SUN™ CERTIFIED PROGRAMMER & DEVELOPER

Java.lang—The
Math Class,
Strings, and
Wrappers

CERTIFICATION OBJECTIVES

° Using the java.lang.String Class
° Using the java.lang.Math Class
° Using Wrapper Classes

° Using the equals () Method with
Strings and Wrappers and Objects

\/ Two-Minute Drill
Q&A Self Test

2 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

his chapter focuses on the aspects of the java.lang package that you'll need to understand

for the exam. The java.lang package contains many of the most fundamental and

often-used classes in the Java APl. The exam will test your knowledge of String and
StringBuffer basics, including the infamous immutability of String objects, and how the more
common String and StringBuffer methods work. You will be tested on many of the basic
methods included in the Math class (extremely interesting), and you will need to know all about
wrappers—those methods that allow you to encapsulate your favorite primitives into objects,
so that you can do object-like stuff with them (like put them in collections). Finally, we’ll reveal
more than you've ever wanted to know about how the equals () method and == operator
work when dealing with String objects and wrappers.

As always, our focus will be on the knowledge you'll really need to pass the
exam. Undoubtedly some very wonderful methods will be overlooked in our tour
of java.lang, but we're dedicated to helping you pass this test.

CERTIFICATION OBJECTIVE

Using the String Class (Exam Objective 8.2)

Describe the significance of the immutability of String objects.

This section covers the String and StringBuffer classes. The key concepts we’ll
cover will help you understand that once a String object is created, it can never be
changed—so what 7s happening when a String object seems to be changing? We'll
find out. We'll also cover the differences between the String and StringBuffer classes
and when to use which.

Strings Are Immutable Objects

Let’s start with a little background information about strings. Strictly speaking you
may not need this information for the test, but a little context will help you learn
what you do have to know. Handling “strings” of characters is a fundamental aspect
of most programming languages. In Java, each character in a string is a 16-bit

Using the String Class (Exam Objective 8.2) 3

Unicode character. Because Unicode characters are 16 bits (not the skimpy 7 or 8
bits that ASCII provides), a rich, international set of characters is easily represented
in Unicode.

In Java, strings are objects. Just like other objects, you can create an instance of a
String with the new keyword, as follows:

String s = new String();

This line of code creates a new object of class String, and assigns the reference
variable s to it. So far String objects seem just like other objects. Now, let’s give the
String a value:

s = "abcdef";

As you might expect the String class has about a zillion constructors, so you can
use a more efficient shortcut:

String s = new String("abcdef");
And just because you'll use strings all the time, you can even say this:
String s = "abcdef";

There are some subtle differences between these options that we'll discuss later,
but what they have in common is that they all create a new String object, with a
value of “abedef”, and assign it to a reference variable 5. Now let’s say that you want
a second reference to the String object referred to by s

String s2 = s; // refer s2 to the same String as s

So far so good. String objects seem to be behaving just like other objects, so
what’s all the fuss about? The certification objective states: “describe the significance
of the immutability of String objects.” Ah-ha! Immutability! (What the heck is
immutability?) Once you have assigned a String a value, that value can never change—
it’s immutable, frozen solid, won't budge, fini, done. (We'll also talk about why later,
don’t let us forget.) The good news is that while the String object is immutable, its
reference variable is not, so to continue with our previous example:

s = s.concat (" more stuff"); // the concat() method 'appends
// a literal to the end

4 Chapter 6:

Java.lang—The Math Class, Strings, and Wrappers

Now wait just a minute, didn’t we just say that Strings were immutable? So
what’s all this “appending to the end of the string” talk? Excellent question; let’s
look at what really happened...

The VM took the value of String s (which was “abcdef”), and tacked * more
stuff” onto the end, giving us the value “abcdef more stuff”. Since
Strings are immutable, the VM couldn’t stuff this new String into the old String
referenced by s, so it created a new String object, gave it the value *abcdef more
stuff”, and made srefer to iz. At this point in our example, we have two String
objects: the first one we created, with the value “*abcdef ”, and the second one
with the value “abcdef more stuff”. Technically there are now #hree String
objects, because the literal argument to concat * more stuff” is itselfa new
String object. But we have references only to “abcdef” (referenced by s2) and
“abcdef more stuff” (referenced by).

What if we didn’t have the foresight or luck to create a second reference variable
for the “abcdef” String before we called: s = s.concat (“ more stuff”) ;?
In that case the original, unchanged String containing “abcdef” would still exist
in memory, but it would be considered “lost.” No code in our program has any way
to reference it—it is lost to us. Note, however, that the original “abcdef” String
didn’t change (it can’t, remember, it’s immutable); only the reference variable s was
changed, so that it would refer to a different String. Figure 6-1 shows what happens
on the heap when you reassign a reference variable. Note that the dashed line
indicates a deleted reference.

To review our first example:

String s = "abcdef"; // create a new String object, with value "abcdef",
// refer s to it
String s2 = s; // create a 2nd reference variable referring to

// the same String

s = s.concat (" more stuff"); // create a new String object, with value
// "abcdef more stuff", refer s to it.
// (change s's reference from the old
// String to the new String. (Remember
// s2 is still referring to the original
// "abcdef" String.

String objects
and their
reference
variables

Step I: String s = “abc”;

Using the String Class (Exam Objective 8.2)

The heap

=]

String reference
variable

Step2: String s2 = s;

»
»

“abc”

String objects

The heap

(=)

String reference
variable

String reference
variable

Step 3: s.concat

s =

("def") ;

String objects

The heap

(=)

String reference
variable "

String reference
variable

Let’s look at another example:

String x = "Java";
x.concat (" Rules!");
System.out.println("x =

> “abc”

String objects

String object

+ x);

@ Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

The output will be x = Java.

The first line is straightforward: create a new String object, give it the value
“Java”, and refer x to it. What happens next? The VM creates a second String
object with the value *Java Rules!” but nothing refers to it!!! The second
String object is instantly lost; no one can ever get to it. The reference variable x still
refers to the original String with the value “*Java”. Figure 6-2 shows creating a
String object without assigning to a reference.

Let’s expand this current example. We started with

String x = "Java'";
x.concat (" Rules!");
System.out.println("x = " + x); // the output is: x = Java

A String object Step I: String x = “Java”;
is abandoned

upon creation x

String reference
variable

The heap

t@

String object

Step2: x.concat (”Rules!”); The heap

String object

String reference
variable

]

String reference
variable

“Java Rules!”

String object

Notice that no reference
variable is created to access
the “Java Rules!” String.

Using the String Class (Exam Objective 8.2) 7

Now let’s add

x.toUpperCase () ;
System.out.println("x = " + X); // the output is still: x = Java

(We actually did just create a new String object with the value *JAVA
RULES ! ”, but it was lost, and x szill refers to the original, unchanged String
“Java”.)

How about adding

x.replace('a', 'X');
System.out.println("x = " + X); // the output is still: x = Java

Can you determine what happened? The VM created yet another new String
object, with the value *JXvX”, (replacing the s with Xs), but once again this new
String was lost, leaving x to refer to the original unchanged and wnchangeable String
object, with the value “Java”. In all of these cases we called various String
methods to create a new String by altering an existing String, but we never assigned
the newly created String to a reference variable.

But we can put a small spin on the previous example:

String x = "Java";
x = xX.concat (" Rules!"); // Now we're assigning x to the new String
System.out.println("x = " + x); // the output will be:

// x = Java Rules!

This time, when the VM runs the second line, a new String object is created
with the value of “Java Rules!”, and xis set to reference it. But wait, there’s
more—now the original String object, *Java”, has been lost, and no one is
referring to it. So in both examples we created 7wo String objects and only one
reference variable, so one of the two String objects was left out in the cold. See
Figure 6-3 for a graphic depiction of this sad story. The dashed line indicates a
deleted reference.

Let’s take this example a little further:

String x = "Java";

x = x.concat (" Rules!");

System.out.println("x = " + x); // the output is: x = Java Rules!
x.toLowerCase () ; // mno assignment, create a new, abandoned String
System.out.println("x = " + X); // no assignment, the output is

// still: x = Java Rules!x =

8 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

x.toLowerCase () ; // create a new String, assigned to x
System.out.println("x = " + X); // the assignment causes the output:
// x = java rules!

The previous discussion contains the keys to understanding Java String
immutability. If you really, really ger the examples and diagrams, backwards and
forwards, you should get 80 percent of the String questions on the exam correct.

We will cover more details about Strings next, but make no mistake—in terms of
bang for your buck, what we've already covered is by far the most important part
of understanding how String objects work in Java.

