
By Harish Kamath
This article copyright Melonfire 2000-2002. All rights reserved.

Table of Contents
................... 1Looking Back
................. 2Of Needles And Haystacks
.................... 4Making Lists
................... 6Adding It All Up
................. 8Changing Things Around
.................. 9Wiping Out The Past
.................. 10To Err Is Human...
..................... 11Endgame

Printed from DevShed.com

i

Looking Back
In the first part of this article, I gave you a crash course in the basics of using PHP with LDAP,
demonstrating how PHP’s built-in support for LDAP makes it easy to query an LDAP directory server for
user information. That article also included a detailed discussion of the steps that make up a
PHP-to-LDAP session, together with examples demonstrating how those steps play out in the real world.
In this second (and concluding) article, I will carry the torch onwards, explaining how to perform more
complex searches with LDAP. Since PHP comes with a whole bunch of functions for updating LDAP
directory servers, I’ll also examine those, with examples of how they can be used to add, modify and
delete entries to the LDAP directory tree. Let’s get going!

Printed from DevShed.com

1

Of Needles And Haystacks
In the first part of this article, I had written a simple PHP script to search the LDAP directory for a
particular user. But real life is never that simple...
Let’s suppose I want to search for my friend Joe from high school. Now, there are a million Joes in the
world, and I would like to drill down to my Joe without having to navigate through a large set of results.
The solution? A more complex search, which uses additional parameters to restrict the result set.
Take a look at the new search form,

<html> <head> <title>Search</title> </head> <body> <form action="search.php" method="POST"> First name
 <input type="text" name="cn" length="30">
 Last name
 <input type="text" name="sn" length="30">
 Email address
 <input type="text" name="email" length="30">
 <input type="submit" name="submit" value="Search"> </form> </body> </html>

which looks like this:

Once the form above is submitted, the data entered by the user is sent to the search script "search.php",
which actually performs the query - take a look:

<html> <head> </head> <body> <?php // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server"); // bind to the LDAP server specified above $r = ldap_bind($conn) or die("Could not bind to server"); // create the search string $query = "(&(cn=" . $_POST[’cn’] . ")(sn=" . $_POST[’sn’] . ")(mail=" . $_POST[’email’] . "))"; // start searching // specify both the start location and the search criteria // in this case, start at the top and return all entries $result = ldap_search($conn,"dc=my-domain,dc=com", $query) or die("Error in search query"); // get entry data as array $info = ldap_get_entries($conn, $result); // iterate over array and print data for each entry echo ""; for ($i=0; $i<$info["count"]; $i++) { echo "".$info[$i]["sn"][0]." - ".$info[$i]["mail"][0]." - ".$info[$i]["dn"].""; } echo ""; // print number of entries found echo "Number of entries found: " . ldap_count_entries($conn, $result) . "<p>"; // all done? clean up ldap_close($conn); ?></body> </html>

The structure of the code is identical to that of the examples in previous pages - with one important
difference:

<?php // create the search string $query = "(&(cn=" . $_POST[’cn’] . ")(sn=" . $_POST[’sn’] . ")(mail=" . $_POST[’email’] . "))"; ?>

This search string, obviously with the variables replaced with actual values, is passed to the ldap_search()
function; it returns only those entries from the LDAP directory free which match *all* the parameters
specified. Why? Because of my usage of the special AND operator, signified by the addition of the
ampersand (&) to the beginning of the search string above.
Here’s what the output looks like:

Printed from DevShed.com

2

If your LDAP entries contain other attributes, it’s just as easy to create more complex search queries -
simply add more input fields to the search form, and update the search string above to use those attributes
when searching the directory tree.
In case you were wondering, yes, you can also use logical OR (the | operator) or logical NOT (the !
operator) in your search queries - I’ll leave that to you to play with.

