
By icarus

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/

Table of Contents
Climbing A Tree..1

Meet Joe Cool..2

Parents And Their Children..5

What's In A Name?...8

Welcome To The Human Race..10

Building A Library ...11

Anyone For Chicken?...14

Conclusions..19

...And Links...20

Using Perl With XML (part 2)

i

Climbing A Tree
In the first part of this article, I said that there were two approaches to parsing an XML document. The
event−based SAX approach is one; the other uses the DOM, or Document Object Model, to build a tree
representation of the XML data structures in the document, and then offers built−in methods to navigate
through this tree. Once a particular node has been reached, built−in methods can be used to obtain the value of
the node, and use it within the script.

Over the next few pages, I'm going to take a look at a Perl package that supports this tree−based approach. I'll
also attempt to duplicate the previous examples, marking up books and recipes with HTML tags, in order to
demonstrate how either technique can be used to achieve the same result. Finally, I'll briefly discuss the pros
and cons of the SAX and DOM approaches, and point you to some links for your further education.

Let's get started, shall we?

Climbing A Tree 1

Meet Joe Cool
Perl comes with a DOM parser based on the expat library created by James Clark; it's implemented as a Perl
package named XML::DOM, and currently maintained by T. J. Mather. If you don't already have it, you
should download and install it before proceeding further; you can get a copy from CPAN
(http://www.cpan.org/).

This DOM parser works by reading an XML document and creating objects to represent the different parts of
that document. Each of these objects comes with specific methods and properties, which can be used to
manipulate and access information about it. Thus, the entire XML document is represented as a "tree" of these
objects, with the DOM parser providing a simple API to move between the different branches of the tree.

The parser itself supports all the different structures typically found in an XML document − elements,
attributes, namespaces, entities, notations et al − but our focus here will be primarily on elements and the data
contained within them. If you're interested in the more arcane aspects of XML − as you will have to be to do
anything complicated with the language − the XML::DOM package comes with some truly excellent
documentation, which gets installed when you install the package. Make it your friend, and you'll find things
considerably easier.

Let's start things off with a simple example:

#!/usr/bin/perl

create an XML−compliant string
$xml = "<?xml version=\"1.0\"?><me><name>Joe
Cool</name><age>24</age><sex>male</sex></me>";

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parse($xml);

print tree as string
print $doc−>toString();

end

In this case, a new instance of the parser is created and assigned to the variable $xp. This object instance can
now be used to parse the XML data via its parse() function:

instantiate parser

Meet Joe Cool 2

$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parse($xml);

You'll remember the parse() function from the first part of this article − it was used by the SAX parser to parse
a string. When you think about it, this isn't really all that remarkable − the XML::DOM package is built on top
of the XML::Parser package, and therefore inherits many of the latter's methods.

With that in mind, it follows that the DOM parser should also be able to read an XML file directly, simply by
using the parsefile() method, instead of the parse() method:

#!/usr/bin/perl

XML file
$file = "me.xml";

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parsefile($file);

print tree as string
print $doc−>toString();

end

The results of successfully parsing an XML document − whether string or file − is an object representation of
the XML document (actually, an instance of the Document class). In the example above, this object is called
$doc.

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parsefile($file);

This Document object comes with a bunch of interesting methods − and one of the more useful ones is the
toString() method, which returns the current document tree as a string. In the examples above, I've used this
method to print the entire document to the console.

Using Perl With XML (part 2)

Meet Joe Cool 3

print tree as string
print $doc−>toString();

It should be noted that this isn't all that great an example of how to use the toString() method. Most often, this
method is used during dynamic XML tree generation, when an XML tree is constructed in memory from a
database or elsewhere. In such situations, the toString() method comes in handy to write the final XML tree to
a file or send it to a parser for further processing.