We'll finish this section by presenting an example of the kind of devilish String
question you might expect to see on the exam. Take the time to work it out on paper
(as a hint, try to keep track of how many objects and reference variables there are,
and which ones refer to which).

An old String

object being
abandoned *
String reference
variable

The heap

Step I: String x = “Java”;

»(“Java”

String object

Step2: x = x.concat (”"Rules!”);

String object

“Java Rules!”

String object

The heap

String reference
variable

Notice in step 2 that there is no
valid reference to the “Java” String;
that object has been “abandoned,”
and a new object created.

Using the String Class (Exam Objective 8.2) ©

String sl "spring ";

String s2 = sl + "summer ";
sl.concat ("fall ");

s2.concat(sl);

sl += "winter ";
System.out.println(sl + " " + s2);

What is the output?
For extra credit, how many String objects and how many reference variables were
created prior to the println statement? Answer:

The result of this code fragment is “spring winter spring summer”.
There are two reference variables, s/ and s2. There were a total of eight String
objects created as follows: “spring”, “summer ” (lost), “spring summer”, “fall”
(lost), “spring fall” (lost), “spring summer spring” (lost), “winter” (lost), “spring
winter” (at this point “spring” is lost). Only two of the eight String objects are
not lost in this process.

Important Facts About Strings and Memory

In this section we’ll discuss how Java handles string objects in memory, and some of
the reasons behind these behaviors.

One of the key goals of any good programming language is to make efficient use
of memory. As applications grow, it’s very common that String literals occupy large
amounts of a program’s memory, and that there is often a lot of redundancy within
the universe of String literals for a program. To make Java more memory efficient,
the JVM sets aside a special area of memory called the “String constant pool.” When
the compiler encounters a String literal, it checks the pool to see if an identical String
already exists. If a match is found, the reference to the new literal is directed to the
existing String, and no new String literal object is created. (The existing String
simply has an additional reference.) Now we can start to see why making String
objects immutable is such a good idea. If several reference variables refer to the same
String without even knowing it, it would be very bad if any of them could change
the String’s value.

You might say, “Well that’s all well and good, but what if someone overrides the
String class functionality; couldn’t that cause problems in the pool?” That’s one of
the main reasons that the String class is marked £inal. Nobody can override the
behaviors of any of the String methods, so you can rest assured that the String objects
you are counting on to be immutable will, in fact, be immutable.

I O Chapter 6: Javalang—The Math Class, Strings, and Wrappers

Creating New Strings

Earlier we promised to talk more about the subtle differences between the various
methods of creating a String. Let’s look at a couple of examples of how a String might
be created, and let’s further assume that no other String objects exist in the pool:

1 - String s = "abc"; // creates one String object and one reference
// variable

In this simple case, “abc” will go in the pool and s will refer to it.

2 - String s = new String("abc"); // creates two objects, and one
// reference variable

In this case, because we used the new keyword, Java will create a new String
object in normal (nonpool) memory, and s will refer to it. In addition, the literal
“abc” will be placed in the pool.

Important Methods in the String Class

The following methods are some of the more commonly used methods in the String
class, and also the ones that you’re most likely to encounter on the exam.

public char charAt (int index)

This method returns the character located at the String’s specified index.
Remember that String indexes are zero-based—for example,

String x = "airplane";
System.out.println(x.charAt(2)); // output is 'r'

public String concat(String s)

This method returns a String with the value of the String passed in to the method
appended to the end of the String used to invoke the method—for example,

String x = "taxi";
System.out.println(x.concat (" cab")); // output is "taxi cab"

The overloaded + and += operators perform functions similar to the concat ()
method—for example,

String x = "library";
System.out.println(x + " card"); // output is "library card"

exam

Jatch

Using the String Class (Exam Objective 8.2) | ||

1. String x = "Atlantic";
2. X += " ocean"
3. System.out.println(x); // output is "Atlantic ocean"

In the preceding “Atlantic Ocean” example, notice that the value of x really did
change! Remember that the += operator is an assignment operator, so line 2 is really
creating a new String, “Atlantic Ocean”, and assigning it to the x variable. After
line 2 executes, the original String x was referring to, “Atlantic”, is abandoned.

public Boolean equalsIgnoreCase(String s)

This method returns a boolean value (true or false) depending on whether
the value of the String in the argument is the same as the value of the String wused to
invoke the method. This method will return true even when characters in the String
objects being compared have differing cases—for example,

String x = "Exit";
System.out.println(x.equalsIgnoreCase ("EXIT")) ; // returns "true"
System.out.println(x.equalsIgnoreCase("tixe")) ; // returns "false"

public int length()

This method returns the length of the String used to invoke the method—for
example,

String x = "01234567";
System.out.println(x.length()); // returns "8"

Arrays have an attribute (not a method), called 1ength. You may encounter
questions in the exam that attempt to use the length () method on an array,
or that attempt to use the Iength attribute on a String. Both cause compiler
errors—for example,

String x = “test”;

System.out.println(x.length); // compiler error

or

String [] x =new String[3];
System.out.println(x.length());

I 2 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

public String replace(char old, char new)

This method returns a String whose value is that of the String used to invoke the
method, updated so that any occurrence of the charin the first argument is replaced
by the charin the second argument—for example,

String x = "OXOXOXOX";
System.out.println(x.replace('x', 'X')); // output is "oXoXoXoX"

public String substring(int begin)
public String substring(int begin, int end)

The substring () method is used to return a part (or substring) of the String
used to invoke the method. The first argument represents the starting location
(zero-based) of the substring. If the call has only one argument, the substring
returned will include the characters to the end of the original String. If the call has
trwo arguments, the substring returned will end with the character located in the 7th
position of the original String where 7 is the second argument. Unfortunately, the
ending argument is not zero-based, so if the second argument is 7, the last character
in the returned String will be in the original String’s 7 position, which is index 6
(ouch). Let’s look at some examples:

String x = "0123456789"; // as 1f by magic, the value of each char
// is the same as its index!

System.out.println(x.substring(5)); // output is "56789"

System.out.println(x.substring(5, 8)); // output is "567"

The first example should be easy: start at index 5 and return the rest of the
String. The second example should be read as follows: start at index 5 and return
the characters up to and including the 8" position (index 7).

public String toLowerCase()

This method returns a String whose value is the String used to invoke the method,
but with any uppercase characters converted to lowercase—for example,

String x = "A New Moon";
System.out.println(x.toLowerCase()); // output is "a new moon"

public String toString()

This method returns the value of the String used to invoke the method. What? Why
would you need such a seemingly “do nothing” method? All objects in Java must

Using the String Class (Exam Objective 82) | 3

have a toString () method, which typically returns a String that in some
meaningful way describes the object in question. In the case of a String object, what
more meaningful way than the String’s value? For the sake of consistency, here’s an

example:
String x = "big surprise";
System.out.println(x.toString()); // output - reader's exercise

public String toUpperCase()

This method returns a String whose value is the String used to invoke the method,
but with any lowercase characters converted to uppercase—for example,

String x = "A New Moon";
System.out.println(x.toUpperCase()); // output is "A NEW MOON"

public String trim()

This method returns a String whose value is the String used to invoke the method,
but with any leading or trailing blank spaces removed—for example,

String x = " hi ",
System.out.println(x + "x"); // result is " hi x"
System.out.println(x.trim() + "x"); // result is "hix"

The StringBuffer Class

on the

Qob

The StringBuffer class should be used when you have to make a lot of modifications
to strings of characters. As we discussed in the previous section, String objects are
immutable, so if you choose to do a lot of manipulations with String objects, you
will end up with a lot of abandoned String objects in the String pool. On the other
hand, objects of type StringBuffer can be modified over and over again without
leaving behind a great effluence of discarded String objects.

A common use for StringBuffers is file /O when large, ever-changing streams
of input are being handled by the program. In these cases, large blocks of
characters are handled as units, and StringBuffer objects are the ideal way
to handle a block of data, pass it on, and then reuse the same memory to
handle the next block of data.