Printed from DevShed.com

3

Making Lists
So that takes care of searching. Now, how about adding, editing and deleting entries?
PHP comes with a full-fledged API that allows easy modification of the LDAP directory tree. In order to
demonstrate how this API works, I’m going to build, over the next few pages, a simple administration
module that performs these functions, so that you can see how it’s done.
First up, we need an index page that lists all the entries in the directory. This index page will serve as the
starting point for an administrator to make changes to existing directory entries or add new ones. Here’s
the code,

<html> <head> </head> <body> <table width="450" cellpadding="5" cellspacing="5" border="1"> <?php // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server"); // bind to the LDAP server specified above $r = ldap_bind($conn) or die("Could not bind to server"); // set base DN and required attribute list $base_dn = "dc=my-domain, dc=com"; $params = array("mail", "cn", "sn"); // list all entries from the base DN $result = ldap_list($conn, $base_dn, "cn=*", $params); ?> <tr> <td>First Name</td> <td>Last Name</td> <td colspan=2> </td> </tr> <?php // get entries $info = ldap_get_entries($conn, $result); // and print attribute values for ($i=0; $i<$info["count"]; $i++) { echo "<tr>"; echo "<td>".$info[$i]["cn"][0]."</td>"; echo "<td>".$info[$i]["sn"][0]."</td>"; echo "<td>Edit</td>"; echo "<td>Delete</td>"; echo "</tr>"; } // all done? clean up ldap_close($conn); ?></table> <p>Add new entry </body> </html>

and here’s what it looks like:

As you can see, most of this code is similar to what you saw in the previous article. However, there is one
important difference - instead of using the ldap_search() function, I’m using the ldap_list() function,
which returns a one-level list of all the entries matching the specified criteria, given a base DN at which to
start searching.

<?php // set base DN and required attribute list $base_dn = "dc=my-domain, dc=com"; $params = array("mail", "cn", "sn"); // list all entries from the base DN $result = ldap_list($conn, $base_dn, "cn=*", $params); ?>

This base DN and search filter are provided to ldap_list() as second and third arguments respectively. In
the example above, the ldap_list() function returns all the entries which have a "cn" attribute and are
located immediately under the node with DN "dc=my-domain,dc=com".
Additionally, ldap_list() accepts a fourth, optional parameter - an array containing a list of all the attributes
that should be included in the result set. In the example above, this array is called $params, and it specifies
that the returned result set should contain the "cn", "sn" and "mail" attributes.
The search result identifier returned by the ldap_list() can be passed to the ldap_get_entries() function,
which does the dirty work of extracting the raw data into a structured array. This array can be processed
using a simple "for" loop.

Printed from DevShed.com

4

<?php // get entries $info = ldap_get_entries($conn, $result); // and print attribute values for ($i=0; $i<$info["count"]; $i++) { echo "<tr>"; echo "<td>".$info[$i]["cn"][0]."</td>"; echo "<td>".$info[$i]["sn"][0]."</td>"; echo "<td>Edit</td>"; echo "<td>Delete</td>"; echo "</tr>"; } ?>

Note also the links to "edit.php" and "delete.php" next to each entry - I’ll be discussing the scripts these
links point to shortly. For the moment, though, skip downwards to the last link on the page, which points
to "add.html" - this is the HTML form that is used to add new users to the database, and it’s discussed on
the next page.

Printed from DevShed.com

5

Adding It All Up
Now that you know how to pull data out from the LDAP directory, how about putting some in?
PHP has a function to do this as well - I’ll show you how to use it, by creating a simple interface to add
instances of the "inetOrgPerson" class to the LDAP directory.
First, the input form, "add.html":

<html> <head> <title>Add Entry</title> </head> <body> <form method="POST" action="add.php"> <table border="0" cellpadding="0" cellspacing="10" width="500" > <tr> <td width="50%" align="right">First name</td> <td width="50%"><input type="text" name="cn" size="20"></td> </tr> <tr> <td width="50%" align="right">Last name</td> <td width="50%"><input type="text" name="sn" size="20"></td> </tr> <tr> <td width="50%" align="right">E-mail address</td> <td width="50%"><input type="text" name="mail" size="20"></td> </tr> <tr> <td width="100%" colspan="2" align="center"> <input type="submit" value="Submit" name="Submit"> <input type="reset" value="Reset" name="Reset"> </td> </tr> </table> </form> </body> </html>

You’ll notice here that I’ve only used three attributes of the "inetOrgPerson" class - "cn" for the common
name, "sn" for the surname and "mail" for the email address. Feel free to add to this list if you like.
Here’s what the form looks like,

and here’s the script that actually adds the entry:

