

solutions@s y n g r e s s . c o m

With more than 1,500,000 copies of our MCSE, MCSD, CompTIA, and Cisco
study guides in print, we continue to look for ways we can better serve the
information needs of our readers. One way we do that is by listening.

Readers like yourself have been telling us they want an Internet-based ser-
vice that would extend and enhance the value of our books. Based on
reader feedback and our own strategic plan, we have created a Web site
that we hope will exceed your expectations.

Solutions@syngress.com is an interactive treasure trove of useful infor-
mation focusing on our book topics and related technologies. The site
offers the following features:

■ One-year warranty against content obsolescence due to vendor
product upgrades. You can access online updates for any affected
chapters.

■ “Ask the Author” customer query forms that enable you to post
questions to our authors and editors.

■ Exclusive monthly mailings in which our experts provide answers to
reader queries and clear explanations of complex material.

■ Regularly updated links to sites specially selected by our editors for
readers desiring additional reliable information on key topics.

Best of all, the book you’re now holding is your key to this amazing site.
Just go to www.syngress.com/solutions, and keep this book handy when
you register to verify your purchase.

Thank you for giving us the opportunity to serve your needs. And be sure
to let us know if there’s anything else we can do to help you get the
maximum value from your investment. We’re listening.

www.syngress.com/solutions

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page i

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page ii

1 YEAR UPGRADE
B U Y E R P R O T E C T I O N P L A N

Developing

David Jorgensen

DotThatCom.com

.NET
with XML

Web
Services

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or
production (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results
to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work
is sold AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state
to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or
other incidental or consequential damages arising out from the Work or its contents. Because some
states do not allow the exclusion or limitation of liability for consequential or incidental damages, the
above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when
working with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,” and “Ask the
Author UPDATE®,” are registered trademarks of Syngress Publishing, Inc. “Mission Critical™,”“Hack
Proofing®,” and “The Only Way to Stop a Hacker is to Think Like One™” are trademarks of Syngress
Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks of
their respective companies.
KEY SERIAL NUMBER
001 GYV43PK9H7
002 T6CVFQ2UN7
003 5TX3A8J9HF
004 NH89YZ2B76
005 5R33SU8MPT
006 C4ES6X6B7N
007 PQ2AKG8D4E
008 J6RD79BKMU
009 7V6FHSW4KP
010 UM39Z5BVF7

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370
Developing .NET Web Services with XML

Copyright © 2002 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception that the program listings
may be entered, stored, and executed in a computer system, but they may not be reproduced for
publication.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 0

ISBN: 1-928994-81-4
Technical Editor: David Jorgensen Cover Designer: Michael Kavish
Acquisitions Editor: Catherine B. Nolan Page Layout and Art by: Shannon Tozier
Copy Editor:Adrienne Rebello Indexer: J. Edmund Rush

Distributed by Publishers Group West in the United States and Jaguar Book Group in Canada.

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page iv

v

Acknowledgments

v

We would like to acknowledge the following people for their kindness and support
in making this book possible.

Ralph Troupe, Rhonda St. John, Emlyn Rhodes, and the team at Callisma for their
invaluable insight into the challenges of designing, deploying and supporting world-
class enterprise networks.

Karen Cross, Lance Tilford, Meaghan Cunningham, Kim Wylie, Harry Kirchner, Kevin
Votel, Kent Anderson, Frida Yara, Jon Mayes, John Mesjak, Peg O’Donnell, Sandra
Patterson, Betty Redmond, Roy Remer, Ron Shapiro, Patricia Kelly,Andrea Tetrick,
Jennifer Pascal, Doug Reil, David Dahl, Janis Carpenter, and Susan Fryer of Publishers
Group West for sharing their incredible marketing experience and expertise.

Jacquie Shanahan,AnnHelen Lindeholm, David Burton, Febea Marinetti, and Rosie
Moss of Elsevier Science for making certain that our vision remains worldwide in
scope.

David Buckland,Wendi Wong, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan,
and Joseph Chan of Transquest Publishers for the enthusiasm with which they receive
our books.

Kwon Sung June at Acorn Publishing for his support.

Jackie Gross, Gayle Voycey,Alexia Penny,Anik Robitaille, Craig Siddall, Darlene
Morrow, Iolanda Miller, Jane Mackay, and Marie Skelly at Jackie Gross & Associates
for all their help and enthusiasm representing our product in Canada.

Lois Fraser, Connie McMenemy, Shannon Russell, and the rest of the great folks at
Jaguar Book Group for their help with distribution of Syngress books in Canada.

A special welcome to the folks at Woodslane in Australia! Thank you to David Scott
and everyone there as we start selling Syngress titles through Woodslane in Australia,
New Zealand, Papua New Guinea, Fiji Tonga, Solomon Islands, and the Cook Islands.

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page v

vi

Contributors

Mesbah Ahmed (PhD and MS, Industrial Engineering) is a Professor of
Information Systems at the University of Toledo. In addition to teaching
and research, he provides technical consulting and training for IT and
manufacturing industries in Ohio and Michigan. His consulting experi-
ence includes systems design and implementation projects with Ford
Motors, Dana Corporation, Riverside Hospital, Sears, and others.
Currently, he provides IT training in the areas of Java Server, XML, and
.NET technologies. He teaches graduate level courses in Database
Systems, Manufacturing Systems, and Application Development in
Distributed and Web Environment. Recently, he received the University
of Toledo Outstanding Teaching award, and the College of Business
Graduate Teaching Excellence award. His current research interests are in
the areas of data warehousing and data mining. He has published many
research articles in academic journals such as Decision Sciences, Information
& Management, Naval Research Logistic Quarterly, Journal of Operations
Management, IIE Transaction, and International Journal of Production Research.
He has also presented numerous papers and seminars in many national
and international conferences. Mesbah is a contributor to Syngress
Publishing’s ASP .NET Developer’s Guide (ISBN: 1-928994-51-2).

Patrick Coelho (MCP) is an Instructor at The University of Washington
Extension, North Seattle Community College, Puget Sound Center, and
Seattle Vocational Institute, where he teaches courses in Web
Development (DHTML,ASP, XML, XSLT, C#, and ASP.NET). Patrick is
a Co-Founder of DotThatCom.com, a company that provides consulting,
online development resources, and internships for students. He is cur-
rently working on a .NET solution with contributing author David
Jorgensen and nLogix. Patrick holds a bachelor’s of Science degree from
the University of Washington, Bothell. Patrick lives in Puyallup,WA with
his wife,Angela. Patrick is a contributor to Syngress Publishing’s

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page vi

vii

ASP.NET Developer’s Guide (ISBN: 1-928994-51-2), C# .NET Web
Developer’s Guide (ISBN: 1-928994-50-4), and .NET Mobile Web
Developer’s Guide (ISBN: 1-928994-56-3).

Adrian Turtschi (MCSD, MCSE) was formerly employed by KPMG
International/CERING as an Integration Architect. He was responsible
for integration of components, services and third-party applications of
KPMG’s next generation global knowledge management and collabora-
tion solution (KnewPro). KnewPro is an application supporting collabora-
tion between geographically and organizationally distributed teams,
integrating knowledge sharing and content management, team collabora-
tion, enterprise search, workflow, and legacy data connectivity.Adrian also
co-wrote the KnewPro architecture document. Prior to joining KPMG,
he worked for EBSCO Publishing as a Software Engineer.Adrian is expe-
rienced with Java, C#,Visual Basic, Pascal, and the .NET Framework as a
member of the Early Adopter program.Adrian is a contributor to
Syngress Publishing’s C# .NET Web Developer’s Guide (ISBN: 1-928994-
50-4). He is fluent in English, French, German, and Italian. He has done
presentations and has published articles with XML Journal, Nature, and
Exchange & Outlook Magazine.Adrian graduated with a master’s of Science
in Computer Science and Mathematics from the University of Bern,
School of Science, Bern, Switzerland and a master’s of Arts in
Mathematics from Brandeis University, Graduate School of Arts and
Sciences,Waltham, MA. He resides in Germany.

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page vii

viii

David Jorgensen (MCP) David works for Alliance Enterprises, Inc. in
Olympia WA, which develops Web-based case management software for
social service organizations such as state vocational rehabilitation agencies.
His latest project; convert a state agencies data, involved complex SQL
Server Data Transformation Packages. David holds a bachelor’s degree in
Computer Science from St. Martin’s College and resides in Puyallup,WA
with his wife, Lisa and their two sons, Scott and Jacob. David is a contrib-
utor to Syngress Publishing’s C# .NET Web Developer’s Guide
(ISBN: 1-928994-50-4), and the .NET Mobile Web Developer’s Guide
(ISBN: 1-928994-56-3).

Technical Editor and Contributor

206_XMLweb_FM.qxd 6/25/02 5:45 PM Page viii

Contents

ix

Foreword xvii

Chapter 1 What Are Web Services? 1
Introduction 2
Understanding Web Services 3

Communication between Servers 8
.asmx Files 10
WSDL 15

Using XML in Web Services 16
An Overview of the System.Web.Services

Namespace 17
The System.Web.Services.Description

Namespace 17
The System.Web.Services.Discovery

Namespace 17
The System.Web.Services.Protocols

Namespace 18
Type Marshalling 19
Using DataSets 21
Summary 24
Solutions Fast Track 24
Frequently Asked Questions 26

Chapter 2 Introduction to the
Microsoft .NET Framework 29

Introduction 30
Obtaining the .NET Framework SDK 31

System Requirements 31
Hardware 32
Operating System 33

Configuring &
Implementing…

Setting the Start Page

When testing a Web
Service in a project that
contains other .aspx or
.asmx files, be sure to set
the file you are debugging
or testing as the Start
page, before running. To
do this, right-click the
filename in the Solution
Explorer and select Set as
start page.

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page ix

x Contents

Additional Installation Information 33
Locations for Downloading 34

Installing the .NET Framework 34
Common Language Runtime 36

Major Responsibilities of the CLR 36
Safety and Security Checks 37
Class Loading 37
Object Lifetime Management 37
Just In Time (JIT) Compilation 38
Cross-Language Interoperability 38
Structured Exception Handling 39
Assemblies 39
Metadata 40
Enhanced Deployment and Versioning

Support 41
Managed versus Unmanaged Code 41
Interoperability with Unmanaged Code 42
Namespaces 42

Developing Applications with the
.NET Framework 43

Development Platforms for .NET 43
Language Choice 45
Using the Compilers 45
Tools 46
Base Class Libraries 49

Components in the .NET Framework 55
ASP.NET 55
ADO.NET 56
VB.NET 57
C# 59
Windows Forms 60
Web Services 61

Summary 62
Solutions Fast Track 63
Frequently Asked Questions 65

Answers to Your
Frequently Asked
Questions

Q: I want to install the
.NET Framework SDK
on Windows NT 4.0
server, can I do that?

A: To install on Windows
NT 4.0 server you must
have service pack 6a
applied.

Q: Where can I find the
install for ASP.NET?

A: ASP.NET ships as part
of the .NET Framework
SDK.

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page x

Contents xi

Chapter 3 XML Fundamentals 67
Introduction 68
An Overview of XML 68

What Does an XML Document Look Like? 69
Creating an XML Document 70

Creating an XML Document
in VS.NET XML Designer 71

Components of an XML Document 72
Well-Formed XML Documents 75
Schema and Valid XML Documents 76
Structure of an XML Document 80

Processing XML Documents Using .NET 81
Reading and Writing XML Documents 82
Storing and Processing XML Documents 83

Reading and Parsing Using the
XmlTextReader Class 84

Parsing an XML Document 85
Navigating through an XML

Document to Retrieve Data 87
Writing an XML Document

Using the XmlTextWriter Class 90
Generating an XML Document

Using XmlTextWriter 90
Exploring the XML Document Object Model 93

Navigating through an XmlDocument Object 94
Parsing an XML Document

Using the XmlDocument Object 95
Using the XmlDataDocument Class 98

Loading an XmlDocument and
Retrieving the Values of Certain Nodes 99

Using the Relational View of
an XmlDataDocument Object 100

Viewing Multiple Tables of
a XmlDataDocument Object 103

Querying XML Data Using XPathDocument
and XPathNavigator 107

Components of an
XML Document

■ Declaration Each XML
document may have
the optional entry
<?xml version=
“1.0”?>.

■ Comment An XML
document may contain
html-style comments
like <!--Catalog
data -->.

■ Schema or Document
Type Definition (DTD)
In certain situations, a
schema or DTD may
precede the XML
document.

■ Elements An XML
document is mostly
composed of elements.

■ Root Element In an
XML document, one
single main element
must contain all other
elements inside it. This
specific element is
often called the root
element.

■ Attributes An
attribute is just an
additional way to
attach a piece of data
to an element.

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page xi

xii Contents

Using XPathDocument and
XPathNavigator Objects 110

Using XPathDocument and XPathNavigator
Objects for Document Navigation 112

Transforming an XML Document Using XSLT 115
Transforming an XML Document to

an HTML Document 116
Transforming an XML Document

into Another XML Document 119
Working with XML and Databases 124

Creating an XML Document
from a Database Query 125

Reading an XML Document into a DataSet 127
Summary 129
Solutions Fast Track 129
Frequently Asked Questions 133

Chapter 4 Information Exchange Using
the Simple Object Access Protocol (SOAP) 135

Introduction 136
The Case for Web Services 136

The Role of SOAP 137
Why SOAP? 138
Why Web Services? 139
Wiring Up Distributed Objects—
The SOAP Protocol 139

Creating Your Very First Web Service 139
Running Your Very First Web Service 146

Working with Web Services 159
Passing Complex Data Types 159
Error Handling 162

Malformed SOAP Request 163
Wrong Argument Types 165
Exceptions in Server Code 165

Writing a SOAP Client Application 167
Passing Objects 174
Passing Relational Data (DataSets) 179

Showing All Files
through the Solution
Explorer

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page xii

Contents xiii

Passing XML Documents 182
SOAP Headers 186

Advanced Web Services 187
Maintaining State 187

State Information in the URL
(URL Mangling) 189

State Information in the Http
Header (Cookies) 191

State Information in the Http
Body (SOAP Header) 194

Security 202
Summary 204
Solutions Fast Track 205
Frequently Asked Questions 207

Chapter 5 WSDL and UDDI 209
Introduction 210
Web Service Standards 211
Describing Web Services—WSDL 211
Discovering Web Services—DISCO 217
Publishing Web Services—UDDI 219

Working with UDDI 220
Summary 228
Solutions Fast Track 229
Frequently Asked Questions 231

Chapter 6 Building an ASP.NET/ADO.NET
Shopping Cart with Web Services 233

Introduction 234
Setting Up the Database 234

Setting Up the Table Books 237
Setting Up the Table Categories 237
Setting Up the Table Customer 237
Setting Up the Table Orders 238
Setting Up the Table BookOrders 238
Creating an Access Database 238
SQL Server Database 242

Creating the Stored Procedures 244

Web Services

Web Services are different
from previous technolo-
gies used to create distrib-
uted systems, such as
COM/DCOM, in that:

■ They use open
standards.

■ They were designed
from the ground up to
work on the Internet,
including working well
with corporate
firewalls.

■ They use a “simple”
protocol not requiring
multiple round trips to
the server.

■ They purposefully don’t
address advanced
features such as
security or transaction
support as part of the
protocol specification.

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page xiii

xiv Contents

Creating the Web Services 250
Overview of the Book Shop Web Services 250
Creating the Data Connection 252
Creating a Web Service 253
Testing a Web Service in ASP.NET 259

Using WSDL Web References 263
Building the Site 264
Site Administration 266

Creating the Administration Login
(adminLogin.aspx) 266

Creating the Administrator
Page (adminPage.aspx) 268

Retrieving the Data: Creating the
getBooks.AllBooks Web Method 268

Displaying the Data: Binding
a DataGrid to the DataSet 272

Adding New Books to the Database:
Creating the allBooks.addItem
Web Method 272

Deleting Books: Deleting from
the DataGrid and the Database 272

Updating Book Details: Updating
the DataGrid and the Database 273

Creating the addBook Page (addBook.aspx) 274
Customer Administration 275

Creating the Customer Admin Section 275
Creating the loginCustomer Page 275
Creating the updateCustomerInfo Page 276

Creating an ADOCatalog 278
Creating the BookCatalog Class 279

Creating the CreateSummaryTable
Method 280

Creating the InitCatalog Method 281
Creating the Catalog Method 281
Creating the catalogItemDetails,

catalogRange, and catalogByCategory
Methods 281

Answers to Your
Frequently Asked
Questions

Q: My project has a few
different pages in it.
Unfortunately, the last
page I created is the
one that is loaded
when I run the project.
How do I set the first
page to open when I
run the project?

A: In your Project
Explorer, right-click
the file you want and
set it as the Start
Page.

Q: I am working with the
XmlDocument object in
my code-behind page,
and I am not getting
any IntelliSense. What
am I doing wrong?

A: Make sure you have
included “Using
System.Xml” in the top
section of the page.

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page xiv

Contents xv

Creating the catalogRangeByCategory
Method 282

Building an XMLCart 284
Creating the User Interface 287

Creating the start.aspx Page 288
Rendering the Catalog 289
Rendering the Cart 290
Creating the Code 290

Summary 293
Solutions Fast Track 293
Frequently Asked Questions 297

Chapter 7 Building a SQLXML
Web Service Application 299

Introduction 300
SQLXML Web Services 301
Developing the TimeTrack Application 301

Creating the Database 302
Creating the Stored Procedures 303

Creating a SQL Server Virtual Directory 305
Enabling Stored Procedures for Soap 310

Creating a Client Application in ASP.NET 313
Consuming the Web Services 317

Summary 333
Solutions Fast Track 334
Frequently Asked Questions 335

Chapter 8 Building a Jokes Web Service 337
Introduction 338
Motivation and Requirements for the Jokes
Web Service 338

Functional Application Design 340
Defining Public Methods 340
Defining the Database Schema 341
Defining the Web Service Architecture 342

Security Considerations 344
State Management 345

Configuring &
Implementing…

SQL Template Queries

Previously accessing SQL
Templates server-side from
within an ASP.NET
application would fail to
load the XML because the
security context of the
user would be lost when
hopping from IIS to SQL.
SQLXML 3.0 solves this
problem by allowing
server-side access to
Template queries by
setting SqlXmlCommand
.CommandType =
SqlXmlCommandType
.TemplateFile.

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page xv

xvi Contents

Error Handling 345
Implementing the Jokes Data Repository 345

Installing the Database 346
Creating the Stored Procedures 348

Implementing the Jokes Middle Tier 361
Setting Up the Visual Studio Project 361
Developing the Error Handler 366
Developing the Database Access Component 369
Developing the User Administration Service 371

Adding New Users 371
Checking Existing User Information 376
Adding Moderators 379
Creating the Public Web Methods—Users 381
Error Handling for the Public Web

Methods 384
Creating The Public Web Methods—
Administrators 386

Testing the Public Web Methods 389
Developing the Jokes Service 390

Best Practices for Returning Highly
Structured Data 390

Setting Up Internal Methods to
Wrap the Stored Procedure Calls 393

Setting Up Internal Methods
to Manage Jokes and Ratings 399

Setting Up Internal Methods to
Return Jokes 407

Creating the Public Web Methods 413
Creating a Client Application 423

Some Ideas to Improve the Jokes
Web Service 439

Summary 440
Solutions Fast Track 441
Frequently Asked Questions 443

Index 445

Error Handling for the
Public Web Methods

The throwFault method
throws a SOAP fault and
ends execution of the Web
Service method. But it
does a whole lot more:

■ The (internal) error
code is replaced by a
user friendly error
message.

■ A log entry is written
to the Application
event log.

■ The standard SOAP
fault XML document is
appended with a
custom element, called
failReason, where client
applications can find
the error message to
display to users.

206_XMLweb_TOC.qxd 6/25/02 5:22 PM Page xvi

Since it’s inception in February of 1998, XML has been moving forward through the
continued efforts of the World Wide Web Consortium (W3C).At first many devel-
opers scoffed at XML, thinking it was just a new way to script. However, those
developers, who regularly worked with database management and development soon
realized that XML could be a way to provide data between parties without needing
to rely on proprietary solutions.

At first, this handful of developers began to incorporate snippets of XML into
their desktop applications to store configuration data or as an export file.As time
passed, developers began to apply XML to the Internet. Databases began to commu-
nicate to each other via XML, and companies were discovering that they had an
easier time coping with external database data thanks to XML.

Developers, however, were not the only ones that noticed the possibilities of
XML. Microsoft realized the potential of XML, and made it one of the cornerstones
of the .NET Framework. .NET aims to bridge the gap between desktop applications
and online applications, and facilitate the communication of objects between the two.
At the same time, the concept of Web Services was being developed.

Broadly speaking, a Web Service is the exposure of a business process over a net-
work.The connotation is generally that XML-based traffic is being moved on a
public network (the Internet) via the HTTP protocol. However,Web Services can
also be internally useful to an organization, as a mechanism for encapsulating and
exposing the business logic inherent in legacy systems. New applications can then
utilize this Web Service interface to leverage the complex business logic that has been
refined, sometimes for decades, in these legacy systems.This allows for the reuse of
systems at the logical level, without regard to physical configuration.

Web Services are a fundamental part of the new .NET Framework.You can
group Web Services into two categories: producers and consumers.A producer Web
Service is one that will retrieve a result set, for instance orders from an e-commerce

xvii

Foreword

206_XMLweb_fore.qxd 6/26/02 10:06 AM Page xvii

xviii Foreword

database, or Jokes; as in Chapter 8 “Building a Jokes Web Service”.A consumer Web
Service is one that will use that result set of data and do something with it, as in the
shopping cart example in Chapter 6 “Building an ASP.NET/ADO.NET Shopping
Cart with Web Services.” In this book we will examine both and provide examples of
each.This book focuses on all aspects of Web Services including: XML, SOAP,
WSDL, UDDI, and the .NET Framework.

However,Web Services are not limited to just the .NET framework and
Microsoft. IBM, SUN, and Oracle will all be players in this fast changing environ-
ment.The W3C is still working on revisions for SOAP and XML, which means that
this subject matter is continuously evolving.

Taking this a step further, databases will be leveraging their objects as Web
Services, as shown in Chapter 7 “Building a SQLXML Web Service.”This is a
growing segment of Web Services and XML. Using the universal versatility of XML,
an application can transport data across multiple platforms and achieve the same
results. Encapsulating this logic in Web Services adds functionality to both the appli-
cation and the database.

This book assumes that you have prior experience with XML.The code con-
tained in the examples will be in both C# and VB.NET.We will also take a look at
SQLXML Web Services along with ADO.NET.You do not have to be a guru to buy
this book, but you should possess object oriented programming knowledge to get the
most benefit from the code examples. If you have any experience in programming at
all you should be able to pick up the content easily. If you need a more fundamental
start, I suggest picking one of these two books, VB.NET Developer’s Guide (ISBN:
1-928994-48-2) and the C# Web Developer’s Guide (ISBN: 1-928994-50-4). Both of
these books offer the proper foundation to properly leverage the knowledge and
information in Developing .NET Web Services with XML.

—David Jorgensen, MCP

www.syngress.com

206_XMLweb_fore.qxd 6/26/02 10:06 AM Page xviii

www.syngress.com

The Syngress Solutions Web site (www.syngress.com/solutions) contains the code
files, applications, sample databases, and Web Services that are used throughout
Developing .NET Web Services with XML.

The code files are located in a chXX directory. For example, the files for Chapter
3 are located in folder ch03.Any further directory structure depends upon the Web
Services and applications that are presented within the chapter. Some of the notable
pieces of code include those found in Chapters 6 through 8.

In Chapter 6,“Building an ASP.NET/ADO.NET Shopping Cart with Web
Services,” readers will find all of the code needed to create a fully functional applica-
tion for an online bookseller, that is capable of authenticating users and querying a
database of both customers and products.

Chapter 7,“Building a SQLXML Web Service Application,” includes all of the
code used to create a Web Service for the purpose of project management called
“TimeTracker.”

Finally, Chapter 8,“Building a Jokes Web Service,” includes all of the code
needed to create a Web Service for interaction between a database of clients, and
content. Code for the GUI is included as well.

Look for this icon to locate the code files
that will be included on our Web site.

Foreword xix

About the Web Site

206_XMLweb_fore.qxd 6/26/02 10:06 AM Page xix

206_XMLweb_fore.qxd 6/26/02 10:06 AM Page xx

What Are Web
Services?

Solutions in this chapter:

■ Understanding Web Services

■ Using XML in Web Services

■ An Overview of the System.Web.Services
Namespace

■ Type Marshalling

■ Using DataSets

Chapter 1

1

Summary

Solutions Fast Track

Frequently Asked Questions

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 1

2 Chapter 1 • What Are Web Services?

Introduction
Web Services provide a new level of interaction to all kinds of applications.The
ability to access and use a remote Web service to perform a function within an
application enables programmers to quickly deliver a more sophisticated applica-
tions in less time.The programmer no longer has to create and maintain all func-
tions of the application. Reusability is also greatly enhanced by creating multiple
Web services that perform functions in multiple applications, thus freeing up time
and resources to work on other aspects of specific projects. See Figure 1.1, which
shows a graphical representation of this process.

www.syngress.com

Figure 1.1 Where Do Web Services Fit In?

Host Web Services

Internet and
Database
Servers

Data

Host Web Pages

Internet Servers IIS

Host Web PagesHost Web Pages

Internet Users

Workstations

Workstations

Workstations

Workstations

Workstations

Internet Servers IISInternet Servers IIS

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 2

www.syngress.com

In this chapter we will be looking at a simple Hello World Web Service deliv-
ered via ASP. NET.This Web Service example can be accessed by any application
that can handle Simple Object Access Protocol (SOAP).

Web Services function primarily through XML in order to pass information
back and forth through the Hypertext Transfer Protocol (HTTP).Web Services
are a vital part of what the .NET Framework offers to programmers. XML-based
data transfer is realized, enabling primitive types, enumerations, and even classes to
be passed through Web Services to the application performing the request.This
brings a whole new level of reusability to an application. XML is the backbone
from which the whole Framework is built.The user interface (UI) can be created
by applying Extensible Stylesheet Language Transformations (XSLTs) or by
loading the data into DataSets and binding to Web Controls. Having XML as the
intermediary enables new avenues of client design.

Understanding Web Services
Web Services are objects and methods that can be invoked from any client over
HTTP.Web Services are built on the Simple Object Access Protocol (SOAP).
Unlike the Distributed Component Object Model (DCOM) and Common Object
Request Broker Architecture (CORBA), SOAP enables messaging over HTTP on
port 80 (for most Web servers) and uses a standard means of describing data. SOAP
makes it possible to send data and structure easily over the Web.Web Services capi-
talizes on this protocol to implement object and method messaging.Web Services
are easy to create in VS.NET. Here is an ASP.NET Hello World class in C#:

public class hello

{

public string HelloWorld()

{

return "Hello World";

}

}

}

This class describes a hello object that has one method, HelloWorld.When
called, this method will return data of type string.To convert this to a Web Service
method, we simply have to add one line of code:

public class hello

{

What Are Web Services? • Chapter 1 3

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 3

4 Chapter 1 • What Are Web Services?

[WebMethod]

public string HelloWorld()

{

return "Hello World";

}

}

}

A little bit more code is involved to make this a method of a Web Service.
This is the code that VS.NET auto-generates when we create a new .asmx page,
along with our Hello World method:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

namespace Hello

{

public class Hello : System.Web.Services.WebService

{

public Hello()

{

InitializeComponent();

}

private void InitializeComponent()

{

}

protected override void Dispose(bool disposing)

{

}

[WebMethod]

public string HelloWorld()

{

return "Hello World";

}

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 4

What Are Web Services? • Chapter 1 5

}

}

You can quickly create this class in VS.NET by creating and opening a C#
Web Application project or Web Service project and adding a new WebService
page.

If you prefer, similar code could be written to create a VB.NET Service:

Imports System.Web.Services

Public Class Service1

Inherits System.Web.Services.WebService

<WebMethod()> Public Function HelloWorld() As String

HelloWorld = "Hello World"

End Function

End Class

To run this sample in VS.NET, simply press F5. It will take a few moments to
build and compile.When that phase is complete, you should see the Hello service
screen shown in Figure 1.2.

The top line on the screen states that the operations listed below it are sup-
ported.This is followed by a bulleted list of links to each of the Web methods
that belong to the Web service. In our case, we created only one Web method,
HelloWorld. If you click the link HelloWorld, you will be taken to that service’s
description page (see Figure 1.3).

www.syngress.com

Setting the Start Page
When testing a Web service in a project that contains other .aspx or
.asmx files, be sure to set the file you are debugging/testing to be the
Start page, before running. To do this, right-click the filename in the
Solution Explorer and select Set as start page.

Debugging…

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 5

6 Chapter 1 • What Are Web Services?

www.syngress.com

Figure 1.2 Hello Service

Figure 1.3 HelloWorld Service Description Page

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 6

What Are Web Services? • Chapter 1 7

To test our Hello Web Services HelloWorld Web method, simply click the
Invoke button and our method will be called. Recalling our method returns the
string “hello world”; the result is returned in an XML wrapper (see Figure 1.4).

Note that the XML node reflects the datatype of the method’s return value,
string.This XML message is received and converted to the string “Hello World”.
This means that any variable (of type string) in our code can be assigned to the
result of our Web method.

www.syngress.com

Figure 1.4 Results from Invoking the HelloWorld Web Method

Building and Compiling
If you have experience programming in C/C++ or Java, you will be
familiar with the building and compiling steps. If you are a Web
Developer who hasn’t really played with a compiled language before,
these steps will be new to you. Think of it as the phase in which the com-
piler gets all your code together and checks it for unassigned variables,
variable type mismatches, and other syntactic errors. In this phase, it
also converts your code into the Common Language Runtimes (CLR)
Intermediate Language (IL), and then into machine language. This will
allow the code to run faster and more efficiently than uncompiled script.
After this phase completes, the code is run in the Browser. So, testing
Web page output may seem to take longer in the .NET environment.

Developing & Deploying…

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 7

8 Chapter 1 • What Are Web Services?

Communication between Servers
The concept of sending messages between servers or remotely calling functions is
not new.Technologies such as DCOM and CORBA are well-known proprietary
protocols that have been in use for years.What is new is the use of a standard
protocol to transfer messages over HTTP, that protocol is SOAP. SOAP makes it
possible for applications written in different languages running on different plat-
forms to make remote procedure calls (RPC) effectively, even through firewalls.
DCOM doesn’t use port 80, which is reserved for HTTP traffic; this causes
DCOM calls to be blocked by firewalls. SOAP calls use port 80, which makes it
possible to call procedures that exist behind firewalls. Figure 1.5 shows a high
level overview of how Web Services can be used, both for customer interactions
with a company from multiple client types as well as for internal company data
gathering and reporting between all company servers, including legacy systems.

www.syngress.com

Figure 1.5 Overview: Where Does Web Services Fit in?

Headquarters

Data

SOAP // HTTP

Internet

Branch Office

Server

Data

Branch Office

Server

Data

Customers

Corporate /
Customer Web

Services

Corporate
Reporting Web

Services

Investment Brokerage House

Customer Web Services

Branch kiosk can allow
customers to pull or retrieve
account information.

Corporate Website can allow
customers to pull or retrieve
account information.

Corporate Web Services

Branch offices can push
reporting data to corporate
servers.

Corporate can pull branch
reporting data.

Soap / HTTP

Using SOAP over HTTP enables
servers running different operating
systems to communicate
seamlessly over the Internet.

Soap / HTTP

Using SOAP over HTTP enables
applications written in different
languages to communicate seamlessly
over the Internet.

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 8

What Are Web Services? • Chapter 1 9

In ASP.NET,Web Services and their methods are defined in pages with the
.asmx extension.When we create Web Services, the .NET Framework generates a
Web Services Description Language (WSDL) file on the server hosting the
Service; this WSDL file describes the Web Service interface. On the Web server
that hosts our .aspx pages,VS.NET generates a WSDL proxy when we click Add
Web reference in the Solutions Explorer and select the server and Service
(see Figure 1.6).

Figure 1.7 shows a Web reference for “localhost” and the WSDL proxies for
each Web Service that exists on that server.

www.syngress.com

Figure 1.6 Overview Where WSDL and WSDL Proxies Fit into the Internet
User Page Request Process

SOAP // HTTP

Internet

Customers

WSDL

Server

Data

Server

WSDL Proxy

Web Server Hosts
.aspx Pages

Web Service
Server Hosts .asmx

Pages

Scenario

Web user makes an online purchase:
• One method call could verify and

process the credit card with a Web
Service supplied by the credit card
organization.

• Another method could contact a Web
service supplied by the shipping
company to calculate shipping charges.

• Another Web service from within
the organization could remove the item
from active inventory and flag it for
shipping.

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 9

10 Chapter 1 • What Are Web Services?

NOTE

A single application hosted on the Web server may access several Web
Services residing on different servers. Likewise, many Web servers may
access one Web Service.

.asmx Files
ASP.NET uses the .asmx file extension for defining ASP.NET Web Services.The
code-behind pages are .asmx.cs and .asmx.vb for C# and VB.NET, respectively.

www.syngress.com

Figure 1.7 Web References in VS.NET’s Solution Explorer Window

What Is the Difference between .asmx and .aspx?
In ASP, we have the .asp extension to denote an Active Server Page.
When IIS sees this extension, it knows it has some extra processing to
do. This is the same with ASP.NET, except that we have two new exten-
sions, .aspx and .asmx.

Migrating…

Continued

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 10

What Are Web Services? • Chapter 1 11

While the client for an .aspx page is the Web browser, the client for an .asmx
file is the Web server. Since they are used as programming interfaces and not
directly utilized by the Web user, .asmx files should not contain any UI.To get a
better understanding of how this all works, lets create an .aspx page that calls our
“Hello” service.

1. In the Solutions Explorer, right-click the project name.

2. Select Add | New Item.

3. Select Web Form. Name the file helloPage.aspx.

4. While in design view, open the toolbox and drag onto the page a label
and a button control from the selection of Web Forms (see Figure 1.8).

While still in design mode double-click the new button.This will
generate event code in the code behind page (see Figure 1.9).

5. Right-click References in the Solution Explorer and select Add
Web Reference.This is basically a graphical user interface (GUI) for
the WSDL.exe command line utility.

www.syngress.com

Lets do a quick comparison:
■ Both file types have a template, which includes references to

the primary namespaces.
■ .aspx pages have references to System.Drawing since their

purpose is to generate a user interface.
■ .asmx pages have references to System.Web.Services since

their purpose is to generate an interface for external pro-
grams.

■ You can add UI components and DataConnections to an
.aspx page.

■ You can add Server and DataConnections to an .asmx page.
■ .aspx pages usually begin with an @Page directive to desig-

nate: this is a WebForm.
■ .asmx pages usually begin with an @WebService directive to

designate: this is a Web Service.
■ Using the wrong @ directive with the wrong type of file

extension will generate an error.

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 11

12 Chapter 1 • What Are Web Services?

www.syngress.com

Figure 1.8 Adding a Web Form Control to an .aspx Page

Figure 1.9 Auto-generated Button Event Code

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 12

What Are Web Services? • Chapter 1 13

6. When the Add Web Reference dialog opens (see Figure 1.10) click
the link Web References on local server.

The dialog will pause while it searches your local machine for a list
of services available.

7. When the list appears, click the name of the service that matches the
name of your project, WebApplication_HelloWorld.

8. When the service loads, click the Add Reference button.This will
create several new entries in your Solutions Explorer.

9. Now take a look at helloPage.aspx in HTML view.You should see code
similar to the following:

<body MS_POSITIONING="GridLayout">

<form id="helloPage" method="post" runat="server">

<asp:Button id=Button1 Text="Button" runat="server" >

</asp:Button>

<asp:Label id=Label1 runat="server">Label</asp:Label>

</form>

</body>

www.syngress.com

Figure 1.10 Add Web Reference Dialog Box

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 13

14 Chapter 1 • What Are Web Services?

10. Note the name of the label control is Label1. Now open
helloPage.aspx.cs and add the following code below the label and
button code.

localhost.hello test = new localhost.hello();

11. In the Button Click handler, add the following:

Label1.Text = test.HelloWorld();

12. Your code should now look like Figure 1.11.

13. Right-click helloPage.aspx and click Set as start page.

14. Press F5 to run the application.

15. When the browser loads, click the button, this will invoke our helloWorld
method and assign its value to the label text.After clicking the button,
your page should look like Figure 1.12.

www.syngress.com

Figure 1.11 helloPage.aspx.cs

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 14

What Are Web Services? • Chapter 1 15

WSDL
WSDL is an XML-based language that describes Web Services. It is the com-
posite of work done by Ariba, IBM, and Microsoft. Currently, it only supports
SOAP as a messaging protocol.

The thought behind WSDL is that in future applications it will be a collec-
tion of networked-Web Services.WSDL describes what a service can do, where it
lives, and how to invoke it.WSDL describes the Web Service method interfaces
thoroughly enough for it to be used to create proxy methods that enable other
classes to invoke its members as if they were local methods. IBM and Microsoft
both have WSDL command line utilities available that do just that. IBM does it
for Java, and Microsoft does it for Visual Studio.VS.NET has this ability built into
the GUI. In VS.NET, we simply right-click add Web Reference and select the
service we want to generate a proxy class for. Here is an example of a WSDL file
for a Web Service: getCategories.wsdl.This file is auto-generated by the .NET
Framework.

While the auto-generated file will cover the basic functionality, it may do
more or less than you intended.The auto-generated code can be simplified by
removing support for asynchronous operations if you do not need to support this
type of operation.Also, you could add custom SOAP headers and customize
other parts of the SOAP envelope by creating your own class. WSDL and UDDI
are covered in later chapters.

www.syngress.com

Figure 1.12 HelloPage.aspx in the Browser after Clicking the Button

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 15

16 Chapter 1 • What Are Web Services?

Using XML in Web Services
Web Services use SOAP as a messaging protocol. SOAP is a relatively simple
XML language that describes the data to be transmitted.Why use XML? XML
is a standard language designed to be understandable by humans, and structured
so it can be interpreted programmatically. XML does not only describe data, it
can also describe structure, as we will see when we take a closer look at the
ADO.NET DataSet.

Consider the case of replicating a database into cache.We might want to do
this to reduce the load on the database server, to speed client processing, or to
provide an offline data handling scenario.We could transport an XML document
that contains the new W3C XML Schema Definition Standard (XSD) schema
describing the database tables, relations, and constraints, along with the actual data
(see the section “Using DataSets” later in this chapter). Because XSD can
describe relational data and can be embedded within an XML document, any
database can be converted to a ubiquitous data source.That is, a data source that
can be accessed on any platform by any application.This is possible because the
transfer protocol, SOAP, uses XML over HTTP and because XML, XSD, SOAP,
and HTTP are all nonproprietary industry standards.

It is the use of non proprietary industry standards that makes Web Services so
powerful. By using XML to describe structure and content,Web Services can
provide an interface to data on legacy systems, or between incompatible platforms
from acquisitions or between vendors over intranets, extranets, or the Internet.

www.syngress.com

When Moving a VS.NET Web
Service to Another Server
When transferring a project to another server, make sure the page names-
paces match the project name and be sure to update Web references.

Developing & Deploying…

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 16

What Are Web Services? • Chapter 1 17

An Overview of the
System.Web.Services Namespace
System.Web.Services is the namespace from which all Web service classes are
derived. It consists of all the classes needed to create Web Services in the .NET
Framework.When using VS.NET most of the System.Web.Services classes and sub-
classes are transparent to the developer, so we won’t go into much depth here.
The three primary child classes of System.Web.Services are: Description, Discovery,
and Protocols.

The System.Web.Services.Description Namespace
The System.Web.Services.Description namespace contains the classes needed to
describe a Web Service using the Microsoft SDL (Service Definition Language), a
Microsoft implementation of the WSDL standard.VS.NET uses these classes to
create the .disco or .vsdisco file. Many of the subclasses of this class are related to
binding: MessageBinding, OperationBinding, OutputBinding, and so on. One of
the more interesting subclasses is the ServiceDescription class. It takes as a parameter
an XML file and enables the creation of a valid WSDL file.

ServiceDescription MyDescription = new ServiceDescription();

ServiceDescription MyDescription =

ServiceDescription.Read("MyTestFile.xml");

The System.Web.Services.Discovery Namespace
The System.Web.Services.Discovery namespace consists of the classes that enable
Web Service consumers to locate available Web Services. In VS.NET when we
create a Web Reference, these classes find the .vsdisco files that describe Web
Services.

Disco file from our Hello World example:

<?xml version="1.0" encoding="utf-8"?>

<discovery xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/disco/">

<contractRef

ref="http://localhost/WebApplication_HelloWorld/hello.asmx?wsdl"

docRef="http://localhost/WebApplication_HelloWorld/hello.asmx"

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 17

18 Chapter 1 • What Are Web Services?

xmlns="http://schemas.xmlsoap.org/disco/scl/" />

</discovery>

The System.Web.Services.Protocols Namespace
The System.Web.Services.Protocols namespace consists of the classes used to define
the protocols that enable message transmission over HTTP between ASP.NET
Web Services and ASP.NET Web Service clients.These classes are used in our
WSDL proxy classes.They are mostly involved with the formatting, bindings, and
settings of the SOAP message.

WSDL proxy from our Hello World example:

namespace WebApplication_HelloWorld.localhost {

using System.Diagnostics;

using System.Xml.Serialization;

using System;

using System.Web.Services.Protocols;

using System.Web.Services;

[System.Web.Services.WebServiceBindingAttribute(Name="helloSoap",

Namespace="http://tempuri.org/")]

public class hello :

System.Web.Services.Protocols.SoapHttpClientProtocol {

[System.Diagnostics.DebuggerStepThroughAttribute()]

public hello() {

this.Url =

"http://localhost/WebApplication_HelloWorld/hello.asmx";

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

[System.Web.Services.Protocols.SoapDocumentMethodAttribute(

"http://tempuri.org/HelloWorld",

Use=System.Web.Services.Description.SoapBindingUse.Literal,

ParameterStyle=

System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]

public string HelloWorld() {

object[] results = this.Invoke("HelloWorld", new object[0]);

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 18

What Are Web Services? • Chapter 1 19

return ((string)(results[0]));

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

public System.IAsyncResult BeginHelloWorld(

System.AsyncCallback callback, object asyncState)

{

return this.BeginInvoke(

"HelloWorld", new object[0], callback, asyncState);

}

[System.Diagnostics.DebuggerStepThroughAttribute()]

public string EndHelloWorld(System.IAsyncResult asyncResult) {

object[] results = this.EndInvoke(asyncResult);

return ((string)(results[0]));

}

}

}

Type Marshalling
Type marshalling refers to the translation of datatypes from an application or
database as it is mapped to a SOAP datatype.When any datatype, object, method,
or string (xml, or a simple string) is passed as a SOAP request or response, it is
automatically converted into an XML representation of itself. Since any program-
ming language can use SOAP, SOAP has defined its own set of datatypes.When
data is passed in a SOAP envelope its datatypes are translated or converted to a
SOAP equivalent.This enables different languages with different names for similar
datatypes to communicate effectively.The datatypes supported when using Web
Services include:

■ Standard primitive types String, char, Boolean, byte, single, double,
DateTime, int16, int32, int 64, Uint16, and so on.

string "hello World" is represented as:

<string>hello World</string>

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 19

20 Chapter 1 • What Are Web Services?

■ Enum Types Enumerations like enum weekday {sun=0, mon=1,
tue=2, wed=3, thu=4, fri=5, sat =6}

■ Arrays of Primitives or Enums

MyArray[5,7] is represented as:

<ArrayOfInt>

<int>5</int>

<int>7</int>

</ArrayOfInt>

■ Classes and Structs

struct Order(OrderID, Price) is represented as:

<Order>

<OrderID>12345</OrderID>

<Price>49.99</Price>

</Order>

■ Arrays of Classes (Structs)

MyArray Orders(order1, order2) may be represented as:

<ArrayOfOrder>

<Order>

<OrderID>int</OrderID>

<Price>double</Price>

</Order>

<Order>

<OrderID>int</OrderID>

<Price>double</Price>

</Order>

</ArrayOfOrder>

■ DataSets The representation of a DataSet is rather lengthy; it includes
an inline XSD schema defining the structure followed by the XML data.
For an example of a DataSet, see the next section,“Using DataSets.”

■ Arrays of DataSets

■ XmlNodes

<book id=1><title>book1</title><price>25.00</price></book>

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 20

What Are Web Services? • Chapter 1 21

■ Arrays of XmlNodes

<ArrayOfBook>

<book id=”1”>

<title>book1</title>

<price>25.00</price>

</book>

<book id=”2”>

<title>book2</title>

<price>49.99</price>

</book>

</ArrayOfBook>

It is important to note that when we create and use Web Services in VS.NET,
the marshalling of data is transparent to the developer.This is also true when
using the WSDL.exe command line utility.While it is important to have some
understanding of how data is transported between the Web Service and the
Service proxy or client, this layer is and should be transparent to the developer,
just as packet structures for transmitting data over HTTP is transparent to the
Web developer.

Using DataSets
A DataSet can be used to cache an entire database within an ASP application
variable.This would reduce the Database Server Load and speed data access over
the life of the application object.The following is a code snippet that calls a Web
Service that returns a DataSet.The DataSet in turn stores the data in an applica-
tion object.

myServer.getBooks DataSource = new myServer.getBooks();

Application["AllBooks"] = DataSource.AllBooks();

This makes the DataSet available to all instances of the Web application,
which is very efficient. Operations can be performed on the DataSet and, on
Application_End the Database can be updated.

DataSets store database structure information and contain DataTable,
DataColumn, DataRow, and DataView children. DataSet RowFilter operations are
very much like SQL Queries.The DataSet can easily be databinded to ASP.NET
UI controls. It also has an XML output format that makes it easily translated to
XML for XML processing.

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 21

22 Chapter 1 • What Are Web Services?

Here is an example of the Books DataSet returned by the getBooks.allBook
service:

<?xml version="1.0" encoding="utf-8"?>

<DataSet xmlns="http://tempuri.org/">

<xsd:schema id="NewDataSet" targetNamespace="" xmlns=""

xmlns:xsd=http://www.w3.org/2001/XMLSchema

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="NewDataSet" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Books">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="isbn" type="xsd:string"

minOccurs="0" />

<xsd:element name="name" type="xsd:string"

minOccurs="0" />

<xsd:element name="id" type="xsd:int" minOccurs="0" />

<xsd:element name="imgSrc" type="xsd:string"

minOccurs="0" />

<xsd:element name="author" type="xsd:string"

minOccurs="0" />

<xsd:element name="price" type="xsd:decimal"

minOccurs="0" />

<xsd:element name="title" type="xsd:string"

minOccurs="0" />

<xsd:element name="description" type="xsd:string"

minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 22

What Are Web Services? • Chapter 1 23

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<NewDataSet xmlns="">

<Books diffgr:id="Books1" msdata:rowOrder="0">

<isbn>0072121599 </isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccda.gif</imgSrc>

<author>Syngress Media Inc</author>

<price>49.99</price>

<title>Ccda Cisco Certified Design Associate Study Guide</title>

<description>

Written for professionals intending on taking the CCDA test,

this special guide covers all the basics of the test and

includes hundreds of test questions on the enclosed CD.

</description>

</Books>

<Books diffgr:id="Books2" msdata:rowOrder="1">

<isbn>0072126671 </isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccna.gif</imgSrc>

<author>Cisco Certified Internetwork Expert Prog</author>

<price>49.99</price>

<title>CCNA Cisco Certified Network Associate Study Guide</title>

<description>

Cisco certification courses are among the fastest-growing

courses in the training industry, and our guides are designed

to help readers thoroughly prepare for the exams.

</description>

</Books>

</NewDataSet>

</diffgr:diffgram>

</DataSet>

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 23

24 Chapter 1 • What Are Web Services?

Summary
In this chapter, we discussed Web Services, along with their related technologies,
protocols, and standards, such as Simple Object Access Protocol (SOAP),Web
Services Description Language (WSDL), Extensible Markup Language (XML),
and the XML Schema Definition (XSD) standard.We examined the role of Web
Services and how messages are passed between servers and data sources.

We created simple Web Services (producers) as well as Web Services (con-
sumers) using the .NET Framework and VS.NET to show how the Web Service
messaging infrastructure works and how it can be used transparently to the
developer.

The power of Web Services is due to its foundation in nonproprietary proto-
cols and standards.Web Services would not be as useful if it were not built on
XML for defining data and structure, XSD for defining structure, SOAP for
defining a messaging transport mechanism over the well-established HTTP,
WSDL for defining method interfaces in XML, Universal Description, Discovery,
and Integration (UDDI, a Web Service discovery mechanism), and DISCO, the
Web Service discovery description document.

Solutions Fast Track

Web Services

Web Services provide an XML interface that can be accessed by any
SOAP-enabled client, which means a Web Service developed with .NET
can be accessed by a Java application, a Web page, or any SOAP-enabled
desktop application.

Web Services can be accessed over HTTP through port 80, which
means remote procedure calls can be made to objects behind firewalls.

Using XML in Web Services

XML is the enabling standard upon which SOAP and Web Services
are built.

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 24

What Are Web Services? • Chapter 1 25

The SOAP envelope is an XML document.The SOAP message,
meanwhile, describes the data being passed as an XML representation of
the original datatype or object.

An Overview of the System.Web.Services Namespace

System.Web.Services is .NET Framework’s namespace of classes that
enable .NET Web Services.The three primary subclasses or
subnamespaces are:

1. System.Web.Services.Description Classes that support WSDL, used
to define the methods, parameters, and datatypes of Web Services.

2. System.Web.Services.Discovery Classes that support UDDI and the
generation of WSDL proxies for Web Service clients.

3. System.Web.Services.Protocols Classes that support the generation
and customization of Web service protocols, and can be used for
things such as creating custom SOAP headers.

Type Marshalling

Type marshalling is the mapping of types from Web Service method calls
to SOAP datatypes.

When remote calls are made using Web Services and the SOAP
protocol; datatypes and objects that are passed are represented as XML
descriptions of themselves. (Datatypes are marshalled as one of many
SOAP standard datatypes.)

Using DataSets

DataSets are ADO.NET objects that provide database type operations.

DataSets enable the transfer of database structure and content to and
from WebServices.

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 25

26 Chapter 1 • What Are Web Services?

Q: Why replace COM objects with Web Services?

A: Web Services have a platform neutral interface.This enables Web Services to
be easily utilized by multiple clients on different platforms developed with
different programming languages. Note that existing COM components can
be wrapped by Web Services.

Q: How do I know I need Web Services?

A: If you have data that is needed by various customers (different departments,
different levels of management, vendors, industry partners, consumers and so
on) and getting to that data is hindered or prevented by issues involving plat-
form, programming language, legacy hardware or other types of incompati-
bility, developing Web Services can help.

Q: What area of development are Web Services best for?

A: I believe that Web Services development like COM development will remain
in the hands of the middle tier programmer.

Q: Is it possible to try out Web Services using only my local computer?

A: Yes, it is. Using the WSDL.exe command line tool, you can point to any
Web server.This is even easier with the VS.NET UI. Simply right-click Web
references, then select any Web service from the UDDI directory or your
local machine, or simply type the URL of a disco file on any server.You can
easily generate a WSDL proxy and use it as long as you are connected to the
Internet.

Q: I’m currently in the process of migrating.What considerations should I take
with my existing COM components?

A: Here are a few things to consider:

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 26

What Are Web Services? • Chapter 1 27

■ Who is the customer? If the customer is only within the intranet and
there are no external customers in the foreseeable future, an existing
DCOM infrastructure needn’t be changed.

■ What type of clients do I have? If the client is a desktop application,
switching to Web Services would require updating the client, which may
include updating the OS, and possibly the hardware so that the client has
enough memory to host the .NET Framework.

■ Will I need to support Mobile devices in the near future? Using the .NET
Mobile Framework to access Web Services is as simple as it is with
.NET. Updating the existing clients to .NET will make adding future
clients simple and cost-effective.

www.syngress.com

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 27

206_XMLweb_01.qxd 6/25/02 12:37 PM Page 28

Introduction to the
Microsoft .NET
Framework

Solutions in this chapter:

■ Obtaining the .NET Framework

■ Installing the .NET Framework

■ Common Language Runtime

■ Developing Applications with the .NET
Framework

■ Components in the .NET Platform

Chapter 2

29

Summary

Solutions Fast Track

Frequently Asked Questions

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 29

30 Chapter 2 • Introduction to the Microsoft .NET Framework

Introduction
The .NET Framework is just part of Microsoft’s overall .NET platform strategy.
The framework is made up of the Common Language Runtime environment,
Base Class Library, and higher-level frameworks such as ASP.NET and Windows
Forms as shown in Figure 2.1.

The complete documentation on the .NET Framework fills entire books.
What we do here is cover the basics so that you have a firm enough under-
standing of the .NET Framework to enable you to get started developing XML
Web Services.

We’ll start with how to obtain the .NET Framework SDK.The minimum
system requirements can be confusing so we’ll cover those in some detail.The
common language runtime (CLR) is the foundation that sits on top of the
Windows operating system. Since this is the most important part of the .NET
Framework we’ll spend most of our time going through the CLR.The base class
library is a set of hundreds of classes that are provided as part of the framework to
help us build applications that will execute in the CLR.We’ll get an overview of
these so that we can get an idea of the breadth of support provided by the SDK
“out of the box”.To make building applications even easier Microsoft provides
some higher level frameworks like ASP.NET and Windows Forms that utilize and
extend the functionality provided by the Base Class Library.ASP.NET greatly
simplifies the building of Internet applications by using Web Forms and Web
Services.Windows Forms provides the ability to develop for the rich environ-
ment that the Windows platform provides.We’ll take a look at these frameworks
to give you an overview of the purpose of each.

www.syngress.com

Figure 2.1 The .NET Framework Architecture

Common Language

RunTime

Base Class Library

ASP.NET / Windows Forms

The .NET Framework

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 30

www.syngress.com

Obtaining the .NET Framework SDK
The .NET Framework SDK contains a Framework Runtime for redistribution,
compilers, tools, documentation and samples.This is everything you need to
develop, test, and deploy applications that target the .NET Framework.You can
obtain the .NET Framework from multiple places. Before detailing those loca-
tions let’s take a look at the system requirements for installing the .NET
Framework. Please review them carefully and you will save yourself some major
headaches.

If you can, I would recommend that you install the .NET Framework on a
machine or partition that has a new operating system installation and is totally
separate from your important applications and data. It’s much easier if you
encounter any unforeseen problems to just reformat and start over.At a min-
imum, you should uninstall any previous versions of the .NET Framework SDK
prior to installing a newer version, and don’t install the SDK on a machine that
has production data on it.

NOTE

The .NET Framework SDK and Visual Studio .Net are not the same thing.
Visual Studio .NET is an application development tool that enables you
to create applications targeted for the .Net Framework CLR. You can
create .NET applications with any text editor and compile with the SDK
provided compilers. Visual Studio .NET just makes it easier.

System Requirements
Prior to installing the .NET Framework SDK you must make sure that your
system meets or exceeds the minimum system requirements. Remember that
they are the minimum requirements.As always, before you install any subsequent
versions be sure to note the requirements in the documentation provided with
the install. Requirements can change from version to version as enhancements are
made to the SDK.The following sections outline the .NET Framework SDK
minimum system requirements:

Introduction to the Microsoft .NET Framework • Chapter 2 31

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 31

32 Chapter 2 • Introduction to the Microsoft .NET Framework

Hardware
The hardware requirements are quite reasonable by today’s standards for desktops
and servers.You can see by the minimum and recommended notes that the more
RAM you have, the better.

Desktop .NET Framework SDK Install
The requirements for developing desktop application using the .NET Framework
SDK are:

■ Processor Intel Pentium class 90 MHz or higher

■ RAM 32 MB (96 MB or higher recommended)

■ Video 800x600, 256 colors

Server .NET Framework SDK Install
The following requirements below are to install and develop with the .NET
Framework SDK, not just the runtime.We’ll cover the requirements for the run-
time in the next section.

■ Processor: Intel Pentium class 133 MHz or higher

■ RAM: 128 MB (256 MB or higher recommended)

■ Hard disk space required to install: 360 MB

■ Hard disk space required: 210 MB

■ Additional space required to install and compile all samples:
300 MB

■ Video: 800x600, 256 colors

NOTE

ASP.NET is not supported on Windows 95/98 operating systems such
as Windows Me, Windows 98 Second Edition, Windows 98, and
Windows 95.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 32

Introduction to the Microsoft .NET Framework • Chapter 2 33

Operating System
Currently the only operating systems that can be used with the .NET
Framework SDK are Windows operating systems. Since the CLR is so much like
the Java virtual machine, don’t be surprised if some enterprising third-party cre-
ates a CLR for another operating system. For now here are the operating system
requirements for the .NET Framework development and runtime.

.NET Framework SDK
The following are the operating system requirements for developing with the
.NET Framework SDK:

■ Windows XP,Windows 2000,Windows NT 4.0

■ Internet Explorer 5.01 or later

.NET Framework Redistributable Package (Runtime)
Please note that the requirements below are for the runtime only.They do not
include development.You would install the runtime on a machine that contains
and runs deployed components. Just as you would expect, the requirements for
only the runtime are less restrictive that those for development with the SDK.
The operating system requirements for the runtime are as follows:

■ Windows XP,Windows 2000,Windows NT 4.0

■ Windows 98,Windows Me

■ Internet Explorer 5.01 or later

Additional Installation Information
Frequently included with the install is documentation listing any late-breaking
issues that have come up since the version was first issued.This is information in
addition to the normal readme.htm file.The following list includes a few items
that are in the .NET Framework SDK install documentation and late-breaking
issues that you may overlook if you’re not careful:

■ Internet Explorer 5.5 is distributed along with the .NET Framework
installation.

■ For Server setups Microsoft Data Access Components (MDAC) 2.6 is
required, MDAC 2.7 is recommended. You can download this from
www.microsoft.com/downloads.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 33

34 Chapter 2 • Introduction to the Microsoft .NET Framework

■ For Windows NT 4.0 setups Service Pack 6a must be installed.

NOTE

Visual Studio .NET includes the .NET Framework SDK

Locations for Downloading
There are multiple locations available for downloading the .NET Framework
SDK. Some of these include:

■ www.microsoft.com/net

■ www.gotdotnet.com

■ msdn.microsoft.com/net

You can also obtain the SDK on a CD-ROM by going to the appropriate
Microsoft Developer Store, the locations of which are listed on the Web sites
noted in the preceding bullets. If you are an Microsoft Developer Network
(MSDN) subscriber you can download the SDK from the MSDN subscriber
download site (msdn.microsoft.com).

Installing the .NET Framework
Because the download file is over 120 MB, you have a choice of downloading
one large file or many smaller ones. If you decide to go the multifile download
route you need to take the following steps to prepare the install:

1. Place each downloaded file into the same directory.

2. Run the setup.bat file.This will create a master setup.exe file.To find
out if your COPY command supports the /Y switch go to a DOS
prompt and type in COPY /?. If the /Y switch is listed then your
system supports it. If it isn’t then you need to edit the setup.bat file to
remove the /Y switch from the COPY command.

3. Run the setup.exe to install the .NET Framework SDK.

The installation program provides a wizard that takes you through the process
as noted in Figure 2.2.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 34

Introduction to the Microsoft .NET Framework • Chapter 2 35

The installation program searches your machine to see if you have any com-
ponents already installed, and will direct your options accordingly. If you don’t
have the updated Windows Installer components you will be asked whether or
not you want to update them. Because these components are required for the
install you must answer Yes.

Figure 2.3 shows an example of an installation that already has the documen-
tation installed. So if this is the first .NET Framework SDK installation on your
target machine, you have the option of installing the SDK, the SDK samples,
and/or the documentation.

www.syngress.com

Figure 2.2 Initial Setup Screen

Figure 2.3 .NET Framework SDK Installation Options

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 35

36 Chapter 2 • Introduction to the Microsoft .NET Framework

The SDK install includes the Framework as well as ASP.NET. Once you have
the install completed you can verify proper operation by going to the
…\Microsoft.NET\FrameworkSDK\Samples\StartSamples.htm page and run-
ning some samples.This page has tutorials, technology samples, and a few full
applications that will allow you to make sure that you are set up and ready to
code.You can get a jump start on your learning as well.

Common Language Runtime
The Common Language Runtime (CLR) is arguably the most important part of
the .NET Framework. It is responsible for executing and managing the compiled
output of code written in the .NET–compatible languages.The CLR is the
engine at the core of managed code execution.Architecturally it sits above the
operating system and below the .NET language code as shown in Figure 2.4.

Major Responsibilities of the CLR
The runtime supplies the managed code with many services, such as cross-lan-
guage integration, code access security, object lifetime management, and debug-
ging support. Let’s take a look at the more important responsibilities in more
detail.

NOTE

The phrase “managed code” keeps coming up when discussing the CLR.
Basically code compiled with a language compiler that targets the CLR is
called managed code.

www.syngress.com

Figure 2.4 CLR Placement in .NET Architecture

Common Language

RunTime

Operating System

.NET Code (VB.NET, C#, …)

Compile to Intermediate Language

Compile to Machine Language

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 36

Introduction to the Microsoft .NET Framework • Chapter 2 37

Safety and Security Checks
Before the CLR executes any code, that code is checked to make sure that it is
type-safe in regards to memory locations. Each type has its own area of memory,
and can’t access the private data from other types.This means that code allowed
to run in the CLR can only access memory locations that it is authorized to
access.This prevents some of the crashes and tampering that can occur in other
languages.

Code can also have specific security requirements that tell the CLR to verify
that any client requesting the code in question meets those requirements.The
security information resides inside the code executable files (DLLs or EXEs).
Depending on the current security policy, certain operations may not be allowed
as well.

Class Loading
When you start a .NET application, the Windows operating system recognizes
that the executable was compiled for the CLR and passes control over to the
CLR.The .NET Framework SDK install takes care of updating the operating
system to be able to accomplish this.The CLR must find the entry point (Main()
method) of the application and locate the class that contains that entry point.

The CLR is responsible for finding the proper version of the executable file
and if it passes the security checks, loads the class in question, and activates the
desired object when required.To find the proper version, the CLR reads the
information saved with the executable and searches a defined path to locate the
desired file. Once found the class loader can load the class in memory and cache
the classes’ type information so that it can just pull the information from the
cache the next time the class is called.This is why the first time you run an appli-
cation might seem a little bit slower than subsequent runs.

Object Lifetime Management
One of the historic hassles with development in the lower-level object-oriented
languages is making sure that your objects are cleaned up when you no longer
use them. Because the CLR handles that for you now, it’s no longer a concern.
The chance of memory leaks occurring and taking down a server is greatly
reduced, and a big troubleshooting headache has been removed.

We discussed above how the CLR takes care of loading and activating
objects.The CLR is also responsible for monitoring or tracing the operation of
the object and removing the object when it is no longer referenced. Once an

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 37

38 Chapter 2 • Introduction to the Microsoft .NET Framework

object is no longer referenced in any way from any other objects or variables,
garbage collection (GC) will occur and return that memory for use.

NOTE

Garbage collection occurs based on many different calculations and can’t
be forced to occur. Therefore use of code intended to run when an
object is destroyed (destructors) is not recommended. There is a
Dispose() method that disables the object but leaves it in memory. This
is where you would put in your cleanup code if it is still necessary.

Just In Time (JIT) Compilation
When you compile your code using Visual Studio .NET or one of the command
line compilers, that code isn’t converted directly into machine language. It’s con-
verted to code called the Microsoft Intermediate Language (MSIL) or Common
Intermediate Language (CIL).This is how one .NET language can utilize objects
created with other .NET languages. Both are compiled to the MSIL.To speed up
the process of compiling the MSIL to native code for the associated CPU, the
.NET Framework includes JIT compilers–one for each CPU architecture that
.NET supports.

Each method for which MSIL has been generated is JIT-compiled when it is
called for the first time, cached, then executed.The next time the method is exe-
cuted, the existing JIT-compiled native code from the cache is executed.This
process of JIT compiling and then executing the code is repeated until the appli-
cation execution is finished.As mentioned above the type safety is also checked at
this time.As part of the compiling process the code goes through the security
checks noted earlier in the “Safety and Security Checks” section.

Cross-Language Interoperability
All languages targeted for the CLR must follow the Common Type System
(CTS) rules for how their types are created and used. In addition, type informa-
tion storage is the same across languages. So when the CLR looks up the type
information to provide the proper services and execute the code it doesn’t matter
what language it was written in, it’s MSIL at this time.The MSIL is JIT-compiled
and executed in the same way regardless of language.The result of this interoper-
ability is that we get the following by using managed code:

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 38

Introduction to the Microsoft .NET Framework • Chapter 2 39

■ Inheriting from types created in other languages.

■ Passing objects created in one language into a method of a class created
by a different language

■ Common debugger across languages.You can step through code from
one language to another as you debug.

■ Error (exception) handling is the same across languages. An exception
“thrown” in one language can be “caught” in another, and handled.

NOTE

One caveat with cross-language interoperability: In certain cases one lan-
guage supports functionality that another may not support. The example
usually presented to describe this is if one language has support for
unsigned integers (type UInt32) and you try to add a parameter of
UInt32 to your code in a language that doesn’t support UInt32, your
code wouldn’t run. Keep that in mind when you have different lan-
guages involved.

Structured Exception Handling
Structured exception handling is a very significant part of the .NET Framework.
The “structure” part is a control structure identical to that found in Java. It is
composed of the Try-Catch-Finally block.This is similar to how C++ handles
exceptions.We take another look at exception handling in the section
“Structured Exception Handling Revisited” a little later on in the chapter.

Assemblies
Assemblies are the executables of the .NET Framework (DLL or EXE).Your
source code project compiles into an assembly.You can choose to have more than
one compiled file in your assembly.Assemblies are known as the smallest deploy-
able unit.All managed types and resources are marked either as accessible only
within their implementation unit or as exported for use by code outside that
unit. In the runtime, the assembly establishes the name scope for resolving
requests and the visibility boundaries are enforced.The runtime can find the
proper assembly and the proper type when it needs to load that type to prepare
for execution.All types are contained in assemblies.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 39

40 Chapter 2 • Introduction to the Microsoft .NET Framework

Metadata
When your code is compiled for the CLR, more is going on that just compiling
code. During compilation, the .NET targeted compilers also produce the meta-
data that describes all of the types contained in the executables (EXEs or DLLs).
This metadata includes type information that you would typically find in a
COM-type library, and version dependency information.This version informa-
tion is what the CLR uses to allow multiple executables with the same name
residing on the same machine (in different directories). In addition, information
describing all of the resources that your components use is also contained there.
So the components are seen as “self-describing”.When you start an application
the CLR looks to the assembly before loading to make sure that everything you
need to execute that code is available and proper.The tracking down depen-
dency/versioning problems for days like we had to do with COM is now a thing
of the past.

The information found in the metadata describes every element managed by
the runtime, and any other information that is required by the runtime. Some
examples are: type, debugging, garbage collection, and versioning information. If
you want to add more information than is provided by the compilers, you can
create custom metadata that allows you to add attribute information to your
assemblies that can be read and acted upon at runtime.The information found in
the metadata includes the following:

■ Assembly description:

■ Identity (name, version, culture, public key)

■ Other assemblies that this assembly depends on

■ Any security permissions needed to run your code

■ Description of types (classes):

■ Name, visibility, base class, and interfaces implemented

■ Members (methods, fields, properties, delegates, events, inner types)

■ Attributes:

■ Additional descriptive elements that modify types and members

■ Any custom attributes that you create yourself

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 40

Introduction to the Microsoft .NET Framework • Chapter 2 41

Enhanced Deployment and Versioning Support
Deployment is one big area where the .NET Framework makes your life easier.
You have the ability now to create deployment projects.These projects created
within Visual Studio .NET use the Windows Installer technology. Deployment is
totally different from previous versions of Visual Studio, so here we cover some of
the highlights.You have various options to bundle your files for deployment:

■ Use your assemblies as-is.

■ Place files in a compressed CAB file. A good choice for large projects
that would take a long time to download if installed over the Web.

■ Create a Windows Installer package to take advantage of that technology.
This gives you the most options as you are creating a Visual Studio
.NET deployment project.

■ Using a third party installer.

You also have various options to distribute your bundled files.

■ XCOPY or FTP. If you package your assemblies as-is you can just copy
the files over to an appropriate directory (using the proper namespace
scope) and the application will run right from there.

■ Have users download the code from a Web site and run your code from
there.

■ If you use Windows Installer to create your package, the installer can
move the assemblies to wherever you need them if the security policy is
met. You should understand these security rules prior to creating your
install package.

Managed versus Unmanaged Code
Managed code runs in collaboration with the CLR during runtime. Managed
code carries with it the metadata necessary for the runtime to provide services
such as memory management, cross-language interoperability, code access secu-
rity, and control of the object from instantiation through disposal.All code based
on MSIL executes as managed code.

Basically unmanaged code is code created outside of the .NET Framework.
This code also runs outside of the .NET Framework in the Microsoft Windows
environment.The CLR has the ability to run un-managed and managed code

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 41

42 Chapter 2 • Introduction to the Microsoft .NET Framework

together, but there is a performance hit. Some common examples of unmanaged
code are C++ classes compiled with a non-CLR compiler, COM components,
and the classes that make up the Win32 API.

Interoperability with Unmanaged Code
The CLR takes care of interoperability between managed and unmanaged code,
so it is quite seamless.This makes the decision of how and when to migrate your
legacy code to .NET an easier one.You don’t have to rewrite everything right
away.The .NET Framework enables interoperability with COM+ services, the
Windows operating systems, and COM components.