I 4 Chapter 6:

exam

$atch

Java.lang—The Math Class, Strings, and Wrappers

In the previous section, we saw how the exam might test your understanding of
String immutability with code fragments like this:

String x = "abc";
x.concat ("def") ;
System.out.println("x = " + x); // output is "x = abc"

Because no new assignment was made, the new String object created with the
concat () method was abandoned instantly. We also saw examples like this:

String x = "abc";
x = x.concat("def");
System.out.println("x = " + x); // output is "x = abcdef"

We got a nice new String out of the deal, but the downside is that the old String
“abc” has been lost in the String pool, thus wasting memory. If we were using a
StringBuffer instead of a String, the code would look like this:

StringBuffer sb = new StringBuffer ("abc");
sb.append ("def") ;
System.out.println("sb = " + sb); // output is "sb = abcdef"

All of the StringBuffer methods we will discuss operate on the value of the
StringBuffer object invoking the method. So a call to sb.append (“def”) ;
is actually appending “def” ro itself (StringBuffer sb). In fact, these method
calls can be chained to each other—for example,

StringBuffer sb = new StringBuffer ("abc") ;
sb.append("def") .reverse() .insert (3, "---");
System.out.println(sb); // output is "fed---cba"

The exam will probably test your knowledge of the difference between String
and StringBuffer objects. Because StringBuffer objects are changeable, the
following code fragment will behave differently than a similar code fragment
that uses String objects:

StringBuffer sb = new StringBuffer ("abc") ;

sb.append("def") ;

System.out.println(sb);

In this case, the output will be

“abcdef”

Using the String Class (Exam Objective 82) | §

Important Methods in the StringBuffer Class

The following method returns a StringBuffer object with the argument’s value
appended to the value of the object that invoked the method:

public synchronized StringBuffer append(String s)

As we've seen earlier, this method will update the value of the object that invoked
the method, whether or not the return is assigned to a variable. This method will
take many different arguments, boolean, char, double, float, int, long, and others,
but the most likely use on the exam will be a String argument—for example,

StringBuffer sb = new StringBuffer("set ");
sb.append ("point") ;
System.out.println(sb); // output is "set point"

or

StringBuffer sb = new StringBuffer("pi = ");
sb.append (3.14159f) ;
System.out.println(sb); // output is "pi = 3.14159"

public synchronized StringBuffer insert(int offset, String s)

This method returns a StringBuffer object and updates the value of the StringBuffer
object that invoked the method call. In both cases, the String passed in to the second
argument is inserted into the original StringBuffer starting at the offset location
represented by the first argument (the offset is zero-based). Again, other types of
data can be passed in through the second argument (boolean, char, double, floar, int,
long, etc.), but the String argument is the one you’re most likely o see:

StringBuffer sb = new StringBuffer ("01234567");
sb.insert (4, "---");
System.out.println(sb); // output is "0123---4567"

public synchronized StringBuffer reverse()

This method returns a StringBuffer object and updates the value of the StringBuffer
object that invoked the method call. In both cases, the characters in the StringBuffer

I & Chapter 6: Javalang—The Math Class, Strings, and Wrappers

exam

Jatch

are reversed, the first character becoming the last, the second becoming the second
to the last, and so on:

StringBuffer sb = new StringBuffer ("A man a plan a canal Panama") ;
System.out.println(sb); // output is "amanaP lanac a nalp a nam A"

public String toString()

This method returns the value of the StringBuffer object that invoked the method
call as a String:

StringBuffer sb = new StringBuffer("test string");
System.out.println(sb.toString()); // output is "test string"

That’s it for StringBuffers. If you take only one thing away from this section, it’s
that unlike Strings, StringBuffer objects can be changed.

Many of the exam questions covering this chapter’s topics use a tricky bit of
Java syntax known as chained methods. A statement with chained methods has
the general form:

result =methodl () .method2 () .method3 () ;

In theory, any number of methods can be chained in this fashion, although
typically you won’t see more than three. Here’s how to decipher these
“handy Java shortcuts” when you encounter them:

I. Determine what the leftmost method call will return (let’s call it x).

2. Use x as the object invoking the second (from the left) method. If there
are only two chained methods, the result of the second method call is the
expression’s result.

3. If there is a third method, the result of the second method call is used
to invoke the third method, whose result is the expression’s result—
for example,

String x = "abc";
Stringy = x.concat ("def") . toUpperCase().replace('C', 'x"'); //chained methods
System.out.println("y ="+y); // result is "ABxDEF"

Let’s look at what happened. The literal “def” was concatenated to “abc”,
creating a temporary, intermediate String (soon to be lost), with the value
“abcdef”. The toUpperCase () method created a new (soon to be lost)
temporary String with the value “"ABCDEF”. The replace () method created
a final String with the value “ABxDEF”, and referred y to it.

Using the Math Class (Exam Objective 8.1) |7

CERTIFICATION OBJECTIVE

Using the Math Class (Exam Objective 8.1)

Write code using the following methods of the java.lang. Math class: abs, ceil, floor, max,

min, random, round, sin, cos, tan, sqrt.

The java.lang package defines classes that are fundamental to the Java language.
For this reason, all classes in the java.lang package are imported automatically, so
there is no reason to write an import statement for them. The package defines
object wrappers for all primitive types. The class names are Boolean, Byte, Character,
Double, Float, Integer, Long, Short, and Void as well as Object, the class from
which all other Java classes inherit.

The java.lang package also contains the Math class, which is used to perform
basic mathematical operations. The Math class defines approximations for the
mathematical constants pi and e. Their signatures are as follows:

public final static double Math.PI
public final static double Math.E

Because all methods of the Math class are defined as static, you don’t need to
create an instance to use them. In fact, it’s not possible to create an instance of the
Math class because the constructor is private. You can't extend the Math class
either, because it’s marked final.

Methods of the java.lang.Math Class

The methods of the Math class are static and are accessed like any static
method—through the class name. For these method calls the general form is

result = Math.aStaticMathMethod() ;

The following sections describe the Math methods and include examples of how
to use them.

I 8 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

abs()

The abs () method returns the absolute value of the argument—for example,
x = Math.abs (99) ; // output is 99
x = Math.abs (-99) // output is 99

The method is overloaded to take an iz, a long, a float, or a double argument. In
all but two cases, the returned value is non-negative. The signatures of the abs ()
method are as follows:

public static int abs(int a)
public static long abs(long a)
public static float abs(float a)
public static double abs (double a)

ceil()
The ceil () method returns the smallest integer, as a double, that is greater than
or equal to the argument and equal to the nearest integer value. In other words, the
argument is rounded up to the nearest integer equivalent.

Let’s look at some examples of this in action, just to make sure you are familiar
with the concept. All the following calls to Math.ceil () return the double

value 9.0:
Math.ceil (9.0) // result is 9.0
Math.ceil (8.8) // rises to 9.0

Math.ceil (8.02) // still rises to 9.0

Negative numbers are similar, but just remember that -9 is greater than —10.
All the following calls to Math.ceil () return the double value -9.0:

Math.ceil (-9.0) // result is -9.0
Math.ceil(-9.4) // rises to -9.0
Math.ceil (-9.8) // still rises to -9.0

There is only one ceil () method and it has the following signature:

public static double ceil (double a)

floor()

The f1loor () method returns the largest double that is less than or equal to the
argument and equal to the nearest integer value. This method is the antithesis of
the ceil () method.

exam
Jatch

Using the Math Class (Exam Objective 8.1) | Q@

All the following calls to Math. floor () return the double value 9.0:

Math.floor (9.0) // result is 9.0
Math.floor (9.4) // drops to 9.0
Math.floor (9.8) // still drops to 9.0

As before, keep in mind that with negative numbers, -9 is less than —8! All the
following calls to Math. floox () return the double value —9.0:

Math.floor(-9.0) // result is -9.0
Math.floor (-8.8) // drops to -9.0
Math.floor(-8.1) // still drops to -9.0

The signature of the £1oox () method is as follows:
public static double floor (double a)

The floor () and ceil () methods take only doubles. There are no
overloaded methods for integral numbers, because the methods would just
end up returning the integral numbers they were passed. The whole point
of floor () and ceil () is to convert floating-point numbers (doubles),
to integers, based on the rules of the methods. It may seem strange (it does
to us) that the integer values are returned in a double sized container, but
don’t let that throw you.

max()
The max () method takes two numeric arguments and returns the greater of the
two—for example,

x = Math.max (1024, -5000); // output is 1024.

This method is overloaded to handle 7nz, long, float, or double arguments. If the
input parameters are the same, max () returns a value equal to the two arguments.
The signatures of the max () method are as follows:

public static int max(int a, int b)

public static long max(long a, long b)
public static float max(float a, float b)
public static double max(double a, double b)

20 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

min()
Themin () method is the antithesis of the max () method; it takes two numeric
arguments and returns the lesser of the two—for example,

x = Math.min(0.5, 0.0); // output is 0.0

This method is overloaded to handle inz, long, float, or double arguments. If the
input parameters are the same, min () returns a value equal to the two arguments.
The signatures of the min () method are as follows:

public static int min(int a, int b)

public static long min(long a, long b)

public static float min(float a, float b)

public static double min(double a, double b)

And for the record, we're pretty impressed with our use of the word “antithesis”.

