
By icarus

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/


Table of Contents
Perl Of Wisdom...................................................................................................................................................1

Getting Down To Business.................................................................................................................................2

Let's Talk About SAX........................................................................................................................................3

Breaking It  Down................................................................................................................................................5

Call Me Back.......................................................................................................................................................7

Random Walk....................................................................................................................................................13

What's For Dinner?..........................................................................................................................................16

Using Perl with XML (part 1)

i



Perl Of Wisdom
Unless you've spent the last couple of years under a rock, you know about XML, the Extensible Markup
Language, and its extended family of related technologies − XSLT, XPath, XLink, WDDX et al. You may
even have used it a couple of times, creating XML documents to describe your address book or your CD
collection, and marveled at how simple the process is.

It's at this point that most novice developers hit a brick wall. Sure, they know the theory of creating an XML
document, and they may even understand why the technology is so widely discussed and praised. But when it
comes to actually doing something with it − converting that XML−encoded CD collection into something that
can be read by a browser, for example − there's simply not enough information out there to provide guidance
on how to take the next step.

Over the next few pages, I will be attempting to rectify this a little bit, with an explanation of how you can
convert your XML data into browser−readable HTML. Since XML is nothing but plain text, it makes sense to
use a language which specializes in parsing text documents...which is where Perl, that granddaddy of text
processing languages, comes in. There are a couple of basic approaches to parsing XML data; this two−part
article will explore the Perl implementation of each, together with examples and illustrations.

I'll try and keep it simple − I'm going to use very simple XML sources, so you don't have to worry about
namespaces, DTDs and PIs − although I will assume that you know the basic rules of XML markup, and of
Perl scripting. So let's get this show on the road.

Perl Of Wisdom 1



Getting Down To Business
Before we get into the nitty−gritty of XML parsing with Perl, I'd like to take some time to explain how all the
pieces fit together.

In case you don't already know, XML is a markup language created to help document authors describe the
data contained within a document. This description is accomplished by means of tags, very similar in
appearance to regular HTML markup. However, where HTML depends on pre−defined tags, XML allows
document authors to create their own tags, immediately making it more powerful and flexible. There are some
basic rules to be followed when creating an XML file, and a file can only be processed if these rules are
followed to the letter.

Once a file has been created, it needs to be converted, or "transformed", from pure data into something a little
more readable. XSL, the Extensible Style Language, is typically used for such transformations; it's a powerful
language that allows you to generate different output from the same XML data source. For example, you
could use different XSL transformations to create an HTML Web page, a WML deck, and an ASCII text
file...all from the same source XML.

There's only one problem here: most browsers don't come with an XML parser or an XSL processor. The
latest versions of Internet Explorer and Netscape Gecko do support XML, but older versions don't. And this
brings up an obvious problem: how do you use an XML data source to generate HTML for these older
browsers?

The solution is to insert an additional layer between the client and the server, which takes care of parsing the
XML and returning the rendered output to the browser. And that's where Perl comes in − it supports XML
parsing, through add−on DOM and XML packages, and even has a package to handle XSL transformations
through the Sablotron processor.

As I've said earlier, there are two methods to parse XML data with Perl, and each one has advantages and
disadvantages. I'll explain both approaches, together with simple examples to demonstrate how to use them in
your own applications.

Getting Down To Business 2



Let's Talk About SAX
The first of these approaches is SAX, the Simple API for XML. A SAX parser works by traversing an XML
document and calling specific functions as it encounters different types of tags. For example, I might call a
specific function to process a starting tag, another function to process an ending tag, and a third function to
process the data between them.

The parser's responsibility is simply to parse the document; the functions it calls are responsible for
processing the tags found. Once the tag is processed, the parser moves on to the next element in the document,
and the process repeats itself.

Perl comes with a SAX parser based on the expat library created by James Clark; it's implemented as a Perl
package named XML::Parser, and currently maintained by Clark Cooper. If you don't already have it, you
should download and install it before proceeding further; you can get a copy from
http://wwwx.netheaven.com/~coopercc/xmlparser/, or from CPAN (http://www.cpan.org/).