Namespaces
Namespaces provide a logical naming scheme for grouping related types, similar
to Java packages. For example, the .NET Framework uses a hierarchical naming
scheme for grouping types into logical categories of related functionality, such as
Data Access, GUI, Reporting, and so on. Design tools can use namespaces to
make it easier for developers to browse and reference types in their code. In the
.NET Framework, a namespace is a logical design-time naming convenience,
whereas an assembly establishes the name scope for types at run time.
Namespaces also aid the CLR in selecting the correct assembly to load when
multiple assemblies have the same name.

For example when you want to access a class found in the .NET Framework
we would use the fully qualified name, which includes the namespace. In the ref-
erence System.Data.Dataset, System.Data is the namespace and Dataset is the type
name. Microsoft states that all namespaces shipped by Microsoft will start with
either System or Microsoft.

Since namespaces provide the scope for your types the standard is to group
types with related functionality in separate namespaces. System.Data, System.Xml,
System.Collections, System.Web, System.Net, System.Threading, and System.Security
are good examples of creating namespaces with logical groupings.These are
found in the Base Class Library that Microsoft provides as part of the .NET
Framework.We look into the Base Class Library and its namespaces in the next
section.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 42

Introduction to the Microsoft .NET Framework • Chapter 2 43

Developing Applications
with the .NET Framework
To bridge the gap between the .NET Framework and developing XML Web
Services, we will cover some programming related information. In this section
we will look at the following:

■ Development platforms

■ .NET language choices

■ Compilers

■ Tools to make your .NET programming life easier

■ Base Class Libraries

Development Platforms for .NET
You can create all of your code using a text editor such as Notepad if you like.
The SDK provides all of the tools necessary to accomplish development at that
level.You would need to learn all of the specific compiler options and debugger
tools and probably take quite a while before you could be productive.

Third-party and open source tools are cropping up that can color-code key-
words and provide some level of syntax checking. Some tools you can also link to
a compiler so that you can code and compile in the same integrated development
environment.

By far the best tool for .NET development we’ve used is Visual Studio .NET.
With VS.NET you can code, compile, and build deployment projects all within
the same development environment. Figures 2.5 shows a typical project open in
Visual Studio .NET Enterprise Architect Edition.

Figure 2.6 depicts another C# editor available on the Web. More and more
editors of various levels of cost and functionality are showing up on the Web
every day.

Once you have your development platform selected there are other issues to
consider.We’ll look at a few of those next.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 43

44 Chapter 2 • Introduction to the Microsoft .NET Framework

www.syngress.com

Figure 2.5 Visual Studio .Net Integrated Development Environment

Figure 2.6 Antechinus C# Editor

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 44

Introduction to the Microsoft .NET Framework • Chapter 2 45

Language Choice
Currently there are many languages being targeted for the .NET Framework.
Visual Studio .NET includes VB.NET, C#, managed C++, Jscript, and J# (allows
using Java syntax for building .NET applications).

Since all .NET language compilers create MSIL code, there is theoretically no
difference within the .NET Framework as far as performance goes. So the com-
pelling performance or ease of coding reasons for developing in a specific lan-
guage has disappeared.You can basically choose a language that you are
comfortable with and not lose those major benefits from one language to
another. Some say that choice of language is a “lifestyle” choice.The target we’ve
chosen for this book is C#.

Using the Compilers
As mentioned earlier, you can build .NET applications using Notepad and the
command-line compilers if you want to.The compilers that ship with the SDK
are csc.exe (C#), vbc.exe (VB.NET), and jsc.exe (Jscript .NET). Figure 2.7
depicts a subdirectory with one file called Module1.vb.The command vbc /t:exe
/verbose Module1.vb translates to:

■ vbc = Run the vbc.exe compiler with the following options

■ /t:exe = The “target” for the compilation is an exe file

■ /verbose = display all of the output information

■ Module1.vb = the source file that we want to compile

www.syngress.com

Figure 2.7 Example of Command Line Compilation Process

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 45

46 Chapter 2 • Introduction to the Microsoft .NET Framework

For C++ managed code you would compile your C++ code with the /clr
compiler option. Please note that there are many restrictions to using the /clr
option, so review the documentation and understand what you are doing before
trying to use managed extensions.

Running the compilers from the command line gives you the same effect as
setting project properties or compiler options in an integrated development envi-
ronment like Visual Studio .NET.The example in Figure 2.7 is about as easy as it
gets. Using Visual Studio .NET, or other integrated development environment for
.NET development, sure manages that process more easily.

Tools
There are a variety of tools provided with the .NET Framework SDK that aid
developers in building better .NET applications.We cover a few of the more
important ones here.

■ ILDasm

■ NGEN

■ Debugging tools

ILDASM.exe
The Intermediate Language Disassembler (ILDasm) is a tool that .NET devel-
opers need to have at their fingertips. Similar to Java class path problems, a great
deal of .NET problems with the compiler not being able to find classes is due to
namespace issues. ILDasm allows you to look at an assembly and see the metadata
for every element in the assembly. Double-clicking on an element actually brings
up the MSIL so you can see exactly what the compiler did to your code. So if
you receive an exception concerning types that can’t be found by the compiler,
looking at the metadata for the assembly quickly allows you to locate the type in
question and where it is located. Figure 2.8 shows an example of what ILDasm
can show. Double-clicking on an element shows the intermediate language code
for that element so you can see the code created by the compilers.

NGEN
The place where the machine specific assembly code is located is called the
Native Image Cache.You can see this in the \winnt\assembly directory. Each
assembly has a directory for the assembly, and a corresponding native image
directory.When the CLR needs to run code from an assembly, it first looks in

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 46

Introduction to the Microsoft .NET Framework • Chapter 2 47

this cache to see if it can avoid having to recompile the assembly to machine
code and then run.

What NGEN.exe provides is the compilation to native image code up front.
So you would probably want to do this on your production machine when a
new build is ready for deployment. Obviously, any change and redeployment of
the assembly would require a different version to be deployed, or run another
NGEN compilation so that the existing outdated native image code won’t be
run.This is because the CLR always looks in the native directory first. Figure 2.9
shows the various command line switches available to you for NGEN.

www.syngress.com

Figure 2.8 ILDasm.exe View of a .NET Executable (DLL or EXE)

Figure 2.9 NGEN.exe Options

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 47

48 Chapter 2 • Introduction to the Microsoft .NET Framework

Figure 2.10 shows the output of a successful compilation. Note that the
output displays all of the versioning information for the assembly that you ran
NGEN on.Assuming that you would use NGEN for code that you’re putting into
production, displaying the full version information for assembly gives you a chance
to double check that the proper assembly is being compiled into machine code.

Debugging Tools
The two debuggers that are included with the .NET Framework SDK download
are CorDbg and DbgClr. CorDbg is a command-line debugger. DbgClr is a
Windows GUI debugger. Figure 2.11 is an example showing DbgClr. It looks
very similar to the Visual Studio .NET integrated development environment.

www.syngress.com

Figure 2.10 Successful NGEN.exe Compilation

Figure 2.11 DbgClr.exe GUI

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 48

Introduction to the Microsoft .NET Framework • Chapter 2 49

In both tools you can perform cross-language debugging.You can also attach
and debug running processes. For both tools, you must have already compiled the
code in question with the /debug switch.These are tools that you need to take
out and play with to get the most out of them.

Base Class Libraries
In order to use the services that the .NET Framework provides, the Framework
exposes a number of base classes that are easily referenced and used. Some of the
more important ones are shown in Table 2.1 to give you an idea of how the base
classes are packaged.

The .NET Framework is “strongly typed”.This means that everything is an
object.And the objects follow a hierarchy starting from System.Object. If you don’t
explicitly code your class to inherit from another class, it is implied that your class
inherits from System.Object.The System namespace is the “root” namespace for
the Base Class Library. Everything is an object in the .NET Framework, and
everything ultimately inherits from the System.Object type. Because it’s a given if
no explicit inheritance is defined in your class, your class inherits from
System.Object.All of the base data types are found in this namespace as well (for
example String, Byte, Array, and so on). Some of the most basic services that the
.NET Framework provides are handled by classes in the System namespace, such
as exception handling, garbage collection, and the system environment.Take a
look at Table 2.1 to give you an idea of the breadth of functionality provided by
the Base Class Library classes.

Table 2.1 Some Important Base Class Library Namespaces

Namespace Purpose

System.Data Namespace that is made up of the
ADO.NET classes. Provides data access
services for any type of application
built for the .NET Framework.

System.Collections Provides different types of classes and
interfaces to create collections of
objects. Some examples are Arraylist,
Hashtable, Dictionary, Stack, SortedList,
and Queue.
From the base collection types, you can
easily create type specific collections.

www.syngress.com

Continued

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 49

50 Chapter 2 • Introduction to the Microsoft .NET Framework

System.Configuration Allows access to the information in the
configuration files that you store with
your applications. If the default “han-
dlers” (configuration file readers) don’t
meet your needs you can create your
own. All of the configuration files in
the .NET Framework are in XML format.

System.Diagnostics Used for debugging your code and
allows for code tracing. Also included
are classes that allow starting oper-
ating system processes, monitoring
performance of the system, and writing
information from the application to the
operating system’s event log.

System.IO File and directory classes provide infor-
mation and operations. Reading/writing
files and creating/using data streams.

System.Net Provides access to different network
protocols. Most notable are the
WebRequest and WebResponse classes.
The classes in this namespace wrap
functionality for network and Internet
communications.

System.Reflection A very powerful group of classes and
interfaces that allow runtime access to
the metadata for your assemblies. With
this information you could create
objects and run methods on those
objects at runtime which gives you an
enormous amount of flexibility in your
applications. You can also use reflection
to view any custom information that
you created and stored within your
assemblies.

System.Runtime.InteropServices Classes provide functionality for
accessing COM objects and the
Windows API components from the
CLR. These classes can wrap COM com-
ponents with .NET classes and add
functionality into .NET classes so that

www.syngress.com

Table 2.1 Continued

Namespace Purpose

Continued

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 50

Introduction to the Microsoft .NET Framework • Chapter 2 51

calls can be made to COM compo-
nents. Either way it’s a performance hit
to do this.

System.Runtime.Remoting The System.Runtime.Remoting name-
space provides for the creation and con-
figuration of distributed applications.
This gives you the ability to reference
objects on remote machines, similar in
some ways to what DCOM provides.

System.Text System.Text contains classes for string
manipulation and formatting, and
character set encoding/decoding. You
can improve performance if you
manage your stings wisely.

System.Web, System.Windows.Forms These namespaces provide for the cre-
ation of ASP.Net pages and win forms.
Including classes and events associated
with both.

System.Threading Provides classes and interfaces that
enable multithreaded programming.
Thread pooling is included with classes
for managing your threads. This is a
change for VB6 developers used to the
single-threaded apartment (STA) model.

System.XML Provides the functionality to create and
read standard XML documents.
Support for XML schemas, SOAP, and
XSL/T transformations are included. An
XML query language called XPath is
also found in this namespace.

This is just a fraction of the Base Class Library.You would be well served by
going through the documentation provided with the SDK, and walk through the
samples provided with the SDK. It’s a great starting point for learning what func-
tionality you have been provided with right out of the box.To use a Base Class
Library, you can use the full namespace path or the short way. Figure 2.12 is a
simple example of using a Base Class Library namespace to take advantage of its
functionality using VB.NET.

www.syngress.com

Table 2.1 Continued

Namespace Purpose

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 51

52 Chapter 2 • Introduction to the Microsoft .NET Framework

Figure 2.12 Using a Namespace from the Base Class Library

Imports System

Imports System.Collections

Module MyListModule1

Sub Main()

Dim myList As New ArrayList()

myList.Add("ItemOne")

myList.Add("ItemTwo")

Console.Out.WriteLine("The first item is " & _

myList.Item(0))

End Sub

End Module

In this example the Imports statement is where you tell the compiler that you
are referencing the System namespace.That allows us to use short notation to ref-
erence the associated namespace. If you didn’t want to use the Imports statement,
then to use the Console class you would be required to include the full namespace
notation (System.Console.Out.Writeline()).

Structured Exception Handling Revisited
Structured exception handling gives you the ability to anticipate what errors
could occur, and enclose the code that may cause those particular errors. If an
error is “caught” in your monitored code you can invoke a predefined handler
than can respond in a manner that will keep you up and running.

The .NET Framework provides its own exceptions for exceptions such as
FileNotFoundException, IndexOutOfBoundsException, and SecurityException.You have
the ability to create very complex error-handling schemes by inheriting from the
System.Exception and associated exception classes to create user-defined errors and
a common way of handling all exceptions in your application.

You can also grab the stack information at the time of the exception and pass
that back up through the layers to where you want to evaluate and/or save that

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 52

Introduction to the Microsoft .NET Framework • Chapter 2 53

information for troubleshooting purposes. Stack trace information contains most
of the information located on the stack at the time of the exception, so you can
see what methods were called and exactly where the error occurred. Figure 2.13
below shows an example of using the Try–Catch–Finally block.The descriptions
for the lines of code in Figure 2.13 are listed in Table 2.2

Figure 2.13 Structured Exception Handling

Imports System

10 Imports System.IO

20 Public Class FileExceptionExample

30 Public Sub DoFileStuff(ByVal strFileName as String)

40 Try

50 Dim fs As New FileStream("c:\myfile.txt",

FileMode.Open)

60 'File operations go here …..

70 'When file operations complete then close the stream

80 fs.Close()

90

100 Catch fnfException As FileNotFoundException

110 Throw New FileNotFoundException("Hey file isn't

there", fnfException)

120 Catch eosException As EndOfStreamException

130 Throw New EndOfStreamException("put your message

in here")

140 Catch e As Exception

150 Throw New Exception("put your message in here")

160

170 Finally 'optional

180

190 End Try

200

210 End Sub

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 53

54 Chapter 2 • Introduction to the Microsoft .NET Framework

Table 2.2 Line Number Despcriptions for Figure 2.13

Line
Numbers Description

40-100 Performing a file input/output operation. From experience, you
may know that several different exceptions could occur with
accessing the file. With that in mind we place the Try statement
above the code that could cause exceptions.

100 A likely problem could be that the passed in string for the file
name (strFileName) doesn’t correspond to a file at the location
specified. This is a problem that we would want to catch in our
code so we place a Catch statement for the
FileNotFoundException.

110 The FileNotFoundException is handled by passing to the method
that called the DoFileStuff method, a message and the exception
object variable (e) so that it can handle the exception appropri-
ately. The throw statement does that for us. You have a few dif-
ferent options for the throw method as far as what you return to
the calling method. We could handle the exception here, on line
110 instead of throwing it, and continued on with operation. If
you don’t throw the exception, then the code in the Finally block
(line 170) will execute, and operation will continue with the code
after the Finally block.

120 In this line you’re catching an EndOfStreamException. You can
catch multiple exceptions for a given Try block. When an exception
occurs the CLR looks at the Catch statements from top to bottom
to find the proper handler for the exception that occurred.

140 This Catch statement says, “If an exception occurs that I haven’t
anticipated and coded a Catch block for, I’ll take care of it here”.

170 The Finally statement is optional. This is where you would write
“cleanup” code to release resources that may have been obtained
before the exception. For example: When performing data opera-
tions you open a data connection, then get an SQLException
when you try to access the data. In this case you would want to
release that data connection.

190 The End Try is placed here to completely wrap our exception han-
dling in the Try block. You can have multiple Try blocks in a
method, and you can nest Try blocks.

Generally, in our opinion, you want to try to handle the exception as close
as possible to where it occurs. Most large enterprise applications have a “global”
error handler that does things like provide notifications to the user of the

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 54

Introduction to the Microsoft .NET Framework • Chapter 2 55

exception, logs the exception, and sends notifications via e-mail or pager to sup-
port personnel, all depending on the severity of the error.

Components in the .NET Framework
The .NET Framework’s “layered” approach provides a firm foundation for
building .NET applications.The CLR is at higher level of abstraction than the
Windows operating system.The Base Class Library provides a higher level of
abstraction than the CLR. Now in Figure 2.14, you can see that the major com-
ponents for building .NET application like ASP.NET are at a higher level of
abstraction still. Each layer makes development more productive, while still
allowing the ability to drill down into the lower levels to get at specific function-
ality.The different frameworks also provide excellent models for developing your
own frameworks.And you can always subclass the existing functionality to create
your own.

ASP.NET
As shown in Figure 2.14 ASP.NET is a framework that sits architecturally on top of
the .NET Framework. So it takes the Base Class Libraries for Web development
and abstracts them to a higher level to make creating Web applications even easier.

Web Form pages are the central display mechanism for ASP.NET applica-
tions.They are made up of .aspx files compiled with an associated .NET lan-
guage class file that contains the code.This is known as code-behind and is the
default when you create a new Web Form in Visual Studio .NET. It is possible to

www.syngress.com

Figure 2.14 The .NET Framework with Major Components

Common Language RunTime

Base Class Library

ASP.NET

The .NET Framework Components

ADO.NET

Web
Services

Windows Forms

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 55

56 Chapter 2 • Introduction to the Microsoft .NET Framework

put the code directly on the same page as the HTML but we don’t recom-
mended it.The whole idea is to separate the display from the logic.The Web
Form pages are compiled prior to execution and cached so performance overall
should prove to be better than the interpreted Active Server Pages (ASP).

Performance is also improved by the new caching classes that enable smart
caching.That gives you the ability to store information that doesn’t change much,
but is expensive to obtain (like through database operations) in memory. It’s
called the cache, and when that information is needed, it’s grabbed from memory,
instead of having to perform the data operations.You can set up time durations
for the cache and dependencies such as if file x changes then empty the cache of
y information.There is even a caching namespace, called System.Web.Caching, to
give you very low-level control over what you can cache. Careful use of this fea-
ture offers significant performance enhancement.

ASP.NET gives you server side controls which expose you to events and server
side processing that didn’t exist in traditional ASP.The page is created on the server,
and pure HTML is rendered back to the client so they can be run on any browser.
Visual Studio .NET is an awesome environment for creating ASP.NET Web appli-
cations.The VB-like ability to drag and drop controls and position them on the
forms, double-clicking on the forms controls to call up the code and create events
for that control, and the debugging make building Web applications fun. It removes
the drudgery that was experienced with ASP development.

ADO.NET
As shown in Figure 2.14 ASP.NET has full access to the System.Data namespace
of ADO.NET.ADO.NET provides data management services to all .NET
Framework components.ADO.NET is similar to ADO, therefore the learning
curve is not as steep to get up to speed with ADO.NET.The additional object-
oriented nature of ADO.NET is the major difference.

In the .NET Framework SDK only two data “managed providers” are
included:The OLEDB managed provider, and SQLServer 7 and above managed
provider. Data operations using the SQLServer provider enable better perfor-
mance, as there is no middle layer of translation that you will find with the
OleDB managed provider.The “middle layer” that I’m referring to is the
OLEDB/ODBC layer that the OLEDB Data Provider requires for operations.
The SQLServer provider communicates via the tabular data stream (TDS) pro-
tocol which is the native protocol for SQLServer.This optimization is what pro-
vides the major performance difference between the SQLServer and OLEDB
data providers.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 56

Introduction to the Microsoft .NET Framework • Chapter 2 57

DataReader classes are provided in ADO.NET that process a data stream in a
read-only, forward-only manner. Currently there is an SqlDataReader for
SQLServer, and OleDbDataReader for the other data providers.This provides the
most efficient way to get read-only data for filling simple lists and tables on your
Windows Forms and Web Forms.

When you need update ability the DataSet object will do the trick.This is
really an in memory database that allows you to get your data and work with it
just like you would data in a normal database.This includes have multiple tables
and relationships involved and maintained in DataSet.You can tell the DataSet to
update the main datastore and refresh the DataSet as often as you need to.
DataSets can be created and populated manually and used simple as a temporary
database.The data in a DataSet is persisted as XML which can be very useful
when you need to transport that data over the Internet, or to applications run-
ning on different platforms like mainframe or UNIX.

ADO.NET focuses on obtaining data from a data source, then disconnecting
from that data source and managing the how the disconnected data is used. Using
disconnected data makes the most sense in a Web environment. One of the things
you look for when developing applications for the Web is to make sure that if
you are performing operations that carry a high resource overhead, like setting
and maintaining data connections, you try to get rid of those resources as soon as
you’re done with them. Having a data connection open just long enough to get a
disconnected set of data allows the server to reclaim those resources sooner, so
the server will be able to handle more users. If possible, having the data set on the
client to be worked with and updated in batch, minimizes round trips to the
server, which improves scalability as well.

VB.NET
VB.NET takes the impression of non-VB programmers that VB is a “toy” language,
and dispels that once and for all.You still have the productivity that VB has always
been famous for. But now you also have the fully object-oriented language features
and the ability to actually see what is going on behind the scenes. Nearly every fea-
ture that is available to the other .NET languages is open to VB.NET.All of this
new power will require VB developers that don’t have object-oriented program-
ming experience to increase their knowledge in that area. Building scalable enter-
prise applications requires careful design.The good news is, if developers have been
building object-oriented applications and components in VB using the Windows
DNA architecture, then the learning curve is not as steep.And there are tools you

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 57

58 Chapter 2 • Introduction to the Microsoft .NET Framework

can use and steps you can take to move your current applications closer to .NET so
your migration will be as painless as possible.

Since VB.NET is targeted at the .NET Framework, it carries with it all of the
benefits and available services provided by the Framework. The .NET
Framework also enables interoperability between objects you create with any
.NET programming language. Some big language differences between VB.NET
and previous versions are listed here:

■ Structured exception handling.

■ VB.NET is now a fully object-oriented language including inheritance.

■ VB.NET is fully integrated into the .NET Framework with access to
the same services provided to C#, managed C++, and the growing
number of .NET Framework-targeted languages.

■ Delegates have been included. Delegates are type-safe, object-oriented
function pointers. They do more than simple function pointers in C++,
and are a big difference between .NET languages and Java. Delegates
can handle more than one method.You can also use delegates to identify
event handlers and are also used with multithreaded applications.

■ The threading model has been changed from single-threaded apartment
to free threading.

NOTE

Visual Basic 6.0 used the single-treaded apartment threading model. In
the STA model, a component’s methods are tied to a single thread
(apartment). Therefore, any other methods for that component that
could run have to wait for the running method to finish. The .NET
Framework uses a multithreaded apartment (MTA) threading model,
which allows multiple threads to be available to an apartment. This adds
to the responsiveness that the user experiences.

An upgrade wizard is provided with Visual Studio .NET that will help you
upgrade existing VB6 applications to VB.NET.The wizard also creates an upgrade
report that documents the upgrade process and any errors that occurred during
the process. Figure 2.15 shows a simple example of writing “Hello .NET World”
to the console window.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 58

Introduction to the Microsoft .NET Framework • Chapter 2 59

Figure 2.15 Hello .NET world in VB.NET

Imports System

Namespace Example

Module HelloDotNetWorld

Sub Main()

Console.Out.WriteLine("Hello .NET World")

End Sub

End Module

End Namespace

C#
C# is a language created from the ground up. It has taken the best from existing
object-oriented languages, like Java and C++, and improved on perceived short-
comings from those languages.The intent was to create a language that would
give the productivity of VB and the power of C++. C# is centered on building
components.There have been many comparisons between Java and C#. In our
opinion, C# has many similarities to Java and offers more.

Any Java or C++ programmer will have few problems reading and under-
standing the C# syntax. Like Java, it has taken the best of C++ and left out the
areas that can cause the most headaches, such as function pointers or the ability
to step on unauthorized memory locations that caused blue screen of death.

Figure 2.16 shows the same simple program as seen in Figure 2.15. Note the
minor syntax changes between the C# example and the VB.NET examples.

Figure 2.16 Hello .NET world in C#

using System;

namespace HelloDotNetWorld

{

public class HelloDotNetWorld

{

public static void Main()

{

Console.Out.WriteLine("Hello .NET World!");

}

}

}

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 59

60 Chapter 2 • Introduction to the Microsoft .NET Framework

In most cases the difference between C# and VB.NET is in the syntax. So
again, choice of language is really up to developer preference.The expectation is
that C++ and Java developers will gravitate to C#, and VB developers will gravi-
tate towards VB.NET.Time will tell.

Windows Forms
The .NET Framework has two primary user interfaces,ASP.NET Web Forms,
and Windows Forms.Windows Forms is a framework that provides the new plat-
form for Microsoft Windows application development, based on the .NET
Framework.This framework provides a clear, object-oriented, extensible set of
classes that enable you to develop what is known as rich Windows applications.
They are applications that allow you to take advantage of what the Windows
operating system provides for creating user interfaces.

The System.Windows.Forms namespace provides the classes that enable you to
create rich client applications. Because everything in the .NET Framework is a
type, you can reuse and extend your forms classes by inheriting from them and
then making whatever additions or changes you may need to.

The Form class is simply a window-like container for the controls that you
place on the form.You have the ability to derive from the System.Windows
.Forms.Form class to create new forms or use an existing form as a template and
derive from the pre-existing form. Creating form templates could save a lot of
work for larger applications.Any changes to the base Form class are automatically
available to the other Form classes that inherit from that base class.

As with the Form class, you can use an existing control or inherit from an
existing control to create your own.Windows Forms controls are called rich con-
trols because they carry with them the rich Windows user interface and format-
ting. In comparison controls in ASP.NET Web Forms are limited to what HTML
3.2 Web browsers can provide as far as user interface.

Control layout has been enhanced with the Windows Forms Framework. If
your forms can be resized at run time, and you want the controls to resize with
the form, you would use the Dock property.This sets the controls position within
the form and maintains that during resizing.

If you require that the control maintain a certain distance between the con-
trol and it’s container upon a resizing of the form you would use the Anchor
property.You can anchor a control to one or more sides of its container so that
“anchor” position is maintained with respect to the chosen sides of the container.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 60

Introduction to the Microsoft .NET Framework • Chapter 2 61

Anchor and Dock properties are also available at runtime.You have an unlim-
ited number of different combinations of containers/controls/control properties
so that you can set up your forms in any way you like.

With Visual Studio .NET you drag and drop the rich set of Windows controls
on to the Form design interface just like in previous versions of Visual Basic

Web Services
Web services are the latest and greatest “new thing” to be hyped in the industry.
Microsoft, IBM, Sun and other companies are getting on the Web services band-
wagon.Web services are basically components that can be referenced and their
methods run via standard Web protocols, like SOAP (Simple Object Access
Protocol) and XML.The industry is moving towards standard ways of describing
the functionality that a Web service provides, and how a Web service is used. Since
standard Web protocols are used it shouldn’t matter what language the Web service
is written in or what platform the Web service is running on.As long as you com-
municate over HTTP with XML and are using SOAP you should be able to send
information to and receive information from a Web service. Because the commu-
nication is over HTTP it can make it through firewalls without any problem but
the ability to encrypt the communication and/or use Secure Sockets Layer is also
available to provide the same level of security as ASP.NET Web applications.

As long as a client application has Internet access, it can utilize a Web service.
This includes interaction with other Web services,ASP.NET Web applications,
and rich Windows Forms applications.The vision of the next incarnation of the
Internet is made up of applications utilizing functionality from Web services all
over the Internet.And users pay for the service every time they access the Web
service.This means that a company that provides a particular set of functionality
can now open that functionality to the world on the Internet.A totally new rev-
enue stream is the vision.

For developers using Visual Studio .NET accessing a Web service for its func-
tionality is as easy as adding a reference to the service and then coding to that
reference just like it was a component on your machine. Creating a Web service
is almost as simple. Create a Web service project and every method that is to be
exposed publicly from your Web service you put the <WebMethod> attribute
above the method’s signature.

Web Services are integrated with the ASP.NET framework so they have the
same set of services available to them as ASP.NET applications have. Some exam-
ples are data caching,ADO.NET, session state, and security.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 61

62 Chapter 2 • Introduction to the Microsoft .NET Framework

Summary
We’ve covered a lot in this chapter.We started with obtaining and installing the
.NET Framework SDK.There can be some confusion on the system require-
ments. Just be careful that you meet them so that you can save yourself a lot of
headaches.The .NET SDK install is very easy.The thing that does catch some
people is the requirement for ASP.NET that IIS be installed first.

We went over the Common Language Runtime, the “sandbox” for .NET
program execution.The CLR manages the code you write from verifying access,
finding the proper assembly, through code execution.The code you write and
compile for the CLR is converted to Microsoft Intermediate Language (MSIL)
and is called managed code.When the CLR needs the code executed it Just-In-
Time compiles it then runs it.When the objects are no longer referenced garbage
collection will take care of them as appropriate.

Because all .NET languages compile to MSIL you have language interoper-
ability between .NET languages for inheritance, referencing objects, error han-
dling, and debugging. Interoperability with “unmanaged” code is also possible
with the CLR turning over control of that code to the Windows operating
system.

Deployment is much less of a hassle with versioning.Versioning defines an
executable in different ways (name, version, culture, public key).This allows mul-
tiple versions of the same file to be deployed on the same machine, with no con-
flicts.There are different ways to bundle your files for deployment from XCOPY
to Windows Installer packages and CAB files.

Metadata makes the executables self-describing which opens up many possi-
bilities for dynamic loading of objects and method calls at runtime.The metadata
contains information for every element managed by the runtime along with the
MSIL.This makes an assembly a complete deployable unit.Therefore we have no
need for the Windows registry.

Namespaces allow you to create scope for your common groups of function-
ality, and provide another way to disambiguate one assembly from another with
the same name.The base class library provides excellent examples of how to
intelligently use namespaces.

In the “programming” section we discussed some more important concepts that
should help you get a jump start on your development. Once you become familiar
with the base class library you will be well on your way to “becoming one” with
the .NET Framework. ILDasm.exe and the debugging tools will make your devel-
opment time more efficient and more pleasurable. NGen.exe compiles your code

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 62

Introduction to the Microsoft .NET Framework • Chapter 2 63

to the native machine codes so the CLR will bypass the Just-In-Time compilation
and run the machine code directly significantly improving performance.

The last section was on the .NET Framework’s major components
(ASP.NET,ADO.NET,Windows Forms, and Web Services). Most of these are
actually frameworks in themselves put there to make our lives easier.You can use
the frameworks provided, or create your own by using the base class library
directly. But so far we’ve been able to get by with very little inheriting from the
ASP.NET or the Windows Forms frameworks. Microsoft has really spent a lot of
time and money researching developer productivity issues and the Visual Studio
.NET and the .NET Framework show the results.

Two of the components,ASP.NET and ADO.NET have their own chapters
so we’ll revisit them again. we’re sure with practice, and the help of the other
.NET related books in the Syngress library, you’ll find programming for the
.NET Framework as fun as we have.

Solutions Fast Track

Obtaining the .NET Framework

Ensure that your computer meets the minimum requirements for
running the .NET Framework.This will save you much time and
trouble.

www.microsoft.com/net is the main site for downloading.

Follow the instructions carefully if you download the multiple small
files. If you choose to download the one large file give yourself plenty of
time. It’s about 120Meg in size.

Installing the .NET Framework

Remember that even though the .NET Framework is very stable and
solid, any Beta software should be installed on non-critical machines.

You can save a lot of time by making sure that your machine meets the
minimum system requirements.

The Visual Studio .NET install includes the .NET Framework SDK.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 63

64 Chapter 2 • Introduction to the Microsoft .NET Framework

Common Language Runtime

The CLR is the primary engine of the .NET Framework.

Code that you write in any .NET language is compiled to the Microsoft
Intermediate Language (MSIL).

When first requested to be executed the MSIL is then Just-In-Time
compiled to the applicable machine code for the CPU.

Developing Applications with the .NET Framework

It is possible to write code with the .NET SDK using a simple text
editor, and compile the code using the command line.

ILDasm.exe allows you to see all of the types in your .NET executable.
Double-Clicking on any of the types will bring up a window displaying
the MSIL code for that type.

Since all .NET languages compile to MSIL, your choice for of language
for .NET development can be based on personal preference without
taking a major performance hit.

Using NGEN.exe on an assembly when you place it into production
eliminates the need for the CLR to compile the MSIL when executing
code from that assembly.

Become one with the base class libraries. It’s a lot of functionality for free.

Take a hard look at structured exception handling.

Components in the .NET Framework
The major components in the .NET platform utilize the services
provided by the base class library, and in most cases abstract that
functionality to a higher level to make our lives easier.An example
would be the ASP.NET framework allowing us to program for the Web
at a much higher level then would be necessary if we just used the base
class library.

Windows Forms and ASP.NET Web Forms are the user interface
frameworks for .NET development.

www.syngress.com

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 64

Introduction to the Microsoft .NET Framework • Chapter 2 65

ADO.NET provides the services for data access in the .NET
Framework. It is optimized for performance (disconnected datasets) and
productivity (object oriented data access classes).

Web Services are components residing on a Web server accessible from
anywhere using standard Web protocols.

Q: I installed Windows 2000 (professional or server), then installed the .NET
Framework SDK.Why can’t I create a Web project?

A: IIS 5.0 is a Windows Component that isn’t part of a normal Windows 2000
install unless you specifically set that as an install option. IIS 5.0 must be
installed prior to the .NET Framework SDK install or ASP.NET won’t register
correctly.To recover you must use regsvr32.exe to register the Aspnet_isapi.dll.

Q: I want to install the .NET Framework SDK on Windows NT 4.0 server, can
I do that?

A: To install on Windows NT 4.0 server you must have service pack 6a applied.

Q: Where can I find the install for ASP.NET?

A: ASP.NET ships as part of the .NET Framework SDK?

Q: What is ASP.NET premium?

A: ASP.NET premium is a separate download and install giving you everything
you need to develop ASP.NET applications. It includes the .NET Framework
Redistributable, core ASP.NET support, and adds additional support for
maintaining ASP.NET session state in a Web farm. In addition there is sup-
port for output caching and secure hosting. It basically gives you more func-
tionality that the ASP.NET support in the .NET Framework SDK. Possibly
by the time the .NET Framework SDK is out of beta and in production this
functionality will be integrated with the SDK.

www.syngress.com

Frequently Asked Questions
The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 65

206_XMLweb_02.qxd 6/25/02 4:27 PM Page 66

XML Fundamentals

Solutions in this chapter:

■ An Overview of XML

■ Processing XML Documents Using .NET

■ Reading and Parsing Using the
XmlTextReader Class

■ Writing an XML Document Using the
XmlTextWriter Class

■ Exploring the XML Document Object
Model

■ Querying XML Data Using XPathDocument
and XPathNavigator

■ Transforming an XML Document Using
XSLT

■ Working with XML and Databases

Chapter 3

67

� Summary

� Solutions Fast Track

� Frequently Asked Questions

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 67

68 Chapter 3 • XML Fundamentals

Introduction
The Extensible Markup Language (XML) is the latest offering in the world of
data access. Microsoft has been actively supporting this language since its concep-
tion. XML provides a universal way for exchanging information between organi-
zations. Its structure makes it perfect for online applications and working with
data residing on the local or remote data sources.

Like Hypertext Markup Language (HTML), XML is a tag-based markup lan-
guage. Many other technologies, such as browsers, JavaScript,VBScript, Dynamic
HTML (DHTML), and Cascading Style Sheets (CSS), were developed to support
the HTML documents. Similarly, XML cannot be singled out as a stand-alone
technology. It is actually a family of a growing set of technologies and frame-
works.The major members of this family are XML parsers, Extensible Stylesheet
Language Transformations (XSLT), XPath, XLink, Simple API for XML (SAX),
Schema Generators, and Document Object Model (DOM), just to name a few.

Please take note that ADO.NET is not coded in XML but that ADO.NET
revolves around XML. Some readers may confuse the terms. Microsoft has inte-
grated the XML technology in its .NET Framework rather tightly.The core
foundation of the entire ADO.NET architecture is built upon XML.The
ADO.NET itself is not coded in XML; however, it provides the facilities to apply
various existing and emerging XML technologies to manipulate data and infor-
mation.The System.XML namespace offers perhaps the richest collection of
classes for generating, transmitting, processing, and storing information via XML.
In this chapter, we will first have a brief introduction to the structural compo-
nents of an XML document.Then we will look into the architecture of the
XML objects in the .NET Framework. Finally, we will study several major
XML.NET objects with many examples.

An Overview of XML
XML is fast becoming a standard for data exchange in the next generation’s
Internet applications. XML allows user-defined tags that make XML document
handling more flexible than HTML, the conventional language of the Internet.
Since XML is the heart and soul of ADO.NET, sound knowledge of XML is
imperative for developing applications in ASP.NET.The following section
touches on some of the basic concepts of XML.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 68

www.syngress.com

What Does an XML Document Look Like?
The idea behind XML is surprisingly simple.The major objective is to organize
information in such a way so that human beings can read and comprehend the
data and its context; also, the document itself is technology and platform inde-
pendent. Consider the following text file:

F10 Shimano Calcutta 47.76

F20 Bantam Lexica 49.99

Obviously, it is difficult to understand exactly what information the above
text file contains. Now consider the XML document shown in Figure 3.1.The
code is available in the Catalog1.xml file on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 3.1 Example XML Document (Catalog1.xml)

<?xml version="1.0"?>

<!-- Chapter8\Catalog1.xml -->

<Catalog>

<Product>

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product>

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

The above document is the XML’s way of representing data contained in a
product catalog. It has many advantages. It is easily readable and comprehendible,
it is self-documented, and it is technology independent. Most importantly, it is
quickly becoming the universally acceptable data container and transmission
format in the current information technology era.Well, welcome to the exciting
world of XML!

XML Fundamentals • Chapter 3 69

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 69

70 Chapter 3 • XML Fundamentals

Creating an XML Document
We can use Notepad to create an XML document.VS.NET offers an array of
tools packaged in the XML Designer to work with XML documents.We will
demonstrate the usages of the XML Designer later. Right now, go ahead and

www.syngress.com

XML and Its Future
XML is quickly becoming the universal protocol for transferring infor-
mation from site to site via HTTP. Whereas, the HTML will continue to
be the language for displaying documents on the Internet, the devel-
opers will start using the power of XML to transmit, exchange, and
manipulate data using XML.

XML offers a very simple solution to a complex problem. It offers a
standard format for structuring data or information in a self-defined
document format. This way, the data are kept independent of the pro-
cesses that will consume the data. Obviously, the concept behind XML is
nothing new. XML happens to be a proper subset of a massive specifi-
cation named SGML developed by W3C in 1986. The W3C began to
develop the standard for XML in 1996 with the motivation that XML
would be simpler to use than SGML but that it will have more rigid struc-
ture than HTML. Since then, many software vendors have implemented
various features of XML technologies. For example, Ariba has built its
entire B2B system architecture based on XML, many Web servers (such
as Weblogic Server) utilize XML specifications for configuring various
server related parameters, Oracle has included necessary parsers and
utilities to develop business applications in its 8i/9i suites, and finally, the
.NET has also embraced the XML technology.

XML contains self-defined data in document format. Hence it is
platform independent. It is also easy to transmit a document from a site
to another site easily via HTTP. However, the applications of XML do not
necessarily have to be limited to conventional Internet applications only.
It can be used to communicate and exchange information in other con-
texts, too. For example, a VB client can call a remote function by passing
the function name and parameter values using a XML document. The
server may return the result via a subsequent XML document. Basically,
that is the technology behind the SOAP (Simple Object Access Protocol).

Developing & Deploying…

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 70

XML Fundamentals • Chapter 3 71

open the Catalog1.xml file Solutions Web site (www.syngress.com/solutions) for
this book in IE 5.0 or higher.You will see that the IE displays the document in a
very interesting fashion with drill-down features as shown in Figure 3.2.

Creating an XML Document
in VS.NET XML Designer
It is very easy to create an XML document in VS.NET. Use the following steps
to develop an XML document:

1. From the Project menu, select Add New Item.

2. Select the XML File icon in the Add New Item dialog box.

3. Enter a name for your XML file.

4. The VS.NET will automatically load the XML Designer and display the
XML document template.

5. Finally, enter the contents of your XML document.

The system will display two tabs for two views: the XML view and the Data
view of your XML document.These views are shown in Figures 3.3 and 3.4.The
XML Designer has many other tools to work with.We will introduce these later
in this chapter.

www.syngress.com

Figure 3.2 Catalog1.xml Displayed in IE

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 71

72 Chapter 3 • XML Fundamentals

Components of an XML Document
In this section, we will introduce the major components of an XML document.
An XML document contains a variety of constructs. Some of the frequently used
ones are as follows:

■ Declaration Each XML document may have the optional entry
<?xml version=“1.0”?>. This standard entry is used to identify the doc-
ument as an XML document conforming to the W3C (World Wide
Web Consortium) recommendation for version 1.0.

■ Comment An XML document may contain html-style comments like
<!--Catalog data -->.

■ Schema or Document Type Definition (DTD) In certain situa-
tions, a schema or DTD may precede the XML document.A schema or

www.syngress.com

Figure 3.3 The XML View of an XML Document in VS .NET XML Designer

Figure 3.4 The Data View of an XML Document in VS.NET XML Designer

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 72

XML Fundamentals • Chapter 3 73

DTD contains the rules about the elements of the document. For
example, we may specify a rule like “A product element must have a
ProductName, but a ListPrice element is optional.”We will discuss schemas
later in the chapter.

■ Elements An XML document is mostly composed of elements.An
element has a start-tag and end-tag. In between the start-tag and end-
tag, we include the content of the element.An element may contain a
piece of character data, or it may contain other elements. For example,
in the Catalog1.xml, the Product element contains three other elements:
ProductId, ProductName, and ListPrice. On the other hand, the first
ProductName element contains a piece of character data like Shimano
Calcutta.

■ Root Element In an XML document, one single main element must
contain all other elements inside it.This specific element is often called
the root element. In our example, the root element is the Catalog ele-
ment.The XML document may contain many Product elements, but
there must be only one instance of the Catalog element.

■ Attributes Okay, we agree that we didn’t tell you the whole story in
our first example. So far, we have said that an element may contain other
elements, or it may contain data, or both. Besides these, an element may
also contain zero or more so-called attributes.An attribute is just an
additional way to attach a piece of data to an element.An attribute is
always placed inside the start-tag of an element, and we specify its value
using the “name=value” pair protocol.

Let us revise our Catalog1.xml and include some attributes to the Product
element. Here, we will assume that a Product element will have two attributes
named Type and SupplierId.As shown in Figure 3.5, we will simply add the
Type=“Spinning Reel” and SupplierId=“5” attributes in the first product element.
Similarly, we will also add the attributes to the second product element.The code
shown in Figure 3.5 is also available on the Solutions Web site for the book
(www.syngress.com.solutions).

Figure 3.5 Catalog2.xml

<?xml version="1.0"?>

<!-- Chapter8/Catalog2.xml -->

<Catalog>

www.syngress.com

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 73

74 Chapter 3 • XML Fundamentals

<Product Type="Spinning Reel" SupplierId="5">

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

</Product>

<Product Type ="Baitcasting Reel" SupplierId="3">

<ProductID>F20</ProductID>

<ProductName>Bantam Lexica</ProductName>

<ListPrice>49.99</ListPrice>

</Product>

</Catalog>

Let us not get confused with the “attribute” label! An attribute is just an addi-
tional way to attach data to an element. Rather than using the attributes, we
could have easily modeled them as elements as follows:

<Product>

<ProductID>F10</ProductID>

<ProductName>Shimano Calcutta </ProductName>

<ListPrice>47.76</ListPrice>

<Type>Spinning Reel</Type>

<SupplierId>5</SupplierId>

</Product>

Alternatively, we could have modeled the entire product element to be com-
posed of only attributes as follows:

<Product ProductID="F10" ProductName="Shimano Calcutta"

ListPrice = "47.76" Type="Spinning Reel" SupplierId= "5" >

</Product>

At the initial stage, the necessity of an attribute may appear questionable.
Nevertheless, they exist in the W3C recommendation, and in most situations
these become handy in designing otherwise-complex XML-based systems.

■ Empty Element We have already mentioned a couple of times that an
element may contain other elements, or data, or both. However, an ele-
ment does not necessarily have to have any of them. If needed, it can be
kept totally empty. For example, observe the following element:

www.syngress.com

Figure 3.5 Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 74

XML Fundamentals • Chapter 3 75

<Input type="text" id="txtCity" runat="server" />

The empty element is a correct XML element.The name of the element is
Input. It has three attributes: type, id, and runat. However, neither does it contain
any sub-elements, nor does it contain any explicit data. Hence, it is an empty ele-
ment.We may specify an empty element in one of two ways:

■ Just before the “>” symbol of the start-tag, add a slash (/), as shown
above, or

■ Terminate the element using standard end-tag as follows:

<Input type="text" id="txtCity" runat="server" ></Input>

Examples of some empty elements are:
, <Pup Age=1 />,
<Story></Story>, and <Mail/>.

Well-Formed XML Documents
At first sight, an XML document may appear to be like a standard HTML docu-
ment with additional user-given tag names. However, the syntax of an XML doc-
ument is much more rigorous than that of an HTML document.The HTML
document enables us to spell many tags incorrectly (the browser would just
ignore it), and it is a free world out there for people who are not case-sensitive.
For example, we may use <BODY> and </Body> in the same HTML docu-
ment without getting into trouble. On the contrary, there are certain rules that
must be followed when we develop an XML document. Please, refer to the
http://W3C.org Web site for the details. Some basic rules, among many others
are as follows:

■ The document must have exactly one root element.

■ Each element must have a start-tag and end-tag.

■ The elements must be properly nested.

■ The first letter of an attribute’s name must begin with a letter or an
underscore.

■ A particular attribute name may appear only once in the same start tag.

An XML document that is syntactically correct is often called a well-formed
document. If the document is not well-formed, Internet Explorer will provide an
error message. For example, the following XML document will receive an error
message, when opened in Internet Explorer, just because of the case sensitivity of
the tag <product> and </Product>.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 75

76 Chapter 3 • XML Fundamentals

<?xml version="1.0"?>

<product>

<ProductID>F10</ProductID>

</Product>

Schema and Valid XML Documents
An XML document may be well formed, but it may not necessarily be a valid
XML document.A valid XML document is a document that conforms to the
rules specified in its Document Type Definition (DTD) or Schema. DTD and
Schema are actually two different ways to specify the rules about the contents of
an XML document.The DTD has several shortcomings. First, a DTD document
does not have to be coded in XML.That means a DTD is itself not an XML
document. Second, the data-types available to define the contents of an attribute
or element are very limited in DTD.This is why, although VS.NET allows both
DTD and schema, we will present only the schema specification in this chapter.
The W3C has put forward the candidate proposal for the standard schema specifi-
cation (www.w3.org/XML/Schema#dev).The XML Schema Definition (XSD)
specification by W3C has been implemented in ADO.NET.VS .NET supports
the XSD specifications.

A schema is simply a set of predefined rules that describe the data contents of
an XML document. Conceptually, it is very similar to the definition of a rela-
tional database table. In an XML schema, we define the structure of an XML
document, its elements, the data types of the elements and associated attributes,
and most importantly, the parent-child relationships among the elements.We may
develop a schema in many different ways. One way is to enter the definition
manually using Notepad.We may also develop schema using visual tools, such as
VS.NET or XML Authority. Many automated tools may also generate a rough-
cut schema from a sample XML document (similar to reverse-engineering).

If we do not want to code a schema manually, we may generate a rough-cut
schema of a sample XML document using VS.NET XML Designer.We may then
polish the rough-cut schema to conform to our exact business rules. In VS.NET,
it is just a matter of one click to generate a schema from a sample XML docu-
ment. Use the following steps to generate a rough-cut schema for our
Catalog1.xml document (shown in Figure 3.1):

■ Open the Catalog1.xml file in a VS.NET Project.VS.NET will display
the XML document and its XML View and the Data View tabs at the
bottom.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 76

XML Fundamentals • Chapter 3 77

■ Click on the XML menu pad of the Main menu.

That’s all! The systems will create the schema named Catalog1.xsd. If we
double-click on the Catalog1.xsd file in the Solution Explorer, we will see
the screen as shown in Figure 3.6.We will see the DataSet view tag and the XML
view tag at the bottom of the screen.We will elaborate on the DataSet view later
in the chapter.

For discussion purposes, we have also listed the contents of the schema in
Figure 3.7.The XSD starts with certain standard entries at the top.Although the
code for an XSD may appear complex, there is no need to get overwhelmed by
its syntax.Actually, the structural part of an XSD is very simple.An element is
defined to contain either one or more complexType or simpleType data structures.A
complexType data structure nests other complexType or simpleType data structures.A
simpleType data structure contains only data.

In our XSD example (Figure 3.7), the Catalog element may contain one or
more (unbounded) instances of the Product element.Thus, it is defined to contain
a complexType structure. Besides containing the Product element, it may also con-
tain other elements (for example, it could contain an element Supplier). In the
XSD construct, we specify this rule using a choice structure as follows:

<xsd:element name="Catalog" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

--- --- ---

--- --- ---

</xsd:choice>

</xsd:complexType>

</xsd:element>

www.syngress.com

Figure 3.6 Truncated Version of the XSD Schema Generated by the
XML Designer

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 77

78 Chapter 3 • XML Fundamentals

Because the Product element contains further elements, it also contains a
complexType structure.This complexType structure, in turn, contains a sequence of
ProductId, and ListPrice.The ProductId and the ListPrice do not contain further ele-
ments.Thus, we simply provide their data types in their definitions.The auto-
mated generator failed to identify the ListPrice element’s text as decimal data.We
converted its data type to decimal manually.The complete listing of the
Catalog.xsd is shown in Figure 3.7.The code is also available on the Solutions
Web site for the book (www.syngress.com/solutions).

NOTE

An XSD is itself a well-formed XML document.

Figure 3.7 Partial Contents of Catalog1.xsd

<xsd:schema id="Catalog"

targetNamespace="http://tempuri.org/Catalog1.xsd"

xmlns="http://tempuri.org/Catalog1.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

attributeFormDefault="qualified" elementFormDefault="qualified">

<xsd:element name="Catalog" msdata:IsDataSet="true"

msdata:EnforceConstraints="False">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Product">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ProductID"

type="xsd:string" minOccurs="0" />

<xsd:element name="ProductName"

type="xsd:string" minOccurs="0" />

<xsd:element name="ListPrice"

type="xsd:string" minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

www.syngress.com
Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 78

XML Fundamentals • Chapter 3 79

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Minimal knowledge about the XSD schema is required to understand the
XML.NET architecture.You will find it especially useful when we discuss the
XmlDataDocument.

www.syngress.com

Figure 3.7 Continued

XML Validation in VS.NET
VS.NET provides a number of tools to work on XML documents. One of
them enables you to check if a given XML document is well formed. While
on the XML view of an XML document, you may use XML | Validate XML
Data of the main menu to see if the document is well formed. The system
displays its findings in the bottom-left corner of the status bar. Similarly,
you can use the Schema Validation tool to check if your schema is well
formed, too. While on the XML view of the schema, use the Schema|
Validate Schema of the main menu to perform this task.

However, none of the above tests guarantee that your XML data is
valid according to the rules specified in the schema. To accomplish this
task, you will need to link your XML document to a particular schema
first. Then you can test the validity of the XML document. To assign a
schema to an XML document, perform the following steps:

1. Display the XML document in XML view (in the XML
Designer).

2. Display its Property sheet. (It will be captioned
DOCUMENT.)

3. Open the drop-down list box at the right-hand side of the
targetSchema, and select the appropriate schema.

4. Now, go ahead and validate the document using the XML |
Validate XML Data of the main menu.

Developing & Deploying…

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 79

80 Chapter 3 • XML Fundamentals

NOTE

Readers interested in the details of DTD and Schema may explore
http://msdn.microsoft.com/xml/default.asp and www.w3.org/XML.

Structure of an XML Document
In an XML document, the data are stored in a hierarchical fashion.A hierarchy is
also referred to as a tree in data structures. Conceptually, the data stored in the
Catalog1.xml can be represented as a tree diagram, as shown in Figure 3.8. Please
note that certain element names and values have been abbreviated in the tree dia-
gram, mostly to conserve real estate on the page.

In this figure, each rectangle is a node in the tree. Depending on the context,
a node can be of different types. For example, each product node in the figure is
an element-type node. Each product node happens to be a child node of the catalog

www.syngress.com

By the way, there are many other third-party software packages
that can also test if an XML document is well formed, and if it is valid
(against a given schema). In this context, we have found the XML
Authority (by TIBCO) and XML Writer (by Wattle Software) to be very
good. An excellent tool named XSV is also available from www.w3.org/
2000/09/webdata/xsv.

Figure 3.8 The Tree-Diagram for Catalog1.xml

Catalog

Product Product

PId PricePName PricePNamePId

47.76ShimanoF10 49.99BantamF20

The Root: Also Known As:
Document.Element

Siblings

First Child of Catalog

A Text-Type Node

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 80

XML Fundamentals • Chapter 3 81

node.The catalog node can also be termed as the parent of all product nodes.
Each product node, in turn, is the parent of its PId, PName, and Price nodes.

In this particular tree diagram, the bottom-most nodes are not of element-
type; rather, these are of text-type.There could have been nodes for each attribute
and its value, too, although we have not shown those in this diagram.

The Product nodes are the immediate descendants of the Catalog node. Both
Product nodes are siblings of each other. Similarly, the PId, PName, and Price nodes
under a specific product node are also siblings of each other. In short, all children
of a parent are called siblings.

At this stage, you may have been wondering why we are studying the family
history rather than ASP.Well, you will find out pretty soon that all of these termi-
nologies will play major roles in taming the beauties and the beasts of something
called XML technology.

Processing XML Documents Using .NET
The entire ADO.NET Framework has been designed based on XML technology.
Many of the ADO.NET data-handling methodologies, including DataTables and
DataSets, use XML in the background, thus keeping it transparent to us.The
.NET Framework’s System.Xml namespace provides a very rich collection of
classes that can be used to store and process XML documents.These classes are
also often referred to as the XML.NET.

Before we get into the details of the XML.NET objects, let us ask ourselves
several questions.As ASP NET developers, what kind of support would we need
from .NET for processing XML documents? Well, at the very least, we would
like .NET to assist us in creating, reading, and parsing XML documents.Anything
else? Okay, if we have adequate cache, we would like to load the entire document
in the memory and process it directly from there. If we do not have enough
cache, then we would like to read various fragments of an XML document one
piece at a time. Do we want more? How about the ability for searching and
querying the information contained in an XML document? How about instantly
creating an XML document from a database query and sending it to our B2B
partners? How about converting an XML document from one format to another
format and transmitting it to other servers? Actually, XML.NET provides all of
these, and much more!

All of the above questions fall into two major categories:

1. How do we read, parse and write XML documents?

2. How do we store, structure, and process them in the memory?

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 81

82 Chapter 3 • XML Fundamentals

As mentioned earlier, XML is associated with a growing family of technolo-
gies and frameworks.The major trends in this area are W3C DOM, XSLT, XPath,
XPath Query, SAX, and XSLT. In XML.NET, Microsoft has incorporated almost
all of these frameworks and technologies. It has also added some of its own
unique ideas.There is a plethora of alternative XML.NET objects to satisfy our
needs and likings. However, it’s a jungle out there! In the remainder of this sec-
tion, we will have a brief glance over this jungle.

Reading and Writing XML Documents
Two primary classes in this group are XmlReader and XmlWriter. Both of these
classes are abstract classes, and therefore we cannot create objects of these classes.
Microsoft has provided a number of concrete implementations of both of these
classes:

■ XmlTextReader We may use an object of this class to read non-
cached XML data on a forward-only basis. It checks for well-formed
XML, but it does not support data validation.

■ XmlNodeReader An object of this class can be used to access non-
cached forward-only data from an XML node. It does not support data
validation.

■ XmlValidationReader This is very similar to the XMLTextReader,
except that it accommodates XML data validation.

We may create objects of these classes and use their methods and properties.
If warranted, we may also extend these classes to provide further specific

www.syngress.com

Legacy Systems and XML
Organizational data stored in legacy systems can be converted to appro-
priate XML documents, if needed, reasonably easily. There is third-party
software like XML Authority by Tibco Extensibility and others, which can
convert legacy system’s data into XML format. We can also use VS.NET
to convert legacy data to XML documents.

Damage & Defense…

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 82

XML Fundamentals • Chapter 3 83

functionalities. Fortunately, the XmlWriter class has only one concrete implemen-
tation: XmlTextWriter. It can be used to write XML document on a forward-only
basis.These classes and their relationships are shown in Figure 3.9.

Storing and Processing XML Documents
Once XML data are read, we need to structure these data in the computer’s
memory. For this purpose, the major offerings include the XmlNode class and the
XPathDocument class.The XmlNode class is an abstract class.There are a number of
concrete implementations of this class, too, such as the XmlDocument,
XmlAttribute, XmlDocumentFragment, and so on. We will limit our attention to the
XmlDocument class, and to one of its subsequent extensions named the
XmlDataDocument.The characteristics of some of these classes are as follows:

■ XmlDocument This class structures an XML document according to
a DOM tree (as specified in the W3C DOM Core Level 1 and 2 specifi-
cations).

■ XmlDataDocument This class is a major milestone in integrating
XML and database processing. It allows two views of the in-cache data:
the Relational Table view, and the XML Tree View.

■ XPathDocument This class employs the XSLT and XPath technolo-
gies, and enables you to transform an XML document in to a desired
format.

Above classes are essentially used for storing the XML data in the cache. Just
storing data in the memory serves us no purpose unless we can process and
query these data.The .NET Framework has included a number of classes to

www.syngress.com

Figure 3.9 Major XmlReader and XmlWriter Classes

XmlReader

XmlValidatingReader

XmlNodeReader

XmlTextReader

XmlWriter XmlTextWriter

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 83

84 Chapter 3 • XML Fundamentals

operate on the cached XML data.These classes include XPathNavigator,
XPathNodeIterator, XSLTransform, XmlNodeList, etc.These classes are shown in
Figure 3.10.

Reading and Parsing Using
the XmlTextReader Class
The XmlTextReader class provides a fast forward-only cursor that can be used to
“pull” data from an XML document.An instance of it can be created as follows:

Dim myRdr As New XmlTextReader(Server.MapPath("catalog2.xml"))

Once an instance is created, the imaginary cursor is set at the top of the docu-
ment.We may use its Read() method to extract fragments of data sequentially. Each
fragment of data is distantly similar to a node of the underlying XML tree.The
NodeType property captures the type of the data fragment read, the Name property
contains the name of the node, and the Value property contains the value of the
node, if any.Thus, once a data fragment has been read, we may use the following
type of statement to display the node-type, name, and value of the node.

Response.Write(myRdr.NodeType.ToString() + " " +

myRdr.Name + ": " + myRdr.Value)

The attributes are treated slightly differently in the XmlTextReader object.When
a node is read, we may use the HasAttributes property of the reader object to see if
there are any attributes attached to it. If there are attributes in an element, the
MoveToAttribute(i) method can be applied to iterate through the attribute collection.
The AttributeCount property contains the number of attributes of the current ele-
ment. Once we process all of the attributes, we need to apply the MoveToElement

www.syngress.com

Figure 3.10 Major XML Classes for In-Memory Storage and Processing

XmlNode

XmlDataDocument

XmlAttribute
and more ...

XmlDocument

XPathDocument

Navigation and Other
Related Processing
Classes

• XPathNavigator
• XPathNodeIterator
• XSLTransform
• XmlNodeList
• many more ...

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 84

XML Fundamentals • Chapter 3 85

method to move the cursor back to the current element node.Therefore, the fol-
lowing code will display the attributes of an element:

If myRdr.HasAttributes Then

For i = 0 To myRdr.AttributeCount - 1

myRdr.MoveToAttribute(i)

Response.Write(myRdr.NodeType.ToString() + " : "+ myRdr.Name _

+ ": " + myRdr.Value + "</br>")

Next i

myRdr.MoveToElement()

End If

Microsoft has loaded the XmlDocument class with a variety of convenient class
members. Some of the frequently used methods and properties are AttributeCount,
Depth, EOF, HasAttributes, HasValue, IsDefault, IsEmptyElement, Item, ReadState, and
Value.

Parsing an XML Document
In this section, we will apply the XmlTextReader object to parse and display all
data contained in our Catalog2.xml (as shown in Figure 3.5) document.The code
for this example and its output are shown in Figure 3.11 and Figure 3.12, respec-
tively.The code shown in Figure 3.12 is available on the Solutions Web site for
the book (www.syngress.com/solutions). Our objective is to start at the top of
the document and then sequentially travel through its nodes using the
XMLTextReader’s Read() method.When there is no more data to read, the Read()
method returns “false.”Thus, we are able to build the While myRdr.Read() loop to
process all data. Please review the code (Figure 3.12) and its output cautiously.
While displaying the data, we have separated the node-type, node-name, and
values using colons. Not all elements have names or values. Hence, you will see
many empty names and values after respective colons.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 85

86 Chapter 3 • XML Fundamentals

Figure 3.12 XmlTextReader1.aspx

<!-- Chapter8\xmlTextReader1.aspx -->

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<Script runat="server">

Sub Page_Load(sender As Object, e As EventArgs)

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

Dim i As Integer

While myRdr.Read()

Response.Write(myRdr.NodeType.ToString() + " : " + myRdr.Name _

+ ": " + myRdr.Value + "
")

If myRdr.HasAttributes Then

For i = 0 To myRdr.AttributeCount - 1

myRdr.MoveToAttribute(i)

Response.Write(myRdr.NodeType.ToString() + " : "+ myRdr.Name _

+ ": " + myRdr.Value + "</br>")

Next i

myRdr.MoveToElement()

End If

End While

www.syngress.com

Figure 3.11 Truncated Output of the XmlTextReader1.aspx Code

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 86

XML Fundamentals • Chapter 3 87

myRdr.Close()

End Sub

</Script>

Navigating through an XML
Document to Retrieve Data
In the previous section, we extracted and displayed all data, including the “white-
spaces” contained in an XML document. Now, we will illustrate an example where
we will navigate through the document and pick up only those data that are neces-
sary for an application.The output of this application is shown in Figure 3.13. In
this example, we will display the names of our products in a list box.We will load
the list box using the Product Name data from the XML file.The user will select a
particular product. Subsequently, we will search the XML document to find and
display the price of the product.We will travel through the XML file twice, once to
load the list box, and once to find the price of a selected product. Please be aware
that we could have easily developed the application by building an array or arraylist
of the products during the first pass through the XML data, thus avoiding a second
pass. Nevertheless, we are reading the file twice just to illustrate various methods
and properties of the XmlTextReader object.

To load the List Box, we will go through the following process:We will load
the list box in the Page_Load event. Here, we will read the nodes one at a time. If
the node type is of element-type, we will check if its name is ProductName. If it is

www.syngress.com

Figure 3.12 Continued

Figure 3.13 Output of the Navigation ASPX Example XmlTextReader2.aspx

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 87

88 Chapter 3 • XML Fundamentals

a ProductName node, we will perform a Read() to get to its text node and then
apply the myRdr.ReadString() method to extract the value and load it in the list
box. Finally, we will close the reader object. Caution: We are assuming that there
is no “whitespace” between the ProductName and its Text node. If there is a
“whitespace,” we will need to put the second Read() in a loop until the node-
type is Text.

While myRdr.Read()

If XmlNodeType.Element

If myRdr.Name="ProductName" Then

myRdr.Read()

lstProducts.Items.Add(myRdr.ReadString)

End If

End If

End While

myRdr.Close()

To find the price of the selected product, we will go through the following
process:We will include the necessary code in the “unclick” event code of the
command button “Show Price.”We will create a second XmlTextReader object
based on the Catalog2.xml file. Of course, we may scan all nodes sequentially to
find the price. However, the XmlTextReader class enables you to skip undesirable
nodes, such as the “whitespace” or the declaration nodes via the MoveToContent()
method.According to Microsoft, all nonwhitespace, Element, End Element,
EntityReference, and EndEntity nodes are content nodes.The MoveToContent()
method checks whether the current node is a content node. If the node is not a
content node, then the method skips to the next content node.You need to be
careful though. If the current node happens to be a content node, the cursor does
not move to the next content node automatically on a further MoveToContent().

Initially, when we instantiate the reader object, its node type is None. It hap-
pens to be a noncontent node. Hence our first MoveToContent() statement takes
us to a content node.There, we check if it is an Element-type node named
“ProductName” and if its ReadString() is equal to the name of the selected
product. If all are true, then we apply a Read() to go to the next node.This Read()
may take us to a “whitespace” node, and thus we have applied a MoveToContent()
to get to the ListPrice node. Figure 3.14 shows an excerpt of the relevant code.
The complete code is available in XmlTextReader2.aspx file on the Solutions
Web site for the book (www.syngress.com/solutions).

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 88

XML Fundamentals • Chapter 3 89

Figure 3.14 Excerpt of XmlTextReader2.aspx

Sub showPrice(s As Object, e As EventArgs)

Dim myRdr2 As New XmlTextReader(Server.MapPath("Catalog2.xml"))

Dim unitPrice As Double

Dim qty AS Integer

Do While Not myRdr2.EOF()

If (myRdr2.MoveToContent() = XmlNodeType.Element _

And myRdr2.Name ="ProductName" _

And myRdr2.ReadString()=lstProducts.SelectedItem.ToString())

myRdr2.Read()

If (myRdr2.MoveToContent() = XmlNodeType.Element _

And myRdr2.Name ="ListPrice")

unitPrice=Double.Parse(myRdr2.ReadString())

lblPrice.Text= "Unit Price = " + FormatCurrency(unitPrice)

Exit Do

End If

End If

myRdr2.Read()

Loop

qty = Integer.Parse(txtQty.Text)

lblAmount.Text = "Amount Due = " + FormatCurrency(qty * unitPrice)

myRdr2.Close()

End Sub

By the way, we could have also used the MoveToContent() method to load our
list box more effectively. However, we just wanted to show the alternative
methodologies.

NOTE

We may also read XML files from remote servers as follows:

Dim myRdr As New XmlTextReader("http://ahmed2/Chapter8/Catalog2.xml")

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 89

90 Chapter 3 • XML Fundamentals

Writing an XML Document
Using the XmlTextWriter Class
The XmlTextWriter class is a concrete implementation of the XmlWriter abstract
class.An XmlTextWriter object can be used to write data sequentially to an output
stream, or to a disk file as an XML document.The data to be written may come
from the user’s input and/or from a variety of other sources, such as text files,
databases, XmlTextReaders, or XmlDocuments. Its major methods and properties
include Close, Flush, Formatting,WriteAttribues,WriteAttributeString,WriteComment,
WriteElementString,WriteElementString,WriteEndAttribute,WriteEndDocument,
WriteState, and WriteStartDocument.

Generating an XML Document
Using XmlTextWriter
In this section, we will collect user-given data via an .aspx page, and write the
information in an XML file.The run-time view of the application is shown in
Figure 3.15. On the click event of the “Create XML File,” the application will
create the XML file (in the disk) and display it back in the browser as seen in
Figure 3.16.

We have included the necessary code in the click event of the command
button. Our objective is to write the data in a disk file named Customer.xml. In
the code, first we have created an instance of the XmlTextWriter object as follows:

Dim myWriter As New XmlTextWriter _

(Server.MapPath("Customer.xml"), Nothing)

www.syngress.com

Figure 3.15 Output of the XmlTextReader2.aspx

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 90

XML Fundamentals • Chapter 3 91

The second parameter “Nothing” is specified to map the file to a UTF-8
format.Then it is just a matter of writing the various elements, attributes, and
their values judiciously. Once the file is written, we simply employed the
Response.Redirect(Server.MapPath(“Customer.xml”)) to display the XML documents
information in the browser.The complete code for the application is shown in
Figure 3.17. Both Customer.xml and XmlTextWriter1.aspx files are available on
the Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.17 XmlTextWriter1.aspx

<!-- Chapter8\XmlTextWriter1.aspx -->

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<HTML><HEAD><title>XMLTextWriter Example</title></HEAD>

<body><form runat="server">

XmlTextWriter Example

<asp:Label id="lblAcno" Text="Account Number :" runat="server"/>

<asp:TextBox id="txtAcno" runat="server" width="50" _

text=" ST124" />

<asp:Label id="lblName" Text="Name :" runat="server" />

<asp:TextBox id="txtName" runat="server" width="100" text="Vijay

Ananth"/>

<asp:Label id="lblCity" Text="City :" runat="server"/>

<asp:TextBox id="txtCity" runat="server" width="100" text="Toledo"/>

<asp:Button id="cmdWriteXML" Text="Create XML File" runat="server"

onclick="writeXML"/>

</form>

www.syngress.com

Figure 3.16 Generated XML File

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 91

92 Chapter 3 • XML Fundamentals

<Script Language="vb" runat="server">

Sub writeXML(sender As Object,e As EventArgs)

Dim myWriter As New XmlTextWriter _

(Server.MapPath("Customer.xml"), Nothing)

myWriter.Formatting = Formatting.Indented

myWriter.WriteStartDocument() 'Start a new document

' Write the Comment

myWriter.WriteComment("XMLTextWriter Example")

' Insert an Start element tag

myWriter.WriteStartElement("CustomerDetails")

' Write an attribute

myWriter.WriteAttributeString("AccountType", "Saving")

' Write the Account element and its content

myWriter.WriteStartElement("AccountNumber","")

myWriter.WriteString(txtAcno.Text)

myWriter.WriteEndElement()

' Write the Name Element and its data

myWriter.WriteStartElement("Name","")

myWriter.WriteString(txtName.Text)

myWriter.WriteEndElement()

'Write the City element and its data

myWriter.WriteStartElement("City","")

myWriter.WriteString(txtCity.Text)

myWriter.WriteEndElement()

'End all the tags here

myWriter.WriteEndDocument()

myWriter.Flush()

myWriter.Close()

'Display the XML content on the screen

Response.Redirect(Server.MapPath("Customer.xml"))

www.syngress.com

Figure 3.17 Continued

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 92

XML Fundamentals • Chapter 3 93

End Sub

</Script>

Exploring the XML
Document Object Model
The W3C Document Object Model (DOM) is a set of specifications to represent
an XML document in the computer’s memory. Microsoft has implemented the
W3C Document Object Model via a number of .NET objects.The XmlDocument
is one of these objects.When an XmlDocument object is loaded, it organizes the
contents of an XML document as a “tree” (as shown in Figure 3.18).Whereas the
XMLTextReader object provides a forward-only cursor, the XmlDocument object
provides fast and direct access to a node. However, a DOM tree is cache intensive,
especially for large XML documents.