EXERCISE 6-1

Using the Math Class
In this exercise we will examine some numbers using the abs (), ceil (), and
floor () methods of the Math class. Find the absolute, ceiling, and floor values
of the following numbers: 10.5, =10.5, Math.P], and 0.
B Create a classand amain () method to perform the calculations.
B Store these numbers in an array of double values.

B Use a forloop to go through the array and perform the tests on each of these
numbers.

B Try to determine what the results of your program will be before running it.

B An example solution is provided at the end of the chapter.

random()

The random () method returns a random double that is greater than or equal to
0.0 and less than 1.0. The random () method does not take any parameters—
for example,

Using the Math Class (Exam Objective 8.1) 2. |

public class RandomTest
public static void main(String [] args) {
for (int x=0; x < 15; x++)
System.out.print((int) (Math.random()*10) + " ");

}

The println () method multiplies the result of the call to Math.random ()
by 10, and then casts the resulting double (whose value will be between 0.0 and
9.99999999...), to an integer. Here are some sample results:

6 3312059356260 335

493 668113032534
The signature of the random () method is as follows:

public static double random()

round()

The round () method returns the integer closest to the argument. The algorithm
is to add 0.5 to the argument and truncate to the nearest integer equivalent. This
method is overloaded to handle a float or a double argument.

The methods ceil (), flooxr (), and round () all take floating-point
arguments and return integer equivalents (although again, delivered in a double
variable). If the number after the decimal point is less #han 0.5, Math . round ()
is equal toMath. floor () . If the number after the decimal point is greater than
or equal t0 0.5, Math.round () is equal to Math.ceil (). Keep in mind that
with negative numbers, a number at the .5 mark will round up to the /zrger number—
for example,

Math.round(-10.5) ; // result is -10
The signatures of the round () method are as follows:

public static int round(float a)
public static long round(double a)

sin()

The sin () method returns the sine of an angle. The argument is a double
representing an angle iz radians. Degrees can be converted to radians by using
Math.toRadians () —for example,

Math.sin (Math.toRadians (90.0)) // returns 1.0

22 Chapter 6:

exam

Jatch

Java.lang—The Math Class, Strings, and Wrappers

The signature of the sin () method is as follows:
public static double sin(double a)

cos()
The cos () method returns the cosine of an angle. The argument is a double
representing an angle 7z radians—for example,

Math.cos (Math.toRadians (0.0)) // returns 1.0
The signature of the cos () method is as follows:

public static double cos (double a)

tan()

The tan () method returns the tangent of an angle. The argument is a double
representing an angle 7z radians—for example,

Math.tan (Math.toRadians (45.0)) // returns 1.0
The signature of the tan () method is as follows:
public static double tan(double a)

Sun does not expect you to be a human calculator. The certification exam
will not contain questions that require you to verify the result of calling
methods such as Math.cos (0.623). (Although we thought it would be
fun to include questions like that...)

sqrt()

The sgrt () method returns the square root of a double—for example,
Math.sqgrt(9.0) // returns 3.0

What if you try to determine the square root of a negative number? After all, the
actual mathematical square root function returns a complex number (comprised of
real and imaginary parts) when the operand is negative. The Java Math.sqgrt ()
method returns NaN instead of an object representing a complex number. NaN is
a bit pattern that denotes “not a number.” The signature of the sgrt () method
is as follows:

public static double sgrt (double a)

Using the Math Class (Exam Objective 8.1) 2.3

EXERCISE 6-2

Rounding Random Numbers

In this exercise we will round a series of random numbers. The program will
generate ten random numbers from 0 through 100. Round each one of them,
then print the results to the screen. Try to do this with as little code as possible.

I. Create a class and amain () method to perform the calculations.
2. Use a forloop to go through ten iterations.

3. Each iteration should generate a random number using Math.random () .
To get a number from 0 through 100 simply multiply the random number
by 100. Print this number to the screen. Without rounding it, though, you
can’t ever get to 100 (the random () method always returns something /ess
than 1.0).

4. Round the number using the Math.round () method. Print the rounded
number to the screen.

5. A sample solution is listed at the end of the chapter.

As a bonus, note whether the numbers look random. Is there an equal number
of even and odd numbers? Are they grouped more towards the top half of 100 or
the bottom half? What happens to the distribution as you generate more random
numbers?

toDegrees()
The toDegrees () method takes an argument representing an angle in radians
and returns the equivalent angle in degrees—for example,

Math.toDegrees (Math.PI * 2.0) // returns 360.0
The signature of the toDegrees () method is as follows:

public static double toDegrees (double a)

24 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

toRadians()

The toRadians () method takes an argument representing an angle in degrees
and returns the equivalent angle in radians—for example,

Math.toRadians (360.0) // returns 6.283185, which is 2 * Math.PI

This method is useful for converting an angle in degrees to an argument suitable
for use with the trigonometric methods (cos (), sin(), tan(), acos (),
asin(), and atan()). For example, to determine the sin of 60 degrees:

double d = Math.toRadians (60) ;
System.out.println("sin 60 = " + Math.sin(d)); // "sin 60 = 0.866.."

The signature of the toRadians () method is as follows:
public static double toRadians (double a)

Table 6-1 summarizes the key static methods of the Math class.

Static Math Methods

Important Static double ceil (double a)
Math Class double floor (double a)
Method

double random ()
double abs (double a)

float abs (floata)

Signatures

int abs (inta)

long abs (long a)
double max (double a, double b)

float max (float a, float b)

int max (inta, intb)

long max (long a, long b)
double min (double a, double b)
float min (float a, float b)double sqrt (double a)

int min (inta, intb)

long min (long a, long b)

double toDegrees (double angleInRadians)

double toRadians (double angleInDegrees)
double tan (double a)

Using the Math Class (Exam Objective 8.1) 2.8

Static Math Methods

Important Static double sin (double a)

Math Class double cos (double a)

Method

Signatures double sqrt (double a)

(continued) int round (floata)
long round (double a)

Miscellaneous Math Class Facts

The following program demonstrates some of the unusual results that can occur
when pushing some of the limits of the Math class or performing mathematical
functions that are “on the edge” (such as dividing floating-point numbers by 0).
These are some of the basic special cases. There are many more, but if you know
these you will be in good shape for the exam.

exam . . .
Match If you want to live dangerously, or you’re running out of study time before

the big day, just focus on the examples below with the **,
double d;
float p i = Float.POSITIVE INFINITY; // The floating point classes have
double n 1 = Double.NEGATIVE,_INFINITY; // these three special fields.
double notanum = Double.NaN; // They can be Float or Double
if (notanum != notanum) // ** NaN isn't == to anything, not

// even itself!
System.out.println("NaNs not equal"); // result is "NaNs not equal"

if (Double.isNaN (notanum)) // Float and Double have isNan()
// methods to test for NaNs
System.out.println("got a NaN"); // result is "got a NaN"
d = Math.sqrt(n_1i); // square root of negative infinity?

1if (Double.isNaN(d))
System.out.println("got sqgrt NaN"); // result is "got sqrt NaN"

System.out.println(Math.sqgrt(-16d)); // result is "NaN"
System.out.println(16d / 0.0); // ** result is (positive) "Infinity"
System.out.println(16d / -0.0); // ** result is (negative) "-Infinity"

// divide by 0 only works for floating point numbers
// divide by 0 with integer numbers results in ArithmeticException

System.out.println("abs(-0) = "+ Math.abs(-0)); // result is "abs(-0) = 0"

26 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

exam

Datch The exam will test your knowledge of implicit casting. For the numeric

primitives, remember that from narrowest to widest the numeric primitives
types are byte, short, int, long, float, double. Any numeric primitive can be
implicitly cast to any numeric primitive type that is wider than itself. For
instance, a byte can be implicitly cast to any other numeric primitive, but
a float can only be implicitly cast to a double. Remembering implicit casting,
and the method signatures in Table 6-1, will help you answer many of the
exam questions.

CERTIFICATION OBJECTIVE

Using Wrapper Classes (Exam Objective 8.3)

Describe the significance of wrapper classes, including making appropriate selections in
the wrapper classes to suit specified behavior requirements, stating the result of executing
a fragment of code that includes an instance of one of the wrapper classes, and writing
code using the following methods of the wrapper classes (e.g., Integer, Double, etc.):
doubleValue, floarValue, intValue, longValue, parseXxx, getXxx, toString, toHexString.

The wrapper classes in the Java API serve two primary purposes:

B To provide a mechanism to “wrap” primitive values in an object so that the
primitives can be included in activities reserved for objects, like as being
added to Collections, or returned from a method with an object return value.

B To provide an assortment of utility functions for primitives. Most of these
functions are related to various conversions: converting primitives to and
from String objects, and converting primitives and String objects to and
from different bases (or radix), such as binary, octal, and hexadecimal.

