
By Vikram Vaswani

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/

Table of Contents
The Insomnia Cure...1

Out With The Old...2

...In With The New..3

Keeping It Simple..5

Playing By The Rules..9

A Little Experiment..11

Back To Base...12

A Little More...13

XLink Basics

i

The Insomnia Cure
To the uninitiated, XML can often seem more trouble than it's worth. There's the complex jargon, the
fundamentally different design principles, the confusing array of technologies, each with its own
unpronounceable acronym, and − probably the most annoying aspect − the long and convoluted
specifications, most of which immediately induce drowsiness and deep sleep...

Once you've figured out the basics, though, and played with the tools a little − even if it's something as simple
as marking up your to−do list and transforming it with XSLT − it quickly becomes obvious that this is a
technology with tremendous potential. By providing a set of rules for data description, together with the
technology necessary to transform and present this data, XML opens up whole new possibilities for better
(read: more efficient) data interpretation, usage and exchange.

Now, while these applications are certainly not restricted to the Internet, the Web is still XML's most potent
proving ground. And if XML is to succeed on the Web, it needs to find a way to incorporate the most
fundamental construct of the wired universe − in fact, the very thing that makes the Web so powerful.

Links.

Luckily, you and I are not the only people in the room who've realized this. The guys who came up with XML
know it too, and they've expended an enormous amount of time, energy and brainpower on coming up with a
way to link XML data and documents together. It's called XLink, and it's easily one of the most interesting
pieces of the XML jigsaw. Keep reading, and I'll tell you why.

The Insomnia Cure 1

Out With The Old...
Before getting into the details of how XLink works, it's important to understand the context in which it was
developed, and the need and rationale behind it.

You already know that HTML comes with a way to link documents together − it's called the anchor tag, and
it's the standard way of creating connections between different pieces of information in today's version of the
Web. However, although the anchor tag is simple to understand and easy to use, it has a couple of drawbacks:

1. Every HTML link connects a single source to a single destination; it's not possible to have a single link
point to multiple destinations.

2. Only specific, pre−defined HTML elements − the <A> tag, for example − can serve as links.

3. The definition of a link (the location it points to) cannot be separated from its source (the file in which it is
contained.) Or to put it another way − you can't create a link without write permission to the source document.

These drawbacks might seem trivial in the context of today's Internet − it ain't broke, you're probably
thinking, so why fix it? − but they assume serious proportions in the context of an XML world, which is built
around data and the relationships inherent in it.

XLink was designed to address these drawbacks.

If you take a look at the requirements document for XLink − it's available online at
http://www.w3.org/TR/NOTE−xlink−req − you'll see that XLink was designed to represent links in an
abstract yet easily−understandable and usable manner. To this end, the XLink specification states the XLinks
must:

− be defined using standard XML constructs, and follow the rules of well−formed XML;

− be human−readable;

− express information on the nature of the link (the type of link, its title and destination, or its endpoints) as
well as its behaviour (the rules by which a link processor can access or traverse the link);

− support multiple destinations;

− allow link authors to define link endpoints and traversal rules without requiring write access to either the
source or destination resource;

− provide constructs to allow link authors to control the direction of travel between links;

− maintain compatibility with existing HTML4 linking constructs.

Out With The Old... 2

...In With The New
Given these requirements, XLink's authors have considered the linking process and broken it up into three
distinct and atomic parts, which I will define below:

The "link definition", which clearly defines the relationship between the items to be linked;

The "participating resources", or the items connected together by an XLink − these resources may be local
(stored within the same physical document) or remote (stored within a different document);

"Traversal rules" or "arcs", which specify the direction of traversal between a pair of participating resources.
Arcs may be "outbound" (local resource to remote resource), "inbound" (remote resource to local resource) or
"third−party" (remote resource to remote resource.)