An XmlDocument object can be loaded from an XmlTextReader. Once it is
loaded, we may navigate via the nodes of its tree using numerous methods and
properties. Some of the frequently used members are the following:
DocumentElement (root of the tree), ChildNodes (all children of a node), FirstChild,
LastChild, HasChildNodes, ChildNodes.Count (number of children), InnerText (the
content of the sub-tree in text format), Name (node name), NodeType, and Value
(of a text node) among many others.

www.syngress.com

Figure 3.17 Continued

Figure 3.18 Node Addressing Techniques in an XML DOM Tree

Document.Element.ChildNodes(1).
ChildNodes(2).InnerTextCatalog

Product Product

PId PricePName PricePNamePId

47.76ShimanoF10 49.99BantamF20

Document.Element.
ChildNodes(0)

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 93

94 Chapter 3 • XML Fundamentals

If needed, we may address a node using the parent-child hierarchy.The first
child of a node is the ChildNode(0), the second child is ChildNode(1), and so on.
For example, the first product can be referenced as DocumentElement.ChildNodes(0).
Similarly, the price of the second product can be addressed as DocumentElement
.ChildNodes(1).ChildNodes(2).InnerText.

Navigating through an XmlDocument Object
In this example we will implement our product selection page using the XML
document object model.The output of the code is shown in Figure 3.19.

Let’s go through the process of loading the XmlDocument (DOM tree).There
are a number different ways to load an XML Document object.We will load it
using an XmlTextReader object.We will ask the reader to ignore the “whitespaces”
(more or less to conserve cache).As you can see from the following code, we are
loading the tree in the Page_Load event. On “PostBack”, we will not have access
to this tree.That is why we are storing the “tree” in a Session variable.When the
user makes a selection, we will retrieve the tree from the session, and search its
node for the appropriate price.

Private Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XmlDocument()

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

myRdr.WhitespaceHandling = WhitespaceHandling.None

myDoc.Load(myRdr)

Session("sessionDoc") = myDoc ' Put it in a session variable

www.syngress.com

Figure 3.19 Output of the XmlDocument Object Example

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 94

XML Fundamentals • Chapter 3 95

Once the tree is loaded, we can load the list box with the InnerText property
of the ProductName nodes.

For i = 0 To myDoc.DocumentElement.ChildNodes.Count - 1

lstProducts.Items.Add _

(myDoc.DocumentElement.ChildNodes(i).ChildNodes(1).InnerText)

Next i

myRdr.Close()

Next, let’s investigate how to retrieve the price of a selected product. On
click of the Show Price button, we simply retrieve the tree from the session, and
get to the Price node directly.The SelectedIndex property of the list box does a
favor for us, as its Selected Index value will match the corresponding child’s
ordinal position in the Catalog (DocumentElement). Figure 3.20 shows an excerpt
of the relevant code that is used to retrieve the price of a selected product.The
complete code is available in the XmlDom1.aspx file on the Solutions Web site
for the book (www.syngress.com/solutions).

Figure 3.20 Partial Listing of XmlDom1.aspx

Private Sub showPrice(s As Object, e As EventArgs)

Dim i As Integer

Dim qty As Integer = 1

Dim price As Double

Dim myDoc As New XmlDocument()

myDoc = Session("sessionDoc")

i = lstProducts.SelectedIndex ' The Row number selected

qty = Integer.Parse(txtQty.Text)

price = Double.Parse _

(myDoc.DocumentElement.ChildNodes(i).ChildNodes(2).InnerText)

lblPrice.Text = FormatCurrency(price)

lblAmount.Text = FormatCurrency(qty * price)

End Sub

Parsing an XML Document
Using the XmlDocument Object
A tree is composed of nodes. Essentially, a node is also a tree because it contains
all other nodes below it.A node at the bottom does not have any children; hence,

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 95

96 Chapter 3 • XML Fundamentals

most likely it will be of a text-type node.We will employ this phenomenon to
travel through a tree using a VB recursive procedure.The primary objective of
this example is to travel through DOM tree and display the information con-
tained in each of its nodes.The output of this exercise is shown in Figure 3.21.

We will develop two sub-procedures:

1. DisplayNode(node As XmlNode) It will receive a node and check if
it is a terminal node. If the node is a terminal node, this sub-procedure
will print its contents. If the node is not a terminal node, then the sub-
procedure will check if the node has any attributes. If there are
attributes, it will print them.

2. TravelDownATree(tree As XmlNode) It will receive a tree, and at
first it will call the DisplayNode procedure.Then it will pass the sub-tree
of the received tree to itself.This is a recursive procedure.Thus, it will
actually fathom all nodes of a received tree, and we will get all nodes of
the entire tree printed.

The complete listing of the code is shown in Figure 3.22.The code is also
available in the file named XmlDom2.aspx on the Solutions Web site for the
book (www.syngress.com/solutions).As usual, we will load the XmlDocument in
the Page_Load() event using an XmlTextReader.After the DOM tree is loaded, we
will call the TravelDownATree recursive procedure, which will accomplish the
remainder of the job.

Figure 3.22 The Complete Code XmlDom2.aspx

<!-- Chapter8\xmlDom2.aspx -->

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

www.syngress.com

Figure 3.21 Parsing an XmlDocument Object

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 96

XML Fundamentals • Chapter 3 97

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myXmlDoc As New XmlDocument()

Dim myRdr As New XmlTextReader(Server.MapPath("Catalog2.xml"))

myRdr.WhitespaceHandling = WhitespaceHandling.None

myXmlDoc.Load (myRdr)

TravelDownATree(myXmlDoc.DocumentElement)

myRdr.Close()

End If

End Sub

Sub TravelDownATree(tree As XMLNode)

If Not IsNothing(tree) Then

DisplayNode(tree)

End If

If tree.HasChildNodes Then

tree = tree.FirstChild

While Not IsNothing(tree)

TravelDownATree(tree) //Call itself and pass the subtree

tree = tree.NextSibling

End While

End If

End Sub

Sub DisplayNode(node As XmlNode)

If Not node.HasChildNodes Then

Response.Write("Name= " + node.Name + " Type= " _

+ node.NodeType.ToString()+" Value= "+node.Value +"
")

Else

Response.Write("Name= " + node.Name + " Type= " _

+ node.NodeType.ToString() + "
")

If node.NodeType = XmlNodeType.Element Then

Dim x As XmlAttribute

For each x In node.Attributes

Response.Write("Name= " + x.Name + " Type = " _

+ x.NodeType.ToString()+" Value = "+x.Value +"
")

www.syngress.com

Figure 3.22 Continued

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 97

98 Chapter 3 • XML Fundamentals

Next

End If

End If

End Sub

</Script>

Using the XmlDataDocument Class
The XmlDataDocument class is an extension of the XmlDocument class. It more-or-
less behaves almost the same way the XmlDocument does.The most fascinating
feature of an XmlDataDocument object is that it provides two alternative views of
the same data, the “XML view” and the “relational view.”The XmlDataDocument
has a property named DataSet. It is through this property that XmlDataDocument
exposes its data as one or more related or unrelated DataTables. A DataTable is
actually an imaginary table-view of XML data. Once we load an
XmlDataDocument object, we can treat it as a DOM tree, or we can treat its data
as a DataTable (or a collection of DataTables) via its DataSet property. Figure 3.23
shows the two views of an XmlDataDocument. Because these views are drawn
from the same DataDocument object, these are automatically synchronized.That
means that any changes in any one of them will change the other.

www.syngress.com

Figure 3.22 Continued

Figure 3.23 Two Views of an XmlDataDocument Object

XML Source

XmlDataDocument

The Tree View
DataSet’s

Data Table View

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 98

XML Fundamentals • Chapter 3 99

In this section, we will provide three examples.

■ We will demonstrate how to load an XML document as an
XmlDataDocument object, and process it as a Dom tree.

■ We will illustrate how to retrieve the data from a DataTable view of the
XmlDataDocument’s DataSet.

■ Finally,We will demonstrate when and how the XmlDataDocument object
provides multiple-table views.

Loading an XmlDocument and
Retrieving the Values of Certain Nodes
In this section we will load an XmlDataDocument using our Catalog2.xml file.
After we load it, we will retrieve the product names and load them in a list
box.The output of this example is shown in Figure 3.24.The code for this
application is listed in Figure 3.25, and it is also available in the file named
XmlDataDocument1.aspx on the Solutions Web site for the book
(www.syngress.com/solutions).

The XmlDataDocument is a pleasant object to work with. In this example, the
code is pretty straightforward.After we have loaded the XmlDataDocument, we
have declared an XmlNodeList collection named productNames.We have populated
the collection by using the GetElementsByTagName(“ProductName”) method of
the XmlDataDocument object. Finally, it is just a matter of iterating through the
productNames collection and loading each of its members in the list box.

At this stage, you will probably ask why we are not finding the unit price of
the selected product.Actually, therein lies the beauty of the XmlDataDocument.
Because it has extended the XmlDocument class, all of the members of the
XmlDocument class are also available to us.Thus, we could use the same technique
as shown in our previous example to find the price. Nevertheless, the reason for

www.syngress.com

Figure 3.24 Output of XmlDataDocument1.aspx

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 99

100 Chapter 3 • XML Fundamentals

not showing the searching technique here is that we will cover it later when we
discuss the XPathIterator object.

Figure 3.25 XmlDataDocument1.aspx

<!--\Chapter8\xmlDataDocument1.aspx -->

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<html><head></head><body><form runat="server">

Select a Product:

<asp:ListBox id="lstProducts" runat="server" rows = "2" />

</body></form><html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

myDataDoc.Load(Server.MapPath("Catalog2.xml"))

Dim productNames As XmlNodeList

productNames= myDataDoc.GetElementsByTagName("ProductName")

Dim x As XmlNode

For Each x In productNames

lstProducts.Items.Add (x.FirstChild().Value)

Next

End If

End Sub

</Script>

Using the Relational View of
an XmlDataDocument Object
In this example, we will process and display the Catalog3.xml document’s data
as a relational table in a DataGrid. The Catalog3.xml is exactly the same as
Catalog2.xml except that it has more data.The Catalog3.xml file is available on
the Solutions Web site for the book (www.syngress.com/solutions).The output
of this example is shown in Figure 3.26.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 100

XML Fundamentals • Chapter 3 101

If we want to process the XML data as relational data, we need to load the
schema of the XML document first.We have generated the following schema for
the Catalog3.xml using VS.NET. The schema specification is shown in Figure 3.27
(also available on the Solutions Web site for the book).

Figure 3.27 Catalog3.xsd

<xsd:schema id="Catalog" targetNamespace="http://tempuri.org

/Catalog3.xsd" xmlns="http://tempuri.org/Catalog3.xsd"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata

="urn:schemas-microsoft-com:xml-msdata" attributeFormDefault

="qualified" elementFormDefault="qualified">

<xsd:element name="Catalog" msdata:IsDataSet="true"

msdata:EnforceConstraints="False">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Product">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ProductID" type="xsd:string" minOccurs="0"

msdata:Ordinal="0" />

<xsd:element name="ProductName" type="xsd:string"

minOccurs="0" msdata:Ordinal="1" />

<xsd:element name="ListPrice" type="xsd:string" minOccurs="0"

msdata:Ordinal="2" />

</xsd:sequence>

<xsd:attribute name="Type" form="unqualified" type="xsd:string"/>

<xsd:attribute name="SupplierId" form="unqualified"

www.syngress.com

Figure 3.26 Output of XmlDataDocument DataSet View Example

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 101

102 Chapter 3 • XML Fundamentals

type="xsd:string" />

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

NOTE

When we create a schema from a sample XML document, VS.NET auto-
matically inserts an xmlns attribute to the root element. The value of this
attribute specifies the name of the schema. Thus when we created the
schema for Catalog3.xml, the schema was named Catalog3.xsd and
VS.NET inserted the following attributes in the root element of
Catalog3.xml:

<Catalog xmlns="http://tempuri.org/Catalog3.xsd">

In our .aspx code, we loaded the schema using the ReadXmlSchema method
of our XmlDataDocument object as:

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Catalog3.xsd")).

Next, we have loaded the XmlDataDocument as:

myDataDoc.Load(Server.MapPath("Catalog3.xml")).

Since the DataDocument provides two views, we have exploited its
DataSet.Table(0) property to load the DataGrid and display our XML file’s infor-
mation in the grid.The complete listing of the code is shown in Figure 3.28.The
code is also available in the XmlDataDocDataSet1.aspx file on the Solutions Web
site for the book (www.syngress.com/solutions).

Figure 3.28 Complete Listing XmlDataDocDataSet1.aspx

<!-- Chapter8\XmlDataDocDataSet1.aspx -->

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

www.syngress.com

Figure 3.27 Continued

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 102

XML Fundamentals • Chapter 3 103

<html><head></head><body><form runat="server">

Select a Product:

<asp:DataGrid id="myGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

' load the schema

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Catalog3.xsd"))

' load the xml data

myDataDoc.Load(Server.MapPath("Catalog3.xml"))

myGrid.DataSource = myDataDoc.DataSet.Tables(0)

myGrid.DataBind()

End If

End Sub

</Script>

Viewing Multiple Tables of
a XmlDataDocument Object
In many instances, an XML document may contain nested elements. Suppose
that a bank has many customers, and a customer has many accounts.We have
modeled this simple scenario in an XML document with nested elements.This
document, named Bank1.xml, is shown in Figure 3.29. It is also available on the
Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.29 Bank1.xml

<?xml version="1.0" encoding="utf-8" ?>

<Bank xmlns="http://tempuri.org/Bank1.xsd">

<Customer>

<CustomerID>C100</CustomerID>

<CustomerName>Alfred Smith</CustomerName>

<City>Toledo</City>

<Account>

www.syngress.com

Figure 3.28 Continued

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 103

104 Chapter 3 • XML Fundamentals

<Type>Savings</Type>

<Balance>1500.00</Balance>

</Account>

<Account>

<Type>Checking</Type>

<Balance>111.11</Balance>

</Account>

<Account>

<Type>Home Equity</Type>

<Balance>50000</Balance>

</Account>

</Customer>

<Customer>

--- --- ---

--- --- ---

</Customer>

</Bank>

If we load the above XML document and its schema in an XmlDataDocument
object, it will provide two relational tables’ views: one for the customer’s informa-
tion, and the other for the account’s information. Our objective is to display the
data of these relational tables in two DataGrids as shown in Figure 3.30.

www.syngress.com

Figure 3.29 Continued

Figure 3.30 Displaying Customer and Accounts Data in Two Data Grids

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 104

XML Fundamentals • Chapter 3 105

To develop this application, first we had to generate the schema for our
Bank1.xml file.We used the VS.NET XML designer to accomplish this task. It is
interesting to observe that while creating the schema,VS.NET automatically gen-
erates the 1:Many relationship between the Customer and Accounts elements.To
establish the relationship, it also creates an auto-numbered primary key column
(Customer_Id) in the Customer DataTable. Simultaneously, it inserts the appropriate
values of the foreign keys in the Account DataTable.The DataSet view of the gen-
erated schema is shown in Figure 3.31.

In order to provide the relational view of our XML document (Bank1.xml),
VS.NET included the Customer_Id attributes in both Customer and Account ele-
ments in its generated schema. It also generated the necessary schema entries to
describe the implied relationship among the Customer and Account elements.
Figure 3.32 shows an excerpt of the generated schema for our XML file.The
complete schema is available in a file named Bank1.xsd on the Solutions Web site
for the book (www.syngress.com/solutions).

Figure 3.32 Primary Key and Foreign Key Specifications in the Bank1.xsd

<xsd:unique name="Constraint1" msdata:PrimaryKey="true">

<xsd:selector xpath=".//Customer" />

<xsd:field xpath="@Customer_Id" /></xsd:unique>

<xsd:keyref name="Customer_Account"

refer="Constraint1"msdata:IsNested="true">

<xsd:selector xpath=".//Account" />

www.syngress.com

Figure 3.31 XmlDataDocument DataSet Representation in Visual Studio .NET

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 105

106 Chapter 3 • XML Fundamentals

<xsd:field xpath="@Customer_Id" />

</xsd:keyref>

In the above fragment of the generated schema, the xsd:unique element speci-
fies the Customer_Id attribute as the primary key of the Customer element.
Subsequently, the xsd:keyref element specifies the Customer_Id attribute as the for-
eign key of the Account element. XPath expressions have been used to achieve the
afore-mentioned objectives.

The complete listing of the application is shown in Figure 3.33. It is also
available in the xmlDataDocDataSet2.aspx file on the Solutions Web site for the
book (www.syngress.com/solutions).The code is pretty straightforward.We have
loaded two data grids from two DataTables of the DataSet, associated with the
XmlDataDocument object.

Figure 3.33 Complete Code of XmlDataDocDataSet2.aspx

<!-- Chapter8\XmlDataDocDataSet2.aspx -->

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<html><head></head><body><form runat="server">

Customers :

<asp:DataGrid id="myCustGrid" runat="server"/>

Accounts :

<asp:DataGrid id="myAcctGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataDoc As New XmlDataDocument()

' load the schema

myDataDoc.DataSet.ReadXmlSchema(Server.MapPath("Bank1.xsd"))

' load the xmldata

myDataDoc.Load(Server.MapPath("Bank1.xml"))

myCustGrid.DataSource = myDataDoc.DataSet.Tables("Customer")

myCustGrid.DataBind()

www.syngress.com

Figure 3.32 Continued

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 106

XML Fundamentals • Chapter 3 107

'load the Account grid

myAcctGrid.DataSource = myDataDoc.DataSet.Tables("Account")

myAcctGrid.DataBind()

End If

End Sub

</Script>

NOTE

In a Windows Form, the DataGrid control by default provides automatic
drill-down facilities for two related DataTables. Unfortunately, it does not
work in this fashion in a Web form. Additional programming is needed
to simulate the drill-down functionality.

In this example, we have illustrated how an XmlDataDocument object maps
nested XML elements into multiple DataTables.Typically, an element is mapped
to a table if it contains other elements. Otherwise, it is mapped to a column.
Attributes are mapped to columns. For nested elements, the system creates the
relationship automatically.

Querying XML Data Using
XPathDocument and XPathNavigator
The XmlDocument and the XmlDataDocument have certain limitations. First of all,
the entire document needs to be loaded in the cache. Often, the navigation pro-
cess via the DOM tree itself gets to be clumsy.The navigation via the relational
views of the data tables may not be very convenient either.To alleviate these
problems, the XML.NET has provided the XPathDocument and XPathNavigator
classes.These classes have been implemented using the W3C XPath 1.0
Recommendation (www.w3.org/TR/xpath).

The XPathDocument class enables you to process the XML data without
loading the entire DOM tree.An XPathNavigator object can be used to operate
on the data of an XPathDocument. It can also be used to operate on XmlDocument
and XmlDataDocument. It supports navigation techniques for selecting nodes,

www.syngress.com

Figure 3.33 Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 107

108 Chapter 3 • XML Fundamentals

iterating over the selected nodes, and working with these nodes in diverse ways
for copying, moving, and removal purposes. It uses XPath expressions to accom-
plish these tasks.

The W3C XPath 1.0 specification outlines the query syntax for retrieving
data from an XML document.The motivation of the framework is similar to
SQL; however, the syntax is significantly different.At first sight, the XPath query
syntax may appear very complex. But with a certain amount of practice, you may
find it very concise and effective in extracting XML data.The details of the
XPath specification are beyond the scope of this chapter. However, we will illus-
trate several frequently used XPath query expressions. In our exercises, we will
illustrate two alternative ways to construct the expressions.The first alternative
follows the recent XPath 1.0 syntax.The second alternative follows XSL Patterns,
which is a precursor to XPath 1.0. Let us consider the following XML document
named Bank2.xml.The Bank2.xml document is shown in Figure 3.34, and it
is also available on the Solutions Web site for the book (www.syngress.com/
solutions). It contains data about various accounts.We will use this XML docu-
ment to illustrate our XPath queries.

Figure 3.34 Bank 2.xml

<!-- Chapter8\Bank2.xml -->

<Bank>

<Account>

<AccountNo>A1112</AccountNo>

<Name>Pepsi Beagle</Name>

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

--- --- ---

--- --- ---

<Account>

<AccountNo>A7833</AccountNo>

<Name>Frank Horton</Name>

<Balance>8964.55</Balance>

<State>MI</State>

</Account>

</Bank>

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 108

XML Fundamentals • Chapter 3 109

Sample Query Expression 1: Suppose that we want the names of all
account holders.The following alternative XPath expressions will accom-
plish the job equally well:

■ Alternative 1: descendant::Name

■ Alternative 2: Bank/Account/Name

The first expression can be read as “Give me the descendents of all
Name nodes.”The second expression can be read as “Give me the Name
nodes of the Account nodes of the Bank node.” Both of these expres-
sions will return the same node set.

Sample Query Expression 2: We want the records for all customers
from Ohio.We may specify any one of the following expressions:

■ Alternative 1: descendant::Account[child::State=‘OH’]

■ Alternative 2: Bank/Account[child::State=‘OH’]

Sample Query Expression 3: Any one of the following alternative
expressions will return the Account node-sets for all accounts with a
balance more than 5000.00:

■ Alternative 1: descendant::Account[child::Balance > 5000]

■ Alternative 2: Bank/Account[child::Balance > 5000.00]

Sample Query Expression 4: Suppose that we want the Account
information for those accounts whose names start with the letter “D.”

■ Alternative 1: descendant::account[starts-with(child::Name, ‘D’)]

■ Alternative 2: Bank/Account[starts-with(child::Name, ‘D’)]

Which of the alternative expressions would you use? That depends on your
personal taste and on the structure of the XML document.The second alternative
appears to be easier than the first one. However, in the case of a highly nested
document, the first alternative will offer more compact expressions. Regardless of
the syntax used, please be aware that each of the above queries will return a set of
nodes. In our ASP code, we will have to extract the desired information from
these sets using an XPathNodeIterator.

Okay, now that we have traveled through the XPath waters, we are ready to
venture into the usages of the XPathDocument. In this context, we will provide
two examples.The first example will extract the names of the customers from
Ohio and load a list box.The second example will illustrate how to find a spe-
cific piece of data from an XPathDocument.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 109

110 Chapter 3 • XML Fundamentals

NOTE

We found the http://staff.develop.com/aarons/bits/xpath-builder/ site to
be very good in learning XPath queries interactively.

Using XPathDocument and
XPathNavigator Objects
In this section we will use the XPathDocument and XPathNavigator objects to load
a list box from our Bank2.xml file (as shown in Figure 3.34).We will load a list
box with the names of customers who are from Ohio.The output of this applica-
tion is shown in Figure 3.35.The complete code for this application is shown in
Figure 3.36.The code is also available in the XPathDoc1.aspx file on the
Solutions Web site for the book (www.syngress.com/solutions).

We loaded the Bank2.xml as an XPathDocument object as follows:

Dim Doc As New XPathDocument(Server.MapPath("Bank2.xml"))

At this stage, we need two more objects: an XPathNavigator for retrieving the
desired node-set, and an XPathNodeIterator for iterating through the members of
the node-set.These are defined as follows:

Dim myNav As XPathNavigator

myNav= myDoc.CreateNavigator()

Dim myIter As XPathNodeIterator

myIter=myNav.Select("Bank/Account[child::State='OH']/Name")

www.syngress.com

Figure 3.35 Using XPathDocument Object

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 110

XML Fundamentals • Chapter 3 111

The Bank/Account[child::State=‘OH’]/Name search expression returns
the Name nodes from the Account node-set whose state is “OH.”To get the
value inside a particular name node, we need to use the Current.Value property of
the Iterator object.Thus, the following code loads our list box:

While (myIter.MoveNext())

lstName.Items.Add(myIter.Current.Value)

End While

Figure 3.36 Complete Code XPathDoc1.aspx

<!-- Chapter8/XPathDoc1.aspx -->

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body>

<form runat="server"><h4>

Query Examples</h4>

Customers From Ohio:

<asp:ListBox id="lstName1" runat="server"

width="150" rows="4"/>

<asp:Button id="cmdDetails" Text="Populate the ListBox"

runat="server" onClick="showNames"/>

</form></body></html>

<Script Language="vb" runat="server">

Sub showNames(s As Object, e As EventArgs)

Dim Doc As New XPathDocument(Server.MapPath("Bank2.xml"))

Dim myNav As XPathNavigator

myNav=Doc.CreateNavigator()

Dim myIter As XPathNodeIterator

myIter=myNav.Select("Bank/Account[child::State='OH']/Name")

While (myIter.MoveNext())

lstName1.Items.Add(myIter.Current.Value)

End While

End Sub

</Script>

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 111

112 Chapter 3 • XML Fundamentals

Using XPathDocument and XPathNavigator
Objects for Document Navigation
This section will illustrate how to search an XPathDocument using a value of an
attribute, and using a value of an element.We will use the Bank3.xml to illustrate
these.A partial listing of the Bank3.xml is shown in Figure 3.37.The complete
code is available on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 3.37 Bank3.xml

<!-- Chapter8\Bank3.xml -->

<Bank>

<Account AccountNo="A1112">

<Name>Pepsi Beagle</Name>

<Balance>1200.89</Balance>

<State>OH</State>

</Account>

--- --- ---

--- --- ---

</Bank>

The Account element of the above XML document contains an attribute
named AccountNo, and three other elements. In this example, we will first load
two combo boxes, one with the account numbers, and the other with the
account holder’s names.The user will select an account number and/or a name.
On the click event of the command buttons, we will display the balances in the
appropriate text boxes.The output of the application is shown in Figure 3.38.
The application has been developed in an .aspx file named XpathDoc2.aspx. Its
complete listing is shown in Figure 3.39.The code is also available on the
Solutions Web site for the book (www.syngress.com/solutions).

To search for a particular value of an attribute (e.g., of an account number)
we have used the following expression:

Bank/Account[@AccountNo='"+accNo+"']/Balance

To search for a particular value of an element (e.g., of an account holder’s
name), we have used the following expression:

descendant::Account[child::Name='"+accName+"']/Balance

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 112

XML Fundamentals • Chapter 3 113

We needed to call the MoveNext method of the Iterator object in order to get
to the balance node.The following expression illustrates the construct:

Bank/Account[@AccountNo='"+accNo+"']/Balance

Figure 3.39 Complete Code XPathDoc2.aspx

<!-- Chapter8/XPathDoc2.aspx -->

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body>

<form runat="server"><h4>

Balance Inquiry Screen</h4>

Select an Account Number:

<asp:DropdownList id="cboAcno" runat="server" width="100" />

Balance from Account Number Search:

<asp:Textbox id="txtBalance1" runat="server" width="80" />

<hr/>

Select an Customer Name:

<asp:DropdownList id="cboName" runat="server" width="110" />

Balance from Customer Name Search :

www.syngress.com

Figure 3.38 The Output of XPathDoc2.aspx

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 113

114 Chapter 3 • XML Fundamentals

<asp:Textbox id="txtBalance2" runat="server" width="80" />

<asp:Button id="cmdDetails" Text="Show Balances" runat="server"

onClick="showNames"/>

</form></body></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XPathDocument(Server.MapPath("Bank3.xml"))

Dim myNav As XPathNavigator

myNav=myDoc.CreateNavigator()

Dim myIter As XPathNodeIterator

' Populate the DropDownList with Account Number values

myIter=myNav.Select("//@*") ' Load all attributes

While (myIter.MoveNext())

cboAcno.Items.Add(myIter.Current.Value)

End While

' Populate the DropDown list with the name values

myIter=myNav.Select("/Bank/Account/Name")

While (myIter.MoveNext())

cboName.Items.Add(myIter.Current.Value)

End While

End If

End Sub

Sub showNames(s As Object, e As EventArgs)

'Get the value of the selected Item

Dim accNo As String = cboAcno.SelectedItem.Text.Trim()

Dim accName As String = cboName.SelectedItem.Text.Trim()

Dim myDoc As New XPathDocument(Server.MapPath("Bank3.xml"))

Dim myNav As XPathNavigator

myNav=myDoc.CreateNavigator()

Dim myIter As XpathNodeIterator

www.syngress.com

Figure 3.39 Continued

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 114

XML Fundamentals • Chapter 3 115

' Query to get the balance from AccountNo

myIter=myNav.Select("Bank/Account[@AccountNo='"+accNo+"']/Balance")

myIter.MoveNext()

'Display the values of Balance

txtBalance1.Text=FormatCurrency(myIter.Current.Value)

' Query to get the balance from Name

myIter = myNav.Select _

("descendant::Account[child::Name='"+accName+"']/Balance")

myIter.MoveNext()

'Display the values of Balance

txtBalance2.Text=FormatCurrency(myIter.Current.Value)

End Sub

</Script>

Transforming an XML
Document Using XSLT
Extensible Stylesheet Language Transformations (XSLT) is the transformation com-
ponent of the XSL specification by W3C (www.w3.org/Style/XSL). It is essen-
tially a template-based declarative language, which can be used to transform an
XML document to another XML document or to documents of other types (e.g.,
HTML and Text).We can develop and apply various XSLT templates to select,
filter, and process various parts of an XML document. In .NET, we can use the
Transform() method of the XSLTransform class to transform an XML document.

Internet Explorer (5.5 and above) has a built-in XSL transformer that auto-
matically transforms an XML document to an HTML document.When we open
an XML document in IE, it displays the data using a collapsible list view.
However, the Internet Explorer cannot be used to transform an XML document
to another XML document. Now, why would we need to transform an XML
document to another XML document? Well, suppose that we have a very large
document that contains our entire catalog’s data.We want to create another XML
document from it, which will contain only the productId and productNames of
those products that belong to the “Fishing” category.We would also like to sort
the elements in the ascending order of the unit price. Further, we may want to
add a new element in each product, such as “Expensive” or “Cheap” depending

www.syngress.com

Figure 3.39 Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 115

116 Chapter 3 • XML Fundamentals

on the price of the product.To solve this particular problem, we may either develop
relevant codes in a programming language like C#, or we may use XSLT to
accomplish the job. XSLT is a much more convenient way to develop the applica-
tion, because XSLT has been developed exclusively for these kind of scenarios.

Before we can transform a document, we need to provide the Transformer
with the instructions for the desired transformation of the source XML docu-
ment.These instructions can be coded in XSL.We have illustrated this process in
Figure 3.40.

In this section, we will demonstrate certain selected features of XSLT through
some examples.The first example will apply XSLT to transform an XML docu-
ment to an HTML document.We know that the IE can automatically transform
an XML document to a HTML document and can display it on the screen in
collapsible list view. However, in this particular example, we do not want to dis-
play all of our data in that fashion.We want to display the filtered data in tabular
fashion.Thus, we will transform the XML document to a HTML document to
our choice (and not to IE’s choice).The transformation process will select and
filter some XML data to form an HTML table.The second example will trans-
form an XML document to another XML document and subsequently write the
resulting document in a disk file, as well as display it in the browser.

Transforming an XML
Document to an HTML Document
In this example, we will apply XSLT to extract the account’s information for
Ohio customers from the Bank3.xml (as shown in Figure 3.37) document.The
extracted data will be finally displayed in an HTML table.The output of the
application is shown in Figure 3.41.

www.syngress.com

Figure 3.40 XSL Transformation Process

XML Source File

XSL Instructions

Dot Net XSL
Transformer

Target File

• HTML
• XML
• Text

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 116

XML Fundamentals • Chapter 3 117

If we need to use XSLT, we must at first develop the XSLT style sheet (e.g.,
XSLT instructions).We have saved our style sheet in a file named XSLT1.xsl. In
this style sheet, we have defined a template as <xsl:template match=“/”> …
</xsl:template>. The match=“/” will result in the selection of nodes at the root
of the XML document. Inside the body of this template, we have first included
the necessary HTML elements for the desired output.

The <xsl:for-each select=“Bank/Account[State=‘OH’]” > tag is used to select all
Account nodes for those customers who are from “OH.”The value of a node can
be shown using a <xsl:value-of select=attribute or element name>. In case of an
attribute, its name must be prefixed with an @ symbol. For example, we are dis-
playing the value of the State node as <xsl:value-of select=“State”/>. The com-
plete listing of the XSLT1.xsl file is shown in Figure 3.42.The code is also
available on the Solutions Web site for the book (www.syngress.com/solutions).
In the .aspx file, we have included the following asp:xml control.

<asp:xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

While defining this control, we have set its DocumentSource attribute to
“Bank3.xml”, and its TransformSource attribute to XSLT1.xsl.The complete code
for the .aspx file, named XSLT1.aspx, is shown in Figure 3.43. It is also available
on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.42 Complete Code for XSLT1.xsl

<?xml version="1.0" ?>

<!-- Chapter 8\XSLT1.xsl -->

<xsl:stylesheet version="1.0"

www.syngress.com

Figure 3.41 Transforming an XML Document to an HTML Document

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 117

118 Chapter 3 • XML Fundamentals

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<h4>Accounts</h4>

<table border="1" cellpadding="5">

<thead><th>Acct Number</th><th>Name</th>

<th>Balance</th><th>State</th></thead>

<xsl:for-each select="Bank/Account[State='OH']" >

<tr align="center">

<td><xsl:value-of select="@AccountNo"/></td>

<td><xsl:value-of select="Name"/></td>

<td><xsl:value-of select="State"/></td>

<td><xsl:value-of select="Balance"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Figure 3.43 XSLT1.aspx

<!-- Chapter8\XSLT1.aspx -->

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:Xml id="ourXSLTransform" runat="server"

DocumentSource="Bank3.xml" TransformSource="XSLT1.xsl"/>

</form></body></html>

www.syngress.com

Figure 3.42 Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 118

XML Fundamentals • Chapter 3 119

Transforming an XML Document
into Another XML Document
Suppose that our company has received an order from a customer in XML format.
The XML file, named OrderA.xml, is shown in Figure 3.44.The file is also avail-
able on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.44 An Order Received from a Customer in XML Format
(OrderA.xml)

<?xml version="1.0" ?>

<!-- Chapter 8\OrderA.XML -->

<Order>

<Agent>Alfred Bishop</Agent>

<Item>50 GPM Pump</Item>

<Quantity>10</Quantity>

<Date>

<Month>8</Month>

<Day>24</Day>

<Year>2001</Year>

</Date>

<Customer>Pepsi Beagle</Customer>

</Order>

Now we want to transmit a purchase order to our supplier to fulfill the pre-
vious order. Suppose that the XML format of our purchase order is different
from that of our client as shown in Figure 3.45.The OrderB.xml file is also avail-
able on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 3.45 The Purchase Order to Be Sent to the Supplier in XML Format
(OrderB.xml)

<?xml version="1.0" encoding="utf-8"?>

<Order>

<Date>2001/8/24</Date>

<Customer>Company A</Customer>

<Item>

<Sku>P 25-16:3</Sku>

www.syngress.com

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 119

120 Chapter 3 • XML Fundamentals

<Description>50 GPM Pump</Description>

<Quantity>10</Quantity>

</Item>

</Order>

The objective of this example is to automatically transform OrderA.xml
(Figure 3.44) to OrderB.xml (Figure 3.45).The outputs of this application are
shown in Figures 3.46 and 3.47.

We have developed an XSLT file (shown in Figure 3.48) to achieve the nec-
essary transformation. In the XSLT code, we have used multiple templates.The
complete listing of the XSLT code is shown in Figure 3.48.The code is also

www.syngress.com

Figure 3.45 Continued

Figure 3.46 Transformation of an XML Document to Another XML Document

Figure 3.47 The Target XML File as Displayed in Internet Explorer

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 120

XML Fundamentals • Chapter 3 121

available in the order.xsl file on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 3.48 Complete Listing of order.xsl

<?xml version="1.0" ?>

<!-- Chapter 8\order.xsl -->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" />

<xsl:template match="/">

<Order>

<Date>

<xsl:value-of select="/Order/Date/Year" />/

<xsl:value-of select="/Order/Date/Month" />/

<xsl:value-of select="/Order/Date/Day" />

</Date>

<Customer>Company A</Customer>

<Item>

<xsl:apply-templates select="/Order/Item" />

<Quantity><xsl:value-of select="/Order/Quantity"/></Quantity>

</Item>

</Order>

</xsl:template>

<xsl:template match="Item">

<Sku>

<xsl:choose>

<xsl:when test=". ='50 GPM Pump'">P 25-16:3</xsl:when>

<xsl:when test=". ='100 GPM Pump'">P 35-12:5</xsl:when>

<!--other Sku would go here-->

<xsl:otherwise>00</xsl:otherwise>

</xsl:choose>

</Sku>

<Description>

<xsl:value-of select="." />

</Description>

</xsl:template>

</xsl:stylesheet>

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 121

122 Chapter 3 • XML Fundamentals

Subsequently, we have developed the XSLT2.aspx file to employ the XSLT
code in the order.xsl file to transform the OrderA.xml to OrderB.xml.The com-
plete listing of the .aspx file is shown in Figure 3.49.This code is also available on
the Solutions Web site for the book (www.syngress.com/solutions).The transfor-
mation is performed in the ShowTransformed() sub-procedure of our .aspx file. In
this code, the Transform method of an XSLTransform object is used to transform
and generate the target XML file.

Figure 3.49 Complete Listing for XSLT2.aspx

<!--Chapter8/XSLT2.aspx-->

<%@ Page Language="VB" Debug="True"%>

<%@ Import Namespace="System.Xml"%>

<%@ Import Namespace="System.Xml.XPath"%>

<%@ Import Namespace="System.Xml.Xsl"%>

<%@Import Namespace="System.IO"%>

<html><head></head><body><form runat="server">

XSL Transformation Example

<asp:ListBox id="lstInitial" runat="server" rows="9"

width=250/>

<asp:ListBox id="lstFinal" runat="server" rows="9" width=250/>

<asp:Button id="cmdTransform" Text="Transform the XML" runat="server"

onClick="showTransformed" />

<asp:Button id="cmdDisplayTgt" Text="Show Transformed XML in IE"

runat="server" onClick="showTarget" />

</form></body></html>

<Script Language="vb" runat="server">

Sub Page_Load(sender As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDoc As New XPathDocument(Server.MapPath("OrderA.xml"))

Dim myNav As XPath.XPathNavigator

Dim myIterator As XPath.XPathNodeIterator

' Set nav object

myNav = myDoc.CreateNavigator()

' Iterate through all the attributes of the descendants

www.syngress.com

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 122

XML Fundamentals • Chapter 3 123

myIterator =myNav.Select("/Order")

myIterator=myNav.SelectDescendants(XPathNodeType.Element,false)

myIterator.MoveNext()

While myIterator.MoveNext()

' Add the Items to the DropdownList

lstInitial.Items.Add _

(myIterator.Current.Name+" :"+myIterator.Current.Value)

End While

End If

End Sub

Sub showTransformed(sender As Object,e As EventArgs)

' Load the XML Document

Dim myDoc As New XPathDocument(Server.MapPath("OrderA.xml"))

' Declare the XSLTransform Object

Dim myXsltDoc As New XSLTransform

' Create the filestream to write a XML file

Dim myfileStream As New FileStream _

(Server.MapPath ("OrderB.xml"),FileMode.Create,FileShare.ReadWrite)

' Load the XSL file

myXsltDoc.Load(Server.MapPath("order.xsl"))

' Tranform the XML file according to XSL Document

myXsltDoc.Transform(myDoc,Nothing,myfileStream)

myfileStream.Close()

lstFinal.Items.Clear

Dim myDoc2 As New XPathDocument(Server.MapPath("OrderB.xml"))

Dim myNav As XPath.XPathNavigator

Dim myIterator As XPath.XPathNodeIterator

' Set nav object

myNav = myDoc2.CreateNavigator()

' Iterate through all the attributes of the descendants

myIterator =myNav.Select("/Order")

myIterator=myNav.SelectDescendants(XPathNodeType.Element,false)

myIterator.MoveNext()

While myIterator.MoveNext()

www.syngress.com

Figure 3.49 Continued

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 123

124 Chapter 3 • XML Fundamentals

' Add the Items to the DropdownList

lstFinal.Items.Add _

(myIterator.Current.Name+" :"+myIterator.Current.Value)

End While

End Sub

Sub showTarget(sender As Object,e As EventArgs)

Response.Redirect(Server.MapPath("OrderB.xml"))

End Sub

</Script>

Working with XML and Databases
Databases are used to store and manage organization’s data. However, it is not a
simple task to transfer data from the database to a remote client or to a business
partner, especially when we do not clearly know how the client will use the sent
data.Well, we may send the required data using XML documents.That way, the
data container is independent of the client’s platform.The databases and other
related data stores are here to stay, and XML will not replace these data stores.
However, XML will undoubtedly provide a common medium for exchanging
data among sources and destinations. It will also allow various software to
exchange data among themselves. In this context, the XML forms a bridge
between ADO.NET and other applications. Since XML is integrated in the
.NET Framework, the data transfer using XML is lot easier than it is in other
software development environments. Data can be exchanged from one source to
another via XML.The ADO.NET Framework is essentially based on Datasets,
which, in turn, relies heavily on XML architecture.The DataSet class has a rich
collection of methods that are related to processing XML. Some of the widely
used ones are ReadXml,WriteXml, GetXml, GetXmlSchema, InferXmlSchema,
ReadXmlSchema, and WriteXmlSchema.

In this context, we will provide two simple examples. In the first example, we
will create a DataSet from a SQL query, and write its contents as an XML docu-
ment. In the second example, we will read back the XML document generated
in the first example and load a DataSet. What are the prospective uses of these
examples? Well, suppose that we need to send the products data of our fishing
products to a client. In earlier days, we would have sent the data as a text file. But

www.syngress.com

Figure 3.49 Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 124

XML Fundamentals • Chapter 3 125

in the .NET environment, we can instead develop a XML document very fast by
running a query, and subsequently send the XML document to our client.What
is the advantage? It is fast, easy, self-defined, and technology independent.The
client may use any technology (like VB, Java, Oracle, etc.) to parse the XML doc-
ument and subsequently develop applications. On the other hand, if we receive
an XML document from our partners, we may as well apply XML.NET to
develop our own applications.

Creating an XML Document
from a Database Query
In this section, we will populate a DataSet with the results of a query to the
Products table of SQL Server 7.0 Northwind database. On the click event of a
command button, we will write the XML file and its schema. (The output of the
example is shown in Figure 3.50).We have developed the application in an .aspx
file named DataSet1.aspx.The complete listing of the .aspx file is shown in
Figure 3.51.The file is also available on the Solutions Web site for the book
(www.syngress.com/solutions).

The XML file created by the application is as follows:

<myXMLProduct>

<dtProducts>

<ProductID>13</ProductID>

<ProductName>Konbu</ProductName>

<UnitPrice>6</UnitPrice>

www.syngress.com

Figure 3.50 Output of DataSet1.aspx Application

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 125

126 Chapter 3 • XML Fundamentals

</dtProducts>

--- --- ---

--- --- ---

</myXMLProduct>

The code for the illustration is straightforward.The DataSet’s WriteXml and
WriteXmlSchema methods were used to accomplish the desired task.

Figure 3.51 Complete Listing DataSet1.aspx

<!-- Chapter8\DataSet1.aspx -->

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<html><head></head><body><form runat="server">

Cheap Products:

<asp:DataGrid id="myGrid" runat="server"/>

<asp:Button id="cmdWriteXML" Text="Create XML File" runat="server"

onclick="writeXML"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataSet As New DataSet("myXMLProduct")

Dim myConn As New _

SqlConnection("server=ora07;uid=sa;pwd=ahmed;database=Northwind")

Dim mydataAdapter As New SqlDataAdapter _

("SELECT ProductID,ProductName,UnitPrice FROM Products WHERE

UnitPrice <7.00",myConn)

mydataAdapter.Fill(myDataSet,"dtProducts")

myGrid.DataSource=myDataSet.Tables(0)

myGrid.DataBind

Session("sessDs")=myDataSet

End If

End Sub

www.syngress.com

Continued

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 126

XML Fundamentals • Chapter 3 127

Sub writeXML(s As Object, e As EventArgs)

Dim myFs1 As New FileStream _

(Server.MapPath _

("myXMLData.xml"),FileMode.Create,FileShare.ReadWrite)

Dim myFs2 As New FileStream(Server.MapPath _

("myXMLData.xsd"),FileMode.Create,FileShare.ReadWrite)

Dim myDataSet As New DataSet _

myDataSet=Session("sessDs")

' Use the WriteXml method of DataSet object to write an XML file

' from the DataSet

myDataSet.WriteXml(myFs1)

myFs1.Close()

myDataSet.WriteXmlSchema(myFs2)

myFs2.Close()

End Sub

</Script>

Reading an XML Document into a DataSet
Here, we will read back the XML file created in the previous example (as shown in
Figure 3.50) and populate a DataSet in the Page_Load event of our .aspx file.We
will use the ReadXml method of the DataSet object to accomplish this objective.
The output of the application is shown in Figure 3.52.The application has been
developed in an .aspx file named DataSet2.aspx.The complete code for this appli-
cation is shown in Figure 3.53.The code is also available on the Solutions Web site
for the book (www.syngress.com/solutions).The code is self-explanatory.

www.syngress.com

Figure 3.51 Continued

Figure 3.52 Output of DataSet2.aspx Application

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 127

128 Chapter 3 • XML Fundamentals

Figure 3.53 Complete Listing of DataSet2.aspx

<!-- Chapter8\DataSet2.aspx -->

<%@ Page Language = "VB" Debug ="True" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Data" %>

<%@ Import Namespace="System.IO" %>

<%@ Import Namespace="System.Data.SqlClient" %>

<html><head></head><body><form runat="server">

Products Data From XML File:

<asp:DataGrid id="myGrid" runat="server"/>

</body></form></html>

<Script Language="vb" runat="server">

Sub Page_Load(s As Object, e As EventArgs)

If Not Page.IsPostBack Then

Dim myDataSet As New DataSet("myXMLProduct")

Dim myFs As New FileStream _

(Server.MapPath("myXMLData.xml"),FileMode.Open,FileShare.ReadWrite)

myDataSet.ReadXml(myFs)

myGrid.DataSource=myDataSet.Tables(0)

myGrid.DataBind

myFs.Close

End If

End Sub

</Script>

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 128

XML Fundamentals • Chapter 3 129

Summary
In this chapter, we have introduced the basic concepts of XML, and we have pro-
vided a concise overview of the .NET classes available to read, store, and manipu-
late XML documents.The examples presented in this chapter also serve as good
models for developing business applications using XML and ASP.NET.

The .NET’s System.Xml namespace contains probably the richest collection of
XML-related classes available thus far in any other software development plat-
form.The System.Xml namespace has been further enriched by the recent addi-
tion of XPathDocument and XPathNavigator classes.We have tried to highlight
these new features in our examples. Since XML can be enhanced using a family
of technologies, there are innumerable techniques a reader should judiciously
learn from other sources to design, develop, and implement complex real-world
applications.

Solutions Fast Track

An Overview of XML

� XML stands for eXtensible Markup Language. It is a subset of a larger
framework named SGML.The W3C developed the specifications for
SGML and XML.

� XML provides a universal way for exchanging information between
organizations.

� XML cannot be singled out as a stand-alone technology. It is actually a
framework for exchanging data. It is supported by a family of growing
technologies such as XML parsers, XSLT transformers, XPath, XLink,
and Schema Generators.

� An XML document may contain Declaration, Comment, Elements, and
Attributes.

� An XML element has a start-tag and an end-tag.An element may
contain other elements, or character data, or both.

� An attribute provides an additional way to attach a piece of data to an
element.An attribute must always be enclosed within start-tag of an
element, and its value is specified using double quotes.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 129

130 Chapter 3 • XML Fundamentals

� An XML document is said to be well formed when it satisfies a set of
syntax-related rules.These rules include the following:

■ The document must have exactly one root element.

■ Each element must have a start-tag and end-tag.

■ The elements must be properly nested.

� An XML document is case sensitive.

� DTD and schema are essentially two different ways two specify the rules
about the contents of an XML document.

� An XML schema contains the structure of an XML document, its
elements, the data types of the elements and associated attributes
including the parent-child relationships among the elements.

� VS.NET supports the W3C specification for XML Schema Definition
(also known as XSD).

� XML documents stores data in hierarchical fashion, also known as a
node tree.

� The top-most node in the node tree is referred to as the root.

� A particular node in a node tree can be of element-type, or of text-type.
An element-type node contains other element-type nodes or text-type
node.A text-type node contains only data.

Processing XML Documents Using .NET

� The Sytem.Xml namespace contains XmlTextReader, XmlValidatingReader,
and XmlNodeReader classes for reading XML Documents.The
XmlTextWriter class enables you to write data as XML documents.

� XmlDocument, XmlDataDocument, and XPathDocument classes can be used
to structure XML data in the memory and to process them.

� XPathNavigator and XPathNodeIterator classes enable you to query and
retrieve selected data using XPath expressions.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 130

XML Fundamentals • Chapter 3 131

Reading and Parsing Using the XmlTextReader Class

� The XmlTextReader class provides a fast forward-only cursor to pull data
from an XML document.

� Some of the frequently used methods and properties of the
XmlTextReader class include AttributeCount, Depth, EOF, HasAttributes,
HasValue, IsDefault, IsEmptyElement, Item, ReadState, and Value.

� The Read() of an XmlTextReader object enables you to read data
sequentially.The MoveToAttribute() method can be used to iterate
through the attribute collection of an element.

Writing an XML Document
Using the XmlTextWriter Class

� An XmlTextWriter class can be used to write data sequentially to an
output stream, or to a disk file as an XML document.

� Its major methods and properties include Close, Flush, Formatting,
WriteAttribues,WriteAttributeString,WriteComment,WriteElementString,
WriteElementString,WriteEndAttribute,WriteEndDocument,WriteState, and
WriteStartDocument.

� Its constructor contains a parameter that can be used to specify the
output format of the XML document. If this parameter is set to
“Nothing,” then the document is written using UTF-8 format.

Exploring the XML Document Object Model

� The W3C Document Object Model (DOM) is a set of the specifications
to represent an XML document in the computer’s memory.

� XmlDocument class implements both the W3C specifications (Core
level 1 and 2) of DOM.

� XmlDocument object also allows navigating through XML node tree
using XPath expressions.

� XmlDataDocument is an extension of XmlDocument class.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 131

132 Chapter 3 • XML Fundamentals

� It can be used to generate both the XML view as well as the relational
view of the same XML data.

� XmlDataDocument contains a DataSet property that exposes its data as
relational table(s).

Querying XML Data Using
XPathDocument and XPathNavigator

� XPathDocument class allows loading XML data in fragments rather than
loading the entire DOM tree.

� XPathNavigator object can be used in conjunction with XPathDocument
for effective navigation through XML data.

� XPath expressions are used in these classes for selecting nodes, iterating
over the selected nodes, and working with these nodes for copying,
moving, and removal purposes.

Transforming an XML Document Using XSLT

� You can use XSLT (XML Style Sheet Language Transformations) to
transform an XML document to another XML document or to
documents of other types (e.g., HTML and Text).

� XSLT is a template-based declarative language.We can develop and
apply various XSLT templates to select, filter, and process various parts
of an XML document.

� In .NET, you can use the Transform() method of XSLTransform class to
transform an XML document.

Working with XML and Databases

� A DataSet’s ReadXml() can read XML data as DataTable(s).

� You can create an XML document and its schema from a database query
using DataSet’s WriteXml() and WriteXmlSchema().

� Some of the widely used ones include ReadXml,WriteXml, GetXml,
GetXmlSchema, InferXmlSchema, ReadXmlSchema, and WriteXmlSchema.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 132

XML Fundamentals • Chapter 3 133

Q: What is the difference between DOM Core 1 API and Core 2 API?

A: DOM Level 2 became an official World Wide Web Consortium (W3C) rec-
ommendation in late November 2000.Although there is not much of differ-
ence in the specifications, one of the major features was the namespaces in
XML being added, which was unavailable in prior version. DOM Level 1 did
not support namespaces.Thus, it was the responsibility of the application pro-
grammer to determine the significance of special prefixed tag names. DOM
Level 2 supports namespaces by providing new namespace-aware versions of
Level 1 methods.

Q: What are the major features of System.XML in the Beta 2 edition?

A: The most significant change in the Beta 2 edition was the restructuring the
XmlNavigator Class. XmlNavigator initially was designed as an alternative to the
general implementation of DOM. Since Microsoft felt that there was a mis-
match in the XPath data model and DOM-based data model, XmlNavigator
was redesigned to XpathNavigator, employing a read-only mechanism. It was
conceived of using with XPathNodeIterator that acts as an iterator over a node
set and can be created many times per XPathNavigator.

Alternatively, one can have the DOM implementation as XmlNode, and
methods such as SelectNodes() and SelectSingleNodes() can be used to iterate
through a node set.A typical code fragment would look like this:

Dim nodeList as XmlNodeList

Dim root as XmlElement = Doc.DocumentElement

nodeList = root.SelectNodes("descendant::account[child::State='OH']")

Dim entry as XmlNode

For Each entry in nodeList

'Do the requisite operations

Next

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 133

134 Chapter 3 • XML Fundamentals

Although XPathNavigator is implemented as a read-only mechanism to
manipulate the XML documents, it can be noted that certain other classes
like XmlTextWriter can be implemented over XPathNavigator to write to the
document.

Q: How is XPath different from XSL Patterns?

A: XSL Patterns are predecessors of XPath 1.0 that have been recognized as a
universal specification.Although similar in syntax, there are some differences
between them. XSL pattern language does not support the notion of axis
types. On the other hand, the XPath supports axis types.Axis types are general
syntax used in Xpath, such as descendant, parent, child, and so on.Assume that
we have an XML document with the root node named Bank. Further, assume
that the Bank element contains many Account elements, which in turn contains
account number, name, balance, and state elements. Now, suppose that our objec-
tive is to retrieve the Account data for those customers who are from Ohio.We
can accomplish the search by using any one of the following alternatives:

■ XSL Pattern Alternative: Bank/Account[child::State=‘OH’]

■ XSL Path 1.0 Alternative: descendant::Account[child::State=‘OH’]

Which of the above alternatives would you use? That depends on your
personal taste and on the structure of the XML document. In case of a very
highly nested XML document, the XSL Path offers more compact search
string.

www.syngress.com

206_XMLweb_03.qxd 6/27/02 9:40 AM Page 134

Information
Exchange Using the
Simple Object
Access Protocol
(SOAP)

Solutions in this chapter:

■ The Case for Web Services

■ Working with Web Services

■ Advanced Web Services

Chapter 4

135

Summary

Solutions Fast Track

Frequently Asked Questions

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 135

136 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Introduction
The growth of the Internet demands that businesses provide clients with a better,
more efficient user experience. Existing technologies have made it very difficult
to make applications communicate with each other across businesses.The varied
resources used, such as operating systems (OSs), programming languages and
object models, pose big challenges to application integrators.

Web Services have been created to solve the interoperability of applications
across operating systems, programming languages, and object models.Web
Services can achieve this by relying on well supported Internet standards, such as
Hypertext Transfer Protocol (HTTP) and Extensible Markup Language (XML).

In this chapter, we tell you why Web Services are an important new develop-
ment in the area of Internet standards, and what business problems they address.
We talk about the Simple Object Access Protocol (SOAP), which lets you
exchange data and documents over the Internet in a well-defined way, and
related standards to describe and discover Web Services. Finally, we cover tech-
niques for error handling and state management and discuss how Web Services
integrate with the Microsoft .NET platform.

The Case for Web Services
In a broad sense,Web Services may be defined as “Internet-based modular appli-
cations that perform specific business tasks and conform to a specific technical
format,” to quote Mark Colan from IBM. If you accept this definition, you may
have very well already developed a number of Web Services. However, the crux
of this definition is the “specific technical format.” Similar to the way a network
becomes more and more useful with the number of systems participating on that
network, data interchange between those systems becomes more and more pow-
erful as the interchange conforms to a common format. Everybody can come up
with their own protocols to exchange data, and in the past, many people indeed
have designed such protocols, but to make distributed application development a
reality and have it be truly useful, clearly a common, open, standards-based, uni-
versally adopted mechanism needs to be agreed upon.And this is where the more
narrow definition of a Web Service comes in:A Web Service is a Web application
using the SOAP protocol.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 136

www.syngress.com

The Role of SOAP
SOAP stands for Simple Object Access Protocol. SOAP was designed with the fol-
lowing three goals in mind:

■ It should be optimized to run on the Internet.

■ It should be simple and easy to implement.

■ It should be based on XML.

SOAP is an open Internet standard. It was originally proposed by IBM,Ariba,
and Microsoft, and the W3C has taken on the initiative to develop it further.The
current version is SOAP 1.1 (April 2000).You can find the specifications at
www.w3.org/TR/SOAP.Work is currently under way on version 1.2 (see the
W3C working draft at www.w3.org/TR/soap12), which is, in our opinion, only
a minor revision.You can join the authoritative discussion list for SOAP by going
to http://discuss.develop.com/soap.html.

SOAP, somewhat contrary to its name, is fundamentally just a protocol that
lets two systems—a client and a server—exchange data. Of course, the client
system may be, and often is, just another server machine, not a human end user.

Although the SOAP specification was written in such a way as to be imple-
mented on a variety of Internet transport protocols, it is most often used on top
of HTTP. In our discussions that follow, when we talk about SOAP and Web
Services, we always mean SOAP over HTTP (or Secure HTTP [HTTPS], for
that matter).

SOAP supports two message patterns: the first is a simple one-way exchange,
where a client issues a request against a server, and will not receive an answer
back.We focus in this chapter on the second message pattern, which consists of a
request-response interaction, familiar to all Web developers.A client issues an
HTTP request for a resource on a server, and the server replies by sending an
HTTP response. SOAP adds to that a standard way to pass data back and forth,
including a standard way to report errors back to the client. In traditional Web
applications, the only thing that’s standardized in a Web request is the URL, the
HTTP verb (GET, PUT, and so on), and some of the HTTP headers. Everything
else is specific to the application at hand, particularly as it relates to the passing of
application-specific data and data structures.A client can, say, POST additional
information using the form submission mechanism. But imagine that you’d like
to post a series of floating point numbers to a server. How would you do that?
How would you ensure that the server understands what you’re sending it? How

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 137

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 137

138 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

would you ensure that the data goes to the right place on the server? SOAP
addresses these challenges by defining the following:

■ A mechanism to pass simple and structured data between clients and
servers using a standard XML syntax

■ A mechanism to call objects running remotely on a server

SOAP has two faces. On the one hand, stressing the second item in the pre-
ceding list, you can look at it as a remote procedure call (RPC) protocol familiar
to anybody who has worked with distributed object models in the past. On the
other hand, putting more emphasis on the first item, you can consider it a stan-
dardized way to interchange (XML) documents.

However, SOAP being a “simple” protocol, it does not by itself define a
number of added-value mechanisms familiar to application developers using not-
so-simple protocols (such as Common Object Request Broker Architecture
[CORBA] or Component Object Model [COM]/Distributed COM [DCOM]):

■ Security

■ Transaction management

■ Guaranteed delivery

Why SOAP?
SOAP is not the first attempt at standardizing on an RPC and document inter-
change mechanism, and it may not be the last one. In the RPC area, previous
attempts include CORBA and COM/DCOM, which originated in the client-
server world, but both of which now include functionality to work more less
well on the Internet, and David Winer’s XML-RPC (see www.xmlrpc.com/
spec/), which was designed from the ground up to work over the Internet. In the
document area, we have seen EDI come (and go?).What makes SOAP important
and, quite frankly, remarkable, is that it is supported by all major players in the
business, including, from the very beginning, IBM and Microsoft, and more
recently, Sun Microsystems.The same universal support is true of a number of
related standards, such as Web Services Description Language (WSDL) and
Universal Description, Discovery, and Integration (UDDI), which we discuss later
in this chapter.

As Microsoft developers, we should take notice of the fact that the new
Microsoft .NET Framework is currently the only system platform that was
designed from the ground up based on Web Services and SOAP.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 138

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 139

Why Web Services?
The recent emphasis on Web Services denotes a noteworthy shift in application
development: away from insular, monolithical solutions and towards truly dis-
tributed, modular, open, interenterprise Internet-based applications.The hope
certainly is that Web Services will do to enterprise applications what the World
Wide Web did to interactive end user applications. In our opinion, then,Web
Services are primarily a technique that allows disparate server systems to talk to
each other and exchange information, and maybe less a mechanism directly
encountered by human end users, for which the Web and the traditional Web
browser remains the primary data access point. If you have ever been involved in
trying to integrate different systems from different vendor companies, you know
how painful an endeavor this can be. Integrating one system with one other
system, although often very complex, can usually be done somehow, but inte-
grating many systems with many other systems is really beyond the capabilities of
any of the current middleware solutions, particularly if done intercompanywide
over public networks. SOAP and Web Services offer hope here, because that
technique is simple, and because it is a universally accepted standard.

We should all imagine a whole new class of applications appearing on the
horizon very soon: massively distributed applications, integrating data from many
sources from many different systems all over the world, very fault-tolerant, and
accessible at all times from anywhere.

Wiring Up Distributed
Objects—The SOAP Protocol
SOAP is the standard used to exchange data over the Internet using Web
Services. SOAP is commonly referred to as a wiring protocol.As with many other
standards, it is often more helpful to see some examples of the standard in action
before moving on to reading the standards document. Using Visual Studio.NET, it
is very easy to create simple Web Services and see how data is being exchanged.
Because SOAP is based on XML and not a binary protocol, such as DCOM, you
can inspect the data exchange in detail using a network tunneling tool and see
exactly what is going on under the hood.

Creating Your Very First Web Service
Let’s look at a SOAP exchange between a client and a server by way of a few
examples.Although Web Services are most interesting when used to couple

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 139

140 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

server computers, our examples are more geared towards end users interacting
with a Web Service server; we only do this to keep the examples reasonably
simple and self-contained.

As mentioned earlier, we look only at SOAP as implemented over the HTTP
protocol.Also, we initially focus on SOAP as an RPC mechanism.

Let’s start by setting up a simple echo Web Service.This service simply
returns whatever character string a user submits. Creating a class that echoes its
input is fairly straightforward as shown in Figure 4.1.

Figure 4.1 Echo Method

namespace soapExamples

{

public class simpleService {

public simpleService() {

}

public string echo(string input) {

return input;

}

}

}

How can you now make this into a Web Service? In other words, what is
needed to make this method accessible to everybody in the world who has an
Internet connection and knows where to find your method?

It may be hard to believe initially, but all that’s needed using the .NET
Framework is—apart from an Internet Information Server (IIS) Web server, of
course—two tiny little changes:

■ Your class simpleService needs to inherit from
System.Web.Services.WebService.

■ Your method echo needs to be decorated with the
System.Web.Services.WebMethod attribute.

See Figure 4.2 for your first fully functioning Web Service. Note that the
complete code for the echo Web method is in the directory soapExamples/ on the
Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 140

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 141

Figure 4.2 Echo Web Method (simpleService.asmx.cs)

namespace soapExamples

{

public class simpleService : System.Web.Services.WebService

{

public simpleService() {

}

protected override void Dispose(bool disposing) {

}

[System.Web.Services.WebMethod]

public string echo(string input) {

return input;

}

}

}

Let’s now open up the Visual Studio.NET integrated development environ-
ment and create the echo Web Service from scratch, proceeding as follows:

1. Create a new ASP.NET Web Service called soapExamples: Go to File |
New | Project, choose the entry ASP.NET Web Service under the
Visual C# Projects folder, keep the default Location, and enter
soapExamples as the Name of the project (see Figure 4.3).This will set
up a new virtual directory of the same name (see Figure 4.4).

2. Visual Studio.NET will then configure the necessary FrontPage server
extensions, define an assembly, and create supporting project files for
you.Annoyingly, the wizard also creates a default Web Service file called
Service1.asmx, which you may remove in the Solution Explorer by
right-clicking on the file and selecting Delete. Or, you can simply
rename that file to simpleService.asmx in the Solution Explorer and
proceed with Step 4.

3. Now you create your actual Web Service: Right-click on the
soapExamples project in the Solution Explorer, and choose Add |
Add New Item. Choose Web Service from the list of available tem-
plates, and call it simpleService.asmx (see Figure 4.5).

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 141

142 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

www.syngress.com

Figure 4.3 Setting Up a New ASP.NET Web Service

Figure 4.4 Visual Studio.NET Automatically Sets Up a New Web

Figure 4.5 Creating a New Web Service

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 142

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 143

4. Select the Web Service simpleService.asmx in the Solution Explorer,
and click on the little View Code icon to see the code for this Web
Service added by the wizard.

5. Replace the code with the code for this class shown in Figure 4.2.

6. The last step is the most remarkable step if you’ve been used to tradi-
tional ASP developing. Compile your project: select Build | Build
from the User menu, or press Ctrl+Shift+B. In other words,ASP.NET
applications, such as a Web Service application, are compiled applications
(and yes, it will create a .NET DLL for you!).

How Does Visual Studio.NET Organize Your Project?
When you tell Visual Studio.NET to create a new Web Service application, the
following process happens, using this section’s example of an application called
soapExamples:

1. A new IIS virtual directory called soapExamples is created in
%SystemDrive%\InetPub\wwwroot\.As part of the .NET Framework
installation, application mappings were already added to map .NET spe-
cific file extensions, such as .aspx, to the .NET DLL aspnet_isapi.dll,
located in %SystemRoot%\Microsoft.NET\Framework\v1.0.2914\,
which handles .NET-specific Web requests (see Figure 4.6).

www.syngress.com

Figure 4.6 Mapping .NET File Extensions

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 143

144 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

2. The IIS directory is converted to a FrontPage Server Extensions Web,
allowing for Visual Studio.NET design support

3. Under the IIS virtual directory, a variety of standard FrontPage directo-
ries are created (see Figure 4.7).

4. The bin directory is created underneath the IIS virtual directory. It will
contain the compiled application.

5. A number of files are created and placed in the IIS virtual directory, as
described in Table 4.1.

Table 4.1 Files Created by Visual Studio.NET for soapExamples Web Service

File Name Description

soapExamples.csproj XML file containing project-level settings, such
as a list of all files contained in this project.

soapExamples.csproj.webinfo XML file containing Web-related project-level
settings, such as the URL to start this applica-
tion.

soapExamples.vsdisco XML file containing DISCO dynamic discovery
information for this Web Service.

AssemblyInfo.cs C# class defining assembly metadata, such as
version number information.

Web.Config XML file containing configuration for the Web
Service, such as security, session handling, and
debug settings.

Global.asax Equivalent to Global.asa file in plain ASP.
Points to C# class file Global.asax.cs.

Global.asax.cs C# class file containing instructions on what
to do during events generated by ASP.NET,
such as when a new application starts or shuts
down.

www.syngress.com

Figure 4.7 Directory Structure for New ASP.NET Web Service

Continued

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 144

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 145

Global.asax.resx Resource file to store localization information
for Global.asax. Empty by default.

Service1.asmx Sample Web Service file, pointing to C# class
file Service1.asmx.cs, created automatically by
Visual Studio.NET.

Service1.asmx.cs Sample C# Web Service class file, created
automatically by Visual Studio.NET.

Service1.asmx.resx Sample Web Service resource file to store
localization information for Service1.asmx.
Empty by default. Created automatically by
Visual Studio.NET.

6. A directory called soapExamples is created in %USERPROFILE%\
My Documents\Visual Studio Projects\.Two files are created:
soapExamples.sln, a text file containing information as to what projects
are contained in the Visual Studio.NET solution, and soapExamples.suo,
a binary solution configuration file that cannot be edited directly.

7. A directory called soapExamples is created in %USERPROFILE%\
VSWebCache\ATURTSCHI\.This directory and various subdirectories
created underneath it contain the cached version of your Web Service.
You should normally not need to make any changes here, although it
can happen that the files here get out of synch with the files in the
“normal”Web directory underneath InetPub\wwwroot, in which case
you may have to manually copy some files around.

www.syngress.com

Table 4.1 Continued

File Name Description

Separating Design and Code
Microsoft .NET makes a big step forward in neatly separating Web page
design from Web page code. There are actually two files for every Web
page: One file that holds all visual elements of a Web page, and another
file linked to it that holds the business logic for that page. Web Services

Developing & Deploying…

Continued

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 145

146 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Not all of those files can be made visible in Visual Studio.NET. However, you
can see many of them by clicking on the Show All Files icon in the Solution
Explorer (see Figure 4.8).

Running Your Very First Web Service
Now that you have developed a simple Web Service, you would obviously like to
see it in action, if only to check that everything works the way you expect it to
work. Because a Web Service at its core really isn’t anything else than a very spe-
cial Web application, you have the usual means of testing and debugging at your
disposal.These are running the Web Service through Visual Studio.NET, our pre-
ferred integrated development platform, or calling it through a custom client

www.syngress.com

are ASP.NET Web applications, and therefore incorporate the same
mechanism. Because Web Services don’t have a user interface as such,
the only content of the Web Service Web page is a directive linking it to
the Web Service class that contains all the code to handle Web Service
requests.

For the simpleService Web Service, the corresponding “front end”
file, soapExamples.asmx, looks as follows:

<%@ WebService Language="c#" Codebehind="simpleService.asmx.cs"

Class="soapExamples.simpleService" %>

The Codebehind attribute points to the Web Service class file,
which by default has the same name as the ASMX file, with a file exten-
sion appended reflecting the programming language used, in this case
.cs for C#.