<html> <head> </head> <body> <?php // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server. Error is " . ldap_error($conn)); // bind to the LDAP server $r = ldap_bind($conn) or die("Could not bind to server. Error is " . ldap_error($conn)); // prepare data $info["cn"] = $_POST[’cn’]; $info["sn"] = $_POST[’sn’]; $info["mail"] = $_POST[’mail’]; $info["objectClass"] = "inetOrgPerson"; // prepare DN for new entry $dn = "mail=" . $_POST[’mail’] . ", dc=my-domain, dc=com"; // add data to directory $result = ldap_add($conn, $dn, $info); // if successful, display success message if($result) { echo "New entry with DN " . $dn . " added to LDAP directory."; } // else display error else { echo "An error occurred. Error number " . ldap_errno($conn) . ": " . ldap_err2str(ldap_errno($conn)); } // all done? clean up ldap_close($conn); ?></body> </html>

Before I get into the details, let’s give this code a quick test run. Enter some data into the form above and
submit it - you will probably see something like this:

Ugly, huh?
In order to add an entry to the LDAP server, you must provide the server with appropriate credentials -
something I’ve obviously not done in the example above. Typically, these credentials consist of the
superuser’s DN and password - information that you should have set when setting up your LDAP server.
Assuming you have this information, let’s modify the code above and give it to the LDAP server.

<html> <head> </head> <body> <?php // configure privileged user $root_dn = "cn=root, dc=my-domain, dc=com"; $root_pw = "secret"; // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server. Error is " . ldap_error($conn)); // bind to the LDAP server $r = ldap_bind($conn, $root_dn, $root_pw) or die("Could not bind to server. Error is " . ldap_error($conn)); // prepare data $info["cn"] = $_POST[’cn’]; $info["sn"] = $_POST[’sn’]; $info["mail"] = $_POST[’mail’]; $info["objectClass"] = "inetOrgPerson"; // prepare DN for new entry $dn = "mail=" . $_POST[’mail’] . ", dc=my-domain, dc=com"; // add data to directory $result = ldap_add($conn, $dn, $info); // if successful, display success message if($result) { echo "New entry with DN " . $dn . " added to LDAP directory."; } // else display error else { echo "An error occurred. Error number " . ldap_errno($conn) . ": " . ldap_err2str(ldap_errno($conn)); } // all done? clean up ldap_close($conn); ?></body> </html>

Printed from DevShed.com

6

Note the addition of user credentials in the call to ldap_bind() - these credentials will be used to
authenticate the PHP client and allow it to make changes to the LDAP directory.

<?php // configure privileged user $root_dn = "cn=root, dc=my-domain, dc=com"; $root_pw = "secret"; // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server. Error is " . ldap_error($conn)); // bind to the LDAP server $r = ldap_bind($conn, $root_dn, $root_pw) or die("Could not bind to server. Error is " . ldap_error($conn)); ?>

Note also that LDAP requires you to provide the complete DN of the superuser, not just the username (as
is common with other authentication mechanisms).
Once that’s taken care of, the next step is to create an associative array whose keys correspond to
attributes of an LDAP entry. The data for these attributes is obtained from the HTML form submitted by
the user.

<?php // prepare data $info["cn"] = $_POST[’cn’]; $info["sn"] = $_POST[’sn’]; $info["mail"] = $_POST[’mail’]; $info["objectClass"] = "inetOrgPerson"; ?>

Once that’s done, I also need to construct the DN for the new entry. In this case, I’ve used the email
address as a component of the entry’s DN in order to ensure uniqueness (LDAP DNs at the same level in
the hierarchy must be unique).

<?php // prepare DN for new entry $dn = "mail=" . $_POST[’mail’] . ", dc=my-domain, dc=com"; ?>

In case you’re wondering where all this is going, you should know that all this information is needed by
the ldap_add() functions, which is the PHP function that actually takes care of adding a new entry to the
LDAP directory. This functions requires three arguments: a link identifier for the LDAP connection, the
DN for the new entry, and the actual attributes of the entry. Since I now have all this in place, all that
remains is to call ldap_add() and save the data to the LDAP server.

<?php // add data to directory $result = ldap_add($conn, $dn, $info); ?>

And here’s what the result looks like:

In case you’re wondering about the numerous calls to ldap_error() in the code above, ignore them for the
moment - I’ll be explaining them in detail shortly.

