
Object−Oriented Programming In Perl (part 1)

By Vikram Vaswani

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/

Table of Contents
This Means War!...1

You Say Tomahto, I Say Tomayto...2

The Popeye Show..3

All Friends Here..4

Signed, Anonymous...5

The Copycat Crime...6

And Now For Sumthing New...7

Private Spaces..9

Bless() Me, For I Have Sinned!..11

Old Bunnies For New..12

Object−Oriented Programming In Perl (part 1)

i

This Means War!
Object Oriented Programming.

A term that strikes fear into the heart of even the most determined newbie.

Conceptually, learning how to program in an object−oriented manner is a lot like going to war, with
everything that preceded it akin to boot camp. Sure, you may know how to write functional, clean code, just
as you may know how to clean a gun or live off dead beetles − but it's only when you're out in the jungle, with
the bullets flying past your head, that those skills are actually put to the test. And so it is with OOP − it's a
whole new programming paradigm, and it takes a little bit of getting used to.

The upside? If you survive, you'll come back to a hero's welcome, people will look at you with newfound
respect, and getting a date on Saturday night will be a simple matter of flexing those OOP muscles and
showing off those battle scars.

Think you can handle it?

 This article copyright Melonfire 2000. All rights reserved.

This Means War! 1

http://www.melonfire.com/

You Say Tomahto, I Say Tomayto
All the bravado aside, OOP in Perl is somewhat complex, primarily because the language has a somewhat
novel way of doing things. The first − and probably the most confusing thing − for a newbie trying to
understand the intricacies of Perl objects is the profusion of terms used to describe them. You'll hear about
"modules", packages", "classes", "references", "constructors" and a whole lot more...and each will leave you
more confused than the last.

For the purposes of this tutorial, we're going to set a few ground rules which might help to simplify your
understanding of how Perl objects work.

#1: Central to your understanding of OOP in Perl is the concept of "references". References are covered in
detail in this here itty−bitty article.

#2: Once you've got that down, it's time to enter the weird and wonderful world of Perl "packages". For all
intents and purposes, "packages", "classes" and "modules" are synonymous with each other (that's a little
white lie, but don't let it bother you). Throughout this tutorial, we'll be using the word "packages".

#3: "Methods" and "objects" are thingummies which reside within a package. So are "constructors",
"destructors" and "overrides". You don't need to worry about these until we get to the second part of this
article.

Cool? OK, let's get started.

 This article copyright Melonfire 2000. All rights reserved.

You Say Tomahto, I Say To... 2

http://www.melonfire.com/

The Popeye Show
In Perl, a "reference" is exactly what it sounds like − an indicator, or pointer, to something else. It is a
programming construct that allows programmers to access the value(s) stored in a variable without using the
variable name.

By itself, this may not seem very significant − as a matter of fact, it may even seem slightly stupid ("look, Ma,
I can access a variable without using its name!") − but references come in very handy when building reusable
Perl objects. Let's take a quick example:

#!/usr/bin/perl # set variable $me = "popeye"; # set reference
$ref = \$me; # print values print "The value of \$me is
$me\n"; print "The value of \$ref is $ref\n";

In this case, we've first initialized a standard Perl scalar and then created a reference to it by prefixing it with a
backslash[\]. Now, the reference and the variable itself are two different things − as you'll see when you run
the script and get output that looks like this:

The value of $me is popeye The value of $ref is
SCALAR(0x80baa88)

Thus, the reference $ref is simply a pointer to an address in memory which stores the value of the variable
$me. The word SCALAR that you see indicates the type of data, while the hexadecimal number following it is
the actual memory address. Try memorizing it and see if you can say it backwards really fast.

Now, how about going full circle and using the reference to actually get the value of the variable and display
it?

#!/usr/bin/perl # set variable $me = "popeye"; # set reference
$ref = \$me; # print values print "The value of \$ref is
$ref\n"; print "The value of the referenced variable is
$$ref\n";

And the output is:

The value of $ref is SCALAR(0x80baa88) The value of the
referenced variable is popeye

In this case, by placing a single $ before the variable containing the reference, you are able to get the original
value of the reference (as opposed to some hexadecimal gibberish). Just so you know, this is referred to as
"dereferencing" a variable. Geeks need new words for everything.