In order to keeps things “simple,” the Visual Studio.NET user inter-
face does not keep those two files apart, which may lead a little bit to
confusion. Instead, similar to what you may be used to in the Visual
Basic 6 form designer, you switch between design mode (the Web form),
and code mode (the underlying code) by clicking the corresponding
icons in the Solution Explorer. However, and this may throw you off a bit
initially, the files that keep the design and code content really are dif-
ferent files; however, Solution Explorer pretends that only one of the
files, namely the one containing the page design, exists. You can force
Solution Explorer to show you the file containing the page code by
clicking the Show All Files icon, however even when you then explicitly
click the code file, Visual Studio.NET will still show you the design page,
not the code page.

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 146

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 147

application, such as a simple Visual Basic script. In addition, you have the option
of automatically generating a client application that calls your Web Service through
the Web Reference mechanism. Let’s go through each of these three scenarios in
detail.

Testing a Web Service Using Integrated
Visual Studio.NET Debugging
If you want to test your Web Service through the debugger that comes with
Visual Studio.NET, you first need to check and/or change some settings to
enable Visual Studio.NET to debug the application properly:

1. Click on the file Web.config in the Solution Explorer. Scan through it
and make sure that the debug attribute of the compilation element is set to
True (which is the default).This will cause debug information to be
included in the compiled DLL. Obviously, you want to change this set-
ting once you’re ready to deploy your application.

2. Go to Solution Explorer and right-click on the soapExamples project
folder to select its Properties. Under the Configuration Properties folder,
click Debugging and make sure that ASP.NET Debugging is enabled,
as shown in Figure 4.9.

www.syngress.com

Figure 4.8 Showing All Files through Solution Explorer

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 147

148 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

3. Right-click on the file simpleService.asmx, which is the file defining
your actual Web Service, and select Set As Start Page. (Or, you can
select this service as the solution Startup Project through the Properties
page of the soapExamples solution, as shown in Figure 4.10).

www.syngress.com

Figure 4.9 Enabling ASP.NET Debugging

Figure 4.10 Defining a Startup Project

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 148

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 149

4. You can now start testing your application by pressing F5 or by
choosing Debug | Start through the User menu.As usual, you can set
breakpoints anywhere in your code by simply pressing F9 or selecting
Debug | New Breakpoint on a line of code through the User menu.

5. Visual Studio.NET will recompile the application, just to be sure, and
launch Internet Explorer (see Figure 4.11).

Note the URL convention used by Microsoft .NET. Immediately after the
host name (localhost) is the name of the application (soapExamples), followed by
the name of the Web Service (simpleService), or rather, the name of the corre-
sponding Web Service definition file, which has the .asmx file extension.

ASP.NET runtime warns you that you are using the default namespace
http://tempuri.org. Every .NET class lives in a namespace. Similarly, every Web
Service must live in a namespace that is exposed globally.This Web Service name-
space allows application developers worldwide to distinguish their Web Services
from Web Services built by other people.The URL under which a Web Service

www.syngress.com

Figure 4.11 Starting the Web Service in Debug Mode

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 149

150 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

can be reached, in this case http://localhost/soapExamples/simpleService.asmx, is
only an attribute of a concrete instance of a Web Service; this Web Service could
potentially live on many servers. So, you need to give your Web Service a distin-
guishing name through the usage of a namespace. By default,ASP.NET will use
http://tempuri.org/, but you should really change this. Namespaces are created by
using a URI (Uniform Resource Identifier), which really can be anything (see
www.faqs.org/rfcs/rfc2396.html for an explanation of URIs). Common choices
include using your DNS entry in order to get a unique name.

Let’s then take the namespace related runtime warning in Figure 4.11 seri-
ously; stop the debugger by pressing Shift-F5, and include Web Service names-
pace definitions in the code; urn:schemas-syngress-com-soap seems like a good
URI, and then simply add a namespace attribute with that value next to the
Web Service class definition, as shown in Figure 4.12 (changes in bold).The
code for Figure 4.12 can be found on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 4.12 Including a Namespace Definition (simpleService.asmx.cs)

namespace soapExamples

{

[System.Web.Services.WebServiceAttribute(

Namespace="urn:schemas-syngress-com-soap")]

public class simpleService : System.Web.Services.WebService

{

public simpleService() {

}

[System.Web.Services.WebMethod]

public string echo(string input) {

return input;

}

}

}

After recompiling and restarting the application, you are presented with a
screen as in Figure 4.13.

We look at the service description in the next section on WSDL; for now,
just click on the echo link, which will take you to the welcome screen for the
echo Web Service method, as depicted in Figure 4.14.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 150

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 151

www.syngress.com

Figure 4.13 Web Service in Debug Mode after a Namespace Has Been Added

Figure 4.14 The echo Web Service Method

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 151

152 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

The URL convention adopted by Microsoft .NET for the Web method wel-
come screen is to append the name of the exposed Web method through an
op=WebMethodName URL parameter, in this case op=echo.To actually call the
Web method, the convention is to just add the name of the Web method to the
URL, and to append the name of input parameters as URL parameters to the
end, as you’ll see in a second.

Enter a value, say “Hello World”, in the text box labeled input, which by the
way, corresponds of course to the only input parameter you have defined for the
echo Web method, and click Invoke.This then takes you to the output screen, as
shown in Figure 4.15.

The input has been echoed in something that clearly looks like XML.What
has happened here? As it turns out, this hasn’t quite been SOAP yet, but some-
thing close.As you can see in Figure 4.14, Microsoft offers you three ways to call a
Web Service:

■ Through a straight HTTP GET

■ Through a straight HTTP POST

■ Through SOAP

Calling a Web Service through an HTTP GET is a simplified way to call a
Web Service. Particularly, it allows you to call a Web Service through a Web
browser.The only thing you need to do is to append the method name to the
URL of the Web Service, and to add the parameters the way you would usually
add variables when submitting an HTML form in a Web application:

http://localhost/soapExamples/simpleService.asmx/echo?input=Hello+World

The result that you get from this call (see the following):

<?xml version="1.0" encoding="utf-8" ?>

<string xmlns="urn:schemas-syngress-com-soap">Hello World</string>

www.syngress.com

Figure 4.15 Output of the echo Web Method

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 152

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 153

This is an XML-ish representation of the fact that the return argument is a
string, living in the urn:schemas-syngress-com-soap namespace, and having a value of
“Hello World”.

As you can imagine, this technique will work only for the very simplest of
Web Services.What if you wanted to pass a complex data type to the Web
Service? What if you wanted to pass an XML document to the Web Service?

The POST method offered to you by Visual Studio.NET in Figure 4.14 is
very similar to the GET method, the only difference being that the parameter
values are put into the body of the HTTP request, exactly the way you would if
you POSTed information to a Web application through a form.

This technique of calling Web Services through simple HTTP GETs and
POSTs is not the standard way of calling Web Services. It is very inflexible, and in
fact not supported by most vendors. On the other hand, until such time as SOAP
will become universal and supported natively by all client applications, you may
find simple GETs and POSTs useful in cases where clients don’t yet understand
SOAP, but do have XML processing capabilities, as is the case with Macromedia
Flash 5.0.

Our suggestion, then, is to forgo convenience, and use the SOAP protocol for
calling Web Services from the very start. Unfortunately, this means that you have
to do a little bit more work.

Testing a Web Service Using a Client Script
What do you need to do to call the echo Web method through proper SOAP?
On the Web Service overview screen, as depicted in Figure 4.16, you can get all
the information you need.

You can make the following observations for the SOAP request:

■ A SOAP request is issued using an HTTP POST.

■ The request is POSTed to the Web Service ASMX page
(http://localhost/soapExamples/simpleService.asmx, in this case).

■ SOAP uses an additional HTTP header, called SOAPAction, that contains
the URI of the Web Service followed by the Web method name
(urn:schemas-syngress-com-soap/echo in this case).

■ The HTTP body of the POST contains an XML document, called the
SOAP envelope, delimited by an <Envelope> tag.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 153

154 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

■ The SOAP envelope itself has a <Body> element, and within that ele-
ment are elements defining the Web method you are calling (<echo>)
and what parameters it takes (<input>).

For the SOAP response, in turn:

■ The SOAP response is a normal HTTP response.

■ The HTTP body of the SOAP response contains an XML document,
called the SOAP envelope, that has the same structure as the SOAP
request envelope discussed in the preceding list.

■ The SOAP envelope itself has a <Body> element, and within that body
element are elements declaring the response from the Web method (the
default is adding the word Response to the method name (that is,
<echoResponse>), along with the return argument (the default is adding
the word Result to the method name, that is, <echoResult> here).

www.syngress.com

Figure 4.16 The SOAP Section of the Web Service Overview Screen

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 154

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 155

A detailed discussion of the SOAP protocol is well beyond the scope of this
book, however, the basic structure of the SOAP protocol is already apparent:

■ Requests are POSTed to a server, which in turn issues a response to
the client.

■ All requests and responses are XML documents, that start with
<Envelope> and <Body> elements. Method names show up within the
SOAP Body section, and method arguments and return values in turn
show up within the method section.

■ The server finds the Web class that handles the request through a combina-
tion of the URL to the corresponding ASMX file in the HTTP request,
the SOAPAction header, and the XML element having the name of the
Web method to call following immediately after the SOAP Body element.

Because Visual Studio.NET does not currently support directly calling a Web
method though SOAP (unless you use Web References, which you will do in the
next subsection), let’s write a little standalone Visual Basic VBS script instead.
Simply take the SOAP request shown in Figure 4.16 and POST that information
to the Web Server using the Microsoft.XMLHTTP ActiveX control, as shown in
Figure 4.17.The code for the script shown in Figure 4.17 is available on the
Solutions Web site for the book (www.syngress.com/soltutions).

Figure 4.17 VBS Script to Test the echo Web Method (echo.vbs)

myWebService = "http://localhost/soapExamples/simpleService.asmx"

myMethod = "urn:schemas-syngress-com-soap/echo"

'** create the SOAP envelope with the request

s = ""

s = s & "<?xml version=""1.0"" encoding=""utf-8""?>" & vbCrLf

s = s & "<soap:Envelope "

s = s & " xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance"""

s = s & " xmlns:xsd=""http://www.w3.org/2001/XMLSchema"""

s = s & " xmlns:soap=""http://schemas.xmlsoap.org/soap/envelope/"">"

s = s & vbCrLf

s = s & " <soap:Body>" & vbCrLf

s = s & " <echo xmlns=""urn:schemas-syngress-com-soap"">" & vbCrLf

s = s & " <input>Hello World</input>" & vbCrLf

s = s & " </echo>" & vbCrLf

www.syngress.com
Continued

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 155

156 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

s = s & " </soap:Body>" & vbCrLf

s = s & "</soap:Envelope>" & vbCrLf

msgbox(s)

set requestHTTP = CreateObject("Microsoft.XMLHTTP")

msgbox("xmlhttp object created")

requestHTTP.open "POST", myWebService, false

requestHTTP.setrequestheader "Content-Type", "text/xml"

requestHTTP.setrequestheader "SOAPAction", myMethod

requestHTTP.Send s

msgbox("request sent")

set responseDocument = requestHTTP.responseXML

msgbox("http return status code: " & requestHTTP.status)

msgbox(responseDocument.xml)

Because this is a simple Visual Basic script file, you can run it by simply
double-clicking on it in Windows Explorer, which will start Windows Scripting
Host.The script will show us the SOAP request (see Figure 4.18), send it to the
server, tell us that it received an HTTP 200 status return code (see Figure 4.19),
which means that everything went smoothly, and then display the SOAP response
that includes the echoed input parameter (see Figure 4.20).

www.syngress.com

Figure 4.17 Continued

Figure 4.18 Sending a SOAP Request

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 156

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 157

The truly amazing fact, however, is that you can run this script, which is not
connected in any way to your Visual Studio.NET project, in debug mode. In other
words, if you set a breakpoint in one of your project files, start the debugger (by
just pressing F5), and then go to Windows Explorer or to a command line and
run the script in Figure 4.17; execution will stop at your breakpoints. See Figure
4.21 for a depiction of the echo Web method, paused right before it returns the
response back to the client. Notice, for example, the complicated call stack right,
which gives you an idea of the heavy lifting that the .NET Framework does for
you in order for Web Services to work properly.

Stop for a moment and consider what you have so far done in this section.
Nothing prevents you from taking the Visual Basic script you just created and
including it as client-side script in a traditional Web page (other than the fact that
your clients will need to use Internet Explorer on a Windows platform, of
course). If you do this, you have just created a Web Service client application that
runs inside a browser window, making your echo service accessible to everybody
who has an Internet connection and knows how to find your service.

So far, the only thing you have done is pass a string argument back and forth.
The SOAP specification goes a lot further, as you can imagine; it defines a stan-
dard for passing a number of basic data types, complex data structures, and XML
documents between a SOAP client and a SOAP server.You can also serialize
objects and pass them over the wire.You will see examples of this in the section
“Working with Web Services,” later on in this chapter.

www.syngress.com

Figure 4.19 Retrieving a Successful Http Status Code

Figure 4.20 The Successful SOAP Response

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 157

158 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

You can find the complete code for the echo Web method on the Solutions
Web Site for the book (www.syngress.com/solutions) in the directory
soapExamples/.

Testing a Web Service Using a Web Reference
Lastly, you can run and test a Web Service application by letting Visual
Studio.NET create a .NET client proxy class for you, automatically.This proxy
class contains one method for each Web method exposed by the Web Service.
The tasks of creating the correct SOAP envelope, sending the data over the wire
through HTTP, waiting for the response back from the server, and parsing the
SOAP response envelope for the return value are all done for you.This may very
well end up being your method of choice, because you don’t need to worry
about the details of the SOAP protocol, but can concentrate on solving the
higher-level business problems at hand. However, to do this, you need to create a
separate .NET client application, and then let Visual Studio.NET glue the two
together by adding a reference to your Web Service server application. In order

www.syngress.com

Figure 4.21 Stopping Your Application at a Breakpoint

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 158

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 159

to do this, however, we need to first talk about how Web Services can be
described and discovered by potential clients.

Working with Web Services
In this section, we want to showcase more examples of Web Services, and how
the various standards work together.You can find the code of these examples on
the Solutions Web site for the book (www.syngress.com/solutions) in the direc-
tory soapExamples/.

Passing Complex Data Types
In this example, you will create a Web method that returns the arithmetic mean
of a set of integer valued data points.You can call this method arithmeticMean and
let it be part of the simpleService Web Service started at the beginning of this
chapter.

www.syngress.com

Deploying Web Services
How do you deploy a Web Service, such as the soapExamples service you
just created? The good news is that because Web Services are really just
a special kind of an .NET Web application, that is they run under
ASP.NET, deploying a Web Service is no different than deploying any
other ASP.NET application: You simply create a new IIS virtual directory
on the target server, copy all files from your project into the new loca-
tion, and you’re done. Before you do that, though, be sure to compile
your Web Service with all debug information removed for better perfor-
mance (see the section “Testing A Web Service Using Integrated Visual
Studio.NET Debugging” earlier in this chapter for details).

However, in the real world, Web Services will likely often act as
wrappers around legacy systems, such as database systems or enterprise
applications. The difficulty, then, of deploying a Web Service will not be
deploying the Web Service as such, but making sure that the Web
Service works well together with those legacy systems.

Developing & Deploying…

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 159

160 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

The arithmeticMean method takes as argument an integer-valued array of data,
called arrayInput, and returns a floating point value, as detailed in Figure 4.22.The
code for Figure 4.22 is available on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 4.22 Web Method to Compute the Arithmetic Mean
(simpleService.asmx.cs)

01: [SoapDocumentMethodAttribute(Action="arithmeticMean",

02: RequestNamespace="urn:schemas-syngress-com-soap",

03: RequestElementName="arithmeticMean",

04: ResponseNamespace="urn:schemas-syngress-com-soap",

05: ResponseElementName="arithmeticMeanResponse")]

06: [WebMethod(Description="Computes the " +

07: "arithmetic means of an array of input parameters")]

08: public float arithmeticMean (int[] arrayInput) {

09: if ((arrayInput == null) || (arrayInput.Length < 1)) {

10: throw new Exception("No input data...");

11: } else {

12: int sum = 0;

13: for(int i=0; i<arrayInput.Length; i++) {

14: sum += arrayInput[i];

15: }

16: return (float)((float)sum / (float)arrayInput.Length);

17: }

18: }

Note that you’ve added additional metadata to the method (see Figure 4.22):

■ Specify that the SOAPAction HTTP header should be the method name,
overriding the default, which is the method name, preceded by the
namespace of the Web Service class (line 1).

■ Specify the namespaces used by SOAP in requests to and responses from
this Web method (lines 2 and 4). Namespaces specified at the Web
method level overrule namespaces specified at the Web class level. Here,
stick with the one you already defined on the class level.

■ Set the XML element names used in the SOAP envelope to wrap the
method data.As you have seen in the first example of the echo Web

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 160

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 161

method, and you don’t change this here, by default the method name is
used for SOAP requests (line 3), whereas the method name, appended
with the string Response, is used for SOAP responses (line 5).

■ Add a description of the Web method (lines 6 and 7).This shows up, for
instance, on the Web Service overview page, as shown in Figure 4.23.

You can start testing the new method by calling it using a simple HTTP
GET.The individual array input elements are simply appended at the end of the
URL—in the example, the numbers 1, 2, and 7:

http://localhost/soapExamples/simpleService.asmx/arithmeticMean?

arrayInput=1&arrayInput=2&arrayInput=7

You get the following result:

<?xml version="1.0" encoding="utf-8" ?>

<float xmlns="urn:schemas-syngress-com-soap">3.33333325</float>

The expected result for the arithmetic mean of 1, 2, and 7 is of course
3.33333333, and not 3.33333325, which shows that you should apparently be
more careful when dealing with floating point arithmetic. Calling the method
using SOAP, you can go to http://localhost/soapExamples/simpleService
.asmx?op=arithmeticMean to figure out the correct syntax of the SOAP request
envelope.You can then create a simple Visual Basic script similar to the one in
Figure 4.17 (see the file arithmeticMean.vbs on the Solutions Web site for the
book). In Figures 4.24 and Figure 4.25, you can see the SOAP-encoded data
being exchanged during a client call to the arithmeticMean Web method.

www.syngress.com

Figure 4.23 Web Method Descriptions

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 161

162 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Figure 4.24 SOAP Request to arithmeticMean

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<arithmeticMean xmlns="urn:schemas-syngress-com-soap">

<arrayInput>

<int>1</int>

<int>2</int>

<int>7</int>

</arrayInput>

</arithmeticMean>

</soap:Body>

</soap:Envelope>

Figure 4.25 SOAP Response from arithmeticMean

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<arithmeticMeanResponse xmlns="urn:schemas-syngress-com-soap">

<arithmeticMeanResult>3.33333325</arithmeticMeanResult>

</arithmeticMeanResponse>

</soap:Body>

</soap:Envelope>

Error Handling
What happens if something goes wrong? An important part of debugging an
application is realizing what can go wrong in the first place. In the case of Web
Services, you may frequently encounter three kinds of errors. If you construct the

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 162

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 163

SOAP envelope by hand as opposed to using, say,Web References, your first stab
at it will quite likely have some typos—this is the case of a malformed SOAP
request.Another frequent error source is that some arguments passed to your Web
method are not of the correct type. Finally, something can go wrong during exe-
cution of code on the server, and you will need to know how such a server
exception is propagated back to the client, in order for you to take appropriate
action.The following sections look at those three error scenarios in detail.

Malformed SOAP Request
Call again the arithmeticMean Web method as you did earlier (see Figure 4.24).
But this time, change the SOAP envelope in such a way that the XML is no
longer valid XML (this shouldn’t be too hard). Let’s look what happens if you
remove the start tag of the last int element, as shown in Figure 4.26, line 11.

Figure 4.26 A Malformed SOAP Request

01: <?xml version="1.0" encoding="utf-8"?>

02: <soap:Envelope

03: xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

04: xmlns:xsd="http://www.w3.org/2001/XMLSchema"

05: xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

06: <soap:Body>

07: <arithmeticMean xmlns="urn:schemas-syngress-com-soap">

08: <arrayInput>

09: <int>1</int>

10: <int>2</int>

11: 7</int>

12: </arrayInput>

13: </arithmeticMean>

14: </soap:Body>

15: </soap:Envelope>

You then get a SOAP response that looks like the one shown in Figure 4.27.

Figure 4.27 SOAP Response Indicating a Malformed Request

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

www.syngress.com
Continued

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 163

164 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

<soap:Body>

<soap:Fault>

<faultcode>soap:Client</faultcode>

<faultstring>System.Web.Services.Protocols.SoapException:

Server was unable to read request. ---> System.Exception:

There is an error in XML document (7, 21). --->

System.Xml.XmlException: The 'arrayInput' start tag on line

'5' does not match the end tag of 'int'. Line 8, position 16.

at System.Xml.XmlTextReader.ParseTag()

at System.Xml.XmlTextReader.ParseBeginTagExpandCharEntities()

at System.Xml.XmlTextReader.Read()

at System.Xml.XmlReader.Skip()

at System.Xml.Serialization.XmlSerializationReader.

UnknownNode(Object o)

at n2499d7d93ffa468fbd8861780677ee41.XmlSerializationReader1.

Read5_arithmeticMean()

at System.Xml.Serialization.XmlSerializer.Deserialize

(XmlReader xmlReader)

at System.Web.Services.Protocols.SoapServerProtocol.

ReadParameters()

at System.Web.Services.Protocols.SoapServerProtocol.

ReadParameters()

at System.Web.Services.Protocols.WebServiceHandler.Invoke()

at System.Web.Services.Protocols.WebServiceHandler.

CoreProcessRequest()

</faultstring>

<detail/>

</soap:Fault>

</soap:Body>

</soap:Envelope>

What has happened is that the SOAP deserializer on the server noticed that
the XML was not valid, threw an exception, and returned a SOAP Fault.A
SOAP fault is what’s returned to the client if an error occurred during program
execution on the server.You can check programmatically for a SOAP Fault on
the client in two ways:

www.syngress.com

Figure 4.27 Continued

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 164

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 165

■ SOAP Faults return an HTTP error code 500 (Server error).

■ SOAP Faults include the XML element <Fault> in the SOAP return
envelope.

Inside the <Fault> element are four standard sections:

■ <faultcode> Denotes if the error is a client or server error. In the
example case of malformed XML, this is a client error. In fact, if you
start the debugger in Visual Studio.NET and step through the code as
you did in the earlier section on debugging using a client script, you will
see that the arithmeticMean Web method is never even reached—program
execution stops and control is returned to the client during the SOAP
deserialization process, before the Web Service class is ever instantiated.

■ <faultstring> Includes additional information about the error. By
default, this contains the call stack at the time the error occurred.

■ <detail> Where you as an application developer can put additional
information about the error. Here, it is empty.

■ <faultactor> An additional element defined by the SOAP specifications,
but not returned by Microsoft .NET in this example.

Wrong Argument Types
What if you try to pass a float argument to the Web method, that is, if your
SOAP request contains the following element?

<int>1.1</int>

Similar to the malformed XML example earlier, a SOAP Fault is returned by
the SOAP deserializer indicating a client fault.This is very powerful—it means
that you will rarely have to worry about argument checking, because the .NET
runtime environment will do this for you. (You still have to write code on the
client to handle this situation appropriately, of course.)

Exceptions in Server Code
Most often, exceptions will occur during program execution in your Web Service
class and objects created by that class on the server.The arithmeticMean class, for
instance, generates an exception whenever the argument array passed to it is
empty.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 165

166 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

In Figure 4.28, you see such a SOAP request to arithmeticMean: the arrayInput
argument array containing the integers of which you want to compute the arith-
metic mean is empty, and because you did not write your Web method in a
robust way, a server error is returned (as shown in Figure 4.29).

Figure 4.28 SOAP Request to arithmeticMean

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<arithmeticMean xmlns="urn:schemas-syngress-com-soap">

<arrayInput/>

</arithmeticMean>

</soap:Body>

</soap:Envelope>

Figure 4.29 SOAP request from arithmeticMean

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<soap:Fault>

<faultcode>soap:Server</faultcode>

<faultstring>System.Web.Services.Protocols.SoapException:

Server was unable to process request.

---> System.Exception: No input data...

at soapExamples.simpleService.arithmeticMean

(Int32[] arrayInput) in

c:\inetpub\wwwroot\soapexamples\simpleservice.asmx.cs:line 31

</faultstring>

<detail/>

</soap:Fault>

</soap:Body>

</soap:Envelope>

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 166

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 167

Again, notice how powerful Microsoft .NET is. In the Web class code
(Figure 4.22, lines 9 and 10), you just threw a new System.Exception, with a
custom error message (“No input data…”). .NET then did all the hard work
and converted the system error into a SOAP Fault (see Figure 4.29) and even
added the error message into the <faultstring> element, even though the format-
ting is maybe less than perfect.You also see that this time this is a server error
(<faultcode>soap:Server</faultcode>), as expected.

It turns out that you have fine-grained control over SOAP Faults, and error
handling in general.

Finally, note that if you call a Web method through a simple HTTP GET (or
POST) request using a Web browser, depending on the exact request, all you may
get could be the bleak browser error page (see Figure 4.30)—another reason to
use SOAP from the very beginning!

Writing a SOAP Client Application
Maybe you’re a little bit tired by now—manually writing Visual Basic scripts to
test your Web Service—and would rather do some pointing and clicking.This is,

www.syngress.com

Figure 4.30 A Not Very Informative Error Page

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 167

168 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

in fact, possible using Visual Studio.NET, although you lose some control over
what’s going on by going this route.

Let’s then go ahead and create a Windows Forms–based client application
for the echo Web method of the simpleService Web Service. Close the Visual
Studio.NET solution you may be working on and create a new C# Windows
application by selecting File | New | Project, choosing the entry Windows
Application under the Visual C# Projects folder, and entering
soapExamplesClient as the Name of the project as shown in Figure 4.31.

This will set up the necessary project files, and add a new Windows Form
called form1.cs. Interestingly,Windows Forms applications do not separate design
from code, and you will see references to form elements pop up in your C# code
file, even though Visual Studio.NET goes through some efforts trying to “hide”
those from you.

You need to teach the client to “know” about your Web Service. Go to the
Solution Explorer, right-click the soapExamplesClient project, and select Add
Web Reference. From here you could, for example, query a UDDI registry.
Pretend that you didn’t know what services are available on your machine, and
use the DISCO discovering mechanism exposed under Web References On
Local Web Server in the lower-left part of the Add Web Reference window (see
Figure 4.32). For information on UDDI and DISCO, refer to Chapter 5 “ WSDL
and UDDI”.

www.syngress.com

Figure 4.31 Setting Up a New C# Windows Forms Application

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 168

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 169

After a period of reflection, the DISCO file for your server will appear on
the left panel, and the Web Service shows up as Linked Reference Group on the
right panel (see Figure 4.33).

www.syngress.com

Figure 4.32 The Add Web Reference Window

Figure 4.33 Showing Available Linked Reference Groups through the DISCO
Mechanism

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 169

170 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Click on the DISCO file, and get to the next window (see Figure 4.34).

You can see the location of the corresponding WSDL file conveniently dis-
played both within the DISCO file on the left and the listing of Web Services on
the right.You can now click Add Reference and let Visual Studio.NET contact
the Web Service to gather all relevant data about this service through the WSDL
mechanism.

Note that if DISCO fails you, as it has us a few times, just copy and paste the
WSDL location (http://localhost/soapExamples/simpleService.asmx?wsdl)
directly into the Address input box of the dialog, which is probably the preferred
method anyway.

Let’s see what Visual Studio.NET has done for you: go to the Solution
Explorer, click the Show All Files icon to get into expert mode, expand all
folders under the Web References folder, select simpleService.cs, and click on
the View Code icon (Microsoft does not make this easy!).What you see is
something like Figure 4.35.

What has happened? Visual Studio.NET has generated a proxy class for the
simpleService Web class of the soapExamples Web Service.This proxy allows you to
do a number of things:

■ It has methods to call all methods your referenced Web Service exposes
both through synchronous and asynchronous SOAP requests.

■ All of the SOAP wire communication, including serializing and deserial-
izing data, is done through the proxy, freeing you from a lot of manual
coding.

www.syngress.com

Figure 4.34 Showing Available Web Services through the DISCO Mechanism

206_XMLweb_04.qxd 6/25/02 1:47 PM Page 170

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 171

■ It allows you to work with remote Web Services the way you would
with local objects, including full IntelliSense support.

Concretely, it creates the localhost.simpleService class, which has the following
public methods:

■ echo() and arithmeticMean() to call the corresponding Web methods
directly through issuing a (synchronous) SOAP request.

■ Beginecho() and BeginarithmeticMean(), which call the corresponding Web
methods through an asynchronous SOAP request.These methods have
as an input parameter a reference to a System.AsyncCallback delegate
which in turn references the callback method to be called when the
asynchronous SOAP request has completed.

■ Finally, Endecho() and EndarithmeticMean() are used to return the value of
SOAP response after completion of an asynchronous SOAP request.

www.syngress.com

Figure 4.35 A Web Service Proxy

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 171

172 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Note that simpleService inherits from the System.Web.Services.Protocols
.SoapHttpClientProtocol class, where all the heavy lifting occurs to make SOAP
calls possible.

So, let’s design a form for the echo Web method, like the one shown in
Figure 4.36.

You need to add essentially two lines of code to call the echo Web method, as
shown in Figure 4.37.The code for Figure 4.37 is available on the Solutions Web
site for the book (www.syngress.com/solutions).

Figure 4.37 Calling the echo Web Method (in Form1.cs of
soapExamplesClient)

private void callEcho_Click(object sender, System.EventArgs e) {

localhost.simpleService myWebSvc =

new localhost.simpleService();

try {

this.soapReturnEcho.Text =

myWebSvc.echo(this.enterText.Text);

} catch (Exception ex) {

www.syngress.com

Figure 4.36 Creating a Web Service Client Form (Form1.cs of
soapExamplesClient)

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 172

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 173

// add error handling here...

}

}

Let Microsoft .NET handle everything else. Running the application, if
everything went well, will give you the picture shown in Figure 4.38.

If you want to run this application outside Visual Studio.NET, you will find it
at the following location: %USERPROFILE% \Visual Studio Projects\
soapExamplesClient\bin\Debug\.

If you were to analyze HTTP traffic between your Web Service client and
server applications using a network monitoring or network tunneling tool, you
would see the exact same SOAP envelopes exchanged that you encountered in
the earlier section “Testing a Web Service Using a Client Script.” For example,
TcpTunnelGui, which is an excellent network tunneling tool that ships as part of
the Apache SOAP implementation, nicely shows the SOAP exchange as depicted
in Figure 4.39.

www.syngress.com

Figure 4.37 Continued

Figure 4.38 A Happy Web Service Client

Figure 4.39 Tunneling the echo Web Service to Inspect the SOAP Traffic

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 173

174 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

You can find the complete code for this project on the Solutions Web Site for
this book (www.syngress.com/solutions) in the directory soapExamplesClient/.

Passing Objects
The SoapFormatter class in the System.Runtime.Serialization.Formatters.Soap name-
space is responsible for serializing and deserializing data according to the SOAP
protocol. It is capable of sending and receiving whole objects, in addition to
handling simple and complex data types, which you have already seen earlier in
this chapter.

As an example, let’s construct a simple Web Service that sends performance
counter data to a Web client.The System.Diagnostics namespace contains the
PerformanceCounter class, which is perfect for your purposes.You then simply write
a Web method that takes as arguments the category, counter, and instance names
necessary to instantiate a performance counter object, which you then send as a
serialized object over SOAP to potential client applications. Note that valid argu-
ment values can be gathered from the Performance Monitor tool that’s part of
Windows 2000.

In Figure 4.40, you see the few lines of code needed to implement such a
Web method. Simply add the code to your existing soapExamples project.
These lines of code can be found on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 4.40 getCounterInfo Web Method (simpleService.asmx.cs)

[SoapDocumentMethodAttribute(Action="getCounterInfo",

RequestNamespace="urn:schemas-syngress-com-soap",

RequestElementName="getCounterInfo",

ResponseNamespace="urn:schemas-syngress-com-soap",

ResponseElementName="getCounterInfoResponse")]

[WebMethod(Description="Returns performance counter information")]

public System.Diagnostics.PerformanceCounter getCounterInfo(

string categoryName, string counterName, string instanceName) {

System.Diagnostics.PerformanceCounter perfCounter

= new System.Diagnostics.PerformanceCounter();

perfCounter.CategoryName = categoryName;

perfCounter.CounterName = counterName;

www.syngress.com

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 174

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 175

perfCounter.InstanceName = instanceName;

if (perfCounter.CounterType < 0) {

// counter is not a valid counter

throw new Exception("Counter Data Invalid!");

}

return perfCounter ;

}

As shown, you initiate a new PerformanceCounter object using the argument
data, check if you have a valid PerformanceCounter, and then simply return that
object to the calling client.The .NET Framework will then do all the work for
you, serializing the object through using a standard format.

If your Web Service client is itself a Microsoft .NET application, you are
truly in luck, because the client can then receive the Web Service response as
a PerformanceCounter object, and not as just an XML document containing
SOAP data.

Here’s how you need to modify the client code:

1. Open again your soapExamplesClient client application in Visual
Studio.NET.

2. Right-click the localhost Web Reference in the Solution Explorer, and
select Update Web Reference, which will add code to call the
getCounterInfo Web method you just created to the client proxy (see
Figure 4.41).

3. Change the Windows Form a little bit to accommodate the
getCounterInfo Web method, as in Figure 4.42.

4. Add the necessary code to call the getCounterInfo Web method (see
Figure 4.43).

www.syngress.com

Figure 4.40 Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 175

176 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Figure 4.43 Calling the getCounterInfo Web Method (Form1.cs in
soapExamplesClient)

private void callGetCounterInfo_Click(

object sender, System.EventArgs e) {

localhost.simpleService myWebSvc =

www.syngress.com

Figure 4.41 Proxy Code Added for New Performance Counter Web
Method (soapExamplesClient)

Figure 4.42 Adding Elements on the Windows Form for the
getCounterInfo method (Form1.cs in soapExamplesClient)

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 176

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 177

new localhost.simpleService();

try {

this.soapReturnGetCounterInfo.Text =

myWebSvc.getCounterInfo(

this.categoryName.Text,

this.counterName.Text,

this.instanceName.Text).RawValue.ToString();

} catch (Exception ex) {

}

}

Note that the getCounterInfo Web method returns an object of type
PerformanceCounter, as IntelliSense correctly tells us (see Figure 4.44).

5. After compiling the application, you are now able to expose, say, the size
of available physical memory to the world, as depicted in Figure 4.45.
Obviously, you should probably now secure this Web Service (see the
“Security” section later in this chapter).

www.syngress.com

Figure 4.43 Continued

Figure 4.44 Microsoft’s IntelliSense in Action

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 177

178 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

If the Web Service client does not run on the Microsoft .NET platform,
however, more work is needed. In this case, as a client application developer, you
can either define a class matching the return type and extend the SOAP deserial-
izer to handle that class type correctly, or as a last resort, you can always manually
parse the SOAP return envelope for the data you are interested in.

To illustrate what’s going on behind the scenes, let’s look at the SOAP enve-
lope passed back to the client in the Web Service response (see Figure 4.46).

Figure 4.46 SOAP Response from getCounterInfo Passing Back Serialized
Object Data

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<getCounterInfoResponse xmlns="urn:schemas-syngress-com-soap">

<getCounterInfoResult>

<Site xsi:nil="true"/>

<CategoryName>Memory</CategoryName>

<CounterName>Available KBytes</CounterName>

<RawValue>25080</RawValue>

</getCounterInfoResult>

</getCounterInfoResponse>

</soap:Body>

</soap:Envelope>

www.syngress.com

Figure 4.45 Exposing Performance Information through a Web Service

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 178

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 179

As you see, the various properties of the PerformanceCounter class are serialized
as XML elements, with their values being converted to a string format and added
as text nodes. If you are sending your objects instantiated from your own classes,
you can achieve finer control over how they are being serialized by using the
XmlAttributeAttribute and XmlElementAttribute classes found in the System.Xml
.Serialization namespace. In the same namespace, you also find classes that let you
manipulate the XML namespaces used during the serialization process.

The opposite is also possible: If you already have an XML schema that you
would like SOAP to use for data transfer, you can then take advantage of the
XML Schema Definition Tool xsd.exe, found in %ProgramFiles%\
Microsoft.NET\FrameworkSDK\Bin\, to generate the corresponding .NET
classes to support that schema.

Passing Relational Data (DataSets)
An interesting special case of passing objects over SOAP is passing back data
coming from a relational database, such as DataSets.The .NET SOAP serializer,
which is the piece of code that puts your data in XML format to be sent back
inside a SOAP return envelope, can indeed serialize DataSets out of the box.

Let’s have a look what happens under the hood, by writing a simple Web
method that queries Microsoft’s Northwind database for all data in the Shippers
table and returns a serialized DataSet (note that you cannot serialize a DataTable
using the default serializer).The code is in Figure 4.47, and also on the Solutions
Web site for the book (www.syngress.com/solutions) in directory chapter1/rsTest/.

Figure 4.47 Code to Return a DataSet From The Northwind Database
(rsTest.asmx.cs)

using System;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

namespace rsTest

{

[WebServiceAttribute(Namespace="urn:schemas-syngress-com-soap")]

www.syngress.com

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 179

180 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

public class rsTest : System.Web.Services.WebService

{

public rsTest() {

}

[SoapDocumentMethodAttribute(Action="returnRS",

RequestNamespace="urn:schemas-syngress-com-soap:rsTest",

RequestElementName="returnRS",

ResponseNamespace="urn:schemas-syngress-com-soap:rsTest",

ResponseElementName="returnRSResponse")]

[WebMethod]

public DataSet returnRS() {

try {

string sqlConnectionString =

"server=(local)\\NetSDK;database=Northwind;User ID=SA;Password=";

SqlDataAdapter sqlDataAdapter = new SqlDataAdapter(

"SELECT * FROM shippers", sqlConnectionString);

DataSet shippers = new DataSet();

sqlDataAdapter.Fill(shippers, "shippers");

return shippers;

}

catch (Exception e) {

throw e;

}

}

}

}

When you now call the Web method returnRS, you get the SOAP envelope
as in Figure 4.48, which looks complicated indeed! If you study the XML
returned in detail, you will notice that the XML contains an XML Schema defi-
nition section for the DataSet returned, followed by the actual data, which con-
sists of three shipping company records.

www.syngress.com

Figure 4.47 Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 180

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 181

Figure 4.48 SOAP Encoded DataSet Returned from Northwind Database

<?xml version="1.0" encoding="utf-8"?>

<DataSet xmlns="urn:schemas-syngress-com-soap">

<xsd:schema id="NewDataSet" targetNamespace=""

xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="NewDataSet" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="shippers">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ShipperID"

type="xsd:int" minOccurs="0" />

<xsd:element name="CompanyName"

type="xsd:string" minOccurs="0" />

<xsd:element name="Phone"

type="xsd:string" minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:schema>

<diffgr:diffgram

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<NewDataSet xmlns="">

<shippers diffgr:id="shippers1" msdata:rowOrder="0">

<ShipperID>1</ShipperID>

<CompanyName>Speedy Express</CompanyName>

<Phone>(503) 555-9831</Phone>

</shippers>

<shippers diffgr:id="shippers2" msdata:rowOrder="1">

<ShipperID>2</ShipperID>

www.syngress.com

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 181

182 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

<CompanyName>United Package</CompanyName>

<Phone>(503) 555-3199</Phone>

</shippers>

<shippers diffgr:id="shippers3" msdata:rowOrder="2">

<ShipperID>3</ShipperID>

<CompanyName>Federal Shipping</CompanyName>

<Phone>(503) 555-9931</Phone>

</shippers>

</NewDataSet>

</diffgr:diffgram>

</DataSet>

If your client is running Microsoft .NET software, you’re in luck:The client
will automatically reassemble the SOAP response into a DataSet that you can
then use to continue processing. However, there are potential (business!) clients
on the Internet who do not and never will run on a Microsoft platform. For
those, the XML in Figure 4.48 is hard to parse.Theoretically, this should be pos-
sible, because the XML does contain the XML Schema definition needed to
understand and reassemble the data, but in practice, few people would want to
deal with such a monstrosity.

Our advice, then, is to shy away from passing data coming from a database as
Microsoft DataSets, unless you really, really know that the only clients ever to
consume your Web Services will be Microsoft clients, running, preferably, on the
.NET platform.

Passing XML Documents
So far we have focused on using Web Services as an RPC (remote procedure call)
mechanism.Although the data being exchanged through SOAP has of course
been in the form of XML documents all along, it was the data being exchanged
and not the XML document as such that we were interested in so far.

There are cases, however, when you will just want to exchange XML docu-
ments between a client and a server; these XML documents could be invoices,
tagged magazine articles, your own custom data encoding scheme, and so on.
Often, these XML documents being exchanged will have an associated schema
against which they will be validated.

www.syngress.com

Figure 4.48 Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 182

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 183

The example shown in Figure 4.49 is a simple service that accepts an XML
document and returns the same XML document, adding only an XML attribute
dateProcessed to the XML root element, indicating when the XML was processed.
It is part of the simpleService Web Service.The example in Figure 4.49 can be
found on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 4.49 xmlTester Web Method (simpleService.asmx.cs)

01: [SoapDocumentMethodAttribute(Action="xmlTester",

02: RequestNamespace="urn:schemas-syngress-com-soap",

03: ResponseNamespace="urn:schemas-syngress-com-soap",

04: ParameterStyle = SoapParameterStyle.Bare)]

05: [WebMethod(Description="XML echo service that " +

06: "adds a dateProcessed attribute.")]

07: [return: XmlAnyElement]

08: public XmlElement xmlTester(

09: [XmlAnyElement]XmlElement inputXML){

10:

11: inputXML.SetAttribute("dateProcessed",

12: System.DateTime.Now.ToUniversalTime().ToString("r"));

13: return inputXML;

14: }

Note you’ve added the instruction

ParameterStyle = SoapParameterStyle.Bare

to the SoapDocumentMethodAttribute section (Figure 4.49, line 4), specifying that the
XML document that is the argument for the xmlTester Web method should appear
directly beneath the Body element of the SOAP request envelope, and that you
don’t want an intermediate XML element in the SOAP response either.

When you run xmlTester through Visual Studio.NET, you will see that this
Web method can be called only through SOAP (see Figure 4.50), which makes
sense because you can’t pass an XML document through a simple HTTP GET
or HTTP POST.

You can test this service by writing a Visual Basic script similar to the ones
you created earlier in this chapter (see Figure 4.51).When running this script,
you can observe the SOAP data exchange taking place as shown in Figures 4.52
and 4.53. Note the additional attribute dateProcessed in Figure 4.53, shown in
bold, that was added through the Web xmlTester method.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 183

184 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Figure 4.51 VBS Script to Test the xmlTester Web Method (xmlTester.vbs)

myWebService = "http://localhost/soapExamples/simpleService.asmx"

myMethod = "xmlTester"

'** create the SOAP envelope with the request

s = ""

s = s & "<?xml version=""1.0"" encoding=""utf-8""?>" & vbCrLf

s = s & "<soap:Envelope "

s = s & " xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance"""

s = s & " xmlns:xsd=""http://www.w3.org/2001/XMLSchema"""

s = s & " xmlns:soap=""http://schemas.xmlsoap.org/soap/envelope/"">"

s = s & vbCrLf

s = s & " <soap:Body>" & vbCrLf

s = s & " <rootElement>" & vbCrLf

s = s & " <someNode someAttribute=""random"">" & vbCrLf

www.syngress.com

Figure 4.50 The Overview Page For The xmlTester Web Method

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 184

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 185

s = s & " <someOtherNode>some data</someOtherNode>" & vbCrLf

s = s & " </someNode>" & vbCrLf

s = s & " </rootElement>" & vbCrLf

s = s & " </soap:Body>" & vbCrLf

s = s & "</soap:Envelope>" & vbCrLf

msgbox(s)

set requestHTTP = CreateObject("Microsoft.XMLHTTP")

msgbox("xmlhttp object created")

requestHTTP.open "POST", myWebService, false

requestHTTP.setrequestheader "Content-Type", "text/xml"

requestHTTP.setrequestheader "SOAPAction", myMethod

requestHTTP.Send s

msgbox("request sent")

set responseDocument = requestHTTP.responseXML

msgbox("http return status code: " & requestHTTP.status)

msgbox(responseDocument.xml)

Figure 4.52 SOAP Request to xmlTester Web Method

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<rootElement>

<someNode someAttribute="random">

<someOtherNode>some data</someOtherNode>

www.syngress.com

Figure 4.51 Continued

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 185

186 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

</someNode>

</rootElement>

</soap:Body>

</soap:Envelope>

Figure 4.53 SOAP Response from xmlTester Web Method

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<rootElement dateProcessed="Tue, 18 Sep 2001 22:15:55 GMT">

<someNode someAttribute="random">

<someOtherNode>some data</someOtherNode>

</someNode>

</rootElement>

</soap:Body>

</soap:Envelope>

Obviously, this is only the very tip of the iceberg.The ability to send generic
XML documents back and forth is a powerful feature of SOAP. In passing, we
mention that a related standard called SOAP Messages With Attachments
(www.w3.org/TR/SOAP-attachments) defines a way to pass generic files
(binary or text) using SOAP as MIME-encoded attachments.

SOAP Headers
Similar to the way the HTTP protocol has a header section that contains general
information about the request and a body section that contains specific applica-
tion data relevant to the request, the SOAP protocol specifies that the SOAP
envelope has both a header and a body section. So far, you have only seen exam-
ples of SOAP requests (and responses) that had Body elements, but no Header ele-
ments.That’s because a SOAP Body element is required, whereas a SOAP Header
element is not. In fact, SOAP headers were designed to give SOAP an extension
mechanism.

www.syngress.com

Figure 4.52 Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 186

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 187

The SOAP Header element appears right underneath the SOAP Envelope ele-
ment, and you’re free to define your header name and header value, and what it
means to have such a SOAP header present.As an example, you could encode
transaction information in a SOAP header. In the “Maintaining State” section to
follow, we show you a possible usage of SOAP headers as a mechanism to estab-
lish a notion of a client session, and we discuss what classes in the .NET
Framework you have to use to handle SOAP headers.

Advanced Web Services
Web Services were designed to be, above all, simple—simple to implement, and
simple to use. Simplicity has its price, however, and there are a variety of features
that you won’t find in Web Services—features that are part of older, more estab-
lished data exchange protocols, such as COM/DCOM or CORBA. Such fea-
tures include state management, security, and transaction processing.

You need to realize that programming on the Internet is different than pro-
gramming on a private network. Expecting the two to be the same would be
wrong.You don’t have the same level of control on the Internet that you have on
a local area network, and it is clear that data communication on the Internet will
mean having less direct control, and allowing for more things to go wrong.You
should therefore not expect to be able to implement a complex real-time transac-
tional system involving ten transaction partners using SOAP—at least not today.

Let’s look at two problem areas you are likely to encounter when developing
real-world Web Services. First, the question of whether to maintain state or not,
and if yes, how, and secondly how to handle security.

Maintaining State
Our suggestion is to not try to introduce state in Web Service applications, at
least for the time being. If you consider where state has traditionally been intro-
duced in Web applications, the most prominent area is probably in e-commerce
with the usage of so-called shopping carts. Clearly, you should not try to write a
Web Service shopping cart application.Another area is security.We discuss secu-
rity later in the chapter, but good alternatives exist to having explicitly stateful
applications in that area as well. In all other areas, introducing state is almost
always a bad idea. Considering that Web Services were designed to let distributed
systems talk to each other in a loosely coupled way, state just doesn’t seem to fit the
picture quite right from an architectural point of view. Still, you have a variety of
options to add state, which we discuss next.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 187

188 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Let’s first briefly review the options you have in architecting stateful Web
applications.

HTTP, the protocol underlying Web applications, is an inherently stateless
protocol.A client issues a request against a server, which in turn issues a response.
Every client request is seen by the server as a new request, not connected to any
previous request.Technically, the client issues an HTTP request by opening a
TCP/IP socket connection to the server, issues a request using the HTTP pro-
tocol, gets some data from the server, and then closes the socket.The next HTTP
request will be issued using a new TCP/IP socket connection, making it impos-
sible for the server to understand, on the protocol level, that the second request
may really be the continuation of the first request. Note that the keep-alive func-
tion in HTTP does not change this picture, because it is geared mainly towards
making the retrieval of Web pages containing many individual page elements
more efficient, but it does not guarantee in any way that a network connection
to the server is maintained over any longer period of time.

Introducing state means that you add logic on the server to be able to relate a
previous request from a particular client to a subsequent request from the same
client.This is being done by introducing information that identifies a particular
client to the HTTP request and response data, and developing application level
code that makes sense of that additional data. Saying that a client establishes a ses-
sion with a server just means that you have application logic that connects several
client requests to a logical session using that additional information, even though,
because of the nature of the HTTP protocol, there is no physical equivalent to a
session (i.e., no ongoing network connection over the lifetime of a client-server
interaction).

Looking at the HTTP protocol, there are three places where you may add
state information identifying a client:

■ The URL against which the request is issued (the first line in an HTTP
request)

■ The header part of an HTTP request (including cookies)

■ The body part of an HTTP request

And the two latter possibilities hold for HTTP responses as well.
We look at some examples in the following sections.You can find the code

about maintaining state in the directory sessionTest/ on the Solutions Web site
(www.syngress.com/solutions) for the book.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 188

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 189

State Information in the URL (URL Mangling)
You can maintain state information by adding a unique client session identifier to
the URL. Microsoft’s Passport service uses this method to assign and maintain
client session authentication information.ASP.NET natively supports this method
through a configuration entry in the config.web file.The advantage of this
method is that it is very scalable, supports Web farms and Web gardens, can be
configured to survive IIS restarts without losing session information, and that you
have the option of saving client information on an external SQL Server database.
Technically, what happens is that a Web application that is configured to map
state information to URLs will redirect a new incoming client request using an
HTTP 302 status code (Found) to a new URL that contains a session identifier.
Here’s how it works:

1. Set the cookieless attribute of the session element in the web.config
ASP.NET configuration file to True.

2. Create a new Web method with an attribute EnableSession set to
True, and use the System.Web.HttpContext.Current.Session object (or
Web.Service.Session, which amounts to the same object):

[WebMethod(EnableSession=true)]

public string sessionTest__URL() {

if (Session["HitCounter"] == null) {

Session["HitCounter"] = 1;

} else {

Session["HitCounter"] = ((int) Session["HitCounter"]) + 1;

}

return (Session["HitCounter"].ToString());

}

Let’s look what happens on the HTTP protocol level if a client calls this
method twice.You can look at the HTTP data exchange by using a TCP tun-
neling tool. Here we have used TcpTunnelGui, which ships as part of the Apache
Project’s SOAP implementation, but you can, of course, easily write your own
TCP tunnel program using the .NET Framework (do it—it’s a great exercise!).

You can call the Web Service through a simple HTTP GET request (we
ignore some of the irrelevant HTTP headers). In the first call, the client issues an
HTTP GET:

GET /sessionTest/sessionTest.asmx/sessionTest__URL HTTP/1.1

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 189

190 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Host: localhost

Connection: Keep-Alive

Server issues an HTTP 302 (Moved) to a URL that contains the session
identifier:

HTTP/1.1 302 Found

Server: Microsoft-IIS/5.0

Date: Wed, 12 Sep 2001 22:14:21 GMT

Location: /sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL

Cache-Control: private

Content-Type: text/html; charset=utf-8

Content-Length: 176

<html><head><title>Object moved</title></head><body>

<h2>Object moved to

<a href='/sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL'>

here.</h2></body></html>

Client reissues an HTTP GET for the new URL:

GET /sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL HTTP/1.1

Host: localhost

Connection: Keep-Alive

Server send back the SOAP response:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Wed, 12 Sep 2001 22:14:21 GMT

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

Content-Length: 96

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">1</string>

In the second call, the client issues an HTTP GET (using the modified URL):

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 190

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 191

GET /sessionTest/(bf33go2yvicwfhbragscdwvu)/

sessionTest.asmx/sessionTest__URL HTTP/1.1

Host: localhost

Connection: Keep-Alive

The server responds, incrementing the session hit counter:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Wed, 12 Sep 2001 22:14:30 GMT

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

Content-Length: 96

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">2</string>

So far, so good.The problem with implementing session state for Web
Services this way is that you need to teach your Web Service client application
two things:

■ They need to follow HTTP 302 messages.

■ When issuing a follow-up request, they should either use relative URLs,
or they should remember changed URLs through HTTP 302 codes.

Both constraints are hard to implement, and somewhat contrary to the
underpinnings of the Web Services philosophy. Basically, you require your Web
Service clients to be very smart, as smart, indeed, as a Web browser is. None of
the current Web Service clients is currently capable of supporting this function-
ality, and that includes the .NET Web Service proxy.

State Information in the Http Header (Cookies)
You can add state information in additional HTTP headers.This is used in two
common scenarios:

■ Authentication The various authentication schemes, such as Basic
Authentication,Windows NTLM-based authentication, Kerberos-based
authentication, and others, work by sending an additional Authentication
header element between client and server.Typically, the client sends cre-
dential information to the server, which then verifies the information

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 191

192 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

received, may ask for additional information, and finally answers by
returning a session key (which is still sent in the Authentication header
field), that is then used by all subsequent client requests to access pro-
tected server resources.

■ Cookies Cookies are pieces of data that are persisted on the client
computer.They are stored and received using an additional HTTP
header element called Cookie.

ASP.NET has improved session handling using cookies; similarly to the
“cookieless” session management explained in the preceding section, it now sup-
ports cookie-based sessions that scale well, support Web farms and Web gardens,
and it can save client information away in a remote database out-of-the-box.

Let’s look at an example using cookies to store state information:

1. Set the cookieless attribute of the session element in the web.config
ASP.NET configuration file to False.

2. Create a new Web method with an attribute EnableSession set to
True, and use the System.Web.HttpContext.Current.Session object (or use
the Web.Service.Session object):

[WebMethod(EnableSession=true)]

public string sessionTest__httpHeader() {

if (Session["HitCounter"] == null) {

Session["HitCounter"] = 1;

} else {

Session["HitCounter"] = ((int) Session["HitCounter"]) + 1;

}

return (Session["HitCounter"].ToString());

}

Let’s look what happens on the HTTP protocol level if a client calls this
method twice.You can call the Web Service through a simple HTTP GET
request (we ignore some of the irrelevant HTTP headers). In the first call, the
client issues an HTTP GET:

GET /sessionTest/sessionTest.asmx/sessionTest__httpHeader HTTP/1.1

Host: localhost

Connection: Keep-Alive

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 192

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 193

The server sends back the SOAP response, including a Cookie header
requesting the client to set a session cookie:

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Thu, 13 Sep 2001 17:58:09 GMT

Transfer-Encoding: chunked

Set-Cookie: ASP.NET_SessionId=znbmf0mqcufv4p45s204wp45; path=/

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">1</string>

In the second call, the client issues an HTTP GET, and sends the session
Cookie header received form the server in the previous call:

GET /sessionTest/sessionTest.asmx/sessionTest__httpHeader HTTP/1.1

Host: localhost

Connection: Keep-Alive

Cookie: ASP.NET_SessionId=znbmf0mqcufv4p45s204wp45

The server responds, incrementing the session hit counter (the Cookie header
is not sent again, because the server retrieved the Cookie header in the HTTP
request from the client, so it knows that the client honored its cookie request
from the first response):

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Date: Thu, 13 Sep 2001 17:58:20 GMT

Cache-Control: private, max-age=0

Content-Type: text/xml; charset=utf-8

Content-Length: 96

<?xml version="1.0" encoding="utf-8"?>

<string xmlns="urn:schemas-syngress-com-soap">2</string>

However, if you want to encode session state information into cookies, you
need to insist that all your Web Service clients are capable of handling cookies cor-
rectly. Only very few potential consumers will probably be willing to add that

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 193

194 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

functionality to their client applications because, again, cookies really belong into
the domain of Web browsers, and seem strange in a Web Service client application.

On the other hand, you could certainly add session state information in a
custom HTTP header (maybe called webState?).This would require manually
adding code to both the Web Service server to clients to correctly handle that
additional header element. Even worse,WSDL, the Web Service description
format, has no provisions to support such new, required HTTP headers.

State Information in the Http Body (SOAP Header)
The last possibility, finally, is to embed state information into the HTTP body
itself.This method really only makes sense if you use SOAP to call your Web
Service (as opposed to issuing simple HTTP GET or POST requests).

SOAP indeed does have the option of adding custom SOAP headers into the
SOAP envelope. Note that a SOAP header is not the same as an HTTP header; it
is a header relative to the SOAP message, that is it appears within the HTTP
body, inside the SOAP envelope.

There is currently no support for keeping client state information in SOAP
headers in ASP.NET, so you need to do everything yourself.

Let’s try then to re-create a simple hit counter using SOAP headers.You need
to implement the following:

■ Name your SOAP header element: call it webState.

■ Create a class that can handle your SOAP header on the server

■ Create a class on the server that records and maintains all client sessions,
using a static hash table.

Let’s look at the server code (see Figure 4.54).

Figure 4.54 Implementing a Hit Counter Using SOAP Headers

01: using System;

02: using System.Collections;

03: using System.ComponentModel;

04: using System.Data;

05: using System.Diagnostics;

06: using System.Web;

07: using System.Web.Services;

08: using System.Web.Services.Protocols;

09: using System.Runtime.InteropServices;

www.syngress.com
Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 194

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 195

10:

11: namespace sessionTest {

12: [WebServiceAttribute(

13: Namespace="urn:schemas-syngress-com-soap")]

14: public class sessionTest : System.Web.Services.WebService {

15: public sessionTest() {

16: }

17:

18: protected override void Dispose(bool disposing) {

19: }

20:

21: public class soapHeader : SoapHeader {

22: public string webState;

23: }

24:

25: public soapHeader mySoapHeader;

26: public static Hashtable userSessions = new Hashtable();

27:

28: [SoapDocumentMethodAttribute(Action="sessionTest__soapHeader",

29: RequestNamespace=

30 "urn:schemas-syngress-com-soap:sessionTestst",

31: RequestElementName="sessionTest__soapHeader",

32: ResponseNamespace=

33 "urn:schemas-syngress-com-soap:sessionTestst",

34: ResponseElementName="sessionTest__soapHeaderResponse")]

35: [SoapHeader("mySoapHeader",Direction=SoapHeaderDirection.InOut,

36: Required=true)]

37: [WebMethod]

38: public string sessionTest__soapHeader() {

39: // declare user session hit counter

40: int hitCounter;

41: // declare session identifier

42: string sessionID;

43:

44: if ((mySoapHeader.webState == null) ||

www.syngress.com

Figure 4.54 Continued

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 195

196 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

45: (mySoapHeader.webState.Trim().Length < 1)){

46: // create a new random session identifier

47: sessionID = System.Guid.NewGuid().ToString().ToUpper();

48: hitCounter = 1;

49: // create a new user session, and set hit counter to one

50: userSessions.Add(sessionID, hitCounter);

51: // return session identifier to user

52: mySoapHeader.webState = sessionID;

53: } else {

54: // valid user session?

55: sessionID = mySoapHeader.webState.ToString().Trim();

56: if(userSessions[sessionID] != null) {

57: // get session hit counter

58: hitCounter = (int)userSessions[sessionID];

59: // save away incremented session hit counter

60: userSessions[sessionID] = ++hitCounter;

61: } else {

62: // session identifier passed was invalid

63: // throw error

64: throw new Exception("Invalid session identifier passed!");

65: }

66: }

67: // return session counter

68: return hitCounter.ToString();

69: }

70:

71: }

72: }

Note the following important elements in the code shown in Figure 4.54:

■ It includes a class soapHeader (line 21–23), which extends
System.Web.Services.Protocols.SoapHeader, with a public string variable
called webState (line 22), which is the SOAP header that should contain
your client state identifier.The code calls the corresponding Web Service
class instance variable mySoapHeader (line 25).

www.syngress.com

Figure 4.54 Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 196

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 197

■ The code includes a static hash table called userSessions, which will con-
tain the collection of all client sessions (line 26).

■ It includes the Web method sessionTest__soapHeader (line 38) with the
attribute SoapHeader, (lines 35–36), where you specify that you require the
webState SOAP header, and that this SOAP header is bidirectional.This
means that if a client does not send you this SOAP header, the .NET
Framework will send a SOAP fault to the client, and you don’t need to
code for that possibility yourself.

■ Because you want to tell your clients what session identifier to use in
subsequent requests, you return the new session identifier in the same
webState SOAP header (line 68).

On the client side, because you require the presence of the webState SOAP
header, you need to initialize this header before issuing the SOAP request.That
is, if you write a client using Web references, your call to the
sessionTest__soapHeader Web method will look like this:

testClient.localhost.sessionTest myClient =

new sessionTestClient.localhost.sessionTest();

myClient.soapHeaderValue = new testClient.localhost.soapHeader();

string result = myClient.sessionTest__soapHeader();

The following code is a sample client server interaction using the SOAP
protocol (ignoring HTTP headers). In the first call, the client issues an SOAP
request, leaving the webState SOAP header empty:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

<webState></webState>

</soapHeader>

</soap:Header>

<soap:Body>

<sessionTest__soapHeader

xmlns="urn:schemas-syngress-com-soap:sessionTest">

</sessionTest__soapHeader>

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 197

198 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

</soap:Body>

</soap:Envelope>

The server sends back the SOAP response, including the webState SOAP
header element with the new session identifier:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

<webState>{45D345B6-BE1F-434F-BFD7-D628C756A432}</webState>

</soapHeader>

</soap:Header>

<soap:Body>

<sessionTest__soapHeaderResponse

xmlns="urn:schemas-syngress-com-soap:sessionTestst">

<sessionTest__soapHeaderResult>1</sessionTest__soapHeaderResult>

</sessionTest__soapHeaderResponse>

</soap:Body>

</soap:Envelope>

In the second call, the client issues another SOAP request, and sends the ses-
sion identifier in the webState SOAP header received form the server in the pre-
vious response:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

<webState>{45D345B6-BE1F-434F-BFD7-D628C756A432}

</webState>

</soapHeader>

</soap:Header>

<soap:Body>

<sessionTest__soapHeader

xmlns="urn:schemas-syngress-com-soap:sessionTest">

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 198

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 199

</sessionTest__soapHeader>

</soap:Body>

</soap:Envelope>

The server responds, incrementing the session hit counter:

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Header>

<soapHeader xmlns="urn:schemas-syngress-com-soap">

<webState>{45D345B6-BE1F-434F-BFD7-D628C756A432}</webState>

</soapHeader>

</soap:Header>

<soap:Body>

<sessionTest__soapHeaderResponse

xmlns="urn:schemas-syngress-com-soap:sessionTestst">

<sessionTest__soapHeaderResult>2</sessionTest__soapHeaderResult>

</sessionTest__soapHeaderResponse>

</soap:Body>

</soap:Envelope>

If you look at the WSDL description of this Web Service, shown in Figure
4.55, notice that it requests the client to send a webState SOAP header, and that
this header is required. However, as always, the WSDL file does not contain
semantic information helping a client to send a correct request. In other words,
although it does instruct clients to include this SOAP header, it does not tell
them what it means, or how to properly use it.This is a task that you, as a devel-
oper, have to do.

Also, note that the WSDL file does not contain HTTP GET and HTTP
POST bindings for this Web Service.This is because those two methods of calling
Web Services do not work when SOAP headers are required.

Figure 4.55 WSDL Description of the sessionTest__soapHeader Web Method

<?xml version="1.0" encoding="utf-8"?>

<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

www.syngress.com

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 199

200 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:s0="urn:schemas-syngress-com-soap:sessionTest"

xmlns:s1="urn:schemas-syngress-com-soap"

targetNamespace="urn:schemas-syngress-com-soap"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="urn:schemas-syngress-com-soap:sessionTest">

<s:element name="sessionTest__soapHeader">

<s:complexType />

</s:element>

<s:element name="sessionTest__soapHeaderResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="sessionTest__soapHeaderResult"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

</s:schema>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="urn:schemas-syngress-com-soap">

<s:element name="soapHeader" type="s1:soapHeader" />

<s:complexType name="soapHeader">

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="webState"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

<s:element name="string" nillable="true" type="s:string" />

www.syngress.com

Figure 4.55 Continued

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 200

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 201

</s:schema>

</types>

<message name="sessionTest__soapHeaderSoapIn">

<part name="parameters" element="s0:sessionTest__soapHeader" />

</message>

<message name="sessionTest__soapHeaderSoapOut">

<part name="parameters"

element="s0:sessionTest__soapHeaderResponse" />

</message>

<message name="sessionTest__soapHeadersoapHeader">

<part name="soapHeader" element="s1:soapHeader" />

</message>

<portType name="_sessionTestSoap">

<operation name="sessionTest__soapHeader">

<input message="s1:sessionTest__soapHeaderSoapIn" />

<output message="s1:sessionTest__soapHeaderSoapOut" />

</operation>

</portType>

<binding name="_sessionTestSoap" type="s1:_sessionTestSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="sessionTest__soapHeader">

<soap:operation soapAction="sessionTest__soapHeader"

style="document" />

<input>

<soap:body use="literal" />

<soap:header n1:required="true"

message="s1:sessionTest__soapHeadersoapHeader" part="soapHeader"

use="literal" xmlns:n1="http://schemas.xmlsoap.org/wsdl/" />

</input>

<output>

<soap:body use="literal" />

<soap:header n1:required="true"

message="s1:sessionTest__soapHeadersoapHeader" part="soapHeader"

use="literal" xmlns:n1="http://schemas.xmlsoap.org/wsdl/" />

www.syngress.com

Figure 4.55 Continued

Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 201

202 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

</output>

</operation>

</binding>

<service name="_sessionTest">

<port name="_sessionTestSoap" binding="s1:_sessionTestSoap">

<soap:address=location="

http://localhost/sessionTest/sessionTest.asmx" />

</port>

</service>

</definitions>

Again, we recommend you think twice (ten times?) before programming
stateful Web Services. If you decide to go ahead introducing state, we would
advise doing it through SOAP headers, because it seems to be the most natural
option you have, and because it is reflected in the WSDL description of your Web
Service.WSDL is described in more detail in Chapter 5 “WSDL and UDDI”.

The preceding example should give you a good starting point. However, as
you no doubt noticed, the example still needs a bit of work, in particular:

■ Although you can add new user sessions, you should have code that is
capable of deleting user session information after a certain amount of
time (otherwise your memory will eventually fill up to capacity).

■ It would be nice to be able to persist user information in a database like
MS SQL, the way ASP.NET can do it, and then add a trigger to go off
after a specified amount of time cleaning the expired sessions.

■ You should add functionality to support Web farms and Web gardens
(which, again,ASP.NET does support).

Security
The SOAP specification does not touch security.You can look at this as a plus,
because it keeps the standard small and implementable. RPC protocols that do
define security, such as CORBA and COM/DCOM are far more complicated,
harder to implement, and don’t work well on the Internet.

On the other hand, as a developer, you obviously shouldn’t ignore security
altogether. In the end, you have two possibilities:

www.syngress.com

Figure 4.55 Continued

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 202

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 203

■ Leverage the security features made available by IIS and ASP.NET.

■ Do it yourself.

If you go with the first option, you can secure your Web Services by using
the security features of IIS, such as Basic Authentication (probably over SSL),
NTLM, or Kerberos-based authentication if you are on an intranet, or authenti-
cation-based on Public Key Cryptography (PKC) using client certificates.The
latter is particularly interesting for Windows 2000 developers because Active
Directory allows you to automatically map client certificates to user accounts if
your certificates are issued by a Windows 2000 Certificate Server that’s a member
of your enterprise domain forest. Note that for this to work, your clients don’t
need to run on a Windows platform.

Additionally, you can use features provided by ASP.NET on top of what you
can do on the HTTP protocol level.ASP.NET allows you to use Microsoft
Passport to authenticate users, although you will have to pay licensing fees if you
want to go down this route.

ASP.NET also allows you to grant and deny users of your services every
imaginable kind of rights once they have been authenticated (this is called
authorization).

Yet another interesting option is to use SOAP Digital Signature.Also based
on PKC, it enables you to digitally sign the body of a SOAP envelope and to
include the signature information in a special SOAP header.This does not actu-
ally encrypt the SOAP message, but it does guarantee its integrity, that is, you
know that nobody has changed its content as it traveled from one machine to
another. See www.w3.org/TR/SOAP-dsig/ for more information.

Security in the context of Web Services is still very much an evolving area
and is currently far from well understood.You can find more information in an
article that recently appeared in XML-Journal (“Securing and Authenticating
SOAP Based Web Services”, by M. Moore and A.Turtschi, XML-Journal,
volume 2, issue 9).

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 203

204 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Summary
Web Services is a new technology designed primarily to facilitate communica-
tions between enterprises on the Internet.Web Services are supported by all
major software vendors, and are based on Internet standards:

■ HTTP as the network protocol (among others)

■ XML to encode data

■ SOAP as the wire transport protocol

Microsoft’s .NET Framework is based on Web Services, and Visual
Studio.NET is an excellent platform to develop Web Services.Web Services are
different from previous technologies used to create distributed systems, such as
COM/DCOM, in that they:

■ Use open standards

■ Were designed from the ground up to work on the Internet, including
working well with corporate firewalls

■ Use a “simple” protocol not requiring multiple round trips to the server

■ Purposefully don’t address advanced features such as security or transac-
tion support as part of the protocol specification

We showed you a variety of examples of Web Services exchanging simple and
complex types of data. In addition to using SOAP based Web Services as an RPC
(Remote Procedure Call) mechanism, you can use SOAP to exchange any type
of XML documents.