Using Perl With XML (part 2)

Meet Joe Cool 4

Parents And Their Children
The Document object comes with another useful method, one which enables you to gain access to information
about the document's XML version and character encoding. It's called the getXMLDecl() method, and it
returns yet another object, this one representing the standard XML declaration that appears at the top of every
XML document. Take a look:

#!/usr/bin/perl

create an XML−compliant string
$xml = "<?xml version=\"1.0\"
encoding=\"utf−8\"?><me><name>Joe
Cool</name><age>24</age><sex>male</sex></me>";

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parse($xml);

get XML PI
$decl = $doc−>getXMLDecl();

get XML version
print $decl−>getVersion();

get encoding
print $decl−>getEncoding();

get whether standalone
print $decl−>getStandalone();

end

As you can see, the newly−created XMLDecl object comes with a bunch of object methods of its own. These
methods provide a simple way to access the document's XML version, character encoding and status.

Using the Document object, it's also possible to obtain references to other nodes in the XML tree, and
manipulate them using standard methods. Since the entire document is represented as a tree, the first step is
always to obtain a reference to the tree root, or the outermost document element, and use this a stepping stone
to other, deeper branches. Consider the following example, which demonstrates how to do this:

Parents And Their Childre... 5

#!/usr/bin/perl

create an XML−compliant string
$xml = "<?xml version=\"1.0\"?><me><name>Joe
Cool</name><age>24</age><sex>male</sex></me>";

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parse($xml);

get root node "me"
$root = $doc−>getDocumentElement();

end

An option here would be to use the getChildNodes() method, which is a common method available to every
single node in the document tree. The following code snippet is identical to the one above:

#!/usr/bin/perl

create an XML−compliant string
$xml = "<?xml version=\"1.0\"?><me><name>Joe
Cool</name><age>24</age><sex>male</sex></me>";

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parse($xml);

get root node "me"
@children = $doc−>getChildNodes();
$root = $children[0];

end

Note that the getChildNodes() method returns an array of nodes under the current node; each of these nodes is
again an object instance of the Node class, and comes with methods to access the node name, type and

Using Perl With XML (part 2)

Parents And Their Childre... 6

content. Let's look at that next.

Using Perl With XML (part 2)

Parents And Their Childre... 7

What's In A Name?
Once you've obtained a reference to a node, a number of other methods become available to help you obtain
the name and value of that node, as well as references to parent and child nodes. Take a look:

#!/usr/bin/perl

create an XML−compliant string
$xml = "<?xml version=\"1.0\"?><me><name>Joe
Cool</name><age>24</age><sex>male</sex></me>";

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parse($xml);

get root node
$root = $doc−>getDocumentElement();

get name of root node
returns "me"
print $root−>getNodeName();

get children as array
@children = $root−>getChildNodes();

this is the "name" element under "me"
I could also have used $root−>getFirstChild() to get here
$firstChild = $children[0];

returns "name"
print $firstChild−>getNodeName();

returns "1"
print $firstChild−>getNodeType();

now to access the value of the text node under "name"
$text = $firstChild−>getFirstChild();

returns "Joe Cool"
print $text−>getData();

returns "#text"

What's In A Name? 8

print $text−>getNodeName();

returns "3"
print $text−>getNodeType();

go back up the tree
start from the "name" element and get its parent
$parent = $firstChild−>getParentNode();

check the name − it should be "me"
yes it is!
print $parent−>getNodeName();

end

As you can see, the getNodeName() and getNodeType() methods provide access to basic information about
the node currently under examination. The children of this node can be obtained with the getChildNodes()
method previously discussed, and node parents can be obtained with the getParentNode() method. It's fairly
simple, and − once you play with it a little − you'll get the hang of how it works.

A quick note on the getNodeType() method above: every node is of a specific type, and this property returns a
numeric code corresponding to the type. A complete list of defined types is available in the Perl
documentation for the XML::DOM package.

Note also that the text within an element's opening and closing tags is treated as a child node of the
corresponding element node, and is returned as an object. This object comes with a getData() method, which
returns the actual content nested within the element's opening and closing tags. You'll see this again in a few
pages.