An Overview of the Wrapper Classes

There is a wrapper class for every primitive in Java. For instance the wrapper class
for intis Integer, for float is Float, and so on. Remember that the primitive name is

Using Wrapper Classes (Exam Objective 8.3) 27

simply the lowercase name of the wrapper except for char, which maps to Character,
and int, which maps ro Integer. Table 6-2 lists the wrapper classes in the Java API.

Creating Wrapper Objects

For the exam you need to understand the three most common approaches for creating
wrapper objects. Some approaches take a String representation of a primitive as an
argument. Those that take a String throw NumberFormatException if the String
provided cannot be parsed into the appropriate primitive. For example “two” can’t
be parsed into “2”. Like another class previously discussed in this chapter, wrapper
objects are immutable. Once they have been given a value, that value cannot be
changed. (Can you guess which other class we’re talking about?)

The Wrapper Constructors

All of the wrapper classes except Character provide two constructors: one that takes
a primitive of the type being constructed, and one that takes a String representation
of the type being constructed—for example,

Integer il = new Integer(42);
Integer 12 = new Integer("42");

or

Float fl1 = new Float(3.14f);
Float f2 = new Float("3.14f");

Primitive Wrapper Class Constructor Arguments
Wrapper Classes | boolean Boolean boolean or String
?:n;rt:ttor byte Byte byte or String
Arguments char Character char

double Double double or String

float Float float or String

int Integer int or String

long Long long or String

short Short short or String

28 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

exam

$atch

The Character class provides only one constructor, which takes a c¢har as an
argument—for example,

Character cl = new Character('c');

The constructors for the Boolean wrapper take either a boolean value true or
false, or a case-insensitive String with the value “true” or “false”. But a Boolean
object can’t be used as an expression in a boolean test—for instance,

Boolean b = new Boolean ("false") ;
if (b) // won't compile, expecting a boolean not a Boolean

The valueOf() Methods

The static valueOf£ () methods provided in most of the wrapper classes give

you another approach to creating wrapper objects. Both methods take a String
representation of the appropriate type of primitive as their first argument, the
second method (when provided) takes an additional argument, int radix, which
indicates in what base (for example binary, octal, or hexadecimal) the first argument
is represented—for example,

Integer i2 = Integer.valueOf ("101011", 2); // converts 101011 to 43 and
// assigns the value 43 to the
// Integer object 12

or

Float f2 = Float.valueOf ("3.14f"); // assigns 3.14 to the Float object f2

Using Wrapper Conversion Utilities

As we said earlier, a wrapper’s second big function is converting stuff. The following
methods are the most commonly used, and are the ones you’re most likely to see on
the test.

xxxValue()

When you need to convert the value of a wrapped numeric to a primitive, use one
of the many xxxValue () methods. All of the methods in this family are no-arg
methods. As you can see by referring to Table 6-3, there are 36 xxxValue ()
methods. Each of the six numeric wrapper classes has six methods, so that any
numeric wrapper can be converted to any primitive numeric type—for example,

Using Wrapper Classes (Exam Objective 8.3) 2.9

Integer i2 = new Integer(42); // make a new wrapper object

byte b = i2.byteValue() ; // convert i2's value to a byte
// primitive

short s = i2.shortValue(); // another of Integer's xxxValue
// methods

double d = i2.doubleValue() ; // vyet another of Integer's

// xxxValue methods

or
Float f2 = new Float(3.14f); // make a new wrapper object
short s = f2.shortValuel() ; // convert f2's value to a short
// primitive
System.out.println(s); // result is 3 (truncated, not
// rounded)

TABLE 6-3 Common Wrapper Conversion Methods

Method

s = static

n = NFE exception Boolean Byte Character Double Float Integer Short
byteValue X X X X x x
doubleValue X X b'e X 'S X
floatValue X X b'e X X X
intValue X X b'e X X X
longValue X X X X p'e X
shortValue X X p'e X b'e X
parseXxx 57 X X X X X X
parseXxx 57 X X X X
(with radix)

valueOf 57 X X X X X X X
valueOf 57 X X X X
(with radix)

30 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

TABLE 6-3 Common Wrapper Conversion Methods (continued)

Method

s = static

n = NFE exception = Boolean Character Double Float Integer Long Short
toString X X X X X X X X
toString s X X X X X X
(primitive)

toString s X X

(primitive, radix)

toBinaryString s X p'e
toHexString s X p'e
toOctalString s X X

In summary, the essential method signatures for Wrapper conversion methods are
* primitive xxxValue()
* primitive parseXxx(String)
* Wrapper valueOf(String)

parseXxx() and valueOf()

The six parseXxx () methods (one for each numeric wrapper type) are closely

related to the valueOf () method that exists in all of the numeric wrapper

classes (plus Boolean). Both parseXxx () and valueOf () take a String as

an argument, throw a NumberFormatException if the String argument is not

properly formed, and can convert String objects from different bases (radix), when

the underlying primitive type is any of the four integer types. (See Table 6-3.)
The difference between the two methods is

B parseXxx () returns the named primitive.

B valueOf () returns a newly created wrapped object of the type that invoked
the method.

Some examples of these methods in action:

double d4 = Double.parseDouble("3.14"); // convert a String to a primitive
System.out.println("d4d = " + d4d); // result is "d4 = 3.14"
Double d5 = Double.valueOf ("3.14"); // create a Double object

System.out.println(d5 instanceof Double); // result is "true"

Using Wrapper Classes (Exam Objective 8.3) 3 ||

The next examples involve using the radix argument, (in this case binary):

long L2 = Long.parseLong ("101010", 2); // binary String to a primitive

System.out.println("L2 = " + L2); // result is "L2 = 42"

Long L3 = Long.valueOf ("101010", 2); // binary String to Long object

System.out.println("L3 value = " + L3); // result is "L2 value = 42"
toString()

The class Object, the alpha class, the top dog, hasa toString () method. Since
we know that all other Java classes inherit from class Object, we also know (stay
with me here) that all other Java classes have a toString () method. The idea

of the toString () method is to allow you to get some meaningful representation
of a given object. For instance, if you have a Collection of various types of objects,
you can loop through the Collection and print out some sort of meaningful
representation of each object using the toString () method, which is guaranteed
to be in every class. We'll talk more about the toString () method in the Collections
chapter, but for now let’s focus on how the toString () method relates to the
wrapper classes which, as we know, are marked £inal. All of the wrapper classes
have a no-arg, nonstatic, instance version of toString (). This method returns a
String with the value of the primitive wrapped in the object—for instance,

Double d = new Double("3.14");
System.out.println("d = " + d.toString()); // result is "d = 3.14"

All of the numeric wrapper classes provide an overloaded, static
toString () method that takes a primitive numeric of the appropriate type
(Double.toString () takesa double, Long.toString () takesa long, etc.),
and, of course, returns a String with that primitive’s value—for example,

System.out.println("d = " + Double.toString(3.14); // result is "d = 3.14"

Finally, Integer and Long provide a third toString () method. Itis static,
its first argument is the appropriate primitive, and its second argument is a radix.
The radix argument tells the method to take the first argument (which is radix 10
or base 10 by default), and convert it to the radix provided, then return the result
as a String—for instance,

System.out.println("hex = " + Long.toString(254,16); // result is "hex = fe"

32 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

toXxxString() (Binary, Hexadecimal, Octal)

The Integer and Long wrapper classes let you convert numbers in base 10 to other
bases. These conversion methods, toXxxString (), take an int or long, and
return a String representation of the converted number, for example,

String s3 = Integer.toHexString(254) ; // convert 254 to hex
System.out.println("254 in hex = " + s3); // result is "254 in hex = fe"
String s4 = Long.toOctalString(254); // convert 254 to octal
System.out.println("254 in octal = "+ s4); // result is "254 in octal = 376"

Studying Table 6-3 is the single best way to prepare for this section of the test.
If you can keep the differences between xxxValue (), parseXxx (), and
valueOf () straight, you should do well on this part of the exam.

CERTIFICATION OBJECTIVE

Using equals()(Exam Objective 5.2)

Determine the result of applying the boolean equals (Object) method to objects of
any combination of the classes java.lang.String, java.lang. Boolean, and java.lang. Object.

In this chapter we begin our discussion of == and the equals () method, and
in the Collections chapter we'll dive deeper into these two mysterious comrades.
For now, we’ll limit our discussion to how == and the equals () method relate
to String, and the wrapper classes, and an overview of other object classes.

An Overview of == and the equals() Method

There are three kinds of entities in Java that we might want to compare to determine
if they’re equivalent: primitive variables, reference variables, and objects. Part of this
discussion looks at a critical question: What exactly does “equivalent” mean?