I'll begin by putting together a simple XML file:

<?xml version="1.0"?>

<library>
<book>
<title>Dreamcatcher</title>
<author>Stephen King</author>
<genre>Horror</genre>
<pages>899</pages>
<price>23.99</price>
<rating>5</rating>
</book>

<book>
<title>Mystic River</title>
<author>Dennis Lehane</author>
<genre>Thriller</genre>
<pages>390</pages>
<price>17.49</price>
<rating>4</rating>
</book>

<book>
<title>The Lord Of The Rings</title>
<author>J. R. R. Tolkien</author>
<genre>Fantasy</genre>
<pages>3489</pages>
<price>10.99</price>
<rating>5</rating>
</book>

Let's Talk About SAX 3

http://wwwx.netheaven.com/~coopercc/xmlparser/
http://www.cpan.org/


</library>

Once my data is in XML−compliant format, I need to decide what I'd like the final output to look like.

Let's say I want it to look like this:

As you can see, this is a simple table containing columns for the book title, author, price and rating. (I'm not
using all the information in the XML file). The title of the book is printed in italics, while the numerical rating
is converted into something more readable.

Next, I'll write some Perl code to take care of this for me.

Using Perl with XML (part 1)

Let's Talk About SAX 4



Breaking It Down
The first order of business is to initialize the XML parser, and set up the callback functions.

#!/usr/bin/perl

# include package
use XML::Parser;

# initialize parser
$xp = new XML::Parser();

# set callback functions
$xp−>setHandlers(Start => \&start, End => \&end, Char =>
\&cdata);

# parse XML
$xp−>parsefile("library.xml");

The parser is initialized in the ordinary way − by instantiating a new object of the Parser class. This object is
assigned to the variable $xp, and is used in subsequent function calls.

# initialize parser
$xp = new XML::Parser();

The next step is to specify the functions to be executed when the parser encounters the opening and closing
tags of an element. The setHandlers() method is used to specify these functions; it accepts a hash of values,
with keys containing the events to watch out for, and values indicating which functions to trigger.

# set callback functions
$xp−>setHandlers(Start => \&start, End => \&end, Char =>
\&cdata);

In this case, the user−defined functions start() and end() are called when starting and ending element tags are
encountered, while character data triggers the cdata() function.

Obviously, these aren't the only types of events a parser can be set up to handle − the XML::Parser package
allows you to specify handlers for a diverse array of events; I'll discuss these briefly a little later.

The next step in the script above is to open the XML file, read it and parse it via the parsefile() method. The
parsefile() method will iterate through the XML document, calling the appropriate handling function each
time it encounters a specific data type.

Breaking It Down 5



# parse XML
$xp−>parsefile("library.xml");

In case your XML data is not stored in a file, but in a string variable − quite likely if, for example, you've
generated it dynamically from a database − you can replace the parsefile() method with the parse() method,
which accepts a string variable containing the XML document, rather than a filename.

Once the document has been completely parsed, the script will proceed to the next line (if there is one), or
terminate gracefully. A parse error − for example, a mismatched tag or a badly−nested element − will cause
the script to die immediately.

As you can see, this is fairly simple − simpler, in fact, than the equivalent process in other languages like PHP
or Java. Don't get worried, though − this simplicity conceals a fair amount of power.

Using Perl with XML (part 1)

Breaking It Down 6



Call Me Back
As I've just explained, the start(), end() and cdata() functions will be called by the parser as it progresses
through the document. We haven't defined these yet − let's do that next:

# keep track of which tag is currently being processed
$currentTag = "";

# this is called when a start tag is found
sub start()
{
# extract variables
my ($parser, $name, %attr) = @_;

$currentTag = lc($name);

if ($currentTag eq "book")
{
print "<tr>";
}
elsif ($currentTag eq "title")
{
print "<td>";
}
elsif ($currentTag eq "author")
{
print "<td>";
}
elsif ($currentTag eq "price")
{
print "<td>";
}
elsif ($currentTag eq "rating")
{
print "<td>";
}

}

Each time the parser encounters a starting tag, it calls start() with the name of the tag (and attributes, if any) as
arguments. The start() function then processes the tag, printing corresponding HTML markup in place of the
XML tag.

