Updating rows, 330–34
multiple, 331–34
multiple columns, 332
one, 331
with subqueries, 331

UPPER function, 180
User-defined datatypes, 347–48
User-defined functions

defined, 176
GETTIME, 256, 257

User-defined operators, 131
creating, 131
defined, 124

USERENV function, 195–96
USER function, 195
USER_OBJECTs metadata view, 445
Users, 503–11

authentication methods, 506
creating, 505–8
dropping, 510–11
feature-related, 505
granting roles to, 525–26
Oracle-provided, 504–5
passwords, modifying, 508–10
revoking roles from, 526–27
roles, 56
SYS, 504–5
SYSTEM, 505

USING clause, 213–15
defined, 213
illustrated use, 215

VARCHAR2 data type, 55, 340
Variables, 148–51

iSQL*Plus, 171
names, 148
substitution, 148, 150
values, prompt for, 150

VARIANCE function, 238
VAR_POP function, 239
VARRAY collections, 349–50
VAR_SAMP function, 239
Views, 425–45

changing, 433–35
with columns, 439–40
complex, 427, 430–33
constraint, 427, 429–30
data dictionary, 442–45
defined, 425–26
DML commands and, 437–41
dropping, 433–35
functions in, 432
grouping in, 432
inline, 106, 281–82, 432–33
inserting data with, 439
with joins, 430–32, 440–41
materialized, 426
metadata, 354–55, 380–81, 421–23, 441,

469, 487–88, 501, 530, 568
querying, 429, 435–37
reasons for creating, 426
simple, 426–27, 428–29
subqueries, 434
updateable, 437
working with, 435–41

VSIZE function, 196

WHERE clause, 18, 97–105
bitmap indexes and, 484
defined, 97–98
evaluation, 107
examples, 98–101

index.fm Page 651 Thursday, July 29, 2004 10:37 PM

652 Index

expression conditions, 101–5
expression orders, 108
for filtering rows, 253
functions, 176
illustrated, 98
logical operators in, 105
matching, to indexes, 484
matching conditions, 99
multiple-column subquery, 278
requirements to data comparison, 100
restricting by date, 98
syntax, 97–101

WHILE loop, 560, 563–64
defined, 560
example, 563–64
execution, 563
statement syntax, 563

XML, 357–81
conditions, 47, 132
content, changing/removing, 378–80
database and, 373–80
documents, creating, 361–73
documents, in Web browser, 359
documents, new, 373–74
documents, retrieving, 374–78
documents, returning data from, 48
documents, storage, 378
element tags, 364
element tags with tag attributes, 365
functional capability enhancements, 47
functions, 47–48
generating, from Oracle SQL code, 48
generating, from tables, 362–73
generation format, 368
improvements in Oracle Database 10g, 45
object hierarchical nature, 370
using, in Oracle, 360–80

XMLAGG function, 363, 365, 371, 372
XMLATTRIBUTES function, 363

XMLCOLATTVAL function, 363, 366, 367
XML datatype, 355
XMLELEMENT function, 363
XMLFOREST function, 363, 366, 367
XMLSEQUENCE function, 363
XMLTRANSFORM function, 363
XMLType datatype, 361–62

defined, 361
example, 361–62
output, 375
See also Datatypes

XMLType tables, 384

index.fm Page 652 Thursday, July 29, 2004 10:37 PM

	Oracle SQL : Jumpstart with Examples
	Cover

	Table of Contents
	Foreword
	Preface
	Acknowledgements
	1 Introduction to Oracle SQL
	2 New Features of Oracle SQL
	3 Oracle Database Architecture
	4 The SELECT Statement
	5 Filtering Rows
	6 Sorting Rows
	7 Operators, Conditions, and Pseudocolumns
	8 Using SQL*Plus
	9 Single-Row Functions
	10 Joining Tables
	11 Grouping and Summarizing Data
	12 Subqueries
	13 Unusual Query Types
	14 Expressions
	15 Data Manipulation Language (DML)
	16 Datatypes and Collections
	17 XML in Oracle
	18 Tables
	19 Views
	20 Constraints
	21 Indexes and Clusters
	22 Sequences and Synonyms
	23 Security
	24 Basic PL/SQL
	Appendix A
	Appendix B
	Appendix C
	Index