Using these three basic constructs, it becomes possible to create links which satisfy all the requirements stated
above. Take a look at the example below, which illustrates these concepts:

<?xml version="1.0"?>

<performers xmlns:xlink="http://www.w3.org/1999/xlink">
<item xlink:type="extended">
<!−− link definition (local) −−>
<link xlink:type="resource" xlink:label="overview"
xlink:title="Information on Sinatra">Frank Sinatra</link>

<!−− link definitions (remote) − Sinatra's biography, songs
and
articles −−>
<link xlink:type="locator" xlink:href="bio.xml"
xlink:label="bio"
xlink:title="Biography" />
<link xlink:type="locator" xlink:href="songs.xml"
xlink:label="songs"
xlink:title="Songs"/>
<link xlink:type="locator" xlink:href="press.xml"
xlink:label="press"
xlink:title="Press articles" />

<!−− local to remote arc − from name to biography −−>
<arc xlink:type="arc" xlink:from="overview" xlink:to="bio"
xlink:show="replace" xlink:actuate="onRequest" />

<!−− remote to remote arc − from biography to song list −−>
<arc xlink:type="arc" xlink:from="bio" xlink:to="songs"
xlink:show="replace" xlink:actuate="onRequest" />

<!−− remote to remote arc − from biography to press archive

...In With The New 3

−−>
<arc xlink:type="arc" xlink:from="bio" xlink:to="press"
xlink:show="replace" xlink:actuate="onRequest" />
</item>
</performers>

This example sets up conceptual links between a performer (the evergreen Frank Sinatra), his biography, his
songs, and an archive of press articles about him. Arcs specify the direction of link traversal − they allow for
navigation between the performer and his biography, between the biography and a song list, and between the
biography and an archive of press clippings.

It's important to note at this point that XLinks are not expressed as elements, but as element attributes (from
the XLink namespace) which can be attached to any XML element; the most important of these is the XLink
"type" attribute, which specifies the type of link being defined. The example above uses this attribute to define
four types of links: extended links, resources, locators and arcs (more on these later).

By allowing any XML element to become an XLink, the XLink specification substantially improves on
HTML's current linking mechanism, which only allows the anchor tag to define links. In the example above,
the "item", "link" and "arc" XML elements have been converted to XLinks by the addition of specific
attributes from the XLink namespace.

Depending on the value of the XLink "type" attribute, one or more XLink attributes are required to provide
additional information about the link − the XLink specification lays down the basic rules and constraints for
each of these. In the example above, you can see that XLinks of type "locator" have an additional "href"
attribute, while XLinks of type "arc" display "from" and "to" attributes.

XLink Basics

...In With The New 4

Keeping It Simple
XLink allows for the construction of two basic types of links: simple and extended.

Simple links are the ones you've been used to for so long − anchor−tag−style hyperlinks which link two
resources together, with a clearly−defined direction of traversal. Since these types of links are the most
common, they've been included in the XLink specification as "shortcuts" for link authors who don't need all
the power and flexibility of extended links.

Here's an example:

<?xml version="1.0"?>
<performers xmlns:xlink="http://www.w3.org/1999/xlink">
<item xlink:type="simple" xlink:href="bio.xml">Sinatra's
biography</item>
<item xlink:type="simple" xlink:href="songs.xml">Song
list</item>
<item xlink:type="simple" xlink:href="press.xml">Press
clippings</item>
</performers>

This is very similar to the standard linking construct used in today's HTML pages − if you recreated the links
above in HTML, you would see something like this:

<html>
<head>
</head>
<body>
Sinatra's biography
Song list
Press clippings
</body>
</html>

Extended links, on the other hand, are a completely different beast. They allow link authors to create new
types of links, typically by using arcs to create relationships (via multiple traversal rules) between many
different local and remote resources. Since extended links connect many resources together, they are typically
stored separately from the resources they link together − and, if you've been paying attention, you'll
immediately realize this implies that it now becomes possible to update link definitions without requiring
write access to either source or destination(s).

Consider the following diagram, which sets up links between an employee's profile, salary and performance
appraisal,

Keeping It Simple 5

and then look at how you could represent these relationships with XLink.