I've used an "if" statement, keyed on the tag name, to decide how to process each tag. For example, since I
know that <book> indicates the beginning of a new row in my desired output, I replace it with a <tr>, while
other elements like <title> and <author> correspond to table cells, and are replaced with <td> tags.

Call Me Back 7



In case you're wondering, I've used the lc() function to convert the tag name to lowercase before performing
the comparison; this is necessary to enforce consistency and to ensure that the script works with XML
documents that use upper−case or mixed−case tags.

Finally, I've also stored the current tag name in the global variable $currentTag − this can be used to identify
which tag is being processed at any stage, and it'll come in useful a little further down.

The end() function takes care of closing tags, and looks similar to start() − note that I've specifically cleaned
up $currentTag at the end.

# this is called when an end tag is found
sub end()
{
my ($parser, $name) = @_;
$currentTag = lc($name);
if ($currentTag eq "book")
{
print "</tr>";
}
elsif ($currentTag eq "title")
{
print "</td>";
}
elsif ($currentTag eq "author")
{
print "</td>";
}
elsif ($currentTag eq "price")
{
print "</td>";
}
elsif ($currentTag eq "rating")
{
print "</td>";
}

# clear value of current tag
$currentTag = "";
}

Note that empty elements generate both start and end events.

So this takes care of replacing XML tags with corresponding HTML tags...but what about handling the data
between them?

Using Perl with XML (part 1)

Call Me Back 8



# this is called when CDATA is found
sub cdata()
{
my ($parser, $data) = @_;
my @ratings = ("Words fail me!", "Terrible", "Bad",
"Indifferent", "Good",
"Excellent");

if ($currentTag eq "title")
{
print "<i>$data</i>";
}
elsif ($currentTag eq "author")
{
print $data;
}
elsif ($currentTag eq "price")
{
print "\$$data";
}
elsif ($currentTag eq "rating")
{
print $ratings[$data];
}

}

The cdata() function is called whenever the parser encounters data between an XML tag pair. Note, however,
that the function is only passed the data as argument; there is no way of telling which tags are around it.
However, since the parser processes XML chunk−by−chunk, we can use the $currentTag variable to identify
which tag this data belongs to.

Depending on the value of $currentTag, an "if" statement is used to print data with appropriate formatting;
this is the place where I add italics to the title, a currency symbol to the price, and a text rating (corresponding
to a numerical index) from the @ratings array.

Here's what the finished script (with some additional HTML, so that you can use it via CGI) looks like:

#!/usr/bin/perl

# include package
use XML::Parser;

# initialize parser
$xp = new XML::Parser();

# set callback functions

Using Perl with XML (part 1)

Call Me Back 9



$xp−>setHandlers(Start => \&start, End => \&end, Char =>
\&cdata);

# keep track of which tag is currently being processed
$currentTag = "";

# send standard header to browser
print "Content−Type: text/html\n\n";

# set up HTML page
print "<html><head></head><body>";
print "<h2>The Library</h2>";
print "<table border=1 cellspacing=1 cellpadding=5>";
print "<tr><td align=center>Title</td><td
align=center>Author</td><td
align=center>Price</td><td align=center>User
Rating</td></tr>";

# parse XML
$xp−>parsefile("library.xml");

print "</table></body></html>";

# this is called when a start tag is found
sub start()
{
# extract variables
my ($parser, $name, %attr) = @_;

$currentTag = lc($name);

if ($currentTag eq "book")
{
print "<tr>";
}
elsif ($currentTag eq "title")
{
print "<td>";
}
elsif ($currentTag eq "author")
{
print "<td>";
}
elsif ($currentTag eq "price")
{
print "<td>";
}
elsif ($currentTag eq "rating")
{

Using Perl with XML (part 1)

Call Me Back 10



print "<td>";
}

}

# this is called when CDATA is found
sub cdata()
{
my ($parser, $data) = @_;
my @ratings = ("Words fail me!", "Terrible", "Bad",
"Indifferent", "Good",
"Excellent");

if ($currentTag eq "title")
{
print "<i>$data</i>";
}
elsif ($currentTag eq "author")
{
print $data;
}
elsif ($currentTag eq "price")
{
print "\$$data";
}
elsif ($currentTag eq "rating")
{
print $ratings[$data];
}