Comparing Variables
Let’s start with primitive and reference variables. You always compare primitive
variables using ==; the equals () method obviously can’t be used on primitives.

exam

Jatch

Using equals()(Exam Objective 5.2) 3 3

The == operator returns a boolean value: true if the variables are equivalent,
false if they’re not. Primitive variables are stored in memory as some absolute
number of bits, depending on the type of primitive being handled (short is 16 bits,
int is 32 bits, long is 64 bits, etc.). On the other hand, we can’t know from one Java
implementation to the next how big a reference variable is—it might be 64 bits, it
might be 97 bits (probably not!)—but the key thing to remember is that wherever

a Java program might run, all of the reference variables running on a single VM will
be the same size (in bits) and format. When we use the == operator to compare two
reference variables, we're really testing to see if the two reference variables refer to the
same object! So remember that when you compare variables (of either type, primitive
or reference), you are really comparing two sets of bit patterns.

Either bit patterns are the same, or they’re not. If primitive # holds a 5, and primitive
b holds a 5, then the bits in zand & are the same and 2 == 6 will be true. If a reference
variable ¢ refers to object X017432 and reference variable & also refers to object
X017432, then the bits in cand 4 are the same, and ¢ == 4will be true.

When comparing reference variables with the == operator, you can only compare
reference variables that refer to objects that are in the same class or class hierarchy.
Attempting to use == to compare reference variables for objects in different class
hierarchies will result in a compiler error.

Key facts to remember about comparing variables:

I. The rule is the same for reference variables and primitive variables:
== returns true if the two bit patterns are identical.
2. Primitive variables must use ==; they cannot use the equals () method.
3. For reference variables, == means that both reference variables are
referring to the same object.

Comparing Objects

We saw what it means to compare reference variables (to see if they refer to the same
object), but what does it mean to compare the objects themselves? For an object as
simple as a String, it’s fairly intuitive to say that if two String objects have the same
value (in other words the same characters), we consider them equal. When you want
to determine if two objects are meaningfully equivalent, use the equals () method.
Like ==, the equals () method returns a boolean true if the objects are considered
equivalent; otherwise, it returns fa/se. (Remember, if we want to know whether two
String reference variables refer to the same String, we must use ==.) Given the
following code sample,

34 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

String x1 = "abc";
String x2 = "ab";
X2 = X2 + "c";

we might want to know, much later on in our code, whether the contents of the two
different String objects x/ and x2 are in fact the same. This is where the equals ()
method comes in:

if ((x1 '= x2) { // comparing reference vars
System.out.println("different objects");

}

if (xl.equals(x2)) { // comparing values
System.out.println("same values") ;

}
In the example above we could also have written this:
if (x2.equals(xl)) { // same result

In a similar vein, it’s a pretty safe bet that when we want to compare two wrapper
objects, were really interested in the primitive values that they’re wrapping. However,
it’s important to know that all of the wrapper class’ equals () methods only
return true if borh the primitive values and the wrapper’s classes are the same.

Double dl = new Double("3.0");
(3)

Integer il = new Integer(3); // create a couple of wrappers

if (dl.equals(il)) { // are the values equal ?
System.out.println("wraps are equal"); // no output, different classes

}

Double d2 = dl.valueOf ("3.0d"); // create a third wrapper

if (dl.equals(d2)) { // are the Doubles equal ?
System.out.println("Doubles are equal"); // result is "Doubles are equal"

The equals() Method Revealed (or at Least a Little

Bit Revealed)

We'll be diving in to the equals () method much more deeply in the Collections
chapter, but for now let’s just cover a few key points. The class Object, the granddaddy
of all classes (and from which all classes extend), has an equals () method. That
means every other Java class (including those in the API or those that you create)
inherits an equals () method. In java. lang, the String and wrapper classes

exam

Datch

Using equals()(Exam Objective 5.2) 3 §

have overridden the equals () method to behave as we just discussed. And
remember, the String and wrapper classes are all marked £inal, so you can’t
override any of their methods, including the equals () method.

When you create your own classes, you'll have to decide what it means for two
distinct objects to be meaningfully equivalent. Your class may have reference
variables that collectively represent the value of an instance. If you want to compare
instances of a class to one another, it will be up to you to override the equals ()
method to define what it means for two different instances to be meaningfully equal.

Remember the following key points about the equals () method:

I. equals () is used only to compare objects.

2. equals () returns a boolean, true or false.

3. The StringBuffer class has not overridden equals ().

4. The String and wrapper classes are final and have overridden equals ().

CERTIFICATION SUMMARY ‘

Strings
At the risk of being pedantic, remember that String objects are immutable, references
to Strings are not! You learned that you can make a new String by using an existing
String as a starting point, but if you don’t assign a reference variable to a new String
it will be lost to your program—you will have no way to access your new String.
Review the important methods in the String class. They’re all fairly intuitive except
for substring (), which needs a little extra brainpower. (And did we mention
how annoying—possibly evil—it is that the developers of the substring ()
method didn’t follow the Java naming convention? It should have been
subString()!)

StringBuffers are not immutable—you can change them over and over again. The
StringBuffer methods are fairly intuitive, but remember that unlike String methods,
they do modify the StringBuffer object, even if you don't assign the result to anything.

Math

As the Math class relates to the certification exam, you won’t be expected to
reproduce complicated mathematical algorithms in your head or know the cosine
of an angle. But remember that you wi// need to know how to calculate the result
of calling abs (), ceil (), floor(),max (), min (), and round () with

36 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

any given values. Know the method signatures in Table 6-1. The exam will test
your ability to remember method signatures and follow simple algorithms. Most
questions on the Math class are quite simple as long as you’ve spent the time to
commit to memory the Math class methods and their calling signatures. Table 6-1
will really help.

While you're at it, spend some time studying Table 6-1. It’s important to know
which methods are overridden and which are not. And just in case we're not making
ourselves clear, we really want you to study Table 6-1.

Wrappers

Remember that wrappers have two main functions: to wrap primitives so they
can be treated like objects, and to provide utility methods for primitives (typically
conversions). All the wrapper classes have the same name, capitalized, as their
primitive counterparts except for Character and Integer. Remember that Boolean
objects can’t be used like boolean primitives. In terms of return on investment for
your studying time, make sure that you know the details of the xxxValue ()
methods, the parseXxx () methods, the valueOf () methods, and the
toString () methods. Pay attention to which methods are static and which
throw NumberFormatException. Study Table 6-3. Copy it by hand, and then
place it under your pillow. Frame it and hang it on your wall.

Equals()
Compare primitives with ==. To determine if two reference variables refer to the
same object, use ==. To determine if two objects are meaningfully equivalent, use

equals (). When using == to compare reference variables, the compiler will
verify that the classes are the same or in the same inheritance hierarchy. Remember
that the StringBuffer class does not override the equals () method, which means
that there is no built-in method to determine if the contents of one StringBuffer
object are the same as the contents of another StringBuffer object.

Two-Minute Drill 37

TWO-MINUTE DRILL

Here are some of the key points from the certification objectives in this chapter.

Using the java.lang.String Class (Exam Objective 8.2)

Q
Q

Q

Q
Q

String objects are immutable, and String reference variables are not.

If you create a new String without assigning it, it will be lost to your
program.

If you redirect a String reference to a new String, the old String can be lost.

String methods use zero-based indexes, except for the second argument of
substring().

The String class is £inal—its methods can’t be overridden.
When a String literal is encountered by the VM, it is added to the pool.

Strings have a method named 1ength (), arrays have an attribute named

length.
StringBuffers are mutable—they can change without creating a new object.

StringBuffer methods act on the invoking object, but objects can change
without an explicit assignment in the statement.

StringBuffer equals () is not overridden; it doesn’t compare values.

In all sections, remember that chained methods are evaluated from left to right.

Using the java.lang.Math Class (Exam Objective 8.1)

Q
Q

The abs () method is overloaded to take an ins, a long a float, or a double.

The abs () method can return a negative if the argument is the minimum
int or long value equal to the value of Integer. MIN_VALUE or
Long.MIN_VALUE, respectively.

The max () method is overloaded to take inz, long, float, or double arguments.
The min () method is overloaded to take ins, long, float, or double arguments.

The random () method returns a double greater than or equal to 0.0 and
less than 1.0.

38 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

(]

a

The random () does not take any arguments.

The methods ceil (), floor (), and round () all return integer
equivalent floating-point numbers, ceil () and £loox () return doubles,
round () returns a float if it was passed an int, or it returns a double if it was
passed a long.

The round () method is overloaded to take a float or a double.
The methods sin (), cos (), and tan () take a double angle in radians.