<?xml version="1.0"?>

<ext xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<!−− starting point − employee's name (local) −−>
<local xlink:type="resource" xlink:label="name"
xlink:title="John Doe" />

<!−− employee's salary (remote) −−>
<remote xlink:type="locator" xlink:href="salary.xml"
xlink:label="salary"
xlink:title="John Doe's salary information" />

<!−− employee's last appraisal (remote) −−>
<remote xlink:type="locator" xlink:href="appraisal.xml"
xlink:label="appraisal" xlink:title="John Doe's last
performance appraisal"
/>

<!−− employee's resume (remote) −−>
<remote xlink:type="locator" xlink:href="resume.xml"
xlink:label="resume"
xlink:title="John Doe's resume" />

<!−− link name to resume −−>
<arc xlink:type="arc" xlink:from="name" xlink:to="resume"
xlink:show="replace" xlink:actuate="onRequest"
xlink:title="Link from name
to resume" />

<!−− link name to current salary −−>
<arc xlink:type="arc" xlink:from="name" xlink:to="salary"
xlink:show="replace" xlink:actuate="onRequest"

XLink Basics

Keeping It Simple 6

xlink:title="Link from name
to salary" />

<!−− link last appraisal to current salary−−>
<arc xlink:type="arc" xlink:from="appraisal" xlink:to="salary"
xlink:show="replace" xlink:actuate="onRequest"
xlink:title="Link from
appraisal to salary" />

<!−− these next two arcs set up a bidirectional link −−>
<!−− link qualifications to salary −−>
<arc xlink:type="arc" xlink:from="resume" xlink:to="salary"
xlink:show="replace" xlink:actuate="onRequest"
xlink:title="Link from
resume to salary" />

<!−− link salary to qualifications −−>
<arc xlink:type="arc" xlink:from="salary" xlink:to="resume"
xlink:show="replace" xlink:actuate="onRequest"
xlink:title="Link from
salary to resume" />

</ext>

An extended link (or, to be more precise, an XML element containing an extended link) is actually nothing
more than a wrapper around other XLink definitions for local and remote participating resources and arcs.

<ext xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">
<!−− participating resources −−>
</ext>

These nested elements can represent any of the following four link types:

Resource: This link type represents a local resource which participates in the extended link. Typically, it
contains some content which serves as the starting point for link traversal.

<local xlink:type="resource" xlink:label="name"
xlink:title="John Doe" />

Locator: This link type represents a remote resource (via the additional "href" attribute) which participates in
the extended link.

XLink Basics

Keeping It Simple 7

<remote xlink:type="locator" xlink:href="salary.xml"
xlink:label="salary"
xlink:title="John Doe's salary information" />

Arc: An arc sets up navigation rules between locators and resources (via the additional "from" and "to"
attributes), and is the primary construct for specifying the direction and behaviour of link traversal.

<arc xlink:type="arc" xlink:from="name" xlink:to="salary"
xlink:show="replace" xlink:actuate="onRequest"
xlink:title="Link from name
to salary" />

Arcs come in very handy when setting up so−called bi−directional links − for example, A −> B and B −> A.
Here's an example:

<arc xlink:type="arc" xlink:from="resume" xlink:to="salary"
xlink:show="replace" xlink:actuate="onRequest"
xlink:title="Link from
resume to salary" />

<arc xlink:type="arc" xlink:from="salary" xlink:to="resume"
xlink:show="replace" xlink:actuate="onRequest"
xlink:title="Link from
salary to resume" />

Now, however, that the XLink specification very clearly states that arcs cannot be duplicated − in other
words, a particular from−to relationship can be represented by one and only one arc.