}

# this is called when an end tag is found
sub end()
{
my ($parser, $name) = @_;
$currentTag = lc($name);
if ($currentTag eq "book")
{
print "</tr>";
}
elsif ($currentTag eq "title")
{
print "</td>";
}
elsif ($currentTag eq "author")
{
print "</td>";
}

Using Perl with XML (part 1)

Call Me Back 11



elsif ($currentTag eq "price")
{
print "</td>";
}
elsif ($currentTag eq "rating")
{
print "</td>";
}

# clear value of current tag
$currentTag = "";
}

# end

And when you run it, here's what you'll see:

You can now add new items to your XML document, or edit existing items, and your rendered HTML page
will change accordingly. By separating the data from the presentation, XML has imposed standards on data
collections, making it possible, for example, for users with no technical knowledge of HTML to easily update
content on a Web site, or to present data from a single source in different ways.

Using Perl with XML (part 1)

Call Me Back 12



Random Walk
In addition to elements and CDATA, Perl also allows you to set up handlers for other types of XML
structures, most notably PIs, entities and notations (if you don't know what these are, you might want to skip
this section and jump straight into another, more complex example on the next page). As demonstrated in the
previous example, handlers for these structures are set up by specifying appropriate callback functions via a
call to the setHandlers() object method.

Here's a quick list of the types of events that the parser can handle, together with a list of their key names (as
expected by the setHandlers() method) and a list of the arguments that the corresponding callback function
will receive.

Key Arguments Event
to callback
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Final parser handle Document parsing completed

Start parser handle, Start tag found
element name,
attributes

End parser handle, End tag found
element name

Char parser handle, CDATA found
CDATA

Proc parser handle, PI found
PI target,
PI data

Comment parser handle, Comment found
comment

Unparsed parser handle, entity, Unparsed entity found
base, system ID, public
ID, notation

Notation parser handle, notation, Notation found
base, system ID, public
ID

XMLDecl parser handle, XML declaration found
version, encoding,
standalone

ExternEnt parser handle, base, External entity found

Random Walk 13



system ID, public ID

Default parser handle, data Default handler

As an example, consider the following example, which uses a simple XML document,

<?xml version="1.0"?>
<random>
<?perl print rand(); ?>
</random>

in combination with this Perl script to demonstrate how to handle processing instructions (PIs):

#!/usr/bin/perl

# include package
use XML::Parser;

# initialize parser
$xp = new XML::Parser();

# set PI handler
$xp−>setHandlers(Proc => \&pih);

# output some HTML
print "Content−Type: text/html\n\n";
print "<html><head></head><body>And the winning number is: ";
$xp−>parsefile("pi.xml");
print "</body></html>";

# this is called whenever a PI is encountered
sub pih()
{
# extract data
my ($parser, $target, $data) = @_;

# if Perl command
if (lc($target) == "perl")
{
# execute it
eval($data);
}
}

# end

Using Perl with XML (part 1)

Random Walk 14



In this case, the setHandlers() method knows that it has to call the subroutine pih() when it encounters a
processing instruction in the XML data; this user−defined pih() function is automatically passed the PI target
and the actual command to be executed. Assuming the command is a Perl command − as indicated by the
target name − the function passes it on to eval() for execution.

Using Perl with XML (part 1)

Random Walk 15



What's For Dinner?
Here's another, slightly more complex example using the SAX parser, and one of my favourite meals.