We explained the basic structure of the SOAP protocol: SOAP exchanges an
XML document called a SOAP Envelope, which has two parts:

■ The SOAP Header, which is designed to be extended to include appli-
cation-specific metadata, such as security- or session-related identifiers

■ The SOAP Body, which contains the necessary information to find a
class and method on the server to handle the Web Service request, in
addition to parameter data that may be necessary to process such a
request

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 204

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 205

The SOAP specification defines a number of XML encoding schemes for dif-
ferent data types, such as strings, integers, floats, arrays, enumerations, and so on.
SOAP also includes a mechanisms for error handling.

We showed you how to call Web Services using standalone Visual Basic
scripts, client-side script in a Web browser, and through creating Windows
Forms–based applications.Visual Studio.NET includes tools that create client
proxies for (remote) Web Services for you, greatly simplifying the effort of devel-
oping Web Service client applications.

Finally, we talked about two advanced topics that are not directly part of the
Web Services standards, but that are nevertheless important for developers,
namely security and state management.We recommend to use standard security
mechanisms such as SSL and public key cryptography, and to forgo state manage-
ment until Web Service clients are more robust.

Solutions Fast Track

The Case for Web Services

Web Services are a new Internet standard, supported by all major
vendors, to facilitate data exchange across system boundaries.

Standards include a wire protocol (SOAP), a way to describe services
(WSDL), and a way to publish services (UDDI).

Web Services are classes that extend System.Web.Services.WebService.

A method becomes a Web method by decorating it with
[System.Web.Services.WebMethod].

Visual Studio.NET includes a powerful debugger.

Once you are in debug mode, external programs calling your Web
Service will go through the debugger.

Writing a Visual Basic script to call your Web Service through SOAP is a
fast, easy way to test your application.

Visual Studio.NET tells you the correct format of the SOAP request
envelope when you open the Web Service overview page
(http://serverName/webServiceProjectName/ webServiceName?op=
webMethodName).

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 205

206 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Working with Web Services

SOAP can encode arrays, enumerations, and so on.You are rarely directly
exposed to the complexities of the underlying protocols because Visual
Studio.NET does most of the work for you.

Error handling is seamless. Microsoft .NET lets you work with SOAP
errors the way you work with any other exceptions.

Adding a Web reference lets you use remote Web Services the way you
would use local objects, including IntelliSense support, hiding all
complexities of SOAP from you.

Visual Studio.NET will automatically add client proxy code into your
solution.

You add a Web reference by pointing to the WSDL description of the
Web Service.

You can find WSDL files through DISCO or UDDI.

SOAP lets you pass instantiated objects between clients and servers. If
both the client and the server application run on the .NET platform, the
communication is seamless.

You can pass any kind of XML through SOAP.This is particularly
relevant for interenterprise and third-party integration applications.

Visual Studio.NET integrates nicely with UDDI.You can find third-
party Web Services and add them to your solutions without ever leaving
the development environment.

Advanced Web Services

SOAP itself does not contain a state management mechanism.

Web Services should be stateless, even more so than traditional Web
applications.

If you really do need state information, you may want to look into using
SOAP headers.

The SOAP protocol does not address security.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 206

Information Exchange Using the Simple Object Access Protocol (SOAP) • Chapter 4 207

Use the mechanisms provided by the underlying network protocols, such
as encrypting your network channel (HTTPS) and using Public Key
Cryptography (certificates).

Q: Can I consume Web Services in .NET that have been written in other
languages?

A: That’s the idea! Web Services define a standard to pass data between heteroge-
neous systems over the Internet. If you are writing a Web Service client in
.NET, you don’t have to worry what language the Web Service you are con-
suming has been written in, or on what platform it is running.

Q: Can Web Services pass binary data efficiently?

A: Yes and no.Web Services are based on XML, and thus the emphasis is maybe
more on textual data.You can add binary data as CDATA sections in your
XML documents you are sending. However, probably a better way is to add
binary data as MIME-encoded attachments to your SOAP calls (see the pro-
posed SOAP Messages With Attachments standard at www.w3.org/TR/
SOAP-attachments). Note, though, that .NET Web Services do not currently
support attachments out of the box. If you are sending large amounts of
binary data, you may want to look into compressing the data you are sending.

Q: Where can I find a list of SOAP implementations?

A: Paul Kulchenko maintains a list on his Perl::Lite site at www.soaplite.com/
#Toolkits.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 207

208 Chapter 4 • Information Exchange Using the Simple Object Access Protocol (SOAP)

Q: Where can I find more information about how the various implementations
of SOAP-based Web Services interoperate?

A: XMethods maintains the SOAPBuilders Interoperability Lab at
www.xmethods.net/ilab/.You can also find an excellent overview article
discussing the various aspects of interoperability at www-106.ibm.com/
developerworks/webservices/library/ws-asio/?dwzone=webservices.

www.syngress.com

206_XMLweb_04.qxd 6/25/02 1:48 PM Page 208

WSDL and UDDI

Solutions in this chapter:

■ Web Service Standards

■ Describing Web Services—WSDL

■ Discovering Web Services—DISCO

■ Publishing Web Services—UDDI

Chapter 5

209

Summary

Solutions Fast Track

Frequently Asked Questions

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 209

210 Chapter 5 • WSDL and UDDI

Introduction
Web Services are useful only if clients can find out what services are available in
the first place, where to locate them, and how exactly those services can be called.
A number of initiatives are under way driven by the major vendors in the Web
Service area to address those application development and business needs.Two of
the more important ones, both of which are supported by the Microsoft .NET
Framework and fully integrated into Visual Studio.NET , are the following:

■ Web Service Description Language (WSDL) An XML format to
describe how a particular Web Service can be called, what arguments it
takes, and so on.

■ Universal Description, Discovery, and Integration (UDDI) A
directory to publish business entities and the Web Services they offer,
and where you can find those services. UDDI is implemented as a Web
Service itself.

Additionally, there’s DISCO, a mechanism based on XML developed by
Microsoft to dynamically discover Web Services running on a particular machine.
Putting everything together, a picture of the world of Web Services starts to
evolve that may look like Figure 5.1.

www.syngress.com

Figure 5.1 Web Service Standards

Lin
k

to
 D

isc
ov

er
y D

oc
um

en
t

Lo
ca

te
a S

er
vic

e

Re
tu

rn
 Se

rv
ice

 R
es

po
ns

e

Re
qu

es
t S

er
vic

e

Re
tu

rn
 Se

rv
ice

 D
es

cri
pt

ion

Re
qu

es
t S

er
vic

e D
es

cri
pt

ion

Re
tu

rn
 D

isc
ov

er
y D

oc
um

en
t

Re
qu

es
t D

isc
ov

er
y D

oc
um

en
t

UDDI
Or Other Directory

Service
Web Service

Web Service Client

Directory: UDDI

Discovery: DISCO

Description: WSDL

Wire Format: SOAP

Data Format: XML

Wire Transport: HTTP

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 210

www.syngress.com

WARNING

A variety of groups with Microsoft have implemented the SOAP stan-
dard. Apart from the .NET Web Services group, these include, among
others, .NET Remoting, Windows XP Message Queue, SOAP Toolkit (Web
Services based on COM), and BizTalk Server.

Apparently, these groups all have their own code bases, and the var-
ious SOAP implementations differ in their level of support of the stan-
dard. For instance, the .NET Remoting group implemented “jagged” and
sparse arrays, whereas the .NET Web Services did not. Another difference
is the support of MIME-encoded attachments. Be aware then when
you’re thinking about reusing SOAP code or code designs from one
Microsoft product to another that you may have to carefully investigate
the details of what exactly is implemented in the various products.

Web Service Standards
In this section, we cover in detail the various Web Services standards introduced
in the previous section:

■ SOAP, the wire transport protocol

■ WSDL to describe Web Services

■ DISCO to discover

■ UDDI to publish Web Services

You will also write your very first Web Service using the tools provided by
Microsoft Visual Studio.NET. By the end of this section, you will have enough
knowledge to go ahead and create your own Web Services.The remainder of this
chapter then addresses more advanced topics, such as error handling and state
management.

Describing Web Services—WSDL
Because you have programmed the soapExamples Web Service that includes the
echo Web method yourself, from Chapter 4, you “know” how to access it.Well, at
least you remember that the echo method takes an input parameter, of type string,
which you called input, and returns as its output another string.And although you

WSDL and UDDI • Chapter 5 211

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 211

212 Chapter 5 • WSDL and UDDI

may not quite remember how to correctly call this Web method, particularly the
gory details of that SOAP envelope, you can always just point your browser to
the welcome page (refer back to Figure 4.14) to get more information.

In the world of classic COM, to use an analogy if you are familiar with that
framework, classes are described using their interfaces, which in turn were
exposed through type libraries.Type libraries are binary files that are created by
compiling a file, written in the Interface Definition Language (IDL), that
describes the interface of a COM component. It is by enquiring a component
type library that a COM client learns how to call a COM server.

In the world of Web Services, the role of a type library is taken by the WSDL
description of a Web Service. Not very surprisingly,WSDL is an XML language.
Unlike in COM, it does not need to get compiled, which is a very big advantage
indeed.

In Microsoft .NET, you can generate the WSDL Web Service description in
three ways:

■ You can get the WSDL description dynamically by calling the Web
Service URL appended by the WSDL parameter; in this case, simply
http://localhost/soapExamples/simpleService.asmx?WSDL.This is the
preferred method, because it always gives you an up-to-date description
of the service.

■ You can (statically) generate the WSDL description by using the
disco.exe tool found at %ProgramFiles%\Microsoft.NET\
FrameworkSDK\Bin\. It takes the URL of your Web Service as an
argument and writes the information into an XML file. For this
example, type disco http://localhost/soapExamples/
simpleService.asmx on a command line.

■ Finally, you can programmatically create WSDL files by using the corre-
sponding classes in the System.Web.Services.Description namespace. Note
that the documentation sometimes erroneously refers to SDL, an older
Web Service description technology that is no longer supported, but rest
assured that these classes really do deal with WSDL only.

WSDL is a complex standard that is still undergoing changes, and discussing it
in detail is beyond the scope of this book; you can find more information about
WSDL, including the actual WSDL specification, which is currently stands at ver-
sion 1.1, at www.w3.org/TR/wsdl.

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 212

WSDL and UDDI • Chapter 5 213

However, you can get a cursory understanding of the structure of WSDL by
looking at the WSDL description of the echo Web method, which you can access
by going to http://localhost/soapExamples/simpleService.asmx?WSDL (see
Figure 5.2).

Figure 5.2 WSDL Description for the Echo Web Method

<?xml version="1.0" encoding="utf-8"?>

<definitions

targetNamespace="urn:schemas-syngress-com-soap"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:s0="urn:schemas-syngress-com-soap"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema attributeFormDefault="qualified"

elementFormDefault="qualified"

targetNamespace="urn:schemas-syngress-com-soap">

<s:element name="echo">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="input"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="echoResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1" name="echoResult"

nillable="true" type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

www.syngress.com
Continued

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 213

214 Chapter 5 • WSDL and UDDI

<s:element name="string" nillable="true" type="s:string" />

</s:schema>

</types>

<message name="echoSoapIn">

<part name="parameters" element="s0:echo" />

</message>

<message name="echoSoapOut">

<part name="parameters" element="s0:echoResponse" />

</message>

<message name="echoHttpGetIn">

<part name="input" type="s:string" />

</message>

<message name="echoHttpGetOut">

<part name="Body" element="s0:string" />

</message>

<message name="echoHttpPostIn">

<part name="input" type="s:string" />

</message>

<message name="echoHttpPostOut">

<part name="Body" element="s0:string" />

</message>

<portType name="simpleServiceSoap">

<operation name="echo">

<input message="s0:echoSoapIn" />

<output message="s0:echoSoapOut" />

</operation>

</portType>

<portType name="simpleServiceHttpGet">

<operation name="echo">

<input message="s0:echoHttpGetIn" />

<output message="s0:echoHttpGetOut" />

</operation>

</portType>

<portType name="simpleServiceHttpPost">

<operation name="echo">

<input message="s0:echoHttpPostIn" />

www.syngress.com

Figure 5.2 Continued

Continued

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 214

WSDL and UDDI • Chapter 5 215

<output message="s0:echoHttpPostOut" />

</operation>

</portType>

<binding name="simpleServiceSoap" type="s0:simpleServiceSoap">

<soap:binding

transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="echo">

<soap:operation soapAction="urn:schemas-syngress-com-soap/echo"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

<binding name="simpleServiceHttpGet"

type="s0:simpleServiceHttpGet">

<http:binding verb="GET" />

<operation name="echo">

<http:operation location="/echo" />

<input>

<http:urlEncoded />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<binding name="simpleServiceHttpPost"

type="s0:simpleServiceHttpPost">

<http:binding verb="POST" />

<operation name="echo">

www.syngress.com

Figure 5.2 Continued

Continued

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 215

216 Chapter 5 • WSDL and UDDI

<http:operation location="/echo" />

<input>

<mime:content type="application/x-www-form-urlencoded" />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<service name="simpleService">

<port name="simpleServiceSoap" binding="s0:simpleServiceSoap">

<soap:address

location="http://localhost/soapExamples/simpleService.asmx" />

</port>

<port name="simpleServiceHttpGet"

binding="s0:simpleServiceHttpGet">

<http:address

location="http://localhost/soapExamples/simpleService.asmx" />

</port>

<port name="simpleServiceHttpPost"

binding="s0:simpleServiceHttpPost">

<http:address

location="http://localhost/soapExamples/simpleService.asmx" />

</port>

</service>

</definitions>

You can see from Figure 5.22 that WSDL has five parts, wrapped in the
<definitions> XML element:

■ The <types> section defines all data types used by the service. In this
case, you have two types, both of string type: the input parameter, which
is the argument passed to the echo Web method, and echoResponse, which
is the output from echo that’s returned to the caller.

■ The <message> section, which defines input and output parameters of
the Web Service. It refers back to the data types defined in the <types>

www.syngress.com

Figure 5.2 Continued

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 216

WSDL and UDDI • Chapter 5 217

section of the preceding code. In this example are six individual
<message> sections.As you have seen earlier, for simple Web Services,
.NET defines three access methods—HTTP GET, HTTP POST, and
SOAP.The echo method uses the request-response message pattern, and
you see therefore two <message> sections for each of the three access
methods: one declaring the input parameter, the other one declaring the
output parameter.

■ The <portType> section ties the access methods to the messages declared
in the <message> section. Because you have three access methods, you
see three corresponding <portType> sections.

■ The <bindings> section declares the protocols used to access the echo
Web method—HTTP GET, HTTP POST, and SOAP. It also defines
the encoding used to send data over the wire; for HTTP GET and
POST, you simply use URL encoding, whereas for SOAP you use the
encoding mechanism provided by the SOAP standard.This section also
defines the value that has to be used in the SOAPAction HTTP header.

■ Everything is now tied together in the <service> section:You see your
Web Service, simpleService, appear, with its only method, echo, that has
three bindings attached to it, as explained earlier in this list, that can all
be accessed at the URL http://localhost/soapExamples/
simpleService.asmx.

Discovering Web Services—DISCO
DISCO, which presumably stands for “discovery”, is a mechanism developed by
Microsoft for clients to dynamically locate Web Services. More precisely, DISCO
guides clients to the WSDL files describing the call syntax of Web Services.
DISCO is not supported by anybody outside Microsoft, and it is unclear what
future, if any, DISCO has. In practice, DISCO has largely been replaced by UDDI.

DISCO has two parts. Files with the .vsdisco extension contain information
where to dynamically search for Web Services on the local server. Files with the
.disco extension, in turn, contain information about already found Web Services
on the local server, particularly where the corresponding WSDL information is
located.You will now immediately realize the problem with DISCO: It is an
insular solution in that you need to know both the name of the server and the
DISCO location on that server before you can query for Web Services.

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 217

218 Chapter 5 • WSDL and UDDI

Microsoft Visual Studio.NET automatically adds and maintains a file with
extension .vsdisco to Web Service projects. It also puts a VSDISCO file into the
root directory of the Web server.These VSDISCO files look like the one shown
in Figure 5.3.

Figure 5.3 A Typical DISCO Discovery File

<?xml version="1.0" ?>

<dynamicDiscovery

xmlns="urn:schemas-dynamicdiscovery:disco.2000-03-17">

<exclude path="_vti_cnf" />

<exclude path="_vti_pvt" />

<exclude path="_vti_log" />

<exclude path="_vti_script" />

<exclude path="_vti_txt" />

<exclude path="Web References" />

</dynamicDiscovery>

When you point a Web browser to such a VSDISCO file, Microsoft .NET
starts to dynamically query the server for Web Services in the corresponding vir-
tual directory (and below). If you go to the URL http://localhost/soapExamples/
soapExamples.vsdisco, for example, IIS responds after a while by sending a
DISCO file back to you that looks like the one shown in Figure 5.4.

www.syngress.com

Figure 5.4 DISCO Information for the soapExamples Web Service

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 218

WSDL and UDDI • Chapter 5 219

You can also statically generate a DISCO file using the disco.exe tool found
at %ProgramFiles%\Microsoft.NET\FrameworkSDK\Bin\.This is the same tool
that also outputs the WSDL description. It takes the URL of your Web Service as
an argument and writes the information into a file with a .disco extension.
Unfortunately, this DISCO file contains slightly different information, but it also
directs you to the WSDL description of the service, which is really all that mat-
ters (see Figure 5.5).

Figure 5.5 DISCO Discovery File Containing a Reference to WSDL Description

<?xml version="1.0" encoding="utf-8"?>

<discovery

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.xmlsoap.org/disco/">

<contractRef

ref="http://localhost/soapExamples/simpleService.asmx?wsdl"

docRef="http://localhost/soapExamples/simpleService.asmx"

xmlns="http://schemas.xmlsoap.org/disco/scl/" />

<soap

address="http://localhost/soapExamples/simpleService.asmx"

xmlns:q1="urn:schemas-syngress-com-soap"

binding="q1:simpleServiceSoap"

xmlns="http://schemas.xmlsoap.org/disco/soap/" />

</discovery>

Publishing Web Services—UDDI
Fortunately, a more comprehensive way to locate Web Services exists, and that’s
the Universal Description, Discovery, and Integration (UDDI) initiative, sup-
ported by IBM, Microsoft, and a host of other vendors in the field of Web
Services.

UDDI is a Web Service itself, and it allows businesses and individuals to pub-
lish information about themselves and the Web Services they are offering. It is
conceived as a global directory service, open to everybody, simple to use, and
comprehensive in its scope.You can find the UDDI home page at www.uddi.org.

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 219

220 Chapter 5 • WSDL and UDDI

The three major sponsors of UDDI operate distributed, replicated UDDI ser-
vices.The access points are as follows:

■ Microsoft http://uddi.microsoft.com

■ IBM www.ibm.com/services/uddi

■ HP http://uddi.hp.com

Visual Studio.NET supports UDDI through the possibility to query the
UDDI directory and add references to Web Services into client applications.You
will see an example of that in the next section.

If you want to programmatically interface with UDDI, you can get the
Microsoft UDDI SDK, which consists of a series of both COM and .NET classes
to interact with the UDDI registry; you can download it from
www.microsoft.com/downloads/release.asp?ReleaseID=30880. Notice, though,
that because UDDI is itself a Web Service, you can certainly do everything your-
self and interface with it by simply issuing SOAP requests and parsing the SOAP
responses from the UDDI server for the information you are looking for.

The industry has put high hopes in UDDI.The functionality of the UDDI
registry is still somewhat limited, and the specifications are evolving, but the fact
it is so widely supported should encourage you to register yourself, your com-
pany, and the Web Services you offer. Best of all, it’s free.

Working with UDDI
The UDDI registry of Web Services is still in its infancy, and quite frankly, there
are not a lot of useful Web Services out there at the time of writing this book. But
there are some, and as UDDI seems to be the direction the industry is heading,
let’s write a simple client application that calls a publicly available third-party Web
Service that exposes data about climate conditions of international airports.You
can find the complete code for this client application in the directory uddiClient/
on the Solutions Web Site (www.syngress.com/solutions) for the book.

You can start by creating a new Windows Forms–based application called
uddiClient. Query the UDDI registry as follows:

1. Go to the Solution Explorer, right-click the uddiClient project, and
select Add Web Reference.

2. Click Microsoft UDDI Directory on the left side of the dialog.

3. Visual Studio.NET will take you to http://uddi.microsoft.com/, and ask
you to enter the name of the business publishing the service. Enter

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 220

WSDL and UDDI • Chapter 5 221

Cape Clear Software, an early adopter of Web Service technologies
(see Figure 5.6).

4. UDDI will return a page indicating that it has found Web Services pub-
lished by Cape Clear Software (see Figure 5.7), among them the Airport
Weather Check service. Expand that Web Service, and click the tModel
hyperlink. Note that if you are interested in the internal structure of
UDDI, you will usually find the information relevant for you as a devel-
oper under the tModel entries.

5. The tModel contains a link to the WSDL, which will show up on the
left panel of the dialog; the right panel tells you that you have one avail-
able (Web) reference (see Figure 5.8).

6. Click Add Reference.This will create the necessary local client proxy
classes to call the AirportWeather Web Service.

www.syngress.com

Figure 5.6 Searching for a Business in the UDDI Directory

206_XMLweb_05.qxd 6/25/02 1:50 PM Page 221

222 Chapter 5 • WSDL and UDDI

www.syngress.com

Figure 5.7 Selecting a Web Service in UDDI

Figure 5.8 Displaying the WSDL Description of a Third-Party Web
Service in UDDI

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 222

WSDL and UDDI • Chapter 5 223

WARNING

UDDI support is a recent addition to Visual Studio.NET. In our experience,
the UDDI Wizard lacks robustness and tends to crash a lot, forcing Visual
Studio.NET to restart. You may want to consider using the Wsdl.exe com-
mand-line tool instead.

If you check what has happened in Visual Studio Class View, you see that a
new proxy class com.capescience.www.AirportWeather has been added, with a number
of methods returning weather-related information of international airports (see
Figure 5.9).

You are just interested in temperature information, maybe, so you can set up a
little Windows form to test the service (see Figure 5.10).The code to call the

www.syngress.com

Figure 5.9 Proxy Classes for the AirportWeather Web Service

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 223

224 Chapter 5 • WSDL and UDDI

Web Service is shown in Figure 5.10.The code shown in Figure 5.10 can be
found on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 5.10 Calling the getTemperature Web Method (Form1.cs of
uddiClient)

private void getTemperature_Click(

object sender, System.EventArgs e) {

try {

com.capescience.www.AirportWeather airportWeather =

new com.capescience.www.AirportWeather();

airportTemperature.Text =

airportWeather.getTemperature(enterAirportCode.Text);

} catch(Exception ex) {

// error handling goes here...

}

}

One question you may be asking is how do we know the semantics of this
Web method? After all, the code block invoking the getTemperature method looks
as in Figure 5.11, that is, the argument to the method is named, rather unfortu-
nately, arg0.The code in Figure 5.11 can be found on the Solutions Web site for
the book (www.syngress.com/solutions).

Figure 5.11 The getTemperature Web Method Definition (AirportWeather.cs
of uddiClient)

public string getTemperature(string arg0) {

object[] results = this.Invoke("getTemperature", new object[] {

arg0});

return ((string)(results[0]));

}

Consulting the WSDL description (see file AirportWeather.wsdl) of this
method also doesn’t help, because the authors did not include any <description>
XML elements.The answer, then, is to either contact the business that published
this Web Service (UDDI does include such information), or hope that a Web
page exists out there describing what the Web Service does and what the

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 224

WSDL and UDDI • Chapter 5 225

parameters mean. Luckily, in the case of AirportWeather, such a Web page really
exists at www.capescience.com/webservices/airportweather/index.html.

You can now test your application by requesting the current temperature at
New York’s JFK airport, as shown in Figure 5.12. Unfortunately, the authors of
this Web Service want you to use the ICAO rather than the more familiar IATA
airport codes, but you can get your favorite airport’s code at www.ar-group.com/
Airport-Locator.asp.

We note in passing that there’s another slight problem with the Web method,
in that it returns a string that contains all the relevant information, but that is dif-
ficult to parse if all you really want is the temperature information. Returning a
complex XML structure might have been a better design decision.

Finally, let’s look at the data exchanged on the level of the SOAP protocol, as
seen through a TCP tunneling tool: Figure 5.13 shows the SOAP request to find
the current temperature at JFK Airport; Figure 5.14 shows the SOAP response
with the relevant data in bold (72F).The code for Figures 5.13 and 5.14 can be
found on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 5.13 SOAP Request to Get the Temperature at JFK

POST /ccgw/GWXmlServlet HTTP/1.1

User-Agent: Mozilla/4.0

(compatible; MSIE 6.0; MS Web Services Client Protocol 1.0.2914.16)

Content-Type: text/xml; charset=utf-8

SOAPAction: "capeconnect:AirportWeather:com.capeclear.

weatherstation.Station#getTemperature"

Content-Length: 630

Expect: 100-continue

Connection: Keep-Alive

Host: localhost

www.syngress.com

Figure 5.12 The AirportWeather Web Service in Action

Continued

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 225

226 Chapter 5 • WSDL and UDDI

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tns="http://tempuri.org/"

xmlns:types="http://tempuri.org/encodedTypes"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<q1:getTemperature xmlns:q1="capeconnect:AirportWeather:com.

capeclear.weatherstation.Station">

<arg0 xsi:type="xsd:string">KJFK</arg0>

</q1:getTemperature>

</soap:Body>

</soap:Envelope>

Figure 5.14 SOAP Response with the Temperature at JFK

HTTP/1.0 200 OK

Content-Type: text/xml; charset=UTF-8

Content-Length: 601

SOAPAction: "capeconnect:AirportWeather:com.capeclear.

weatherstation.Station#getTemperature"

Servlet-Engine: CapeConnect/2.1 (Orcas/4.3; Tomcat Web Server/3.2.1)

<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<cc1:getTemperatureResponse xmlns:cc1="capeconnect:

AirportWeather:com.capeclear.weatherstation.Station">

www.syngress.com

Figure 5.13 Continued

Continued

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 226

WSDL and UDDI • Chapter 5 227

<return xsi:type="xsd:string">The Temperature at New York,

Kennedy International Airport, NY, United States is

72.0 F (22.2 C)

</return>

</cc1:getTemperatureResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

www.syngress.com

Figure 5.14 Continued

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 227

228 Chapter 5 • WSDL and UDDI

Summary
Web Services is a new technology designed primarily to facilitate communica-
tions between enterprises on the Internet.Web Services are supported by all
major software vendors, and are based on Internet standards:

■ HTTP as the network protocol (among others)

■ XML to encode data

■ SOAP as the wire transport protocol

■ WSDL to describe Web Service syntax

■ UDDI to publish Web Service information

Microsoft’s .NET Framework is based on Web Services, and Visual
Studio.NET is an excellent platform to develop Web Services.Web Services are
different from previous technologies used to create distributed systems, such as
COM/DCOM, in that:

■ They use open standards.

■ They were designed from the ground up to work on the Internet,
including working well with corporate firewalls.

■ They use a “simple” protocol not requiring multiple round trips to the
server.

■ They purposefully don’t address advanced features such as security or
transaction support as part of the protocol specification.

We showed you a variety of examples of Web Services exchanging simple and
complex types of data. In addition to using SOAP based Web Services as an RPC
(Remote Procedure Call) mechanism, you can use SOAP to exchange any type
of XML documents.We explained the basic structure of the SOAP protocol:
SOAP exchanges an XML document called a SOAP Envelope, which has two
parts:

■ The SOAP Header, which is designed to be extended to include appli-
cation-specific metadata, such as security- or session-related identifiers.

■ The SOAP Body, which contains the necessary information to find a
class and method on the server to handle the Web Service request, in
addition to parameter data that may be necessary to process such a
request.

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 228

WSDL and UDDI • Chapter 5 229

The SOAP specification defines a number of XML encoding schemes for dif-
ferent data types, such as strings, integers, floats, arrays, enumerations, and so on.
SOAP also includes a mechanisms for error handling.

We showed you how to call Web Services using standalone Visual Basic
scripts, client-side script in a Web browser, and through creating Windows
Forms–based applications.Visual Studio.NET includes tools that create client
proxies for (remote) Web Services for you, greatly simplifying the effort of devel-
oping Web Service client applications.

Solutions Fast Track

Web Service Standards

Web Services are classes that extend System.Web.Services.WebService.

A method becomes a Web method by decorating it with
[System.Web.Services.WebMethod].

Visual Studio.NET includes a powerful debugger.

Once you are in debug mode, external programs calling your Web
Service will go through the debugger.

Writing a Visual Basic script to call your Web Service through SOAP is a
fast, easy way to test your application.

Visual Studio.NET tells you the correct format of the SOAP
request envelope when you open the Web Service overview page
(http://serverName/webServiceProjectName/
webServiceName?op=webMethodName).

Describing Web Services—WSDL

In the world of Web Services, the role of a type library is taken by the
WSDL description of a Web Service.

WSDL is a complex standard that is still undergoing changes, and
discussing it in detail is beyond the scope of this book; you can find
more information about WSDL, including the actual WSDL
specification, which is currently stands at version 1.1, at
www.w3.org/TR/wsdl

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 229

230 Chapter 5 • WSDL and UDDI

Discovering Web Services—DISCO

DISCO guides clients to the WSDL files describing the call syntax of
Web Services.

Microsoft Visual Studio.NET automatically adds and maintains a file
with extension .vsdisco to Web Service projects.

You can also statically generate a DISCO file using the disco.exe tool
found at %ProgramFiles%\Microsoft.NET\FrameworkSDK\Bin\.This is
the same tool that also outputs the WSDL description.

Publishing Web Services—UDDI

UDDI is a Web Service itself, and it allows businesses and individuals to
publish information about themselves and the Web Services they are
offering.

The UDDI registry of Web Services is still in its infancy, and quite
frankly, there are not a lot of useful Web Services out there at the time
of writing this book.

If you want to programmatically interface with UDDI, you can get the
Microsoft UDDI SDK, which consists of a series of both COM and
.NET classes to interact with the UDDI registry; you can download it
from www.microsoft.com/downloads/release.asp?ReleaseID=30880.

www.syngress.com

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 230

WSDL and UDDI • Chapter 5 231

Q: Is registration to UDDI free?

A: Yes, at the moment it is.

Q: Where can I find more information about the business case for Web Services,
and how Web Services compare with other distributed technologies such as
COM/DCOM, CORBA, and EJBs?

A: A good starting point is Orchestra Network’s white paper at
www.orchestranetworks.com/us/solutions/0105_whitepaper.cfm.

Q: Where can I find more examples of Web Services?

A: Visit Visual Studio.NET’s CodeSwap site at www.vscodeswap.com/.
XMethods has a large repository of publicly available Web Services at
www.xmethods.net/.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 231

206_XMLweb_05.qxd 6/25/02 1:51 PM Page 232

Building an
ASP.NET/ADO.NET
Shopping Cart with
Web Services

Solutions in this chapter:

■ Setting Up the Database

■ Creating the Web Services

■ Using WSDL Web References

■ Building the Site

■ Site Administration

■ Customer Administration

■ Creating an ADOCatalog

■ Building an XMLCart

■ Creating the User Interface

Chapter 6

233

Summary

Solutions Fast Track

Frequently Asked Questions

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 233

234 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Introduction
Now that we’ve gotten XML under our belt, let’s start working with ADO.NET.
A good way to really see what ADO can do is within the frame of a shopping
cart application. In this chapter, we will create a shopping cart application for a
fictitious online bookseller called “Book Shop.”

To enable online shoppers to purchase books from our site, our shopping cart
application must be able to:Authenticate users, show current contents of the cart,
and enable add, update, and checkout operations.

We will also need to create a catalog that our shoppers can browse through to
add items to their cart. Users should also be able to query books by category and
view a range of books at a time. In order to achieve these goals, we will create
the following:

■ A database to store all book details

■ Stored procedures (MS SQL 2000) or parameterized queries (MS Access
2000) for all add, update, delete, and retrieve operations

■ Web Services that will handle all database interactions

■ Web Services Description Language (WSDL) Web references to our Web
Services

■ Server-side classes that will connect the Web Services with our user
interface (UI)

■ Web interface for displaying both our catalog and cart

We will also need to create admin interfaces to handle add, update, delete, and
retrieve operations for our customers (site users) and site administrators.The
interface that will be created in our example can be seen in Figure 6.1.

Setting Up the Database
First, we will design the database for our shopping cart.We will start out by
designing an MS Access 2000 database which we will then upsize to a SQL
Server 2000 database.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 234

www.syngress.com

NOTE

To set up the database in this example, you will need to know some
basic fundamentals of database design. A good source is Syngress
Publishing’s Designing SQL Server 2000 Databases for .NET Enterprise
Servers (ISBN 1–928994–19–9).

We are creating what is called a relational database.A relational database is a
series of tables that represent entities related to one another. Let’s look at a simple
example to help illustrate this point: our database. See Figure 6.2.

Table Books is an entity that represents all the attributes of a book.Table
Categories is an entity that represents all the attributes for a specific category.A
relationship between the two tables is created by the use of primary and foreign
keys.Table Categories has an attribute named CAT_ID, which is the primary key
for the table.This means simply that CAT_ID uniquely identifies every row in
the table.This will ensure we won’t get duplicate rows of data.The same concept
is true for the table Books.We can create the relationship between the two tables
by putting the attribute CAT_ID into the table “Books.” By doing so, we have

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 235

Figure 6.1 The “Book Shop” User Interface

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 235

236 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

created a foreign key in the table Books which references the table Categories.We
have now created a one-to-many relationship between the table Books and the table
Categories.

There are three different types of table relationships:

■ One-to-one Exactly one row corresponds with a matching row of the
related table.

■ One-to-many One row corresponds to many rows of the related table.

■ Many-to-many Many rows correspond to many rows of the related
table.

WARNING

A many-to-many relationship between tables is not a recommended
practice. When this type of relationship is created in the design of your
database, use a splitter table in-between the two tables that have the
affected relationship. This will create two one-to-many relationships and
ensure data integrity for your database.

We will now create the entities for our shopping cart application. Entities
enable us to map the real world. Since we are making a shopping cart, we need
some basic objects to start off with. First of all, we need product.We have chosen
to use Books as the product for the shopping cart but this could be anything.
Next, we need an object that will be using the shopping cart, Customers.As in the

www.syngress.com

Figure 6.2 Table Relationship

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 236

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 237

previous paragraph, we have more than one category of product, or in our case
Books, so we have another object to map which is Categories.The last piece to
finish off the whole design is a way to track what is bought, BookOrders. Now we
need to go over each entity to explain why we have selected the attributes
included in each.

Setting Up the Table Books
The Books table will contain the following attributes:

■ BK_ISBN This will also be our Primary key for the table since an
ISBN is already a global unique identifier.

■ BK_Author This contains the author’s full name.

■ BK_Price The price of the book.

■ BK_Title The book title.

■ BK_Description A brief description of the book.

■ BK_ImagePath The path to where we will store the image.

■ CAT_ID Our foreign key attribute to table “Categories.”

Setting Up the Table Categories
The Categories table will contain the following attributes:

■ CAT_ID The primary key for the table which will be an auto gener-
ated number; I will cover this in the next two sections.

■ CAT_Name The name of the category.

Setting Up the Table Customer
The Customer table will contain the following attributes:

■ CT_ID The primary key for the table, an auto generated number.

■ CT_FirstName Customer first name.

■ CT_LastName Customer last name.

■ CT_Email Customer e-mail.

■ CT_Password Customer password.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 237

238 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Setting Up the Table Orders
The Orders table will contain the following attributes:

■ OR_ID The primary key for the table, an auto generated number.

■ CT_ID This is our foreign key attribute to table “Customers.”

■ OR_Date The date of the order.

■ OR_ShippedDate The date the order ships.

Setting Up the Table BookOrders
The BookOrders table is the split table for the handling of our relationship
between the tables Books and Orders.This table includes the following attributes:

■ OR_ID This is our foreign key attribute to table “Orders.”This is also
part of the composite Primary key for the table.

■ BK_ISBN This is our foreign key attribute to table “Books.”This is the
other part of the composite primary key.

■ BKOR_Quantity The total of number of books.

■ BKOR_Price The total amount of the order.

NOTE

It is good practice to come up with a naming convention for your
database. The naming convention can be anything of your choosing, just
make sure you’re consistent throughout your database. A naming con-
vention is a uniformed way to document your code. In our example, OR_
denotes the table Orders.

Now, let’s implement this database in Microsoft Access.

Creating an Access Database
To create a database in Microsoft Access, simply navigate to Programs |
Microsoft Access.The main window will pull up, prompting you to either pick
a database from the list of current databases, create a blank database, or use the
wizard. See Figure 6.3.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 238

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 239

We want to select the Blank Database option and not the wizard. Select
OK, then give the database the name shopDb. Next, select the Tables object.
From here, we choose the option Create table in design view.We can now
transfer the attributes for the tables into the interface (see Figure 6.4).

Now we can transfer almost everything that’s been done into the interface.
One thing we have not discussed is datatypes.

The following is a list of datatypes we will implement in the database:

www.syngress.com

Figure 6.3 Setting Up the Access Database

Figure 6.4 Creating Tables in Design View

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 239

240 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

■ Text Text or combinations of text and numbers: Maximum size 255
characters.

■ Currency Used for monetary functions, prevents rounding off of total:
Size 8 bytes.

■ AutoNumber Unique number automatically inserted when a record is
added: Size 4 bytes.

■ Number Numeric data to be used for mathematical calculations: Size
1, 2, 4, or 8 bytes.

■ Date/Time Stores date/time: Size 8 bytes.

■ Yes/No Boolean value, 0 or 1: Size 1bit.

■ Memo Used for storing large amounts of text: Maximum size 64,000
characters.

■ OLE Object Can store Word docs, Excel files, and so on: Maximum
size 1 gigabyte.

Continue this process for the rest of the tables. If you want, you can
download the file shopDb.mdb from the Solutions Web site for the book
(www.syngress.com/solutions) and view the complete database. Let’s look at the
complete diagram generated by Access after we finish filling in our tables (shown
in Figure 6.5).

www.syngress.com

Figure 6.5 A Database Diagram

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 240

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 241

To generate the preceding diagram, go to the Tools menu and select the
Relationships option.You will be prompted for what tables to add. Select the
tables you have created and hit OK.To create the relationships between the
tables, left-click the attribute you want to make a relationship with and drag it
over to the table that has the matching attribute, release the mouse and you will
be prompted with a set of options for the relationship. See Figure 6.6.

The default is to have the Enforce Referential Integrity option selected.
This is good enough for our example; the other two options will enable cas-
cading deletes and updates.

WARNING

When defining relationships, make sure the column is of the same
datatype as the one you are trying to make a relationship with, other-
wise Access will throw an error.

We will do what is called de-normalize the database for the Access version to
make things flow between the Data tier of our application and the two different
databases. Since our shopping cart uses all OleDb connections to the database
regardless of source, the stored procedures created in the SQL Db are the same
for the Access version, but we have some limitations when it comes to Access.We
cannot easily return the submitted record ID from the table like we can in SQL
using the global variable @@identity, so we must solve this by eliminating the
Orders table in the schema for Access and adding those rows to the BookOrders
table.This will result in customers having multiple order entries, but keeps all

www.syngress.com

Figure 6.6 Defining Relationships in Access

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 241

242 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

data handling code the same for both databases. If you were to program this
application, you would select one or the other and optimize accordingly—we are
going to straddle the fence here and show both in the same logic.

Now that we have our database schema done, we can upsize the database
using the Access Upsizing Wizard and make a SQL server version. Go to Tools |
Database Utilities | Upsizing Wizard. Follow the wizard and choose all the
defaults.

SQL Server Database
Now that we have our schema upsized into SQL, we can easily create the rest of
our database components.We primarily need a set of stored procedures that will
run all of our operations against the database.This will enable us not to have to
use ad hoc queries in our code for our Data Tier interaction.

One thing we need to do first is ensure that all our primary keys were tran-
scribed into the upsized version. Let’s open up the Enterprise Manager of
MSSQL 2000 (EM). Navigate to your program files and select the SQL Server
group, then select EM. From EM, we can quickly navigate to our database
(shopDB). See Figure 6.7.

Select Tables and you’ll notice our tables from Access are now here. Right-
click a table and select Design Table. From here, we can check to see if our

www.syngress.com

Figure 6.7 The SQL EM Interface

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 242

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 243

tables made the move without ill effects. If everything looks correct, check the
rest of the tables—you’ll see the Access datatype autonumberdoes not come over to
SQL Server as an int identity column datatype, which it needs to be. So, for the
tables that have autonumber, you will have to change it to the int datatype with
identity, and give them a seed and increment value. See Figure 6.8.

You must also uncheck Allow Nulls.This is because the field we are
working with is a primary key and we cannot have a null value for a primary key
field.Also, we are using the option identity in this instance, which requires that
null not be allowed.

We will also separate the table BookOrdersinto its original design since SQL
Server can easily give us a value for the identity field returned.After we have
done all of this, we can create a new diagram in SQL and apply our new rela-
tionships. In the EM view, right-click diagrams and select New Diagram.The
wizard will prompt you for the tables you want to select for the database dia-
gram.Add only the tables we have created, leave out all the system tables.We will
now view our new diagram generated by SQL Server (see Figure 6.9).

We can create relationships in the same manner as before. Click the column
you want to make a relationship with and drag and drop it into to the appro-
priate column and table.We will go with the selected defaults.We have a normal-
ized database now completed in SQL Server.We will now create the stored
procedures we’ll need for the rest of the application.

www.syngress.com

Figure 6.8 Setting Identity to Yes and Giving Seed and Increment Value

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 243

244 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Creating the Stored Procedures
We’ll now create the following list of stored procedures:

■ AdminAddBook

■ AdminAddCustomer

■ AdminAddCat

■ AdminDeleteCat

■ AdminDeleteCustomer

■ AdminDeleteBook

■ AdminUpdateBook

■ AdminUpdateCat

■ AdminUpdateCustomer

■ AllCustById

■ GetAllBooks

www.syngress.com

Figure 6.9 A SQL Server Diagram

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 244

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 245

■ GetAllCat

■ LoginCustomers

■ OrderBook

Don’t be intimidated.We’ll use the SQL Server Wizard to create most of
these procedures. Now we need to begin creating all our stored procedures. Go
to the Tools menu and select Wizards. From there, a new window will pop up
with a listing of items. Double-click the first item, Database, then select Create
Stored Procedure Wizard.You should see the screen shown in Figure 6.10.

Click Next and select the database, which is shopDb.The next window will
show all the tables on the left and the subsequent procedures that can be created
on the right. Mark the check box labeled insert in the row of options listed for
the Customers table. Click Next.The window that appears will give you the
choice to Edit the SQL syntax—select this option.We need to give the proce-
dure a name, which in this case will be AdminAddCustomer. See Figure 6.11.

In Figure 6.11, we see that all columns are selected for insert; however, we do
not need one for CT_ID because the identity field generates that. Uncheck that
option and rename the stored procedure AdminAddCustomer. Select Edit
SQL. Let’s look at the code generated by this; it’s shown in Figure 6.12 and
found on the Solutions Web site for the book (www.syngress.com/solutions) as
ShopDB.sql.

www.syngress.com

Figure 6.10 The Create Stored Procedure Wizard

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 245

246 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Figure 6.12 ShopDB.sql

USE [shopDb]

GO

CREATE PROCEDURE [AdminAddCustomer]

(@CT_FirstName [nvarchar](20),

@CT_LastName [nvarchar](50),

@CT_Email [nvarchar](75),

@CT_Password [nvarchar](6))

AS INSERT INTO [shopDb].[dbo].[Customers]

([CT_FirstName],

[CT_LastName],

[CT_Email],

[CT_Password])

VALUES

(@CT_FirstName,

@CT_LastName,

@CT_Email,

@CT_Password)

www.syngress.com

Figure 6.11 The Stored Procedure Wizard’s Properties Dialog Box

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 246

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 247

Here we have the SQL syntax to insert a row of new data. In the code view
window, SQL Server likes to put numbers on all the variables.You can delete this
so the code looks cleaner and will be easy to use when we write the Web service
that will hit this proc and execute it. Create the rest of the Admin stored proce-
dures in this same manner.

Now that we have completed a majority of the stored procedures needed for
our database through the use of the wizards, we have to create more complex
stored procedures using the Query Analyzer. Open up Query Analyzer from
the Tools menu of EM. Connect the server you are running. In the drop-down
menu, select the database shopDb.The next stored procedure that you need to
build is AllCustById.We will write a simple select statement with one parameter.
Let’s look at some code which can be executed in Query Analyzer:

CREATE PROC AllCustById

@CT_ID int

AS

SELECT *

FROM customers

WHERE CT_ID = @CT_ID

GO

The next procedure in the list after AllCustById is GetAllBooks. No need for
parameters—just give up the data.

CREATE PROCEDURE GetAllBooks

AS

SELECT BK_ISBN isbn,

category.CAT_Name "name",

category.CAT_ID "id",

BK_ImagePath imgSrc,

BK_author author,

BK_Price price,

BK_Title title,

BK_Description "description"

FROM Books book inner Join Categories category

on book.CAT_ID = category.CAT_ID

ORDER BY "name"

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 247

248 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

NOTE

In the code in this section, we are using aliasing so the column headers
returned will have easy-to-use names. The DataSet will use the column
names as XML element names when the data is converted to XML.

Now we need to get a selection of categories from the database for our drop-
down menus:

CREATE PROC GetAllCat

AS

SELECT * FROM Categories

This will populate with all category names and associated IDs.
Now we need to create a proc that will query the database and return a

Customer’s ID.This is our Login stored procedure:

CREATE proc LoginCustomers

@CT_Email nvarchar(75),

@CT_Password nvarchar(6)

as

SELECT [CT_ID]

FROM Customers

WHERE CT_Email = @CT_Email And CT_Password = @CT_Password

This will return a value of either the Customers ID or –1, which we can
check for on the page load.

Now we need to handle the ordering of a book.We can load and run the
OrderBook procedure to do that:

CREATE Procedure OrderBook

(

@CT_ID int,

@BK_ISBN int,

@BKOR_Quantity int,

@BKOR_Price money

)

AS

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 248

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 249

declare @OR_Date datetime

declare @OR_ShipDate datetime

declare @OR_ID int

select @OR_Date = getdate()

select @OR_ShipDate = getdate()

begin tran NewBook

INSERT INTO Orders

(

CT_ID,

OR_Date,

OR_ShipDate

)

VALUES

(

@CT_ID,

@OR_Date,

@OR_ShipDate

)

SELECT @OR_ID = @@Identity

INSERT INTO BookOrders

(

OR_ID,

BK_ISBN,

BKOR_Quantity,

BKOR_Price

)

VALUES

(

@OR_ID,

@BK_ISBN,

@BKOR_Quantity,

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 249

250 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

@BKOR_Price

)

commit tran NewBook

We are using begin tran and end tran.This simply means that if there is an error
during any part of the previous query the transaction will be aborted and rolled
back.That’s it for the stored procedures. Now to make these all work in the
Access database, you need to trim out some stuff from the preceding code.

As a rule of thumb, you can grab all the code after the key word AS.This is
then pasted into Access query SQL mode and saved as the same file name. Open
up the shopDB.mdb file (which you downloaded earlier from the Syngress
Solutions Web site for the book) and see the differences in the code.

Creating the Web Services
This section will provide an overview of the Web Services needed for the site,
and describe the processes of creating the data connection, creating a Web
Service, and, finally, testing the Web Service.

Overview of the Book Shop Web Services
We will be using Web Service methods to wrap our database logic (stored proce-
dures for SQL, or parameterized queries for Access).This will provide separation
of the data tier from the UI.This will also enable our data to be accessed from
multiple clients including Java-servlets, JSP, PHP, desktop application with
Hypertext Transfer Protocol (HTTP) connections, and, of course,ASP.NET
applications.

We will be creating the following Web Services (see Figure 6.13):

■ sellerAdmin

■ adminCustomer

■ getCustomer

■ loginCustomer

■ getBooks

■ getCategories

■ orderBooks

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 250

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 251

Earlier in this chapter (see the section “Setting Up the Database”), you cre-
ated stored procedures for use with an SQL database, as well as the equivalent
parameterized queries for use with an Access database, to make the interface to
the data source consistent; this allows us to write ADO.NET code that can be
used against both SQL and Access.

You will also use the OleDb data connection object since most databases have
an OleDb provider.This will enable your code not only to work with SQL and
Access but with any database that has an OleDb interface. So, the application will
work with an SQL database and the application will work with an Access
database.The only code that will need to be changed with this approach is the
connection string.

Let’s create a new project to host all of the Web Services. Open Visual
Studio .NET (VS.NET), and select New Project.We want to create a C#
ASP.NET Web Service application named booksource (see Figure 6.14); next, we
will create the data connection.

www.syngress.com

Figure 6.13 An Overview of Web Services and Their Methods

getCust

allCustById

loginCustomer

validCustomer

orderBooks

orderItem

getBooks

allBooks

getCategories

allCat

adminCustomer

addCust

removeCust

updateCust

sellerAdmin

addItem

removeItem

updateItem

addCat

removeCat

updateCat

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 251

252 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Creating the Data Connection
Data Connections can be created in several ways. Let’s look at how the VS.NET
Wizard does this. For this example, you’ll create a connection to an Access
database.The steps for MS SQL will be slightly different.

1. Open the Server Explorer, and select View | Server Explorer from
the menu.

2. Right-click Data Connection, then select Add connection.

3. Select the Provider tab.

4. Select the appropriate provider. For access, select Jet 4.0 OLEDB
Provider.

5. Click Next.

6. Select the database name by clicking the Browse… button and navi-
gating to your database.

7. Click Test Connection.You should get a pop-up window that says
Connection succeeded.

8. Click OK.

9. Click OK.You now have a data connection.

www.syngress.com

Figure 6.14 Creating the booksource Web Service

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 252

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 253

While in design mode, you can drag and drop this connection onto your
.asmx page.This will add the following to the code-behind page as the first line
in the service public class:

private System.Data.OleDb.OleDbConnection oleDbConnection1;

Connection string information will also be added to the InitializeComponent()
method.Alternatively, you can still create a connection string by creating a .udl
file on the desktop, double-clicking it and following the dialogs.With this
method, you will have to insert the code ourselves, as follows:

1. In C#, add Using System.Data.OleDb to the top “using” section.

2. Then add the following inside the service class:

private OleDbConnection myConnection = new OleDbConnection();

3. Add the following to a method (page_onload, or a method of your own
creation):

myConnection.ConnectionString =

[the string obtained from the udl file]

We will take a closer look at adding a connection when we create the
sellerAdmin service in the next section.

Creating a Web Service
All of the code for the Web Services in this chapter can be found on the
Solutions Web site for the book at www.syngress.com/solutions. (See:
adminCustomer.asmx.cs, sellerAdmin.asmx.cs, getBooks.asmx.cs,
getCategories.asmx.cs, getCustomer.asmx.cs, loginCustomer.asmx.cs,
orderBooks.asmx.cs, and sellerAdmin.asmx.cs.)

Let’s take a closer look at adding a connection by creating the sellerAdmin
Service.To create this service follow these steps:

1. Create the Connection object.

2. Set the Connection string.

3. Create the Command object.

4. Create the Parameter objects and assign their values.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 253

254 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

5. Execute the procedure.You will be using the AdminAddBook stored pro-
cedure. It takes the following parameters: BK_ISBN, BK_Author,
BK_Price, BK_Title, BK_Description, CAT_ID, BK_ImagePath.

6. Return string indicating success or failure of the operation.

Now let’s get started.To accomplish Step 1 (creating the Connection object),
first create a new C# Web Service and name it sellerAdmin.asmx.Add this
directive to the top “using” section:

Using System.Data.OleDb;

Scroll down to below the method named Dispose(bool disposing.Add the
following:

protected OleDbConnection sellerAdminConn = new OleDbConnection();

This accomplishes the creation of the Connection object. Now, for Step 2
(setting the Connection string), add the following:

protected void init()

{

this.sellerAdminConn.ConnectionString =

@"Provider=SQLOLEDB.1;

Persist Security Info=False;

User ID=[user id]; password=[password]; Initial Catalog=[Database Name];

Data Source=[Server Name]"

}

Note that the use of the “@” before the Connection string is required.This
accomplishes Step 2.

For Step 3, (creating the Command object), first create a new method called
addItem. It should have parameters corresponding to the stored procedures param-
eters, and should return a string indicating success or failure of the operation:

public string addItem(string ISBN,string author,double price, string

title,string description,string imagePath, int CAT_ID)

Now create a Command object that references the AdminAddBook stored
procedure:

OleDbCommand addItem =

new OleDbCommand("AdminAddBook",this.sellerAdminConn);

addItem.CommandType = CommandType.StoredProcedure;

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 254

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 255

This accomplishes Step 3.
For Step 4 (creating the Parameter objects and assigning their value), we will

create Parameter objects for ISBN, author, price, title, description, imagePath, and
CAT_ID, then set their values. Here is the code for isbn:

OleDbParameter addISBN =

addItem.Parameters.Add("@BK_ISBN",OleDbType.Char,15);

addISBN.Value = ISBN;

Note that @BK_ISBN is the name of the parameter we are assigning a value
to; OleDbType.Char is its datatype (it should be compatible with the field in the
database); and “15” refers to the character size as defined for the field in the
database.

The code to create Parameter objects for each of the method parameters is
nearly identical, and can be found on the on the Solutions Web site for the book
(www.syngress.com/solutions) in the file sellerAdmin.asmx.cs.This accomplishes
Step 4.

Now, for Step 5 (executing the procedure), open the connection and execute
the query. Since the stored procedure performs an insert operation it will return
an int containing the number of rows affected.Therefore, you will use the com-
mand ExecuteNonQuery.

this.sellerAdminConn.Open();

int queryResult = QueryObject.ExecuteNonQuery();

This accomplishes Step 5. Now close the connection and return the result of
executing the stored procedure (this is Step 6). Note that the method returns the
following string:“success” or the generated error message.

this.sellerAdminConn.Close();

if (queryResult != 0)

{

return "Success";

}

else

{

return "error: QueryResult= " + queryResult;

}

This accomplishes Step 6. Since all of the Web methods have similar logic,
you can combine some of this code into a method that each Web Method calls:

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 255

256 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

protected string ExecuteQuery(OleDbCommand QueryObject)

{

this.sellerAdminConn.Open();

int queryResult = QueryObject.ExecuteNonQuery();

if (queryResult != 0)

{

this.sellerAdminConn.Close();

return "Success";

}

else

{

return "error: QueryResult= " + queryResult;

}

}

Add one more thing to the method to make it accessible as a Web method:

[WebMethod(Description="Adds a new book to the books table",

EnableSession=false)]

Putting it all together, you should get the following:

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Data.OleDb;

namespace bookSource

{

public class sellerAdmin : System.Web.Services.WebService

{

public sellerAdmin()

{

InitializeComponent();

}

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 256

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 257

protected override void Dispose(bool disposing)

{

}

protected OleDbConnection sellerAdminConn =

new OleDbConnection();

protected void init()

{

this.sellerAdminConn.ConnectionString =

@"Provider=SQLOLEDB.1;

Persist Security Info=False;

User ID=[user id];

password=[password];

Initial Catalog=[Database Name];

Data Source=[Server Name]";

}

protected string ExecuteQuery(OleDbCommand QueryObject)

{

this.sellerAdminConn.Open();

int queryResult = QueryObject.ExecuteNonQuery();

if (queryResult != 0)

{

this.sellerAdminConn.Close();

return "Success";

}

else

{

return "error: QueryResult= " + queryResult;

}

}

[WebMethod(Description="Adds a new book to the books

table", EnableSession=false)]

public string addItem(string ISBN,string author,

double price, string title,string description,

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 257

258 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

string imagePath, int CAT_ID)

{

try

{

this.init();

OleDbCommand addItem =

new OleDbCommand(

"AdminAddBook",

this.sellerAdminConn);

addItem.CommandType =

CommandType.StoredProcedure;

OleDbParameter addISBN =

addItem.Parameters.Add(

"@BK_ISBN",OleDbType.Char,15);

addISBN.Value = ISBN;

OleDbParameter addAuthor = addItem.Parameters.Add(

"@BK_Author",OleDbType.Char,80);

addAuthor.Value = author;

OleDbParameter addPrice = addItem.Parameters.Add(

"@BK_Price",OleDbType.Currency,8);

addPrice.Value = price;

OleDbParameter addTitle = addItem.Parameters.Add(

"@BK_Title",OleDbType.Char,75);

addTitle.Value = title;

OleDbParameter addDescription =addItem.Parameters.Add(

"@BK_Description",OleDbType.Char,255);

addDescription.Value = description;

OleDbParameter addImage = addItem.Parameters.Add(

"@BK_ImagePath",OleDbType.Char,50);

addImage.Value = imagePath;

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 258

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 259

OleDbParameter addCatId = addItem.Parameters.Add(

"@CAT_ID",OleDbType.Integer,4);

addCatId.Value = CAT_ID;

return this.ExecuteQuery(addItem);

}

catch(Exception e)

{

return e.ToString();

}

}

.

.

.

In this section, you created the sellerAdmin Web Service and the additem Web
Service Method. In the next section, we will look at how to test the Web Service
and its methods.

Testing a Web Service in ASP.Net
We can test our service by performing the following steps:

1. In VS.NET right-click the file sellerAdmin.asmx, and select Set as
start page.

2. Press F5 to run it.This will take a few seconds to compile and run.

3. When the browser loads, you should see something like Figure 6.15.

4. To test the service addItem, click the addItem link.An input form will be
displayed, prompting you for values for its parameters. See Figure 6.16.

5. Fill in the appropriate textboxes and click Invoke.

6. Since this service returns a datatype string, we should see something like
Figure 6.17.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 259

260 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

www.syngress.com

Figure 6.15 Web Service Listing

Figure 6.16 Testing a Web Service

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 260

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 261

This shows that the method has completed successfully and returned the cor-
responding output.These steps can be repeated for each of the remaining
methods: removeItem, updateItem, addCat, removeCat, and updateCat. Each of these
methods is coupled with a corresponding stored procedure (MSSQL) or parame-
terized query (MS Access).

The following is a function prototype overview of the process-flow or steps
involved in creating each of these Web methods. See if you can create and test
these Web methods on your own, then compare them to the source code avail-
able on the Solutions Web site for the book (www.syngress.com/solutions).The
sellerAdmin Web service and all of its methods can also be found on the Solutions
Web site in the file sellerAdmin.asmx.cs.

■ removeItem (int isbn) Removes a book item from the database

1. Call init().

2. Create Command object accessing the AdminRemoveBook stored
procedure.

3. Create the Parameter object and assign its value.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

■ updateItem (string ISBN, string author, double price, string title, string descrip-
tion, string imagePath, int CAT_ID) Updates a book item’s information

1. Call init().

2. Create Command object accessing the AdminUpdateBook stored
procedure.

3. Create the Parameter objects and assign their values.

www.syngress.com

Figure 6.17 Results of Invoking the addItemWeb Service

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 261

262 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

■ addCat (string CAT_Name) Adds a category name to the database

1. Call init().

2. Create Command object accessing the AdminAddCat stored procedure.

3. Create the Parameter object and assign its value.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

■ updateCat (int CAT_ID, string CAT_Name) Updates category details

1. Call init().

2. Create Command object accessing the AdminUpdateCat stored
procedure.

3. Create the Parameter objects and assign their values.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

■ removeCat (int CAT_ID) Removes a category from the database

1. Call init().

2. Create Command object accessing the AdminUpdateCat stored
procedure.

3. Create the Parameter object and assign its value.

4. Execute the procedure. Call ExecuteQuery(commandObj).

5. Return string indicating success or failure of the operation.

NOTE

This application contains several different Web Services. The code for
these Web Services can be found on the Solutions Web site for the book
at www.syngress.com/solutions. In the directory for Chapter 6 refer to
the following files adminCustomer.asmx.cs, sellerAdmin.asmx.cs,
getBooks.asmx.cs, getCategories.asmx.cs, getCustomer.asmx.cs,
loginCustomer.asmx.cs, orderBooks.asmx.cs, and sellerAdmin.asmx.cs.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 262

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 263

Now that you know the Web Service and its methods are working correctly,
the next step will be to create our UI for the Web application and generate proxy
classes for it to retrieve data from our Web Services. In the next section, we will
see how VS.NET works with WSDL and Universal Description, Discovery, and
Integration (UDDI) to enable our ASP.NET Web Application to connect to and
retrieve data from our booksource Web Service project.

Using WSDL Web References
We will use WSDL and DISCO in our Web application project to connect to
and add a reference to our Web Services Application (bookSource) and its indi-
vidual Web Services and their Web methods.

Let’s create a new C# Web application, named bookSourceUI.
The first thing you want to do is create a reference to your Web Services so

that you can easily access the methods in our code.

1. In the Solution Explorer pane, right-click Web References.

2. Select Add Web Reference.A new dialog will appear.

3. Select the last UDDI option, which is your local machine.VS.NET will
check your server for all Web Services. It will then present you with a list
of services you can view or select to add a reference to. See Figure 6.18.

www.syngress.com

Figure 6.18 UDDI Server Discovery Dialog

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 263

264 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

4. Select the service group you would like to add a reference to. Look for
your Web Service project name (http://localhost/bookSource.vsdisco).

5. The Services available will be displayed. See Figure 6.19.

6. You can view the Simple Object Access Protocol (SOAP) contracts and
documentation for each Service Method by clicking on the link. Be sure
to add the reference from this level in the menu.To add this Web
Service and all its methods, click Add Reference.VS.NET will create
proxy classes for each Service Method so that the method can be
accessed just like a local class method. See Figure 6.20.

Building the Site
Now that the back-end database interfaces and Web Services have been com-
pleted, you should turn your focus to the middle tier data classes and controls
that act as a bridge between the backend and the Web UI.The site structure will
look something like that depicted in Figure 6.21.

www.syngress.com

Figure 6.19 Services Available

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 264

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 265

www.syngress.com

Figure 6.20 Proxy Classes Added to Solution Explorer in VS.NET UI

Figure 6.21 BookShop Site Overview

loginCustomer
.aspx.cs

loginCustomer.aspx

newCustomer
.aspx.cs

newCustomer.aspx

updateCustomerInfo.
aspx.cs

updateCustomerInfo.
aspx

start.aspx.cs

start.aspx

header.htm

adminLogin
.aspx.cs

adminLogin.aspx

addBook
.aspx.cs

addBook.aspx

adminPage
.aspx.cs

adminPage.aspx

Common file used
in all UI pages.

Contains the
navigation bar.

Customer Admin Pages Site Admin Pages

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 265

266 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Site Administration
In this section, we will develop the code that allows us to tie our site administra-
tion interface to our Web Services (see Figure 6.22).While creating the pages
needed, we will cover creating the Administration login, creating the
Administration page, and an addBook page for the administrator.

Creating the Administration
Login (adminLogin.aspx)
This is a fairly simple page that uses the RequiredFieldValidator server control.

There are several server controls that enable HTML form validation:

■ RequiredFieldValidator

■ CompareValidator

■ RangeValidator

■ RegularExpressionValidator

■ CustomValidator

■ ValidationSummary

All of these controls work in a similar fashion. In this example page, we use
RequiredFieldValidator in a code behind page to show how to use a server control
to validate user data in HTML forms.

1. In the Web application bookSourceUI, create a new aspx page, and
name it adminLogin.aspx.

www.syngress.com

Figure 6.22 Site Administration Page Group Overview

adminLogin
.aspx.cs

adminLogin.aspx

addBook
.aspx.cs

addBook.aspx

adminPage
.aspx.cs

adminPage.aspx

Site Admin Pages

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 266

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 267

2. In Design view, drag and drop a RequiredFieldValidator.

3. Be sure not to position this element in Design view; in the aspx page,
remove the style attribute from the element and use HTML layout tech-
niques to position it. (See the sidebar in this section on ASP.NET and
Netscape.)

Let’s look at the code from the aspx page:

<tr>

<td>User: </td>

<td style="WIDTH: 127px">

<asp:textbox id="txtUser" runat="server"

Width="106px" Height="24px">

</asp:textbox>

</td><td>

<asp:requiredfieldvalidator id="passUser" runat="server"

ErrorMessage="You must supply a user name"

ControlToValidate="txtUser" Width="121px" Height="57px">

</asp:requiredfieldvalidator>

</td>

</tr>

Lets look at a code snippet from the code-behind file (the aspx.cs page).
When we drag the RequiredFieldValidator onto the page,VS.NET will add the
following:

protected System.Web.UI.WebControls.RequiredFieldValidator passUValid;

And that’s all there is to it.When the page is run, a reference is made to a
client-side JavaScript file that includes crossbrowser code to ensure that this field
contains a value before allowing a submit. If the user tries to submit without
filling in the text box, the error message “You must supply a user name” will
appear in the table cell to the right of the text box (it actually appears wherever
the asp:requiredfieldvalidator tag is placed in the HTML, in this case an adja-
cent table cell). Next, we will look at the admin page itself.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 267

268 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Creating the Administrator
Page (adminPage.aspx)
The purpose of this page is to allow the site administrator the ability to remove
and update book item information. In the following sections, we’ll look specifi-
cally at retrieving the data, displaying the data, adding new books to the database,
deleting books, and updating book details.

Retrieving the Data: Creating the
getBooks.AllBooks Web Method
To retrieve the list of books stored in the database, we will need to access the
GetAllBooks stored procedure (MSSQL) or parameterized query (MS Access).We
will do this by creating the allBooks method of the getBooks Web Service.This
method will take no parameters, and will return a DataSet containing all Book data
as well as the table structure of the database table that the data originated from.

The Web method getBooks.AllBooks can be found on the Solutions Web site
for the book (www.syngress.com/solutions) in the file getBooks.asmx.cs.

www.syngress.com

ASP.NET Server Controls Do Not
Display Correctly in Netscape 4.x
A lot has happened over the last few years with Netscape and the open
source Mozilla project. While the newer versions of Mozilla version .094
and later should handle this fine, there is still a significant Netscape 4.x
user base. When we develop Web front-ends for our clients, we strive to
ensure at least Netscape 4.72 will display and function correctly.

What’s the issue? It seems that most of the examples showing you
how to use server controls have you drag and drop the control to where
you want it on the screen. In HTML, this creates span tags with inline
style attributes containing “absolute positioning.” Those of us that have
dealt with cross-browser Dynamic HTML (DHTML) issues know that this
can cause problems in Netscape. The solution: Use FlowLayout and good
old-fashioned HTML elements and tricks for positioning. To do this,
simply right-click a page in either Design or HTML view and switch the
pageLayout property to FlowLayout.

Debugging…

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 268

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 269

1. To create this method, we must first create a new Web Service named
getBooks. (See the section on Web Services earlier in this chapter.)

2. Inside the code-behind page of getBooks (getbooks.asmx.cs), we need to
create the method allBooks.AllBooks should return a DataSet:

public DataSet AllBooks()

3. Set the connection string:

string source = "Provider=SQLOLEDB.1;Persist Security Info=False …

4. Create the Connection object:

OleDbConnection conn = new OleDbConnection (source) ;

5. Create the Command object accessing the GetAllBooks stored procedure:

OleDbCommand cmd = new OleDbCommand ("GetAllBooks" , conn) ;

cmd.CommandType = CommandType.StoredProcedure;

6. Create a DataAdapter object for the Command object:

OleDbDataAdapter da = new OleDbDataAdapter (cmd) ;

7. Create a new DataSet and use the DataAdapter to fill it from the results
of executing the stored procedure:

DataSet ds = new DataSet () ;

da.Fill (ds , "Books") ;

8. Close the connection and return the DataSet:

conn.Close();

return ds;

Here is the method in its entirety:

[WebMethod(Description="This will return all books in an XML String",

EnableSession=false)]

public DataSet AllBooks()

{

string source = "Provider=SQLOLEDB.1;Persist Security

Info=False;User ID=[userID];password = [password];

Initial Catalog=[database name];

Data Source=[server name];Use Procedure for Prepare=1;

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 269

270 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Auto Translate=True;Packet Size=4096;

OleDbConnection conn = new OleDbConnection(source);

conn.Open () ;

OleDbCommand cmd = new OleDbCommand ("GetAllBooks" , conn);

cmd.CommandType = CommandType.StoredProcedure;

OleDbDataAdapter da = new OleDbDataAdapter (cmd) ;

DataSet ds = new DataSet () ;

da.Fill (ds , "Books") ;

conn.Close();

return ds;

}

The data returned contains an embedded XSD schema describing the
Database table Books.

<?xml version="1.0" encoding="utf-8"?>

<DataSet xmlns="http://tempuri.org/">

<xsd:schema id="NewDataSet" targetNamespace=""

xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

<xsd:element name="NewDataSet" msdata:IsDataSet="true">

<xsd:complexType>

<xsd:choice maxOccurs="unbounded">

<xsd:element name="Books">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="isbn" type="xsd:string" minOccurs="0" />

<xsd:element name="name" type="xsd:string" minOccurs="0" />

<xsd:element name="id" type="xsd:int" minOccurs="0" />

<xsd:element name="imgSrc" type="xsd:string" minOccurs="0" />

<xsd:element name="author" type="xsd:string" minOccurs="0" />

<xsd:element name="price" type="xsd:decimal" minOccurs="0" />

<xsd:element name="title" type="xsd:string" minOccurs="0" />

<xsd:element name="description" type="xsd:string"

minOccurs="0" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:choice>

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 270

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 271

</xsd:complexType>

</xsd:element>

</xsd:schema>

The next section is the diffgram node, which contains all the table records:

<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

<NewDataSet xmlns="">

<Books diffgr:id="Books1" msdata:rowOrder="0">

<isbn>0072121599</isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccda.gif</imgSrc>

<author>Syngress Media Inc</author>

<price>49.99</price>

<title>Ccda Cisco Certified Design Associate Study Guide</title>

<description>Written for professionals intending on taking the CCDA

test, this special guide covers all the basics of the test and

includes hundreds of test questions on the enclosed CD.