Title: This link type is used to provide additional, human−readable information for an extended link's
participating resources. The XLink specification suggests that this link type is primarily used in the context of
internationalization, where different languages may require different titles − for example,

<ext xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<greeting xlink:type="title" xml:lang="en">Hello!</greeting>
<greeting xlink:type="title" xml:lang="fr">Bon
jour!</greeting>
<greeting xlink:type="title" xml:lang="it">Ciao!</greeting>

</ext>

XLink Basics

Keeping It Simple 8

Playing By The Rules
Now that you've seen the various XLink types in action, let's focus on the attributes available in the XLink
namespace to provide more information on a particular link type or modify its behaviour.

Every element defining an XLink *must* contain a "type" attribute, which specifies what type of link it is −
the value for this attribute may be any one of "simple", "extended", "locator", "arc", "resource", "title" or
"none".

In addition to the "type" attribute, the XLink specification defines nine additional attributes:

The "href" attribute is used to specify the URL of a remote resource, and is mandatory for locator links. In
addition to the URL of the remote resource, it may also contain an additional "fragment identifier", which
drills down to a specific location within the target document.

The "show" attribute is used to define the manner in which the endpoint of a link is presented to the user. The
value of this attribute may be any one of "new" (display linked resource in a new window); "replace" (display
linked resource in the current window, removing whatever's currently there); "embed" (display linked
resource in a specific area of the current window); "other" (display as per other, application−dependent
directives); or "none" (display method unspecified)

The "actuate" attribute is used to specify when a link is traversed − it may take any of the values "onLoad"
(display linked resource as soon as loading is complete); "onRequest" (display linked resource only when
expressly directed to by the user, either via a click or other input); "other" and "none".

The "label" attribute is used to identify a link for subsequent use in an arc.

The "from" and "to" attributes are used to specify the starting and ending points for an arc respectively. Both
these attributes use labels to identify the links involved.

The "role" and "arcrole" attributes reference a URL which contains information on the link's role or purpose.
Most often, you can ignore these attribute, as they are intended primarily for descriptive purposes. The only
exception to this is when the "arcrole" attribute used in conjunction with a linkbase − more on this later.

The "title" attribute, not to be confused with the title type of link, provides a human−readable descriptive title
for a link.

It should be noted that it is not necessary for all these attributes to be present in a particular XLink definition.
It is certainly mandatory for any element defining an XLink to contain a "type" attribute, but with this obvious
exception, different types of links have different attribute requirements.

Here are the basic rules:

1. A simple link may contain an "href" attributes to define the remote resource, and optional "show" and
"actuate" attributes to define link behaviour; however, none of these are mandatory.

2. An extended link may contain optional "role" and "title" attributes to define its purpose.

Playing By The Rules 9

3. A locator link must contain an "href" attribute to define the URL of the remote resource. It typically also
uses an optional "label" attribute to identify itself for arc traversals.

4. A resource link usually contains an optional "label", again for purposes of arc traversals.

5. An arc typically contains optional "from" and "to" attributes to define the direction of link traversal,
optional "show" and "actuate" attributes to specify how and when to traverse links, and an optional "arcrole"
attribute if used in the context of a linkbase.

XLink Basics

Playing By The Rules 10

A Little Experiment
If you go back a couple of pages and take another look at how simple links work, it should quickly become
obvious to you that the function performed by a simple link is in fact a subset of the functions available in all
extended links. XLink, however, has wisely chosen to pre−define simple links as a separate type, both to
maintain compatibility with existing HTML4 constructs and to provide a simple shortcut for users who don't
need extended link functionality.

It's an interesting experiment, though, to use an extended link (together with its associated resource, locator
and arc) to recreate the functionality of a simple link, both as a validation of what you've learned thus far and
an understanding of the reasoning behind the separation of the two types. Consider the following simple link.