 This article copyright Melonfire 2000. All rights reserved.

The Popeye Show 3

http://www.melonfire.com/

All Friends Here
You can also reference and dereference other types of Perl constructs − the next example shows you how to
do this with arrays and hashes.

#!/usr/bin/perl # set array variable @friends = ("Rachel",
"Phoebe", "Monica", "Joey", "Chandler", "Ross"); # set hash
%animals = ('donald'=>'duck', 'mickey'=>'mouse',
'cheshire'=>'cat'); # set reference for array $ref =
\@friends; # set reference for hash $fer = \%animals; # print
values print "The value of \$ref is $ref\n"; print "The value
of \$fer is $fer\n"; print "\n"; print "The value of the first
array element is $$ref[0]\n"; print "The value for the key
\"mickey\" is $$fer{'mickey'}\n";

And the output is:

The value of $ref is ARRAY(0x80baa94) The value of $fer is
HASH(0x80bab18) The value of the first array element is Rachel
The value for the key "mickey" is mouse

Note how the data type of the referenced variable is clearly visible when you print the reference.

Don't just restrict yourself to variables, either − you can easily create a reference to a Perl subroutine like this:

#!/usr/bin/perl # set variable $me = "popeye"; # subroutine
sub whoami { print "My name is $me\n"; } # reference to
subroutine $ref = \ # print values print "The value of \$ref
is $ref\n"; # and run the subroutine via reference

And the output is:

The value of $ref is CODE(0x80baaac) My name is popeye

 This article copyright Melonfire 2000. All rights reserved.

All Friends Here 4

http://www.melonfire.com/

Signed, Anonymous
Just so you know, Perl also allows you to combine two steps into one by creating a reference directly, without
using the backslash operator. For example, you could create an array reference like this (as in the example on
the previous page):

set array variable @friends = ("Rachel", "Phoebe", "Monica",
"Joey", "Chandler", "Ross"); # set reference for array $ref =
\@friends; # print values print "The value of \$ref is
$ref\n";

or like this

set array reference $arrayref = ["Rachel", "Phoebe",
"Monica", "Joey", "Chandler", "Ross"]; # print values print
"The value of \$arrayref is $arrayref\n";

By enclosing the array elements in square braces, Perl allows you to create a reference directly (in a prime
example of bad geek humour, this is known as an anonymous array, primarily because it doesn't have a name.)
When you print the value of $arrayref, you'll see something like this:

The value of $arrayref is ARRAY(0x80b5670)

You can also create an "anonymous hash" by enclosing the key−value pairs in curly braces

$hashref = {'donald'=>'duck', 'mickey'=>'mouse',
'cheshire'=>'cat'};

and "anonymous subroutines" by using the "sub" keyword without a name after it.

$subref = sub { print "My name is $me\n"; };

 This article copyright Melonfire 2000. All rights reserved.

Signed, Anonymous 5

http://www.melonfire.com/

The Copycat Crime
There's one important caveat when dealing with references, and it relates to copying them. Just as you can
copy the value of one variable into another, Perl also allows you to copy references. The following example
demonstrates this clearly.

#!/usr/bin/perl # set variable $icecream = "peach"; # set
reference $alpha = \$icecream; # copy reference $beta =
$alpha; # print state print "BEFORE\n"; print "icecream =
$icecream\n"; print "alpha(ref) = $alpha\n"; print "alpha(val)
= $$alpha\n"; print "beta(ref) = $beta\n"; print "beta(val) =
$$beta\n";

And the output is:

BEFORE icecream = peach alpha(ref) = SCALAR(0x80baa88)
alpha(val) = peach beta(ref) = SCALAR(0x80baa88) beta(val) =
peach

However, note what happens when you change the value of the copied reference.