Using Perl With XML (part 2)

What's In A Name? 9

Welcome To The Human Race
Just as it's possible to access elements and their content, it's also possible to access element attributes and their
values. The getAttributes() method of the Node object provides access to a list of all available attributes, and
the getNamedItem() and getValue() methods make it possible to access specific attributes and their values.
Take a look at a demonstration of how it all works:

#!/usr/bin/perl

create an XML−compliant string
$xml = "<?xml version=\"1.0\"?><me species=\"human\"><name>Joe
Cool</name><age>24</age><sex>male</sex></me>";

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parse($xml);

get root node (Node object)
$root = $doc−>getDocumentElement();

get attributes (NamedNodeMap object)
$attribs = $root−>getAttributes();

get specific attribute (Attr object)
$species = $attribs−>getNamedItem("species");

get value of attribute
returns "human"
print $species−>getValue();

end

Getting to an attribute value is a little more complicated than getting to an element. But hey − no gain without
pain, right?

Welcome To The Human Race 10

Building A Library
Using this information, it's pretty easy to re−create our first example using the DOM parser. Here's the XML
data,

<?xml version="1.0"?>

<library>
<book>
<title>Dreamcatcher</title>
<author>Stephen King</author>
<genre>Horror</genre>
<pages>899</pages>
<price>23.99</price>
<rating>5</rating>
</book>

<book>
<title>Mystic River</title>
<author>Dennis Lehane</author>
<genre>Thriller</genre>
<pages>390</pages>
<price>17.49</price>
<rating>4</rating>
</book>

<book>
<title>The Lord Of The Rings</title>
<author>J. R. R. Tolkien</author>
<genre>Fantasy</genre>
<pages>3489</pages>
<price>10.99</price>
<rating>5</rating>
</book>

</library>

and here's the script which does all the work.

#!/usr/bin/perl

XML file
$file = "library.xml";

array of ratings

Building A Library 11

@ratings = ("Words fail me!", "Terrible", "Bad",
"Indifferent", "Good",
"Excellent");

include package
use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parsefile($file);

set up HTML page
print "Content−Type: text/html\n\n";
print "<html><head></head><body>";
print "<h2>The Library</h2>";
print "<table border=1 cellspacing=1 cellpadding=5> <tr> <td
align=center>Title</td> <td align=center>Author</td> <td
align=center>Price</td> <td align=center>User Rating</td>
</tr>";

get root node
$root = $doc−>getDocumentElement();

get children
@books = $root−>getChildNodes();

iterate through book list
foreach $node (@books)
{
print "<tr>";
if element node
if ($node−>getNodeType() == 1)
{
get children
this is the "title", "author"... level
@children = $node−>getChildNodes();

iterate through child nodes
foreach $item (@children)
{
check element name
if (lc($item−>getNodeName) eq "title")
{
print text node contents under this element
print "<td><i>" . $item−>getFirstChild()−>getData .
"</i></td>";
}

Using Perl With XML (part 2)

Building A Library 12

elsif (lc($item−>getNodeName) eq "author")
{
print "<td>" . $item−>getFirstChild()−>getData . "</td>";
}
elsif (lc($item−>getNodeName) eq "price")
{
print "<td>\$" . $item−>getFirstChild()−>getData . "</td>";
}
elsif (lc($item−>getNodeName) eq "rating")
{
$num = $item−>getFirstChild()−>getData;
print "<td>" . $ratings[$num] . "</td>";
}
}
}
print "</tr>";
}

print "</table></body></html>";

end

This may appear complex, but it isn't really all that hard to understand. I've first obtained a reference to the
root of the document tree, $root, and then to the children of that root node; these children are returned as a
regular Perl array. I've then used a "foreach" loop to iterate through the array, navigate to the next level, and
print the content found in the nodes, with appropriate formatting. The numerous "if" statements you see are
needed to check the name of each node and then add appropriate HTML formatting to it.