<item xlink:type="simple" xlink:href="bio.xml">Sinatra's
biography</item>

This could be recreated as the following extended link:

<item xlink:type="extended"
xmlns:xlink="http://www.w3.org/1999/xlink">

<!−− name −−>
<loc xlink:type="resource" xlink:label="local"
xlink:title="Frank
Sinatra">Frank Sinatra</loc>

<!−− bio −−>
<rem xlink:type="locator" xlink:href="bio.xml"
xlink:label="remote"
xlink:title="Biography" />

<!−− local to remote arc − from name to biography −−>
<arc xlink:type="arc" xlink:from="local" xlink:to="remote"
xlink:show="replace" xlink:actuate="onRequest" />

</item>

On a related note, it's also important to understand the difference between a simple link and a locator. A
simple link both specifies a remote resource and sets up a one−way traversal rule between itself and the
remote resource. A locator, on the other hand, simply specifies a remote resource; it does not automatically set
up traversal rules between itself and the remote resource, as simple links do, but leaves that function to an arc.

A Little Experiment 11

Back To Base
You already know that XLink allows for inbound, outbound or third−party arcs. Most of the time, arcs are
outbound − the direction of link traversal is from the local document to a remote resource − and XLink has no
trouble identifying the starting point. However, when the starting point of link traversal is remote, XLink has
no way of knowing where to find the link information to initiate the process of traversal.

It's precisely to address this kind of situation that the XLink specification allows for "linkbases" or link
databases − essentially, well−formed XML documents that contain extended link information.

XLink defines a link to a linkbase by adding the value

http://www.w3.org/1999/xlink/properties/linkbase

to the arc's "arcrole" attribute. When an XLink link processor comes across such an arc definition, it locates
the linkbase, loads the links within it and processes them as per its own built−in rules.

Here's an example of a country being linked to a linkbase of states:

<ext xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:type="extended">

<!−− start from here −−>
<link xlink:type="resource" xlink:label="country"
xlink:title="Country">United States</link>

<!−− linkbase containing links to states −−>
<directory xlink:type="locator" xlink:href="states.xml"
xlink:label="states" xlink:title="States within country" />

<!−− special linkbase arc with arcrole attribute −−>
<arc xlink:type="arc" xlink:from="country" xlink:to="states"
xlink:arcrole="http://www.w3.org/1999/xlink/properties/linkbase"
xlink:show="replace" xlink:actuate="onRequest" />

</ext>

The XLink specification also raises the possibility of "chained" linkbases − one of the links within the
linkbase is itself a link to another linkbase, and so on. While the idea is certainly interesting − think of a
Yahoo!−type portal, composed entirely of interconnected XML linkbases − it remains to be seen how link
authors would utilize this capability.

Back To Base 12

A Little More...
And that's about it for this introduction to the wild and incredibly elastic world of XLink. In case you'd like to
learn more about it, you should consider visiting the following links:

The W3C's XLink specification, at http://www.w3.org/TR/2001/REC−xlink−20010627/

XLink design principles, at http://www.w3.org/TR/1998/NOTE−xlink−principles−19980303

The XLink requirements specification, at http://www.w3.org/TR/NOTE−xlink−req

Zvon's XLink reference, at http://zvon.org/xxl/xlink/Output/xlink_refs.html

The Fujitsu XLink Processor, at http://www.labs.fujitsu.com/free/xlip/en/index.html

While the promise of XLink is tremedously exciting, there are as yet very few implementations of the
technology, and so it's hard to truly grasp many of the applications that it makes possible. However, as the
technology matures, expect to see XLinks gradually taking over from standard anchor tags, and data being
linked in new and interesting ways.

Until that happens, though − stay healthy, and I'll see you soon!

Note: All examples in this article have been tested on Microsoft Internet Explorer 5.5 and the Fujitsu Link
Processor. Examples are illustrative only, and are not meant for a production environment. YMMV!

A Little More... 13

http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/1998/NOTE-xlink-principles-19980303
http://www.w3.org/TR/NOTE-xlink-req
http://zvon.org/xxl/xlink/Output/xlink_refs.html
http://www.labs.fujitsu.com/free/xlip/en/index.html

	Table of Contents
	The Insomnia Cure
	Out With The Old...
	...In With The New
	Keeping It Simple
	Playing By The Rules
	A Little Experiment
	Back To Base
	A Little More...