</description>

</Books>

<Books diffgr:id="Books2" msdata:rowOrder="1">

<isbn>0072126671</isbn>

<name>cisco</name>

<id>2</id>

<imgSrc>ccna.gif</imgSrc>

<author>Cisco Certified Internetwork Expert Prog</author>

<price>49.99</price>

<title>CCNA Cisco Certified Network Associate Study Guide</title>

<description>Cisco certification courses are among the fastest-

growing courses in the training industry, and our guides are

designed to help readers thoroughly prepare for the exams.

</description>

</Books>.

.

.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 271

272 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

This XML file is interpreted by ASP.NET as a DataSet object and can be
easily loaded into any variable of type DataSet.

The DataGrid control is designed to be DataBinded to a DataSet object.This
makes it easy to “data bind” to a Web Service Method that returns a DataSet.
Data Binding a DataSet to the DataGrid is almost the same as loading the DataSet
into the DataGrid.The DataGrid is then able to iterate through and perform
operations on the DataSet as if it were an Access Form connected to an Access
database.The DataSet in actuality is an in-memory XML representation of the
database including the Books table.

Displaying the Data: Binding
a DataGrid to the DataSet
The DataGrid is actually bound to the DataTable Books which is a table within
the DataSet returned by getBooks.AllBooks.We create a DataView of the Books
table so that we can sort the data.This DataView is then bound to the DataGrid.

In the following code, changeBooks is the name of our DataGrid object:

Dt = Books.AllBooks().Tables["Books"];

myView = new DataView(Dt);

myView.Sort = "isbn";

changeBooks.DataSource = myView;

changeBooks.DataBind();

Adding New Books to the Database:
Creating the allBooks.addItem Web Method
The creation of this method was shown as an example earlier in the chapter,
under the section “Web Services.”

Deleting Books: Deleting from
the DataGrid and the Database
Using the DataGrid event changeBooks_DeleteCommand, fired when a user clicks
the Delete button in the DataGrid UI, we will select the row in the DataGrid to
remove by using the RowFilter property.

The following code selects the individual book by performing a filter on
ISBN. It is analogous to the SQL statement:

Select * from Books where isbn = "@isbn"

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 272

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 273

The equivalent code for the DataView is:

myView.RowFilter = "isbn='"+upISBN+"'";

This will return an array or collection of items. Since ISBN is our primary
key in the Books table, we know that this filter will return only one item.We
delete this row from the DataView by simply calling the Delete method:

myView.Delete(0);

Next, we reset the filter so we can re-access the entire Books table:

myView.RowFilter = "";

Now we need to resync the DataGrid with the in-memory Books Table View
so that the DataGrid UI reflects the change:

changeBooks.DataSource = myView;

changeBooks.DataBind();

Next, we need to update the database to sync it with the DataGrid.This is
accomplished by calling the Web method and passing it the ISBN of the book to
delete:

removeBook.removeItem(upISBN);

Updating Book Details: Updating
the DataGrid and the Database
Using the DataGrid event changeBooks_UpdateCommand, fired when a user clicks
the Update button in the DataGrid UI, we will select the row in the DataGrid to
update by using the RowFilter property.

1. Select the row to update by using the RowFilter property of the
DataView (see the example in the preceding section).

2. Create a new DataRow Item and populate it with the changes (new
Data). Store updated column values in local variables:

string upISBN = e.Item.Cells[2].Text;

string upAuthor = ((TextBox)e.Item.Cells[3].Controls[0]).Text;

double upPrice =

double.Parse(((TextBox)e.Item.Cells[4].Controls[0]).Text);

string upTitle = ((TextBox)e.Item.Cells[5].Controls[0]).Text;

string upDescription = ((TextBox)e.Item.Cells[6].Controls[0]).Text;

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 273

274 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

int upCatId = int.Parse(e.Item.Cells[7].Text);

string upImage = ((TextBox)e.Item.Cells[8].Controls[0]).Text;

3. Delete the row that is being updated (see the example in the preceding
section).

4. Create a new DataRow and populate it with the new data.

DataRow dr = Dt.NewRow();

dr["isbn"] = upISBN;

dr["author"] = upAuthor;

dr["price"] = upPrice;

dr["title"] = upTitle;

dr["description"] = upDescription;

dr["id"] = upCatId;

dr["imgSrc"] = upImage;

Insert the new DataRow:

Dt.Rows.Add(dr);

5. Resync the DataGrid with the DataView (see the example in the pre-
ceding section)

To update the database, simply call the Web method sellerAdmin.updateItem,
passing it the new data.

localhost.sellerAdmin newData = new localhost.sellerAdmin();

newData.updateItem(upISBN,upAuthor,upPrice,upTitle,upDescription,

upImage,upCatId);

One limitation of the DataGrid is that it doesn’t provide a UI for adding new
records.We will handle this case by creating another page: addBook.aspx.

Creating the addBook Page (addBook.aspx)
AddBook is another fairly straightforward page. It provides a UI where the site
administrator can fill out a simple HTML form and submits.This data is handled
by the code-behind page addBook.asmx.cs.This page simply passes the data to
the database via the Web method sellerAdmin.addBook:

addNewBook = new localhost.sellerAdmin();

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 274

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 275

resultAdd = addNewBook.addItem(addISBN,addAuthor,addPrice,addTitle,

addDescription,addPath,addCatId);

Customer Administration
In this section, we will develop the code that allows us to tie our customer
administration interface to our Web Services (see Figure 6.23).

Creating the Customer Admin Section
This section of the site deals with user authentication, including creating a cus-
tomer account and login.We use this to simulate order processing.

Creating the loginCustomer Page
We will use the same form layout as we did for the admin login described in the
preceding section. One change we’ll implement is that we’ll call a Web Service to
verify the login of the customer.

1. Make a call to the Web Service loginCustomer.This should be routine by
now, but let’s look at the code to call the Web Service:

loggedCust = new WebReference1.loginCustomer();

2. Access the Web method validCustomer. Now you have access to all the
methods contained in the class.

string resultId =

loggedCust.validCustomer(validEmail,validPassword);

www.syngress.com

Figure 6.23 Customer Administration Page Group Overview

loginCustomer
.aspx.cs

loginCustomer
.aspx

newCustomer
.aspx.cs

newCustomer.aspx

updateCustomerInfo
.aspx.cs

updateCustomerInfo
.aspx

Customer Admin Pages

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 275

276 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

3. Return a value.You can now check the value of the variable resultId and
either grant the customer access or return an error message.

if(resultId == "-1")

{

loginLabel.Text = "Invalid Login please re-enter your password and

email!";

}

else

{

loginLabel.Text ="Welcome";

Session["userId"] = int.Parse(resultId);

Server.Transfer((string)Session["return2Page"]);

}

Now you have the customer logged in to the site and they can go to any
page without having to sign in again.

NOTE

We are using a session variable to track where the user is coming from
when they are prompted to login. This will enable us to redirect them
back to the page where they came from rather then sending them to
some non-specific page and having them navigate through the site from
scratch.

Creating the updateCustomerInfo Page
We can now add a page that will let the customer update his or her information.
This will be done identically to the example from site admin where we brought
in all books and then enabled the site administrator to go through the books
listed and delete, update, or add books at will. In this case, we will enable the cus-
tomer to update only.

1. Select the row to update by using the RowFilter property of the
DataView.

2. Create a new DataRow Item and populate it with the changes (new Data).

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 276

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 277

3. Delete the row that is being updated.

4. Insert the new DataRow.

5. Resync the DataGrid with the DataView.

All five steps are the same as covered in earlier examples. Let’s look at the
code one more time:

Dt = Customers.AllCustById((int)Session["userId"]).Tables["Customers"];

myView = new DataView(Dt);

myView.Sort = "CT_ID";

Set the DataTable value into the DataView:

custGrid.DataSource = myView;

custGrid.DataBind();

Set the data source of DataGrid:

myView.RowFilter = "CT_ID='"+upId+"'";

if (myView.Count > 0)

{

myView.Delete(0);

}

myView.RowFilter = "";

DataRow dr = Dt.NewRow();

dr[0] = upId;

dr[1] = upFName;

dr[2] = upLName;

dr[3] = upEmail;

dr[4] = upPassword;

Dt.Rows.Add(dr);

Delete the bad data row and the new one:

WebReference1.adminCustomer newData = new

WebReference1.adminCustomer();

newData.updateCust(upId,upFName,upLName,upEmail,upPassword);

Lastly, update the database by calling the Web service.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 277

278 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

In the previous examples we have made extensive use of the DataGrid control
for DataBinding DataSet information to the UI.We must admit we were a bit
reluctant to use the DataGrid since it seemed reminiscent to the DataGrid Design
Time Controls (DTCs). DTCs were included with many versions of FrontPage,
Visual InterDev, and Office.They made it easy for novice developers to quickly
create data driven Web sites. Lets just say DTCs had some drawbacks, to put it
politely! In the next two sections,ADOCatalog and XMLCart, we will use
XSL/Transforms against XML data to produce our UI.This is accomplished by
using the asp:xml server control as well as client side script and hidden asp:text
controls.The ADOCatalog’s primary interfaces will return DataSet objects so it
could be easily tied to a DataGrid control.We will leave that as an exercise for
you.The XMLCart is primarily a wrapper class around the XmlDocument object.
Its primary interfaces will return XmlDocument objects.

Creating an ADOCatalog
In this section, we will develop the code that allows us to tie our catalog interface
to our Web Services.We will store a DataSet in an Application variable to reduce
the load on the database, perform copy, clone, import, create, and filter operations
on ADO.NET DataSet objects, and use XML and Extensible Stylesheet Language
Transformations (XSLT) to render data stored in a DataSet as HTML via the
asp:xml server control.

In our ADOCart application, all database interaction is handled via Web
Services. Since our Books data is fairly static, we can retrieve the data in a DataSet
once and store that DataSet in an application-level variable.This reduces the
database traffic, while still providing quick access to the data.

Here is an overview of the process we will be following:

■ Load all Books data to an application variable:

Application["AllBooks"];

■ Create an instance of ADOCatalog (a.k.a., BookCatalog).

In Page_onload

■ Initialize the instance by passing it.

(DataSet)Application["AllBooks"];

■ Call BookCatalog.CatalogRange(0,5) to return the first five books.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 278

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 279

■ Convert return data to XML.

■ Load XSLT.

■ Set Document and Transform properties of the asp:xml control.

Now, lets create the code:
To store our data in an application object, open the global.asax file.Add this

to the Application_onstart method:

localhost.getBooks DataSource = new localhost.getBooks();

Application["AllBooks"] = DataSource.AllBooks();//DataSet

This will create an instance of the getBooks object called DataSource. Using
this instance, we call the AllBooks method, which returns a DataSet.We then save
the DataSet in an application-level variable, allbooks.

NOTE

localhost is a reference to the name of the Web Reference containing the
getBooks Web Service proxy (getBooks.wsdl).

Now add a new page to the Web Application project (bookSourceUI). Name
it start.aspx.

Below the #endregion section in the WebForm1 class, we will create a new
class called bookCatalog.

Creating the BookCatalog Class
The BookCatalog class will contain the following public methods: InitCatalog,
Catalog, CatalogItemDetails, CatalogRange, CatalogByCategory, and the private
methods CatalogRangeByCategory, and CreateSummaryTable.The following is a
rough prototype of the ADOCatalog class that we’ll be building in this section:

public class bookCatalog

{

protected WebReference1.getBooks DataSource;

protected DataSet dsAllBooks;

protected DataTable dtSummary;

protected DataTable createSummaryTable(

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 279

280 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

int startPos, int range, int RecordCount)

public DataSet catalog()

public void initCatalog(DataSet ds)

public DataSet catalogItemDetails(string book_isbn)

public DataSet catalogRange(int startPos, int range)

public DataSet catalogByCategory(int catId)

protected DataSet catalogRangeByCategory(

int startPos, int range, int catId, string book_isbn)

}

Creating the CreateSummaryTable Method
The CreateSummaryTable method creates a DataTable that contains summary
information about the DataSet being returned.This data is used by the XSLT to
display Metadata (i.e., viewing records 6 thru 12 of 25). It is also useful when
making a fetch next range of records call.

Based on the prototype, this method will take the parameters int startPos, int
range, and int RecordCount and will return a DataTable. Let’s get started.

1. Create a new empty DataTable named “Summary”.

DataTable dtSummary = new DataTable("Summary");

In the XSD schema this makes the DataTables parent element

a summary tag (i.e. <summary>)

2. Now add the Columns RecordCount, FirstItemIndex, and LastItemIndex to
the Summary DataTable.

dtSummary.Columns.Add(

new DataColumn("RecordCount", typeof(int)));

dtSummary.Columns.Add(

new DataColumn("FirstItemIndex", typeof(int)));

dtSummary.Columns.Add(

new DataColumn("LastItemIndex", typeof(int)));

3. Create a new DataRow object and assign it to a new DataTable Row.

DataRow drSummary;

drSummary = dtSummary.NewRow();

4. Populate the DataRow object and add it to the DataTable.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 280

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 281

drSummary["RecordCount"] = RecordCount;

drSummary["FirstItemIndex"] = startPos;

drSummary["LastItemIndex"] = startPos + range;

dtSummary.Rows.Add(drSummary);

5. Return the new DataTable.

return dtSummary;

Creating the InitCatalog Method
The InitCatalog method loads a DataSet into the BookCatalog object, then adds a
default summary table to the private DataSet dsAllBooks.

Based on the prototype, this method will take the only parameter, a DataSet,
and will return nothing.

public void initCatalog(DataSet ds)

{

dsAllBooks = ds;

int recordCount = dsAllBooks.Tables[0].Rows.Count;

dsAllBooks.Tables.Add(

createSummaryTable(0, recordCount-1, recordCount));

}

Creating the Catalog Method
The Catalog method returns the entire DataSet stored in the private variable
dsAllBooks:

public DataSet catalog()

{

return dsAllBooks;

}

Creating the catalogItemDetails, catalogRange,
and catalogByCategory Methods
The three methods, catalogItemDetails, catalogRange, and catalogByCategory, are spe-
cialized cases of catalogRangeByCategory and are really only logical interfaces to
obtain desired result sets.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 281

282 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

The method catalogItemDetails will return all data corresponding with the
given ID (Book_isbn):

public DataSet catalogItemDetails(string book_isbn)

{ // returns a DataSet containing a single book

return catalogRangeByCategory(-1, -1, -1, book_isbn);

}

The method catalogRange will return all data for items in a given range:

public DataSet catalogRange(int startPos, int range)

{ //returns a given range of books

return catalogRangeByCategory(startPos, range, -1, null);

}

The method catalogByCategory will return all data for items in a given cate-
gory:

public DataSet catalogByCategory(int catId)

{ //returns all books with the given categoryId

return catalogRangeByCategory(-1, -1, catId, null);

}

Creating the catalogRangeByCategory Method
The catalogRangeByCategory method creates a new DataSet containing a new
Books Table, appends the appropriate Summary Table, and returns this new
DataSet. It is used by the preceding methods to return a single item’s node (to
add to the shopping cart), to return a range of books (to handle browsing the
catalog), and to return all books in a given category (to handle viewing by cate-
gory).A method could easily be added that enables browsing by category.

In order to return a subset of the DataSet AllBooks, we need to create a new
DataTable object that has the same table structure as Books.We can then import
rows that meet our criteria into this new table.When the table is filled, we create
a new DataSet object and add the new DataTable as well as a Summary Table.The
resulting DataSet will contain the request subset of data and some meta-informa-
tion (supplied by the Summary table).

Now, let’s examine the code. Create a temporary DataTable that holds
allBooks data:

DataTable dtTemp = dsAllBooks.Tables["Books"];

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 282

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 283

Clone the structure of this table in a new DataTable:

DataTable dtBooks = dtTemp.Clone();//create Empty Books Table

Set the filter expression property based on input parameters:

if(catId == -1)

{ //no filter is applied strExpr = "";

}

else

{ //select only one category

strExpr = "id='" + catId + "'";

}

if(book_isbn != null)

{ //return a single item

strExpr = "isbn='" + book_isbn + "'";

}

Set the Data filter to affect all current rows, sort by title, and apply the filter
expression:

strSort ="title";

recState = DataViewRowState.CurrentRows;

foundRows = dtTemp.Select(strExpr, strSort, recState);

RecordCount = foundRows.Length;

Add foundRows to the DataTable dtBooks:

for(int i = startPos; i < endPos; i ++)

{

dtBooks.ImportRow((DataRow)foundRows[i]);

}

Add the DataTable dtBooks to the new DataSet along with DataTable Summary,
then return this new DataSet:

dsBookRange = new DataSet();

dsBookRange.Tables.Add(dtBooks);

dsBookRange.Tables.Add(

createSummaryTable(startPos, range, RecordCount));

return dsBookRange;

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 283

284 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

On page load, we will instantiate the object, retrieve Application[“AllBooks”],
return the requested subset DataSet object, convert it to XML using the GetXml()
method of the DataSet object, and apply an XSL/Transform to render the
Catalog in the UI.

In order to enable browsing, we will store the FirstRecord, LastRecord,
recordCount, and user action (previous | next | by CategoryID) into hidden
Text fields on the client, so this data can be read to determine which bookCatalog
method to call and with which parameters to return the desired subset of
AllBooks.

You can see the code on the Solutions Web site for the book
(www.syngress.com/solutions) for a closer look at how to implement this class
(see start.aspx and start.aspx.cs).The Solutions Web site also contains the
XSLTused to render the UI (Catalog.xslt).

Building an XMLCart
In this section, we will develop the code that allows us to tie our catalog to the
shopping cart.We will use XML node operations to update our cart’s contents,
XSLT/XPath operations to calculate cart totals and taxes, XML and XSLT to
render cart data as HTML, and the asp:XML server control to process transforms.
The code for this class can be found on the Solutions Web site for the book
(www.syngress.com/solutions) in the files start.aspx and start.aspx.cs.

The XMLCart is really a wrapper class around common XML functions. It
performs the following basic operations: load data, add new item, remove item,
and empty cart.

Looking at the class, you’ll see there really isn’t much to it.

public class xmlShoppingCart

{

protected XmlDocument myCart;

public void initCart(string dataSource)

{

myCart = new XmlDocument();

if(dataSource != null)

{

myCart.LoadXml(dataSource);

}

else

{

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 284

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 285

myCart.LoadXml("<shopcart-items></shopcart-items>");

}

}

public string addItem2Cart(XmlDocument book)

{

try

{

//Import the last book node from doc2 into the original document.

XmlNode newBook =

myCart.ImportNode(book.DocumentElement.FirstChild, true);

myCart.DocumentElement.AppendChild(newBook);

return "Success";

}

catch(Exception e) {

return e.ToString();

}}

public string removeItemFromCart(string isbn)

{

XmlNode curnode =

myCart.SelectSingleNode("//Books[isbn='" + isbn + "']");

try

{

myCart.DocumentElement.RemoveChild(curnode);

return "Success";

}

catch(Exception e)

{

return e.ToString();

}

}

public void clearCart()

{

XmlElement root = myCart.DocumentElement;

root.RemoveAll();

}

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 285

286 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

public XmlDocument getCartDescription()

{

return myCart;

}

public string getCartDescriptionString()

{

return myCart.OuterXml;

}

}

When the page loads, the cart must be initialized.This is handled with the init
method. If there is no data to load into the cart, the root node (<shopcart-items>)
is added so that child nodes can be imported from the catalog.

public void initCart(string dataSource)

{

myCart = new XmlDocument();

if(dataSource != null)

{

myCart.LoadXml(dataSource);

}

else

{

myCart.LoadXml("<shopcart-items></shopcart-items>");

}

}

When a user chooses to add an item to the shopping cart, the onclick event
will call bookCatalog.catalogItemDetails and supply an ISBN.The resulting data will
be an XML node for that item.The node will then be imported to the
XMLCart document via the method addItem2Cart.The string representation will
then be stored in Session[“myShoppingCart”].

public string addItem2Cart(XmlDocument book)

{

//Import the last book node from doc2 into the

//original document.

XmlNode newBook =

myCart.ImportNode(book.DocumentElement.FirstChild, true);

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 286

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 287

myCart.DocumentElement.AppendChild(newBook);

return "Success";

}

When a user selects to remove an item from the shopping cart, the onclick
event will remove the node specified by the supplied ISBN via the
removeItemFromCart method, and update Session[“myShoppingCart”].

public string removeItemFromCart(string isbn)

{

XmlNode curnode = myCart.SelectSingleNode(

"//Books[isbn='" + isbn + "']");

myCart.DocumentElement.RemoveChild(curnode);

}

When a user selects Checkout from the shopping cart, the onclick event will
call the Web Service orderBooks.OrderItem to update the orders table in the
Database, clear the cart via the clearCart method, and display confirmation infor-
mation to the UI.

public void clearCart()

{

XmlElement root = myCart.DocumentElement;

root.RemoveAll();

}

When the page is reloaded and the UI needs the latest version of cart, the
XML representation is passed via the getCartDescription method:

public string getCartDescriptionString()

{

return myCart.OuterXml;

}

Creating the User Interface
ADOCatalog and XMLCart alone do not provide that much functionality; the
real functionality is handled by the showCatalog and the showCart page methods.
Before we take a closer look at that, let’s see how the start.aspx page is laid out.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 287

288 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Creating the start.aspx Page
start.aspx is the Web Form that hosts the controls to generate the UI for our cat-
alog and cart. Here’s the HTML:

<body onload="initializePagevariables()">

The preceding code makes a call to a JavaScript function that initializes the
values of our hidden field variables.

This next line adds the HTML necessary to draw the navbar.You can
also find this file on the Solutions Web site for the book (www.syngress.com/
solutions) in the file header.htm.

<!-- #Include file="header.htm" -->

<form id="formstart" method="post" runat="server">

<div style="PADDING-RIGHT: 3px; PADDING-LEFT: 3px; PADDING-BOTTOM: 3px;

WIDTH: 800px; COLOR: white; PADDING-TOP: 3px; BACKGROUND-COLOR: dimgray"

align="left">

View Books by Category

The following asp:dropdown control reads the list of categories from the
database and generates a drop-down select box:

<asp:dropdownlist id="CategoryList" runat="server"

DataValueField="CAT_ID" DataTextField="CAT_Name"></asp:dropdownlist>

<input type="button" id="btnGo" value="Go !" onclick=

"formstart.categoryState.value='Go';formstart.submit();">

</div>

<table width="800">

<tr>

<td>

The following asp:xml server control transforms the supplied XML data with
catalog.xslt (see catalog.xslt on the Solutions Web site for the book):

<asp:xml id="catalog" runat="server"></asp:xml>

</td>

<td valign="top" align="middle" bgcolor="cornsilk">

The following asp:xml server control transforms the supplied XML data with
cart.xslt (see cart.xslt on the Solutions Web site for the book):

<asp:xml id="cart" runat="server"></asp:xml>

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 288

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 289

The following asp:Label server control is used to insert HTML that is
dynamically generated when the user clicks checkout:

<asp:Label id="lblFeedBack" runat="server"></asp:Label>

</td>

</tr>

</table>

The following div is used to hide a group of text box server controls—so why
use a div to hide asp:textbox controls? First, while the asp:textbox control does
have a visibility attribute, setting this attribute to hidden prevents the HTML
from being written to the client, so when we view page source, the HTML for
the text box isn’t even there. Second, while using the HTML control <input
type=“hidden” runat=“server”> is also an option, this control lacks postback ability.

Each time a user clicks Add, Remove, Checkout, Previous, Next, or
makes a change to the drop-down menu for category, we set these hidden vari-
ables accordingly and submit the page. Program control is then passed to our
code-behind page “start.aspx.cs” (this file can also be found on the Solutions Web
site for the book).

<div style="VISIBILITY: hidden">

<asp:textbox id="addItem" runat="server" AutoPostBack="True" />

<asp:TextBox id="removeItem" runat="server" AutoPostBack="True" />

<asp:textbox id="firstRecord" runat="server" AutoPostBack="True"/>

<asp:textbox id="lastRecord" runat="server" AutoPostBack="True"/>

<asp:textbox id="direction" runat="server" AutoPostBack="True"/>

<asp:textbox id="recordCount" runat="server" AutoPostBack="True"/>

<asp:TextBox id="categoryState" runat="server" AutoPostBack="True"/>

<asp:TextBox id="Ready4Checkout" runat="server" AutoPostBack="True"/>

</div>

</form>

</body>

In the following sections, we will see how the user-generated events are han-
dled in our code-behind page: start.aspx.cs.

Rendering the Catalog
On page_load, we retrieve Application[“AllBooks”] and apply an XSL/Transform to
render the Catalog in the UI. In order to enable browsing, we store the

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 289

290 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

FirstRecord, LastRecord, recordCount, and user action (previous | next | by
CategoryID) into hidden Text fields on the client, so this data can be read to
determine which bookCatalog method to call and with which parameters to
return the desired subset of AllBooks.

Rendering the Cart
When a user makes a selection from the catalog (“Add item to cart,” Previous,
Next, or selects a category) or the cart (Remove item, or Checkout), the user’s
action is stored in hidden text boxes that are passed to the code-behind
onsubmit(). In the Page_load method, we will test for addItem, removeItem, or
Checkout and handle each accordingly.

Creating the Code
The code for the start.aspx.cs file can be found on the on the Solutions Web site
for the book (www.syngress.com/solutions). Here is an overview of the page
process flow:

■ In Page_Load()

1. Get list of categories and bind to asp:dropdownlist control categories.

2. Display the default catalog UI by calling showCatalog().

3. Display the default cart UI by calling showCart().

4. Test for Add, Remove, and Checkout. Handle each appropriately.

■ In showCatalog()

1. Create an instance of ADOCatalog (a.k.a., bookCatalog).

2. Initialize the instance by loading all book data from
Application[“AllBooks”].

3. Test for data filters.

■ Did user make a change to the category drop-down? Filter
AllBooks for only the selected category.

■ Did user click Previous or Next? Filter AllBooks based on the
contents in our hidden textboxes: direction, recordCount,
firstRecord, and lastRecord.

■ If no filters, use default.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 290

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 291

■ Set the Document property of the asp:xml control, catalog to the
filter results.

4. Load XSLT (see catalog.xslt on the Solutions Web site for the book).

5. Set Transform properties of the asp:xml control cart to catalog.xslt.

■ In showCart()

1. Create an instance of XMLCart (a.k.a., xmlShoppingCart).

2. Initialize the instance by loading any previous cart information from
Session[“myShoppingCart”].

3. Load XSLT (see: cart.xslt on the Solutions Web site for the book).

4. Set Document and Transform properties of the asp:xml control,“cart”
to cart.xslt.

Note that cart and catalog will have already been initialized and rendered
before the next three cases can occur.

■ In AddItem

1. Retrieve from AllBooksthe node corresponding to the ISBN value
stored in the hidden text box addItem.

2. Add this node to our shopping cart.

3. Store updated cart information in Session[“myshoppingCart”].

4. Rewrite the cart to update the UI.

■ In RemoveItem

1. Using the ISBN stored in the hidden text box removeItem, remove
the corresponding XML node from cart.

2. Store updated cart information in Session[“myshoppingCart”].

3. Rewrite the cart to update the UI.

■ In Checkout

1. Login user to simulate order processing.

2. Loop through the Nodes in cart and update the orders table, then
remove ordered item from cart, while generating the HTML neces-
sary to display the items ordered in an HTML table.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 291

292 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

3. Store updated cart information in Session[“myshoppingCart”]; the cart
is empty at this point.

4. Rewrite the cart to update the UI.

There are many ways to display data held in a DataSet in XML, or for that
matter in ASP.NET. In fact, there are a multitude of controls, including the pop-
ular DataGrid control that make this relatively simple.We have opted to use XML
and XSLT to show other approaches to the same problem.Also, if your current
ASP application uses XML and XSLT, the migration to ASP.NET is fairly easy. In
fact, your existing XSLT stylesheets and XML content can still be used. For more
information on XSLT, visit www.w3c.org/TR/xslt, www.w3c.org/Style/XSL/
#Learn, and www.w3schools.com/XSL.

It is important to note that the Application and Session objects still have issues
with regards to server farms and scalability.We used Session in this example for
simplicity and to show that it can still be useful. Relatively simple changes can be
made to the Start page to convert Session variables into hidden fields stored on
the page, or state can be stored in a database.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 292

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 293

Summary
We have developed an application that enables customers to browse a catalog of
books by category or range, add selections to a virtual shopping cart, remove
items from the cart and simulate processing an order by logging in and submit-
ting updates to the order table in the database.We have leveraged the power of
XML and its ability to represent data and structure, explored Web Services and
their methods, designed databases and stored procedures, developed custom code-
behind classes in C# and covered a multitude of uses for ADO.NET.

We also explored database design and implementation, creating two databases
for the application, one for Access and one for SQL.We then covered entities and
their attributes and how both work with each other to create a normalized
database. Lastly, we developed a set of stored procedures that will handle all data
interaction with the database, preventing the use of “ad hoc” queries against the
database.

To see the ADOCart application on the Web go to the Solutions Web site for
this books (www.syngress.com/solutions).

Solutions Fast Track

Setting Up the Database

A relationship between the two tables is created by the use of primary
and foreign keys.

The different types of relationships between tables are one-to-one, one-
to-many, and many-to-many. In a one-to-one relationship, exactly one
row corresponds with a matching row of the related table. In a one-to-
many relationship, one row corresponds to many rows of the related
table. In a many-to-many relationship, many rows correspond to many
rows of the related table.

Using parameterized queries in MS Access and stored providers in
MSSQL results in performance gain. In addition, you no longer have to
run ad hoc queries against the database. Pre-complied queries perform
better.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 293

294 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Creating the Web Services

Web Services provide separation of the data tier from the user interface
(UI).This also makes it possible to access our data from any platform.

Web Services help separate our data tier from our application logic.This
creates a more robust and portable application.

Web Services leverage the power of XML and its interoperability.All
pages can communicate with the common language and exist in the
same context.

Using WSDL Web References

DISCO, or vsdisco, written in WSDL, enables access to all Web Services
and methods for that site.This provides a one-stop shop, if you will, into
the server’s cupboards.

Proxy classes can easily be generated using WSDL, which enables code
to access remote services as if they were local classes.

Building the Site

Create an overview of the site structure:What pieces need to be built
and how the pages relate to one another. In our example, we focus on
the middle tier data classes and controls that act as a bridge between the
backend and the Web UI.

Site Administration

Tie the site administration to the Web Services, enabling the
administration functions for the site to be done without accessing the
code or database.The adminPage.aspx page in our example allows the
site administrator to retrieve and display data, and to add, delete, and
update product.

To retrieve the list of books stored in the database, we need to access the
GetAllBooks stored procedure (MSSQL) or parameterized query (MS
Access) by creating the allBooks method of the getBooks Web Service.
This method will take no parameters, and will return a DataSet

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 294

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 295

containing all Book data as well as the table structure of the Database
table that the data originated from.

The DataSet is an in-memory XML representation of the database,
including the Books table.

Display the data by binding a DataGrid to the DataSet.The DataGrid is
actually bound to the DataTable Books which is a table within the
DataSet returned by getBooks.AllBooks.We create a DataView of the
Books table so we can sort the data.This DataView is then bound to the
DataGrid.

Using the DataGrid event changeBooks_DeleteCommand, fired when a user
clicks the Delete button in the DataGrid UI, we can select a row in the
DataGrid to delete by using the RowFilter property.

Using the DataGrid event changeBooks_UpdateCommand, fired when a
user clicks the Update button in the DataGrid UI, we can select the row
in the DataGrid to update by using the RowFilter property.

Customer Administration

The Customer Administration pages tie our customer administration
interface to our Web Services, enabling the customer to update their
personal information.This is an added benefit to the user of the site.

Customer administration will be identical to the example of the site
administrator, except we will enable the customer to update only.

Creating an ADOCatalog

Creating an ADOCart application allows us to tie our catalog interface
to our Web Services. In our ADOCart application, all database
interaction is handled via Web Services.

Create a new class to explore ADO.NET DataSet operations in order to:
copy, clone, import, create, and filter.

Since our Books data is fairly static, we can retrieve the data in a DataSet
once and store that DataSet in an application-level variable.This reduces
the database traffic, while still providing quick access to the data.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 295

296 Chapter 6 • Building an ASP.NET/ADO.NET Shopping Cart with Web Services

Use XML and XSLT to render data stored in a DataSet as HTML via
the asp:Xml server control.

Building an XMLCart

Building an XMLCart allows us to tie our catalog to the shopping cart.

We will use XML node operations to update our cart’s contents,
XSLT/XPath operations to calculate cart totals and taxes, XML and
XSLT to render cart data as HTML, and the asp:XML server control to
process transforms.

An XmlDocument wrapper class provides add, remove, clear, and checkout
operations.

Creating the User Interface

ADOCatalog and XMLCart alone do not provide that much
functionality; the real functionality is handled by the showCatalog and the
showCart page methods.

start.aspx is the Web Form that hosts the controls to generate the UI for
our catalog and cart.

Use of XML and XSLT generates portions of the UI via the asp:xml
server controls.

www.syngress.com

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 296

Building an ASP.NET/ADO.NET Shopping Cart with Web Services • Chapter 6 297

Q: My project has a few different pages in it. Unfortunately, the last page I cre-
ated is the one that is loaded when I run the project. How do I set the first
page to open when I run the project?

A: In your Project Explorer, right-click the file you want and set it to
Start Page.

Q: I am working with the XmlDocument object in my code-behind page, and I
am not getting any IntelliSense.What am I doing wrong?

A: Make sure you have included “Using System.Xml” in the top section of
the page.

Q: I just started using VS.NET Beta 2 and I am trying to create a WSDL proxy
to my Web Service. Is there an easy way to do this in VS.NET?

A: Right-click your Project Explorer and select Add Web reference.

Q: I renamed a file in my Solutions Explorer, but the corresponding “.aspx.cs”
and “.aspx.resx” names did not change. Because of this, the project will not
compile correctly. How can I fix this?

A: In your Solutions Explorer, make sure all child files are collapsed in the parent
when renaming and this will change all the associated files. If you have
already changed one file, change it back to the name prefix of the other files,
then collapse the children and rename it to the new name.Also, check the
first line in the “.aspx” page and ensure that the Inherits attribute lists the
correct filename.

Q: How can I get the specific event functions written to the code-behind page?

A: In the Properties window, select the icon Events. From there, you can select
whatever event can be fired from a given object.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 297

206_XMLweb_06.qxd 6/25/02 1:53 PM Page 298

Building a SQLXML
Web Service
Application

Solutions in this chapter:

■ SQLXML Web Services

■ Developing the TimeTrack Application

■ Creating a SQL Server Virtual Directory

■ Creating a Client Application in ASP.NET

Chapter 7

299

Summary

Solutions Fast Track

Frequently Asked Questions

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 299

300 Chapter 7 • Building a SQLXML Web Service Application

Introduction
The main benefit of using SQLXML Web Services is that these services simplify
the interaction between SQL, multiple platforms, and various languages including
versions of Oledb (ADO), ODBC, JDBC, and so on. SQLXML Web Services help
to better connect databases over an extranet, an intranet, or the Internet through
the use of Active Server technologies.This enables multiple platforms to access the
same services and attain the same results. In this chapter we will look at all the
functionality that SQL Web Services can bring to our applications. One of the
benefits of SQLXML Web Services is that they essentially cut out all use of Active
Data Objects (ADO). By using a Web Service to complete our data interaction we
can remove a level of complexity and thus remove a layer of potential errors, for
instance,ADO recordset object errors. Like all database driven applications, you
must always provide the back-end before designing and building the front-end
application. By using SQLXML Web Services, deployment time is reduced consid-
erably and resources are increased by virtually “killing two birds with one stone.”
SQLXML Web Services also opens the back-end to multiple front-ends that may
be built by third parties, with no additional development work.

There are some added features that need to be installed before we can get
started.The main thing is to have all the current service packs for SQL 2000 and
Windows 2000 Server installed before going forward. In the overview we will
cover how to install and configure the SQLXML Web Services Toolkit.To run
the application we are going to build you must have Windows 2000 Server and
SQL Server 2000 with the SQL Web Services Toolkit installed.

Specifically, system requirements are:

■ Windows 2000 Professional

■ Windows 2000 Professional SP2

■ SQL Server 2000 Developer’s Edition

■ SQLXML 3.0

■ SQLXML Web Services Toolkit

Using SQLXML Web Services is also a low-cost way to upgrade your current
application (if it is not .NET) to a .NET platform. Instead of completely redoing
the entire code base to upgrade the software to .NET there has been some inves-
tigation into using SQL Web Services as a bridge to achieving .NET function-
ality without dropping the whole project into the .NET sphere.This incremental
migration strategy provides a low-cost and effective way to get an organization

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 300

www.syngress.com

into .NET.The hope is that this type of migration will be easier for clients to
adopt a .NET philosophy more easily then having organizations completely
relearn how to work a system.

In this chapter we will be building an application that will track projects for
an organization—the project is aptly named TimeTrack.All of the files necessary
for creating this application are available on the Solutions Web site for this book,
at www.syngress.com/solutions. First, we will be building all the database ele-
ments and stored procedures, which will then be turned into Web Services.These
Web Services will then be accessed by our ASP.NET application.

SQLXML Web Services
Once you install the SQL 2000 Web Services Toolkit (most importantly for this
discussion, SQLXML 3.0) you will be able to communicate to SQL Server via
HTTP by creating a SQL Virtual Root Directory from one of your selected
databases. SQLXML 3.0 is configured to work with .NET and will do the work
of generating your Web Service Description Language (WSDL) file in order to
process the stored procedures or user defined functions as Web Services.A host of
managed classes are available via .NET, but because they are beyond the scope of
this topic, we will not discuss them here. However, the SQLXML Web Services
Toolkit includes a white paper.

One of the key benefits of using SQL Web Services is the cost savings on time
for development. If you have developed any type of case management software you
know that the work you do in the back-end pays huge dividends on the front-end
application. Every database requires some set of stored procedures to interact with
it, for example adding new records to an employee’s table or editing those same
records.After creating your set of stored procedures you then have to access them
via ADO.NET in the application logic in order to pass the data. In this sample
application we will get around this last bit of coding by enabling our set of stored
procedures to be Web Services and to handle all of our database interaction.

Developing the TimeTrack Application
We will now develop a time tracking application that will use an employee sign
in to track time spent on a given project or task.This is always a useful tool to
have developed for your organization for reporting and using the data for cost
analysis. Everyone in IT has had the problem of over- or under-projected time-
lines for a given job or task. By tracking current project times an organization
can better formulate future job timeline projections.

Building a SQLXML Web Service Application • Chapter 7 301

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 301

302 Chapter 7 • Building a SQLXML Web Service Application

This is a simple example of how to cut out ADO and enable stored proce-
dures to do the work instead. Our application has a simple database with a set of
stored procedures to handle the data interactions.This application will track
employees and the projects they are working on.We have laid out the shell of the
application and will let you fill in or expand upon the application framework to
suit your own needs.

Creating the Database
The first thing we need to design is the database. Let’s take a look at the schema
layout, which can be seen in Figure 7.1.

As you can see by the schema, we will have a simple three-table database.To
reiterate, this is just a shell—if you want to add tables to this sample feel free.This
will track time spent on a project and by what employee. First we need to create
the database in SQL Server. Right-click on Databases in EM and select New
Database (see Figure 7.2).You can call it what you want; we used the name
TimeTracker. Leave all of the create database defaults set and select OK.You
may attach our database from the code section on the Solutions Web site
(www.syngress.com/solutions), filename TimeTrack_data.mdf.To attach a
database to your sever, right-click on Databases in EM and select Attach
Database as seen in Figure 7.3.To create the tables simply navigate in Enterprise
Manager (EM) and right-click on Tables and select New.

If you are using the database that has been provided for you on the Solutions
Web site for this book (www.syngress.com/solutions), please be sure that you have

www.syngress.com

Figure 7.1 Database Schema Layout

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 302

Building a SQLXML Web Service Application • Chapter 7 303

selected the TimeTrack_data.mdf file. Make sure that you set the correct Database
Owner (DBO) for the database; most likely it will be SA. Now that you have the
database created you can add the tables. If you have created a new database instead
of attaching the one provided on the Solutions Web site for this book, you must
also add each of the tables. Right-click on the Table menu under database and
select New Table. Add additional tables to the schema if needed.

Creating the Stored Procedures
Now that we have the framework set up, let’s add the stored procedures to this
database.To create a new stored procedure right-click on Stored Procedures
and select New Stored Procedure (see Figure 7.4).

www.syngress.com

Figure 7.2 New Database Menu

Figure 7.3 Attach Database Menu

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 303

304 Chapter 7 • Building a SQLXML Web Service Application

Looking at the code for one stored procedure, you can add as many as you
like based on what functionality you want to have. Here you can look at the
code for the addEmp stored procedure, which is used for adding employees.

create proc addEmp

@Name nvarchar(50),

@Title nvarchar(50)

as

insert into Employees (EmpName,EmpTitle) Values (@Name,@Title)

GO

The syntax is fairly simple—the main thing to remember is that if you want
to pass parameters you must declare them before the keyword AS. Here is a
stored procedure that we have named showPastDueJobs that will be used to gen-
erate our report on overdue projects:

create proc showPastDueJobs

as

select j.JobTitle, SUM(t.total) as TOTAL

from Track t

join Jobs j

on t.JobID = j.JobID

where TOTAL >= TimetoCompletion

group by JobTitle

GO

As you can see there are no parameters declared, so you can write a select
statement to return your results.You want to use stored procedures because they
offer a huge gain in performance over using ad hoc queries against the database.
Using stored procedures will give you precompiled and optimized results, which
will be waiting for delivery, as opposed to having a SQL Server parse the query,

www.syngress.com

Figure 7.4 Stored Procedure Menu

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 304

Building a SQLXML Web Service Application • Chapter 7 305

optimize it, and finally return the result set.Ad hoc queries are statements sent to
SQL Server that must be parsed and optimized before being delivered. By using
stored procedures, you are subverting those steps, thus saving time and increasing
performance and scalability.

Creating a SQL Server Virtual Directory
Somewhere you need to create the root folder for the virtual directory and the
set of subfolders we will be using.You will need a folder named Track; inside of
Track put the subfolder named SOAP.You can either establish the directory from
C:\, or put the folder within the C:\inetpub\wwwroot folder next to your client
application. Now that you have the database complete, you can create the vital
piece to making this whole process work, the SQL Server Virtual root.Without
this you will be unable to communicate to your SQL Server through HTTP.
However, it is a simple process. First, either install or verify that the full install of
SQLXML 3.0 from the Web Services Toolkit is ready to go.The Web Services
Toolkit comes with the SQL 2000 Server. Once you have the Toolkit installed
select the Configure IIS Support option from the submenu.You should be
looking at the window shown in Figure 7.5.

www.syngress.com

Figure 7.5 IIS Virtual Directory Management for SQLXML 3.0 Window

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 305

306 Chapter 7 • Building a SQLXML Web Service Application

NOTE

Another way to create a SQLXML virtual directory is to use the IIS Virtual
Directory Management for SQL Server object model. You can create a vir-
tual directory in VBScript by using this object model. An advantage of
using this method is that you can then create an installation script to set
up the environment. For more details on how to use this method and
create an installation script we urge you to refer to the SQLXML documen-
tation, Creating the nwind Virtual Directory by Using the Object Model,
located in the SQLXML help file that comes with the SQLXML Toolkit.

Your server name will be at the highest level of the tree.
After you have done this, go back to the SQL IIS configuration window and

expand your Server name. Right-click on Default Web Site, and then select the
option New Virtual Directory.This selection path is illustrated in Figure 7.6.

We will now go through a series of options and set the values for each.The
first step is to give your virtual root a name and location.The window for selecting
the name and location of the Virtual Root Directory is shown in Figure 7.7.

Select the Security tab. Here you will set the type of security you will use to
access SQL Server; for the purpose of this example, use the SQL Authentication
security.To do this, make sure that the Always log on as option is checked, and
select the SQL Server option as your account type. Provide a username and pass-
word (see Figure 7.8).You could use Windows Integrated Authentication, which
means that you would need all associated rights within the domain for both the IIS
server and SQL Server; however, for development purposes it is less convoluted to
use SQL Authentication and separate the security element from the project.

www.syngress.com

Figure 7.6 Virtual Directory Menu

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 306

Building a SQLXML Web Service Application • Chapter 7 307

www.syngress.com

Figure 7.7 Virtual Directory General Tab

Figure 7.8 Virtual Directory Security Tab

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 307

308 Chapter 7 • Building a SQLXML Web Service Application

Moving on to the Data Source Tab, here it is possible to search for all of your
available servers and select the one you want. Note, you should uncheck the Use
default database for current login option and then browse to either the
TimeTrack database that has been downloaded from the Solutions Web site for
the book, or the database that you created for this project. Click on the database
that you will be using, and be sure that it appears in the dialog box.You should
see an image similar to Figure 7.9.

Now we can set the settings for this Virtual Root. For our sample application
we will just be using the Allow POST option.This will allow us to post a query
to the database through HTTP.You can also set up XML updateagrams and use
that option or enable sql= queries and return result sets via the URL. Depending
upon the security needed for your application you may or may not want to do
this, because you will be exposing your database schema and objects in the URL.
For now select Allow POST (see Figure 7.10) and leave the default size of 100
KB; we will not be sending anything larger than that.

www.syngress.com

Figure 7.9 Virtual Directory Data Source Tab

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 308

Building a SQLXML Web Service Application • Chapter 7 309

Now you can map your subfolder soap to our virtual name, called “soap.” Select
the Virtual Names tab. First, select New Virtual Name and give it the name
soap; its type will be soap.These steps should resemble the image in Figure 7.11.
This will create the WSDL file for your Web Service enabled stored procedures.
You will have to navigate to the path of the subfolder named soap within the root
folder track that you created earlier in the chapter.

www.syngress.com

Figure 7.10 Virtual Directory Settings Tab

SQL Template Queries
Previously accessing SQL Templates server-side from within an ASP.NET
application would fail to load the XML because the security context of the
user would be lost when hopping from IIS to SQL. SQLXML 3.0 solves this
problem by allowing server-side access to Template queries by setting
SqlXmlCommand.CommandType = SqlXmlCommandType.TemplateFile.

Configuring & Implementing…

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 309

310 Chapter 7 • Building a SQLXML Web Service Application

The Domain name will be your server name and you can leave the Web
Services name as soap. Now select Save. Select Configure; this is where we will
load all of our SQL Objects that we want to become Web Services.

Enabling Stored Procedures for Soap
In this section we will get down to the heart of the application, which is the
enabling of the stored procedures to be Web Services.This is the whole purpose
of doing this exercise and is a vital step not to be missed.

Now we can select the specific procs that we wish to use in our client appli-
cation as Web Services.

1. Select New Method Mapping (see Figure 7.12).

2. Check to see if the Edit/New Mapping type option SP is selected.Then
select the push button browse option and view all of the stored pro-
cedures available.Your list should resemble the list shown in Figure 7.13.

www.syngress.com

Figure 7.11 Virtual Directory Virtual Names Tab

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 310

Building a SQLXML Web Service Application • Chapter 7 311

3. Select showEmployees.The method name will remain the same as the
stored procedure.We suggest that you leave this alone; it will be less con-
fusing when you access this method in the client application.You will
also want to be sure that your Output option has the Single Dataset
radio button selected and ensure that what is returned is a single Dataset,
as shown in Figure 7.14. If you need an array of Datasets or XML
objects you could choose the other options (XML Objects or Dataset
Objects), but for this sample application we will use the Single Datasets
Output exclusively.

4. Continue to do this for the rest of the stored procedures in the database.

www.syngress.com

Figure 7.12 Method Mapping

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 311

312 Chapter 7 • Building a SQLXML Web Service Application

www.syngress.com

Figure 7.13 Stored Procedures List

Figure 7.14 Method showEmployees

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 312

Building a SQLXML Web Service Application • Chapter 7 313

Creating a Client Application in ASP.NET
Open VS.NET and select a new C# Web application. Name it TimeTracker and
select Create. Our sample application we be very simple, just three pages:

■ A Log In page

■ A Log Out page

■ A Reports page

We will be covering the Log In page, which shows how easy it is to use the
SQL Web Services we created earlier in our sample application.The layout or
front-end design of our ASP.NET application can be seen in Figure 7.15.

Let’s see the code for this page. First we will go over the HTML portion of
the Web form.The code for the start.aspx page is listed in Figure 7.16.The full
source code for this application is also available on the Solutions Web site for this
book (www.syngress.com/solutions).

www.syngress.com

Figure 7.15 ASP.NET Front-end Design

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 313

314 Chapter 7 • Building a SQLXML Web Service Application

Figure 7.16 start.aspx

<%@ Page language="c#" Codebehind="default.aspx.cs" AutoEventWireup=

"false" Inherits="TimeTracker.WebForm1" %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

<HTML>

<HEAD>

<title><< LOG IN >></title>

<meta content="Microsoft Visual Studio 7.0" name="GENERATOR">

<meta content="C#" name="CODE_LANGUAGE">

<meta content="JavaScript" name="vs_defaultClientScript">

<meta content="http://schemas.microsoft.com/intellisense/ie5"

name="vs_targetSchema">

<style>A.Up { FONT-WEIGHT: bold; FONT-SIZE: 15pt; TEXT-TRANSFORM:

uppercase; COLOR: wheat; FONT-FAMILY: Tahoma; TEXT-DECORATION: none }

A.Up:hover { FONT-WEIGHT: bold; FONT-SIZE: 15pt; TEXT-TRANSFORM:

uppercase; COLOR: white; FONT-FAMILY: Tahoma; TEXT-DECORATION: none }

A { FONT-WEIGHT: bold; FONT-SIZE: 10pt; TEXT-TRANSFORM: uppercase; COLOR:

tomato; FONT-FAMILY: Tahoma; TEXT-DECORATION: none }

A:hover { FONT-WEIGHT: bold; FONT-SIZE: 10pt; TEXT-TRANSFORM:

uppercase; COLOR: wheat; FONT-FAMILY: Tahoma; TEXT-DECORATION: none }

.text { FONT-WEIGHT: bold; FONT-SIZE: 15pt; TEXT-TRANSFORM: uppercase;

COLOR: wheat; FONT-FAMILY: Tahoma; TEXT-DECORATION: none }

.title { FONT-WEIGHT: bold; FONT-SIZE: 28pt; TEXT-TRANSFORM:

uppercase; COLOR: wheat; FONT-FAMILY: Tahoma }

.stext { FONT-WEIGHT: bold; FONT-SIZE: 10pt; TEXT-TRANSFORM:

uppercase; COLOR: tomato; FONT-FAMILY: Tahoma; TEXT-DECORATION: none }

</style>

</HEAD>

<body MS_POSITIONING="Flowlayout">

<form id="Form1" runat="server" method="post" action="default.aspx">

<table height="100%" cellSpacing="0" cellPadding="0" width="100%" border="0">

<tr>

<td class="title" align="middle" width="100" bgColor=

"tomato" rowSpan="2">L

O

G

www.syngress.com
Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 314

Building a SQLXML Web Service Application • Chapter 7 315

I

N

</td>

<td bgColor="tomato" height="100">

<table height="90%" cellSpacing="0" cellPadding="0" width=

"90%" borderColorLight="wheat" border="1">

<tr>

<td class="text" align="middle"><A class="Up" href=

"reports.aspx">Reports

</td>

</tr>

</table>

</td>

</tr>

<tr>

<td>

<!--content goes here -->

<table height="90%" cellSpacing="5" cellPadding="5" width="90%">

<tr>

<td class="stext">Select Project:

<asp:dropdownlist id="selPro" runat="server" Width="108px" DataTextField=

"JobTitle" DataValueField="JobID"></asp:dropdownlist></td>

<td class="stext">Select Employee:

<asp:dropdownlist id="selEmp" runat="server" Width="124px" DataTextField=

"EmpName" DataValueField="EmpID"></asp:dropdownlist></td>

</tr>

<tr>

<td class="stext" colSpan="2">Log in to Project:

<asp:button id="submit" runat="server" Text="BEGIN" CssClass="stext"

BorderColor="Wheat"></asp:button>

</td>

</tr>

<tr>

<td colSpan="2">

<asp:datagrid id="dgTrack" runat="server" Width="100%" BorderColor=

www.syngress.com

Figure 7.16 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 315

316 Chapter 7 • Building a SQLXML Web Service Application

"#DEDFDE" AutoGenerateColumns="False" BorderStyle="None" BorderWidth=

"1px" BackColor="White" CellPadding="4" GridLines=

"Vertical" ForeColor="Black">

<SelectedItemStyle Font-Size="XX-Small" Font-Names="Tahoma" Font-Bold=

"True" HorizontalAlign="Center" ForeColor=

"White" BackColor="#CE5D5A"></SelectedItemStyle>

<EditItemStyle Font-Size="XX-Small" Font-Names=

"Tahoma" HorizontalAlign="Center"></EditItemStyle>

<AlternatingItemStyle Font-Size="XX-Small" Font-Names=

"Tahoma" HorizontalAlign="Center"

BackColor="White"></AlternatingItemStyle>

<ItemStyle Font-Size="XX-Small" Font-Names=

"Tahoma" HorizontalAlign="Center" BackColor="#F7F7DE"></ItemStyle>

<HeaderStyle Font-Size="Smaller" Font-Names=

"Tahoma" Font-Bold="True" HorizontalAlign="Center" ForeColor=

"White" VerticalAlign="Middle" BackColor="#6B696B"></HeaderStyle>

<FooterStyle BackColor="#CCCC99"></FooterStyle>

<Columns>

<asp:BoundColumn DataField="LogIn" HeaderText="Log In"></asp:BoundColumn>

<asp:BoundColumn DataField=

"EmpName" HeaderText="Employee"></asp:BoundColumn>

<asp:BoundColumn DataField="JobTitle" HeaderText=

"Job Title"></asp:BoundColumn>

<asp:BoundColumn DataField="LogOut" HeaderText=

"Logged Out"></asp:BoundColumn>

<asp:HyperLinkColumn Text="Log Out" Target="_top" HeaderText=

"Log Out" NavigateUrl="logout.aspx"></asp:HyperLinkColumn>

</Columns>

</asp:datagrid></td>

</tr>

</table>

</td>

</tr>

</table>

</form>

www.syngress.com

Figure 7.16 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 316

Building a SQLXML Web Service Application • Chapter 7 317

</body>

</HTML>

This code contains the three basic pieces you will need:

1. A DataGrid added to the page to show the results of when a user logged
in and what project they are logged into.

2. Two drop-downs that will be populated dynamically from the database
to provide the projects and employees available to log in with.

3. Everything else on this page is subject to change if you want; it is all
styles and layout properties that can be changed with a few clicks.

Previous chapters extensively covered the topic of DataGrids, therefore we
will not repeat ourselves here.Your best option is to use the property builder and
add the bound columns needed from the table track and add one more for a
hyperlink column to our log out page.

Consuming the Web Services
Now that you have built the front-end of the Web form we can go to the code
behind the cs page and add our program logic.This is where we will use our
SQL Web Services to bind our controls with data.We first need to add a Web ref-
erence to our SQL Web Service. Right-click on Web References and select
Add Reference.This path is shown in Figure 7.17.

www.syngress.com

Figure 7.16 Continued

Figure 7.17 Add Web Reference

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 317

318 Chapter 7 • Building a SQLXML Web Service Application

This will bring up the UDDI discovery tool built into VS.NET.Type your
server name (most likely it will be (localhost); specify the virtual root folder
name, track, followed by the subfolder virtual name, soap; and finally add ?wsdl.
Your URL should look like this: http://localhost/track/soap?wsdl.

Your WSDL should populate in the left-hand pane; if so, select Add
Reference. Let’s look at the resulting WSDL output.The output of soap.wsdl is
listed in Figure 7.18; this output is also available on the Solutions Web site for this
book (www.syngress.com/solutions) for additional review.

Figure 7.18 soap.wsdl

<?xml version="1.0" ?>

- <wsdl:definitions name="soapSQL"

targetNamespace="http://NLOGIX/track/soapSQL"

xmlns:tns="http://NLOGIX/track/soapSQL"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:sql="http://schemas.microsoft.com/SQLServer/2001/12/SOAP"

xmlns:sqltypes="http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types"

xmlns:sqlmessage="http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/

SqlMessage"

xmlns:sqlresultstream="http://schemas.microsoft.com/SQLServer/2001/12/SOAP/

types/SqlResultStream">

- <wsdl:types>

- <xsd:schema targetNamespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types"

elementFormDefault="qualified" attributeFormDefault="qualified">

<xsd:import namespace="http://www.w3.org/2001/XMLSchema" />

- <xsd:simpleType name="nonNegativeInteger">

- <xsd:restriction base="xsd:int">

<xsd:minInclusive value="0" />

</xsd:restriction>

</xsd:simpleType>

<xsd:attribute name="IsNested" type="xsd:boolean" />

- <xsd:complexType name="SqlRowSet">

- <xsd:sequence>

<xsd:element ref="xsd:schema" />

www.syngress.com

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 318

Building a SQLXML Web Service Application • Chapter 7 319

<xsd:any />

</xsd:sequence>

<xsd:attribute ref="sqltypes:IsNested" />

</xsd:complexType>

- <xsd:complexType name="SqlXml" mixed="true">

- <xsd:sequence>

<xsd:any />

</xsd:sequence>

</xsd:complexType>

- <xsd:simpleType name="SqlResultCode">

- <xsd:restriction base="xsd:int">

<xsd:minInclusive value="0" />

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

- <xsd:schema targetNamespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/SqlMessage"

elementFormDefault="qualified" attributeFormDefault="qualified">

<xsd:import namespace="http://www.w3.org/2001/XMLSchema" />

<xsd:import namespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types" />

- <xsd:complexType name="SqlMessage">

- <xsd:sequence minOccurs="1" maxOccurs="1">

<xsd:element name="Class" type="sqltypes:nonNegativeInteger" />

<xsd:element name="LineNumber" type="sqltypes:nonNegativeInteger" />

<xsd:element name="Message" type="xsd:string" />

<xsd:element name="Number" type="sqltypes:nonNegativeInteger" />

<xsd:element name="Procedure" type="xsd:string" />

<xsd:element name="Server" type="xsd:string" />

<xsd:element name="Source" type="xsd:string" />

<xsd:element name="State" type="sqltypes:nonNegativeInteger" />

</xsd:sequence>

<xsd:attribute ref="sqltypes:IsNested" />

</xsd:complexType>

</xsd:schema>

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 319

320 Chapter 7 • Building a SQLXML Web Service Application

- <xsd:schema targetNamespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/SqlResultStream"

elementFormDefault="qualified" attributeFormDefault="qualified">

<xsd:import namespace="http://www.w3.org/2001/XMLSchema" />

<xsd:import namespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types" />

<xsd:import namespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/SqlMessage" />

- <xsd:complexType name="SqlResultStream">

- <xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="SqlRowSet" type="sqltypes:SqlRowSet" />

<xsd:element name="SqlXml" type="sqltypes:SqlXml" />

<xsd:element name="SqlMessage" type="sqlmessage:SqlMessage" />

<xsd:element name="SqlResultCode" type="sqltypes:SqlResultCode" />

</xsd:choice>

</xsd:complexType>

</xsd:schema>

- <xsd:schema targetNamespace="http://NLOGIX/track/soapSQL"

elementFormDefault="qualified" attributeFormDefault="qualified">

<xsd:import namespace="http://www.w3.org/2001/XMLSchema" />

<xsd:import namespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types" />

<xsd:import namespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/SqlMessage" />

<xsd:import namespace=

"http://schemas.microsoft.com/SQLServer/2001/12/SOAP/types/

SqlResultStream" />

- <xsd:element name="LogIn">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="0" maxOccurs="1" name="EmpID" type=

"xsd:int" nillable="true" />

<xsd:element minOccurs="0" maxOccurs="1" name="JobID" type=

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 320

Building a SQLXML Web Service Application • Chapter 7 321

"xsd:int" nillable="true" />

<xsd:element minOccurs="0" maxOccurs="1" name="LogIn" type=

"xsd:dateTime" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

- <xsd:element name="LogInResponse">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="1" maxOccurs="1" name=

"LogInResult" type="sqltypes:SqlRowSet" />

<xsd:element name="returnValue" type="xsd:int" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

- <xsd:element name="LogOut">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="0" maxOccurs="1" name="TrackID" type=

"xsd:int" nillable="true" />

<xsd:element minOccurs="0" maxOccurs="1" name="LogOut" type=

"xsd:dateTime" nillable="true" />

<xsd:element minOccurs="0" maxOccurs="1" name="Notes" type=

"xsd:string" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

- <xsd:element name="LogOutResponse">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="1" maxOccurs="1" name=

"LogOutResult" type="sqltypes:SqlRowSet" />

<xsd:element name="returnValue" type="xsd:int" nillable="true" />

</xsd:sequence>

</xsd:complexType>

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 321

322 Chapter 7 • Building a SQLXML Web Service Application

</xsd:element>

- <xsd:element name="showEmployees">

- <xsd:complexType>

<xsd:sequence />

</xsd:complexType>

</xsd:element>

- <xsd:element name="showEmployeesResponse">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="1" maxOccurs="1" name=

"showEmployeesResult" type="sqltypes:SqlRowSet" />

<xsd:element name="returnValue" type="xsd:int" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

- <xsd:element name="showJobs">

- <xsd:complexType>

<xsd:sequence />

</xsd:complexType>

</xsd:element>

- <xsd:element name="showJobsResponse">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="1" maxOccurs="1" name=

"showJobsResult" type="sqltypes:SqlRowSet" />

<xsd:element name="returnValue" type="xsd:int" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

- <xsd:element name="showJobTime">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="0" maxOccurs="1" name="JobID" type=

"xsd:int" nillable="true" />

</xsd:sequence>

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 322

Building a SQLXML Web Service Application • Chapter 7 323

</xsd:complexType>

</xsd:element>

- <xsd:element name="showJobTimeResponse">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="1" maxOccurs="1" name=

"showJobTimeResult" type="sqltypes:SqlRowSet" />

<xsd:element name="returnValue" type="xsd:int" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

- <xsd:element name="showPastDueJobs">

- <xsd:complexType>

<xsd:sequence />

</xsd:complexType>

</xsd:element>

- <xsd:element name="showPastDueJobsResponse">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="1" maxOccurs="1" name=

"showPastDueJobsResult" type="sqltypes:SqlRowSet" />

<xsd:element name="returnValue" type="xsd:int" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

- <xsd:element name="showTrack">

- <xsd:complexType>

<xsd:sequence />

</xsd:complexType>

</xsd:element>

- <xsd:element name="showTrackResponse">

- <xsd:complexType>

- <xsd:sequence>

<xsd:element minOccurs="1" maxOccurs="1" name=

"showTrackResult" type="sqltypes:SqlRowSet" />

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 323

324 Chapter 7 • Building a SQLXML Web Service Application

<xsd:element name="returnValue" type="xsd:int" nillable="true" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</wsdl:types>

- <wsdl:message name="LogInIn">

<wsdl:part name="parameters" element="tns:LogIn" />

</wsdl:message>

- <wsdl:message name="LogInOut">

<wsdl:part name="parameters" element="tns:LogInResponse" />

</wsdl:message>

- <wsdl:message name="LogOutIn">

<wsdl:part name="parameters" element="tns:LogOut" />

</wsdl:message>

- <wsdl:message name="LogOutOut">

<wsdl:part name="parameters" element="tns:LogOutResponse" />

</wsdl:message>

- <wsdl:message name="showEmployeesIn">

<wsdl:part name="parameters" element="tns:showEmployees" />

</wsdl:message>

- <wsdl:message name="showEmployeesOut">

<wsdl:part name="parameters" element="tns:showEmployeesResponse" />

</wsdl:message>

- <wsdl:message name="showJobsIn">

<wsdl:part name="parameters" element="tns:showJobs" />

</wsdl:message>

- <wsdl:message name="showJobsOut">

<wsdl:part name="parameters" element="tns:showJobsResponse" />

</wsdl:message>

- <wsdl:message name="showJobTimeIn">

<wsdl:part name="parameters" element="tns:showJobTime" />

</wsdl:message>

- <wsdl:message name="showJobTimeOut">

<wsdl:part name="parameters" element="tns:showJobTimeResponse" />

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 324

Building a SQLXML Web Service Application • Chapter 7 325

</wsdl:message>

- <wsdl:message name="showPastDueJobsIn">

<wsdl:part name="parameters" element="tns:showPastDueJobs" />

</wsdl:message>

- <wsdl:message name="showPastDueJobsOut">

<wsdl:part name="parameters" element="tns:showPastDueJobsResponse" />

</wsdl:message>

- <wsdl:message name="showTrackIn">

<wsdl:part name="parameters" element="tns:showTrack" />

</wsdl:message>

- <wsdl:message name="showTrackOut">

<wsdl:part name="parameters" element="tns:showTrackResponse" />

</wsdl:message>

- <wsdl:portType name="SXSPort">

- <wsdl:operation name="LogIn">

<wsdl:input message="tns:LogInIn" />

<wsdl:output message="tns:LogInOut" />

</wsdl:operation>

- <wsdl:operation name="LogOut">

<wsdl:input message="tns:LogOutIn" />

<wsdl:output message="tns:LogOutOut" />

</wsdl:operation>

- <wsdl:operation name="showEmployees">

<wsdl:input message="tns:showEmployeesIn" />

<wsdl:output message="tns:showEmployeesOut" />

</wsdl:operation>

- <wsdl:operation name="showJobs">

<wsdl:input message="tns:showJobsIn" />

<wsdl:output message="tns:showJobsOut" />

</wsdl:operation>

- <wsdl:operation name="showJobTime">

<wsdl:input message="tns:showJobTimeIn" />

<wsdl:output message="tns:showJobTimeOut" />

</wsdl:operation>

- <wsdl:operation name="showPastDueJobs">

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 325

326 Chapter 7 • Building a SQLXML Web Service Application

<wsdl:input message="tns:showPastDueJobsIn" />

<wsdl:output message="tns:showPastDueJobsOut" />

</wsdl:operation>

- <wsdl:operation name="showTrack">

<wsdl:input message="tns:showTrackIn" />

<wsdl:output message="tns:showTrackOut" />

</wsdl:operation>

</wsdl:portType>

- <wsdl:binding name="SXSBinding" type="tns:SXSPort">

<soap:binding style="document" transport=

"http://schemas.xmlsoap.org/soap/http" />

- <wsdl:operation name="LogIn">

<soap:operation soapAction=

"http://NLOGIX/track/soapSQL/LogIn" style="document" />

- <wsdl:input>

<soap:body use="literal" />

</wsdl:input>

- <wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

- <wsdl:operation name="LogOut">

<soap:operation soapAction=

"http://NLOGIX/track/soapSQL/LogOut" style="document" />

- <wsdl:input>

<soap:body use="literal" />

</wsdl:input>

- <wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

- <wsdl:operation name="showEmployees">

<soap:operation soapAction=

"http://NLOGIX/track/soapSQL/showEmployees" style="document" />

- <wsdl:input>

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 326

Building a SQLXML Web Service Application • Chapter 7 327

<soap:body use="literal" />

</wsdl:input>

- <wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

- <wsdl:operation name="showJobs">

<soap:operation soapAction=

"http://NLOGIX/track/soapSQL/showJobs" style="document" />

- <wsdl:input>

<soap:body use="literal" />

</wsdl:input>

- <wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

- <wsdl:operation name="showJobTime">

<soap:operation soapAction=

"http://NLOGIX/track/soapSQL/showJobTime" style="document" />

- <wsdl:input>

<soap:body use="literal" />

</wsdl:input>

- <wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

- <wsdl:operation name="showPastDueJobs">

<soap:operation soapAction=

"http://NLOGIX/track/soapSQL/showPastDueJobs" style="document" />

- <wsdl:input>

<soap:body use="literal" />

</wsdl:input>

- <wsdl:output>

<soap:body use="literal" />

</wsdl:output>

www.syngress.com

Figure 7.18 Continued

Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 327

328 Chapter 7 • Building a SQLXML Web Service Application

</wsdl:operation>

- <wsdl:operation name="showTrack">

<soap:operation soapAction=

"http://NLOGIX/track/soapSQL/showTrack" style="document" />

- <wsdl:input>

<soap:body use="literal" />

</wsdl:input>

- <wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

- <wsdl:service name="soapSQL">

- <wsdl:port name="SXSPort" binding="tns:SXSBinding">

<soap:address location="http://NLOGIX/track/soapSQL" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Granted this file is generated by VS.NET, but you can also edit this file for a
method name change or whatever you may need to do.This file consists of valid
XML and has all the proper soap headers and protocols to communicate with
our client application.This file is stored in the soap folder.

Let’s look at the code behind the page and then explain each piece.All of
these code snippets are available on the Solutions Web site for this book
(www.syngress.com/solutions).

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Web;

using System.Web.SessionState;

using System.Web.UI;

using System.Web.UI.WebControls;

www.syngress.com

Figure 7.18 Continued

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 328

Building a SQLXML Web Service Application • Chapter 7 329

using System.Web.UI.HtmlControls;

namespace TimeTracker

{

/// <summary>

/// Summary description for WebForm1.