The method sgrt () can return NaN if the argument is NaN or less
than zero.

Floating-point numbers can be divided by 0.0 without error; the result is
either positive or negative infinity.

NaN is not equal to anything, not even itself.

Using Wrappers (Exam Objective 8.3)

a
a

The wrapper classes correlate to the primitive types.

Wrappers have two main functions:

U To wrap primitives so that they can be handled like objects

O To provide utility methods for primitives (usually conversions)

Other than Character and Integer, wrapper class names are the primitive’s
name, capitalized.

Wrapper constructors can take a String or a primitive, except for Character,
which can only take a char.

A Boolean object can’t be used like a boolean primitive.

The three most important method families are

U xxxValue() Takes no arguments, returns a primitive

U parsexxx () Takes a String, returns a primitive, is static, throws NFE

U valueOf () Takes a String, returns a wrapped object, is static,
throws NFE

Radix refers to bases (typically) other than 10; binary is radix 2, octal = 8,
lE= 16.

Two-Minute Drill 39

Using equals() (Exam Objective 5.2)

Q

(I T I N

U

Use == to compare primitive variables.

Use == to determine if two reference variables refer to the same object.
== compares bit patterns, either primitive bits or reference bits.

Use equals () to determine if two objects are meaningfully equivalent.
The String and Wrapper classes override equals () to check for values.

The StringBuffer class equals () is nor overridden; it uses == under
the covers.

The compiler will not allow == if the classes are not in the same hierarchy.

Wrappers won’t pass equals () if they are in different classes.

40 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

SELF TEST

The following questions will help you measure your understanding of the material presented in this
chapter. Read all of the choices carefully, as there may be more than one correct answer. Choose all
correct answers for each question.

Using the java.lang.String Class (Exam Objective 8.2)

I. Given the following,

1 public class StringRef ({

2 public static void main(String [] args) {
3 String sl = "abc";

4. String s2 = "def";

5. String s3 = s2;

6 s2 = "ghi";

7 System.out.println(sl + s2 + s3);

8 }

9 }

what is the result?
abcdefghi
abcdefdef
abcghidef
abcghighi

Compilation fails.

mmgN®w >

An exception is thrown at runtime.

2. Given the following,

11. String x = "xyz";

12. x.toUpperCase() ;

13. String y = X.replace('Y', 'yv');
14. v =y + "abc";

15. System.out.println(y) ;

what is the result?
A. abcXyZ
B. abcxyz
C. xyzabc

Self Test 41

D. Xyzabc

E. Compilation fails.

F. An exception is thrown at runtime.
3. Given the following,

13. String X = new String("xyz");
14. vy = "abc";
15. x = x + vy;

how many String objects have been created?

A 2
B. 3
C. 4
D. 5

4. Given the following,

14. String a = "newspaper";
15. a = a.substring(5,7);
16. char b = a.charaAt(1l);
17. a =a + b;

18. System.out.println(a);

what is the result?
apa

app

apea
apep

papp

papa

mmQgOQOwp»

5. Given the following,

String d = "bookkeeper";
d.substring(1,7);

d = "w" + d;

d.append ("woo") ;
System.out.println(d) ;

0 ~J o Ul

what is the result?

472 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

wookkeewoo
wbookkeeper
wbookkeewoo
wbookkeeperwoo

Compilation fails.

mmogNnw >

An exception is thrown at runtime.

Using the java.lang.Math Class (Exam Objective 8.1)
6. Given the following,

1 public class Example {

2 public static void main(String [] args) {

3 double values[] = {-2.3, -1.0, 0.25, 43%;

4. int cnt = 0;

5. for (int x=0; x < values.length; x++) {

6 if (Math.round(values([x] + .5) == Math.ceil(values[x])) {
7 ++cnt;

8. }

9. }

10. System.out.println("same results " + cnt + " time(s)");
11. }

12. }

what is the result?
same results 0 time(s)
same results 2 time(s)

same results 4 time(s)

oo w® >

Compilation fails.
E. An exception is thrown at runtime.
7. Which of the following are valid calls to Math.max? (Choose all that apply.) (Yeah, yeah, we

know that on the rea/ exam you’d know how many were correct, but we just want you to work
a little harder here.)

A. Math.max(1,4)
B. Math.max (2.3, 5)

Self Test 43

C. Math.max(1, 3,5, 7)
D. Math.max(-1.5, -2.8f)
8. What two statements are true about the result obtained from calling Math . random()?
(Choose two.)
A. The result is less than 0.0.
The result is greater than or equal to 0.0..
The result is less than 1.0.
The result is greater than 1.0.

The result is greater than or equal to 1.0.

mmo O W

The result is less than or equal to 1.0.

9. Given the following,

1 public class SgrtExample ({

2 public static void main(String [] args) {
3 double value = -9.0;

4. System.out.println(Math.sqgrt (value)) ;
5

6

}

what is the result?

A 3.0

B. -3.0

C. NaN

D. Compilation fails.

E. An exception is thrown at runtime.

10. Given the following,

1 public class Degrees {

2 public static void main(String [] args) {

3. System.out.println(Math.sin(75));

4. System.out.println(Math.toDegrees (Math.sin(75)));
5 System.out.println(Math.sin(Math.toRadians (75)));
6 System.out.println(Math.toRadians (Math.sin(75)));
7. }

8. }

at what line will the sine of 75 degrees be output?

44 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

Line 3
Line 4
Line 5
Line 6
Line 3 and either line 4, 5, or 6

None of the above

mmogNnw >

Using Wrapper Classes (Exam Objective 8.3)

I'l. Given the following,

1 public class WrapTest2 {

2 public static void main(String [] args) {

3 Long b = new Long(42) ;

4 int x = Integer.valueOf ("345");

5. int x2 = (int) Integer.parselnt("345", 8);
6. int x3 = Integer.parselnt (42);

7 int x4 = Integer.parselnt("42");

8 int x5 = b.intValue() ;

9. }

10. 1}

which two lines will cause compiler errors? (Choose two.)
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

moUO® >

m

12. Given the following,

1 public class NFE {

2 public static void main(String [] args) {

3 String s = "42";

4 try {

5. s = s.concat(".5");

6 double d = Double.parseDouble(s) ;

7 s = Double.toString(d) ;

8 int x = (int) Math.ceil (Double.valueOf (s) .doublevalue()) ;
9 System.out.println (x) ;

Self Test 4.8

10. }

11. catch (NumberFormatException e) {
12. System.out.println("bad number") ;
13. }

14. }

15. 1}

what is the result?
42

42.5

43

bad number

Compilation fails.

moON® >

o

An uncaught exception is thrown at runtime.

13. Given the following,

1 public class BoolTest {

2 public static void main(String [] args) {
3 Boolean bl = new Boolean("false");
4. boolean b2;

5. b2 = bl.booleanvValue() ;

6 if (1b2) {

7 b2 = true;

8. System.out.print ("x ");

9. }

10. if (bl & b2) {

11. System.out.print("y ");

12. }

13. System.out.println("z");

14. }

15. 1}

what is the result?
z

Xz

vz

XYy Z

Compilation fails.

mmQgON®w>»

An exception is thrown at runtime.

46 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

14. Given the following,

1 public class WrapTest3 {

2 public static void main(String [] args) {
3 String s = "98.6";

4. // insert code here

5 }

6 }

which three lines inserted independently at line 4 will cause compiler errors? (Choose three.)
float f1 =Float.floatValue(s) ;

float £2 =Float.valueOf (s) ;

float £3 =newFloat (3.14f) .floatValue() ;

float f4 =Float.parseFloat (1.23f);

float £f5 =Float.valueOf (s) .floatvalue() ;

float £6 = (float) Double.parseDouble ("3.14") ;

mmogNw >

15. Given the following,

11. try {

12. Float fl1 = new Float("3.0");

13. int x = fl.intValue();

14. byte b = fl.bytevValue();

15. double d = fl.doublevValue() ;

16. System.out.println(x + b + d);
17. }

18. catch (NumberFormatException e) {
19. System.out.println("bad number") ;
20. }

what is the resule?

9.0

bad number

Compilation fails on line 13.
Compilation fails on line 14.

Compilation fails on lines 13 and 14.

mmogN®w >

An uncaught exception is thrown at runtime.

Self Test 47

Using equals() (Exam Objective 5.2)
16. Given the following,

1 public class WrapTest {

2 public static void main(String [] args) {
3. int result = 0;

4. short s = 42;

5 Long x = new Long("42");

6 Long y = new Long(42);

7 Short z = new Short("42");

8. Short x2 = new Short(s);

9. Integer y2 = new Integer("42");

10. Integer z2 = new Integer(42);

11

12. if (x == y) result = 1;

13. if (x.equals(y)) result = result + 10;
14. if (x.equals(z)) result = result + 100;
15. if (x.equals(x2)) result = result + 1000;
16. if (x.equals(z2)) result = result + 10000;
17.