#!/usr/bin/perl # set variable $icecream = "peach"; # set
reference $alpha = \$icecream; # copy reference $beta =
$alpha; # print state print "BEFORE\n"; print "icecream =
$icecream\n"; print "alpha(ref) = $alpha\n"; print "alpha(val)
= $$alpha\n"; print "beta(ref) = $beta\n"; print "beta(val) =
$$beta\n"; # change beta $$beta = "raspberry"; # print state
print "AFTER\n"; print "icecream = $icecream\n"; print
"alpha(ref) = $alpha\n"; print "alpha(val) = $$alpha\n"; print
"beta(ref) = $beta\n"; print "beta(val) = $$beta\n";

The output now makes for interesting reading.

BEFORE icecream = peach alpha(ref) = SCALAR(0x80baa88)
alpha(val) = peach beta(ref) = SCALAR(0x80baa88) beta(val) =
peach AFTER icecream = raspberry alpha(ref) =
SCALAR(0x80baa88) alpha(val) = raspberry beta(ref) =
SCALAR(0x80baa88) beta(val) = raspberry

The lesson here? Simple. When you copy variables, changing one has no effect on the other. But when you
copy references, since a reference is a direct hook into memory, changing one of the copies affects the original
value of the variable and also (obviously) the other copies of the reference.

 This article copyright Melonfire 2000. All rights reserved.

The Copycat Crime 6

http://www.melonfire.com/

And Now For Sumthing New...
Next up, packages. In Perl−lingo, a package can best be thought of as a self−contained unit of user−defined
variables and subroutines, which can be re−used over and over again. In fact, this very reusability is the
reason Perl programmers are so fond of packages, frequently using them to build "modules" which they then
distribute to all and sundry.

Defining a package takes place via the "package" keyword, which is followed by the name of a package. The
statement

package Sumthing;

would tell the Perl interpreter that the code following it belongs to the package named "Sumthing".

Once you've defined your package, you can add variable declarations and subroutine calls to it exactly as you
would normally.

#!/usr/bin/perl package Sumthing; # subroutine sub add { $sum
= $alpha+$beta; print "Sum is $sum\n"; } # variables $alpha =
10; $beta = 4;

In the example above, the package named "Sumthing" contains a couple of variables, and a function that adds
them up and prints them out.

Typically, the scope of the package definition extends to the end of the file, or until another "package"
keyword is encountered.

A quick aside on modules here: once you've got your package together, you can convert it to a module by
saving it to a file called "Sumthing.pm" (the .pm extension signifies a Perl Module, which is nothing but a
package or collection of packages designed to be reusable). All Perl module files end in the extension .pm,
and Perl module names typically begin with a capital letter.

Sumthing.pm − a Perl module which performs addition package
Sumthing; # subroutine sub add { $sum = $alpha+$beta; print
"Sum is $sum\n"; } # variables $alpha = 10; $beta = 4; 1;

Note the

1;

at the end of the module file − this is typically done so that a use() or require() function call to the module
succeeds.

More on how to use modules later.

And Now For Sumthing New.... 7

 This article copyright Melonfire 2000. All rights reserved.

Object−Oriented Programming In Perl (part 1)

And Now For Sumthing New.... 8

http://www.melonfire.com/

Private Spaces
The important thing to remember here is that the variables and subroutines are private to a particular package,
and cannot be accessed outside it. So, if you were to create another package named "Sumotherthing", as the
following example demonstrates, "Sumotherthing" would not be able to access subroutines and variables from
"Sumthing"...

#!/usr/bin/perl package Sumthing; # subroutine sub add { $sum
= $alpha+$beta; print "Sum is $sum\n"; } # variables $alpha =
10; $beta = 4; package Sumotherthing; # variables $alpha = 2;
$beta = 40; # subroutine sub multiply { $product =
$alpha*$beta; print "Product is $product\n"; } # print the
value of alpha # since no "package" statement has been
encountered, this statement will only # "see" the package
Sumotherthing print "The value of \$alpha is $alpha\n";

...unless it explicitly called variables and functions in "Sumthing" by preceding the variable/subroutine name
with the package name.