Printed from DevShed.com

7

Changing Things Around
Next up, modifying entries. You might remember, from previous pages, that the index page of this
application included links to scripts named "edit.php" and "delete.php" next to each entry, and passed each
of those scripts certain data using the URL GET method. Here’s what that code looked like:

<td> Edit </td>

As you can see, the user’s email address is passed from the main index page to the "edit.php" script on the
URL when the user clicks the corresponding hyperlink. This email address can then be used, in
combination with the ldap_list() function, to retrieve the complete user record and display it in a form for
editing - which is exactly what the next script does:

<html> <head> </head> <body> <table width="450" cellpadding="5" cellspacing="5" border="1"> <?php // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server"); // bind to the LDAP server specified above $r = ldap_bind($conn) or die("Could not bind to server"); // set base DN and return attribute list $base_dn = "dc=my-domain,dc=com"; $params = array("mail", "cn", "sn"); // perform search using email address passed on URL $result = ldap_list($conn, $base_dn, "mail=" . urldecode($_GET[’mail’]), $params); // extract data into array $info = ldap_get_entries($conn, $result); // print and display as editable form ?><form method="POST" action="modify.php"> <table border="0" cellpadding="0" cellspacing="10" width="500" > <tr> <td width="50%" align="right">First Name</td> <td width="50%"><input type="text" name="cn" size="20" value="<?php echo $info[0]["cn"][0]; ?>"></td> </tr> <tr> <td width="50%" align="right">Last Name</td> <td width="50%"><input type="text" name="sn" size="20" value="<?php echo $info[0]["sn"][0]; ?>"></td> </tr> <tr> <td width="50%" align="right">E-mail</td> <td width="50%"><input type="text" name="mail" size="20" value="<?php echo $info[0]["mail"][0]; ?>"></td> </tr> <tr> <td width="100%" colspan="2" align="center"> <input type="submit" value="Submit" name="Submit"> <input type="reset" value="Reset" name="Reset"> </td> </tr> </table> </form> <?php // all done? clean up ldap_close($conn); ?></table> </body> </html>

Here’s what it looks like:

I can now edit the data in the HTML form and submit it to a script that updates the entry in the directory.
Here’s the PHP code that take care of that:

<html> <head> </head> <body> <?php // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server. Error is " . ldap_error($conn)); // user with privileges to add an entry to LDAP hierarchy $root_dn = "cn=root, dc=my-domain, dc=com"; $root_pw = "secret"; // bind to the LDAP server specified above $r = ldap_bind($conn, $root_dn, $root_pw) or die("Could not bind to server. Error is " . ldap_error($conn)); // prepare data $info["cn"] = $_POST[’cn’]; $info["sn"] = $_POST[’sn’]; $info["mail"] = $_POST[’mail’]; $info["objectClass"] = "inetOrgPerson"; // prepare DN $dn = "mail=" . $_POST[’mail’] . ", dc=my-domain, dc=com"; // modify data in the directory $result = ldap_modify($conn, $dn, $info); // if successful, display success message if($result) { echo "Entry with DN " . $dn . " modified in LDAP directory."; } // else display error else { echo "An error occurred. Error number " . ldap_errno($conn) . ": " . ldap_err2str(ldap_errno($conn)); } // all done? clean up ldap_close($conn); ?></body> </html>

This code listing is similar to the code for adding a new user...with one important change: it uses the
ldap_modify() function instead of the ldap_add() command to update an existing entry, rather than add a
new one.
Here’s the output of the script above, indicating that the update was successful:

Printed from DevShed.com

8

Wiping Out The Past
So that takes care of listing, adding and modifying entries. All that’s left is to delete entries.
Again, this is similar to modifying entries - "delete.php", the script to invoke entry deletion is accessed
from the main index page, and is passed the user’s email address using the URL GET method. This email
address is then used by the PHP script to identify the corresponding entry and remove it via the
ldap_delete() command.