18. System.out.println("result = " + result);
19. }

20. }

what is the result?
A. result=1

B. result =10

C. result=11

D. result =11010
E. result=11011
F. result=11111

17. Given the following,

public class BoolTest {
public static void main(String [] args) {
int result = 0;

Boolean bl new Boolean ("TRUE") ;

1
2
3.
4.
5
6 Boolean b2 = new Boolean("true");

48 Chapter 6: Javalang—The Math Class, Strings, and Wrappers

7. Boolean b3 = new Boolean("tRuE") ;

8. Boolean b4 = new Boolean("false");

9.

10. if (bl == b2) result = 1;

11. if (bl.equals(b2)) result = result + 10;
12. if (b2 == b4) result = result + 100;

13. if (b2.equals(b4)) result = result + 1000;
14. if (b2.equals(b3)) result = result + 10000;
15.

16. System.out.println("result = " + result);
17. }

18. 1}

what is the result?
0

1

10

1100
10001
10010

moOo® >

o

18. Given the following,

1 public class ObjComp {

2 public static void main(String [] args) {

3 int result = 0;

4. ObjComp oc = new ObjComp () ;

5. Object o = oc;

6

7 if (o == oc) result = 1;

8. if (o != oc) result = result + 10;

9. if (o.equals(oc)) result = result + 100;
10. if (oc.equals(o)) result = result + 1000;
11.

12. System.out.println("result = " + result);
13. }

14. 3}

what is the result?
A 1
B. 10

C.
D.

E.

Self Test 49

101
1001
1101

19. Which two statements are true about wrapper or String classes? (Choose two.)

A

0

If xand y refer to instances of different wrapper classes, then the fragment x . equals (y)
will cause a compiler failure.

If xand y refer to instances of different wrapper classes, then x == y can sometimes be
true.

If xand yare String references and if x. equals (y) is true, then x== yis true.

If x, 5, and z refer to instances of wrapper classes and x . equals (y) is true, and
y.equals(z) is true, then z.equals (x) will always be true.

If xand y are String references and x == yis true, then y.equals (x) will be true.

BQO Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

SELF TEST ANSWERS

Strings (Exam Objective 8.2)

I. M C. After line 5 executes, both 52 and 53 refer to a String object that contains the value
“def”. When line 6 executes, a new String object is created with the value “ghi”, to which s2
refers. The reference variable s3 still refers to the (immutable) String object with the value
“def”.

& A, B, D, E, and F are incorrect based on the logic described above.

2. M C. Line 12 creates a new String object with the value “XYZ”, but this new object is
immediately lost because there is no reference to it. Line 13 creates a new String object
referenced by y. This new String object has the value “xyz” because there was no “Y” in the
String object referred to by x. Line 14 creates a new String object, appends “abc” to the value
“xyz”, and refers y to the result.

A, B, D, E, and F are incorrect based on the logic described above.

3. M C. Line 13 creates two, one referred to by xand the lost String “xyz”. Line 14 creates one
(for a total of three). Line 15 creates one more (for a total of four), the concatenated String
referred to by x with a value of “xyzabc”.

A, B, and D are incorrect based on the logic described above.

4. M B.Both substring () and charAt () methods are indexed with a zero-base, and
substring () returns a String of length arg2 — argl.
A, C, D, E, and F are incorrect based on the logic described above.

5. M E.Inline 7 the code calls a StringBuffer method, append () on a String object.
A, B, C, D, and F are incorrect based on the logic described above.

Math (Exam Objective 8.1)

6. M B.Math.round() adds.5 to the argument then performsa £1oor (). Since the code
adds an additional .5 before round () is called, it’s as if we are adding 1 then doing a
floor (). The values that start out as integer values will in effect be incremented by 1 on the
round () side but not on the ceil () side, and the noninteger values will end up equal.

A, C, D, and E are incorrect based on the logic described above.

Self Test Answers § ||

M A, B,and D. Themax () method is overloaded to take two arguments of type int, long,
float, or double.

C is incorrect because the max () method only takes two arguments.

M B and C. The result range for random () is 0.0 to < 1.0; 1.0 is not in range.

A, D, E, and F are incorrect based on the logic above.

M C.The sgrt () method returns NaN (not a number) when it’s argument is less than zero.
A, B, D, and E are incorrect based on the logic described above.

M C. The Math class’ trigonometry methods expect their arguments to be in radians, not

degrees. Line 5 can be decoded: “Convert 75 (degrees) into radians, then find the sine of
that result.”
A, B, D, E, and F are incorrect based on the logic described above.

Worappers (Exam Objective 8.3)

M B and D. B is incorrect because the valueOf () method returns an Integer object. D is
incorrect because the parseInt () method takes a String.

& A, G E, and F all represent valid syntax. Line 5 takes the String “345” to be octal number,
and converts it to an integer value 229.

M C. All of this code is legal, and line 5 creates a new String with a value of “42.5”. Lines 6
and 7 convert the String to a double and then back again. Line 8 is fun—Math.ceil ()’s
argument expression is evaluated first. We invoke the valueOf () method that returns an
anonymous Double object (with a value of 42.5). Then the doublevValue () method is
called (invoked on the newly created Double object), and returns a double primitive (there and
back again), with a value of (you guessed it) 42.5. The ceil () method converts this to 43.0,
which is cast to an 7zzand assigned to x. We know, we know, but stuff like this is on the exam.
A, B, D, E, and F are incorrect based on the logic described above.

M E. The compiler fails at line 10 because &1 is a reference variable to a Boolean wrapper
object, not a boolean primitive. Logical boolean tests can’t be made on Boolean objects.
& A, B, C, D, and F are incorrect based on the logic described above.

M A, B, and D. A won’t compile because the floatValue () method is an instance
method that takes no arguments. B won’t compile because the valueOf () method returns
a wrapper object. D won’t compile because the parseFloat () method takes a String.

C, E, and F are all legal (if not terribly useful) ways to return a primitive floaz.

B2 Chapter 6: Java.lang—The Math Class, Strings, and Wrappers

I15. M Aiscorrect. The xxxValue () methods convert any numeric wrapper object’s value to
any primitive type. When narrowing is necessary, significant bits are dropped and the results
are difficult to calculate.

B, C, D, E, and F are incorrect based on the logic described above.

Equals() (Exam Objective 5.2)

16. M B. Line 12 fails because == compares reference values, not object values. Line 13 succeeds
because both String and primitive wrapper constructors resolve to the same value (except for
the Character wrapper). Lines 14, 15, and 16 fail because the equals () method fails if the
object classes being compared are different and not in the same tree hierarchy.

A, C, D, E, and F are incorrect based on the logic described above.

17. M F. Line 10 fails because 47 and 42 are two different objects. Lines 11 and 14 succeed
because the Boolean String constructors are case insensitive. Lines 12 and 13 fail because
true is not equal to false.

& A, B, C, D, and E are incorrect based on the logic described above.

18. M E. Even though oand ocare reference variables of different types, they are both referring
to the same object. This means that == will resolve to true and that the default equals ()
method will also resolve to true.

& A, B, C, and D are incorrect based on the logic described above.

19. M D and E. D describes an example of the equals () method behaving transitively. By
the way, x, y, and z will all be the same type of wrapper. E is true because x and y are referring
to the same String object.

A is incorrect—the fragment will compile. B is incorrect because x == y means that the
two reference variables are referring to the same object. C will only be true if x and y refer
to the same String. It is possible for x and y to refer to two different String objects with the
same value.

Exercise Answers §3

EXERCISE ANSWERS

Exercise 6-1: Using the Math Class

The following code listing is an example of how you might have written code to
complete the exercise:

class NumberInterrogation ({
public static void main(String [] argh) {
double [] num = {10.5, -10.5, Math.PI, 0};
for (int i=0;i<num.length;++1i) {

System.out.println("abs ("+num[i]+")="+Math.abs (num[i])) ;

System.out.println("ceil ("+num[i]+")="+Math.ceil (num[i]));

System.out.println("floor ("+num[i]+")="+Math.floor (num[i])) ;
(

System.out.println() ;

Exercise 6-2: Rounding Random Numbers

The following code listing is an example of how you might have written code to
complete the exercise:

class RandomRound {
public static void main(String [] argh) {
for (int 1=0;1<10;++1) {
double num = Math.random() * 100;
System.out.print ("The number " + num) ;
System.out.println(" rounds to " + Math.round (num)) ;