#!/usr/bin/perl package Sumthing; # subroutine sub add { $sum
= $alpha+$beta; print "Sum is $sum\n"; } # variables $alpha =
10; $beta = 4; package Sumotherthing; # variables $alpha = 2;
$beta = 40; # subroutine sub multiply { $product =
$alpha*$beta; print "Product is $product\n"; } # print the
value of alpha # since no "package" statement has been
encountered, this statement will only # "see" the package
Sumotherthing print "The value of \$alpha is $alpha\n"; # now
switch to the other package and print package Sumthing; print
"The value of \$alpha is $alpha\n"; # you could also use the
double−colon notation to access constructs from # other
packages # this prints the value of "alpha" from Sumthing
print "The value of \$alpha from package #1 is " .
$Sumthing::alpha . "\n"; # while this prints the value of
"alpha" from Sumotherthing print "The value of \$alpha from
package #2 is " . $Sumotherthing::alpha . "\n"; # works for
subroutines too! # this runs the add() routine from Sumthing
and this runs the multiply() routine from Sumotherthing
ultiply();

And the output is:

The value of $alpha is 2 The value of $alpha is 10 The value
of $alpha from package #1 is 10 The value of $alpha from
package #2 is 2 Sum is 14 Product is 80

Private Spaces 9

Just so you know, packages aren't something to be afraid of. By default, all the Perl code you write resides
within the domain of the uber−package, the one they call "main". The following snippet will demonstrate this:

#!/usr/bin/perl $language="Francais"; print "Parlez−vous
$main::language?\n";

In this case, since there is no mention of a specific package, the variable $language is created in the domain of
the package "main".

Finally, the "package" keyword, by itself, indicates that subsequent variables will not be accepted by Perl
unless they are explicitly preceded by a package name.

 This article copyright Melonfire 2000. All rights reserved.

Object−Oriented Programming In Perl (part 1)

Private Spaces 10

http://www.melonfire.com/

Bless() Me, For I Have Sinned!
Finally, it's time to get down and play in the mud with a few "objects". In Perl, an "object" is simply a
reference that belongs to a specific package. And the method used to associate a reference with a specific
package is referred to as "blessing", because the function used to perform the association is the bless()
function.

For example,

package Easterbunny; sub new { my $this = {}; bless $this;
return $this; }

In this case, the first line within the subroutine creates an anonymous hash reference (this was covered a few
pages back). The next line bless()es this reference and associates it with the package Easterbunny and sends it
back as a return value.

Now, take a minute to read this definition of a constructor from the Perl manual. It says that "... a constructor
is merely a subroutine that returns a reference to something blessed into a class, generally the class that the
subroutine is defined in..."

In other words, you just wrote your first constructor.

Obviously, the new() constructor, or subroutine, above can do a whole lot more than just bless() references.
For example, you could have it spit out a few choice insults to the poor programmer who decided to invoke it,
as in the following example.

package Easterbunny; sub new { my $this = {}; print "Grow up.
Get a life. You suck.\n"; bless $this; return $this; }

Who says this job ain't fun?!

 This article copyright Melonfire 2000. All rights reserved.

Bless() Me, For I Have Si... 11

http://www.melonfire.com/

Old Bunnies For New
Finally, it's time to do something with the package you just created. If you haven't done it already, save the
package from the last example to a file named "Easterbunny.pm" in your Perl library path with all the other
.pm files (in case you don't know the location of those files, try checking the @INC variable). Remember that
since this is now a module, you need to add the all−important

1;

to the end of the file. Then create a Perl script which looks like this:

#!/usr/bin/perl use Easterbunny; $bob = new Easterbunny;

The first line of the file looks for the Perl module "Easterbunny.pm" and reads it in for use.

The second line creates a new instance of Easterbunny by invoking the new() constructor, and assigns it to
$bob.

You can also invoke the new() constructor in any of the
following ways: $bob = Easterbunny::new(); $bob =
Easterbunny−>new();

And the output will look something like this:

Grow up. Get a life. You suck.

And on that cheery note − goodbye and see you in a couple of weeks, when I'll be covering a few other OO
concepts in Perl.

 This article copyright Melonfire 2000. All rights reserved.

Old Bunnies For New 12

http://www.melonfire.com/

	Table of Contents
	This Means War!
	You Say Tomahto, I Say Tomayto
	The Popeye Show
	All Friends Here
	Signed, Anonymous
	The Copycat Crime
	And Now For Sumthing New...
	Private Spaces
	Bless() Me, For I Have Sinned!
	Old Bunnies For New