As explained earlier, the data itself is treated as a child text node of the corresponding element node.
Therefore, whenever I find an element node, I've used the node's getFirstChild() method to access the text
node under it, and the getData() method to extract the data from that text node.

Here's what it looks like:

Using Perl With XML (part 2)

Building A Library 13

Anyone For Chicken?
I can do the same thing with the second example as well. However, since there are quite a few levels to the
document tree, I've decided to use a recursive function to iterate through the tree, rather than a series of "if"
statements.

Here's the XML file,

<?xml version="1.0"?>

<recipe>

<name>Chicken Tikka</name>
<author>Anonymous</author>
<date>1 June 1999</date>

<ingredients>

<item>
<desc>Boneless chicken breasts</desc>
<quantity>2</quantity>
</item>

<item>
<desc>Chopped onions</desc>
<quantity>2</quantity>
</item>

<item>
<desc>Ginger</desc>
<quantity>1 tsp</quantity>
</item>

<item>
<desc>Garlic</desc>
<quantity>1 tsp</quantity>
</item>

<item>
<desc>Red chili powder</desc>
<quantity>1 tsp</quantity>
</item>

<item>
<desc>Coriander seeds</desc>
<quantity>1 tsp</quantity>
</item>

Anyone For Chicken? 14

<item>
<desc>Lime juice</desc>
<quantity>2 tbsp</quantity>
</item>

<item>
<desc>Butter</desc>
<quantity>1 tbsp</quantity>
</item>
</ingredients>

<servings>
3
</servings>

<process>
<step>Cut chicken into cubes, wash and apply lime juice and
salt</step>
<step>Add ginger, garlic, chili, coriander and lime juice in a
separate
bowl</step>
<step>Mix well, and add chicken to marinate for 3−4
hours</step>
<step>Place chicken pieces on skewers and barbeque</step>
<step>Remove, apply butter, and barbeque again until meat is
tender</step>
<step>Garnish with lemon and chopped onions</step>
</process>

</recipe>

and here's the script which parses it.

#!/usr/bin/perl

XML file
$file = "recipe.xml";

hash of tag names mapped to HTML markup
"recipe" => start a new block
"name" => in bold
"ingredients" => unordered list
"desc" => list items
"process" => ordered list
"step" => list items
%startTags = (

Using Perl With XML (part 2)

Anyone For Chicken? 15

"name" => "",
"date" => "<i>(",
"author" => "",
"servings" => "<i>Serves ",
"ingredients" => "<h3>Ingredients:</h3>",
"desc" => "",
"quantity" => "(",
"process" => "<h3>Preparation:</h3>",
"step" => ""
);

close tags opened above
%endTags = (
"name" => "
",
"date" => ")</i>",
"author" => "",
"ingredients" => "",
"quantity" => ")",
"servings" => "</i>",
"process" => ""
);

this function accepts an array of nodes as argument,
iterates through it and prints HTML markup for each tag it
finds.
for each node in the array, it then gets an array of the
node's children,
and
calls itself again with the array as argument (recursion)
sub printData()
{
my (@nodeCollection) = @_;
foreach $node (@nodeCollection)
{
print $startTags{$node−>getNodeName()};
print $node−>getFirstChild()−>getData();
my @children = &getChildren($node);
printData(@children);
print $endTags{$node−>getNodeName()};
}
}

this function accepts a node
and returns all the element nodes under it (its children)
as an array
sub getChildren()
{
my ($node) = @_;
get children of this node

Using Perl With XML (part 2)

Anyone For Chicken? 16

my @temp = $node−>getChildNodes();
my $count = 0;
my @collection;

iterate through children
foreach $item (@temp)
{
if this is an element
(need this to strip out text nodes containing whitespace)
if ($item−>getNodeType() == 1)
{
add it to the @collection array
$collection[$count] = $item;
$count++;
}
}

return node collection
return @collection;
}

use XML::DOM;

instantiate parser
$xp = new XML::DOM::Parser();

parse and create tree
$doc = $xp−>parsefile($file);

send standard header to browser
print "Content−Type: text/html\n\n";

print HTML header
print "<html><head></head><body><hr>";

get root node
$root = $doc−>getDocumentElement();

get children
@children = &getChildren($root);

run a recursive function starting here
&printData(@children);

print "</table></body></html>";

end

Using Perl With XML (part 2)