/// </summary>

public class WebForm1 : System.Web.UI.Page

{

protected System.Web.UI.WebControls.DropDownList selPro;

protected System.Web.UI.WebControls.DropDownList selEmp;

protected System.Web.UI.WebControls.Button submit;

protected System.Web.UI.WebControls.DataGrid dgTrack;

protected DataSet dsE;

protected DataSet dsJ;

protected DataSet dsT;

protected localhost.soapSQL proxyShow;

protected int returnValue = 0;

protected int returnValueT = 0;

protected int returnValueJ = 0;

protected int returnValueE = 0;

protected DateTime now;

private void Page_Load(object sender, System.EventArgs e)

{

if(!IsPostBack)

{

proxyShow = new localhost.soapSQL();

dsJ = proxyShow.showJobs(out returnValueJ);

selPro.DataSource = dsJ;

selPro.DataBind();

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 329

330 Chapter 7 • Building a SQLXML Web Service Application

dsE = proxyShow.showEmployees(out returnValueE);

selEmp.DataSource = dsE;

selEmp.DataBind();

dsT = proxyShow.showTrack(out returnValueT);

dgTrack.DataSource = dsT;

dgTrack.DataBind();

}

}

#region Web Form Designer generated code

override protected void OnInit(EventArgs e)

{

//

// CODEGEN: This call is required by the ASP.NET Web Form

Designer.

//

InitializeComponent();

base.OnInit(e);

}

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.submit.Click += new System.EventHandler(this.submit_Click);

this.Load += new System.EventHandler(this.Page_Load);

}

#endregion

private void submit_Click(object sender, System.EventArgs e)

{

now = DateTime.Now;

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 330

Building a SQLXML Web Service Application • Chapter 7 331

proxyShow = new localhost.soapSQL();

proxyShow.LogIn(int.Parse(selEmp.SelectedItem.Value),int.Parse

(selPro.SelectedItem.Value),now,out returnValue);

dsT = proxyShow.showTrack(out returnValueT);

dgTrack.DataSource = dsT;

dgTrack.DataBind();

}

}

}

The first key piece you need to have in place in order for this page to exe-
cute properly is to declare a variable of type localhost.soapSQL, which is just the
name of the Web reference.This is done at the top of the page; by doing this you
can use this variable through your class to instantiate all of the Web Service
methods made available to you via SQL. If we look again at the PageLoad class in
Figure 7.19 as part of the start.aspx code behind you can see this in action.

Figure 7.19 start.aspx Code Behind

private void Page_Load(object sender, System.EventArgs e)

{

if(!IsPostBack)

{

proxyShow = new localhost.soapSQL();

dsJ = proxyShow.showJobs(out returnValueJ);

selPro.DataSource = dsJ;

selPro.DataBind();

dsE = proxyShow.showEmployees(out returnValueE);

selEmp.DataSource = dsE;

selEmp.DataBind();

dsT = proxyShow.showTrack(out returnValueT);

dgTrack.DataSource = dsT;

dgTrack.DataBind();

}

}

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 331

332 Chapter 7 • Building a SQLXML Web Service Application

Set the variable proxyShow equal to a new instance of the object. Now, set the
value of the DataSet dsJ equal to the result set of your method showJobs.The
method showJobs has a default output value for error handling with a try catch
block checking to see if the returned value is anything other then a 1. Continue
to do this for the rest of the data bound controls on the page.

This completes the default start page.The other pages are exact mirrors
to this one, which are included in the Solutions Web site for this book at
www.syngress.com/solutions.We have left the application wide open to let you
expand upon it to suit your own needs.

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 332

Building a SQLXML Web Service Application • Chapter 7 333

Summary
We have gone through how to set up our SQL Virtual Root and target a specific
database.We first set up our file system to mirror the virtual root, specifying the
correct folders and names for each. From this we have been able to load and con-
figure multiple stored procedures that we exposed as Web Services.We created
methods within a class specific to each stored procedure within the database.This
has, in a sense, tackled two problems at once relieving us from having to use
ADO.NET to access the procs in our database in order to pass data

We viewed the WSDL file generated by SQL, also noting that it is an XML
file that can be edited and revised without going through the whole method
setup.This file contains all the SOAP (Simple Object Access Protocol) protocols
necessary to communicate to the client application.These include the SOAP
header and body and are contained within the SOAP envelope.We set each
method to the same name as the stored procedure in order to keep it simple.
Each method was also set to return a single dataset, which we then accessed via
our client application that required a dataset for values.

In our client application we created three simple pages.The main page is the
Log In page.We added our Web reference, which pointed to the virtual SQL root
that we created.This exposed all of the methods contained within the WSDL file
via SQL.We then bound the resulting datasets to the Web controls, for instance
the data grid control that shows the listing of projects and who is logged in.We
also dynamically joined drop-down boxes to display other data like our listing of
projects and employees.

In conclusion we can see the many benefits of using SQLXML Web Services.
We have looked at the possibility of upgrading current applications without
redoing entire projects.This chapter also showed how you could use the versa-
tility of SQLXML Web Services as opposed to using ADO (Active X Data
Objects).This method of data interaction is cost effective in the way that a pro-
grammer already has to create and use stored procedures when dealing with a
database, so to leverage that same code for use in the client application is a huge
benefit.This technology is in the very early stages and will undoubtedly change
in the future, but the overall fundamentals will be the same.This is truly the
beginning of a new frontier for developers. Good luck and code well!

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 333

334 Chapter 7 • Building a SQLXML Web Service Application

Solutions Fast Track

SQLXML Web Services

SQLXML 3.0 is configured to work with .NET and will do the work
of generating our WSDL file in order to process our stored procedures
or User Defined Functions as Web Services.

The main benefit is that it simplifies the interaction between SQL and
multiple platforms and languages including various versions of Oledb
(ADO), ODBC, JDBC,and so on; to better connect the Enterprise over
an extranet, an intranet, or the Internet through the use of Active Server
technologies (i.e.,ASP,ASP.NET, JSP, PHP, etc.) and desktop or network
applications built using various technologies (i.e., .NET,VB, C/C++,
Java, etc.) on multiple platforms (Windows, UNIX, Linux, etc.).

Using SQL Web Services is also a low-cost way to upgrade your current
application to a .NET platform.

Developing the TimeTrack Application

If you choose, you may attach my database from the code section for
Chapter 7 from the Solutions Web site (www.syngress.com/solutions).To
attach a database to your sever, right-click on Databases in EM and
select Attach Database.

You want to use stored procedures because it is a huge performance gain
over using ad hoc queries against the database. If you use stored
procedures you will have precompiled and optimized results waiting for
delivery as opposed to having SQL Server run through and parse the
query and optimize it and then cache it and return the result set.

Creating a SQL Server Virtual Directory

SQLXML 3.0 enables you to be able to communicate to SQL Server
via HTTP by creating a SQL Virtual Root Directory from one of your
selected databases.

With the virtual directory we can select the specific procs that we wish
to use in our client application as Web Services.

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 334

Building a SQLXML Web Service Application • Chapter 7 335

Creating a SQLXML virtual directory can also be accomplished through
the IIS Virtual Directory Management for SQL Server object model.

Creating a Client Application in ASP.NET

Type your server name (most likely it will be (localhost)); specify the
virtual root folder name, track, followed by the subfolder virtual name,
soap; and add ?wsdl.

WSDL is valid XML and has all the proper soap headers and protocols
to communicate with our client application.This file is stored in the
soap folder.

Q: Is the security risk greater with SQLXML 3.0 versus ADO?

A: No, as long as you have followed the correct security guidelines designated by
Microsoft for SQL Server.

Q: What is one of the key drawbacks of using Web Services over ADO?

A: Currently the use of Web Services opens the server, and in this case the
database server, to denial of service attacks.This is currently an inherent
drawback to the use of any URL access to a data source.

Q: Can I use my existing template query with SQLXML3?

A: Yes, you can upgrade these older template queries to run in the new environ-
ment or you can use them in their current form and have them work in the
same instance side by side.

Q: Can I use SQLXML Web Services with my Legacy ASP 3.0 application?

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 335

336 Chapter 7 • Building a SQLXML Web Service Application

A: Yes; in fact, it’s a migration track that is used to upgrade a system without
changing the front-end application.

Q: If I make a change to the SQL WSDL file do I have to reload the Web
reference?

A: Yes; refresh the Web references within the project window and get the most
recent version.

Q: Can I use SQLXML Web Services with a stand-alone application written
in VB?

A: Yes; SQLXML Web Services can be accessed by any application that can
interpret soap. Most importantly these Web Services can be accessed by any
platform and are platform independent.

Q: Can I use my SQL Server 7 database stored procedures?

A: No, you must use SQL 2000 with SQLXML.

www.syngress.com

206_XMLweb_07.qxd 6/25/02 2:46 PM Page 336

Building a Jokes
Web Service

Solutions in this chapter:

■ Motivation and Requirements for the
Jokes Web Service

■ Functional Application Design

■ Implementing the Jokes Data Repository

■ Implementing the Jokes Middle Tier

■ Creating a Client Application

Chapter 8

337

Summary

Solutions Fast Track

Frequently Asked Questions

206_XMLweb_08.qxd 6/25/02 4:46 PM Page 337

338 Chapter 8 • Building a Jokes Web Service

Introduction
In this chapter, we show you—step-by-step—how to build a real-world Web
Service, using all the tools and techniques covered in the previous chapters.This
Web Service case study will take you through all the important factors to be con-
sidered when creating a Web Service application.

Together, we create a two-tier Web Service consisting of the following:

■ A business logic layer (middle tier) written in C#

■ A database backend using SQL Server 2000

We also show you how to access this service through a Windows Forms-
based front-end portal application.While developing this application, we cover a
range of subjects relevant to real-world Web Service projects.We start off by
offering some suggestions for proper Web Service application architecture.We
then discuss how to pass structured data from your Web Service to your client
application, including basic marshalling and complex object serialization.We talk
about namespaces and extended Web Service attributes, and how to properly use
them. Further topics include how to secure Web Services, how to generate client
proxies, error handling both on the server and on the client, working with Event
Logs, and the automatic generation of documentation.

Motivation and Requirements
for the Jokes Web Service
In the case study presented by this chapter, we won’t be showing you an ordering
application for buying or selling anything, instead we’re giving away free content
in the form of jokes.Think of our application of the future as a modern version
of the venerable Quote Of The Day (quotd) Internet service. quotd has been
around for almost two decades, used mostly as a TCP/IP test service (see
www.faqs.org/rfcs/rfc865.html). It runs on port 17, and all it does is send you an
uplifting quote of some wise dead person, before closing the connection again.
You can install it as part of the so-called “Simple TCP/IP Services” through
Control Panel | Add/Remove Programs | Add/Remove Windows
Components | Networking Services. Many servers on the Internet still have
this service installed, even though it has maybe fallen out of favor in recent years;
for an example, simply use Telnet to establish a TCP connection to port 17 of
server 209.21.91.3.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:46 PM Page 338

www.syngress.com

Let’s try to formulate some design goals for the Jokes Web Service, and see
how they compare with what was possible twenty years ago when quotd was
designed:

■ Although we still give away free content, we would like to know who
our users are! Hence, there should be some sort of registration process.

■ We want to be highly interactive.We are interested in user feedback for
particular jokes, and our users should also be able to add content—that
is, jokes—of their own. However, too much interactivity can be a dan-
gerous thing, so there should be moderators standing by to remove
objectionable content.

■ quotd is essentially a 7-bit ASCII service (in fact it’s limited to the 94
printable ASCII characters).That’s great if you live in the U.S., but even
Europeans will already be a little bit annoyed at you, because their
accented characters will get lost, and users in Asia won’t be able to use
the service in their native language. Clearly, we want our updated service
to fully support Unicode.

■ Our service should be universally accessible. quotd is usually blocked by
firewalls because it uses a nonstandard port.

To summarize, we would like to develop a Web Service that delivers jokes to
registered users, has portal functionality to let users register, and allows them to
submit their own jokes. Moreover, we want a mechanism for registered users to
rate jokes, say on a scale from 1 to 5. Finally, there should be a class of super
users, called moderators, who should be able to administer both users und jokes.

Note that we get support for international users and universal accessibility for
free by using Web Services technology:

■ Because Web Services are based on XML, we can ensure Unicode sup-
port by specifying, say, UTF-8 as our underlying character set (which is
the default, anyway).Also, we need to ensure, of course, that our data
repository can hold Unicode information.

■ Because Web Services usually run on either port 80 (HTTP) or port 443
(HTTPS), firewalls should not be a problem, and clients should be able
to establish a connection to our server. However, when designing the
service, we also need to ensure that the data we transport through SOAP
can easily be read by potential clients, particularly if they run on non-
Microsoft systems.We talk about this issue more when we go about
sending SQL record data through SOAP.

Building a Jokes Web Service • Chapter 8 339

206_XMLweb_08.qxd 6/25/02 4:46 PM Page 339

340 Chapter 8 • Building a Jokes Web Service

Functional Application Design
Coming up with a good application design is critically important for the success
of any software application.The first step is to move top-down from goals to
design by starting to define (in still very general terms) the functionality exposed
by the Jokes service, and then developing a back-end schema that supports that
functionality from a data perspective. In a second step, we then create in more
detail an object model suitable to implement the services the Jokes application is
supposed to provide.At this juncture, it is also appropriate to make decisions
about security, state management, and error handling.

Defining Public Methods
Let’s start the application design process by writing down the specific methods
we think our Jokes Web Service should offer, and the categories that reflect their
function:

The application needs methods dealing with user administration:

■ addUser Lets a user register to our service.

■ addModerator Lets a moderator add an existing user to become a
moderator.

■ checkUser Verifies that a user has previously registered with the ser-
vice. Refer to the “State Management” section to see why this is a useful
method for the service to expose.

Then, the application needs methods dealing with delivering and managing
jokes:

■ addJoke Lets a registered user add a joke.

■ getJokes: Delivers some randomly selected jokes, say up to 10 per
request, to our registered users.

■ addRating Lets our users add a rating to a joke, say on a scale of 1 to 5.

■ getUnmoderated Registered moderators can call this method to get
the jokes added by the users for moderation.

■ addModerated If moderators agree to add a joke to the database, they
can use this method.

■ deletedUnmoderated If a submitted joke is considered offensive, a
moderator should be able to delete it.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:46 PM Page 340

Building a Jokes Web Service • Chapter 8 341

Defining the Database Schema
Let’s define the database schema for the Jokes Web Service:The Jokes database
supports three basic data entities: Users, jokes, and joke ratings.We therefore
define the corresponding tables as follows:

■ users A table containing user information.

■ jokes A table containing joke information.

■ ratings A table containing joke rating information.

To keep things simple, all we want to know about our users are their user-
names, their passwords, and whether they are moderators or not.We limit both
usernames and passwords to 20 Unicode characters.We add a primary key con-
straint to usernames to speed lookup access and to ensure that usernames are
unique.

For the jokes table, we record the username and the actual joke, which we
want to be 3,500 Unicode characters or less, keeping SQL Server 2000 limita-
tions on row size in mind.We give each joke a unique identifier though an iden-
tity column. Note that we don’t relate the users and the jokes table with each
other, because users may choose to unsubscribe from the service (but we sure
want to keep their jokes!).

Finally, we add a rating column to the ratings table and relate the jokes to the
ratings table through a one-to-many relationship on the unique joke identifier.

Let’s look at a visual representation of our jokes database (see Figure 8.1).

www.syngress.com

Figure 8.1 The Jokes Database Tables

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 341

342 Chapter 8 • Building a Jokes Web Service

Defining the Web Service Architecture
Typically, the actual Web Service layer will be a very small layer of your applica-
tion.You expose the Web Service methods to your clients, but leave the imple-
mentation of those methods to internal implementation classes.The advantage of
this architecture is that you can then always change the implementation of your
Web Services in the future, while keeping the Web Service interface stable.
Nothing is more annoying to consumers of your service (your business clients,
that is) than if a change in your server-side code requires them to rewrite their
applications.Also, typically, you will already have code on your servers that han-
dles most or all of the business logic required to process client requests; this could
be code to access legacy systems or enterprise data.You then simply wrap this
already existing code in a lean layer of Web Service access code.

In our example of the Jokes Web Service, we are going to define two Web
Services, one to handle the portal aspects of our application, that is managing
users and moderators, and a second one dealing with managing and retrieving
the actual jokes.We could, of course, collapse these two Web Services easily into
one larger service, and there are certainly good arguments for doing so, but
keeping the two services apart allows us to architect our application in a nice,
symmetric way.

We then define the two corresponding implementation classes, one for user
administration, and the other one for handling the jokes.Additionally, we need
classes for error management and database access, and a class that allows us to
return structured data containing our jokes to clients of our service.

To visualize the architecture, you can use a tool such as Microsoft Visual
Modeler.The UML diagram of the class structure looks as follows, ignoring
method signature and a few other details, such as destruction methods you don’t
care about too much at this point (see Figure 8.2).

Let us first look at the details of the userAdmin Web Service (see Figure 8.3).
As you can see in the Figure, the userAdmin class, which exposes the Web

Service of the same name, has methods to add a new user, make an existing user
become a moderator, and verify that a given user does in fact exist in the system.
The class userAdminImplement contains implementations of the corresponding
methods, and also contains methods that wrap the SQL stored procedures we
defined in the previous section.

Now take a look at the details of the Jokes Web Service in Figure 8.4.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 342

Building a Jokes Web Service • Chapter 8 343

www.syngress.com

Figure 8.2 UML Diagram of jokesService Middle Tier Architecture

Figure 8.3 Detailed UML Diagram of userAdmin Web Service

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 343

344 Chapter 8 • Building a Jokes Web Service

The jokes class, which exposes the Web Service of the same name, has
methods to add, manage, and retrieve jokes.The class jokesImplement contains
implementations of the corresponding methods, and also contains methods that
wrap the SQL stored procedures we defined in the previous section. Before we
continue, let us briefly talk about security, state management, and error handling.

Security Considerations
Our Web Service will be wide open to the world, which of course we like to
think as being a good thing.As we would like to have control over who is
accessing our application, the first thing we have to do for each request is to
check if the requesting client is a registered user.That’s why all of our public
methods have userName and password as arguments. User look-ups are done in the
userAdminImplement class, and therefore the very first thing the jokesImplement class
does is to call the userAdminImplement class to check if the credentials passed
match a credential in the database.

Now, we can cheat a little bit and pretend the Web has state. For instance, we
can and will create a client application for our Jokes Web Service that will
remember the user’s credentials. Using the checkUser method in the userAdmin
class, we can let our users log on, and then simply cache the user name and

www.syngress.com

Figure 8.4 Detailed UML Diagram of the Jokes Web Service

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 344

Building a Jokes Web Service • Chapter 8 345

password on the client.While that information still needs to be sent to the server
with every single request, at least our clients don’t need to input it again during
the duration of a “session” with the Jokes application.

Obviously, this means that user names and passwords are sent in clear text
over the wire. If this is of concern (it probably should be!), then we need to
encrypt either the whole data transfer (by using, for example, a secure channel
over HTTPS), or at least the confidential parts of the message like the password.

State Management
Stateful Web Service applications should almost always be avoided.The only reason
for the Jokes Web Service to be stateful would be to support client sessions in
order to simplify authentication and authorization to the service. However, a
better way to deal with security for this particular application seems to us to store
user credentials in the Web Service client, as described in the preceding paragraph.

Error Handling
For error handling, we would like to have more control over what happens
during program execution that the standard System.Exception class gives us; in par-
ticular, we would like to gather enough information so that we can give a mean-
ingful, user-friendly error message to our clients.The jokeException class, which
extends System.Exception, is designed to do exactly that.We will encounter more
details on proper error handling as we go about implementing this class.

Implementing the Jokes Data Repository
Now that the structure of the Jokes Web Service is firmly in place we can start
the work of actual implementation. It is usually a good idea to start with the
back end and spend a fair amount of time fleshing out the exact interface to store
and retrieve data.

We will start off by installing the actual database system.We will then set up
our data tables using a SQL installation script, before writing all the stored proce-
dures needed to manage our jokes in the database.

WARNING

Later changes in methods exposed by the back end almost always
require major rewrites of the whole application, so it really pays to be
very careful when writing your back end methods.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 345

346 Chapter 8 • Building a Jokes Web Service

Installing the Database
The first step in working with a back end is of course to actually have a back
end to work with… Because we offer dynamic content, a simple flat file
approach probably won’t scale very well. Instead, let us use a relational database,
such as SQL Server 2000. If you don’t have a copy of this server, you’re in luck,
because the Microsoft .NET SDK actually comes with its own copy of Microsoft
SQL Server Desktop Engine, a slightly scaled down version of the full server
product, which is more than sufficient for our purposes.To install it, proceed as
follows:

■ Open up %ProgramFiles%\Microsoft.NET\Microsoft.NET\
FrameworkSDK\Samples\setup\html\Start.htm.

■ Click on Step 1: Install the .NET Framework Samples Database
and follow the instructions.

■ Verify in the list of services on your computer that the services
MSSQL$NetSDK and SQLAgent$NetSDK are up and running.

This will install the SQL Server Desktop Engine, and configure the .NET
SDK database instance.

Note that SQL Server Desktop Engine does not come with any of the stan-
dard GUI client tools. But it does ship with osql, a command line utility, which is
certainly sufficient for what we try to do. osql is described in detail in the Visual
Studio.NET Combined Help Collection, but all we really need to know is how
to execute a SQL command script, which is done as follows:

osql -S (local)\NetSDK -U sa -P -i myScript.sql

However, we can compensate for this lack of user friendliness by using the
Server Explorer tool in Visual Studio.NET, to which we will get at soon.

First, we give ourselves a database to work with, which we fittingly call
“jokes.” Run the following SQL script:

create database jokes

go

Now we can go about setting up the data tables as defined in Figure 8.5.
Also, to bootstrap our system, we prepopulate our users database with a default
moderator, which we call “admin,” with password “secret”.We also include a first
joke, so that we can show our first user something. See Figure 8.5 for the com-
plete listing of the database installation script.The complete database installation

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 346

Building a Jokes Web Service • Chapter 8 347

script is available on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.5 The Database Installation Script (installJokes.sql)

use jokes

go

/* object: table [dbo].[users] */

create table [dbo].[users] (

[userName] [nvarchar] (20) not null primary key,

[password] [nvarchar] (20) not null ,

[isModerator] [bit] not null

) on [primary]

go

/* object: table [dbo].[jokes] */

create table [dbo].[jokes] (

[jokeID] [int] identity(1,1) primary key ,

[joke] [nvarchar] (3500) not null ,

[userName] [nvarchar] (20) not null ,

[isModerated] [bit] not null ,

) on [primary]

go

/* object: table [dbo].[ratings] */

create table [dbo].[ratings] (

[jokeID] [int] not null references jokes(jokeID),

[rating] [tinyint] not null,

) on [primary]

go

create index "jokeID" on [dbo].[ratings](jokeID)

go

/* insert data into users table */

insert into users (userName,password, isModerator) values

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 347

348 Chapter 8 • Building a Jokes Web Service

("admin","secret", 1)

go

/* insert data into jokes table */

insert into jokes (joke,userName, isModerator) values

("Have you heard about the new sushi bar that caters exclusively

to lawyers? --It's called, Sosumi.","admin", 1)

go

Once we’ve created our Web Service project, we’ll be able to look at our
database right through the Visual Studio.NET IDE (from which the database dia-
gram in Figure 8.1 is taken).Also, if you don’t like working with SQL command
line scripts, you can create this database through the Visual Studio.NET Server
Explorer, but by doing so, you probably open yourself up to errors when setting
up your back end manually.Also, you can only write out SQL Create Scripts
from Visual Studio.NET if you have the SQL Server client tools installed, which
don’t come with the SQL Server Desktop Engine—you have to purchase these
separately.

Creating the Stored Procedures
Now that you have defined and implemented the database schema, you need to
develop the stored procedures to manage your data, which will be used by the
Web Service business components.You need to be able to add, modify, and pos-
sibly delete users, jokes, and joke ratings.The Jokes service is so simple that you
may be tempted to just hard code the corresponding SQL statements directly in
your business components, but of course, you know that is a beginner’s mistake,
and that you will never get away with doing that in a real-world application.
Because this example should show how to write a real application, you should do
things the right way and create the corresponding stored procedures.

Right from the start, you want to have a comprehensive error-handling
mechanism in place.Therefore all our stored procedures have a return argument
that carries a string-valued return code determined by what’s happening during
execution of the stored procedures back to the calling function in the middle
tier.This return parameter is called, simply enough, return. In considering what
can possibly go wrong during a stored procedure call, you may come up with the
following values shown in Table 8.1:

www.syngress.com

Figure 8.5 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 348

Building a Jokes Web Service • Chapter 8 349

Table 8.1 Uniform Stored Procedure Return Codes

Status/error code User-friendly message

S_OK Operation completed successfully.
F_ratingInvalid Joke rating must be between 1 and 5.
F_jokeDoesNotExist Joke selected does not exist in the system.
F_unknownAction Internal error when accessing the database.
F_userDoesNotExist This is not a registered user.
F_userExists Somebody has already registered under this name.
F_userInfoWrong You are not authorized to do this action. Change user

name or password.
F_noJokes No matching jokes in the system at this moment in

time.

Make a note, then, that we will need a method that’s part of the common
error-handling procedure used by the middle tier that will translate error codes
coming from the database (and elsewhere) into user-friendly messages sent back
to the clients of the Web Service.

The errors defined in Table 8.1 are exceptions caught by our code—that’s
why you are able to return an error code in the first place. Errors may occur over
which you have little control, and which cause the stored procedure to abort. In
that case, all you can do is catch the exception in the middle tier and return an
“unknown system error” back to the clients of the Web Service.

Secondly, in order to minimize the amount of code, you can employ a mech-
anism by which you tell the stored procedure what action you want to have done
on a table, such as add, modify, or delete.That’s why three of the stored procedures
have an action input parameter indicating the action to perform.

In the upcoming section “Implementing the Jokes Middle Tier,” we will talk
more about security. For now, let’s simply assume that all access checks happen
before program execution reaches a stored procedure, so that at this point you
don’t need to check on permissions any more.

To make the Jokes Web Service possible, we define the following five stored
procedures, which are detailed in Tables 8.2, 8.3, 8.4, 8.5, and 8.6.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 349

350 Chapter 8 • Building a Jokes Web Service

Table 8.2 Stored Procedure sp_manageUser

Name sp_manageUser

Purpose Allows you to add, modify, or delete a user.
Input parameters username The user name to add, modify, or delete.

password The corresponding password.
isModerator A Boolean value that tells you if this is a
moderator or not.
action What to do: add or modify or delete.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

Table 8.3 Stored Procedure sp_checkUser

Name sp_checkUser

Purpose Allows you to check the user information provided in
the arguments against information stored in the
database.

Input parameters username The user name to verify
password The corresponding password
isModerator A Boolean value that tells you if this is sup-
posedly a moderator or not.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

Table 8.4 Stored Procedure sp_manageJoke

Name sp_manageJoke

Purpose Allows you to add, modify, or delete a joke.
Input parameters username The user name of the registered user (used

when adding a joke).
joke The actual joke (used when adding a joke).
isModerated A Boolean value that tells you if this joke
is moderated or not.
jokeID Tthe unique identifier of the joke (used when
modifying or deleting a joke).
action What to do: add or modify or delete.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 350

Building a Jokes Web Service • Chapter 8 351

Table 8.5 Stored Procedure sp_manageRating

Name sp_manageRating

Purpose Allows you to add a rating for a joke.
Input parameters jokeID The unique identifier of the joke.

rating The rating, from 1 to 5, the joke gets.
action What to do: add or delete.

Output parameters return Status/error code.
Returns Standard SQL numerical return code.

Table 8.6 Stored Procedure sp_returnJokes

Name sp_returnJokes

Purpose Allows you to return jokes.
Input parameters howMany How many jokes you want to return.

isModerated: A Boolean value that allows you to specify
whether you want moderated or unmoderated jokes (or
both, if null).
returnRandom A Boolean value that allows you to
specify whether you want to get randomly selected
jokes (for users) or not (for moderators when reviewing
unmoderated jokes).

Output parameters return Status/error code.
Returns A record set

Some of the stored procedures have what amounts to optional parameters; for
example, in order to delete a joke, you only need to pass the corresponding
unique identifier of the joke to delete, along with the action parameter set to
delete to sp_manageJoke. Because T-SQL does not allow you to overload stored
procedure calls, you can simply pass null references to the remaining input
parameters, and remember to set up your middle tier code accordingly. Figure 8.6
shows the part of the SQL installation script that sets up the stored procedure
needed by the Jokes Web Service.The complete script is available on the
Solutions Web site for the book (www.syngress.com/solutions).

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 351

352 Chapter 8 • Building a Jokes Web Service

Figure 8.6 Setting up the Stored Procedures (installJokes.sql)

use jokes

go

/* Create stored procedures */

create procedure sp_manageUser (

-- add, modify, or delete a user

@@userName nvarchar(20),

@@password nvarchar(20),

@@isModerator bit,

@@action nvarchar(20), -- one of 'add' or 'modify' or 'delete'

-- returns:

-- 'S_OK' : success

-- 'F_userExists' : failed: user already exists

-- 'F_userDoesNotExist': failed: user does not exist

-- 'F_unknownAction' : action command unrecognized

@@return nvarchar(20) output

) as

declare @@userCount int

select @@userCount = count(*) from users where userName = @@userName

-- sanity checks

if (@@userCount = 0 and ((@@action = 'modify') or

(@@action = 'delete')))

begin

select @@return = 'F_userDoesNotExist'

return

end

if @@userCount = 1 and @@action = 'add'

begin

select @@return = 'F_userExists'

return

end

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 352

Building a Jokes Web Service • Chapter 8 353

-- start

if @@action = 'add'

begin

insert into users (userName,password,isModerator)

values (@@userName,@@password,@@isModerator)

select @@return = 'S_OK'

return

end

if @@action = 'delete'

begin

delete from users where userName = @@userName

select @@return = 'S_OK'

return

end

if @@action = 'modify'

begin

update users

set userName = @@userName,

isModerator = @@isModerator

where userName = @@userName

if @@password is not null

update users

set password = @@password

where userName = @@userName

select @@return = 'S_OK'

return

end

-- otherwise

select @@return = 'F_unknownAction'

return

go

www.syngress.com

Figure 8.6 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 353

354 Chapter 8 • Building a Jokes Web Service

create procedure sp_checkUser (

-- checks user information provided against information in

-- the database

@@userName nvarchar(20),

@@password nvarchar(20),

@@isModerator bit,

-- returns:

-- 'S_OK' : information matches

-- 'F_userInfoWrong' : information does not match

@@return nvarchar(20) output

) as

declare @@userCount int

-- sanity checks

if @@userName is null

begin

select @@return = 'F_userInfoWrong'

return

end

-- start

if @@password is null and @@isModerator is null

begin

select @@userCount = count(*) from users where

userName = @@userName

goto checkCount

end

if @@isModerator is null

begin

select @@userCount = count(*) from users where

userName = @@userName and password = @@password

goto checkCount

end

www.syngress.com

Figure 8.6 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 354

Building a Jokes Web Service • Chapter 8 355

if @@password is null

begin

select @@userCount = count(*) from users where

userName = @@userName and isModerator = @@isModerator

goto checkCount

end

select @@userCount = count(*) from users where userName = @@userName

and password = @@password and isModerator = @@isModerator

checkCount:

if @@userCount = 0

begin

select @@return = 'F_userInfoWrong'

return

end

select @@return = 'S_OK'

return

go

create procedure sp_manageRating (

-- add a joke rating

@@jokeID int,

@@rating tinyint,

@@action nvarchar(20), -- one of 'add' or 'delete'

-- returns:

-- 'S_OK' : success

-- 'F_jokeDoesNotExist': failed: joke does not exist

-- 'F_unknownAction' : action command unrecognized

@@return nvarchar(20) output

) as

-- sanity checks on arguments done in middle tier

www.syngress.com

Figure 8.6 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 355

356 Chapter 8 • Building a Jokes Web Service

declare @@jokeCount int

-- does the joke even exist?

select @@jokeCount = count(*) from jokes where jokeID = @@jokeID

if @@jokeCount = 0

begin

select @@return = 'F_jokeDoesNotExist'

return

end

if @@action = 'add'

begin

insert into ratings (jokeID,rating) values (@@jokeID,@@rating)

select @@return = 'S_OK'

return

end

if @@action = 'delete'

begin

delete from ratings where jokeID = @@jokeID

select @@return = 'S_OK'

return

end

-- otherwise

select @@return = 'F_unknownAction'

return

go

create procedure sp_manageJoke (

-- add, modify, or delete a joke

@@userName nvarchar(20),

@@joke nvarchar(3500),

@@isModerated bit,

@@jokeID int,

www.syngress.com

Figure 8.6 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 356

Building a Jokes Web Service • Chapter 8 357

@@action nvarchar(20), -- one of 'add' or 'modify' or 'delete'

-- returns:

-- 'S_OK' : success

-- 'F_jokeDoesNotExist': failed: joke does not exist

-- 'F_unknownAction' : action command unrecognized

@@return nvarchar(20) output

) as

-- sanity checks on arguments done in middle tier

declare @@jokeCount int

if @@action = 'add'

begin

insert into jokes (userName,joke,isModerated)

values (@@userName,@@joke,@@isModerated)

select @@return = 'S_OK'

return

end

if @@action = 'modify'

begin

select @@jokeCount = count(*) from jokes where jokeID = @@jokeID

if @@jokeCount = 0

begin

select @@return = 'F_jokeDoesNotExist'

return

end

if @@isModerated is not null

update jokes

set isModerated = @@isModerated

where jokeID = @@jokeID

if @@userName is not null

update jokes

set userName = @@userName

www.syngress.com

Figure 8.6 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 357

358 Chapter 8 • Building a Jokes Web Service

where jokeID = @@jokeID

if @@joke is not null

update jokes

set joke = @@joke

where jokeID = @@jokeID

select @@return = 'S_OK'

return

end

if @@action = 'delete'

begin

select @@jokeCount = count(*) from jokes where jokeID = @@jokeID

if @@jokeCount = 0

begin

select @@return = 'F_jokeDoesNotExist'

return

end

declare @@dummy nvarchar(40)

execute sp_manageRating @@jokeID, null, 'delete', @@dummy output

delete from jokes where jokeID = @@jokeID

select @@return = 'S_OK'

return

end

-- otherwise

select @@return = 'F_unknownAction'

return

go

create procedure sp_returnJokes (

-- returns jokes

@@howMany int,

@@isModerated bit,

@@returnRandom bit

-- returns a recordset containing jokeID, joke, and average rating

) as

www.syngress.com

Figure 8.6 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 358

Building a Jokes Web Service • Chapter 8 359

-- sanity checks on arguments done in middle tier

declare @@jokeCount int

declare @baseJokeID int

declare @baseJokeRelPos int

declare @cmd varchar(1000)

-- random start position?

-- note that in this case, we implicitly assume that

-- * isModerated = 1

-- * howMany <> null

if @@returnRandom = 1

begin

select @@jokeCount = count(*) from jokes where isModerated = 1

if @@jokeCount = 0

return

if @@jokeCount < @@howMany

set @@howMany = @@jokeCount

-- get a random number between 0 and 1

declare @random decimal(6,3)

set @random = cast(datepart(ms, getdate()) as decimal(6,3))/1000

-- set a random start position

set @baseJokeRelPos =

((@@jokeCount - @@howMany + 1) * @random) + 1

-- get the corresponding jokeID

declare jokeTempCursor cursor scroll for select jokeID from

jokes where isModerated = 1 order by jokeID

open jokeTempCursor

fetch absolute @baseJokeRelPos from jokeTempCursor

into @baseJokeID

www.syngress.com

Figure 8.6 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 359

360 Chapter 8 • Building a Jokes Web Service

close jokeTempCursor

deallocate jokeTempCursor

end

-- start building our command

set @cmd = 'select '

if @@howMany is not null

set @cmd = @cmd + 'top ' + cast(@@howMany as varchar(10)) + ' '

set @cmd = @cmd + 'jokes.jokeID, left(ltrim(joke),3500) '

set @cmd = @cmd + ', cast(avg(cast(rating as decimal(5,4)))

as decimal(2,1)) '

set @cmd = @cmd + 'from jokes left outer join ratings on

jokes.jokeID = ratings.jokeID '

if @@isModerated is not null

begin

if @@isModerated = 1

begin

set @cmd = @cmd + 'where isModerated = 1 '

if @@returnRandom = 1

set @cmd = @cmd + 'and jokes.jokeID >= ' +

cast(@baseJokeID as varchar(10)) + ' '

end

if @@isModerated = 0

set @cmd = @cmd + 'where isModerated = 0 '

end

set @cmd = @cmd + 'group by jokes.jokeID, joke order by jokes.jokeID'

exec (@cmd)

go

www.syngress.com

Figure 8.6 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 360

Building a Jokes Web Service • Chapter 8 361

That completes setting up the back-end infrastructure.You can find the com-
plete installation script in directory SQLSetup/ on the Solutions Web site for the
book (www.syngress.com/solutions).

We are now ready to start up Visual Studio.NET to begin working on the
meat of the Web Service, namely the Web Service itself.

Implementing the Jokes Middle Tier
Now that you have the back-end database system in place, you can go about
implementing the actual Web Service that clients will be calling. Of course,
you will want to do this work in Visual Studio.NET. Note that you can find
the complete code for this project on the Solutions Web site for the book
(www.syngress.com/solutions).

Setting Up the Visual Studio Project
Start the setup of the Visual Studio project by creating a new ASP.NET Web
Service project, called jokesService. Go to File | New | Project, choose the entry
ASP.NET Web Service under the Visual C# Projects folder, keep the default
Location, and enter jokesService as the Name of the project (Figure 8.7).

This will set up a new virtual directory of the same name, configure the
necessary FrontPage server extensions, define an assembly, and create supporting
project files.

www.syngress.com

Figure 8.7 Setting Up a New Web Project

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 361

362 Chapter 8 • Building a Jokes Web Service

Rather annoyingly, the ASP.NET Web Service wizard creates a default Web
Service called Service1, which you may want to remove from the project right
away (or rename it later when we go about adding Web Services to our project).

Next, check on the database we created earlier: Click on Server Explorer,
which by default is on the upper left hand corner of the window. Right click
under Data Connections, and enter the connection information for the .NET
SDK database as follows: Under Server enter (local)\NetSDK, the user name is
SA, no Password, and the Database we are interested in is jokes (Figure 8.8).

The connection is then added to Server Explorer, and you can go about
exploring your database, and, say, look at your users table (Figure 8.9).

Now you are in a position to create the two Web Services: Right click on the
jokesService project in the Solution Explorer, and choose Add | Add New
Item. Choose Web Service from the list of available templates, and call it
userAdmin.asmx (Figure 8.10).

Note that apart from creating the ASMX file, this will also create the
corresponding C# class file userAdmin.asmx.cs, and the resource file
userAdmin.asmx.resx.

Perform the same step for the second service, called jokes.asmx.

www.syngress.com

Figure 8.8 Opening Up A Connection to the Jokes Database

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 362

Building a Jokes Web Service • Chapter 8 363

Next, you need to set up the supporting classes.Again, right click on the
jokesService project in the Solution Explorer, and choose Add | Add New
Item, but this time select Class instead. Repeat this procedure five times, for the
five C# classes you need:

www.syngress.com

Figure 8.9 Exploring the Jokes Database through Visual Studio.NET Server
Explorer

Figure 8.10 Adding a New Web Service

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 363

364 Chapter 8 • Building a Jokes Web Service

■ userAdminImplement.cs

■ JokesImplement.cs

■ databaseAccess.cs

■ jokeException.cs

■ xmlJokesReturn.cs

When looking at the Solution Explorer, and clicking on the Select All Files
icon, your project should now look like the one shown in Figure 8.11.

Lastly, you need to instruct the C# compiler to automatically generate an
XML documentation file of your work for you (see the “Making Documentation
Part of Your Daily Life” sidebar). Go to the Solution Explorer, right click on the
jokesService project, and select Properties.A dialog will open, as shown in
Figure 8.12. Select the Build option under the Configuration Properties folder,
and enter jokesService.xml as the XML Documentation File name.

Now you can code away. Note that the complete code for the Jokes Web
Service can be found in jokesService directory on the on the Solutions Web site
for the book (www.syngress.com/solutions).

www.syngress.com

Figure 8.11 Overview of All Files Needed for the jokesService Web Service

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 364

Building a Jokes Web Service • Chapter 8 365

www.syngress.com

Figure 8.12 Automatically Generating XML Documentation Output

Making Documentation a Part of Your Everyday Life
Documenting your work does not need to be an afterthought—in fact,
it should occupy center-stage of your work from the very beginning of a
project. The Visual Studio.NET environment supports this philosophy by
offering you a set of predefined XML elements allowing you to docu-
ment your code inside your source files as you are developing it.

This functionality is still rather limited, quite frankly, but it is a start.
Among others, there are currently tags defined to describe the function
of a class or method (<summary>), and what parameters (<param>)
and return values (<return>) a method has. But you are certainly free
to add your own set of tags, suitable for your needs. The C# compiler
then allows you to extract your XML documentation into a separate XML
output file, which you can then use for further processing, for instance
to create documentation in HTML format by applying a suitable XSLT
style sheet. The compiler validates some of the XML documentation tags
for you, such as those describing the method input parameters. You can
find more information in the XML Documentation Tutorial that’s part of
the Visual Studio.NET C# Programmer’s Reference.

Developing & Deploying…

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 365

366 Chapter 8 • Building a Jokes Web Service

Developing the Error Handler
Introducing error handling as you start to code is a good thing. However, you
need to have a good idea first as to what could possibly go wrong. In the section
on setting up the SQL stored procedures we have already identified a number of
errors that can be caught at the database level.As user input data validation
checking is done in our business components, you get two more possible excep-
tions, having to do with invalid ratings (should be between 1 and 5), and requests
for “too many” jokes (should be between 1 and 10). Obviously, when you go
about creating a client for your Web Service, you will not allow the client appli-
cation to ask for, say, 10,000 jokes at once. But because your Web Service can
certainly be used by “unauthorized” client applications—it is an Internet service,
after all—you need to check for user data on the server, and you need to be able
to return meaningful information to your clients.

You can then simply set up a hash table errorCodes with internal error codes
and the corresponding nice messages for end users, and add the method,
getNiceErrorMessage(), that translates one into the other.The instance variable
failReason captures the error code and keeps it available as you travel back the call
stack after an exception has occurred.

Creating an entry in the server application event log whenever an error does
occur is probably a good idea, and that’s what the method writeEventLogEntry()
does. Putting everything together, see Figure 8.13 for the complete code of the
jokeException class which is available on the Solutions Web site for the book
(www.syngress.com/solutions) as file jokeException.cs.

Figure 8.13 Custom Error Handling Class jokeException (jokeException.cs)

using System;

using System.Collections;

using System.Diagnostics;

namespace jokesService

{

/// <summary>

www.syngress.com

Because documentation is vitally important for the success of any
software project, all of our code for the Jokes Web Service application
uses the C# documentation tags liberally.

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 366

Building a Jokes Web Service • Chapter 8 367

/// Custom error handling class

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class jokeException : Exception {

/// <value>

/// fail reason error code

/// </value>

public string failReason;

private static Hashtable errorCodes = new Hashtable();

private static bool isInit = false;

/// <summary>

/// Public class constructor.

/// </summary>

/// <param name='failReason'

/// type='string'

/// desc='fail reason error code'>

/// </param>

protected internal jokeException(string failReason) {

this.failReason = failReason;

}

private static void initErrorCodes() {

errorCodes.Add("S_OK",

"Operation completed successfully!");

errorCodes.Add("F_System",

"An unknown system error occurred!");

errorCodes.Add("F_ratingInvalid",

"Joke rating must be between 1 and 5!");

errorCodes.Add("F_jokeDoesNotExist",

"Joke selected does not exist in the system!");

errorCodes.Add("F_unknownAction" ,

"Internal error when accessing the database!");

www.syngress.com

Figure 8.13 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 367

368 Chapter 8 • Building a Jokes Web Service

errorCodes.Add("F_userDoesNotExist",

"This is not a registered user!");

errorCodes.Add("F_userExists",

"Somebody has already registered under this name!");

errorCodes.Add("F_userInfoWrong",

"You are not authorized to do this action. Change " +

"user name or password!");

errorCodes.Add("F_noJokes",

"No matching jokes in the system at this moment in time!");

errorCodes.Add("F_10JokesMax",

"You can only retrieve up to 10 jokes at one time!");

}

/// <summary>

/// The getNiceErrorMessage method converts an error code into

/// a user friendly error message, returned through a SOAP fault.

/// </summary>

/// <param name='errorCode'

/// type='string'

/// desc='error code'>

/// </param>

/// <returns>a friendly user error message</returns>

protected internal static string getNiceErrorMessage(

string errorCode) {

if (!isInit) {

// initialize error look up table once and for all

initErrorCodes();

isInit = true;

}

string temp = errorCodes[errorCode].ToString();

if(temp.Length < 1) {

// generic error, if error code unknown...

return errorCodes["F_System"].ToString();

} else {

return temp;

www.syngress.com

Figure 8.13 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 368

Building a Jokes Web Service • Chapter 8 369

}

}

/// <summary>

/// The writeEventLogEntry method writes an error log entry

/// into the Application event log

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='failReason'

/// type='string'

/// desc='fail reason error code'>

/// </param>

/// <returns>nothing</returns>

protected internal static void writeEventLogEntry(

string userName, string failReason) {

//Create the source, if it does not already exist.

if(!EventLog.SourceExists("jokeService")) {

EventLog.CreateEventSource("jokeService", "Application");

}

//Create an EventLog instance and assign its source.

EventLog eventLog = new EventLog();

eventLog.Source = "jokeService";

//Write an informational entry to the event log.

eventLog.WriteEntry(userName + ": " + failReason);

}

}

}

Developing the Database Access Component
The next task is to write a component that will take care of all back-end data
access and offer a single gateway to the database. Externalizing the database

www.syngress.com

Figure 8.13 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 369

370 Chapter 8 • Building a Jokes Web Service

connection string is a good programming practice, and the .NET Framework
offers a good place to put it:The web.config file. Just add the appSettings element
into the web.config file as shown in Figure 8.14.

Figure 8.14 Putting the Database DSN into web.config

<configuration>

<appSettings>

<add key="dsn" value="server=(local)\NetSDK;

database=Jokes;User ID=SA;Password=" />

</appSettings>

<system.web>

...standard settings...

</system.web>

</configuration>

The database access class (databaseAccess.cs) is a simple class that returns a
(closed) SQL connection object to the database. Unfortunately, class constructors
are not allowed to return objects, so you can add a single method to do just that,
called getConnection(). See Figure 8.15 for the complete code for the databaseAccess
class.The code for the databaseAccess class is available on the Solutions Web site
for the book (www.syngress.com/solutions).

Figure 8.15 Database Access Class databaseAccess (databaseAccess.cs)

using System;

using System.Data.SqlClient;

namespace jokesService

{

/// <summary>

/// The databaseAccess sets up the connection to the

/// data repository.

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class databaseAccess {

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 370

Building a Jokes Web Service • Chapter 8 371

private SqlConnection sqlConnection;

/// <summary>

/// Public class constructor.

/// </summary>

protected internal databaseAccess() {

sqlConnection = new SqlConnection(

ConfigurationSettings.AppSettings["dsn"]);

}

/// <summary>

/// The getConnection method sets up the database connection

/// </summary>

/// <returns>the (closed) SQL connection object</returns>

protected internal SqlConnection getConnection() {

return sqlConnection;

}

}

}

Developing the User Administration Service
Now that you have taken care of error handling and database access, you will
want to develop the core classes for managing users and jokes. Let’s first look at
how you will want to manage users:You need to be able to add new users,
change existing user information, check if a user exists in the system, and be able
to promote an existing user to become a moderator.

Adding New Users
Going through the steps needed to add a new user to the system, you can start by
writing the method addUser() in userAdminImplement, the class that implements
user management functionality.The method takes a user name and a password
as an argument, sets up the necessary infrastructure to call the SQL stored proce-
dure sp_manageUser(), gets a connection object from an instance of the class
databaseAccess, opens the connection, and calls the stored procedure. If everything

www.syngress.com

Figure 8.15 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 371

372 Chapter 8 • Building a Jokes Web Service

goes well, the stored procedure will return a status code S_OK, and control will
go back to the calling Web Service. If an exception occurred, you can create a
new custom exception object of type jokeException, remember the error code, and
throw the exception back to the caller.

The createSqlManageUser() method is the method that sets up our call to the
stored procedure sp_manageUser. It takes a user name, a password, and a flag
denoting if the user is a moderator as arguments. Note that all arguments are of
type string, even the Boolean flag.The reason for this is that some arguments are,
in fact, optional. For instance, when deleting a user, all you need to know is the
user’s username.You could certainly overload this method to do this, but in the
end not a lot would change.Also, as this is an internal method of a class (and is
therefore marked as protected internal) implementing functionality exposed by
another public class, type consistency is not really an issue. So you can adopt the
convention that all arguments to the methods that set up your SQL calls take
string arguments, and that an empty string passed will mean that a SQL null
value should be passed to the corresponding stored procedure. Note, though, that
you can’t just pass the keyword null to SQL; instead, we have to use
System.DBNull.value.

You can use the MS SQL Managed Provider created specially for high per-
formance access to MS SQL server database, which is found in the System.Data
.SqlClient namespace (which you declare in the declaration section of your class).

Figure 8.16 shows the createSqlManageUser() method call that sets up the SQL
command object for the stored procedure sp_manageUser, which deals with
adding, updating, and deleting users and managers.The code in Figure 8.16 is
available on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.16 createSqlManageUser Method (userAdminImplement.cs)

/// <summary>

/// The createSqlManageUser method sets up the SQL command object

/// for the stored procedure sp_manageUser, which deals with

/// adding, updating, and deleting users and managers

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

www.syngress.com
Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 372

Building a Jokes Web Service • Chapter 8 373

/// desc='password of registered user (zero length if N/A)'>

/// </param>

/// <param name='isModerator'

/// type='string'

/// desc='true/false if this user is a moderator'>

/// </param>

/// <param name='action'

/// type='string'

/// desc='the action the SQL stored procedure should take

/// (see the stored procedure definition for allowed action

/// keywords)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlManageUser(

string userName, string password,

string isModerator, string action, SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_manageUser" ;

SqlParameter argUserName =

new SqlParameter("@@userName", SqlDbType.NVarChar, 20);

argUserName.Value = userName;

sqlCommand.Parameters.Add(argUserName);

SqlParameter argPassword =

new SqlParameter("@@password",SqlDbType.NVarChar, 20);

if(password.Length > 0) {

argPassword.Value = password;

} else {

argPassword.Value = DBNull.Value;

www.syngress.com

Figure 8.16 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 373

374 Chapter 8 • Building a Jokes Web Service

}

sqlCommand.Parameters.Add(argPassword);

SqlParameter argIsModerator =

new SqlParameter("@@isModerator",SqlDbType.Bit);

argIsModerator.Value = bool.Parse(isModerator);

sqlCommand.Parameters.Add(argIsModerator);

SqlParameter argAction =

new SqlParameter("@@action",SqlDbType.NVarChar, 20);

argAction.Value = action;

sqlCommand.Parameters.Add(argAction);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

After the SQL side of adding a new user has been taken care of in method
createSqlManageUser(), the implementation of the addUser() method is now straight-
forward, as shown in Figure 8.17.The code for userAdminImplement.cs is also avail-
able on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.17 addUser Method (userAdminImplement.cs)

/// <summary>

/// The addUser method adds a new user to the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of new user'>

/// </param>

/// <param name='password'

/// type='string'

www.syngress.com

Figure 8.16 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 374

Building a Jokes Web Service • Chapter 8 375

/// desc='password of new user'>

/// </param>

/// <returns>true</returns>

protected internal bool addUser(string userName, string password) {

try {

string retCode;

SqlCommand sqlCommand = new SqlCommand();

createSqlManageUser(

userName, password, "false", "add", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Note that the code first inspects the return code set during execution of the
stored procedure. If things are not okay, say because the user has already registered
previously, you can remember the error code, and throw a custom exception of
type jokeException. If an exception occurred over which you have no control, say
because the database is not accessible, you can’t do much more than throw an
ordinary exception of type System.Exception.

www.syngress.com

Figure 8.17 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 375

376 Chapter 8 • Building a Jokes Web Service

Checking Existing User Information
The next method you will want to add is checkUser(), which matches a set of
given credentials, consisting of a user name, a password, and a flag indicating
whether this is a moderator, against the information in the database.You should
first set up the createSqlCheckUser method, which wraps the call to the stored pro-
cedure sp_checkUser(), shown in Figure 8.18 and also available on the Solutions
Web site for the book (www.syngress.com/solutions). as userAdminImplement.cs.

Figure 8.18 createSqlCheckUser Method (userAdminImplement.cs)

/// <summary>

/// The createSqlCheckUser method sets up the SQL command object

/// for the stored procedure sp_checkUser, which verifies passed

/// user information with user information in the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user (zero length if N/A)'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user (zero length if N/A)'>

/// </param>

/// <param name='isModerator'

/// type='string'

/// desc='true/false if this user is a moderator

/// (zero length if N/A)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlCheckUser(

string userName, string password,

string isModerator, SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

www.syngress.com
Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 376

Building a Jokes Web Service • Chapter 8 377

sqlCommand.CommandText = "sp_checkUser" ;

SqlParameter argUserName =

new SqlParameter("@@userName", SqlDbType.NVarChar, 20);

if(userName.Length > 0) {

argUserName.Value = userName;

} else {

argUserName.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argUserName);

SqlParameter argPassword =

new SqlParameter("@@password",SqlDbType.NVarChar, 20);

if(password.Length > 0) {

argPassword.Value = password;

} else {

argPassword.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argPassword);

SqlParameter argIsModerator =

new SqlParameter("@@isModerator",SqlDbType.Bit);

if(isModerator.Length > 0) {

argIsModerator.Value = bool.Parse(isModerator);

} else {

argIsModerator.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argIsModerator);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

www.syngress.com

Figure 8.18 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 377

378 Chapter 8 • Building a Jokes Web Service

Next you need to implement the actual method, checkUser(), that verifies a
user’s credentials (Figure 8.19).This code is available on the Solutions Web site
for the book (www.syngress.com/solutions).

Figure 8.19 createSqlCheckUser Method (userAdminImplement.cs)

/// <summary>

/// The checkUser method checks if a user or moderator is

/// already defined in the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of user or moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of user or moderator'>

/// </param>

/// <param name='isModerator'

/// type='bool'

/// desc='check for moderator status (if false,

/// we do not check)'>

/// </param>

/// <returns>nothing</returns>

protected internal bool checkUser(

string userName, string password, bool isModerator) {

string retCode;

try {

SqlCommand sqlCommand = new SqlCommand();

if(isModerator) {

// check if user is a moderator...

createSqlCheckUser(userName, password, "true", sqlCommand);

} else {

// ... or a registered user

createSqlCheckUser(userName, password, "", sqlCommand);

}

www.syngress.com
Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 378

Building a Jokes Web Service • Chapter 8 379

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Adding Moderators
Lastly, you need to think about adding moderators to the system.You want to let
only moderators add moderators, and those new moderators already need to be
registered with the system as regular users.

So the addModerator method has to have three arguments: The use name and
password of the moderator adding a new moderator, and the user name of the user
who should become moderator.You need to first check that the credentials given
are indeed the ones of an existing moderator, for which we can use the checkUser()
method, and then you need to modify the entry in the user table for the new
moderator, which consists in simply changing the isModerator flag to True.

A lot of things can go wrong even with this simple call: The moderator
requesting the change may not be a moderator, or the user slated to become a
moderator may not exist in the database.Thankfully, you no longer need to
worry about these eventualities, because your error handling system will handle

www.syngress.com

Figure 8.19 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 379

380 Chapter 8 • Building a Jokes Web Service

those exceptions automatically. Figure 8.20 shows the code for addManager(),
which is also available on the Solutions Web site for the book
(www.syngress.com/solutions) as userAdminImplement.cs.

Figure 8.20 addModerator Method (userAdminImplement.cs)

/// <summary>

/// The addModerator method sets a previously added user to become

/// a moderator

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator making the call'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator making the call'>

/// </param>

/// <param name='newModerator'

/// type='string'

/// desc='user name of registered user who will become

/// a moderator'>

/// </param>

/// <returns>true</returns>

protected internal bool addModerator(

string userName, string password, string newModerator) {

string retCode;

try {

// check if user is a moderator

SqlCommand sqlCommand = new SqlCommand();

createSqlCheckUser(userName, password, "true", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 380

Building a Jokes Web Service • Chapter 8 381

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// make newModerator a moderator

sqlCommand.Parameters.Clear();

createSqlManageUser(

newModerator, "", "true", "modify", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Creating the Public Web Methods—Users
The implementation of the user administration service is now complete, and all
that remains to do is to expose this service to the world.To do this, simply add new

www.syngress.com

Figure 8.20 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 381

382 Chapter 8 • Building a Jokes Web Service

(public!) Web methods to the userAdmin class, which is found in file userAdmin
.asmx.cs on the Solutions Web site for the book (www.syngress.com/solutions).
First, you need to add some custom initialization code to the userAdmin Web
Service class, as show in Figure 8.21.

Figure 8.21 Code to Set Up the userAdmin Web Service (userAdmin.asmx.cs)

using System;

using System.Collections;

using System.ComponentModel;

using System.Data;

using System.Diagnostics;

using System.Web;

using System.Web.Services;

using System.Web.Services.Protocols;

using System.Xml;

namespace jokesService {

/// <summary>

/// The userAdmin class provides methods to manage users and

/// moderators in the database.

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

[WebServiceAttribute(Description="The userAdmin web service " +

"provides methods to manage users and moderators in the database",

Namespace="urn:schemas-syngress-com-soap")]

public class userAdmin : System.Web.Services.WebService {

// SOAP error handling return document structure

/// <value>error document thrown by SOAP exception</value>

public XmlDocument soapErrorDoc;

/// <value>text node with user friendly error message</value>

public XmlNode xmlFailReasonNode;

/// <summary>

/// Public class constructor.

/// </summary>

www.syngress.com
Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 382

Building a Jokes Web Service • Chapter 8 383

public userAdmin() {

InitializeComponent();

// initialize SOAP error handling return document

soapErrorDoc = new System.Xml.XmlDocument();

xmlFailReasonNode =

soapErrorDoc.CreateNode(XmlNodeType.Element, "failReason", "");

}

}

}

The code for the addUser() method which adds a new user to the database is
shown in Figure 8.22 and is available on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.22 addUser Web Method (userAdmin.asmx.cs)

01: /// <summary>

02: /// The addUser method adds a new user to the database

03: /// </summary>

04: /// <param name='userName'

05: /// type='string'

06: /// desc='name of new user'>

07: /// </param>

08: /// <param name='password'

09: /// type='string'

10: /// desc='password of new user'>

11: /// </param>

12: /// <returns>nothing</returns>

13: [SoapDocumentMethodAttribute(Action="addUser",

14: RequestNamespace="urn:schemas-syngress-com-soap:userAdmin",

15: RequestElementName="addUser",

16: ResponseNamespace="urn:schemas-syngress-com-soap:userAdmin",

17: ResponseElementName="addUserResponse")]

18: [WebMethod(Description="The addUser method adds a new user to " +

19: "the database")]

20: public void addUser(string userName, string password) {

www.syngress.com

Figure 8.21 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 383

384 Chapter 8 • Building a Jokes Web Service

21: userAdminImplement userAdminObj = new userAdminImplement();

22: try {

23: userAdminObj.addUser(userName, password);

24: // catch jokeExceptions

25: } catch (jokeException e) {

26: throwFault("Fault occurred", e.failReason, userName);

27: }

28: // then, catch general System Exceptions

29: catch (Exception e) {

30 throwFault(e.Message, "F_System", userName);

31: }

32: }

Note how simple things suddenly become once you have set the stage cor-
rectly:You need just two lines to add a new user to the system.There are two
things to focus on in Figure 8.22:

■ First, some decorations to the Web method (which Microsoft calls meta-
data).They specify the namespaces (lines 14 and 16) and element names
(lines 15 and 17) used by the SOAP protocol, as described in previous
chapters.

■ Second, if an exception occurs, you call a custom error handler that
returns extended error information as part of a SOAP fault (lines 25
and 26).

Error Handling for the Public Web Methods
If you look at the code that adds users to the system, you will see that throwFault
(Figure 8.22, lines 26 and 30) is the name of the method that actually throws a
SOAP fault and ends execution of the Web Service method. But it does a whole
lot more:

■ The (internal) error code is replaced by a user friendly error message.

■ A log entry is written to the Application event log.

■ The standard SOAP fault XML document is appended with a custom
element, called failReason, where client applications can find the error
message to display to users.

www.syngress.com

Figure 8.22 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 384

Building a Jokes Web Service • Chapter 8 385

The details of the throwFault method are shown in Figure 8.23 and is available
on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.23 throwFault Method (userAdmin.asmx.cs)

/// <summary>

/// The throwFault method throws a SOAP fault end ends

/// execution of the Web Service method

/// </summary>

/// <param name='message'

/// type='string'

/// desc='start of text node of faultstring element in

/// SOAP fault message'>

/// </param>

/// <param name='failReason'

/// type='string'

/// desc='text node for custom failReason element in SOAP

/// fault message'>

/// </param>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <returns>nothing</returns>

private void throwFault(string message, string failReason, string

userName) {

xmlFailReasonNode.AppendChild(soapErrorDoc.CreateTextNode(

jokeException.getNiceErrorMessage(failReason)));

jokeException.writeEventLogEntry(userName, failReason);

throw new SoapException(message, SoapException.ServerFaultCode,

Context.Request.Url.AbsoluteUri,null,

new System.Xml.XmlNode[]{xmlFailReasonNode});

}

For instance, if we try to add a user who is already registered, a SOAP fault as
pictured in Figure 8.24 will be returned.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 385

386 Chapter 8 • Building a Jokes Web Service

Creating The Public Web Methods—Administrators
The two other public Web methods of the userAdmin Web Service are very sim-
ilar in their structure to the addUser Web method; they are the Web method
addModerator() which adds a new moderator to the database, and the Web method
checkUser() which checks if a user or moderator is already defined in the database.
Those two methods are presented in Figures 8.25 and 8.26, respectively, and the
corresponding code is available on the Solutions Web site for the book
(www.syngress.com/solutions).

Figure 8.25 addModerator Web method (userAdmin.asmx.cs)

/// <summary>

/// The addModerator method adds a new moderator to the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='newModerator'

/// type='string'

/// desc='user name of user who will become a moderator'>

www.syngress.com

Figure 8.24 A SOAP Fault Extended by a Custom XML Element

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 386

Building a Jokes Web Service • Chapter 8 387

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addModerator",

RequestNamespace="urn:schemas-syngress-com-soap:userAdmin",

RequestElementName="addModerator",

ResponseNamespace="urn:schemas-syngress-com-soap:userAdmin",

ResponseElementName="addModeratorResponse")]

[WebMethod(Description="The addModerator method adds a new " +

"moderator to the database")]

public void addModerator(

string userName, string password, string newModerator) {

userAdminImplement userAdminObj = new userAdminImplement();

try {

userAdminObj.addModerator(userName, password, newModerator);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Figure 8.26 checkUser Web Method (userAdmin.asmx.cs)

/// <summary>

/// The checkUser method checks if a user or moderator is

/// already defined in the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of user or moderator'>

/// </param>

/// <param name='password'

www.syngress.com

Figure 8.25 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 387

388 Chapter 8 • Building a Jokes Web Service

/// type='string'

/// desc='password of user or moderator'>

/// </param>

/// <param name='isModerator'

/// type='bool'

/// desc='check for moderator status (if false, we do

/// not check)'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="checkUser",

RequestNamespace="urn:schemas-syngress-com-soap:userAdmin",

RequestElementName="checkUser",

ResponseNamespace="urn:schemas-syngress-com-soap:userAdmin",

ResponseElementName="checkUserResponse")]

[WebMethod(Description="The checkUser method checks if a user " +

"or moderator is already defined in the database")]

public void checkUser(

string userName, string password, bool isModerator) {

userAdminImplement userAdminObj = new userAdminImplement();

try {

userAdminObj.checkUser(userName, password, isModerator);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Et voilà! You’re done with your first “real”Web Service: the userAdmin Web
Service:The user administration module for the Jokes application.

www.syngress.com

Figure 8.26 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 388

Building a Jokes Web Service • Chapter 8 389

Testing the Public Web Methods
We can immediately check if things work properly by calling the Web Service from
a Visual Basic script.The VBS script shown in Figure 8.27 will add a new user.

Figure 8.27 A Simple Visual Basic Script to Test Adding a New User to the
Database

myWebService = "http://localhost/Jokes1/userAdmin.asmx"

myMethod = "addUser"

'** create the SOAP envelope with the request

myData = ""

myData = myData & "<?xml version=""1.0"" encoding=""utf-8""?>"

myData = myData & "<soap:Envelope xmlns:soap=""http://schemas."

myData = myData & "xmlsoap.org/soap/envelope/"">"

myData = myData & " <soap:Body>"

myData = myData & " <addUser xmlns=""urn:schemas-syngress-"

myData = myData & "com-soap:userAdmin"">"

myData = myData & " <userName>newUser</userName>"

myData = myData & " <password>newPassword</password>"

myData = myData & " </addUser>"

myData = myData & " </soap:Body>"

myData = myData & "</soap:Envelope>"

msgbox(myData)

set requestHTTP = CreateObject("Microsoft.XMLHTTP")

msgbox("xmlhttp object created")

requestHTTP.open "POST", myWebService, false

requestHTTP.setrequestheader "Content-Type", "text/xml"

requestHTTP.setrequestheader "SOAPAction", myMethod

requestHTTP.Send myData

msgbox("request sent")

set responseDocument = requestHTTP.responseXML

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 389

390 Chapter 8 • Building a Jokes Web Service

msgbox(requestHTTP.status)

msgbox(responseDocument.xml)

If things go right, a new user should be added to the database and a message
box depicting a SOAP return envelope should appear as shown in Figure 8.28.

Developing the Jokes Service
The second Web Service to develop is the jokes Web Service.The main feature of
this Web Service is that it lets registered users retrieve jokes.Additionally, it con-
tains methods to administer jokes, such as adding and removing jokes, approving
jokes submitted by users to be visible to other users, and giving users a way to
rate existing jokes. In many respects, things are set up in parallel from what we
have already seen in the userAdmin Web Service, which is the Web Service to
manage user information.

Best Practices for Returning Highly Structured Data
Compared with the userAdmin Web Service you just developed the Jokes Web
Service has one key additional difficulty: How to return joke data. Our require-
ments are as follows:

■ Return anywhere from 1 to 10 jokes.

■ Along with each joke, return its average user rating, and the joke identi-
fier (if for example, a user wants to rate that joke).

From the stored procedure sp_getJokes you can get a SQL record set. One
possibility, then, is to simply return our jokes as “record sets” (the correct term
here is objects of type System.Data.DataSet).This magic works because the .NET

www.syngress.com

Figure 8.27 Continued

Figure 8.28 A Successful Call to Add a New Registered User

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 390

Building a Jokes Web Service • Chapter 8 391

SOAP serializer, which is the piece of code that converts the data into XML
format to be sent back inside a SOAP return envelope, can indeed serialize that
kind of data out of the box. However, returning serialized DataSets may often not
be a good idea because in practice it pretty much forces your clients to run on a
Microsoft .NET platform, counter to the idea of Web Services to be an open
standard.

What alternatives do you have? Again, our advice is to use a simple structure
adapted to the problem at hand. If you want your clients to validate the XML
against a DTD or an XML Schema, you can always pass that information as a
URL (maybe to another Web Service!), but don’t pass that information by default
with every call to the client. In this case, you can pass a structure that looks
essentially like everything above starting from the NewDataSet element; that is,
you want an XML element delineating rows of data, and additional XML ele-
ments delineating the fields of data within each row of data.

This is done very simply by creating a custom C# class, the xmlJokesReturn
class, which is designed to hold a single row of data as shown in Figure 8.29, and
is also available on the Solutions Web site for the book (www.syngress.com/
solutions). Of course, if you prefer, the same could be achieved by using a structure.

Figure 8.29 The xmlJokesReturn Class that Holds the Jokes (xmlJokesReturn.cs)

using System;

namespace jokesService

{

/// <summary>

/// The xmlJokesReturn class is the return type of all public

/// methods returning joke data.

/// </summary>

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class xmlJokesReturn {

/// <value>ID of joke returned</value>

public string jokeID;

/// <value>the actual joke</value>

public string joke;

/// <value>average rating of the joke (can be empty)</value>

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 391

392 Chapter 8 • Building a Jokes Web Service

public string rating;

/// <summary>

/// Public class constructor.

/// </summary>

public xmlJokesReturn() {

}

}

}

Because you may return more than one row of data, of course, you can set up
the getJokes Web method to return an array of objects of type xmlJokesReturn.The
SOAP serializer does the rest automatically.

In Figure 8.30, also available on the Solutions Web site for the book
(www.syngress.com/solutions), you see the definition of the getJokes Web
method (note that we haven’t talked about the corresponding implementation
method yet).