<html> <head> </head> <body> <?php // specify the LDAP server to connect to $conn = ldap_connect("localhost") or die("Could not connect to server. Error is " . ldap_error($conn)); // set privileged user $root_dn = "cn=root, dc=my-domain, dc=com"; $root_pw = "secret"; // bind to the LDAP server specified above $r = ldap_bind($conn, $root_dn, $root_pw) or die("Could not bind to server. Error is " . ldap_error($conn)); // prepare DN for entry to delete $dn = "mail=".$_GET[’mail’].", dc=my-domain, dc=com"; // delete the entry from the directory $result=ldap_delete($conn, $dn) ; // if successful, display success message if($result) { echo "Entry with DN " . $dn . " deleted from LDAP directory."; } // else display error else { echo "An error occurred. Error number " . ldap_errno($conn) . ": " . ldap_err2str(ldap_errno($conn)); } // all done? clean up ldap_close($conn); ?></body> </html>

Here’s the output:

Printed from DevShed.com

9

To Err Is Human...
You might remember, from the scripts in this article, my copious use of the ldap_error() and ldap_errno()
functions. As you must have guessed by now, these are built-in API functions to record and display error
messages.
The ldap_errno() function returns a pre-defined error number for each LDAP error. While this number is,
by itself, not very useful, it acquires significance when coupled with yet another PHP function,
ldap_err2str(), which returns a user-friendly error message for display to the user.
In order to see how this function may be used, consider the next example, which uses the ldap_error() and
ldap_err2str() functions to trap and generate the error message resulting from an attempt to bind to a
non-existent LDAP server:

<html> <head> </head> <body> <?php // specify the LDAP server to connect to $conn = ldap_connect("www.somewhere.com") or die("Could not connect to server"); // bind to the LDAP server specified above $r = ldap_bind($conn); // if not successful, display error message if(!$r) { echo "An error occurred. Error number " . ldap_errno($conn) . ": " . ldap_err2str(ldap_errno($conn)); } // further processing as required // all done? clean up ldap_close($conn); ?></body> </html>

Here’s what the output looks like:

There’s also a shortcut - the ldap_error() function, which returns the last error message generated. The
following code snippet, which is equivalent to the one above, demonstrates:

<html> <head> </head> <body> <?php // specify the LDAP server to connect to $conn = ldap_connect("www.somewhere.com") or die("Could not connect to server");; // bind to the LDAP server specified above $r = ldap_bind($conn); // if not successful, display display error message if(!$r) { echo "An error occurred - " . ldap_error($conn); } // further processing as required // all done? clean up ldap_close($conn); ?></body> </html>

Printed from DevShed.com

10

Endgame
And that’s about it for the moment. In this concluding article, I delved further into the PHP API for
LDAP, demonstrating the PHP functions that let you retrieve and modify data in the LDAP directory tree.
After a brief detour to demonstrate how you can easily build search forms for complex LDAP queries, I
took you through the process of building a Web-based administration module for an LDAP directory,
demonstrating the PHP API calls that allow you to add new entries to, and modify and delete existing
entries from, the LDAP server. I also took a brief look at PHP’s error-handling capabilities in the LDAP
world, demonstrating the two PHP functions that can be used to trap and gracefully handle errors in your
PHP-LDAP scripts.
Obviously, this is just the beginning - LDAP has a whole bunch of different applications, and PHP is
well-suited to all of them. The synergy between the two technologies cannot be overemphasized, and, as
the LDAP API in PHP evolves, you can expect to see more and more applications building on this
synergy.
In case you’d like to learn more about PHP and LDAP, I’d recommend some quality time with the
following links:
Understanding LDAP, at http://www.devshed.com/Server_Side/Administration/LDAP
The PHP manual pages for LDAP, at http://www.php.net/manual/en/ref.ldap.php
The official OpenLDAP Web site, at http://www.openldap.org/
A discussion of OpenLDAP installation, at
http://www.newarchitectmag.com/documents/s=5641/new1013637552/sidebar2.htm
String representation of LDAP search filters, at http://www.ietf.org/rfc/rfc2254.txt
Until next time...be good!
Note: Examples are illustrative only, and are not meant for a production environment. Melonfire provides
no warranties or support for the source code described in this article. YMMV!

Printed from DevShed.com

11

http://www.devshed.com/Server_Side/Administration/LDAP
http://www.php.net/manual/en/ref.ldap.php
http://www.openldap.org/
http://www.newarchitectmag.com/documents/s=5641/new1013637552/sidebar2.htm
http://www.ietf.org/rfc/rfc2254.txt

	Looking Back
	Of Needles And Haystacks
	Making Lists
	Adding It All Up
	Changing Things Around
	Wiping Out The Past
	To Err Is Human...
	Endgame