Anyone For Chicken? 17

In this case, I've utilized a slightly different method to mark up the XML. I've first initialized a couple of
hashes to map XML tags to corresponding HTML markup, in much the same manner as I did last time. Next,
I've used DOM functions to obtain a reference to the first set of child nodes in the DOM tree.

This initial array of child nodes is used to "seed" my printData() function, a recursive function which takes an
array of child nodes, matches their tag names to values in the associative arrays, and outputs the
corresponding HTML markup to the browser. It also obtains a reference to the next set of child nodes, via the
getChildren() function, and calls itself with the new node collection as argument.

By using this recursive function, I've managed to substantially reduce the number of "if" conditional
statements in my script; the code is now easier to read, and also structured more logically.

Here's what it looks like:

Using Perl With XML (part 2)

Anyone For Chicken? 18

Conclusions...
As you can see, you can parse a document using either DOM or SAX, and achieve the same result. The
difference is that the DOM parser is a little slower, since it has to build a complete tree of the XML data,
whereas the SAX parser is faster, since it's calling a function each time it encounters a specific tag type. You
should experiment with both methods to see which one works better for you.

There's another important difference between the two techniques. The SAX approach is event−centric − as the
parser travels through the document, it executes specific functions depending on what it finds. Additionally,
the SAX approach is sequential − tags are parsed one after the other, in the sequence in which they appear.
Both these features add to the speed of the parser; however, they also limit its flexibility in quickly accessing
any node of the DOM tree.

As opposed to this, the DOM approach builds a complete tree of the document in memory, making it possible
to easily move from one node to another (in a non−sequential manner). Since the parser has the additional
overhead of maintaining the tree structure in memory, speed is an issue here; however, navigation between the
various "branches" of the tree is easier. Since the approach is not dependent on events, developers need to use
the exposed methods and attributes of the various DOM objects to process the XML data.

Conclusions... 19

...And Links
That just about concludes this little tour of parsing XML data with Perl. I've tried to keep it as simple as
possible, and there are numerous aspects of XML I haven't covered here. If you're interested in learning more
about XML and XSL, you should visit the following links:

The XML specification, at http://www.w3.org/TR/2000/REC−xml−20001006

The XSLT specification, at http://www.w3.org/TR/xslt.html

The SAX project, at http://www.saxproject.org/

The W3C's DOM specification, at http://www.w3.org/DOM/

A number of developers have built and released Perl packages to handle XML data − if you're ever on a tight
deadline, using these packages might save you some development time. Take a look at the following links for
more information:

The Perl XML module list, at http://www.perlxml.com/modules/perl−xml−modules.html

CPAN, at http://www.cpan.org/

The Perl XML FAQ, at http://www.perlxml.com/faq/perl−xml−faq.html

And that's just about all for the moment. I hope you found this interesting, and that it helped to make the road
ahead a little clearer. Till next time, stay healthy!

Note: All examples in this article have been tested on Linux/i586 with Perl 5.005. Examples are illustrative
only, and are not meant for a production environment. YMMV!

...And Links 20

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/xslt.html
http://www.saxproject.org/
http://www.w3.org/DOM/
http://www.perlxml.com/modules/perl-xml-modules.html
http://www.cpan.org/
http://www.perlxml.com/faq/perl-xml-faq.html

	Table of Contents
	Climbing A Tree
	Meet Joe Cool
	Parents And Their Children
	What's In A Name?
	Welcome To The Human Race
	Building A Library
	Anyone For Chicken?
	Conclusions...
	...And Links