Figure 8.30 getJokes Web Method (jokes.asmx.cs)

[WebMethod]

public xmlJokesReturn[] getJokes(

string userName, string password, int howMany) {

jokesImplement jokesObj = new jokesImplement();

try {

xmlJokesReturn[] myJokes =

jokesObj.getJokes(userName, password, howMany);

return myJokes;

}

// error handler omitted

The SOAP object serializer does what it is supposed to do, that is it returns a
serialized array of xmlJokesReturn objects, and you retrieve a SOAP envelope on
the client that may look as in Figure 8.31, containing two jokes.

www.syngress.com

Figure 8.29 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 392

Building a Jokes Web Service • Chapter 8 393

Figure 8.31 SOAP Response Envelope Containing Two Jokes as Serialized
xmlJokesReturn Objects

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>

<getJokesResponse xmlns="urn:schemas-syngress-com-soap:jokes">

<jokeData>

<jokeID>1</jokeID>

<joke>this is the first joke</joke>

<rating>3.5</rating>

</jokeData>

<jokeData>

<jokeID>2</jokeID>

<joke>this is the second joke</joke>

<rating />

</jokeData>

</getJokesResponse>

</soap:Body>

</soap:Envelope>

Setting Up Internal Methods to
Wrap the Stored Procedure Calls
Similar to the way you proceeded when developing the userAdmin Web Service,
you want to create internal methods to wrap calls to the stored procedures that
interface with the jokes in the database.You should have three stored procedures
that deal with jokes:

■ sp_manageJoke

■ sp_manageRating

■ sp_returnJokes

The corresponding wrapping methods, part of file JokesImplement.cs, are shown
in detail in Figure 8.32 (createSqlManageJoke), Figure 8.33 (createSqlManageRating),

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 393

394 Chapter 8 • Building a Jokes Web Service

and Figure 8.34 (createSqlReturnJokes).The code for all three Figures is also available
on on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.32 createSqlManageJoke Method (jokesImplement.cs)

/// <summary>

/// The createSqlManageJoke method sets up the SQL command object

/// for the stored procedure sp_manageJoke, which deals with

/// adding, updating, and deleting jokes

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user (zero length if N/A)'>

/// </param>

/// <param name='joke'

/// type='string'

/// desc='the joke (zero length if N/A)'>

/// </param>

/// <param name='isModerated'

/// type='string'

/// desc='true/false if this is/is not a moderated joke

/// (zero length if N/A)'>

/// </param>

/// <param name='jokeID'

/// type='string'

/// desc='the joke ID for the joke (zero length if N/A)'>

/// </param>

/// <param name='action'

/// type='string'

/// desc='the action the SQL stored procedure should take

/// (see the stored procedure definition for allowed action

/// keywords)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

www.syngress.com
Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 394

Building a Jokes Web Service • Chapter 8 395

protected internal void createSqlManageJoke(

string userName, string joke, string isModerated,

string jokeID, string action, SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_manageJoke" ;

SqlParameter argUserName =

new SqlParameter("@@userName", SqlDbType.NVarChar, 20);

if(userName.Length > 0) {

argUserName.Value = userName;

} else {

argUserName.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argUserName);

SqlParameter argJoke =

new SqlParameter("@@joke",SqlDbType.NVarChar, 3500);

if(joke.Length > 0) {

argJoke.Value = joke;

} else {

argJoke.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argJoke);

SqlParameter argIsModerated =

new SqlParameter("@@isModerated",SqlDbType.Bit);

if(isModerated.Length > 0) {

argIsModerated.Value = bool.Parse(isModerated);

} else {

argIsModerated.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argIsModerated);

SqlParameter argJokeID =

www.syngress.com

Figure 8.32 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 395

396 Chapter 8 • Building a Jokes Web Service

new SqlParameter("@@jokeID",SqlDbType.Int);

if(jokeID.Length > 0) {

argJokeID.Value = Int32.Parse(jokeID);

} else {

argJokeID.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argJokeID);

SqlParameter argAction =

new SqlParameter("@@action",SqlDbType.NVarChar, 20);

argAction.Value = action;

sqlCommand.Parameters.Add(argAction);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

Figure 8.33 createSqlManageRating Method (jokesImplement.cs)

/// <summary>

/// The createSqlManageRating method sets up the SQL command

/// object for the stored procedure sp_manageRating, which

/// deals with adding and deleting user joke ratings

/// </summary>

/// <param name='jokeID'

/// type='string'

/// desc='the joke ID for the joke we would like to rate'>

/// </param>

/// <param name='rating'

/// type='string'

/// desc='the user rating for the joke (1-5)'>

/// </param>

www.syngress.com

Figure 8.32 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 396

Building a Jokes Web Service • Chapter 8 397

/// <param name='action'

/// type='string'

/// desc='the action the SQL stored procedure should take

/// (see the stored procedure definition for allowed action

/// keywords)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlManageRating(

string jokeID, string rating, string action,

SqlCommand sqlCommand) {

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_manageRating" ;

SqlParameter argJokeID =

new SqlParameter("@@jokeID", SqlDbType.Int);

argJokeID.Value = Int32.Parse(jokeID);

sqlCommand.Parameters.Add(argJokeID);

SqlParameter argRating =

new SqlParameter("@@rating",SqlDbType.TinyInt);

argRating.Value = Int32.Parse(rating);

sqlCommand.Parameters.Add(argRating);

SqlParameter argAction =

new SqlParameter("@@action",SqlDbType.NVarChar, 20);

argAction.Value = action;

sqlCommand.Parameters.Add(argAction);

SqlParameter argReturn =

new SqlParameter("@@return",SqlDbType.NVarChar, 20,

www.syngress.com

Figure 8.33 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 397

398 Chapter 8 • Building a Jokes Web Service

ParameterDirection.Output, true, 0, 0, "",

DataRowVersion.Current, "");

sqlCommand.Parameters.Add(argReturn);

}

Figure 8.34 createSqlReturnJokes Method (JokesImplement.cs)

/// <summary>

/// The createSqlReturnJokes method sets up the SQL command object

/// for the stored procedure sp_returnJokes, which returns jokes

/// </summary>

/// <param name='howMany'

/// type='string'

/// desc='how many jokes we would like (zero length if N/A)'>

/// </param>

/// <param name='isModerated'

/// type='string'

/// desc='true/false if we are interested in (not) moderated

/// jokes (zero length if N/A)'>

/// </param>

/// <param name='returnRandom'

/// type='string'

/// desc='true/false if we are interested getting random jokes

/// (actually, only the starting position is random, from there

/// on we retrieve jokes in sequential order for practical

/// reasons)'>

/// </param>

/// <param name='sqlCommand'

/// type='SqlCommand'

/// desc='a reference to a SQL command object'>

/// </param>

/// <returns>the prepared SQL command object</returns>

protected internal void createSqlReturnJokes(

string howMany, string isModerated, string returnRandom,

SqlCommand sqlCommand) {

www.syngress.com

Figure 8.33 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 398

Building a Jokes Web Service • Chapter 8 399

sqlCommand.CommandType = CommandType.StoredProcedure;

sqlCommand.CommandText = "sp_returnJokes" ;

SqlParameter argHowMany =

new SqlParameter("@@howMany", SqlDbType.Int);

if(howMany.Length > 0) {

argHowMany.Value = Int32.Parse(howMany);

} else {

argHowMany.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argHowMany);

SqlParameter argIsModerated =

new SqlParameter("@@isModerated",SqlDbType.Bit);

if(isModerated.Length > 0) {

argIsModerated.Value = bool.Parse(isModerated);

} else {

argIsModerated.Value = DBNull.Value;

}

sqlCommand.Parameters.Add(argIsModerated);

SqlParameter argReturnRandom =

new SqlParameter("@@returnRandom",SqlDbType.Bit);

argReturnRandom.Value = bool.Parse(returnRandom);

sqlCommand.Parameters.Add(argReturnRandom);

}

Setting Up Internal Methods
to Manage Jokes and Ratings
Now that you can call the stored procedures that deal with jokes in the database,
you want to implement the business logic that deals with jokes.There are four
methods that either add or delete jokes and ratings.

www.syngress.com

Figure 8.34 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 399

400 Chapter 8 • Building a Jokes Web Service

■ addJoke() Checks that a user is registered, and then adds the passed joke
as an unmoderated joke to the system.

■ addRating() Checks that a user is registered, and then adds the passed
rating to the joke having the passed joke identifier to the system.

■ addModerated() Checks that a user is a moderator, and then changes the
isModerated flag of the joke having the passed joke identifier to the
system.

■ deleteUnmoderated() Checks that a user is a moderator, and then
removes the joke having the passed joke identifier, along with all its user
ratings, from the system.

Figure 8.35 shows the business logic for the addJoke method, while Figures
8.36, 8.37 and 8.37 deal with the addRating, addModerated, and deleteUnmoderated
methods respectively. Here’s the code for those methods, (still part of file
JokesImplement.cs)which is also available on on the Solutions Web site for the
book (www.syngress.com/solutions).

Figure 8.35 addJoke Method (JokesImplement.cs)

/// <summary>

/// The addJoke method lets registered users add a joke

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='joke'

/// type='string'

/// desc='the joke we are adding'>

/// </param>

/// <returns>true</returns>

protected internal bool addJoke(

string userName, string password, string joke) {

string retCode;

www.syngress.com
Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 400

Building a Jokes Web Service • Chapter 8 401

try {

// check if user is registered

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(userName, password, "", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not registered

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// add the joke (unmoderated, at this point)

sqlCommand.Parameters.Clear();

createSqlManageJoke(

userName, joke, "false", "", "add", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

www.syngress.com

Figure 8.35 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 401

402 Chapter 8 • Building a Jokes Web Service

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Figure 8.36 addRating Method (JokesImplement.cs)

/// <summary>

/// The addRating method lets registered users rate a joke

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='rating'

/// type='int'

/// desc='the rating of the joke to rate (1-5)'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='the ID of the joke to rate'>

/// </param>

/// <returns>true</returns>

protected internal bool addRating(

string userName, string password, int rating, int jokeID) {

string retCode;

try {

// check if user is registered

www.syngress.com

Figure 8.35 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 402

Building a Jokes Web Service • Chapter 8 403

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(userName, password, "", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not registered

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// add the joke rating

sqlCommand.Parameters.Clear();

createSqlManageRating(

jokeID.ToString(), rating.ToString(), "add", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

www.syngress.com

Figure 8.36 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 403

404 Chapter 8 • Building a Jokes Web Service

throw e;

}

}

Figure 8.37 addModerated Method (JokesImplement.cs)

/// <summary>

/// The addModerated method sets a previously submitted joke

/// to become a moderated joke

/// (for moderators only)

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='joke ID of joke'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of a single joke</returns>

protected internal bool addModerated(

string userName, string password, int jokeID) {

string retCode;

try {

// check if user is a moderator

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(

userName, password, "true", sqlCommand);

www.syngress.com

Figure 8.36 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 404

Building a Jokes Web Service • Chapter 8 405

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not a moderator

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// make the joke a moderated one

sqlCommand.Parameters.Clear();

createSqlManageJoke(userName, "", "true", jokeID.ToString(),

"modify", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

www.syngress.com

Figure 8.37 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 405

406 Chapter 8 • Building a Jokes Web Service

Figure 8.38 deleteUnmoderated Method (JokesImplement.cs)

/// <summary>

/// The deleteUnmoderated method deletes a previously

/// submitted joke (unmoderated) joke

/// (for moderators only)

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='joke ID of joke'>

/// </param>

/// <returns>true</returns>

protected internal bool deleteUnmoderated(

string userName, string password, int jokeID) {

string retCode;

try {

// check if user is a moderator

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(

userName, password, "true", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

www.syngress.com
Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 406

Building a Jokes Web Service • Chapter 8 407

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not a moderator

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// delete the joke

sqlCommand.Parameters.Clear();

createSqlManageJoke(

userName, "", "", jokeID.ToString(), "delete", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// catch problems within the stored procedure

if (retCode == "S_OK") {

return true;

} else {

throw new jokeException(retCode);

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Setting Up Internal Methods to Return Jokes
Finally, there are two methods that return joke data.

■ getJokes() Checks that a user is registered, and then returns one or more
moderated jokes, depending on the argument passed.

www.syngress.com

Figure 8.38 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 407

408 Chapter 8 • Building a Jokes Web Service

■ getUnmoderated() Checks that user is a moderator, and then returns one
or more moderated jokes, depending on the argument passed.

As mentioned above, we forgo returning DataSets, and return instead an array
of type xmlJokesReturn. Figure 8.39 shows the code for the getJokes method, while
Figure 8.40 details method getUnmoderated.The corresponding code for both
Figures is available on the Solutions Web site for the book (www.syngress.com/
solutions).

Figure 8.39 getJokes Method (JokesImplement.cs)

/// <summary>

/// The getJokes method returns howMany new jokes from

/// the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='howMany'

/// type='int'

/// desc='number of jokes to return (1-10)'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn) of a

/// single joke</returns>

protected internal xmlJokesReturn[] getJokes(

string userName, string password, int howMany) {

string retCode;

try {

// check if user is registered

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 408

Building a Jokes Web Service • Chapter 8 409

myUser.createSqlCheckUser(userName, password, "", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not registered

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// retrieve a random joke

// maximum is 10 jokes

if((howMany < 1) || (howMany > 10)) {

throw new jokeException("F_10JokesMax");

}

sqlCommand.Parameters.Clear();

createSqlReturnJokes(

howMany.ToString(), "true", "true", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

SqlDataAdapter sqlDataAdapter = new SqlDataAdapter(sqlCommand);

DataTable dataTable = new DataTable("sqlReturn");

sqlDataAdapter.Fill(dataTable);

www.syngress.com

Figure 8.39 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 409

410 Chapter 8 • Building a Jokes Web Service

// convert SQL table into xmlJokesReturn class

int rowCount = dataTable.Rows.Count;

xmlJokesReturn[] myJokes = new xmlJokesReturn[rowCount];

for(int i = 0; i < rowCount; i++) {

myJokes[i] = new xmlJokesReturn();

myJokes[i].jokeID = dataTable.Rows[i][0].ToString();

myJokes[i].joke = dataTable.Rows[i][1].ToString();

myJokes[i].rating = dataTable.Rows[i][2].ToString();

}

// catch problems within the stored procedure

if(rowCount > 0) {

return myJokes;

} else {

throw new jokeException("F_noJokes");

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

Figure 8.40 getUnmoderated Method (JokesImplement.cs)

/// <summary>

/// The getUnmoderated method retrieves howMany jokes from

/// the database

/// (for moderators only)

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

www.syngress.com

Figure 8.39 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 410

Building a Jokes Web Service • Chapter 8 411

/// <param name='howMany'

/// type='int'

/// desc='number of jokes to return'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of a single joke</returns>

protected internal xmlJokesReturn[] getUnmoderated(

string userName, string password, int howMany) {

string retCode;

try {

// check if user is a moderator

userAdminImplement myUser = new userAdminImplement();

SqlCommand sqlCommand = new SqlCommand();

myUser.createSqlCheckUser(

userName, password, "true", sqlCommand);

databaseAccess myDatabase = new databaseAccess();

sqlCommand.Connection = myDatabase.getConnection();

sqlCommand.Connection.Open();

sqlCommand.ExecuteNonQuery();

retCode = sqlCommand.Parameters["@@return"].Value.ToString();

// exit, if user not a moderator

if (retCode != "S_OK") {

sqlCommand.Connection.Close();

throw new jokeException(retCode);

}

// retrieve the first <howMany> unmoderated jokes

// maximum is 10 jokes

www.syngress.com

Figure 8.40 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 411

412 Chapter 8 • Building a Jokes Web Service

if((howMany < 1) || (howMany > 10)) {

throw new jokeException("F_10JokesMax");

}

sqlCommand.Parameters.Clear();

createSqlReturnJokes(

howMany.ToString(), "false", "false", sqlCommand);

sqlCommand.ExecuteNonQuery();

sqlCommand.Connection.Close();

SqlDataAdapter sqlDataAdapter = new SqlDataAdapter(sqlCommand);

DataTable dataTable = new DataTable("sqlReturn");

sqlDataAdapter.Fill(dataTable);

// convert SQL table into xmlJokesReturn class

int rowCount = dataTable.Rows.Count;

xmlJokesReturn[] myJokes = new xmlJokesReturn[rowCount];

for(int i = 0; i < rowCount; i++) {

myJokes[i] = new xmlJokesReturn();

myJokes[i].jokeID = dataTable.Rows[i][0].ToString();

myJokes[i].joke = dataTable.Rows[i][1].ToString();

myJokes[i].rating = dataTable.Rows[i][2].ToString();

}

// catch problems within the stored procedure

if(rowCount > 0) {

return myJokes;

} else {

throw new jokeException("F_noJokes");

}

// catch problems with the database

} catch (Exception e) {

throw e;

}

}

www.syngress.com

Figure 8.40 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 412

Building a Jokes Web Service • Chapter 8 413

Creating the Public Web Methods
You are now finished with the internal methods, and can now go about imple-
menting the public Web methods for the jokes Web Service. Remember that we
put all of those Web methods in the jokes class (the file on the Solutions Web site
for the book is jokes.asmx.cs). Figures 8.41 through 8.46 detail the code for those
public Web methods.

Figure 8.41 addJoke Web Method (jokes.asmx.cs)

/// <summary>

/// The addJoke method adds a new joke to the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='joke'

/// type='string'

/// desc='the joke'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addJoke",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="addJoke",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="addJokeResponse")]

[WebMethod(Description="The addJoke method adds a new joke " +

"to the database")]

public void addJoke(

string userName, string password, string joke) {

jokesImplement jokesObj = new jokesImplement();

try {

jokesObj.addJoke(userName, password, joke);

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 413

414 Chapter 8 • Building a Jokes Web Service

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Figure 8.42 getJokes Web Method (jokes.asmx.cs)

/// <summary>

/// The getJokes method gets howMany (moderated) jokes

/// from the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

/// </param>

/// <param name='howMany'

/// type='int'

/// desc='how many jokes we would like'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of howMany jokes</returns>

[SoapDocumentMethodAttribute(Action="getJokes",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="getJokes",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="getJokesResponse")]

www.syngress.com

Figure 8.41 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 414

Building a Jokes Web Service • Chapter 8 415

[WebMethod(Description="The getJokes method gets <howMany> " +

"(moderated) jokes from the database")]

[return: XmlElementAttribute("jokeData", IsNullable=false)]

public xmlJokesReturn[] getJokes(

string userName, string password, int howMany) {

jokesImplement jokesObj = new jokesImplement();

try {

xmlJokesReturn[] myJokes =

jokesObj.getJokes(userName, password, howMany);

return myJokes;

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

return null; // code never reached, but needed by compiler

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

return null; // code never reached, but needed by compiler

}

}

Figure 8.43 addRating Web Method (jokes.asmx.cs)

/// <summary>

/// The addRating method lets a user add a rating

/// for a joke to the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of registered user'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of registered user'>

www.syngress.com

Figure 8.42 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 415

416 Chapter 8 • Building a Jokes Web Service

/// </param>

/// <param name='rating'

/// type='int'

/// desc='rating of the joke (1-5)'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='ID of the joke'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addRating",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="addRating",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="addRatingResponse")]

[WebMethod(Description="The addRating method lets a user add a " +

"rating for a joke to the database")]

public void addRating(

string userName, string password, int rating, int jokeID) {

jokesImplement jokesObj = new jokesImplement();

try {

if((rating < 1) && (rating > 5)) {

throwFault("Fault occurred", "F_ratingInvalid", userName);

} else {

jokesObj.addRating(userName, password, rating, jokeID);

}

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

www.syngress.com

Figure 8.43 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 416

Building a Jokes Web Service • Chapter 8 417

Figure 8.44 getUnmoderated Web Method (jokes.asmx.cs)

/// <summary>

/// The getUnmoderated method lets a moderator retrieve

/// howMany unmoderated jokes from the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='howMany'

/// type='int'

/// desc='how many jokes we would like'>

/// </param>

/// <returns>an XML representation (xmlJokesReturn)

/// of howMany jokes</returns>

[SoapDocumentMethodAttribute(Action="getUnmoderated",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="getUnmoderated",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="getUnmoderatedResponse")]

[WebMethod(Description="The getUnmoderated method lets a " +

"moderator retrieve <howMany> unmoderated jokes from " +

"the database")]

[return: XmlElementAttribute("jokeData", IsNullable=false)]

public xmlJokesReturn[] getUnmoderated(

string userName, string password, int howMany) {

jokesImplement jokesObj = new jokesImplement();

try {

xmlJokesReturn[] myJokes =

jokesObj.getUnmoderated(userName, password, howMany);

return myJokes;

// catch jokeExceptions

www.syngress.com

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 417

418 Chapter 8 • Building a Jokes Web Service

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

return null; // code never reached, but needed by compiler

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

return null; // code never reached, but needed by compiler

}

}

Figure 8.45 addModerated Web Method (jokes.asmx.cs)

/// <summary>

/// The addModerated method lets a moderator set a joke to be

/// 'moderated', i.e. accessible to regular users

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='ID of joke'>

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="addModerated",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="addModerated",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="addModeratedResponse")]

www.syngress.com

Figure 8.44 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 418

Building a Jokes Web Service • Chapter 8 419

[WebMethod(Description="The addModerated method lets a " +

"moderator set a joke to be 'moderated', i.e. accessible " +

"to regular users")]

public void addModerated(

string userName, string password, int jokeID) {

jokesImplement jokesObj = new jokesImplement();

try {

jokesObj.addModerated(userName, password, jokeID);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Figure 8.46 deleteUnmoderated Web Method (jokes.asmx.cs)

/// <summary>

/// The deleteUnmoderated method lets a moderator delete a

/// (unmoderated) joke from the database

/// </summary>

/// <param name='userName'

/// type='string'

/// desc='name of moderator'>

/// </param>

/// <param name='password'

/// type='string'

/// desc='password of moderator'>

/// </param>

/// <param name='jokeID'

/// type='int'

/// desc='ID of joke'>

www.syngress.com

Figure 8.45 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 419

420 Chapter 8 • Building a Jokes Web Service

/// </param>

/// <returns>nothing</returns>

[SoapDocumentMethodAttribute(Action="deleteUnmoderated",

RequestNamespace="urn:schemas-syngress-com-soap:jokes",

RequestElementName="deleteUnmoderated",

ResponseNamespace="urn:schemas-syngress-com-soap:jokes",

ResponseElementName="deleteUnmoderatedResponse")]

[WebMethod(Description="The deleteUnmoderated method lets a " +

"moderator delete a (unmoderated) joke from the database")]

public void deleteUnmoderated(

string userName, string password, int jokeID) {

jokesImplement jokesObj = new jokesImplement();

try {

jokesObj.deleteUnmoderated(userName, password, jokeID);

// catch jokeExceptions

} catch (jokeException e) {

throwFault("Fault occurred", e.failReason, userName);

}

// then, catch general System Exceptions

catch (Exception e) {

throwFault(e.Message, "F_System", userName);

}

}

Remember you need to either add the same error handling routine,
throwFault, as you did for the userAdmin Web Service, or reference that method
(in which case you need to modify its access scope).

This completes the Web Service section of the jokes Web Service.As
mentioned before, you can find the complete code for the Jokes Web Service
in the directory jokesService on the Solutions Web site for the book
(www.syngress.com/solutions).

Let’s quickly review what you have done so far:You have implemented two
out of three tiers of a complex Web application that delivers jokes to users using
Web Services technology.You have set up a database back-end system to hold
user and joke information, you have created business logic components to
manage users and jokes, and you have implemented a data access mechanism

www.syngress.com

Figure 8.46 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 420

Building a Jokes Web Service • Chapter 8 421

using Web Services.Although you could now go ahead and publish your Web
Service in a UDDI registry and wait for clients out there to consume our Web
Service, you should consider implementing an additional step and build a portal
application that lets users interface with the jokes application through Windows
forms.

www.syngress.com

Creating Human Readable Documentation
As you set up the Web Service project, you instructed the C# compiler
to automatically create an XML documentation output file (refer back to
Figure 8.12). If you now look at that file, you should see something sim-
ilar to Figure 8.47.

Developing & Deploying…

Figure 8.47 XML Documentation Generated by the C# Compiler
(Excerpt)

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 421

422 Chapter 8 • Building a Jokes Web Service

www.syngress.com

Although the comments appear as they should, this document
needs some improvement to be truly useful for human consumption.

Dan Vallejo was kind enough to make an XSLT style sheet
(www.conted.bcc.ctc.edu/users/danval/CSharp/CSharp_Code_Files/doc.x
sl) publicly available on his C# Web site at www.conted.bcc.ctc.edu/
users/danval that generates a nice looking HTML documentation file.
Although not quite as functionally rich as the documentation generated
by, say, the javadoc tool in the Java world, it is a first step in the right
direction. The XSLT file was originally conceived by Anders Hejlsberg. We
use it by permission of the author.

After applying that style sheet, our documentation looks as in
Figure 8.48:

Figure 8.48 HTML Documentation after Applying a Style Sheet
(Excerpt)

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 422

Building a Jokes Web Service • Chapter 8 423

Creating a Client Application
Let’s go ahead and develop a simple Windows Forms-based client for our Jokes
Web Service.The complete code for this application is on the Solutions Web site
for the book (www.syngress.com/solutions) in the directory jokesClient.

Start by opening up Visual Studio.NET. Go to File | New | Project,
choose the entry Windows Application under the Visual C# Projects folder,
keep the default Location, and enter jokesClient as the Name of the project, as
indicated in Figure 8.49.

This will set up a new form, and create supporting project files.
Next, add a reference to the Jokes Web Server. Right click on the jokesClient

project in the Solutions Explorer and select Add Web Reference.At the Address
input box, enter http://localhost/Jokes1/userAdmin.asmx, as shown in
Figure 8.50.

Once you verify that everything is fine, click Add Reference. Do the same
for the Jokes Web Service, which is at the URL http://localhost/jokesService/
jokes.asmx.

These references create the necessary proxy classes for your client to access our
Jokes application. Keep in mind that those references are static, and as you change
the Web Service public Web methods, you need to manually refresh the Web refer-
ences. (You don’t need to do this if you change the internal implementation classes,
which was, after all, one of the reason we created them in the first place.)

www.syngress.com

Figure 8.49 Creating The jokesService Client as a Windows Forms Application

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 423

424 Chapter 8 • Building a Jokes Web Service

The rest is simply an exercise in Windows Forms programming.Things to
keep in mind are:

■ Even though Web Services are stateless, you can let your users “log on”
by asking for their credentials once, checking them against the user
database with the checkUser Web method, and then cache them locally
on the client

■ The Web Service throws SOAP exceptions if things go wrong.You can
extract a user-friendly message by looking at the failReason custom XML
element in the SOAP exception return envelope.

Look at Figure 8.51, Figure 8.52, and Figure 8.53 to see how our client
application looks.

www.syngress.com

Figure 8.50 Adding a Web Reference to the Web Service

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 424

Building a Jokes Web Service • Chapter 8 425

www.syngress.com

Figure 8.51 The Web Service Client at Start Up

Figure 8.52 The Web Service Client after Logging On as a User, Retrieving
Some Jokes, and Adding a User Joke Rating

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 425

426 Chapter 8 • Building a Jokes Web Service

Figure 8.54 shows the code for the Jokes Client, ignoring code generated
through the form designer. For the complete code see file jokesClient.cs on the
on the Solutions Web site for the book (www.syngress.com/solutions).

Figure 8.54 Jokes Client Application (jokesClient.cs)

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Web.Services.Protocols;

using System.Xml;

namespace jokesClient

{

/// <summary>

/// Form f_jokeClient.

/// </summary>

www.syngress.com

Figure 8.53 The Web Service Client after Logging On as a Moderator,
Retrieving One Unmoderated Joke, and Accepting it to become Moderated

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 426

Building a Jokes Web Service • Chapter 8 427

/// <remarks>

/// Author: Adrian Turtschi; aturtschi@hotmail.com; Sept 2001

/// </remarks>

public class f_jokeClient : System.Windows.Forms.Form

{

// placeholders for Web Service objects

private userAdmin.userAdmin userAdminObj ;

private jokes.jokes jokesObj;

// remembe if objects have been created

private bool userAdminObjCreated = false;

private bool jokesObjCreated = false;

// remember user name and password, and moderator status

private string userName = "";

private string password = "";

private bool isModerator = false;

// hold jokes

private jokes.xmlJokesReturn[] myJokes;

private int jokesReturned = 0;

private int currentJoke = 0;

// are we looking at moderated jokes or not?

private bool moderatedJokes = false;

// IGNORE setting up of form elements

public f_jokeClient() {

InitializeComponent();

}

public void InitializeComponent() {

// IGNORE

}

protected override void Dispose(bool disposing) {

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 427

428 Chapter 8 • Building a Jokes Web Service

if(disposing)

{

if (components != null)

{

components.Dispose();

}

}

base.Dispose(disposing);

}

[STAThread]

static void Main() {

Application.Run(new f_jokeClient());

}

private void displayJoke(

string joke, int jokeNumber, int totalJokes, decimal rating,

bool moderatedJokes) {

this.l_statusMessage.Text = "";

if(totalJokes == 0) {

this.gb_jokes.Enabled = false;

this.tb_jokesJoke.Text = "";

this.nud_jokesRating.Value = 3;

this.l_jokesNumber.Text = "(no jokes)";

this.l_jokesRating.Text = "(no rating)";

return;

}

if(totalJokes > 0) {

this.gb_jokes.Enabled = true;

if (!moderatedJokes) {

this.b_jokesAddModerated.Enabled = true;

this.b_jokesRemove.Enabled = true;

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 428

Building a Jokes Web Service • Chapter 8 429

this.nud_jokesRating.Enabled = false;

this.b_jokesAddRating.Enabled = false;

} else {

this.b_jokesAddModerated.Enabled = false;

this.b_jokesRemove.Enabled = false;

this.nud_jokesRating.Enabled = true;

this.b_jokesAddRating.Enabled = true;

}

}

if(totalJokes > 1) {

if(jokeNumber == 1) {

this.b_jokesNext.Enabled = true;

this.b_jokesPrev.Enabled = false;

} else {

if(jokeNumber == totalJokes) {

this.b_jokesNext.Enabled = false;

this.b_jokesPrev.Enabled = true;

} else {

this.b_jokesNext.Enabled = true;

this.b_jokesPrev.Enabled = true;

}

}

} else {

this.b_jokesNext.Enabled = false;

this.b_jokesPrev.Enabled = false;

}

this.tb_jokesJoke.Text = joke;

this.l_jokesNumber.Text = "Joke " + jokeNumber.ToString()

+ " of " + totalJokes.ToString();

this.l_jokesRating.Text = "Avg. rating: " + rating.ToString();

}

private void logon(bool isModerator, bool register) {

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 429

430 Chapter 8 • Building a Jokes Web Service

string userName = this.tb_logonUserName.Text;

string password = this.tb_logonPassword.Text;

if((userName.Length > 0) && (password.Length > 0)

&& (userName.Length <= 20) && (password.Length <= 20)) {

if(!this.userAdminObjCreated) {

this.userAdminObj = new userAdmin.userAdmin();

this.userAdminObjCreated = true;

}

try {

// register new user?

if(register) {

// Call our Web Service method addUser

this.userAdminObj.addUser(userName, password);

} else {

// Call our Web Service method checkUser

this.userAdminObj.checkUser(

userName.Substring(0,Math.Min(userName.Length, 20)),

password.Substring(0,Math.Min(password.Length, 20)),

isModerator);

}

// OK

this.userName = userName;

this.password = password;

this.isModerator = isModerator;

if(isModerator) {

this.gb_moderatorMenu.Enabled = true;

} else {

this.gb_moderatorMenu.Enabled = false;

}

this.gb_userMenu.Enabled = true;

this.gb_userInfo.Enabled = false;

this.l_statusMessage.Text = "";

displayJoke("", 0, 0, 0, this.isModerator);

if(register) {

this.l_statusMessage.Text = "OK: you have successfully " +

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 430

Building a Jokes Web Service • Chapter 8 431

"registered with the system!";

}

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text = "Error: " +

customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

}

private void getJokes(int howMany, bool moderatedJokes) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method getJokes

if(moderatedJokes) {

myJokes = this.jokesObj.getJokes(

userName, password, howMany);

} else {

myJokes = this.jokesObj.getUnmoderated(

userName, password, howMany);

}

// OK

this.jokesReturned = myJokes.Length;

if(this.jokesReturned == 0) {

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 431

432 Chapter 8 • Building a Jokes Web Service

displayJoke("", 0, 0, 0, this.isModerator);

} else {

this.currentJoke = 1;

displayJoke(

myJokes[this.currentJoke - 1].joke,

this.currentJoke,

this.jokesReturned,

// need leading zero in case NULL is returned from

// the database, i.e. joke unrated (which

// will come back as zero length string)

Decimal.Parse(

"0" + myJokes[this.currentJoke - 1].rating),

moderatedJokes);

}

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_logonUserLogOn_Click(

object sender, System.EventArgs e) {

logon(false, false);

}

private void b_logonModeratorLogOn_Click(

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 432

Building a Jokes Web Service • Chapter 8 433

object sender, System.EventArgs e) {

logon(true, false);

}

private void b_logonRegisterNow_Click(

object sender, System.EventArgs e) {

logon(false, true);

}

private void b_moderatorMakeModerator_Click(

object sender, System.EventArgs e) {

displayJoke("", 0, 0, 0, this.isModerator);

string newModeratorUserName =

this.tb_moderatorNewModeratorUserName.Text;

if(newModeratorUserName.Length > 0) {

newModeratorUserName = newModeratorUserName.Substring(

0,Math.Min(newModeratorUserName.Length, 20));

if(!this.userAdminObjCreated) {

this.userAdminObj = new userAdmin.userAdmin();

this.userAdminObjCreated = true;

}

try {

// Call our Web Service method addModerator

this.userAdminObj.addModerator(

this.userName, this.password, newModeratorUserName);

// OK

this.l_statusMessage.Text =

"OK: " + newModeratorUserName + " is now a moderator";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 433

434 Chapter 8 • Building a Jokes Web Service

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

}

private void b_userGetJokes_Click(

object sender, System.EventArgs e) {

displayJoke("", 0, 0, 0, this.isModerator);

this.moderatedJokes = true;

getJokes((int)this.nud_userHowMany.Value, this.moderatedJokes);

}

private void b_moderatorGetUnmoderated_Click(

object sender, System.EventArgs e) {

displayJoke("", 0, 0, 0, this.isModerator);

this.moderatedJokes = false;

getJokes(

(int)this.nud_moderatorHowMany.Value, this.moderatedJokes);

}

private void b_jokesPrev_Click(object sender, System.EventArgs e) {

// displayJoke() ONLY enables this button if there are jokes

// to display, so we don't need a sanity check here.

this.currentJoke = this.currentJoke - 1;

displayJoke(

myJokes[this.currentJoke - 1].joke,

this.currentJoke,

this.jokesReturned,

Decimal.Parse("0" + myJokes[this.currentJoke - 1].rating),

this.moderatedJokes);

}

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 434

Building a Jokes Web Service • Chapter 8 435

private void b_jokesNext_Click(object sender, System.EventArgs e) {

// displayJoke() ONLY enables this button if there are jokes

// to display, so we don't need a sanity check here.

this.currentJoke = this.currentJoke + 1;

displayJoke(

myJokes[this.currentJoke - 1].joke,

this.currentJoke,

this.jokesReturned,

Decimal.Parse("0" + myJokes[this.currentJoke - 1].rating),

this.moderatedJokes);

}

private void b_jokesAddRating_Click(

object sender, System.EventArgs e) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method addRating

this.jokesObj.addRating(

userName,

password,

(int)this.nud_jokesRating.Value,

Int32.Parse(this.myJokes[this.currentJoke-1].jokeID));

// OK

// try to tell user not to rate the joke again...

this.b_jokesAddRating.Enabled = false;

this.l_statusMessage.Text = "Note: New rating is " +

"reflected only once joke has been reloaded!";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 435

436 Chapter 8 • Building a Jokes Web Service

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_jokesAddModerated_Click(object sender, System.EventArgs

e) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method addRating

this.jokesObj.addModerated(

userName,

password,

Int32.Parse(this.myJokes[this.currentJoke-1].jokeID));

// OK

this.l_statusMessage.Text =

"OK: Joke is now available for registered users!";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 436

Building a Jokes Web Service • Chapter 8 437

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_jokesRemove_Click(

object sender, System.EventArgs e) {

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;;

}

// Call our Web Service method addRating

this.jokesObj.deleteUnmoderated(

userName,

password,

Int32.Parse(this.myJokes[this.currentJoke-1].jokeID));

// OK

this.l_statusMessage.Text = "OK: Joke has been removed!";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

private void b_userAddJoke_Click(

object sender, System.EventArgs e) {

www.syngress.com

Figure 8.54 Continued

Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 437

438 Chapter 8 • Building a Jokes Web Service

displayJoke("", 0, 0, 0, this.isModerator);

string newJoke = this.tb_userJoke.Text;

if(newJoke.Length > 0) {

newJoke = newJoke.Substring(

0,Math.Min(newJoke.Length, 3500));

try {

if(!this.jokesObjCreated) {

this.jokesObj = new jokes.jokes();

this.jokesObjCreated = true;

}

// Call our Web Service method addRating

this.jokesObj.addJoke(

userName,

password,

newJoke);

// OK

this.l_statusMessage.Text = "OK: Joke has been " +

"submitted for consideration to the system!";

this.tb_userJoke.Text = "";

} catch (SoapException ex) {

XmlNode[] customErrorMsgs = ex.OtherElements;

if(customErrorMsgs.Length > 0) {

XmlNode customErrorMsg = customErrorMsgs[0];

if (customErrorMsg.InnerText.Length > 0) {

this.l_statusMessage.Text =

"Error: " + customErrorMsg.InnerText;

return;

}

}

} catch (Exception ex) {

this.l_statusMessage.Text = "Error: " + ex.Message;

}

}

}

}

}

www.syngress.com

Figure 8.54 Continued

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 438

Building a Jokes Web Service • Chapter 8 439

Some Ideas to Improve the Jokes Web Service
If you like the idea of the Jokes application you may want to think about
expanding it a little bit. It would be nice, for example, to get to know the users
and to have a logging and reporting subsystem to identify who submits jokes, and
which jokes are the most popular.Another idea would be to add additional meta-
data to the jokes. For instance you could add joke categories that describe the
joke subject matter.Along those lines you may want to have an additional Web
Service that lets moderators manage those categories and add new ones.You
could also delve into the internationalization classes that the .NET Framework
has built in and localize status and error messages.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 439

440 Chapter 8 • Building a Jokes Web Service

Summary
In this chapter we have set out to develop a real-world Web Service application,
namely a service that delivers jokes to the Internet community.We started out by
gathering requirements, such that we want to know our users, that our users should
be able to submit their own jokes and rate other user’s jokes, and that there should
be an administrative module in place to manage both users and jokes.

Our choice of developing this application as a Web Service was reinforced by
the fact that Web Services make our application universally accessible, even for
users behind corporate firewalls, and that Web Services give us support for non-
English languages for free because they are based on XML and Unicode.

We started out our design by using a visual modeling tool in order to get a
clear road map for our back-end and middle tier application architecture.We
designed the various components of our application in such a way that we had a
clear separation between a thin Web Service “front end” layer, and implementa-
tion classes where the business logic of our application sits.We abstracted access
to the Microsoft SQL Server database by providing for wrapper methods for the
SQL stored procedures and by creating a separate data access class.We also
designed a security and error handling mechanism, and we made the first steps in
implementing an application logging system based on interaction with the
machine Event Log.

Once we had the database schema and the middle tier object model firmly in
place, we started implementing the various pieces in a methodical way, starting at
the back end. Because the various layers of our application are clearly separated, it
would have been possible to create our project in a team of developers, say one
person writing the back end infrastructure, one person writing the business logic,
and a third person writing the actual Web Service itself.

Apart from encountering a very methodical way towards application develop-
ment in general, we have seen a number of best practices in the area of Web
Services:

■ Don’t put a lot of business logic into your Web Service classes! Have
implementation classes do the heavy lifting.This way, you also don’t lim-
ited yourself to Web Services as the only way to access your application;
there may be instances where you want Internet users to access your
application through Web Services, whereas it may be better for intranet
users to use COM/DCOM or .NET Remoting.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 440

Building a Jokes Web Service • Chapter 8 441

■ Put special emphasis on how the XML should look like between Web
Service client and server. But don’t limit yourself to the best case, rather
decide from the very start how error information should be communi-
cated to the client, particularly if the error can be corrected by the
client.The SOAP Fault mechanism is a good start, but it has the disad-
vantage that it is an all-or-nothing mechanism.You may want to think
about a scheme where the server can communicate to the client that part
of the information it received was all right, but not all of it.

■ There are alternatives to sending relation data through SOAP using
.NET DataSets. If you think your clients will not all be running on
Microsoft’s .NET platform you may want to create an alternative (and
simpler!) schema to bring such data to your clients.

■ Because of inherent the limitations of state management in Web Services
there are currently probably few alternatives than to send user authenti-
cation information to the server with every single Web Service request.

■ Pay special attention to add documentation comments in our code
throughout the project from the very start.You can then utilize the
.NET feature to automatically generate project documentation files in
XML format for you.You can use those files to generate your API docu-
mentation as a set of, say, HTML pages.

Lastly, we developed a client application based on Windows Forms to use
our service.

Solutions Fast Track

Motivations and Requirements
for the Jokes Web Service

Internet based applications have to be universally accessible; on a technical
level, this means they should work well with corporate firewalls, and on
a user level, they have to support an international audience. Both can be
achieved by employing Web Service technology.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 441

442 Chapter 8 • Building a Jokes Web Service

Functional Application Design

Security, state management, and error handling are critical elements of
application architecture that need to be considered first.

Implementing the Jokes Data Repository

Visual Studio.NET includes a fully working copy of Microsoft’s SQL
Server Desktop Engine.

Visual Studio.NET’s Server Explorer lets you interface with data
repositories such as Microsoft SQL Server, including both reading and
writing database schemas and data.

Starting the application development process by implementing the back-
end first is usually a good idea.

Implementing the Jokes Middle Tier

Visual Studio.NET continues in the tradition of the Visual Studio
product line in being a very comfortable and efficient environment for
application development.

It is often a good idea to extend the System.Exception class to add custom
error handling mechanisms, such as additional logging functionality.

When throwing a new exception in a Web Service context the .NET
runtime will automatically send a SOAP Fault back to the client
application.

The .NET Framework allows you to extend SOAP Faults to include
custom XML elements, such as user friendly status or error information.

Web Service security can either be implemented using the standard
ASP.NET security mechanisms, or using a custom authentication and
authorization scheme.We have chosen the latter method and
implemented a stateless security system for the Jokes Web Service.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 442

Building a Jokes Web Service • Chapter 8 443

Creating a Client Application

Web Service clients that run on the .NET Framework can be very easily
created through employing Web References.

Caching user credentials on the client is one way to address state
management and security.

Q: My back-end data repository is not Microsoft SQL Server. How do I go
about accessing my data?

A: One solution is to use the data access classes provided in the
System.Data.OleDb namespace, that allow you to open data connections to
essentially all the data sources that have OLEDB providers, such as Microsoft
Office files or Oracle databases. However, because the .NET Framework is
still very new, you may run into problems if you stray too far from the main
stream. For instance, those classes don’t currently work well with Microsoft’s
own Exchange 2000 Web Storage System, particularly if you are dealing with
multi valued fields.Your last recourse is to use straight OLEDB or straight
ADO through the .NET COM Interoperability layer.

Q: What options do I have to have the Jokes Web Service perform better?

A: As a first step, you want to build the application in Release configuration.
Because Jokes is an ASP.NET application, you then have all the performance
options of ASP.NET at your disposal. Particularly, you may want to look into
the ASP.NET caching system.

www.syngress.com

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 443

444 Chapter 8 • Building a Jokes Web Service

Q: How do I deploy a Web Service?

A: Deploying an ASP.NET application is as easy as creating a new IIS virtual
directory on a production machine and copying all the application files into
the new location. Be sure, though, to compile your application in Release
mode.

Q: Do I need .NET on the client to use the Jokes application?

A: No, not at all.While the client application we created in this chapter does in
fact run only on a machine that has the .NET Framework installed, this is
not a prerequisite.Any client that allows you to call a Web Service will do;
specifically, all you need is a client that can send data over HTTP—so you
can certainly go ahead and write a client that runs in a Web browser.

www.syngress.com

206_XMLweb_08.qxd 6/25/02 4:47 PM Page 444

445

Index
A
Absolute positioning, 268
Access 2000, 234, 238–242, 250, 252
Active Data Objects (ADO), 300, 302
Active Server Page (ASP), 10
Ad hoc queries, 305
Adding data, 272
Adding new users, 371–375
Administration

customer, 275–278
user, 371–390
Web sites, 266–267

Administration login (adminLogin.aspx),
266–267

Administration page (adminPage.aspx),
268–274

ADO. See Active Data Objects (ADO)
ADOCatalog, 278–284
ADO.NET

based on XML, 68, 81
namespace of classes, 49
.NET framework, 56–57
XML Schema Definition (XSD), 76

AirportWeather example, 225–227
Aliasing, 248
Antechinus C# editor, 44
Application design

adding new users, 371–375
administration login

(adminLogin.aspx), 266–267
administration page (adminPage.aspx),

268–274
ADOCatalog, 278–284
business logic layer, implementing, 361
catalog, rendering, 289–290
checking existing user information,

376–379

client application, creating, 423–438
code, creating, 290–292
customer administration, 275–278
database-access component, 369–371
error handling, 345, 349, 366–369,

384–386
improvement ideas, 439
moderators, 379–381
motivation and requirements, 338–339
returning highly structured data,

390–393
security considerations, 344–345
start.aspx page, 288–289
state management, 345
stored procedures, creating, 244–250,

348–361
user administration service, 371–390
user interface, 287–292
Visual Studio project, 361–365
Web Service architecture, defining,

342–345
Web Services, creating, 250–259
Web Services, implementing, 361
Web Services, testing, 259–263
Web site, administration of, 266–275
Web site, designing, 264–266
wrapping stored procedure calls,

393–399
WSDL Web references, 263–264
XMLCart, 284–287
See also Data; Databases; Public Web

methods
Application development, 43–55
Application event log, 366
Argument types, wrong, 165
Arithmetic, floating-point, 161
Arrays, 20–21
.asmx files, 10–11

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 445

446 Index

ASP. See Active Server Page
asp controls, 288
ASP.NET

.asmx extension, 9–11
building Internet applications, 30
DataSet class, 21
Hello World class, 3
IIS 5.0 prerequisite, 65
installation, 36
message transmission over HTTP, 18
.NET framework, 55–56
premium, 65
primary user interfaces, 60
Service1 default Web Service, 362
Web Forms, 30
Web Services, 61
Web Services, testing, 259–263
Windows 95/98 not supported, 32
XML knowledge requirement, 68

ASP.NET/ADO.NET shopping cart. See
Shopping-cart example

.aspx files, 11–15, 55
Assemblies, 39, 42
Authentication schemes, 191–192, 306
Authorization, 203
Auto-generated code, customizing, 15
autonumber data type, 240, 243
Available physical memory, 177

B
Base Class Libraries, 30, 49–55
Binary data, 207
Building applications, 7
Business logic layer, 361

C
C# language, 43–45, 59–60
Caching, smart, 56

Catalog, rendering, 289–290
Checking existing user information,

376–379
CIL. See Intermediate Language (IL)
Classes

loading in CLR, 37
transparent, 17

Cleanup of objects, 37–38
Client application

creating, 423–438
writing, 167–174

Client proxy class, 158
CLR. See Common Language Runtime
Code

creating, 290–292
documenting, 365

Code-behind, 55, 253, 267
codebehind attribute, 146
COM. See Component Object Model
Command-line compilation, 45–46
Command-line utilities

osql command line utility, 346
in Web Services Description Language

(WSDL), 15, 21
Common Intermediate Language (CIL).

See Intermediate Language (IL)
Common Language Runtime (CLR)

assemblies, 39
classes, loading, 37
cross-language interoperability, 38–39
deployment support, 41
description, 30, 36
exception handling, 39, 52–55
Intermediate Language (IL), 7
just-in-time (JIT) compilation, 38
managed code, 41–42
metadata, 40, 384
namespaces, 42

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 446

Index 447

object-lifetime management, 37–38
safety and security checks, 37
versioning support, 41

Common Object Request Broker
Architecture (CORBA), 3, 8, 138,
202

Common Type System (CTS), 38
Compilers, 45–46
Compiling applications, 7, 40
Complex data types, 159–162
Component Object Model (COM),

138, 202, 212
Components

.NET framework, 55–61
self-describing, 40

Connection string, 253
Conventions, naming, 149, 238
Converting legacy data, 82
Cookies, 189, 191–194
CORBA. See Common Object Request

Broker Architecture
CorDbg debugging tool, 48
Counters, hit, 189, 191–196, 199
CPU requirements, 32
Create Stored Procedure Wizard, 245
Credentials, checking, 376–379
Cross-browser Dynamic HTML

(DHTML), 268
Cross-language interoperability, 38–39
Cryptography, Public Key (PKC), 203
CTS. See Common Type System
Currency data type, 240
Customer administration, 275–278
Customizing auto-generated code, 15

D
Data

adding, 272

binary, 207
deleting, 272–273
displaying, 272
retrieving, 270–272
returning, 390–393
updating, 273–275
See also Legacy systems and data

Data types, 19–21, 159–162, 165,
239–240

Database-access component, 369–371
databaseAccess.cs class, 370
Databases

creating in Access, 238–242
creating in SQL Server, 242–250,

302–303
denormalizing, 241
designing, 234–237
entities, 236
Extensible Markup Language (XML),

124–125
gateway to, 369
installation script, 346–348
installing, 346–348
many-to-many relationships, 236
Northwind, 179
one-to-many relationships, 236
queries, 125–127
relational, 235–236
schema, defining, 302, 341
splitter tables, 236
stored procedures, creating, 244–250

DataGrid control, 104, 107, 272–274,
278, 317

DataReader classes, 57
DataSet class

methods, 124
passing over SOAP, 179–182
reading XML documents, 127–128

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 447

448 Index

representation, 20
update ability, 57
using, 21–23

Date/time data type, 240
DbgClr debugging tool, 48
DCOM. See Distributed Component

Object Model
Debugging

Start page, 5
System.Diagnostics namespace, 50
tools, 48–49

Deleting data, 272–273
Denormalizing databases, 241
Deploying Web Services, 159
Deployment projects, 41
Description namespace in

System.Web.Services, 17
Deserializing, 164–165, 170
Design

databases, 234–237
separated from coding, 145–146, 168
Web sites, 264–266
See also Application design

Design Time Controls (DTCs), 278
Designing Web sites, 264–266
Developing applications, 43–55
Development platforms, 43–44
DHTML. See Dynamic HTML
Diagnostics namespace, 50
Digital Signature, 203
DISCO

description, 210, 217–219
.disco files, 17, 217

disco.exe tool, 212, 219
failure, 170
generating DISCO files, 218–219
Visual Studio .NET (VS.NET), 218

Discovery namespace in
System.Web.Services, 17–18

Displaying data, 272
Distributed Component Object Model

(DCOM), 3, 8, 138
div, 289
Document Object Model (DOM), 68,

93–94, 133
Documenting code, 365–365, 421–422
Documents, XML

components, 72–75
creating, 70–72
database queries, 125–127
DataSet class, 127–128
generating, 90–93, 365
loading, 99–100
navigating, 87–89, 94–95
parsing, 85–87, 95–98
processing in .NET framework, 81–84
reading, 82–89
sending, 186
storing, 83–84
structure, 69, 80–81
transforming to HTML, 116–118
transforming with XSLT, 115–124
valid, 76–80
well-formed, 75–76
writing, 82–83
See also Extensible Markup Language

(XML)
DOM. See Document Object Model
Drill-down functionality, 107
DTCs. See Design Time Controls
Dynamic HTML (DHTML), cross-

browser, 268

E
Echo Web Service example, 140–143,

151–152, 213–217
EDI, 138
EM. See Enterprise Manager

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 448

Index 449

Enterprise Manager (EM), 242
Entities, database, 236
Enumeration types, 20
Envelope, SOAP, 153–155, 390–393
Error handling, 162–167, 345, 366–369,

384–386
See also Exception handling

Event log, 366
Exception handling, 39, 52–55
Exceptions in server code, 165–167
Extensible Markup Language (XML)

description, 68
future, 70
schema, 16, 76–79
updateagrams, 308
validation against schema, 391
validation in VS.NET, 79–80
VS.NET XML Designer, 71–72
Web Services, 16
XmlDocument class, 98–107
XmlTextReader class, 84–89
XmlTextWriter class, 90–93
XPathDocument class, 107–110,

112–115
XPathNavigator class, 107, 110–115
See also Documents, XML

Extensible Stylesheet Language
Transformations (XSLT), 3,
115–124, 422

F
Faults, Simple Object Access Protocol

(SOAP), 164–165, 167, 384–386
File extensions, mapping, 143
Floating-point arithmetic, 161
Foreign keys, 236
FTP, 41
Future of XML, 70

G
Garbage collection, 37–38
Gateway to databases, 369
Generating XML documents, 90–93,

365
GET method, 152–153, 161

H
Handling exceptions, 39, 52–55
Hard-disk requirements, 32
Hardware requirements for SDK, 32
Headers

HTTP, 191–194
Simple Object Access Protocol

(SOAP), 186–187, 194–202
Hejlsberg,Anders, 422
Hit counters, 189, 191–196, 199
HTML, transforming XML documents

to, 116–118
HTTP

ASP.NET message transmission, 18
cookies, 191–194
inherently stateless, 188
messaging, 3, 8, 16
SOAP headers, 194–202
state management, 191–202

I
IDE, 348
IIS. See Internet Information Server
IL. See Intermediate Language
ILDasm. See Intermediate Language

Disassembler
Improvement ideas, 439
Industry standards, nonproprietary, 16
Installation

ASP.NET, 36
database, 346–348

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 449

450 Index

.NET framework, 34–36
software development kit (SDK), 31,

33–34
Installing .NET framework, 34–36
Integrating different systems, 139
IntelliSense, 171, 177, 297
Intermediate Language Disassembler

(ILDasm), 46–47
Intermediate Language (IL)

building and compiling, 7
just-in-time (JIT) compilation, 38

Internet Information Server (IIS), 65,
140

Interoperability
cross-language, 38–39
unmanaged code, 42

Interoperability Web site, 208

J
Java packages, 42
Javadoc, 422
JIT. See Just-in-time compilation
Jokes Web Service example

adding new users, 371–375
business logic layer, implementing, 361
checking existing user information,

376–379
client application, creating, 423–438
database, installing, 346–348
database-access component, 369–371
database schema, defining, 341
error handling, 345, 349, 366–369,

384–386
improvement ideas, 439
jokes and ratings, managing, 399–407
middle tier, implementing, 361
moderators, 379–381
motivation and requirements, 338–339

public methods, defining, 340
public Web methods, creating,

413–422
public Web methods, testing, 389–390
public Web methods for

administrators, 386–388
public Web methods for users,

381–384
returning highly structured data,

390–393
returning jokes, 407–412
security considerations, 344–345
state management, 345
stored procedures, creating, 348–361
user administration service, 371–390
Visual Studio project, 361–365
Web Service, implementing, 361
Web Service architecture, defining,

342–345
wrapping stored procedure calls,

393–399
Jsc.exe (Jscript.NET) compiler, 45
Just-in-time (JIT) compilation, 38

L
Language choice, 45
Legacy systems and data

converting, 82
Extensible Markup Language (XML),

82
migrating, 42, 300–301
SQLXML Web Services, 335
Web Services use, 8, 16
wrappers, 159, 342

Lifetime management for objects, 37–38
Loading XML documents, 99–100
Localhost, 278
Logging application events, 366

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 450

Index 451

M
Maintaining state, 187–188
Malformed SOAP requests, 163–165
Managed code, 36, 38–39, 41–42
Managing object lifetimes, 37–38
Many-to-many relationships, 236
Marshalling of data, 21
Marshalling of data types, 19–21
MDAC. See Microsoft Data Access

Components
Memo data type, 240
Memory available, 177
Messaging, 3
Metadata, 40, 280, 384
Method mapping, 311
Method messaging, 3
Microsoft. See Access 2000; Databases,

Northwind; DISCO; IntelliSense;
Internet Information Server (IIS);
.NET framework; Passport service;
SQL Server 2000;Windows 95/98;
Windows Forms;Windows
Installer;Windows NT

Microsoft Data Access Components
(MDAC), 33–34

Microsoft Developer Network
(MSDN), 34

Microsoft Intermediate Language
(MSIL). See Intermediate Language
(IL)

Minimum requirements. See
Requirements

Moderators, 346, 379–381, 386
Moore, M., 203
Motivation, 338–339
Mozilla project, 268
MSDN. See Microsoft Developer

Network
MSIL. See Intermediate Language (IL)

Multiple tables of XmlDataDocument
objects, 103–107

N
Namespaces, 42
Naming conventions, 149, 238
Native Image Cache, 46
Navigating XML documents, 87–89,

94–95
.NET framework

ADO.NET, 56–57
ASP.NET, 55–56
Base Class Libraries, 30, 49–55
C# language, 59–60
client proxy class, 158
compilers, 45–46
components, 55–61
debugging tools, 48–49
description, 30
developing applications, 43–55
development platforms, 43–44
development tool, 43
documents, processing, 81–84
file extensions, mapping, 143
installation, 34–36
Intermediate Language Disassembler

(ILDasm), 46
language choice, 45
NGEN.exe, 46–48
redistributable package (runtime), 33
tools, 46–49
VB.NET, 57–59
Web Services, 61
Windows Forms, 60–61
See also Common Language Runtime

(CLR); Software development kit
(SDK)

Netscape, 268

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 451

452 Index

New users, adding, 371–375
NGEN.exe tool, 46–48
Nonproprietary industry standards, 16
Northwind database, 179
Number data type, 240

O
Object lifetime management, 37–38
Object messaging, 3
OLE objects, 240
OleDb connections, 241
OLEDB managed provider, 56
OleDbDataReader class, 57
One-to-many relationships, 236
Open-source Mozilla project, 268
Operating system requirements for

SDK, 33
Order entries, multiple, 241
Organization, project, 143–146
osql command line utility, 346

P
Parameterized queries, 250
Parsing XML documents, 85–87, 95–98
Passing over SOAP

headers, 186–187
objects, 174–179
relational data (DataSets), 179–182
XML documents, 182–186

Passport service, 189
Performance Monitor tool, 174
PerformanceCounter class, 174–177, 179
Physical memory available, 177
PKC. See Public Key Cryptography
Platforms for development, 43–44
Port 80, 3, 8
Positioning, absolute, 268
POST method, 152–153

Primitive types, 19–20
Procedures, stored. See Stored

procedures
Processor requirements, 32
Project Explorer. See 297
Project organization, 143–146
Protocols namespace in

System.Web.Services, 18–19
Proxy classes, 158, 170–171, 223
Public Key Cryptography (PKC), 203
Public Web methods

for administrators, 386–388
creating, 413–422
defining, 340
error handling, 384–386
testing, 389–390
for users, 381–384

Q
Queries, ad hoc, 305
Queries, parameterized, 250

R
Random access memory (RAM), 32
Reading XML documents, 82–89
Redistributable package (runtime), 33
Relational databases, 235–236
Relational view of XmlDataDocument

objects, 100–103
Relationships, database, 236, 241
Remote procedure calls (RPC), 8, 202
RequiredFieldValidator server control, 266
Requirements

hardware for software development kit
(SDK), 32

jokes Web Service example, 338–339
operating system for software

development kit (SDK), 33

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 452

Index 453

XML knowledge for ASP.NET, 68
Retrieving data, 270–272
Returning highly structured data,

390–393
RPC. See Remote procedure calls
Runtime (redistributable package), 33

S
Safety and security checks in CLR, 37
Schema

defining, 302, 341
XML, 76–80

SDK. See Software Development Kit
SDL. See Service Definition Language
Security considerations, 335, 344–345
Self-describing components, 40
Serializing, 170, 174–175, 178–179,

391–393
Server application event log, 366
Server Explorer tool, 346, 362–364
Servers

.asmx files, 10–11

.aspx files, 11–15
Simple Object Access Protocol

(SOAP), 8
Service Definition Language (SDL), 17
Service1 default Web Service, 362
Shopping-cart example

administration login
(adminLogin.aspx), 266–267

administration page (adminPage.aspx),
268–274

ADOCatalog, 278–284
Book Shop Web Services, 250–253
cart, rendering, 290
catalog, rendering, 289–290
code, creating, 290–292
customer administration, 275–278

data, 270–275
database, creating in Access, 238–242
database, creating in SQL Server,

242–250
database, designing, 234–237
start.aspx page, 288–289
stored procedures, creating, 244–250
user interface, 287–292
Web Services, creating, 250–263,

253–259
Web Services, testing, 259–263
Web site, administration, 266–275
Web site, designing, 264–266
Web site, overview, 265
WSDL Web references, 263–264
XMLCart, 284–287

Simple Object Access Protocol (SOAP)
client application, writing, 167–174
creating Web Services, 139–145
DataSet class, 179–182
definition, 137–138
deserializing, 164–165, 170
Digital Signature, 203
envelope, 153–155
exceptions, 424
faults, 164–165, 167, 384–386
headers, 186–187, 194–202
HTTP body, 194–202
HTTP header, 191–194
implementations, list of, 207
implementations, Microsoft variety of,

211
interoperability Web site, 208
malformed SOAP requests, 163–165
message patterns, 137
messaging over HTTP, 3, 8, 16
namespaces, 384
non-Microsoft systems, 339

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 453

454 Index

passing objects, 138, 174–179
passing relational data (DataSets),

179–182
project organization, 143–146
rationale, 138
return envelopes, 390–393
security considerations, 202–203
sending XML documents, 186
serializing, 170, 174–175, 178–179,

391–393
standardization, 137
state, maintaining, 187–188
type marshalling, 19
URL mangling, 189–191
Web Services, running, 146–147
Web Services, testing, 147–159
Web sites, 137
wrong argument types, 165
XML documents, 182–186

Smart caching, 56
SOAP. See Simple Object Access

Protocol
“SOAP Messages with Attachments”

Web site, 186
SOAPBuilders Interoperability Lab, 208
Software Development Kit (SDK)

description, 31
hardware requirements, 32
installation, 31, 33–34
obtaining, 31–34
operating system requirements, 33
Visual Studio .NET (VS.NET), 31
Web sites for downloading, 34

Solution Explorer, 10, 146–147, 265,
364

Splitter tables, 236
SQL Managed Provider, 372
SQL record set, fetching, 390

SQL Server 2000
alternative, 346
limitations on row size, 341
service packs, 300
virtual directory, creating, 305–310
Web Services Toolkit, 301, 305

SQL Server client tools, 348
SQL Server Desktop Engine, 346, 348
SQL Template queries, 309
SqlDataReader class, 57
SQLServer 7 managed provider, 56
SQLXML Web Services

description, 300–301
legacy systems and data, 335
version 3.0, 305, 309
virtual directory, 305–307

Stack trace information, 52–53
Standard primitive types, 19
Standards, nonproprietary, 16
Standards for Web Services, 210–211
Start page, 5
Start.aspx page, 288–289
State management

cookies, 191–194
HTTP, adding state to, 188, 191, 202
HTTP body, 194–202
HTTP header, 191–194
jokes Web Service example, 345
maintaining, 187–188
SOAP header, 194–202
URL mangling, 189–191

Stored procedures
creating, 244–250, 303–305, 348–361
enabling for SOAP, 310–312
limitations, 241
using, 301–302
wizard, 245
wrapping, 250, 393–399

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 454

Index 455

Structs, 20
Structured data, returning, 390–393
Structured exception handling. See

Exception handling
System namespace, 49–51
System.Web.Services namespace, 17–19

T
T-SQL, 351
Tables of XmlDataDocument objects,

103–107
TcpTunnelGui program, 189
Testing

public Web methods, 389–390
Start page, 5
Web Services, 147–159, 259–263

Text data type, 240
TimeTrack example

client application, creating, 313–317
database, creating, 302–303
description, 301–302
SQL Server virtual directory, creating,

305–310
stored procedures, creating, 303–305
stored procedures, enabling, 310–312
Web Services, consuming, 317–318

tModel, 221
Tools, 46–49
Tracking users’ paths, 276
Transactions, 250
Transforming documents with XSLT,

115–124
Transparent classes, 17
Tunneling, 173, 189
Turtschi,A., 203
Type marshalling, 19–21
Types. See Data types

U
UDDI. See Universal Description,

Discovery, and Integration
Uniform Resource Identifier (URI),

149
Universal Description, Discovery, and

Integration (UDDI), 210, 219–227
Unmanaged code. See Managed code
Updateagrams, 308
Updating data, 273–275
Upsizing Wizard, 242
URI. See Uniform Resource Identifier
URL mangling, 189–191
URLs. See Web sites
User administration service, 371–390
User information

checking, 376–379
keeping, 202
paths, tracking, 276

User interface, 287–292

V
Vallejo, Dan, 422
Vbc.exe (VB.NET) compiler, 45
VB.NET, 5, 57–59
Versioning support, 41
Video requirements, 32
Virtual directory, creating, 305–310
Visual Studio .NET (VS.NET)

converting legacy data, 82
creating .disco files, 17
creating Web Services, 3–5
IDE, 348
marshalling of data, 21
.NET Software Development Kit

(SDK), 31
project, 361–365
project organization, 143–146

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 455

456 Index

Server Explorer tool, 346, 362–364
Solution Explorer, 10
tool for .NET development, 43
transparent classes, 17
Universal Description, Discovery, and

Integration (UDDI), 223
WSDL command line utility, 15
WSDL proxy, 9
XML Designer, 70–72
XML validation, 79–80
xmlns attribute, 102
XSD specifications, 76

.vsdisco files, 17
VS.NET. SeeVisual Studio .NET

W
Web farms, 202
Web Forms

adding to .aspx page, 11–12
ASP.NET central display mechanism,

55–56
ASP.NET primary user interfaces, 60
building Internet applications, 30
drill-down functionality, 107
getting read-only data, 57
limited by browsers, 60
Visual Studio default, 55

Web gardens, 202
Web Services

ADOCatalog, 278–284
architecture, defining, 342–345
calling, 152
COM components, 26–27
complex data types, 159–162
creating in VS.NET, 3–5
creating with SOAP, 139–145
customer administration, 275–278
definition, 136

deploying, 159
description, 3–7
error handling, 162–167
Extensible Markup Language (XML),

16
implementing, 361
.NET framework, 55, 61
rationale, 139
running, 146–147
Service1 default Web Service, 362
shopping-cart example, 250–263
standards, 210–211
System.Web.Services namespace, 17–19
testing, 147–159, 259–263
Web Services Description Language

(WSDL), 210–217
XMLCart, 284–287
See also SQLXML Web Services

Web Services Description Language
(WSDL)

command line utility, 15, 21
customizing auto-generated code, 15
description, 15, 210–217
generating Web Service descriptions,

212
Internet user-page request process, 9
proxy, 9, 297
specification Web site, 212

Web Services Toolkit, 301, 305
Web site

administration, 266–275
AirportWeather, 225
designing, 264–266
Extensible Stylesheet Language

Transformations (XSLT), 292
interoperability, 208
Microsoft Data Access Components

(MDAC), 33

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 456

Index 457

Simple Object Access Protocol
(SOAP), 137

SOAP Digital Signature, 203
SOAP implementations, 207
SOAP Messages with Attachments,

186
SOAPBuilders Interoperability Lab,

208
software development kit (SDK), 34
Uniform Resource Identifiers (URIs),

150
Universal Description, Discovery, and

Integration (UDDI), 219–220
WSDL specification, 212
XML-RPC, 138
XSLT style sheet, 422

Well-formed XML documents, 75–76
Windows 95/98, 32
Windows 2000, 174, 203, 300
Windows Forms, 60–61, 176, 424
Windows Installer, 41
Windows Integrated Authentication, 306
Windows NT, 34
Windows Scripting Host, 156
Winer, David, 138
Wiring protocol, 139
Wrapping stored procedure calls,

393–399
writeEventLogEntry() method, 366
Writing XML documents, 82–83
Wrong argument types, 165
WSDL. See Web Services Description

Language

X
XCOPY, 41
XMethods, 208
XML. See Extensible Markup Language
XML Designer, 70–72, 71–72

XML-Journal, 203
XML-RPC, 138
XML Schema Definition (XSD), 16, 76
XmlAttributeAttribute class, 179
XMLCart, 278, 284–287
XmlDataDocument class

description, 98–99
loading, 99–100
multiple tables, 103–107
relational view, 100–103

XmlDocument class, 94–98
XmlElementAttribute class, 179
XmlNode class, 20–21, 83–84
XmlNodeReader class, 82
xmlns attribute, 102
XmlTextReader class, 84–89
XmlTextWriter class, 90–93
XPath, 134
XPathDocument class

document navigation, 112–115
querying XML data, 107–110

XPathNavigator class
document navigation, 112–115
purpose, 107
using, 110–111

XSD. See XML Schema Definition
XSL Patterns, 134
XSLT. See Extensible Stylesheet

Language Transformations

Y
Yes/no data type, 240

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 457

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 458

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 459

SYNGRESS SOLUTIONS…

soluti o n s @ s y n g r e s s . c o m

AVAILABLE NOW!
ORDER at
www.syngress.com

XML .NET Developer’s Guide
XML is one of the cornerstones of the .NET Framework. .NET aims to
bridge the gap between desktop applications and online applications,
and facilitate the communication of objects between the two. XML .NET
Developer’s Guide will show you how to develop XML documents and
applications for use within the .NET Framework.
ISBN: 1–928994–47–4

Price: $49.95 USA, $77.95, CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

.NET Developer’s Kit, Including ASP, C#, and
Visual Basic
This 3-book box set will help developers build solutions for
the .NET platform. The set includes: ASP .NET Web
Developer’s Guide, C# .NET Web Developer’s Guide, and
VB .NET Developer’s Guide.
ISBN: 1–928994–61–X

Price: $119.95 USA, $185.95 CAN

AVAILABLE JULY 2002!
ORDER at
www.syngress.com

Hack Proofing XML
Hack Proofing XML will allow Web developers and database adminis-
trators to take advantage of the limitless possibilities of XML without
sacrificing the integrity, confidentiality, and security of their informa-
tion. Readers will be given hands-on instruction on how to encrypt
and authenticate their XML data using prescribed standards, digital
signatures, and various vendors’ software.
ISBN: 1–931836–50–7

Price: $49.95 USA, $77.95 CAN

206_XMLweb_indx.qxd 6/26/02 4:08 PM Page 460

Document3 4/3/02 4:04 PM Page 1

	Cover
	Table of Contents
	Forward
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Index
	Related Titles