<?xml version="1.0"?>

<recipe>

<name>Chicken Tikka</name>
<author>Anonymous</author>
<date>1 June 1999</date>

<ingredients>

<item>
<desc>Boneless chicken breasts</desc>
<quantity>2</quantity>
</item>

<item>
<desc>Chopped onions</desc>
<quantity>2</quantity>
</item>

<item>
<desc>Ginger</desc>
<quantity>1 tsp</quantity>
</item>

<item>
<desc>Garlic</desc>
<quantity>1 tsp</quantity>
</item>

<item>
<desc>Red chili powder</desc>
<quantity>1 tsp</quantity>
</item>

<item>
<desc>Coriander seeds</desc>
<quantity>1 tsp</quantity>
</item>

<item>
<desc>Lime juice</desc>
<quantity>2 tbsp</quantity>

What's For Dinner? 16



</item>

<item>
<desc>Butter</desc>
<quantity>1 tbsp</quantity>
</item>
</ingredients>

<servings>
3
</servings>

<process>
<step>Cut chicken into cubes, wash and apply lime juice and
salt</step>
<step>Add ginger, garlic, chili, coriander and lime juice in a
separate
bowl</step>
<step>Mix well, and add chicken to marinate for 3−4
hours</step>
<step>Place chicken pieces on skewers and barbeque</step>
<step>Remove, apply butter, and barbeque again until meat is
tender</step>
<step>Garnish with lemon and chopped onions</step>
</process>

</recipe>

This time, my Perl script won't be using an "if" statement when I parse the file above; instead, I'm going to be
keying tag names to values in a hash. Each of the tags in the XML file above will be replaced with appropriate
HTML markup.

#!/usr/bin/perl

# hash of tag names mapped to HTML markup
# "recipe" => start a new block
# "name" => in bold
# "ingredients" => unordered list
# "desc" => list items
# "process" => ordered list
# "step" => list items

%startTags = (
"recipe" => "<hr>",
"name" => "<font size=+2>",
"date" => "<i>(",
"author" => "<b>",

Using Perl with XML (part 1)

What's For Dinner? 17



"servings" => "<i>Serves ",
"ingredients" => "<h3>Ingredients:</h3><ul>",
"desc" => "<li>",
"quantity" => "(",
"process" => "<h3>Preparation:</h3><ol>",
"step" => "<li>"
);

# close tags opened above
%endTags = (
"name" => "</font><br>",
"date" => ")</i>",
"author" => "</b>",
"ingredients" => "</ul>",
"quantity" => ")",
"servings" => "</i>",
"process" => "</ol>"
);

# name of XML file
$file = "recipe.xml";

# this is called when a start tag is found
sub start()
{
# extract variables
my ($parser, $name, %attr) = @_;

# lowercase element name
$name = lc($name);

# print corresponding HTML
if ($startTags{$name})
{
print $startTags{$name};
}
}

# this is called when CDATA is found
sub cdata()
{
my ($parser, $data) = @_;
print $data;
}

# this is called when an end tag is found
sub end()
{
my ($parser, $name) = @_;

Using Perl with XML (part 1)

What's For Dinner? 18



$name = lc($name);
if ($endTags{$name})
{
print $endTags{$name};
}
}

# include package
use XML::Parser;

# initialize parser
$xp = new XML::Parser();

# set callback functions
$xp−>setHandlers(Start => \&start, End => \&end, Char =>
\&cdata);

# send standard header to browser
print "Content−Type: text/html\n\n";

# print HTML header
print "<html><head></head><body>";

# parse XML
$xp−>parsefile($file);

# print HTML footer
print "</body></html>";

# end

In this case, I've set up two hashes, one for opening tags and one for closing tags. When the parser encounters
an XML tag, it looks up the hash to see if the tag exists as a key. If it does, the corresponding value (HTML
markup) is printed. This method does away with the slightly cumbersome branching "if" statements of the
previous example, and is easier to read and understand.

Here's the output:

Using Perl with XML (part 1)

What's For Dinner? 19



That's about it for the moment. Over the last few pages, I've discussed using Perl's XML::Parser package to
process an XML file and mark up the data within it with HTML tags. However, just as there's more than one
way to skin a cat, there's more than one way to process XML data with Perl. In the second part of this article,
I'll be looking at an alternative technique of parsing an XML file, this time using the DOM. Make sure you
come back for that one!

Note: All examples in this article have been tested on Linux/i586 with Perl 5.005. Examples are illustrative
only, and are not meant for a production environment. YMMV!

Using Perl with XML (part 1)

What's For Dinner? 20


	Table of Contents
	Perl Of Wisdom
	Getting Down To Business
	Let's Talk About SAX
	Breaking It Down
	Call Me Back
	Random Walk
	What's For Dinner?

